




Control Engineering

Series Editor
William S. Levine
Department of Electrical and Computer Engineering
University of Maryland
College Park, MD 20742-3285
USA

Editorial Advisory Board
Okko Bosgra
Delft University
The Netherlands

Graham Goodwin
University of Newcastle
Australia

Petar Kokotović
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Preface

Rapid advances in communication technology have opened up the possibility of
large-scale control systems in which the control task is distributed among several
processors and the communication among the processors, sensors, and actuators is
via communication channels. Such control systems may be distributed over large dis-
tances and may use large numbers of actuators and sensors. The possibility of such
networked control systems motivates the development of a new chapter of control
theory in which control and communication issues are integrated, and all the limita-
tions of communication channels are taken into account. There is an emerging litera-
ture on this topic; however, at present there is no systematic theory of estimation and
control over communication networks. This book is concerned with the development
of such a theory.

This book is primarily a research monograph that presents, in a unified man-
ner, some recent research on control and estimation over communication channels.
It is essentially self-contained and is intended both for researchers and advanced
postgraduate students working in the areas of control engineering, communications,
information theory, signal processing or applied mathematics with an interest in the
emerging field of networked control systems. The reader is assumed to be competent
in the basic mathematical techniques of modern control theory.

By restricting ourselves to several selected problems of estimation and control
over communication networks, we are able to present and prove a number of results
concerning optimality, stability, and robustness that are of practical significance for
networked control system design. In particular, various problems of Kalman filtering,
stabilization, and optimal control over communication channels are considered and
solved. The results establish fundamental links among mathematical control theory,
Shannon information theory, and entropy theory of dynamical systems. We hope
that the reader finds this work both useful and interesting and is inspired to explore
further the diverse and challenging area of networked control systems. This book is
one of the first research monographs on estimation and control over communication
networks.

The material presented in this book derives from a period of fruitful research col-
laboration between the authors on the area of networked control systems beginning
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in 1999 and is still ongoing. Some of the material contained herein has appeared as
isolated results in journal papers and conference proceedings. This work presents
this material in an integrated and coherent manner and presents many new results.
Much of the material arose from joint work with students and colleagues, and the au-
thors wish to acknowledge the major contributions made by Veerachai Malyavej, Ian
Petersen, Rob Evans, Teddy Cheng, Efstratios Skafidas, and Valery Ugrinovskii. Our
thanks for the help with some figures in the book go to Teddy Cheng and Veerachai
Malyavej. We are also grateful to our colleagues Girish Nair, Daniel Liberzon, Vic-
tor Solo, Tamer Başar, David Clements, and Andrey Barabanov who have provided
useful comments and suggestions.

The authors wish to acknowledge the support they have received throughout the
preparation of this work from the School of Electrical Engineering and Telecommu-
nications at the University of New South Wales, Sydney, and the Faculty of Math-
ematics and Mechanics at the Saint Petersburg University. The authors are also ex-
tremely grateful for the financial support they have received from the Australian Re-
search Council, the Russian Foundation for Basic Research (grant 06-08-01386), and
the Research Council of the President of the Russian Federation (grant 2387.2008.1).

Furthermore, the first author is grateful for the enormous support he has received
from his wife Elena and daughter Julia. Also, the second author is indebted to the
endless love and support he has received from his wife Natalia and children Mikhail
and Katerina.

Alexey S. Matveev Saint Petersburg, Russia
Andrey V. Savkin Sydney, Australia

March 2008
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1

Introduction

1.1 Control Systems and Communication Networks

Control and communications have traditionally been different areas with little over-
lap. Until the 1990s it was common to decouple the communication issues from con-
sideration of state estimation or control problems. In particular, in the classic control
and state estimation theory, the standard assumption is that all data transmission re-
quired by the algorithm can be performed with infinite precision in value. In such an
approach, control and communication components are treated as totally independent.
This considerably simplifies the analysis and design of the overall system and mostly
works well for engineering systems with large communication bandwidth. However,
in some recently emerging applications, situations are encountered where observa-
tion and control signals are transmitted via a communication channel with a limited
capacity. For instance, this issue may arise with the transmission of control signals
when a large number of mobile units needs to be controlled remotely by a single
decision maker. Since the radio spectrum is limited, communication constraints are
a real concern. In [199], the design of large-scale control systems for platoons of
underwater vehicles highlights the need for control strategies that address reduced
communications, since communication bandwidth is severely limited underwater.
Other recent emerging applications are micro-electromechanical systems and mo-
bile telephony.

On the other hand, for complex networked sensor systems containing a very large
number of low-power sensors, the amount of data collected by the sensors is too large
to be transmitted in full via the existing communication channel. In these problems,
classic control and state estimation theory cannot be applied since the controller/state
estimator only observes the transmitted sequence of finite-valued symbols. So it is
natural to ask how much transmission capacity is needed to achieve a certain control
goal or a specified state estimation accuracy. The problem becomes even more chal-
lenging when the system contains multiple sensors and actuators transmitting and
receiving data over a shared communication network. In such systems, each mod-
ule is effectively allocated only a small portion of the network total communication
capacity.

A.S. Matveev and A.V. Savkin, Estimation and Control over Communication Networks,  1 
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Another shortcoming of the classic control and estimation theory is the as-
sumption that data transmission and information processing required by the con-
trol/estimation algorithm can be performed instantaneously. However, in complex
real-world networked control systems, data arrival times are often delayed, irregular,
time-varying, and not precisely known, and data may arrive out of order. Moreover,
data transferred via a communication network may be corrupted or even lost due to
noise in the communication medium, congestion of the communication network, or
protocol malfunctions. The problem of missing data may also arise from temporary
sensor failures. Examples arise in planetary rovers, arrays of microactuators, and
power control in mobile communications. Other examples are offered by complex
dynamic processes like advanced aircraft, spacecraft, and manufacturing processes,
where time division multiplexed computer networks are employed for exchange of
information between spatially distributed plant components.

On the other hand, for many complex control systems, it can be desirable to dis-
tribute the control task among several processors, rather than using a single central
processor. If these processors are not triggered by a common clock pulse, and their
computation, sampling, and hold activities are not synchronized, we call them asyn-
chronous controllers. In addition, these processors need not operate with the same
sampling rate, and so-called multirate sampling in control systems has been of inter-
est since the 1950s (see, e.g., [54,80,230]). The sampling rates of the controllers are
typically assumed to be precisely known and integrally proportional, and sampling
is synchronized to make the sampling process periodic, with a period equal to an in-
tegral multiple of the largest sampling period. However, in many practical situations,
the sampling times are irregular and not precisely known. This occurs, for example,
when a large-scale computer controller is time-shared by several plants so that con-
trol signals are sent out to each plant at random times. It should be pointed out that
the multitask allocation for large multiprocessor computers is a very complex and
practically nondeterministic process. In fact, the problem of uncertain and irregular
sampling times often faces engineers when they use multiprocessor computer sys-
tems and communication networks for operation and control of complex physical
processes. In all these applications, communication issues are of real concern.

Another rapidly emerging area is cooperative control of multiagent networked
systems, especially formations of autonomous unmanned vehicles; see, e.g., [9, 51,
76, 159, 160, 169]. The key challenge in this area is the problem of cooperation be-
tween a group of agents performing a shared task using interagent communication.
The system is decentralized, and decisions are made by each agent using limited
information about other agents and the environment. Applications include mobile
robots, unmanned aerial vehicles (UAVs), automated highway systems, sensor net-
works for spatially distributed sensing, and microsatellite clusters. In all these ap-
plications, the interplay between communication network properties and vehicle dy-
namics is crucial. This class of problems represents a difficult and exciting challenge
in control engineering and is expected to be one of the most important areas of con-
trol theory in the near future.
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A slightly different approach was proposed in the signal processing community
where problems of parameter estimation in sensor networks with limited communi-
cation capacity were studied (see, e.g., [6, 7] for a survey).

These new engineering applications have attracted considerable research interest
in the last decade; however, the interplay between control and communication is a
fundamental topic, and its origins go back much earlier than that. For example, in
1948 Wiener introduced the term cybernetics and defined it as control and communi-
cation in the animal and the machine [218]. Furthermore, ideas on importance of the
information-based approach to control can be found in the work of many researchers
over several decades.

All these engineering applications and fundamental questions motivate devel-
opment of a new chapter of mathematical electrical engineering in which control
and communication issues are combined, and all the limitations of the communica-
tion channels are taken into account. The emerging area of networked control sys-
tems lies at the crossroads of control, information, communication, and dynamical
system theory. The importance of this area is quickly increasing due to the grow-
ing use of communication networks and very large numbers of sensors in mod-
ern control systems. There is now an emerging literature on this topic, (see, e.g.,
[15, 27, 39, 42, 48, 58, 64, 74, 128, 133, 135]) describing a number of models, algo-
rithms, and stability criteria. However, currently there is no systematic theory of
estimation and control over communication networks. This book is concerned with
the development of such a new theory that utilizes communications, control, infor-
mation, and dynamical systems theory and is motivated by and applied to advanced
networking scenarios.

The literature in the field of control over communication networks is vast, and
we have limited ourselves to references that we found most useful or that contain
material supplementing the text. The coverage of the literature in this book is by no
means complete. We apologize in advance to the many authors whose contributions
have not been mentioned. Also, an excellent overview of the literature in the field
can be found in [142].

In conclusion, the area of networked control systems is a fascinating new disci-
pline bridging control engineering, communications, information theory, signal pro-
cessing, and dynamical system theory. The study of networked control systems rep-
resents a difficult and exciting challenge in control engineering. We hope that this
monograph will help in some small way to meet this challenge.

1.2 Overview of the Book

In this section, we briefly describe the results presented in the book.

1.2.1 Estimation and Control over Limited Capacity Deterministic Channels

Chapter 2 provides basic results on connections between problems of estimation and
control over limited capacity communication channels and the entropy theory of dy-
namical systems originated in the work of Kolmogorov [82, 83]. The paper [141]
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imported the concept of topological entropy into the area of control over communi-
cation channels. In Chap. 2, we use the so-called “metric definition” of topological
entropy and derive several important properties of it. In particular, we present a sim-
ple proof of the well-known result asserting that the topological entropy of a discrete-
time linear system is given by

H(A) =
∑

i=1,2,...,n

log2(max{1, |λi|}), (1.2.1)

whereA is the matrix of the linear system and {λ1, λ2, . . . , λn} is the set of eigenval-
ues of the matrix A. In this chapter, we give a necessary and sufficient condition for
observability over a limited capacity channel in terms of an inequality between the
channel capacity and the topological entropy of the open-loop plant. Furthermore,
we show that the similar inequality

H(A) < R (1.2.2)

is a necessary and sufficient condition for stabilizability of a linear plant via a digital
channel. Here H(A) is defined by (1.2.1) and R is the capacity of the determinis-
tic digital channel. It should be pointed out that similar results were first proved in
the work of Nair and Evans [137, 138]. Furthermore, we prove that under the same
inequality (1.2.2) between the channel capacity and the topological entropy of the
plant, the cost in the problem of linear-quadratic (LQ) optimal control via a digi-
tal channel can be brought as close as desired to the cost in the classic LQ optimal
control problem.

Chapter 3 extends the stabilization result of Chap. 3 to the much more general
case of linear plants with multiple sensors and multiple digital communication chan-
nels. Moreover, it is not assumed that the channels are perfect; i.e., time-varying
delays and data losses are possible.

In Chap. 4, we consider problems of detectability and output feedback stabiliz-
ability via limited capacity communication channels for a class of nonlinear systems,
with nonlinearities satisfying a globally Lipschitz condition. We derive sufficient
conditions for stabilizability and detectability and present a constructive procedure
for the design of state estimators and stabilizing output feedback controllers. Finally,
we present an illustrative example in which a stabilizing output feedback controller
is designed for a robotic flexible joint with video measurement transmitted to the
controller location via a wireless limited capacity communication channel.

Chapter 5 addresses the problem of robust state estimation over limited capacity
communication channels. Robustness is one key requirement for any control system.
That is, the requirement that the control system will maintain an adequate level of
performance in the face of significant plant uncertainty. Such plant uncertainties may
be due to variation in the plant parameters and to the effects on nonlinearities and
unmodeled dynamics that have not been included in the plant model. In fact, the
requirement for robustness is one of the main reasons for using feedback in control
system design. In this chapter, we consider a plant modeled by an uncertain system
with uncertainties satisfying so-called integral quadratic constraint. This uncertainty
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description was first introduced in the work of Yakubovich on absolute stability (see,
e.g., [222]). A robust coder–decoder–estimator is designed for such uncertain plants.

Chapter 13 studies the problem of linear-quadratic Gaussian (LQG) optimal con-
trol over a limited capacity communication channel. This problem is considered for
a discrete-time linear plant and a finite time interval. We derive an optimal coding–
decoding–control strategy for this problem. One consequence of the main result of
this chapter is that an analog of the separation principle from linear stochastic control
does not hold for problems of optimal Gaussian control via limited capacity chan-
nels.

1.2.2 An Analog of Shannon Information Theory: Estimation and Control
over Noisy Discrete Channels

In Chaps. 6–8, we present several results that can be viewed as an analog of Shannon
information theory for networked control systems. We consider problems of stabi-
lization and state estimation of unstable linear discrete-time plants via stationary,
memoryless, noisy discrete channels, which are common in classic information the-
ory.

The main result of Chap. 6 is that stabilizability (detectability) with probability
1 of a linear unstable plant without plant disturbances is “almost” equivalent to the
inequality

H(A) < c, (1.2.3)

where c is the Shannon ordinary capacity of the channel andH(A) is the topological
entropy of the open-loop plant defined by (1.2.1).

In Chap. 7, we address similar stabilization and state detection problems; how-
ever, it is assumed that the plant is affected by disturbances. We prove that an “al-
most” necessary and sufficient condition for existence of a coder–decoder pair such
that solutions of the closed-loop system are bounded with probability 1 is the in-
equality

H(A) < c0, (1.2.4)

where c0 is the zero error capacity of the channel. The Shannon ordinary capacity c

of the channel is the least upper bound of rates at which information can be transmit-
ted with as small a probability of error as desired, whereas the zero error capacity c0
is the least upper bound of rates at which it is possible to transmit information with
zero probability of error. The concept of the zero error capacity was also introduced
by Shannon in 1956 [189]. Unlike the Shannon ordinary capacity, the zero error ca-
pacity may depend on whether the communication feedback is available. The general
formula for c is well known, whereas the general formula for c0 is still missing.

The results of these two chapters have significant shortcomings. The results of
Chap. 6 do not guarantee any robustness subject to disturbances. On the other hand,
the results of Chap. 7 are quite conservative. Indeed, usually, c0 is significantly less
than c. Moreover, c0 = 0 for many channels. Also, despite 50 years of research in
information theory started by Shannon, there is no general formula for c0.



6 1 Introduction

To overcome these shortcomings, in Chap. 8, we introduce the concept of stabi-
lizability in probability. This kind of stabilizability means that one can find a coder–
decoder pair such that the closed-loop system satisfies the following condition: For
any probability 0 < p < 1, a constant bp > 0 exists such that:

P [‖x(t)‖ ≤ bp] ≥ p ∀t = 1, 2, . . . . (1.2.5)

The main result of Chap. 8 is that stabilizability in probability is almost equivalent
to the inequality (1.2.3).

Combining the results of Chaps. 6 and 8, it can be shown that if the inequality
(1.2.4) holds, then the constants bp in (1.2.5) can be taken so that

sup
p→1

bp <∞.

On the other hand, if c0 < H(A) < c, then

sup
p→1

bp =∞.

Similar results were derived in Chaps. 7 and 8 for state estimation problems.
It should be pointed out that the procedures for the design of controllers and state

estimators proposed in Chaps. 6–8 are quite constructive. Furthermore, it is very
important that all these coder–decoder pairs require uniformly bounded over infinite
time memory and computational power.

1.2.3 Decentralized Stabilization via Limited Capacity Communication
Networks

The advanced networking scenario is considered in Chap. 9. In this chapter, we study
linear plants with multiple sensors and actuators. The sensors and actuators are con-
nected via a complex communication networks with a very general topology. The
network contains a large number of spatially distributed nodes that receive and trans-
mit data. Each node is equipped with a CPU. For some nodes, coding and decoding
algorithms are fixed, for other nodes, they need to be designed. Moreover, data may
arrive with delays, be lost, or become corrupted. The goal is to stabilize a linear plant
via such a network. We give a necessary and sufficient condition for stabilizability.
This condition is given in terms of the so-called rate (capacity) domain of the com-
munication network. Our results show that the problem of networked stabilization is
reduced to the very hard long-standing problem of information theory: calculating
the capacity domain of communication networks.

1.2.4 H∞ State Estimation via Communication Channels

In Chap. 10, a different approach to state estimation via communication channels
is presented. In this new problem statement, the channel transmits a continuous-
time vector signal. The limited capacity of the channel means that the dimension
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of the signal to be transmitted is smaller than the dimension of the plant measured
output. Our goal is to design a coder at the transmitting end of the channel and a
decoder–estimator at the receiving end so that the state estimate produced by the
coder–decoder pair satisfies a standard requirement from H∞ filtering theory. It
should be pointed out that the state estimator designed in Chap. 10 is linear and
time-invariant.

1.2.5 Kalman Filtering and Optimal Control via Asynchronous Channels with
Irregular Delays

In Chaps. 11 and 12, discrete-time linear plants with Gaussian disturbances are con-
sidered. The system under consideration has several sensors and measurements are
transmitted to the estimator or controller via parallel communication channels with
independent delays. Unlike Chaps. 2–9 where the communication channels transmit
symbols from finite alphabets, in these chapters we assume that transmissions are
performed with infinite precision in value; i.e., the channels transmit discrete-time
sequences of real numbers or vectors. However, data may be lost or arrive out of
order.

In Chap. 11, we assume that the probability distributions of the channels delays
are known. Under this assumption, we derive an analog of the Kalman filter and solve
the LQG optimal control problem. In Chap. 12, we consider a more complicated
situation where the control loop is not perfect and control signals arrive to several
actuators via asynchronous communication channels. Based on the results of the
previous chapter, we give a solution of the optimal control problem for such systems.
It should be pointed out that unlike Chaps. 2–9, all the optimal state estimators and
controllers of Chaps. 11 and 12 are linear.

1.2.6 Kalman Filtering with Switched Sensors

In Chaps. 14 and 15 we consider plants with multiple sensors communicating to
the state estimator via a set of independent channels. The bandwidth limitation con-
straint is modeled in such a manner that the state estimator can communicate with
only one sensor at any time. So the state estimation problem is reduced to finding a
suitable sensor scheduling algorithm. In Chap. 14 we consider the system with asyn-
chronous communication channels between the sensors and the state estimator. As in
Chaps. 11 and 12, sensor data arrive with irregular delays and may be lost. Using the
results of Chap. 11, we derive an optimal sensor scheduling rule. The construction of
the optimal state estimator is based on solving the Riccati equations and a dynamic
programming equation.

Chapter 15 considers the sensor switching problem for uncertain plants, with un-
certainties satisfying integral quadratic constraints. Such uncertain system models
were studied in Chap. 5. Furthermore, we use robust state estimation results from
Chap. 5. As in Chap. 14, our sensor switching algorithm requires solving a set of
Riccati equations and a dynamic programming equation. Because solving a dynamic
programming equation is a computationally expansive procedure, in both Chaps. 14
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and 15, we propose suboptimal state estimators that are designed using ideas of so-
called model predictive control. Such state estimators require much less computa-
tional power and are more implementable in real time.

1.2.7 Some Other Remarks

The chapters of this book can be divided into two groups. In Chaps. 2–9, and 13,
we consider communication channels that transmit a finite number of bits; in other
words, elements form a finite set. On the other hand, in Chaps. 10–12, 14, and 15,
transmissions are performed with infinite precision in value; i.e., the communication
channels under consideration transmit real numbers or vectors.

It should be pointed out that the state estimation and control systems designed in
Chaps. 2–9, and 13–15 can be naturally viewed as so-called hybrid dynamical sys-
tems; see, e.g., [104, 173, 174, 177, 185, 211]. The term “hybrid dynamical system”
has many meanings, the most common of which is a dynamic system that involves
the interaction of discrete and continuous dynamics. Such dynamic systems typi-
cally contain variables that take values from a continuous set (usually the set of real
numbers) and symbolic variables that take values from a finite set (e.g., the set of
symbols {q1, q2, . . . , qk}). A model of this type can be used to describe accurately a
wide range of real-time industrial processes and their associated supervisory control
and monitoring systems. In Chaps. 2–9, and 13–15, the plant state variables are con-
tinuous, whereas data transmitted via digital finite capacity channels can be naturally
modeled as symbolic variables.

Discrete-time plants are under consideration in Chaps. 2 and 3, 6–9, and 11–14.
Chapters 4 and 5, 10 and 15 study continuous-time plants.

Stochastic models are addressed in Chaps. 6–8 and 10–14, whereas all other
chapters consider deterministic models.

The design procedures of Chaps. 10–12 result in linear state estimators and con-
trollers. The state estimators and controllers in all other chapters are highly nonlinear.

Finally, plants with parametric uncertainties are studied in Chaps. 2, 5, and 15.

1.3 Frequently Used Notations

:= is defined (set) to be
∧,& and
∨ or
⇒ implies
⇔ is equivalent to
←→ corresponds to, is associated with
≡ is identical to
⊓⊔ the end of proof
{e1, e2, . . . , en} the set composed by the elements e1, e2, . . . , en
{e ∈ E : P(e) holds} the set of all elements e ∈ E with the property P(e)
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E = {e} this means that the elements of the set E are denoted by e
∅ the empty set
|S| the size (cardinality) of the set S
ds the counting measure S′ ⊂ S 7→ |S′| if the set S = {s} is

finite, and the Lebesgue measure if S = Rk

f(·) the dot · in brackets underscores that the preceding symbol
is used to denote a function

⊛ a ”void” symbol; it is used to symbolize that the contents of
something are null; for example, the memory is empty,
no message is received (which may be interpreted as
receiving a message with the null content)

z the ”alarm” symbol; it is used to mark ”undesirable” events
R, C, Z the sets of real, complex, and integer numbers, respectively
sgnx the sign of the real number x
f(t+ 0) the limit of the function f(·) at the point t from the right

f(t+ 0) := lim
ǫ>0, ǫ→0

f(t+ ǫ)

f(t− 0) the limit of the function f(·) at the point t from the left
f(t− 0) := lim

ǫ>0, ǫ→0
f(t− ǫ)

Real interval Integer interval

with end points t0, t1 ∈ R with end points t0, t1 ∈ Z

a) [t0, t1] :=
{
t ∈ R : t0 ≤ t ≤ t1

}
[t0 : t1] :=

{
t ∈ Z : t0 ≤ t ≤ t1

}

b) [t0, t1) :=
{
t ∈ R : t0 ≤ t < t1

}
[t0 : t1) :=

{
t ∈ Z : t0 ≤ t < t1

}

c) (t0, t1] :=
{
t ∈ R : t0 < t ≤ t1

}
(t0 : t1] :=

{
t ∈ Z : t0 < t ≤ t1

}

d) (t0, t1) :=
{
t ∈ R : t0 < t < t1

}
(t0 : t1) :=

{
t ∈ Z : t0 < t < t1

}

t1 may equal +∞ in the cases b) and d).

t0 may equal −∞ in the cases c) and d).

lim
i→∞

xi = lim sup
i→∞

xi the upper limit of the real-valued sequence:

lim
i→∞

xi = lim sup
i→∞

xi := lim
k→∞

sup
i≥k

xi

lim
i→∞

xi = lim inf
i→∞

xi the lower limit of the real-valued sequence:

lim
i→∞

xi = lim inf
i→∞

xi := lim
k→∞

inf
i≥k

xi

ı the imaginary unit
Rez, Imz the real and imaginary parts of the complex number z
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⌈x⌉ := min
k∈Z:k≥x

k: the integer ceiling of the real number x

⌊x⌋ := max
k∈Z:k≤x

k: the integer floor of the real number x

loga the logarithm base a ∈ (0, 1) ∪ (1,∞)
loga 0 := −∞
loga∞ := +∞
ln the natural logarithm
0 · (±∞) := 0
xi ↑ ∞ this means that the real-valued sequence x1, x2, . . .

increases xi < xi+1 and xi →∞ as i→∞

x(·)|t1t0 the restriction of the function x(t) of t
on [t0 : t1] if t is the integer variable and
on [t0, t1] if t is the real variable

Brz the open ball centered at z with the radius r
V k(S) the volume (Lebesgue measure) of the set S ⊂ Rk;

the index may be dropped if k is clear from the context
S the closure of the set S
intS the interior of the set S
dimL the dimension of a linear space L
dim(x) the dimension of the vector x
T the transpose
col (D1, . . . , Dp) :=

(
D T

1 , . . . , D
T
p

) T
, where Di is a qi × r matrix

‖ · ‖p the norm in Rn given by

‖x‖p :=

{
(
∑n
i=1 |x

p
i |)

1
p if p ∈ [1,∞)

maxi=1,...,n |xi| if p =∞
for x = col (x1, . . . , xn)

‖ · ‖ the standard Eucledian norm ‖ · ‖ = ‖ · ‖2
Lp the space of p ∈ [1,∞) power integrable vector-functions f(·):

‖f(·)‖p :=

(∫
‖f(t)‖p dt

) 1
p

<∞

⊕ the direct sum of linear subspaces; the direct sum
of the empty group of subspaces is defined to be {0}

〈·, ·〉 the standard inner product in the Eucledian space Rn

〈x, y〉 :=
n∑

i=1

xiyi for
x = col (x1, . . . , xn)
y = col (y1, . . . , yn)
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LinS the linear hull of a subset S of a linear space
Im the unit m×m matrix;

the index may be dropped if m is clear from the context
0m×n the zero m× n matrix
kerA the kernel of the matrix (operator)A:

kerA := {x : Ax = 0}
ImA the image of the matrix (operator)A:

ImA := {y : ∃x, y = Ax}
A|L the restriction of the operator (matrix) A

on the linear subspace L
trA the trace (the sum of the diagonal elements)

of the square matrix A
detA the determinant of the square matrix (operator)A
σ(A) the spectrum of A
σ+(A) := {λ ∈ σ(A) : |λ| ≥ 1}: the unstable part of the spectrum
σ−(A) := σ(A) \ σ+(A): the stable part of the spectrum
Mσ(A) the invariant subspace of A

related to the spectrum set σ ⊂ σ(A)
Mst(A) := Mσ−(A): the invariant subspace related to

the stable part of the spectrum
Munst(A) := Mσ+(A) the invariant subspace related to

the unstable part of the spectrum
diag(A1, . . . , Ak) the diagonal block-matrix with the square matrices Ai

along the diagonal and zero blocks outside the diagonal
‖A‖ the norm of the matrix (operator)A:

‖A‖ := supx6=0
‖Ax‖∗
‖x‖∗ = sup‖x‖∗=1 ‖Ax‖∗

where ‖ · ‖∗ is a given vector norm

∑n
i=mQi := 0 wheneverm > n, where Qi are elements of a common

linear space, and 0 is the zero of this space∏n
i=m Ai := Is wheneverm > n, where Ai are s× s-matrices

degϕ(·) the degree of the polynomial ϕ(·)
. the inequality up to a polynomial factor:

f(t) . g(t)⇔
{

a polynomial ϕ(·) exists
such that f(t) ≤ ϕ(t)g(t) ∀t

}

h the equality up to a polynomial factor:

f(r) h g(r)⇔ f(r) . g(r)& g(r) . f(r)
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P the propability
E the mathematical expectation
P (f) := P (F = f) for a random variable F ∈ F

and an element f ∈ F

P (·|F = f)
= P (·|f)

}
the conditional probability given that F = f

P (E|f) := 0 whenever P (f) = 0
PG(dg) the probability distribution of the random variable G
PG(dg|F = f)
= PG(dg|f)

} {
the probability distribution of the random variable G
given that F = f

pV (·) the probability density of a random vector V ∈ Rs

pV (·|F = f)
= pV (·|f)

} {
the probability density of a random vector V ∈ Rs

given that F = f
IE the indicator of the random event E:

IE = 1 if E holds, and IE = 0 otherwise
a.s. ”almost surely, with probability 1”
h(V ) the differential entropy of the random vector V

h(V ) := −
∫
pV (v) log2 pV (v) dv

In conclusion, we note that the capital script letters will be mostly used to denote
deterministic functions. The measurable space is a pair [V, Σ], where V is a set and
Σ is a σ-algebra of subsets V ⊂ V.
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Topological Entropy, Observability, Robustness,
Stabilizability, and Optimal Control

2.1 Introduction

In this chapter, we study connections among observability, stabilizability, and op-
timal control via digital channels on the one hand, and topological entropy of the
open-loop system on the other hand. The concept of entropy of dynamic systems
was originated in the work of Kolmogorov [82, 83] and was inspired by the Shan-
non’s pioneering paper [188]. Kolmogorov’s work started a whole new research di-
rection in which entropy appears as a numerical invariant of a class of deterministic
dynamic systems (see also [162]). Later, Adler and his co-authors introduced topo-
logical entropy of dynamic systems [2], which is a modification of Kolmogorov’s
metric entropy. The paper [140] imported the concept of topological entropy into the
theory of networked control systems. The concept of feedback topological entropy
was introduced, and the condition of a local stabilizability of nonlinear systems via a
limited capacity channel was given. In this chapter, we extend the concept of topolog-
ical entropy to the case of uncertain dynamic systems with noncompact state space.
Unlike [140], we use a less common “metric”definition of topological entropy intro-
duced by Bowen (see, e.g., [26]). The “metric definition” is, in our opinion, more
suitable to the theory of networked control systems. The main results of the chap-
ter are necessary and sufficient conditions of robust observability, stabilizability, and
solvability of the optimal control problem that are given in terms of inequalities be-
tween the communication channel data rate and the topological entropy of the open-
loop system. The main results of the chapter were originally published in [171].
Notice that the results on stabilizability of linear plants via limited capacity commu-
nication channels were proved by Nair and Evans (see, e.g., [137, 138]).

The remainder of the chapter is organized as follows. Section 2.2 introduces the
concept of observability of a nonlinear uncertain system via a digital communica-
tion channel. The definition of topological entropy and several conditions for ob-
servability in terms of topological entropy are given in Sect. 2.3. In Sect. 2.4, we
calculate the topological entropy for some important classes of linear systems. Sec-
tion 2.5 addresses the problem of stabilization of linear systems. The problem of
linear-quadratic (LQ) optimal control via a limited capacity digital channel is solved
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in Sect. 2.6. Finally, Section 2.7 presents the proofs of some results from Sects. 2.4,
2.5, and 2.6.

2.2 Observability via Communication Channels

In this section, we consider a nonlinear, uncertain, discrete-time dynamic system of
the form:

x(t+ 1) = F (x(t), ω(t)), x(1) ∈ X1, x(t) ∈ X, (2.2.1)

where t = 1, 2, 3, . . ., x(t) ∈ Rn is the state; ω(t) ∈ Ω is the uncertainty input;
X ⊂ Rn is a given set; X1 ⊂ X is a given nonempty compact set; and Ω ⊂ Rm is a
given set. Notice that we do not assume that the function F (·, ·) is continuous.

In our observability problem, a sensor measures the state x(t) and is connected to
the controller that is at the remote location. Moreover, the only way of communicat-
ing information from the sensor to that remote location is via a digital communication
channel that carries one discrete-valued symbol h(jT ) at time jT , selected from a
coding alphabet H of size l. Here T ≥ 1 is a given integer period, and j = 1, 2, 3, . . ..

This restricted number l of codewords h(jT ) is determined by the transmission
data rate of the channel. For example, if µ is the number of bits that our channel can
transmit, then l = 2µ is the number of admissible codewords. We assume that the
channel is a perfect noiseless channel and that there is no time delay. Let R ≥ 0
be a given constant. We consider the class CR of such channels with any period T
satisfying the following transmission data rate constraint:

log2 l

T
≤ R. (2.2.2)

The rate R = 0 corresponds to the case when the channel does not transmit data at
all.

We consider the problem of estimation of the state x(t) via a digital communi-
cation channel with a bit-rate constraint. Our state estimator consists of two com-
ponents. The first component is developed at the measurement location by taking
the measured state x(·) and coding to the codeword h(jT ). This component will
be called a “coder.” Then the codeword h(jT ) is transmitted via a limited capacity
communication channel to the second component, which is called a “decoder.” The
second component developed at the remote location takes the codeword h(jT ) and
produces the estimated states x̂((j− 1)T +1), . . . , x̂(jT − 1), x̂(jT ). This situation
is illustrated in Fig. 2.1 (where y ≡ x now).

The coder and the decoder are of the following forms, respectively:

h(jT ) = Fj
(
x(·)|jT1

)
; (2.2.3)




x̂((j − 1)T + 1)
...
x̂(jT − 1)
x̂(jT )


 = Gj [h(T ), h(2T ), ..., h((j − 1)T ), h(jT )] . (2.2.4)
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Nonlinear
System Coder Decoder

channel

Fig. 2.1. State estimation via digital communication channel

Here j = 1, 2, 3, . . ..
We recall that for a vector x = col

[
x1 . . . xn

]
from Rn,

‖x‖∞ := max
j=1,...,n

|xj |. (2.2.5)

Furthermore, ‖ · ‖ denotes the standard Euclidean vector norm:

‖x‖ :=

√√√√
n∑

j=1

x2
j .

Definition 2.2.1. The system (2.2.1) is said to be observable in the communication
channel class CR if for any ǫ > 0, a period T ≥ 1 and a coder–decoder pair (2.2.3),
(2.2.4) with a coding alphabet of size l satisfying the constraint (2.2.2) exist such
that

‖x(t)− x̂(t)‖∞ < ǫ ∀t = 1, 2, 3, . . . (2.2.6)

for any solution of (2.2.1).

2.3 Topological Entropy and Observability of Uncertain Systems

In this section, we introduce the concept of topological entropy for the system (2.2.1).
In general, we follow the scheme of [154]; however, unlike [154], we consider un-
certain dynamic systems.

Notation 2.3.1. For any k ≥ 1, let Xk := {x(1), x(2), . . . , x(k)} be the set of solu-
tions of (2.2.1) with uncertainty inputs from Ω.

Definition 2.3.2. Consider the system (2.2.1). For k ≥ 1 and ǫ > 0 we call a finite
set Q ⊂ Xk an (k, ǫ)−spanning set if for any xa(·) ∈ Xk, an element xb(·) ∈
Q exists such that ‖xa(t) − xb(t)‖∞ < ǫ for all t = 1, 2, . . . , k. If at least one
finite (k, ǫ)−spanning set exists, then q(k, ǫ) denotes the least cardinality of any
(k, ǫ)−spanning set. If a finite (k, ǫ)−spanning set does not exist, then q(k, ǫ) :=∞.

Now we are in a position to give a definition of topological entropy for the un-
certain dynamic system (2.2.1).
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Definition 2.3.3. The quantity

H(F (·, ·),X1,X, Ω) := lim
ǫ→0

lim sup
k→∞

1

k
log2(q(k, ǫ)) (2.3.1)

is called the topological entropy of the uncertain system (2.2.1).

Remark 2.3.4. Notice that the topological entropy may be equal to infinity. In the
case of a system without uncertainty with continuous F (·, ·) and compact X, the
topological entropy is always finite [154].

Remark 2.3.5. We use Bowen’s “metric” definition of topological entropy that is dif-
ferent from the more common “topological” definition (see, e.g., p. 20 of [154]).
In the case of a continuous system without uncertainty, both definitions are equiva-
lent [154].

Now we are in a position to present the main result of this section.

Theorem 2.3.6. Consider the system (2.2.1), and assume that X = X1 (hence, X is
compact). Let R ≥ 0 be a given constant. Then the following two statements hold:

(i) If R < H(F (·, ·),X1,X, Ω), then the system (2.2.1) is not observable in the
communication channel class CR;

(ii) If R > H(F (·, ·),X1,X, Ω), then the system (2.2.1) is observable in the com-
munication channel class CR.

In order to prove Theorem 2.3.6, we will need the following definition and
lemma.

Definition 2.3.7. Consider the system (2.2.1). For k ≥ 1 and ǫ > 0, we call a finite
set S ⊂ Xk an (k, ǫ)−separated set if for distinct points xa(·), xb(·) ∈ S, we have
that ‖xa(t) − xb(t)‖∞ ≥ ǫ for some t = 1, 2, . . . , k. Let s(k, ǫ) denote the least
upper bound of the cardinality of all (k, ǫ)−separated sets. Notice that s(k, ǫ) may
be equal to infinity.

Lemma 2.3.8. For any system (2.2.1),

lim
ǫ→0

lim sup
k→∞

1

k
log2(s(k, ǫ)) = H(F (·, ·),X1,X, Ω). (2.3.2)

Proof of Lemma 2.3.8. We first observe that s(k, ǫ) ≥ q(k, ǫ). Indeed, if s(k, ǫ) =
∞, then this inequality always holds. If s(k, ǫ) < ∞, then a finite (k, ǫ)−separated
set S of maximal cardinality exists and any such set must also be an (k, ǫ)−spanning
set. Furthermore, we prove that s(k, 2ǫ) ≤ q(k, ǫ). Indeed, if q(k, ǫ) = ∞, then this
inequality obviously holds. If q(k, ǫ) < ∞, then a finite (k, ǫ)−spanning set Q of
cardinality q(k, ǫ) exists. Let S be any (k, 2ǫ)−separated finite set and s be its cardi-
nality. We take s open balls of radius ǫ centered at the points of this (k, 2ǫ)−separated
set S. Then all these open balls do not intersect with each other. On the other hand,
each of these balls must contain an element of the (k, ǫ)−spanning set Q. Since the
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balls do not intersect, we have s ≤ q(k, ǫ). It means we have proved that q(k, ǫ) is no
less than the cardinality of any (k, 2ǫ)−separated set. Therefore,s(k, 2ǫ) ≤ q(k, ǫ).
We have proved that

s(k, 2ǫ) ≤ q(k, ǫ) ≤ s(k, ǫ).
This obviously implies that

lim
ǫ→0

lim sup
k→∞

1

k
log2(s(k, ǫ)) = lim

ǫ→0
lim sup
k→∞

1

k
log2(q(k, ǫ)).

Now the statement of the lemma immediately follows from the definition of the topo-
logical entropy (2.3.1). ⊓⊔

Remark 2.3.9. Notice that q(k, ǫ) and s(k, ǫ) increase with decreasing ǫ. Therefore,
the corresponding limits limǫ→0 in (2.3.1) and (2.3.2) may be replaced by supǫ>0.

Proof of Theorem 2.3.6. Statement (i). We prove this statement by contradiction.
Indeed, assume that the system is observable in the communication channel class
CR with R < H(F (·, ·),X1,X, Ω). Let α be any number such that R < α <
H(F (·, ·),X1,X, Ω). Then, it follows from Lemma 2.3.8 that a constant ǫ > 0 exists
such that

lim sup
k→∞

1

k
log2(s(k, 2ǫ)) > α. (2.3.3)

Consider a coder–decoder pair (2.2.3), (2.2.4) such that the condition (2.2.6) holds,
and let T > 0 be its period. The inequality (2.3.3) implies that an integer k > 0 and
an (k, 2ǫ)−separated set S of cardinality N exist such that

log2N

k
> α (2.3.4)

and
k

k + T
>
R

α
. (2.3.5)

Notice that inequality (2.3.5) is satisfied for all large enough k. Let j > 0 be the
integer such that

(j − 1)T ≤ k < jT. (2.3.6)

Furthermore, let S̃ be any set of solutions on the time interval t = 1, 2, . . . , jT
coinciding with S for t = 1, 2, . . . , k. Then S̃ is obviously an (k, 2ǫ)−separated set
of cardinality N . We now prove that

log2N

jT
> R. (2.3.7)

Indeed, from (2.3.4)–(2.3.6), we obtain

log2N

jT
=

log2N

k

k

jT
> α

k

jT
> α

k

k + T
> R.
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Furthermore, let Ŝ be the set of all sequences x̂(1), x̂(2), . . . , x̂(jT ) produced
by (2.2.3), (2.2.4). Then, the cardinality of Ŝ does not exceed lj . Since log2N

jT > R,

condition (2.2.2) implies that lj < N . Because condition (2.2.6) must be satisfied for
any solution of (2.2.1) with some x̂(1), x̂(2), . . . , x̂(jT ) ∈ Ŝ, this implies that two
elements xa(·), xb(·) of S̃ and an element x̂(·) of Ŝ exist such that condition (2.2.6)
holds with x(·) = xa(·) and x(·) = xb(·). This implies that ‖xa(t)− xb(t)‖∞ < 2ǫ
for all t = 1, 2, . . . , jT . However, the latter inequality contradicts to our assumption
that the set S̃ is (jT, 2ǫ)−separated. This completes the proof of this part of the
theorem.

Statement (ii). If the inequality R > H(F (·, ·),X1,X, Ω) holds, then for any
ǫ > 0, an integer k > 1 and an (k, ǫ)−spanning set Q of cardinality N exist such
that log2N

k ≤ R. Now introduce a coder–decoder pair of the form (2.2.3), (2.2.4) with
T = k and l = N as follows. Because Q is an (k, ǫ)−spanning set, for any solution

x(·) of (2.2.1), an element x(1)
a (·) of Q exists such that ‖x(1)

a (t) − x(t)‖∞ < ǫ for
all t = 1, 2, . . . , k. Furthermore, because the system (2.2.1) is time-invariant and
X = X1, for any solution x(·) of (2.2.1) and any j = 1, 2, . . ., an element x(j)

b (·) of
Q exists such that

‖x(j)
b (t)− x(t)‖∞ < ǫ

∀t = (j − 1)k + 1, (j − 1)k + 2, . . . , jk. (2.3.8)

Let fj(x(·)) be the index of this element x(j)
b in Q. Now introduce the following

coder–decoder pair
h(jk) := fj(x(·)); (2.3.9)




x̂((j − 1)k + 1)
...
x̂(jk − 1)
x̂(jk)


 :=




x
(j)
b (1)

...

x
(j)
b (k − 1)

x
(j)
b (k)



. (2.3.10)

It follows immediately from (2.3.8) that the condition (2.2.6) holds. Furthermore, by
construction, the coder–decoder pair satisfies the communication constraint (2.2.2).
This completes the proof of the theorem. ⊓⊔

Remark 2.3.10. Theorem 2.3.6 gives an “almost” necessary and sufficient condition
for observability in the communication channel class CR. Notice that in the critical
case R = H(F (·, ·),X1,X, Ω), both possibilities can occur. Indeed, let F (x, ·) ≡ x
for any x; then it is obvious that H(F (·, ·),X1,X, Ω) = 0. However, if X1 = X =
{x0}, then the corresponding system is observable in the communication channel
class C0. On the other hand, if X1 = X = {x0, x1} where x0 6= x1, then the
corresponding system is not observable in the communication channel class C0.

Definition 2.3.11. The system (2.2.1) is said to be robustly stable if for any ǫ > 0,
an integer k ≥ 1 exists such that
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‖x(t)‖∞ < ǫ ∀t ≥ k (2.3.11)

for any solution x(·) of the system (2.2.1).

Proposition 2.3.12. Consider the system (2.2.1), and assume that Ω is compact,
F (·, ·) is continuous, and the system (2.2.1) is robustly stable. Then

H(F (·, ·),X1,X, Ω) = 0.

Proof of Proposition 2.3.12. Let ǫ > 0 be given and k ≥ 1 be an integer
such that (2.3.11) holds. Since X1, Ω are compact and F (·, ·) is continuous, a finite
(k, ǫ)−spanning set Q exists. Let N be the cardinality of Q. For any j > k, intro-
duce the set Qj by extension of solutions of (2.2.1) from Q with arbitrary ω(t) ∈ Ω
for t ≥ k. The cardinality of Qj is N for any j. The condition (2.3.11) obviously
implies that

‖x(t)− xb(t)‖∞ < 2ǫ ∀t ≥ k
for any solution x(·) of (2.2.1), any j, and any xb(·) from Qj . Therefore, for any j,
Qj is a (j, 2ǫ)−spanning set. Hence, q(j, 2ǫ) ≤ N for any j, and by Definition 2.3.1,
H(F (·, ·),X1,X, Ω) = 0. This completes the proof of the proposition. ⊓⊔

Definition 2.3.13. Let x(·) be a solution of (2.2.1). The system (2.2.1) is said to be
locally reachable along the trajectory x(·) if a constant δ > 0 and an integerN ≥ 1
exist such that for any k ≥ 1 and any a, b ∈ Rn such that

‖x(k)− a‖ ≤ δ‖x(k)‖, ‖x(k +N)− b‖ ≤ δ‖x(k +N)‖,

a solution x̃(·) of (2.2.1) exists with

x̃(k) = a, x̃(k +N) = b.

Definition 2.3.14. A solution x(·) of (2.2.1) is said to be separated from the origin,
if a constant δ0 > 0 exists such that

‖x(t)‖ ≥ δ0 ∀t ≥ 1.

We will use the following assumptions.

Assumption 2.3.15. The system (2.2.1) is locally reachable along a trajectory sepa-
rated from the origin.

Assumption 2.3.16. The system (2.2.1) is locally reachable along a trajectory x(·)
such that ‖x(t)‖∞ →∞ as t→∞.

Theorem 2.3.17. Consider the system (2.2.1). The following two statements hold:

(i) If Assumption 2.3.15 is satisfied, then H(F (·, ·),X1,X, Ω) = ∞; hence, ac-
cording to Theorem 2.3.6, the system (2.2.1) is not observable in the communi-
cation channel class CR with any R;
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(ii) If Assumption 2.3.16 is satisfied, then for any coder–decoder pair of the form
(2.2.3), (2.2.4) with any T,R

sup
t,x(·)

‖x(t)− x̂(t)‖∞ =∞,

where the supremum is taken over all times t and all solutions x(·) of the system
(2.2.1).

Proof of Theorem 2.3.17. Statement (i). Suppose that Assumption 2.3.15 holds,
and let N be the integer from Definition 2.3.13. It follows from Assumption 2.3.15
that the system has a trajectory x(·) and a vector a0 6= 0 exists such that the follow-
ing property holds: For any c1, c2, c3, . . . from the interval [0, 1], a solution x̃(·) of
(2.2.1) exists with the property x̃(jN) = x(jN) + cja0 for j = 1, 2, 3, . . . . Now
for any M ≥ 1 and j ≥ 1, consider the set SjM of such solutions over the inter-
val t = 1, 2, . . . , jN with ci taking discrete values 0, 1

M , . . . , M−1
M . Then SjM is(

jN, ‖a0‖∞
M

)
−separated and the cardinality of SjM is M j . Hence, by Lemma 2.3.8,

H(F (·, ·),X1,X, Ω) ≥ lim
M→∞

lim sup
j→∞

1

jN
log2(M

j)

= lim
M→∞

1

N
log2(M) =∞.

This completes the proof of this part of the theorem.
Statement (ii). Suppose that Assumption 2.3.16 holds, and let N be the inte-

ger from Definition 2.3.13. Furthermore, consider a coder–decoder pair of the form
(2.2.3), (2.2.4) with some parameters l, T . It follows from Assumption 2.3.16 that
the system has a trajectory x(·) and a vector a0 6= 0 and a sequence {dj} where
dj > 0, dj+1 ≥ dj , limj→∞ dj = ∞ exist such that the following property holds:
For any sequence {cj} where cj ∈ [0, dj], a solution x̃(·) of (2.2.1) exists with
the property x̃(jNT ) = x(jNT ) + cja0 for j = 1, 2, 3, . . . . Now for some
M > lN and any i ≥ 1, consider the set SiM of such solutions over the interval
t = iNT, iNT + 1, . . . , i2NT , with cj taking discrete values 0, 1

M dj , . . . ,
M−1
M dj .

Then SiM is
(
i2NT, di‖a0‖∞

M

)
−separated and the cardinality of SiM is M (i2−i). On

the other hand, by the time i2NT , the channel can transmit li
2N various symbolic

sequences. SinceM > lN ,M (i2−i) > li
2N for large i. It means that for large i, there

will be at least two distinct elements of SiM coded by the same symbolic sequences.

Furthermore, the set SiM is
(
i2NT, di‖a0‖∞

M

)
−separated and di → ∞ as i → ∞.

The statement (ii) follows immediately from this. ⊓⊔

Remark 2.3.18. Notice that it is not surprising in Theorem 2.3.17 that topological
entropy is infinite for a large class of systems with disturbances, since the number
of unknowns in the system, i.e., initial state and disturbances, grows to infinity with
time.
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2.4 The Case of Linear Systems

In this section, we first consider a linear system without uncertainty:

x(t + 1) = Ax(t), x(1) ∈ X1, (2.4.1)

where t = 1, 2, 3, . . ., x(t) ∈ Rn is the state, X1 ⊂ Rn is a given compact set, and
A is a given square matrix.

We will suppose that the following assumption holds.

Assumption 2.4.1. The origin is an interior point of the set X1: A constant δ > 0
exists such that

‖a‖∞ < δ ⇒ a ∈ X1.

Furthermore, let S(A) = {λ1, λ2, . . . , λn} be the set of eigenvalues of the matrix
A. Introduce the following value:

H(A) :=
∑

λi∈S(A)

log2(max{1, |λi|}). (2.4.2)

Topological entropy of linear systems without uncertainty is described by the
following theorem.

Theorem 2.4.2. Consider the system (2.4.1), and suppose that Assumption 2.4.1
holds. Then, the topological entropy of the system (2.4.1) is equal to H(A) where
H(A) is defined by (2.4.2).

To prove Theorem 2.4.2, introduce the following linear system:

x(t+ 1) = Ax(t), x(1) ∈ R
n. (2.4.3)

The only difference between this system and the system (2.4.1) is that in (2.4.3),
initial conditions x(1) take values in the whole space Rn.

We will need the following lemma.

Lemma 2.4.3. Consider the system (2.4.1). Let α be a given constant such that
α > H(A), where H(A) is defined by (2.4.2), and let β ≥ 0 be a given con-
stant. Then for any ǫ > 0, an integer k0 exists such that for any k ≥ k0, a set
Qǫ,k = {x1(·), . . . , xN (·)} of N solutions of the system (2.4.3) for t = 1, 2, . . . , k
exists with the properties 1

k log2(N) ≤ α, and for any xa(·) ∈ Xk, an element
x(k)(·) ∈ Qǫ,k exists such that

β

k∑

t=1

‖xa(t)− x(k)(t))‖2 +

max
t=1,...,k

‖xa(t)− x(k)(t)‖∞ < ǫ. (2.4.4)
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The proof of Lemma 2.4.3 is given in Sect. 2.7.
Proof of Theorem 2.4.2. LetH denote the entropy of the system (2.4.1). We prove

that H = H(A). First prove that if α > H(A), then H ≤ α. Lemma 2.4.3 with
β = 0 immediately implies the existence of an (k, ǫ)−spanning set of cardinality N
where 1

k log2(N) ≤ α for any ǫ > 0 and all large enough k. Now Definition 2.3.3
of the topological entropy implies that H ≤ α. Since α is any number that is greater
than H(A), we have proved that H ≤ H(A).

Now we prove by contradiction that H ≥ H(A). Indeed, assume that this is not
true and H < H(A). This inequality can hold only for positive H(A). Therefore,
the matrix A has at least one eigenvalue λ with |λ| > 1. By a linear change of state
variable, the matrix A can be transformed to the form:

A =

(
A+ 0
0 A−

)
,

where all eigenvalues of A+ lie outside of the closed unit disk, and all eigenvalues
of A− lie inside of the closed unit disk. Then H(A+) = H(A). Furthermore, let
x = col (x+, x−) be the corresponding partitioning of the state vector x, m+ > 0
be the dimension of x+, and X+

1 := X1 ∩ { col (x+, 0)}. Assumption 2.4.1 implies
that a convex set Y ⊂ X+

1 exists with Vm(Y) > 0, where m := m+ and Vm(·)
denotes the m-dimensional volume of a set. Moreover,

Vm(AkY) = Vm(A+kY) =

|detA+|kVm(Y) = 2kH(A)Vm(Y). (2.4.5)

On the other hand, the assumptionH < H(A) and Definition 2.3.3 of the topological
entropy imply that an ǫ > 0, a constant H̃, a time sequence ki →∞, and a sequence
of (ki, ǫ)−spanning sets of cardinality Ni exist such that

1

ki
log2(Ni) ≤ H̃ < H(A). (2.4.6)

It follows from (2.4.5) and (2.4.6) that

lim
i→∞

1

Ni
Vm(Aki−1Y) =∞. (2.4.7)

On the other hand, because we have an (ki, ǫ)−spanning set of cardinality Ni, any
element of the set Aki−1Y must belong to one of Ni balls with radius ǫ in ‖ · ‖∞
metric. This obviously contradicts to (2.4.7). This completes the proof of Theorem
2.4.2. ⊓⊔

The following corollary immediately follows from Theorem 2.4.2.

Corollary 2.4.4. Consider the system (2.4.1), and suppose that Assumption 2.4.1
holds. Then, the topological entropy of the system (2.4.1) is equal to 0 if and only if
|λ| ≤ 1 for any eigenvalue λ of the matrix A.
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Remark 2.4.5. Theorem 2.4.2 together with Theorem 2.3.6 give an “almost” neces-
sary and sufficient condition for observability of the system (2.4.1) in the communi-
cation channel class CR.

Remark 2.4.6. Another proof of Theorem 2.4.2 is given in [216] (see Theorem 7.12).
Notice that, in fact, results similar to Theorem 2.4.2, but stated in different terms,
were derived in [115,137,140]. Also, Theorem 2.4.2 is a reminder of the well-known
result on topological entropy of algebraic automorphisms of torus; see, e.g., [3].

Now consider a linear, uncertain, discrete-time dynamic system of the form:

x(t + 1) = [A+Bω(t)]x(t), x(1) ∈ X1, (2.4.8)

where t = 1, 2, 3, . . ., x(t) ∈ Rn is the state, ω(t) ∈ Ω is the uncertainty matrix,
X1 ⊂ Rn is a given compact set, Ω ⊂ Rr×n is a given set, and A,B are given
matrices of corresponding dimensions.

We suppose that the following assumptions hold.

Assumption 2.4.7. The matrix A has at least one eigenvalue λ outside the unit cir-
cle: |λ| > 1.

Assumption 2.4.8. The pair (A,B) is reachable (see, e.g., [12], p.94).

Assumption 2.4.9. The origin is an interior point of the set Ω: a δ > 0 exits such
that

‖ω‖∞ < δ ⇒ ω ∈ Ω.
Here ‖ · ‖∞ is the induced matrix norm related to the vector norm (2.2.5).

Now we are in a position to present the following corollary of Theorem 2.3.17.

Proposition 2.4.10. Consider the system (2.4.8). If Assumptions 2.4.1 and 2.4.7–
2.4.9 hold, then for any coder–decoder pair of the form (2.2.3), (2.2.4) with any
T,R

sup
t,x(·)

‖x(t)− x̂(t)‖∞ =∞,

where the supremum is taken over all times t and all solutions x(·) of the system
(2.4.8).

Remark 2.4.11. Proposition 2.4.10 shows that any state estimator with bit rate con-
straints for a linear unstable system is not robust. For example, all estimators from
[204] will produce infinite error under any small parametric perturbation of the ma-
trix A.

Proof of Proposition 2.4.10. This statement follows from the statement (ii) of
Theorem 2.3.17. Assumptions 2.4.1 and 2.4.7 imply that the system (2.4.8) has a so-
lution x(·) such that ‖x(t)‖∞ tends to infinity as t tends to infinity and Assumptions
2.4.8 and 2.4.9 imply that the system is locally reachable along any its trajectory that
tends to infinity. This completes the proof of Proposition 2.4.10. ⊓⊔
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As an illustrative example, consider a linear, uncertain, discrete-time dynamical
system of the form:

x(t+ 1) = [A+Bω(t)] x(t) + b, x(1) ∈ X1, (2.4.9)

where t = 1, 2, 3, . . ., x(t) ∈ Rn is the state, ω(t) ∈ Ω is the uncertainty matrix,
X1 ⊂ Rn is a given compact set, b ∈ Rn is a given vector, and A,B are given
matrices of corresponding dimensions.

We will need the following assumptions.

Assumption 2.4.12. The uncertainty ω(t) satisfies the standard norm bound con-
dition (see, e.g., [148, 151, 174, 178, 180]): ‖w(t)‖ ≤ c, where c > 0 is a given
constant.

Assumption 2.4.13. The matrix A is stable; i.e., |λ| < 1 for any its eigenvalue λ.

Assumption 2.4.14. The following frequency domain condition holds:

max
z∈C:|z|=1

‖(zI −A)−1B‖ < 1

c
. (2.4.10)

Proposition 2.4.15. Consider the uncertain system (2.4.9), and let c > 0 be a given
constant. Suppose that Assumptions 2.4.8 and 2.4.12–2.4.14 are satisfied. Then the
following two statements hold:

(i) If b = 0, then the topological entropy of the system (2.4.9) is equal to 0;
(ii) If b 6= 0, then the topological entropy of the system (2.4.9) is equal to∞.

Proof of Proposition 2.4.15. Statement (i). According to a discrete-time analog of
the circle stability criterion from the theory of absolute stability (see, e.g., [144]), the
frequency domain inequality (2.4.10) implies that the uncertain system (2.4.9) with
b = 0 and the uncertainty satisfying Assumption 2.4.12 is robustly stable. Therefore,
this part of Proposition 2.4.15 follows from Proposition 2.3.12.

Statement (ii). It is obvious that if b 6= 0 then any trajectory of the system (2.4.9)
is separated from the origin. Furthermore, Assumption 2.4.9 immediately follows
from Assumption 2.4.12. Assumptions 2.4.9 and 2.4.8 imply that the system is lo-
cally reachable along any trajectory separated from the origin. Therefore, Assump-
tion 2.3.15 holds. Now the statement (ii) follows from Theorem 2.3.17. This com-
pletes the proof of this proposition. ⊓⊔

2.5 Stabilization via Communication Channels

In this section, we consider a linear, discrete-time controlled system without uncer-
tainty of the form:

x(t+ 1) = Ax(t) +Bu(t), x(1) ∈ X1, (2.5.1)
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where t = 1, 2, 3, . . ., x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input,
X1 ⊂ Rn is a given compact set, and A,B are given matrices of corresponding
dimensions.

We consider the problem of stabilization of the linear system (2.5.1) via a dig-
ital communication channel with a bit-rate constraint. Our controller consists of
two components. The first component is developed at the measurement location
by taking the measured state x(·) and coding to the codeword h(jT + 1). This
component will be called “coder.” Then the codeword h(jT + 1) is transmitted
via a limited capacity communication channel to the second component, which is
called a “decoder-controller.” The second component developed at a remote loca-
tion takes the codeword h(jT + 1) and produces the sequence of control inputs
u(jT +1), . . . , u((j+1)T −1), u((j+1)T ). This situation is illustrated in Fig. 2.2.

Linear Plant Coder Decoder-
Controller

channel

Fig. 2.2. Control via digital communication channel

Our digital communication channel carries one discrete-valued symbol h(jT+1)
at time jT + 1, selected from a coding alphabet H of size l. Here T ≥ 1 is a given
integer period, and j = 0, 1, 2, . . ..

This restricted number l of codewords h(jT + 1) is determined by the trans-
mission data rate of the channel. Let R ≥ 0 be a given constant. We consider the
class CR of such channels with any period T satisfying the transmission data rate
constraint (2.2.2).

The coder and the decoder-controller are of the following form:

h(jT + 1) = Fj
(
x(·)|jT+1

1

)
; (2.5.2)




u(jT + 1)
...
u((j + 1)T − 1)
u((j + 1)T )


 = Uj (h1, hT+1, ..., hjT+1) . (2.5.3)

We will need the following standard assumption.

Assumption 2.5.1. The pair (A,B) is stabilizable (see, e.g., [63]).

Definition 2.5.2. The linear system (2.5.1) is said to be stabilizable in the commu-
nication channel class CR if a period T ≥ 1 and a coder–decoder-controller pair
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(2.5.2), (2.5.3) with a coding alphabet of size l satisfying the constraint (2.2.2) exist
such that the closed-loop system (2.5.1), (2.5.2), (2.5.3) is stable in the following
sense: For any ǫ0 > 0, an integer k ≥ 1 exists such that

‖x(t)‖∞ < ǫ0 ∀t ≥ k (2.5.4)

for any solution [x(·), u(·)] of the closed-loop system with initial condition x(1) ∈
X1.

Now we are in a position to present the main result of this section.

Theorem 2.5.3. Consider the system (2.5.1). Let R ≥ 0 be a given constant and
H(A) be the value (2.4.2). Suppose that Assumptions 2.4.1 and 2.5.1 are satisfied.
Then the following two statements hold:

(i) If R < H(A), then the system (2.5.1) is not stabilizable in the communication
channel class CR;

(ii) If R > H(A), then the system (2.5.1) is stabilizable in the communication
channel class CR.

The proof of Theorem 2.5.3 is given in Sect. 2.7.

Remark 2.5.4. Theorem 2.5.3 gives an “almost” necessary and sufficient condition
for stabilizability of linear systems in the communication channel class CR. Notice
that in the critical caseR = H(A), both possibilities can occur. Indeed, first consider
the system (2.5.1) with a stable matrix A. In this case, H(A) = 0 and the system is
stabilizable in the communication channel class C0 because the open-loop system is
stable.

On the other hand, if we take the system (2.5.1) with a matrixAwith all its eigen-
values on the unit circle, then H(A) = 0 according to Corollary 2.4.4. However, the
system is obviously not stabilizable in the communication channel class C0.

2.6 Optimal Control via Communication Channels

In this section, we address the problem of optimal control of the linear system (2.5.1)
via a digital communication channel with a bit-rate constraint.

We will consider the following quadratic cost function associated with the linear
system (2.5.1) and initial condition x(1):

J1,∞[x(1)] :=

+∞∑

t=1

[x(t) TC TCx(t) + u(t) TGu(t)], (2.6.1)

where C and G = G T are given matrices of corresponding dimensions.
We will need the following assumptions that are standard for linear-quadratic

optimal control problems.
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Assumption 2.6.1. The pair (A,C) has no unobservable nodes on the unit circle
(see, e.g., [63]).

Assumption 2.6.2. The matrix G is positive definite.

In this section, we consider the following optimal control problem:

J1,∞[x(1)]→ min . (2.6.2)

If we do not have any limited capacity communication channel and the whole state
x(·) is available to the controller, then the problem (2.5.1), (2.6.1), (2.6.2) is the
standard linear-quadratic optimal control problem and its solution is well known
(see, e.g., [63]). Under Assumptions 2.5.1, 2.6.1, and 2.6.2, for any initial condition
x(1), the optimal control is given by

u(t) = Kx(t), (2.6.3)

where
K = −(G+B TPB)−1B TPA (2.6.4)

and the square matrix P is a solution of the discrete-time algebraic Riccati equation

A
(
P − PB(G+B TPB)−1B TP

)
A+ C TC − P = 0 (2.6.5)

such that the matrix A+BK is stable (has all its eigenvalues inside the unit circle).
Furthermore, the optimal value of the cost function is given by

Jopt
1,∞[x(1)] = x(1) TPx(1). (2.6.6)

Definition 2.6.3. The optimal control problem (2.5.1), (2.6.1), (2.6.2) is said to be
solvable in the communication channel class CR if for any ǫ > 0, a period T ≥ 1
and a coder–decoder-controller pair (2.5.2), (2.5.3) with a coding alphabet of size l
satisfying the constraint (2.2.2) exist such that the following conditions hold:

(i) The closed-loop system (2.5.1), (2.5.2), (2.5.3) is stable in the following sense:
For any ǫ0 > 0, an integer k ≥ 1 exists such that (2.5.4) is satisfied for any
solution [x(·), u(·)] of the closed-loop system with initial condition x(1) ∈ X1;

(ii) For any solution [x(·), u(·)] of the closed-loop system with initial condition
x(1) ∈ X1,

J1,∞[x(1)] ≤ Jopt
1,∞[x(1)] + ǫ, (2.6.7)

where Jopt
1,∞[x(1)] is given by (2.6.6).

Now we are in a position to present the main result of this section.

Theorem 2.6.4. Consider the system (2.5.1) and the cost function (2.6.1). Let R ≥ 0
be a given constant and H(A) be the value (2.4.2). Suppose that Assumptions 2.4.1,
2.5.1, 2.6.1, and 2.6.2 are satisfied. Then the following two statements hold:
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(i) If R < H(A), then the optimal control problem (2.5.1), (2.6.1), (2.6.2) is not
solvable in the communication channel class CR;

(ii) If R > H(A), then the optimal control problem (2.5.1), (2.6.1), (2.6.2) is solv-
able in the communication channel class CR.

The proof of Theorem 2.6.4 is given in Sect. 2.7.

Remark 2.6.5. Theorem 2.6.4 gives an “almost” necessary and sufficient condition
for solvability of the optimal control problem in the communication channel class
CR. Notice that in the critical case R = H(A), both possibilities can occur. In-
deed, consider the system (2.5.1) with a stable matrixA and nonzeroB. In this case,
H(A) = 0. If we take the cost function

J1,∞[x(1)] :=
+∞∑

t=1

‖u(t)‖2,

then the optimal control input is zero, and the optimal control problem is solvable in
the communication channel class C0.

On the other hand, if we take the cost function

J1,∞[x(1)] :=

+∞∑

t=1

‖x(t)‖2 + ‖u(t)‖2,

then the optimal control problem is obviously not solvable in the communication
channel class C0.

Remark 2.6.6. Notice that according to the results of Chap. 3, the rate of exponential
decay of the closed-loop system cannot be greater than R − H(A). However, the
rate of exponential decay of a linear optimal closed-loop system can be greater than
R−H(A). Our coder–decoder-controller closely approximates the trajectory of the
optimal linear system on the time interval t = 1, 2, . . . , T and guarantees just con-
vergence to the origin for t → ∞. Roughly speaking, the closeness to the optimal
cost is determined mostly by transient response, whereas the decay rate is determined
by behavior on infinity. That is why two closed-loop systems may have very close
quadratic costs and completely different decay rates. It should also be pointed out
that when we decrease ǫ we have to increase the period T .

Comment 2.6.7. Notice that the problem of linear-quadratic optimal control via a
limited capacity communication channel but with an instantaneous data rate was
explicitly solved for scalar plants in [143].

2.7 Proofs of Lemma 2.4.3 and Theorems 2.5.3 and 2.6.4

We first prove Lemma 2.4.3 from Sect. 2.4.
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Proof of Lemma 2.4.3. Consider the set A = {a1, . . . , am}, where 1 < a1 <
. . . < am are defined by the following rule: ai ∈ A if and only if ai > 1 and
the matrix A has an eigenvalue λ such that |λ| = ai. In other words, A is the set
of all possible magnitudes of unstable eigenvalues of A. Now we partition the set
S(A) = {λ1, λ2, . . . , λn} of eigenvalues of the matrixA into groupsS0, S1, . . . , Sm
as follows. The set S0 consists of all eigenvalues λ such that |λ| ≤ 1. Furthermore,
for any i = 1, . . . ,m, the set Si consists of all eigenvalues λ such that |λ| = ai.
Without any loss of generality, we consider real matrices A of the form

A =




A0 0 . . . 0
0 A1 . . . 0
...

... . . .
...

0 . . . 0 Am


 , (2.7.1)

where S(Ai) = Si for i = 0, 1, . . . ,m. Indeed, any matrix A can be transformed
to the form (2.7.1) by a linear transformation, and the value H(A) and the property
stated by this lemma are obviously invariant under any linear transformation. Also,
let Y1 be the corresponding linear transformation of the set X1. Obviously, Y1 is
also compact. Notice that H(A) = H(A0) +H(A1) + · · ·+H(Am), H(A0) = 0,
and H(Ai) > 0 for any i > 0.

Furthermore, let ni > 0 be the number of elements in Si. For any i we take
numbers ci, bi satisfying the following rules: c0 > b0 > 1; ci > bi > ai for i =
1, . . . ,m; and

∑m
i=0 ni log2(ci) = α. Such numbers obviously exist because α >

H(A). Since the set Y1 is compact, for some d > 0, Y1 is a subset of the set

Yd := {x ∈ R
n : ‖x‖∞ ≤ d}. (2.7.2)

Consider the partitioning of the state vector x(t) corresponding to (2.7.1):

x(t) = col [y0(t), y1(t), . . . , ym(t)] ,

where yi(t) ∈ Rni . Furthermore, for any i, k introduce integersNi,k as follows:Ni,k
is the largest integer such that Ni,k ≤ cki . Now consider the set Qk of solutions of
the system (2.4.3) defined by initial conditions from Yd of the following form: ni
components of the vector yi(1) take all possible values in the discrete set {−d,−d+

2d
Ni,k−1 , . . . , d − 2d

Ni,k−1 , d}. The cardinality Nk of the set Qk can be estimated as
follows:

Nk = Nn0

0,k ×Nn1

1,k × · · · ×Nnm

m,k

≤ ckn0
0 × ckn1

1 × · · · × cknm
m .

By our construction,
∑m

i=0 ni log2(ci) = α; hence, log2(Nk) ≤ α · k for any k.
Now let

xa(t) = col [ya,0(t), ya,1(t), . . . , ya,m(t)]

be any solution of (2.4.1) with the matrix A of the form (2.7.1). Then we can take a
solution
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x(k)(t) = col
[
y
(k)
0 (t), y

(k)
1 (t), . . . , y(k)

m (t)
]

of (2.4.3) from Qk such that

‖ya,i(1)− y(k)
i (1)‖∞ ≤

d

Ni,k − 1
∀i.

Now we prove that the condition (2.4.4) holds if k is large enough. Indeed, because
bi is strictly greater than the absolute value of any eigenvalue of Ai, a constant c > 0
exists such that

‖yi(t)‖∞ ≤ cbt−1
i ‖yi(1)‖∞; (2.7.3)

‖yi(t)‖ ≤ cbt−1
i ‖yi(1)‖∞ (2.7.4)

for any i = 0, 1, . . . ,m. Furthermore, from (2.7.4) we have

k∑

t=1

‖xa(t)− x(k)(t))‖2 =
k∑

t=1

m∑

i=0

‖ya,i(t)− y(k)
i (t))‖2

≤ c2
m∑

i=0

k∑

t=1

b
2(t−1)
i

d2

(Ni,k − 1)2
. (2.7.5)

Because bi < ci and Ni,k

ck
i

→ 1 as k →∞, from (2.7.5) we obtain that

lim
k→∞

k∑

t=1

‖xa(t)− x(k)(t))‖2 = 0. (2.7.6)

Moreover, from (2.7.3) we have

max
t=1,...,k

‖xa(t)− x(k)(t)‖∞ =

max
t=1,...,k

max
i=0,...,m

‖ya,i(t) − y(k)
i (t)‖∞ ≤

max
t=1,...,k

max
i=0,...,m

b
(t−1)
i

d

Ni,k − 1
. (2.7.7)

Because bi < ci and Ni,k

ck
i

→ 1 as k →∞, from (2.7.7) we have

lim
k→∞

max
t=1,...,k

‖xa(t)− x(k)(t)‖∞ = 0. (2.7.8)

Finally, (2.7.6) and (2.7.8) immediately imply (2.4.4). This completes the proof of
the lemma. ⊓⊔

Proof of Theorems 2.5.3 and 2.6.4. It is obvious from Definitions 2.5.2 and 2.6.3
that the condition for solvability of the optimal control problem in the communi-
cation channel class CR is stronger than that for stabilizability in the same class.
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Therefore, it is enough to prove statement (i) of Theorem 2.5.3 and statement (ii) of
Theorem 2.6.4.

Statement (i) of Theorem 2.5.3. We prove this statement by contradiction. Indeed,
assume that the linear system is stabilizable in the communication channel class CR
withR < H(A). From Theorem 2.4.2 we know thatH(A) is the topological entropy
of the system (2.4.1). Therefore, it follows from Lemma 2.3.8 that a constant ǫ∗ > 0
exists such that

lim sup
k′→∞

1

k′
log2(s(k

′, ǫ∗)) > R. (2.7.9)

Consider a coder–decoder-controller pair (2.5.2), (2.5.3) such that the requirements
of Definition 2.5.2 hold, and let T > 0 be its period. Furthermore, let k ≥ 1 be an
integer from the condition (2.5.4) of Definition 2.5.2 corresponding to ǫ0 = 1

2ǫ∗.
The inequality (2.7.9) implies that an integer j > 0 and an (jT, ǫ∗)−separated
set S of cardinality N exist such that log2N

jT > R. Moreover, we can take an

(jT, ǫ∗)−separated set S of cardinality N with log2N
jT > R such that for distinct

points xa(·), xb(·) ∈ S, we have

‖xa(t)− xb(t)‖∞ ≥ ǫ∗ for some t = k, k + 1, . . . , jT. (2.7.10)

Furthermore, let Ŝ be the set of all possible control sequences u(1), u(2), . . . , u(jT )
produced by (2.5.2), (2.5.3). Then, the cardinality of Ŝ does not exceed lj . Since
log2N
jT > R, the condition (2.2.2) implies that lj < N . Because the condition (2.5.4)

with ǫ0 = 1
2ǫ∗ must be satisfied for any solution of the closed-loop system (2.5.1)–

(2.5.3) with some control input from Ŝ and the cardinality of Ŝ is less than the cardi-
nality of S, two elements xa(·), xb(· of S and an element u0(1), u0(2), . . . , u0(jT )
of Ŝ exist such that the condition (2.5.4) holds with x(·) = xa(·) + xu(·) and
x(·) = xb(·) + xu(·), where xu(·) is the solution of the system

xu(t+ 1) = Axu(t) +Bu0(t),

where xu(1) = 0. This implies that ‖xa(t) − xb(t)‖∞ < ǫ∗ for all t = k, k +
1, . . . , jT . However, the latter inequality contradicts to (2.7.10). This completes the
proof of this part of the theorem.

Statement (ii) of Theorem 2.6.4. Assume that R > H(A), and prove that the
optimal control problem is solvable via a communication channel with capacity R.
Let ǫ > 0 be a given constant. We will build a coder–decoder-controller pair (2.5.2),
(2.5.3) with the communication channel class CR such that the condition (2.6.7)
holds.

Since the set X1 is compact, a constant D0 > 0 exists such that X1 ⊂ B0 :=
{x : ‖x‖∞ ≤ D0}. Consider the system:

xa(t+ 1) = Axa(t), xa(1) ∈ B0. (2.7.11)

Introduce the following notation:

Jopt
1,T [x(1)] :=

T∑

t=1

[x(t) TC TCx(t) + u(t) TGu(t)], (2.7.12)
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where the sum is taken for the solution of the optimal closed-loop system (2.5.1),
(2.6.3)–(2.6.5) with the initial condition x(1).

It is obvious that a constant δ > 0 exists such that

|Jopt
1,T [x(1)(1)]− Jopt

1,T [x(2)(1)]| < ǫ

4
(2.7.13)

for anyT > 1 and for any x(1)(1), x(2)(1) fromB0 such that ‖x(1)(1)−x(2)(1)‖∞ ≤
δ. Furthermore, a constant c > 0 exists such that

max
x(1)∈B0

Jopt
1,∞[x(1)] ≤ c (2.7.14)

for any solution of the closed-loop optimal linear system (2.5.1), (2.6.3)–(2.6.5).
Introduce the following constants:

a :=
ǫ

2(c+ ǫ
2 )
, b :=

√
a

1 + a
. (2.7.15)

The closed-loop optimal linear system (2.5.1), (2.6.3)–(2.6.5) is exponentially stable.
Hence, a time k0 exists such that for any k ≥ k0 the inequality

‖xopt(t+ k)‖∞ ≤
b

2
‖xopt(t)‖∞ (2.7.16)

holds for any solution of the closed-loop optimal linear system (2.5.1), (2.6.3)–
(2.6.5) and t = 1, 2, . . . .

Now introduce

ǫ0 := min

{
δ,
b

2
,
b

2
D0,

ǫ

4

}
(2.7.17)

and let α be any constant such that H(A) < α < R. From (2.7.16) and Lemma
2.4.3, we obtain that an integer k exists, satisfying (2.7.16) and the inequality

k >
R

R− α, (2.7.18)

and such that a set Qǫ = {x1(·), . . . , xN (·)} of N solutions of the system (2.7.11)
for t = 1, 2, . . . , k exists with the properties 1

k log2(N) ≤ α, and for any solution
xa(·) of (2.7.11), an element xmin(·) ∈ Qǫ exists such that

β

k∑

t=1

‖xa(t)− xmin(t))‖2 +

max
t=1,...,k

‖xa(t)− xmin(t)‖∞ < ǫ0, (2.7.19)

where we take β := ‖C TC‖.
We will build a coder–decoder-controller with the period

T := k − 1. (2.7.20)
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Let f0(x(1)) be the index of the element xmin(·) ∈ Qǫ such that (2.7.19) holds
for the solution of (2.7.11) with the initial condition xa(1) = x(1). Moreover, let
ũ(·) be the optimal control input in (2.5.1), (2.6.3)–(2.6.5) with the initial con-
dition xopt(1) = xmin(1). Now introduce the following coder–decoder pair for
t = 1, 2, . . . , T :

h(1) := f0(x(1)); (2.7.21)



u(1)
...
u(T − 1)
u(T )


 :=




ũ(1)
...
ũ(T − 1)
ũ(T )


 . (2.7.22)

Furthermore, for any j = 1, 2, . . ., introduce the constants Dj > 0 as follows:

Dj := bjD0. (2.7.23)

Also, introduce the set Bj := {x : ‖x‖∞ ≤ Dj}.
We now prove that x(T + 1) ∈ B1 for any solution of the closed-loop system

(2.5.1), (2.7.21), (2.7.22) with the initial condition x(1) ∈ B0. Indeed, any solution
x(t) of (2.5.1), (2.7.21), (2.7.22) can be represented as

x(t) = xopt(t) + xa(t), (2.7.24)

where xopt is the solution of the optimal linear system (2.5.1), (2.6.3)–(2.6.5) with
the initial condition xopt(1) = xmin(1) and xa(t) is the solution of the linear system
(2.7.11) with the initial condition xa(1) = x(1)− xopt(1). From (2.7.16) we have

‖xopt(T + 1)‖∞ ≤
b

2
D0. (2.7.25)

Furthermore, since ǫ0 ≤ b
2D0 by (2.7.17), the inequality (2.7.19) implies that

‖xa(T + 1)‖∞ ≤ b
2D0. From this and (2.7.25) we obtain

‖x(T + 1)‖∞ ≤ ‖xopt(T + 1)‖∞ + ‖xa(T + 1)‖∞ ≤ bD0.

Hence, x(T + 1) ∈ B1.
Now introduce the following coder–decoder-controller for t = jT + 1, jk +

2, . . . , (j + 1)T and for x(jT + 1) ∈ Bj as follows:

h(jT + 1) := f0

(
1

bj
x(jT + 1)

)
; (2.7.26)




u(jT + 1)
...
u((j + 1)T − 1)
u((j + 1)T )


 := bj




ũ(1)
...
ũ(T − 1)
ũ(T )


 . (2.7.27)

Here j = 1, 2, . . ..
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It is obvious that if (x(·), u(·)) is a solution of (2.5.1), (2.7.26), (2.7.27) for t =
jT + 1, . . . , (j + 1)T with x(jT + 1) ∈ Bj , then ( 1

bj x(·), 1
bj u(·)) is a solution of

(2.5.1), (2.7.21), (2.7.22) for t = 1, . . . , T with x(1) ∈ B0. Since we have proved
that x(T + 1) ∈ B1 for any solution of (2.5.1), (2.7.21), (2.7.22) with x(1) ∈ B0,
we obtain by mathematical induction that x(jT + 1) ∈ Bj for all j. Hence, the
closed-loop system (2.5.1), (2.7.21), (2.7.22), (2.7.26), (2.7.27) is well defined for
all t = 1, 2, . . ..

Because the cardinality of the set Qǫ is N and 1
k log2N ≤ α < R, the condi-

tion (2.7.18) holds and T = k − 1, the coder–decoder-controller (2.7.21), (2.7.22),
(2.7.26), (2.7.27) is from the communication channel class CR.

Now we prove that the closed-loop system (2.5.1), (2.7.21), (2.7.22), (2.7.26),
(2.7.27) satisfies the condition (2.6.7) of Definition 2.6.3.

Introduce the following notation:

Ji,r[x(1)] :=

r∑

t=i

[x(t) TC TCx(t) + u(t) TGu(t)], (2.7.28)

where the sum is taken for the solution of the closed-loop system (2.5.1), (2.7.21),
(2.7.22), (2.7.26), (2.7.27) with the initial condition x(1). Since ǫ0 ≤ δ by our defi-
nition (2.7.17), inequality (2.7.19) implies that

‖x(1)− xmin(1)‖∞ ≤ δ.

From this and (2.7.13) we obtain

|Jopt
1,T [x(1)]− Jopt

1,T [xmin(1)]| < ǫ

4
. (2.7.29)

Moreover, (2.7.17) and (2.7.19) also imply that

T∑

t=1

‖C(xa(t)− xmin(t))‖2 ≤
ǫ

4
.

This and (2.7.29) imply that

|J1,T [x(1)]− Jopt
1,T [x(1)]| ≤ ǫ

2
. (2.7.30)

Now we derive an upper estimate for JjT+1,(j+1)T [x(1)] for any j = 1, 2, . . ..
From (2.7.14) and (2.7.30) we obviously obtain that

J1,T [x(1)] ≤ c+
ǫ

2
. (2.7.31)

It is obvious that if (x(·), u(·)) is a solution of (2.5.1), (2.7.26), (2.7.27) for t =
jT +1, . . . , (j+1)T , then ( 1

bj x(·), 1
bj u(·)) is a solution of (2.5.1), (2.7.21), (2.7.22)

for t = 1, . . . , T . Therefore, (2.7.31) implies that

JjT+1,(j+1)T [x(1)] ≤ (c+
ǫ

2
)b2j . (2.7.32)
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From this and (2.7.15) we have

JT+1,∞[x(1)] ≤ (c+
ǫ

2
)
∞∑

j=1

b2j =

(c+
ǫ

2
)

b2

1− b2 = (c+
ǫ

2
)a =

ǫ

2
. (2.7.33)

Furthermore,

J1,∞[x(1)]− Jopt
1,∞[x(1)] ≤ |J1,T [x(1)]− Jopt

1,T [x(1)]|
+JT+1,∞[x(1)]. (2.7.34)

This and the estimates (2.7.30) and (2.7.33) immediately imply (2.6.7).
Finally, the Lyapunov stability condition (2.5.4) follows immediately from the

property proved above that x(jT + 1) ∈ Bj for any solution of the closed-loop
system (2.5.1), (2.7.21), (2.7.22), (2.7.26), (2.7.27) with the initial condition x(1) ∈
B0. This completes the proof of the statement. ⊓⊔
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Stabilization of Linear Multiple Sensor Systems via
Limited Capacity Communication Channels

3.1 Introduction

In this chapter, we study a stabilization problem via quantized state feedback for a
linear time-invariant partially observed system. We consider a multi-channel com-
munication between multiple sensors and the controller, where each sensor is served
by its own finite capacity channel, and there is no information exchange between the
sensors. Furthermore, there is no feedback communication from the controller to the
sensors, and the sensors have no direct access to control. The objective is to estab-
lish, first, the tightest lower bounds on the capacities of the channels for which the
stabilization is possible and, second, the rate of exponential stability that is achiev-
able for given capacities obeying those bounds. To this end, we obtain necessary and
sufficient conditions for stabilizability.

Another crucial point is that we do not assume the channels to be perfect. Sensor
signals may incur independent and time-varying delays and arrive at the controller
out of order. There may be periods when the sensor is denied access to the chan-
nel. Transmitted data may be corrupted or even lost. However, we assume that the
communication noise is compensated, and so ultimately it reveals itself only in the
form of decay of the channel information capacity. For example, employing error
correcting block codes [68, Chap. 12] means that the channel is partly engaged in
transmission of redundant check symbols, which decreases the average amount of
the primal messages carried from the sensors. We suppose that error correction is
the function of the channel; i.e., the corresponding coder and decoder are given and
considered as part of what is termed “channel” in this chapter. The key assumption
is that the time-average number of bits per sample period that can be successfully
transmitted across the channel during a time interval converges to what we call the
transmission capacity as the length of the interval becomes large. The stabilizability
region is given in terms of these capacities. Note that bounded communication de-
lays do not influence them and, thus the region, although they affect the design of the
stabilizing controller.

In the particular case where the channels are perfect and the system is detectable
via each sensor, the conditions for stabilizability obtained in this chapter are in har-
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mony with those from Theorem 2.5.3. Thus we show that in this case, multiple com-
municating sensors and channels with separate capacity constraints may be treated
as a single sensor and as a single channel with a united constraint, respectively.
However, employing multiple sensors usually means that there are problems with
detectability by means of a single sensor, and then the model with nondetecting sen-
sors is often a good option.

Stabilization with limited information feedback was studied in the presence of
transmission delays in [221]. Unlike the current chapter, the transmission time re-
quired to transfer one bit was assumed constant, a continuous-time linear plant and
a network with the simplest topology and constant access channels were considered,
and conditions for nonasymptotic stability but a weaker property called containabil-
ity were established.

Multiple sensor systems were examined in [204]. Considered were perfect (i.e.,
noiseless and undelayed) channels under the assumption that the control is known
at the sensor sites. The arguments from [204] also presuppose that the system is re-
ducible to the real-diagonal form so that any “mode” is in a simple relation with any
sensor. The latter means that the mode either does not affect the sensor outputs or
can be completely determined from these outputs.1 A Slepian-Wolf-type stabilization
scheme was proposed and was shown to achieve stability under certain conditions
on the channels data rates. The answer is given in terms of the controller parameters
called the rate vectors. They are tuples of naturals, with each being the number of the
quantizer levels with respect to a certain state coordinate. These conditions can be
reformulated in terms of the capacities of the channels. The criterion for stabilizabil-
ity via the above scheme reduces to solvability of some linear system of inequalities
in integers. In [205], this result was extended to the case where the signals from
multiple sensors are transmitted to a single controller over a network of independent
perfect channels with a fixed topology.

In this chapter, we show that stabilizable systems exist, which, however, cannot
be stabilized by means of the aforementioned control scheme. Moreover, insuffi-
cient are all schemes that merely have some features in common with that one (see
Sect. 3.9).2 This stresses that stabilizability should be tested in the class of all con-
trollers with a given information pattern. Such an analysis is offered in this chapter,
which gives rise to the additional job: to show that there is no gap between the neces-
sary and sufficient conditions, where all and the specific controllers proposed in this
chapter are concerned, respectively. To achieve this objective, not only time averag-
ing but also convex duality techniques are employed. The final criterion is given in
terms of only the plant and channel parameters.

The case of multiple sensors and actuators, where each sensor is directly linked
with every actuator by a separate perfect channel, was studied in [139] for real-

1The arguments from [204] do not much require the diagonal form. However, the assump-
tion that the system can be decomposed into independent subsystems each in simple relations
with the sensors seems to be crucial.

2For example, stabilization may be due to a control scheme that is not recurrent but is
cyclic (i.e., periodically varies in time).
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diagonalizable systems. Separate necessary and sufficient conditions for stabilizabil-
ity were obtained. In general, they are not tight [139]. In the case where the system is
stabiliazible by every actuator and detectable by every sensor, a common necessary
and sufficient criterion was established in [139].

In this chapter, we consider the case where the system is not necessarily reducible
to a diagonal form. It is shown that nontrivial Jordan blocks may make it impossible
to disintegrate the system into state-independent subsystems each in simple relations
with the sensors. To treat this case, we propose sequential stabilization based on
triangular decomposition of the system into state-dependent subsystems. They are
stabilized separately and successively. In doing so, their interinfluence is interpreted
as an exogenous disturbance. This disturbance can be treated as exponentially decay-
ing since thanks to the triangular architecture of the system, disturbance of any given
subsystem is generated by the preceding ones, which are supposed to be already
stabilized according to the sequential stabilization approach. The controller design
employs ideas related to those from [149] as well as [28, 135, 136, 204]. Other ideas
concern an account for transmission delays and disturbances decaying at a known
rate. No other characteristics of the disturbance (e.g., an upper bound) are assumed
to be known. Apart from state-dependency, the subsystems are also dependent via
control. Since it is common, the control aimed to stabilize a particular subsystem
may disturb the others. We offer a method to cope with this problem.

The main results of this chapter were originally published in [115].
The body of the chapter is organized as follows. We first illustrate the problem

statement and the main result by an example in Sect. 3.2. The general problem state-
ment is given in Sect. 3.3. Section 3.4 offers basic definitions and assumptions. The
main result is presented in Sect. 3.5. Its proof is given in Sects. 3.7 and 3.8, where
necessary and sufficient conditions for stabilizability are, respectively, justified. In
Sect. 3.6, the main result is applied to the example from Sect. 3.2. The concluding
Sect. 3.9 comments on an important assumption adopted in this chapter.

3.2 Example

We first illustrate the class of problems to be studied by an example.
We consider a platoon composed of k vehicles moving along a line and enumer-

ated from right to left. The dynamics of the platoon are uncoupled, and the vehicles
are described by the equations

ẋi = vi, v̇i = ui, i = 1, . . . , k, (3.2.1)

where xi is the position of the ith vehicle, vi is its velocity, and ui is the control
input. Each vehicle is equipped with a sensor giving the distance yi = xi − xi−1

from it to the preceding one for i ≥ 2 and the position y1 = x1 for i = 1. It is also
served by a digital communication channel over which the measurement yi is sent
to the central controller. To this end, the sensor signals are sampled with a period
∆ > 0. This channel is delayed, nonstationary, and lossy and transmits on average
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ci > 0 bits per sample period. Employing the data that arrive over all channels, the
central controller produces the control inputs for all vehicles at the sample times. The
objective is to stabilize the platoon motion about a given constant-velocity trajectory:
vi = v0

i , xi(t) = x0
i + v0

i t ∀i. This situation is illustrated in Fig. 3.1 for k = 4.

Channel
1

Channel
2

Channel3

Channel
4

Fig. 3.1. Platoon of autonomous vehicles.

In this context, we pose the following questions:

(i) What is the minimum rate of the information transmission for which stabiliza-
tion is possible?

(ii) Which rate of stability can be achieved for channels with given capacities cj
and sample period ∆?

More precisely, we are interested in the rate µ at which the platoon is able to approach
the desired trajectory:

|vi(t)− v0
i | ≤ Kv,iµ

t/∆, |xi(t)− x0
i − v0

i t| ≤ Kx,iµ
t/∆.

As will be shown in Sect. 3.6, stabilization of the platoon is possible for any
capacities ci > 0 and at any rate

µ > µ0 :=
√

2
−cmin

, where cmin := min
i=1,...,k

ci.

At the same time, no rate µ < µ0 is achievable.
Now consider another situation where the sensor system accommodated by each

vehicle is able to give the distances to l < k vehicles to the right, as well as to l
vehicles to the left. Then the platoon motion remains stabilizable for any capacities

ci. However, the above threshold stability rate µ0 is changed: µ0 =
√

2
−ck,l . Here
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ck,l := min
{
c
(1)
k,l , c

(2)
k,l , c

(3)
k,l

}
if 2l ≥ k,

and ck,l := min
{
c
(4)
k,l , c

(5)
k,l , c

(6)
k,l

}
if 2l < k, where

c
(1)
k,l := min

i=1,...,k−l
1

i

i∑

j=1

cj , c
(2)
k,l :=

1

k

k∑

j=1

cj , c
(3)
k,l := min

i=l+1,...,k−1

1

k − i

k∑

j=i+1

cj ,

c
(4)
k,l := min

i=1,...,l+1

1

i

i∑

j=1

cj , c
(5)
k,l := min

i=l+2,...,k−l
ci,

c
(6)
k,l := min

i=k−l,...,k−1

1

k − i

k∑

j=i+1

cj . (3.2.2)

In the situation at hand, every vehicle is equipped with several sensors, each pro-
ducing data about its relative position with respect to some other vehicle. Due to the
limited capacity of the channel, the entire cumulative sensor data cannot be commu-
nicated from the vehicle to the controller. This gives rise to two natural questions:

(iii) In which way should the bits of the message currently dispatched from every
vehicle be distributed over data from different sensors?

(iv) Which information should be carried by the bits assigned to every sensor?

The objective of this chapter is to present a general theory that enables one to
obtain answers to the questions like those in (i)–(iv).

3.3 General Problem Statement

We consider linear discrete-time multiple sensor systems of the form

x(t+ 1) = Ax(t) +Bu(t); x(0) = x0; (3.3.1)

yj(t) = Cjx(t), j = 1, . . . , k. (3.3.2)

Here x(t) ∈ Rn is the state; u(t) ∈ Rnu is the control; and yj(t) ∈ Rny,j is the
output of the jth sensor. The system is unstable: There is an eigenvalue λ of the

matrix A with |λ| ≥ 1. The objective is to stabilize the plant: x(t)
t→∞−−−→ 0.

We consider a remote control setup. Each sensor is served by its own communi-
cation channel capable of transmitting signals from a finite alphabet Ej . Over this
channel, the jth coder sends a message ej(t) ∈ Ej based on the prior measurements

ej(t) = Ej [t, yj(0), . . . , yj(t)]. (3.3.3)

On the basis of the data e(t) received over all channels up to the current time t, the
decoder selects the control

u(t) = U [t, e(t)] . (3.3.4)

In this situation illustrated by Fig. 3.2, the controller is constituted by the decoder
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Fig. 3.2. Feedback control via communication channels.

and the set of coders each serving a particular sensor

C :=
[
E1(·), . . . ,Ek(·),U(·)

]
. (3.3.5)

Transmitted messages incur delays and may be lost: The message e(t) dispatched
at time t arrives at the decoder at the discrete time

t+ τj [t, e(t)] ≥ t,

where τj [t, e(t)] :=∞ if it is lost. So the data available to the decoder at time t are

e(t) :=
[
e1(t), . . . , ek(t)

]
, where ej(t) :=

[
ej(θ1), . . . , ej(θσt

j
)
]

(3.3.6)

are the data that arrived via the jth channel by the time t:

{θ1 < θ2 < · · · < θσt
j
} = {θ = 0, 1, . . . : θ + τj [θ, e(θ)] ≤ t} .

The main question to be considered is what is the minimum rate of the infor-
mation exchange in the system for which stabilization is possible? In other words,
we look for necessary and sufficient conditions for stabilizability expressed in terms
of the channels transmission capacities c1, . . . , ck, along with the plant-sensors pa-
rameters A,B,Cj . Roughly speaking, such a capacity is the average number of bits
transmitted over the channel during the sample period, despite the losses and delays.
The rigorous definition will be offered in Subsect. 3.4.1.

3.4 Basic Definitions and Assumptions

3.4.1 Transmission Capacity of the Channel

It should be remarked that there may be a difference between the number of bits that
happen to reach the decoder thanks to occasional favorable circumstances and the
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number of bits that can be successfully transmitted under any circumstances. In fact,
these numbers give rise to two concepts of capacity. The first and second of them are
concerned in the necessary and sufficient conditions for stabilizability, respectively.
To simplify matters, we postulate that these capacities coincide: The discrepancy
between those numbers is considerably less than the time of a long experiment.

We also consider the case where there is an uncertainty about the channel. Specif-
ically, its regime of operation given by the distribution of integer transmission delays
τj(t, e) over time t and dispatched messages e may not be known in advance. How-
ever, we suppose that it satisfies certain assumptions, and the designer of the con-
troller is aware of some lower and upper bounds for the number of bits transmitted
across the channel during a time interval of a given duration.

To specify the details, we start with the following.

Definition 3.4.1. We say that a message e(t) is transmitted within a time interval
[t0 : t1] if it departs and arrives at times t and t+ τj [t, e(t)] from this interval:

t, t+ τj [t, e(t)] ∈ [t0 : t1].

The length or duration of a discrete time interval [t0 : t1] is defined to be t1− t0.

Assumption 3.4.2. For each channel, two integer functions b−j (r) and b+j (r) of time
r exist such that

(i) no more than b+j (r) bits are brought by the transmissions that occur within any
time interval [t0 : t1] of length r;

(ii) given a time interval of duration r, a way exists to transmit without losses and
errors no less than b−j (r) bits of information within this interval;

(iii) as the length r of the interval increases, the averaged numbers b+j (r)/r and
b−j (r)/r converge to a common limit

cj = lim
r→∞

b−j (r)

r
= lim
r→∞

b+j (r)

r
(3.4.1)

called the transmission capacity of the channel.

Explanation 3.4.3. Claim (i) means that3 the number of sequences ej(t1) from
(3.3.6), where only messages dispatched after t0 are admitted, does not exceed

2b
+
j (t1−t0). In claim (ii), the “way” is constituted by encoding and decoding rules.

The former translates b-bit words β = (β1, . . . , βb), βi = 0, 1 into sequences of
messages e ∈ Ej sent consecutively during the interval at hand. The decoder trans-
forms the sequence of messages that arrived within this interval into a b-bit word β′.
The overall transmission must be errorless: β′ = β.

We suppose that the designer of the controller is aware of these rules, along with
the functions b−j (r), b+j (r). A regime of the channel operation {τj(·)} compatible
with these data is said to be possible.

3For a given regime of the channel operation.
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3.4.2 Examples

Now we offer examples of channels satisfying Assumption 3.4.2. (Other examples
can be found in [111].) In this subsection, Nj denotes the size of the jth channel
alphabet Ej .

Noiseless instantaneous channel. The channel is constantly accessible; any trans-
mission is successful and instantaneous. Then

b−j (r) = ⌊(r + 1) · log2Nj⌋, b+j (r) = ⌈(r + 1) · log2Nj⌉, cj = log2Nj .

Explanation 3.4.4. We recall that the symbols ⌊a⌋ and ⌈a⌉ stand for the integer floor
and ceiling of a real number a, respectively; i.e.,

⌊a⌋ := max{k = 0,±1,±2, . . . : k ≤ a},
⌈a⌉ := min{k = 0,±1,±2, . . . : k ≥ a}.

Periodic-access noiseless instantaneous channel. Within any time interval [ihj :
(i+1)hj−1] with a given hj ≥ 1, the channel is open for transmission only at times
t from the sliding window t ∈Wj + ihj , whereWj ⊂ [0 : hj −1] is a given set with
dj ≤ hj elements. Any transmission is successful and instantaneous.4 Then

b+j (r) =

⌈
dj

⌈
r + 1

hj

⌉
log2Nj

⌉
, b−j (r) =

⌊
dj

⌊
r

hj

⌋
log2Nj

⌋
, cj =

dj
hj

log2Nj .

Aperiodic-access noiseless instantaneous channel. The channel is open for trans-
mission occasionally at times t1 < t2 < . . .; any transmission is successful and in-
stantaneous. The access rate stabilizes as the duration of the time interval increases:

µ(t′, t′′) := (t′′ − t′)−1 max{σ − η : t′ ≤ tη ≤ tσ ≤ t′′} → µ as t′′ − t′ →∞.

Then

b−j (r) =

⌊
r log2Nj inf

t≥0
µ(t, t+ r)

⌋
,

b+j (r) =

⌈
log2Nj

(
r · sup

t≥0
µ(t, t+ r) + 1

)⌉
,

cj = µ log2Nj.

Noiseless instantaneous channel with periodically varying alphabet. At time t,
only a part Ej(t) ⊂ Ej of the channel alphabet Ej can be used.5 This part varies
periodically Ej(t + hj) = Ej(t) and contains Nj(t) ≤ Nj elements. Transmission
of any message e ∈ Ej(t) is successful and instantaneous τ(t, e) = 0. In this case,

4This type of communication is typical for control networks [75, 153].
5This can be modeled by dropout τj(t, e) = ∞ of messages e 6∈ Ej(t).
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b+j (r) =




⌈
r + 1

hj

⌉ hj∑

t=1

log2Nj(t)



, b−j (r) =


⌊
r

hj

⌋ hj∑

t=1

log2Nj(t)

 ,

cj =
1

hj

hj∑

t=1

log2Nj(t).

Noiseless instantaneous channel with aperiodically varying alphabet. In the previ-
ous example, the available part of the channel alphabet varies not necessarily peri-
odically. The average number of bits per unit time that can be communicated via the
transmission scheme at hand stabilizes as the length of the time interval increases

βj(t0, t1) := (t1 − t0)−1
t1∑

t=t0

log2Nj(t)→ β∞j as t1 − t0 →∞.

In this case,

b−j (r) =

⌊
r inf
t≥0

βj(t, t+ r)

⌋
, b+j (r) =

⌈
r sup
t≥0

βj(t, t+ r)

⌉
, cj = β∞j .

Constant-access error-corrected instantaneous channel. The transmissions are
instantaneous, and the channel is constantly accessible. It is noisy and lossy, but the
errors are corrected by means of a block code [68, Ch.12]. Any block has length lj ,
encodesmj < lj information messages, and contains lj −mj check symbols carry-
ing no new information. Those messages will be received simultaneously when the
last symbol of the block arrives at the controller. While a current block is transmitted,
the next block is being formed. In this case, we have

b+j (r) =

⌈
mj

⌈
r + 1

lj

⌉
log2Nj

⌉
, b−j (r) =

⌊
mj

⌊
r + 1

lj

⌋
log2Nj

⌋
,

cj =
mj

lj
log2Nj .

Delayed channels. Suppose that in any of the above examples, the transmission
time τj(t, e) ∈ [0 : τ+

j ]. (In the examples concerning time-varying alphabets, this
inclusion should hold only for e ∈ Ej(t).) Then the corresponding formulas for cj
and b+j (t) remain true, whereas the function b−j (r) is transformed by the rule

b−j (r) := max{b−j (r − τ+
j ); 0}.

Conclusion 3.4.5. Bounded time delays do not alter the transmission capacities in
the above examples.

3.4.3 Stabilizable Multiple Sensor Systems

Now we introduce the concept of stabilizability examined in this chapter.
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Definition 3.4.6. We say that a controller (3.3.5) uniformly and exponentially sta-
bilizes the system at the rate µ ∈ (0, 1) if the corresponding trajectories obey the
inequalities

‖x(t)‖ ≤ Kxµ
t, ‖u(t)‖ ≤ Kuµ

t ∀t = 0, 1, 2, . . . (3.4.2)

whenever ‖x0‖ ≤ K0. This must be true irrespective of the possible regime of the
channels operation. The constants Kx and Ku must not depend on time t and this
regime. The above requirements should be satisfied for arbitrary K0, and the con-
stants Kx and Ku may depend on K0.

Definition 3.4.7. The system is said to be uniformly and exponentially stabilizable
at the rate µ ∈ (0, 1) if a controller (3.3.5) exists that uniformly and exponentially
stabilizes the system at this rate.

This controller may depend on µ, along with b+j (·), b−j (·), and A,B,Cj .

Definition 3.4.8. The system uniformly and exponentially stabilizable at some rate
µ ∈ (0, 1) is said to be uniformly and exponentially stabilizable. The infimum value
of µ is called the rate of exponential stabilizability.

3.4.4 Recursive Semirational Controllers

Formulas (3.3.3) and (3.3.4) describe the widest reasonable class of controllers: The
only requirement to them is nonanticipation. Study of this class is instructive with
respect to necessary conditions for stabilizability. At the same time, the complexity
of the corresponding controllers is not bounded: They are formally permitted to carry
out an asymptotically infinite amount of computations per sample period.

It will be shown that conditions necessary for stabilization by means of a nonan-
ticipating controller are simultaneously sufficient for existence of a more realistic
stabilizing controller that carries out a bounded (as time progresses) number of op-
erations per unit time and employs a bounded memory. This subsection provides a
formal description of the general class of the corresponding controllers.

We start with two preliminary technical definitions.

Definition 3.4.9. A map F(·) from a subset D of an Euclidean space Rs = {ω} into
a finite set F is said to be semialgebraic if the following two statements hold:

(i) The map acts by checking a given set of inequalities

lν(ω) ≥ 0, ν = 1, . . . , NF (3.4.3)

with (multivariate) rational functions lν(·) (whose domains include D) and
forming the sequence of the answers A := [A1, . . . , ANF ], where Aν := 1
if the νth inequality is satisfied and 0 otherwise;

(ii) The value F(ω) is uniquely determined by the distribution A of the answers
over the set of inequalities:

F(ω) := G(A).
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Explanation 3.4.10. If the set D is connected, the denominator of the rational func-
tion lν(ω) from (3.4.3) does not change the sign as ω runs overD. So multiplying by
this denominator transforms (3.4.3) into an inequality with a polynomial left hand
side. This demonstrates that the level sets {ω : F(ω) = f} of the map F(·) are
semialgebraic [22], and explains the term introduced in Definition 3.4.9.

Definition 3.4.11. A map F(·) from the product D × G of a set D ⊂ Rs and a
finite set G into another finite set F is said to be semialgebraic if the map F(·, g) is
semialgebraic for any g ∈ G.

Definition 3.4.12. A map Z(·) from the product D × G of a set D ⊂ Rs and a
finite set G into an Euclidean space Rp is said to be semirational if this map is
representable in the form

Z[z, g] = Z∗[z, g,F(z, g)] ∀z ∈ D, g ∈ G,

where the map F(·) : D×G→ F into a finite set F is semialgebraic and the function
Z(·, g, f) is rational for any g ∈ G, f ∈ F.

Explanation 3.4.13. A vector function is rational if all its scalar entries are ratios of
two polynomials. These ratios should be well defined on D.

Remark 3.4.14. Definition 3.4.12 clearly concerns the case of a map Z(·) : D → Rp.

Definition 3.4.15. The coder (3.3.3) is said to be simple semirational r-step recur-
sive (where r = 1, 2, . . .) if the following statements hold:

(i) At any time t = ir, the entire code word composed by all code symbols

Ei :=
(
ej [ir], ej [ir + 1], . . . , ej[(i+ 1)r − 1]

)

that will be consecutively emitted into the channel during the forthcoming op-
eration epoch [ir : (i+ 1)r − 1) is generated by the coder;

(ii) This code word is produced via a recursion of the form:

Ei := Ej(ωi), zj[(i+ 1)r] := Zj[ωi] ∈ R
sj , zj(0) := z0

j , where

ωi := col
(
zj[ir], yj [(i− 1)r + 1], . . . , yj [ir]

)
,

(yj(t) := 0 ∀t < 0); (3.4.4)

(iii) The functions Ej(·) and Zj(·) are semialgebraic and semirational, respectively.

Explanation 3.4.16. It is assumed that the maps Ej(·) and Zj(·) are defined on the set
Dj ×Rr·ny,j , whereDj ⊂ Rsj , the function Zj(·) takes values in Dj , and z0

j ∈ Dj .

Definition 3.4.17. The decoder (3.3.4) is said to be simple semirational r-step recur-
sive if the following statements hold:
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(i) At any time t = ir, the decoder generates the control program

Ui = col
(
u[ir], . . . , u[(i+ 1)r − 1]

)

for the entire forthcoming operation epoch;
(ii) This program is produced via a recursion of the form:

Ui = U

[
z(ir), e r(ir)

]
, z[(i+ 1)r] = Z

[
z(ir), e r(ir)

]
∈ R

s, z(0) = z0.

Here e r(ir) is the data arrived at the decoder during the previous epoch:

e r(ir) :=
[
e r1 (ir), . . . , e rk (ir)

]
, e rj (ir) :=

[
ej(θ

r
1), . . . , ej(θ

r
σr

j
)
]
,

where {θr1 < θr2 < · · · < θrσr
j
} = {θ : (i− 1)r ≤ θ + τj [θ, e(θ)] < ir} .6

(iii) The maps U(·) and Z(·) ∈ D are semirational functions of z ∈ D and er. Here
D ⊂ Rs is some set, and z0 ∈ D.

Remark 3.4.18. Since the functions Zj(·),Ej(·),U(·),Z(·) do not vary as time pro-
gresses, the coders and decoders introduced by these definitions perform a limited
(as t runs over t = 0, 1, . . .) number of operations per step.

Remark 3.4.19. The special coders and decoder that will be proposed in this chapter
to stabilize the plant (3.3.1), (3.3.2) exhibit stable behaviour of the controller inner
dynamical variables zj and z.

Explanation 3.4.20. Definitions 3.4.15 and 3.4.17 are not intended to describe the
entire class of controllers with limited algebraic complexities. Their purpose is to
underscore critical features of the controller to be proposed that ensure its member-
ship in this class, while omitting many details.

Remark 3.4.21. In fact, Definitions 3.4.15 and 3.4.17 permit both encoding and de-
coding rules to be altered finitely many times. For example, the recursion from (3.4.4)
may be of the form

zj[(i+ 1)r] :=

{
Zj(ωi) if i ≥ k
Zj,i(ωi) if i < k

, (3.4.5)

where the functions Zj ,Zj,i(·) are semirational. To embed this case into the formal-
ism from Definition 3.4.15, it is sufficient to add one more scalar component ζ ∈ R

to the vector zj , which evolves as the counter: ζi+1 := ζi+1, ζ0 := 0. Corresponding
to ζ is the set A(ζ) = (A1, . . . , Ak) of the “answers” Aν resulting from checking
the set of the inequalities ζi ≥ −1/2+ν, ν = 1, . . . , k. It remains to note that (3.4.5)
is reduced to the form from (3.4.4) by picking in (3.4.4)

6If this set is empty (which necessarily holds for i = 0), then e r
j (ir) := ⊛, where ⊛ is a

special “void” symbol.
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Zj [ω, ζ] :=





Zj,0(ω) if A(ζ) = (0, . . . , 0)

Zj(ω) if A(ζ) = (1, . . . , 1)

Zj,ν(ω) otherwise

,

where ν is the serial number of the last affirmative answer: Aν = 1, Aν+1 = 0.

3.4.5 Assumptions about the System (3.3.1), (3.3.2)

Assumption 3.4.22. The pair (A,B) is stabilizable.

The next assumption concerns the subspaces that are not observed and detected,
respectively, by a given sensor:

L−oj := {x ∈ R
n : CjA

νx = 0 ∀ν ∈ [0 : n− 1]} ,
L−j := Munst(A) ∩ L−oj . (3.4.6)

Here Munst(A) is the unstable subspace of the matrix A, i.e., the invariant subspace
related to the unstable part σ+(A) := {λ ∈ σ(A) : |λ| ≥ 1} of the spectrum σ(A).

Definition 3.4.23. A spectral set σ ⊂ σ(A) is said to be elementary if it consists of
either one real eigenvalue or a couple of conjugate complex ones.

Any such set is associated with one or more Jordan blocks in the real Jordan repre-
sentation of the matrix A. These blocks are of the form




Λ I 0 0 · · · 0
0 Λ I 0 · · · 0
0 0 Λ I · · · 0
0 0 0 Λ · · · 0
...

...
...

...
...

...
0 0 0 0 · · · I
0 0 0 0 · · · Λ




.

If σ consists of one real eigenvalue λ, all entries have the size 1 × 1 and Λ = λ. If
σ is composed by a couple of conjugate complex eigenvalues d(cosϕ± ı sinϕ), the

size of all entries is 2× 2 and Λ = d
(

cosϕ sinϕ
− sinϕ cosϕ

)
.

The symbol Mσ stands for the invariant subspace of A related to σ. We also
introduce the subspace L−oj ∩ Mσ (= L−j ∩ Mσ if σ ⊂ σ+(A)) of states x ∈
Mσ ignored by the jth sensor. All sensors altogether give rise to a whole variety
{L−oj ∩Mσ}kj=1 of subspaces.

Assumption 3.4.24. Consider an elementary subset σ ⊂ σ+(A) of the unstable part
of the spectrum that gives rise to more than one real Jordan block. The following
statement holds for any such a subset:
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(i) The variety {L−j ∩Mσ}kj=1 of unobservable subspaces of Mσ has the atomic
structure: The space Mσ can be decomposed into a direct sum

Mσ = M1
σ ⊕ · · · ⊕Mmσ

σ (3.4.7)

of atom subspacesM i
σ so that any unobservable subspace L−j ∩Mσ is the sum

of several atoms

L−j (σ) := L−j ∩Mσ = ⊕i∈I(j)M i
σ, where I(j) ⊂ [1 : mσ]. (3.4.8)

Here the set I(j) may be empty.7 Assumption 3.4.24 is trivially satisfied whenever
there is no elementary spectral set σ with the properties described in its preamble. In
other words, the following claim holds.

Remark 3.4.25. Assumption 3.4.24 is valid whenever any elementary subset σ ⊂
σ+(A) of the unstable part of the spectrum gives rise to only one real Jordan block.

This clearly holds if the matrixA has no multiple unstable eigenvalues. As is well
known, the last property is true for almost all (with respect to the Lebesgue measure)
matrices A. So Assumption 3.4.24 is valid for most square matrices A.

At the same time, the matrix A has multiple unstable eigenvalues for interesting
application examples. Among them, there is the simplest dynamical system ẍ = u.
Indeed, suppose that the control is constant on any sample period of duration ∆,
denote v := ẋ, and consider the trajectory only at sample times:

x(τ) := x(τ∆), v(τ) := v(τ∆), u(τ) := u(τ∆ + 0). (3.4.9)

Then

x(τ + 1) = x(τ) + ∆ · v(τ) +
∆2

2
u(τ), v(τ + 1) = v(τ) + ∆ · u(τ).

So the matrix A = ( 1 ∆
0 1 ) has the eigenvalue 1 of multiplicity 2. Observe that this

eigenvalue gives rise to only one Jordan block. So Assumption 3.4.24 is fulfilled,
although the matrix has multiple unstable eigenvalues.

Remark 3.4.26. Assumption 3.4.24 also holds if sensor detects or ignores any of the
aforementioned subspaces Mσ only completely:

either Mσ ∩ L−j = {0} or Mσ ⊂ L−j (3.4.10)

for any “unstable” σ ⊂ σ+(A) elementary set σ and sensor j.

In this case, the decomposition (3.4.7) is trivial: mσ = 1,M1
σ = Mσ.

It should be noted that the condition (3.4.10) is sufficient but not necessary for
Assumption 3.4.24 to hold, as is demonstrated by the following.

7The direct sum over the empty set is defined to be the trivial subspace {0}.
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Example 3.4.27. Consider the system whose dynamical matrix is a Jordan block

x1(t+ 1) = λx1(t) + 0 + b T
1u(t)

x2(t+ 1) = λx2(t) + x1(t) + b T
2u(t)

...
xd(t+ 1) = λxd(t) + xd−1(t) + b T

du(t)

,

y1(t) = x1(t)
y2(t) = x2(t)

...
yd(t) = xd(t)

, |λ| > 1. (3.4.11)

The system is served by d sensors. Their unobservable subspaces are, respectively,

L−1 := {x : x1 = 0}, L−2 = {x : x1 = x2 = 0}, . . . ,
. . . , L−d−1 = {x : x1 = · · · = xd−1 = 0}, L−d = {0}. (3.4.12)

So (3.4.10) does not hold for the only elementary set σ = {λ} and any sensor except
for the dth one. At the same time, Assumption 3.4.24 is true by Remark 3.4.25.

It should be noted that the statement (i) from Assumption 3.4.24 necessar-
ily holds for any elementary set σ ⊂ σ+(A) giving rise to only one real Jordan
block.8 This observation, first, explains why such sets are not considered in Assump-
tion 3.4.24, and, second, it demonstrates that the property (i) is natural.

A typical example of the situation forbidden by this assumption is as follows:

x(t+ 1) = λx(t) + u(t) ∈ R
2, λ > 1, where x = (x1, x2). (3.4.13)

There are three sensors

y1(t) = x1(t), y2(t) = x2(t), y3(t) = x1(t)− x2(t), (3.4.14)

whose nondetectable subspaces equal the following lines, respectively,

L−1 = {x : x1 = 0}, L−2 = {x : x2 = 0}, L−3 = {x : x1 = x2}

(see Fig. 3.3). There is only one elementary spectral set σ = {λ}, which gives rise
to two Jordan blocks of size 1 × 1. It is easy to see that the plane Mσ = R2 cannot
be decomposed into a direct sum (3.4.7) so that its special partial sub-sums give each
of the three lines L−i , i = 1, 2, 3 from Fig. 3.3, as is required by Assumption 3.4.24.

Assumption 3.4.24 is technical and is imposed to simplify matters. The case
where this assumption is violated will be addressed in Sect. 3.9.

3.5 Main Result

The stabilizability conditions to be presented are constituted by a set of inequali-
ties. These inequalities can be enumerated by groups of sensors J ⊂ [1 : k]. The
inequality depends on the group via the space of states nondetectable by this group:

8See Lemma 3.8.3 on p. 66.
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Fig. 3.3. The unobservable subspaces.

L(J) :=
⋂

j∈J
L−j . (3.5.1)

We recall that L−j is given by (3.4.6). For consistency, we assign the unstable sub-
space Munst(A) to the empty group.

Different groups J may produce a common space L(J) and thus a common in-
equality. So it is beneficial to parametrize the inequalities not by the groups of sensors
but by the nondetectable subspaces (3.5.1). To this end, we introduce the following.

Notation 3.5.1. The set of all subspaces L ⊂ Rn of the form L = L(J) except for
L = {0} is denoted by L = {L}. (Here J runs over all groups of sensors J .)

As discussed, the size of L may be less than the number of all such groups.
Now we are in a position to state the main result of the chapter.

Theorem 3.5.2. Suppose that Assumptions 3.4.2, 3.4.22, and 3.4.24 (on pp. 43 and
49 ) hold. Then the following two statements are equivalent:

(i) The system (3.3.1), (3.3.2) is uniformly and exponentially stabilizable;9

(ii) For every subspace (3.5.1) L ∈ L constituted by all states nondetectable by a
certain group of sensors, the following inequality holds:

log2 | detA|L| <
∑

j 6∈J(L)

cj , where

J(L) := {j = 1, . . . , k : Cjx = 0 ∀x ∈ L} . (3.5.2)

Here A|L is the operator A acting in its invariant subspace L, the sum is over
the sensors that do not completely ignore the subspace L at hand, and cj is the
transmission capacity (3.4.1) of the jth channel.

Now suppose that the equivalent claims (i) and (ii) are true. If the matrixA has no
stable eigenvalues σ−(A) := {λ ∈ σ(A) : |λ| < 1} = ∅, the rate µ0 of exponential
stabilizability of the system is given by

9See Definition 3.4.8 on p. 46.
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log2 µ
0 = max

L∈L

1

dimL

(
log2 | detA|L| −

∑

j 6∈J(L)

cj

)
. (3.5.3)

Moreover, this formula is true whenever σ−(A) 6= ∅ and the quantity in the right-
hand side is no less than maxλ∈σ−(A) |λ|.

The proof of this theorem will be given in Sects. 3.7 and 3.8. In Sect. 3.7, we
prove its necessity part (i)⇒ (ii). The converse (i)⇐ (ii) is established in Sect. 3.8,
where formula (3.5.3) is also justified.

Remark 3.5.3. The quantity log2 | detA|L| from (3.5.2) and (3.5.3) equals the topo-
logical entropy10 of the linear system

x(t+ 1) = Ax(t), x(t) ∈ L, x(1) ∈ X1 ⊂ L,

where X1 ⊂ L is an arbitrary compact set for which 0 is an interior (in L) point.

This holds thanks to Theorem 2.4.2 (on p. 21), since the subspaces L ∈ L are A-
invariant and all eigenvalues λ of A|L are unstable |λ| ≥ 1 by (3.4.6) and (3.5.1).

By Remark 3.5.3, the quantity log2 | detA|L| represents the unit time increment
of the number of bits required to describe the state of the open-loop (u(·) ≡ 0)
system (3.3.1) considered on the invariant subspace L. At the same time, the right-
hand side of the inequality from (3.5.2) can be interpreted as the joint capacity of all
channels except for those carrying no information about the state x ∈ L. (The latter
channels serve the sensors that completely ignore such states Cjx = 0 ∀x ∈ L.)
Thus the condition (3.5.2) means that the amount of information concerning the state
x ∈ L that the decoder may receive over all channels for the unit time exceeds
the unit time growth of the number of bits required to describe the state to a given
high accuracy. It should be noted here that some bits counted in (3.5.2) characterize
the state x ∈ L only partly. They correspond to any sensor whose outputs are not
sufficient to reconstruct the entire state x ∈ L. Moreover all sensors may be of such
a kind. Nevertheless, when inequalities (3.5.2) are taken for all subspaces L ∈ L,
they constitute a sufficient and necessary criterion for stabilizability.

In general, the number of inequalities (3.5.2) does not exceed that of “unstable”
invariant subspaces. It also does not exceed the number 2k of all groups J of sensors.
Moreover, the inequalities may be directly parameterized by these groups:

log2

∣∣detA|L(J)

∣∣ <
∑

j 6∈J
cj . (3.5.4)

Here L(J) is given by (3.5.1) and J ranges over all subsets J ⊂ [1 : k] except
those for which L(J) = {0}. As discussed, (3.5.4) may contain more inequalities
than (3.5.2) does. Indeed, if L(J1) = L(J2) for J1 6= J2, then L(J1) = L(J2) =
L(J1∪J2) and so the sets J1, J2, J1∪J2 are served by a single inequality in (3.5.2).
At the same time, they give rise to three inequalities in (3.5.4), with those for J = J1

and J = J2 being trivial consequences of the inequality with J = J1 ∪ J2.

10See Definition 2.3.3 on p. 16.
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Generally speaking, relations (3.5.2) are not independent. However, revealing
“superfluous” inequalities is usually a harder task than direct verification of the entire
inequality set (3.5.2).

In general, the conditions for exponential stabilizability at the rate µ are structurally
altered as µ passes any element ρν of the set

{
|λ| : λ ∈ σ−(A)

}
=
{
ρ1 > ρ2 > . . . > ρp

}
, (3.5.5)

while continuously running over [0, 1). The point is that the “modes” x ∈Mσν from
the invariant subspace Mσν related to the spectral set

σν :=
{
λ ∈ σ(A) : |λ| = ρν

}

are stabilized at any rate µ > ρν “for free.” At the same time, their stabilization at
a rate µ < ρν requires special efforts and so demands communication resources,
which causes alteration of the stabilizability conditions as µ passes ρν .

To extend formula (3.5.3) to the general case, we introduce the following analogs
of the subspaces (3.5.1):

Lν(J) := Mσν ∩
⋂

j∈J
L−oj ,

where the unobservable subspace L−oj of the jth sensor is given by (3.4.6) (on p.49).
For consistency, we assign Lν(∅) := Mσν and put L0(J) := L(J).

An exhaustive characterization of the rate of exponential stabilizability is offered
by the following proposition. To simplify notations, its statement proceeds from the
stabilizability criterion in the form (3.5.4).

Proposition 3.5.4. Suppose that Assumption 3.4.2 (on p. 43) and (i) of Theorem 3.5.2
(on p. 52 ) hold, the pair (A,B) is controllable, and Assumption 3.4.24 (on p. 49) is
true for any elementary spectral set σ ⊂ σ(A). Let ν∗ denote the maximal integer
ν = 1, . . . , p for which the following set of inequalities holds:

(
ν−1∑

α=0

dimLα(J)

)
log2 ρν >

ν−1∑

α=0

log2

∣∣detA|Lα(J)

∣∣−
∑

j 6∈J
cj

∀J ∈ Ξν :=
{
J ⊂ [1 : k] : L0(J)⊕ L1(J)⊕ · · · ⊕ Lν(J) 6= {0}

}
, (3.5.6)

and ν∗ := 0 if such an integer does not exist.11

The rate µ0 of the exponential stabilizability of the system is given by

log2 µ
0 = max

J∈Ξν∗

1∑ν∗
α=0 dimLα(J)



ν∗∑

α=0

log2

∣∣detA|Lα(J)

∣∣−
∑

j 6∈J
cj


 . (3.5.7)

11We suppose that the last case holds whenever σ−(A) = ∅.

Formula (3.5.3) holds only under special circumstances described in Theorem3.5.2.
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The proof of this proposition will be given in Sect. 3.8.

Remark 3.5.5. It is easy to see that log2

∣∣detA|Lα(J)

∣∣ = dimLα(J) · log2 ρα for
α ≥ 1. It follows that, first, whenever (3.5.6) holds for some ν ≥ 1, it also is true for
all lesser ν and, second, µ0 ≤ ρν∗ , where ρ0 := 0.

3.5.1 Some Consequences from the Main Result

Remark 3.5.6. The conditions (3.5.2) imply that the system is detectable via the en-
tire set of the sensors.

Indeed, otherwise (3.5.2) fails to be true for

L :=

k⋂

j=1

L−j 6= {0}

since then the sum in (3.5.2) is over the empty set, which is defined to be 0.

Remark 3.5.7. If the system is detectable by each sensor L−j = {0} ∀j, the set L

contains only one unstable space Munst(A) and so (ii) reduces to only one inequality,

log2 |A|Munst(A)| < c :=

k∑

j=1

cj .

The sum c can be interpreted as the capacity of the channel composed of all channels
at hand. At the same time, log2 |A|Munst(A)| equals the topological entropy H(A)
of the open-loop plant (3.3.1) by Theorem 2.4.2 (on p. 21). So the inequality is in
harmony with Theorem 2.5.3 (on p. 26) concerning the case of one perfect channel.

3.5.2 Complement to the Sufficient Conditions

The sufficiency part (ii)⇒ (i) of Theorem 3.5.2 can be enhanced by the following.

Proposition 3.5.8. Suppose that Assumptions 3.4.2, 3.4.22, and 3.4.24 (on pp. 43
and 49 ) hold and (ii) of Theorem 3.5.2 (on p. 52) is true. Then the system (3.3.1),
(3.3.2) is uniformly and exponentially stabilizable by means of simple semirational
r-step recursive coders and a decoder.12

Moreover, coders and decoders of such a kind fit to uniformly and exponentially
stabilize the system at any rate µ exceeding the rate µ0 of exponential stabilizability
µ > µ0, which is given by (3.5.3).

The proof of this proposition will be given in Sect. 3.8, where a stabilizing controller
will be described explicitly. It will be shown that the controller exhibits stable behav-
ior of its inner dynamical variables zj and z from (3.4.4) and (ii) of Definition 3.4.17
(see p. 47).

Remark 3.5.9. The step r can be chosen common for all coders and the decoder.

12See Definitions 3.4.15 and 3.4.17 on p. 47.
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3.5.3 Complements to the Necessary Conditions

The (i)⇒ (ii) part of Theorem 3.5.2 can be complemented by the following facts.

Remark 3.5.10. The implication (i) ⇒ (ii) remains true even if Assumption 3.4.24
(on p. 49) is dropped.

This easily follows from the proof of this implication presented in Sect. 3.7.
If in (3.5.2) the nonstrict inequality sign is substituted in place of the strict one,

the resultant inequalities form necessary conditions for the property that is weaker
than stabilizability. The rigorous statement of this fact is given by the following.

Lemma 3.5.11. Let a controller (3.3.5) exist that makes the trajectories of the
closed-loop system bounded

sup
‖x0‖≤K0,t=0,1,...

‖x(t)‖ <∞ ∀K0 > 0. (3.5.8)

Then (ii) of Theorem 3.5.2 holds with < replaced by ≤ in (3.5.2).

Proof. We first show that the property (3.5.8) can be extended on the control:

sup
‖x0‖≤K0,t=0,1,...

‖u(t)‖ <∞ ∀K0 > 0. (3.5.9)

To this end, we modify the decoder (3.3.4) by putting U(·) := πU(·), where π is the
orthogonal projection from Rnu onto the orthogonal complementMu := (kerB)⊥ to
the kernel kerB := {u : Bu = 0}. This modification does not alter the action of the
controller on the plant since B = Bπ. So (3.5.8) is kept true. At the same time, a
constant c > 0 exists such that ‖u‖ ≤ c‖Bu‖ whenever u ∈Mu. So

‖u(t)‖ ≤ c‖Bu(t)‖ (3.3.1)
=== c ‖x(t+ 1)−Ax(t)‖ ≤ c ‖x(t+ 1)‖+ c ‖A‖ ‖x(t)‖ .

Thus we see that (3.5.8) entails (3.5.9).
Now we pick µ ∈ (0, 1). The transformation

z(t) := µtx(t), v(t) := µtu(t) (3.5.10)

establishes a one-to-one correspondence between the trajectories {x(t), u(t)} and
{z(t), v(t)} of the open-loop systems given by, respectively, (3.3.1) and the equation

z(t+ 1) = µAz(t) + µBv(t), z(0) = x0. (3.5.11)

We equip the latter with the sensors ỹj = Cjz, j ∈ [1 : k], the coders

ej(t) = Ej [t, ỹj(0), µ−1ỹj(1), µ−2ỹj(2), . . . , µ−tỹj(t)],

and the decoder
v(t) = µtU [t, e(t)] .

Here Ej(·) and U(·) are the parts of the controller making the trajectories of the
original system bounded. It is easy to see that (3.5.10) still holds for the closed-
loop systems. Then Definition 3.4.6 (on p. 46) implies that the proposed coders and
decoder uniformly and exponentially stabilize the system (3.5.11) at the rate µ. The
proof is completed by applying the (i) ⇒ (ii) part of Theorem 3.5.2 to the system
(3.5.11) and letting µ→ 1− 0. ⊓⊔
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3.6 Application of the Main Result to the Example from Sect. 3.2

In this section, we justify the statements from Sect. 3.2. We recall that they concern
a platoon of k vehicles described by (3.2.1). Each of them is equipped with a sensor
giving the distance yi = xi − xi−1 from it to the preceding vehicle for i ≥ 2 and
the position y1 = x1 for i = 1. It is also served by a communication channel with
the transmission capacity ci > 0 carrying signals to the controller with the sample
period ∆ > 0. The objective is to stabilize the platoon motion about a given constant-
velocity trajectory: vi = v0

i , xi(t) = x0
i + v0

i t ∀i.
The substitution of the variables

vi := vi − v0
i , xi := xi − x0

i − v0
i t

keeps the dynamics equations unchanged and shapes the control goal into xi =
0, vi = 0. To put the problem into the discrete-time framework adopted in this chap-
ter, we consider the trajectory only at sample times; i.e., we introduce the variables
(3.4.9), where now x, v, and u are marked by the lower index i. We also modify the
sensor output by subtracting the sensor signal corresponding to the desired trajectory.
Then

xi(τ + 1) = xi(τ) + ∆ · vi(τ) +
∆2

2
ui(τ), vi(τ + 1) = vi(τ) + ∆ · ui(τ),

yi(τ) = xi(τ) − xi−1(τ), (3.6.1)

where x0 := 0. Now

A =




A1 0 0 · · · 0
0 A2 0 · · · 0
0 0 A3 · · · 0
...

...
...

...
...

0 0 0 · · · Ak



, Ai = A = ( 1 ∆

0 1 ) .

The unique elementary spectral set σ = {1} gives rise to k Jordan blocks. The
nonobservable and nondetectable subspaces (3.4.6) coincide and equal

L−j = {x := col (z1, w1, . . . , zk, wk) : zj = 0, wj = 0},
where zi := xi − xi−1, wi := vi − vi−1,

and x0 := v0 := 0. Assumption 3.4.24 holds with

M i
σ := {x : zj = 0, wj = 0 ∀j 6= i}, i = 1, . . . ,mσ := k.

Assumption 3.4.22 is immediate from (3.6.1). Since | detA|L| = 1 for any invariant
subspace L, Theorem 3.5.2 guarantees that

The platoon is uniformly and exponentially stabilizable under arbitrary transmis-
sion capacities ci > 0.
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To determine the rate of stabilizability µ0, note that the states nondetectable by
(maybe, empty) group J ⊂ [1 : k] of sensors constitute the subspace

L(J) := {x : zj = 0, wj = 0 ∀j ∈ J}.

Since dimL(J) = 2(k − |J|), where |J| is the size of J, relation (3.5.3) shapes into

log2 µ
0 = max

J

1

2(k − |J|)

(
−
∑

j 6∈J

cj

)
= −1

2
cmin,

where cmin := min
j=1,...,k

cj . (3.6.2)

It follows that

For the platoon at hand, the rate of the exponential stabilizability equals
√

2
−cmin

per sample period.

Now consider the situation where the sensor system accommodated by each ve-
hicle gives the distances to l < k vehicles to the right, as well as to l vehicles to the
left. (We assume an imaginary vehicle that is numbered by 0 and stays at the origin.)
Then clearly

L−j =
{
x : zi = 0, wi = 0 ∀i = max{j − l + 1, 1}, . . . ,min{j + l, k}

}
.

Assumption 3.4.24 remains true with the same subspaces M i
σ , and the platoon evi-

dently remains uniformly and exponentially stabilizable. What can be said about the
rate of stabilizability? Now the collection L introduced in Notation 3.5.1 (on p. 52)
consists of spaces L(J) related to sets J, which along with any element j ∈ J contain
a certain interval of the form

[i− l + 1 : i+ l] ∩ [1 : k] ∋ j, i = 1, . . . , k.

Such sets are said to be wide. To proceed, we consider separately two cases.
1. Let 2l ≥ k. Then any two aforementioned intervals contain a common point.

It follows that apart from J = ∅, the wide sets J are only intervals of the form

[1 : i], i ≥ l + 1, or [i : k], i ≤ k − l + 1.

By retracing (3.6.2), we see that µ0 =
√

2
−ck,l , where ck,l is given by (3.2.2) (on

p. 41).
2. Now let 2l < k. Then the sets

[1 : i− 1] ∪ [i+ 1 : k], i = l + 2, . . . , k − l,
[i : k], i = 2, . . . , l+ 2,

[1 : i], i = k − l, . . . , k − 1
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are wide. By restricting the maximum in (3.6.2) to only these sets J, we see that

µ0 ≥
√

2
−ck,l , where ck,l is given by (3.2.2) (on p. 41). In fact, µ0 =

√
2
−ck,l . To

prove this, it suffices to show that

1

k − |J|
∑

j 6∈J

cj ≥ ck,l (3.6.3)

for any wide set J. To this end, we put

i− := min{j : j ∈ J} and i+ := max{j : j ∈ J}.

Then

i− ≤ l + 1⇒ [i− : l + 1] ⊂ J and i+ ≥ k − l + 1⇒ [k − l + 1 : i+] ⊂ J

by the definition of the wide set. Hence

{j : j 6∈ J} = J1 ∪ · · · ∪ Js,

where the sets Jν are pairwise disjoint and each of them has the form

Jν = {i}, i = l + 2, . . . , k − l, or

Jν = [1 : i], i = 1, . . . , l + 1, or

Jν = [i : k], i = k − l + 1, . . . , k.

By (3.2.2) (on p. 41),
1

|Jν |
∑

j∈Jν

cj ≥ ck,l.

This implies (3.6.3) as follows:

1

k − |J|
∑

j 6∈J

cj =
1

k − |J|

s∑

ν=1

|Jν |
1

|Jν |
∑

j∈Jν

cj ≥ ck,l.

3.7 Necessary Conditions for Stabilizability

3.7.1 An Extension of the Claim (i) from Theorem 2.5.3 (on p. 26)

This theorem deals with an instantaneous and lossless channel. Now we show that its
statement (i) remains true for delayed and lossy channels considered in this chapter.
For technical reasons, which will become clear soon, we extend the class of systems
and consider ones of the following form

x(t + 1) = Ax(t) + B[t, u(0), . . . , u(t)], (3.7.1)

where B(·) is a given function. We also recall that the matrix A is unstable.
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Lemma 3.7.1. Suppose that there is only one channel k = 1. Then H(A) < c := c1
whenever the system (3.7.1) is uniformly and exponentially stabilizable. Here H(A)
is the topological entropy (2.4.2) (see p. 21) of the open-loop system (3.3.1).

Proof. Suppose first that H(A) > c. By putting

v(t) := B[t, u(0), . . . , u(t)], X1 := {x : ‖x‖ ≤ 1}, and B := I,

we shape (3.7.1) into (2.5.1) (on p. 24) with u(t) := v(t). From this point, the proof
proceeds by merely retracing the arguments from the proof of (i) from Theorem 2.5.3
(see p. 30), where T := 1 and R ∈ (c, H(A)) are taken. However when the set Ŝ
of all possible control sequences v(0), . . . , v(T ) is examined, it should be noted that
now its size |Ŝ| does not exceed 2b

+
1 (T ) by (i) of Assumption 3.4.2 (on p. 43). At the

same time, limT→∞ b+1 (T )/T = c < R due to (3.4.1) (on p. 43). So log2 |bS|
T < R if

T is large enough, which keeps all arguments from the proof of (i) of Theorem 2.5.3
true and so entails a contradiction to the stabilizability of the system.

Thus H(A) ≤ c. To prove the strict inequality H(A) < c, we employ the hint
similar to that from the proof of Lemma 3.5.11 (on p. 56). In other words, we con-
sider the process x∗(t) := κtx(t). It clearly satisfies the equation of the form (3.7.1)

x∗(t+ 1) = κAx∗(t) + κ
t+1B[t, u(0), . . . , u(t)].

To keep this system stable, the constant κ > 1 is chosen so that κµ < 1, where µ is
taken from (3.4.2) (on p. 46). Then by the foregoing,H(κA) ≤ c. It remains to note
that H(κA) > H(A) owing to (2.4.2) (on p. 21). ⊓⊔

Lemma 3.7.1 evidently remains true if the regime of the channel operation (given
by τ1(·)) is known in advance.

3.7.2 An Auxiliary Subsystem

To prove (3.5.2) (on p. 52), we revert to the system (3.3.1) and pick a subspaceL ∈ L

constituted by the states not detectable by a certain group of sensors. Then we restrict
ourselves to trajectories {x(t)}∞t=0 starting at x0 ∈ L and apply Lemma 3.7.1 to
them. More precisely, we take into account that {x(t)} may leave L due to controls,
and we consider xL(t) := πx(t). Here π is a projector from Rn onto L. It is easy to
check that the evolution of xL is governed by the equation of the form (3.7.1):

xL(t+ 1) = A|LxL(t) + πBu(t) +
t−1∑

i=0

(πA−Aπ)At−1−iBu(i),

xL(t) ∈ L, xL(0) = x0. (3.7.2)

Remark 3.7.2. The first equation simplifies if πA = Aπ. However, such a projector
π exists if and only if an A-invariant subspace exists that is complementary to L,
which is not true in general.
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Notation 3.7.3. For I ⊂ [1 : k], the symbol CI denotes the block matrix that results
from arranging the blocks Ci with i ∈ I into a column.

For any entities vi enumerated by i ∈ [1 : k], the symbol vI is defined likewise.

We interpret (3.7.2) as equations of an imaginary system and equip it with the sensor

yL(t) = CJcxL(t). (3.7.3)

Here Jc := {j : j 6∈ J} is the complement to the set

J = {j : Cjx = 0 ∀x ∈ L}

of sensors ignoring the subspace L. We also suppose that all channels with j 6∈ J are
commissioned to transmit yL.

The sum in the right-hand side of (3.5.2) (on p. 52) equals the capacity of the
union of these channels. Hence (3.5.2) follows from Lemma 3.7.1 applied to the
system (3.7.2), (3.7.3). To complete the proof, it suffices to show that this system
is stabilizable whenever the original one (3.3.1), (3.3.2) can be stabilized. In doing
so, one must cope with the fact that the trajectory of the original closed-loop system
(3.3.1)–(3.3.4) may leave the subspace L. So the observations (3.3.2) and the entries
of (3.7.3) may differ. Moreover, the sensors omitted in (3.7.3) may see the state x(t)
for t ≥ 1. It should be shown that they are yet useless and can be dropped.

3.7.3 Stabilizability of the Auxiliary Subsystem

Lemma 3.7.4. Let the system (3.3.1), (3.3.2) be exponentially stabilized by some
controller, and let the regime of the channels operation be known in advance. Then
the system (3.7.2), (3.7.3) is also exponentially stabilizable.

Proof. We first show that for x0 ∈ L, the process in the original closed-loop system
obeys the relations

eJ(t) = E′j
[
t, eJc(t− 1)

]
,

yJ(t) = Y′
[
t, eJc(t− 1)

]
, yJc(t) = yL(t) + Y′′

[
t, eJc(t− 1)

]
. (3.7.4)

We recall that the data ej(t) that arrived via the jth channel by time t is given by
(3.3.6) (on p. 42). The observation yL(t) is defined by (3.7.2) and (3.7.3) for the
sequence of controls u(t) identical to that driving the original system.

For t = 0, we have

x(0) ∈ L⇒ yJ(0) = 0 and yJc(0) = yL(0).

So (3.7.4) with t = 0 follows from (3.3.3). Now suppose that (3.7.4) with t := θ
holds for all θ ≤ t. Then

eJ (θ) = E
′[
θ, eJc(t− 1)

]
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and so

e(θ) = [eJ (θ), eJc(θ)] = E
[
θ, eJc(t)

] (3.3.4)
==⇒ u(θ) = U′

[
θ, eJc(t)

]
(3.7.5)

for θ ≤ t. Now we invoke (3.3.1) and note that

x0 ∈ L⇒ At+1x0 ∈ L⇒ CJA
t+1x0 = 0 and (I − π)At+1x0 = 0.

As a result, we see that

yJ(t+ 1) = CJA
t+1x0︸ ︷︷ ︸

=0

+

t∑

θ=0

CJA
t−θBu(θ) =: Y′

[
t+ 1, eJc(t)

]
,

yJc(t+ 1)− yL(t+ 1) = CJc

[
x(t+ 1)− πx(t + 1)

]
= CJc(I − π)At+1x0︸ ︷︷ ︸

=0

+ CJc

t∑

θ=0

(I − π)At−θBu(θ) =: Y′′
[
t+ 1, eJc(t)

]
;

i.e., the last two relations from (3.7.4) do hold with t := t+ 1. Then the first relation
follows from (3.3.3).

It follows from (3.3.3) and (3.7.4) that the signal eJc(t) is determined by the
prior measurements from (3.7.3),

eJc(t) = EL[t, yL(0), . . . , yL(t)].

Now we interpret this as the equation of the coder and the last relation from (3.7.5)
(where θ := t) as that of the decoder for the system (3.7.2), (3.7.3). By the forego-
ing, this coder–decoder pair generates the trajectory πx(t), u(t), t = 0, 1, . . ., where
x(t), u(t) is the trajectory of the original closed-loop system. So the inequalities
(3.4.2) (on p. 46) are inherited by the system (3.7.2), (3.7.3), which completes the
proof. ⊓⊔

3.7.4 Proof of the Necessity Part (i) ⇒ (ii) of Theorem 3.5.2

As discussed, this implication is immediate from Lemmas 3.7.1 and 3.7.4.

3.8 Sufficient Conditions for Stabilizability

In this section, we suppose that the assumptions and (ii) of Theorem 3.5.2 (on p. 52)
hold, and until stated otherwise, adopt one more assumption.

Assumption 3.8.1. The system (3.3.1) has no stable |λ| < 1 eigenvalues λ.

In the general case, a stabilizing controller will be obtained by applying that pre-
sented below to the unstable part of the system.
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3.8.1 Some Ideas Underlying the Design of the Stabilizing Controller

To stabilize the system, we employ the scaled quantization scheme (see, e.g., [28,73,
135,136,149,184,204]). It was mainly developed for only one channel and is briefly
as follows. Both coder and decoder compute a common upper bound δ of the current
state norm ‖x‖∞ := maxi |xi|. They are also given a partition of the unit ball intom
balls (cubes) with small radii ≤ ς(m). The number m matches the channel capacity
so that the serial number of the cube can be communicated to the decoder. The coder
determines the current state from the observations and notifies the decoder which
cube contains this state divided by δ. Since the decoder knows δ, it thus becomes
aware of a ball B with the radius ≤ δς(m) containing the current state. Then it
selects a control that drives the system from the center of this ball to zero. The ball
itself is expanded because of the unstable dynamics of the system and transformed
into a set D+(B) centered about zero: D+(B) ⊂ Bα0 . So the radius α can be taken
as a new upper bound δ. Here α ≤ δς(m)µ, where µ characterizes the expansion
rate of the system. If ς(m)µ < 1, the bound δ is thus improved δ := δς(m)µ < δ
and by continuing likewise, it is driven to zero δ → 0, along with the state x.

In the context of this paper, a problem with the above scheme is that no coder may
be aware of the entire state x. So a natural idea [204] is to disintegrate the system
(3.3.1) into subsystems each observable by some sensor. Then each subsystem can be
stabilized by following the above lines, provided the stability condition ς(m)µ < 1
holds for it. In fact, this condition means that there is a way to communicate a suffi-
ciently large amount of information from the subsystem to the decoder: the smaller
the radius ς(m), the larger the size m of the partition, and so the larger the number
of bits required to describe which of m cubes contains the state.

No channel in itself may meet the above stability condition. At the same time,
this condition may be met if several channels are commissioned to transmit infor-
mation about a given subsystem. Then each channel may carry only a part of this
information, whereas the decoder assembles these parts, thus getting the entire mes-
sage (see Fig. 3.4). Certainly, these channels should be chosen among those serving
the sensors that observe the subsystem at hand.

Fig. 3.4. Distribution of data over parallel channels.
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Since a given sensor may observe several subsystems, the above scheme means
that each channel must transmit a set of messages each concerning a particular sub-
system (see Fig. 3.5a). As a result, each subsystem is served by a variety of channels,
whereas every channel is fed by several subsystems (see Fig. 3.5b). This gives rise to

Subsystems Channels

Fig. 3.5(a). Data transfer over a given
channel.

Fig. 3.5(b). Data transfer over all chan-
nels.

the question: Is it possible to distribute the required information about each particular
subsystem over parallel channels in such a way that the total amount of information
carried via every channel meets its capacity? It will be shown via convex duality
arguments that the answer is in the affirmative whenever (ii) of Theorem 3.5.2 holds.

Another problem is how to employ a sensor observing the subsystem only partly.
Certainly, this problem does not hold if there are no such sensors and subsystems:
The state of each subsystem either is completely determined from or does not af-
fect the outputs of any given sensor. Decomposition into a set of such subsystems
is possible. However, in general, these subsystems are dependent. The reasons for
this are twofold. First, the control is common. Second, Jordan blocks may entail an
unavoidable interinfluence between the states of the subsystems.

To illustrate the last claim, we invoke the system (3.4.11) (on p. 51) whose dy-
namical matrix is the standard Jordan block. The unobservable subspaces of the sen-
sors are given by (3.4.12). There are no other invariant proper subspaces.13 So this
system cannot be decomposed into subsystems with independent open-loop dynam-
ics. At the same time, any sensor except for the last one observes the state x only
partly. So to exclude such a partial vision, disintegration into state-dependent sub-
systems is unavoidable.

To deal with them, we employ sequential stabilization. We define the sth subsys-
tem as that described in the sth row from (3.4.11). Its state is xs. Then we stabilize
the first subsystem, which is independent of the others. This makes x1 exponentially
decaying. In the equations of the second subsystem, we interpret x1 as an exogenous
disturbance. By constructing a device stabilizing this subsystem under any exponen-
tially vanishing disturbances, we make x2 exponentially decaying. The entire system
is stabilized by continuing likewise.

These arguments, however, do not take into account that the control affects all
subsystems, and some of them may be unstabilizable (although the entire system

13See the proof of Lemma 3.8.3 on p. 66.
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is controllable). For example, the subsystems with s ≥ 2 are unstabilizable if b1 =
1, b2 = · · · = bd = 0 in (3.4.11). This obstacle can be easily overcome via increasing
the sample period.

Indeed, let us pick r = 1, 2, . . .. The state xi := x(ir) evolves as follows:

xi+1 = Arxi + BU i, (3.8.1)

where

U i := col
[
u(ir), u(ir + 1), . . . , u(ir + r − 1)

]
and

BU :=

r−1∑

j=0

Ar−1−jBuj (3.8.2)

is the state to which the control program U = col
[
u0, . . . , ur−1

]
drives the system

at time t = r from x(0) = 0. Since the system (3.3.1) with no stable modes is
controllable by Assumption 3.4.22 (on p. 49), the operator B is onto if r ≥ n.
Related to the decomposition of the system state x = col (x1, . . . , xd) into the states
xi of subsystems is a block partition

BU = col
[
B1U , . . . ,BdU

]
.

Since all operators Bs have full rank, any subsystem is controllable. Moreover, any
control action y = BsU in the sth subsystem can be implemented by a control U

that does not disturb the other subsystems: BjU = 0 ∀j 6= s.

3.8.2 Plan of Proving the Sufficiency Part of Theorem 3.5.2

Summarizing, we adopt the following plan.

Step 1. We decompose the system so that, first, for any given sensor, the state of each
subsystem either does not affect or is determined from the sensor outputs
and, second, the decomposition is triangular. The latter permits us to employ
the sequential stabilization approach.

Step 2. We increase the sample period and, for each subsystem, offer a class of con-
trollers stabilizing it under any exponentially decaying disturbance. In doing
so, we assume that the coder is aware of the current state at any sample time
t = ir, and there is a way to communicate as much information as desired
from the coder to the decoder.

Step 3. Within the above class, we point out the controller that requires a nearly
minimum bit-rate of such a communication.

Step 4. We show that if all subsystems are equipped with these controllers, the entire
system is stabilized.

Step 5. We obtain conditions under which the entire set of these controllers can be
implemented14 by means of real channels and sensors. These conditions are
not constructive and require that a linear system of inequalities be solvable
in integers.

14In particular, the required information traffic can be arranged.
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Step 6. By employing convex duality arguments, we show that these conditions are
equivalent to (ii) of Theorem 3.5.2.

Step 7. We drop Assumption 3.8.1 and show that (ii) of Theorem 3.5.2 suffices to
stabilize the system with both unstable and stable eigenvalues (modes).

3.8.3 Decomposition of the System

Now we perform step 1 of the above plan. In other words, we represent the system
as a set of subsystems interacting in a special manner. The main result is as follows.

Proposition 3.8.2. Suppose that Assumption 3.8.1 (on p. 62) holds. Then after a
proper one-to-one linear transformation and partition of the state

x = col (x1, . . . , xd) (3.8.3)

into several blocks xs ∈ Rns interpreted as the states of subsystems, the following
statements hold:

(i) The unobservable subspace (3.4.6) (see p. 49) L−oj = L−j of any sensor is
composed of several blocks:

L−j = {x : xs = 0 ∀s ∈ Oj} , where Oj ⊂ [1 : d];

(ii) The block representation of the dynamics equations (3.3.1) is lower triangular:

xs(t+ 1) =
s∑

i=1

Asix
i(t) +Bsu(t), s = 1, . . . , d. (3.8.4)

By (i), the states xs of subsystems s 6∈ Oj do not affect the outputs of the jth
sensor, whereas the states xs with s ∈ Oj are uniquely determined from these out-
puts.

The remainder of the subsection is devoted to the proof of Proposition 3.8.2. We
start with two technical facts.

Lemma 3.8.3. The claim (i) of Assumption 3.4.24 (on p. 49) holds for any elemen-
tary spectral set σ.

Proof. In view of Assumption 3.4.24, it suffices to prove the lemma assuming that
the set σ gives rise to only one real Jordan block. We putM := Mσ, Aσ := A|M and
note that det[λI−Aσ] = ϕ(λ)p, where the polynomialϕ is irreducible over the field
of real numbers. By employing the basis in M reducing Aσ to the real Jordan form,
it is easy to see that the formula L(ν) := ker

[
ϕ(Aσ)

]ν
produces (p+ 1) distinct

{0} = L(0) ⊂ L(1) ⊂ · · · ⊂ L(p) = M

invariant subspaces and dimL(ν) = ν degϕ. We are going to show that there are no
other invariant subspaces.
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Indeed let L be such a subspace and ψ be the minimal annihilating polynomial
of L. Then ψ is a divisor of ϕp and so ψ = ϕν , ν = 0, . . . , p. Hence

L ⊂ ker
[
ϕ(Aσ)

]ν
= L(ν).

At the same time, Theorem 2 of [61, p. 180] implies that dimL = degψ. Thus
dimL = ν degϕ = dimL(ν), and so L = L(ν).

As a result, we see that all invariant subspaces L−j ∩Mσ are among L(0), . . .,
L(p). It remains to pick M1

σ := L(1),mσ := p, and for i = 2, . . . , p, choose M i
σ so

that L(i− 1)⊕M i
σ = L(i). ⊓⊔

The next lemma plays the key role in the proof of Proposition 3.8.2.

Lemma 3.8.4. In Assumption 3.4.24 (on p. 49), the atoms M i
σ, i = 1, . . . ,mσ , can

be chosen so that all partial direct sums of the form

M1
σ ⊕ · · · ⊕M i

σ, i = 1, . . . ,mσ,

are A-invariant.

Proof. We consider the set of atoms with the minimal sizemσ. We also introduce the
undetectable subspaces Lj := L−j ∩Mσ of Mσ, then we form all their intersections

L∩ = Lj1 ∩ · · · ∩ Ljp ,

and then we form all algebraic sums (not necessarily direct) of such intersections

LΣ = L∩i1 + · · ·+ L∩ir .

Here p, r and the subspaces Ljν , L∩iµ are chosen arbitrarily. Let M denote the set of
all LΣ’s. It is clear that

1) Any space L ∈ M is invariant and decomposable into a direct sum of several
atoms;

2) L ∈M⇒ L ∩ Lj ∈M ∀j;
3) Mσ ∈M;
4) L′, L′′ ∈M⇒ L′ + L′′ ∈M;
5) The set M is finite.

Now we pick a minimal element Lmin among L ∈M, L 6= {0}, i.e., such that

L ⊂ Lmin & L ∈M & L 6= {0} ⇒ L = Lmin.

By trying here L := Lmin ∩ Lj , we see that either Lmin ⊂ Lj or Lmin ∩ Lj = {0}.
Hence any Lj contains either all atoms constituting Lmin or none of them. So these
atoms can be replaced by their sum in (i) of Assumption 3.4.24. Since the number
of all atoms is minimal, only one atom is concerned:Lmin = Mν

σ . By permuting the
atoms, we set ν = 1. Then the claim of the lemma does hold for i = 1 by 1).
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Now let Lmin denote a minimal element among L ∈ M such that L ⊃ M1
σ and

L 6= M1
σ . By 2) and 4),

L := M1
σ + Lj ∩ Lmin ∈M.

So the minimum property yields that either L = M1
σ or Lmin ⊂ L. In terms of the

decomposition from 1)
Lmin = M1

σ ⊕Mmin ∈M

(where Mmin is the sum of several atoms), this means that either Mmin ∩ Lj = {0}
or Mmin ⊂ Lj . Like above, this implies that Mmin consists of only one atom Mν

σ .
By permuting the atoms, we set ν = 2, thus making the claim of the lemma true for
i = 2 by 1). The proof is completed by continuing likewise. ⊓⊔

Proof of Proposition 3.8.2. We decompose the spectrum

σ(A) = σ1 ∪ · · · ∪ σp

into the union of disjoint elementary sets. Then

R
n = Mσ1 ⊕ · · · ⊕Mσp ,

and any invariant subspace L−j is decomposed

L−j = L−j (1)⊕ · · · ⊕ L−j (p)

into the invariant subspaces L−j (ν) := L−j ∩Mσν . So it suffices to show that, for any
ν, linear coordinates in Mσν and their block partition exist for which any subspace
L−j (ν), j = 1, . . . , k, is the direct sum of several “blocks” and the operator A|Mσν

has a lower triangular form with respect to this partition. These blocks zi are in fact
given by Lemma 3.8.4:

zi ∈Mmσν−i+1
σν .

More precisely, it suffices to pick a basis in each subspace M i
σν , i = 1, . . . ,mσν ,

unite them to produce a basis in Mσν , and then consider the coordinates with respect
to this basis and their partition that corresponds to the partition z = z1 + · · ·+ zmσν

of z into zi ∈Mmσν−i+1
σν . ⊓⊔

3.8.4 Separate Stabilization of Subsystems

In this subsection, we perform step 2 (see p. 65) of the plan from Subsect. 3.8.2.

Introducing Subsystems

We pick an integer parameter r and focus attention only on the states at times τi =
i · r. The evolution of these states is given by (3.8.1) (on p. 65), which evidently
inherits the lower triangular structure from (3.8.4),
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xsi+1 =
s∑

ν=1

A(r)
sν x

ν
i + BsUi (3.8.5)

for s = 1, . . . , d. Here

xsi := xs(τi), Ui = col
[
u(τi), . . . , u(τi + r − 1)

]
,

and the diagonal coefficients from (3.8.5) are the rth powers of the matching coeffi-
cients from (3.8.4), A(r)

ss = Arss.
The sth subsystem is described by the following equations:

xsi+1 = Arssx
s
i + BsUi + ξs,i, i = 0, 1, . . . . (3.8.6)

Here in accordance with (3.8.5),

ξs,i(t) ≡ 0 for s = 1 and ξs,i(t) =

s−1∑

ν=1

A(r)
sν x

ν
i otherwise. (3.8.7)

In this subsection, we ignore this rule and interpret ξs,i(t) as an exogenous dis-
turbance. This permits us to study each subsystem independently of the others. We
also suppose that the disturbance decays at a known rate ρξ:

|ξs,i| ≤ Kξρ
i
ξ, ρξ ∈ [0, 1), i = 0, 1, . . . (3.8.8)

with Kξ unknown, and offer a controller that stabilizes the sth subsystem under all
such disturbances. In doing so, we assume that the current state xsi is measured on-
line. The proposed controller uses only finitely many bits of information about xsi .

Remark 3.8.5. The controller will be mainly based on the ideas from [28, 73, 77,
135, 136, 149, 184, 201, 204]. Major distinctions concern two points. First, we take
into account exogenous disturbances decaying at a known rate. Second, we consider
the case where the transmission of the above bits to the decoder takes some time
(specifically, r units of time). This implies complements to the stabilization scheme,
e.g., the need to quantize not the current state but the state prognosis.

We first introduce components of which the coder and the decoder will be assembled.

Quantizer

To communicate a continuous sensor data over a discrete (digital) channel, an analog-
to-digital converter is required.

Definition 3.8.6. An m-level quantizer Qs in Rns is a partition of the closed unit
ballB1

0 ⊂ Rns with respect to some norm ‖ ·‖ intom disjoint setsQ1, . . . , Qm each
equipped with a centroid qQi ∈ Qi.
Such a quantizer converts any vector xs ∈ Qi into its quantized value Qs(xs) := qQi

and any vector xs 6∈ B1
0 outside the unit ball into an alarm symbol Qs(xs) := z.
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Definition 3.8.7. The quantizer is said to be r-contracted (for the sth subsystem) if

Arss
(
Q− qQ

)
⊂ ρQsB1

0 ∀Q = Qi, i = 1, . . . ,m, where ρQs ∈ (0, 1). (3.8.9)

The constant ρQs ∈ (0, 1) is called the contraction rate.

Definition 3.8.8. The quantizer is said to be polyhedral if the quantizer map Qs(·)
is semialgebraic15 with linear functions li(xs) = a T

i x
s + bi, i ∈ [1 : M s] in (3.4.3)

(on p. 46).

In other words, such a quantizer acts by checking the linear inequalities li(xs) ≥
0, i ∈ [1 : Ms] and forming the tuple A(xs) whose ith entry is 1 (yes) if the inequal-
ity is satisfied and 0 (no) otherwise. The quantizer output is uniquely determined by
the distribution of answers (yes, no) over the set of inequalities, i.e., by this tuple.

Remark 3.8.9. Not only nonstrict but also strict inequalities can be considered here.
This holds since the results of checking the strict li(xs) > 0 and nonstrict−li(xs) ≥
0 inequalities, respectively, are uniquely determined from each other by the negation.

Remark 3.8.10. For polyhedral quantizers, any level domain Qi (along with Qz :=
{xs : Qs(xs) = z}) is the union of a finite number of convex polyhedra.

Note also that for such quantizers, the ball from Definition 3.8.6 is a convex polytop.

Example 3.8.11. One of the simplest examples of a quantizer is given by the uniform
partition of the square with the side length 2 into m = N2 congruent subsquares
(see Fig. 3.6, where N = 12). The norm in Definition 3.8.6 is given by ‖x‖∞ =
max{|x1|, |x2|}, x = col (x1, x2). The centroid is the center of the corresponding
subsquare. This quantizer is polyhedral and served by 2(N + 1) linear inequalities:

x1 ≥ −1 + (i− 1)
2

N
, i = 1, . . . , N, x1 > 1,

x2 ≥ −1 + (i− 1)
2

N
, i = 1, . . . , N, x2 > 1. (3.8.10)

In this case, it is convenient to split the tuple A(x) of answers into two subtuples
A1(x) and A2(x) related to the first and second subsets of inequalities, respectively.
If all entries of either A1(x) or A2(x) equal each other (all are 1 or all are 0), the
quantizer output is z. Otherwise

Qs(x) = col
(
−1 + [i1 − 1]

2

N
+

1

N
,−1 + [i2 − 1]

2

N
+

1

N

)
,

where iν (for ν = 1, 2) is the maximal serial number of the inequality for which the
affirmative answer 1 is written in the tuple Aν(x).

15See Definition 3.4.9 on p. 46.
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Fig. 3.6. Uniform square quantizer.

Explanation 3.8.12. In (3.8.10), the strict inequalities are taken for i = N to make
the quantizer’s effective domain {x : Qs(x) 6= z} closed, as is required by Defini-
tion 3.8.6.

Remark 3.8.13. Example 3.8.11 is easily generalized on the case of the general Eu-
clidean space Rns . Then the uniform partition of the cube with side length 2 into
Nns congruent subcubes is performed. The centroid is the center of the correspond-
ing subcube. This quantizer is still polyhedral.

Remark 3.8.14. The last example entails that for any r, a polyhedral r-contracted
quantizer exists.

Indeed, the set Q − qQ, Q = Qi from (3.8.9) is the cube with side length 2/N
centered about zero. Equivalently, this is the ball of radius 1/N with respect to the
norm

‖xs‖∞ := max
{
|xs1|, . . . , |xsns

|
}
, xs = col

(
xs1, . . . , x

s
ns

)
. (3.8.11)

So to ensure (3.8.9), it suffices to pick N > ‖Arss‖∞, where ‖ · ‖∞ is the matrix
norm matching (3.8.11): ‖A‖∞ := max‖xs‖∞=1 ‖Axs‖∞.

Assumption 3.8.15. In the remainder of this subsection, we suppose that a polyhe-
dral r-contracted quantizer is given (for any r).

As will be shown, the number of its levels determines the communication bit rate
required for stabilization. So an r-contracted quantizer with the minimal number of
levels is of special interest. Such a quantizer will be offered in Subsect. 3.8.5.

Deadbeat Stabilizer

This is a linear transformation N of an initial state xs0 into a control program U that
drives the unperturbed ξs,i ≡ 0 subsystem (3.8.6) to zero,
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0 = xs1(= xs(r)) = Arssx
s
0 + BsU for U := Nxs0 and any xs0. (3.8.12)

A particular deadbeat stabilizer with advanced properties16 will be proposed in Sub-
sect. 3.8.6.

Assumption 3.8.16. In the remainder of this subsection, we suppose that a deadbeat
stabilizer is given.

Parameters

Apart from r, the controller employs two more parameters ρ and γ chosen so that

r > n, γ > ‖Ass‖r, and 1 > ρ > max{ρξ, ρQs}, (3.8.13)

where Ass, ρξ, and ρQs are taken from (3.8.4), (3.8.8), and (3.8.9), respectively.

Description of the Coder and Decoder

Both coder and decoder compute controls U c
i , U d

i and upper bounds δci , δ
d
i for the

state norm ‖xsi ‖, respectively. Actually, acting upon the plant is the control U d
i . The

initial bounds are common: δc0 = δd0 = δ0 > 0. (The inequality δ0 ≥ ‖xs0‖ may be
violated.) At any time τi = ir, the coder selects a finite-bit message based on xsi and
sends it to the decoder. We suppose that this message arrives by time τi+1.

Specifically, the coder and decoder operate as follows.

The sth coder (at the times t = τi, i = 1, 2, . . .)

c.1) Proceeding from the knowledge of the current state xsi , computes the prognosis
x̂si+1 of the state at t = τi+1,

x̂si+1 := Arssx
s
i + BsU

c
i ; (3.8.14)

c.2) Employs the r-contracted quantizer Qs to compute the quantized value qi of
the scaled state at t = τi+1,

εi :=
[
δci
]−1

x̂si+1, qi := Qs
[
εi
]
; (3.8.15)

c.3) Encodes this quantized value qi for transmission and sends it to the decoder;
c.4) Computes the next control program by means of the deadbeat stabilizer N and

corrects the upper bound,

U c
i+1 := N

[
δci

⋆
qi
]
, δci+1 := δci × 〈qi〉ρ,γ , where (3.8.16)

⋆
q:=

{
q if q 6= z,

0 otherwise,
〈q〉ρ,γ :=

{
ρ if q 6= z,
γ otherwise,

. (3.8.17)

16These properties are beneficial when all subsystems are stabilized simultaneously.
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The sth decoder (at the times t = τi, i = 2, 3, . . .)

d.1) Decodes the newly received data and thus acquires qi−1;
d.2) Computes the current control program and corrects the upper bound,

U d
i := N

[
δdi

⋆
qi−1

]
, δdi+1 := δdi × 〈qi−1〉ρ,γ . (3.8.18)

Remark 3.8.17. For definiteness, the initial control programs U c
0 ,U

d
0 ,U

c
1 ,U

d
1 are

taken to be zero.

Explanation 3.8.18. We introduced separate controls U c
i ,U

d
i and bounds δci , δ

d
i to

stress that the coder and decoder compute them independently. However, it easily
follows from (3.8.16), (3.8.18) and induction on i that they in fact coincide,

δdi = δci−1, U
d
i = U

c
i , i = 1, 2, . . . . (3.8.19)

Remark 3.8.19. The second relation from (3.8.19) implies that the error in the state
prognosis (3.8.14) is equal to the disturbance from (3.8.6),

x̂si+1 = xsi+1 − ξs,i. (3.8.20)

Explanation 3.8.20. To be communicated across the channel, the quantized value qi
should be encoded into a code word

(
es[ir], es[ir + 1], . . . , es[(i+ 1)r − 1]

)
∈ Ers,

whose symbols are consecutively emitted into the sth channel during the forthcoming
operation epoch [ir : (i+ 1)r).

Remark 3.8.21. Letm denote the number of the quantizer levels.17 By c.3), the coder
sends on average log2(m+1)

r bits per unit time to the decoder.

In Subsect. 3.8.5, the minimum of this ratio over r-contracted quantizers will be
studied.

Observation 3.8.22. As follows from Definitions 3.4.15 and 3.4.17 (on p. 47), the
proposed coder and decoder are simple semirational one-step recursive.

We recall that the sample period was increased so that now one step is equivalent to
r former ones.

Remark 3.8.23. The inner dynamical variables zs(= zs) and z of the coder and de-
coder (see Definitions 3.4.15 and 3.4.17) can be defined as zsi := (δci ,U

c
i ), zi := δdi .

Stabilizing Properties of the Coder and Decoder

These properties are revealed by the following main result of the subsection.

Proposition 3.8.24. Suppose that Assumption 3.8.1 (on p. 62) and (3.8.13) hold, and
the disturbance in the sth subsystem (3.8.6) satisfies (3.8.8). Then the above coder–
decoder pair uniformly and exponentially stabilizes this subsystem:

‖xsi‖ ≤ Kxρ
i, ‖U d

i ‖ ≤ Kuρ
i ∀i ≥ 0 whenever ‖xs0‖ ≤ K0. (3.8.21)

Here ρ < 1 is the parameter of the controller from (3.8.13), and the constants
Kx,Ku may depend on Kξ from (3.8.8) and K0.

17Hence with regard to the extra alarm symbol, the quatizer output can take m + 1 values.
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Proof of Proposition 3.8.24

The remainder of the subsection is devoted to this proof, which is broken into the
string of several lemmas. We start with rough estimates of concerned variables.

Lemma 3.8.25. The following inequalities hold for all i ≥ 1, h ≥ 0, and p ≥ h:

δ0ρ
i−1 ≤ δci ≤ δ0γi−1, ‖U d

i ‖ ≤ ‖N‖δci−1,

‖xsp‖ ≤ ar(p−h)
s

[
‖xsh‖+K ′ξρ

h
ξ

]
+Kγγ

p|I(p, h)|, (3.8.22)

where K ′ξ := Kξ/(a
r
s − 1) and as is an arbitrary constant such that

as > ‖Ass‖, (3.8.23)

|I(p, h)| is the size of the set

I(p, h) := {j = h, . . . , p− 1 : j ≥ 2 & qj−1 6= z},

and the constant Kγ does not depend on x0,K0, h, p,Kξ.

Remark 3.8.26. Due to Assumption 3.8.1 (on p. 62), ‖Ass‖ ≥ 1. Hence as > 1 by
(3.8.23) and so the constant K ′ξ is well defined.

Explanation 3.8.27. If ‖Ass‖ > 1, the lemma remains true with as := ‖Ass‖.
The constant as is introduced for uniformity of the formulas concerning the cases
‖Ass‖ > 1 and ‖Ass‖ = 1, respectively.

Proof of Lemma 3.8.25. The first formula is immediate from (3.8.16) and (3.8.17)
since ρ < 1 < γ by (3.8.13). The second one results from (3.8.18) and (3.8.19) since

‖ ⋆q ‖ ≤ 1 due to (3.8.17). To prove the last formula, we first note that

U d
j = 0 ∀j 6∈ I(p, h), h ≤ j ≤ p− 1,

by (3.8.17) and (3.8.18). Hence

‖xsp‖
(3.8.6)
===

∥∥∥∥∥∥
Ar(p−h)
ss xsh +

p−1∑

j=h

Ar(p−1−j)
ss

[
BsU

d
j + ξs,j

]
∥∥∥∥∥∥

(3.8.8)
≤ ‖Ass‖r(p−h)‖xsh‖+ ‖Bs‖‖N‖δ0

∑

j∈I(p,h)

‖Ass‖r(p−1−j)
︸ ︷︷ ︸
≤γp−1−jby (3.8.13)

γj−2

+Kξ ρjξ︸︷︷︸
≤ρh

ξ
by (3.8.8)

p−1∑

j=h

‖Ass‖r(p−1−j)
︸ ︷︷ ︸
≤ar(p−1−j)

s by (3.8.23)

≤ ar(p−h)
s ‖xsh‖+ ‖Bs‖‖N‖δ0|I(p, h)|γp−3 +Kξρ

h
ξ

a
r(p−h)
s − 1

ars − 1
,
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which yields the last formula from (3.8.22). ⊓⊔
To justify stability, it suffices to show that δci are true bounds for the state prog-

nosis
‖x̂si+1‖ ≤ δci for all large i.

Indeed, then ‖εi‖ ≤ 1 ∀i ≈ ∞ by (3.8.15). Hence (3.8.16) and (3.8.17) ensure that
the bound δci and thus x̂si+1 decay exponentially δci+1 = ρδci for i ≈ ∞. Then so
does the state xsi+1 thanks to (3.8.8) and (3.8.20); i.e., the system is stable. We start
by showing that even if the bound δci is incorrect for some i, it becomes correct later.

Lemma 3.8.28. For any K0,Kξ, and i0, an integer p0 ≥ i0 exists such that the
bound δci is correct ‖x̂si+1‖ ≤ δci for at least one index i ∈ [i0 : p0] whenever
‖xs0‖ ≤ K0 and (3.8.8) holds.

Proof. With regard to (3.8.13), we pick a constant as in (3.8.23) so that

ars < γ. (3.8.24)

The symbol K (with possible indices) is used to denote a constant that depends on
K0,Kξ but not xs0 and ξs,i. By putting h := 0 and the estimate |I(p, h)| ≤ p − h
into the last inequality from (3.8.22), we see that

‖xsp+1‖ ≤ K
(p)

whenever ‖xs0‖ ≤ K0 and (3.8.8) holds. (3.8.25)

Now suppose that the bound δci is incorrect for all i from some interval [i0 : i1]
with the left end i0. To estimate i1, we note that I(p, h) = ∅ for h := i0 + 1 and
p := i1 + 1 due to (3.8.15). So the last inequality from (3.8.22) yields

‖xsi1+1‖ ≤ ar(i1−i0)s

[
K

i0
+K ′ξρ

i0+1
ξ

]
; ‖x̂si1+1‖

(3.8.20)
=== ‖xsi1+1 − ξs,i1‖

(3.8.8)
≤ ar(i1−i0)

s

[
K

i0
+K ′ξρ

i0+1
ξ

]
+Kξρ

i1
ξ

ρξ<1

≤ ar(i1−i0)s

[
K

i0
+K ′ξ

]
+Kξ

1<as≤
(
K

i0
+K ′ξ +Kξ

)
ar(i1−i0)s .

At the same time, (3.8.16) and (3.8.17) entail that δci+1 = γδci for i ∈ [i0 : i1]. So

δci1 = γi1−i0δci0 ≥ γi1−i0ρi0−1δ0,

where the last inequality is based on (3.8.22). Since the bound δci1 is incorrect, it
follows that

1 ≤ ‖x̂
s
i1+1‖
δci1

≤
(
ars
γ

)i1−i0 K i0
+K ′ξ +Kξ

ρi0−1δ0
.

By invoking (3.8.24), we conclude that i1 ≤ i0 + ν, where
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ν :=


log2

(
K

i0
+K ′ξ +Kξ

)
− (i0 − 1) log2 ρ− log2 δ0

log2 γ − r log2 as

 .

So one may pick p0 := i0 + 1 + max{ν, 0}. The claim of the lemma remains true
with the same p0 if the interval [i0 : i1] does not exist, because then the bound δci0 is
correct. ⊓⊔

The next lemma in fact completes the proof of Proposition 3.8.24.

Lemma 3.8.29. Suppose that ‖xs0‖ ≤ K0 and (3.8.8) holds. Whenever the bound
δci becomes correct ‖x̂si+1‖ ≤ δci , it is kept correct afterward, provided that i ≥ i0.
Here i0 is taken so that

ρQs

ρ
+
‖Ass‖rKξ

δ0

(
ρξ
ρ

)i
< 1 ∀i ≥ i0. (3.8.26)

Remark 3.8.30. Such an i0 exists due to the last inequality from (3.8.13).

Proof of Lemma 3.8.29. By (3.8.15), ‖εi‖ ≤ 1. So (3.8.16) and (3.8.17) imply
that

εi ∈ Q, qi = qQ for some Q ∈ {Q1, . . . , Qm};
U
c
i+1 = N

[
δci qi

]
, δci+1 = ρδci , (3.8.27)

where Qj are the level sets of the quantizer. By (3.8.12), the third relation yields

δciA
r
ssqi + BsU

c
i+1 = 0.

Hence

(
δci+1

)−1 ∥∥x̂si+2

∥∥ (3.8.14)
===

(
δci+1

)−1 ∥∥Arssxsi+1 + BsU
c
i+1

∥∥

=
(
δci+1

)−1 ∥∥Arssxsi+1 − δciArssqi
∥∥ (3.8.20)

===
(
δci+1

)−1 ∥∥Arss
[
x̂si+1 + ξs,i

]
− δciArssqi

∥∥
(3.8.15)
≤ δci

δci+1

∥∥Arss
[
εi − qi

]∥∥+
(
δci+1

)−1 ‖Arssξs,i‖ .

It follows from (3.8.9) and the first two relations in (3.8.27) that
∥∥Arss

[
εi − qi

]∥∥ ≤
ρQs . We proceed by invoking (3.8.8) and the last relation from (3.8.27), along with
the first inequality from (3.8.22),

(
δci+1

)−1 ∥∥x̂si+2

∥∥ ≤ ρQs

ρ
+ ‖Ass‖rKξ

ρiξ
δci+1

≤ ρQs

ρ
+
‖Ass‖rKξ

δ0

(
ρξ
ρ

)i
(3.8.26)
< 1.

Thus the bound δci+1 is true, which completes the proof. ⊓⊔
Proof of Proposition 3.8.24. Consider the number p0 from Lemma 3.8.28, where

i0 is taken from Lemma 3.8.29. By these lemmas, the bound δci is true ‖x̂ci+1‖ ≤ δci
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whenever i≥ p0. Then δci+1 = ρδci ∀i ≥ p0 thanks to (3.8.15), (3.8.16), and (3.8.17).
With regard to the first relation from (3.8.22), we see that

δci ≤ δ0γi for i ≤ p0, δci = δcp0ρ
i−p0 ≤ δ0

(
γ/ρ

)p0
ρi for i ≥ p0

⇓
δci ≤ Kδρ

i ∀i, where Kδ := δ0
(
γ/ρ

)p0
.

(3.8.28)
This and the second formula from (3.8.22) give the second inequality in (3.8.21). To
prove the first one, we note that

∥∥xsi+1

∥∥ (3.8.20)
====

∥∥x̂si+1 + ξs,i
∥∥ (3.8.8)
≤ δci +Kξρ

i
ξ

(3.8.13)
≤ K

0

xρ
i+1 ∀i ≥ p0,

where K
0

x := ρ−1
(
Kδ +Kξ

)
.

For i ≤ p0 + 1, inequality (3.8.25) yields

‖xsi ‖ ≤ K
(i−1) ≤ K ′ := max

{
max

j=1,...,p0
K

(j)
;K0

}
.

Thus the first inequality in (3.8.21) does hold with Kx := max{K0

x;K
′
ρ−p0−1}.

⊓⊔
In conclusion, we observe that the coder and decoder inner dynamical variables

zsi and zi exponentially decay to zero thanks to Remark 3.8.23, (3.8.28), and the
second formulas from (3.8.19) and (3.8.22).

3.8.5 Contracted Quantizer with the Nearly Minimal Number of Levels

Now we in fact perform step 3 (on p. 65) from the plan described in Subsect. 3.8.2.
Letm denote the number of quantizer levels. Due to Remark 3.8.21 (on p. 73), the

r-contracted18 quantizer with the minimal value of the ratio log2(m+1)
r is of special

interest. For a given sample period r, such a quantizer is that with the minimum
number of levels. We start with obtaining a simple lower bound on this number.

Lemma 3.8.31. For any r-contracted quantizer,19 the following inequality holds:

m > | detAss|r. (3.8.29)

Proof. Due to (3.8.9),

| detAss|rV (Qi) = | detAss|rV [Qi − qQi ] = V
[
Arss(Qi − qQi)

]

≤ ρns

QsV
[
B1

0

]
< V

[
B1

0

]
.

Summing over i = 1, . . . ,m results in (3.8.29). ⊓⊔
18See Definition 3.8.7 on p. 70.
19Strictly speaking, we restrict ourselves to quantizers with measurable level domains.
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In fact, the lower bound (3.8.29) is tight. To show this we introduce the following.

Notation 3.8.32. The symbols . and h stand for inequality and equality up to a
polynomial factor. In other words,

f(r) . g(r)⇔ f(r) ≤ ϕ(r)g(r) ∀r = 1, 2, . . . ,

where ϕ(r) is a polynomial in r, and

f(r) h g(r)⇔ f(r) . g(r)& g(r) . f(r).

When f(r) and g(r) depend on some other variables, the polynomial is assumed to
be independent of them.

Proposition 3.8.33. For any natural r, an r-contracted polyhedral20 quantizer Qs

exists with the number of levels

ms
r . | detAss|r. (3.8.30)

Remark 3.8.34. To implement the controller introduced in Subsect. 3.8.4, it is re-
quired to communicate on average R := log2(m+1)

r bits per unit time from the coder
to the decoder by Remark 3.8.21. Lemma 3.8.31 and Proposition 3.8.33 imply that

R ≥ log2 | detAss|+ αr, where αr → 0 as r →∞,

and for large r, the rateR can be made close to the asymptotic bound log2 | detAss|.
So the quantizer from that proposition can be viewed as almost optimal.

The proof of Proposition 3.8.33 employs the following technical observations.

Lemma 3.8.35. The following two statements hold:

(i) Whenever the claim of Proposition 3.8.33 is true for some matrixAss, it is valid
for any similar matrix A′ss = UAssU

−1;
(ii) Whenever this claim is true for two square matrices A′ss andA′′ss, it is also true

for the block matrix Ass =
(
A′ss 0

0 A′′ss

)
.

Proof. Statement (i). Given r, consider a polyhedral r-contracted (for Ass) quan-
tizer with ms

r ≤ ϕ(r)| detAss|r levels, where ϕ(·) is a polynomial. We also con-
sider the corresponding ball B1

0 and norm ‖ · ‖ from Definition 3.8.6 (on p. 69).
Evidently, U rB1

0 is the unit ball with respect to the norm ‖xs‖∗ := ‖U−rxs‖. So
the partition U rQ1, . . . , U

rQms
r

of U rB1
0 , where the centroid of U rQi is defined to

be U rqi, is a quantizer. Since
(
A′ss
)r

= U rArssU
−r, (3.8.9) for A′ss is immediate

from this formula written for Ass. Consider the linear functions li(xs) from Defini-
tion 3.8.8 (on p. 70) applied to the original quantizer. Then it is easy to see that the
new quantizer is also polyhedral and served by the functions li(U−rxs). The proof is

20See Definition 3.8.8 on p. 70.



3.8 Sufficient Conditions for Stabilizability 79

completed by observing that these quantizers have a common number of levels and
detAss = detA′ss.

Statement (ii). Given r, the matricesA′ss andA′′ss can be supplied with polyhedral
quantizers

Qs
1 =

[
Q′1 ∼ q′1, . . . , Q′m′r ∼ q

′
m′r

]
and Qs

2 =
[
Q′′1 ∼ q′′1 , . . . , Q′′m′′r ∼ q

′′
m′′r

]
,

respectively, such that mν
r ≤ ϕν(r)| detAνss|r for both ν = ′ and ν = ′′. Here ϕ′(r)

and ϕ′′(r) are polynomials. Let x be vectors of dimension matching the size of Ass.
We partition them x = col (x′, x′′) in accordance with the block partition of the
matrix. We also introduce the norm ‖x‖ = max{‖x′‖′, ‖x′′‖′′}, where ‖ · ‖′ and
‖ · ‖′′ are the norms from Definition 3.8.6 (on p. 69) applied to the first and second
of the above quantizers, respectively. It is easy to see that the sets

Qij :=
{
x : x′ ∈ Q′i, x′′ ∈ Q′′j

}
, i = 1, . . . ,m′r, j = 1, . . . ,m′′r

equipped with the centroids qij := col (q′i, q
′′
j ) form a quantizer Qs. Formulas

(3.8.9) written for A′ss and A′′ss, respectively, imply (3.8.9) for Ass (with ρQs :=
max{ρQs

1
, ρQs

2
} < 1). By considering the sets of linear functions li(x′), i =

1, . . . ,Ms
1 and lj(x′′), j = 1, . . . ,Ms

2 from Definition 3.8.8 applied to Qs
1 and Qs

2,
respectively, it is easy to see that the quantizer Qs is polyhedral and served by the
union of these sets with li(x′) and lj(x′′) interpreted as functions of x = col (x′, x′′).
For the numberms

r of the levels of the quantizer Qs, we have

ms
r = m′r ·m′′r ≤ ϕ′(r)ϕ′′(r)︸ ︷︷ ︸

ϕ(r)

| detA′ss|r| detA′′ss|r = ϕ(r)| detAss|r. ⊓⊔

Proof of Proposition 3.8.33. By employing the real Jordan form of Ass and
Lemma 3.8.35, the proof is reduced to the case where the matrix is a real Jordan
block. Let ns denote its size, λ its eigenvalue, and ω := |λ|. Then (see, e.g., [213,
Lemma 3.1, p. 64]) a polynomial ϕ(·) exists such that

Ξ(r) := ω−rϕ(r)−1Arss → 0 as r →∞.

So ‖Ξ(r)‖ < ρ < 1 for r ≈ ∞. Here ‖ · ‖ is the operator norm associated with
the norm ‖z‖∞ := maxi |zi| in Rns = {z = col (z1, . . . , zns)}. Balls with respect
to this norm are geometrically cubes. Multiplying ϕ(r) by a sufficiently large scalar
factor makes the inequality ‖Ξ(r)‖ < ρ true for all r. Now consider the uniform
quantizer Qs (see Example 3.8.11 and Remark 3.8.13 on pp. 70 and 71) partitioning
the cube B1

0 into ms
r := kns congruent subcubes Qi with the side length 2

k , where
k := ⌈ωrϕ(r)⌉. The centroid qQi is the center of Qi. Then

‖Ξ(r)‖ < ρ⇒ Ξ(r)[Qi − qQi ] ⊂ ρ[Qi − qQi ]

=
ρ

k
B1

0 ⇒ Arss[Qi − qQi ] ⊂ ρω
rϕ(r)

k
B1

0 ⊂ ρB1
0 .
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Thus the quantizer is r-contracted. The proof is completed by observing that

ms
r = kns ≤ [ωrϕ(r) + 1]ns ≤ 2ns−1

(
[ωrϕ(r)]ns + 1

)

= 2ns−1
(
| detAss|rϕ(r)ns + 1

) 1≤| detAss|
≤ 2ns−1| detAss|r

[
ϕ(r)ns + 1

]
.⊓⊔

In Proposition 3.8.33, the contraction rate ρQs of the concerned quantizer is not
specified. At the same time, this rate can be made geometrically decreasing in r
provided that the number of levels ms

r is slightly increased.

Lemma 3.8.36. Let η > H(A) = log2 | detAss| be given. Then for any r =
1, 2, . . ., an r-contracted polyhedral quantizer Qs exists with the contraction rate
ρQs = κ2r and ms

r . 2rη levels, where κ = κη,Ass ∈ (0, 1) does not depend on r.

Proof. In the above proof of Proposition 3.8.33, one should alter the choice of k
by k := ⌈αrωrϕ(r)⌉. Here α > 1 is a parameter to be adjusted. This evidently
provides the rate of contraction ρQs ≤ ρα−r ≤ α−r and gives rise to a quantizer
with ms

r ≈ αnsrωnsr = 2r[H(A)+ns log2 α] levels. Then the statement of the lemma
results from properly adjusting the value of α > 1. ⊓⊔

Remark 3.8.37. Proposition 3.8.33 and Lemma 3.8.36 hold for an arbitrary square
matrix Ass with no stable |λ| < 1 eigenvalues λ.

3.8.6 Construction of a Deadbeat Stabilizer

When all subsystems are equipped with the proposed controllers, the stability of a
particular subsystem may be violated by the controllers serving other subsystems
since the control is common. To avoid this, it suffices to choose the controls in such
a way that they influence only the subsystem for which they are intended. For the
basic (unit) sample period, this may be impossible. Now we show that this can be
done if the sample period r is properly increased: The controls generated for a given
subsystem do not affect the states of the other ones at times t = i · r, i = 0, 1, . . ..

Common controls give rise to another trouble. The sth coder will be implemented
at the sites of all sensors observing the sth subsystem. To compute the states xsi =
xs(τi) used by this coder, not only the observations but also controls must be known
at these sites. However, the sth coder may know the control only partly. It is aware of
its own summand in the overall control, which is the sum of the controls generated
for all subsystems. At the same time, it cannot determine the summands based on the
modes xj invisible at its site. To overcome this obstacle, it suffices to note that the
controls must be known for only n times t preceding τi. So it suffices to ensure that
all controllers produce zero controls at these times.

Now we show that deadbeat stabilizers with the above properties do exist.

Lemma 3.8.38. Whenever r > n, a deadbeat stabilizer N for the sth subsystem
exists. Moreover, it can be chosen so that it generates control programs U =
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col (u0, . . . , ur−1) vanishing since the time t = n, i.e., un = · · · = ur−1 = 0,
and does not disturb the other subsystems, i.e.,

BjU = 0 for j 6= s, U = Nxs, and any xs.

Proof. By (3.8.12), a deadbeat stabilizer is the right inverse to the operator DU :=
−A−rss BsU . In (3.8.1), BU is the state to which the control program U drives the
system (3.3.1) at time t = r from x(0) = 0. By Assumption 3.8.1 (on p. 62), this
system has no stable modes. So it is controllable thanks to Assumption 3.4.22 (on
p. 49). It follows that the operator B is onto. Moreover, B|M is onto, where

M := {U : un = · · · = ur−1 = 0}.

Indeed for any x, it suffices to pick the control program u0, . . . , un−1 that drives the
system from 0 at t = 0 to An−rss x at t = n and to extend it by zeros to form U ∈M .
Then evidently BU = x. Now consider x such that in (3.8.3) all blocks are zeros
except for xs ∈ Rns . Since this block can be chosen arbitrarily, it follows that the
operator Bs maps L := {U ∈M : BjU = 0 ∀j 6= s} onto Rns . So evidently does
D. It remains to define N as the right inverse to D|L. ⊓⊔

3.8.7 Stabilization of the Entire System

Now we perform step 4 (on p. 65) from the plan described in Subsect. 3.8.2. We
revert to considering all subsystems in their actual relationship. In particular, this
means that the disturbance in (3.8.6) is given by (3.8.7). We also pick r > n and
suppose that the following assumptions hold for any s:

A.1) The block xs(τi) of the state can be determined at any time τi = i · r at a certain
site (called the sth site);

A.2) There is a way to transfer the quantized value qsi generated by the sth coder at the
step c.3) (on p.72) from the sth site to the decoder site during the time interval
[τi : τi+1).

Explanation 3.8.39. In A.2), considered is the site where the actual decoder (see
Fig. 3.2 on p. 42) should be situated.

Architecture of the Stabilizing Controller

Now we suppose that

SC.1) The sth coder from Subsect. 3.8.4 (starting on p. 68) is implemented at the
sth site from A.1) for every s;

SC.2) For all s, the sth decoder from Subsect. 3.8.4 is implemented at the site from
Explanation 3.8.39.

Remark 3.8.40. Assumption A1) makes SC.1) possible since the sth coder is driven
by the sequence of states xsi = xs(τi). Since the sth decoder is driven only by the
sequence of quantized values qsi , i = 0, 1, . . ., SC.2) is possible thanks to A.2).
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Each decoder produces its own sequence of controls

U d
i = col

[
us(ir), us(ir + 1), . . . , us(ir + r − 1)

]
.

These sequences are summed over all decoders to produce the control sequence act-
ing upon the plant:

u(t) := u1(t) + u2(t) + · · ·+ ud(t).

Specifying the Coders and Decoders

To complete their description, a quantizer, deadbeat stabilizer, and parameters r, γ, ρ
from (3.8.13) should be chosen for each coder.

The parameter r > n has already been picked.
For any subsystem s, the quantizer and deadbeat stabilizer are taken from Propo-

sition 3.8.33 and Lemma 3.8.38, respectively.
The parameter γ = γs is chosen to satisfy the second relation from (3.8.13).
As for the third relation, it is indefinite under the circumstances since ρξ from

(3.8.8) is not given. So now we pick the parameter ρ = ρs in another way. It is
chosen successively for s = 1, 2, . . . , d and so that

1 > ρ1 > ρQ1 , 1 > ρ2 > max{ρQ2 ; ρ1}, 1 > ρ3 > max{ρQ3 ; ρ2}, . . . ,
. . . , 1 > ρd > max{ρQd ; ρd−1}, (3.8.31)

where ρQs is taken from (3.8.9).

Stabilizing Properties of the Proposed Control Scheme

They are described by the following.

Proposition 3.8.41. Let assumptions A.1) and A.2) be true. Then the controller pro-
posed in this subsection uniformly and exponentially stabilizes21 the entire system
(3.3.1) at the rate µ = ρ

1/r
d .

The remainder of the subsection is devoted to the proof of this proposition. We
preface it with a simple technical fact.

Lemma 3.8.42. Suppose that a trajectory of the system (3.3.1) satisfies the estimates

‖xi‖ ≤ Kxρ
i, ‖Ui‖ ≤ Kuρ

i, i = 0, 1, 2, . . . , (3.8.32)

where

xi := x(τi), τi := i · r, ρ ∈ [0, 1),U i := col [u(τi), u(τi + 1), . . . , u(τi + r − 1)].

Then (3.4.2) (on p.46) holds, where µ := ρ1/r and the constants Kx,Ku are deter-
mined by Kx,Ku, and ρ (for a given system).

21See Definition 3.4.6 on p. 46.
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Proof. Whenever t ∈ [τi : τi+1), we have

ρi = µτi = µτi−tµt ≤ µ−rµt = ρ−1µt.

So
‖u(t)‖ ≤ ‖Ui‖ ≤ Kuρ

i ≤ Kuρ
−1µt;

i.e., the second inequality from (3.4.2) does hold. We denote χ := 1 + ‖A‖. Then

‖x(t)‖ =

∥∥∥∥∥∥
At−τix(τi) +

t−1∑

j=τi

At−1−jBu(j)

∥∥∥∥∥∥

≤ ‖A‖t−τi‖x(τi)‖ +

t−1∑

j=τi

‖A‖t−1−j‖B‖‖u(j)‖

≤


‖A‖t−τi + ‖B‖

t−1∑

j=τi

‖A‖t−1−j


×

[
‖x(τi)‖+ ‖Ui‖

]

≤


χr + ‖B‖

τi+1−1∑

j=τi

χτi+1−1−j


 [Kx +Ku

]
ρi,

where ρi ≤ ρ−1µt. The index substitution j := τi + ν in the last sum proves that
(3.4.2) is true. ⊓⊔

Proof of Proposition 3.8.41. Suppose that ‖x(0)‖ ≤ K0, where K0 is given.
The controls us with s ≥ 2 do not disturb the first block x1

i := x1(τi) of the state
at times τi = i · r since the deadbeat stabilizers are taken from Lemma 3.8.38. So
this block x1

i , i = 0, 1, . . ., evolves just as in the first subsystem (3.8.6) driven by
the first coder and decoder and perturbed by the noise ξ1,i, which is zero by (3.8.7).
Then Proposition 3.8.24 and the first inequality from (3.8.31) imply that the first
subsystem s = 1 is uniformly exponentially stabilized (3.8.21) at the rate ρ := ρ1.
This and (3.8.7) imply that the noise ξ2,i in the second subsystem (3.8.6) (where
s = 2) exponentially decays (3.8.8) at the rate ρ1.

Now we retrace the above arguments with respect to this subsystem and employ
the second relation from (3.8.31). As a result, we establish that this subsystem is
stabilized at the rate ρ2; i.e., (3.8.21) holds for s = 2 and ρ := ρ2. By continuing
likewise, we see that for any s, inequalities (3.8.21) are true with ρ := ρs and proper
constants Kx,Ku (depending on s) whenever ‖x(0)‖ ≤ K0. Since ρd ≥ ρs ∀s by
(3.8.31), it follows that (3.8.32) holds with ρ := ρd and some constants Kx,Ku

depending onK0. Lemma 3.8.42 and Definition 3.4.6 (on p. 46 ) complete the proof.
⊓⊔

3.8.8 Analysis of Assumptions A1) and A2) on p. 81

Our next goal is to show that these assumptions stated in the previous subsection are
satisfied whenever r > 2n and (3.5.2) (on p. 52) holds. This in fact will complete the
proof of Theorem 3.5.2. In this subsection, we perform the first step to this end.
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We start with assumption A1). By (i) of Proposition 3.8.2 (on p. 66), the unob-
servable subspace (3.4.6)L−oj = L−j of the jth sensor is composed of several blocks
xs, s 6∈ Oj of the state (3.8.3). These blocks do not affect its outputs yj , whereas all
other blocks xs, s ∈ Oj , can be determined from these outputs.

Lemma 3.8.43. Whenever r > 2n, assumption A1) holds. For any s, the site of any
sensor j with Oj ∋ s can be taken as the sth site in A1).

Proof. We recall that the deadbeat stabilizers were taken from Lemma 3.8.38. So
they produce control programs with zeros at any place i ≥ n:

U = col (u0, . . . , ur−1), ui = 0 ∀i ≥ n.

For r > 2n, this means that the corresponding controls u(t), t = 0, 1, . . ., vanish
u(t) = 0 for at least n times t preceding each τi = i · r, i = 0, 1, . . .. The proof is
completed by invoking the remarks from the paragraph prefacing Lemma 3.8.38. ⊓⊔

Remark 3.8.44. As is well known, the current state xs can be generated as a linear
function of n previous observations.

Now we turn to analysis of A.2). We recall that in A.2), the value qsi is given by
anms

r-level quantizer Qs. Description of such a value (which may equal z) requires
bs = ⌈log2(m

s
r + 1)⌉ bits. This number may exceed the capacity of the channel

that serves any particular sensor j observing the block xs. So we employ all such
channels. Specifically, the following scheme of transmission qsi to the decoder site is
used for each subsystem s = 1, . . . , d:

T.1) The sth coder is implemented at the sites of all sensors j observing the state xs,
i.e., such that s ∈ Oj ;

T.2) By employing a common encoding rule, the value qsi produced at each of these
sites is then transformed into a bs-bit sequence βsi = (β1, β2, . . . , βbs) of binary
digits βν = 0, 1;

T.3) By applying a common rule, this sequence β is split up into several subse-
quences β

s,j
i each associated with one of the concerned sensors j, i.e., such

that s ∈ Oj ;
T.4) Each of these sensors j sends only its own subsequence β

s,j
i over the attached

channel to the decoder site;
T.5) At the decoder site, the required value qsi is reconstructed by reversing the rules

from T.2) and T.3).

We assume that the rules from T.2) and T.3) do not change as i progresses and are
known at the decoder site. Furthermore, the rule from T.2) is lossless: The value qsi
can be reconstructed from β. This makes T.5) possible.

Remark 3.8.45. The claims T.1)–T.4) can be interpreted as if the sth site from A.1)
is distributed over the sites of all sensors j such that s ∈ Oj .

Notation 3.8.46. We denote by bsj the number of bits in β
s,j
i whenever s ∈ Oj , and

put bsj := 0 otherwise.
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The above scheme means that several binary words β
s,j
i , s ∈ Oj must be trans-

mitted over the common jth channel during any time interval [τi : τi+1) of duration
r − 1. By (ii) of Assumption 3.4.2 (on p. 43), this is possible if the total length of
these words does not exceed b−j (r − 1). Summarizing, we arrive at the following
lemma.

Lemma 3.8.47. Assumption A.2) is satisfied whenever nonnegative integer numbers
bsj , s = 1, . . . , d, j = 1, . . . , k exist such that the following relations hold:

k∑

j=1

bsj = bs = ⌈log2(m
s
r + 1)⌉ ∀s,

d∑

s=1

bsj ≤ b−j (r − 1) ∀j,

and bsj = 0 whenever s 6∈ Oj . (3.8.33)

Here k and d are the numbers of sensors and subsystems, respectively; ms
r is the

number of levels for the r-contracted quantizer taken from Proposition 3.8.33; and
b−j (·) and Oj are taken from (ii) of Assumption 3.4.2 (on p. 43) and (i) of Proposi-
tion 3.8.2 (on p. 66), respectively.

3.8.9 Inconstructive Sufficient Conditions for Stabilizability

These conditions are immediate from Proposition 3.8.41 and Lemmas 3.8.43 and
3.8.47. Obtaining them amounts to carrying out step 5 (on p. 65) from Subsect. 3.8.2.

Proposition 3.8.48. Suppose that the following system of relations:

log2 | detAss| <
k∑

j=1

αsj ∀s,
d∑

s=1

αsj < cj ∀j, αsj ≥ 0 ∀s, j,

αsj = 0 whenever s 6∈ Oj (3.8.34)

is solvable in real numbers αsj . Here Ass is taken from (ii) of Proposition 3.8.2 (on
p. 66) and cj is the transmission capacity (3.4.1) of the jth channel. Then the system
(3.3.1), (3.3.2) is uniformly and exponentially stabilizable.22

Proof. It suffices to show that for all large r, the system (3.8.33) is solvable in non-
negative integers bsj . Indeed such an r can be clearly chosen so that r > 2n. Then
Lemmas 3.8.43 and 3.8.47 ensure that assumptions A.1) and A.2) (on p. 81) hold.
Then Proposition 3.8.41 completes the proof.

We note first that in (3.8.33), the first relation can be replaced by the inequality

k∑

j=1

bsj ≥ ⌈log2(m
s
r + 1)⌉. (3.8.35)

22See Definition 3.4.8 on p. 46.
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Indeed, if after this the system is solvable, then a solution for the original relation
can be obtained by properly decreasing the non-negative integers bsj . Specifically,
they are decreased to satisfy the first relation from (3.8.33), which may only enhance
the second relation and keep the third relation true.

We are going to show that a solution is given by bsj := ⌊r · αsj⌋, provided
r ≈ ∞. Indeed the third relation in (3.8.33) follows from the last one in (3.8.34).
Furthermore,

1

r

k∑

j=1

bsj
r→∞−−−→

k∑

j=1

αsj
(3.8.34)
=== log2 | detAss|+ κs, where κs > 0,

1

r
⌈log2(m

s
r + 1)⌉ ≤ 1

r
[log2(m

s
r + 1) + 1]

(3.8.30)
≤ 1

r

[
log2

(
ϕs(r)| detAss|r + 1

)
+ 1
]
r→∞−−−→ log2 | detAss|,

where ϕs(r) is a polynomial in r. It follows that (3.8.35) does hold for all r ≈ ∞.
Likewise,

1

r

d∑

s=1

bsj
r→∞−−−→

d∑

s=1

αsj
(3.8.34)
=== cj − ηj , where ηj > 0,

b−j (r − 1)

r

(3.4.1)−−−→ cj as r→∞.

Thus the second relation from (3.8.33) is also true for all r ≈ ∞. ⊓⊔

3.8.10 Convex Duality and a Criterion for the System (3.8.34) to be Solvable

Now we perform step 6 (on p. 66) in the proof of the sufficiency part of Theo-
rem 3.5.2 by justifying the following claim.

Proposition 3.8.49. The system (3.8.34) is solvable in real numbers αsj if and only
if (ii) of Theorem 3.5.2 (on p. 52) holds.

Then by invoking Proposition 3.8.48, we arrive at the following corollary.

Corollary 3.8.50. Let Assumption 3.8.1 hold. Then (ii) of Theorem 3.5.2 implies (i).

We preface the proof of Proposition 3.8.49 with a useful reformulation of (ii)
from Theorem 3.5.2 in terms of the decomposition from Proposition 3.8.2 (on p. 66).

Lemma 3.8.51. Along with the sets Oj from (i) of Proposition 3.8.2, consider all
their unions O =

⋃
j∈J Oj , where J ranges over all groups of sensors. (The union

of the empty group of sets Oj is included and interpreted as the empty set.) Then (ii)
of Theorem 3.5.2 is true if and only if for any such a union O 6= [1 : d],

∑

s6∈O
log2 | detAss| <

∑

j:Oj 6⊂O
cj . (3.8.36)
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Proof. Due to (i) of Proposition 3.8.2, the sets (3.5.1) L =
⋂
j∈J L

−
j have the form

L = {x : xs = 0 ∀s ∈ O} , where O =
⋃

j∈J
Oj .

So (3.8.4) implies detA|L =
∏
s6∈O detAss. Hence the left-hand sides in (3.5.2)

(on p. 52) and (3.8.36) coincide. The proof is completed by observing that so do the
right-hand ones since in (3.5.2) J(L) = {j : Oj ⊂ O} owing to (3.4.6), (3.5.1), and
(i) of Proposition 3.8.2. ⊓⊔

Proof of Proposition 3.8.49. Necessity. Let (3.8.34) have a solution αsj . Then

∑

s6∈O
log2 | detAss|

(3.8.34)
<

∑

s6∈O

k∑

j=1

αsj =

k∑

j=1

∑

s6∈O
αsj

(3.8.34)
===

∑

j:Oj 6⊂O

∑

s6∈O
αsj ≤

∑

j:Oj 6⊂O

d∑

s=1

αsj
(3.8.34)
<

∑

j:Oj 6⊂O
cj ;

i.e., (3.8.36) holds. By Lemma 3.8.51, so does (3.5.2) (on p. 52).
Sufficiency. Now suppose that (ii) of Theorem 3.5.2 is true. By Lemma 3.8.51,

this means that (3.8.36) holds for the union O of any sets Oj , provided O 6= [1 : d].
It should be shown that (3.8.34) is solvable in real numbers αsj .

Suppose the contrary. Then the following convex polyhedra in the space of ma-
trices α = (αsj) are disjoint:

C1 :=



α : log2 | detAss| <

k∑

j=1

αsj ∀s



 ,

C2 :=

{
α :

d∑

s=1

αsj < cj ∀j, αsj ≥ 0 ∀s, j, αsj = 0 if s 6∈ Oj
}
.

Hence they can be separated by a hyperplane: A nonzero matrix γ = (γsj) exists
such that

inf
α∈C1

∑

s,j

γsjαsj ≥ sup
α∈C2

∑

s,j

γsjαsj . (3.8.37)

The definition of C1 implies that

inf
α∈C1

∑

s,j

γsjαsj =

d∑

s=1

inf
(αj):

P
k
j=1 αj>log2 | detAss|

k∑

j=1

γsjαj .

Every infimum on the right is that of a linear functional over a half-space of (αj)
bounded by a hyperplane with the normal vector (1, . . . , 1). This infimum is finite
only if the functional is generated by a vector colinear with the normal vector. So
γsj = θs ∀j for some θs ≥ 0 and

∑
s θs > 0. It follows that
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inf
α∈C1

∑

s,j

γsjαsj =

d∑

s=1

θs log2 | detAss|.

At the same time, the definition of C2 implies that

sup
α∈C2

∑

s,j

γsjαsj = sup
αsj≥0,

P
s αsj<cj,

s6∈Oj⇒αsj=0

∑

sj

θsαsj =
k∑

j=1

max
αs≥0,

P
s αs≤cj

∑

s∈Oj

θsαs

=

k∑

j=1

cj max
s∈Oj

θs.

By (3.8.37), the cone

K := {θ = (θ1, . . . , θd) ∈ R
d : θs ≥ 0}

contains a nonzero solution of the inequality

d∑

s=1

θs log2 | detAss| ≥
k∑

j=1

cj max
s∈Oj

θs. (3.8.38)

This cone can be partitioned into a finite number of convex polyhedral subcones
such that the right-hand side of (3.8.38) is linear on any subcone. It follows that
(3.8.38) must be satisfied on some extreme ray of some subcone. Any of them is
bounded by a finite number of hyperplanes, each described by an equation of the
form either θν = 0 or θµ = θν , where ν 6= µ and ν, µ ∈ Oj for some j. This
implies [147, p. 104] that the extreme ray is described by a finite system of such
equations, which determines its solution uniquely up to multiplication by a scalar. It
is easy to see that the solution of such a system looks as follows: θs = θ whenever
s 6∈ O, and θs = 0 otherwise. Here O ⊂ [1 : d] is some set, O 6= [1 : d]. For vectors
on the above extreme ray, we have θ > 0, and (3.8.38) shapes into

∑

s6∈O

log2 | detAss| ≥
∑

j:Oj 6⊂O

cj .

Changing
O := O :=

⋃

j:Oj⊂O

Oj

does not alter the right-hand side, and possibly increases the left-hand one, which
keeps the inequality true, in violation of (3.8.36). The contradiction obtained proves
that the system (3.8.34) is solvable in real numbers αsj . ⊓⊔

3.8.11 Proof of the Sufficiency Part of Theorem 3.5.2 for Systems with Both
Unstable and Stable Modes

Now we do the final step 7 (on p.66) from Subsect. 3.8.2 by showing that in Corol-
lary 3.8.50, Assumption 3.8.1 can be dropped.



3.8 Sufficient Conditions for Stabilizability 89

Proposition 3.8.52. The statement (ii) of Theorem 3.5.2 implies (i).

Proof. Consider the system (3.3.1) (on p. 41) with both unstable and stable modes
that satisfies (ii). It is clear that it suffices to stabilize only its unstable part

x+(t+ 1) = A+x+(t) + π+Bu(t), x+(0) := π+x0 ∈ L+,

y+(t) = Cx+(t). (3.8.39)

Here L+ := Munst(A) and L− := Mst(A) are the invariant subspaces of A related
to the unstable and stable parts of its spectrum, π+ and π− are the projectors onto
L+ parallel to L− and vice versa, respectively, and A± := A|L± . Thanks to the
second relation from (3.4.6) (on p. 49), (ii) still holds for the system (3.8.39). By
the foregoing, this system can be uniformly and exponentially stabilized by some
controller. While constructing it, we employed the parameter r > 2n. Now we apply
this controller to the primal system (3.3.1). In doing so, the proof of possibility of
A.1) (on p. 81) from Subsect. 3.8.8 (starting on p. 83) should be revisited. Indeed
the sth coder can be implemented at the jth sensor site (where s ∈ Oj) only if
xs(τi), τi := i ·r can be determined there. Formerly this was done on the basis of the
past measurements from (3.8.39). Now we must employ the measurements (3.3.2)
(on p. 41). This is possible due to (3.4.6) (on p. 49) and (i) of Proposition 3.8.2 (on
p. 66) since the dynamics of the system (3.3.1) (on p. 41) is free u(t) = 0 at least n
time steps before τi.

By Definition 3.4.6 (on p. 46), a constant µ ∈ [0, 1) exists such that whenever a
constant K0 is given and ‖x0‖ ≤ K0, the following relations hold:

‖π+x(t)‖ ≤ K+
x µ

t, ‖u(t)‖ ≤ Kuµ
t ∀t = 0, 1, 2, . . . .

The evolution of x−(t) := π−x(t) is described by the first two equations from
(3.8.39), where the index + is switched to −. Since the operatorA− is stable and the
controls u(t) exponentially decay, so do the states ‖x−(t)‖ ≤ K−x ρt. Here ρ ∈ (0, 1)
does not depend on K0. Since

‖x(t)‖ = ‖x−(t) + x+(t)‖ ≤ ‖x−(t)‖+ ‖x+(t)‖,

increasing µ := max{µ, ρ} yields (3.4.2) (on p. 46). Definitions 3.4.6– 3.4.8 (on
p. 46) complete the proof. ⊓⊔

3.8.12 Completion of the Proof of Theorem 3.5.2 and the Proofs of
Propositions 3.5.4 and 3.5.8

Proof of Theorem 3.5.2 (on p. 52). It was shown in Sect. 3.7 that (i) ⇒ (ii). The
converse (ii)⇒ (i) is given by Proposition 3.8.52. So it remains to justify (3.5.3) (on
p. 53). To this end, we note that the transformation

z(t) := µ−tx(t), v(t) := µ−tu(t)
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establishes a one-to-one correspondence between the trajectories {x(t), u(t)} and
{z(t), v(t)} of the systems given by, respectively, (3.3.1) (on p. 41) and the equation

z(t+ 1) = µ−1Az(t) + µ−1Bv(t).

We equip the latter with the sensors ỹj = Cjz, j ∈ [1 : k]. It easily follows from
Definitions 3.4.6 and 3.4.7 (on p. 46) that the initial system is uniformly and expo-
nentially stabilizable at a rate µ′ ∈ (0, µ) if and only if the second one is uniformly
and exponentially stabilizable. By applying the (i) ⇔ (ii) part of Theorem 3.5.2 to
the second system in the case where σ−(A) = ∅, we get

− dimL · log2 µ+ log2 | detA|L| <
∑

j 6∈J(L) cj ∀L ∈ L,

m
log2 µ > maxL∈L

1
dimL

(
log2 | detA|L| −

∑
j 6∈J(L) cj

)
.

To arrive at (3.5.3), we note that the rate of exponential stabilizability µ0 is the infi-
mum of all such µ.

The last claim of Theorem 3.5.2 (on p. 52) follows from Proposition 3.5.4, which
will be justified next. ⊓⊔

Proof of Proposition 3.5.4 (on p. 54). When applied to the second system in the
general case, the criterion (3.5.4) (on p. 53) for stabilizability takes the form

−
ν∑

α=0

dimLα(J) log2 µ+

ν∑

α=0

log2

∣∣detA|Lα(J)

∣∣ <
∑

j 6∈J
cj ∀J ∈ Ξν , (3.8.40)

where ν = νµ = 0, . . . , p is determined by the inequalities ρν+1 < µ ≤ ρν and
ρp+1 := 0. We recall that ρ0 := 1 and ρν , ν = 1, . . . , p are defined in (3.5.5) (on
p. 54). It follows that the rate µ0 of the exponential stabilizability of the primal sys-
tem is the infimum of all µ’s satisfying (3.8.40). The arguments from Remark 3.5.5
(on p. 55) show that this infimum lies in the interval

[
ρν∗+1, ρν∗

]
. Hence (3.5.7) (on

p. 54) is straightforward from (3.8.40). ⊓⊔
Proof of Proposition 3.5.8 (on p. 55). This proposition is straightforward from

Observation 3.8.22 and Remark 3.8.44. ⊓⊔

3.9 Comments on Assumption 3.4.24

Now we explain why this assumption has such a big impact on the controller de-
sign. We also briefly discuss ideas underlying such a design in the case where this
assumption does not hold.

To start with, we illuminate the role of Assumption 3.4.24 (on p. 49).

Definition 3.9.1. A “subsystem” arising from (3.8.3) (on p. 66) is said to be in a
simple relation with the jth sensor if
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• either it does affect the output of this sensor at all
• or the state of this subsystem can be uniquely determined from the sensor outputs.

The simplest case in stabilization of a multiple sensor system is where the system
can be decomposed into independent subsystems each in a simple relation with any
sensor. For example, this holds if all eigenvalues of the system are different. How-
ever, this is impossible in general. As was shown, a nontrivial Jordan block may
form a barrier to decomposition into independent subsystems. The example (3.4.13),
(3.4.14) (on p. 51) proves that it may be still worse: The system cannot be disinte-
grated into (even dependent) subsystems each in simple relations with the sensors.
Assumption 3.4.24 in fact describes when this worst case does not occur.

So to deal with the general case where this assumption may be violated, one
should cope with the situation where some sensor partly observes some subsystem:
Its state cannot be determined at the site of this sensor although the sensor signals
contain information about this state. Then an additional problem arises: How do we
use this information in the coding and decoding scheme for stabilization purposes?
As will be shown, the answer requires the revision of some basic principles on which
the design of such schemes was based up to now.

3.9.1 Counterexample

To provide details, we pick natural c and real λ numbers such that

λ ≈
√

2
3c
, λ <

√
2
3c
, (3.9.1)

and we revert to the example (3.4.13), (3.4.14) (on p. 51):

x(t+ 1) = λx(t) + u(t) ∈ R
2,

y1(t) = x1(t), y2(t) = x2(t), y3(t) = x1(t)− x2(t), (3.9.2)

where x = col (x1, x2). There are three sensors each served by an undelayed and
lossless channel of capacity c bits per unit time; i.e., c1 = c2 = c3 = c. The necessary
conditions for stabilizability (3.5.2) (on p. 52) take the form of the second relation
from (3.9.1) and are satisfied.

As was remarked in Subsect. 3.4.5, Assumption 3.4.24 does not hold: One of
the sensors observes a certain subsystem only partly for any decomposition of the
system (3.9.2).

For example, consider the natural decomposition x = col (x1, x2), where x1

and x2 are interpreted as the states of the subsystems. They are in simple relations
with the first and second sensors. However, they are not in such relations with the
third one. Indeed the state xi influences its outputs y3 = x1 − x2 but cannot be
determined on the basis of them. Moreover, the only linear coordinate (i.e., function)
of the state that can be determined on the site of the third sensor is its output y3 (up
to a scalar factor). Likewise, the first and second sensors permit us to find only x1

and x2, respectively. This conclusion holds for any decomposition.
In the remainder of this section, we justify the following two claims:
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1. The system (3.9.2) is stabilizable;
2. It cannot be stabilized by a controller with the following features F.1)–F.5).

Before specifying them, we note that they are characteristic for most of the relevant
controllers based on the design ideas presented in the literature (see, e.g., [28,89,90,
135–138, 149, 184, 202, 204, 221] and the literature therein). We also recall that for
the system (3.9.2), the controller consists of three coders and a decoder.

F.1) Not only the “mode” yi but also its upper (maybe incorrect) bound δi is deter-
mined at the sensor site;

F.2) The state x and these bounds in fact constitute the state of the closed-loop sys-
tem, which is time-invariant;

F.3) At the decoder site, the information about the “mode” yi(t) comes to its quan-
tized scaled value ei(t) = Qi[δi(t)

−1yi(t)] given by a static quantizer Qi(·)
with convex level sets and the number mi of levels matching mi + 1 ≤ 2c the
channel capacity23;

F.4) The next bound δi(t+1) is determined from δi(t) and the knowledge of whether
ei(t) = z;

F.5) Whenever all bounds are true δi(t) ≥ |yi(t)| ∀i, they remain true afterward.

It is clear that these features mainly concern the coding algorithm.
In the remainder of this subsection, we prove claim 2. Claim 1 (i.e., stabilizability

of the system) will be justified in the next subsection.

Lemma 3.9.2. Let c ≥ 2 and a controller satisfying F.1)–F.5) be given. Then the
closed-loop system (3.9.2) is not stable. Moreover,

lim sup
t→∞

sup
x0∈Bχ

0

‖x(t)‖ =∞ (3.9.3)

for all χ > 0 and initial bounds δ0i > 0.

Proof. By F.2) and F.4), δi(t+ 1) = Di[δi(t)] whenever ei(t) 6= z. We are going to
estimate Di(·) from below. Due to F.3), any quantizer Qi is related to a partition of
the interval [−1, 1] into mi subintervals (level sets)

∆
(i)
1 , . . . ,∆(i)

mi
.

Let α(i)
j and β(i)

j denote the left and right end points of ∆
(i)
j , respectively. Since

mi ≤ 2c − 1, one of them has the length

β
(i)
ji − α(i)

ji > 2 · 2−c.

Now we pick δ > 0, set the initial bounds δ1(0) = δ2(0) = δ, δ3(0) = 2δ, and note
that all initial states from the segment

23We recall that mi is the number of the quantizer outputs different from z. So the total
number of outputs is mi + 1.
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S := {x0 = col (δα(1)
j1 + θ, δα

(2)
j2 + θ) : 0 < θ ≤ 2δ2−c}

give rise to common outputs for each quantizer i = 1, 2, 3 at t = 0. So they give
rise to a common control u(0) = col (u1, u2). For all these states, the above initial
bounds are correct. Then F.5) ensures that for i = 1, 2

δi(1) = Di[δi(0)] = Di[δ] ≥ |yi(1)| = |λxi(0) + ui|.

Here λxi(0)+ ui runs over an interval of length 2λδ2−c as x0 ranges over S. Hence

Di(δ) ≥ λδ2−c (3.9.4)

for i = 1, 2. This inequality is extended on i = 3 by putting

δ1(0) = δ3(0) = δ, δ2(0) = 2δ,

S := {x0 = (δα
(1)
j1 + θ, δα

(1)
j1 − δα

(3)
j3 ) : 0 ≤ θ ≤ 2δ2−c}

and retracing the above arguments.
Now we suppose that (3.9.3) violates for some δ0i > 0 and χ > 0

c := sup
x0∈Bχ

0 ,t=0,1,...

‖x(t)‖ <∞.

By decreasing χ, one can ensure that χ < min{δ01 , δ02 , 1
2δ

0
3}. Then for all initial

states x0 ∈ Bχ0 , the bounds δi are correct for t = 0. Thanks to F.4) and F.5), they
remain correct for all t and common for all x0 ∈ Bχ0 . Then (3.9.4) yields

δi(t) ≥ χ
(
λ

2c

)t
.

Here λ ≈
√

2
3c

by (3.9.1). So δi(t) → ∞ as t → ∞. As a result, the interval
[−2c, 2c] is covered by at most two intervals of the form δi(t)∆

(i)
j for each i =

1, 2, 3, provided t is large enough. Since

‖x(t)‖ ≤ c⇒ |yi(t)| ≤ 2c, i = 1, 2, 3,

this and F.3) mean that for x0 ∈ Bχ0 each Qi in fact acts as a binary quantizer
(i.e., that with only two outputs) at any large time. Thus the decoder receives in fact
no more than one bit of information about the processes with x0 ∈ Bχ0 via each
channel. By treating three channels as one and invoking Lemma 3.5.11 (on p. 56),
we arrive at the inequality λ2 ≤ 23 ⇔ λ ≤ 23/2. At the same time, c ≥ 2 and so

λ ≈
√

2
3c
> 23/2. The contradiction obtained proves the lemma. ⊓⊔

3.9.2 Stabilizability of the System (3.9.2)

Now we show that despite Lemma 3.9.2, the system (3.9.2) is yet stabilizable. The
stabilizing controller will lack the properties F.2) and F.3). It will employ a 2-periodic
quantization scheme applied to not only scaled but also shifted observations.
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We offer only a sketch of the proof. This is because our objective is to highlight
the design ideas, whereas (3.9.2) is of little interest by its own right.

We equip every sensor with a coder (see Fig. 3.7). At any time, the jth coder
selects a code-symbol ej(t) from the c-bits channel alphabet and sends it over the
jth channel to the decoder. Furthermore, this coder computes recursively an upper
bound δj(t) for the current observation

−δj(t) ≤ yj(t) < δj(t). (3.9.5)

This computation is driven by the sequence of messages sent from the jth coder to
the decoder, so that the decoder be able to compute δj(t) by itself.

Fig. 3.7. Stabilization of the system (3.9.2).

We start to consider the stabilization process since the moment (treated as t = 0)
when all bounds are correct. This may be due to the knowledge of such bounds for
the initial state. Otherwise this may be achieved during a preparatory stage of the
stabilization process via successive multiplying δj by a sufficiently large factor, like
in Subsect. 3.8.4 (see p. 68). As will be shown, these bounds are kept true afterward
by the algorithm to be proposed. It will be designed so that the following relations
between the bounds δj are also kept true:

δ1(t) = δ2(t), δ3(t) = δ1(t) + δ2(t) at odd times t
δ2(t) = δ1(t) + δ3(t), δ3(t) = 2δ1(t)

N at even times t
, (N := 2c). (3.9.6)

Description of the Controller

The coders and decoder act in different ways at odd and even times t.
At odd times, the state x(t) lies in the following square by (3.9.5):

x(t) ∈M(t) := {x : −δj(t) ≤ yj < δj(t), j = 1, 2}. (3.9.7)

1) By acting independently on and via their own observation and channel, respec-
tively, the first and second (j = 1, 2) coders in fact apply the uniform N2-level
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quantization scheme (see Example 3.8.11 on p. 70) to the square (3.9.7) and no-
tify the decoder which of the level domains contains the state (see Fig. 3.8a).
Formally, for j = 1, 2, the jth coder determines which interval

[µ
(j)
i′ , µ

(j)
i′+1), where µ

(j)
i := i

2δj(t)

N
, i′ = 0, . . . , N − 1,

contains
yj(t) := yj(t) + δj(t)

and notifies the decoder about its serial number i′ = i(j);

Fig. 3.8(a). Uniform square quantizer. Fig. 3.8(b). Location of the state.

2) At the same time, the third coder (j = 3) does the following:
a) finds which of 2N intervals

[ωi, ωi+1), where ωi := i
δj(t)

N
, (3.9.8)

contains yj(t);
b) uniformly partitions this interval into N/2 subintervals

[ω
(ν)
i , ω

(ν+1)
i ), ω

(ν)
i := ωi + 2ν

ωi+1 − ωi
N

(3.9.9)

and notifies the decoder which of them ν = 0, . . . , N/2 − 1 contains yj(t),
and

c) uses the remaining bit to make the decoder aware of whether i is odd or even.

Explanation 3.9.3. In fact, the third sensor displays the orthogonal projection of the
point x = col (x1, x2) onto the line x1 = −x2. The embedding square (3.9.7)
is projected onto its diagonal. The set of the intervals (3.9.8) can be interpreted as
the uniform partition of the diagonal into 2N segments (see Fig. 3.8b). It is easy
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to check that the shadowed square from Fig. 3.8a (the quantizer level domain) is
projected onto the union of two neighboring segments. So the decoder can determine
this union from the data provided by the first and second coders. The bit from c)
enables the decoder to select the segment (3.9.8) that contains the projection from
the above two neighboring ones.

Hence except for one bit, the remaining bits available to the third coder can be
used to improve the precision in location of the projection within the segment (3.9.8),
which is done by b).

Remark 3.9.4. In the more formal analytical way, the above arguments look as fol-
lows. It is easy to check that

(i(1) + i
(2)
∗ )

δ3(t)

N
< y3(t) < (i(1) + i

(2)
∗ + 2)

δ3(t)

N
, i

(2)
∗ := N − i(2) − 1.

So either i = i(1) + i
(2)
∗ or i = i(1) + i

(2)
∗ + 1. Hence i can be found from the data

i(1), i(2) given by the first and second sensors, and the bit from c).

3). Based on the data i(1) from the first sensor, the decoder finds the strip

{x : y1 ∈ −δ1(t) + [µ
(1)

i(1)
, µ

(1)

i(1)+1
)}

that contains x(t). By finding i on the basis of the data from the first and second
sensors, along with the bit from 2.c), and using the data ν described in 2.b), it
finds another such strip (which is N/2-times ”narrower” than the first one)

{x : y3 ∈ −δ3(t) + [ω
(ν)
i , ω

(ν+1)
i )}.

Then the decoder selects a control driving the system from the center of the
intersection of the strips (the shadowed domain in Fig. 3.9a) to zero.

Fig. 3.9(a). Location of the state: the view
of the decoder.

Fig. 3.9(b). Domain transformation at an
odd step.
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Explanation 3.9.5. In fact, the decoder might locate the state better by computing the
shadowed domain from Fig. 3.8b. We make use of the domain from Fig. 3.9a since
this ensures stability by employing simpler formulas.

Remark 3.9.6. By invoking (3.9.2) and (3.9.7), it is easy to check that the selected
control drives the system to the state

x(t + 1) ∈M(t+ 1) := {x : −ε′ ≤ y1 < ε′, −ε′′ ≤ y3 < ε′′},

where

ε′ := λδ1(t)N
−1 (3.9.1)≈ δ1(t)2

3/2c2−c = δ1(t)2
c/2

c≥2
> δ1(t),

ε′′ := 2λδ1(t)N
−2 (3.9.1)≈ 2δ1(t)︸ ︷︷ ︸

=δ3(t) by (3.9.6)

2−c/2 < δ3(t).

Thus, for one step, the domain M(t) locating the state M(t) ∋ x(t) is stretched in
one direction and tightened in the other (see Fig. 3.9b).

It is easy to see that the area of the set M(t) progresses by multiplying by 2λ2

23c

per odd step. So it decreases if λ < 1√
2
23/2c. This is a bit more restrictive than

the condition λ < 23/2c from (3.9.1). This gap can be discarded by increasing the
sample period to r time units. Indeed, this “transforms” λ into λr, c into rc, and the
above condition λ < 2

3
2 c− 1

2 into λ < 2
3
2 c− 1

2r ≈ 23/2c for r ≈ ∞.

4). Both the jth coder and the decoder define the next number δj as the upper bound
for yj when x ranges over M(t+ 1); i.e.,

δ1(t+ 1) := λN−1δ1(t),

δ3(t+ 1) := λN−2δ3(t),

δ2(t+ 1) := λδ2(t)N
−1

[
1 +

2

N

]
.

Observation 3.9.7. This keeps (3.9.6) true at the next (even) time t := t+ 1.

Remark 3.9.8. For odd steps, the first and second coders use the available c bits in
order to increase the accuracy of the state description by 2c bits per step. Due to
the state dynamics, this is insufficient even to keep the accuracy at a given level.
Indeed the required number of bits is no less than the topological entropy of the
system at hand, which equals 2 log2 λ ≈ 3c by (3.9.1). This insufficiency can be
compensated by the bits available to the third sensor. However this sensor cannot
distinguish between points lying on lines parallel to x1 = x2. So the corresponding
bits can aid in refining the state description only in the perpendicular direction.

This explains why the state location domain is tightened in this direction and
stretched along the above line x1 = x2. Another conclusion is that repeating of the
above scheme (where the first and second sensors supply a primary “rough” infor-
mation about the state and the third sensor is used to refine it) will stretch the state
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location domain along the line x1 = x2 further and will not result in stabilization. So
the roles of the sensors should be interchanged. This is done at the even steps. Then
the first and third sensors supply primary data, whereas the second one refines it.

At even times, the state x(t) lies in the following parallelogram by (3.9.5):

x(t) ∈M(t) := {x : −δi(t) ≤ yi < δi(t), i = 1, 3}, (3.9.10)

where δ3(t) = 2δ1(t)
N and δ2(t) = δ1(t) + δ3(t) by (3.9.6) (see Fig. 3.10a).
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Fig. 3.10(a). Location of the state: the view
of the first and third sensors.

Fig. 3.10(b). Location of the state: the view
of the decoder.

5). The operation 1) is carried out by the first and third coders j = 1, 3, and 2) is
done by the second one j = 2 with ωi altered: ωi := i 2δ2(t)N .

Explanation 3.9.9. By acting independently on and via their own observation and
channel, respectively, the first and third coders in fact apply the N2-level quantiza-
tion scheme to the parallelogram (3.9.10) and notify the decoder which of the sub-
parallelograms contains the state (see the shadowed parallelogram in Fig. 3.10a).

By projecting this sub-parallelogram on the line x1 = 0, the decoder can deter-
mine a segment of length ∆ := 2δ2(t)

N containing the measurement y2(t) = x2(t)
from the second sensor. This segment intersects at most two intervals (3.9.8) of the
same length ∆. The interval (3.9.8) found by the second coder is among these two
ones. So the decoder can uniquely restore this interval by using the bit from c).

In the more formal analytical way, the above arguments look as follows. It is easy
to check that i(1), i(3) ∈ [0 : N − 1] and
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−δ2(t) + 2δ2(t)
N

[
i(1) + 2

N+2

(
N − 1− i(3) − i(1)

)]
< y2(t)

< −δ2(t) + 2δ2(t)
N

[
i(1) + 2

N+2

(
N − 1− i(3) − i(1)

)
+ 1
]

⇓
either − δ2(t) + 2δ2(t)

N

⌊
a(i(1), i(3))

⌋
< y2(t)

< −δ2(t) + 2δ2(t)
N

(⌊
a(i(1), i(3))

⌋
+ 1
)

or − δ2(t) + 2δ2(t)
N

(⌊
a(i(1), i(3))

⌋
+ 1
)
≤ y2(t)

< −δ2(t) + 2δ2(t)
N

(⌊
a(i(1), i(3))

⌋
+ 2
)

where

a(i(1), i(3)) :=
2

N + 2

(
N − 1− i(3) − i(1)

)
+ i(1).

It follows that the serial number i = 1, 2 of the interval [ωi, ωi+1) (with ωi :=

i 2δ2(t)N ) containing y2(t) equals either
⌊
a(i(1), i(3))

⌋
or
⌊
a(i(1), i(3))

⌋
+ 1. So it can

be found by the decoder on the basis of the data i(1), i(3) from the first and third
sensors and the information from 2.c).

So by using the data from b), the decoder can also determine the corresponding
subinterval (3.9.9) of length 4δ2(t)

N2 .

Remark 3.9.10. The definition of the quantityωi from 3) is altered at even steps since
the projections of the quantizer level domains from Fig. 3.10a on the line x1 = 0 are
arranged in a less regular way, as compared with Fig. 3.8a. In the case from Fig. 3.8a,
all projections can be obtained via successive displacement of one of them by exactly
the half length. In the case from Fig. 3.10a, the displacement should be by 2

N+2×
length.

6) The decoder finds a domain containing x(t) by intersecting two strips:

{
x : y3 ∈ −δ3(t) + [µ

(3)

i(3)
, µ

(3)

i(3)+1
)
}
,

{
x : y2 ∈ −δ2(t) + [ω

(ν)
i , ω

(ν+1)
i )

}
.

Then the decoder selects a control driving the system from the center of this
domain to zero (see Fig. 3.10b).

Remark 3.9.11. By invoking (3.9.2), it is easy to check that the selected control drives
the system to the state

x(t+ 1) ∈M ′(t+ 1) :=
{
x : −ε′ ≤ y3 < ε′, −ε′′ ≤ y2 < ε′′

}
,

where

ε′ := λδ3(t)N
−1, ε′′ := 1/2[ω

(ν+1)
i − ω(ν)

i ]

=
2λδ2(t)

N2
= λ

N + 2

N2
δ3(t) ≤ 3λδ3(t)N

−1.
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The set M ′(t+ 1) is covered by the square

M(t+ 1) :=

{
x : |x1|, |x2| ≤ 3λ

δ3(t)

N

}
.

7) Both the jth coder and the decoder define the next number δj so that δ1 = δ2
become the half length of the edge of M(t+ 1) and δ3 = δ1 + δ2; i.e.,

δ1(t+ 1) :=
6λ

N2
δ1(t),

δ2(t+ 1) :=
6λ

N(N + 2)
δ2(t),

δ3(t+ 1) := 6λδ3(t)N
−1.

Thus the description of the stabilization process is completed.

Observation 3.9.12. For two steps, the square M(t) ∋ x(t) with the edge 2δ1(t)
(where t is odd) is transformed into the square M(t+ 2) with the edge

2δ1(t)×
6λ2

N3
.

So the system is stabilized if

6λ2

N3
< 1⇔ λ <

1√
6
23/2c. (3.9.11)

Remark 3.9.13. The condition (3.9.11) is a bit worse than the necessary condition for
stabilizability λ < 23/2c from (3.9.1). This gap can be discarded by increasing the
sample period to r time units, where r is large enough. Indeed, this “transforms” λ
into λr, c into rc, and the sufficient condition (3.9.11) for stabilizability into

λr < 6−
1
2 2

3
2 rc ⇔ λ < 2

3
2 c6−

1
2r ≈ 23/2c for r ≈ ∞.

Thus we see that even for a very simple system, violation of Assumption 3.4.24
(on p. 49) complicates the coding–decoding scheme.



4

Detectability and Output Feedback Stabilizability of
Nonlinear Systems via Limited Capacity
Communication Channels

4.1 Introduction

In the previous chapter, the problem of stabilizability via limited capacity commu-
nication channels was studied for linear systems. In this chapter, we consider the
problem of stabilizability for nonlinear networked systems with a globally Lipschitz
nonlinearity that is common in absolute stability and robust control theories; see,
e.g., [144, 151, 222]. Furthermore, we obtain a criterion of detectability of a non-
linear system via limited capacity communication channels. Several results on state
feedback stabilization of uncertain plants via communication channels were obtained
in [150]. The problem of local stabilization of singular points of nonlinear networked
control systems was addressed in [140, 141]. Unlike [140, 141, 150], we consider a
much more difficult case of output feedback stabilization. A criterion for output feed-
back stabilization of networked nonlinear systems was given in [41]. However, the
systems considered in [41] are required to be transformable into some triangular
form, whereas the nonlinear systems studied in this chapter are not assumed to sat-
isfy such a strong requirement. The results of this chapter are given in terms of an
algebraic Riccati inequality that originates in the theory of robust and H∞ control;
see, e.g., [148, 151, 174, 178–180].

It should be pointed out that unlike Chaps. 2 and 3, which considered discrete-
time systems, this chapter deals with a continuous-time plant.

The remainder of the chapter is organized as follows. Section 4.2 addresses the
problem of detectability of a nonlinear system via a digital communication channel.
The output feedback stabilizability problem is studied in Sect. 4.3. As an illustration,
Sect. 4.4 presents simulation results on the output feedback control of a flexible joint
robotic system.

The main results of the chapter were originally published in [170]. The illus-
trative example from Sect. 4.4 was first presented in the paper [172], which also
contains an extension of the results of [170]. Moreover, further extensions of the re-
sults of this chapter to the case of nonlinear systems with monotonic nonlinearities
were obtained in [32].

A.S. Matveev and A.V. Savkin, Estimation and Control over Communication Networks,
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4.2 Detectability via Communication Channels

In this section, we consider nonlinear continuous-time dynamical systems of the
form:

ẋ(t) = Ax(t) +B1f(z(t));

z(t) = Kx(t);

y(t) = Cx(t), (4.2.1)

where x(t) ∈ Rn is the state; z(t) ∈ Rq is a linear output; y(t) ∈ Rk is the measured
output; A,B1,K , and C are given matrices of the corresponding dimensions, and
f(z(t)) ∈ Rp is a given continuous nonlinear vector function. We also assume that
initial conditions of the system (4.2.1) lie in a known bounded set X0:

x(0) ∈ X0. (4.2.2)

We assume that the vector function f(·) satisfies the following globally Lipschitz
condition:

‖f(z1)− f(z2)‖2 ≤ ‖z1 − z2‖2 ∀z1, z2. (4.2.3)

The requirement (4.2.3) is a special case of a typical sector-type constraint from the
absolute stability theory; see, e.g., [144, 151, 222]. A simple common example of
such a constraint is a scalar nonlinearity satisfying conditions f(0) = 0 and

−1 ≤ f(z1)− f(z2)

z1 − z2
≤ 1 ∀z1, z2.

In our detectability problem, a sensor measures the state x(t) and is connected to
the controller, which is at the remote location. Moreover, the only way of commu-
nicating information from the sensor to that remote location is via a digital commu-
nication channel that carries one discrete-valued symbol h(jT ) at time jT , selected
from a coding alphabet H of size l. Here T > 0 is a given period, and j = 1, 2, 3, . . ..

This restricted number l of code words h(jT ) is determined by the transmission
data rate of the channel. For example, if µ is the number of bits that our channel can
transmit at any time instant, then l = 2µ is the number of admissible code words. We
assume that the channel is a perfect noiseless channel and that there is no time delay.

We consider the problem of estimation of the state x(t) via a digital communi-
cation channel with a bit-rate constraint. Our state estimator consists of two compo-
nents. The first component is developed at the measurement location by taking the
measured output y(·) and coding to the codeword h(jT ). This component will be
called “coder.” Then the codeword h(jT ) is transmitted via a limited capacity com-
munication channel to the second component, which is called “decoder.” The second
component developed at the remote location takes the codeword h(jT ) and produces
the estimated state x̂(t). This situation is illustrated in Fig. 2.1 (on p. 15).

The coder and the decoder are of the following forms:
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Coder:

h(jT ) = Fj
(
y(·)|jT0

)
; (4.2.4)

Decoder:

x̂(t)|(j+1)T
jT = Gj (h(T ), h(2T ), ..., h((j − 1)T ), h(jT )) . (4.2.5)

Here j = 1, 2, 3, . . ..

Definition 4.2.1. The system (4.2.1), is said to be detectable via a digital commu-
nication channel of capacity l if a coder–decoder pair (4.2.4), (4.2.5) exists with a
coding alphabet of size l such that

lim
t→∞

‖x(t)− x̂(t)‖∞ = 0 (4.2.6)

for any solution of (4.2.1), (4.2.2), and (4.2.3). A coder–decoder pair (4.2.4), (4.2.5)
satisfying condition (4.2.6) is said to be detecting.

4.2.1 Preliminary Lemmas

We will consider the following pair of Riccati algebraic inequalities

(A− αI) TX +X(A− αI) +K TK +XB1B
T
1X < 0; (4.2.7)

Y A+A TY + Y B1B
T
1Y +K TK − α1C

TC < 0, (4.2.8)

where I is the identity square matrix, and α > 0 and α1 > 0 are given numbers.
In this subsection, we prove two preliminary lemmas.

Lemma 4.2.2. Suppose that for some α > 0, a solution X > 0 of the Riccati in-
equality (4.2.7) exists. Then a time T0 > 0 exists such that for any T ≥ T0 and
any two solutions x1(·), x2(·) of the system (4.2.1), (4.2.2), (4.2.3), the following
inequality holds:

‖x1(t+ T )− x2(t+ T )‖∞ ≤ eαT ‖x1(t)− x2(t)‖∞ (4.2.9)

for all t ≥ 0.

Proof of Lemma 4.2.2. Let

x̃(t) := e−αt(x1(t)− x2(t));

φ(t) := e−αt(f(Kx1(t))− f(Kx2(t))). (4.2.10)

Then x̃(·), φ(·) obviously satisfy the equation

˙̃x(t) = (A− αI)x̃(t) +B1φ(t);

z̃(t) = Kx̃(t), (4.2.11)
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and the constraint
‖φ(t)‖2 ≤ ‖z̃(t)‖2. (4.2.12)

Then according to the strict bounded real lemma (see, e.g., Lemma 3.1.2 of [151]
the system (4.2.11), (4.2.12) is quadratically stable. This implies that a time T0 > 0
exists such that for any T ≥ T0 and any solution x̃(·) of the system (4.2.11), (4.2.12),
the following inequality holds:

‖x̃(t+ T )‖∞ ≤ ‖x̃(t)‖∞ ∀t ≥ 0. (4.2.13)

The properties (4.2.13) and (4.2.10) immediately imply (4.2.9). This completes the
proof of Lemma 4.2.2. ⊓⊔

Now consider the following state estimator that will be a part of our proposed
coder:

˙̃x(t) = (A−GC)x̃(t) +Gy(t) +B1f(z̃(t));

z̃(t) = Kx̃(t), x̃(0) = 0. (4.2.14)

Furthermore, we introduce the gain G by

G :=
α1

2
Y −1C T, (4.2.15)

where Y > 0 is a solution of (4.2.8).

Lemma 4.2.3. Suppose that for some α1 > 0, a solution Y > 0 of the Riccati
inequality (4.2.8) exists. Then a time T0 > 0 and a constant α0 > 0 exist such that

‖x(t+ T )− x̃(t+ T )‖∞ ≤ e−α0T ‖x(t)− x̃(t)‖∞ (4.2.16)

for any t ≥ 0, T > T0 and any solution of (4.2.1)–(4.2.3), (4.2.14), and (4.2.15).

Proof of Lemma 4.2.3 Let

ξ(t) := x(t) − x̃(t)); ζ(t) := Kξ(t);

φ(t) := f(z(t))− f(z̃(t)). (4.2.17)

Then ξ(·), φ(·) obviously satisfy the equation

ξ̇(t) = (A−GC)ξ(t) +B1φ(t) (4.2.18)

and the constraint
‖φ(t)‖2 ≤ ‖ζ(t)‖2. (4.2.19)

Since Y > 0 is a solution of (4.2.8) and G is defined by (4.2.15), the matrix Y is
also a positive-definite solution of the Riccati inequality

(A−GC) TY + Y (A−GC) +K TK + Y B1B
T
1 Y < 0.

Therefore, according to the strict bounded real lemma (see, e.g., Lemma 3.1.2 of
[151]), the system (4.2.17), (4.2.18), (4.2.19) is quadratically stable. Now the state-
ment of the lemma immediately follows from quadratic stability. This completes the
proof of Lemma 4.2.3. ⊓⊔
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4.2.2 Uniform State Quantization

Our proposed coder–decoder pair uses uniform quantization of the states x̃ of the
system (4.2.14) in which the same number of bits is used to quantize each state
variable. The corresponding quantizer was introduced in Remark 3.8.13 (on p. 71).
For the convenience of the reader, now we recall the basic formulas describing this
quantizer. Furthermore, now we consider the case where the effective quatization
domain is an arbitrary cube, whereas only the cube with side length 2 was considered
in Remark 3.8.13.

To quantize the state space of the estimator (4.2.14), let a > 0 be a given constant
and consider the set:

Ba := {x ∈ R
n : ‖x‖∞ ≤ a} .

The state space of the system (4.2.14) is quantized by dividing the set Ba into qn

hypercubes, where q is a specified integer. Indeed, for each i ∈ {1, 2, . . . , n}, we
divide the corresponding component of the vector x̃i into q intervals as follows:

Ii1(a) :=

{
x̃i : −a ≤ x̃i < −a+

2a

q

}
;

Ii2(a) :=

{
x̃i : −a+

2a

q
≤ x̃i < −a+

4a

q

}
;

...

Iiq(a) :=

{
x̃i : a− 2a

q
≤ x̃i ≤ a

}
. (4.2.20)

Then for any x̃ ∈ Ba, unique integers i1, i2, . . . , in ∈ {1, 2, . . . , q} exist such that

x̃ ∈ I1
i1 (a)× I2

i2(a)× . . .× Inin(a).

Also, corresponding to the integers i1, i2, . . . , in, we define the vector

η(i1, i2, . . . , in) :=




−a+ a(2i1 − 1)/q
−a+ a(2i2 − 1)/q

...
−a+ a(2in − 1)/q


 . (4.2.21)

This vector is the center of the hypercube I1
i1

(a)× I2
i2

(a)× . . .× Inin(a) containing
the original point x̃.

Note that the regions I1
i1

(a)× I2
i2

(a)× . . .× Inin(a) partition the region Ba into
qn regions; e.g., for n = 2 and q = 3, the region Ba would be divided into nine
regions as shown in Fig. 4.1.

In our proposed coder–decoder pair, each of these regions will be assigned a code
word and the coder will transmit the code word corresponding to the current state of
the system (4.2.14) x̃(jT ). The transmitted code word will correspond to the integers
i1, i2, . . . , in. In order that the communication channel be able to accomplish this
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Fig. 4.1. Uniform quantization of the state space.

transmission, the number qn of quantizer outputs should not exceed the size l of the
channel alphabet H

qn ≤ l. (4.2.22)

The above quantization of the state space of the system (4.2.14) depends on the
scaling parameter a > 0. In our proposed coder–decoder pair, this parameter will be
the quantization scaling a(jT ), where j = 1, 2, . . ..

We now suppose that the assumptions of Lemmas 4.2.2 and 4.2.3 are satisfied.
Then let T > 0 be a time such that the conditions (4.2.9) and (4.2.16) hold. Further-
more, introduce

m0 := sup
x0∈X0

‖x0‖∞; a(T ) := (eαT + e−α0T )m0;

a(jT ) := eαT
a((j − 1)T )

q
+

(e(α−α0(j−1))T + e−α0jT )m0 ∀j = 2, 3, . . . . (4.2.23)
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Introduce now our proposed coder–decoder pair:
Coder:

h(jT ) = {i1, i2, . . . , in} (4.2.24)

for

(x̃(jT )− x̂(jT − 0) ∈ I1
i1 (a(jT ))× I2

i2 (a(jT ))× . . .× Inin(a(jT )) ⊂ Ba(jT );

Decoder:

x̂(0) = 0; ẑ(t) = Kx̂(t),
˙̂x(t) = Ax̂(t) +B1f(ẑ(t)) ∀t 6= jT ;

x̂(jT ) = x̂(jT − 0) + η(i1, i2, . . . , in)

for h(jT ) = {i1, i2, . . . , in} ∀j = 1, 2, . . . . (4.2.25)

We recall that ν(t − 0) denotes the limit of the function ν(·) at the point t from the
left. Notice that our decoder is described by a differential equation with jumps.

Also notice that equations (4.2.25) are a part of both coder and decoder, and it
follows immediately from (4.2.9), (4.2.16) and initial condition x̃(0) = 0 that

x̃(T ) ∈ Ba(T ); x̃(jT )− x̂(jT − 0) ∈ Ba(jT ) (4.2.26)

for all j = 2, 3, . . . and for any solution of (4.2.1), (4.2.2), and (4.2.3).
The main requirement for our coding–decoding scheme is as follows:

q > eαT . (4.2.27)

Now we are in a position to present the main result of this section.

Theorem 4.2.4. Suppose that for some α > 0, a solution X > 0 of the Riccati in-
equality (4.2.7) exists and for some α1 > 0, a solution Y > 0 of the Riccati inequal-
ity (4.2.8) exists. Furthermore, suppose that for some T > 0 satisfying conditions
(4.2.9), (4.2.16) and some positive integer q, the inequality (4.2.27) holds. Suppose
also that the size l of the channel alphabet meets the requirement (4.2.22). Then the
coder–decoder pair (4.2.14), (4.2.15), (4.2.23), (4.2.24), (4.2.25) is detecting for the
system (4.2.1), (4.2.2), (4.2.3).

Proof of Theorem 4.2.4. Condition (4.2.27) implies that

lim
j→∞

a(jT ) = 0.

Hence
lim
j→∞

[
η(i1, i2, . . . , in)− (x̂(jT )− x̃(jT ))

]
= 0,
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where h(jT ) = {i1, i2, . . . , in}. This implies that

lim
j→∞

(x̂(jT )− x̃(jT )) = 0.

From this and Lemma 4.2.3 we obtain that

lim
j→∞

(x(jT )− x̂(jT )) = 0

for any solution of the system (4.2.1), (4.2.2), (4.2.3). Detectability now immediately
follows from this and (4.2.25). This completes the proof of Theorem 4.2.4. ⊓⊔

4.3 Stabilization via Communication Channels

In this section, we consider a nonlinear continuous-time dynamic system of the form:

ẋ(t) = Ax(t) +B1f(z(t)) +B2u(t);

z(t) = Kx(t);

y(t) = Cx(t), (4.3.28)

where x(t) ∈ Rn is the state; u(t) ∈ Rm is the control input; z(t) ∈ Rq is a linear
output; y(t) ∈ Rk is the measured output; A,B1, B2,K , and C are given matrices
of the corresponding dimensions, and f(z(t)) ∈ Rp is a given continuous nonlinear
vector function.

We also assume that initial conditions of the system (4.3.28) lie in a known
bounded set X0 (4.2.2). Furthermore, we suppose that the nonlinearity f(z) satis-
fies the constraint (4.2.3).

We consider the problem of output feedback stabilization of the nonlinear sys-
tem (4.3.28), (4.2.2), (4.2.3) via a digital communication channel with a bit-rate con-
straint. Our controller consists of two components. The first component is developed
at the measurement location by taking the measured output y(·) and coding to the
codeword h(jT ). This component will be called “coder.” Then the codeword h(jT )
is transmitted via a limited capacity communication channel to the second compo-
nent, which is called “decoder-controller.” The second component developed at a re-
mote location takes the codeword h(jT ) and produces the control input u(t) where
t ∈ [jT, (j + 1)T ). This situation is illustrated in Fig. 2.2 (on p. 25), where now a
nonlinear plant is considered.

The coder and the decoder are of the following forms:
Coder:

h(jT ) = Fj
(
y(·)|jT0

)
; (4.3.29)

Decoder-Controller:

u(t)|(j+1)T
jT = Gj (h(T ), h(2T ), ..., h((j − 1)T ), h(jT )) . (4.3.30)

Here j = 1, 2, 3, . . ..
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Definition 4.3.1. The system (4.3.28) is said to be stabilizable via a digital commu-
nication channel of capacity l if a coder–decoder-controller pair (4.3.29), (4.3.30)
exists with a coding alphabet of size l such that

lim
t→∞

‖x(t)‖∞ = 0; lim
t→∞

‖u(t)‖∞ = 0 (4.3.31)

for any solution of the closed-loop system (4.3.28), (4.2.2), (4.2.3). A coder–decoder
pair (4.3.29), (4.3.30) satisfying condition (4.3.31) is said to be stabilizing.

We will need the following Riccati algebraic inequality:

A TR+RA+K TK +R (B1B
T
1 − α2B2B

T
2 )R < 0 (4.3.32)

and a related state feedback controller

u(t) = −α2

2
B T

2Rx(t). (4.3.33)

Lemma 4.3.2. Suppose that for some α2 > 0, a solution R > 0 of the Riccati
inequality (4.3.32) exists. Then the closed-loop system (4.3.28), (4.2.3), (4.3.33) is
globally asymptotically stable; i.e.,

lim
t→∞

‖x(t)‖∞ = 0. (4.3.34)

Proof of Lemma 4.3.2 The system (4.3.28), (4.3.33) can be rewritten as

ẋ(t) = (A− α2

2
B2B

T
2R)x(t) +B1f(z(t)) (4.3.35)

and the constraint (4.2.19). Since R > 0 is a solution of (4.3.32), it is also a solution
of the Riccati inequality

(A− α2

2
B2B

T
2R) TR+R(A− α2

2
B2B

T
2R)

+K TK +RB1B
T
1R < 0.

Therefore, according to the strict bounded real lemma (see, e.g., Lemma 3.1.2 of
[151] the system (4.3.35), (4.3.33), (4.2.19) is quadratically stable. Now the state-
ment of the lemma immediately follows from quadratic stability. This completes the
proof of Lemma 4.3.2. ⊓⊔

Now consider the following state estimator that will be a part of our proposed
coder:

˙̃x(t) = (A−GC)x̃(t) +Gy(t)

+B1f(z̃(t)) +B2u(t);

z̃(t) = Kx̃(t), x̃(0) = 0, (4.3.36)

where the gain G is introduced by (4.2.15).
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We now suppose that the assumptions of Lemmas 4.2.2 and 4.2.3 are satisfied.
Then let T > 0 be a time such that conditions (4.2.9) and (4.2.16) hold. Furthermore,
introduce a(jT ) by (4.2.23).

Introduce now our proposed coder–decoder-controller pair:
Coder:

h(jT ) = {i1, i2, . . . , in} (4.3.37)

for (x̃(jT )− x̂(jT − 0)) ∈ I1
i1 (a(jT ))× I2

i2(a(jT ))× . . .× Inin(a(jT )) ⊂ Ba(jT );
Decoder-Controller:

x̂(0) = 0; ẑ(t) = Kx̂(t);
˙̂x(t) = Ax̂(t) +B1f(ẑ(t)) +B2u(t) ∀t 6= jT ;

x̂(jT ) = x̂(jT − 0) + η(i1, i2, . . . , in)

for h(jT ) = {i1, i2, . . . , in} ∀j = 1, 2, . . . ;

u(t) = −α2

2
B T

2Rx̂(t). (4.3.38)

Similar to the coder–decoder pair proposed for the detectability problem in
Sect. 4.2, the equations (4.3.38) are a part of both coder and decoder-controller. It
then follows immediately from (4.2.9), (4.2.16) and initial condition x̃(0) = 0 that

x̃(T ) ∈ Ba(T ); x̃(jT )− x̂(jT − 0) ∈ Ba(jT ) (4.3.39)

for all j = 2, 3, . . . and for any solution of (4.3.28), (4.2.2), and (4.2.3).
Now we are in a position to present the main result of this section.

Theorem 4.3.3. Suppose that for some α > 0, a solution X > 0 of the Riccati
inequality (4.2.7) exists; for some α1 > 0, a solution Y > 0 of the Riccati inequality
(4.2.8) exists; and for some α2 > 0, a solution R > 0 of the Riccati inequality
(4.3.32) exists. Furthermore, suppose that for some T > 0 satisfying conditions
(4.2.9), (4.2.16) and some positive integer q, the inequality (4.2.27) holds. Suppose
also that the size l of the channel alphabet meets the requirement (4.2.22). Then
the coder–decoder-controller pair given by (4.3.36), (4.2.15), (4.2.23), (4.3.37), and
(4.3.38) is stabilizing for the system (4.3.28), (4.2.2), (4.2.3).

Proof of Theorem 4.3.3 Condition (4.2.27) implies that limj→∞ a(jT ) = 0.
Hence

lim
j→∞

[
η(i1, i2, . . . , in)− (x̃(jT )− x̂(jT ))

]
= 0,

where h(jT ) = {i1, i2, . . . , in}. This implies that

lim
j→∞

(x̂(jT )− x̃(jT )) = 0.

From this and Lemma 4.2.3 we obtain that
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lim
j→∞

(x(jT )− x̂(jT )) = 0

for any solution of the system (4.3.28), (4.2.2), (4.2.3). This and Lemma 4.3.2 implies
the stability of the closed-loop system. This completes the proof of Theorem 4.3.3.

⊓⊔

4.4 Illustrative Example

We consider the output feedback control problem of a one-link manipulator with a
flexible joint via limited capacity digital communication channels. A model of the
dynamics of the manipulator can be obtained from, e.g., [156, 197] and is given as
follows:

ẋ(t) = Ax(t) +B1f(z(t)) +B2u;

z(t) = Kx(t);

y(t) = Cx(t),

(4.4.40)

where

x =




θm
ωm
θ1
ω1


 ; A =




0 1 0 0
−48.6 −1.25 48.6 0

0 0 0 1
19.5 0 −19.5 0


 ;

B1 =




0
0
0

−3.33


 ; B2 =




0
21.6
0
0


 ; f(z(t)) = sin(z(t));

K =
[
0 0 1 0

]
; C =

[
0 0 1 0

]
;

(4.4.41)

and θm is the angular position of the motor, ωm is the angular velocity of the motor,
θ1 is the angular position of the link, and ω1 is the angular velocity of the link. The
control u is the torque delivered by the motor.

We assume that only the angular position of the link θ1, i.e., y, can be measured.
To measure θ1, a visual sensing scheme can be adopted, as shown in Fig. 4.2. A
camera is mounted at a distance away from the manipulator and is connected to a
processor that captures and processes the images from the camera to determine the
angular position of the link θ1. The measured θ1 is then fed to the coder, which
contains a state estimator, to generate the code words. By using any digital com-
munication channel that has a sufficient bandwidth, the code words are transmitted
to the decoder-controller, which then controls the motor to generate the appropriate
torque u. In this setting, the sensor, i.e., the camera and the image processor, and the
coder can be remotely located far away from the manipulator.

By choosing α = 6, α1 = 5, and α2 = 5, we see that solutions X , Y , and R
exist that satisfy the Riccati inequalities (4.2.7), (4.2.8), and (4.3.32), respectively.
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Motor

Coder
Decoder/

Controller

Camera & Image Processor

Flexible Joint

Link

Communication Channel

Fig. 4.2. Schematic of the vision-based control system.

The respective T0 values in Lemmas 4.2.2 and 4.2.3 are 0.94 and 0.91, and the value
α0 in (4.2.16) is 3.1. Therefore, we choose the sampling period T = 1.0 second
so that both inequalities (4.2.9) and (4.2.16) hold. As for the value q, we picked
q = 2001 and this value satisfies the inequality (4.2.27); i.e., q > eαT .

By using (4.2.15) and (4.3.33), the corresponding state estimator gain and control
law are

G =
[
0.85 1.13 0.04 1.39

] T × 103;

u(t) =
[
−2.05 −0.36 −1.28 −0.90

]
x(t).

(4.4.42)

For simulation purposes, the initial value of x is chosen as x(0) = [1 1 1 1] T,
and the value m0 is defined as m0 = 5. Finally, a simulation result is shown in
Figs. 4.3 and 4.4, and it agrees with the conditions (4.3.31).
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Fig. 4.3. Evolution of the state x(t).
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Fig. 4.4. Evolution of the control input u(t).
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Robust Set-Valued State Estimation via Limited
Capacity Communication Channels

5.1 Introduction

In this chapter, we consider the problem of robust state estimation via a limited ca-
pacity digital communication channel. Many recent advances in the area of robust
control system design assume that the system to be controlled is modeled as an un-
certain system; e.g., see [46, 148, 151]. There are many different types of uncertain
system models. The class of time-varying uncertain systems considered in this chap-
ter contains uncertainty that is defined by a certain integral quadratic constraint. This
class of uncertain systems originated in the work of Yakubovich on absolute stability
theory (see, e.g., [222, 223]) and is a particularly rich uncertainty class allowing for
nonlinear, time-varying, dynamic uncertainties. Furthermore, a number of new ro-
bust control system design methodologies have recently been developed for uncertain
systems with integral quadratic constraints; e.g., see [148, 151, 174, 178–180, 182].
In this chapter, we adopt the approach to the robust state estimation problem pro-
posed in [181] (also, see [148, 183]). Reference [181] builds on the deterministic
interpretation of Kalman filtering presented in [21]. This deterministic approach to
Kalman filtering also forms the launching point for the results of this chapter. As in
the previous chapter, we consider the case of continuous-time plants.

In [21], the following deterministic state estimation problem is considered: Given
output measurements from a time-varying linear system with noise inputs subjected
to an L2 norm bound, find the set of all states consistent with these measurements.
Such a problem is referred to as a set-valued state estimation problem. The solution
to this problem was found to be an ellipsoid in the state space that is defined by
the standard Kalman filter equations. Thus, the results of [21] give an alternative
interpretation of the standard Kalman filter. In [148,181,183] the results of [21] were
extended to the case of uncertain systems with integral quadratic constraints. In this
chapter, we employ the set-valued approach to the state estimation problem and the
deterministic interpretation of Kalman filtering from [148,181] in the situation where
state estimation is to be performed via a limited capacity communication channel.

In such a context, state estimation results for linear systems with bounded or
Gaussian noise were obtained in [45, 133, 220]. Some state estimation scheme rel-
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evant to the problem of stabilization via a limited capacity communication channel
was proposed in [70]. Also, in [70], the case of a linear system without uncertainty
over an infinite time interval was considered.

The remainder of the chapter is organized as follows. In Sect. 5.2, we introduce
the class of uncertain systems under investigation. Section 5.3 presents the statement
of the optimal robust state estimation problem and some preliminary results on ro-
bust set-valued state estimation originally published in [181]. In Sect. 5.4, we give a
solution to an optimal state estimation problem via limited capacity digital communi-
cation channels for the class of uncertain systems under consideration. Furthermore,
in Sect. 5.5, we propose a suboptimal state estimation algorithm that is computation-
ally nonexpansive and easily implementable in real time. Finally, in Sect. 5.6, proofs
of two lemmas on set-valued state estimation can be found.

The main results presented in this chapter originally appeared in the paper [100].
An analog of these results for systems without uncertainty was published before that
in [184], where some of the main ideas of the chapter were introduced. Also, some
versions of technical results on robust state estimation that are used in this chapter
were first obtained in [174, 176, 181, 183]. The uncertain system framework of this
chapter was presented in the monographs [148, 151, 174]. In [99], the results of this
chapter were successfully applied to the problem of precision missile guidance based
on radar/video sensor fusion. An extension of the results of the chapter can be found
in [33].

5.2 Uncertain Systems

In designing robust state estimation systems, one must specify the class of uncertain-
ties against which the state estimator is to be robust. The most common approach in
control engineering is to begin with a plant model that not only models the nominal
plant behavior but also models the type of uncertainties that are expected. Such a
plant model is referred to as an uncertain system.

There many various types of uncertain system models; e.g., see [46]. In this
chapter, we deal with uncertain plants with uncertainties satisfying so-called inte-
gral quadratic constraints.

5.2.1 Uncertain Systems with Integral Quadratic Constraints

Consider the time-varying uncertain system defined over the finite time interval
[0, NT ] :

ẋ(t) = A(t)x(t) +B(t)w(t);

z(t) = K(t)x(t);

y(t) = C(t)x(t) + v(t), (5.2.1)

where N > 0 is an integer; T > 0 is a given constant; x(t) ∈ Rn is the state;
w(t) ∈ Rp and v(t) ∈ Rl are the uncertainty inputs; z(t) ∈ Rq is the uncertainty
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output and y(t) ∈ Rl is the measured output; and A(·), B(·),K(·), and C(·) are
bounded piecewise continuous matrix functions.

The uncertainty in (5.2.1) is described by an equation of the form:
[
w(t)
v(t)

]
=

[
φ1(t, z(t))
φ2(t, z(t))

]
, (5.2.2)

where the following integral quadratic constraint is satisfied.
Let X0 = XT

0 > 0 be a given matrix, x0 ∈ Rn be a given vector, d > 0 be a
given constant, and Q(·) = Q(·) T and R(·) = R(·) T be given bounded piecewise
continuous matrix weighting functions satisfying the following condition: A constant
δ > 0 exists such thatQ(t) ≥ δI, R(t) ≥ δI for all t . For a given finite time interval
[0, s], we will consider the uncertainty inputsw(·) and v(·) and initial conditionsx(0)
such that

(x(0)− x0)
TX0(x(0)− x0) +

∫ s

0

(
w (t)

T
Q (t)w (t) + v (t)

T
R (t) v (t)

)
dt

≤ d+

∫ s

0

‖z (t)‖2 dt. (5.2.3)

The uncertainty input in (5.2.2) can be regarded as the feedback interconnection
with the uncertainty output z(t) as shown in Fig. 5.1. The inequality (5.2.3) gives
some constraint on the sizes of the uncertainty inputs w(·), v(·) and on the size of
uncertainty in the initial condition.

Nominal 
system

Fig. 5.1. Uncertain system.

This class of uncertainties was introduced in the theory of absolute stability by
Yakubovich (e.g., see [222]), and extensively studied in the theory of robust control
(e.g., see [148, 151, 174, 178–181]).

5.2.2 Uncertain Systems with Norm-Bounded Uncertainty

An important class of uncertain systems satisfying the integral quadratic constraint
(5.2.3) consists of linear uncertain systems with uncertainties satisfying a standard
norm-bounded constraint. In this case, the uncertain system is described by the rela-
tionships



118 5 Robust Set-Valued State Estimation via Communication Channels

ẋ = [A(t) +B(t)∆1(t)K(t)]x(t);

y = [C(t) +∆2(t)K(t)]x (t) , (5.2.4)

where ∆1(t), ∆2(t) are uncertainty matrices such that
∥∥∥∥
∆1(t)
∆2(t)

∥∥∥∥ ≤ 1 (5.2.5)

for all t.
Also, the initial conditions are required to satisfy the following inequality:

(x (0)− x0)
T
X0 (x (0)− x0) ≤ d. (5.2.6)

The block-diagram of such a system is shown in Fig. 5.2.

Nominal
System

+

Fig. 5.2. Uncertain system with norm-bounded uncertainty.

To verify that such uncertainty is admissible for the uncertain system (5.2.1),
(5.2.3), let w(t) := ∆1(t)K(t)x(t), v(t) := ∆2(t)K(t)x(t), and z(t) := K(t)x(t).
Then the condition (5.2.3) is satisfied with Q(·) ≡ I and R(·) ≡ I.

5.2.3 Sector-Bounded Nonlinearities

This class of uncertainties arose from the celebrated theory of absolute stability; e.g.,
see [144, 222, 224]. Consider the time-invariant uncertain system (5.2.1) with scalar
uncertainty input w and uncertainty output z, and the uncertainty is described by the
equation

w(t) = φ(z(t)), (5.2.7)

where φ(·) : R→ R is an uncertain nonlinear mapping.
This system is represented in the block diagram shown in Fig. 5.3.
We will suppose that the uncertain nonlinearity φ(·) satisfies the following sector

bound (e.g., see [144]):

0 ≤ φ(z)

z
≤ k, (5.2.8)
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-

-

�

zw

y

φ(·)

System

Nominal

Fig. 5.3. Uncertain system with a single nonlinear uncertainty.

where 0 < k ≤ ∞ is a given constant associated with the system. Using the change
of variables z̃ = k/2z, w̃ = φ(2/kz̃)− z̃, this system is transformed into the system

ẋ(t) = (A+
k

2
BK)x(t) +Bŵ(t);

ẑ(t) =
k

2
Kx(t).

The bound (5.2.8) on the uncertainty in this system then becomes a standard bound
on the norm of the uncertainty input:

|ŵ(t)| ≤ |ẑ(t)|. (5.2.9)

This observation motivates us to think of sector bounded uncertainty as a special case
of norm-bounded uncertainty.

Remark 5.2.1. Notice that the nonlinear system with a nonlinearity satisfying the
globally Lipschitz condition (4.2.3) (on p. 102) that was studied in Chap. 4 is a
special case of the system with norm-bounded nonlinearity.

5.3 State Estimation Problem

We consider the set-valued state estimation problem for the system (5.2.1), (5.2.3)
that can be stated as follows. Let y(t) = y0(t) be a fixed measured output of the
uncertain system (5.2.1), and let s ∈ [0, NT ] be given time. Then find the corre-
sponding set Xs [x0, y0 (·) |s0, d] of all possible states x(s) at time s for the uncertain
system (5.2.1), with the uncertainty input and initial states satisfying the constraint
(5.2.3). The state estimator will be defined by the differential equation
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˙̂x(s) = [A(s) + P (s) [K(s) TK(s)− C(s) TR(s)C(s)]] x̂(s)

+ P (s)C(s) TR(s)y(s), x̂(0) = x0, (5.3.10)

where P (s) is the solution of the following Riccati differential equation:

Ṗ (s) = A(s)P (s) + P (s)A(s) T

+ P (s)
[
K (s)

T
K(s)− C(s) TR(s)C(s)

]
P (s) +B(s)Q(s)−1B(s) T,

P (0) = X−1
0 . (5.3.11)

Definition 5.3.1. The uncertain system (5.2.1), (5.2.3) is said to be robustly observ-
able on [0, NT ], if for any vector x0 ∈ Rn, any time s ∈ [0, NT ], any constant
d > 0, any fixed measured output y(t) = y0(t), the setXs [x0, y0(·)|s0, d] is bounded.

The following result offers an exhaustive criterion for the system to be robustly
observable.

Lemma 5.3.2. Let X0 = X T
0 > 0 be a given matrix, and let Q(·) = Q(·) T and

R(·) = R (·) T be given matrix functions such that Q(·) ≥ δI, R (·) ≥ δI , where
δ > 0. Consider the system (5.2.1) and the constraint (5.2.3) . Then the following
statements hold:

(i) The system (5.2.1), (5.2.3) is robustly observable on [0, NT ] if and only if the
solution P (·) to the Riccati equation (5.3.11) is defined and positive-definite on
the interval [0, NT ] ;

(ii) If the system (5.2.1), (5.2.3) is robustly observable on [0, NT ], then for any
vector x0 ∈ Rn, any s ∈ [0, NT ], any constant d > 0, and any fixed measured
output y(t) = y0(t), the set Xs [x0, y0 (·) |s0, d] of all possible states x(s) at
time s is given by

Xs [x0, y0 (·) |s0, d]

=

{
xs ∈ R

n :
(xs − x̂(s)) T

P (s)−1 (xs − x̂(s))
≤ d+ ρs [y0 (·)]

}
, (5.3.12)

where

ρs [y0 (·)]

:=

∫ s

0

[
‖K(t)x̂(t)‖2 − (C(t)x̂(t)− y0(t)) T R(t) (C(t)x̂(t)− y0(t))

]
dt.

(5.3.13)

The proof of Lemma 5.3.2 is given in Sect. 5.6.

Remark 5.3.3. The state estimator defined by (5.3.10) and (5.3.11) is of the same
form as the state estimator, which occurs in the output feedback H∞ control prob-
lem; e.g., see [91, 130].
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In our state estimation problem, the state x(s) should be estimated. Now consider
the case where the only way of communicating information from the measured out-
put y is via a digital communication channel with the following bit-rate constraint.
This channel can transmit codesymbols h = hk at the time instants of the form kT .
The channel gives a limited finite number of admissible codesymbols h. This re-
stricted number of codesymbols h is determined by the data rate of the channel. If
N is the number of admissible codesymbols, thenN = 2l, where l is the number of
bits that our channel can transmit at any time kT . We assume that the channel is a
perfect noiseless channel and that there is no time delay in the channel. In this chap-
ter, we propose algorithms for state estimation via a digital communication channel
with the above bit-rate constraint. Our algorithms consist of two components. The
first component is developed at the measurement location by taking the measured
output signal y and coding it into the codesymbol hk at time kT . This component
will be called coder. Then the codesymbol hk is transmitted via a limited capacity
communication channel to the second component, which is called decoder. The de-
coder takes the codesymbols hi, i ≤ k and produces the estimated state x̄(kT ) that
is an approximation of the center of all possible states of the system at time kT . This
situation is illustrated in Fig. 5.4.

Uncertain
System Coder Decoder

channel

Fig. 5.4. State estimation via digital communication channel.

The coder and decoder are defined by the following equations:
Coder:

h (kT ) = Fk
(
x0, d, y (·) |kT0

)
; (5.3.14)

Decoder:
x̄ (kT ) = Gk (x0, d, h0, h1, . . . , hk) . (5.3.15)

We recall that ‖x‖∞ := max
i
|xi| for x = col [x1, x2, . . . , xn].

Definition 5.3.4. Consider the system (5.2.1), (5.2.3) with a given d > 0. Let ǫ > 0
be a given constant, and let N > 0 and 0 < M ≤ N be given integers. The coder–
decoder pair (5.3.14), (5.3.15) is said to solve the state estimation problem via a
digital communication channel with the admissible number of codesymbols N on
the time interval [MT,NT ] with the precision level ǫ if

‖x̂(kT )− x̄(kT )‖∞ ≤ ǫ (5.3.16)

for all x0, y (·) , k = M,M + 1, . . . , N. Here x̂(kT ) is defined by (5.3.10).
Moreover, if the constant ǫ in (5.3.16) is the infimum over all precision levels

that can be achieved by coder–decoder pairs of the form (5.3.14), (5.3.15) with the
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admissible number of codesymbols N , the coder–decoder pair is said to be opti-
mal for the state estimation problem via a digital communication channel with the
admissible number of codesymbolsN on the time interval [MT,NT ].

Our problem is to design an optimal coder–decoder pair.

5.4 Optimal Coder–Decoder Pair

In this section, we construct an optimal coder–decoder pair for the problem of state
estimation with bit-rate constraints. To formulate the main results of the section,
we need to introduce the concept of strong robust observability that is close to the
concept of uniform robust observability from Chap. 15.

Definition 5.4.1. Consider the uncertain system (5.2.1), (5.2.3). Let X̂s[d] be the set
of all possible states x̂(s) at time s ∈ (0, NT ], defined by (5.3.10) with all possible
initial conditions x0 ∈ Rn and all possible measured outputs y0(·) of the system
(5.2.1), (5.2.3). The uncertain system (5.2.1), (5.2.3) is said to be strongly, robustly
observable on [0, NT ] if it is robustly observable and for any time s ∈ (0, NT ] and
constant d > 0, the set X̂s[d] is bounded.

Consider the following Riccati equation:

− Ẋ(s) = Â(s) TX(s) +X(s)Â(s)

−X(s)B̂(s)R−1(s)B̂(s) TX(s)−K(s) TK(s), X(0) = 0, (5.4.17)

where
Â(t) := A(t) + P (t)K(t) TK(t) (5.4.18)

and
B̂(t) := −P (t)C(t) TR(t). (5.4.19)

Lemma 5.4.2. The uncertain system (5.2.1), (5.2.3) is strongly, robustly observable
on [0, NT ] if and only if the solution P (·) to the Riccati equation (5.3.11) is de-
fined and positive-definite on [0, NT ] and the solution X(·) to the Riccati equation
(5.4.17) is defined on [0, NT ] and positive-definite on (0, NT ]. Furthermore, if the
system (5.2.1), (5.2.3) is strongly, robustly observable, then the set X̂s[d] is given by

X̂s[d] = {x̂s ∈ R
n : x̂ T

sX(s)x̂s ≤ d}. (5.4.20)

The proof of Lemma 5.4.2 is given in Sect. 5.6.

Definition 5.4.3. Let X ⊂ Rn be a convex bounded set and N > 0 be a given
integer. Furthermore, assume that X is partitioned into N nonintersecting sub-
sets I1, I2, . . . , IN equipped with points η̄1 ∈ I1, . . . , η̄N ∈ IN . The collection
V [X,N ] = {I1, . . . , IN , η̄1, . . . , η̄N } is called an l∞ Voronoi structure on the set X

if ‖x− η̄i‖∞ ≤ ‖x− η̄s‖∞ for any i = 1, . . . ,N , any x ∈ Ii and any s 6= i.



5.5 Suboptimal Coder–Decoder Pair 123

Notation 5.4.4. Let V [X,N ] be an l∞ Voronoi structure. Then

D(V [X,N ]) := sup
i=1,...,N , x∈Ii

‖x− η̄i‖∞. (5.4.21)

Definition 5.4.5. Let X be a given convex bounded set andN > 0 be a given integer.
Then V [X,N ] is said to be an optimal l∞ Voronoi structure on X if D(V [X,N ]) ≤
D(V∗[X,N ]) for any other l∞ Voronoi structure V∗[X,N ].

It is obvious that an optimal l∞ Voronoi structure exists on any convex bounded
set. Constructing optimal Voronoi structures has been the subject of much research in
the field of vector quantization theory and computational geometry; see, e.g., [23,62].

The Coder–Decoder Pair

Let Vk[X̂kT [d],N ] = {Ik1 , . . . , IkN , η̄k1 , . . . , η̄kN } be the l∞ optimal Voronoi
structure on the set X̂kT [d] defined by (5.4.20), where k = M,M + 1, . . . , N . We
are now in a position to describe our proposed optimal coder–decoder pair of the
form (5.3.14), (5.3.15) associated with these structures.

Let x̄(0) = x0. For any k = M,M + 1, . . . , N , we consider (5.3.10) on
[(k − 1)T, (kT )]. Then, for all k = M,M + 1, . . . , N , we define our coder–decoder
pair as follows:
Coder:

h(k) = i if x̂(k) ∈ Iki ⊂ X̂kT [d]; (5.4.22)

Decoder:
x̄(kT ) = η̄ki if h(k) = i. (5.4.23)

Now we are in a position to present the main result of this chapter.

Theorem 5.4.6. Consider the uncertain system (5.2.1), (5.2.3). Let d > 0 be a given
constant, and N > 0 and 0 < M ≤ N be given integers. Suppose that this system
is strongly, robustly observable and that the sets X̂kT [d] are defined by (5.4.20).

Then the coder–decoder pair (5.4.22), (5.4.23) is optimal for the state estima-
tion problem via a digital communication channel with the admissible number of
codesymbolsN on the time interval [MT,NT ].

Proof. According to Theorem 5.4.2, strong, robust observability implies that X̂kT [d]
is the set of all possible x̂(kT ). Furthermore, it follows from Definition 5.4.5 that the
coding scheme that is based on a Voronoi optimal structure gives an optimal state
estimate. This completes the proof of this theorem. ⊓⊔

5.5 Suboptimal Coder–Decoder Pair

In the previous section, we proposed an optimal coder–decoder pair. The result was
given in terms of Voronoi structures. However, this method is computationally ex-
pensive. In this section, we describe another state estimation algorithm that is not
optimal but well suited to real time implementation.
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In this section, we propose a coder–decoder pair that uses the uniform quan-
tization of the estimated states introduced in the two previous chapters. Also, the
quantization parameters may be updated at every instant time kT .

To quantize the state space of (5.3.10), let a(k) > 0 be a given number and con-
sider the set Ba(k) := {x(kT ) ∈ Rn : |xi(kT )| ≤ a(k) ∀i} . We propose to quan-
tize each state component xi(kT ) by means of q(k) intervals, where q(k) is a spec-
ified integer. Therefore, for n-dimensional state, the set Ba(k) will be divided into
q(k)n hypercubs. For each i ∈ {1, 2, . . . , n} , we divide the corresponding compo-
nent of the state vector xi(kT ) into q(k) intervals as follows:

I
i
1(a(k)) :=

{
xi(kT ) : −a(k) ≤ xi(kT ) < −a(k) +

2a(k)

q(k)

}
;

I
i
2(a(k)) :=

{
xi(kT ) : −a(k) +

2a(k)

q(k)
≤ xi(kT ) < −a(k) +

4a(k)

q(k)

}
;

...

I
i
q(k)(a(k)) :=

{
xi(kT ) : a(k)− 2a(k)

q(k)
≤ xi(kT ) ≤ a(k)

}
. (5.5.24)

Then for any x̂(kT ) ∈ Ba(k), unique integers

i1 ∈ {1, 2, . . . , q(k)} , i2 ∈ {1, 2, . . . , q(k)} , . . . , in ∈ {1, 2, . . . , q(k)}

exist such that

x̂(kT ) ∈ I
1
i1(a(k))× I

2
i2(a(k)) × . . .× I

n
in(a(k)). (5.5.25)

Also, corresponding to the integers i1, i2, . . . , in, we define the vector

η̄ (i1, i2, . . . , in) :=




−a(k) + a(k)(2i1 − 1)/q(k)
−a(k) + a(k)(2i2 − 1)/q(k)

...
−a(k) + a(k)(2in − 1)/q(k)


 . (5.5.26)

This vector is the center of the hypercube

I
1
i1(a(k))× I

2
i2(a(k))× . . .× I

n
in(a(k))

containing the original point x̂(kT ).
Note that the regions I

1
i1

(a(k))× I
2
i2

(a(k))× . . .× I
n
in

(a(k)) partitionBa(k) into
q(k)n regions.

In the proposed coder–decoder pair, each region will be represented by a codesym-
bol, and the codesymbol corresponding to the vector x̂(kT ) will be transmitted via a
limited capacity channel.

The Coder–Decoder Pair

We are now in a position to describe our proposed coder–decoder pair of the form
(5.3.14), (5.3.15).
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Let x̄(0) = x0. For any k = M,M + 1, . . . , N , we consider (5.3.10) on
[(k − 1)T, (kT )]. Then, for all k = M,M + 1, . . . , N , we define our coder–decoder
pair as follows:
Coder:

h(k) := {i1, i2, . . . , in}
for x̂(k) ∈ I

1
i1(a(k))× I

2
i2(a(k)) × . . .× I

n
in(a(k)) ⊂ Ba(k); (5.5.27)

Decoder:

x̄(kT ) = η̄ (i1, i2, . . . , in) for h(k) = {i1, i2, . . . , in} . (5.5.28)

Here the vector η̄ (i1, i2, . . . , in) is defined in (5.5.26).
The block-diagram of the uncertain system with a suboptimal coder–decoder pair

is shown in Fig. 5.5.

State
estimator

Quantizer

Decoder

Nominal 
system

Coder

ch
an

ne
l

Fig. 5.5. Uncertain system with the suboptimal coder–decoder pair.

Remark 5.5.1. It should be pointed out that by our construction, the state estimate
x̂(k) necessarily belongs to Ba(k).

Now we are ready to present the main result of the section. This will require the
following notation.
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Notation 5.5.2. Let Z(·) := X(·)−1, where X(·) is the solution to (5.4.17). Let
zij(·) be the corresponding element of the matrix Z(·). Then we define a constant
ci(k) > 0 by the following equation:

ci(k) :=
√
zii(kT ) for all i = 1, 2, . . . , n, k = M,M + 1, . . . , N. (5.5.29)

Note that zii(kT ) > 0 for all i, t > 0 because Z(t) is positive-definite.

Theorem 5.5.3. Consider the uncertain system (5.2.1), (5.2.3). Let d > 0 , ǫ > 0 be
given constants,N > 0 and 0 < M ≤ N be given integers. Suppose that this system
is strongly, robustly observable and

ci(k)
√
d

q(k)
≤ ǫ, (5.5.30)

for all i = 1, 2, . . . , n and k = M,M + 1, . . . , N . Then the coder–decoder pair
(5.5.27), (5.5.28) with

a(k) := max
i=1,...,n

{ci(k)
√
d} (5.5.31)

solves the state estimation problem via a digital communication channel with the
admissible number of codesymbols q(k)n ≤ N on the time interval [MT,NT ] with
the precision level ǫ.

Proof. We will prove that x̂(kT ) ∈ Ba(k) and inequality (5.3.16) holds for any
k = M,M+1, . . . , N . Indeed, let x(·) be a solution of the system (5.2.1) with some
uncertainty input w(·) and v(·) satisfying (5.2.3), and let x̂(·) be the corresponding
estimated state. It follows from the strong, robust observability and Theorem 5.4.2
that the ellipsoid (5.4.20) is the set of all possible estimated states x̂(s). Thus we
have that

‖x̂(kT )‖∞ ≤ max
i=1,...,n

{ci(k)
√
d}. (5.5.32)

Therefore, x̂(kT ) ∈ Ba(k) with a(k) defined by (5.5.31). Now the condition (5.3.16)
follows from (5.5.30) with a suitable q(k). This completes the proof of the theorem.

Remark 5.5.4. Notice that in [100], a slightly more general result was obtained. A
coder–decoder pair from [100] uses non-uniform quantization of the estimated states
in which different numbers of bits may be used to quantize various state variables.
In this chapter, for the sake of simplicity, we consider a coder–decoder pair that is
based on uniform quantization.

5.6 Proofs of Lemmas 5.3.2 and 5.4.2

Proof of Lemma 5.3.2. Statement (i): Necessity. In this case, we must establish the
existence of a positive-definite solution to the Riccati equation (5.3.11). This will
be achieved by showing that the cost function in a corresponding linear quadratic
optimal control problem is bounded from below.
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Given a measured output y0(·), we have by the definition of Xs[x0, y0(·)|s0, d],
that xs ∈ Xs[x0, y0(·)|s0, d] if and only if there exist vector functions x(·), w(·) and
v(·) satisfying equation (5.2.1) and such that x(s) = xs, the constraint (5.2.3) holds,
and

y0(t) = C(t)x(t) + v(t) (5.6.33)

xs∈Xs[x0, y0(·)|s0, d]
if and only if an input w(·) ∈ L2[0, s] exists such that

J [xs, w(·)] ≤ d, (5.6.34)

where J [xs, w(·)] is defined by

J [xs, w(·)] ∆= (x(0)− x0)
TX0(x(0)− x0)

+

∫ s

0

(
w(t) TQ(t)w(t) − x(t) TK(t) TK(t)x(t)
+(y0(t)− C(t)x(t)) TR(t)(y0(t)− C(t)x(t))

)
dt (5.6.35)

and x(·) is the solution to (5.2.1) with the inputw(·) and boundary condition x(s) =
xs.

Now consider the functional (5.6.35) with x0 = 0 and y0(·) ≡ 0. In this case, J
is a homogeneous quadratic functional with an end-point cost term. Also, consider
the set Xs[0, 0, 1] corresponding to x0 = 0, y0(·) ≡ 0 and d = 1. Since Xs[0, 0, 1]
is bounded, a constant hs > 0 exists such that all vectors xs ∈ Rn with ‖xs‖ = hs
do not belong to the set Xs[0, 0, 1]. Hence,

J [xs, w(·)] > 1 (5.6.36)

for all xs ∈ Rn such that ‖xs‖ = hs and for all w(·) ∈ L2[0, s]. Since, J is a homo-
geneous quadratic functional, we have J [axs, aw(·)] = a2J [xs, w(·)] and (5.6.36)
implies that

inf
w(·)∈L2[0,s]

J [xs, w(·)] > 0 (5.6.37)

for all s ∈ [0, T ] and all xs 6= 0.
The problem of minimizing the functional from (5.6.37) subject to the constraint

defined by the system (5.2.1) is a linear quadratic optimal control problem in which
time is reversed. In this linear quadratic optimal control problem, a sign indefinite
quadratic cost function is considered. Using a known result from the linear quadratic
optimal control theory, we conclude that the condition (5.6.37) implies that there
exists a solution Ξ(·) to the Riccati equation

− Ξ̇(s) = Ξ(s)A(s) +A(s) TΞ(s) +Ξ(s)B(s)Q(s)−1B(s) TΞ(s)

+K(s) TK(s)− C(s) TR(s)C(s) (5.6.38)

with the initial condition Ξ(0) = X0; e.g., see p. 23 of [34]. Furthermore, this
solution is positive-definite on [0, T ]. From this, it follows that the solution to the

for all t ∈ [0, s]. Substitution of (5.6.33) into (5.2.3) implies that
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Riccati equation (5.3.11) is given by P (·) := Ξ(·)−1. This completes the proof of
this part of the lemma.

Statement (ii) and the sufficiency part of statement (i). We have shown above
that xs ∈ Xs[x0, y0(·)|s0, d] if and only if an input w(·) ∈ L2[0, s] exists such that
the condition (5.6.34) holds for the functional (5.6.35). Now consider the following
minimization problem:

min
w(·)∈L2[0,s]

J [xs, w(·)], (5.6.39)

where the minimum is taken over all x(·) and w(·) connected by (5.2.1) with the
boundary condition x(s) = xs. This problem is a linear quadratic optimal tracking
problem in which the system operates in reverse time. The solution to this tracking
problem is well known (e.g., see [87]). Indeed if the solution to the Riccati equation
(5.3.11) exists, then the matrix function Ξ(·) = P (·)−1 > 0 is the solution to the
Riccati equation (5.6.38) with initial condition Ξ(0) = X0. From this, it follows
that the minimum in (5.6.39) is achieved for any x0 and any y0(·). Furthermore as
in [21], we can write

min
w(·)∈L2[0,s]

J [xs, w(·)] = (xs − x̂(s)) TΞ(s)(xs − x̂(s))− ρs,

where ρs is defined as in (5.3.13) and x̂(s) is the solution to (5.3.10) with the initial
condition x̂(0) = x0. From this we can conclude that the set

Xs[x0, y0(·)|s0, d] = {xs ∈ R
n : min

w(·)∈L2[0,s]
J [xs, w(·)] ≤ d}

is given by (5.3.12). This completes the proof of the lemma. ⊓⊔
Proof of Lemma 5.4.2. Necessity. It is obvious that strong robust observability

implies robust observability. Therefore, according to Lemma 5.3.2, the solution P (·)
to the Riccati equation (5.3.11) is defined and positive-definite on [0, NT ]. We now
prove that the solutionX(·) to the Riccati equation (5.4.17) is defined on [0, NT ] and
positive-definite on (0, NT ]. It is obvious from (5.3.12) that the setXs [x0, y0(·)|s0, d]
is not empty if and only if

d+ ρs [y0 (·)] ≥ 0, (5.6.40)

where ρs [y0 (·)] is defined by (5.3.13). Thus we can compose the following con-
straint is satisfied by all solutions to the linear system (5.3.10):
∫ s

0

[
−‖K(t)x̂(t)‖2 + (C(t)x̂(t)− y0(t)) T

R(t) (C(t)x̂(t)− y0(t))
]
dt ≤ d.

(5.6.41)
By using the linear substitution

ŷ(t) := C(t)x̂(t)− y0(t), (5.6.42)

the constraint (5.6.41) can be rewritten as
∫ s

0

[
ŷ (t) T Rŷ(t)− ‖K(t)x̂(t)‖2

]
dt ≤ d, (5.6.43)
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where this constraint is satisfied by all solutions to the following linear system:

˙̂x(t) = Â(t)x̂(t) + B̂(t)ŷ(t), x̂(0) = x0, (5.6.44)

where Â(t) and B̂(t) are defined by (5.4.18) and (5.4.19), respectively.
In this case, we must prove that a positive-definite solution to the Riccati equation

(5.4.17) exists. By the definition of X̂s[d], we have that x̂s ∈ X̂s[d] if and only if
there exist vector functions x̂(·) and y0(·) satisfying the system equation (5.3.10) and
such that x̂(s) = x̂s and the constraint (5.6.41) holds. If we treat y0(·) as the control
input of the system (5.3.10), it implies that x̂s ∈ X̂s[d] if and only if y0(·) ∈ L2[0, s]
exists such that

J̌ [x̂s, y0(·)] ≤ d, (5.6.45)

where J̌ [xs, y0(·)] is defined by

J̌ [x̂s, y0(·)] =

∫ s

0

[
(C(t)x̂(t)− y0(t)) T R(t) (C(t)x̂(t)− y0(t))

−‖K(t)x̂(t)‖2
]
dt. (5.6.46)

By using the linear substitution (5.6.42), we can rewrite (5.6.46) as

Ĵ [x̂s, ŷ(·)] := J̌ [x̂s, y0(·)] =

∫ s

0

[
ŷ(t) TR(t)ŷ(t)− ‖K(t)x̂(t)‖2

]
dt. (5.6.47)

Now x̂(·) is the solution to (5.6.44) with the control input ŷ(·) and boundary con-
dition x̂(s) = x̂s. From (5.6.47), Ĵ is a homogeneous quadratic functional. Now
consider the set X̂s[1] corresponding to d = 1. Since X̂s[1] is bounded, a constant
hs > 0 exists such that all vectors x̂s ∈ Rn with ‖x̂s‖ = hs do not belong to the set
X̂s[1]. Hence,

Ĵ [x̂s, ŷ(·)] > 1 (5.6.48)

for all x̂s ∈ Rn such that ‖x̂s‖ = hs and for all ŷ(·) ∈ L2[0, s]. Since Ĵ is a
homogeneous quadratic functional, we have that Ĵ [αx̂s, αŷ(·)] = α2Ĵ [x̂s, ŷ(·)] and
(5.6.48) implies that

inf
ŷ(·)∈L2[0,s]

Ĵ [x̂s, ŷ(·)] > 0 (5.6.49)

for all x̂s 6= 0. The problem of minimizing the functional from (5.6.49) subject to
the constraint defined by the system (5.6.44) is a linear quadratic optimal control
problem in which time is reversed. In this linear quadratic optimal control problem,
a sign indefinite quadratic cost function is considered. By using a known result from
the linear quadratic optimal control theory, we conclude that the condition (5.6.49)
implies that there exists a solution X(·) to the Riccati equation

−Ẋ(s) = Â(s) TX(s)+X(s)Â(s)−X(s)B̂(s)R−1(s)B̂(s) TX(s)−K(s) TK(s),

with the initial condition X(0) = 0, for all s ∈ (0, NT ], such that X(s) > 0; e.g.,
see p. 23 of [34]. This completes the proof of this part of the lemma.

Sufficiency. We have already shown that x̂s ∈ X̂s[d] if and only if y0(·) ∈
L2[0, s] exists such that (5.6.45) is satisfied. Now consider the following optimiza-
tion problem:
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inf
ŷ(·)∈L2[0,s]

Ĵ [x̂s, ŷ(·)],

where the infimum is taken over all solutions to (5.6.44) with the boundary condition
x̂(s) = x̂s. This optimal control problem is the standard linear quadratic optimal
control problem with a sign indefinite cost function. Using the standard result from
the theory of linear quadratic optimal control (e.g., see [34]), we obtain that

inf
ŷ(·)∈L2[0,s]

∫ s

0

[
ŷ(t) TR(t)ŷ(t)− ‖K(t)x̂(t)‖2

]
dt = x̂ T

sX(s)x̂s. (5.6.50)

From (5.6.50) and (5.6.43), we have that

x̂ T
sX(s)x̂s ≤ d.

From this we can conclude that the set X̂s[d] is given by

X̂s[d] = {x̂s ∈ R
n : x̂ T

sX(s)x̂s ≤ d} .

This completes the proof of the lemma. ⊓⊔
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An Analog of Shannon Information Theory: State
Estimation and Stabilization of Linear Noiseless Plants
via Noisy Discrete Channels

6.1 Introduction

In this chapter, we continue to consider the problems of state estimation and stabi-
lization for discrete-time linear partially observed time-invariant systems. We still
examine a remote control setup, where the sensors and decision maker (either ob-
server or controller) are physically distant and connected by a noisy digital com-
munication link. The critical feature of this chapter as compared with the previous
ones is the account for channel errors by adopting the stochastic discrete memory-
less channel model from the classic information theory. The objective is to examine
how the channel quantization effects and errors limit the capacity for stabilization
and reliable state estimation. The focus is on stabilizability and observability with
probability 1. In other words, the estimation/stabilization error should be made small
along (almost) any trajectory.1

In this chapter, we confine ourselves to consideration of the case where the uncer-
tainties in the system model can be neglected. This is a natural initial step in devel-
oping the theory. Its generalizations on the case of systems with additive exogenous
disturbances will be offered in Chaps. 7 and 8.

The main results of this chapter have points of similarity with the classic Shan-
non’s noisy channel coding theorem [188] and are partly based on it. This theorem
states that it is possible to ensure an errorless communication of information across
the channel with as large a probability as desired if and only if the source produces
data at the rate less than the fundamental characteristic of the noisy channel, in-
troduced by Shannon [188] and called the capacity c. Similarly it is shown in this
chapter that in order that the system be stabilizable/observable with as large a prob-
ability as desired or almost surely, it is sufficient and almost necessary that the unit

1A natural alternative approach deals with mth moment observability/stabilizability; see,
e.g., [72,77,101–103,132–138, 164–166, 192]. With the strong law of large numbers in mind,
this approach can be viewed as aimed at making the time-average estimation/stabilization error
small along (almost) any trajectory. This formally permits the error at a given time to be large
but requires that large errors occur with a small frequency.
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time increment h (in bits) of the open-loop system state uncertainty be less than the
channel capacity c. This increment is given by the topological entropy of the system.
So the results of this chapter can also be viewed as natural extensions of the results
of Chaps. 2 and 3 on the case of a noisy channel. We also specify the necessity of the
bound c by showing that whenever it is trespassed h > c, any estimation/stabilization
algorithm almost surely exponentially diverges. We also show that the inequality
c ≥ h is necessary for certain weaker forms of observability/stabilizability. For
example, it holds whenever the time-average estimation/stabilization error is kept
bounded with a nonzero probability.

By following the lines of the classic information theory, we examine the role
of a possible communication feedback. This feedback holds where there is a way to
communicate data in the direction opposite to that of the feedforward communication
channel. As is known, even perfect (i.e., undelayed and noiseless) and complete (i.e.,
notifying the informant about the entire result of the transmission across the channel)
feedback does not increase the rate at which the information can be communicated
over the feedforward channel with as small probability of error as desired [44, 190].
In this chapter, we show that the communication feedback similarly does not alter
the stabilizability/observability domain. However, such a feedback aids to improve
the performance of the state estimator.

Specifically, we show that in the absence of a feedback communication, the es-
timation error can be made decaying to zero with as large a probability as desired
by a proper design of the observer. However, this is achieved at the expense of using
code words whose lengths grow as the estimation process progresses.2 At the same
time, the increasing code words lengths mean that the memories of the coder and de-
coder should increase accordingly, and the per-step complexity of the observer may
be unlimited. At the same time, we show that these disadvantages can be discarded
if a perfect and complete feedback link is available. The main result of the chapter
concerning the state estimation problem states that then it is possible to design an
almost surely converging observer of limited complexity that employs fixed-length
code words, provided that c > h. This is achieved via complete synchronization of
the coder and decoder, within which the coder duplicates the state estimate generated
by the decoder by employing the data received over the feedback link.

Unlike state estimation, stabilization needs far less feedback communication. We
first show that to design an almost surely stabilizing controller with limited complex-
ity employing fixed-length code words, a feedback link of arbitrarily small capacity
is sufficient, and a complete synchronization of the coder and decoder is not needed.
Second, we demonstrate that in fact such a feedback communication requires no
special means (like a special feedback link) since it can be implemented by means
of control. The feedback communication can be arranged thanks to the fact that on
the one hand, the decoder-controller influences the motion of the system and on the
other hand, the sensor observes this motion and feeds the coder by the observation.
So the controller can encode a message by imparting the motion of a certain specific

2Despite of this, the observer produces an asymptotically exact state estimate online, i.e.,
with no delay. In other words, the estimate of the state at time t is generated at time t.
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feature. In its turn, the coder can receive the message by observing the motion and
detecting this feature.

The main results of the chapter were originally published in [107, 108, 120].
In [201], the necessity of the inequality c ≥ h for almost sure observabil-

ity/stabilizability was established for channels more general than discrete and mem-
oryless. The sufficiency of the strict inequality c > h was justified for a particular
example of a discrete memoryless channel: the erasure channel with a perfect and
complete feedback.

Observability and stabilizability of unstable linear plants over noisy discrete
channels were also addressed in, e.g., [77, 101–103, 164–166, 192, 229]. The rele-
vant problem of design of optimal sequential quantization schemes for uncontrolled
Markov processes was addressed in [24, 204]. In [77, 164–166, 192], the focus is
on scalar noisy linear systems and mean-square (and more generally, mth moment)
observability/stabilizability. Both sufficient and necessary criteria for such an observ-
ability/stabilizability were given in [164–166] in terms of a new parametric notion
of the channel capacity (called anytime capacity) introduced in [164]. An encoder–
decoder pair for estimating the state of a scalar noisy linear system via a noisy binary
symmetric channel was proposed in [77]. It was shown by simulation that the esti-
mation error is bounded. Another such a pair was constructed in [192] for such a
channel with a perfect feedback. Conditions ensuring that the mathematical expec-
tation of the estimation error is bounded were obtained. In [229], the focus is on
stabilizability by means of memoryless controllers in the case where the channels
transmitting both observations and controls are noisy and discrete, and the plant is
scalar, linear, and stochastic. A stochastic setting for the stabilization problem was
investigated in [138], where an important fundamental result on minimum data rates
was obtained. However, the paper [138] deals with a noiseless deterministic chan-
nel. In [101, 103], the robust rth moment stability of uncertain scalar linear plants
with bounded additive disturbances was examined in the case where the signals are
communicated over the so-called truncation channel. It transmits binary code words
with dropping a random number of concluding (i.e., least important) bits. This par-
ticular example of the discrete memoryless channel generalizes the classic erasure
channel and is motivated by certain wireless communication applications in [101].
Minimum data rates for stabilization and state estimation via such channels were
also studied in many other papers in the area. With no intent to be exhaustive, we
mention [28, 48, 70, 73, 133, 135–137, 149, 184, 202, 204, 220, 221, 227, 228]. Opti-
mization problems for noisy Gaussian channels with power constraints and perfect
finite alphabet channels were studied in, e.g., [127, 203, 204, 206].

The observers and controllers considered in this chapter are based on quantizers
with adjusted sensitivity [28,204] implemented in the multi-rate fashion [149]. Such
a quantizer can be regarded as a cascade of a multiplier by an adjustable factor and an
analog-to-digital converter. To be transmitted across the channel, the outputs of this
converter are encoded by using low error block codes, whose existence is ensured by
the classic Shannon channel coding theorem. This is in the vein of the classic source-
channel separation principle [20, 60, 68]. In the context of estimating the state of an
unstable plant via a noisy channel, a similar approach was considered in [164] in the
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form of the following separation of the source and channel. At first, a coder–decoder
pair is designed under the assumption that the channel is perfect. Then another coder–
decoder pair is constructed to carry the outputs of the first coder reliably across the
channel. Various issues concerning stabilization and state estimation by means of
quantizers with adjusted sensitivity were addressed in, e.g., [28, 70, 88, 90,204].

The view of the control loop as a link transmitting information was in fact con-
cerned in [47] in its “a posteriori” component. This means that the control loop does
transmit information, although its contents may not be not clearly specified a priori.
The “constructive” part of the same view is the idea that the control signals can be
employed as carriers of a priori prespecified information from the decoder-controller
to the coder. In some details, this issue was addressed in [166, 201] (see also [167]
for a general discussion).

The body of the chapter is organized as follows. Sections 6.2, 6.5 and 6.4, 6.6
contain the statements of the state estimation and stabilization problems and present
their solutions, respectively. Section 6.3 establishes the notation and offers basic defi-
nitions and assumptions. The proofs of the main results are scattered over Sects. 6.7–
6.11.

6.2 State Estimation Problem

We consider unstable discrete-time invariant linear systems of the form:

x(t+ 1) = Ax(t), x(0) = x0, y(t) = Cx(t). (6.2.1)

Here x(t) ∈ Rn is the state and y(t) ∈ Rny is the measured output. The instability
means that there is an eigenvalue λ of the matrix A with |λ| ≥ 1. The initial state x0

is a random vector. The objective is to estimate the current state on the basis of the
prior measurements.

We consider the case where this estimate is required at a remote location. The
only way to communicate information from the sensor to this location is via a given
random noisy discrete channel. So to be transmitted, measurements should be first
translated into a sequence of symbols e from the finite input alphabet E of the chan-
nel. This is done by a special system’s component, referred to as the coder. Its outputs
e are then transmitted across the channel and transformed by some sort of random
disturbance or noise into a sequence of channel’s outputs s from a finite output al-
phabet S. By employing the prior outputs s, the decoder(-estimator) produces an
estimate x̂ of the current state x. In this situation illustrated in Fig. 6.1, an observer
is constituted by a coder–decoder pair.

The decoder is described by an equation of the form:

x̂(t) = X [t, s(0), s(1), . . . , s(t)] . (6.2.2)

We consider two classes of coders each giving rise to a particular problem setup.
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State estimate

Plant

Decoder -

estimator

Discrete

Channel
Coder

Sensor

Feedback communication link

Fig. 6.1. Estimation via a limited capacity communication channel.

Coders with a Communication Feedback

The first class is related to feedback communication channels [190]: The result s(t)
of the current transmission across the “feedforward” channel becomes known at the
coder site by the next time t + 1. The coders from this class are said to be with a
feedback and given by an equation of the form:

e(t) = E[t, y(0), . . . , y(t), s(0), . . . , s(t− 1)] ∈ E. (6.2.3)

Coders without a Communication Feedback

The second class deals with the case where no such feedback is available. The cor-
responding coders are said to be without a feedback and given by an equation of the
form:

e(t) = E[t, y(0), . . . , y(t)] ∈ E. (6.2.4)

Objective of State Estimation

The information received by the decoder is limited to a finite number of bits at any
time. So the decoder is hardly able to restore the state with the infinite exactness
x̂(t) = x(t) for a finite time. In view of this, we pursue a more realistic objective of
detecting the unstable modes of the system and accept that an observer succeeds if

‖x(t)− x̂(t)‖ → 0 as t→∞. (6.2.5)

Definition 6.2.1. The coder–decoder pair is said to detect or track the state whenever
(6.2.5) is true, and to keep the estimation error (or time-average error) bounded if the
following weaker properties hold, respectively:

lim
t→∞

‖x(t)− x̂(t)‖ <∞, lim
t→∞

1

t

t−1∑

θ=0

‖x(θ) − x̂(θ)‖ <∞. (6.2.6)

Remark 6.2.2. The estimate x̂(t) of the current state x(t) should be produced at the
current time t; no delay is permitted.
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The main question to be discussed is as follows:

How low can the data rate of the channel be made before the construction of a
coder–decoder pair detecting the state becomes impossible?

Explanation 6.2.3. Since the initial state is random, the process in the system is
stochastic. So the objective (6.2.5) or (6.2.6) may be achieved for some elementary
random events and fail to hold for others.

In this chapter, we focus on the cases where “detecting” means either “detecting
with as large probability as desired” or “detecting almost surely.”

Comments on Communication Feedback

The communication feedback enables the coder (6.2.3) to be aware of the actions of
the decoder via duplicating them in accordance with (6.2.2). This gives the coder the
ground to try to compensate for the previous channel errors. However, this feedback
does not increase the rate at which the information can be communicated across the
channel with as small probability of error as desired [44, 188]. At the same time, it
may increase the rate at which information can be transmitted with the zero proba-
bility of error [189]. The feedback also may increase the reliability function [233]
and simplify the coding and decoding operations [214]. For further discussion of this
issue and a detailed survey, we refer the reader to [214].

A discussion of the role of communication feedback in control and state estima-
tion was offered in, e.g., [201, 202, 204, 206, 219].

The perfect feedback communication link may model a situation where there is
a bi-directional data exchange between the coder and the decoder, and the transmis-
sion power of the decoder essentially exceeds that of the coder, so that the feedback
communication errors are negligible. Examples concern data exchange between a
satellite and Earth surface station, or underwater autonomous sensors and the base
station. For control systems, feedback communication of data from the decoder to
the coder does not require special means (like a special link) since transmission of as
much information as desired can be arranged by means of control (see Sect. 6.11).

6.3 Assumptions, Notations, and Basic Definitions

6.3.1 Assumptions

In this chapter, the noisy communication channel between the coder and the decoder
is interpreted as a stochastic map transforming input channel symbols into output
ones e 7→ s. We suppose that the previous transmissions across the channel do not
affect the current one, and the channel is time-invariant. These properties are sum-
marized by the following.

Assumption 6.3.1. Given a current channel input e(t), the current output s(t) is
statistically independent of the other inputs and outputs e(j), s(j), j < t, and the
probability of receiving s given that e is sent does not depend on time:
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W (s|e) := P [s(t) = s|e(t) = e], s ∈ S, e ∈ E.

Remark 6.3.2. This means that we consider a discrete memoryless channel [38, 50,
68, 188, 190].

Remark 6.3.3. The above model incorporates the effect of message dropout by in-
cluding a special “void” symbol ⊛ in the output alphabet S. Then s(t) = ⊛ means
that the message e(t) is lost by the channel.

Other assumptions concern mainly the system (6.2.1).

Assumption 6.3.4. The system (6.2.1) does not affect the operation of the channel:
Given an input e(t), the output s(t) is statistically independent of the initial state x0

(along with the other channel inputs and outputs e(j), s(j), j < t).

Assumption 6.3.5. The initial state x0 has a probability density p0(x).

Assumption 6.3.6. The pair (A,C) is detectable.

To state the results of the chapter, we need the notion of the Shannon’s capacity
of the channel. To recall it, we start with the following.

6.3.2 Average Mutual Information

Let F ∈ F = {f} and G ∈ G = {g} be two random quantities defined on a
common probability space and with respective probability distributions P (df) and
P (dg).3 The average mutual information between F and G is defined to be (see,
e.g., [38, 50, 65, 68, 152,188])

I(F,G) =

∫
P (df, dg) log2

P (df, dg)

P (df)⊗ P (dg)
. (6.3.1)

Here P (df, dg) is the joint distribution of F and G, and P (df,dg)
P (df)⊗P (dg) stands for

the density of this distribution with respect to the product measure P (df) ⊗ P (dg).
Formula (6.3.1) holds if this density does exist; i.e., the joint distribution is absolutely
continuous with respect to the product measure. Otherwise I(F,G) :=∞.

We recall that log2 0 := −∞ and ±∞ · 0 := 0.

Remark 6.3.7. It can be shown that (either finite or infinite) integral from (6.3.1)
exists, and I(F,G) ∈ [0,+∞] [65].

The entropy of a random quantity is defined as self-information: H(F ) :=
I(F, F ). It can be interpreted as an average amount of information (in bits) that one
receives when the result f of a random experiment becomes known [38, 50, 65, 68,

3For technical reasons, we suppose that F and G are separable metric spaces endowed with
the Borel σ-algebras, and the quantities F and G are measurable as maps from the probability
space into F and G, respectively.
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188]. An equivalent contrapositive statement is that the entropy is an average amount
of information that one lacks before the experiment to uniquely and correctly foresee
its result. In other words, the entropy can be viewed as a measure of uncertainty. In
both cases, it is tacitly assumed that available is an apriorial statistical knowledge
about the experiment in the form of the probability distribution P (df).

The conditional entropy Hg(F ) = HG=g(F ) is defined as the entropy produced
by the conditional distribution of F given G = g, and the averaged conditional en-
tropy (equivocation)H(F |G) := EHG(F ). The latter can be viewed as an average
uncertainty about the result of the experiment F provided that the result of G is
known.

If the sets F,G are finite, then the above formulas can be rewritten in terms of
the probability mass functions

pF (f) := P (F = f), pG(g) := P (G = g), pFG(f, g) := P (F = f ∧G = g)

as follows:

H(F ) := −
∑

f∈F

pF (f) log2 pF (f),

HG=g(F ) = −
∑

f∈F

P (F = f |G = g) log2 P (F = g|G = g)

= −
∑

f∈F

pF,G(f, g)

pG(g)
log2

pF,G(f, g)

pG(g)
,

H(F |G) = −
∑

f∈F,g∈G

pF,G(f, g) log2

pF,G(f, g)

pG(g)
. (6.3.2)

I(F,G) =
∑

f∈F,g∈G

pF,G(f, g) log2

pF,G(f, g)

pF (f)pG(g)

= H(F )−H(F |G) = H(G)−H(G|F ).

Remark 6.3.8. By the last two relations, I(F,G) can be viewed as the number of
bits by which the uncertainty about the result of one of two experiments decreases
when the result of the other experiment becomes known. This supports the name of
I(F,G) as a mutual information.

6.3.3 Capacity of a Discrete Memoryless Channel

The Shannon capacity of such a channel is defined to be the maximum mutual in-
formation between the input and output of the channel (see, e.g., [38, 50, 65, 68,188,
190]):

c = max
P E

I(E,S). (6.3.3)
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Here the maximum is over all probability distributions PE on the input channel
alphabet E = {e}. Whereas PE is interpreted as the probability distribution of a
random channel input E, the joint distribution of the channel input E and output S
is taken to be that of (e, s) when s results from sending e over the channel:

PE,S(e, s) := W (s|e)pE(e).

6.3.4 Recursive Semirational Observers

In the above problem statement, the complexity of an observer is not limited: It is
permitted to carry out an asymptotically infinite amount of computations per sample
period. At the same time, it will be shown that the conditions necessary for observ-
ability by means of such an observer are “almost sufficient” for existence of a more
realistic observer, which performs only finitely many operations per step.4 This ob-
server consists of a semirational coder and decoder. They are basically defined in
Subsect. 3.4.4 (starting on p. 46) up to formalities caused by the difference in the
situations considered in this chapter and Chap. 3, respectively. (This difference con-
cerns mainly the channel model.) In this subsection, we adjust the corresponding
definitions from Subsect. 3.4.4 to the context of the current chapter. Moreover, with
the needs of Chap. 7 in mind, we extend these definitions by permitting the current
outputs of the coder and decoder to depend on the messages received during not
only the previous but also the current operation epoch. This feature is addressed by
dropping the attribute “simple” in the definitions.

Definition 6.3.9. The feedback coder (6.2.3) (on p. 135) is said to be semirational
r-step recursive (where r = 1, 2, . . .) if the following statements hold:

(i) The coder starts working at t = r and at any time t ∈
[
ir : (i + 1)r

)
(where

i = 1, 2, . . .) generates the current output by equations of the form:

e(t) := Et−ir
{
zc[ir], y[(i− 1)r + 1], . . . , y[t], s[(i− 1)r], . . . , s[t− 1]

}
,

zc[ir] := Zc

(
zc[(i− 1)r], Yi, Si

)
∈ R

s, zc(0) := z0
c , (6.3.4)

where i = 1, 2, . . . and

Yi := col
(
y[(i− 1)r + 1], . . . , y[ir]

)
,

Si :=
(
s[(i− 1)r], . . . , s[ir − 1]

)
(6.3.5)

are the sequences of messages arrived at the coder from the sensor and decoder,
respectively, during the previous operation epoch;

(ii) The functions Zc(·) and E0(·), . . . ,Er−1(·) are semirational and semialgebraic,
respectively.5

4This holds in the presence of a feedback communication link.
5See Definitions 3.4.9 and 3.4.12 on pp. 46 and 47, respectively.



140 6 State Estimation and Stabilization of Noiseless Plants via Noisy Channels

The coder (6.2.4) (on p. 135) without a feedback is said to be semirational r-step
recursive if it meets the requirements (i) and (ii) with the arguments of the forms s(θ)
and Si dropped from the right-hand sides in (6.3.4).

A particular case of the situation from this definition is where, like in Defini-
tion 3.4.15 (on p. 47), the entire code word composed by all code symbols

Ei :=
(
e[ir], e[ir + 1], . . . , e[(i+ 1)r − 1]

)

that will be emitted into the channel during the forthcoming operation epoch [ir :
(i + 1)r − 1] is generated by the coder at the beginning t = ir of the epoch via an
equation of the form: Ei = E

[
z(ir), Yi

]
with a semialgebraic function E(·).

Definition 6.3.10. The decoder (6.2.2) (on p. 134) is said to be semirational r-step
recursive if at any time t ∈

[
ir : (i + 1)r

)
, i = 1, 2, . . . , the current estimate is

generated by equations of the form:

x̂(t) := Xt−ir
{
zd[ir], s[(i− 1)r], . . . , s[t− 1]

}
,

zd[ir] := Zd
(
zd[(i− 1)r], Si

)
∈ R

σ, zd(0) = z0
d, (6.3.6)

where the functions Zd(·) and X0(·), . . . ,Xr−1(·) are semirational and Si is given
by (6.3.5).

A particular case of the situation from this definition is where the entire sequence
of estimates

X̂i = col
(
x̂[ir], . . . , x̂[(i+ 1)r − 1]

)
(6.3.7)

for the forthcoming operation epoch is generated via an equation of the form: X̂i =
X
(
zd[ir], Si

)
with a semirational function X(·).

As in Remark 3.4.18 (on p. 48), it should be noted that the coders and decoders
from the classes introduced by these definitions perform a limited (as t runs over
t = 0, 1, . . .) number of operations per step. Explanation 3.4.20 and Remark 3.4.21
(on p. 48) also extend to these coders and decoders.

6.4 Conditions for Observability of Noiseless Linear Plants

These conditions are given by the following theorem, which constitutes the main
result of this chapter with respect to the state estimation problem.

Theorem 6.4.1. Suppose that Assumptions 6.3.1 and 6.3.4–6.3.6 hold. Denote by

λ1, . . . , λn

the eigenvalues of the system (6.2.1) repeating in accordance with their algebraic
multiplicities, and by c the capacity (6.3.3) of the communication channel. Then the
following implications are true:
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c > H(A) =
∑

λj :|λj|≥1

log2 |λj |

⇓ ⇓
a) A semirational finite-step

recursive decoder (6.3.6) and
coder with a feedback (6.3.4)
exist that detect the state (i.e.,
(6.2.5) holds) almost surely.

b) For the arbitrary probability value
p ∈ (0, 1), a coder–decoder pair

without a feedback (6.2.2), (6.2.4)
exists that detects the state with the

probability p or better.

⇓ ⇓
c) For any probability value p ∈ (0, 1), a coder–decoder pair with a

feedback (6.2.2), (6.2.3) exists that keeps the estimation error bounded (i.e.,
the first relation from (6.2.6) holds) with the probability p or better.

⇓
d) A coder–decoder pair with a feedback (6.2.2), (6.2.3) exists that keeps
the estimation time-average error bounded (i.e., the second relation from

(6.2.6) holds) with a nonzero probability .

⇓
c ≥ H(A)

The proof of this theorem will be given in Sects. 6.7–6.10.

Explanation 6.4.2. The implications a)∨ b) ⇒ c)⇒ d) are evident. They are men-
tioned to stress that the claims a), b), c), and d) are included in the chain of implica-
tions with approximately identical extreme terms. Thus these statements are “almost
equivalent,” and the inequality c > H(A) is sufficient and “almost necessary” for the
system (6.2.1) to be observable via the noisy communication channel.

Remark 6.4.3. The implication c > H(A) ⇒ a) means that whenever the above
sufficient condition is met and a feedback communication is available, a reliable state
estimation can be accomplished by an observer with a limited complexity, which
performs a limited number of operations per step.

Remark 6.4.4. The corresponding observer (coder and decoder) will be explicitly
constructed in Subsect. 6.9.1 (see p. 168). However, the scheme (coding and decod-
ing rules) for transmission of information across the channel will not be described in
detail. The point is that the proposed observer employs block codes transmitting data
at a given rate below the channel capacity c with a given probability of error. Classic
information theory guarantees existence of such a code. Moreover, invention of such
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codes is the standard long-standing task in information sciences. It is supposed that
a relevant solution should be borrowed to construct the observer.

Thus in the case where a perfect feedback communication link is available, the chap-
ter demonstrates that whenever almost sure observability holds, it can be ensured
by realistic observers with bounded (as time progresses) algebraic complexity and
memory consumption per step, which are based on classic block coding–decoding
schemes of communication.

Remark 6.4.5. By Theorem 2.4.2 (on p. 21), the quantity H(A) is the topological
entropy of the linear system (6.2.1). Hence for such systems, Theorem 6.4.1 can be
viewed as an extension of Theorem 2.3.6 (on p. 16) to the case of a noisy channel
and linear plant.

Comment 6.4.6. The paper [201] proves that the inequality c ≥ η(A) is necessary for
existence of a coder–decoder pair tracking the state almost surely via noisy channels
more general than discrete memoryless. The sufficiency of the inequality c > η(A)
for almost sure observability was justified in [201] for a particular discrete memory-
less channel: the erasure channel with a finite alphabet.

Comparison with Shannon’s Channel Coding Theorem

In spirit, Theorem 6.4.1 resembles the celebrated Shannon’s channel coding theo-
rem [50, 60, 68, 188]. Indeed, the latter states that whenever the source produces
information at the rate R < c bits per unit time, the success, i.e., errorless transmis-
sion, can be ensured with as large a probability as desired. If conversely R > c, this
is impossible. Here the means to ensure success are the rules to encode and decode
information before and after transmission, respectively. Theorem 6.4.1 asserts just
the same provided the “success” is understood as asymptotic tracking (6.2.5) of the
state, the “means” are the coder and decoder-estimator, and R is replaced by H(A).

This analogy is enhanced by the similarity between the quantities R and H(A).
Each of them can be interpreted as the unit-time increment of the number of bits
required to describe the entity that the receiver wants to know. Indeed in the context
of Shannon’s theorem, this entity is abstract information generated by a source at the
rate R, and the interpretation is apparent. In the case considered in this chapter, this
entity is the state, and the interpretation follows from Remark 3.5.3 (on p. 53).

Another point of similarity between Theorem 6.4.1 and the classic information
theory concerns the communication feedback. Whereas the classic theory states that
this feedback does not increase the rate R at which the information can be trans-
mitted with as small a probability of error as desired, Theorem 6.4.1 shows that the
feedback does not extend the class of systems for which state tracking (6.2.5) is pos-
sible with as small a probability of failure as desired. However, this concerns tracking
by means of arbitrary non-anticipating observers. At the same time, Theorem 6.4.1
states that feedback allows for tracking the state by means of an observer with a lim-
ited computational power and not only with as large a probability as desired but also
almost surely.
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6.5 Stabilization Problem

Now we consider a controlled version of the plant (6.2.1). In other words, we deal
with unstable linear discrete-time invariant linear systems of the form:

x(t+ 1) = Ax(t) +Bu(t), x(0) = x0, y(t) = Cx(t), (6.5.1)

where u(t) ∈ Rnu is the control. The objective is to design a controller that asymp-
totically stabilizes the system:

x(t)→ 0 and u(t)→ 0 as t→∞.

We examine a remote control setup: The site where the control is produced is
physically distant from the sensor site. The only way to communicate data from the
second site to the first one is via a given discrete memoryless channel. Based on the
prior observations, the coder selects a message e from the input channel alphabet
E and emits e into the channel. In the channel, this message is transformed into a
symbol s from the output channel alphabet S. Proceeding from the messages s up to
the current time t, the decoder(-controller) selects a control u(t) (see Fig. 6.2).

Fig. 6.2. Stabilization via a limited capacity communication channel.

Remark 6.5.1. In this situation, the controller is assembled of the coder and decoder.

In fact, the decoder is still given by an equation of the form (6.2.2). However,
now its output is not a state estimate but the control:

u(t) = U [t, s(0), s(1), . . . , s(t)] . (6.5.2)

We also still consider two classes of coders, each giving rise to a particular prob-
lem statement. The first class corresponds to the case where a feedback communica-
tion link from the decoder to the coder is available (see Fig. 6.3). The second class
is considered when there is no such feedback link (see Fig. 6.2). The coders from
these two classes are still described by equations of the forms (6.2.3) and (6.2.4),
respectively.

Remark 6.5.2. As will be shown in the next section, the feedback communication
link is of much lesser importance for the stabilization problem than for the state
estimation one. Only in order to demonstrate this explicitly, we continue to consider
coders with a communication feedback.
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Fig. 6.3. Stabilization under a communication feedback.

Definition 6.5.3. A coder–decoder pair is said to stabilize the system if

‖x(t)‖ → 0 and ‖u(t)‖ → 0 as t→∞, (6.5.3)

and to keep the stabilization error (or time-average error) bounded if the following
weaker properties hold, respectively:

lim
t→∞

‖x(t)‖ <∞, lim
t→∞

1

t

t−1∑

θ=0

‖x(θ)‖ <∞. (6.5.4)

The main question to be studied is as follows:

What is the tightest bound on the data rate of the channel above which a stabi-
lizing coder–decoder pair exists?

Explanation 6.5.4. Since the initial state is random, the process in the system is
stochastic. So the objective (6.5.3) or (6.5.4) may be achieved for some elementary
random events and fail to hold for others.

In this chapter, we focus on the cases where “stabilizing” means either “stabiliz-
ing with as large probability as desired” or “stabilizing almost surely.”

Assumptions

Apart from Assumptions 6.3.1 and 6.3.4–6.3.6, now one more assumption is adopted.

Assumption 6.5.5. The pair (A,B) is stabilizable.

Recursive Semirational Controllers

In the above problem statement, the controller is formally permitted to carry out an
asymptotically infinite amount of computations per sample period. At the same time,
it will be shown that the conditions necessary for stabilizability by means of such a
controller are “almost sufficient” for existence of a more realistic controller, which
performs only a limited number of operations per step.
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Remark 6.5.6. Such a controller exists irrespective of whether a feedback communi-
cation link is available, unlike the state estimation problem.

The aforementioned more realistic controller consists of a semirational coder
and decoder. Such a coder is introduced by Definition 6.3.9 (on p. 139). As for the
decoder, Definition 6.3.10 (on p. 140) serving the state estimation problem should be
slightly modified since now the decoder output is the control.

Definition 6.5.7. The decoder (6.5.2) is said to be r-step semirational recursive if
at any time t ∈

[
ir : (i + 1)r

)
, i = 1, 2, . . ., the current control is generated by

equations of the form:

u(t) := Ut−ir
{
zd[ir], s[(i− 1)r], . . . , s[t− 1]

}
,

zd[ir] := Zd
(
zd[(i− 1)r], Si

)
∈ R

σ, zd(0) = z0
d, (6.5.5)

where the functions Zd(·) and U0(·), . . . ,Ur−1(·) are semirational6 and Si is given
by (6.3.5) (on p. 139).

A particular case of the situation from this definition is where like in Defini-
tion 3.4.17 (on p. 47), the control program

Ui = col
(
u[ir], . . . , u[(i+ 1)r − 1]

)
(6.5.6)

for the entire forthcoming operation epoch is generated via an equation of the form:

Ui = U
(
zd[ir], Si

)

with a semirational function U(·).

6.6 Conditions for Stabilizability of Noiseless Linear Plants

6.6.1 The Domain of Stabilizability Is Determined by the Shannon Channel
Capacity

Theorem 6.6.1. Suppose that Assumptions 6.3.1, 6.3.4–6.3.6, and 6.5.5 hold. De-
note by λ1, . . . , λn the eigenvalues of the system (6.5.1) repeating in accordance
with their algebraic multiplicities, and by c the Shannon capacity (6.3.3) of the com-
munication channel. Then the following implications are true:

c > H(A) =
∑

λj :|λj|≥1

log2 |λj |

⇓
6See Definition 3.4.12 on p. 47.
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⇓
a) A semirational finite-step recursive decoder (6.5.5) and coder (3.4.4) (on

p. 47) without a communication feedback exist that stabilize the system
almost surely.

⇓
b) A coder with a communication feedback (6.2.3) and a decoder (6.5.2)

exist that stabilize the system almost surely.

⇓
c) For the arbitrary probability value p ∈ (0, 1), a coder with a

communication feedback (6.2.3) and a decoder (6.5.2) exist that stabilize
the system with the probability p or better.

⇓
d) A coder with a communication feedback (6.2.3) and a decoder (6.5.2)

exist that keep the time-average stabilization error bounded with a nonzero
probability .

⇓
c ≥ H(A)

The proof of this theorem will be given in Sects. 6.7 and 6.11.

Explanation 6.6.2. The evident implications a)⇒ b)⇒ c)⇒ d) are included in the
statement of the theorem due to the reasons commented on in Explanation 6.4.2.

Remark 6.6.3. The implications d) ⇒ c ≥ H(A) and c > H(A) ⇒ a) mean that
the condition c ≥ H(A) necessary for stabilizability with a nonzero probability in
the weak sense (6.5.4) by means of a controller with unlimited complexity, which
employs a perfect communication feedback, is simultaneously “almost sufficient”
for stabilizability with probability 1 in the strong sense (6.5.3) and in the absence of
any communication feedback by means of a realistic controller with limited compu-
tational power.

Explicit constructions of the coder and decoder constituting this more realistic
controller will be offered in Subsects. 6.11.1 and 6.11.2 (see p. 185). This controller
is still concerned by the notes from Remark 6.4.4 (on p. 141) that address the coding–
decoding scheme of information transmission across the channel.
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Thus in particular, this chapter demonstrates that whenever almost sure stabi-
lizability holds, it can be ensured by realistic controllers with bounded (as time pro-
gresses) algebraic complexity and memory consumption per step, which are based on
classic block coding decoding schemes of communication. This is true irrespective
of whether a communication feedback is available.

Remark 6.6.4. As was remarked in Sect. 6.4, the quantityH(A) is the topological en-
tropy of the linear system (6.5.1) by Theorem 2.4.2 (on p. 21). Hence Theorem 6.6.1
can be interpreted as an extension of Theorem 2.5.3 (on p. 26) to the case of a noisy
channel.

Remark 6.6.5. In the case of the noiseless channel (E = S and W (e|e) = 1), Theo-
rem 6.6.1 is also in harmony with Theorem 3.5.2 (on p. 52), where an undelayed and
lossless channel is considered.

Comment 6.6.6. In [201], the implication b)⇒ c ≥ H(A) was proved for channels
more general than discrete memoryless. The sufficiency of the inequality c > η(A)
for almost sure stabilizability was justified in [201] for a special discrete memoryless
channel: the erasure channel with a finite alphabet.

The comments from Sect. 6.4 on the similarity between Theorem 6.4.1 and the
classic Shannon’s channel coding theorem equally concern Theorem 6.6.1.

6.7 Necessary Conditions for Observability and Stabilizability

In this section, we prove the d)⇒ c ≥ H(A) parts of both Theorems 6.4.1 and 6.6.1.
So Assumptions 6.3.1 and 6.3.4–6.3.6 (and Assumption 6.5.5 in the case of Theo-
rem 6.6.1) are supposed to hold throughout the section. The proof is accomplished
via justifying the following two stronger statements.

Proposition 6.7.1. Let c < H(A). Then the state cannot be observed with a bounded
error: For any coder (6.2.3) and decoder (6.2.2), the following two claims hold:

(i) The estimation error is almost surely unbounded

lim
t→∞

‖x(t)− x̂(t)‖ =∞ a.s. (6.7.1)

(ii) This divergence is as fast as exponential. Specifically, pick α > 1 so that

log2 α <
H(A)− c

dim(x)
. (6.7.2)

Then
lim
t→∞

α−t‖x(t)− x̂(t)‖ =∞ a.s. (6.7.3)

The second statement is similar and concerns the stabilization problem.
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Proposition 6.7.2. Let c < H(A). Then the plant cannot be stabilized with a
bounded error: For any coder (6.2.3) and decoder (6.5.2), the following two claims
hold:

(i) The state is almost surely unbounded

lim
t→∞

‖x(t)‖ =∞ a.s. (6.7.4)

(ii) This divergence is as fast as exponential. Specifically, pick α > 1 so that (6.7.2)
holds. Then

lim
t→∞

α−t‖x(t)‖ =∞ a.s. (6.7.5)

Remark 6.7.3. Propositions 6.7.1 and 6.7.2 entail that d)⇒ c ≥ H(A) in both The-
orems 6.4.1 (on p. 140) and 6.6.1 (on p. 145).

For both theorems, the arguments underlying this remark are similar. For the
definiteness, we focus on the case of Theorems 6.4.1. Let d) be true. Suppose that
c < H(A). Then by (6.7.3), random times 0 < τ1 < τ2 < . . . exist such that

‖x(τi)− x̂(τi)‖ ≥ ατi for all i a.s.

Then

1

τi + 1

τi∑

θ=0

‖x(θ)− x̂(θ)‖ ≥ ‖x(τi)− x̂(τi)‖
τi + 1

≥ ατi

τi + 1
→∞ as i→∞ a.s.,

in violation of d). The contradiction obtained proves that c ≥ H(A). ⊓⊔
The remainder of the section is devoted to the proofs of Propositions 6.7.1 and

6.7.2. We start by revealing relations between them, as well as their parts (i) and (ii).
This will show that the proofs ultimately reduce to proving (i) of Proposition 6.7.1.

6.7.1 Proposition 6.7.2 Follows from Proposition 6.7.1

This is justified by the following simple observation.

Lemma 6.7.4. Consider a controller consisting of a coder (6.2.3) and decoder
(6.5.2). Then there exist another coder and decoder-estimator of the form (6.2.2)

e(t) = Eun[t, yun(0), . . . , yun(t), s(0), . . . , s(t− 1)],

x̂un(t) = X [t, s(0), s(1), . . . , s(t)] , (6.7.6)

which generate an estimate x̂un(t) of the state of the uncontrolled system (6.2.1)

xun(t+ 1) = Axun(t), xun(0) = x0, yun(t) = Cxun(t) (6.7.7)

and produce the estimation error identical to the stabilization error of the original
coder–decoder pair:

‖xun(t)− x̂un(t)‖ = ‖x(t)‖. (6.7.8)
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Proof. Let in (6.7.6) the decoder generate the estimate via the recursion

x̂un(t+ 1) = Ax̂un(t)−Bu(t), u(t) := U [t, s(0), s(1), . . . , s(t)] , x̂un(0) = 0,

where U(·) is taken from (6.5.2), and let the coder be defined by the formula

e(t) := E[t, yun(0)− Cx̂un(0), . . . , yun(t)− Cx̂un(t), s(0), . . . , s(t− 1)],

where E(·) is taken from (6.2.3). This formula presupposes that the coder also com-
putes the estimate x̂un(t).

Now we consider the process {x(t), u(t)}∞t=0 generated in the system (6.5.1) by
the original coder and decoder. Arguing by induction on t, it is easy to see that, first,
both coder–decoder pairs give rise to common sequences {e(t)}, {s(t)}, {u(t)}, and
second, y(t) = yun(t)− Cx̂un(t) and (6.7.8) does hold. ⊓⊔

Corollary 6.7.5. Proposition 6.7.2 follows from Proposition 6.7.1.

6.7.2 Relationship between the Statements (i) and (ii) of Proposition 6.7.1

This relation is revealed by the following.

Lemma 6.7.6. The statement (ii) of Proposition 6.7.1 follows from (i).

Proof. Note that (6.7.3) results from applying (6.7.1) to the process

x∗(t) := α−tx(t), x̂∗(t) := α−tx̂(t), e(t), s(t).

This is possible since the process is generated by (6.2.1), (6.2.2), and (6.2.3), where

A := α−1A, X∗[t, ·] := α−tX[t, ·],

and [y(0), . . . , y(t)] is replaced by

x∗(0), αx∗(1), . . . , αtx∗(t).

The conditionH(α−1A) > c holds since

H(α−1A) =
∑

λj

max{log2(α
−1|λj |), 0} =

∑

λj

[
max{log2 |λj |, log2 α}−log2 α

]

≥
∑

λj

max{log2 |λj |, 0} − n log2 α = H(A)− n log2 α > c,

where n = dim(x) and the last inequality follows from (6.7.2). ⊓⊔

Corollary 6.7.5 and Lemma 6.7.6 permit us to focus on proving (i) of Proposi-
tion 6.7.1. In doing so, we employ the concepts described in the next subsection.
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6.7.3 Differential Entropy of a Random Vector and Joint Entropy of a
Random Vector and Discrete Quantity

Differential Entropy

To describe a random vector V ∈ Rs = {v} with the known probability density
pV (·), the infinite number of bits is required. So strictly speaking, its entropy is
infinite. At the same time, approximately

h(V ) + sb+ log2 V
(
B1

0

)
(6.7.9)

bits suffice to describe V ∈ Rs to the b-bit accuracy [40]. Here the quantity h(V )
characterizes the vector at hand, is called the differential entropy of V, and is defined
as

h(V ) := −E log2 pV (V ) = −
∫

Rs

pV (v) log2 pV (v) dv. (6.7.10)

Remark 6.7.7. The differential entropy can take either negative or infinite values.

Remark 6.7.8. If the accuracy is high b ≈ ∞ and h(V ) ∈ R, the second addend
in (6.7.9) dominates the others. At the same time, this addend is common for all
random vectors. In view of this, the differential entropy is not so much absolute as a
comparative measure of uncertainty. Indeed, h(V2) − h(V1) is approximately equal
to the difference in the numbers of bits required to describe V2 and V1, respectively,
to any common accuracy.

Now consider a random quantity F ∈ F assuming a finite number of values
|F| < ∞. Note that the conditional distribution of V given F = f ∈ F has a
density pV (·|f).7 The conditional differential entropy hf (V ) = hF=f (V ) is defined
as the differential entropy produced by the conditional probability density of V given
F = f , and the averaged conditional differential entropy

h(V |F ) := EhF (V ) = −
∑

f∈F

P (F = f)

∫

Rs

pV (v|f) log2 pV (v|f) dv.

Explanation 6.7.9. We put pV (·|f) ≡ 0 whenever P (F = f) = 0.

Joint Entropy of a Random Vector and Discrete Quantity

Observe first that the following formula is immediate from (6.3.2):

H(F,G) = H(G|F ) +H(F ).

7Indeed for any measurable set M ⊂ R
s and f such that P (F = f) > 0, one has

P (V ∈ M |F = f) = P (F = f)−1P (V ∈ M ∧ F = f) ≤ P (F = f)−1P (V ∈ M) =
P (F = f)−1

R

M
pV (v) dv. So V(M) = 0 ⇒ P (V ∈ M |F = f) = 0; i.e., the conditional

distribution is absolutely continuous with respect to the Lebesgue measure.



6.7 Necessary Conditions for Observability and Stabilizability 151

Here both random quantities F,G assume only finitely many values.
This formula can be extended on the case where one of the quantifies is a random

vector to define the joint entropy of a random vector V and discrete quantity F as

H(V, F ) := h(V |F ) +H(F ). (6.7.11)

The joint conditional entropy HG=g(V, F ) = Hg(V, F ) =: H(g) is the joint en-
tropy of V and F with respect to the probability given G = g, and H(V, F |G) :=
EH(G) is the averaged joint conditional entropy. The conditional mutual informa-
tion IG=g(V, F ) and the averaged conditional mutual information I(V, F |G) are
defined likewise.

Some Properties of the Entropy and Mutual Information

Now we list general facts concerning the entropy and information that are required to
prove the necessity part of Theorem 6.4.1. In doing so, we suppose that the symbolF
(possibly, with indices) stands for random quantities assuming finitely many values,
either V̂ := V or V̂ := (V, F1), V is a deterministic function, and h(V ) ∈ R.

−∞ < H(V̂ |F ) ≤ H(V̂ ) < +∞; (6.7.12)

I(V, F ) = h(V )−h(V |F ) ∈ R; I[V, (F, F1)] = I[V, F ]+ I[V, F1|F ]; (6.7.13)

H(V, F1|F ) = h(V |F1, F ) +H(F1|F ) ≥ h(V |F ); (6.7.14)

h(V ) ≤ s

2
log2

(
2πeE‖V ‖2

)
; (6.7.15)

h(V |F ) = h
[
V − V(F )|F

]
. (6.7.16)

Remark 6.7.10. Inequality (6.7.15) expresses the maximizing property of the Gaus-
sian distribution: among all random vectors with zero mean and given variance, those
with symmetric Gaussian distribution have the maximum differential entropy [40].

Whenever the random variables V, F1, F2 form a Markov chain (i.e., V and F2

are independent given F1), the following data processing inequality holds:

I(V, F2) ≤ I(F1, F2). (6.7.17)

Justification of the listed properties can be found in many textbooks and mono-
graphs on information theory, see, e.g., [38, 40, 50, 60, 65, 68, 152, 188, 190]. At the
same time, though the joint entropy (6.7.11) is defined in terms of the classic entropy
of a discrete random quantity and the differential entropy of a random vector, it is
not as conventional and well studied a tool as the last two kinds of entropy. In view
of this, the formal justification of the properties (6.7.12) and (6.7.14) concerning the
joint entropy is offered in Appendix D.
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6.7.4 Probability of Large Estimation Errors

So far as asymptotic tracking does not concern the stable modes, it seems more or
less clear that the proof can be confined to systems with only unstable ones. This
fact will be formally justified in Subsect. 6.7.6 (starting on p. 156). It will also be
shown that without the loss of generality, one can assume that the initial state is a.s.
bounded and has a finite differential entropy. So from this point and until otherwise
stated, we adopt one more assumption.

Assumption 6.7.11. The system (6.2.1) has no stable |λ| < 1 eigenvalues λ. The
initial state x0 has a finite differential entropy. A (deterministic) constant b0 ∈ (0,∞)
exists such that ‖x0‖ ≤ b0 a.s.

In this subsection, we show that whenever the capacity (6.3.3) of the channel c

is less c < H(A) than the topological entropy H(A) = log2 | detA| of the system
(6.2.1), arbitrarily large estimation errors unavoidably occur with the probability ≈
1− c

H(A) (for large t). Specifically, the following claim holds.

Proposition 6.7.12. Let c < H(A). Then for any coder (6.2.3) and decoder (6.2.2),

P
[
‖x(t)− x̂(t)‖ > b

]
≥ 1− c

H(A)

− 1

t
× 1− h(x0) + c + n

2 log2

(
2πemax{b2, b20}

)

H(A)
∀b > 0, t ≥ 1, (6.7.18)

where b0 is the constant from Assumption 6.7.11 and n = dim(x).
For any sequence {b(t) > 0}∞t=0 such that log2 b(t)

t → 0 as t→∞, we have

lim
t→∞

P
[
‖x(t)− x̂(t)‖ > b(t)

]
≥ 1− c

H(A)
. (6.7.19)

Remark 6.7.13. In particular, (6.7.19) holds whenever b(t) is a constant or polyno-
mial in t.

Remark 6.7.14. It is easy to see that (6.7.19) is a simple corollary of (6.7.18).

Remark 6.7.15. Relation (6.7.19) implies that c ≥ η(A) whenever coder and decoder
exist that keep the mathematical expectation of the error (or at least the time average
1
t

∑t−1
θ=0 E‖x(θ)− x̂(θ)‖ ) bounded.

Comment 6.7.16. An inequality similar to (6.7.18) can be obtained from Lemma 3.2
[201].

By means of Lemma 6.7.4, Proposition 6.7.12 can easily be extended on the
stabilization problem. This results in the following.
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Corollary 6.7.17. Let c < H(A). Then for any controller consisting of a coder
(6.2.3) and decoder (6.5.2), the statements of Proposition 6.7.12 remain true, pro-
vided that in (6.7.18) and (6.7.19),

P
[
‖x(t)‖ > b

]
and P

[
‖x(t)‖ > b(t)

]

are substituted in place of, respectively,

P
[
‖x(t)− x̂(t)‖ > b

]
and P

[
‖x(t)− x̂(t)‖ > b(t)

]
.

The remainder of the subsection is devoted to the proof of Proposition 6.7.12.
We start with a technical fact. To state it, we denote by Et0 := {e(θ)}tθ=0 and St0 :=
{s(θ)}tθ=0 the total data injected into and received over the channel, respectively, up
to time t.

Lemma 6.7.18. For any coder–decoder pair with a feedback (6.2.2), (6.2.3), the con-
ditional differential entropy h

[
x(t)|St0

]
is finite and

h
[
x(t)|St0

]
≥ h

[
x0

]
+ t
[
H(A)− c

]
− c. (6.7.20)

Proof. Due to (6.2.1), the probability density pt(·|θ) of x(t) given Sθ0 evolves as
follows:

pt(x|θ) = | detA|−t × p0(A
−tx|θ).

By (6.7.10), this implies

h
[
x(t)

∣∣Sθ0
]

= h
[
x0

∣∣Sθ0
]
+ t log2 | detA|, (6.7.21)

where log2 | detA| = H(A) due to Assumption 6.7.11.
Since, thanks to Assumption 6.3.4, the random quantities x0, e(t), s(t) form a

Markov chain given St−1
0 , they satisfy (6.7.17):

I
[
x0, s(t)|St−1

0

]
≤ I
[
e(t), s(t)|St−1

0

]
.

Here I
[
e(t), s(t)|St−1

0

]
≤ c by (6.3.3) (on p. 138). So with regard to the second

relation from (6.7.13), we get

I[x0, S
t
0] = I

[
x0, (s(t), S

t−1
0 )

]
= I[x0, S

t−1
0 ] + I

[
x0, s(t)|St−1

0

]

≤ I[x0, S
t−1
0 ] + c.

Iterating the obtained inequality yields that

I[x0, S
t
0] ≤ c(t+ 1).

To complete the proof, we note that

I
[
x0, S

t
0

]
= h[x0]− h

[
x0

∣∣St0
]

by (6.7.13), and employ (6.7.21) with θ := t. ⊓⊔
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Proof of Proposition 6.7.12. Pick t and denote by Ω the random event

Ω ≡
{
‖x(t)− x̂(t)‖ ≤ b

}
,

by p its probability, and by I its indicator: I = 1 if Ω holds and I = 0 otherwise.
Then

H
[
x(t), I

∣∣St0
] (6.7.14)
≥ h

[
x(t)

∣∣St0
] (6.7.20)
≥ h[x0]− c + t

[
H(A)− c

]
. (6.7.22)

The random variable I takes only two values. So its entropy (given any event) does
not exceed 1. Hence

H
[
x(t), I

∣∣St0
] (6.7.14)

=== h
[
x(t)

∣∣I, St0
]
+H

[
I
∣∣St0
]
≤ 1+

∑

σ=0,1

P (I = σ)hI=σ

[
x(t)

∣∣St0
]
.

Repeating the arguments underlying (6.7.21) shows that

hI=0

[
x(t)

∣∣St0
]

= hI=0

[
x0

∣∣St0
]
+ tH(A).

Hence

H
[
x(t), I

∣∣St0
]
≤ 1 + (1− p)hI=0

[
x0

∣∣St0
]
+ (1− p)tH(A) + phI=1

[
x(t)

∣∣St0
]

(6.7.12)
≤ 1 + (1− p)hI=0

[
x0

]
+ (1 − p)tH(A) + phI=1

[
x(t)

∣∣St0
]
.

Here ‖x0‖ ≤ b0 a.s. by Assumption 6.7.11. So

hI=0

[
x0

] (6.7.15)
≤ n

2
log2

[
2πeE

(
|x0|2

∣∣J = 0
)]
≤ n

2
log2

[
2πeb20

]
.

Furthermore,

hI=1

[
x(t)

∣∣St0
] (6.2.2),(6.7.16)

====== hI=1

[
x(t) − x̂(t)

∣∣St0
] (6.7.12)
≤ hI=1

[
x(t)− x̂(t)

]

(6.7.15)
≤ n

2
log2

[
2πeE

(
‖x(t)− x̂(t)‖2︸ ︷︷ ︸
≤b2 whenever Ω holds

∣∣Ω
)]
≤ n

2
log2

[
2πeb2

]
.

Thus we see that

H
[
x(t), I

∣∣St0
]
≤ 1+(1−p)tH(A)+

n

2

[
(1− p) log2

(
2πeb20

)
+ p log2

(
2πeb2

)]

≤ 1 + (1− p)tH(A) +
n

2
log2

(
2πemax{b20, b2}

)
.

By combining this with (6.7.22), we get the following formula:

t
{[

1− (1− p)
]
H(A)− c

}
≤ 1 +

n

2
log2

(
2πemax{b20, b2}

)
− h(x0) + c .

It clearly implies (6.7.18). Remark 6.7.14 completes the proof. ⊓⊔
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6.7.5 Proof of Proposition 6.7.1 under Assumption 6.7.11

By Lemma 6.7.6, it suffices to prove the statement (i). Consideration can evidently
be confined to the system with full observation: y = x,C = I in (6.2.1). Suppose
to the contrary to (i) that a coder–decoder pair exists that keeps the estimation error
bounded with a positive probability. By sacrificing a small probability, the error can
be made uniformly bounded: a constant b > 0 exists such that

P
[∥∥x(t) − x̂(t)

∥∥ ≤ b ∀t
]
> 0. (6.7.23)

Since H(A) > c by the hypotheses of Proposition 6.7.1, it follows from Propo-
sition 6.7.12 that for any 1 > ρ > c

H(A) , a non-random time τ1 > 0 exists such
that

P
[∥∥x(t)− x̂(t)

∥∥ ≤ b
]
≤ ρ ∀t ≥ τ1.

Now we consider the tail of the process

x(t), x̂(t), e(t), s(t), t ≥ τ1 + 1

in the conditional probability space given that ‖x(τ1) − x̂(τ1)‖ ≤ b and S|τ10 = S.
Here we employ an S ∈ Sτ1+1 such that

P
[
Ω1

S

]
> 0, where Ω1

S
:=
{
‖x(τ1)− x̂(τ1)‖ ≤ b ∧ S|τ10 = S

}
.

The initial state x(τ1 + 1) = Aτ1+1x0 of this tail is a.s. bounded and

h(x0) ∈ R
(6.7.12),(6.7.21)
======⇒ h

[
x(τ1 + 1)|Ω1

S

]
∈ R.

At the same time, the above conditioning does not alter the channel (considered for
t > τ1) due to Assumptions 6.3.1 and 6.3.4 (on pp. 136 and 137). The signals

x̂(t), e(t), s(t), t ≥ τ1 + 1

are still generated by (6.2.2) and (6.2.3), where S and

A−τ1−1x(τ1 + 1), A−τ1x(τ1 + 1), . . . , A−1x(τ1 + 1)

are substituted for
[
s(0), . . . , s(τ1)

]
and

[
y(0), . . . , y(τ1)

]
,

respectively. Thus Proposition 6.7.12 can be applied once more. It follows that

P
[∥∥x(t)− x̂(t)

∥∥ ≤ b
∣∣Ω1

S

]
≤ ρ ∀t ≥ τ2(S).

For τ2 := maxS τ2(S), we have
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P
[∥∥x(τ2)− x̂(τ2)

∥∥ ≤ b
∣∣∣‖x(τ1)− x̂(τ1)‖ ≤ b

]

=
∑

S

P
[
S|τ10 = S

∣∣∣‖x(τ1)− x̂(τ1)‖ ≤ b
]
P
[∥∥x(τ2)− x̂(τ2)

∥∥ ≤ b
∣∣∣Ω1

S

]

≤ ρ
∑

S

P
[
S|τ10 = S

∣∣∣‖x(τ1)− x̂(τ1)‖ ≤ b
]

= ρ.

Now we repeat the above arguments with respect to the tail on t > τ2 and condi-
tioning given that

‖x(τ1)− x̂(τ1)‖ ≤ b, ‖x(τ2)− x̂(τ2)‖ ≤ b, S|τ20 = S.

By continuing likewise, we get a sequence 0 < τ1 < τ2 < . . . such that

pi+1|1,...,i :=

:= P
[∥∥x(τi+1)−x̂(τi+1)

∥∥ ≤ b
∣∣∣‖x(τ1)−x̂(τ1)‖ ≤ b, . . . , ‖x(τi)−x̂(τi)‖ ≤ b

]
≤ ρ

for all i. Hence

P
[∥∥x(t)− x̂(t)

∥∥ ≤ b ∀t
]
≤ P

[∥∥x(τi)− x̂(τi)
∥∥ ≤ b ∀i

]

= lim
k→∞

P
[∥∥x(τi)− x̂(τi)

∥∥ ≤ b ∀i = 1, . . . , k
]

= lim
k→∞

P
[∥∥x(τ1)− x̂(τ1)

∥∥ ≤ b
]
×

k∏

i=2

pi|1,...,i−1 ≤ lim
k→∞

k∏

i=1

ρ
ρ<1
== 0,

in violation of (6.7.23). The contradiction obtained proves (6.7.1). ⊓⊔

6.7.6 Completion of the Proofs of Propositions 6.7.1 and 6.7.2: Dropping
Assumption 6.7.11

We do not suppose any longer that Assumption 6.7.11 (on p. 152) holds.
Extension of Proposition 6.7.1 (on p. 147) on systems with both unstable and

stable modes is based on the following proposition. To state it, we introduce the
invariant subspace Munst of the matrix A related to the unstable part σ+ := {λ ∈
σ(A) : |λ| ≥ 1} of its spectrum, and the restriction A+ of A on Munst viewed as an
operator in Munst.

Proposition 6.7.19. Suppose that some coder (6.2.3) and decoder (6.2.2) keep the
estimation error bounded8 with the probability better than p for the primal system
(6.2.1). Then such coder and decoder can be constructed for the following system:

x+(t+1) = A+x+(t), x+(t) ∈Munst, x+(0) = x+
0 , y+(t) = Cx+(t) (6.7.24)

with some initial random vector x+
0 ∈ Munst that satisfies Assumptions 6.3.4 and

6.3.5 (on p. 137) and is a.s. bounded and has a finite differential entropy.

8See Definition 6.2.1 on p. 135.
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Remark 6.7.20. Generally speaking, the system (6.7.24) is considered on a new un-
derlying probability space. However, Assumptions 6.3.1 and 6.3.4–6.3.6 are still true
and the channel parametersW (s|e) remain unchanged.

Explanation 6.7.21. Equations (6.7.24) describe the processes in the primal system
(6.2.1) starting at x(0) = x+

0 ∈ Munst. A certain technical nontriviality of Proposi-
tion 6.7.19 comes from the fact that due to Assumption 6.3.5, the probability to start
at x(0) ∈ Munst is zero (if Munst 6= Rn). At the same time, the assumptions of the
lemma allow the initial coder–decoder pair to produce asymptotically infinite estima-
tion errors with not only zero but also a positive probability. To keep the estimation
error bounded for the processes in the system (6.7.24), this pair will be modified.

Remark 6.7.22. Proposition 6.7.1 follows from Lemma 6.7.6 (on p. 149), Proposi-
tion 6.7.19, and the fact established in Subsect. 6.7.5.

Indeed, it suffices to prove (i) of Proposition 6.7.1 by Lemma 6.7.6. Suppose to
the contrary that (i) is violated: A coder–decoder pair exists that keeps the estimation
error bounded with a nonzero probability for the original system (6.2.1). Then by
Proposition 6.7.19, such a pair also exists for the auxiliary system (6.7.24). However
this contradicts the fact established in Subsect. 6.7.5 since H(A) = H(A+). The
contradiction obtained proves that (i) does hold.

Remark 6.7.23. Proposition 6.7.2 (on p. 148) follows from Proposition 6.7.1 (on
p. 147) by Corollary 6.7.5 (on p. 149).

Thus it remains to prove Proposition 6.7.19. We start with a simple computation.

Lemma 6.7.24. Suppose that Assumptions 6.3.1 and 6.3.4 (on pp. 136 and 137) hold
and that a decoder (6.2.2) and a feedback coder (6.2.3) are taken. Then the joint
distribution of the variables x0, E

t
0 = (e0, . . . , et), and St0 = (s0, . . . , st) is given

by

P [dx, dSt0, dE
t
0]

=

t∏

j=0

W (sj |ej)δ
[
ej,Ex

(
j, x, Sj−1

0

)]
dsjdejP 0(dx), (6.7.25)

where Ex(·) is obtained from the right-hand side of the coder equation (6.2.3):

Ex[t, x0, S
t−1
0 ] := E[t, Cx0, . . . , CA

tx0, S
t−1
0 ]

(
(6.2.1),(6.2.3)
======= e(t)

)
. (6.7.26)

Furthermore, P 0(dx) is the probability distribution of x0, and δ(e, e′) := 1 if e = e′

and δ(e, e′) := 0 otherwise.

Proof. The proof will be by induction on t. For t = 0,

P [dx, dSt0, dE
t
0] = P [dx, ds0, de0] = P [dx, ds0|e0]P (de0)

Assumptions 6.3.1, 6.3.4
=========== P [dx|e0]P [ds0|e0]P (de0)

Assumption 6.3.1
========

= W (s0|e0)P [dx, de0]ds0
(6.7.26)
==== W (s0|e0)δ

[
e0,Ex(0, x)

]
ds0de0P 0(dx);
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i.e., (6.7.25) does hold for t = 0. Suppose that it holds for some t = 0, 1, . . .. Then

P
[
dx, dSt+1

0 , dEt+1
0

]
= P

[
dx, dSt0, dst+1, dE

t
0, det+1

]

= P
[
dx, dSt0, dst+1, dE

t
0

∣∣et+1

]
P
[
det+1

]

Assumptions 6.3.1, 6.3.4
=========== P

[
dx, dSt0, dE

t
0

∣∣et+1

]
P
[
dst+1

∣∣et+1

]
P
[
det+1

]

= W (st+1|et+1)P
[
dx, dSt0, dE

t
0, det+1

]
dst+1

(6.7.26)
==== W (st+1|et+1)δ

[
et+1,Ex(t+ 1, x, St0)

]
P
[
dx, dSt0, dE

t
0,
]
dst+1det+1.

This and the induction hypothesis show that (6.7.25) does hold for t = t+ 1. ⊓⊔

Corollary 6.7.25. Given a coder and a decoder-estimator, we denote by Ω the ran-
dom event of keeping the error bounded (see the first formula in (6.2.6) on p. 135).
The conditional probability of this event given x(0) = x can be chosen so that it does
not depend on the distribution of the initial state x(0) provided Assumption 6.3.4
holds. This is true irrespective of whether this distribution has a probability density.

Indeed thanks to Lemma 6.7.24, the conditional distribution

P
[
dS|t0

∣∣x(0) = x
]

=
∑

E|t0

t∏

j=0

dsjW (sj |ej)δ
[
ej ,Ex(j, x, S|j−1

0 )
]

=

t∏

j=0

dsjW
[
sj |Ex(j, x, S|j−1

0 )
]

does not depend on the distribution of the initial state. The proof is completed by
observing that

P (Ω|x) = lim
k→∞

lim
l→∞

∫
{
Sl

0:|Atx−X(t,S|t0)|<k ∀t=0,...,l
}P

[
dS|l0

∣∣x(0) = x
]
,

where X(·) is the function from (6.2.2) (on p. 134).
We proceed with the following simple observation.

Lemma 6.7.26. Any random vector V ∈ Rs with a bounded probability density
pV (v) ≤ p∞ and a finite variance has a finite differential entropy h(V ) ∈ R.

Proof. The inequality h(V ) <∞ follows from from (6.7.15). At the same time,

h(V ) = −E log2 pV (V ) ≥ − log2 p∞ > −∞. ⊓⊔

Proof of Proposition 6.7.19. Consider a coder (6.2.3) and a decoder (6.2.2) that keep
the estimation error bounded with the probability better than p for the primal system
(6.2.1). By invoking the notation p0(·) from Assumption 6.3.5 (on p. 137) and Ω
from Corollary 6.7.25 and putting
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Q>p := {x ∈ R
n : P (Ω|x) > p},

we get

p < P (Ω) =

∫

Rn

P (Ω|x)p0(x) dx⇒
∫

Q>p

p0(x) dx = P (x0 ∈ Q>p) > 0⇒

⇒ ∃c > 0 : P (x0 ∈ Q) > 0, where Q := {x ∈ Q>p : p0(x) ≤ c}.

Then a compact subset
◦
Q⊂ Q exists such that [57, Sec.134Fb]

P [x0 ∈
◦
Q] =

∫
◦
Q

p0(x) dx > 0.

Now we pass to the probability space related to the probability given x0 ∈
◦
Q. This

evidently keeps Assumptions 6.3.1 and 6.3.4–6.3.6 true and the channel parameters
W (s|e) unchanged. We assume that all random variables inherit their initial nota-
tions. Note also that in the new probability space, the initial vector x0 is a.s. bounded
and has a bounded density.

Now we denote by Mst the invariant subspace of A related to the stable part
σ− := {λ ∈ σ(A) : |λ| < 1} of its spectrum σ(A). We also introduce the projector

π+ onto Munst parallel to Mst and the compact set Q+ := π+

◦
Q⊂ Munst, and we

define the initial vector in (6.7.24) to be x+
0 := π+x0. This vector evidently has a

bounded probability density,

x+
0 ∈ Q+ almost surely, (6.7.27)

and so the second moment of x0 is finite. Then Lemma 6.7.26 yields h(x+
0 ) ∈ R.

The multivalued function

x+ ∈ Q+ 7→ V(x+) := {x− ∈ L− : x+ + x− ∈
◦
Q}

has a closed graph
◦
Q and so is upper-hemicontinuous. Thus there exists a single-

valued measurable selector [217, Sec.I.7]

x+ ∈ Q+ 7→ χ−(x+) ∈ V(x+).

By extending this selector as a measurable function on Munst and putting

χ(x+) := x+ + χ−(x+),

we get

x+ ∈ Q+ ⇒ χ(x+) ∈
◦
Q⊂ Q⇒ P

[
Ω|χ(x+)

]
> p. (6.7.28)

Now we are in a position to transform the original coder–decoder pair (6.2.3),
(6.2.2) serving the primal system into that keeping the estimation error bounded for
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the auxiliary one (6.7.24). We note first that the system (6.7.24) is observable thanks
to Assumption 6.3.6 (on p. 137). So for any t ≥ n − 1, there exists a deadbeat
observer, i.e., a linear transformation

[y+(0), . . . , y+(t)]
St7→ x+(0),

where y+(i) are taken from (6.7.24). We define a new coder and decoder as follows.
For t = 0, . . . , n− 1, they in fact do nothing. However, for the sake of definiteness,
we pick e∗ ∈ E and put

E+[t, y(0), . . . , y(t), St−1
0 ] := e∗, X+[t, St0] := 0.

For t ≥ n, the new coder and decoder act as follows:

ω =
[
y+(0), . . . , y+(t), St−1

0

] St7→
[
x+(0), St−1

0

]
7→ E+[t, ω]

:= E
{
t− n,Cχ[x+(0)], . . . , CAt−nχ[x+(0)], St−1

n

}
,

x̂+(t) := X+

[
t, St0

]
:= π+A

nX
[
t− n, Stn

]
.

Now consider the process

ξ(t) = [x(t), y(t), e(t), s(t), x̂(t)], t = 0, 1, . . .

generated by the original coder–decoder pair in the primal system (6.2.1) when
started with the initial random state χ[x+

0 ]. It is easy to see that

π+x(t), y+(t) = Cπ+x(t), e(t− n), s(t− n), π+A
nx̂(t− n)

is a process generated by the new coder and decoder in the auxiliary system (6.7.24).
Here x̂(t) := 0, e(t) := e∗ for t < 0, and s(−n), . . . , s(−1) are mutually indepen-
dent and independent of ξ(t), t = 0, 1, . . . random quantities each with the distribu-
tion W (s|e∗). Hence for t ≥ n,

‖x+(t)− x̂+(t)‖ = ‖π+x(t) − π+A
nx̂(t− n)‖ ≤ ‖π+‖‖x(t)−Anx̂(t− n)‖

= ‖π+‖‖Anx(t− n)−Anx̂(t− n)‖ ≤ ‖π+‖‖An‖‖x(t− n)− x̂(t− n)‖.

So for the new coder–decoder pair and the system (6.7.24), the probability of keeping
the estimation error bounded is no less than that for the process ξ(t), t = 0, 1, . . ..
The proof is completed by noting that the latter is given by

P (Ω) = EP [Ω|χ(x+
0 )]

(6.7.27),(6.7.28)
======⇒ P (Ω) > p. ⊓⊔

6.8 Tracking with as Large a Probability as Desired: Proof of the
c > H(A) ⇒ b) Part of Theorem 6.4.1

In this section, we suppose that the assumptions of Theorem 6.4.1 (on p. 140) hold
and c > H(A). The objective is to construct coder–decoder pairs that ensure b) of
Theorem 6.4.1. In doing so, one more assumption is adopted until otherwise stated.
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Assumption 6.8.1. The system (6.2.1) has no stable |λ| < 1 eigenvalues λ.

In the general case, a tracking observer will be constructed in Sect. 6.10 by apply-
ing that presented below to the unstable part of the system, like in Subsect. 3.8.11
(starting on p. 88).

Observation 6.8.2. Due to Assumption 6.8.1,H(A) = log2 | detA| and so the coni-
dition c > H(A) takes the form

log2 | detA| < c. (6.8.1)

We start with preliminaries concerning some well known facts and constructions
from the classic information theory (see, e.g., [37, 38, 50, 59, 190]).

6.8.1 Error Exponents for Discrete Memoryless Channels

Block Code

A block code with block length r is a finite number N of the channel input code
words, each of length r,

E1, . . . , EN , Ei = (ei0, . . . , e
i
r−1), eij ∈ E. (6.8.2)

This code is used to notify the recipient which choice ofN possibilities, labeled by i,
is taken by the informant by sending the corresponding word Ei across the channel.
The average number of bits per channel use that can be communicated in this way

R :=
log2N

r
(6.8.3)

is called the rate of the code. The decoding rule is a method to associate a unique i
with any output word of length r, that is, a map Dr : Sr → [1 : N ], where

Sr =
{
S = (s0, . . . , sr−1) : sj ∈ S ∀j

}

is the set of all such output words. The probability of incorrect decoding given that
the word Ei is sent over the channel is as follows:

erri := P
[
Dr(S) 6= i

∣∣∣Ei
]

=
∑

S:Dr(S)6=i

r−1∏

j=0

W (sj |eij), (6.8.4)

where W (s|e) are the channel transition probabilities from Assumption 6.3.1 (on
p. 136). The maximum probability of error is given by

ERR = ERR
[
E1, . . . , EN ,Dr(·), r

]
:= max

i=1,...,N
erri. (6.8.5)
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Error Exponent

One of the basic results of the Shannon theory [188, 190, 214] is the following.

Theorem 6.8.3. For any probability value p ∈ (0, 1) and block length r, letR(r, p) :=
maxR denote the maximum rate (6.8.3) achievable over block codes with block
length r and the error probability ERR ≤ p . Then

lim
r→∞

R(r, p) = c ∀p ∈ (0, 1),

where c is the capacity (6.3.3) of the channel.

This yields that it is possible to send information at any rate R < c through the
channel with as small a probability of error as desired by means of a proper block
code. This claim is not true if R > c.

In the first caseR < c, the error probability decreases exponentially as a function
of the block length. For a rigorous statement, we employ the symbols . and h in-
troduced in Notation 3.8.32 (on p. 78). The following result is straightforward from,
e.g., Lemma IV.1 and Theorem IV.1 [37] (see also [50, 52, 59]).

Theorem 6.8.4. For any 0 < R < c and r = 1, 2, . . . , there exist N h 2rR input
code words (6.8.2) and a decoding rule Dr(·) such that the maximum probability of
error (6.8.5) obeys the bound

ERR . 2−rF (R,W ), F (R,W ) > 0. (6.8.6)

Here F (R,W ) is independent of r but depends on the rate R and the channel W .

6.8.2 Coder–Decoder Pair without a Communication Feedback

Now we introduce a coder–decoder pair (6.2.4), (6.2.2) that underlies the c >
H(A) ⇒ b) part of Theorem 6.4.1 (on p. 140). This pair resembles that from Sub-
sect. 3.8.4. In particular, it employs a contracted quantizer.9 The major difference is
that now the operation epochs [τi : τi+1) of the observer are of increasing duration:
τi+1−τi = ri →∞ as i→∞, whereas this duration was constant in Subsect. 3.8.4.

Remark 6.8.5. This difference will be discarded in the case where a communication
feedback is available (see Subsect. 6.9.1 starting on p. 168).

To construct an observer, we pick

1) two numbers η and R such that

log2 | detA| = H(A) < η < R < c;

2) a parameter γ > ‖A‖;
and then for any r = 1, 2, . . ., we choose

9See Definition 3.8.7 on p. 70, where Ass := A.
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3) a code book Er with N = N ′r h 2rR input code words (6.8.2) each of length r
and a decoding rule Dr(·) with the properties described in Theorem 6.8.4; and

4) an r-contracted quantizer Qr from Lemma 3.8.36 (on p. 80) applied to Ass :=
A.10.

Explanation 6.8.6. Inequality (6.8.1) makes 1) possible.

Explanation 6.8.7. In 2), ‖A‖ = maxx:‖x‖=1 ‖Ax‖ is the matrix norm associated
with the vector norm ‖ · ‖ from Definition 3.8.6 (on p. 69).

Observation 6.8.8. Whenever r is large enough r ≥ r∗, the quantizer outputs in-
cluding the alarm signal z can be encoded by code words from the code book Er.

Indeed, this holds whenever N ′′r + 1 ≤ N ′r, where N ′′r denotes the number of the
quantizer levels. By Lemma 3.8.36, N ′′r . 2rη, whereas N ′r h 2rR and η < R. It
follows that the inequality N ′′r + 1 ≤ N ′r does hold for r ≈ ∞.

Finally, we introduce the sequence of integers

ri := i+ r0 i = 0, 1, . . . , (6.8.7)

where
r0 ≥ max{n, r∗} (6.8.8)

is an integer parameter of the observer and r∗ is taken from Observation 6.8.8.

Description of the Coder and Decoder

Both coder and decoder compute their own estimates x̂c(t), x̂d(t) and bounds for the
estimate exactness δc(t), δd(t), respectively. Initially, they are given common and
arbitrarily chosen values of

x̂c(0) = x̂d(0) = x̂0 and δc(0) = δd(0) = δ0 > 0.

Remark 6.8.9. The inequality δ0 ≥ ‖x̂0 − x(0)‖ may be violated.

At any time t, both coder and decoder compute the next estimates and the bounds
via the recursions

x̂c(t+ 1) := Ax̂c(t), x̂d(t+ 1) := Ax̂d(t),

δc(t+ 1) := δc(t), δd(t+ 1) := δd(t). (6.8.9)

However, at the times t = τi, where

τi := r0 + · · ·+ ri−1 = i · r0 +
i(i− 1)

2
(6.8.10)

and ri is given by (6.8.7), they preface (6.8.9) by the following operations.

The coder (at the times t = τi, i = 1, 2, . . .)

10We also invoke Remark 3.8.37 on p. 80 here.
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c.1) Proceeding from the previous measurements, calculates the current state x(τi);
c.2) Employs the quantizer Qri and computes the quantized value qc(τi) of the cur-

rent scaled estimation error

ε(τi) :=
[
δc(τi)

]−1[
x(τi)− x̂c(τi)

]
; (6.8.11)

c.3) Encodes the quantized value qc(τi) by means of the code book Eri . The ob-
tained code word of length ri is transmitted across the channel during the next
operation epoch [τi : τi+1);

c.4) Finally, corrects the estimate and then the exactness bound

x̂c(τi) := x̂c(τi) + δc(τi)
⋆
qc (τi), δc(τi) := δc(τi)×

(
〈qc(τi)〉κ,γ

)ri

,

where
⋆
q:=

{
q if q 6= z

0 otherwise
, 〈q〉

κ,γ :=

{
κ if q 6= z

γ otherwise
, (6.8.12)

and κ ∈ (0, 1) is the parameter from Lemma 3.8.36 (on p. 80).

Only after this, the coder performs the computations in accordance with (6.8.9).

Explanation 6.8.10. The step c.1) is possible since the system (6.2.1), which has no
stable modes by Assumption 6.8.1, is observable thanks to Assumption 6.3.6 (on
p. 137).

Remark 6.8.11. We recall that the quantized value of any vector outside the unit ball
is the alarm symbol z.

Observation 6.8.12. The above coder does not employ the communication feedback,
i.e., has the form (6.2.4) (on p. 135).

The decoder (at times t = τi, i = 2, 3, . . .)

d.1) Applies the decoding rule Dri−1 to the data received within the previous op-
eration epoch [τi−1 : τi) and thus computes the decoded value qd(τi) of the
quantized and scaled estimation error qc(τi−1);

d.2) Then corrects successively the estimate and the exactness bound

x̂d(τi) := x̂d(τi) + δd(τi)A
ri−1

⋆
qd (τi),

δd(τi) := δd(τi)×
(
〈qd(τi)〉κ,γ

)ri−1

. (6.8.13)

Only after this does it perform the computations from (6.8.9).

Remark 6.8.13. The quantized valued qd(τi) determined by the decoder may be in-
correct qd(τi) 6= qc(τi−1) because of communication errors.

Remark 6.8.14. Instead of multiplying δc(τi) by κri or γri at the time τi with keep-
ing δc(t) constant during the next operation epoch [τi : τi+1), the coder can con-
stantly multiply δc(t) by κ or γ at each step. Computing the large power Ari−1

employed in (6.8.13) can be distributed over the epoch [τi−1 : τi) in the same way.
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Remark 6.8.15. The hint from the previous remark cannot be directly extended on
the decoder and quantity δd since the decoder becomes aware of the multiplier (κ or
γ) only at the end of the current epoch [τi−1 : τi). However, the decoder can perform
both computations and at time τi choose between δd(τi−1)κ

ri−1 and δd(τi−1)γ
ri−1 .

Remark 6.8.16. To communicate information across the channel, the proposed coder–
decoder pair employs block codes with increasing block lengths ri. At the same time,
the estimate x̂(t) of the current state x(t) is produced at the current time t.

6.8.3 Tracking with as Large a Probability as Desired without a
Communication Feedback

Now we show that the above coder–decoder pair fits to track the state with as large a
probability as desired.

Proposition 6.8.17. For the arbitrary probability value p ∈ (0, 1), the coder–
decoder pair described in Subsect. 6.8.2 tracks (6.2.5) the state with probability p
or better provided that the parameter r0 from (6.8.7) is large enough r0 ≥ r0(p).
Corollary 6.8.18. Suppose that Assumption 6.8.1 holds and that H(A) < c. Then
the statement b) from Theorem 6.4.1 (on p. 140) is true.

The remainder of the subsection is devoted to the proof of Proposition 6.8.17.
The values of the quantities x̂d, x̂c, δc, δd before and after the update at the time

τi are marked by − and +, respectively . We start with the following key fact.

Lemma 6.8.19. At any event where the decoder always decodes the data correctly

qd(τi) = qc(τi−1) ∀i ≥ 2,

the coder–decoder pair ensures asymptotic tracking (6.2.5) (on p. 135). Furthermore
∥∥x(τi)− x̂−c (τi)

∥∥ ≤ Kκ
τi , i = 1, 2, . . . , (6.8.14)

where the constant K does not depend on i (but may depend on the event).

Proof. We start with showing that an index i = 1, 2, . . . exists for which

‖ε(τi)‖ ≤ 1, (6.8.15)

where the scaled error ε(τi) is defined in (6.8.11). Indeed otherwise,

qc(τi) = z, δ−c (τi+1) = δ−c (τi)γ
ri ∀i ≥ 1; x̂c(t+ 1) = Ax̂c(t) ∀t.

So for i ≥ 2, we have

‖ε(τi)‖ =
[
γ

Pi−1
j=1 rjδ0

]−1∥∥∥Aτi
[
x0 − x̂0

]∥∥∥ (6.8.10)
===

γr0

δ0
γ−τi

∥∥∥Aτi
[
x0 − x̂0

]∥∥∥

≤
(‖A‖

γ

)τi

γr0
‖x0 − x̂0‖

δ0

γ>‖A‖−−−−→ 0 as i→∞
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in violation of the hypothesis ‖ε(τi)‖ > 1 ∀i. Thus (6.8.15) does hold for some i.
Now consider an index i such that (6.8.15) holds. Then (6.8.15) is still true for

i := i+ 1. Indeed

‖ε(τi+1)‖ (6.8.11)
===

[
δ−c (τi+1)

]−1∥∥x(τi+1)− x̂−c (τi+1)
∥∥

(6.2.1),(6.8.10),(6.8.12)
========== κ

−ri
[
δc(τi)

]−1 ×
∥∥∥Arix(τi)−Ari

[
x̂−c (τi) + δ−c (τi)qc(τi)

]∥∥∥

= κ
−ri

∥∥∥Ari

{
δ−c (τi)

]−1[
x(τi)− x̂−c (τi)

]
︸ ︷︷ ︸

v

−qc(τi)
}∥∥∥.

Here qc(τi) is the quantized value of the vector v. So far as the quantizer is taken
from Lemma 3.8.36 (on p. 80), it is ri-contracted with the contraction rate κ2ri . So
(3.8.9) (on p. 70) yields

‖ε(τi+1)‖ ≤ κ
ri < 1; (6.8.16)

i.e., (6.8.15) does hold for i := i+ 1.
It follows that (6.8.15) is true for all i ≥ i, where i is large enough. By (6.8.12),

δ−c (τi) = δ−c (τi)κ
Pi−1

j=i
rj .

We proceed by taking into account (6.8.11) and (6.8.15)

∥∥x(τi)− x̂−c (τi)
∥∥ ≤ δ−c (τi) = δκ

Pi−1
j=0 rj

(6.8.10)
== δκτi ,

where δ := δc(τi)κ
−Pi−1

j=0 rj .

This evidently implies (6.8.14) and shows that the coder tracks the state.
As for the decoder, observe that

x̂+
d (τi) = x̂−c (τi), i = 1, 2, . . . . (6.8.17)

Indeed for i = 1, this relation is evident. Suppose that this relation is true for some
i ≥ 1. Due to the absence of transmission errors,

δ±d (τj) = δ±c (τj−1), j = 2, 3, . . . .

So

x̂+
d (τi+1)

(6.8.13)
=== x̂−d (τi+1) + δ−d (τi+1)A

ri
⋆
qd (τi+1)

(6.8.9)
=== Ari x̂+

d (τi) + δ−c (τi)A
ri

⋆
qc (τi)

(6.8.17)
=== Ari

[
x̂−c (τi) + δ−c (τi)

⋆
qc (τi)

]

(6.8.12)
=== Ari x̂+

c (τi)
(6.8.9)
=== x̂−c (τi+1);

i.e., (6.8.17) holds for i := i+ 1. Thus this relation is true for all i ≥ 1.
Whenever τi < t ≤ τi+1, we have by (6.8.9)
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∥∥x(t) − x̂d(t)
∥∥ =

∥∥∥At−τi
[
x(τi)− x̂+

d (τi)
]∥∥∥

(6.8.17)
≤ ‖A‖t−τi

∥∥x(τi)− x̂−c (τi)
∥∥,

max
τi<t≤τi+1

∥∥x(t) − x̂d(t)
∥∥ (6.8.14)
≤ K‖A‖riκ

τi = K2ri log2 ‖A‖+τi log2 κ

(6.8.7),(6.8.10)
====== K2(i+r0) log2 ‖A‖+

[
i·r0+ i(i−1)

2

]
log2 κ . (6.8.18)

So far as log2 κ < 0, this maximum converges to 0 as i→∞; i.e., (6.2.5) (on p. 135)
does hold with x̂(t) := x̂d(t). ⊓⊔

Now we show that the assumption of Lemma 6.8.19 holds with high probability
provided the parameter r0 in (6.8.7) is large enough.

Lemma 6.8.20. The probability perr that the decoder decodes at least one message
incorrectly does not exceed

perr ≤ KR,W,F 2−r0F .

Here the constant KR,W,F does not depend on r0 and the inequality holds with any
F ∈ (0, F (R,W )), where F (R,W ) is taken from (6.8.6).

Proof. Denote by Ei and Si the messages of length ri−1 formed by the coder at
time τi−1 and received by the decoder at time τi, respectively. For simplicity of
notations, we assume that the map Dr(·) from Theorem 6.8.4 takes values directly
in the input code book. The symbol perr(i) stands for the probability that decoding
of Si is wrong: perr(i) = P

{
Dri [Si] 6= Ei

}
. Since the estimate (6.8.6), along with

(6.8.4) and (6.8.5), implies that

max
E∈Eri−1

P
{
Dri−1 [Si] 6= Ei

∣∣∣Ei = E
}
≤ cR,W,F 2−ri−1F ,

we have

perr(i) =
∑

E∈Eri−1

P
[
Ei = E

]
P
{

Dri−1 [Si] 6= Ei

∣∣∣Ei = E
}

≤ cR,W,F
∑

E∈Eri−1

P
[
Ei = E

]
2−ri−1F (6.8.7)

=== cR,W,F 2−(i−1+r0)F ;

perr ≤
∞∑

i=1

perr(i+ 1) ≤ cR,W,F
∞∑

i=1

2−(i+r0)F =
cR,W,F
2F − 1

2−r0F . ⊓⊔

Comment 6.8.21. As was shown in [164], the probability of error cannot be made
small when stationary fixed-length block coding–decoding schemes are employed.

Proof of Proposition 6.8.17. It results from Lemmas 6.8.19 and 6.8.20. ⊓⊔
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6.9 Tracking Almost Surely by Means of Fixed-Length Code
Words: Proof of the c > H(A) ⇒ a) part of Theorem 6.4.1

The observer from the previous section employs code words whose lengths increase
without limits as the estimation process progresses. So the complexities of the coder
and decoder should increase accordingly.11 In this section, we show that whenever
a communication feedback is available, asymptotic state tracking can be ensured
by a coder and decoder that perform a limited number of operations per step and
communicate information by means of fixed-length code words. Moreover, the state
can be tracked almost surely, whereas a weaker tracking with as large a probability
as desired was ensured in the previous section.

In doing so, we still consider the system (6.2.1) with no stable modes, i.e., adopt
Assumption 6.8.1, until otherwise stated. Extensions on systems with both stable and
unstable modes will be given in Sect. 6.10. We also suppose that the assumptions of
Theorem 6.4.1 (on p. 140) hold and that c > H(A).

6.9.1 Coder–Decoder Pair with a Communication Feedback

To ensure almost sure state tracking, the coder–decoder pair from Subsect. 6.8.2 is
modified as follows:

i) The operation epochs are chosen to be of equal and fixed duration r0; i.e., (6.8.7)
and (6.8.10) are replaced by, respectively,

ri := r0 and τi := ir0;

ii) Instead of forming its own sequences of state estimates {x̂c(t)} and exactness
bounds {δc(t)}, the coder duplicates those generated by the decoder.

Explanation 6.9.1. To accomplish ii), the coder should be aware about the results
s(t) of transmission across the channel. This becomes possible thanks to the com-
munication feedback.

Specifically, now the coder prefaces (6.8.9) by the following actions at times t =
τi, i = 1, 2, . . .:

• It carries out the step c.1) (see p. 164) of the previous coder;
• Then it duplicates the steps d.1) and d.2) of the decoder;
• After this, the steps c.2) and c.3) of the previous coder are carried out.

Explanation 6.9.2. Now step c.4) of the previous coder is in fact accomplished by
carrying out step d.2) of the decoder.

For the convenience of the reader, now we describe the operation of the new
coder in a more systematic way.

The coder (at the times t = τi, i = 1, 2, . . .)

11The same feature is characteristic for anytime coding–decoding schemes considered in
[164, 166].
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cc.1) Proceeding from the measurements obtained during the previous operation
epoch, calculates the current state x(τi);

cc.2) Applies the decoding rule Dr0 to the data received within the previous epoch
[τi−1 : τi] via the feedback communication channel and thus gets aware of the
decoded value qd(τi) produced by the decoder at time τi;

cc.3) Corrects successively the estimate and the exactness bound by duplicating the
actions of the decoder:

x̂c(τi) := x̂c(τi) + δc(τi)A
r0

⋆
qd (τi),

δc(τi) := δc(τi)×
(
〈qd(τi)〉κ,γ

)r0
; (6.9.1)

cc.4) Employs the quantizer Qr0 and computes the quantized value qc(τi) of the
current scaled estimation error

ε(τi) :=
[
δc(τi)

]−1[
x(τi)− x̂c(τi)

]
; (6.9.2)

cc.5) Encodes the quantized value qc(τi) by means of the code book Er0 . The ob-
tained code word of the fixed length r0 is transmitted across the channel during
the next operation epoch [τi : τi+1).

Only after this does the coder perform the computations in accordance with (6.8.9).
The decoder is not altered. In other words, it still operates as follows.

The decoder (at times t = τi, i = 2, 3, . . .)

d.1) Applies the decoding rule Dr0 to the data received within the previous oper-
ation epoch [τi−1 : τi) and thus computes the decoded value qd(τi) of the
quantized and scaled estimation error qc(τi−1);

d.2) Corrects successively the estimate and the exactness bound in accordance with
(6.9.1), where x̂d and δd are substituted in place of x̂c and δc, respectively.

Only after this does the decoder perform the computations from (6.8.9).

Explanation 6.9.3. For technical convenience, we put qc(τ0) := qd(τ1) := z and
suppose that at times t = τ0, τ1 the coder and decoder act accordingly.

Remark 6.9.4. As follows from the foregoing, the coder and decoder generate com-
mon state estimates and their upper bounds:12

x̂±c (τi) = x̂±d (τi) and δ±c (τi) = δ±d (τi). (6.9.3)

Remark 6.9.5. Step cc.1) is possible by the arguments from Explanation 6.8.10 since
the duration of the operation epoch r0 ≥ n by (6.8.8). Moreover, the current state
can be obtained as a linear function of n previous measurements.

12We recall that their values before and after the update are marked by − and +, respec-
tively.
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Observation 6.9.6. The coder and decoder introduced in this section are semira-
tional r0-step recursive.13

This is straightforward from the description of the coder and decoder with regard
to the fact that the employed quantizer is taken from Lemma 3.8.36 (on p. 80) and so
is polyhedral.14

Explanation 6.9.7. In (6.3.4) (on p. 139) and (6.3.6) (on p. 140), the states of the
coder and decoder can be defined as zc := [x̂+

c , δ
+
c ] and zd := [x̂+

d , δ
+
d ], respectively.

6.9.2 Tracking Almost Surely by Means of Fixed-Length Code Words

The main result of the section is as follows.

Proposition 6.9.8. The coder–decoder pair introduced in Subsect. 6.9.1 detects the
state (i.e., (6.2.5) on p. 135 holds) almost surely, provided that the duration of the
operation epoch is large enough r0 ≥ r(A,κ,W, γ,R).

Here κ is taken from Lemma 3.8.36 (on p. 80), W (·|·) is the matrix of the channel
transition probabilities, and R, γ are the observer parameters from 1) and 2) (on
p. 162).

The value of r(A,κ,W, γ,R) will be specified in Lemma 6.9.20 (on p. 177).
By taking into account Observation 6.9.6, we arrive at the following.

Corollary 6.9.9. Suppose that Assumption 6.8.1 (on p. 161) holds and that H(A) <
c. Then the statement a) from Theorem 6.4.1 (on p. 140) is true.

The remainder of the section is devoted to the proof of Proposition 6.9.8.

Ideas and Facts Underlying the Proof of Proposition 6.9.8

We start with an informal discussion. The operation epoch [τi−1 : τi) is said to be
regular if during it a message different from the alarm one is correctly transmitted
from the coder to the decoder

qd(τi) = qc(τi−1) 6= z

and δ+d (τi−1) is a true bound for the estimation error:

δ+d (τi−1) ≥ ‖x(τi−1)− x̂+
d (τi−1)‖.

Then the update (6.8.13) at time t = τi improves the error bound via multiplying by
κr0 < 1, while keeping it correct for the updated estimate, which can be proved like
(6.8.16).

Unfortunately, not each epoch is regular. First, the initial bound δ0 may be in-
correct. This reason is weak since the algorithm would make the bound correct for a

13See Definitions 6.3.9 and 6.3.10 on pp. 139 and 140.
14See Definition 3.8.8 on p. 70.
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finite time in the absence of decoding errors (see the proof of Lemma 6.8.19). Sec-
ond, the epoch may be irregular due to such errors. Any of them may make not only
the current epoch irregular but also launch a whole “tail” of irregular epochs even
if the messages transmitted across the channel during the subsequent epochs were
decoded correctly. This holds if the transmission error makes the upper bound δ in-
correct. During this tail, the error bound would increase via multiplying by γr0 > 1
in order to become correct once more. So any error has an after-effect, which evi-
dently remains true in the real circumstances where the subsequent epochs are not
necessarily “errorless.” A priori, it is not clear even that the chain of irregular epochs
will be broken and that a regular one will occur.

The proof is based on the fact that the probability of the decoding errors can be
made as small as desired by properly picking the duration of the operation epoch r0.
By the strong law of large numbers, this entails that the average frequency of the
decoding errors is small almost surely. In other words, the errors are rarely encoun-
tered. The next step is to evaluate the duration of the after-effect of each error and to
show that the average frequency ωirr of the irregular epochs does not exceed the av-
erage frequency of the above errors multiplied by a fixed factor. So ωirr is also small.
Hence not only regular epochs do follow any irregular one but also the average fre-
quency of regular epochs ωreg >> ωirr. By taking into account that at any irregular
epoch, the bound δd is increased at most by multiplying by γr0 , we conclude that
(approximately)

δ−d (τi) ≤ δ0κ
ir0ωregγir0ωirr → 0 as i→∞.

This convergence is extended on the estimation error on the grounds that δ−d (τi) is
the correct bound for this error for most of the i’s.

Strong Law of Large Numbers

To carry out the first step of this plan, we shall use the following variant of the strong
law of large numbers [95, §32, p.53] (see also [145, 161]).

Theorem 6.9.10. Suppose that Fi is a flow of nondecreasing σ-algebras in a prob-
ability space, the random variable Ji is Fi-measurable, and bi ↑ ∞, bi > 0, i =
1, 2, . . .. Suppose also that E|Ji| <∞ and

∞∑

i=1

1

b2i
E
{[
Ji −E(Ji|Fi−1)

]2}
<∞. (6.9.4)

Then with probability 1,

1

bk

k∑

i=1

[
Ji −E(Ji|Fi−1)

]
→ 0 as k→∞. (6.9.5)

6.9.3 Proof of Proposition 6.9.8

We start with estimating the average frequency with which the decoding errors occur.
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Frequency of Decoding Errors

We consider the stochastic process generated by the coder–decoder pair in connec-
tion with the system (6.2.1). The symbolsEi and Si stand for the code words formed
by the coder at time τi−1 and received by the decoder at time τi, respectively. We also
introduce the error indicator function:

Ierr(i) :=

{
1 if Dr0 [Si] 6= Ei, i ≥ 2,

0 otherwise
. (6.9.6)

Lemma 6.9.11. We pick 0 < F < F (R,W ), where F (R,W ) is taken from (6.8.6).
Then the following relation holds almost surely, provided that the duration r0 of the
operation epoch is sufficiently large:

lim
k→∞

1

k

k∑

i=1

Ierr(i) ≤ 2−Fr0 . (6.9.7)

Proof. We are going to apply Theorem 6.9.10 to Ji := Ierr(i) and b(i) := i. The
σ-algebra Fi is taken to be that generated by the random quantities

x0, S0, . . . , Si.

Due to the construction of the coder,

Ei = E∗[i, x0, S0, . . . , Si−1],

where E∗(·) is a deterministic function. It follows that Ierr(i) is Fi-measurable. Fur-
thermore,

0 ≤ Ierr(i) ≤ 1⇒ 0 ≤ E[Ierr(i)|Fi−1] ≤ 1 a.s.,

which implies (6.9.4). So by Theorem 6.9.10,

lim
k→∞

1

k

k∑

i=1

{
Ierr(i)−E[Ierr(i)|Fi−1]

}
= 0 a.s. (6.9.8)

Now we are going to estimate E[Ierr(i)|Fi−1]. Let IΩ denote the indicator of the
random eventΩ. By invoking Assumptions 6.3.1 and 6.3.4 (on pp. 136 and 137), we
get

E[Ierr(i)|Fi−1] = E
{
Ierr(i)

∣∣x0, S0, . . . , Si−1, Ei = E∗[i, x0, S0, . . . , Si−1]
}

=
∑

E

P
[
Dr0 [Si] 6= E

∣∣x0, S0, . . . , Si−1, Ei = E
]
IEi=E

=
∑

E

P
[
Dr0 [Si] 6= E

∣∣Ei = E
]
IEi=E

(6.8.6)
. 2−r0F (R,W ).
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Since F < F (R,W ), this implies

E[Ierr(i)|Fi−1] ≤ 2−Fr0 ∀i whenever r0 ≈ ∞. (6.9.9)

So by invoking (6.9.8), we see that almost surely

lim
k→∞

1

k

k∑

i=1

Ierr(i)

= lim
k→∞

1

k

k∑

i=1

E[Ierr(i)|Fi−1]+ lim
k→∞

1

k

k∑

i=1

{
Ierr(i)−E[Ierr(i)|Fi−1]

}
≤ 2−Fr0 . ⊓⊔

Influence of the Channel Errors on the Estimation Process

Our next goal is to discover how the channel noise affects the estimation errors. To
this end, we introduce the indicator functions of the following events:

I0(i) ←→ qd(τi) = qc(τi−1) 6= z;
Iz(i) ←→ qd(τi) = qc(τi−1) = z;
Ierr

cz (i)←→ qd(τi) 6= qc(τi−1) = z;
Ierr

dz
(i)←→ z = qd(τi) 6= qc(τi−1);

Ierr
0 (i)←→ z 6= qd(τi) 6= qc(τi−1) 6= z.

(6.9.10)

Remark 6.9.12. It is easy to see that

Ierr
cz (i) + Ierr

dz(i) + Ierr
0 (i) = Ierr(i) and I0(i) + Iz(i) = 1− Ierr(i). (6.9.11)

We first examine the evolution of the following quantities:

δi := δ+c (τi) and zi := ‖x̂+
c (τi)− x(τi)‖. (6.9.12)

Lemma 6.9.13. The following relations hold for any i ≥ 1:

δi = δi−1

{
κ
r0
[
I0(i) + Ierr

0 (i) + Ierr
cz (i)

]
+ γr0

[
Iz(i) + Ierr

dz(i)
]}

; (6.9.13)

zi ≤ zi−1‖A‖r0
[
Iz(i) + Ierr

dz(i)
]
+ δi−1κ

2r0I0(i)

+ ‖A‖r0(zi−1 + δi−1)
[
Ierr
0 (i) + Ierr

cz (i)
]
. (6.9.14)

Here κ ∈ (0, 1) is taken from Lemma 3.8.36 (on p. 80) and γ > ‖A‖ is the parameter
of the estimator from 2) on p. 162.

Proof. To prove (6.9.13), we note that

δi
(6.9.12)
=== δ+c (τi)

(6.9.1)
=== δ−c (τi)

(
〈qd(τi)〉κ,γ

)r0 (6.9.12)
=== δi−1

(
〈qd(τi)〉κ,γ

)r0
.
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So (6.9.13) is immediate from (6.9.10) and the definition of 〈·〉
κ,γ from (6.8.12). To

justify (6.9.14), we observe that

zi
(6.9.12)
=== ‖x̂+

c (τi)− x(τi)‖ (6.9.1)
=== ‖x̂−c (τi) + δ−c (τi)A

r0
⋆
qd (τi)− x(τi)‖

(6.2.1),(6.8.9)
======

∥∥∥Ar0
[
x̂+
c (τi−1) + δ+c (τi−1)

⋆
qd (τi)− x(τi−1)

]∥∥∥
(6.9.12)
===

∥∥∥Ar0
[
x̂+
c (τi−1)− x(τi−1) + δi−1

⋆
qd (τi)

]∥∥∥ .

If Iz(i) + Ierr
dz

(i) = 1, then qd(τi) = z and
⋆
qd (τi) = 0 by (6.8.12). So

zi ≤ ‖A‖r0‖x̂+
c (τi−1)− x(τi−1)‖ (6.9.12)

=== ‖A‖r0zi−1.

If I0(i) = 1, then z 6= qc(τi−1) = qd(τi) =
⋆
qd (τi). So

zi = δi−1 ‖Ar0 [ε(τi−1)− qc(τi−1)]‖

due to (6.8.11), where qc(τi−1) is the quantized value of ε(τi−1). Hence by invoking
(3.8.9) (on p. 70), where ρQ = κ2r0 thanks to Lemma 3.8.36 (on p. 80), we get

zi ≤ κ2r0δi−1. Finally, let Ierr
0 (i) + Ierr

cz (i) = 1. Then ‖ ⋆qd (τi)‖ ≤ 1 and so

zi ≤ ‖A‖r0
(
‖x̂+

c (τi−1)− x(τi−1)‖+ δi−1

) (6.9.12)
=== ‖A‖r0 (zi−1 + δi−1) .

Summarizing, we arrive at (6.9.14). ⊓⊔

Lemma 6.9.13 entails an important conclusion about the evolution of the ratio
ξi := zi/δi, which determines whether z is sent over the channel:

qc(τi) = z⇔ ξi = zi/δi > 1. (6.9.15)

Corollary 6.9.14. For i ≥ 1, the following inequality holds:

ξi ≤
{
ρξi−1 if ξi−1 > 1
κr0 if ξi−1 ≤ 1

}[
1− Ierr(i)

]
+ b/2

[
ξi−1 + 1

]
Ierr(i), (6.9.16)

where Ierr(i) is the error indicator function (6.9.6), and

ρ :=

(‖A‖
γ

)r0
, b := 2

(‖A‖
κ

)r0
. (6.9.17)

The proof is by merely checking (6.9.16) on the basis of (6.9.13) and (6.9.14).

How Often the Bound δc Generated by the Coder Is Incorrect?

The corresponding event can be also equivalently described in each of the following
two ways:
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• The alarm symbol z is emitted into the channel;
• The inequality ξi > 1 holds.

We are interested in the average frequency of this event.
The following lemma reveals an important relationship between this event and

the channel errors.

Lemma 6.9.15. Whenever ξi > 1 for i = i+1, . . . .i+k, the number l of the channel
errors within the interval [i+ 1 : i+ k] obeys the lower bound

l :=
∣∣{j = i+ 1, . . . .i+ k : Ierr(j) = 1}

∣∣

≥ k log2[ρ
−1]

log2 b+ log2[ρ
−1]
−

log2 max
{
ξi,

ξi+1
2

}

log2 b+ log2[ρ
−1]

. (6.9.18)

Proof. If ξi ≤ 1 and Ierr(i + 1) = 0, then (6.9.16) implies ξi+1 = κr0 < 1 in
violation of the hypotheses of the lemma. Thus

ξi ≤ 1⇒ Ierr(i+ 1) = 1.

By invoking (6.9.16) once more, we get for i = i+ 1, . . . , i+ k,

ξi≤ρξi−1[1− Ierr(i)] + bξi−1I
err(i) +

b

2
[1− ξi−1]I

err(i)

≤ ξi−1

{
ρ[1− Ierr(i)] + bIerr(i)

}
+
b

2
max{1− ξi−1, 0}Ierr(i).

The last summand may not vanish only if i = i+ 1 and Ierr(i+ 1) = 1. Hence

1 < ξi+k ≤ ξiρk−lbl +
b

2
max{1− ξi, 0}ρk−lbl−1 = ρk−lbl max

{
ξi,

ξi + 1

2

}
,

0 < (l − k) log2[ρ
−1] + l log2 b+ log2 max

{
ξi,

ξi + 1

2

} ∣∣∣ ⇒ (6.9.18). ⊓⊔

Now we are in a position to give an answer to the question posed.

Corollary 6.9.16. For the indicator function Iξ>1(i) ←→ ξi > 1, the following
relation holds almost surely:

lim
k→∞

1

k

k∑

i=1

Iξ>1(i− 1) ≤ β := µ−1 lim
k→∞

1

k

k∑

i=1

Ierr(i), (6.9.19)

where

µ :=
log2[ρ

−1]

log2 b+ log2[ρ
−1]

.

Remark 6.9.17. The lim in the right-hand side of (6.9.19) is estimated by (6.9.7).
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Proof of Corollary 6.9.16. If β ≥ 1, the claim is obvious. Suppose that β < 1.
Then ξi ≤ 1 for some i = i∗. Indeed otherwise, Lemma 6.9.15 with i := 0 and
arbitrary k yields

lim
k→∞

1

k

k∑

i=1

Ierr(i) ≥ µ+ lim
k→∞

−1

k

log2 max{ξ0, ξ0+1
2 }

log2 b+ log2[ρ
−1]

= µ,

which implies β ≥ 1 in violation of the hypothesis. For k > i∗, the set

{i∗ ≤ i ≤ k : Iξ>1(i) = 1}

disintegrates into several intervals of respective sizes k1, . . . , ks, which do not con-
tain i∗ and are separated by intervals where ξi ≤ 1. Now we apply Lemma 6.9.15 to
the jth interval, picking i to be the integer preceding its left end. Then ξi ≤ 1, the
second ratio in (6.9.18) is nonpositive, and so the number lj of errors contained by
the interval at hand is no less than kjµ. Hence

lim
k→∞

1

k

k∑

i=1

Ierr(i) ≥ lim
k→∞

1

k

s∑

i=j

lj ≥ µ lim
k→∞

1

k

s∑

i=j

kj

= µ lim
k→∞

1

k

k∑

i=i∗

Iξ>1(i) = µ lim
k→∞

1

k

k∑

i=1

Iξ>1(i− 1)
∣∣∣ ⇒ (6.9.19). ⊓⊔

Corollary 6.9.18. The indicator function I(i) ←→ Ierr(i) = 1 ∨ Iξ>1(i − 1) = 1
a.s. obeys the inequality

lim
r→∞

1

k

k∑

i=1

I(i) ≤
{

2 +
log2 b

log2[ρ
−1]

}
× lim
k→∞

1

k

k∑

i=1

Ierr(i)
(6.9.7)
≤ p, (6.9.20)

where

p := 2−Fr0
{

2 +
log2 b

log2[ρ
−1]

}
. (6.9.21)

Indeed, this is immediate from Corollary 6.9.16, (6.9.7), and the apparent inequality

I(i) ≤ Ierr(i) + Iξ>1(i− 1).

Observation 6.9.19. It is easy to see that the first inequality in (6.9.20) is a direct
consequence of (6.9.16). In other words, it holds for any nonnegative solution ξi of
the recursive inequalities (6.9.16) with i = 1, 2, . . ., where {Ierr(i)} is an arbitrary
sequence of reals Ierr(i) = 0, 1, and ρ,κ ∈ (0, 1), b > 1 are arbitrary numbers.

Sufficient Conditions for Almost Sure Tracking

Now we bring the pieces together. We start with conditions, which can be used to pick
the duration r0 of the operation epoch in order to ensure almost sure state tracking.
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Lemma 6.9.20. The coder–decoder pair introduced in Subsect. 6.9.1 tracks the state
a.s. whenever

ω := log2[κ
−1]− p

{
log2 γ + log2[κ

−1]
}
> 0 and

χ := ω(1− p)− p log2 ‖A‖ > 0. (6.9.22)

Here κ ∈ (0, 1) is the constant from Lemma 3.8.36 (on p. 80), γ is the parameter
from 2) on p. 162, and p is given by (6.9.17) and (6.9.21).

Proof. The symbol c (with a possible index) will be used to denote random constants
independent of i and r0. For any α > 0, (6.9.20) implies

I(k) :=

k∑

i=1

I(i) ≤ k(p+ α) for k ≈ ∞.

By 2) on p. 162, γ > ‖A‖, where ‖A‖ ≥ 1 due to Assumption 6.8.1 (on p. 161).
Thus κ < 1 < γ. So (6.9.10) and (6.9.13) yield

δi ≤ δi−1

{
κ
r0 [1− I(i)] + γr0I(i)

}
∀i ≥ 1 ⇒ δk ≤ δ0κ

kr0

k∏

i=1

( γ
κ

)r0I(i)

= δ0κ
kr0
( γ

κ

)r0I(k) k≈∞
≤ δ0κ

kr0
( γ

κ

)kr0(p+α)

= δ02
−kr0ωα ,

where

ωα := log2[κ
−1]− [p+ α]

{
log2 γ + log2[κ

−1]
} α→0−−−→ ω > 0.

Thus for α ≈ 0, we have ωα > 0 and

δi ≤ c′2−ir0ωα → 0 as i→∞. (6.9.23)

Now we note that due to (6.9.14),

zi ≤ δi−1κ
2r0
[
1−I(i)

]
+‖A‖r0(zi−1 +δi−1)I(i) ≤ ‖A‖r0zi−1I(i)+c2

−ir0ωα ,

zk ≤ z0
k∏

i=1

[
‖A‖r0I(i)

]
+ c

k∑

i=1

2−ir0ωα

k∏

j=i+1

[
‖A‖r0I(j)

]
.

The first relation from (6.9.22) implies p < 1. So

{i ≥ 1 : I(i) = 1} 6= {i = 1, 2, . . .}

due to (6.9.20). It follows that for k ≈ ∞, the first summand vanishes and

zk ≤ c
k∑

i=k−l
2−ir0ωα‖A‖r0(k−i),
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where [k − l + 1 : k] is the largest subinterval of the set

Ωk := {1 ≤ i ≤ k : I(i) = 1}

containing k. (If k 6∈ Ωk, then l := 0.) We proceed by taking into account the
inequality l ≤∑k

i=1 I(i) = I(k) ≤ k(p+ α) ∀k ≈ ∞:

zk ≤ c2−kr0ωα

k∑

i=k−l
2(k−i)r0ωα‖A‖r0(k−i) = c2−kr0ωα

l∑

i=0

(
2ωα‖A‖

)r0i

≤ c2
−kr0ωα

(
2ωα‖A‖

)r0l

1−
(
2ωα‖A‖

)−r0
k≈∞
≤ c

2−kr0ωα
(
2ωα‖A‖

)r0k(p+α)

1−
(
2ωα‖A‖

)−r0

=
c

1−
(
2ωα‖A‖

)−r0 2−kr0χα ,

where
χα := ωα[1− (p+ α)]− (p+ α) log2 ‖A‖

(6.9.22)−−−−→
α→0

χ > 0.

Thus χα > 0 for α ≈ 0. So

zk
(6.9.12)
=== ‖x̂+

c (τk)− x(τk)‖ → 0 as k →∞.

Here x̂+
c (τk) = x̂+

d (τk) thanks to (6.9.3). To complete the proof, we note that for
τk < t ≤ τk+1 = τk + r0, we have

‖x̂d(t)− x(t)‖ (6.2.1),(6.8.9)
======

∥∥At−τk [x̂+
d (τk)− x(τk)]

∥∥

≤ ‖A‖r0‖x̂+
d (τk)− x(τk)‖ t→∞−−−→ 0,

since k →∞ as t→∞. ⊓⊔

Completion of the Proof of Proposition 6.9.8

By Lemma 6.9.20, it suffices to show that (6.9.22) does hold whenever r0 is large
enough. In its turn, this is true if p → 0 as r0 → ∞. The required property is
established as follows:

p
(6.9.20)
=== 2−Fr0

{
2 +

log2 b

log2[ρ
−1]

}

(6.9.17)
=== 2−Fr0

{
2 +

1 + r0[log2 ‖A‖+ log2 κ−1]

r0 (log2 γ − log2 ‖A‖)

}
→ 0 as r0 →∞. ⊓⊔
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6.10 Completion of the Proof of Theorem 6.4.1 (on p. 140):
Dropping Assumption 6.8.1 (on p. 161)

The implication c > H(A) ⇒ a) ∧ b) has been already justified for systems with
no stable modes. Now we consider the general case. Suppose that c > H(A), and
consider the matrix A+ from (6.7.24) (on p. 156), i.e., the “unstable part” of A.
Since H(A) = H(A+), the claims a) and b) are true for the system (6.7.24) with
x+

0 := π+x0 by Corollaries 6.8.18 (on p. 165) and 6.9.9 (on p. 170).
Now we apply the corresponding coder–decoder pair to the primal system (6.2.1).

In doing so, we also alter the coder’s step c.1) (see p. 164) or cc.1) (see p. 169),
where it determines the current state x+(τi) of (6.7.24). Formerly this step was done
on the basis of the past measurements from (6.7.24). Now we employ the observa-
tions from (6.2.1). Then thanks to Assumption 6.3.6 (on p. 137), it is possible to
compute π+x(τi) as a linear function of the measurements received during the pre-
vious operation epoch, provided that r0 ≥ n. Since evidently x+(t) := π+x(t), this
does not alter the operation of the observer. To complete the proof of the implication
c > H(A)⇒ a) ∧ b), we note that so far as x−(t) := x(t)− x+(t)→ 0 as t→∞,
this observer tracks that state of (6.2.1)

‖x(t)− x̂+(t)‖ = ‖x−(t)+x+(t)− x̂+(t)‖ ≤ ‖x−(t)‖+‖x+(t)− x̂+(t)‖ t→∞−−−→ 0

whenever it detects the state of (6.7.24): ‖x+(t)− x̂+(t)‖ → 0 as t→∞.
The implications a) ∨ b)⇒ c)⇒ d) are apparent, whereas d)⇒ c ≥ H(A) was

justified in Sect. 6.7. ⊓⊔

6.11 Stabilizing Controller and the Proof of the Sufficient
Conditions for Stabilizability

In this section, we prove the c > H(A) ⇒ a) part of Theorem 6.6.1 (on p. 145). So
we suppose that the assumptions of Theorem 6.6.1 hold and that c > H(A). Like in
Sect. 6.8, we first assume that the plant (6.5.1) (on p. 143) has no stable eigenvalues;
i.e., we adopt Assumption 6.8.1 (on p. 161) until otherwise stated. In the general
case of the plant with both unstable and stable modes, stabilization will be achieved
by applying the controller presented below to the unstable part of the system, like in
Subsect. 3.8.11 (starting on p. 88) and Sect. 6.10.

Remark 6.11.1. Assumptions 6.3.6, 6.5.5, and 6.8.1 (on pp. 137, 144, and 161) imply
that the pairs (A,B) and (A,C) are controllable and observable, respectively.

For the problem of state estimation via a noisy channel, two algorithms were
proposed in Sects. 6.8 and 6.9, respectively. The first of them works in the absence
of the feedback communication link, employs code words whose lengths increase as
the estimation process progresses, and ensures observability with as large a proba-
bility as desired. The second algorithm uses fixed-length code words, has a limited
complexity, and guarantees almost sure observability, but it relies on the complete
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communication feedback. This feedback makes the coder aware about the result of
the transmission across the channel by the time of the next transmission.

In this section, we show that an almost sure stabilizing controller with the features
like those of the second observer can be constructed even if no special feedback
communication link is available. This will be accomplished via two steps.

Step 1. We show that such a controller can be designed whenever a feedback link is
yet available but has an arbitrarily small capacity.

Step 2. We show that in fact even such a low-capacity special link is not needed
since the required low-rate feedback information flow can be arranged by
means of proper control actions.

Remark 6.11.2. The feedback link concerned at step 1 should transmit one bit per
operation epoch by notifying the coder whether the signal received by the decoder
at the end of the previous epoch was the alarm one z. The average rate of this
communication can be made arbitrarily small by taking the duration of the operation
epoch large enough.

Explanation 6.11.3. Communication of information can be arranged by means of
control thanks to the fact that the controller influences the plant motion, whereas the
sensor observes this motion. So the controller can encode a message by imparting the
motion of a certain specific feature. In its turn, the sensor can receive the message by
observing the motion and detecting this feature.

Remark 6.11.4. In the context of this section, only one bit per operation epoch should
be communicated by means of control. At the same time, communication of as much
information as desired can be arranged in such a way without violating the main
objective of stabilization [114].

6.11.1 Almost Sure Stabilization by Means of Fixed-Length Code Words and
Low-Rate Feedback Communication

In this subsection, we do step 1 and introduce the corresponding stabilizing con-
troller.

Components Used to Assemble the Coder and Decoder

The first four components are basically those chosen in Subsect. 6.8.2 to construct
an observer.

Specifically, we pick

1) two numbers η and R such that

log2 | detA| < η < R < c;

2) a parameter γ > ‖A‖ and a duration r = 1, 2, . . . of the operation epoch;
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3) a code book Er withN = N ′r h 2rR input code words (6.8.2) (on p. 161) each of
length r and a decoding rule Dr(·) with the properties described in Theorem 6.8.4
(on p. 162);

4) the r-contracted quantizer Qr from Lemma 3.8.36 15 applied to Ass := A;
5) A deadbeat stabilizer,16 i.e., a linear transformation of an initial state

x(0) = x
N−→ U = [u(0), u(1), . . . , u(n− 1), 0, 0, . . .] (6.11.1)

into a sequence of controls driving the state to zero x(n) = 0;
6) An alarm control sequence

Uz = [u0, . . . , us−1, 0, 0, . . .],

which drives the system from x(0) = 0 to x(s) = 0.

Explanations 6.8.6 and 6.8.7 (on p. 163) concerning 1) and 2), respectively, re-
main active.

Remark 6.11.5. Due to Remark 6.11.1, a deadbeat stabilizer does exist [10, p. 253].

Explanation 6.11.6. The control sequence is extended by zeros from [0 : n− 1] onto
[0 :∞) in (6.11.1) for technical convenience.

Explanation 6.11.7. The alarm control sequence and its active length s will be spec-
ified further. The role of this sequence will be elucidated in the next subsection.

Notation 6.11.8. We extend the deadbeat stabilizer on the alarm symbol z by putting

N(z) := Uz. (6.11.2)

Definition 6.11.9. The number L(N) := max{n, s} is called the length of the dead-
beat stabilizer.

Explanation 6.11.10. We pick the duration r from 2) so large r ≥ r∗ that

r > n+ L(N) (6.11.3)

and the quantizer outputs including the alarm symbol z can be encoded by code
words from the code book Er. The latter is possible by Remark 6.8.8 (on p. 163).

Operation Epochs and an Intermediate Temporary Assumption

Like in the case of the observer from Subsect. 6.9.1, the controller operation is orga-
nized into epochs

[τi : τi+1), τi := ir (6.11.4)

15See p. 80; we also invoke Remark 3.8.37 from p. 80 here.
16See p. 72 for the definition.
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of equal duration r. A fixed and independent of epoch sequence of operations is ex-
ecuted within any of them. In particular, at the beginning of any epoch, the coder
converts a quantizer output (which may equal the alarm symbol z) into a code word
of length r. This word is then transmitted across the channel during the operation
epoch. At the end of the epoch, the decoder decodes the sequence of messages re-
ceived within the epoch, thus trying to determine the original quantizer output.

Until the next subsection, we suppose that a low-rate feedback communication is
available by adopting the following.

Assumption 6.11.11. By the end τi+1 of the current operation epoch, the coder al-
most surely gets aware of whether the message received by the decoder as a result of
decoding at the beginning τi of this epoch was the alarm one z.

Remark 6.11.12. This feedback communication has the size of a one-bit-per-operation-
epoch. By increasing the epoch duration r, the average bit rate of this communication
can be made arbitrarily small.

Remark 6.11.13. Assumption 6.11.11 may be true due to not only the presence of a
special feedback communication link but also the fact that the alarm signal is trans-
mitted over an especially reliable feedforward subchannel.

Remark 6.11.14. As will be shown in Subsect. 6.11.2, Assumption 6.11.11 can al-
ways be ensured by means of control via a proper choice of the alarm control se-
quence and epoch duration.

Coder–Decoder Pair Consuming a Low-Rate Communication Feedback

Both coder and decoder compute controls uc(t), ud(t) and upper bounds for the state
norm δc(t), δd(t), respectively. Actually acting upon the plant is the control ud(t).
The initial bound is common:

δc(0) = δd(0) = δ0 > 0.

Remark 6.11.15. The bounds δc(t) and δd(t) may be incorrect. In particular, the in-
equality δ0 ≥ ‖x(0)‖ may be violated.

Within any operation epoch [τi : τi+1), the coder consecutively emits into the chan-
nel the symbols of the code word of the length r formed at time τi, and the decoder
carries out the control program

U d
i := col

[
ud(τi), ud(τi + 1), . . . , ud(τi+1 − 1)

]
(6.11.5)

generated at time τi. These actions are prefaced at the times t = τi by the following
operations.

The coder (at the times t = τi, i = 1, 2, . . .)

cs.1) Proceeding from the previous measurements, calculates the current state x(τi);
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cs.2) Computes the prognosis of the state at the time t = τi+1:

x̂c(t) := Arx(τi) +

t−1∑

j=τi

At−1−jBuc(j); (6.11.6)

cs.3) If i ≥ 3, corrects the state norm upper bound:

δc(τi) := δc(τi)
〈qd(τi−1)〉rκ,γ
〈qc(τi−2)〉rκ,γ

= δc(τi)×





(
γ
κ

)r
if qd(τi−1) = z & qc(τi−2) 6= z,(

κ

γ

)r
if qd(τi−1) 6= z & qc(τi−2) = z,

1 if
qd(τi−1) = z & qc(τi−2) = z,

or
qd(τi−1) 6= z & qc(τi−2) 6= z,

. (6.11.7)

Here γ is the parameter of the controller (from 2) on p. 180), κ ∈ (0, 1) is the
constant from Lemma 3.8.36 (on p. 80), which determines the contraction rate
of the quantizer at hand, and 〈q〉

κ,γ is defined in (6.8.12); i.e.,

〈q〉
κ,γ =

{
κ if q 6= z

γ otherwise
. (6.11.8)

cs.4) Employs the quantizer Qr and computes the quantized value qc(τi) of the
scaled state prognosis at the time τi+1:

ε(τi) :=
[
δc(τi)

]−1
x̂c(τi+1), qc(τi) := Qr

[
ε(τi)

]
; (6.11.9)

cs.5) Encodes this quantized value qc(τi) by means of the code book Er and thus
obtains the code word to be transmitted over the channel during the next oper-
ation epoch [τi : τi+1);

cs.6) Finally, the coder computes the control program

U c
i+1 = col

[
uc(τi+1), . . . , uc(τi+2 − 1)]

for the operation epoch [τi+1 : τi+2) following the next one [τi : τi+1) and
then corrects the state upper bound:

U c
i+1 := δc(τi)N

[
qc(τi)

]
, δc(τi) := δc(τi)× 〈qc(τi)〉rκ,γ , (6.11.10)

where 〈q〉
κ,γ is given by (6.11.8) and N is the deadbeat stabilizer.

The decoder (at the times t = τi, i = 2, 3, . . .)

ds.1) Applies the decoding rule Dr(·) to the data received within the previous oper-
ation epoch [τi−1 : τi) and thus acquires the decoded value qd(τi) of qc(τi−1);
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ds.2) Computes the control program (6.11.5) for the next operation epoch [τi : τi+1)
and corrects the state upper bound

U
d
i := δd(τi)N

[
qd(τi)

]
, δd(τi) := δd(τi)× 〈qd(τi)〉rκ,γ . (6.11.11)

Remark 6.11.16. For uniformity of subsequent formulas, we assume that

qc(τk) := qd(τ1+k) := z ∀k ≤ 0,

and that the coder at time t = τ0 performs cs.6) and the decoder at time t = τ1
accomplishes ds.2) accordingly. Then (6.11.7) is in fact active for i = 1, 2 and U c

1 =
U d

1 = δ0Uz. For consistency, we also put U c
0 := U d

0 := δ0Uz.

Explanation 6.11.17. Although the coder is unaware of the entire sequence of con-
trols ud(t) actually acting upon the plant, the operation cs.1) is possible. Moreover,
the current state x(τi) can be found as a linear function of n previous observations.

This holds since the dynamics of the closed-loop system (6.5.1) (on p. 143) is free
u(t) = 0 for at least n time steps before τi thanks to Definition 6.11.9 and Re-
mark 6.11.1, along with (6.11.1), (6.11.3), (6.11.4), (6.11.11), and Definition 6.11.9.

Remark 6.11.18. The decoded value qd(τi) from ds.1) may be incorrect qd(τi) 6=
qc(τi−1) due to the channel errors.

Explanation 6.11.19. The operation cs.3) is possible thanks to Assumption 6.11.11.

Remark 6.11.20. The operation cs.3) makes the bounds δc and δd identical whenever
the transmission across the channel is errorless.

This claim is more rigorously specified by the lemma to follow. To state it, we
mark the values of δc and δd after and just before the updates in accordance with
(6.11.10) and (6.11.11) with the + and − indices, respectively. So the value δ−c (τi)
is taken after the correction (6.11.7).

Lemma 6.11.21. The step cs.3) ensures that whenever the current transmission is
errorless, the next state norm upper bounds produced by the coder and decoder,
respectively, are identical:

qc(τi−1) = qd(τi) =⇒ δ−c (τi) = δ−d (τi+1), i = 1, 2, . . . . (6.11.12)

Proof. It suffices to show that for i = 1, 2, . . .

δ−c (τi) = δ−d (τi+1)

[
〈qc(τi−1)〉κ,γ
〈qd(τi)〉κ,γ

]r
. (6.11.13)

The proof will be by induction on i. For i = 1, the claim is evident. Suppose that
(6.11.13) holds for some i ≥ 1. Then
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δ−c (τi+1)
(6.11.7)
=== δ+c (τi)

〈qd(τi)〉rκ,γ
〈qc(τi−1)〉rκ,γ

(6.11.10)
=== δ−c (τi) 〈qc(τi)〉rκ,γ

〈qd(τi)〉rκ,γ
〈qc(τi−1)〉rκ,γ

(6.11.13)
==== δ−d (τi+1) 〈qc(τi)〉rκ,γ

(6.11.11)
==== δ−d (τi+2)

〈qc(τi)〉rκ,γ
〈qd(τi+1)〉rκ,γ

;

i.e., (6.11.13) with i := i+ 1 does hold. ⊓⊔

Stabilization by the Coder–Decoder Pair Consuming a Low-Rate
Communication Feedback

The main property of the above coder–decoder pair is given by the following propo-
sition.

Proposition 6.11.22. Suppose that Assumption 6.11.11 holds. The coder–decoder
pair introduced in this subsection stabilizes the system almost surely, provided that
the duration r of the operation epoch is large enough: r ≥ r(A,B,κ,W, γ,R).

Explanation 6.11.23. Here κ is taken from Lemma 3.8.36 (on p. 80), W (·|·) is the
matrix of the channel transition probabilities, and R, γ are the controller parameters
from 1), 2) (on p. 180).

The proof of Proposition 6.11.22 will be given in Subsect. 6.11.3. The bound
r(A,B,κ,W, γ,R) can be specified from this proof (see Lemma 6.11.40 on p. 193).

Remark 6.11.24. Proposition 6.11.22 holds for any choice of the alarm control se-
quence Uz.

6.11.2 Almost Sure Stabilization by Means of Fixed-Length Code Words in the
Absence of a Special Feedback Communication Link

Now we show that Assumption 6.11.11 can be always ensured, even if there is no
special feedback communication link. This means that almost sure stabilization by
means of fixed-length code words and a controller with a limited computational
power can be ensured in the absence of a special feedback communication link.

Communication Feedback by Means of Control

We start with an informal discussion. Assumption 6.11.11 to be ensured means that
at time τi+1, the coder can recognize whether the message determined by the decoder
as a result of decoding at time τi was the alarm one z.

The idea is roughly as follows. In the first case qd(τi) = z, the plant is affected
by a scaled (i.e., multiplied by the scalar positive factor) alarm control sequence Uz

during the epoch [τi : τi+1) by (6.11.2) and (6.11.11). In the second case, it is driven
by a control program Ui produced by the deadbeat stabilizer Ui = N(q) from a
vector q := δd(τi)qd(τi) ∈ Rn. So it suffices that the coder be able to recognize at
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time τi+1 whether the control program U that acted upon the plant during the epoch
was the scaled alarm one or of the kind N(q), q ∈ Rn. In doing so, the coder should
proceed from the sequence of observations received within this epoch:

Yi := col [y(τi), . . . , y(τi+1 − 1)]. (6.11.14)

Now we show that the coder can correctly accomplish this if the alarm control
sequence and the duration r of the operation epoch are chosen properly. Indeed, let us
first observe that the tuple of observations (6.11.14) is a linear function of the control
sequence and n-dimensional state x(τi). In the case where Ui = N(q), q ∈ Rn, this
sequence lies in an n-dimensional space Im N as well, since the operator N is linear.
It follows that whenever qd(τi) 6= z, the tuple (6.11.14) lies in a certain specific 2n-
dimensional linear subspace L of the space of all possible observation sequences.
However, this space may be of larger dimension for large r. This makes it possible to
pick the alarm control sequence so that it generates the sequence of observations not
in L. Then the coder may recognize the event qd(τi) = z by checking the relation

Yi 6∈ L.
To be specific, now we offer a particular example of this scheme.

Picking the Alarm Control Sequence

We first pick

• A control u∗ such that Bu∗ 6= 0 and
• A control sequence U− := col [u−0 , . . . , u

−
n−1] that drives the system from the

state x(0) = AnBu∗ to x(n) = 0.

The alarm control sequence is defined as follows:

Uz := col
[
0, . . . , 0︸ ︷︷ ︸

2n

, u∗, 0, . . . , 0︸ ︷︷ ︸
n

, u−0 , . . . , u
−
n−1, 0, . . .

]
, s := 4n+ 1.

(6.11.15)

Remark 6.11.25. It is easy to see that this sequence drives the system from x(0) = 0
to x(s) = 0, as is required.

As will be shown (see Remark 6.11.27), this alarm control sequence does ensure
correct recognition of the event qd(τi) = z.

Coder–Decoder Pair with No Communication Feedback

This is exactly the coder–decoder pair introduced in Subsect. 6.11.1 in which the
coder acquires the knowledge about qd(τi−1) to perform the step cs.3) (see p. 183)
in such a way that no special feedback communication link is employed.

So the description of the decoder (see p. 183) is not altered, whereas two more
steps are inserted into the description of the coder between steps cs.2) and cs.3).

Specifically, the coder first carries out steps cs.1) and cs.2) (see p. 183), then
prefaces step cs.3) with the following two ones to recognize the event qd(τi−1) = z,
and proceeds by executing steps cs.3)–cs.6) (see pp. 183 and 183 ), as before.
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Additional Intermediate Steps

cs.2-31) Proceeding from the previous measurements, the coder computes the states
x(τi−1 + 2n) and x(τi−1 + 3n+ 1);

cs.2-32) The coder decides that qd(τi−1) = z if and only if

x(τi−1 + 3n+ 1) 6= An+1x(τi−1 + 2n).

Remark 6.11.26. The step cs.2-31) is possible. Moreover, the required states can be
determined as linear functions of n previous measurements.

This is basically justified by the arguments underlying Explanation 6.11.17 since
the dynamics of the system is free u(t) = 0 for at least n time steps before the times
τi−1 + 2n and τi−1 + 3n+ 1 due to (6.11.1) and (6.11.15).

Remark 6.11.27. The steps cs.2-31) and cs.2-32) ensure correct recognition of the
event qd(τi−1) = z.

Indeed, it suffices to note that due to (6.11.1) and (6.11.15),

x(τi−1+3n+1)−An+1x(τi−1+2n) =

{
δd(τi−1)A

nBu∗ 6= 0 if qd(τi−1) = z

0 otherwise
.

Since the coder and decoder at hand are in fact those from the previous subsec-
tion, Proposition 6.11.22 remains true for them with Assumption 6.11.11 dropped.
This gives rise to the following.

Proposition 6.11.28. The coder–decoder pair introduced in this subsection stabi-
lizes the system almost surely, provided that the duration r of the operation epoch is
large enough: r ≥ r(A,B,κ,W, γ,R).

Explanation 6.11.29. Explanation 6.11.23 equally concerns the case under current
consideration.

Observation 6.11.30. The coder and decoder considered in this subsection are semi-
rational r-step recursive.17

This is straightforward from the constructions of the coder and decoder with
taking into account that the employed quantizer is taken from Lemma 3.8.36 (on
p. 80) and so is polyhedral,18 and cs.2-32) consists of checking a system of linear
inequalities.

Remark 6.11.31. The inner dynamic variables zc and zd of the coder and decoder,
respectively, from (6.3.4) (on p. 139) and (6.5.5) (on p. 145) can be chosen as

zc(ir) :=
[
δ−c (τi), δ

−
c (τi−1), x̂c(τi+1), x̂c(τi), x̂c(τi−1)

]
, zd(ir) := δ−d (τi).

17See Definitions 6.3.9 and 6.5.7 on pp. 139 and 145.
18See Definition 3.8.8 on p. 70.



188 6 State Estimation and Stabilization of Noiseless Plants via Noisy Channels

As will be shown (see Remark 6.11.41 on p. 195), these inner variables a.s. con-
verge to 0 as t→∞ under the assumptions of Proposition 6.11.28.

The following claim is immediate from Proposition 6.11.28 and Observa-
tion 6.11.30.

Corollary 6.11.32. Suppose that Assumption 6.8.1 (on p. 161) holds and thatH(A)<
c. Then the statement a) from Theorem 6.6.1 (on p. 145) is true.

The remainder of the section is devoted to the proof of Proposition 6.11.22 and
to the completion of the proof of Theorem 6.6.1.

6.11.3 Proof of Proposition 6.11.22

The proof resembles that of Proposition 6.9.8.19 However there are important dif-
ferences. They basically proceed from the fact that now the coder and decoder are
not completely synchronized via the communication feedback, which is contrary
to Proposition 6.9.8. More precisely, the coder and decoder considered in Propo-
sition 6.9.8 produce common error upper bounds δc, δd and state estimates x̂c, x̂d.
Now only the bounds δc, δd are synchronized in a weaker sense: They are not always
common but only when the previous transmission across the channel is errorless (see
Lemma 6.11.21). At the same time, the controls produced by the coder are not put
in harmony with those generated by the decoder. In fact, the goal of the proof is to
demonstrate that being properly adjusted to the current circumstances, the arguments
from Subsect. 6.9.3 are not destroyed by these differences.

To start with, we rewrite the state prognosis (6.11.6) in a form more convenient
for further analysis.

Another Formula for the State Prognosis Generated by the Coder

Lemma 6.11.33. The state prognosis (6.11.6) obeys the following equation:

x̂c(τi+1) = δ−c (τi−1)A
r
[
ε(τi−1)−

⋆
qc (τi−1)

]

+Ar
τi−1∑

j=τi−1

Aτi−1−jB
[
ud(j)− uc(j)

]
, i ≥ 2. (6.11.16)

Here
⋆
q is given by (6.8.12) (on p. 164) and ε(τi−1) is defined by (6.11.9), where

i := i− 1 and δc(τi−1) = δ−c (τi−1).

Proof. Suppose first that qc(τi−1) 6= z. Due to the first formula from (6.11.10) with
i := i− 1 and the definition of the deadbeat stabilizer, the sequence of controls

uc(τi), . . . , uc(τi+1 − 1) (6.11.17)

19See Subsect. 6.9.3 starting at p. 171.
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drives the system from the state δ−c (τi−1)qc(τi−1) at time τi to the state 0 at time
τi + n. Since uc(t) = 0 for t = τi + n, . . . , τi+1 − 1, the state 0 is kept unchanged
until the time τi+1 = τi + r0. Hence

δ−c (τi−1)A
r ⋆qc (τi−1) +

τi+1−1∑

j=τi

Aτi+1−1−jBuc(j) = 0. (6.11.18)

This is still true if qc(τi−1) = z. Indeed, then
⋆
qc (τi−1) = 0, whereas (6.11.17) is

the alarm control sequence up to a scalar multiplier and so it drives the system from
the state x(τi) = 0 to x(τi+1) = 0.

Subtraction (6.11.6) and (6.11.18) yields

x̂c(τi+1) = Ar
[
x(τi)− δ−c (τi−1)

⋆
qc (τi−1)

]

= δ−c (τi−1)A
r
[
δ−c (τi−1)

−1x̂c(τi)−
⋆
qc (τi−1)

]
+Ar

[
x(τi)− x̂c(τi)

]
.

Here by (6.11.6) with i := i− 1 and (6.5.1) (on p. 143),

x̂c(τi) = Arx(τi−1) +

τi−1∑

j=τi−1

Aτi−1−jBuc(j),

x(τi) = Arx(τi−1) +

τi−1∑

j=τi−1

Aτi−1−jBud(j).

As a result, we arrive at (6.11.16) by taking into account (6.11.9). ⊓⊔

Frequency of Decoding Errors

Now we consider the stochastic process generated by the coder and decoder in con-
nection with the system (6.5.1) (on p. 143). The symbols Ei and Si stand for the
code words formed by the coder at time τi−1 and received by the decoder at time τi,
respectively. We also invoke the indicator function (6.9.6) (on p. 172) of the decod-
ing error Dr[Si] 6= Ei, and we pick 0 < F < F (R,W ), where F (R,W ) is taken
from (6.8.6) (on p. 162).

Observation 6.11.34. Lemma 6.9.11 (on p. 172) is still true with r0 := r.

This can be easily seen by retracing the arguments from the proof of this lemma.

Corollary 6.11.35. For the indicator function

Îerr(i)↔ Ierr(i) = 1 ∨ Ierr(i− 1) = 1 ∨ Ierr(i− 2) = 1, (6.11.19)

the following inequality holds a.s.:

lim
k→∞

1

k

k∑

i=1

Îerr(i) ≤ 3 · 2−Fr. (6.11.20)

Indeed, this is immediate from (6.9.7) (on p. 172) and the inequality

Îerr(i) ≤ Ierr(i) + Ierr(i− 1) + Ierr(i− 2).
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Influence of the Channel Errors on the Evolution of the Closed-Loop System

To analyze this influence, we first introduce the following linear operators by em-
ploying the deadbeat stabilizer (6.11.1) and its length L(N)20:

C[ col (u0, . . . , uL(N)−1)] :=

L(N)−1∑

j=0

A−1−jBuj;

x ∈ R
n N−→

[
u(0), . . . , u(n− 1), 0, 0, . . .

] C−→ B(x). (6.11.21)

We also put τ−1 := −1 and invoke Remark 6.11.16 (on p. 184) and the indicator
functions (6.9.10).

We first study the evolution of

δi := δ−c (τi) and zi := ‖x̂c(τi+1)‖. (6.11.22)

Lemma 6.11.36. The following relations hold for j ≥ 1 and i ≥ 2:

δj = δj−1

{
κ
r
[
I0(j) + Ierr

0 (j) + Ierr
dz(j)

]
+ γr

[
Iz(j) + Ierr

cz (j)
]}
×

×
{( γ

κ

)r
Ierr

dz(j − 1) +

(
κ

γ

)r
Ierr

cz (j − 1)

+ [1− Ierr
dz(j − 1)− Ierr

cz (j − 1)]

}
; (6.11.23)

zi ≤ zi−1‖A‖r
[
Iz(i) + Ierr

cz (i)
]

+ δi−1κ
2r
[
I0(i) + Ierr

0 (i) + Ierr
dz(i)

]
+ δi−2d(r)Î

err(i). (6.11.24)

Here κ ∈ (0, 1) and Îerr(i) are taken from Lemma 3.8.36 (on p. 80) and Corol-
lary 6.11.35, respectively; γ > ‖A‖ is the parameter of the controller from 2) on
p. 180; I0, Iz, Ierr

0 , Ierr
dz
, Ierr

cz are defined by (6.9.10) (on p. 173); and

d(r) := ‖A‖2r
[
1 +

( γ
κ

)r]
max

{
‖B‖, ‖CUz‖

}
, (6.11.25)

where Uz is the alarm control sequence and B,C are given by (6.11.21).

Proof. We start with proving (6.11.23):

δj
(6.11.22)
==== δ−c (τj)

(6.11.7)
==== δ+c (τj−1)

〈qd(τj−1)〉rκ,γ
〈qc(τj−2)〉rκ,γ

(6.11.10),(6.11.22)
======== δj−1 〈qc(τj−1)〉rκ,γ

〈qd(τj−1)〉rκ,γ
〈qc(τj−2)〉rκ,γ

.

20See Definition 6.11.9 on p. 181.



6.11 Stabilizing Controller and the Proof of the Sufficient Conditions for Stabilizability 191

Due to (6.9.10) (on p. 173) and (6.11.8), here the second multiplier and the ratio in
the last expression equal the first and second expressions in the curly brackets { }
from (6.11.23), respectively.

To justify (6.11.24), we denote by s′ and s′′ the first and second summands from
(6.11.16), respectively. Since in (6.11.16), qc(τi−1) is the quantized value of ε(τi−1)
by means of the r-contracted quantizer Qr with the contraction rate ρQr = κ2r ,
relation (3.8.9) (on p. 70) yields

‖s′‖ ≤ δi−1 ×
{

κ2r if qc(τi−1) 6= z
‖A‖r‖ε(τi−1)‖ if qc(τi−1) = z

}

(6.9.10)
=== δi−1κ

2r
[
I0(i)+I

err
0 (i)+Ierr

dz(i)
]
+δ−c (τi−1)‖ε(τi−1)‖‖A‖r

[
Iz(i)+Ierr

cz (i)
]
.

Here
δ−c (τi−1)‖ε(τi−1)‖ = ‖x̂c(τi)‖ = zi−1

by (6.11.9) and (6.11.22). As a result, we see that ‖s′‖ does not exceed the sum of
the first two summands from (6.11.24).

The second summand s′′ from (6.11.16) can be rewritten in the following form
due to (6.11.10), (6.11.11), and (6.11.21):

s′′ = A2r
{
δ−d (τi−1)β

[
qd(τi−1)

]
− δ−c (τi−2)β

[
qc(τi−2)

]}
,

where β(q) :=

{
B(q) if q 6= z

CUz otherwise
;

s′′
(6.11.13),(6.11.22)
========= δi−2A

2r

{
〈qd(τi−2)〉rκ,γ
〈qc(τi−3)〉rκ,γ

β
[
qd(τi−1)

]
− β

[
qc(τi−2)

]
}
.

(6.11.26)

Whenever Îerr(i) = 0, we have by (6.9.6) (on p. 172) and (6.11.19),

qd(τi−1) = qc(τi−2), qd(τi−2) = qc(τi−3),

and so the expression embraced by the last curly brackets {} in (6.11.26) vanishes.
In any case,

‖β(q)‖ ≤ max{‖B‖, ‖CUz‖} for q := qd(τi−1), qc(τi−2),

since
q 6= z⇒ ‖q‖ ≤ 1⇒ ‖β(q)‖ ≤ ‖B‖.

At the same time,
〈qd(τi−2)〉κ,γ
〈qc(τi−3)〉κ,γ

≤ γ/κ

due to (6.11.8). As a result, we see that ‖s′′‖ does not exceed the last summand from
(6.11.24), which completes the proof. ⊓⊔
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Now we focus on the evolution of the ratio ξi := zi/δi determining whether the
alarm message z is dispatched over the channel:

qc(τi) = z⇔ ξi = zi/δi > 1. (6.11.27)

Lemma 6.11.37. For i ≥ 2, the following inequality holds:

ξi ≤
{
ρξi−1 if ξi−1 > 1
κr if ξi−1 ≤ 1

}[
1− Îerr(i)

]
+ b/2

[
ξi−1 + 1

]
Îerr(i), (6.11.28)

where the indicator function Îerr(i) was introduced by (6.11.19) and

ρ :=

(‖A‖
γ

)r
, b := 2

( γ
κ2

)2r [
1 + d(r)

]
. (6.11.29)

Proof. Thanks to (6.11.23), (6.11.24), and (6.11.29)

ξi ≤
{
ξi−1ρ

[
Iz(i) + Ierr

cz (i)
]
+ κ

r
[
I0(i) + Ierr

0 (i) + Ierr
dz(i)

]}
×

×
{(

κ

γ

)r
Ierr

dz(i− 1) +
( γ

κ

)r
Ierr

cz (i− 1) + [1− Ierr
dz(i− 1)− Ierr

cz (i− 1)]
}

︸ ︷︷ ︸
̥

+
δi−2

δi
d(r)Îerr(i).

By (6.11.23),
δj−1

δj
≤ γrκ−2r ⇒ δi−2

δi
≤ γ2r

κ
−4r.

Due to (6.9.6) (on p. 172), (6.9.10) (on p. 173), and (6.11.19),

̥ ≤
( γ

κ

)r
Îerr(i) + 1− Îerr(i), I(i)[1− Îerr(i)] = 0,

for I := Ierr
0 , Ierr

dz
Ierr

cz . Hence

ξi ≤
[
ξi−1ρIz(i) + κ

rI0(i)
][

1− Îerr(i)
]

+
[
ξi−1ρ

{
Iz(i) + Ierr

cz (i)
}

+ κ
r
{
Ierr
0 (i) + Ierr

dz(i) + I0(i)
}]
×
( γ

κ

)r
Îerr(i)

+ γ2r
κ
−4rd(r)Îerr(i) ≤

[
ξi−1ρIz(i) + κ

rI0(i)
][

1− Îerr(i)
]

+
{( γ

κ

)r [
ξi−1ρ+ κ

r
]
+ γ2r

κ
−4rd(r)

}
Îerr(i).

Here ρ < 1 owing to (6.11.29) and 2) on p. 180, and κ < 1. So the factor multiplying
Îerr(i) in the last summand does not exceed

(ξi−1+1)
( γ

κ

)r
+
( γ

κ2

)2r

d(r) ≤
( γ

κ2

)2r

[1+d(r)](ξi−1+1)
(6.11.29)
==== b/2(ξi−1+1).

Summarizing, we arrive at (6.11.28). ⊓⊔
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Remark 6.11.38. By (6.11.22) and (6.11.27), ξi =
[
δ−c (τi)

]−1‖x̂c(τi+1)‖. Since the
state prognosis x̂c(τi+1) is computed by the coder only for i ≥ 1, the quantity
ξi is defined only for such i’s. Nevertheless, we pick ξ0 ∈ (1,∞) for technical
convenience: This makes the equivalence from (6.11.27) true for all i due to Re-
mark 6.11.16 (on p. 184).

Corollary 6.11.39. The indicator function

I(i)←→ Îerr(i) = 1 ∨ ξi−1 > 1 (6.11.30)

almost surely obeys the inequality

lim
k→∞

1

k

k∑

i=1

I(i) ≤ p := 3 · 2−Fr
{

2 +
log2 b

log2[ρ
−1]

}
, (6.11.31)

where F is taken from (6.11.20).

Indeed, thanks to Lemma 6.11.37 and Observation 6.9.19 (on p. 176),

lim
k→∞

1

k

k∑

i=1

I(i) ≤
{

2 +
log b

log[ρ−1]

}
× lim
k→∞

1

k

k∑

i=1

Îerr(i)
(6.11.20)

====⇒ (6.11.31).

Sufficient Conditions for Almost Sure Stability

Now we bring the pieces together. We start with conditions, which can be used to
pick the duration r of the operation epoch in order to ensure almost sure stability of
the closed-loop system.

Lemma 6.11.40. The coder and decoder at hand stabilize the system a.s. whenever

ω := log2[κ
−1]− 2p

{
log2 γ + log2[κ

−1]
}
> 0 and

χ := ω(1− p)− p log2 ‖A‖ > 0. (6.11.32)

Here κ ∈ (0, 1) is the constant from Lemma 3.8.36 (on p. 80), γ is the parameter
of the controller from 2) on p. 180, and p is given by (6.11.31), along with (6.11.25)
and (6.11.29).

Proof. The symbol c (with a possible index) will be used to denote random constants
independent of i and r. For any α > 0, (6.11.31) implies

I(k) :=

k∑

i=1

I(i) ≤ k(p+ α)

for k ≈ ∞. Since κ < 1 < γ, (6.9.10) (on p. 173), (6.11.19), (6.11.23), and (6.11.30)
yield
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δi ≤ δi−1

{
κ
r[1− I(i)] +

(
γ2

κ

)r
I(i)

}
∀i ≥ 1⇒δk ≤ δ0κ

rk
k∏

i=1

( γ
κ

)2rI(i)

= δ0κ
rk
( γ

κ

)2rI(k) k≈∞
≤ δ0κ

rk
( γ

κ

)2rk(p+α)

=δ02
−rkωα ,

where ωα := log2[κ
−1]− 2[p+ α]

{
log2 γ + log2[κ

−1]
} α→0−−−→ ω > 0.

Thus for α ≈ 0, we have ωα > 0 and

δi ≤ c′2−irωα → 0 as i→∞. (6.11.33)

This along with (6.11.10), (6.11.11), (6.11.13), and (6.11.22) imply that

uc(t)→ 0, u(t) = ud(t)→ 0 as t→∞. (6.11.34)

In particular, the second relation from (6.5.3) (on p. 144) holds.
To prove the first one, we note that due to (6.11.24) and (6.11.33)

zi ≤ zi−1‖A‖rI(i) + c′′[δi−1 + δi−2] ≤ zi−1‖A‖rI(i) + c2−irωα ∀i ≥ 2;

zk ≤ z1
k∏

i=2

[
‖A‖rI(i)

]
+ c

k∑

i=2

2−irωα

k∏

j=i+1

[
‖A‖rI(j)

]
.

(We recall that
∏β
j=α . . . := 1 whenever β < α.) The first relation from (6.11.32)

implies p < 1. So an index i ≥ 2 exists such that I(i) = 0 due to (6.11.31). It
follows that for k ≈ ∞, the first summand vanishes and

zk ≤ c
k∑

i=k−l
2−irωα‖A‖r(k−i),

where {k − l + 1, . . . , k} is the largest subinterval of the set

Ωk := {2 ≤ i ≤ k : I(i) = 1}

containing k. (If k 6∈ Ωk, then l := 0.) Now we take into account that

l ≤
k∑

i=1

I(i) = I(k) ≤ k(p+ α) ∀k ≈ ∞

and proceed as follows:
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zk ≤ c2−krωα

k∑

i=k−l
2(k−i)rωα‖A‖r(k−i) = c2−krωα

l∑

i=0

(
2ωα‖A‖

)ri

≤ c2
−krωα

(
2ωα‖A‖

)rl

1−
(
2ωα‖A‖

)−r
k≈∞
≤ c

2−krωα
(
2ωα‖A‖

)rk(p+α)

1−
(
2ωα‖A‖

)−r

=
c

1−
(
2ωα‖A‖

)−r 2−krχα ,

where χα := ωα[1− (p+ α)] − (p+ α) log2 ‖A‖
(6.11.32)−−−−→
α→0

χ > 0.

Thus χα > 0 for α ≈ 0. So

zk
(6.11.22)
==== ‖x̂c(τk+1)‖ → 0 as k →∞. (6.11.35)

This and (6.11.6), (6.11.34) yield

Arx(τi)→ 0 as i→∞.

Since the matrix A has no stable modes by Assumption 6.8.1 (on p. 161), the matrix
A−r is well defined and so x(τi) → 0 as i → ∞. To obtain the first relation from
(6.5.3) (on p. 144), we note that for τi ≤ t < τi+1 = τi + r,

‖x(t)‖ =

∥∥∥∥∥∥
At−τix(τi) +

t−1∑

j=τi

At−1−jBud(j)

∥∥∥∥∥∥

≤ ‖A‖r

‖x(τi)‖+ ‖B‖

τi+1−1∑

j=τi

‖ud(j)‖




and invoke (6.11.34). ⊓⊔

Remark 6.11.41. As follows from Remark 6.11.31, (6.11.13), and (6.11.33)–(6.11.35),
the inner dynamical variables of the coder and decoder converge to 0 almost surely.

Proof of Proposition 6.11.22

By Lemma 6.11.40, it suffices to show that (6.11.32) does hold whenever r is large
enough. Owing to (6.11.25) and (6.11.29),
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1

r
log2[1+d(r)] =

1

r

{
log2 d(r)+log2

[
1+

1

d(r)

]}
= 2 log2 ‖A‖+log2 γ+log2

1

κ

+
1

r
log2

[
1 +

(
κ

γ

)r]
+

1

r
log2 max{‖B‖, ‖CUz‖}+

1

r
log2[1 + d(r)−1]

r→∞−−−→ ∆∞ := 2 log2 ‖A‖+ log2 γ + log2 κ
−1,

log2 b

log2[ρ
−1]

=
1 + 2r[log2 γ + 2 log2 κ−1] + log2[1 + d(r)]

r[log2 γ − log2 ‖A‖]
r→∞−−−→ 2[log2 γ + 2 log2 κ−1] + ∆∞

log2 γ − log2 ‖A‖
.

This and (6.11.31) yield p → 0 as r → ∞, and we see that (6.11.32) does hold for
r ≈ ∞. ⊓⊔

6.11.4 Completion of the Proof of Theorem 6.6.1

By Corollary 6.11.32, the implication c > H(A) ⇒ a) is true for systems with no
stable modes. Now we consider the general case of systems with both unstable and
stable modes.

Suppose that c > H(A), consider the invariant subspaces Munst and Mst of the
matrix A related to the unstable {λ : |λ| ≥ 1} and stable {λ : |λ| < 1} parts of its
spectrum, respectively, and denote by π+ and π− the projector onto Munst parallel to
Mst and vice versa, respectively, and by A+ and A− the operator A acting in Munst

and Mst, respectively. The claim a) is true for the system

x+(t+ 1) = A+x+(t) + π+Bu(t), x+(0) := π+x0, y+(t) = Cx+(t) (6.11.36)

by Corollary 6.11.32 since H(A) = H(A+).
Let us consider a coder and decoder stabilizing this system. While constructing

them, let us employ the state dimension n of the original system in (6.11.3) and the
alarm control sequence (6.11.15). Now we apply this coder and decoder to the primal
system (6.5.1). In doing so, we also alter the coder’s steps cs.1) (on p. 182) and cs.2-
31) (on p. 187), where it determines the state x+(τ) for τ = τi, τi + 2n, τi + 3n+
1. Formerly this was done on the basis of the past measurements from (6.11.36).
Now we employ the observations from (6.5.1). Then thanks to Assumption 6.3.6 (on
p. 137), it is possible to compute π+x(τi) = x+(τi) because the dynamics of the
system (6.5.1) is free u(t) = 0 at least n time steps before τi. Hence the coder and
decoder at hand can be applied to the primal system indeed.

As a result, we see that for the corresponding closed-loop system,

‖π+x(t)‖ → 0 and ‖u(t)‖ → 0 as t→∞ a.s. (6.11.37)

So to complete the proof, it suffices to show that x−(t) := π−x(t) → 0 whenever
(6.11.37) holds. To this end, we note that

x−(t+ 1) = A−x−(t) + π−Bu(t), ‖Am−‖ ≤ cµm, m = 0, 1, 2, . . .
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for some µ ∈ (0, 1). Hence for any given t∗ and t > t∗, we have

‖x−(t)‖ =
∥∥∥At−x−(0) +

t−1∑

j=0

At−1−j
− π−Bu(j)

∥∥∥ ≤ cµt‖x−(0)‖

+ c‖B‖‖π−‖



t∗∑

j=0

µt−1−j‖u(j)‖+

t−1∑

j=t∗

µt−1−j‖u(j)‖


 ,

lim
t→∞

‖x−(t)‖ = c‖B‖‖π−‖ lim
t→∞

t−1∑

j=t∗

µt−1−j‖u(j)‖

≤ c‖B‖‖π−‖
1− µ sup

t≥t∗
‖u(t)‖ → 0 as t∗ →∞,

where the last relation follows from (6.11.37). Thus a) does hold.
The implications a) ⇒ b) ⇒ c) ⇒ d) are apparent, whereas d) ⇒ c ≥ H(A)

holds by Remark 6.7.3 (on p. 148). ⊓⊔
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An Analog of Shannon Information Theory: State
Estimation and Stabilization of Linear Noisy Plants
via Noisy Discrete Channels

7.1 Introduction

In this chapter, we continue to address state estimation and stabilization over noisy
channels for discrete-time linear partially observed systems. As compared with the
previous chapter, the critical feature of this one is the account for the plant distur-
bances and sensor noises. The major points concern the case where these distur-
bances are uniformly and arbitrarily small (at any sample and time). We demonstrate
that in the face of both channel and system noises, the strong objective of trajectory-
wise (i.e., almost sure) stability or observability cannot be achieved by any means
and under any circumstances for many discrete memoryless channels of practical
interest, although it may yet be achieved for rather special channels.

We offer an exhaustive description of these two classes of channels. This descrip-
tion results from showing that the capability of the noisy channel to ensure almost
sure stability/observability of the plant is identical to its capability to transmit infor-
mation with the zero probability of error. The latter capability is studied in the zero
error information theory.1 This theory reveals noisy channels capable of errorless
transmission of information and offers the corresponding coding–decoding schemes.
The zero error capacity c0 [189] is the standard parameter characterizing the maxi-
mum rate at which data can be transmitted over the channel with no error. The results
of this chapter state that the boundary of the almost sure stabilizability/observability
domain is given by the channel zero error capacity.

We also show that if this boundary is trespassed, an unstable linear system can
never be stabilized or observed: The error is almost surely unbounded for all nonan-
ticipating time-varying algorithms of stabilization/observation (with infinite mem-
ories). It should be stressed once more that this holds under uniformly small plant
disturbances. So this phenomenon has nothing in common with, e.g., the well-known
fact that for the stable linear plant affected by the Gaussian white noise, the stabiliza-
tion error is yet a.s. unbounded. Indeed, the latter unboundedness ultimately results
from the fact that the sample sequences of the white noise are a.s. unbounded. On the

1We refer the reader to [84] for an excellent survey of this area.
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contrary, we show that in the face of channel errors, external disturbances obeying a
common and arbitrarily small deterministic bound at any sample and time unavoid-
ably accumulate and cause, sooner or later, arbitrarily large stabilization/estimation
errors.

Although noisy channels with a positive zero error capacity exist, the zero error
capacity of many communication channels of practical interest is equal to zero [84,
214]. For example, this holds for the erasure channel with the probability of erasures
p > 0, as well as for the binary symmetric channel with the crossover probability
0 < p < 1. The above negative result implies that an asymptotically unstable linear
plant can be neither stabilized nor observed with a bounded error over a discrete
memoryless channel whose zero error capacity is zero.

A negative fact similar in spirit was established in [164] for a simple scalar
stochastic process (random walk) and binary channel. This fact concerns a small and
special class of estimation/stabilization schemes that employ block encoders with a
fixed block length and static decoders producing only a finite number of outputs. This
strong simplification played a crucial role in the proof from [164]. On the contrary,
the results of this chapter deal with all time-varying nonanticipating deterministic
algorithms of stabilization/estimation. They enjoy unlimited memories and produce
outputs (estimates/controls) whose number may go to infinity as time progresses.
Furthermore, we examine general linear plants and discrete memoryless channels.

The works [102, 103] deal with the channel that transmits binary code words
with dropping a random number of concluding bits. This particular case of a dis-
crete memoryless channel generalizes the erasure channel and is motivated by cer-
tain wireless communication applications in [101]. It was shown in [102, 103] that
for a noise-free LTI plant to be uniformly stabilizable (i.e., with an error uniformly
bounded over the initial states from the unit ball), it is necessary that a certain num-
ber rmin of bits is not lost under any circumstances (i.e., with probability 1), and
this number rmin exceeds the topological entropy H(A) of the open-loop system.
Since rmin equals the zero error capacity of the channel at hand, this claim is in har-
mony with the results of this chapter. However there is a difference. It concerns not
only the fact that this chapter examines general discrete memoryless channels with
data distortion more complicated than dropout of several bits. As compared with the
current chapter, the works [102, 103] justify the necessity of the zero error capacity
bound for stability in a stronger sense. To illustrate this, we note that the lack of
uniform stability does not exclude that the worst case, where the error is unbounded,
holds only with a very small (up to negligible) probability (given by the probabil-
ity density of the initial state). Moreover, the results of Chap. 6 state that exactly
this situation holds whenever the necessary condition H(A) < rmin [102, 103] for
the uniform stability is violated but H(A) is less than the Shannon ordinary capac-
ity of the channel at hand. Then the stabilization error can be made almost surely
converging to zero, as was shown in Chap. 6. This implies that the plant can be
uniformly stabilized with as large a probability as desired,2 even if the necessary

2In other words, the error is bounded uniformly over all initial states except for those from
a set with an arbitrarily small probability measure.
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condition from [102, 103] is violated. In contradistinction to [102, 103], the results
of this chapter show that the violation of the zero error capacity bound implies that
the stabilization error is unbounded with probability 1. It should be also stressed that
the above results from [102, 103] concern noise-free plants, whereas this chapter is
devoted to the study of phenomena related to the interplay of an additive noise in the
plant with the channel errors.

Mean-square (and more generally mth moment) stabilizability/observability un-
der communication capacity constraints and exhogenous additive stochastic distur-
bances was studied in, e.g., [77, 102, 103, 138, 164–166, 192, 193] for scalar linear
plants and noisy channels [77, 102, 103, 164–166, 192, 193] and multidimensional
linear plants and noiseless channels [138]. The stronger trajectory-wise stabilizabil-
ity/observability was examined in, e.g., [202, 204, 215] for noiseless channels in a
deterministic setting. The observers/controllers proposed in [77, 138, 164, 165, 192,
193, 202, 204, 215] use some parameters of the system noise.

Unlike these works, the observer/controller proposed in this chapter does not
rely on the knowledge of parameters of the plant noises. In other words, the same
observer/controller ensures bounded estimation/stabilization error under arbitrary
bounded noise, although the accuracy of estimation/stabilization depends on the
noise level. This is of interest, e.g., in the cases where statistical knowledge of the
noise is not available or the noise properties may change during the system operation.

Traditionally, the zero error capacity is considered in both cases where the (feed-
forward) communication channel is and is not equipped with a (perfect) feedback
communication link, respectively. Via such a link, the informant gets aware about
the results of the previous transmissions across the erroneous feedforward channel.
The zero error capacity may in some cases, be greater with feedback than with-
out [189]. The relationship between these two kinds of the zero error capacity and
the observability domain is rather straightforward: This domain is given by the zero
error capacity with or without a feedback, depending on whether this feedback is in
fact available. On the contrary, the domain of stabilizability is given by the channel
zero error capacity with a feedback link, irrespective of whether such a link is in fact
available.

The reason for this was basically illuminated in Subsect. 6.11.2 (starting on
p. 185): No special feedback communication link is needed since the required feed-
back information flow from the controller to the sensor site can be arranged by means
of control actions upon the plant. However the algorithm proposed in Subsect. 6.11.2
ensures feedback data transmission at only a small rate (one bit per potentially long
operation epoch). This is not enough to fabricate a controller of a (feedforward) data
transmission scheme relaying on a complete communication feedback: To make such
a scheme work properly, the entire previous transmission result should be sent back
to the sensor site at each time step. In view of this, we offer another algorithm of
data transmission by means of control in this chapter. This algorithm ensures feed-
back data transmission at an arbitrarily large rate without violating the main objective
of keeping the stabilization error a.s. bounded.

The main results of the chapter were originally published in [112, 113, 116, 117,
121].
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The remainder of the chapter is organized as follows. Sections 7.2 and 7.4 offer
the statement of the state estimation problem and the corresponding main results,
respectively. These results employ the concept of the zero error capacity of the noisy
channel, which is discussed in Sect. 7.3. In Sect. 7.5, a stabilization problem is posed
and the corresponding results are stated. Sections 7.6 and 7.7 are devoted to the
proofs of, respectively, the necessary and sufficient conditions (for observability and
stabilizability).

7.2 Problem of State Estimation in the Face of System Noises

In Chap. 6, we studied noiseless linear plants. Now we pass to the case where the
plant is affected by additive exogenous disturbances ξ(t) and the sensor is noisy:

x(t+ 1) = Ax(t) + ξ(t), x(0) = x0, y(t) = Cx(t) + χ(t). (7.2.1)

Here x(t) ∈ Rn is the state; ξ(t) ∈ Rn is the exogenous disturbance; y(t) ∈ Rny is
the measured output; χ(t) ∈ Rny is the sensor noise, and t = 0, 1, . . .. The noises
χ(t) and ξ(t) are deterministic and bounded:

‖ξ(t)‖ ≤ D, ‖χ(t)‖ ≤ Dχ ∀t. (7.2.2)

The initial state x0 is a random vector. Like in Chap. 6, the plant (7.2.1) is unstable,
and Assumptions 6.3.1 and 6.3.4–6.3.6 (on pp. 136, 137) are supposed to hold. The
objective is to estimate the current state on the basis of the prior measurements.

This estimate is still required at a remote location, where data from the sensor can
be communicated only via a given noisy discrete memoryless channel with inputs e
and outputs s. So like in Chap. 6, the observer consists of a decoder

x̂(t) = X [t, s(0), s(1), . . . , s(t)] ∈ R
n (7.2.3)

and coder. We still consider two classes of coders depending on whether a commu-
nication feedback is available. We recall that the coders with and without a feedback
are described by equations of the following forms, respectively:

e(t) = E[t, y(0), . . . , y(t), s(0), . . . , s(t− 1)]; (7.2.4)

e(t) = E[t, y(0), . . . , y(t)]. (7.2.5)

Is it possible to design a coder–decoder pair keeping the estimation error bounded?

Explanation 7.2.1. Because of the noise, the estimation error cannot be made decay-
ing to zero (6.2.5) (on p. 135), like in Chap. 6. At the same time, this error can be
made bounded whenever the decoder has access to the entire observation y(t), and
the pair (A,C) is detectable [8, 12].

To specify the above question, we introduce two concepts of observability: the
weak and strong ones.
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Definition 7.2.2. The coder–decoder pair is said to keep the estimation error bounded
under (D,Dχ)-bounded noises if

lim
t→∞

‖x(t)− x̂(t)‖ <∞ (7.2.6)

for any noises {ξ(t)} and {χ(t)} satisfying (7.2.2) with the given boundsD andDχ.

Remark 7.2.3. Such a coder–decoder pair may depend on the boundsD and Dχ and
fail to ensure (7.2.6) for bounded noises tresspassing these bounds.

Explanation 7.2.4. Since the initial state x0 is random, the event (7.2.6) of keeping
the estimation error bounded is also random.

Definition 7.2.5. The coder–decoder pair is said to uniformly keep the estimation
error bounded under bounded noises if (7.2.6) holds uniformly over all noises satis-
fying (7.2.2) with some D and Dχ and irrespective of the values of D and Dχ:

lim
t→∞

sup
{ξ(t)},{χ(t)}

‖x(t)− x̂(t)‖ <∞ ∀D ≥ 0, Dχ ≥ 0, (7.2.7)

where sup is over all noises that obey (7.2.2) with the boundsD andDχ considered.

Remark 7.2.6. Such a pair does not depend on the noise bounds and ensures observ-
ability under all bounded noises.

A practical difference between the coder–decoder pairs considered in Defini-
tions 7.2.2 and 7.2.5, respectively, is that unlike the second pair, the first one requires
a knowledge of an estimate of the noises levels.

Remark 7.2.7. In (7.2.6) and (7.2.7), limt→∞ can be evidently replaced by supt≥0.

In this chapter, we examine the border between the cases where the state of the
noisy plant can and, respectively, cannot be observed in the sense introduced by
either Definition 7.2.2 or 7.2.5. We show that the border is common for these two
definitions. Unlike Chap. 6, it is constituted by not the ordinary capacity (6.3.3) (on
p. 138) of the channel. Instead, it is given by another fundamental characteristic of
the noisy channel, introduced by Shannon [189] and discussed in the next section.

7.3 Zero Error Capacity of the Channel

By Theorem 6.8.3 (on p. 162), the capacity (6.3.3) (on p. 138) employed in Chap. 6
is the least upper bound of rates at which it is possible to transmit information across
the channel with as small a probability of error as desired. The zero error capacity
is the least upper bound of rates at which it is possible to transmit information with
zero probability of error. Unlike the former, the latter may depend on whether the
communication feedback is available [189].
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Zero Error Capacity of Channels without a Feedback Link

Consider a block code (6.8.2) (on p. 161) with block length r

E1, . . . , EN , Ei = (ei0, . . . , e
i
r−1), eij ∈ E (7.3.1)

endowed with a decoding rule D(·) : Sr → [1 : N ]. Here Sr is the set of all output
r-words S = (s0, . . . , sr−1). This rule is errorless if D(S) = i for any i and any
output word S that can be received with a positive probability

P (S|Ei) =
N−1∏

ν=0

W (sν |eiν) > 0

given that Ei is sent.3 The zero error capacity

c0 := supR, R :=
log2N

r
,

where R is the rate of the code and sup is over all block codes of arbitrary lengths r
for which errorless decoding is possible. If no such code exists, c0 := 0.

Definition 7.3.1. Two input code words E′ and E′′ are distinguishable at the receiv-
ing end of the channel if they cannot both result in a common output word S with a
positive probability. In other words, the following two sets are disjoint:

{S : P (S|E′) > 0} and {S : P (S|E′′) > 0}.
Remark 7.3.2. It is easy to see that a block code (7.3.1) can be endowed with an
errorless decoding rule if and only if it consists of mutually distinguishable words.

It follows that the zero error capacity of the channel

c0 = sup
r=1,2,...

1

r
log2Nmax(r), (7.3.2)

where Nmax(r) is the maximal number of mutually distinguishable code words of
length r.

Remark 7.3.3. In (7.3.2), supr can be replaced by limr→∞, where the limit does
exist [84].

To pave the way to channels with feedback, we start with the following.

Remark 7.3.4. For channels with no feedback, encoding by block codes is identi-
cal to encoding i via block functions; i.e., recursive rules of the form i 7→ Ei =
[e(0), . . . , e(r − 1)], where

e(0) := E∗[0, i], e(t) := E∗[t, e(0), . . . , e(t−1), i], t = 1, . . . , r−1. (7.3.3)

Indeed, such a rule does nothing but associates every i with an r-word Ei. Con-
versely, any block code (7.3.1) can be generated in such a way by putting

E∗[t, ·, i] := eit.

3Here W (s|e) are the channel transition probabilities from Assumption 6.3.1 on p. 136.
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Zero Error Capacity of Channels with Complete and Perfect Feedback

In this case, the block function (7.3.3) with block length r takes the form [189]

e(t) = E∗[t, e(0), . . . , e(t− 1), s(0), . . . , s(t− 1), i], t = 1, . . . , r − 1;

e(0) = E∗[0, i] (7.3.4)

and is still used to encode messages labeled by i = 1, . . . , N for transmission over
the channel. The other particulars in the definition of the zero error capacity remain
unchanged; the corresponding capacity is denoted by c0F .

Remark 7.3.5. The zero error capacity may, in some cases, be greater with feedback
than without c0F > c0 [189].

Remark 7.3.6. Similarly to Remark 7.3.3, c0F = limr→∞Rmax(r), where Rmax(r)
is the maximal rate of errorless block functions with block length r [84].

The general formula for c0 is still missed [84], whereas for c0F , it is well known [189]

2−c0F = min max
s∈S

∑

e∈Es

P (e).

Here min is over all probability distributions {P (e)} on the input channel alphabet
E, and Es is the set of all input symbols e that cause the output symbol s with a
positive probability W (s|e) > 0. The above formula for 2−c0F is true if there is a
pair e′, e′′ of distinguishable input symbols: W (s|e′)W (s|e′′) = 0 ∀s. Otherwise,
c0F = c0 = 0. Moreover, each of the inequalities c0F > 0 and c0 > 0 holds if and
only if there is a pair of distinguishable input symbols [189].

Remark 7.3.7. The ordinary capacity (6.3.3) (on p. 138) is typically nonzero, whereas

c0F = c0 = 0

for many discrete memoryless channels of practical interest [214].

The simplest examples are as follows.

• Erasure channel with an arbitrary alphabet E of size K = 2, 3, . . .. Such a chan-
nel transmits a message e ∈ E correctly with probability 1 − p and loses it with
probability p ∈ (0, 1]. The output alphabet S = E ∪ {⊛} (where s(t) = ⊛ ⇔
the message e(t) is lost). Since W (⊛|e) = p > 0 ∀e, any two input letters are
indistinguishable and so c0F = c0 = 0: There is no way to transmit data without
an error. However, data can be transmitted across this channel with as small a
probability of error as desired at any rate R < c = (1− p) log2K > 0 [190].

• Binary symmetric channel with crossover probability 0 < p < 1. This channel
has binary input and output alphabets E = S = {0, 1}, flips bits with probability
p ∈ (0, 1), and transmits them correctly with probability 1− p :
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W (i|j) =

{
1− p if i = j

p otherwise
.

Since W (1|0) > 0 and W (1|1) > 0, the input letters 0 and 1 are indistinguish-
able and so c0F = c0 = 0. The ordinary capacity (6.3.3) (on p. 138) is given
by [190]

c = 1 + p log2 p+ (1 − p) log2(1− p) (> 0 if p 6= 1/2).

• General discrete memoryless channel with positive transition probabilities
W (s|e) > 0 ∀s, e has 0 zero error capacity by the same argument. Moreover

∃s : W (s|e) > 0 ∀e ⇒ c0F = c0 = 0.

An opposite example of a noisy channel with a positive zero error capacity is
any discrete memoryless channel with the pentagon characteristic graph. Its vertices
are associated with the symbols from the input channel alphabet E. Two vertices
(in fact, input symbols) are linked with a (nonoriented) edge if and only if these
symbols are indistinguishible. The zero error capacity is completely determined by
the characteristic graph [189]. The pentagon graph is depicted in Fig. 7.1 and related
to channels with five input symbols. The zero error capacity of any channel with
pentagon characteristic graph equals c0 = 1

2 log2 5 > 0 [96].

Fig. 7.1. Pentagon graph.

Remark 7.3.8. In [189], the zero error capacity was calculated for all discrete mem-
oryless channels with input alphabets containing no more than four elements.

This capacity is long studied in the so-called zero error information theory. We refer
the reader to [84] for an excellent survey of this area.

7.4 Conditions for Almost Sure Observability of Noisy Plants

We start with the necessary conditions for observability.

Theorem 7.4.1. Suppose that Assumptions 6.3.1 and 6.3.4 (on pp. 136 and 137) hold
and that the noise does occur in the plant: D > 0 and Dχ ≥ 0 in (7.2.2) (on
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p. 202). Consider the zero error capacities c0F and c0 of the channel with and without
a communication feedback, respectively, and the topological entropy H(A) of the
open-loop plant with the noise removed:

H(A) =
∑

λj :|λj |≥1

log2 |λj |. (7.4.1)

Here λ1, . . . , λn are the eigenvalues of the system (7.2.1) (on p. 202) repeating in
accordance with their algebraic multiplicities.

Let some coder-decoder pair without (with) a feedback produce estimates of the
states of the noisy plant (7.2.1). If this pair keeps the estimation error bounded under
(D,Dχ)-bounded noises4 with a nonzero probability, then c0 ≥ H(A) in the case of
the pair without a feedback and c0F ≥ H(A) in the case of the pair with a feedback.

The proof of this theorem will be given in Sect. 7.6.

Corollary 7.4.2. Asymptotically unstable plants H(A) > 0 can never be observed
with a bounded error over channels whose zero error capacity is equal to zero: The
estimation error is almost surely unbounded, irrespective of which estimation scheme
is employed.

This in particular holds for the binary symmetric channel with crossover probability
0 < p < 1 and erasure channel with arbitrary alphabet (of size ≥ 2) and positive
erasure probability.

Explanation 7.4.3. In Corollary 7.4.2, the phrase “is almost surely unbounded”
means that with probability 1, noise sequences {ξ(·)}, {χ(·)} obeying the prescribed
bound (7.2.2) (on p. 202) exist for which the estimation error is unbounded. As will
be specified by Proposition 7.6.2 (on p. 211), this is true with the zero sensor noise.

Remark 7.4.4. The level D > 0 of the exogenous disturbance is immaterial for the
conclusions of Theorem 7.4.1 and Corollary 7.4.2 to hold. In particular, this level
may be arbitrarily small.

In view of this, Corollary 7.4.2 means that arbitrarily and uniformly small plant
disturbances unavoidably accumulate and cause arbitrarily large estimation errors.

The next theorem demonstrates that the necessary conditions given by Theo-
rem 7.4.1 are “almost” sufficient.

Theorem 7.4.5. Suppose that Assumptions 6.3.1, 6.3.4, and 6.3.6 (on pp. 136 and
137) hold. If c0 > H(A) ( or c0F > H(A)), then a semirational finite-step re-
cursive5 coder–decoder pair without (respectively, with) a feedback exists that with
probability 1 uniformly keeps the estimation error bounded under bounded noises.6

The proof of this theorem will be given in Sect. 7.7. An explicit description of
the observer will be offered in Subsect. 7.7.1 (starting on p. 223).

4See Definition 7.2.2 on p. 203.
5See Definitions 6.3.9 and 6.3.10 on pp. 139 and 140.
6See Definition 7.2.5 on p. 203.
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Remark 7.4.6. The coder–decoder pair from Theorem 7.4.5 does not depend on the
noise bounds from (7.2.2) (on p. 202) and ensures state tracking with uniformly
bounded error (7.2.7) (on p. 203) irrespective of these bounds.

Remark 7.4.7. In Theorem 7.4.5, the coder–decoder pair can be chosen so that when-
ever the initial state x0 is bounded ‖x0‖ ≤ Dx a.s., this pair ensures that the estima-
tion error is bounded uniformly over almost all samples assumed by the initial state:
The lim in (7.2.7) is a.s. upper bounded by a constant, which does not depend on the
elementary random event and depends only on Dx, D,Dχ.

If detA 6= 0, this claim is straightforward from Theorem 7.4.5. Indeed, it suf-
fices to consider the process started at t = −1 at x(−1) := 0 under ξ(−1) :=
A−1x0, χ(−1) := 0. The required minor comments concerning the case of singular
matrix A will be given in the footnote on p. 231.

Comment 7.4.8. For noiseless discrete channels, the statement of Theorem 7.4.5 was
established in [204] (see also [215]) in the case, where the observation is noiseless
and complete y(t) = x(t) and an upper bound of the initial state is known, with
respect to a weaker form of observability: (7.2.7) was ensured only for given noise
bounds from (7.2.2). In particular, the observers proposed in [204, 215] depend on
the noises bounds D,Dχ with no guarantee of convergence in the case where the
bounds employed in the observer design are trespassed.

Remark 7.4.9. By properly increasing the sample period in the vein of Subsect. 3.8.4
(starting on p. 68), the case of a noisy channel with the zero error capacity > H(A)
can be reduced to the case of a noiseless discrete channel with capacity > H(A)
considered in [204, 215].

7.5 Almost Sure Stabilization in the Face of System Noises

In this section, we show that Theorems 7.4.1 and 7.4.5 basically remain true for the
stabilization problem. However, in this case, there is a difference as compared with
the observation problem, which concerns the communication feedback.

In this section, we consider a controlled version of the plant (7.2.1) (on p. 202):

x(t+1) = Ax(t)+Bu(t)+ξ(t), x(0) = x0, y(t) = Cx(t)+χ(t), (7.5.1)

where u(t) ∈ Rnu is the control. This plant is unstable, and the objective is to
stabilize it.

We examine a remote control setup: The controls are generated at a remote loca-
tion, where data from the sensor can be communicated only via a given noisy discrete
memoryless channel with inputs e and outputs s. So the controller is constituted by
a coder and decoder(-controller):

u(t) = U [t, s(0), s(1), . . . , s(t)] ∈ R
nu . (7.5.2)
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We still consider two classes of coders: those with (7.2.4) and without (7.2.5) a com-
munication feedback, respectively.

Similarly to Definitions 7.2.2 and 7.2.5 (on p. 203), we introduce two concepts
of stabilizability in the face of system noises.

Definition 7.5.1. The coder–decoder pair is said to stabilize the plant under (D,Dχ)-
bounded noises if

lim
t→∞

‖x(t)‖ <∞ (7.5.3)

for any noises {ξ(t)} and {χ(t)} satisfying (7.2.2) with the given boundsD andDχ.

Definition 7.5.2. The coder–decoder pair is said to uniformly stabilize the plant un-
der bounded noises if (7.5.3) holds uniformly over all noises satisfying (7.2.2) and
irrespective of the values of D and Dχ:

lim
t→∞

sup
{ξ(t)},{χ(t)}

‖x(t)‖ <∞ ∀D ≥ 0, Dχ ≥ 0, (7.5.4)

where sup is over all noises that obey (7.2.2) with the boundsD andDχ considered.

Remarks 7.2.3, 7.2.6, and 7.2.7 and Explanation 7.2.4 (on p. 203) remain true
with respect to Definitions 7.5.1 and 7.5.2.

Now we are in a position to state the main result of the section.

Theorem 7.5.3. Suppose that Assumptions 6.3.1, 6.3.4–6.3.6, and 6.5.5 (on pp. 136,
137, and 144) hold. Consider the zero error capacity c0F of the channel with a com-
munication feedback and the topological entropy H(A) of the uncontrolled open-
loop plant with the noise removed (7.4.1) (on p. 207). Then the following two claims
are true:

i) If the plant disturbance does occur D > 0 and a coder–decoder pair exists
that with a nonzero probability, stabilizes the noisy plant (7.5.1) under (D,Dχ)-
bounded noises, then c0F ≥ H(A);

ii) Conversely, if c0F > H(A), a semirational finite-step recursive coder–decoder
pair7 without a feedback exists that almost surely uniformly stabilizes the plant
under bounded noises.

The proof of this theorem will be given in Sects. 7.6 and 7.8. A coder–decoder pair
ensuring ii) will be described in Subsect. 7.8.3 (starting on p. 236).

Explanation 7.5.4. Claim i) holds for coder–decoder pairs both with (7.2.4) and with-
out (7.2.5) a feedback.

Remark 7.5.5. By ii), the condition c0F > H(A) on the channel zero error capacity
with a feedback ensures existence of a stabilizing coder–decoder pair without a
feedback.

7See Definitions 6.3.9 and 6.5.7 on pp. 139 and 145, respectively.
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This is in contrast with the state estimation problem, where the conditions on the
channel zero error capacities with c0F and without c0 a feedback are sufficient and
almost necessary for observability with and without a feedback link, respectively.

Explanation 7.5.6. The phenomenon concerned in Remark 7.5.5 is underlyed by the
fact discussed in Subsect. 6.11.1 (starting on p. 185): In control systems, data can be
communicated by means of control, and so a special feedback communication link
is not required.

As is known, c0F ≥ c0 and for some channels, c0F > c0 [189].

Observation 7.5.7. In the absence of a feedback communication link, noisy plants
(7.5.1) with

c0F > H(A) > c0

are a.s. stabilizible but are not observable in the open loop (u(t) ≡ 0).

This is in contrast with the results of Chap. 6, where the conditions for stabiliz-
ability and observability are common.

Comment 7.5.8. Theorem 7.5.3 remains true for stochastic plant disturbances [121] .

Specifically, they remain true in the case where the disturbances are identically
distributed according to some probability density with a bounded support,8 mutually
independent, and independent of the channel and initial state.

The important Corollary 7.4.2 (along with Remark 7.4.4 on p. 207) evidently re-
mains true for the stabilization problem: Arbitrarily and uniformly small plant distur-
bances unavoidably accumulate and cause arbitrarily large stabilization errors. More
presicely, the following claim holds.

Corollary 7.5.9. Asymptotically unstable plants H(A) > 0 can never be stabilized
with a bounded error over channels whose zero error capacity equals zero: The sta-
bilization error is almost surely unbounded, no matter what stabilization scheme is
employed.

Explanation 7.4.3 (on p. 207) extends on this corollary.

Remark 7.5.10. The phenomenon addressed by Corollary 7.5.9 has nothing in com-
mon with the well-known fact that for the stable linear plant affected by the Gaussian
white noise, the stabilization error is yet a.s. unbounded. Indeed, this unbounded-
ness ultimately results from the facts that first, the sample sequences of the white
noise are a.s. unbounded and second, an unpredictable external disturbance cannot
be compensated. On the contrary, we show that in the face of channel errors, exter-
nal disturbances obeying a common and arbitrarily small deterministic bound at any
sample and time unavoidably accumulate and cause, sooner or later, arbitrarily large
stabilization errors.

Remark 7.4.6 and Comment 7.4.8 (on p. 208) with “ii) of Theorem 7.5.3” sub-
stituted in place of “Theorem 7.4.5” remain valid for the stabilization problem.

8The bounded support assumption is required only for part ii) of Theorem 7.5.3.
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7.6 Necessary Conditions for Observability and Stabilizability:
Proofs of Theorem 7.4.1 and i) of Theorem 7.5.3

In this section, Assumptions 6.3.1 and 6.3.4 (on pp. 136 and 137) of these theorems
are supposed to hold. So far as necessary conditions are concerned, we can confine
ourselves to consideration of certain specific noises satisfying (7.2.2) (on p. 202).
Specifically, we shall consider the zero sensor noise throughout the section:

χ(t) ≡ 0.

We also consider a certain specific disturbance boundD > 0 in (7.2.2).

Definition 7.6.1. A disturbance {ξ(t)} satisfying (7.2.2) is said to be admissible.

In the remainder of the section, we focus on proving the following proposition, which
evidently implies Theorem 7.4.1 and i) of Theorem 7.5.3.

Proposition 7.6.2. The following two claims hold:

i) Suppose that H(A) > c0 (or H(A) > c0F ) and for the uncontrolled plant
(7.2.1) (on p. 202), consider arbitrary coder and decoder-estimator without (re-
spectively, with) a feedback. Then with probability 1, an admissible disturbance
exists for which the estimation error is unbounded:

lim
t→∞

‖x(t)− x̂(t)‖ =∞. (7.6.1)

ii) Suppose that H(A) > c0F and for the controlled plant (7.5.1), consider arbi-
trary coder and decoder-controller. Then with probability 1, an admissible dis-
turbance exists for which the stabilization error is unbounded:

lim
t→∞

‖x(t)‖ =∞. (7.6.2)

Remark 7.6.3. In the particular case where H(A) > 0 and the zero error capacity of
the channel is zero, this proposition comes to Corollaries 7.4.2 and 7.5.9 (on pp. 207
and 210).

Remark 7.6.4. The statement ii) follows from i).

This holds since Lemma 6.7.4 (on p. 148) clearly remains true for the noisy plant
(7.5.1), provided that the noises are introduced in the equations of the system (6.7.7).

Remark 7.6.4 permits us to focus on proving i) of Proposition 7.6.2.

7.6.1 Proof of i) in Proposition 7.6.2 for Erasure Channels

We start with a particular case where the proof is especially simple. Specifically, we
suppose that communication from the coder to decoder is over an erasure channel
with arbitrary finite alphabet E of size ≥ 2. We recall that this channel transmits a
message e ∈ E correctly with probability 1−p and loses it with probability p ∈ (0, 1].
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Thus, the only form of data distorion is dropout.9 This channel has 0 zero error
capacity. So i) of Proposition 7.6.2 means that (7.6.1) holds almost surely for any
coder and decoder-estimator, whenever the plant is asymptotically unstable.

In this subsection, we prove the following claim.

Proposition 7.6.5. Let the matrix A from (7.2.1) (on p. 202) have an unstable eigen-
value |λ| ≥ 1, the erasure probability p > 0, and the plant disturbance does occur
D > 0. Then for arbitrary coder and decoder-estimator, the conclusion of i) in
Proposition 7.6.2 holds.

Remark 7.6.6. In fact, this claim is a bit stronger than i) of Proposition 7.6.2 projected
on the case of the erasure channel.

Indeed, i) concerns matrices A with H(A) > 0, which implies that A has an
eigenvalue λ with |λ| > 1.

The proof of Proposition 7.6.5 is prefaced by two simple technical facts.

Lemma 7.6.7. Let λ be an unstable |λ| ≥ 1 eigenvalue of A. Given a time τ =
1, 2, . . . and an initial state x0, an admissible disturbance exists such that

‖xτ − x0
τ‖ ≥ Dν|λ|(τ), where νa(τ) :=

{
aτ−1
a−1 if a > 1

τ if a = 1
. (7.6.3)

Here xτ and x0
τ stand for the states to which the system (7.2.1) (on p. 202) is driven

from the initial state x0 under the above and zero disturbances, respectively.

Proof. Suppose first that λ is real. The required admissible disturbance is given by

ξ(t) = D(sgnλ)tζλ,

where ζλ is a normalized ‖ζλ‖ = 1 eigenvectorAζλ = λζλ. Indeed,

xτ = Aτx0︸ ︷︷ ︸
x0

τ

+q, where q :=

τ−1∑

t=0

Aτ−1−tξ(t) = D

τ−1∑

t=0

(sgnλ)tAτ−1−tζλ

= D

τ−1∑

t=0

(sgnλ)tλτ−1−tζλ = (sgnλ)τ−1Dν|λ|(τ)ζλ,

which implies (7.6.3).
If the eigenvalue is not real

λ = |λ|(cosϕ+ ı sinϕ), ϕ 6= 0,±π,±2π, . . . ,

we consider disturbances

9This may be due to the activity of a filter at the receiving end of the channel, which blocks
any message suspicious as damaged.
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ξ(t) = D|λ|−tAtζ(θ)
depending on the parameter θ ∈ R. Here

ζ(θ) := ζ1
λ cos θ − ζ2

λ sin θ = Re
(
eıθζλ

)
,

where ζλ ∈ Cn is a λ-eigenvector Aζλ = λζλ and ζ1
λ, ζ

2
λ ∈ Rn are its real and

imaginary parts ζλ = ζ1
λ + ıζ2

λ. The vector ζλ is normalized so that

max
θ
‖ζ(θ)‖ = 1.

It is easy to see that then

q = Dν|λ|(τ)ζ[θ + (τ − 1)ϕ].

After picking θ such that ‖ζ[θ + (τ − 1)ϕ]‖ = 1, the proof is completed just as in
the case of the real eigenvalue. ⊓⊔

Notation 7.6.8. Denote by It the indicator function of the erasure:

It =

{
1 if the message e(t) is lost

0 otherwise
.

Lemma 7.6.9. Let k = 1, 2, . . . be given. Then k + 1 successive erasures occur
during some time interval It−k = It−k+1 = · · · = It = 1 of duration k almost
surely. Moreover, this happens infinitely many times with the average frequency

1

r

r∑

i=1

Ji → pk+1 > 0 as r →∞ a.s..

Here

Ji :=

{
1 if It−k = It−k+1 = · · · = It = 1 for t := (k + 1)i

0 otherwise
.

Proof. Due to Assumption 6.3.1 (on p. 136), the random quantities It are indepen-
dent and identically distributed with P (It = 1) = p > 0, hence, so are the quantities
Ji, and P (Ji = 1) = pk+1. The proof is completed by the strong law of large num-
bers (see Theorem 6.9.10 on p. 171). ⊓⊔

Proof of Proposition 7.6.5. By Lemma 7.6.9, a.s. k+1 successive erasures It−k =
· · · = It = 1 are encountered infinitely many times for any given k. It follows that a
sequence of random times 0 = τ0 < τ1 < τ2 < . . . exists such that

τi > τi−1+i and Iτi−i = Iτi−i+1 = · · · = Iτi = 1 for all i = 1, 2, . . . a.s.

The admissible disturbance ensuring (7.6.1) will be constructed by consecutive
extension of the sequence {ξ(t)} from [0 : τi] on [0 : τi+1] via induction on i. The
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induction is started at i = 0 by putting ξ(0) := 0. Suppose that the sequence {ξ(t)}
has been already constructed for t = 0, . . . , τi−1. For τi−1 < t < τi − i, we put
ξ(t) := 0. Since all messages carried across the channel at times t = τi − i, . . . , τi
are lost, the decoder is unable to notice any difference between the cases where
different continuations of the chosen disturbance sequence are applied on the interval
[τi − i : τi]. Thus the decoder produces a common sequence of estimates

x̂(τi − i), . . . , x̂(τi)

for all such continuations.
Now we apply Lemma 7.6.7 to τ := i and x0 := x(τi − i). Then we prolong the

sequence of disturbances from [0 : τi−1 − i) onto [0 : τi] in two ways: first, by the
disturbace taken from Lemma 7.6.7 and second, by zeros. Due to (7.6.3), these two
extensions drive the system to the states x(τi)+ and x(τi)0, respectively, such that

‖x(τi)+ − x(τi)0‖ ≥ Dν|λ|(i).

It follows that ‖x − x̂(τi)‖ ≥ 1
2Dν|λ|(i) for either x := x(τi)

+ or x := x(τi)
0. In

other words,

‖x(τi)− x̂(τi)‖ ≥
1

2
Dν|λ|(i) (7.6.4)

for one of these extensions. It is this extension that is put in use.
Relation (7.6.1) is immediate from (7.6.4) since ν|λ|(i) → ∞ as i → ∞ due to

the last formula from (7.6.3). ⊓⊔

Remark 7.6.10. For general discrete memoryless channels, some forms of data dis-
tortion different from mere dropout may occur, whereas the pure dropout may not
hold.

In this case, the proof of i) from Proposition 7.6.5 requires more sophisticated argu-
ments. This proof is offered in the remainder of the section.

7.6.2 Preliminaries

Three technical facts are established in this subsection. First, we state a variant of
the strong law of large numbers required for the proof of Proposition 7.6.2. Second,
we show that in this proof, the attention can be switched from the weak to uniform
observability. Third, we demonstrate that exogenous additive disturbances make the
system state more and more distributed over the space as time progresses.

Preliminaries from the Probability Theory

Let {Fk}∞k=0 be a nondecreasing Fk ⊂ Fk+1 flow of σ-algebras in a probability
space.



7.6 Necessary Conditions for Observability and Stabilizability 215

Definition 7.6.11. A random variable τ ∈ {0, 1, . . . ,∞} is called a Markov time
(moment) with respect to this flow if

{τ = k} ∈ Fk ∀k <∞.

Notation 7.6.12. For two Markov times τ1 and τ2, we write

τ1 ≺ τ2

if and only if with probability 1,

either τ1 = τ2 =∞ or τ1 < τ2.

To prove Proposition 7.6.2, we need the following fact.

Proposition 7.6.13. Suppose that τ1 ≺ τ2 ≺ . . . is an infinite sequence of Markov
times with respect to the flow {Fk}, and V0, V1, . . . are random variables with val-
ues in a measurable space [V, Σ], identically distributed according to a probability
distribution P (dv). Suppose also that Vk is Fk+1-measurable but independent of Fk
for all k = 0, 1, . . .. Then for any V ∈ Σ,

1

k

k∑

ν=1

IVτν∈V∧τν<∞ − P (V)
1

k

k∑

ν=1

Iτν<∞ → 0 as k →∞ a.s. (7.6.5)

Explanation 7.6.14. Here IR is the indicator of the random event R:

IR =

{
1 if R holds

0 otherwise
.

The proof of Proposition 7.6.13 is given in Appendix A.

Corollary 7.6.15. If P (V) > 0, then the sequence Vτ0 , Vτ1 , Vτ2 , . . . a.s. visits the set
V infinitely many times with the average frequency P (V), given that τk <∞∀k.

Switching Attention to Uniform Observability in the Proof of Proposition 7.6.2

A possibility to do so is justified by the following lemma.

Lemma 7.6.16. Suppose that for any initial state distribution satisfying Assump-
tion 6.3.4 (on p. 137), arbitrary coder and decoder-estimator without (with) a feed-
back almost surely do not uniformly keep the estimation error bounded:

lim
t→∞

sup
{ξ(t)}:|ξ(t)|≤D ∀t

‖x(t)− x̂(t)‖ =∞ a.s. (7.6.6)

Then the conclusion of i) in Proposition 7.6.2 holds.
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Proof. Consider arbitrary coder and decoder-estimator without (with) a feedback,
and pick a sequence

{bi > 0}∞i=1, bi ↑ ∞.
Thanks to (7.6.6), there exists a random time τ1 and random admissible disturbance

ξ(t), t = 0, . . . , τ1 − 1

such that
‖x(τ1)− x̂(τ1)‖ ≥ b1 a.s.

Let us take the least such a time τ1. Then τ1 is the Markov time with respect to
the flow of σ-algebras generated by x0, s(0), . . . , s(k) for k = 0, 1, . . .. The above
disturbance extended ξ(t) := 0 on t = τ1 is a function of these random variables and
τ1. Now we consider the tail t ≥ τ1 + 1 of the process

x(t), y(t), x̂(t), e(t), s(t)

in the (regular [94]) probability space obtained by conditioning over

τ1 = k, x0 = x, s(0) = s0, . . . , s(k) = sk.

Employed is consistent data d = [k,x, s0, . . . , sk]. It uniquely determines the state
x(τ1 + 1) = xk+1 and the observations y(0) = y0, . . . , y(k) = yk. Hence the tail
starts at t = k + 1 at x(k + 1) = xk+1 and is governed by the coder and decoder
that are obtained from putting

y(0) := y0, . . . , y(k) := yk and s(0) := s0, . . . , s(k) := sk

into (7.2.4) or (7.2.5) and (7.2.3) (on p. 202), respectively. Since the above condi-
tioning does not alter the transition probabilities of the channel by Assumption 6.3.4
(on p. 137), (7.6.6) still holds for the process at hand. So by repeating the starting
arguments of the proof, we see that there exist a random time ∆τd

2 and disturbance

ξd(t), t = k + 1, . . . , k + ∆τd

2 − 1

for which
‖x(k + ∆τd

2 )− x̂(k + ∆τd

2 )‖ ≥ b2.
Now we put

τ2 := τ1 + ∆τ
τ1,x0,s(0),...,s(τ1)
2

and continue the disturbance

ξ(t) := ξτ1,x0,s(0),...,s(τ1)(t) on t = τ1 + 1, . . . , τ2 − 1.

After this, we have
‖x(τ2)− x̂(τ2)‖ ≥ b2 a.s.

By continuing likewise, we construct a sequence {τi} of random times and a random
admissible disturbance such that

‖x(τi)− x̂(τi)‖ ≥ bi a.s. for all i,

which clearly implies (7.6.1). ⊓⊔
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Estimate of the Rate of the State Uncertainty Caused by Disturbances

Note first that by the assumptions of Proposition 7.6.2,H(A) =
∑

j:|λj |≥1 log2 |λj | >
0. It follows that the strictly unstable part

σ⊕ := {λ ∈ σ(A) : |λ| > 1}

of the spectrum σ(A) of A is not empty. Let Ms−unst denote the invariant subspace
of A related to σ⊕, and A⊕ the operatorA acting in Ms−unst. It is easy to see that

H(A) = log2 | detA⊕|.

The following definition extends Definition 2.3.7 (on p. 16) on the case where
the set is not necessarily that constituted by trajectories of a dynamical system.

Definition 7.6.17. A set V ⊂ Rn is called b-separated if ‖v1 − v2‖ ≥ b for any two
elements v1 6= v2 ∈ V .

The maximal number of elements in a b-separated set can be viewed as a lower esti-
mate of uncertainty about the vector v if the available knowledge about it is expressed
by the inclusion v ∈ V .

Lemma 7.6.18. For any b > 0 and time interval [0 : r − 2] of arbitrary duration
r − 1, there exist

N ≥
(
D

b

)dimMs−unst

2(r−2)H(A) (7.6.7)

admissible disturbances Ξ1, . . . ,ΞN defined on this interval

Ξi = [ξi(0), . . . , ξi(r − 2)]

that drive the system (7.2.1) (on p. 202) from the zero initial state to the states xi(r−
1)

Ξi←− 0 forming a b-separated set:

‖xi′(r − 1)− xi′′(r − 1)‖ ≥ b whenever i′ 6= i′′.

Proof. We shall look for the required disturbances among those of the form

ξi(0) ∈Ms−unst, ξi(1) = · · · = ξi(r − 2) = 0.

For them,
xi(r − 1) = Ar−2

⊕ ξi(0).

Among the subsets of the closed ball BD0 ⊂ Ms−unst transformed by Ar−2
⊕ into b-

separated sets, we pick one Z = {ξ1(0), . . . , ξN (0)} with the maximal cardinality
N . It is clear that

Ar−2
⊕ BD0 ⊂

N⋃

i=1

Bbxi(r−1) ,
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where all balls are in Ms−unst: Otherwise, one more point can be put in Z . Hence

| detA⊕|r−2V
(
BD0
)

= V
[
Ar−2
⊕ BD0

]
≤

N∑

i=1

V
[
Bbxi(r−2)

]
= NV

(
Bb0
)
,

N ≥ | detA⊕|r−2 V
(
BD0
)

V
(
Bb0
) = 2(r−2)H(A)

(
D

b

)dimMs−unst

. ⊓⊔

7.6.3 Block Codes Fabricated from the Observer

Now we in fact start the direct proof of i) from Proposition 7.6.2. So we suppose that

H(A) > c0 (or H(A) > c0F ) (7.6.8)

and consider a coder and decoder-estimator without (respectively, with) a feedback.
In view of Lemma 7.6.16, it should be demonstrated that (7.6.6) holds.

The plan of the proof is as follows.

1. We argue by contradiction; i.e., suppose that (7.6.6) fails to be true;
2. From the above coder and decoder, we fabricate infinitely many block codes

transmitting information at rates R ≈ H(A);
3. We show that there is an errorless code among the above infinitely many ones;
4. By the definition of the zero error capacity, this contradicts (7.6.8). This contra-

diction proves that (7.6.6) is yet correct.

Comment 7.6.19. In [164, 166], a stabilizing coder–decoder pair was transformed
into a data communication device, which at any time produces updated estimates
of all messages dispatched over the channel since the initial until the current time.
This was accomplished by converting the incoming bit stream into a “simulated”
plant disturbance. As was shown, the resultant device ensures that the probability of
error in decoding the early messages decays to zero fast enough as the time elapsed
since the message dispatch becomes large. In this section, it is required to establish
the stronger fact: A (finite-length) block code exists that produces no error at all.

In this subsection, we introduce the infinite variety of block codes mentioned in
2. In the next subsection, we prove that this variety contains an errorless code.

From now and until otherwise stated, we adopt the following temporary assump-
tion matching 1 of the above plan.

Assumption 7.6.20. Relation (7.6.6) fails to be true.

Explanation 7.6.21. This means that with a nonzero probability, the estimation error
is bounded; i.e., (7.2.7) (on p. 203) holds for givenD and Dχ := 0.

Remark 7.6.22. By sacrificing a small probability, the error can be made uniformly
bounded over elementary random events in the sense that

sup
{ξ(t)}:‖ξ(t)‖≤D

‖x(t)− x̂(t)‖ < b∗ for all t ≥ t∗ (7.6.9)

with a positive probability for some nonrandom t∗ and b∗ > 0.
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Construction of Block Codes

To create a block code with block length r ≥ 2, we do the following.

• Consider the constants t∗ and b∗ from (7.6.9) and pick b > 2b∗;
• Take the disturbances Ξ1, . . . ,ΞN from Lemma 7.6.18;
• Introduce the time instants tk∗ := t∗ + kr enumerated by k = 1, 2, . . .;
• For any i = 1, . . . , N and k = 1, 2, . . ., consider the process

xki (t), yki (t), x̂ki (t), eki (t), ski (t), t = 0, 1, . . . , tk+1
∗ − 1 (7.6.10)

in the system (7.2.1) (on p. 202) endowed by the observer.

Explanation 7.6.23. This process is generated by the disturbance that is zero until
t = tk∗ − 1 and identical to Ξi (up to the shift in time) on the interval [tk∗ : tk+1

∗ − 2].

Comment 7.6.24. The choice of the disturbance on the interval [0 : tk∗−1] is immate-
rial. However, the disturbance should be common on this interval for all i and given
k.

Remark 7.6.25. The process (7.6.10) does not depend on i, k on the interval [0 : tk∗∗ ],
provided that k∗ ≤ k.

Notation 7.6.26. In (7.6.10), the indices ki are further dropped whenever t ≤ tk∗ .

Remark 7.6.27. The process (7.6.10) is stochastic since the initial state and the chan-
nel noise are random.

The codes to be introduced are enumerated by k = 1, 2, . . ..

The kth block code (7.3.3) or (7.3.4) encodes i = 1, . . . , N by acting just as
the coder (7.2.4), respectively, (7.2.5) (on p. 202) does under the disturbance Ξi
applied on [tk∗ : tk+1

∗ − 2]:

Ek∗
[
t, e0, . . . , et−1, s0, . . . , st−1, i

]
= Ek∗

[
t, s0, . . . , st−1, i

]

:= E

[
t+ tk∗ , y(0), . . . , y(tk∗), y

k
i (t

k
∗ + 1), yki (t

k
∗ + 2), . . . ,

. . . , yki (t
k + t− 1), yki (t

k + t), s(0), . . . , s(ti∗ − 1), s0, . . . , st−1

]
(7.6.11)

for t = 0, . . . , r − 1.

Explanation 7.6.28. For t = 0, all arguments of the forms sθ, yki (θ) are dropped on
the right. The dashed expressions are omitted in the case where no communication
feedback is available.
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Remark 7.6.29. By (7.6.7), the rate R of this block code obeys the lower bound:

R =
log2N

r
≥ dimMs−unst

r
[log2D − log2 b] +H(A)

[
1− 2

r

]
. (7.6.12)

The acompanying kth decoding rule Dk : Sr → [1 : N ] is fabricated from the
decoder (7.2.3) (on p. 202):

Dk[s0, . . . , sr−1] :=

:=





i





if the ball in Rn with the radius b∗ centered at

X[tk+1
∗ − 1, s(0), . . . , s(tk∗ − 1), s0, . . . , sr−1]

contains xki (t
k+1
∗ − 1)

and does not contain xki′(t
k+1
∗ − 1) with any i′ 6= i

1 otherwise

. (7.6.13)

Explanation 7.6.30. Here 1 is taken for the definiteness; in the “otherwise” case, no
reasonable decision can be made.

Remark 7.6.31. The kth coding–decoding pair

Pk
cd := [Ek∗(·),Dk(·)]

is random due to Remark 7.6.27.

We consider the variety of all deterministic samples assumed by these random
block codes as k runs over k = 1, 2, . . .. In doing so, the block length r is fixed.

7.6.4 Errorless Block Code Hidden within a Tracking Observer

Now we show that the above variety contains a deterministic erorrless block code.
To this end, it will be convenient to think about the channel as a sequence of

independent and identically distributed random maps Gt from the input E into the
output S channel alphabet such that

P [Gt(e) = s] = W [s|e],

where W (·|·) are the channel transition probabilities from Assumption 6.3.1 (on
p. 136). Then

s(t) = Gt[e(t)],

and the coding–decoding pair Pk
cd is clearly determined by x0 and G0, . . . , Gtk∗−1.

We also introduce the channel block maps Grk. They act componentwise on the
code words of length r:

Grk(E) :=
[
Gtk∗ (e0), Gtk∗+1(e1) . . . , Gtk+1

∗ −1(er−1)
]
, E = [e0, . . . , er−1].
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Notation 7.6.32. When a block coding–decoding pair Pcd with block length r is
used to transmit a message i during the time interval [tk∗ : tk+1

∗ − 1], the result itr
depends on not only this pair but also Grk. With a slight abuse of notation, we write
this as follows:

itr = Pcd[i, G
r
k].

Now we are in a position to state the key property of the coding–decoding pair Pk
cd

introduced in the previous subsection.

Lemma 7.6.33. Whenever (7.6.9) holds, decoding is errorless

i = Pk
cd[i, G

r
k] ∀i = 1, . . . , N and k = 1, 2, . . . . (7.6.14)

Proof. By construction, the rule Ek∗ encodes i into

Eki := [eki (t
k
∗), . . . , e

k
i (t

k
∗ + r − 1)].

Furthermore,

Grk[E
k
i ] = [ski (t

k
∗), . . . , s

k
i (t

k
∗ + r − 1)], x̂ki (tk+1

∗ − 1)

= X[tk+1
∗ − 1, s(0), . . . , s(tk∗ − 1), ski (t

k
∗), . . . , s

k
i (t

k+1
∗ − 1)]. (7.6.15)

Since the state at t = tk∗ is common for all i by Remark 7.6.25, the set
{
xk1(tk+1

∗ − 1), . . . , xkN (tk+1
∗ − 1)

}

is a displacement of the set
{
x1(r − 1), . . . , xN (r − 1)

}

from Lemma 7.6.18. Since the latter is b-separated, so is the former. It follows that
any ball of radius b∗ < b/2 contains no more than one point of the form

xki′ (t
k+1
∗ − 1).

At the same time, (7.6.9) ensures that the ball centered at x̂ki (tk+1
∗ − 1) contains

xki (t
k+1
∗ − 1). This and (7.6.13), (7.6.15) imply (7.6.14). ⊓⊔

Remark 7.6.34. Lemma 7.6.33 does not mean that (7.6.13) is an errorless decoding
rule for the block code (7.6.11).

Indeed, this lemma states that this rule does not make an error for only a particular
sample assumed by the random channel block map Gr. At the same time, the rule
is errorless if it does not make errors for any sample that is assumed with a nonzero
probability.

Now we are going to show that the variety of samples assumed by the random
coding–decoding pairs Pk

cd, k = 1, 2, . . . contains an errorless deterministic pair.
We start with the following simple fact.
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Observation 7.6.35. In any sample sequence of the stochastic process Pk
cd, k =

1, 2, . . ., some particular coding–decoding pair is encountered infinitely many times.

This holds since there are only finitely many such pairs with a given block length
r and the number N of messages.

With this argument in mind, let us observe all sample sequences that correspond
to elementary events for which (7.6.9) holds. Then we arrive at the following.

Observation 7.6.36. A particular (deterministic) pair Pcd exists such that with a
positive probability, both (7.6.9) is true and Pcd is encountered in the sample se-
quence {Pk

cd}∞k=1 infinitely many times.

In other words, a random sequence 1 ≤ τ1 < τ2 < . . . exists such that with a
nonzero probability,

Pτk

cd = Pcd ∀k and (7.6.9) holds. (7.6.16)

The following fact plays a key role in the proof of Proposition 7.6.2.

Lemma 7.6.37. The coding–decoding pair Pcd is errorless.

Proof. It is convenient to pick τk as a Markov time10 with respect to the flow {Fk},
where Fk is the σ-algebra generated by

x0, G0, . . . , Gtk∗−1. (7.6.17)

To this end, we put τ0 := 0, and given that τj has already been chosen, we define τj+1

as the least index τ > τj for which Pτ
cd = Pcd if such a τ exists; otherwise, τj+1 :=

∞. Clearly, the event τj = k is recognizable from the knowledge of P1
cd, . . . ,P

k
cd,

which are the functions of (7.6.17). Hence {τj = k} ∈ Fk; i.e., τj is a Markov time.
Furthermore, τ1 ≺ τ2 ≺ . . . by Notation 7.6.12 (on p. 215).

Putting k := τj into (7.6.14) yields

i = Pcd[i, G
r
τj

] ∀i, j whenever (7.6.16) holds.

To complete the proof, it suffices to show that here Grτj
, j = 1, 2, . . . a.s.11 runs over

all samples assumed by the random block map Gr with nonzero probabilities.
To this end, we pick such a sample g(·) and apply Corollary 7.6.15 (on p. 215)

to Vk := Grk and V := {g(·)}. This is possible since Grk is clearly Fk+1-measurable
and independent of Fk. By this corollary, Grτj

, j = 1, 2, . . . does run through g(·)
infinitely many times as j runs over j = 1, 2, . . ., which completes the proof. ⊓⊔

10See Definition 7.6.11 on p. 215.
11Given that (7.6.16) holds.
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7.6.5 Completion of the Proofs of Proposition 7.6.2, Theorem 7.4.1, and i) of
Theorem 7.5.3

Now we bring the pieces together. By Remark 7.6.4 (on p. 211) and Lemma 7.6.16
(on p. 215), it suffices to justify (7.6.6) (on p. 215). We supposed to the contrary
that (7.6.6) fails to be true for some coder–decoder pair without (with) a feedback
by adopting Assumption 7.6.20 (on p. 218). Lemma 7.6.37 shows that then this pair
hides an errorless block code without (with) a feedback with the rate R satisfying
(7.6.12) (on p. 220). The block length r can be chosen arbitrariry. By letting r →
∞ in (7.6.12) and invoking the definition of the zero error capacity, we get c0 ≥
H(A) or c0F ≥ H(A), in violation of the assumptions of Proposition 7.6.2. This
demonstrates that (7.6.6) does hold, which completes the proof. ⊓⊔

Proof of Theorem 7.4.1 (on p. 206) and i) of Theorem 7.5.3 (on p. 209). As was
remarked, these claims are immediate from Proposition 7.6.2. ⊓⊔

7.7 Almost Sure State Estimation in the Face of System Noises:
Proof of Theorem 7.4.5

In this section, we suppose that the assumptions of Theorem 7.4.5 (on p. 207) hold
and the channel zero error capacity exceeds the topological entropy of the system:

c0 > H(A) (or c0F > H(A)). (7.7.1)

The objective is to construct a coder–decoder pair without (respectively, with) a feed-
back that (with probability 1) uniformly keeps the estimation error bounded under
bounded noises.12 As in Chaps. 3 and 6, such a pair will be first constructed under
the following additional assumption and then extended on the general case of a plant
with both unstable and stable modes.

Assumption 7.7.1. The system (7.2.1) has no stable |λ| < 1 eigenvalues λ.

7.7.1 Construction of the Coder and Decoder-Estimator

The coder and decoder to be considered are basically built on the ideas from Sub-
sect. 3.8.4 (starting on p. 68) subjected to the following two modifications.

m.1) At the beginning τi of each operation epoch, the coder determines not the exact
state x(τi) but its estimate x̃(τi) proceeding from the previous measurements;

m.2) The coder and decoder update the upper bound δ for the estimation error in
such a way that this bound does not approach zero as time progresses.

Explanation 7.7.2. The coder is unable to determine the exact state due to the plant
and sensor noises. At the same time, it is able to estimate it with an accuracy, which
is determined by the noise level and so is bounded in time.

12See Definition 7.2.5 on p. 203.
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Explanation 7.7.3. Since the estimation error cannot be made decaying to zero be-
cause of the system noises, it is not natural to employ, like in Subsects. 3.8.4, 6.8.2,
and 6.9.1, an algorithm making the upper bound δ of this error converging to zero.

We recall that previously the basic rule to update δ was of the form:

δ(τi) := δc(τi)× µi,

where µi := γ > 1 if the alarm message was received at time τi and µi := ρ ∈
(0, 1) otherwise. Here γ and ρ are the parameters of the observer. If the alarm is not
frequent, this rule makes δ converging to zero.

Now the rule to update δ will be modified as follows:

δ(τi) := δc(τi)× µi + δ∗, (7.7.2)

where δ∗ > 0 is one more parameter. This prevents δ from approaching zero.
For the convenience of the reader, we offer a systematic description of the coder

and decoder. As discussed, they are reminiscent of those previously considered.

Components of the Observer

To construct an observer, we pick

1) two numbers η and R∗ such that

H(A) < η < R∗ < c0 (or c0F ); (7.7.3)

2) two parameters
γ > ‖A‖ and δ∗ > 0; (7.7.4)

3) an r-contracted quantizer Qr from Lemma 3.8.36 (on p. 80) applied to Ass := A
(we also invoke Remark 3.8.37 on p. 80 here) for any r = 1, 2, . . .;

4) a block code (7.3.1) (or block function (7.3.4)) with block length r, rate R ≥ R∗,
and an errorless decoding rule Dr(·) for all sufficiently large r;

5) a particular sufficiently large r such that all outputs of the quantizer (including the
alarm symbol) can be encoded by means of this block-code (or block function);

6) a deadbeat observer; i.e., a device producing an estimate x̃(t) of the current state
x(t) with a bounded error

∥∥x(t)− x̃(t)
∥∥ ≤ D <∞ ∀t (7.7.5)

in the form of a sliding average of n− 1 past observations

x̃(t) =

t∑

θ=t−n+1

Ft−θy(θ).

Explanation 7.7.4. • 1) is possible thanks to (7.7.1).
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• In 2), ‖A‖ = maxx:‖x‖=1 ‖Ax‖ is the matrix norm associated with the vector
norm ‖ · ‖ from Definition 3.8.6 (on p. 69).

• 4) is possible due to Remarks 7.3.3 and 7.3.6 (on pp. 204 and 205).
• 5) is possible since the number of quantizer outputs (including the alarm symbol)

N ′ . 2rη + 1 by Lemma 3.8.36 (on p. 80), whereas the block code is capable of
encodingN ′′ = 2Rr ≥ 2R∗r messages for errorless transmission, and N ′′ > N ′

for all r ≈ ∞ by (7.7.3).
• In 6), a deadbeat observer does exist since the pair (A,C) is observable by As-

sumptions 6.3.6 and 7.7.1 (on pp. 137, 223) [8]. It can be chosen so that the
estimate accuracy linearly depends D = kA,C(D + Dχ) on the noise bounds
from (7.2.2) (on p. 202) [8].

Finally, we introduce the operation epochs of the common duration r:

[τi : τi+1), τi := ir.

Description of the Coder and Decoder

The decoder computes not only a state estimate x̂(t) but also an upper (and maybe
incorrect) bound δ(t) of its exactness. To do so, it employs the recursion

x̂(t+ 1) = Ax̂(t), δ(t+ 1) = δ(t) (7.7.6)

at any time. However at times t = τi, this recursion is prefaced by correcting x̂(t) and
δ(t)13 on the basis of the message received from the coder over the channel during
the previous operation epoch. The errorless block code (function) is employed to
serve this transmission. So the coder is aware of the message driving the decoder and
is thus able to duplicate its operations and thus to compute x̂(t) and δ(t) by itself.

Finally, both coder and decoder carry out the recursion (7.7.6) at any time and
preface it by the following operations at times t = τi.

The coder (at times t = τi, i = 1, 2, . . .)

c.1) Proceeding from the previous measurements, calculates the estimate x̃(τi) of
the current state by means of the deadbeat observer;

c.2) Computes the corrected values x̂+(τi) and δ+(τi) by duplicating the operations
of the decoder;

c.3) Employs the quantizer Qr and computes the quantized value q(τi) of the current
scaled discrepancy between the estimates produced by the coder–decoder pair
and the deadbeat observer, respectively:

ε(τi) :=
[
δ+(τi)

]−1[
x̃(τi)− x̂+(τi)

]
; (7.7.7)

c.4) Encodes this value by means of the block code (function) and transmits the
obtained code word of length r across the channel during the next operation
epoch [τi : τi+1).

13The values before and after correction are marked by the indices − and +, respectively.
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Only after this, does the coder perform the current step (7.7.6).

The decoder (at times t = τi, i = 2, 3, . . .)

d.1) Applies the errorless decoding rule Dr(·) to the data received within the pre-
vious operation epoch [τi−1 : τi) and thus computes the quantized and scaled
discrepancy q(τi−1);

d.2) Corrects successively the estimate and the exactness bound:

x̂+(τi) := x̂−(τi) + δ−(τi)A
r ⋆q (τi−1),

δ+(τi) := δ−(τi)×
[
〈q(τi−1)〉κ,γ

]r
+ δ∗. (7.7.8)

Here κ ∈ (0, 1) is the parameter from Lemma 3.8.36 (on p. 80) and

⋆
q:=

{
q if q 6= z

0 otherwise
, 〈q〉

κ,γ :=

{
κ if q 6= z

γ otherwise
. (7.7.9)

Only after this does the decoder perform the step (7.7.6).

Remark 7.7.5. Initially, the coder and decoder are given common and arbitrarily cho-
sen values

x̂(0) = x̂0 and δ(0) = δ0 ≥ δ∗. (7.7.10)

The bound δ0 may be incorrect; i.e., the inequality δ0 ≥ ‖x0 − x̂0‖ may be violated.

Remark 7.7.6. For technical convenience, we put q(τ0) := z and suppose that the
coder and decoder act accordingly.

Explanation 7.7.7. The step c.2) of the coder comes to carrying out d.2).

Observation 7.7.8. The coder and decoder do not employ the noise bounds D,Dχ

from (7.2.2) (on p. 202).

Remark 7.7.9. Although the coder and decoder compute x̂(t) and δ(t) independently,
they generate common sequences x̂(t) and δ(t), t = 0, 1, . . ..

Observation 7.7.10. The coder and decoder introduced in this Subsection are semi-
rational finite-step recursive.14

This is straightforward from the description of the coder and decoder with regard
to the fact that in c.3) the quantizer is taken from Lemma 3.8.36 (on p. 80) and so
is polyhedral.15 In (6.3.4) (on p. 139) and (6.3.6) (on p. 140), the states of the coder
and decoder can be defined as zc := [x̂+, x̃, δ+] and zd := [x̂+, δ+], respectively.

Observation 7.7.11. Due to (7.7.6), (7.7.8), and (7.7.10),

δ(t) ≥ δ∗ > 0 ∀t ≥ 0. (7.7.11)

14See Definitions 6.3.9 and 6.3.10 on pp. 139 and 140, respectively.
15See Definition 3.8.8 on p. 70.
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7.7.2 Almost Sure State Estimation in the Face of System Noises

The main result of the subsection is as follows.

Proposition 7.7.12. Suppose that Assumption 7.7.1 (on p. 223) holds. The coder–
decoder pair introduced in Subsect. 7.7.1 uniformly keeps the estimation error
bounded under bounded noises16 with probability 1.

The temporary additional Assumption 7.7.1 can be dropped by applying the
coder–decoder pair at hand to the unstable part of the plant, like in Chaps. 3 and
6. This gives rise to the following.

Remark 7.7.13. Modulo the arguments from Sect. 6.10 (starting on p. 179), Proposi-
tion 7.7.12 implies Theorem 7.4.5 (on p. 207).17

The remainder of the subsection is devoted to the proof of Proposition 7.7.12.

Estimating the Quantities Generated by the Observer

Now we study the process in the system equipped by the coder and decoder, with
focusing attention on

δi := δ+(τi), zi :=
∥∥x̂+(τi)− x̃(τi)

∥∥ , ςi :=
zi
δi
. (7.7.12)

Here δi is the exactness bound generated by the coder–decoder pair, zi is the discrep-
ancy between the estimates produced by this pair and the deadbeat observer, and ςi
determines whether the alarm symbol z is sent over the channel:

ςi > 1⇔ q(τi) = z.

Explanation 7.7.14. To make zi and ςi defined for i := 0, we choose x̂+(0) to be
equal to the initial state estimate x̂0 and x̃(0) 6= x̂0 so that (7.7.5) be true for t = 0,
and we pick ς0 := 1 + z0/δ0.

We stress that these conventions do not concern the operation of the coder and de-
coder. They establish notation that makes subsequent formulas more homogeneous.

We are going to show that the following quantities:

Wi := δσi max{ςi; κr} (7.7.13)

satisfy recursive inequalities of the form

Wi ≤ µrWi−1 + gr, i = 1, 2, . . . . (7.7.14)

Here σ ∈ (0, 1) is an arbitrarily chosen parameter, r is the duration of the operation
epoch, and κ ∈ (0, 1) is taken from Lemma 3.8.36 (on p. 80). To this end, we put

16See Definition 7.2.5 on p. 203.
17See Subsect. 7.8.5 starting on p. 244 for details.
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ρ :=
‖A‖
γ

(7.7.4)
< 1, Dr := D(1 + ‖A‖r) +D

r−1∑

j=0

‖A‖j ; (7.7.15)

µr := max
{

κ
σr ; (γr + 1)σ max{ρr,κr}

}
,

gr := κ
r(κr + 1)σδσ∗ +

Dr

δ1−σ∗
, (7.7.16)

where γ and δ∗ are the parameters of the observer from 2) (on p. 224), D is the
exactness of the deadbeat observer from (7.7.5), andD is the plant noise upper bound
from (7.2.2) (on p. 202).

Proposition 7.7.15. For any i ≥ 1 and σ ∈ (0, 1), inequalities (7.7.14) hold.

Corollary 7.7.16. If σ ∈ (0, 1) is chosen so that

σ < −rmax{log2 ρ; log2 κ}
log2(γ

r + 1)
=
−max{log2 ρ; log2 κ}
log2 γ log2(1 + γ−r)

, (7.7.17)

then µr < 1 and so (7.7.14) means that W (δ, ς) := δσ max{ς; κr} is a Lyapunov
function.

By the standard arguments, this implies that the quantities (7.7.13) are bounded
as i runs over i = 1, 2, . . .. As will be shown, it follows from this that δi, zi and
hence the estimation error x(t) − x̂(t) are also bounded, which completes the proof
of Proposition 7.7.12.

Remark 7.7.17. The right-hand side of (7.7.17) is positive since ρ < 1 by (7.7.15)
and κ < 1 by Lemma 3.8.36 (on p. 80). Hence σ ∈ (0, 1) can be chosen to satisfy
(7.7.17).

The proof of Proposition 7.7.15 is prefaced by a technical lemma. To state it, we
introduce the indicator functions of the following events:

I0(i)←→ ςi−1 ≤ 1, Iz(i)←→ ςi−1 > 1. (7.7.18)

Lemma 7.7.18. The following relations hold for any i ≥ 1:

δi = δi−1

[
κ
rI0(i) + γrIz(i)

]
+ δ∗; (7.7.19)

zi ≤ zi−1‖A‖rIz(i) + δi−1κ
2rI0(i) +Dr. (7.7.20)

Proof. Equation (7.7.19) is immediate from (7.7.6), (7.7.8), (7.7.9), and (7.7.18).
To justify (7.7.20), we observe that

zi
(7.7.12)
=== ‖x̂+(τi)− x̃(τi)‖ (7.7.8)

=== ‖x̂−(τi) + δ−(τi)A
r ⋆q (τi−1)− x̃(τi)‖

(7.7.6)
===

∥∥∥Ar
{ [
x̂+(τi−1)− x̃(τi−1)

]
+ δ+(τi−1)

⋆
q (τi−1)

}
+Arx̃(τi−1)− x̃(τi)

∥∥∥
≤ a1 + a2,
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where

a1 :=
∥∥∥Ar

{ [
x̃(τi−1)− x̂+(τi−1)

]
− δ+(τi−1)

⋆
q (τi−1)

}∥∥∥ ;

a2 :=
∥∥∥Arx̃(τi−1)− x̃(τi)

∥∥∥ =
∥∥∥Ar

[
x̃(τi−1)− x(τi−1)

]
+
[
x(τi)− x̃(τi)

]

+
[
Arx(τi−1)− x(τi)

]∥∥∥
(7.2.1),(7.7.5)
≤ D + ‖A‖rD +

∥∥∥∥∥∥

τi−1∑

θ=τi−1

Aτi−1−θξ(θ)

∥∥∥∥∥∥

(7.2.2)
≤ D

(
1 + ‖A‖r

)
+D

r−1∑

j=0

‖A‖j (7.7.15)
=== Dr.

If Iz(i) = 1, then

q(τi−1) = z
(7.7.9)

====⇒ ⋆
q (τi−1) = 0

and so
a1 ≤ ‖A‖r‖x̂+(τi−1)− x̃(τi−1)‖ (7.7.12)

=== ‖A‖rzi−1.

If I0(i) = 1, then

z 6= q(τi−1)
(7.7.9)
===

⋆
q (τi−1),

where q(τi−1) is the quantized value of ε(τi−1) given by (7.7.7). So (3.8.9) (on p. 70)
(where ρQ = κ2m by Lemma 3.8.36 on p. 80) implies

a1 = δ+(τi−1) ‖Ar [ε(τi−1)− q(τi−1)]‖
(7.7.12)
≤ δi−1κ

2r .

Summarizing, we arrive at (7.7.20). ⊓⊔

With regard to the last and first formulas from (7.7.12) and (7.7.15), respectively,
and (7.7.18), Lemma 7.7.18 yields the following.

Corollary 7.7.19. For i ≥ 1, the following inequality holds:

ςi ≤
{
ρrςi−1 + Dr

δi
if ςi−1 > 1

κr + Dr

δi
if ςi−1 ≤ 1

}
. (7.7.21)

Proof of Proposition 7.7.15. If ςi−1 ≤ 1, then

Wi
(7.7.13)
=== δσi max

{
ςi; κ

r
} (7.7.21)
≤ δσi max

{
κ
r +

Dr

δi
; κr

}
= δσi κ

r +
Dr

δ1−σi

(7.7.11)
≤ δσi κ

r +
Dr

δ1−σ∗

(7.7.19)
=== κ

r
(
κ
rδi−1 + δ∗

)σ
+

Dr

δ1−σ∗
.

It is easy to check that the function

ϕ(δ) := (κrδ + δ∗)
σ − κ

σrδσ
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decreases for δ > 0. So ϕ(δ) ≤ ϕ(δ∗) for δ ≥ δ∗, which implies

(κrδ + δ∗)
σ ≤ κ

σrδσ + ϕ(δ∗) ≤ κ
σrδσ + (κr + 1)σδσ∗ .

Hence

Wi ≤ κ
r
κ
σrδσi−1 + κ

r(κr + 1)σδσ∗ +
Dr

δ1−σ∗
(7.7.13)
≤ κ

σrWi−1 + κ
r(κr + 1)σδσ∗ +

Dr

δ1−σ∗

(7.7.16)
≤ µrWi−1 + gr;

i.e., (7.7.14) is valid.
Now consider the case where ςi−1 > 1. Then

Wi
(7.7.13)
=== δσi max

{
ςi; κ

r
} (7.7.21)
≤ δσi max

{
ρrςi−1 +

Dr

δi
; κr

}
ςi−1>1

≤

δσi max

{
ρrςi−1 +

Dr

δi
; κrςi−1

}
≤ δσi

[
max

{
ρr; κr

}
ςi−1 +

Dr

δi

]

≤ δσi max
{
ρr; κr

}
max

{
ςi−1; κ

r
}

+
Dr

δ1−σi

(7.7.19)
=== (γrδi−1 + δ∗)

σ
max

{
ρr; κr

}
max

{
ςi−1; κ

r
}

+
Dr

δ1−σi

(7.7.11)
≤ (γr + 1)σ δσi−1 max

{
ρr; κr

}
max

{
ςi−1; κ

r
}

+
Dr

δ1−σ∗
(7.7.13), (7.7.16)
≤ µrWi−1 + gr;

i.e., (7.7.14) is true. ⊓⊔

Lemma 7.7.20. The quantities ςi, zi, δi are bounded as i runs over 0, 1, . . .:

ςi ≤ ς, δi ≤ δ, zi ≤ z. (7.7.22)

Here all upper bounds are uniquely determined by

δ0, δ∗, r, Dr, κ, ‖A‖, γ (7.7.23)

and an arbitrary upper bound on z0.

Proof. By invoking Corollary 7.7.16 and Remark 7.7.17 (on p. 228), we pick σ ∈
(0, 1) so that µr < 1 in (7.7.14). By induction on i, it is easy to check that

Wi ≤ µirW0 + gr
1− µir
1− µr

(7.7.12), (7.7.13)
≤ µirδ

σ
0 max

{
z0
δ0

+ 1; κr
}

+
gr

1− µr
.

Here the last inequality holds thanks to Explanation 7.7.14. It follows that
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Wi ≤W := δσ0 max

{
z0
δ0

+ 1; κr
}

+
gr

1− µr
.

Due to (7.7.11) and (7.7.13),

Wi ≥ δσ∗ ςi, Wi ≥ δσi κ
r .

Hence

ςi ≤ ς := δ−σ∗ W, δi ≤ δ :=
(
κ
−rW

) 1
σ , zi

(7.7.12)
=== δiςi ≤ z := δς. ⊓⊔

Observation 7.7.21. As follows from the proof, (7.7.22) is a consequence of (7.7.18)–
(7.7.20); the last and first formulas from (7.7.12) and (7.7.15), respectively; and the
inequality δi ≥ δ∗.

Proof of Proposition 7.7.12: Concluding Part

Thanks to Explanation 7.7.14,

z0 = ‖x̂0 − x̃(0)‖ ≤ ‖x̂0‖+ ‖x0‖+D.

So (7.7.22) holds with the upper bounds determined by ‖x̂0‖, ‖x0‖, D, and the pa-
rameters from (7.7.23).18 Hence the estimation error at time t = τi is also bounded:

erri :=
∥∥x(τi)− x̂+(τi)

∥∥ ≤ ‖x(τi)− x̃(τi)‖+
∥∥x̃(τi)− x̂+(τi)

∥∥
(7.7.5), (7.7.12)
≤ D + zi ≤ D + z.

It remains to extend this conclusion on all t = 0, 1, . . .. For any t 6= τj ∀j, an
index i exists such that τi < t < τi+1. Then

‖x(t) − x̂(t)‖ (7.2.1),(7.7.6)
======

∥∥∥∥∥A
t−τix(τi) +

t−1∑

θ=τi

At−1−θξ(θ)−At−τi x̂+(τi)

∥∥∥∥∥

≤ ‖A‖t−τi
∥∥x(τi)− x̂+(τi)

∥∥+

t−1∑

θ=τi

‖A‖t−1−θ‖ξ(θ)‖

(7.2.2),‖A‖≥1,τi+1−τi=r

≤ ‖A‖r
(
D + z

)
+D

r−1∑

θ=0

‖A‖θ,

where the inequality ‖A‖ ≥ 1 holds by Assumption 7.7.1 (on p. 223). Defini-
tion 7.2.5 (on p. 203) completes the proof. ⊓⊔

18 If the initial state is bounded ‖x0‖ ≤ Dx a.s., then ‖x0‖ can be replaced by Dx here.
Modulo the arguments to follow, this proves Remark 7.4.7 (on p. 208).
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7.7.3 Completion of the Proof of Theorem 7.4.5

For systems with no stable modes (i.e., under Assumption 7.7.1 on p. 223), this
theorem is justified by Proposition 7.7.12. Thus completion of the proof comes to
dropping Assumption 7.7.1. This is accomplished just like in Subsects. 3.8.11 and
6.7.6 (starting on pp. 88 and 156, respectively) by estimating only the “unstable” part
of the state.

Thus we do not suppose any longer that Assumption 7.7.1 holds. At the same
time, we assume that (7.7.1) is true and, temporarily, that the initial state is bounded
‖x0‖ ≤ Dx a.s. We also focus on the unstable part of the system (7.2.1) (on p. 202);
i.e., the noisy analog of the system (6.7.24) (on p. 156)

x+(t+ 1) = A+x+(t) + π+ξ(t), x+(t) := π+x(t) ∈Munst;

x+(0) = x+
0 := π+x0, y(t) = Cx+(t) + χ+(t). (7.7.24)

We recall that Munst and Mst are the invariant subspaces of A related to the unstable
and stable parts of its spectrum, respectively, and π+, π− are the projections onto
Munst parallel to Mst and vice versa. Furthermore,

χ+(t) := χ(t) + Cx−(t), where x−(t) := π−x(t).

Our immediate goal is to show that the noise χ+(t) is bounded. To this end, we
denote byA− the operatorA acting on its stable invariant subspaceMst and note that
A− is asymptotically stable: ‖At−‖ ≤ cυt ∀t, where c > 0 and υ ∈ (0, 1). Hence

‖x−(t)‖ = ‖π−x(t)‖ (7.2.1)
===

∥∥∥∥∥A
t
−π−x0 +

t−1∑

θ=0

At−1−θ
− π−ξ(θ)

∥∥∥∥∥

≤ ‖π−‖
[
‖At−‖‖x0‖+

t−1∑

θ=0

‖At−1−θ
− ‖‖ξ(θ)‖

]
(7.2.2)
≤ c‖π−‖

[
υtDx +D

t−1∑

θ=0

υt−1−θ
]

≤ c− := c‖π−‖
[
Dx +

D

1− υ

]
, ‖χ+(t)‖

(7.2.2)
≤ Dχ + c−‖C‖. (7.7.25)

Thus the sensor noise in (7.7.24) is bounded.
As was shown in Subsect. 6.7.6 (starting on p. 156), Assumptions 6.3.1, 6.3.4,

6.3.6 (on pp. 136 and 137), and inequality (7.7.1) (on p. 223) remain true for the re-
duced plant (7.7.24), which also satisfies Assumption 7.7.1 (on p. 223). Thus Propo-
sition 7.7.12 is true for the plant (7.7.24). Now we apply the corresponding observer
to the primal system (7.2.1) (on p. 202) and interpret its output x̂+(t) as an estimate
x̂(t) := x̂+(t) of the state x(t) of the primal plant. By invoking (7.7.25), we see that

‖x(t)− x̂(t)‖ = ‖x−(t) + x+(t)− x̂+(t)‖ ≤ ‖x−(t)‖ + ‖x+(t)− x̂+(t)‖
≤ ‖x+(t)− x̂+(t)‖ + c−.

It follows that relation (7.2.7) (on p. 203) is true for the primal plant (7.2.1) since it
holds for x(t) := x+(t) and x̂(t) := x̂+(t) by Proposition 7.7.12.
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To complete the proof, the assumption that x0 is bounded should be dropped.
This is accomplished by considering the process in the conditional probability space
given that ‖x0‖ ≤ Dx, along with letting Dx →∞. ⊓⊔

7.8 Almost Sure Stabilization in the Face of System Noises: Proof
of (ii) from Theorem 7.5.3

In this section, we suppose that the assumptions of Theorem 7.5.3 (on p. 209) hold
and that the channel zero error capacity exceeds the topological entropy of the sys-
tem:

c0F > H(A). (7.8.1)

The objective is to construct a coder–decoder pair without a feedback that (with prob-
ability 1) uniformly keeps the stabilization error bounded under bounded noises.19

As in the previous section, such a pair will be first constructed for systems with no
stable modes and then extended on the general case, where both unstable and stable
modes may occur. So we adopt Assumption 7.7.1 (on p. 223), until otherwise stated.
Modulo the assumptions of Theorem 7.5.3, this implies that the pairs (A,B) and
(A,C) are controllable and observable, respectively.

The coder and decoder to be considered are basically those from Subsect. 3.8.4
(starting on p. 68) subjected to the modifications m.1), m.2) (on p. 223). The stability
of the closed-loop system will be proved along the lines from the previous section.
The major new issue to be addressed now proceeds from the fact that in (7.8.1),
the zero error capacity with a complete feedback is concerned, whereas no feedback
communication link is in fact available. It should be shown that nevertheless, the
controller is able to make the sensor aware about the previous result of transmission
across the erroneous feedforward communication channel at each time step. We show
that this may be accomplished by means of control actions upon the plant.

7.8.1 Feedback Information Transmission by Means of Control

In this subsection, we show that as much information as desired can be transmitted
in such a way during a time step. Specifically, we bear in mind that the controller
makes a choice from a set of N possibilities (with N arbitrary) and has to make the
sensor aware about the choice, provided that the set is known at the sensor site.

Remark 7.8.1. Feedback data communication scheme from Subsect. 6.11.2 (starting
on p. 185) does not achieve this objective since it ensures transmission of only a
small average amount of data per unit time (one bit per potentially long operation
epoch).

We start with a well-known technical fact [8].

19See Definition 7.5.2 on p. 209.
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Lemma 7.8.2. Given r = 0, 1, . . ., the controls u(t− n+ 1), . . . , u(t+ r − 1) and
observations y(t− n+ 1), . . . , y(t), the prognosis20 x̃(t+ r|t) of the state x(t+ r)
can be constructed as a linear function of the available data

x̃(t+ r|t) =
t∑

θ=t−n+1

F
[r]
t−θy(θ) +

t+r−1∑

θ=t−n+1

G
[r]
t−θu(θ) (7.8.2)

so that the error does not exceed a boundD〈r〉x <∞, which does not depend on time
t, controls, and observations.

Remark 7.8.3. The estimation accuracy linearly dependsD〈r〉x = kA,C,B,r ·(D+Dχ)
on the noise bounds from (7.2.2) (on p. 202).

The next lemma displays the key fact that enables one to establish the feedback
communication by means of control. To state it, we denote

d := min{j = 1, 2, . . . : CAj−1B 6= 0}. (7.8.3)

Since the pairs (A,B) and (A,C) are controllable and observable, respectively, the
integer d is well defined.

Lemma 7.8.4. For any N ≥ 1, there exists an ordered set of N different controls

U = {u1, . . . , uN} ⊂ R
nu (7.8.4)

with the following property. Given

t ≥ n+ d, y(t− n− d+ 1), . . . , y(t), u(t− n− d+ 1), . . . , u(t− 1− d)

and that u(t− d) = u+ uν , where u is known but ν is not known, there is a way to
determine ν from these data.

Remark 7.8.5. At time t, the observations y(t − n − d + 1), . . . , y(t) are known at
the sensor site. If the controls u(t− n− d+ 1), . . . , u(t− 1− d), u and the ordered
set (7.8.4) are also known there, the value of ν can be determined at this site. Thus
by applying the control u+ uν , the controller can communicate ν to the sensor site.

Definition 7.8.6. The set (7.8.4) is called the feedback control alphabet.

Proof of Lemma 7.8.4. We first observe that

y(t) = CAdx(t− d) +

t−1∑

θ=t−d
CAt−1−θ[Bu(θ) + ξ(θ)

]

(7.8.3)
=== CAdx(t− d) + CAd−1Bu(t− d) +

t−1∑

θ=t−d
CAt−1−θξ(θ).

20Estimate for r = 0.
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By employing the state estimate x̃(t− d|t− d) given by Lemma 7.8.2, we get

∥∥y(t)− CAdx̃(t− d|t− d)− CAd−1Bu(t− d)
∥∥

=
∥∥∥CAd[x(t − d)− x̃(t− d|t− d)] +

t−1∑

θ=t−d
CAt−1−θξ(θ)

∥∥∥ ≤ D〈0〉x
∥∥CAd

∥∥

+D

t−1∑

θ=t−d

∥∥CAt−1−θ∥∥ j:=t−1−θ
====== b∗ := D〈0〉x

∥∥CAd
∥∥+D

d−1∑

j=0

∥∥CAj
∥∥ . (7.8.5)

We proceed by invoking that u(t− d) = u+ uν
∥∥z(t)− CAd−1Buν

∥∥ < b∗ + 1, (7.8.6)

where
z(t) := y(t)− CAdx̃(t− d|t− d)− CAd−1Bu

is computable from the given data. Let us pick the set {uν} so that the points yν :=
CAd−1Buν be (2b∗ + 3)-separated: ‖yν′ − yν′′‖ ≥ 2b∗ + 3 if ν′ 6= ν′′. This is
possible since CAd−1B 6= 0 by (7.8.3). Then inequality (7.8.6) holds for the unique
ν and so can serve as an errorless decision rule to determine ν. ⊓⊔
Remark 7.8.7. By employing the Euclidean norm ‖·‖ and taking the second power of
the left- and right-hand sides of (7.8.6), we see that ν can be determined by checking
finitely many inequalities with rational (in available data) terms. In other words, the
decision map y(t−n− d+ 1), . . . , y(t), u(t−n− d+ 1), . . . , u(t− 1− d), u 7→ ν
is semialgebraic.21

7.8.2 Zero Error Capacity with Delayed Feedback

By Lemma 7.8.4, the feedback communication by means of control suffers from the
delay given by (7.8.3). In this subsection, we show that this delay does not influence
the zero error capacity of the channel.

According to (7.3.4) (on p. 205), the notion of the zero error capacity with a
feedback given in Sect. 7.3 assumes that the feedback link provides the unit delay.
Now suppose that in this link, the messages incur the delay of d ≥ 1 units of time.
Then the definition of the zero error capacity should be modified by reducing the set
of “feedforward” messages consumed by the block function (7.3.4):

s(0), . . . , s(t− 1) 7→ s(0), . . . , s(t− d) .

By keeping the other particulars in the definition unchanged, we arrive at the notion
of the zero error capacity with d-delayed feedback c0F [d].

More formally, suppose that the informant takes a choice from N prespecified
possible messages labeled by ν and notifies the recipient about this choice by emit-
ting a code word [e(0), . . . , e(r − 1)] with a given length r into the channel. Let

21See Definition 3.4.9 (on p. 46).
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this word be produced by a block function (code) employing a d-delayed feedback
communication link (d ≥ 1); i.e., a recursive rule of the form:

e(t) = E∗[t, e(0), . . . , e(t− 1), s(0), . . . , s(t− d), ν],
t = d, . . . , r − 1, e(t) = E∗[t, ν], t ≤ d− 1. (7.8.7)

As before, the ratio R := log2N
r is called the rate of the code. To recognize the

choice of the informant, a decoding rule, i.e., a map D : Sr → [1 : N ], is applied
to the received code word [s(0), . . . , s(r − 1)], s(t) ∈ S. Such a rule is errorless
if D(S) = ν for any ν and any output word S that may be received with a positive
probability given that ν is encoded and sent over the channel. The zero error capacity
with a d-delayed feedback c0F [d] := supR, where sup is over all block codes (7.8.7)
of arbitrary lengths r for which errorless decoding is possible.

Observation 7.8.8. The zero error capacity c0F introduced on p. 205 and employed
in the main Theorems 7.4.5, 7.5.3 is that with the unit delay: c0F = c0F [1].

Now we are in a position to present the main result of the subsection.

Lemma 7.8.9. The zero error capacity does not depend on the delay in the feedback
link: c0F [d] = c0F ∀d = 1, 2, . . ..

Proof. The inequality c0F [d] ≤ c0F is evident. To establish the converse, we pick
R < c0F . Then a block code (7.3.4) (on p. 205) exists with block length r, the input
code book of a size N , and the unit delay in the feedback link for which log2N

r ≥ R
and errorless decoding by a rule D is possible. Now let this code operate (i.e., form
messages e(t) and send them over the channel) at times t = 0, d, 2d, . . . , (r − 1)d.
This is possible by means of the d-delayed feedback link since it makes the coder
aware about the result of the previous transmission by the time of the next one,
as is required. By applying D to s[0], s[d], . . . , s[(r − 1)d], one acquires the way
to transmit one message µ1 from the set of N ones without errors. Another copy
of this code operating at times t = 1, d + 1, 2d + 1, . . . , (r − 1)d + 1 makes it
possible to transmit one more µ2 message chosen independently of the previous one.
By continuing likewise, we see that there is a way to transmit without errors any
of Nd messages (µ1, µ2, . . . , µd) during the time interval [0 : rd − 1] of duration

rd using the d-delayed feedback. Thus c0F [d] ≥ log2N
d

rd = log2N
r ≥ R. Letting

R→ c0F − 0 completes the proof. ⊓⊔

7.8.3 Construction of the Stabilizing Coder and Decoder-Controller

The coder and decoder inherit many features of those described in Subsect. 3.8.4
and 7.7.1 (starting on pp. 68 and 223). The major novelty concerns a machinery for
feedback data transmission from the controller to the sensor.

From now on, we assume that the condition c0F > H(A) from ii) of Theo-
rem 7.5.3 (on p. 209) holds.
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Components of the Controller

We pick

1) two numbers η and R∗ such that

H(A) < η < R∗ < c0F ; (7.8.8)

2) two parameters
γ > ‖A‖ and δ∗ > 0; (7.8.9)

3) an r-contracted quantizer Qr from Lemma 3.8.36 (on p. 80) applied to Ass := A
(we also invoke Remark 3.8.37 on p. 80 here) for any r = 1, 2, . . .;

4) for all large r, a d-delayed, where d is given by (7.8.3), block function (7.8.7)
with block length r − n, n := dim(x), rate R ≥ R∗, and an errorless decoding
rule Dr(·), which is capable of encoding all outputs of the quantizer Qr;

5) a feedback control alphabet {aus}s∈S (see Lemma 7.8.4 and Definition 7.8.6)
of size equal to that of the output alphabet S of the channel; the elements of the
control alphabet are labeled by the channel output symbols;

6) the predictor (7.8.2);
7) a deadbeat stabilizer

x(0)
N−→ U =

[
u(0), u(1), . . . , u(n− 1), 0, . . .

]
. (7.8.10)

Explanation 7.8.10. • In 2), ‖A‖ = maxx:‖x‖=1 ‖Ax‖ is the matrix norm associ-
ated with the vector norm ‖ · ‖ from Definition 3.8.6 (on p. 69).

• In 4), the block length is n time units less than that r of the operation epoch.
This permits us to withdraw the block function from service and so do not apply
“communication” controls ensuring the feedback transmission of data from the
controller to the sensor during concluding n time steps of any epoch. These steps
are used to cancel the detrimental influence of the previous “communication”
controls on the plant by producing a proper correcting control sequence.

• We recall that the deadbeat stabilizer (7.8.10) is a linear transformation producing
a control sequence that drives the unperturbed (ξ(t) ≡ 0) plant (7.5.1) (on p. 208)
from the initial state x(0) to 0 at time t = n. For technical convenience, we define

N(z) := [0, 0, 0, 0, . . .]. (7.8.11)

• To show that 4) is possible, we invoke that the number of the quantizer levels
(including z) N ′r . 2rη + 1 by Lemma 3.8.36 (on p. 80). Thanks to (7.8.8) and
Lemma 7.8.9, a d-delayed feedback block function with a block length r∗ exists
for which errorless decoding is possible, and log2N

r∗
≥ R0 > R∗, where N is

the number of encoded messages. By applying this coding–decoding rule i :=
⌊(r−n)/r∗⌋ times (where r > r∗+n is given) on the consecutive time intervals
[0 : r∗), [r∗ : 2r∗), . . . , [(i−1)r∗ : ir∗) and doing nothing on [ir∗ : r−n), we get
a block code with block length r−n, which makes it possible to transmit without
an error any message from a specific set of N ′′r = N i ≥ 2ir∗R0 ≥ 2(r−n−r∗)R0
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ones. The rate of this code R = (r−n−r∗)R0

r ≈ R0 > R∗ for r ≈ ∞. It remains
to pick the number r so large that R > R∗ and N ′′r ≥ N ′r + 1, which is possible
by (7.8.8).

Remark 7.8.11. The block function from 4) will be used to communicate outputs q
of the quantizer from 3). So from now on, we assume that ν ≡ q in (7.8.7).

To make the subsequent formulas more homogeneous, we assume that r > n+d.

Description of the Coder and Decoder

As before, their operation is organized into epochs [τi = ir : τi+1) of duration r
chosen to meet the requirement from 4) on p. 237. Both coder and decoder compute
controls uc(t), ud(t) and upper bounds for the state norm δc(t), δd(t), respectively.
Acting upon the plant is the control ud(t). The initial bound is common δc(0) =
δd(0) = δ0 ≥ δ∗ and not necessarily correct.

The control ud(t) is produced as the sum ud(t) = ubd(t) + ucom
d (t) of two parts.

The basic control ubd(t) aims to stabilize the plant, whereas the communication con-
trol ucom

d (t) serves the feedback communication of s(t) from the decoder to the coder.
The basic controls are generated at times τi in the form of a control program for
the entire epoch [τi : τi+1). The current communication control is generated at the
current time t and encodes the message s(t) currently received over the channel:
ucom
d (t) := aus(t). This ensures d-delayed communication of s(t) to the coder, as is

required by the block code at hand.
The coder employs this code to transmit the quantized value of the state prog-

nosis. This value is determined at the beginning of the operation epoch τi, the
prognosis concerns the state at its end τi+1, and transmission is during the epoch
[τi : τi+1). However since the length r − n of the block code is less than the epoch
duration r, the transmission will be completed at time τi+1 − n − 1. During the
remainder [τi+1 − n : τi+1), the coder sends nothing over the channel. Hence for
t ∈ [τi+1 − n − d : τi+1 − 1], there is no need to communicate s(t) from the de-
coder to the coder and thus employ the rule ucom

d (t) := aus(t). The decoder uses
this to cancel the influence of the previously generated sequence of communica-
tion controls ucom

d (τi), . . . , u
com
d (τi+1 − n− d− 1) on the plant. To this end, it puts

ucom
d (τi+1 − d) := · · · := ucom

d (τi+1 − 1) := 0 and picks

ucom
d (τi+1 − n− d), . . . , ucom

d (τi+1 − d− 1) (7.8.12)

so that the entire sequence {ucom
d (t)}τi+1−1

t=τi
drives the noiseless plant from 0 at time

τi to 0 at time τi+1:

x(τi) = 0
ucom

d (τi),...,u
com
d (τi+1−1)−−−−−−−−−−−−−−−→ x(τi+1) = 0 (7.8.13)

provided that u(t) := ucom
d (t) and ξ(t) ≡ 0 in (7.5.1) (on p. 208).

Specifically, the decoder computes the state



7.8 Almost Sure Stabilization in the Face of System Noises 239

x
ucom

d (τi),...,u
com
d (τi+1−n−d−1)←−−−−−−−−−−−−−−−−−−− 0

(assuming that ξ(t) ≡ 0) and then applies the deadbeat stabilizer (7.8.10) to x.
Then given x(τi), only the basic controls ubd(t) determine the state x(τi+1) (pro-
vided ξ(t) ≡ 0). So at time t = τi, the coder is able to compute a reliable prognosis
of the state x(τi+1) from the available measurements and knowledge of the basic
controls ubd(θ) at times θ ∈ [τi : τi+1), along with the entire real controls ud(θ) at
times θ = t− n+ 1, . . . , t.

The coder generates the controls uc(t) so that they be replicas of ud(t). To this
end, it calculates the basic controls by itself with overtaking the decoder by one
epoch. For t ∈ [τi : τi+1 − n − d − 1], it gets aware of s(t) and thus ucom

d (t) at
time t+ d. So at time τi+1 − n, the coder knows all communication controls that do
communicate information; i.e., it knows

U com
i := col

[
ucom
d (τi), . . . , u

com
d (τi+1 − n− d− 1)

]
.

Hence at time τi+1 − n, the coder is able to compute the “canceling tail” (7.8.12),
which is uniquely determined by U com

i . It follows that the coder acquires the controls
ud acting upon the plant with delay d at any time t, and with no delay at t = τi.

Whereas the foregoing described the ideas, now we come to formal details. The
actions of the coder and decoder are described first for times t = τi and then for
times within the operation epochs.

The coder (at the times t = τi, i = 1, 2, . . .)

cs.1) Calculates the state prognosis x̃(τi+1|τi) by means of (7.8.2);
cs.2) Computes the quantized value qc(τi) of the scaled state prognosis:

ε(τi) :=
x̃(τi+1|τi)
δc(τi)

, qc(τi) := Qr

[
ε(τi)

]
; (7.8.14)

This value is to be transmitted to the decoder within the next epoch [τi : τi+1);
cs.3) Computes the basic control program

U
c,b
i+1 = col

[
ubc(τi+1), . . . , u

b
c(τi+2 − 1)]

for the operation epoch [τi+1 : τi+2) following the forthcoming one [τi : τi+1)
and then corrects the state upper bound:

U
c,b
i+1 := δc(τi)N

[
qc(τi)

]
,

δc(τi) := δc(τi)×
(
〈qc(τi)〉κ,γ

)r
+ δ∗ . (7.8.15)

Here N is the deadbeat stabilizer (7.8.10), 〈q〉
κ,γ := κ if q 6= z and 〈q〉

κ,γ :=
γ otherwise, where γ, δ∗ are the parameters from (7.8.9) and κ ∈ (0, 1) is
taken from Lemma 3.8.36 (on p. 80).

The decoder (at the times t = τi, i = 2, 3, . . .)
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ds.1) Applies the decoding rule from 4) on p. 237 to the code word [s(τi−1), . . . ,
s(τi − n− 1)] and thus acquires the decoded value qd(τi) of qc(τi−1);

ds.2) Computes the basic control program

U
d,b
i = col

[
ubd(τi), . . . , u

b
d(τi+1 − 1)]

for the next operation epoch [τi : τi+1) and corrects the bound δd:

U
d,b
i := δd(τi)N

[
qd(τi)

]
,

δd(τi) := δd(τi)
(
〈qd(τi)〉κ,γ

)r
+ δ∗. (7.8.16)

Remark 7.8.12. For the technical convenience, the initial basic programs U
c,b
0 ,U d,b

0

are taken to be zero. We also suppose that qc(τ0) := qd(τ1) := z and the coder (at
t = τ0) and decoder (at t = τ1) act accordingly. This implies that U

c,b
1 = U

d,b
1 = 0.

Within any epoch t ∈ [τi : τi+1), i ≥ 1, the decoder

ds.3) Generates the current communication control ucom
d (t):

ucom
d (t) :=





aus(t) if τi ≤ t < τ−i+1

the
(
t− τ−i+1

)
th term

of the sequence (7.8.10) given by

U :=

N

[∑τ−i+1−1

θ=τi
Aτ
−
i+1−1−θBucom

d (θ)

]
,





if τ−i+1 ≤ t < τi+1
,

where τ−i+1 := τi+1 − n− d;
ds.4) applies the control ud(t) := ubd(t) + ucom

d (t) to the plant;

whereas the coder

cs.4) for τi ≤ t ≤ τi + d − 1, determines the message to the decoder e(t) :=
E∗[t− τi, qc(τi)] by means of the code (7.8.7), and emits e(t) into the channel;

cs.5) for τi+d ≤ t < τi+1−n, employs the decision rule (7.8.6) with u := ubc(t−d)
to determine s(t − d) and thus ucom

d (t − d), puts uc(t − d) := ubc(t − d) +
ucom
d (t− d), then employs the code (7.8.7) and dispatches the message

e(t) := E∗[t− τi, e(τi), . . . , e(t− 1), s(τi), . . . , s(t− d), qc(τi)];

cs.6) at time t = τi+1 − n, calculates both the communication controls ucom
d (θ)

and controls uc(θ) := ubc(θ) + ucom
d (θ) (actually acting upon the plant) for all

θ = τi+1 − n− d, . . . , τi+1 − 1 by applying the formula from ds.3)

U := N

[
t−d−1∑

θ=τi

At−1−d−θBucom
d (θ)

]

to determine ucom
d (θ);
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For consistency, we put ucom
c (θ) := ucom

d (θ) := 0 ∀θ < τ1.

Observation 7.8.13. Thanks to ds.3), the sequence of communication controls pro-
duced within a given epoch [τi : τi+1) drives the unperturbed plant (ξ(t) ≡ 0) from
0 at t = τi to 0 at t = τi+1; i.e., (7.8.13) does hold.

By induction on i and t ∈ [τi : τi+1), the foregoing implies the following.

Lemma 7.8.14. The above coder–decoder pair is well defined: The coder has access
to all data required to compute the state prognosis at step cs.1) and to apply the de-
cision rule (7.8.6) at step cs.5). This rule does determine s(t − d). The feedforward
transmission across the channel is errorless qd(τi) = qc(τi−1). The coder and de-
coder generate common controls U

c,b
i = U

d,b
i , uc(t) = ud(t) and state norm upper

bounds δ+d (τi) = δ−c (τi).

As before, the indices − and + mark the bound before and after the update at
time τi, respectively.

Observation 7.8.15. The coder and decoder introduced in this subsection are semi-
rational finite-step recursive.22

This is straightforward from the description of the coder and decoder with regard
to the fact that in cs.2) the quantizer is taken from Lemma 3.8.36 (on p. 80) and so
is polyhedral.23 In (6.3.4) (on p. 139) and (6.5.5) (on p. 145), the states of the coder
and decoder can be defined as follows:

zc(ir) :=
[
δ−c (τi), δ

−
c (τi−1), x̃(τi+1|τi), x̃(τi|τi−1),U

c
i−1

]
, zd(ir) := δ−d (τi),

where
U
c
i−1 := col

[
uc(τi−1), . . . , uc(τi − 1)

]
.

7.8.4 Almost Sure Stabilization in the Face of Plant Noises

The main result of the subsection is as follows.

Proposition 7.8.16. Suppose that Assumption 7.7.1 (on p. 223) holds and c0F >
H(A). Then the coder–decoder pair described in the previous subsection on pp. 239–
240 uniformly stabilizes the plant under bounded noises.24

Like in Subsect. 7.7.3 (starting on p. 232), the temporary additional Assump-
tion 7.7.1 will be dropped by applying the coder–decoder pair at hand to the unstable
part of the plant. This gives rise to the following.

Remark 7.8.17. Modulo the arguments from Sect. 6.10 (starting on p. 179), Proposi-
tion 7.8.16 implies (ii) of Theorem 7.5.3 (on p. 209). (For details, see Subsect. 7.8.5
starting on p. 244.)

The remainder of the subsection is devoted to the proof of Proposition 7.8.16.
Basically, the proof follows the lines of Subsect. 7.7.2 (starting on p. 227).

22See Definitions 6.3.9 and 6.5.7 on pp. 139 and 145, respectively.
23See Definition 3.8.8 on p. 70.
24See Definition 7.5.2 on p. 209.
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Estimating the Quantities Generated by the Controller

As in that subsection, we study the process in the system equipped by the coder and
decoder, with focusing attention on

δi := δ−c (τi), zi := ‖x̃(τi+1|τi)‖ , ςi :=

{
δ−1
i zi if i ≥ 1

δ−1
0 z0 + 1 for i = 0

. (7.8.17)

By cs.2), ςi determines whether the alarm symbol z is sent over the channel:

ςi > 1⇔ qc(τi) = z. (7.8.18)

Explanation 7.8.18. To make this formula true for all i, the quantity ςi is defined
by an exclusive rule for i = 0 since always qc(τ0) = z by Remark 7.8.12. Fur-
thermore, x̃(τ1|τ0) cannot be defined by formula (7.8.2) since no observations has
been received by t = τ0 = 0. In the subsequent considerations, we suppose that
x̃(τ1|τ0) 6= 0 is some vector satisfying the exactness bound ‖x̃(τ1|τ0) − x(τ1)‖ ≤
D
〈r〉
x from Lemma 7.8.2 (on p. 234).

Lemma 7.8.19. For any i ≥ 1, the quantities (7.8.17) satisfy relations (7.7.19) and
(7.7.20) (on p. 228), where I0(i), Iz(i) are given by (7.7.18) (on p. 228) and

Dr := D〈r〉x (1 + ‖A‖r) +D

r−1∑

θ=0

‖A‖θ. (7.8.19)

Here D and D〈r〉x are taken from (7.2.2) (on p. 202) and Lemma 7.8.2 (on p. 234),
respectively.

Proof. Equation (7.7.19) is straightforward from (7.7.18), (7.8.15), (7.8.17), and
(7.8.18). To justify (7.7.20), we observe that

zi
(7.8.17)
=== ‖x̃(τi+1|τi)‖ = ‖x̃(τi+1|τi)− x(τi+1)‖+ ‖x(τi+1)‖

a)
≤ D〈r〉x +‖x(τi+1)‖ (7.5.1)

=== D〈r〉x +

∥∥∥∥∥A
rx(τi) +

τi+1−1∑

θ=τi

Aτi+1−1−θ [Bud(θ) + ξ(θ)]

∥∥∥∥∥

≤ D〈r〉x + ‖Ar [x(τi)− x̃(τi|τi−1)]‖

+

∥∥∥∥∥A
rx̃(τi|τi−1) +

τi+1−1∑

θ=τi

Aτi+1−1−θ [Bud(θ) + ξ(θ)]

∥∥∥∥∥

b)
≤ (1 + ‖A‖r)D〈r〉x +D

τi+1−1∑

θ=τi

‖A‖τi+1−θ−1

+

∥∥∥∥∥A
rx̃(τi|τi−1) +

τi+1−1∑

θ=τi

Aτi+1−1−θB
[
ubd(θ) + ucomd (θ)

]
∥∥∥∥∥

(7.8.13), (7.8.19)
======== Dr +

∥∥∥∥∥A
rx̃(τi|τi−1) +

τi+1−1∑

θ=τi

Aτi+1−1−θBubd(θ)

∥∥∥∥∥ =: a.
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Here a) holds by Lemma 7.8.2 (on p. 234); and b) holds by this lemma, (7.2.2) (on
p. 202), and ds.4). By Lemma 7.8.14,

a = Dr +

∥∥∥∥∥A
rx̃(τi|τi−1) +

τi+1−1∑

θ=τi

Aτi+1−1−θBubc(θ)

∥∥∥∥∥ .

If Iz(i) = 1, then ubc(θ) = 0 for all θ concerned due to (7.7.18) (on p. 228), (7.8.11),
(7.8.15), and (7.8.18). Hence a ≤ Dr + ‖A‖rzi−1 owing to (7.8.17). Now suppose
that I0(i) = 1. Then by (7.7.18), (7.8.10), and (7.8.15), we have

δc(τi−1)A
rqc(τi−1) +

τi+1−1∑

θ=τi

Aτi+1−1−θBubc(θ) = 0.

So

a = Dr + ‖Arx̃(τi|τi−1)− δc(τi−1)A
rqc(τi−1)‖

(7.8.14), (7.8.17)
======== Dr + δi−1 ‖Ar [ε(τi−1)− qc(τi−1)]‖ .

We recall that qc(τi−1) is the quantized value of ε(τi−1) by means of the κ2r-
contracted quantizer Qr. So (3.8.9) (on p. 70) (where ρQ = κ2m by Lemma 3.8.36
on p. 80) implies that a ≤ Dr + κ2rδi−1. Summarizing, we arrive at (7.7.20) (on
p. 228). ⊓⊔

Now we observe that δi ≥ δ∗ thanks to (7.8.15) and (7.8.17). So with regard to
Observation 7.7.21 (on p. 231), we arrive at the following.

Corollary 7.8.20. Lemma 7.7.20 (on p. 230) remains true for the quantities (7.8.17).

Proof of Proposition 7.8.16: Concluding Part

Thanks to (7.8.17) and Explanation 7.8.18,

z0 = ‖x̃(τ1|τ0)‖ ≤ ‖x̃(τ1|τ0)− x(τ1)‖+ ‖x(τ1)‖

≤ D〈r〉x + ‖x(τ1)‖ Remark 7.8.12
======= D〈r〉x +

∥∥∥∥∥A
rx0 +

r−1∑

θ=0

Ar−1−θξ(θ)

∥∥∥∥∥

(7.2.2)
≤ D〈r〉x + ‖A‖r ‖x0‖+D

r−1∑

θ=0

‖A‖θ.

So (7.7.22) (on p. 230) holds with the upper bounds determined by ‖x0‖, D〈r〉x and
the quantities from (7.7.23) (on p. 230). Hence the stabilization error at time t = τi
is also bounded:
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erri := ‖x(τi)‖ ≤ ‖x(τi)− x̃(τi|τi−1)‖+ ‖x̃(τi|τi−1)‖
Lemma 7.8.2
≤ D〈r〉x + ‖x̃(τi|τi−1)‖ (7.8.17)

=== D〈r〉x + zi−1

(7.7.22)
≤ D〈r〉x + z.

Since the quantized value qc(τi) lies in the unit ball whenever qc(τi) 6= z

and N(z) = 0 by (7.8.11) (on p. 237), it follows from (7.8.15) that ‖U c
i ‖ ≤

δ−c (τi−1)‖N‖. By taking into account the second inequality from (7.7.22) (on
p. 230), we see that the sequence {U c

i }∞i=0 is bounded. The communication controls
ucom
c (t) are taken from a finite (and so bounded) control alphabet. Hence ds.4) (on

p. 240) and Lemma 7.8.14 (on p. 241) imply that the sequence of controls {ud(t)}∞t=0

produced by the decoder is also bounded

‖ud(t)‖ ≤ u ∀t.

To complete the proof, we consider arbitrary t and pick i such that τi < t ≤ τi+1.
Then

‖x(t)‖ (7.5.1)
===

∥∥∥∥∥A
t−τix(τi) +

t−1∑

θ=τi

At−1−θ [Bud(θ) + ξ(θ)]

∥∥∥∥∥

≤ ‖A‖t−τi ‖x(τi)‖+

t−1∑

θ=τi

‖A‖t−1−θ
[
‖B‖‖ud(θ)‖ + ‖ξ(θ)‖

]

(7.2.2),‖A‖≥1,τi+1−τi=r

≤ ‖A‖r
(
D〈r〉x + z

)
+ (D + ‖B‖u)

r−1∑

θ=0

‖A‖θ, (7.8.20)

where the inequality ‖A‖ ≥ 1 holds by Assumption 7.7.1 (on p. 223). Defini-
tion 7.5.2 (on p. 209) completes the proof. ⊓⊔

7.8.5 Completion of the Proof of (ii) from Theorem 7.5.3

For systems with no stable modes (i.e., under Assumption 7.7.1 on p. 223), the claim
(ii) is justified by Proposition 7.8.16. Thus to complete the proof, one should drop
Assumption 7.7.1. This will be accomplished just like in Subsects. 3.8.11 and 6.11.4
(starting on pp. 88 and 196) by stabilizing the “unstable” part of the system.

We do not suppose any longer that Assumption 7.7.1 holds. We also assume that
c0F > H(A) and focus attention on the unstable part of the plant (7.5.1) (on p. 208):

x+(t+ 1) = A+x+(t) + π+Bu(t) + π+ξ(t), x+(0) = x+
0 := π+x0. (7.8.21)

The notations are as follows: x±(t) := π±x(t); Munst and Mst are the invariant
subspaces of A related to the unstable and stable parts of its spectrum, respectively;
π+, π− are the projections onto Munst parallel to Mst and vice versa; and A+, A−
denote the operator A acting in Munst and Mst, respectively.

The plant (7.8.21) is controllable thanks to Assumption 6.5.5 (on p. 144), and
H(A+) = H(A) > c0F . So by the foregoing, the system (7.8.21) can be uni-
formly stabilized under bounded noises by the coder and decoder constructed in
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Subsect. 7.8.3 (starting on p. 236). This is true provided that the coder has access to
proper observations. The idea is to feed the coder serving the artificial plant (7.8.21)
by the real measurements y(θ) from (7.5.1) (on p. 208). This is possible and alters
neither operation of the coder nor the conclusion of Proposition 7.8.16 applied to the
plant (7.8.21) if the following two statements hold:

p.1) To perform step cs.1) (on p. 239), future states x+ can be prognosticated with
a bounded error on the basis of y(θ);

p.2) To perform step cs.5) (on p. 240), the message s(t− d) can be correctly recog-
nized by an analog of the decision rule (7.8.6) (on p. 235) applied to y(θ).

To prove these claims, we note that since the pairs (A,C) and (A,B) are de-
tectable and stabilizable by Assumptions 6.3.6 (on p. 137) and 6.5.5 (on p. 144), re-
spectively, the integer d is still well defined by (7.8.3) (on p. 234). Moreover, a linear
prognosis (7.8.2) (on p. 234) of the state x(t+ r) can be constructed so that the error
modulo the unobservable subspace of (A,C) is bounded by a constant D(D,Dχ)
determined by the noise levels D,Dχ from (7.2.2) (on p. 202) [8]. Due to Assump-
tion 6.3.6, this subspace lies in Mst. It follows that π+x̃(t+ r|t) estimates x+(t+ r)
with a bounded error, and so p.1) does hold. Since the unobservable subspace lies in
kerCAj for any j = 0, 1, . . . , the discrepancy CAd[x(t − d) − x̃(t − d|t − d)] is
bounded as t → ∞. This keeps the arguments from (7.8.5) (on p. 235) and thus the
entire Lemma 7.8.4 (on p. 234) true, which proves p.2).

Finally, the stabilizing coder–decoder pair for the plant (7.8.21) is constructed
in correspondence with Subsect. 7.8.3 up to the above alterations concerning steps
cs.1) and cs.5). The duration of the operation epoch is taken so that r > dim(x)+ d.
By the foregoing, this pair uniformly stabilizes the unstable part of the primal plant
(7.5.1) (on p. 208) under bounded noises:

‖x+(t)‖ + ‖u(t)‖ ≤ D+(D,Dχ) ∀t = 0, 1, . . . .

To extend this conclusion on the entire state x(t) = x+(t) + x−(t), we note
that the operator A− is asymptotically stable: ‖At−‖ ≤ cυt ∀t, where c > 0 and
υ ∈ (0, 1). Hence

‖x−(t)‖ = ‖π−x(t)‖ =

∥∥∥∥∥A
t
−π−x0 +

t−1∑

θ=0

At−1−θ
− π− [Bu(θ) + ξ(θ)]

∥∥∥∥∥

≤ ‖π−‖
(
‖At−‖‖x0‖+

t−1∑

θ=0

‖At−1−θ
− ‖

[
‖B‖‖u(θ)‖+ ‖ξ(θ)‖

])

≤ c‖π−‖
[
υt‖x0‖+ [D +D+(D,Dχ)]

t−1∑

θ=0

υt−1−θ
]

≤ D− := c‖π−‖
[
‖x0‖+

D +D+(D,Dχ)

1− υ

]
,

‖x(t)‖ = ‖x+(t)‖ + ‖x−(t)‖ ≤ D+(D,Dχ) +D−. (7.8.22)

The proof is completed by Definition 7.5.2 (on p. 209). ⊓⊔
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An Analog of Shannon Information Theory: Stable in
Probability Control and State Estimation of Linear
Noisy Plants via Noisy Discrete Channels

8.1 Introduction

In this chapter, we proceed with study of problems of state estimation/stabilization
involving communication errors and capacity constraints. Discrete-time partially ob-
served linear systems perturbed by stochastic additive disturbances are still exam-
ined. The sensor signals are communicated to the estimator/controller over a limited
capacity noisy link modeled as a stochastic discrete memoryless channel.

As was shown in the previous chapter, the strong objective of almost sure sta-
bility or observability cannot be achieved in such a context by any means and under
any circumstances for many channels of practical interest. In other words, arbitrarily
large estimation/stabilization errors are encountered systematically with probability
1. In this chapter, the focus is on the weaker form of stability/observability. The ob-
jective is to ensure only that the probability of large observation/stabilization errors
be small. With the strong law of large numbers in mind, this gives an evidence that
unavoidable large errors occur rarely.

It is shown that the capability of the noisy channel to ensure reliable in this sense
state estimation/stabilization is identical to its capability to transmit information with
as small a probability of error as desired. In other words, the classic Shannon capac-
ity1 c of the channel constitutes the boundary of the observability/stabilizability do-
main. Since this capacity is typically nonzero [214], most communication channels
fit to achieve this weaker form of observability/stability.

The necessity of the Shannon capacity bound is justified with respect to the
widest class of observers/controllers that are causal and restricted by no further re-
quirements. This result basically can be derived from Proposition 6.7.12 (on p. 152).2

The major results of the chapter concern the sufficiency of the Shannon ca-
pacity bound. They show that whenever this bound is met, a reliable observa-

1See Subsect. 6.3.3 starting on p. 138.
2By Comment 6.7.16 (on p. 152), it can also be derived from Lemma 3.2 [201]. A similar

result that concerns a stronger uniform (with respect to bounded plant disturbances) stability
and scalar plants is contained in [166].
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© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 200

 247  
doi: 10.1007/978-0-8176-4607-3_8, 

9



248 8 Stable in Probability Control and State Estimation

tion/stabilization can be ensured by means of an observer/controller consuming an
uniformly bounded (as time progresses) computational complexity and memory per
unit time. Moreover, traditional block encoding–decoding procedures can be em-
ployed for its implementation. The corresponding state estimator/controller is con-
structed explicitly. However, the scheme (coder and decoder) for transmission of in-
formation across the channel is not described in detail. The point is that the proposed
observer/controller employs block codes transmitting data at a given rate below the
channel capacity c with a given probability of error. Classic information theory guar-
antees existence of such a code. Moreover, invention of such codes is the standard
long-standing task in information sciences. It is supposed that a relevant solution
should merely be employed.

For the state estimation problem, we assume a complete feedback communica-
tion link. Unlike Chap. 7, the noises are not supposed to be bounded. The proposed
observer is universal in the sense that it does not depend on the noise parameters. In
other words, the same observer ensures reliable state estimation under an arbitrary
noise, although the accuracy of the estimation depends on the noise level. This is
of interest if, e.g., the statistical knowledge of the noise is not available or the noise
properties change during the system operation.

We consider two statements of the stabilization problem. The first setup supposes
that the noises are bounded but does not assume any communication feedback. In
this case, the proposed controller depends on the parameters (upper bounds) of the
plant noises. The second problem setup deals with unbounded noises and assumes
that a perfect communication feedback at an arbitrarily small data rate is available.
In this case, the proposed controller is universal (i.e., does not depend on the noise
parameters).

Stabilizability in probability and σth moment stabilizability of scalar linear
plants with bounded additive disturbances over noisy limited capacity communica-
tion channels were examined in [166]. It is shown that the boundary of the domain of
stabilizability in probability is given by the Shannon capacity of the channel. Unlike
this chapter, the proposed controllers consume unlimited (as time progresses) mem-
ory and complexity per step and rely on the novel “anytime” approach to information
transmission over a noisy channel proposed in [164], whereas the controllers from
this chapter are based on the well-developed classic block coding procedures. 3

Another advance was made in [101, 103], where robust rth moment stability of
uncertain scalar linear plants with bounded additive disturbances was examined in

3Related to this approach is a novel concept of anytime capacity. It is argued in [164,166]
that this capacity is the correct figure of merit whenever the moment stability is concerned.
Specifically, the moment stabilizability by means of arbitrary causal controllers (including
ones consuming unlimited memories and complexities per step) is equivalent to possibility to
transmit data across the channel at a sufficiently large rate (depending on the moment degree)
by means of the so-called anytime encoder and decoder. The anytime decoder is defined as
a device that keeps all previously decoded messages in memory and monitors and updates
the entire stock, including the ancient messages, at any time when a new message arrives.
On contrary to the Shannon capacity, a simple expression amenable to computation is not in
general known for the anytime capacity [142].
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the class of realistic controllers. By letting r→ +0, these works show that whenever
the Shannon capacity bound is met, stability in probability can be ensured by means
of explicitly-described controllers with uniformly limited complexity. At the same
time, this result concerns only the particular case of discrete memoryless channel
(DMC): The truncation channel, which transmits binary code words with dropping
a random number of concluding bits. This example of DMC generalizes the clas-
sic erasure channel and is motivated by certain wireless communication applications
in [101]. The proposed control algorithm and coding–decoding scheme rely on spe-
cific features of this channel. In this chapter, we examine general noisy DMC and
multidimensional linear plants with additive stochastic disturbances that are not nec-
essarily bounded.

Unlike the other chapters of this book, the proofs of the main results of this one
are not presented. The reason is that during this book preparation, these results with
complete proofs were under review as parts of articles submitted to international
journals. A preliminary version of the main results of the chapter was originally
published in the conference paper [119].

The body of the chapter is organized as follows. Section 8.2 presents the setup
of the state estimation problem. Section 8.3 offers the related assumptions and a
description of the observability domain. The explicit contruction of the reliable state
estimator is given in Sect. 8.4. In Sects. 8.5 and 8.6, the stabilization problem is
posed and the stabilizability domain is described, respectively. Stabilizing coder–
decoder pairs are offered in Sect. 8.7. The concluding Sect. 8.8 contains the proofs
of auxiliary illustrative facts.

8.2 Statement of the State Estimation Problem

We consider unstable discrete-time invariant linear systems of the form:

x(t+ 1) = Ax(t) + ξ(t), x(0) = x0, y(t) = Cx(t) + χ(t). (8.2.1)

Here x ∈ Rn is the state; y ∈ Rny is the measured output; ξ(t) ∈ Rn is the exoge-
nous disturbance; χ(t) ∈ Rny is the sensor noise, and t = 0, 1, . . .. The instability
means that there is an eigenvalue λ of the matrix A with |λ| ≥ 1. The initial state x0

and the noises ξ(t), χ(t) are random vectors. The objective is to estimate the current
state x(t) on the basis of the prior measurements y(0), . . . , y(t).

This estimate is required at a remote location. The sensor signals are communi-
cated to this location via a given discrete (digital) noisy channel. So to be transmit-
ted, they should be first translated by a coder into a sequence of messages e from a
finite input alphabet E of the channel. During transmission, these messages are trans-

formed e
noise−−−→ s by some sort of random disturbance into a sequence of channel’s

outputs s from a finite output alphabet S. Proceeding from the prior outputs s, the
decoder(-estimator) generates an estimate x̂ of the current state x. In this situation
illustrated in Fig. 8.1, the observer is constituted by the coder and decoder.

The decoder is defined by an equation of the form:
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State estimate

Plant

Decoder -

estimator

Discrete

Channel
Coder

Sensor

Feedback communication link

Fig. 8.1. Estimation via a limited capacity communication channel.

x̂(t) = X [t, s(0), s(1), . . . , s(t)] . (8.2.2)

We also assume a feedback communication link [190, 219] from the decoder to the
coder. Via this link, the result s(t) of the current transmission across the “feedfor-
ward” channel becomes known at the coder site by the next time t+ 1. So the coder
is described by an equation of the form:

e(t) = E[t, y(0), . . . , y(t), s(0), . . . , s(t− 1)] ∈ E. (8.2.3)

In the face of the plant and sensor errors, a reasonable option is to accept that an
observer succeeds if it keeps the estimation error bounded. We examine one of the
weakest probabilistic specifications of this property. To introduce it, we start with the
following analog of the standard definition of convergence in probability.

Definition 8.2.1. The infinite sequence of random vectors Xi ∈ Rs, i = 1, 2, . . . is
said to be bounded in probability if for arbitrary probability value p ≈ 1, p < 1, a
bound b = bp ≥ 0 exists such that any vector Xi obeys this bound with probability p
or better:

P [‖Xi‖ ≤ b] ≥ p ≈ 1 ∀i = 1, 2, . . . .

Definition 8.2.2. An observer is said to track the state in probability if the estimation
error x(t) − x̂(t) is bounded in probability.

The following claim is evident.

Observation 8.2.3. The observer tracks the state in probability whenever at least
one of the following statements hold:

(i) The estimation error is almost surely bounded;
(ii) supt E‖x(t)− x̂(t)‖r <∞ for some r ∈ (0,∞);

(iii) supt Eψ[x(t)−x̂(t)] <∞, where ψ(·) : Rn → [0,∞) is a continuous function
such that ψ(x)→∞ as ‖x‖ → ∞.

The objective is to discover the requirements to the noisy channel that are nec-
essary and sufficient for existence of a coding–decoding pair tracking the state in
probability via this channel. A reliable and realistic observer should be explicitly
constructed in the case where these requirements are met.
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Comments on the Problem Statement

Within the above problem setup, the issue of complexity is not addressed. In par-
ticular, coders and decoders with unlimited memories are allowed. It will be shown
that whenever the observability conditions are met, tracking the state in probability
can be ensured by means of a coder and decoder that consume limited (as t → ∞)
memory and perform a limited number of (algebraic) operations per unit time.

Comments on the communication feedback assumption were given on p. 136.
Tracking in probability is a weak performance criterion. However, it suffices to

distinguish between reliable and unreliable observers in the classic problem setup.
To illustrate this, let us examine the time-invariant Luenberger-type observers

with the Kalman filter structure. They generate the state estimate x̂(t) via a recursion
of the form

x̂(t+ 1) = Ax̂(t) +K
[
y(t+ 1)− ŷ(t+ 1|t)

]
,

where ŷ(t+ 1|t) := CAx̂(t), (8.2.4)

and K is the observer gain matrix. The initial estimate x̂(−1) is a deterministic
vector (e.g., Ex0 if Ex0 is known). As is well known, such an observer produces a
reliable (in various reasonable senses) state estimate if and only if the eigenvalues of
the matrix A−KCA lie in the open unit disk of the complex plane. In its turn, this
holds if and only if the observer tracks the state in probability, as is shown by the
following lemma.

Lemma 8.2.4. Let the system and sensor noise sequences be mutually independent
and independent of the initial state, and let each of them be formed by mutually
independent, identically distributed, and a.s. bounded random vectors. Suppose also
that the system noises ξ(t) have a probability density and that the initial state is a.s.
bounded. Then the observer (8.2.4) tracks the state in probability if and only if the
eigenvalues of the matrix A−KCA lie in the open unit disk of the complex plane.

The proof of this illustrating fact will be given in Sect. 8.8 (starting on p. 264).

8.3 Assumptions and Description of the Observability Domain

The assumptions to follows have much in common with those from Chaps. 6 and 7.

Assumption 8.3.1. The communication channel is stationary, discrete, and memory-
less. In other words, given a current input e(t), the current output s(t) is statistically
independent of other inputs and outputs e(j), s(j), j < t, and the conditional prob-
ability W (s|e) := P [s(t) = s|e(t) = e] does not depend on time t.

Assumption 8.3.2. The system (8.2.1) does not affect the channel: Given an input
e(t), the output s(t) is independent of the initial state x0 and the plant ξ(θ) and
sensor χ(θ) noises (along with other channel inputs and outputs e(j), s(j), j < t).



252 8 Stable in Probability Control and State Estimation

The next two assumptions are essential only for necessary conditions for observabil-
ity.

Assumption 8.3.3. The current plant disturbance ξ(t) is independent of the past
ones ξ(0), . . . , ξ(t−1), both current χ(t) and past χ(0), . . . , χ(t−1) sensor noises,
and the initial state x0.

Assumption 8.3.4. The initial state x0 has a probability density p0(x) and finite
differential entropy4 h(x0) ∈ R.

Conversely, the last assumption is important only for sufficient conditions. To state
it, we put

mσ(X) :=

{
[E‖X‖σ] 1

σ if σ <∞
inf{c : ‖X‖ ≤ c a.s.} otherwise

(8.3.1)

for any random vector X . We also introduce the following definition.

Definition 8.3.5. Let σ ∈ (0,∞]. A random vectorX and an infinite sequence {Xi}
of such vectors are said to be σ-bounded if the following relations hold, respectively:

mσ(X) <∞, sup
i

mσ(Xi) <∞. (8.3.2)

Assumption 8.3.6. The initial state x0 and the noises in both plant {ξ(t)}∞t=0 and
sensor {χ(t)}∞t=0 are σ-bounded.

If σ = ∞, this means that the noises are a.s. uniformly bounded and that the initial
state is distributed over a bounded set. If σ <∞, relations (8.3.2) mean that this state
and noises have finite σth moments, and the moments of the noises do not grow with-
out limits as t→∞. It is clear that the larger the σ, the stronger Assumption 8.3.6.

As the following theorem shows, the conditions necessary for observability under
Assumption 8.3.6 with σ =∞ are “almost sufficient” for observability in the wider
class of noises and initial states satisfying Assumption 8.3.6 with some σ > 0.

Theorem 8.3.7. Suppose that Assumptions 8.3.1 and 8.3.2 hold, and consider the
ordinary Shannon capacity c of the communication channel, which is given by (6.3.3)
(on p. 138). LetH(A) denote the topological entropy of the open-loop system (8.2.1):

H(A) :=
∑

λj :|λj |≥1

log2 |λj |, (8.3.3)

where λ1, . . . , λn are the eigenvalues of the system (8.2.1) repeating in accordance
with their algebraic multiplicities.

The following two statements are true:

(i) If a coder (8.2.3) and decoder (8.2.2) exist that track the state in probability
under some random noises and initial state satisfying Assumptions 8.3.3, 8.3.4,
and 8.3.6 with σ :=∞, then the following inequality holds:

H(A) ≤ c; (8.3.4)

4See the definition on p. 150.
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(ii) Conversely, let (8.3.4) hold with the strict inequality sign H(A) < c, and let the
pair (A,C) be detectable. Then there exists a semirational finite-step recursive5

coder–decoder pair (8.2.3), (8.2.2) that tracks the state in probability under any
random noises and initial state satisfying Assumption 8.3.6 with some σ > 0.

Thus inequality (8.3.4) is necessary and almost sufficient for observability in
probability. The coder–decoder pair from (ii) will be explicitly described in the next
section. This pair consumes a bounded (as time progresses) computational power
and memory per step.

The proof of Theorem 8.3.7 is not presented in this text due to the reason ex-
plained on p. 249.

8.4 Coder–Decoder Pair Tracking the State in Probability

So far as asymptotic tracking does not concern the stable modes, it is clear that ana-
lysis can be focused on systems with only unstable ones. Extension on systems with
both unstable and stable modes can be performed by applying the observer proposed
in this section to the unstable part of the system, like in Sect. 6.10 and Subsect. 7.7.3
(starting on pp. 179 and 232, respectively). So the further consideration is focused
on the case where the following assumption holds.

Assumption 8.4.1. All eigenvalues of the matrix A lie outside the closed unit disk of
the complex plane.

We also suppose that the assumptions of (ii) from Theorem 8.3.7 hold. Then
H(A) < c and the pair (A,C) is observable in view of Assumption 8.4.1.

The observer to be proposed is in fact nothing but a combination of those from
Subsects. 6.9.1 and 7.7.1 (described by cc.1)–cc.5), d.1), d.2) on pp. 169 and c.1)–
c.4), d.1), d.2) on p. 225 and 226, respectively). In order to compensate for the chan-
nel errors, the coder will use the communication feedback to duplicate the actions
of the decoder, like in Subsect. 6.9.1 (see cc.3) on p. 169). At the same time, the
account for plant noises is like in Subsect. 7.7.1. In particular, the features described
in m.1) and m.2) on p. 223 are inherited, and the rule to update the exactness upper
bound δ will be of the form (7.7.2) (on p. 224) and so not forcing δ to decay to zero.

For the convenience of the reader, now we offer a systematic description of the
coder–decoder pair. To construct it, we pick

1) two parameters
δ∗ > 0 and γ > ‖A‖; (8.4.1)

2) two numbers η and R such that

H(A) < η < R < c; (8.4.2)

5See Definitions 6.3.9 and 6.3.10 on pp.139 and 140, respectively.
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3) a code book {E1, . . . , EN} with N = N ′r h 2rR input code words Ei each
of length r and a decoding rule Dr(·) with the properties described in Theo-
rem 6.8.4 (on p. 162);

4) an r-contracted quantizer Qr from Lemma 3.8.36 (on p. 80) applied toAss := A
(we also invoke Remark 3.8.37 on p. 80 here);

5) a particular sufficiently large r such that all outputs of the quantizer (including
the alarm symbol) can be encoded by means of the code book from 3);

6) a deadbeat observer, i.e., a device producing an estimate x̃(t) of the current state
x(t) in the form of a sliding average of n− 1 past observations

x̃(t) =

t∑

θ=t−n+1

Ft−θy(θ) (8.4.3)

so that this estimate is correct x̃(t) = x(t) for t ≥ n = dim(x) in the absence of
the noises ξ(t) ≡ 0, χ(t) ≡ 0.

Explanation 8.4.2. • 2) is possible since H(A) < c.
• 5) is possible by Observation 6.8.8 (on p. 163).
• 6) is possible since the pair (A,C) is observable.

As before, the coder and decoder perform major operations only at times τi :=
ir, i = 0, 1, . . .. The decoder computes a state estimate x̂(t) and an upper (and maybe
incorrect) bound δ(t) of its exactness. Specifically, it executes the recursion

x̂(t+ 1) = Ax̂(t), δ(t+ 1) = δ(t) (8.4.4)

at any time. However at times t = τi, this recursion is prefaced by correcting x̂(t)
and δ(t) on the basis of the code word received during the previous operation epoch
[τi−1 : τi). (The values before and after correction are marked by the upper indices
− and +, respectively.) Thanks to the communication feedback, the coder becomes
aware of this code word at time τi. This enables the coder to duplicate the operations
of the decoder and thus to compute x̂(t) and δ(t) by itself.

Specifically, the coder and decoder act as follows.
The coder (at times t = τi, i = 1, 2, . . .)

c.1) Proceeding from the previous measurements, calculates the estimate x̃(t) of the
current state by (8.4.3);

c.2) Computes the corrected values x̂+(τi) and δ+(τi) by duplicating the operations
of the decoder;

c.3) Employs the quantizer Qr and computes the quantized value qc(τi) of the cur-
rent scaled discrepancy between the estimates produced by the coder–decoder
pair and the deadbeat observer, respectively:

ε(τi) :=
[
δ+(τi)

]−1[
x̃(τi)− x̂+(τi)

]
; (8.4.5)

c.4) Encodes this value by means of the code book Er and emits the obtained r-word
into the channel during the next operation epoch [τi : τi+1).
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Only after this, does the coder perform the current step (8.4.4).
The decoder (at times t = τi, i = 2, 3, . . .)

d.1) Applies the decoding rule Dr to the data received within the previous operation
epoch [τi−1 : τi) and thus acquires the decoded value qd(τi) of the quantized
and scaled discrepancy qc(τi−1);

d.2) Corrects successively the estimate and the exactness bound:

x̂+(τi) := x̂−(τi) + δ−(τi)A
r
⋆
qd (τi),

δ+(τi) := δ−(τi)×
(
〈qd(τi)〉κ,γ

)r
+ δ∗. (8.4.6)

Here

⋆
q:=

{
q if q 6= z

0 otherwise
, 〈q〉

κ,γ :=

{
κ if q 6= z

γ otherwise
, (8.4.7)

κ is the constant from Lemma 3.8.36 (on p. 80), and γ, δ∗ are taken from
(8.4.1).

Only after this does the decoder perform the step (8.4.4).

Remark 8.4.3. 1. The decoded value qd(τi) may differ from the true one qc(τi−1)
due to transmission errors.

2. The step c.2) of the coder consists in carrying out d.1) and d.2). This is possi-
ble since at time τi, the coder knows the data received by the decoder within
[τi−1 : τi) thanks to the communication feedback.

3. The coder and decoder do not employ any characteristics of the noises.
4. The complexity of the coder and decoder per step is basically determined by the

parameter r of the algorithm and does not increase as time progresses. Specifi-
cally, the coder and decoder are semirational r-step recursive6.

5. The coder and decoder compute x̂(t) and δ(t) independently.

Initially, they are given common and arbitrarily chosen values x̂(0) = x̂0 and
δ(0) = δ0 ≥ δ∗. (The bound δ0 may be incorrect; i.e., the inequality δ0 ≥ ‖x0− x̂0‖
may be violated.) For consistency, we put qc(τ0) := qd(τ1) := z and suppose that
at times t = τ0, τ1 the coder and decoder act accordingly. It is easy to check that the
coder and decoder do compute common sequences x̂(t) and δ(t), t = 0, 1, . . ..

The following proposition in fact justifies (ii) of Theorem 8.3.7.

Proposition 8.4.4. Suppose that the assumptions of (ii) from Theorem 8.3.7 and
Assumption 8.4.1 hold. If the duration of the operation epoch is large enough
r ≥ r(A,C,κ, δ∗,W, γ,R), the above coder–decoder pair tracks the state in prob-
ability under any random noises and the initial state that are σ-bounded for some
σ > 0.

It should be stressed that the threshold duration r(A,C,κ, δ∗,W, γ,R) is not
affected by the moment degree σ and the parameters of the noises.

The proof of Proposition 8.4.4 is not given due to the reason explained on p. 249.
6See Definitions 6.3.9 and 6.3.10 on pp.139 and 140.
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8.5 Statement of the Stabilization Problem

Now we consider the controlled version of the plant (8.2.1) (on p. 249):

x(t+ 1) = Ax(t) +Bu(t) + ξ(t), x(0) = x0;

y(t) = Cx(t) + χ(t), t = 0, 1, . . . , (8.5.1)

where u ∈ Rnu is the control. The plant is still unstable and should be stabilized.
The sensor signals are still communicated to the decision-maker (controller) via

a given discrete noisy channel and prepared for transmission by a coder. Unlike
Sect. 8.2, we do not assume a feedback communication link (see Fig. 8.2). The cur-

Fig. 8.2. Stabilization via a limited capacity communication channel.

rent control is generated by the decoder(-controller) on the basis of the prior channel
outputs s. In this situation, the controller is constituted by the coder and decoder,
which are given by equations of the following forms, respectively:

e(t) = E[t, y(0), . . . , y(t)], (8.5.2)

u(t) = U [t, s(0), s(1), . . . , s(t)] . (8.5.3)

Explanation 8.5.1. These formulas describe the class of all nonanticipating (causal)
controllers. Its study is instructive for necessary conditions for stabilizability. How-
ever, this class includes unrealistic controllers of unlimited complexity, which carry
out an asymptotically infinite amount of computations per step. As will be shown, the
conditions necessary for stabilization by means of such a controller are “almost” suf-
ficient for stabilization by a realistic controller with a limited computational power,
which is based on classic block encoding–decoding procedures of data transmission
across the channel.

Like in Sect. 8.2, we assume that a coder–decoder pair succeeds if it keeps the
(stabilization) error bounded in probability.

Definition 8.5.2. A controller is said to stabilize the plant in probability if the time
sequence of states x(t), t = 0, 1, . . . is bounded in probability.7

7See Definition 8.2.1 on p. 250.
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Observation 8.2.3 naturally extends on the property introduced in this definition.
In particular, almost sure stability ( supt ‖x(t)‖ < ∞ a.s.) clearly implies stability
in probability. The last property also holds if supt E‖x(t)‖σ <∞ for some σ > 0.

Although stability in probability is a weak performance criterion, it suffices to
distinguish between stable and unstable systems in the classic problem setup. To
illustrate this, let us examine the static linear controller

u(t) = Ky(t). (8.5.4)

As is known, it stabilizes the system (in various reasonable senses) if and only if the
eigenvalues of the matrix A + BKC lie in the open unit disk. In its turn, this holds
if and only if the controller (8.5.4) stabilizes the plant in probability, as is shown by
the following analog of Lemma 8.2.4 (on p. 251).

Lemma 8.5.3. Suppose that the assumptions of Lemma 8.2.4 are true. Then the con-
troller (8.5.4) stabilizes the plant in probability if and only if the eigenvalues of the
matrix A+BKC lie in the open unit disk of the complex plane.

The proof of this illustrating fact will be given in Sect. 8.8 (starting on p. 264).

8.6 Stabilizability Domain

Theorem 8.6.1. Let Assumptions 8.3.1, 8.3.2, and 8.3.6 with σ =∞ (on pp. 251 and
252) be valid. Then the following claims hold:

(i) If a coder (8.5.2) and decoder (8.5.3) exist that stabilize the plant in probability
under some random noises and initial state satisfying Assumptions 8.3.3 and
8.3.4 (on p. 252), then inequality (8.3.4) (on p. 252) holds;

(ii) Conversely, suppose that (8.3.4) holds with the strict inequality signH(A) < c;
the pairs (A,C) and (A,B) are detectable and stabilizable, respectively; and
estimates D,Dχ of the noises in the system and sensor are known

‖ξ(t)‖ ≤ D, ‖χ(t)‖ ≤ Dχ ∀t a.s. (8.6.1)

Then a semirational finite-step recursive8 coder–decoder pair (8.5.2), (8.5.3)
exists that stabilizes the plant in probability.

Thus the inequality H(A) ≤ c is necessary and “almost sufficient” for stabiliz-
ability in probability. We recall that Theorem 8.6.1 concerns the case where there is
no feedback communication link. It can be shown that if such a link is yet available
and so the coder equation (8.5.2) can be taken in the form (8.2.3) (on p. 250), the
above inequality remains necessary.

A stabilizing coder–decoder pair will be described in the next section. This pair
depends on the noise parametersD,Dχ.

8See Definitions 6.3.9 and 6.3.10 on pp.139 and 140, respectively.
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Remark 8.6.2. If a perfect communication feedback of an arbitrarily small rate is
available, a universal stabilizing pair can be offered. This pair does not depend on
the noise parameters (like the estimates D,Dχ) and stabilizes the plant under all
noises that are σ-bounded9 with some σ > 0.

The details will be specified, and the corresponding pair will be described in Sub-
sect 8.7.2 (starting on p. 262). This pair consumes a bounded (as time progresses)
computational power and memory per step.

The proof of Theorem 8.6.1 is not presented due to the reason explained on
p. 249.

8.7 Stabilizing Coder–Decoder Pair

Like in Sect. 8.4 and by the reasons stated there, the focus is on systems with only un-
stable modes. In other words, we adopt Assumption 8.4.1 (on p. 253) in this section.
We also suppose that the assumptions of (ii) from Theorem 8.6.1 hold. It follows that
H(A) < c and the pairs (A,C), (A,B) are observable and controllable, respectively.

8.7.1 Stabilizing Coder–Decoder Pair without a Communication Feedback

This pair can be viewed as a modification of that from Subsect. 6.11.2 (described by
cs.1)–cs.6), ds.1), ds.2), cs.2-31), cs.2-31), on pp. 182, 183, and 187). Modification
is caused by accounting for the plant noises and basically follows the lines of m.1)
and m.2) on p. 223. In particular, the rule to update the bound δ will be of the form
(7.7.2) (on p. 224) and so not forcing δ to decay to zero. The major point of novelty
concerns the alarm control sequence (6.11.15) (on p. 186). We recall that by applying
this sequence to the plant, the decoder notifies the coder about receiving the alarm
signal z. The construction of this sequence should be altered in order to make it
work in the presence of the plant noises. This will be the only point in the subsequent
considerations where the knowledge of the noise boundsD,Dχ is used.

Components of the Coder and Decoder

To construct a stabilizing coder–decoder pair, we need a deadbeat stabilizer;10 i.e., a
linear transformation of an initial state

x(0) = x
N−→ U = [u(0), u(1), . . . , u(n− 1), 0, 0, . . .] (8.7.1)

into a sequence of controls driving the state to zero x(n) = 0 in the absence of the
noise ξ(t) ≡ 0.

The alarm control sequence is introduced in the following lemma.

9See Definition 8.3.5 on p. 252.
10See p. 72 for the definition.
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Lemma 8.7.1. There exists a control sequence

Uz = [u0, . . . , u4n, 0, 0, . . .] (8.7.2)

with the following two properties:

(i) It drives the unperturbed (ξ(t) ≡ 0) system from x(0) = 0 to x(4n+ 1) = 0;
(ii) A constantD∗ > 0 exists such that any control sequence produced by the dead-

beat stabilizer (8.7.1) is distinguishable from the sequence δUz with δ ≥ D∗
on the basis of observations y(0), . . . , y(4n+ 1) resulting from action of these
sequences on the noisy plant (8.5.1).

The proof of this technical fact is given in Subsect. 8.7.3 (on p. 263).
As will be shown in the proof, the sequences from (ii) can be distinguished by

means of a semialgebraic map11 taking two values.

Remark 8.7.2. The constant D∗ depends on D,Dχ from (8.6.1).

Remark 8.7.3. We extend the deadbeat stabilizer on z by putting N(z) := Uz, and
we define its length to be L(N) := 4n+ 1.

Finally, we pick the components described in 1)–6) on pp. 253 and 254.

Remark 8.7.4. (i) In 5), the epoch duration r should be chosen so that r > L(N)+
n, like in Subsect. 6.11.2 (starting on p. 185).

(ii) In 1), the constant δ∗ should be chosen large enough δ∗ > D∗, where D∗ is the
constant from (ii) of Lemma 8.7.1.

(iii) The conditions under which the estimate (8.4.3) (on p. 254) produced by the
deadbeat observer from 6) is exact should be extended by the requirement that
the controls are zero: u(θ) ≡ 0 for θ ∈ (t− n : t) in (8.5.1).

Description of the Coder and Decoder

Like in Subsects. 6.11.1 and 6.11.2 (starting on pp. 180 and 185, respectively), both
coder and decoder compute controls uc(t), ud(t) and upper bounds for the state
norm δc(t), δd(t), respectively. Acting upon the plant is ud(t). The initial bound is
common: δc(0) = δd(0) = δ0 ≥ δ∗ and may be incorrect.

The coder (at the times t = τi := ir, i = 1, 2, . . .)

cs.1) Calculates the estimate x̃(t) of the current state by means of the deadbeat ob-
server (8.4.3) (on p. 254);

cs.2) Computes the prognosis x̂c(τi+1) of the state at time t = τi+1:

x̂c(τi+1) := Arx̃(τi) +

τi+1−1∑

θ=τi

At−1−θBuc(θ);

11See Definition 3.4.9 on p. 46.
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cs.3) For i = 3, 4, . . ., corrects the state norm upper bound δc(τi) by the rule to be
specified further on p. 261;

cs.4) Computes the quantized value qc(τi) of the scaled state prognosis:

ε(τi) :=
[
δc(τi)

]−1
x̂c(τi+1), qc(τi) := Qr

[
ε(τi)

]
,

where Qr is the quantizer from 4) on p. 254;
cs.5) Employs the block code from 3) on p. 254 to convert qc(τi) into a code word

Ei to be sent over the channel during the next epoch [τi : τi+1);
cs.6) Computes the control program

U
c
i+1 = col

[
uc(τi+1), . . . , uc(τi+2 − 1)]

for the operation epoch [τi+1 : τi+2) following the next one [τi : τi+1) and
then corrects δc:

U c
i+1 := δc(τi)N

[
qc(τi)

]
, δc(τi) := δc(τi) · 〈qc(τi)〉rκ,γ + δ∗, (8.7.3)

where 〈q〉
κ,γ is defined by (8.4.7) (on p. 255), κ is the constant from

Lemma 3.8.36 (on p. 80), γ, δ∗ are taken from (8.4.1) (on p. 253), and N is
the deadbeat stabilizer (8.7.1).

The decoder (at the times t = τi, i = 2, 3, . . .)

ds.1) Applies the decoding rule Dr to the data received within the previous epoch
[τi−1 : τi) and thus acquires the decoded value qd(τi) of qc(τi−1);

ds.2) Computes the control program

U d
i = col

[
ud(τi), . . . , ud(τi+1 − 1)]

for the next epoch [τi : τi+1) and corrects the state upper bound

U d
i := δd(τi)N

[
qd(τi)

]
, δd(τi) := δd(τi) · 〈qd(τi)〉rκ,γ + δ∗. (8.7.4)

Remark 8.7.5. The decoded value qd(τi) may differ from the true one qc(τi−1) due
to transmission errors.

Like in Remark 6.11.16 (on p. 184), we assume that qc(τk) := qd(τ1+k) := z

for k ≤ 0 and that the coder at time t = τ0 performs cs.6) and the decoder at time
t = τ1 accomplishes ds.2) accordingly. Then U c

1 = U d
1 = δ0Uz. For consistency,

we also put U c
0 := U d

0 := δ0Uz.
To specify cs.3), we need the following.

Observation 8.7.6. Proceeding from the observations y(t) during the operation
epoch [τi−1 : τi], i ≥ 3, the coder is able to recognize whether the code word
received by the decoder at the beginning τi−1 of this epoch was z.

Indeed, by (ii) of Remark 8.7.4 and the second formula from (8.7.4), δd(τi) ≥ δ∗ >
D∗ for any i. In view of this, the observation is immediate from the first formula in
(8.7.4) , (ii) in Lemma 8.7.1, and (i) of Remark 8.7.4.

Observation 8.7.6 explains why the following specification of the step cs.3) is
well defined.
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cs.3) The correction is as follows:

δc(τi) :=

([
δc(τi)− δ∗
〈qc(τi−1)〉rκ,γ

− δ∗
]
λi + δ∗

)
〈qc(τi−1)〉rκ,γ + δ∗, (8.7.5)

where

λi :=





(
γ
κ

)r
if qd(τi−1) = z & qc(τi−2) 6= z(

κ

γ

)r
if qd(τi−1) 6= z & qc(τi−2) = z

1 otherwise





(8.4.7)
===

〈qd(τi−1)〉rκ,γ
〈qc(τi−2)〉rκ,γ

. (8.7.6)

Remark 8.7.7. Like in Subsect. 6.11.1, the operation cs.3) makes the bounds δc and
δd identical whenever the transmission across the channel is errorless.

This claim is rigorously specified by the lemma to follow. To state it, we mark the
values of δc and δd after and just before the updates in accordance with (8.7.3) and
(8.7.4) with the + and − indices, respectively. So the value δ−c (τi) is taken after the
correction (8.7.5). The following lemma is an analog of Lemma 6.11.21 (on p. 184).

Lemma 8.7.8. The step cs.3) ensures that whenever the current transmission is er-
rorless, the next state norm upper bounds produced by the coder and decoder, re-
spectively, are identical:

qc(τi−1) = qd(τi) =⇒ δ−c (τi) = δ−d (τi+1), i = 1, 2, . . . . (8.7.7)

Proof. It suffices to show that for i ≥ 1, the following formula holds:

δ−c (τi)− δ∗ =
[
δ−d (τi+1)− δ∗

]
[
〈qc(τi−1)〉κ,γ
〈qd(τi)〉κ,γ

]r
. (8.7.8)

The proof will be by induction on i. For i = 1, the claim is evident. Suppose
that (8.7.8) holds for some i ≥ 1. Note that due to the conventions following Re-
mark 8.7.5, formula (8.7.5) is true for not only i ≥ 3 but also i = 1, 2. Then

δ−c (τi+1)− δ∗ (8.7.5)
===

([
δ+c (τi)− δ∗
〈qc(τi)〉rκ,γ

− δ∗
]
λi+1 + δ∗

)
〈qc(τi)〉rκ,γ

(8.7.3)
===

([
δ−c (τi)− δ∗

]
λi+1 + δ∗

)
〈qc(τi)〉rκ,γ

(8.7.6)
===

(
[
δ−c (τi)− δ∗

] 〈qd(τi)〉rκ,γ
〈qc(τi−1)〉rκ,γ

+ δ∗

)
〈qc(τi)〉rκ,γ

(8.7.8)
=== δ−d (τi+1) 〈qc(τi)〉rκ,γ

(8.7.4)
===

[
δ−d (τi+2)− δ∗

] 〈qc(τi)〉rκ,γ
〈qd(τi+1)〉rκ,γ

;

i.e., (8.7.8) with i := i+ 1 does hold. ⊓⊔
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Remark 8.7.9. (i) The proposed coder and decoder are semirational r-step recur-
sive.12 Their complexity per step is basically determined by the parameter r of
the algorithm and does not increase as time progresses.

(ii) For δ∗ := 0, the above coder and decoder are identical to those from Sub-
sect. 6.11.2 (starting on p. 185). So by Proposition 6.11.28 (on p. 187), they
ensure a.s. stabilization x(t) → 0 of the noiseless plant ξ(t) ≡ 0, χ(t) ≡ 0
provided that the epoch duration r is large enough.

Stabilization in Probability in the Absence of a Feedback Communication Link

Proposition 8.7.10. Suppose that the assumptions of (ii) from Theorem 8.6.1 (on
p. 257) and Assumption 8.4.1 (on p. 253) hold. Then the above coder–decoder pair
stabilizes the plant in probability, provided that the duration r of the operation epoch
is large enough r ≥ r(A,B,C,κ, δ∗,W, γ,R).

The proof of this proposition is not given due to the reason explained on p. 249.

8.7.2 Universal Stabilizing Coder–Decoder Pair Consuming Feedback
Communication of an Arbitrarily Low Rate

The controller introduced in the previous subsection deals with uniformly bounded
noises (8.6.1) (on p. 257) and depends on their upper bounds D,Dχ. Specifically,
these bounds determine the constant D∗ by Remark 8.7.2 (on p. 259), whereas the
parameter δ∗ of the controller should exceed D∗ by (ii) of Remark 8.7.4 (on p. 259).

Now we show that if an arbitrarily small perfect communication feedback is
available (see Fig. 8.3), a universal stabilizing coder–decoder pair can be offered.
This pair does not depend on the noise parameters (like D,Dχ) and stabilizes the
plant under all noises that are σ-bounded13 with some σ > 0.

Fig. 8.3. Stabilization with arbitrarily small communication feedback.

One more assumption is adopted in this subsection.

12See Definitions 6.3.9 and 6.5.7 on pp. 139 and 145, respectively.
13See Definition 8.3.5 on p. 252.
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Assumption 8.7.11. There is a feedback communication link capable of transmit-
ting one bit of information without an error from the decoder-controller to the sensor
site during any time interval of sufficiently large duration.

The average data rate of this link R = 1bit/(large interval duration) ≈ 0.
Let the bit from Assumption 8.7.11 be transmitted during the operation epoch

(which thus should be chosen to be large enough) and used to notify the coder
whether the code word received by the decoder at the beginning τi−1 of the epoch
[τi−1 : τi) was z. The notification is received at t = τi. Then Observation 8.7.6 and
the alarm control sequence become useless. So is the inequality δ∗ > D∗ from (ii)
of Remark 8.7.4, whose role is confined to serving Observation 8.7.6. This permits
us to relax this inequality into δ∗ > 0. After this, no controller parameters related
to the noise uniform upper boundsD,Dχ from (8.6.1) (on p. 257) remain in use. In
other words, the controller becomes independent of the noises. At the same time, it
stabilizes the plant, as is shown by the following.

Proposition 8.7.12. Suppose that Assumptions 8.3.1, 8.3.2, 8.4.1 (on pp. 251 and
253), and 8.7.11 are valid, H(A) < c, and the pairs (A,C), (A,B) are detectable
and stabilizable, respectively. Let us employ the zero alarm control sequence Uz :=
0 and an arbitrary positive parameter δ∗ > 0 in the controller cs.1)–cs.6), ds.1),
ds.2) (see pp. 259 and 261) modified as was described in this subsection.

If the duration r of the epoch is large enough r ≥ r(A,B,C,κ, δ∗,W, γ,R),
this controller stabilizes the plant in probability under any noises that are σ-bounded
with some σ > 0.

The proof of this proposition is not given due to the reason explained on p. 249.

8.7.3 Proof of Lemma 8.7.1

We recall that the estimate produced by the deadbeat observer (8.4.3) (on p. 254) is
exact provided that the noises are removed and the controls are zero. So elementary
estimates based on (8.6.1) (on p. 257) give rise to the following.

Observation 8.7.13. In the presence of the noises, the error produced by the ob-
server (8.4.3) is bounded by a constant determined by the noise levels from (8.6.1):

∥∥x(t) − x̃(t)
∥∥ ≤ D = D(D,Dχ) <∞

whenever t ≥ n, and u(θ) = 0 ∀θ ∈ (t− n : t). (8.7.9)

Now we pass to the immediate proof of Lemma 8.7.1. The alarm control sequence
(8.7.2) is constructed in the form (6.11.15) (on p. 186):

Uz := col
[
0, . . . , 0︸ ︷︷ ︸

2n

, u∗, 0, . . . , 0︸ ︷︷ ︸
n

, u−0 , . . . , u
−
n−1, 0, . . .

]
.

Here u∗ is taken so thatBu∗ 6= 0, and u−0 , . . . , u
−
n−1 is a control sequence that drives

the unperturbed (ξ(t) ≡ 0) system from x(0) = AnBu∗ to x(n) = 0. (It exists since
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the pair (A,B) is controllable.) As a result, the entire sequence Uz drives the system
from x(0) = 0 to x(4n+ 1) = 0, as is required by (i) from Lemma 8.7.1.

For both U := δUz and any control sequence U generated by the deadbeat
stabilizer (8.7.1) (on p. 258), the controls are zero within n time steps before both
τi−1 + 2n and τi−1 + 3n + 1. So the estimates produced by the deadbeat observer
(8.4.3) (on p. 254) at times t = τi−1 + 2n, τi−1 + 3n+ 1 in the presence of the plant
noises obey the exactness bound (8.7.9). Now we put

w(U ) :=

{
δAnBu∗ for U = δUz

0 for U produced by the deadbeat stabilizer
(8.7.10)

and note that

∥∥ x̃(τi−1 + 3n+ 1)−An+1x̃(τi−1 + 2n)︸ ︷︷ ︸
̟

−w(U )
∥∥

≤
∥∥x̃(τi−1 +3n+1)−x(τi−1+3n+1)

∥∥+
∥∥An+1

[
x̃(τi−1 +2n)−x(τi−1 +2n)

]∥∥
+
∥∥x(τi−1 + 3n+ 1)−An+1x(τi−1 + 2n)− w(U )

∥∥
(8.7.9)
≤ D

(
1 + ‖A‖n+1

)
+
∥∥x(τi−1 + 3n+ 1)−An+1x(τi−1 + 2n)− w(U )

∥∥

(8.5.1)
=== D

(
1 + ‖A‖n+1

)
+

∥∥∥∥∥∥

τi−1+3n∑

θ=τi−1+2n

Aτi−1+3n−θξ(θ)

∥∥∥∥∥∥
(8.6.1)
≤ D

(
1 + ‖A‖n+1

)
+D

n∑

θ=0

‖A‖θ =: D0.

Thus by computing̟, the coder gets to know w(U ) with the exactnessD0. Thanks
to (8.7.10), this knowledge suffices to distinguish between Uz and any control se-
quence produced by the deadbeat stabilizer if δ > D∗ := 2D0/(‖AnBu∗‖). ⊓⊔

8.8 Proofs of Lemmas 8.2.4 and 8.5.3

It is easy to see that in the case of Lemma 8.2.4 (on p. 251), the estimation error
∆(t) := x(t)− x̂(t) evolves as follows:

∆(t+ 1) = M∆(t) + ζ(t), ∆(0) = ∆0, (8.8.1)

where

M := A−KCA, ζ(t) := (I −KC)ξ(t)−Kχ(t+ 1),

∆0 := (I −KC)x0 −Mx̂(−1)−Kχ(0).

By substituting (8.5.4) (on p. 257) into (8.5.1) (on p. 256), we see that in the case of
Lemma 8.5.3 (on p. 257), the evolution of ∆(t) := x(t) is given by (8.8.1) with
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M := A+BKC, ζ(t) := ξ(t) +BKχ(t), ∆0 := x0.

In both cases, the noise sequence {ζ(t)} is independent of the initial state ∆0 and
formed by mutually independent random vectors, which are identically distributed in
accordance with a common probability density p(ζ). Furthermore, these vectors and
the initial state are a.s. bounded:

‖ζ(t)‖ ≤ Dζ ∀t, ‖∆0‖ ≤ D0 a.s. (8.8.2)

Thus both lemmas follow from the following.

Lemma 8.8.1. The sequence {∆(t)} generated by the recursion of the form (8.8.1)
is bounded in probability if and only if the eigenvalues of the matrix M lie in the
open unit disk.

The remainder of the section is devoted to the proof of this lemma. We start with
a technical claim. In fact, it states nothing but that in the absence of control, the state
of the stochastically disturbed unstable plant grows without limits. Moreover, the
state becomes more and more distributed over the space: The probability that it lies
in a ball vanishes as t→∞ uniformly over all balls of a common and fixed radius.

Lemma 8.8.2. Suppose that the system (8.8.1) is unstable: There is an eigenvalue λ
of M with |λ| ≥ 1. Then for any given b > 0, the following relation holds:

ωt(b) := sup
φ∈Rn

P
{
‖∆−ct + φ‖ ≤ b

}
→ 0 as t→∞, (8.8.3)

where ∆−ct :=
∑t−1
θ=0M

t−1−θζ(θ) is the state at time t, provided that the system
starts at zero ∆(0) = 0.

Proof. We start with a simple observation. Let M =
(
M11 M12

0 M22

)
, where M11 and

M22 are square matrices of respective dimensions n1 and n2, and the conclusion of

the lemma be true forM := M22, n := n2, and ζ(t) := ζ′′(t). Here ζ =
(
ζ′

ζ′′

)
is the

partition of ζ ∈ Rn matching the above partition of the matrix. Then this conclusion
holds for the primal matrix M and disturbances ζ(t).

Indeed, it is easy to see that

[
∆−ct

]′′
=

[
t−1∑

θ=0

M t−1−θζ(θ)

]′′
=

t−1∑

θ=0

M t−1−θ
22 ζ′′(θ).

Furthermore a constant c > 0 exists such that ‖∆′′‖ ≤ c‖∆‖ for any ∆. So ‖∆−ct +

φ‖ < b⇒ ‖
(
∆−ct

)′′
+ φ′′‖ < cb, and

sup
φ∈Rn

P
{
‖∆−ct + φ‖ < b

}
≤ sup

φ′′∈Rn2

P
{
‖
(
∆−ct

)′′
+ φ′′‖ < cb

}
→ 0

as t→∞. Thus (8.8.3) does hold for the primal matrix M .
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By reducing the matrix M to the real Jordan form and employing the above
observation, we see the the proof can be focused on the case where for some ρ ≥ 1,

either n = 1 and M = ±ρ or n = 2 and M = ρ
(

cosϕ − sinϕ
sinϕ cosϕ

)
, ϕ 6= 0,±π, . . . .

We shall consider separately two cases.
1. Suppose first that ρ > 1. By denoting ∆−c1,t := ∆−ct −M t−1ζ(0), we get

sup
φ

P
{
‖∆−ct + φ‖ < b

}
= sup

φ

∫
P
{
‖∆−ct + φ‖ < b

∣∣∆−c1,t = ∆
}

P ∆−c
1,t

(d∆)

≤
∫

sup
φ

P
{
‖M t−1ζ(0) + ∆ + φ‖ < b

∣∣∆−c1,t = ∆
}

P ∆−c
1,t

(d∆)

a)
=

∫
sup
ψ

P
{
‖M t−1ζ(0) + ψ‖ < b

∣∣∆−c1,t = ∆
}

P ∆−c
1,t

(d∆)

b)
=

∫
sup
ψ

P
{
‖M t−1ζ(0) + ψ‖ < b

}
P ∆−c

1,t
(d∆)

= sup
ψ

P
{
‖M t−1[ζ(0) +M1−tψ]‖ < b

}

= sup
ψ

P
{
‖ζ(0) +M1−tψ‖ < bρ−(t−1)

}
c)
= sup

α

∫

{ζ:‖ζ+α‖<bρ−(t−1)}
p(ζ)dζ.

Here a) is justified by ψ := ∆ + φ, b) holds since M t−1ζ(0) and ∆−c1,t =∑t−1
θ=1M

t−1−θζ(θ) are independent, and c) results from putting α := M1−tψ and
invoking that p(ζ) is the probability density of ζ(θ). The proof is completed by not-
ing that the last integral goes to 0 as t→∞ uniformly over α ∈ Rn because so does
the volume of the set {ζ : ‖ζ + α‖ < bρ−(t−1)} (see, e.g., [191, Theorem 10.3.2]).

2. Now let ρ = 1. We focus on the case where M is the rotation matrix M =(
cosϕ − sinϕ
sinϕ cosϕ

)
; in the case M = ±1, the proof is similar.

Let η−ct denote the first component of ∆−ct and ζ(θ) = col
[
ζ(1)(θ), ζ(2)(θ)

]
.

The distribution of

η−ct =

t−1∑

θ=0

[
cos(θϕ)ζ(1)(t− 1− θ)− sin(θϕ)ζ(2)(t− 1− θ)

]

is equal to that of

η̃−ct =

t−1∑

θ=0

̟(θ), where ̟(θ) := cos(θϕ)ζ(1)(θ)− sin(θϕ)ζ(2)(θ)

are mutually independent random quantities with zero mean and

µ3(θ) := E
∣∣̟(θ)

∣∣3 ≤ E
[∣∣ζ(1)(θ)

∣∣+
∣∣ζ(2)(θ)

∣∣]3

a)

≤ 23/2E
([
ζ(1)(θ)

)2
+
(
ζ(2)(θ)

]2)3/2
= 23/2

∫

R2

‖ζ‖3p(ζ) dζ =: µ
b)
<∞.
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Here a) follows from the elementary inequality (a+b)3 ≤ 23/2(a2+b2)3/2 ∀a, b ≥ 0
and b) holds by (8.8.2). Since the function

ψ 7→ f(ψ) :=

∫ ∣∣ζ1 cosψ − ζ2 sinψ
∣∣2p(ζ1, ζ2) dζ1dζ2 ∈ (0,+∞)

is continuous due to the Lebesgue’s dominated convergence theorem, we have

σ2
− := min

ψ
f(ψ) > 0, σ2

θ := E̟(θ)2 = f(θϕ) ≥ σ2
−.

By the central limit theorem, the normalized sum s−1
t η̃−ct , s2t = σ2

0 + · · ·+ σ2
t−1

of independent unbiased variables ̟(0), . . . , ̟(t − 1) is distributed approximately
normally. Moreover by a variant of the Berry–Esséen theorem (see [53, Theorem 2,
Sec. 5, Ch. XVI]), the distribution function of this sum Ft(η) := P {s−1

t η̃−ct <
η} = P {s−1

t η−ct < η} approaches the distribution function N(η) of the normal
distribution with zero mean and variance 1 uniformly over η ∈ R:

|Ft(η)−N(η)| ≤ 6
µ3(0) + · · ·+ µ3(t− 1)

s3t
≤ 6

tµ

t3/2σ3
−

=
6µ√
tσ3
−
.

This implies that

P {η− < s−1
t η−ct < η+} ≤

12µ√
tσ3
−

+
1√
2π

∫ η+

η−

e−
y2

2 dy (8.8.4)

whenever η− ≤ η+. The proof is completed as follows:

sup
φ∈R2

P
{
‖∆−ct + φ‖ < b

} a)

≤ sup
φ1∈R

P
{
|η−ct + φ1| < b

}

= sup
φ1∈R

P
{
|s−1
t η−ct + s−1

t φ1| < s−1
t b
} η:=s−1

t φ1
====== sup

η∈R

P
{
|s−1
t η−ct + η| < s−1

t b
}

b)

≤ sup
η∈R

P

{
|s−1
t η−ct + η| < b√

tσ−

}
(8.8.4)
≤ 12µ√

tσ3
−

+
1√
2π

sup
η∈R

∫ η+ b√
tσ−

η− b√
tσ−

e−
y2

2 dy.

Here a) holds since ‖∆−ct + φ‖ < b ⇒ |η−ct + φ1| < b, where φ1 is the first
component of φ, and b) follows because s−1

t b ≤ b√
tσ−

. The proof is completed by

noting that the last integral converges to 0 as t → ∞ since so does the Lebesgue
measure 2b√

tσ−
of the interval

[
xη − b√

tσ−
; η + b√

tσ−
] and the function y 7→ e−y

2/2

is summable with respect to this measure (see, e.g., [191, Theorem 10.3.2]). ⊓⊔
Proof of Lemma 8.8.1. Sufficiency. Let the eigenvalues of M lie in the open unit

disk. Then ‖M t‖ ≤ cρt, t = 0, 1, . . . for some c > 0 and ρ ∈ (0, 1). It follows that

‖∆(t)‖ =

∥∥∥∥∥M
t∆0 +

t−1∑

θ=0

M t−1−θζ(θ)

∥∥∥∥∥

≤
∥∥M t

∥∥ ‖∆0‖+
t−1∑

θ=0

∥∥M t−1−θ∥∥ ‖ζ(θ)‖ ≤ cD0 +
Dζ

1− ρ <∞.
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Thus the sequence {∆(t)} is bounded almost surely and so in probability.
Necessity. Now we suppose that the sequence {∆(t)} is bounded in probability.

We need to show that the eigenvalues ofM lie in the open unit disk. Suppose the con-
trary. Then by Lemma 8.8.2, relation (8.8.3) holds. Note that ∆(t) = M t∆0 + ∆−ct ,
where the addends are independent. We denote by P (d∆) the probability distribu-
tion of ∆0 and for any b > 0, have

P
[
‖∆(t)‖ ≤ b

]
= P

[
‖M t∆0 + ∆−ct ‖ ≤ b

]

=

∫

Rn

P
[
‖M t∆0 + ∆−ct | ≤ b

∣∣∆0 = ∆
]
P (d∆)

(a)
≤
∫

Rn

sup
φ∈Rn

P
[
‖φ+ ∆−ct ‖ ≤ b

∣∣∆0 = ∆
]
P (d∆)

(8.8.3)
== ωt(b).

Here (a) results from putting φ := M t∆. Thus P
[
‖∆(t)‖ ≤ b

]
→ 0 as t → ∞

for any b, in violation of Definition 8.2.1. The contradiction obtained proves that the
eigenvalues of M lie in the open unit disk. ⊓⊔
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Decentralized Stabilization of Linear Systems via
Limited Capacity Communication Networks

9.1 Introduction

In the previous chapters, the issue of state estimation and control under communica-
tion constraints was addressed for networks with the simplest topologies. Basically,
they contained only one “sensor-controller” and “controller-actuator” channel. In
Chap. 3, the centralized stabilization problem was examined, where multiple sensors
were linked via direct channels with a controller, which directly acts on the plant.
However, many modern control systems are implemented in a decentralized fashion,
which results in a less trivial topology with multiple spatially distributed sensors,
controllers, and actuators communicating over a serial digital network.

Such a situation is examined in this chapter. We consider a general network with
spatially distributed communicating elements. Any element is endowed with a com-
puting capability, which is used to convert the incoming information streams into
outgoing data flows. Some elements are also endowed with a sensing capability:
They are able to partially observe an outer (with respect to the network) unstable
process. These elements are called sensors. Some other elements are able to directly
affect the process; they are called actuators. The remaining elements act as inter-
mediate controllers taking part in transformation of the sensor data into controls in
a decentralized and distributed fashion. The algorithms of data processing at the el-
ements should be designed so that the closed-loop system is stable. This system is
composed by the outer process and the elements communicating via the network.

We suppose that the network is given. This means that it is indicated between
which elements information can be communicated, at which rates, and in which way.
Considered are the cases where the transmitted messages may incur delays, be lost
and corrupted, interfere, and collide with each other. So messages arriving at a given
element may depend on the packets dispatched from many (up to all) elements, in-
cluding one at hand. In other words, we examine general networks with arbitrary
topology. Moreover, we assume that this topology may be dynamically altered by
authorized elements. A simple example is a switch of a communication channel from
service (connection) of one pair of elements to service of some other pair.

A.S. Matveev and A.V. Savkin, Estimation and Control over Communication Networks,
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We consider the case where arbitrary restrictions are imposed on data processing
algorithms admissible by the controllers. These restrictions may express limitations
on the memory size, variety of executable operations, the processor speed, etc. Not
excluded is the case where the set of admissible algorithms contains only one algo-
rithm. Then the corresponding controller is given. An example is a network with a
data storage dynamically served in accordance with an a priori given rule. Another
example is a switching channel with a given protocol of switching. At the same time,
we suppose that the sensors and actuators accept arbitrary causal algorithms.

We still consider the case where the outer process is described by linear discrete-
time equations. The process is subjected to a bounded additive exogenous distur-
bance, and there are bounded noises in the sensors. The objective is to find the con-
ditions under which the elements can be equipped with admissible data processing
algorithms so that the closed-loop system is stable. In the case where these conditions
are satisfied, these algorithms should be explicitly described.

We provide an evidence that this problem is reduced to the long-standing standard
problem of the information sciences: Finding the so-called rate (capacity) domain of
the network as well as block codes (functions) transmitting data at the rates from this
domain. We recall that the capacity domain describes how much information can
be transmitted from an element (network node) or set of nodes to another node or
set of nodes. The necessary and sufficient conditions for stabilizability established
in this chapter are given in terms of this domain. These conditions are tight: For
stabilizablity, it is necessary and sufficient that a certain vector characterizing the rate
of instability of the outer process belongs to this domain and its interior, respectively.
Design of the stabilizing algorithm is ultimately reduced to construction of the block
function transmitting data at the rates matching the entries of this vector.

We show that the rate domain of the original network cannot be put in use here
and another network should be employed. It is obtained by including new nodes
and infinite capacity channels into the original network. These channels are of three
kinds. The channels of the first kind go from every actuator to all sensors influenced
by this actuator. These channels explicitly express the view of the control loop as
a link transmitting information (see Subsects. 6.11.2 and 7.8.1 starting on pp. 185
and 233, respectively). The channels of the second kind broadcast messages from
artificial data sources associated with the unstable modes of the process to all sen-
sors detecting the corresponding mode. The channels of the third kind are additive
interference channels delivering data to a set of new nodes each associated with an
unstable mode as well. Via such a channel, every such node collects data from all ac-
tuators that affect the corresponding mode. The decoding algorithms at these nodes
are limited to merely projecting the received real signal onto the integer grid. The
above capacity domain answers the question: How much data can be transmitted
from the sources to the respective new nodes?

The material of this chapter is technically extensive. In order to avoid further
complications and highlight the ideas, the exposition does not concern certain points
that were discussed in the previous chapters. Unlike Chaps. 6–8, we do not deal with
stochastic phenomena in communication and focus attention on deterministic net-
works. Unlike Chaps. 7 and 8, we suppose that the bounds on the initial state and the
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plant and sensor noises are known. This permits us to simplify the design of the sta-
bilizing controller by omitting the “zoom-out”–“zoom-in” procedure. As compared
with Chap. 3, we impose more restrictive assumptions on the plant, which permits
us to avoid the technically demanding sequential stabilization approach (see p. 64).
The simplest way to achieve this goal would be to assume that all unstable eigen-
values of the plant are real and distinct. Unfortunately, this casts away at the outlet
many very natural cases, like the discrete-time counterparts of the systems ẍ = u and
ẍ + x = u. So we had no courage to impose such a strong assumption and adopted
a weaker one. However, the reader interested more in ideas than in generality is wel-
comed to project the exposition onto that simplest case, which makes many technical
facts evident. Certainly, the above simplifications in the problem statement could be
discarded by uniting the approaches from this and the previous chapters. This how-
ever would make this rather large chapter much larger. For the same reason, we do
not focus attention on the possibility of achieving stability by means of a controller
with a limited algebraic complexity, unlike the previous chapters. In the design of
the stabilizing decentralized controller, attention is focused on a method to generate
a synchronized quantized data based on observations from sensors with independent
noises (see Subsects. 9.7.1 and 9.7.2 starting on pp. 330 and 333, respectively).

A survey of the literature concerned with stabilization of systems with many sen-
sors each linked by its own communication channel to a common controller was
offered in Sect. 3.1 (starting on p. 37). The case of multiple sensors and actuators,
where each sensor is linked with every actuator by a limited capacity perfect channel
with time-varying data rate, was considered in [139] for real-diagonalizable systems.
Separate necessary and sufficient conditions for stabilizability were obtained. In gen-
eral, they are not tight [139]. In the case where the system is stabilizable by every ac-
tuator and detectable by every sensor, a single necessary and sufficient criterion was
established in [139]. Stabilization over switching channels with unlimited capacities
was addressed in, e.g., [71, 75]. In [86], minimum necessary data rates required to
permit reconstruction of the global track estimates to a given level of accuracy are
presented in the case when the state can be represented by a Gauss–Markov process.

The main results of this chapter were originally published in [114]. Also, some
relevant results can be found in [122].

The body of the chapter is organized as follows. We first illustrate the general
model of a deterministic network to be considered by examples in Sect. 9.2. The
model itself is presented in Sect. 9.3. Section 9.4 offers the statements of the stabi-
lization problem and the main result. In Sect. 9.5, this result is illustrated by exam-
ples, and several simple technical facts supporting computation of capacity domains
are given. Sections 9.6 and 9.7 are devoted to the proofs of the necessity and suffi-
ciency parts of the main result, respectively. The concluding Sect. 9.8 contains the
proofs of supporting technical facts.
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9.2 Examples Illustrating the Problem Statement

We start with the particular samples of the problem to be studied. Their main pur-
pose is to illustrate both the general model of the network, which will be formally
described in Sect. 9.3 and employed throughout the chapter, and the variety of par-
ticular cases encompassed by this model.

Example 1. Let multiple spatially distributed sensors observe a common unstable
process affected by a set of spatially distributed actuators. The locations of the actua-
tors differ from those of the sensors. Data from a given sensor are communicated to a
variety of actuators; this variety depends on the sensor (see Fig. 9.1). Communication
is via limited capacity channels each connecting a sensor with a particular actuator.
There is no information exchange within both the sensor and the actuator sets. So a
given actuator has no direct knowledge about the actions of the other actuators. The
channels are given. The objective is to stabilize the process.

Sensors

Actuators

1 2 3 4 5 6

2 3 4 51

Fig. 9.1. Control over the simplest communication network.

In this example, we consider both perfect and delayed channels. For the unit time,
the perfect channel correctly transmits messages e taken from the channel alphabet
E; i.e., s(t) = e(t− 1), where e and s is the input and output of the channel, respec-
tively. The d-delayed channel does the same with the delay d; i.e., s(t) = e(t − d).
Every channel is given by its alphabet and delay d 1 (see Fig. 9.2, where the channels
from sensors 1 and 2 to actuators 3 and 4, respectively, are delayed.) The capacity of
the channel equals c = log2 |E| and is finite if |E| <∞.

We assume that the sensor outputs are vectors from Euclidean spaces. They can-
not be transmitted in full via finite capacity channels. To be sent, the measurements
should be first converted into time sequences of symbols from the alphabets of the
channels. This is done by special system components called the coders. Every sen-
sor is equipped with its own coder. Based on the prior observations from this sensor,
the coder generates messages dispatched over the outgoing channels. Each actuator
produces its own control on the basis of the prior messages received over the incom-
ing channels. The control strategy is the set of the encoding and control algorithms.
It endows every sensor and actuator with an algorithm of producing messages to be

1The default delay value d = 1.
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Fig. 9.2. Alphabets and delays of the channels.

emitted into the channels and controls, respectively. This strategy should be designed
to achieve stability of the closed-loop system.

Remark 9.2.1. The important channel parameter (namely, the channel capacity) is
determined by the number of elements in the channel alphabet, whereas the “physical
nature” of these elements is inessential for the problems to be considered. So the
channel will often be specified by indicating only its capacity or the above number.

Explanation 9.2.2. In Figs. 9.1 and 9.2 and throughout this chapter, the sensors and
actuators are symbolized by squares and hexagons, respectively.

Remark 9.2.3. The d-delayed channel can be viewed as a recursive channel.

Indeed, define the current channel memory content (state) to be

n(t) := [e(t− 1), . . . , e(t− d+ 1)] (9.2.1)

(see Fig. 9.3). Then the channel operation is in accordance with recursive equations

s(t+ 1) = S[n(t), e(t)] (:= e[t− d+ 1]),

n(t+ 1) = N[n(t), e(t)] (:= [e(t), . . . , e(t− d+ 2)]). (9.2.2)

The initial state is given by n(0) = [⊛, . . . ,⊛], where ⊛ is the “void” symbol. So
“nothing” arrives at the receiving end of the channel at times t = 0, 1, . . . , d− 1.

Fig. 9.3. Delayed channel.

Example 2: Network of perfect and delayed channels. This is an extension of
the previous situation. Unlike Example 1,

• data are not directly sent from the sensors to actuators, but they pass through
intermediate processors, which transform incoming data flows, distribute them
over outgoing channels, and can be viewed as spatially distributed controllers;



274 9 Decentralized Stabilization via Limited Capacity Communication Networks

• the information goes not necessarily only in one direction (from sensors to actu-
ators through controllers): There may be backward data flows (from actuators to
controllers and sensors, as well as from controllers to sensors) and an information
exchange within the sets of sensors, controllers, and actuators.

Remark 9.2.4. In this case, the sensors generate outgoing messages on the basis of
not only observations but also information received over the incoming channels.

Formally, let a directed finite graph be given. Its nodes represent spatially dis-
tributed elements, each endowed with a memory as well as with computing and
communicating capabilities. Some elements (sensors) also have a sensing capability,
whereas some other elements (actuators) are able to influence the unstable external
process at hand. The elements different from sensors and actuators are interpreted as
intermediate data processors or controllers. The edges of the graph represent com-
munication channels transmitting data only in one direction. Each channel is either
perfect or delayed; these channels are given. This situation is illustrated in Fig. 9.4,
where specifications of the channels (capacity and delay) are omitted for simplicity.

Fig. 9.4. Communication network.

Explanation 9.2.5. Intermediate controllers are symbolized by circles.

Remark 9.2.6. The situation where two elements are connected with several equally
directed channels is not excluded.

The control strategy is given by endowing each element with an algorithm to generate
its current output O from the prior inputs I . This strategy should be chosen so that
the closed-loop system is stable.

Explanation 9.2.7. For all elements, the output O lists the messages dispatched over
all channels outgoing from this element and also includes the control if the element
is an actuator. The input I is constituted by the messages received over all incoming
channels and, if the element is a sensor, the measurement.
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Remark 9.2.8. For technical convenience, we suppose that O and I belong to sets
whose cardinalities do not exceed that of the real numbers 2ℵ0 .

Example 3: Network with multiple access and broadcasting channels and
interference. The multiple access channel [5] models the situation where mul-
tiple informants send messages to a common recipient by means of a common
communication medium or facility. The recipient receives something that is differ-
ent from the dispatched messages due to their collisions and interference: s(t) =
R[e1(t − 1), . . . , ep(t − 1)], where ei is the message from the ith informant (see
Fig. 9.5a, where p = 5).

Explanation 9.2.9. Stars symbolize arbitrary elements; i.e., those not specified to be
either sensors, controllers, or actuators.

Fig. 9.5(a). Multiple access channel. Fig. 9.5(b). Interfering messages.

The same model is relevant to the case where on the way from the informant to
the recipient, the message is corrupted due to collisions with messages from other
informants, which are addressed to other recipients. This situation is illustrated in
Fig. 9.5b, where each informant has its own intended recipient.

An extreme extension of these examples is the deterministic network with inter-
ference [158, Sec. 1]. It can be viewed as the network from Example 2 (see Fig. 9.4),
where, however, the output sj of any channel is a deterministic function of not only
the input ej of this channel but also the inputs ei of all other channels in the network:

sj(t) = Rj [e1(t− 1), . . . , eK(t− 1)]. (9.2.3)

A particular instance of the multiple access channel is the additive channel
[16, 31, 207]: ei are elements of a commutative group (typically Rs or the group
of integers modm) and s(t) = e1(t− 1) + · · ·+ eK(t− 1). Another instance is the
binary switching multiple access channel [212]: Two senders dispatch binary data
ei = 0, 1, whereas s(t) = e1(t−1)

e2(t−1) (and e
0 := ⊛ ∀e).

The broadcasting channel delivers a common message to several recipients
sj(t) = e(t − 1), j ∈ J (see Fig. 9.6a). The model (9.2.3) captures the effect of
broadcasting since several functions Rj(·) may be identical and depend on not all
but a single input ei. This model also accounts for broadcasting with interference.

The formal setup of the stabilization problem is the generalization of that from
Example 2, where the network is not assumed to be composed of perfect and delayed
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Fig. 9.6(a). Broadcasting channel. Fig. 9.6(b). Two-way channel.

channels any longer but, instead, is deterministic with interference (9.2.3). A further
generalization concerns such a network with after-effects

sj(t) = Rj
[
e1(θ)|t−1

θ=t−d, . . . , eK(θ)|t−1
θ=t−d

]
.

Example 4: Network with switching channels. The two-way switching chan-
nel is able to transmit messages e ∈ E between two elements in both directions.
However, only one direction may be activated at a given time. This direction is asso-
ciated with a control variable cd = ± and dynamically chosen by a certain element
called the channel administrator (see Fig. 9.6b). The value of cd is generated from
the knowledge currently available to the administrator and is a part of its output O.

Fig. 9.7. Network with two-way channels.

A network with two-way channels is illustrated in Fig. 9.7. Controllers 1, 5, and
7 are pure administrators, whereas controller 3 and actuator 2 are also engaged in
primal data processing. The two-way channel between actuators 1 and 2 is admin-
istered by one of the connected elements. All other such channels are administered
by side elements. Controller 5 judges between requests for service from the end ele-
ments of the channel.2 Controller 3 does the same using a side information received

2If the capacity of the channel is large enough, the end element may append a “justifica-
tion” to its request.
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from sensor 1. This controller may notify controller 2 about the state of the two-way
channel. Controller 1 uses only side information. Sensors 2 and 3 are able to detect
the current state (direction) of the channel. Controller 7 administers the channel in
accordance with a given program in the open-loop fashion.

The two-way channel is a particular sample of the switching channel. Such a
channel serves a finite set of possible informant–recipient pairs of elements. At any
time, only one pair selected by the administrator is in fact connected. In other words,
the output of the administrator includes the control variable whose value determines
which possible pair is served by the channel. Fig. 9.8a illustrates a switching chan-
nel with disjoint sets of informants and recipients in which any informant can be
connected with any recipient. In general, these two features may fail to hold. For
example, for the two-way channel, the sets of informants and recipients are the same
{a, b}, and the possible connections a 7→ b, b 7→ a do not include a 7→ a, b 7→ b.

Switching

channel

Administrator

Administrator

F

F
F

F

Fig. 9.8(a). Switching channel. Fig. 9.8(b). Multipath switching channel.

A more general situation holds for the multipath switching channel. Suppose that
several “possible” communication channels (e.g., channels from Fig. 9.4) share a
common facility or medium so that only a special selection of them can be activated
at a given time. (The channels outside the selected group are out of service.) Not
every selection is possible; the current selection from the set of possible ones is
taken by the administrator. A particular example concerns the case where there are p
possible channels of equal capacity c, and at any time arbitrary q < p channels can
be activated. This may be due to the fact that these possible (or virtual) channels use
a common “physical” channel with capacity c q, which is thus able to accommodate
simultaneously only q data streams each of the rate c.

Fig. 9.8b illustrates a multipath switching channel with two possible selections
of active channels (indicated with different arrows). Note that both top and bottom
elements are connected under both selections, although the capacities of the corre-
sponding channels may depend on the selection.
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The multipath switching channel can be described by equations of the form
(9.2.3),3 where sj and ei range over the outputs and inputs, respectively, of all “pri-
mal” channels concerned by the multipath switching one. It is also supposed that the
control signals generated by the administrators are among the ei’s, which formally
may be arranged by interpreting these signals as input messages for special “network
control” channels.

Example 5: Multimode channels and networks.3 The multimode (multistate)
channel is that operating in several modes, symbolized by µ. The mode determines
channel characteristics (e.g., the capacity, level of data distortion, etc.) and is chosen
dynamically by an administrator. For example, there may be a choice between larger
channel alphabets with more message corruption during transmission and smaller
alphabets with lesser corruption. A more general situation is where a common mode
simultaneously determines the characteristics of several channels. An example is
depicted in Fig. 9.9a, where the combinationC := (c1, c2, c3, c4, c5) of the capacities
of five channels depends on the mode C = C(µ) and there is a choice between
several possible combinations.

Fig. 9.9(a). Multimode channels. Fig. 9.9(b). Data storage with sorting.

A further generalization is a multimode network. In such a network, the mode
determines parameters of not only separate channels but also the entire network,
e.g., its topology (routes of data transfer) or types of channels (perfect, switched,
with interference, etc.). Formally, the situation can be viewed as if each mode is
associated with its own network. The networks associated with different modes have
a common set of elements (nodes) but are not correlated in any other sense. There
may be several current administrators (if, e.g., the mode is composed by several
independent submodes each concerning its own part of the network). It is supposed
that the mode activated at time t−1 is in service until t. (We recall that by assumption,
data transmissions across the channels are completed for the unit time.) If such a
network is deterministic, data transfer within it can still be described by equations of
the form (9.2.3).

Example 6: Types of elements. The problem to be considered is to ensure sta-
bility of the closed-loop system by endowing each element in the network with a
proper algorithm of producing its outputsO from the prior inputs I:

O(t) = O[I(0), . . . , I(t), t]. (9.2.4)

3To simplify matters, we do not discuss delay effects in this example.
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The type is given by specifying the memory and computing capabilities of the ele-
ment. Formally, this looks like putting forward certain requirements to the algorithm
(9.2.4). The general problem statement to be adopted allows for confining each con-
troller to a certain type. Now we give several illustrating examples of types.

⋆ An element with unlimited memory and computational power. No limitations on
the right-hand side of (9.2.4) are imposed. This model is apposite if the restric-
tions on the memory and computational power of the element are neglectable.

⋆ Memoryless element: O(t) = O[I(t), t], where O[·] is taken from a given set O.
⋆ Memoryless stationary element: O(t) = O[I(t)].
⋆ Element with data storage of a limited size. The state of the data storage device is

represented by a symbol m from a given memory alphabet M. This symbol also
determines the memory content. Operation of the element is in accordance with
equations of the form

O(t) = O[m(t), I(t), t], m(t+ 1) = M[m(t), I(t), t]. (9.2.5)

In this example, the computational power (the variety of executable operations,
the number of basic operations per unit time, the size of the processor registers
involved, the speed of the memory access, etc.) is not limited.

⋆ Element with a limited memory and computational power. The input is first con-
verted into the form acceptable by the processor i(t) := C[I(t)]. (For example,
numerical data are quantified to match the numeral system adopted by the pro-
cessor.) The conversion rule C[·] is given. The processing algorithm is of the form

O(t) = O[m(t), i(t), t], m(t+ 1) = M[m(t), i(t), t]. (9.2.6)

The choice of this algorithm is limited by the requirement
(
O[m, i, t],M[m, i, t]

)
∈ R(m, i) ∀m, i, t. (9.2.7)

Here R(m, i) is the set of all possible results that may be obtained by means
of the processing unit at hand for the unit time, provided that its state is m and
the input equals i. This set is determined by, e.g., the variety of basic commands
(including memory access ones) and their sequences executable for the unit time,
the sizes of the processor registers, etc.

⋆ Multimode element. The element may operate in several modes, which deter-
mine its computing capabilities and the size and organization of the memory.
The mode, denoted by a symbol p ∈ P, cannot be changed dynamically and
thus is a time-invariant design parameter. It should be chosen to achieve a certain
objective. An example of such a situation is the case where the arithmetic used
in the processor is not given a priori, and there is a choice between more and less
memory consuming and precise arithmetics.
Within each mode, let the element operate like in the previous example. Then the
processing algorithm is of the form

O(t) = O[m(t), i(t), p, t], m(t+ 1) = M[m(t), i(t), p, t], i(t) = C[I(t), p],

m(t) ∈M(p), p ∈ P,
(
O[m, i, p, t],M[m, i, p, t]

)
∈ R(m, i, p). (9.2.8)
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⋆ Semirational element. This is a time-invariant element of the form (9.2.5), where
I,m, and O belong to products of certain Euclidean spaces and finite sets, the
functions do not in fact depend on t, and their “finite-state” and “Euclidean” com-
ponents are semialgebraic and semirational, respectively (see Definitions 3.4.11
and 3.4.12 on p. 47).

Now we revert to the general discussion. We assume that the type of the element
is formally given by, first, the memory alphabet M of the element and, second, the
set A of admissible data processing algorithms A. In doing so, we suppose that the
element acts in accordance with equations of the form (9.2.5), and so

A ≡ [O(·),M(·),m0], (9.2.9)

where m0 is the initial memory state. (Thus A gives the set M0 of admissible initial
states.) It is clear that A uniquely determines the operation of the element provided
that the time sequence of inputs is given.

Remark 9.2.10. For technical convenience, we suppose that the cardinality of the
memory alphabet M does not exceed that of the real numbers 2ℵ0 .

Now we discuss how the above examples fit this formalism.
In the case (9.2.4), the memory alphabet is constituted by all finite sequences of

inputs S = [I0, I1, . . . , Ik], including the “empty” one ⊛. The set A of admissible
algorithms consists of all A for which ⊛ is the initial state and the function M(·) of
S, I, t acts by adding I to S from the right and by possible dropout of several entries
of the resultant sequence. If the set A is confined by the requirement that any entry
outside the group of k concluding ones should be dropped necessarily, we get the
description (type) of elements with the memory of length k.

Remark 9.2.11. It is easy to see that elements with unlimited memory and compu-
tational power (9.2.4) can also be characterized as elements (9.2.5) for which the
memory alphabet has the maximal possible cardinality (that of the real numbers) and
there are no restrictions on the right-hand sides of equations from (9.2.5).

For memoryless elements, the memory alphabet has size 1. For stationary such
elements, admissible algorithms are given by time-invariant functions.

In the case (9.2.6), the admissible algorithms are associated with functions
O(·),M(·) that satisfy (9.2.7) and can be represented in the form

O[m, I, t] = O[m,C(I), t], M[m, I, t] = M[m,C(I), t] ∀m, I, t.

In the case of multimode element (9.2.8), the formal memory alphabet is defined
to be Mf := {mf = (m, p) : p ∈ P,m ∈ M(p)}. Thus m should be replaced
by mf in (9.2.5). The function m′f = M(m, p, I, t) from (9.2.5) should not alter p;
i.e., M(m, p, I, t) = [M∗(m, p, I, t), p]. In (9.2.9), the initial state should be taken
from the set {mf : p ∈ P,m ∈ M0(p)}, where M0(p) is a (given) set of initial
states admissible in the mode p. The other particulars of embedding this case into
the formalism at hand are like in the previous example.
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In the case of the semirational element, the memory alphabet is not prescribed
and may equal any set of the form Rs ×G, where k := |G| <∞. Since the “physi-
cal nature” of the elements g ∈ G is of no importance, G can be replaced by [1 : k]
without any loss of generality. Then the semirational element can be regarded as
multimode element with the modes p = (s, k) and M(p) = Rs × [1 : k]. (The case
s = 0 is not excluded, R0 := {0 ∈ R}.) The functions in (9.2.5) are limited to
those whose “finite-state” and “Euclidean” components are semialgebraic and semi-
rational, respectively, within any mode.

Explanation 9.2.12. Certain requirements will be imposed on the types of the ele-
ments (see Assumptions 9.3.4, 9.4.20, and 9.4.22 on pp. 285, 298, and 299). Briefly,
the network should be stationary and controllers should be able to reset their memo-
ries to the initial state (after a proper transient). At the same time, it will be assumed
that the sensors and actuators have unlimited memories and computational powers.

Remark 9.2.13. The set of data processing algorithms A (determining the type) may
contain only one element A.

Assigning such a type to a controller is identical to giving the controller. So in the
discussed problem statement, some intermediate data processors (controllers) may
be given a priori, provided they satisfy the requirements mentioned in Explana-
tion 9.2.12. We conclude the section with two examples of such processors.

Autonomous stationary automaton, i.e., a time-invariant element with no input:

O(t) = O[m(t)], m(t+ 1) = M[m(t)].

The output sequence {O(t)} becomes periodic since some time instant; any peri-
odic sequence can be generated in this way. This element fits to model compulsory
periodic changes in the network, e.g., a switching channel with prescribed periodic
switching program (O determines the position of the switch) or a channel with a peri-
odically varying alphabet (O determines the channel mode, which in turn determines
the alphabet).

Explanation 9.2.14. To meet the requirements mentioned in Explanation 9.2.12, the
initial memory state m0 should be a recurrent element with respect to the map M(·),
i.e., such that Mp(m0) = m0 for some p = 1, 2, . . .. Then the reset to the initial state
occurs automatically at any time that is a multiple of p.

Data storage with sorting. Consider a data storage (buffer) of a finite sizeB (see
Fig. 9.9b on p. 278). It collects packages e1, . . . , ek constantly arriving over k chan-
nels. Any package ei is characterized by the size b(ei) (typically the number of bits)
and priority ♯(ei) = 1, 2, . . .. Within the storage, packages are organized in numer-
ical order (a sequence P = {p1, . . . , ps}). The new data e1(t), . . . , ek(t) are added
to P from the left if the buffer size is not exceeded

∑
i b[ei(t)]+

∑
j b[pj ] ≤ B; oth-

erwise these data are dropped. Packages leave the storage in the order ps 7→ ps−1 7→
· · · 7→ p1 at the constant data rate c. Thus ps/c units of time are required for the
package ps to be completely dispatched. Within the storage, packages are sorted to
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move those with higher priorities closer to the exit. The sorting algorithm compares
a pair of adjacent packages and swaps them if the priority of the first package ex-
ceeds that of the second one. The pair is chosen via successive one-step shift along
P from the left to the right until ps−1 is involved, then from the right to left until
p1 is concerned, and so on. The sort rate is r steps per unit time. We omit rather
apparent technical consideration showing that this device can be formally described
as a stationary automaton with inputs E = (e1, . . . , ek).

9.3 General Model of a Deterministic Network

Now we introduce a general model of a deterministic network. It encompasses all
examples considered in the previous section and will be employed further to pose
the stabilization problem and state the main result.

9.3.1 How the General Model Arises from a Particular Example of a Network

We start with demonstrating this in order to promote comprehension of the model.
Let us revert to Example 2 (starting on p. 273); i.e., consider a network of perfect
and delayed channels. It is given by a finite directed graph whose nodes h ∈ H and
directed edges J ∈ J are associated with elements and communication channels,
respectively (see Fig. 9.4 on p. 274). Within the set of elements, the subsets Hs and
Ha of sensors and actuators, respectively, are given.

Every element h receives messages from some other elements of the network.
Taken as a whole, these messages constitute the inner (with respect to the network)
input Ih of this element (see Fig. 9.10). Any sensor also has access to an outer input:
the measurement yh ∈ Rny,h . Furthermore, any element emits messages to some
other elements. These messages constitute the inner output Oh. Any actuator also
produces an outer output: the control uh ∈ Rnu,h .

Fig. 9.10. Operation of an element.

Now we introduce four united ensembles of the inner and outer inputs and out-
puts, respectively:
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O := {Oh}h∈H , I := {Ih}h∈H , Y := {yh}h∈Hs
, U := {uh}h∈Ha

.

The roles of the network (communication facility) and control strategy (endowing of
every element with a data processing algorithm) are as follows:

O
network−−−−→ I, [I,Y ]

control strategy−−−−−−−−→ [O,U ]. (9.3.1)

The channels J are represented in the form (9.2.2) (on p. 273); i.e., as recursive
channels with memories nJ ∈ NJ . We suppose that the type of every element h is
specified; i.e., its memory alphabet Mh with elementsmh and the set Ah of admissi-
ble data processing algorithms Ah are given. Now we form the compound ensembles
characterizing the memories of all channels and elements, and the control strategy,
respectively:

N := {nJ}J∈J , M := {mh}h∈H , (control strategy) ∼ A := {Ah}h∈H .

Then (9.3.1) can be specified and complemented as follows:

O
network−−−−→

N

I, [I,Y ]
A−−→
M

[O,U ], O
network−−−−→

N

N+, [I,Y ]
A−−→
M

M+,

where + symbolizes the value at the next time instant. Thanks to the deterministic
nature of the network, these relations can be specified in the form

I(t+1) = I[O(t),N (t)], N(t+1) = N[O(t),N (t)], I(0) = I0, N(0) = N 0;

O(t) = O[I(t),Y (t),M (t),A, t],
U(t) = U[I(t),Y (t),M (t),A, t],

M(t+ 1) = M[I(t),Y (t),M (t),A, t],
M(0) = M0(A), A ∈ A. (9.3.2)

Here the penultimate relation results from (9.2.9) (on p. 280).
Roughly speaking, the controlled network will be further regarded as a facility

transforming the time sequence of outer inputs Y (0),Y (1),Y (2), . . . into the time
sequence of outer outputs U(0),U(1),U(2), . . . in accordance with equations of
the form (9.3.2), where A is a control parameter and all functions denoted by capital
script letters are given. The parameter A should be chosen from a given set A to
achieve a certain objective, e.g., to stabilize an outer process. Formally, such a facility
is given by the above functions, the set A, the initial states I0 and N 0, and the sets
within which the variables from (9.3.2) range.

Remark 9.3.1. This point of view means that what is called the “network” describes
not only the way to transmit information but also restrictions on the memory and
computing capabilities of the elements.

Explanation 9.3.2. The relations from the first row in (9.3.2) describe how data are
transmitted within the network, and they are called communication equations. The
rest of the equations describe how data are processed by the elements and are called
data processing equations.
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9.3.2 Equations (9.3.2) for the Considered Example

The major purpose of this subsection is to prove formally that the network from the
example at hand is described by equations of the form (9.3.2) indeed. The reader
that does not need such a proof may skip this subsection since the particulars of the
corresponding equations will be of minor importance for the subsequent discussion.

For any element (graph node) h, we denote by IN(h) and OUT(h) the sets of
channels (graph edges) incoming to and outgoing from h, respectively. For any chan-
nel J , the symbols dJ ,EJ , and eJ(t) denote the channel delay, alphabet, and the
message emitted into it at time t, respectively. With regard to (9.2.1) (on p. 273), the
variables in (9.3.2) are of the form

O(t) = {Oh(t)}h∈H , Oh(t) = {eJ(t)}J∈OUT(h) ;

I(t) := {Ih(t)}h∈H , Ih(t) = {eJ(t− dJ )}J∈IN(h) ;

N(t) = {nJ(t)}J∈J , nJ (t) = [eJ(t− 1), . . . , eJ(t− dJ + 1)];

M (t) := {mh(t)}h∈H , Y (t) := {yh(t)}h∈Hs
, U(t) := {uh(t)}h∈Ha

.

Explanation 9.3.3. If dJ = 1, the channel memory is void: nJ = ⊛. We also assume
that eJ(t) = ⊛ for t < 0.

Let LAST(S) denote the last (right) entry of the sequenceS, and let DROPLAST(S)
denote the result of dropping this entry. Note that for every channel, eJ = eJ(t) is a
part (component) of O = O(t) : eJ = PJ [O]. For any h, the algorithm A = Ah has
the form (9.2.9) (on p. 280), where O(·) encompasses both inner and outer output of
the element. In other words,

Ah ≡
{

[Oh(·),Uh(·),Mh(·),m0
h] if h is an actuator

[Oh(·),Mh(·),m0
h] otherwise

. (9.3.3)

Particular equations from (9.3.2) disintegrate into systems of equations.

I(t+ 1) = I[O(t),N (t)]⇐⇒ Ih(t+ 1) = {IJ [O(t),N (t)]}J∈IN(h) ∀h ∈ H,

where IJ [O,N ] :=

{
LAST[nJ ] if dJ > 1

PJ [O] otherwise
;

N(t+ 1) = N[O(t),N (t)]⇐⇒ nJ(t+ 1) = NJ [O(t),N (t)] ∀J,

where NJ [O,N ] :=

{
DROPLAST[PJ [O], nJ ] if dJ > 1

⊛ otherwise
;

O(t) = O[I(t),Y (t),M(t),A, t]⇐⇒ Oh(t) = O[h][Ih(t),Y (t),mh(t),Ah, t]

(9.2.5), (9.3.3)
======

{
Oh[mh(t), Ih(t), yh(t), t] if h is a sensor

Oh[mh(t), Ih(t), t] otherwise
∀h ∈ H;
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U(t) = U[I(t),Y (t),M (t),A, t]⇐⇒ uh(t) = U[h][Ih(t),Y (t),mh(t),Ah, t]

(9.2.5), (9.3.3)
======

{
Uh[mh(t), Ih(t), yh(t), t] if h is a sensor

Uh[mh(t), Ih(t), t] otherwise
∀h ∈ Ha;

M (t+ 1) = M[I(t),Y (t),M (t),A, t]⇐⇒ mh(t+ 1)

= M[h][Ih(t),Y (t),mh(t),Ah, t]

(9.2.5), (9.3.3)
======

{
Mh[mh(t), Ih(t), yh(t), t] if h is a sensor,

Mh[mh(t), Ih(t), t] otherwise
∀h ∈ H.

Furthermore in (9.3.2), N 0 = {n0
J}J∈J, where n0

J is the void sequence (⊛, . . . ,⊛)
of the proper length, I0 = {Ih,0}h∈H, Ih,0 = {⊛}J∈IN(h), A ∈ A⇔ Ah ∈ Ah ∀h,
and {mh}h∈H = M0(A) ⇔ mh = m0

h ∀h, where m0
h is the last component of Ah

from (9.3.3).

9.3.3 General Model of the Communication Network

To obtain substantial results, we need to focus attention on a particular case of the ex-
tremely general model (9.3.2). First, we cannot ignore the difference among sensors,
actuators, and controllers. Second, we shall basically deal with sensors and actuators
with unlimited memories and computational powers. Formally, this results in view-
ing the network as a composition of sensors, actuators, and the “rest of the network”
called its interior (see Fig. 9.11). We assume that these components process data
separately, and the network outer input Y and output U from (9.3.2) are directly ac-
cessed and generated by the sensors and actuators, respectively. This imposes some
structure on the processing equations from (9.3.2), whereas the communication ones
may be arbitrary. All causal algorithms of data processing at the sensors and actuators
are adopted, whereas restrictions may be imposed on the algorithm for the interior
part of the network.

Formally, we shall consider networks described by equations of the form (9.3.2)
and satisfying the following.

Assumption 9.3.4. The following statements hold:

A) Two finite sets Hs and Ha are given;
B) To any h ∈ H+ := Hs∪Ha, assigned are the memory, input, and output alphabets

Mh, Ih, and Oh with elements denoted by mh, Ih, and Oh, respectively;
C) Any h ∈ Ha is also endowed with the outer output alphabet with elements uh;
D) The network outer input Y consists of finitely many parts Y = {yσ}σ∈S; each

part yσ is generated by an independent source as an element of a given source
alphabet and is distributed among the nodes h ∈ Hs in accordance with a given
data injection scheme (prefix) {H←σ}σ∈S: The message yσ is immediately ac-
cessible at the nodes h ∈ H←σ ⊂ Hs or, equivalently, the outer input of any node
h ∈ Hs is given by

yh(t) = {yσ(t)}σ:h∈H←σ
;
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Fig. 9.11. Components of the network.

E) The variables O, I,M , and U from (9.3.2) have the special structure:

O =
[
{Oh}h∈H+

,O−
]
, I =

[
{Ih}h∈H+

, I−
]
,

M =
[
{mh}h∈H+

,M−
]
, U = {uh}h∈Ha

,

where O−, I−, and M− belong to given sets O−, I−, and M−, respectively;
F) The data processing part of (9.3.2) disintegrates into separate equations con-

cerning each sensor, each actuator, and the rest of the network, respectively:

Oh(t) =

{
Oh[Ih(t), yh(t),mh(t),A, t] if h ∈ Hs

Oh[Ih(t),mh(t),A, t] if h ∈ Ha \ Hs
;

mh(t+ 1) =

{
Mh[Ih(t), yh(t),mh(t),A, t] if h ∈ Hs

Mh[Ih(t),mh(t),A, t] if h ∈ Ha \ Hs
;

mh(0) = M0
h(A) ∀h ∈ H+;

uh(t) =

{
Uh[Ih(t),mh(t),A, t] if h ∈ Ha \ Hs

Uh[Ih(t), yh(t),mh(t),A, t] if Ha ∩ Hs
; (9.3.4)

O−(t) = O−[I−(t),M−(t),A, t],

M−(t+ 1) = M−[I−(t),M−(t),A, t], M−(0) = M
−
0 (A); (9.3.5)

G) The dependence of the right-hand sides of the equations from (9.3.4) on the con-
trol parameter A ∈ A does not imply any restrictions on them: As A runs over
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A, these sides independently range over all functions (of the arguments indicated
in (9.3.4) except for A). Moreover, this holds even if the run of A is confined by
the requirement to keep equations (9.3.5) of the inner part unchanged;

H) For any h ∈ H+, the memory alphabets Mh has the maximal possible cardinality
(that of the real numbers due to Remark 9.2.8 on p. 275).

Remark 9.3.5. a) The sets Hs and Ha may contain common elements.
b) The variables O−, I−, M− represent the united ensembles of outputs, inputs,

and memories of the elements from the interior part of the network, respectively.
c) The last claim from G) should hold with respect to equations (9.3.5) in their arbi-

trary possible form, i.e., form taken for at least one A ∈ A.
d) The assumptions G and H) mean that A in fact influences only the algorithm of

data processing within the interior part of the network, whereas the algorithms at
sensors and actuators may be arbitrary.

e) Assumption 9.3.4 does not restrict the communication equations in any way.
f) Typically, any sensor node h ∈ Hs is endowed with its own source and has access

to the data from only this source: S = Hs, σ = h,H←h = {h}, and yh = yh
is the measurement of the outer process. In general, the data injection prefix can
be viewed as an ensemble of channels, each instantaneously broadcasting the data
from a particular source σ to all nodes h ∈ H←σ (see Fig. 9.12).

Fig. 9.12. Data injection prefix with three sources.

Definition 9.3.6. The elements h ∈ H+ = Hs ∪ Ha through which the network
contacts its exterior are called the contact nodes.

Since these nodes accept all causal algorithms of data processing due to G and H),
any change of the outer alphabets from C and D) keeps the network well defined.
This shows that in fact the network can accept input data and produce outputs in
any form. In other words, yσ and uh may be elements of arbitrary given sets, not
necessarily Euclidean spaces. So such a network can be used not only to generate
controls from the sensor signals in order to stabilize the outer process, but can also
be employed to transmit abstract information. The main result of the chapter states
that the capacity of the network to stabilize the process is identical to its capacity for
reliable information transmission.
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Since the network will be regarded as not only a stabilizing but also a commu-
nicating facility, it is convenient to call the nodes from Hs and Ha not the “sensors”
and “actuators,” as before, but more neutrally input and output nodes, respectively.
Similarly, A will be called data processing strategy.

Observation 9.3.7. Let a time sequence {yσ(t)}t≥0 of messages be given for any
source σ. Then given a data processing strategy A, the output sequence {U(t)}t≥0

is determined uniquely.

Definition 9.3.8. A network described by equations of the form (9.3.2) and satisfying
Assumption 9.3.4 is said to be with unconstrained contact nodes.

9.3.4 Concluding Remarks

In the light of e) from Remark 9.3.5, it is clear that Examples 1–5 from Sect. 9.2
are particular cases of the network introduced in the previous subsection. It also
encompasses the cases where the interior of the network includes elements of all
types considered in Example 6.

In the remainder of the subsection, we discuss some formal operations with net-
works. In doing so, we consider only networks satisfying the requirements from Def-
inition 9.3.8.

Deleting a contact is depriving the contact node of the outer input, output, or
both. Then the node loses the status of an input, output, or both, respectively. As a
result, the node may lose the status of the contact one. In this case, it should be con-
sidered as an element of the interior part of the network. So its processing equations
should be removed to (9.3.5) within the system of equations from F) of Assump-
tion 9.3.4.

If the outer input yh (output uh) is composed of several components, only one or
some of them may be deleted. In this case, node h may keep its status unchanged.

Restricting the type of an inner node by imposing more restrictions on the
memory and processing algorithm. Consider the case where the node from the previ-
ous consideration becomes inner. Then its memory and the set of admissible process-
ing algorithms can be restricted arbitrarily without violation of Assumption 9.3.4.

Free union is interpreting several independent networks with disjoint sets of
contact nodes as a single network. This situation is illustrated in Fig. 9.13a, where
the resultant network has four input and three output nodes.
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Fig. 9.13(a). Free union. Fig. 9.13(b). Welding two nodes.
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Welding several contact nodes is interpreting them as parts of a common node
hw (see Fig. 9.13b). The knowledge available to any of the original nodes is ac-
cessible by hw. In other words, its memory and input encompasses the memories
and inputs, respectively, of constituting nodes. (This concerns both inner and outer
inputs.) Similarly, the output of hw is the ensemble of outputs for all original nodes.

Explanation 9.3.9. Like for the original nodes, no restrictions are imposed on the
processing algorithm for hw. So any component of its output, say the output of an
original node h, can be generated from the entire knowledge accessible by hw, i.e.,
from the data available to all original nodes. This makes the difference with the
situation before welding, where only the data available to h could be employed.

Remark 9.3.10. If the set of welded nodes contains an input (output) one, hw is an in-
put (output) node for the resultant network. So if this set contains both input and out-
put nodes, hw is simultaneously an input and output contact node, like in Fig. 9.13b.

Proceeding with the example in Fig. 9.13b, one may deprive this node of both
contacts, thus making it inner (see Fig. 9.14a). The resultant node admits all data
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The interior part of the resultant network
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Fig. 9.14(a). Deleting contacts. Fig. 9.14(b). Restricting the type.

processing algorithms and enjoys unlimited memory. Let us restrict its type to the
memoryless node with the single admissible algorithm, i.e., merely forwarding the
received message further. This in fact transforms the node into a part of a new deter-
ministic compound communication channel (see Fig. 9.14b).

Now we consider three more operations that will be of special interest.
Connecting two contact nodes with an additional channel. This operation in-

serts one more channel into the network. The channel should go from a given contact
node A to another given contact node B (see Fig. 9.15). For the definiteness, let this
be the d-delayed channel with the alphabet E. It may be regarded as a simple network
with one input and output node A′ and B′, respectively. The operation consists in 1)
forming the free union of two networks, 2) welding A with A′ and B with B′, and
3) deleting the outer input of the former node A′ and the outer output of the former
node B′. In the sequel, the case where the alphabet E has the maximum possible car-
dinality 2ℵ0 is of most interest. Then the additional channel makes the data available
to node A at time t accessible by node B at time t+ d.

Attaching a prefix is, in general, a change of the scheme of information ex-
change between the exterior of the network and its input nodes h ∈ Hs. This may
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Fig. 9.15. Connecting two contact nodes.

involve transformation of some input nodes into output ones. Now we consider the
simplest situation where this operation reduces to putting a new data injection prefix
PREF with new data sources in use. In doing so, the original data sources and the
corresponding outer inputs of the sensor nodes are deleted. The resultant network is
denoted by PREF ⊞ NW.

Attaching a suffix (see Fig. 9.16). Several new output nodes are attached to
NW, each collecting data from a given variety of original output nodes via given
instantaneous interference channels. The ensemble SUFF of these channels is called
the suffix. The outputs at the original output nodes are deleted, which makes these
nodes inner. The resultant network is denoted by NW ⊞ SUFF.

Fig. 9.16. Change of output nodes.

Explanation 9.3.11. To model the instantaneous interference channel

s(t) = R
[
{o′h(t)}h∈H∗

]
(9.3.6)

with the output at the new node h′ and inputs o′h from the nodes h ∈ H∗ ⊂ Ha under
the formalism of Assumption 9.3.4, the new node h′ is granted access to the input
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data of all nodes h ∈ H∗. The memory of h′ is structured mh′ =
[
{mh}h∈H∗ ,mh′

]

to include the counterparts of the memory contents of all nodes h ∈ H∗. For h′, the
admissible data processing algorithms are confined to those that first process data
related to a given h ∈ H∗, independently of all other accessible data, to generate a
signal o′h(t) and update mh(t) and then produce the node output uh′(t) and update
mh′(t) in such a way that the use of the data associated with the nodes h ∈ H∗ is
restricted to the use of the quantity (9.3.6).4

9.4 Decentralized Networked Stabilization with Communication
Constraints: The Problem Statement and Main Result

This section offers the formulation of the main problem and results of this chapter.

9.4.1 Statement of the Stabilization Problem

The main problem addressed in this chapter is as follows. We consider linear
discrete-time multiple sensor and actuator systems of the form:

x(t+ 1) = Ax(t) +
l∑

i=1

Biui(t) + ξ(t), x(0) = x0; (9.4.1)

yj(t) = Cjx(t) + χj(t), j = 1, . . . , k. (9.4.2)

Here l and k are the numbers of the actuators and sensors, respectively, and the
variables are as follows:

• x ∈ Rdim(x) – the state,
• ui ∈ Rdim(ui) – the output of the ith actuator,
• yj ∈ Rdim(yj) – the output of the jth sensor,
• ξ(t) ∈ Rdim(x) – the exogenous disturbance,
• χj(t) ∈ Rdim(yj) – the noise in the jth sensor.

The system is unstable: There is an eigenvalue λ of the matrix A with |λ| ≥ 1. The
objective is to stabilize the plant.

This should be accomplished by means of multiple decentralized controllers.
Along with sensors and actuators, they are spatially distributed and linked via a given
communication network. The algorithms of data processing at controllers, sensors,
and actuators are to be designed so that the closed-loop system is stable.5

4At first sight, one more requirement is that the node h′ should produce the memory
content mh identical to that generated at the node h. In fact, this requirement is superfluous.
It can be always ensured by reorganizing the memory and data processing at h and h′ so that
both h and h′ acquire two copies of mh processed in accordance with the algorithms originally
implemented at h and h′, respectively.

5In this chapter, the term “actuator” denotes a device that is able not only to apply a given
control to the plant but also to generate controls. So it may be more correct to call these devices
“controllers directly acting upon the plant.”
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Formally, we suppose that a network NW with unconstrained contact nodes6

is given. Its input and output nodes are associated with the sensors and actuators,
respectively (see Fig. 9.17a). The jth sensor acts as the data source for the associated
input node whose current outer input is thus equal to yj(t). Similarly, the control
ui(t) is the current outer output generated by the corresponding output node. We
recall that the algorithm of data processing within the network is denoted by the
parameter A in (9.3.2). This parameter should be chosen from the given set A of
admissible algorithms so that the closed-loop system is stable. The algorithm A will
be also called the (decentralized) control strategy.

Fig. 9.17(a). Decentralized control. Fig. 9.17(b). Control-based extension.

Remark 9.4.1. It follows that in (9.3.2) (on p. 283), the compound vectors of the
network inputs and outputs, respectively, are given by

Y (t) = col [y1(t), . . . , yk(t)] , U(t) = col [u1(t), . . . , ul(t)] .

The control strategy A, sequences of noises {ξ(t)}, {χj(t)}, and initial state x0 from
(9.4.1) uniquely determine a process in the closed-loop system.

We consider bounded noises and initial states x0:

‖ξ(t)‖ ≤ D <∞, ‖χj(t)‖ ≤ Dy
j <∞ ∀t, j, ‖x0‖ ≤ Dx <∞, (9.4.3)

where D,Dy
j , Dx > 0, and accept that a control strategy succeeds if it keeps the

stabilization error bounded:

sup
t

sup
{ξ(θ)},{χj(θ)} , x0

‖x(t)‖ <∞. (9.4.4)

Here the second sup is over noises and initial states satisfying (9.4.3).

6See Definition 9.3.8 (on p. 288).
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Definition 9.4.2. A decentralized control strategy ensuring (9.4.4) is said to stabilize
the system. If in addition (9.4.4) holds for any iwith ui(t) substituted in place of x(t),
the strategy is said to regularly stabilize the system.

Remark 9.4.3. We recall that arbitrary restrictions on the admissible algorithms for
the controllers can be imposed within this problem statement. What is called the
“network” captures not only the available ways to transmit information but also the
restrictions on the possible ways of data processing by the controllers.

Which networks fit to stabilize a given unstable linear plant under a proper de-
sign of the control strategy?

The main result of the chapter is that this question is reducible to the following
standard question studied in the traditional information sciences.

How much data may be communicated from the input to output nodes across the
network that results from a certain extension of the original one?

All limitations on not only communication but also the data processing algorithms
are inherited by the extended network. So the second question concerns communica-
tion under the restrictions imposed in the original network.

Remark 9.4.4. The extended network is an artificial and auxiliary object serving the
answer to the primal question.

In the next four subsections, this network is introduced via three steps.

9.4.2 Control-Based Extension of the Network

As was shown in Subsect. 7.8.1 (on p. 233), there is a way to communicate as much
information as desired via the plant. In this way, the information can be transmitted
from any actuator to any sensor that is able to detect the actions of this actuator. To
this end, the actuator should encode a message by producing a control that imparts
to the system motion a certain specific feature. The sensor receives the message by
observing the motion and detecting this feature.

The above phenomenon can be interpreted as if the plant hides several external7

communication channels. The first step to extend the network is explicit incorpora-
tion of all these channels into it (see Fig. 9.17b). After this, the resultant network will
be considered in the open loop (out of connection with the plant).

Now we come to details. To start with, we introduce the subspaces of states that
are controllable and nonobservable by the ith actuator and jth sensor, respectively:

L+c
i := Lin

[
n−1⋃

ν=0

Im (AνBi)

]
, L−oj :=

n−1⋂

ν=0

{x : CjA
νx = 0} , (9.4.5)

where n := dim(x). The set of actuator–sensor pairs communicating via the plant is

7With respect to the network given in the problem statement.
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CVP :=
{
(i, j) : L+c

i 6⊂ L−oj
}
. (9.4.6)

Since control ui influences yj with the delay

di→j := min{d = 0, 1, . . . : CjA
dBi 6= 0}+ 1, (9.4.7)

data transmitted from the ith actuator to the jth sensor incur the same delay.
Now let us run over all pairs (i, j) from (9.4.6). For every pair, let us connect

the network contact node associated with the ith actuator with that associated with
the jth sensor. The connection is by means of di→j -delayed channel Ri→j called
the feedback tunnel (i.e., hidden channel) with the infinite alphabet of the maximal
possible cardinality 2ℵ0 .

Insertion of all these tunnels gives rise to a new network called the control-based
extension CBE(NW) of the original one.

Remark 9.4.5. The input and output nodes of CBE(NW) are identical to those of the
original network.

9.4.3 Assumptions about the Plant

To proceed, we need some assumptions about the plant. They in fact come to a
strengthened form of Assumption 3.4.24 (on p. 49) with respect to the sensors, and
adopting its dual counterpart with respect to the actuators. The reason for imposing
Assumption 3.4.24 was discussed in Sect. 3.9 (starting on p. 90). Its strengthening is
motivated by the wish to simplify the design of the stabilizing strategy by avoiding
the technically demanding sequential stabilization approach (see p. 64).

We first state the assumption about the plant in a preliminary form, which is easy
to comprehend. Then we give its basic formulation, which is more complicated. The
reader interested in rather ideas than generality may confine himself to the first form.

Assumption 9.4.6.∗ (Restricted form.) The unstable |λ| ≥ 1 eigenvalues λ ofA are
distinct.

Assumption 9.4.6. The unstable subspace Munst(A) of A can be decomposed into
the direct sum Munst(A) =

⊕g
ν=1Mν of A-invariant (real) subspaces Mν such that

the following two claims hold:

i) For any ν, the spectrum of A|Mν consists of only either one real eigenvalue λ[ν]

or a couple of conjugate complex ones λ[ν] = λ[ν];
ii) The subspace Mν is in simple relations with the sensors and actuators: Every

subspace of the form L = L+c
i ∩Munst(A) or L−oj ∩Munst(A) is a direct sum of

several subspaces of the form Mν .

We recall that the direct sum of the empty group of subspaces is defined to be {0}.
Observation 9.4.7. Assumption 9.4.6∗ clearly implies 9.4.6, with Mν being the real
invariant subspaces related to unstable eigenvalues.



9.4 Decentralized Networked Stabilization: The Problem Statement and Main Result 295

Due to Assumption 9.4.6, a proper linear change of the variables shapes x into

x = col
(
x−s, . . . , x0︸ ︷︷ ︸
∼Mst(A)

, x1, . . . , xg1︸ ︷︷ ︸
∼M1

, . . .︸︷︷︸
∼M2

, . . .︸︷︷︸
∼M3

, . . . , . . . xn+︸ ︷︷ ︸
∼Mg

)
, (9.4.8)

where n+ := dimMunst(A). In other words, Mst(A) is the set of all x with xα =
0 ∀α ≥ 1, and Mν is the set of all x with zeros at all positions outside a certain
group of coordinates. With a slight abuse of terminology, xα with α ≥ 1 will be
called unstable modes.

Remark 9.4.8. Any unstable mode xα is related to a unique subspace Mν , where
ν = ν(α). So by i), it is associated with an eigenvalueλα := λ[ν(α)]. This association
is unique up to the conjugation in the case of the complex eigenvalue; the modulus
|λα| is determined uniquely.

Remark 9.4.9. Given an unstable mode xα and a sensor, this mode is either observed
or ignored by this sensor. Similarly, a given actuator either controls the mode or does
not affect it at all.

More specifically, the claim ii) implies that for any sensor j, the nondetectable
subspace L−oj ∩ Munst(A) is the set of all x with zero coordinates at all positions
outside a certain groupAj with elements α ≥ 1. Any unstable mode xα with α ∈ Aj
does not affect the outputs of this sensor. Conversely, it can be restored from these
outputs (the sensor observes the mode xα) if α 6∈ Aj . Similarly, the stabilizable
subspace L+c

i ∩Munst(A) of any actuator i is the set of all x with zero coordinates
at all positions outside a certain group A[i] with elements α ≥ 1 thanks to ii). Any
unstable mode xα with α 6∈ A[i] is not affected by this actuator. Conversely, this
mode is controlled by this actuator if α ∈ A[i].

Remark 9.4.10. Assumption 9.4.6 is true whenever the system is detectable by each
sensor and stabilizable by every actuator.

Indeed, then ii) holds for the decomposition of Munst(A) into the real invariant sub-
spaces related to the unstable eigenvalues.

9.4.4 Mode-Wise Prefix

The next step to the new network is a change of the scheme of data injection into
CBE(NW). We introduce new data sources, each associated with a particular unsta-
ble mode xα. The data related to mode xα are instantaneously delivered to all sensors
j that observe this mode, i.e., those from the set

Jmw←α :=
{
j = 1, . . . , k : Mν(α) ∩ L−oj = {0}

}
. (9.4.9)

The mode-wise prefix PREFmw is the described scheme of data injection (see
Fig. 9.18a).
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Fig. 9.18(a). Mode-wise prefix. Fig. 9.18(b). Mode-wise suffix.

9.4.5 Mode-Wise Suffix and the Final Extended Network

This suffix displays similar dual relations between the actuators and unstable modes,
and it is used to change the output nodes of the network. The new output nodes are
also associated with unstable modes and attached to CBE(NW) via related interfer-
ence channels (see Fig. 9.16 on p. 290). The channel related to xα collects data from
all actuators i that control this mode, i.e., those from the set

Imw→α := {i : Mν(α) ⊂ L+c
i

}
. (9.4.10)

This channel is instantaneous and additive with the real alphabet R. The mode-wise
suffix is the ensemble SUFFmw of all these additive real channels (see Fig. 9.18b).
The mode-wise suffix with quantization SUFFq

mw results from restriction the admis-
sible algorithms at any terminal node (associated with an unstable mode) to those
forming the current outer output as the projection of the currently transmitted real
signal s into the nearest integer.8

Explanation 9.4.11. The locations of the source and the output node associated with
a common unstable mode are regarded as different.

This is motivated by the double role of every unstable mode: It is an object of obser-
vation on the one hand and control on the other hand.

Explanation 9.4.12. The additive channel is chosen since the cumulative effect of the
actuators on the plant (9.4.1) results from summation of the effects caused by each
actuator.

The final extended network that will be of interest further results from attaching
both the mode-wise prefix and mode-wise suffix with quantization

PREFmw ⊞ CBE(NW) ⊞ SUFFq
mw (9.4.11)

to the control-based extension CBE(NW) of the original network NW (see Fig. 9.19).

8In the case of uncertainty (v − 1/2 is an integer), the void output ⊛ is produced.
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Fig. 9.19. Extended network.

Remark 9.4.13. The network (9.4.11) is disconnected with the plant.

Remark 9.4.14. Due to (9.4.6), (9.4.9), and (9.4.10), any pair (actuator node i)-
(sensor node j) affecting and observing, respectively, at least one common unstable
mode xα is linked by a feedback tunnel:

CVP ⊃ {(i, j) : ∃α = 1, . . . , n+ such that i ∈ Imw→α and j ∈ Jmw←α} . (9.4.12)

9.4.6 Network Capacity Domain

As was remarked on p. 293, criterion for stabilizability involves an answer to the
question: How much data can be communicated across the network (9.4.11)? Specif-
ically, data from the informant associated with the unstable mode xα should be sent
to the output node related to the same mode.9 The answers to such questions are tra-
ditionally given in terms of a fundamental concept of the classic information theory:
The capacity (rate) domain.

Now we recall this notion for the particular situation at hand. Its critical feature is
that the network data sources σα and output nodes outα are marked by the common
index α ∈ [1 : n+]. The sources produce messages yα independently. For any α,
the message yα should be transmitted to the equally enumerated node outα, where it
appears in the form of the outer output uα of this node. The transmission is arranged
by choosing an admissible algorithm A ∈ A of data processing within the network.

Definition 9.4.15. A networked block code with block length N is an admissible
data processing algorithm A that acts only during the time interval [0 : N − 1],
serves sources producing constant message sequences yα(t) ≡ yα ∈ [1 : Fα] ∀t,

9The data streams related to various α should go through the network simultaneously.
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and generates the outputs in the matching form uα(t) ∈ [1 : Fα] ∪ {⊛}.10 The rate
vector of this code is defined to be

rcode := col
(

log2 F1

N
, . . . ,

log2 Fn+

N

)
. (9.4.13)

Definition 9.4.16. A networked block code is errorless if at the terminal time it cor-
rectly recognizes the messages from all sources uα(N − 1) = yα ∀α irrespective of
which messages yα ∈ [1 : Fα] were dispatched.

Definition 9.4.17. A vector r ∈ Rn
+

is called the achievable rate vector if for ar-
bitrarily large N and small ǫ > 0, an errorless networked block code with block
length N ≥ N exists whose rate vector (9.4.13) approaches r with accuracy ǫ; i.e.,
‖rcode − r‖ < ǫ. The capacity domain CD is the set of all achievable rate vectors.

Finding such a domain is a long-standing standard problem in the information
theory. We refer the reader to [49, 214] for an excellent overview of achievements
and troubles in its solution.

Remark 9.4.18. To underscore the capacity domain of which network is considered,
the notation (in brackets) of the network may be added to CD from the right.

Remark 9.4.19. Since the suffix SUFFq
mw with quantization admits a smaller range

of data processing algorithms than SUFFmw, the following inclusion holds:

CD (PREFmw ⊞ CBE(NW) ⊞ SUFFq
mw)

⊂ CD (PREFmw ⊞ CBE(NW) ⊞ SUFFmw) . (9.4.14)

In some cases, these domains are equal. One of them will be discussed in Re-
mark 9.5.20 (on p. 323).

9.4.7 Final Assumptions about the Network

In addition to Assumption 9.3.4 (on p. 285), we need more assumptions about the
primal network NW involved in the stabilization problem setup. They basically mean
that the network is stationary and can be reset to the initial state.

Assumption 9.4.20. For any admissible data processing strategy A ∈ A and time
instant T = 0, 1, . . ., another admissible strategy Ares ∈ A exists such that the
following properties hold:

i) These strategies are identical until t = T ; i.e.,

F(·,A, t) ≡ F(·,Ares, t) for all t = 0, . . . , T and F := O,U,M

and M0(A) = M0(Ares), where O(·),U(·),M(·), and M0(·) are the functions
from (9.3.2) (on p. 283);

10The output ⊛ means “no decision.”
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ii) The strategy Ares ∈ A resets the network to the initial state at a time T∗ > T :

N(T∗) = N0, I(T∗) = I0, M (T∗) = M0(A)

and can be chosen so that T∗ − T ≤ δTmax, where the constant δTmax does not
depend on A. Moreover, the memory content M can be driven to the state M0(A1)
initial for any other a priori chosen strategy A1 ∈ A provided that it is equivalent to
A modulo a given finite partition (i.e., ∃ν : A1,A ∈ Mν ) of the memory alphabet
{M} = M = M1 ∪ . . . ∪MQ.

Explanation 9.4.21. It is tacitly assumed that ii) should be true irrespective of the
outer inputs of the network. Typically, this means that the strategy Ares ignores the
inputs on the interval [T + 1 : T∗].

Assumption 9.4.22. For any two admissible data processing strategies Ai ∈ A, i =
1, 2 and time instant T = 0, 1, . . . such that the network driven by the strategy A1

arrives at time T at the state initial for A2

N(T ) = N 0, I(T ) = I0, M(T ) = M0(A2),

another admissible strategy A ∈ A exists that is identical to A1 and A2 on the time
interval [0 : T − 1] and afterward, respectively: M0(A) = M0(A1) and

F(·,A, t) ≡
{

F(·,A1, t) for all t = 0, . . . , T − 1

F(·,A2, t− T ) for all t ≥ T , where F := O,U,M.

Explanation 9.4.23. With respect to the data processing algorithms hosted by the
contact nodes, these properties are partly ensured by Assumption 9.3.4 (on p. 285).

To state the last assumption, we start with a technical definition.

Definition 9.4.24. The data processing strategy A ∈ A is said to be τ -periodic
(τ = 1, 2, . . .) if in (9.3.2), the functions O(·,A, t),U(·,A, t), and M(·,A, t) are
τ -periodic in time: F(·,A, t+ τ) ≡ F(·,A, t+ τ) for all t and F := O,U,M.

The last assumption means that any data processing strategy that drives the network
into the initial state at some time instant τ can be extended from the interval [0 : τ−1]
on [0 :∞) as a τ -periodic strategy.

Explanation 9.4.25. The possibility of τ -periodic extension on any finite interval of
the form [0 : rτ ], r = 1, 2, . . . follows from Assumption 9.4.22.

Assumption 9.4.26. For any admissible data processing strategy A ∈ A and time
instant τ = 1, 2, . . . such that the network is in the initial state N(τ) = N0, I(τ) =
I0,M(τ) = M0(A) at time τ , a τ -periodic admissible data processing strategy
Aper ∈ A exists that is identical to A on the time interval [0 : τ − 1].
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9.4.8 Criterion for Stabilizability

This criterion concerns the stabilization problem posed in Subsect. 9.4.1. We recall
that intS is the interior of the set S.

Theorem 9.4.27. Suppose that Assumptions 9.3.4 (on p. 285), 9.4.6 (on p. 294),
9.4.20, 9.4.22, and 9.4.26 hold. We consider the representation (9.4.8) of the state
vector and associate any unstable mode xα, α ≥ 1 from (9.4.8) with an unstable
eigenvalue λα in accordance with Remark 9.4.8. We also introduce the vector

Λ := col
(

log2 |λ1|, . . . , log2 |λn+ |
)
. (9.4.15)

Then the following implications are true:

a) Λ ∈ int CD
[
PREFmw ⊞ CBE(NW) ⊞ SUFFq

mw

]
.

⇓
b) The network NW hosts a time-periodic admissible control strategy

that regularly stabilizes11the plant.

⇓
c) The network NW hosts an admissible control strategy that stabilizes the plant.

⇓
d) Λ ∈ CD

[
PREFmw ⊞ CBE(NW) ⊞ SUFFq

mw

]
.

The proof of this theorem will be given in Sects. 9.6 and 9.7. A stabilizing control
strategy is described in Sect. 9.7.

The implication b) ⇒ c) is evident. It is mentioned to stress that the claims b)
and c) are included in a chain of implications with approximately identical extreme
terms. So all claims from this chain are “almost equivalent.”

The necessity part of Theorem 9.4.27 can also be slightly improved in the case
where the vector (9.4.15) contains zero entries: |λα| = 1 for some α.

Remark 9.4.28. If claim c) holds, the concerned capacity domain contains a vector
with nonzero entries.

The proof of this minor remark will be given in Subsect. 9.8.4 (starting on p. 362).

Corollary 9.4.29. Whenever c) holds, the plant is detectable and stabilizable by the
entire set of sensors and actuators, respectively.

Indeed otherwise, there would be an unstable mode xα such that the correspond-
ing either data source or output node of PREFmw ⊞ CBE(NW) ⊞ SUFFq

mw is not
linked with the interior network CBE(NW). Then it is impossible to transmit in-
formation between these nodes, and so rα = 0 for any achievable rate vector, in
violation of Remark 9.4.28.

11See Definition 9.4.2 (on p. 293).
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The claims a) and d) depend on the representation (9.4.8) satisfying Assump-
tion 9.4.6. This representation is not unique in general. However its choice does not
affect the contents of Theorem 9.4.27.

We demonstrate this under the simplified Assumption 9.4.6∗ (on p. 294).12 For
any two representations (9.4.8), a certain permutation α ∈ [1 : n+] 7→ α′ ∈ [1 : n+]
puts the eigenvalues in correspondence: λ′α′ ∈ {λα, λα}. It is easy to see that the
matching permutation of the data sources and output nodes transforms the prefix
PREFmw and the suffix SUFFmw related to one of these representations into, re-
spectively, the prefix and suffix associated with the other representation. The entries
of the corresponding vectors (9.4.15) are related by the same permutation. So it is
apparent from Definitions 9.4.15 and 9.4.17 that the claims a) associated with these
representations are equivalent, and so are the claims d).

9.5 Examples and Some Properties of the Capacity Domain

Theorem 9.4.27 reduces the problem of stabilizability to the long-standing standard
problem of the information sciences: Finding the capacity domain of the network.
For an excellent survey of achievements and troubles in solution of the latter prob-
lem, we refer the reader to [49, 214]. In this section, we illustrate Theorem 9.4.27
by simple examples, where the capacity and so stabilizability domains are explicitly
computed.

To serve this computation, we need to extend the definition of the capacity do-
main on networks with not necessarily a common number of sources and outputs,
as well as some general facts about capacity domains. The extended definition and
these facts are given in Subsects. 9.5.1 and 9.5.2, respectively. Subsection 9.5.2 is
not intended to duplicate a special literature in providing a comprehensive theoreti-
cal environment for computing capacity domains. Conversely, it considers only a few
simple and most probably well-known facts that are required to treat the subsequent
examples. Proceeding from these facts, we also discuss some useful corollaries of
Theorem 9.4.27 in Subsect. 9.5.2. Subsections 9.5.3 and 9.5.4 deal with examples.

9.5.1 Capacity Domain of Networks with Not Necessarily Equal Numbers of
Data Sources and Outputs

In Subsect. 9.4.6, the capacity domain was defined in the case where the network has
equal numbers of sources and output nodes marked by a common index, and data
are transferred from every source to the equally enumerated output node. Now we
consider a more general case, where these numbers are not necessarily equal, and
more complicated schemes of data transmission are of interest.

Specifically, let a network NW with unconstrained contact nodes13 be given. The
data communication scheme for this network is given by a subset

12The discussed claim is not used anywhere in the book.
13See Definition 9.3.8 (on p. 288).
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T ⊂ S× Ha, (9.5.16)

where S and Ha are the sets of data sources output nodes, respectively. The set T

lists the pairs that need communication (see Fig. 9.20a). In other words, data should
be transmitted from every source σ to all output nodes

out ∈ T←[σ] :=
{

out : T := (σ, out) ∈ T
}

=
{

out1σ, . . . , outsσ
σ

}
. (9.5.17)

Fig. 9.20(a). Scheme of communication
across the network.

Fig. 9.20(b). The simplest scheme.

Explanation 9.5.1. • If T←[σ] = ∅, there are no data to be sent from σ.
• Respective independent messages µ1

σ, . . . , µ
sσ
σ should be sent from σ to the out-

put nodes listed in (9.5.17).
• Any output node outiσ from (9.5.17) should decode and receive only its own

message µiσ from σ: All other messages µjσ, j 6= i are of no interest for outiσ.
• In total, any output node out should receive messages from the sources

σ ∈ T→[out] :=
{
σ : (σ, out) ∈ T

}
. (9.5.18)

• If T→[out] = ∅, the node out should receive nothing.

Remark 9.5.2. The entire ensemble of transmitted messages can be enumerated{
µT
}
T∈T

by the elements of the set (9.5.16).

How much data can be transmitted across the network in accordance with a given
communication scheme, provided that the data streams related to various communi-
cating pairs go through the network in parallel? The answer concerns transmitting
ensembles M =

{
µT
}
T∈T

of messages of the form µT ∈ [1 : FT ]. Associated with
such an ensemble is a constant time sequence of messages from any source σ:

yσ(t) ≡ yσ :=

{{
µ(σ,out)

}
out∈T←[σ]

if T←[σ] 6= ∅
⊛ otherwise

.

The transmission is arranged by choosing an admissible algorithm A ∈ A of data
processing within the network.
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Definition 9.5.3. A networked block code with block lengthN serving the communi-
cation scheme (9.5.16) is an admissible data processing algorithm A that acts only
during the time interval [0 : N − 1], deals with input data produced in the above
way, and generates the outputs in the matching form

uout(t) =

{{
µ′(σ,out)(t)

}
σ∈T→[out]

, µ′T (t) ∈ [1 : FT ] ∪ {⊛} if T→[out] 6= ∅
⊛ otherwise

.

The rate ensemble of this code is defined to be

rcode :=

{
log2 FT
N

}

T∈T

. (9.5.19)

Definition 9.5.4. A networked block code is errorless if at the terminal time it cor-
rectly recognizes the messages for all communicating pairs: µT = µ′T (N−1) ∀T ∈
T, irrespective of which messages µT ∈ [1 : FT ] were dispatched.

Definition 9.5.5. An ensemble r =
{
rT ≥ 0

}
T∈T

is called the achievable rate en-

semble if for arbitrarily largeN and small ǫ > 0, an errorless networked block code
with block length N ≥ N exists whose rate ensemble (9.5.19) approaches r with
accuracy ǫ; i.e., the matching entries differ at most by ǫ. The set of all achievable
rate vectors is called the capacity domain for the communication scheme (9.5.16)
and denoted by CD[NW�T].

In Subsect. 9.4.6, considered was the case where the numbers of sources and
output nodes are equal, they are enumerated by a common index α, and the commu-
nication scheme dictates to transmit data from every source to the equally enumer-
ated node (see Fig. 9.20b). Then the pairs from T can be evidently enumerated by the
same indexα, and the definitions from this section come to those from Subsect. 9.4.6.

Conversely, the situation and definitions from this subsection can be reduced
to those from Subsect. 9.4.6 up to minor formalities by enumerating the pairs from
T = {Tα} and attaching a special prefix and suffix to the network NW. The channels
from these prefix and suffix are enumerated by the same index and are instantaneous
perfect channels with the alphabets of the maximal possible cardinalities coming to
and departing from the first and second entries of the pair Tα from and to the source
and output node associated with α, respectively.

We close the subsection with useful technical facts about the capacity domain.

Lemma 9.5.6. Suppose that a network NW with unconstrained contact nodes14 sat-
isfies Assumptions 9.4.20 and 9.4.22 (on p. 298), and a data communication scheme
(9.5.16) is given. Then the following claims are true:

(i) The capacity domain CD[NW�T] is a closed set, which along with any ele-
ment r, contains all elements 0 ≤ r′ ≤ r, where the inequalities are meant
component-wise;

14See Definition 9.3.8 (on p. 288).
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(ii) Whenever there exists an errorless block code whose rate ensemble has nonzero
entries at the positions from some subset T∗ ⊂ T, the capacity domain contains
an achievable rate ensemble with nonzero entries at the same positions;

(iii) Let ε > 0 be given. Any r ∈ CD[NW�T] can be approximated with accuracy
ε by the rate ensembles (9.5.19) of errorless networked block codes Am,m =
1, 2, . . . of arbitrarily large block lengths N(m)

m→∞−−−−→ ∞ starting at a com-
mon initial state: In (9.3.2) (on p. 283), M0(Am′) = M0(Am′′) ∀m′,m′′.

The proof of this lemma is given in Subsect. 9.8.1 (starting on p. 358). The argu-
ments of the proof of (iii) also justify the following claim.

Remark 9.5.7. Statement (iii) holds for the capacity domain concerned in Theo-
rem 9.4.27.

9.5.2 Estimates of the Capacity Domain from Theorem 9.4.27 and Relevant
Facts

This domain is that of the network (9.4.11) (on p. 296), which results from attaching
the mode-wise prefix and suffix to the control-based extension of the primal network
NW. This suffix is composed by interference channels, which are not easy to deal
with when computing the capacity domain. In this subsection, we give simple esti-
mates of the above domain by domains related to networks with no new interference
channels except for those that may be hidden in the original network NW.

The lower estimate to follow concerns the network

PREFmw ⊞ CBE(NW) (9.5.20)

(see Fig. 9.21 on p. 305) whose sources and output nodes are associated with the un-
stable modes and actuators, respectively. It is supplied with the transmission scheme

Tmw :=
{
(α, i) : i ∈ Imw→α

}
(9.5.21)

according to which data from every source ∼ xα should be transmitted to all actua-
tors i controlling the corresponding mode xα.

The upper estimate deals with the network PREFmw ⊞ CBE(NW) ⊞ SUFF+
mw.

Here the suffix SUFF+
mw is obtained from the mode-wise one SUFFmw (see Sub-

sect. 9.4.5) by replacing every additive channel in SUFFmw by several indepen-
dent instantaneous channels with the alphabets of the maximal possible cardinalities.
These channels connect the input nodes i ∈ Imw→α of the former additive channel with
its output node ∼ xα. After this replacement, data going from these input nodes do
not incur interference and so arrive at the output node uncorrupted and in full.

In the remainder of this subsection, the assumptions of Theorem 9.4.27 are as-
sumed to hold.

Lemma 9.5.8. The following inclusions are true:
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Fig. 9.21. PREFmw ⊞ CBE(NW).

{
{rα}n

+

α=1 : rα =
∑

i∈Imw
→α

rα,i for some

r = {rα,i}(α,i)∈Tmw ∈ CD
[
PREFmw ⊞ CBE(NW)�Tmw

]}

⊂ CD
[
PREFmw ⊞ CBE(NW) ⊞ SUFFq

mw

]

⊂ CD
[
PREFmw ⊞ CBE(NW) ⊞ SUFF+

mw

]
. (9.5.22)

The proof of this lemma is given in Subsect. 9.8.2 (starting on p. 360).

Corollary 9.5.9. Suppose that different actuators do not influence common unstable
modes Imw→α′ ∩ Imw→α′′ = ∅ ∀α′ 6= α′′. Then SUFF+

mw can be put in place of SUFFq
mw

in the statement of Theorem 9.4.27.

This holds since in (9.5.22), the first and third domains are in fact the same under the
circumstances.

Capacity Domain in the Case of Cloned Channels

Now we consider the case where PREFmw and SUFF+
mw contain cloned channels.

Specifically, the unstable modes are partitioned into several groups

[1 : n+] = G1 ∪ . . . ∪Gs, Gν′ ∩Gν′′ = ∅ ∀ν′ 6= ν′′ (9.5.23)

such that

Imw→α′ = Imw→α′′ and Jmw←α′ = Jmw←α′′ ∀α′, α′′ ∈ Gν . (9.5.24)

Then the corresponding channels from PREFmw broadcast from the sources ∼ xα′

and ∼ xα′′ , respectively, to a common set of sensor nodes. Similarly, the channels
from SUFF+

mw transfer data to the output nodes∼ xα′ and∼ xα′′ , respectively, from
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a common set of actuator nodes. In this case, the individual data rates rα of communi-
cation α 7→ α between the clones α ∈ Gν are obtained by dividing

∑
α∈Gν

rα = rν
the data rate rν achievable in the case where in each group of cloned channels, all
channels except for one are discarded (see Fig. 9.22). Now we come to details.

Fig. 9.22(a). Network with cloned channels. Fig. 9.22(b). Reduced network.

Lemma 9.5.10. Let (9.5.23) and (9.5.24) hold.

(i) Consider the prefix PREFmw and suffix SUFF
+

mw obtained from PREFmw and
SUFF+

mw, respectively, by discarding all channels except for one in every group
Gν and marking the remaining source and output node by the index ν. Then

CD
[
PREFmw ⊞ CBE(NW) ⊞ SUFF+

mw

]
=

{
{rα}n

+

α=1 : rα ≥ 0;

{
∑

α∈Gν

rα

}s

ν=1

∈ CD
[
PREFmw ⊞ CBE(NW) ⊞ SUFF

+

mw

]
}

; (9.5.25)

(ii) Consider the transmission scheme Tmw for the network PREFmw ⊞ CBE(NW)
obtained from (9.5.21) by discarding all pairs except for one in every group of
the form (α, i), α ∈ Gν and marking the remaining pair by the index (ν, i).
Then

CD
[
PREFmw ⊞ CBE(NW)�Tmw

]
=

{
{rα,i}(α,i)∈Tmw : rα,i ≥ 0;

{
∑

α∈Gν

rα,i

}

(ν,i)∈Tmw

∈ CD
[
PREFmw ⊞ CBE(NW)�Tmw

]
}
.

The proof of this lemma is given in Subsect. 9.8.3 (starting on p. 360).

Aggregated Form of the Stabilizability Criterion

In some cases, the criterion from Theorem 9.4.27 can be rewritten in a more compact
form on the basis of Lemma 9.5.10. Specifically, let we be given a decomposition
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Munst(A) =

g⊕

ν=1

Mν (9.5.26)

that satisfies the requirements of Assumption 9.4.6 (on p. 294) except for (i). As-
sumption 9.4.6 gives one such decomposition. However there may be other decom-
positions with a lesser number of subspaces.

Remark 9.5.11. Suppose that the plant is stabilizable and detectable by any actuator
and sensor, respectively. Then the trivial decomposition Munst(A) = M1 with only
one subspace can be employed.

The decomposition with the above properties gives rise to a partition (9.5.23)
satisfying (9.5.24). Indeed, it is clear that any invariant subspace Mν can be decom-
posed into invariant sub-subspaces satisfying (i) from Assumption 9.4.6.15 Then for
the corresponding state mode-wise representation (9.4.8) (on p. 295), every subspace
Mν is described as consisting of all vectors such that xα = 0 for all α outside a cer-
tain group Gν of unstable modes. Then (9.5.23) and (9.5.24) evidently hold.

In this case,

• PREFmw is composed by the channels associated with the subspaces from
(9.5.26) and enumerated by ν = 1, . . . , g. The νth channel broadcasts from the
source∼Mν to all sensors j that observe the subspace: Mν ∩ L−oj = {0}.

• SUFF
+

mw is composed by g groups of channels associated with the subspaces
from (9.5.26) and enumerated by ν = 1, . . . , g. The channels of the νth group
arrive at a common output node∼Mν and depart from, respectively, all actuators
i ∈ I→ν := {i : Mν ⊂ L+c

i } that control the subspace at hand. These channels
are instantaneous and have the alphabets of the maximal possible cardinalities.

• Tmw consists of all pairs (ν, i) such that the actuator i controls the subspace Mν .

By observing that for the vector r = {log2 |λα|}n
+

α=1 from Theorem 9.4.27,
∑

α∈Gν

rα = log2 | detA|Mν |,

we arrive at the following corollary of Lemmas 9.5.8 and 9.5.10.

Corollary 9.5.12. Let a decomposition (9.5.26) satisfying Assumption 9.4.6 with (i)
dropped be given. Then the sufficient a) and necessary d) conditions for stabilizabil-
ity from Theorem 9.4.27 are ensured by and imply the following claims, respectively:

a′) log2 | detA|Mν | =
∑

i∈I→ν
rν,i ∀ν for some ensemble

{rν,i} ∈ int CD
[
PREFmw ⊞ CBE(NW)�Tmw

]
;

d′) The vector

Λred := col
(

log2 | detA|M1 |, log2 | detA|M2 |, . . . , log2 | detA|Mg |
)

(9.5.27)
belongs to CD

[
PREFmw ⊞ CBE(NW) ⊞ SUFF

+

mw

]
.

15Hence, the existence of such a decomposition is equivalent to this assumption.
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Similarly, we get the following corollary of Lemma 9.5.10 and Corollary 9.5.9.

Corollary 9.5.13. Suppose that different actuators do not influence common unsta-
ble modes Imw→α′ ∩ Imw→α′′ = ∅ ∀α′ 6= α′′, and a decomposition (9.5.26) satisfying
Assumption 9.4.6 with (i) dropped is given. Then in Theorem 9.4.27, the following
inclusions a′′) and d′′) can be substituted in place of a) and d), respectively:

a′′) Λred ∈ int CD
[
PREFmw ⊞ CBE(NW) ⊞ SUFF

+

mw

]
;

d′′)Λred ∈ CD
[
PREFmw ⊞ CBE(NW) ⊞ SUFF

+

mw

]
.

9.5.3 Example 1: Platoon of Independent Agents

The main purpose of this rather special example is to highlight the typical phenomena
that are encountered in networked stabilization and are caused by the possibility of
information transmission by means of control.

We consider a platoon of s unstable controllable agents AAi with independent
dynamics

xi(t+ 1) = Aixi(t) +Biui(t) + ξi(t), i = 0, . . . , s− 1,

each equipped by a separate controller Ci (with an unlimited memory and computing
capability) and subjected to a bounded exogenous disturbance ξi(t). So the agents
could stabilize their motions about the required trajectories, provided each of them
observes its own state. However, any agent AAi has access to noisy data only about
the state of its “cyclic follower” AAi− , i− := i−1( mod s). These data are enough
to detect the state of the follower with a bounded error and are sent to AAi via a
digital perfect channel with capacity ci− (see Fig. 9.23a, where s = 4). The agents
do not communicate with each other. Is it possible to stabilize the platoon motion?

AA

C0

0

C1 AA 1

C2

AA 2

AA 3 3
C

c

c

0

2

c1

c3

Fig. 9.23(a). Stabilization of autonomous
agents.

Fig. 9.23(b). Control-based extension.

Since none of the agents observes its own state, the answer seems to be in the
negative at first sight. However, the following claim holds.
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Proposition 9.5.14. The platoon is stabiliazible whenever the unstable parts A+
i :=

Ai|Munst(Ai) of the matrices Ai satisfy the inequality

log2 | detA+
0 |+ · · ·+ log2 | detA+

s−1| < min
i=0,...,s−1

ci.

This inequality is necessary for stabilizability, provided that ≤ is put in place of <.

This proposition is underlaid by the fact that data can be transmitted by means
of controls. This possibility is explicitly displayed by the control-based extension of
the network at hand (see Fig. 9.23b). It follows that data about the ith agent can be
delivered to its controller Ci via the route depicted by dotted arrows in Fig. 9.24.

Fig. 9.24. The information exchange in the system.

Proof of Proposition 9.5.14. It is easy to see that Assumptions 9.3.4, 9.4.6,
9.4.20, 9.4.22, and 9.4.26 (on pp. 285, 294, 298, and 299) are satisfied. (The sen-
sor and actuator nodes are associated with AAi and Ci, respectively. Initially, the
memories of these nodes are empty.) The entire state of the system consists of
the states of the agents x = col (x0, . . . , xs−1), and its dynamical matrix equals
A = diag(A0, . . . , As−1). By putting Mν := {x : xi = 0 ∀ i 6= ν − 1, xν−1 ∈
Munst(Aν−1)}, we clearly get a decomposition (9.5.26) (with g := s) satisfying the
requirements of Assumption 9.4.6 (on p. 294) except for (i). Since different actua-
tors do not influence common unstable modes, we see that the situation is like in
Corollary 9.5.13. By this corollary, it suffices to show that the capacity domain of
the control-based extension of the network at hand (see Fig. 9.23b) is given by
{
r = {ri}s−1

i=0 : ri ≥ 0 ∀i, r0 + r1 + · · ·+ rs−1 ≤ min
i=0,...,s−1

ci
}
. (9.5.28)

Here ri is the rate at which data can be transmitted from AAi to Ci.
Sufficiency. If

∑
i ri < mini ci and ri ≥ 0, the control-based extension is evi-

dently able to accommodate simultaneously s continuous stationary fluid flows along
the dotted directed arcs from Fig. 9.24 of respective intensities r0, . . . , rs−1. Then the
arguments from the first part of the proof of Theorem 3.1 [69] (based on a proper time
division multiplexing) show that r is an achievable rate vector. Then Lemma 9.5.6
(on p. 303) implies that (9.5.28) is a subset of the capacity domain.
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Necessity. The above “fluid” consideration is not relevant any longer.16 Let r be
an achievable rate vector. By Definition 9.4.17 (on p. 298), for any ε > 0, an errorless
networked block code with block lengthN and input alphabets [1 : Fi] = {µi} exists
such that |ri − N−1 log2 Fi| < ε ∀i. Let Ai and Ci stand for the sequences of all
input signals received by AAi and Ci, respectively, since t = 0 until t = N − 1. As
follows from Fig. 9.23b,

Ci+ = Ci(Ai), where i+ := i+ 1 mod s, Ai = Ri(Ci, µi) ∀i.

(We recall that capital script letters denote deterministic functions.) Since the code
is errorless, µi = Mi(Ci). Thus Ci+ = Ci

{
Ri[Ci,Mi(Ci)]

}
∀i; i.e., {Cj}s−1

j=0 =

Fi(Ci)∀i and so (µj)
s−1
j=0 = Pi(Ci) for all i and µi ∈ [1 : Fi]. Since Ci+ is received

over the channel of capacity ci, it follows that
∑

j log2 Fj ≤ Nci ∀i. So
∑

i ri ≤
sε+

∑
j N
−1 log2 Fj ≤ sε+mini ci. Letting ε→ 0 shows that the vector r belongs

to (9.5.28). ⊓⊔

9.5.4 Example 2: Plant with Two Sensors and Actuators

In this subsection, we consider a particular case of the linear system (9.4.1), (9.4.2)
(on p. 291) with two both sensors and actuators (l = k = 2), which are directly linked
by perfect channels with given finite capacities (see Fig. 9.25a, where the sensors and
actuators are marked by S1, S2 and A1, A2, respectively). The case where some of
these channels do not occur is not excluded and identified with the situation where
the corresponding capacity is zero cji = 0. The plant is assumed to be detectable and
stabilizable by the entire sets of the sensors and actuators, respectively.

Actuators with Nonintersecting Zones of Influence

We start with the case where the actuators affect no common unstable mode. As-
sumption 9.4.6 (on p. 294) is still supposed to hold. Then the unstable subspace of
the plant can be decomposed as follows:

Munst(A) = M11 ⊕Mb1 ⊕M21 ⊕M12 ⊕Mb2 ⊕M22, (9.5.29)

where

• Mji, j 6= b is the subspace of states controllable by the ith actuator, observable
by the jth sensor, and nonobservable by the companion sensor;

16In [69], the existence of the continuous fluid flows with intensities matching the data
rates of a given coding decoding scheme was justified only for the case of one recipient. The
paper [4] offers extensions on the case where a single informant broadcasts to several recipi-
ents over a network and data processing strategies are restricted to the so-called alpha-codes.
The authors are unaware of research, where relevant facts concerning the fluid-like treatment
of information streams were justified for the case of several informants and recipients, as is
required now.
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Fig. 9.25(a). System with two sensors and ac-
tuators.

Fig. 9.25(b). Control-based extension.

• Mbi is the subspace of states controllable by the ith actuator and observable by
both sensors.

The topological entropy of the related part of the open-loop system is denoted by

hνi := log2 | detA|Mνi | ν = 1, 2, b, i = 1, 2.

These notations are also explained in Table 9.1.

Controllable by
Observable by Actuator 1 Actuator 2
Only sensor 1 h11 h12

Both sensors hb1 hb2

Only sensor 2 h21 h22

Table 9.1. Entropies of various parts of the system.

Explanation 9.5.15. It is not excluded that some of the above parts may degenerate
Mνi = {0}. Then hνi := 0.

To state conditions for stabilizability, we introduce the following operations over
2× 2-matricesM = (m11 m12

m21 m22
):

• [M ]↔ := m11 +m12 — the sum of the elements from the first row;
• [M ]↔ := m21 +m22 — the sum of the elements from the second row;
• l[M ] := m11 +m21 — the sum of the elements from the first column;
• [M ]l := m12 +m22 — the sum of the elements from the second column;

• Σij−(M) :=
∑

(i′,j′)6=(i,j) mi′,j′ — the sum of all entries except for (i, j)th one.

We also introduce the following matrices of entropies and capacities:

H :=

(
h11 h12

h21 h22

)
, C :=

(
c11 c12
c21 c22

)
.

We start with the situation where the following property holds.
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Assumption 9.5.16. Any sensor is able to detect the actions of every actuator:
L+c
i 6⊂ L−oj ∀i, j.

Proposition 9.5.17. Let Assumption 9.5.16 be true. Whenever the plant is stabiliz-
able via the network at hand, the following relations hold:

[H ]
↔ ≤ [C]

↔
, [H ]↔ ≤ [C]↔

l[H + diag(hb1,hb2)] ≤l [C] , [H + diag(hb1,hb2)]l ≤ [C]l

Σij−(H) + hbj′ ≤ Σij−(C) ∀i, j = 1, 2, (9.5.30)

where j′ := 1 if j = 2 and j′ = 2 if j = 1.
Conversely, if relations (9.5.30) hold with the strict inequality signs, the plant is

regularly stabilizable.17

Proof of Proposition 9.5.17

By Corollary 9.5.13, the proof is reduced to computation of the capacity domain
CD
[
PREFmw ⊞ CBE(NW) ⊞ SUFF

+

mw

]
with respect to the decomposition (9.5.29).

Thanks to Assumption 9.5.16, the control-based extension CBE(NW) looks as de-

picted in Fig. 9.25b. The reduced both prefix PREFmw and suffix SUFF
+

mw involve
six sources and output nodes, respectively. The source data and outputs are associ-
ated with the subspaces from (9.5.29) and marked by the corresponding indices νi.
The components of the rate vectors r are enumerated similarly rνi, and the matrix

R = ( r11 r12r21 r22 ) is associated with r. The network PREFmw ⊞ CBE(NW) ⊞ SUFF
+

mw
is shown in Fig. 9.26, where for conciseness, the cloned channels from the suffix and
prefix are depicted as one channel with compound input or output. Due to Corol-
lary 9.5.13, it suffices to show that the capacity domain of this network is described
by the following set of inequalities, which the main part results from (9.5.30) by
putting rνi in place of hνi:

[R]
↔ ≤ [C]

↔
, [R]↔ ≤ [C]↔

l[R+ diag(rb1, rb2)] ≤l [C] , [R+ diag(rb1, rb2)]l ≤ [C]l

Σij−(R) + rbj′ ≤ Σij−(C) ∀i, j = 1, 2, rνi ≥ 0.

In the expanded form, this system looks as follows:

r11 + r12 ≤ c11 + c12, r21 + r22 ≤ c21 + c22;

r11 + r21 + rb1 ≤ c11 + c21, r12 + r22 + rb2 ≤ c12 + c22;

r11 + r12 + r21 + rb1 ≤ c11 + c12 + c21;

r22 + r12 + r21 + rb2 ≤ c22 + c12 + c21;

r11 + r22 + r12 + rb2 ≤ c11 + c22 + c12;

r11 + r22 + r21 + rb1 ≤ c11 + c22 + c21, rνi ≥ 0. (9.5.31)
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Fig. 9.26. PREFmw ⊞ CBE(NW) ⊞ SUFF
+
mw.

Sufficiency. We are going to show that any vector r satisfying (9.5.31) is an
achievable rate vector. Modulo the arguments from the first part of the proof of
Theorem 3.1 [69] (based on a proper time division multiplexing), this goal will be
achieved if we show that the network from Fig. 9.26 is able to transmit simultane-
ously six continuous stationary fluid flows of respective intensities yνi ∼ rνi, ν =
1, 2, b, i = 1, 2. This will be accomplished via two steps. At the first step, we prove
this claim assuming that the “central” input flows are discarded: ybi := 0. This
shapes (9.5.31) into

r11 + r12 ≤ c11 + c12, r21 + r22 ≤ c21 + c22;

r11 + r21 ≤ c11 + c21, r12 + r22 ≤ c12 + c22;

r11 + r12 + r21 ≤ c11 + c12 + c21, r22 + r12 + r21 ≤ c22 + c12 + c21;

r11 + r22 + r12 ≤ c11 + c22 + c12;

r11 + r22 + r21 ≤ c11 + c22 + c21, rij ≥ 0. (9.5.32)

At the second step, we consider the general case of nonzero central flows.
Step 1. Consider a matrix R satisfying (9.5.32) and the distribution

rij = r′ij + r′′ij , r′ij ≥ 0, r′′ij ≥ 0 (9.5.33)

of the input flows along the arcs of the network depicted in Fig. 9.27. For example,
the flow r11 is divided into two subflows. One of them r′11 goes directly from S1 to
A1. The other r′′11 goes first to A2, then to S2 over the feedback tunnel, and ultimately
from S2 to A1. The conditions necessary and sufficient for the network to be able to
accommodate the subflows are as follows:

r′11 + r′′12 + r′′21 ≤ c11, r′22 + r′′12 + r′′21 ≤ c22;
r′12 + r′′11 + r′′22 ≤ c12, r′21 + r′′11 + r′′22 ≤ c21. (9.5.34)

17See Definition 9.4.2 (on p. 293).
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Thus it should be demonstrated that whenever (9.5.32) holds, the quantities rij can
be splitted (9.5.33) into addends satisfying (9.5.34).

Fig. 9.27. Distribution of the flows.

We shall argue by contradiction. Suppose that this claim fails to be true. Then the
convex cone

K := {R : rij ≤ cij ∀i, j = 1, 2}
does not intersect the image P of the set described by (9.5.33) (where rij are given
and satisfy (9.5.32)) under the linear operator

{
(r′ij , r

′′
ij)
}
i,j=1,2

7→ R :=

(
r′11 + r′′12 + r′′21 r

′
12 + r′′11 + r′′22

r′21 + r′′11 + r′′22 r
′
22 + r′′12 + r′′21

)
. (9.5.35)

It follows that the convex coneK and compact convex set P can be strictly separated
by a hyperplane: numbers θij , i, j = 1, 2 exist such that

sup
R∈K

∑

ij

θijrij < inf
R∈P

∑

ij

θijrij (9.5.36)

and
∑
ij |θij | > 0. Since sup is finite, we have θij ≥ 0. Hence

sup
R∈K

∑

ij

θijrij =
∑

ij

θijcij .

To compute inf , we expand R in the form (9.5.35), invoke (9.5.33), and take into
account that minr′,r′′≥0:r′+r′′=r θ

′r′+θ′′r′′ = rmin{θ′, θ′′}. It follows that (9.5.36)
shapes into
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∑

ij

θijcij < r11 min {θ11; θ21 + θ12}+ r22 min {θ22; θ21 + θ12}

+ r12 min {θ12; θ11 + θ22}+ r21 min {θ21; θ11 + θ22} . (9.5.37)

From this, we see that the cone K := {{θij}i,j=1,2 : θij ≥ 0 ∀i, j} contains a
nonzero solution of the above inequality. This cone can be partitioned into a finite
number of convex polyhedral subcones such that the right-hand side of (9.5.37) is
linear on any subcone. So (9.5.37) must be satisfied on some extreme ray of some
subcone. Any of them is bounded by a finite number of hyperplanes, each described
by one of the following equations:

θ11 = θ21 + θ12, θ22 = θ21 + θ12, θ12 = θ11 + θ22, θ21 = θ11 + θ22;

θij = 0, i, j = 1, 2. (9.5.38)

This implies [147, p. 104] that the extreme ray is described by a system of three such
equations, which determines its solution uniquely up to multiplication by a scalar.
Now we consider separately the possible crews of this system.

• All three equations are of the form θij = 0. Then the right-hand side of (9.5.37)
is zero, whereas the left-hand side is non-negative. Thus we have arrived at a
contradiction, as is required.

• Only two equations are of the form θij = 0. These two equations should be of
the form θii = 0, θij = 0, i 6= j; otherwise, one more such equation is satisfied,
and we return back to the first case. It is easy to see that any choice of the third
equation either returns the situation back to the first case or implies that θi′i′ =
θi′j′ =: θ > 0, where s′ = 1, 2 is the integer different from s = 1, 2. In the
latter case, the left- and right-hand sides of (9.5.37) equal θ(ci′i′ + ci′j′) and
θ(ri′i′ + ri′j′), respectively. Here we deal with the sums over a common row
or column of the matrices C and R. So (9.5.37) contradicts one of the first four
inequalities from (9.5.32).

• Only one equation is the form θij = 0. Since the systems (9.5.32) and (9.5.38)
and inequality (9.5.37) are invariant under arbitrary change of the indices i 7→
i′, j 7→ j′, it suffices to consider a particular equation θij = 0, say θ11 = 0. The
other two equations may be only θ12 = θ11 + θ22, θ21 = θ11 + θ22: Otherwise,
one more variable θij vanishes, and we return back the the second case. It follows
that θ22 = θ12 = θ21 =: θ > 0. So (9.5.37) takes the form θ(c22 + c12 + c21) <
θ(r22 + r12 + r21), in violation of the sixth inequality from (9.5.32).

• There is no equation in the form θij = 0. The equations describing the extreme
ray encompass either the group θ11 = θ21 + θ12, θ22 = θ21 + θ12 or the group
θ12 = θ11 + θ22, θ21 = θ11 + θ22. In the first case, θ11 = θ22. Then depend-
ing on the third equation, which necessarily belongs to the second group, either
θ12 = 2θ11 or θ21 = 2θ11. Since θij ≥ 0 on the extreme ray, this contradicts the
equations of the first group. The second case is considered likewise. Thus we see
that no extreme ray is described in the way under consideration.

Thus (9.5.32) does describe admissible stationary continuous fluid flows through the
network from Fig. 9.27.
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Step 2. Now we revert to the general case, where the central flows are not neces-
sarily zero (see Fig. 9.26). The idea is to split these flows

rbi = r′bi + r′′bi, r′bi, r
′′
bi ≥ 0 (9.5.39)

into subflows r′bi, r
′′
bi to the nodes S1 and S2, respectively. At these nodes, these sub-

flows are added to the main flows from these nodes to the corresponding recipients:

r11 := r11 + r′b1, r12 := r12 + r′b2, r21 := r21 + r′′b1, r22 := r22 + r′′b2.

By making these substitutions in (9.5.32), we get the conditions under which the
static flow can be accommodated by the network from Fig. 9.26:

r11 + r12 + r′b1 + r′b2 ≤ c11 + c12, r21 + r22 + r′′b1 + r′′b2 ≤ c21 + c22;

r11 + r21 + rb1 ≤ c11 + c21, r12 + r22 + rb2 ≤ c12 + c22;

r11 + r12 + r21 + rb1 + r′b2 ≤ c11 + c12 + c21;

r22 + r12 + r21 + rb2 + r′′b1 ≤ c22 + c12 + c21;

r11 + r22 + r12 + rb2 + r′b1 ≤ c11 + c22 + c12;

r11 + r22 + r21 + rb1 + r′′b2 ≤ c11 + c22 + c21. (9.5.40)

Thus it should be shown that whenever (9.5.31) holds, the central flows can be de-
composed (9.5.39) in such a way that (9.5.40) is true. The conditions imposed by
(9.5.39) and the four last relations from (9.5.40) are equivalent to

max
{

0; r22 + r12 + r21 + rb2 + rb1 − c22 − c12 − c21
}
≤ r′b1

≤ min
{
rb1; c11 + c22 + c12 − r11 − r22 − r12 − rb2

}
;

max
{
0; r11 + r22 + r21 + rb1 + rb2 − c11 − c22 − c21

}
≤ r′b2

≤ min
{
rb2; c11 + c12 + c21 − r11 − r12 − r21 − rb1

}
.

Here in both chains of inequalities, the starting term does not exceed the terminal
one due to (9.5.31). So it should be checked that the last system of inequalities has a
solution r′b1, r

′
b2 common with the first two inequalities from (9.5.40):

r21 + r22 + rb1 + rb2 − c21 − c22 ≤ r′b1 + r′b2 ≤ c11 + c12 − r11 − r12.

This holds if and only if
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max
{

0; r22 + r12 + r21 + rb2 + rb1 − c22 − c12 − c21
}

+ max
{
0; r11 + r22 + r21 + rb1 + rb2 − c11 − c22 − c21

}

≤ c11 + c12 − r11 − r12 and

r21 + r22 + rb1 + rb2 − c21 − c22
≤ min

{
rb1; c11 + c22 + c12 − r11 − r22 − r12 − rb2

}

+ min
{
rb2; c11 + c12 + c21 − r11 − r12 − r21 − rb1

}
.

At the same time, it is easy to check that these inequalities follow from (9.5.31). This
completes the proof of the sufficiency part.

Necessity. Let r be an achievable rate vector. By Definition 9.4.17 (on p. 298),
for any ε > 0, an errorless networked block code with block length N and input
alphabets [1 : Fνi] (with elements yνi) exists such that

|rνi −N−1 log2 Fνi| < ε ∀ν = 1, 2, b, i = 1, 2.

According to Fig. 9.26, data about p = (y11, y12) are injected into the network
via the perfect channels S1 7→ A1 and S1 7→ A2 of the total capacity c11 + c12.
So if the total number of such pairs exceeds 2N(c11+c12), there are pairs that cannot
be distinguished from the information taken from the network. Hence F11 × F12 ≤
2N(c11+c12) and so

r11 + r12 ≤ N−1 [log2 F11 + log2 F12] + 2ε ≤ c11 + c12 + 2ε. (9.5.41)

Letting ε → 0 results in the first inequality from (9.5.31). The second one is estab-
lished likewise.

The third inequality is obtained via similar argument with focusing attention on
the node A1, where y11, y21, yb1 are correctly decoded, and noting that all data ac-
cessible at this node ultimately arrive via two channels S1 7→ A1 and S2 7→ A1 of
the total capacity c11 + c21. The fourth inequality is established likewise.

To justify the fifth inequality, we consider data transmission under the assumption
y22 ≡ 1, yb2 ≡ 1. Let Sji stand for the sequence of all messages received over the
channel Sj 7→ Ai since t = 0 until t = N − 1. As follows from Fig. 9.26,

y11 = Y11[S11, S21], y12 = Y12[S12, S22]
y21 = Y21[S11, S21]
yb1 = Yb1[S11, S21]

, S22 = S22[y21, yb1S11, S12, S21].

(We recall that capital script letters denote deterministic functions.) It follows that

S22 = S22 {Y21[S11, S21],Yb1[S11, S21], S11, S12, S21} ,
and hence (y11, y12, y21, yb1) is a function of (S11, S12, S21). The first sequence
ranges over the set of the size F11×F12×F21×Fb1, whereas the second one belongs
to a set of the size≤ 2N(c11+c12+c21). ThusF11×F12×F21×Fb1 ≤ 2N(c11+c12+c21),
which results in the fifth inequality from (9.5.31).

The remaining inequalities are established likewise. ⊓⊔
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Two Independent Agents

Up to this point, it was assumed that any sensor is able to detect the actions of every
actuator. This implies four feedback tunnels in Fig. 9.25b (on p. 311). There also may
be the cases where only three or two such tunnels occur. (One tunnel and no tunnels
are impossible since the unstable plant is detectable and stabilizable by the entire sets
of sensors and actuators, respectively.)18 Now we consider the case of two feedback
tunnels, still assuming that the zones of influence of the actuators are disjoint. By
changing enumeration of the sensors, if necessary, this case can be reduced to the
situation where sensor Si detects the actions of only the matching actuator Ai. Then
the unstable subspace of the plant can be decomposed as follows:

Munst(A) = M1 ⊕M2, (9.5.42)

where

• Mi is the subspace of states controllable by the ith actuator, observable by the
ith sensor, and nonobservable by the companion sensor.

The observations are still transmitted via the network from Fig.9.25a.
The situation can be interpreted as if there are two independent agents with the

state spaces M1 and M2, respectively, each equipped with its own actuator and sen-
sor measuring the state of the owner. At first sight, it may seem that then the cross
channels S1 7→ A2 and S2 7→ A1 are useless, and the conditions for stabilizability
disintegrate into

log2 | detA|Mi | ≤ cii, i = 1, 2.

However, the next proposition shows that this is not the case, and the system can be
stabilized even if c11 = c22 = 0.

Proposition 9.5.18. Whenever the plant is stabilizable via the network at hand, the
following relations hold:

log2 | detA|M1 | ≤ c11+min{c12, c21}, log2 | detA|M2 | ≤ c22+min{c12, c21};
log2 | detA|Munst(A)| ≤ c11 + c22 + min{c12, c21}. (9.5.43)

Conversely, if relations (9.5.43) hold with the strict inequality signs, the plant is
regularly stabilizable.19

Proof of Proposition 9.5.18

By Corollary 9.5.13 (on p. 308), the proof is reduced to computation of the capac-

ity domain CD
[
PREFmw ⊞ CBE(NW) ⊞ SUFF

+

mw

]
with respect to the decompo-

sition (9.5.42). The control-based extension CBE(NW) is depicted in Fig. 9.28a.

18It is tacitly assumed that no actuator or sensor is useless for stabilization: L+c
i 6⊂

Mst(A), L−o
j 6⊃ Munst(A) ∀i, j.

19See Definition 9.4.2 (on p. 293).
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The reduced prefix PREFmw and suffix SUFF
+

mw contain two sources and output
nodes, respectively. The data from these sources and outputs at these nodes are as-
sociated with the subspaces from (9.5.42) and marked by the corresponding indices
yi. The components of the rate vectors r are enumerated similarly ri. The network

PREFmw ⊞ CBE(NW) ⊞ SUFF
+

mw is shown in Fig. 9.28b.

Fig. 9.28(a). Control-based extension. Fig. 9.28(b). The network with the pre-
fix and suffix.

Due to Corollary 9.5.13, it suffices to show that the capacity domain of this net-
work is described by the following set of inequalities:

r1 ≤ c11 + min{c12, c21}, r2 ≤ c22 + min{c12, c21};
r1 + r2 ≤ c11 + c22 + min{c12, c21}. (9.5.44)

Sufficiency. We are going to show that any vector r satisfying (9.5.44) is an achiev-
able rate vector. As before, this is reduced to showing that the network from
Fig. 9.28b is able to transmit simultaneously two continuous stationary fluid flows of
respective intensities yi ∼ ri, i = 1, 2. Consider the distribution

ri = r′i + r′′i , r′i, r
′′
i ≥ 0 (9.5.45)

of the input flows along the arcs of the network depicted in Fig. 9.29. The conditions
necessary and sufficient for the network to be able to accommodate the subflows are

r′1 ≤ c11, r′2 ≤ c22, r′′1 + r′′2 ≤ min{c12, c21}. (9.5.46)

Let us pick
r′i := min{cii, ri} and r′′i := ri − r′i.

Then (9.5.45) and the first two relations from (9.5.46) are true. The third one takes
the form

r1 −min{c11, r1}+ r2 −min{c22, r2}
= max{r1 − c11, 0}+ max{r2 − c22, 0} ≤ min{c12, c21}
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Fig. 9.29. Distribution of the flows.

and is immediate from (9.5.44).
Necessity. Let r be an achievable rate vector. By Definition 9.4.17 (on p. 298),

for any ε > 0, an errorless networked block code with block length N and input
alphabets [1 : Fi] (with elements yi) exists such that |ri − N−1 log2 Fi| < ε ∀i =
1, 2. Let Sji stand for the sequence of all messages received over the channel Sj 7→
Ai since t = 0 until t = N − 1. According to Fig. 9.28b,

S11 = S11[y1, S21], S12 = S12[y1, S21],
S21 = S21[y2, S12], S22 = S22[y2, S12],

y1 = Y1[S11, S21];
y2 = Y2[S12, S22].

Under the assumption y2 ≡ 1,

S12 = S12 [Y1[S11, S21], S21] =: S12[S11, S21], S21 = S21[1, S12] =: S21[S12].

Thus given S11, the sequences S12 and S21 are computable from each other. They
belong to sets of the sizes 2Nc12 and 2Nc21 , respectively. Hence every of them in fact
lies in a set of cardinality 2N min{c12,c21}. It follows that the pair [S11, S21] takes no
more than 2Nc11×2N min{c12,c21} values. Since y1 ∈ [1 : F1] is a function of this pair,
we arrive at the first relation from (9.5.44) by letting ε→ 0, just like in (9.5.41). The
second relation is established likewise by putting y1 ≡ 1 and considering arbitrary
y2 ∈ [1 : F2]. The third relation is justified by the same argument applied to arbitrary
yi ∈ [1 : Fi], i = 1, 2 by noting that then S12 and S21 are computable from each
other given both S11 and S22. ⊓⊔

Actuators with Identical Zones of Influence

In this case, the plant is stabilizable by any actuator (since the entire set of actuators
stabilizes it). We still suppose that no sensor is useless for stabilization: L−oj 6⊃
Munst(A). The unstable subspace is decomposed as follows:
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Munst(A) = M1 ⊕Mb ⊕M2, (9.5.47)

where

• Mj, j 6= b is the subspace of states observable by the jth sensor and nonobserv-
able by the companion sensor;

• Mb is the subspace of states observable by both sensors.

Proposition 9.5.19. Whenever the plant is stabilizable via the network at hand, the
following relations hold:

log2 | detA|M1 | ≤ c11 + c12, log2 | detA|M2 | ≤ c21 + c22;

log2 | detA|Munst(A)| ≤ c11 + c22 + c12 + c21. (9.5.48)

Conversely, if relations (9.5.48) hold with the strict inequality signs, the plant is
regularly stabilizable.20

Proof of Proposition 9.5.19

Now there are four feedback tunnels, and the control-based extension of the network
is depicted in Fig. 9.25b (on p. 311). We are going to employ Corollary 9.5.12 (on
p. 307) related to the decomposition (9.5.47).

Sufficiency. Let (9.5.48) be true with the strict inequality signs. To prove stabiliz-
ability, it suffices to show that a′) of Corollary 9.5.12 (on p. 307) holds. In service of
the data transmission scheme Tmw (see p. 307), the network PREFmw ⊞ CBE(NW)
from a′) is depicted in Fig. 9.26 (on p. 313). So the capacity domain CD

[
PREFmw ⊞

CBE(NW)�Tmw
]

is described by (9.5.31). So it suffices to show that the numbers
ri := log2 | detA|Mi |, rb := log2 | detA|Mb | can be decomposed

ri := ri1 + ri2, ri1, ri2 ≥ 0, i = 1, 2, b (9.5.49)

into addends satisfying (9.5.31) with the strict inequality signs. Note that the initial
assumption of this part of the proof means that

r1 ≤ c11 + c12, r2 ≤ c21 + c22, r1 + r2 + rb ≤ c11 + c22 + c12 + c21, (9.5.50)

where all signs are strict. However, it suffices to show that (9.5.50) implies (9.5.31)
in the case of nonstrict inequalities. (Then the claim for the strict inequalities follows
by a small perturbation of cij’s.)

We decompose r1 and r2 as follows:

r11 := min{r1; c11}, r12 := max{0; r1 − c11};
r21 := max{0; r2 − c22}, r22 := min{r2; c22}. (9.5.51)

This is a decomposition indeed since

20See Definition 9.4.2 (on p. 293).
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ri1+ri2 = min{ri; cii}+max{0; ri−cii} = min{ri; cii}+ri+max{−ri;−cii}
= min{ri; cii}+ ri −min{ri; cii} = ri.

Thanks to (9.5.49), the first two inequalities in (9.5.31) and (9.5.50) are identical. We
rewrite the remaining inequalities from (9.5.31) as conditions on rb1 and rb2:

0 ≤ rb1 ≤ min
{
c11 + c21 − r11 − r21;

c11 + c12 + c21 − r11 − r12 − r21;
c11 + c22 + c21 − r11 − r22 − r21

}
;

0 ≤ rb2 ≤ min
{
c12 + c22 − r12 − r22;

c22 + c12 + c21 − r22 − r12 − r21;
c11 + c22 + c12 − r11 − r22 − r12

}
.

Here the expressions on the right are non-negative, since due to (9.5.51),

rii ≤ cii, r12 := max{0; r1 − c11}
(9.5.50)
≤ max{0; c11 + c12 − c11} = c12;

and r21 ≤ c21 (9.5.52)

by the similar argument. It follows that rb can be decomposed into rb1 and rb2 so
that the remaining inequalities from (9.5.31) are satisfied if and only if

rb ≤ min
{
c11 + c21 − r11 − r21;

c11 + c12 + c21 − r1 − r21;
c11 + c22 + c21 − r11 − r2

}

+ min
{
c12 + c22 − r12 − r22;

c22 + c12 + c21 − r2 − r12;
c11 + c22 + c12 − r1 − r22

}
.

Thus it should be shown that rb does not exceed any sum of the form Pi+Qj, i, j =
1, 2, 3, where Pi andQi is the ith expression in the first and second min, respectively.

• For i = j = 1, the inequality rb ≤ Pi + Qj is a reformulation of the third
inequality in (9.5.50).

• For i = j = 2, 3, the inequality results from estimating r with the double index
by (9.5.52) and the third inequality in (9.5.50).
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• In any sum of the form P1 +Qj or Q1 + Pj with j ≥ 2, there are three r’s with
double indices. The sum of two of them equals either r1 or r2. The inequality
results from estimating the remaining r with the double index by (9.5.52) and the
third inequality in (9.5.50).

• P2 +Q3 = c11 + c12 + c21 − r1 − r21 + c11 + c22 + c12 − r1 − r22
[
c11 + c12 − r1

]
+
[
c11 + c22 + c12 + c21 − r1 − r2

] (9.5.50)
≥ rb.

• The sum P3 +Q2 is estimated likewise. ⊓⊔
Necessity. Suppose that the plant is stabilizable via the network at hand. By

d′) of Corollary 9.5.12 (on p. 307), it suffices to show that the capacity domain
CD
[
PREFmw ⊞ CBE(NW) ⊞ SUFF

+

mw

]
related to the decomposition (9.5.47) lies

in the set described by (9.5.50). The concerned network is depicted in Fig. 9.30. The
first inequality in (9.5.50) holds since the data stream with the rate r1 is injected into
the network via the perfect channels S1 7→ A1 and S1 7→ A2 of the total capacity
c11 +c12. The second inequality is established likewise. The third one holds since all
input data are correctly decoded from the messages received by A1 and A2 over four
channels from Fig. 9.25a (on p. 311) of the total capacity c11 + c12 + c21 + c22. ⊓⊔

Fig. 9.30. PREFmw ⊞ CBE(NW) ⊞ SUFF
+
mw.

Remark 9.5.20. It follows that in the last example, the three domains from (9.5.22)
(on p. 305) are identical, although the actuators have intersecting zones of influence.
This also implies that (9.4.14) (on p. 298) holds with = substituted in place of ⊂.

Remark 9.5.21. The general situation in the case of four feedback tunnels, as well as
the case of three tunnels can be considered likewise.

9.6 Proof of the Necessity Part of Theorem 9.4.27

In this section, we prove the c) ⇒ d) part of this theorem stated on p. 300. So we
assume that c) holds; i.e., a control strategy A ∈ A exists that makes the closed-loop
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system stable. To justify d), this strategy will be transformed into a data processing
strategy for the modified network, which ensures an errorless communication of data
from multiple informants at the rates close to those from (9.4.15) (on p. 300). In
doing so, we consider the closed-loop system with no noises and initial state x0 with
zero stable modes:

ξ(t) ≡ 0, χj(t) ≡ 0, x0
α = 0 whenever α ≤ 0. (9.6.1)

9.6.1 Plan on the Proof

The above transformation will be via three steps.

Step 1) We consider the network PREFmw ⊞ CBE(NW) (see Fig. 9.31) assuming
that

i) Its sources (associated with unstable modes xα) produce constant mes-
sages yα(t) ≡ x0

α, which are the modes of the initial state x0;
ii) The outputs of PREFmw ⊞ CBE(NW) are controls ui(t), like in NW.

Fig. 9.31. Intermediate network.

We show that PREFmw ⊞ CBE(NW) can be endowed with an admissible
data processing strategy, which at any time t generates just the same controls
as NW produces in the closed-loop interconnection with the plant.

Step 2) We consider the network PREFmw⊞CBE(NW)⊞SUFFmw (see Fig. 9.19 on
p. 297) assuming that i) still holds and the output nodes (associated with un-
stable modes xα) produce estimates x̂α(t) of the current diagonalized modes
xdα(t) related to the open-loop plant (ui ≡ 0). We show that this network can
be endowed with an admissible data processing strategy for which the esti-
mation error grows no faster than polynomially as time progresses.

Explanation 9.6.1. For the open-loop plant, the diagonalized unstable mode
xdα(t) is defined to be



9.6 Proof of the Necessity Part of Theorem 9.4.27 325

xdα(t) :=↾λα ↿t x0
α, where ↾λ↿:=

{
λ if λ is real

|λ| otherwise
. (9.6.2)

Whenever the unstable eigenvalues are real and distinct, these modes are
identical to the ordinary ones xdα(t) ≡ x0

α(t), where x0(t) := Atx0.

Step 3) We convert this strategy into an errorless networked block code (for the net-
work from d) on p. 300) with the rate vector arbitrarily close to that from
d).

After this, the proof of d) is completed by Definition 9.4.17 (on p. 298).

9.6.2 Step 1: Network Converting the Initial State into the Controls

The network NW1 := PREFmw ⊞ CBE(NW) consists of

• The interior part of the original network NW;
• The sources of NW1 associated with the unstable modes xα;
• The output actuator nodes of the original network;
• The input sensor nodes of the original network.

By Assumption 9.3.4 (on p. 285), operation algorithms for all these parts can be
chosen separately. Specifically, we pick them as follows.

For the interior part of the original network NW, the algorithm of data pro-
cessing is kept unchanged as compared with the original network NW.

Every source of NW1 constantly produces the mode value x0
α. Thus all related

sensor nodes of NW (given by (9.4.9) on p. 295) become aware of x0
α.

Observation 9.6.2. As follows from ii) of Assumption 9.4.6 and (9.4.5), (9.4.8),
(9.4.9), and (9.6.1) (on pp. 293–295, and 324), the jth sensor node does not receive
only the modes that are ignored by this sensor.

In other words, let x0
j be the vector of the data received by the jth sensor node from

all sources of NW1. This vector has the form (9.4.8) (on p. 295), where all missing
data are replaced by zeros and all received modes are put in the proper places. Then

CjA
tx0 = CjA

tx0
j ∀t = 0, 1, . . . . (9.6.3)

For every output node of the original network, the algorithm is kept un-
changed with respect to the memory update, the outer output (control ui(t)), and
the signal emitted into the original NW. Furthermore, the current control is emitted
into all feedback tunnels (see Fig. 9.17b on p. 292) outgoing from this node.21

For every input node of the original network, the incoming data flows are like
in the original network NW minus the former outer input yj(t) but plus x0

j and data
received over the feedback tunnels. Via these tunnels, the node receives ui with the
delay di→j for any i : (i, j) ∈ CVP, where CVP and di→j are given by (9.4.6) and

21This can be accomplished since the tunnel alphabet has the maximal possible cardinality.
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(9.4.7) (on p. 294), respectively. The idea is to design a data processing algorithm so
that despite the changes in the incoming data, the output produced by this node and
its memory do not change as compared with NW. To this end, it suffices to compute
yj(t) from the available data.

This is possible since

yj(t)
(9.4.1), (9.4.2), (9.6.1)
========== CjA

tx0 +
t−1∑

θ=0

l∑

i=1

CjA
t−1−θBiui(θ)

(9.4.5), (9.4.6)
======= CjA

tx0 +
∑

i:(i,j)∈CVP

t−1∑

θ=0

CjA
t−1−θBiui(θ)

(9.4.7), (9.6.3)
====== CjA

tx0
j + Cj


 ∑

i:(i,j)∈CVP

t−di→j∑

θ=0

At−1−θBiui(θ)


 . (9.6.4)

Remark 9.6.3. More formally, the memory of the node is reorganized to encompass
the former one and accommodate two vectors x0

j (t), x
u
j (t) ∈ Rdim(x). Initially,

x0
j (0) := x0

j , x
u
j (0) := 0. These vectors are updated recursively:

x0
j (t+1) := Ax0

j (t), xuj (t+1) := Axuj (t)+
∑

i:(i,j)∈CVP

Adi→j−1Biui(t+1−di→j),

where ui(θ) := 0 ∀θ < 0. The contentmj of the former memory and the node output
are generated by the former rules (9.3.4) (on p. 286). To accomplish this, the former
external input is computed in correspondence with (9.6.4)

yj(t) := Cj [x
0
j (t) + xuj (t)].

Thus the data processing strategy for the network PREFmw ⊞CBE(NW) is com-
pletely defined. Its properties are described by the following.

Lemma 9.6.4. Whenever (9.6.1) holds, the process in the original network NW is
coherent with that in PREFmw ⊞ CBE(NW). Specifically, the controls ui(t) are the
same, and both networks produce equal time sequences of variables related to the
interior part O−, I−,M− and any contact node Ih, Oh,mh of the original network.

Proof. The proof is by merely checking via the induction on t. ⊓⊔

9.6.3 Step 2: Networked Estimator of the Open-Loop Plant Modes

Preliminaries. We start with an explicit formula giving the relation between the
initial state x0 and the diagonalized unstable modes (9.6.2). In the case where the
unstable eigenvalues are real and distinct, this relation is trivial xdα(t) = [Atx0]α.
Here [x]α is the corresponding coordinate from the representation (9.4.8) (on p. 295)
of the vector x. So the following lemma is of interest only if this case does not hold.
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Lemma 9.6.5. Put n := dim(x). An n×n-matrixW exists such that [(WA)tx0]α =
xdα(t) ∀α ∈ [1 : n+], the spectrum of W is a subset of the unit circle {λ ∈ C : |λ| =
1} of the complex plane, WA = AW , and any subspace Mν from Assumption 9.4.6
(on p. 294) is W -invariant.

Proof. It suffices to define the linear operator W by putting

Wx :=↾ λν ↿ (A|Mν )
−1
x for x ∈Mν , ν = 1, . . . , g,

Wx := x for x ∈Mst(A). ⊓⊔

Data processing strategy for the network NW2 := PREFmw ⊞ CBE(NW) ⊞

SUFFmw should be designed so that its outputs (associated with unstable modes)
uα(t) =: x̂α(t) track the diagonalized open-loop modes (9.6.2).

This network includes that NW1 considered at Step 1: NW2 = NW1⊞SUFFmw.
However, the output nodes of NW1 (associated with actuators and producing controls
ui) are inner for NW2 and thus produce no outer outputs for NW2.

Within the NW1 part of NW2, the data processing strategy is inherited from
Step 1 with adding the following extra operations at the actuator nodes.

For any actuator node, the memory is reorganized to include the former onemi

and accommodate a vector xu,i ∈ Rdim(x) updated recursively by the rule

xu,i(t+ 1) = WAxu,i(t)−W t+1Biui(t), xu,i(0) = 0. (9.6.5)

The vector xu,i(t) is decomposed into modes in accordance with (9.4.8) (on p. 295).
Into every additive channel (from SUFFmw) that concerns this node, the correspond-
ing mode xu,iα (t) is emitted. (By the definition of SUFFmw, these channels are enu-
merated by α such that i ∈ Imw→α, where Imw→α is given by (9.4.10) on p. 296.)

The output node of NW2 associated with the mode xα merely emits the signal
received over the attached additive channel (from SUFFmw) as its outer output x̂α(t).

Thus the data processing strategy for the network NW2 is completely defined. Its
properties are described by the following.

Lemma 9.6.6. Whenever (9.6.1) holds, the outputs x̂α(t) of NW2 track the diago-
nalized open-loop unstable modes with errors of polynomial growths in time:

sup
|x0

1|≤Dx,...,|x0
n+ |≤Dx

∣∣↾λα ↿t x0
α − x̂α(t)

∣∣ ≤ cαtsα ∀ t ≥ 0, α ≥ 1, (9.6.6)

where Dx is the constant from (9.4.3) (on p. 292)

Explanation 9.6.7. Here and throughout the section, we employ the norm of a vector
‖x‖ := maxα |xα|, where xα are taken from the representation (9.4.8) (on p. 295),
and the related matrix norm ‖M‖ := max‖x‖=1 ‖Mx‖. The estimates (9.4.3) (on
p. 292) on the plant noises and initial state remain true for this norm with, maybe,
increased upper bounds.
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Proof of Lemma 9.6.6. By Assumption 9.4.6 and (9.4.5) and (9.4.10) (on pp. 293
and 296), the mode xα(t) is not influenced by controls ui with i 6∈ Imw→α. Moreover,
this property extends on [W tx(t)]α due to ii) of Assumption 9.4.6 and the last claim
from Lemma 9.6.5. So

[W tx(t)]α
(9.4.1)
=== [W tAtx0]α +


 ∑

i∈Imw
→α

t−1∑

θ=0

W tAt−1−θBiui(θ)



α

Lemma 9.6.5
======

=↾λα ↿t x0
α +

∑

i∈Imw
→α

[
t−1∑

θ=0

(WA)t−1−θW θ+1Biui(θ)

]

α

(9.6.5)
===↾λα ↿t x0

α −
∑

i∈Imw
→α

xu,iα (t) =↾λα ↿t x0
α − x̂α(t), (9.6.7)

where the last equality follows from the definition of SUFFmw. So
∣∣↾λα ↿t x0

α − x̂α(t)
∣∣ ≤ ‖W t‖‖x(t)‖.

The proof is completed by noting that ‖x(t)‖ is bounded by (9.4.4) (on p. 292),
whereas ‖W t‖ is of a polynomial growth since the spectrum of W is a subset of the
unit circle (see, e.g., [213]). ⊓⊔

Remark 9.6.8. As follows from the proof, the error is bounded, i.e., sα = 0 in (9.6.6)
whenever the geometric and algebraic multiplicities of the eigenvalue λα are equal.

The next observation is required to prove Remark 9.4.28 (on p. 300) and is not
used elsewhere.

Observation 9.6.9. Suppose that the operations (9.6.5) at the actuator nodes are
altered as follows:

xu,i(t+ 1) = Axu,i(t)−Biui(t), xu,i(0) = 0.

Then the arguments from the proof of Lemma 9.6.6 show that

Atx0 −

∑

i∈Imw
→α

xu,i(t)



α

∈ [−D∞, D∞] ∀α, t,

where D∞ denotes the supremum (9.4.4) (on p. 292).

Modified strategy for the network NW2. The rate vector from d) of Theo-
rem 9.4.27 assumes that the communication within any informant–recipient pair re-
lated to a mode xα with |λα| = 1 is at the zero rate. By Definition 9.4.15 (on p. 297),
this is ensured by any strategy serving the constant output 1 at the source ∼ xα.

Now we modify the strategy to make x̂α(t) ≡ 1 for α : |λα| = 1. To this end,
the signal emitted from any actuator node i ∈ Imw→α to the aditive channel coming to
the output node∼ xα is changed into |Imw→α|−1. Note that this keeps (9.6.6) true.
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9.6.4 Step 3: Completion of the Proof of c) ⇒ d) Part of Theorem 9.4.27

Now we convert the modified data processing algorithm introduced at Step 2 into
a networked block code hosted by the network NW3 = PREFmw ⊞ CBE(NW) ⊞

SUFFq
mw. It differs from that NW2 = PREFmw ⊞CBE(NW)⊞SUFFmw considered

at Step 2 only by the suffix. The conversion will be via

• altering the data produced by the sources,
• changing the algorithms at the actuator nodes of NW,
• altering the algorithms at the output nodes of SUFFmw.

To start the conversion, we pick a time τ ≥ 1, which determines the length τ + 1 of
the networked block code to be constructed.

Change of data from the sources. The new signal yα(t) from the source ∼
xα is chosen as an integer yα(t) ≡ yα ∈ [1 : Fα] to meet the requirements of
Definition 9.4.15 (on p. 297). Here Fα := 1 if |λα| = 1, and otherwise, Fα :=
⌊(|λα| − κα)τ ⌋, where 0 < κα < |λα| − 1,κα ≈ 0. If |λα| = 1, we set κα := 0.
When getting the signals yα ∈ [1 : Fα], the sensor nodes of NW convert them
into the inputs x0

α(yα) := yα(|λα| − κα)−τDx ≤ Dx acceptable by NW2. Then
these inputs are processed in accordance with the modified strategy of NW2 with the
following alterations at the output nodes.

At the ith actuator node of NW, the signal emitted into the additive channel to
any output node ∼ xα with |λα| > 1 is amplified via multiplying by

(
|λα| − κα

)τ
× ↾λα ↿−τ D−1

x . This changes the output x̂α(t) of this output node:

original [x̂α(t)] = new [x̂α(t)]×
(

↾λα ↿

|λα| − κα

)τ
Dx. (9.6.8)

For any output node ∼ xα the algorithm is altered in accordance with the defi-
nition of SUFFq

mw. In other words, the output uα(t) of NW3 is obtained by projecting
the output x̂α(t) of NW2 into the nearest integer (with producing the “no decision”
output ⊛ if x̂α(t)− 1/2 is integer).

By the definition of the modified strategy for NW2, this ensures correct recogni-
tion uα(τ) = 1 of the input message 1 if |λα| = 1. The same is true if |λα| > 1 and
τ is large enough. Indeed, by invoking (9.6.6) and (9.6.8), we have

∣∣∣∣↾λα ↿τ x0
α(yα)− x̂α(τ) ×

(
↾λα ↿

|λα| − κα

)τ
Dx

∣∣∣∣ ≤ cατsα .

With regard to the definition of x0
α(yα), this implies that

|yα − x̂α(τ)| ≤ cατ
sα

Dx
×
( |λα| − κα

|λα|

)τ
→ 0 as τ →∞.

Thus for all sufficiently large τ the right-hand side of the last inequality is less than
1/2. So the projection uα(τ) of x̂α(τ) into the nearest integer equals yα. This means
that NW3 considered on [0 : τ ] is an errorless networked block code. Thus we see
that the rate vector of this code
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col
(

log2⌊(|λ1| − κ1)
τ⌋

τ + 1
, . . . ,

log2⌊(|λn+ | − κn+)τ ⌋
τ + 1

)

τ→∞−−−−→ col (log2[|λ1| − κ1], . . . , log2[|λn+ | − κn+ ]) .

Letting κα → 0 whenever |λα| > 1 and taking into account Definition 9.4.17 (on
p. 298) completes the proof of d) from Theorem 9.4.27 (on p. 300). ⊓⊔

9.7 Proof of the Sufficiency Part of Theorem 9.4.27

Now we prove the a)⇒ b) part of this theorem stated on p. 300. So we assume that
(9.6.1) (on p. 324) does not hold any longer and a) is true. The latter means that there
is a networked block code BC hosted by PREFmw ⊞ CBE(NW) ⊞ SUFFq

mw whose
rate vector (9.4.13) (on p. 298)22 dominates the vector (9.4.15) (on p. 300)

log2 Fα
N + 1

> log2 |λα|+ δ ∀α = 1, . . . , n+, where δ > 0. (9.7.1)

To stabilize the system, this code will be used to communicate data from the sen-
sors to actuators. The code accepts only discrete data, which every sensor should ex-
tract from its own measurements. Moreover the definition of PREFmw (see Fig. 9.18a
on p. 296) assumes that the transmission by means of the block code is successful
only if all sensors observing a given unstable mode xα extract identical discrete data
about xα.

Is this possible in the case of independent sensor noises? This question is ad-
dressed in Subsect. 9.7.1. We show that the answer is in the negative if there is no
information exchange between the sensors. However it is reversed to the affirmative
if at least one of the above sensors is able to communicate 2 bits of information to the
others. In Subsect. 9.7.2, we show that the last possibility does occur and is ensured
by the very existence of the block code BC with the mentioned properties. The main
of them is that the rate vector has nonzero entries.

Subsection 9.7.3 offers a stabilizing control strategy hosted by the network
control-based extension CBE(NW). We recall that CBE(NW) is an artificially con-
structed network, which includes the real one NW but also contains imaginary chan-
nels (the feedback tunnels). These channels are not real beings but symbols to express
the possibility to communicate data by means of control (see Subsect. 7.8.1 starting
on p. 233). In concluding Subsect. 9.7.4, this possibility is explicitly employed, and
the stabilizing strategy is converted into one hosted by the real network NW, which
completes the proof of b).

9.7.1 Synchronized Quantization of Signals from Independent Noisy Sensors

To highlight the ideas, we start with a simplified situation. It deals with several sen-
sors observing yj = x+ χj a common scalar signal x ∈ R with independent noises

22In this section, N stands for the termination time of BC, which length is thus N + 1.
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|χj | ≤ Dy
j , D

y
j > 0. (With a slight abuse, we employ the notations from the stabiliza-

tion problem statement in the new but coherent senses.) We show first that when act-
ing independently, the sensors cannot generate common quantized data Qj(yj) ∈ Q,
where Q is a finite set.23

Lemma 9.7.1. Whenever j′ 6= j′′ and Qj′(x + χj′ ) = Qj′′(x + χj′′) for all x and
χj′ , χj′′ within the noise bounds |χj| ≤ Dy

j , j = j′, j′′, both quantizers assume
only a single value: Qj(x) ≡ q ∀x, j = j′, j′′.

Proof. By picking q such that Eqj′ := {x : Qj′ (x) = q} 6= ∅, we have Eqj′ +

[−Dy
j′ , D

y
j′ ] ⊂ E

q
j′ ⇒ Eqj′ = R⇒ Qj′ (x) ≡ q ≡ Qj′′(x) ∀x. ⊓⊔

Now we show that synchronized quantization is possible if one of the sensors
is able to communicate 2 bits of information to the others. Moreover, the common
quantized data may contain as much information as desired. To this end, we introduce

(Γ, d, F )-quantizer QΓ,d,F (y). Here y is the measurement and

• Γ gives the quantizer effective domain [−Γ, Γ ] (see p. 71);
• F determines the number of the quantizer levels;
• d ∈

(
0, F−1Γ

)
is the “thickness” of the boundary zone of any level set.

The interval [−Γ, Γ ] is partitioned into F subintervals ∆s :=
[
−Γ+2F−1Γs,−Γ+

2F−1Γ (s+ 1)
)

(∪{Γ} if s = F − 1), where s = 0, . . . , F − 1. Within any inter-
val ∆s, the central ∆0

s and two boundary zones ∆±s are introduced as is shown in
Fig. 9.32. If |y| ≤ Γ , the interval ∆s ∋ y is found and then the output q = QΓ,d,F (y)
is generated by the rule from Fig. 9.32. If |y| > Γ , the quantizer output is the alarm
symbol z.

Fig. 9.32. The zones of the quantizer level domain.

Observation 9.7.2. If |y − x| < d and |y| ≤ Γ , the quantized value q := QΓ,d,F (y)
gives the interval ∆x

q := ∪∆s of length 4Γ
F containing x. Here ∪ is over s from q.

By Lemma 9.7.1, two copies of this quantizer may transform the observations y1
and y2 of two independent noisy sensors into different outputs, even if y1, y2 ≈ x.
However if one of these sensors (say that fed by y1) is aware of 2-bit information

23More precisely, the only common data are trivial and carry 0 bits of information.
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about the companion measurement y2, it is able to generate exactly the output of the
companion quantizer. This information is given by β := β(y2), where

β(y) :=





− if y lies in the left boundary zone ∆−s
0 if y lies in the central zone ∆0

s

+ if y lies in the right boundary zone ∆+
s

z if y lies outside the effective domain [−Γ, Γ ]




. (9.7.2)

The above generation is accomplished via employing the following.
(Γ, d, F )-quantizer QΓ,d,F (y, β) with side data. For y from its effective domain

[−Γ, Γ ], this quantizer first determines ∆s ∋ y, as before, and proceeds as follows:

QΓ,d,F (y, β) :=





(s− 1, s) if





β = 0 or
β = − and y ∈ ∆−s ∪∆0

s or
β = + and y ∈ ∆−s





(s, s+ 1) if

{
β = − and y ∈ ∆+

s or
β = + and y ∈ ∆0

s ∪∆+
s

}

z if β = z or |y| > Γ

.

Lemma 9.7.3. If |yi− x| < d/2, |yi| ≤ Γ, i = 1, 2, and 2F−1Γ > 3d, the quantizer
with the side data β = β(y2) transforms y1 into the quantized value of y2; i.e.,

QΓ,d,F
[
y1, β(y2)

]
= QΓ,d,F (y2) =: q, and x ∈ ∆x

q .

Proof. Note that |y1 − y2| < d. Let β = 0; i.e., y2 ∈ ∆0
s′ for some s′. Since the

interval ∆s ∋ y1 is separated from any ∆0
s′ with s′ 6= s by a distance ≥ d, we have

s = s′ ⇒ q1 := QΓ,d,F
[
y1, β(y2)

]
= q2 := QΓ,d,F (y2).

Let β = −; i.e., y2 ∈ ∆−s′ . Since ∆−s ∪∆0
s is separated from ∆−s′ by a distance

≥ d for any s′ 6= s, we have

y1 ∈ ∆−s ∪∆0
s ⇒ s′ = s⇒ q1 = q2.

Since V
(
∆0
s

)
= 2F−1Γ−2d > d by the assumptions of the lemma, ∆+

s is separated
from ∆−s′ by a distance≥ d if s′ 6= s+1. Hence y1 ∈ ∆+

s ⇒ s′ = s+1⇒ q1 = q2.
The case β = + is considered likewise. Observation 9.7.2 yields x ∈ ∆x

q . ⊓⊔
Remark 9.7.4. For |y| ≤ Γ , the output q of both introduced quantizers is a pair (s−
1, s), where s = 0, . . . , F . From now on, we identify q with s; i.e., q = 0, . . . , F . The
center of the interval ∆x

q is then given by −Γ + 2ΓF q. This shapes the last inclusion
in Lemma 9.7.3 into ∣∣∣∣−Γ + 2

Γ

F
q − x

∣∣∣∣ ≤ 2F−1Γ. (9.7.3)

To meet the first requirement from Lemma 9.7.3, the parameter d should exceed
the doubled noise level Dy

j of all sensors. The third one is ensured by picking F :=⌊
2Γ
3d

⌋
− 1. Letting Γ →∞ makes the number of levels F + 1 arbitrarily large. Note

that the distortion 2F−1Γ ≈ 3d for Γ ≈ ∞.
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2

2) bits are required. Let them be distributed over the sensors so that only a group of
bj bits is dispatched from the jth sensor site, where

∑
j bj = b. If the quantized value

is common for all sensors, such a way of transmission does not alter the distortion.

It should be remarked that conversely, the distortion may drastically degrade if some
natural schemes of sensor cooperation in transmitting the bits of a common measured
signal are employed. We close the subsection with a corresponding example.

Example 9.7.6. Let the observations y1 = x+χ1, y2 = x from two sensors lie in the
interval [0, 1). The noise χ1 is small Dy

1 ≈ 0 but nonzero Dy
1 > 0. Let every sensor

represent its measurement in the binary form and retain only the first r = r1 + r2
bits on the right of the binary point and let the first and second sensors dispatch
the first r1 and the next r2 bits, respectively, to a remote recipient. It reconstructs
the measurement by gathering the bits and putting them on proper positions (see
Fig. 9.33).

Fig. 9.33. A natural cooperation of two sensors.

Before transmission, the discrepancy between the true and quantized values does
not exceed 2−r for the second sensor and 2−r+Dy

1(≈ 2−r ifDy
1 ≪ 2−r) for the first

one. In the case from Fig. 9.33, the discrepancy after transmission and reconstruction
≈ 2−r1 , which is 2r2 times worse than before the transmission.

Definition 9.7.7. A member of a group of sensors that is able to and does transmit
information to all other members of the group is called the master of this group.

9.7.2 Master for Sensors Observing a Given Unstable Mode

Now we revert to the sensors j from the stabilization problem setup. The group Jmw←α
of sensors able to observe (compute from their measurements with a bounded error)
a given unstable mode xα is described by (9.4.9) (on p. 295). Now we show that any
such group contains a master sensor jmα , which can transmit as much information as
desired to all other sensors from this group.

Remark 9.7.5. To communicate the quantized value to a remote location, b = log (F+
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In this subsection, we deal with transmissions via CBE(NW). It will be shown
in Subsect. 9.7.4 (starting on p. 348) that they can also be arranged via the original
network NW, provided that it interacts with the plant.

The transmissions of interest concern the network CBE(NW) modified as fol-
lows.

• All actuator nodes lose the status of output ones and are considered as inner. This
may be viewed as attaching the “void” suffix � to the network (see Fig. 9.34);

• All sensor nodes outside the group Jmw←α lose the status of input ones and are
considered as inner. The status of any node j ∈ Jmw←α \ {jmα } is reversed from
the input to output node. Thus there remains only one input node jmα getting
data from a single source. These operations can be interpreted as attaching the
master–slave prefix PREFαm-s (see Fig. 9.35).

Fig. 9.34(a). Control-based extension. Fig. 9.34(b). Attaching the void suffix.

Lemma 9.7.8. A choice of the master node jmα ∈ Jmw←α exists under which the net-
work PREFαm-s ⊞ CBE(NW) ⊞ � hosts an errorless block code broadcasting one
bit of information from the master jmα to all its slaves j ∈ Jmw←α, j 6= jmα . This block
code can be picked so that the initial memory contents of the network elements24 are
equal to those for the code BC mentioned at the beginning of the section (see p. 330).

Proof. The required block code for the network PREFαm-s ⊞ CBE(NW) ⊞ � will be
obtained via transformation of the block code BC. The latter is hosted by the network
PREFmw ⊞ CBE(NW) ⊞ SUFFq

mw and fed by external inputs yα′ ∈ [1 : Fα′ ].
LetN denote the length of BC, and oi→α(y1, . . . , yn+) the signal emitted by BC

at time N − 1 from the ith actuator node into the additive channel (from SUFFq
mw)

going to the output node∼ xα. This channel combines data from the actuator nodes

24Given by M0(A) in (9.3.2) (on p. 283).
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Fig. 9.35. Attaching the master-slave prefix.

i ∈ Imw→α described by (9.4.10) (on p. 296). Since the code BC is errorless, yα can be
recognized from the knowledge of

∑
i∈Imw
→α

oi→α(1, . . . 1, yα, 1, . . . , 1). So there is

an actuator i0 ∈ Imw→α for which the related addend is not constant in yα ∈ [1 : Fα].
Now we consider the operation of BC in the situation where yα′ := 1 for all

α′ 6= α. By Assumption 9.3.4 (on p. 285), the sensor nodes process data separately. It
follows that though the nodes j ∈ Jmw←α get a common input signal yα, they might op-
erate in the situation where each of them deals with its own input yjα. This would re-
sult in emitting a signal o

(
{yjα}j∈Jmw

←α

)
from the actuator node i0 into the above addi-

tive channel at timeN . It is clear that oi0→α(1, . . . 1, yα, 1, . . . , 1) = o
(
{yα}j∈Jmw

←α

)
.

Since the function on the left assumes at least two different values, so does o(·). It
follows that a sensor jmα ∈ Jmw←α and inputs yjα ∈ [1 : Fα] for all other sensors
j ∈ Jmw←α exist such that the function o

(
{yjα}j 6=jm

α
, {yα}j=jm

α

)
also assumes two

different values for yα = y
[1]
α , y

[2]
α ∈ [1 : Fα], respectively.

The desired block code hosted by the network PREFαm-s ⊞ CBE(NW) ⊞ � is
as follows. After the sensor node ∼ jmα accesses the single outer input µ = 1, 2 of
this network, the elements of CBE(NW) act until t = N − 1 just like they do in the
initial block code BC when processing yα′ := 1 ∀α′ 6= α, yjα ∀j ∈ Jmw←α \ {jmα },
and y

jm
α
α = y

[µ]
α . It follows from the foregoing that the actuator node i0 is able to

recognize the input µ at t = N . Since this node influences xα, it is linked with all
sensor nodes j ∈ Jmw←α observing xα by the feedback tunnels of CBE(NW) due to
Remark 9.4.14 (on p. 297). The value of µ is emitted into each of these feedback
tunnels except for that going to jmα . So µ will be received by all sensor nodes j ∈
Jmw←α after the delay d := max di0→j , where di0→j is the delay in the corresponding
tunnel and max is over all tunnels concerned. It remains to increase the block length
from N to N + d. ⊓⊔
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Corollary 9.7.9. For any natural b, the conclusion of Lemma 9.7.8 remains true if
“b bits” is substituted in place of “one bit” in its statement.

Indeed, the first bit may be transmitted by the block code from this lemma. Then the
network should be reset to the initial state, which is possible by Assumption 9.4.20
(on p. 298). Then by Assumption 9.4.22 (on p. 299), the block code can be employed
once more to transmit the second bit, and so on.

Being applied to the bits concerning different unstable modes xα, the same argu-
ment gives rise to the following.

Corollary 9.7.10. For any ensemble of naturals bα, α = 1, . . . , n+, there exists a
block code broadcasting without errors bα bits of information from the master sensor
node jmα to its slaves j ∈ Jmw←α, j 6= jmα for all α = 1, . . . , n+. This code can be
picked so that both initial and terminal states of the network equal the initial state
for the code BC mentioned at the beginning of the section (see p. 330).

Explanation 9.7.11. Formally, this corollary deals with the network that results from
CBE(NW) by attachment of the suffix � and the prefix PREFαm-s for all α. The
operations related to differentα’s do not overwrite each other: Their results are com-
bined.

9.7.3 Stabilization over the Control-Based Extension of the Original Network

Description of the Core Problem to be Solved

Modulo the discussions in Sects. 3.8 and 7.8 (starting on pp. 62 and 233), the core
problem in design of a stabilizing control strategy concerns the networked block
code BC mentioned at the beginning of this section. This code is what is given by a)
in the implication a)⇒ b) to be proved. So this code is the basement on which the
stabilizing control strategy should be constructed.

The core problem to be addressed further arises from the fact that this code
is a data processing algorithm for the artificially constructed network PREFmw ⊞

CBE(NW) ⊞ SUFFq
mw. Along with the real part NW, it includes imaginary chan-

nels, which do not exist in fact and serve only to explicitly express certain relations
or possibilities. These are as follows:

1. The channels from PREFmw broadcasting signals from imaginary informants;
2. The channels from SUFFq

mw communicating signals to imaginary recipients;
3. The feedback tunnels introduced to construct the control-based extension and to

explicitly express the possibility of data communication by means of control.

It should be demonstrated that everything required for stabilization and performed
by BC via these imaginary channels can be done by real means. Specifically,

• Data received via each channel from PREFmw and feedback tunnel can be ac-
cessed by the channel terminal element (sensor) in another and realistic way.

• The signals emitted from the actuator nodes into the imaginary channels from
SUFFq

mw should be used by actuators to generate controls.
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This objective will be achieved successively with respect to channels mentioned
in 1, 2, and 3. In this subsection, we deal with the first and second groups of channels.
The result will be a control strategy stabilizing the plant via CBE(NW). The channels
from the third group will be treated in the next subsection. This will result in the final
control strategy stabilizing the plant via the real network NW.

Outline of the Control Strategy Design

In design of the stabilizing strategy, we follow the lines of Sects. 3.8, 6.11, and 7.8.
Within this framework, the role of the block code BC is to communicate quantized
information about the unstable modes xα from the sensors to actuators within a mul-
tirate stabilization scheme. The latter means that the time horizon is partitioned into
operation epochs of equal duration r, and the major operations are performed only
at the beginning of every epoch. These operations result in the control program and
the quantized values of the modes x+

α of the state prognosis for the end of the epoch.
The program and the value are carried out and communicated, respectively, within
the forthcoming epoch. The role of BC is to serve this communication.

To make this possible, all sensors j ∈ Jmw←α observing the mode xα should com-
pute a common quantized value of the prognosis x+

α . In its turn, the latter is possible
if every sensor computes the prognosis with a bounded error depending on the sen-
sor, as was shown in Subsects. 9.7.1 and 9.7.2. We start with a technical discussion
aimed to show how this computation can be accomplished and with which error.

Prediction of the Values of Unstable Modes at the End of the Epoch

Now we revert to the plant equations (9.4.1) and increase the sample period up to r:

x[(θ + 1)r] = Arx[θr] + v(θ) + ζ(θ), v(θ) :=
l∑

i=1

vi(θ);

vi(θ) :=
r−1∑

t=0

Ar−1−tBiui[θr + t], ζ(θ) :=
r−1∑

t=0

Ar−1−tξ[θr + t]. (9.7.4)

Here vi and v express the action on the plant of, respectively, the ith and all control
programs applied during the θth epoch, and ζ accounts for the plant noise. We recall
that the operator [·]α extracts the αth coordinate from the vector (9.4.8) (on p. 295),
and ν = ν(α) indicates the group of coordinates from (9.4.8) containing xα.

To proceed, we adopt the following two temporary assumptions, which will be
ultimately ensured by the design of the control strategy.

Assumption 9.7.12. Put n := dim(x). During n − 1 concluding time steps of any
epoch, all controls are zero

ui(t) = 0 ∀t = rθ − n+ 1, . . . , rθ − 1, i = 1, . . . , l.
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Assumption 9.7.13. At the beginning θr of any epoch, all sensors j ∈ Jmw←α observ-
ing the mode xα have access to the quantities [vi(θ)]α from (9.7.4) expressing the
influence on this mode of all actuators i that do affect it. (In other words, i runs over
the set Imw→α given by (9.4.10) on p. 296.)

Then these sensors can predict xα[(θ+1)r] with bounded independent errors. Specif-
ically, the following claim holds.

Proposition 9.7.14. Suppose that Assumptions 9.7.12 and 9.7.13 hold. Then at the
start rθ of any epoch θ ≥ 1 any sensor j observing xα (i.e., j ∈ Jmw←α) can compute
an estimate x̂jα[(θ + 1)r] of xα[(θ + 1)r] with the exactness

∣∣x̂jα[(θ + 1)r] − xα[(θ + 1)r]
∣∣ ≤ ϕν(α)(r)|λ[ν(α)]|r, (9.7.5)

where ϕν(·) is a polynomial, and the notation λ[ν] is taken from (i) of Assump-
tion 9.4.6 (on p. 294).

To prove this claim, we note that by Assumption 9.4.6, xα is among the nonzero
components of the vectors from the A-invariant subspace Mν , ν = ν(α). The spec-
trum ofA|Mν lies in the circle of the radius |λ[ν]|. Hence for some polynomialψν(·),
we have [213] ∥∥∥[A|Mν ]t

∥∥∥ ≤ ψν(t)|λ[ν]|t ∀t = 0, 1, . . . . (9.7.6)

Explanation 9.7.15. Here and throughout the section, we employ the norm of a vec-
tor ‖x‖ := maxα |xα|, where xα are taken from the representation (9.4.8) (on
p. 295), and the related matrix norm ‖M‖ := max‖x‖=1 ‖Mx‖.

Remark 9.7.16. The estimates (9.4.3) (on p. 292) on the plant noises and initial state
remain true for this norm with, maybe, altered upper bounds.

Let x[ν] be the projection of x ∈ Rn onto Mν in correspondence with the de-
composition Rn = Mst(A)⊕⊕g

ν′=1Mν′ from Assumption 9.4.6 (on p. 294).
To prove Proposition 9.7.14, we first estimate the noise from (9.7.4).

Lemma 9.7.17. For any ν = 1, . . . , g, a polynomial φν(r) exists such that

‖ζ[ν](θ)‖ ≤ φν(r)|λ[ν]|r ∀θ, r. (9.7.7)

Proof. We have

∥∥ζ[ν](θ)
∥∥ (9.7.4)

===

∥∥∥∥∥

r−1∑

t=0

(A|Mν )
r−1−t

ξ[ν][θr + t]

∥∥∥∥∥
(9.4.3)
≤ D

r−1∑

t=0

∥∥∥(A|Mν )
r−1−t

∥∥∥

(9.7.6)
≤ D

r−1∑

t=0

ψν(t)|λ[ν]|t
|λ[ν]|≥1

≤ D|λ[ν]|r
r−1∑

t=0

ψν(t) ≤ |λ[ν]|rφν(r).

Here φν(r) is a polynomial in r, and the inequalities
∑r−1

t=0 t
k ≤ (k + 1)−1rk+1 are

employed to estimate the sum in the penultimate expression. ⊓⊔
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Proof of Proposition 9.7.14. By Assumption 9.4.6 (on p. 294), the subspacesMν′

are A-invariant, and the unobservable subspace of the jth sensor is the direct sum of
several Mν′’s. By applying the last remark from Explanation 7.7.4 (on p. 224) to
the operator A acting in the sum of the remaining Mν′’s and taking into account
Assumption 9.7.12, we see that proceeding from the observations yj(t), t = rθ −
n + 1, . . . , rθ, the jth sensor can compute an estimate x̂j[ν](rθ) of the current state
x[ν](rθ) (ν := ν(α)) with an error bounded by a constant c0 independent of r, j, α:

∥∥∥x̂j[ν](rθ) − x[ν](rθ)
∥∥∥ ≤ c0 ∀θ = 1, 2, . . . .

The prognosis for the end of the epoch is generated as follows:

x̂jα[(θ + 1)r] :=
[
(A|Mν )

r
x̂j[ν](rθ)

]
α

+
∑

i∈Imw
→α

[vi(θ)]α . (9.7.8)

Now we observe that

∣∣x̂jα[(θ + 1)r] − xα[(θ + 1)r]
∣∣ =

∣∣∣
[
(A|Mν )

r
x̂j[ν](rθ) + v[ν](θ) − x[ν][(θ + 1)r]

]
α

∣∣∣

≤
∥∥∥(A|Mν )r x̂j[ν](rθ) + v[ν](θ)− x[ν][(θ + 1)r]

∥∥∥
(9.7.4)
===

∥∥∥(A|Mν )
r
[
x̂j[ν](rθ) − x[ν](rθ)

]
− ζ[ν](θ)

∥∥∥

≤ ‖(A|Mν )
r‖
∥∥∥x̂j[ν](rθ) − x[ν](rθ)

∥∥∥ +
∥∥ζ[ν](θ)

∥∥

≤ c0 ‖(A|Mν )
r‖+

∥∥ζ[ν](θ)
∥∥ (9.7.6)
≤ c0ψν(r)|λ[ν]|r +

∥∥ζ[ν](θ)
∥∥ .

It remains to take into account (9.7.7). ⊓⊔

Description of the Control Strategy for CBE(NW)

We start with a partial description with the focus on the actions at the sensor nodes.

A) At the beginning of every epoch θ ≥ 1,
1) Any sensor j calculates the prognosis x̂jα[(θ+1)r] for any observed unstable

mode xα (i.e., such that j ∈ Jmw←α) from the measurements yj(t)|rθt=rθ−n+1;
2) For any unstable mode α, the corresponding master sensor node jmα applies

the (Γ, d, Fα − 1)-quantizer25 (see p. 331) to its prognosis, thus producing
the quantizer output qjα, j := jmα , and also calculates the companion 2-bits
side data (9.7.2);

25Here Fα is the parameter of the initial block code BC, i.e., the number of its xα-inputs.
By Remark 9.7.4, the (Γ, d, F )-quantizer produces F + 1 outputs to say nothing of z. Now
we convert z into 1, thus reducing the number of outputs to exactly F + 1. (This will be
commented in Explanation 9.7.18.) To meet the code rate capability, we pick F := Fα − 1.
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Fig. 9.36. Organization of the operation epoch with the focus on the sensors.

B) These side data are transmitted from every master to all its slaves by means of
the networked block code from Corollary 9.7.10 (where bα := 2 ∀α) during the
time interval of duration Nm→s;

C) After receiving the side data at time rθ +Nm→s, any slave sensor j applies the
(Γ, d, Fα− 1)-quantizer with side data (see p. 332) to the related prognosis, thus
producing the quantized value qjα;

D) The quantized data obtained by all sensor nodes are used to initiate the operation
of the networked block code BC from the beginning of the section (see p. 330),
which operates until t = rθ + Nm→s + N , where N + 1 is the length of the
code;

E) The operation epoch is concluded with a service interval of durationNserv (to be
specified further), during which auxiliary technical operations are carried out.
1) In particular, the network is reset to the initial state at the end (θ + 1)r of the

epoch so that the above operations can be recursively iterated.

Explanation 9.7.18.
• In Fig. 9.36, the controls are taken to be zero during concluding (n − 1) time

steps of the epoch to ensure Assumption 9.7.12.
• In A.1), the prognosis from Proposition 9.7.14 is computed. This is possible

thanks to Assumptions 9.7.12 and 9.7.13.
• In A.2) and C), the parameters Γ, d are taken common for all sensors and modes

to simplify the notations. Their choice will be discussed further.
• A given sensor may act as a master for one mode and a slave for some other one.
• As will be shown, the quantizer output z does not occur if the parametersΓ, d,N

are chosen properly. This output was yet taken into account and converted into
the form 1 acceptable by the block code for the sake of formal completeness of
presentation.

• D) is possible thanks to Assumption 9.4.22 (on p. 299), since the block code from
B) drives the network to the state initial for BC by Corollary 9.7.10.

• E.1) is possible due to Assumption 9.4.20 (on p. 298).

Remark 9.7.19. Let for all α, the assumptions of Lemma 9.7.3 (on p. 332) be satisfied
when the sensors j ∈ Jmw←α are interpreted as devices producing noisy observations
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x̂jα[(θ+1)r] of xα[(θ+1)r]. Then the slave sensors produce the quantized output qα
of the master: qjα = qα. So the common value qα appears at all nodes observing xα.
This is the situation under which the block code BC communicates data correctly.

To complete the description of the control strategy, it remains to specify the ac-
tions of the actuator nodes. To this end, we introduce the following.

Notation 9.7.20. When BC completes the data transmission at time θr+Nm→s+N
within the above scheme, every actuator node i generates a message to any affected
unstable mode xα (i.e., such that i ∈ Imw→α). This message is denoted by oi→α ∈ R.

Formerly, the signals oi→α with i ∈ Imw→α were emitted into the imaginary additive
channel going to the imaginary output node∼ xα. The output of this channel

∑

i∈Imw
→α

oi→α

was projected at the nearest integer to form the output of this node by the definition
of the mode-wise suffix with quantization (see p. 296). Under the assumption of
Remark 9.7.19, the last output equals qα. So the distance from the above sum to qα
does not exceed 1/2. With regard to (9.7.3), this gives rise to the inequality

∣∣∣∣∣∣
−Γ + 2

Γ

Fα − 1

∑

i∈Imw
→α

oi→α − xα[(θ + 1)r]

∣∣∣∣∣∣
≤ 3Γ

Fα − 1
.

Thus we arrive at the following.

Observation 9.7.21. Whenever the assumption of Remark 9.7.19 holds,
∣∣∣∣∣∣

∑

i∈Imw
→α

[
2Γ

Fα − 1
oi→α −

Γ

|Imw→α|

]
− xα[(θ + 1)r]

∣∣∣∣∣∣
≤ 3Γ

Fα − 1
. (9.7.9)

We do not consider any longer the imaginary additive channel into which the
message oi→α was emitted before. Now this message will be used by the ith actuator
node to produce the control program for the next operation epoch. To this end, this
message should be stored in the node memory until the start of the next epoch.

To specify the control, we denote by 〈x〉α the vector x given by (9.4.8), where
x is put at the position α and the remaining ones are filled by zeros. By (9.4.8) and
(9.4.10) (on pp. 295 and 296),

〈x〉α ∈ L+c
i ∀x whenever i ∈ Imw→α,

where L+c
i is the subspace of states controllable by the ith actuator.

We also pick a deadbeat stabilizer, i.e., a linear transformation

x ∈ L+c
i

Li7→ U = [ui(0), ui(1), . . . , ui(n− 1), 0, 0, . . .] (9.7.10)
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Fig. 9.37. Organization of the operation epoch with the focus on the actuators.

of the initial state x into a control program that drives the unperturbed (ξ(t) ≡ 0)
plant (9.4.1) (on p. 291) with all actuators except for the ith one switched off from x
at time t = 0 to 0 at time t = n.

Now we complete the description of the control strategy (see Fig. 9.37).

F) At the start θr of any epoch θ ≥ 2, any actuator node i generates the control
program Ui(θ) = col [ui(θr), . . . , ui(θr + r − 1)] to be carried out during this
epoch. The generation is via two steps.
1) For all affected unstable modes α : i ∈ Imw→α, the node produces the control

program Uα
i that in the absence of the noise ξ(·) ≡ 0 and actions of the

companion actuators ui′ ≡ 0 ∀i′ 6= i simultaneously drives
• this mode to 0 at time t = θr + n provided that it starts at t = θr at the

value given by the corresponding addend in (9.7.9);26

• All other modes (including the stable ones) from 0 to 0:

U
α
i (θ) := Li

{〈
2Γ

Fα − 1
oi→α −

Γ

|Imw→α|

〉

α

}
; (9.7.11)

2) The generated control programs are summed up over the affected modes:

Ui(θ) :=
∑

α:i∈Imw
→α

U α
i (θ). (9.7.12)

G) At time θr +Nm→s +N, θ ≥ 1 when the block code BC completes its service
for the current epoch, any actuator node i dispatches each of the newly gener-
ated signals oi→α to all sensor nodes j connected with i by feedback tunnels
of CBE(NW); i.e., such that (i, j) ∈ CVP, where CVP given by (9.4.6) (on
p. 294). All these signals will reach the destinations no more than d time units
later, where

d := max
(i,j)∈CVP

di→j

and di→j is the delay in the tunnel, which is given by (9.4.7) (on p. 294).

26Since oi→α is the signal generated within the previous epoch, now θ := θ − 1 in (9.7.9).
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H) At time θr+Nm→s+N+d after receiving these signals oi→α, any sensor node
j calculates the quantity [vi(θ+1)]α from Assumption 9.7.13 for the next epoch
for any observed unstable mode xα : j ∈ Jmw←α and every actuator i that does
influence this mode i ∈ Imw→α.27 This is accomplished via two steps:
1) The program U α

i (θ+1) = {uαi (τ)}τ≥0 is computed by duplicating (9.7.11);
2) In correspondence with (9.7.4),

[vi(θ + 1)]α :=

[
r−1∑

t=0

Ar−1−tBiu
α
i (t)

]

α

.

Explanation 9.7.22.
• H.1) is possible since the feedback tunnel connecting the concerned actuator and

sensor nodes does exist due to (9.4.12) (on p. 297) and has the alphabet of the
maximal possible cardinality 2ℵ0 .

• The initial control programs Uα
i (0),U α

i (1) are taken to be zero. The ensures
Assumption 9.7.13 for θ = 0, 1.

Note that A)–H) provide a complete description of a control strategy for the
control-based extension CBE(NW) of the primal network NW during an epoch.
Thanks to Assumption 9.4.26 (on p. 299), a periodic admissible strategy exists that
operates over the infinite horizon and behaves as was described during any epoch.

Remark 9.7.23. Thanks to F)–H), at the start of any epoch θr any sensor node j is
able to compute all control programs Ui(θ) that will affect its observations during
this epoch, i.e., such that (i, j) ∈ CVP, where CVP is given by (9.4.6) (on p. 294).

Remark 9.7.24. Due to (9.7.10)–(9.7.12), ui(t) = 0 for all t ∈ [θr + n : (θ + 1)r).
Hence Assumption 9.7.12 is satisfied if in Figs. 9.36 and 9.37

Nserv > d+ 2n, (9.7.13)

which is assumed to hold from now on.28

Observation 9.7.25. Assumptions 9.7.12 and 9.7.13 are necessarily fulfilled for the
control strategy A)–H).

This strategy depends of the quantizer parameters Γ, d, as well as the duration
Nserv of the service interval and the length N + 1 of of the primal block code BC.

Remark 9.7.26. The lengthN can be chosen arbitrarily large with keeping (9.7.1) (on
p. 330) true, whereas Nm→s and Nserv can be kept independent of N and bounded
Nserv ≤ N∗, respectively.

27We recall that [vi(θ + 1)]α is the position to which the mode will be driven at the end of
the next epoch from 0 at its start by the controls from the ith actuator if the plant noise is zero
and the other actuators are switched off.

28This inequality will also be commented on in Explanation 9.7.35 and Remark 9.7.36 (on
p. 352).
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This follows from Remark 9.5.7 (on p. 304) and (ii) from Assumption 9.4.20 (on
p. 298) provided that the block codes BC in Corollary 9.7.10 (on p. 336) and D) are
taken from the common sequence mentioned in (iii) of Lemma 9.5.6 (on p. 303).

Remark 9.7.27. We recall that ν = ν(α) is the serial number of the group of coor-
dinates from (9.4.8) (on p. 295) containing xα, and λα = λ[ν(α)]. So in (9.7.1) (on
p. 330), the right hand side does not change as α ranges so that ν = ν(α) is kept
constant. So without any loss of generality, it can be assumed that the left-hand sides
of (9.7.1) are also common for such α’s:

Fα = Fν whenever ν(α) = ν. (9.7.14)

We close this subsection with the conditions under which the proposed strategy
stabilizes the plant.

Proposition 9.7.28. Suppose that for any ν ∈ [1 : g], the following inequalities hold:

2(Fν − 1)−1Γ > 3d, ϕν(r)|λ[ν]|r <
d

2
,

[
3Γ

Fν − 1
ψν(r) +D∗νψν(r) + 2φν(r) + ϕν(r)

]
|λ[ν]|r < Γ,

where D∗ν := |λ[ν]|r [Dxψν(r) + φν(r)] . (9.7.15)

Here ϕν(·), ψν(·), and φν(·) are the polynomials from (9.7.5), (9.7.6), and (9.7.7),
respectively, and Dx is the bound on the initial state from (9.4.3) (on p. 292). Then
the strategy A)–H) regularly stabilizes29 the plant.

The proof of this proposition is given in the next part of the text. Then it will be
shown (see p. 347) that whenever a) of Theorem 9.4.27 (on p. 300) holds, the condi-
tions (9.7.15) can be satisfied by the proper choice of the parameters Γ, d,N , and so
the strategy A)–H) does stabilize the plant via the artificial network CBE(NW). In
Subsect. 9.7.4 (starting on p. 348), this strategy will be converted into the stabilizing
control policy for the real network NW.

Proof of Proposition 9.7.28

We recall that the choice of the norm ‖x‖ was commented in Explanation 9.7.15
(on p. 338); x[ν] is the projection of x ∈ Rn onto Mν in correspondence with the
decomposition Rn = Mst(A) ⊕⊕g

ν′=1Mν′ from Assumption 9.4.6 (on p. 294).

Lemma 9.7.29. The conclusion of Proposition 9.7.28 is true if numbers

D+
ν > |λ[ν]|r

[
ψν(r)D

∗
ν + φν(r)

]
ν = 1, . . . , g (9.7.16)

exist such that the following claim holds:

29See Definition 9.4.2 on p. 293.
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i) Whenever at the end of some epoch θ ≥ 1

|xα[(θ + 1)r]| < D+
ν for ν = ν(α) and all α = 1, . . . , n+, (9.7.17)

the same relations hold at the end of the next epoch (θ := θ + 1 in (9.7.17)).

Proof. We first prove that the states x[ν](θr) are bounded over θ ≥ 0 for all ν. In
view of i) and (9.4.3) (on p. 292), it suffices to show that under the conditions (9.4.3),
‖x[ν](r)‖ is bounded and ‖x[ν](2r)‖ < D+

ν . By Explanation 9.7.22 (on p. 343), the
controls are zero for the first and second epochs. So with regard to (9.7.4) (on p. 337),
we have for θ = 0, 1

∥∥x[ν][(θ + 1)r]
∥∥ =

∥∥(A|Mν )
r
x[ν](θr) + ζ[ν](θ)

∥∥

≤ ‖(A|Mν )r‖
∥∥x[ν](θr)

∥∥+
∥∥ζ[ν](θ)

∥∥ (9.7.6), (9.7.7)
≤ |λ[ν]|r

[
ψν(r)

∥∥x[ν](θr)
∥∥+φν(r)

]
;

∥∥x[ν][r]
∥∥ (9.4.3)
≤ |λ[ν]|r [Dxψν(r) + φν(r)]

(9.7.15)
=== D∗ν ,

∥∥x[ν][2r]
∥∥ ≤ |λ[ν]|r

[
ψν(r)D

∗
ν + φν(r)

] (9.7.16)
< D+

ν .

The controls are also bounded. Indeed, they are given by (9.7.11) and (9.7.12),
where the signals oi→α are produced by the deterministic block code BC from quan-
tized data qjα ∈ [1 : Fα] assuming only finitely many values. Hence the control
programs Ui(θ) range over finite sets and so ‖ui(t)‖ ≤ Du

i <∞ ∀t, i.
Thus all controls ui(t) and the unstable parts of the state x(θr) are bounded

over t ≥ 0 and θ ≥ 0, respectively. The standard arguments (see, e.g., (7.8.20) and
(7.8.22) on pp. 244 and 245) show that then the states x(t) are bounded over t ≥ 0.
Definition 9.4.2 (on p. 293) completes the proof. ⊓⊔

Thus it suffices to justify i). To this end, we pick the numbersD+
ν such that

[
3Γ

Fν − 1
ψν(r) + φν(r)

]
|λ[ν]|r < D+

ν , D+
ν + ϕν(r)|λ[ν]|r < Γ ;

[D∗νψν(r) + φν(r)] |λ[ν]|r < D+
ν ∀ν. (9.7.18)

This is possible. Indeed, let us take D+
ν greater but approximately equal to the max-

imum of the left-hand sides in the first and third inequalities. Then the second one
follows from the third relation in (9.7.15).

Lemma 9.7.30. The claim i) of Lemma 9.7.29 does hold.

Proof. Let (9.7.17) hold for θ ≥ 1. Then the assumption of Remark 9.7.19 (on
p. 340) is true due to (9.7.5), the first two inequalities in (9.7.15), and the estimates

∣∣x̂jα[(θ + 1)r]
∣∣ ≤

∣∣x̂jα[(θ + 1)r]− xα[(θ + 1)r]
∣∣+ |xα[(θ + 1)r]|

(9.7.5), (9.7.17)
≤ ϕν(r)|λ[ν]|r +D+

ν < Γ,
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where ν = ν(α) and the last inequality is taken from (9.7.18). So by Observa-
tion 9.7.21 (on p. 341), the signals oi→α generated within the epoch at hand satisfy
(9.7.9).

For the control program Uα
i = uαi [(θ + 1)r], uαi [(θ + 1)r + 1], . . . given by

(9.7.11), we have due to the definition of the deadbeat stabilizer Li and (9.7.14),

Ar
〈

2Γ

Fν − 1
oi→α −

Γ

|Imw→α|

〉

α

+
r−1∑

t=0

Ar−1−tBiu
α
i [(θ + 1)r + t] = 0.

Summing up over both modes α : i ∈ Imw→α affected by the actuator i and actuators i
gives with regard to (9.7.12),

Ar
n+∑

α=1

∑

i∈Imw
→α

〈
2Γ

Fν − 1
oi→α −

Γ

|Imw→α|

〉

α

︸ ︷︷ ︸
z(α)

+
l∑

i=1

r−1∑

t=0

Ar−1−tBiui[(θ + 1)r + t] = 0. (9.7.19)

By (9.7.9), ‖z(α)− 〈xα[(θ + 1)r]〉α‖ ≤ 3Γ
Fα−1 . Hence we have for the first sum

∣∣∣∣∣∣


Ar

n+∑

α′=1

z(α′)−Arx[(θ + 1)r]



α

∣∣∣∣∣∣

=

∣∣∣∣∣∣



n+∑

α′=1

Ar {z(α′)− 〈xα′ [(θ + 1)r]〉α′}



α

∣∣∣∣∣∣

≤

∥∥∥∥∥∥∥



n+∑

α′=1

Ar {z(α′)− 〈xα′ [(θ + 1)r]〉α′}




[ν]

∥∥∥∥∥∥∥

=

∥∥∥∥∥∥

∑

α′:ν(α′)=ν

(A|Mν )
r {z(α′)− 〈xα′ [(θ + 1)r]〉α′}

∥∥∥∥∥∥

=

∥∥∥∥∥∥
(A|Mν )

r
∑

α′:ν(α′)=ν

{z(α′)− 〈xα′ [(θ + 1)r]〉α′}

∥∥∥∥∥∥

≤ ‖(A|Mν )
r‖

∥∥∥∥∥∥

∑

α′:ν(α′)=ν

{z(α′)− 〈xα′ [(θ + 1)r]〉α′}

∥∥∥∥∥∥
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= ‖(A|Mν )r‖ max
α′:ν(α′)=ν

‖z(α′)− 〈xα′ [(θ + 1)r]〉α′‖

(9.7.9)
≤ ‖(A|Mν )

r‖ max
α′:ν(α′)=ν

3Γ

Fα′ − 1

(9.7.14)
=== ‖(A|Mν )

r‖ 3Γ

Fν − 1

(9.7.6)
≤ 3Γ

Fν − 1
ψν(r)|λ[ν]|r.

The proof is completed as follows:

|xα[(θ + 2)r]|

(9.7.4)
===

∣∣∣∣∣

[
Arx[(θ + 1)r] +

l∑

i=1

r−1∑

t=0

Ar−1−tBiui[(θ + 1)r + t] + ζ(θ + 1)

]

α

∣∣∣∣∣

(9.7.19)
===

∣∣∣∣∣∣


Arx[(θ + 1)r]−Ar

n+∑

α′=1

z(α′) + ζ(θ + 1)



α

∣∣∣∣∣∣

≤ 3Γ

Fν − 1
ψν(r)|λ[ν]|r +

∥∥ζ[ν](θ + 1)
∥∥

(9.7.7)
≤

[
3Γ

Fν − 1
ψν(r)| + φν(r)

]
|λ[ν]|r < D+

ν ,

where the last inequality is taken from (9.7.18). ⊓⊔

Proposition 9.7.28 is immediate from Lemmas 9.7.29 and 9.7.30.

Analysis of the Sufficient Conditions for Stability (9.7.15)

Now we prove the following claim, which is the main result of the current subsection.

Proposition 9.7.31. Whenever a) of Theorem 9.4.27 (on p. 300) holds, a choice of
the parameters Γ, d,N exists under which the control strategy A)–H) (see pp. 339–
343) regularly stabilizes the plant via the network CBE(NW).

Proof. By Proposition 9.7.28, it suffices to show that (9.7.15) can be ensured by a
proper choce of the parameters. We first observe that (9.7.15) is true whenever

2

3
Γ min
ν=1,...,g

(Fν − 1)−1 > d > 2 max
ν=1,...,g

ϕν(r)|λ[ν]|r,

Γ

[
1− 3

ψν(r)|λ[ν]|r
Fν − 1

]
> [D∗νψν(r) + 2φν(r) + ϕν(r)] |λ[ν]|r ∀ν.

These inequalities can clearly be ensured by picking first Γ to be large enough and
then d within the indicated bounds provided that

ψν(r)|λ[ν]|r
Fν − 1

<
1

3
∀ν. (9.7.20)
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Thus the objective focuses on ensuring (9.7.20).
Note that by Remark 9.7.26 (on p. 343), the epoch duration r = Nm→s +N +

Nserv and the length N + 1 of the block code (see Fig. 9.37) can be made arbitrarily
large, whereas Nm→s does not depend on N and Nserv ≤ N∗ with N∗ independent
of N . By (9.7.1) (on p. 330) and (9.7.14) (on p. 344), Fν > |λ[ν]|N2Nδ. By taking
into account that the eigenvalue λ[ν] is unstable |λ[ν]| ≥ 1 and the polynomial ψν(·)
can be upper bounded in the form ψr(r) ≤ cν(1 + rsν ), sν = degψν , we get

ψν(r)|λ[ν]|r
Fν − 1

≤ cν
[
1 + (N +Nm→s +N∗)sν

]
|λ[ν]|N |λ[ν]|Nm→s+N∗

|λ[ν]|N2δN − 1

=
cν
[
1 + (N +Nm→s +N∗)sν

]
|λ[ν]|Nm→s+N∗

2δN − |λ[ν]|−N
→ 0 as N →∞.

Thus (9.7.20) can be ensured by picking N large enough. ⊓⊔
Remark 9.7.32. By our construction, the strategy at hand is periodic.30

9.7.4 Completing the Proof of b) from Theorem 9.4.27: Stabilization over the
Original Network

We recall that the control-based extension CBE(NW) is composed of the original
network NW and imaginary feedback tunnels. The latter symbolize the possibility
to transmit data through the plant by means of control (see Fig. 9.38). Their explicit
incorporation into the model is of sense when the network is considered in the open
loop and its capacity domain is computed.

Fig. 9.38(a). Decentralized control. Fig. 9.38(b). Control-based extension.

It follows that the feedback tunnels become superfluous if CBE(NW) is put in
the feedback interconnection with the plant. Exactly this situation holds whenever a

30See Definition 9.4.24 (on p. 299).



9.7 Proof of the Sufficiency Part of Theorem 9.4.27 349

stabilizing control strategy for CBE(NW) is considered. Then all data streams that
are interpreted as going through the imaginary feedback tunnels and so virtual can be
arranged as real data transmissions by control actions upon the plant (see Fig. 9.39).
The corresponding arrangements are proposed in this subsection and result in a sta-
bilizing control strategy for the original network NW.

Fig. 9.39(a). Control over CBE(NW). Fig. 9.39(b). Embedding the feedback tun-
nels back into the plant.

In this subsection, the stabilizing control strategy for CBE(NW) proposed in the
previous one is said to be initial. When doing the above arrangements, the ideal
objective might be to convert this strategy into a control strategy for the original
network NW without any alteration in network outputs (controls) and inputs (ob-
servations). Unfortunately, this is impossible since the very idea of communication
by means of control dictates to alter the controls by adding “information carrier”
addends:

ui(t) := ub
i (t) + ucom

i (t), (9.7.21)

where ub
i (t) are initially generated controls organized into control programs Ui(θ).

This also alters the sensor signals.
To state the realistic objective, we recall that for the initial control strategy,

• The sensor data are collected during n time steps before the start t = θr of any
epoch θ ≥ 1 and utilized at t = θr by the sensor nodes to compute the prognosis
of the observed unstable modes x̂jα[(θ + 1)r];
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• The actuator nodes generate control programs

Ui(θ) = col
{
ub
i [θr], u

b
i [θr + 1], . . . , ub

i [(θ + 1)r − 1]
}

(9.7.22)

for the entire epoch at its beginning θr.

There is no other interaction between the network CBE(NW) and plant.
The objective that will be pursued is to alter the control strategy so that

S] The sensor nodes
1. Still compute the prognosis x̂jα[(θ + 1)r] at t = θr;
2. Get access to the data initially received over the imaginary feedback tunnels

in another and realistic way; to serve this access, the processing algorithms
at these nodes can be supplemented by additional operations;

3. Process the above data, estimates x̂jα[(θ + 1)r], and data received via the
original network NW just like for the initial strategy;

I] The interior part of the network processes data just like the initial strategy;
A] The actuator nodes

1. Process the received data just like for the initial strategy in order to generate
the control programs Ui(θ) at the start of any epoch;

2. Do not send signals into imaginary feedback tunnels but instead, use these
signals to generate the “communication” addends ucom

i (t) to the controls
from A.1];

3. Generate these addends in such a way that
a) Their influence on the plant is annihilated at the end of the current epoch:

the controlsucom
i [θr], . . ., ucom

i [(θ+1)r−1] drive the unperturbed (ξ(·) ≡
0) plant from 0 at t = θr to 0 at t = (θ + 1)r provided that all actuators
except for the ith one are inactive;

b) They are bounded ‖ucom
i (t)‖ ≤ cu by a constant cu independent of t, i;

c) The overall controls given by (9.7.21) are zero n time steps before the
start of any epoch.

Remark 9.7.33. Note that S.1] is possible whenever S.2], A.3.a], and A.3.c] hold.

Indeed, A.3.c) implies Assumption 9.7.12 (on p. 337). At the same time, S.2] means
that at t = θr +Nm→s +N + d (see Fig. 9.37), the sensors still have access to the
data that make them aware about the required controls from A.1]. Due to A.3.a], their
effect on the plant during the entire epoch is identical to that of the overall controls
(9.7.21). Thus the latter effect is computable by the sensor nodes, as is required by
Assumption 9.7.13 (on p. 338). Hence the remark follows from Proposition 9.7.14
(on p. 338).

Lemma 9.7.34. Any control strategy with the features S], I], A] regularly stabilizes31

the plant via the original network NW.

31See Definition 9.4.2 on p. 293.
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Proof. By S], I], and A], this strategy generates just the same control programs Ui(θ)
as the initial strategy. At the same time, the “communication addends” from (9.7.21)
dot not influence the states x(θr) due to A.3.a]. Since the initial strategy is regularly
stabilizing, it follows that the states x(θr) and control programs Ui(θ) are bounded
over θ ≥ 0. Thanks to A.3.b], this conclusion is extended on the overall controls
ui(t) given by (9.7.21) and t = 0, 1, . . .. Then the standard argument (see, e.g.,
(7.8.20) on p. 244) shows that the states x(t) are bounded over t ≥ 0, which com-
pletes the proof. ⊓⊔

Converting the initial control strategy into one with the features S], I], and A]
comes to arrangements for S.2] and A.2]. To this end, we recall that for the initial
strategy, transmissions over the feedback tunnels were used to communicate (see
Fig. 9.40)

1. Side data from the master sensor nodes to their slaves;
2. Quantized state prognosis from the sensor nodes to actuator nodes by means of

the basic networked block code BC hosted by CBE(NW);
3. Data oi→α driving control generation from the actuators to sensors.

Fig. 9.40. Where the feedback tunnels are used.

Formally, these data are represented by, respectively,

1. A map associating every master sensor with the side data dispatched from this
node and represented by a binary word of length 2;

2. A map associating every pair sensor-(observed unstable mode xα) with a quan-
tized data from the set [1 : Fα];

3. A map associating every pair (actuator i)-(affected unstable mode xα) with a
real-valued signal oi→α.

In each case, these data are generated before the transmission is commenced and
belong to a priori known finite sets. (In case 3, this holds since the signals oi→α are
generated as outputs of the deterministic block code BC driven by the data from 2.)

Since the network CBE(NW) is deterministic, its operation during any of the
above transmissions is uniquely determined by the transmitted data. It follows that
at any time t the message emitted into any feedback tunnel belongs to an a priori
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known finite set Ri,j(t). Here the pair (i, j) enumerates the tunnel and belongs to
the set (9.4.6) (on p. 294). The corresponding tunnel transmits messages from the
actuator node i to the sensor node j with the delay di→j given by (9.4.7) (on p. 294).

Thus the required arrangements focus on making the sensor j aware about the
choice from a known finite set Ri,j(t) that was made by the ith actuator di→j time
steps before. This should be accomplished via generating a proper control ucom

i .
A method to achieve this goal was proposed in Subsect. 7.8.1 (starting on p. 233)

for the case of one sensor and actuator. Generalization on the case of several sensors
and actuators is straightforward; the required details are offered further (see p. 353).

According to this method, the initial control strategy hosted by CBE(NW) is
converted into a control strategy hosted by the original NW as follows:

C1) The transmissions over the imaginary feedback tunnels are replaced by
• Generating controls at the actuator nodes in the form (9.7.21), where the

first addend on the right is the corresponding entry of the control program
from A.1], and the second addend is taken from a finite control alphabet and
encodes the message initially transmitted over the feedback tunnel;

• Decoding these messages at the sensor nodes on the basis of the prior ob-
servations and previously decoded messages.

C2) After the transmissions of all these messages are completed at time tθ = θr +
Nm→s +N + d (see Fig. 9.40), the influence of the generated communication
controls

U com
i = col (ucom

i [θr], . . . , ucom
i [tθ − 1])

on the plant is compensated by producing the “remainder” ucom
i (t)

∣∣(θ+1)r−1

t=tθ
so

that A.3.a) be satisfied.

Explanation 9.7.35. The latter is possible due to (9.7.13) (on p. 343). Moreover like
in ds.3) on p. 240, the “remainder” can be produced as a function of U com

i so that
ucom
i [tθ + n] = 0, . . . , ucom

i [(θ + 1)r − 1] = 0.

Remark 9.7.36. Thanks to (9.7.13), the last property implies that the overall controls,
i.e., the right-hand sides of (9.7.21), are zero n time steps before the start of any
epoch, which ensures A.3.c) and so by Remark 9.7.33 (on p. 350), S.1].

Remark 9.7.37. The “remainder” from Explanation 9.7.35 assumes finitely many
values since it is a function of the element U com

i taken from a finite set. This en-
sures A.3.b].

Observation 9.7.38. For the strategy obtained via the above conversion, the claims
S], I], and A] are true. So this strategy regularly stabilizes the plant via the original
network by Lemma 9.7.34.

Observation 9.7.39. By our construction, this strategy is r-periodic.32

Remark 9.7.40. These two observations complete the proof of the a) ⇒ b) part of
Theorem 9.4.27 (on p. 300), provided that C1) is ensured.

We close the section with specifying the technical details related to C.1).
32See Definition 9.4.24 (on p. 299).
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Feedback Information Transmission by Means of Control in the Case of
Multiple Sensors and Actuators

Now we deal with not necessarily the above control strategy but any strategy that
satisfies the following requirements:

R.1) The controls are generated in the form (9.7.21);
R.2) At time t = θr, every sensor node j can compute the control programs (9.7.22)

for all actuators i : (i, j) ∈ CVP that affect the observations of this sensor;33

R.3) The claim A.3.c) on p. 350 holds.

The following technical fact [8] is immediate from A.3.c] and (9.4.3) (on p. 292).

Remark 9.7.41. At time θr, θ ≥ 1, any sensor node j can compute the state x(θr)
modulo the unobservable subspace L−oj with an accuracyD−oj that depends only on
A,Cj and the bounds from (9.4.3).

The following lemma extends Lemma 7.8.4 (on p. 234) on the case of multi-
ple sensors and actuators and displays the key fact that enables one to establish the
required feedback communication by means of control.

Lemma 9.7.42. Suppose that R.1)–R.3) hold and a natural numberNi,j is assigned
to any feedback tunnel (i.e., any (i, j) ∈ CVP, where CVP is given by (9.4.6) on
p. 294). Then for any given sensor j, the related feedback tunnels can be equipped
with finite control alphabets of the respective sizes Ni,j

Ui,j =
{
ui,j(1), . . . , ui,j(Ni,j)

}
⊂ R

dim(ui) (9.7.23)

so that the following property holds.

• Whenever at a time t = θr + τ ≤ (θ + 1)r − n, θ ≥ 1 the sensor node j is
aware of the controls ui(θr), . . . , ui(t − di→j − 1) for all actuators i : (i, j) ∈
CVP affecting the observations of this sensor, this node is able to determine
the second addend ucom

i (t − di→j) in (9.7.21) for all concerned i provided that
ucom
i (t− di→j) ∈ Ui,j ∀i : (i, j) ∈ CVP.

It follows that the sensor is able to determine the serial number s of the corresponding
element ui,j(s) = ucom

i (t−di→j) of the alphabet (9.7.23). Thus the ith actuator can
communicate any message s ∈ [1 : Ni,j ] to the jth sensor with delay di→j .

Explanation 9.7.43. It is tacitly assumed that the communication controls are chosen
from Ui,j at not only time t − di,j but also at all previous times to ensure prior
communications. Then the knowledge of ui(θr), . . . , ui(t − di,j − 1) results from
R.1) and R.2), along with previous decoding.

Proof of Lemma 9.7.42. By Remark 9.7.41, the jth sensor is able to compute an
estimate x̂j(θr) of x(θr) such that

33See Remark 9.7.23 (on p. 343).
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‖CjAs[x̂j(θr) − x(θr)]‖ ≤ D−j := ‖Cj‖(‖A‖+ 1)rD−oj (9.7.24)

whenever s ∈ [0 : r]. Now we observe that owing to (9.4.1) and (9.4.2) (on p. 291),

yj(t) = CjA
τx(θr)+

τ−1∑

s=0

CjA
τ−1−s

[
l∑

i=1

Biui(θr + s) + ξ(θr + s)

]
+Cjχj(t)

(9.4.6), (9.4.7)
====== CjA

τx(θr) +
∑

i:(i,j)∈CVP

τ−di→j∑

s=0

CjA
τ−1−sBiui(θr + s)

+

τ−1∑

s=0

CjA
τ−1−sξ(θr + s) + Cjχj(t)

(9.7.21)
===





CjA
τ x̂j(θr) +

∑

i:(i,j)∈CVP

τ−1−di→j∑

s=0

CjA
τ−1−sBiui(θr + s)

+
∑

i:(i,j)∈CVP

CjA
di→j−1Biu

b
i (t− di→j)





+





∑

i:(i,j)∈CVP

CjA
di→j−1Biu

com
i (t− di→j)





+

{
CjA

τ [x(θr) − x̂j(θr)] +

τ−1∑

s=0

CjA
τ−1−sξ(θr + s) + Cjχj(t)

}
.

Here the discrepancyHj between yj(t) and the first expression in the curly brackets
is computable at the jth sensor node at time t. The norm of the third one is strictly
bounded by a constant D[0]

∗ that does not depend on t, θ, j due to (9.4.3) (on p. 292)
and (9.7.24). Hence

∥∥∥∥∥∥
Hj −

∑

i:(i,j)∈CVP

CjA
di→j−1Biu

com
i (t− di→j)

∥∥∥∥∥∥
< D

[0]
∗ . (9.7.25)

Note that here CjAdi→j−1Bi 6= 0 due to (9.4.7) (on p. 294).
Now we put the set {i : (i, j) ∈ CVP} in order

{
i1, . . . , ipj

}
and pick the alpha-

bets (9.7.23) successively for i = i1, . . . , ipj . For i = i1, a finite alphabet (9.7.23)
(where i := i1) is chosen so that the points

CjA
di1→j−1Bi1ui1,j(1), . . . , CjA

di1→j−1Bi1ui1,j(Ni1,j)

are 2D
[0]
∗ -separated.34 Then the control ucom

i1 (t − di1→j) from this alphabet can be
uniquely determined from the knowledge of a vector Hj,1 such that

∥∥∥Hj,1 − CjAdi1→j−1Bi1u
com
i1 (t− di1→j)

∥∥∥ < D
[0]
∗ .

34See Definition 7.6.17 (on p. 217).
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After the first alphabet is chosen, (9.7.25) implies

∥∥∥∥∥∥
Hj −

∑

i=i2,...,ipj

CjA
di→j−1Biu

com
i (t− di→j)

∥∥∥∥∥∥
< D

[1]
∗

:= D
[0]
∗ + max

s=1,...,Ni1,j

‖CjAdi1→j−1Bi1ui1,j(s)‖. (9.7.26)

For i = i2, the alphabet (9.7.23) is chosen so that the points

CjA
di2→j−1Bi2ui2,j(1), . . . , CjA

di2→j−1Bi2ui2,j(Ni2,j)

are 2D
[1]
∗ -separated. Then the control ucom

i2 (t − di2→j) from this alphabet can be
uniquely determined from the knowledge of a vector Hj,2 such that

∥∥∥Hj,2 − CjAdi2→j−1Bi2u
com
i2 (t− di2→j)

∥∥∥ < D
[1]
∗ .

Note that (9.7.26) implies

∥∥∥∥∥∥
Hj −

∑

i=i3,...,ipj

CjA
di→j−1Biu

com
i (t− di→j)

∥∥∥∥∥∥
< D

[2]
∗

:= D
[1]
∗ + max

s=1,...,Ni2,j

‖CjAdi2→j−1Bi2ui2,j(s)‖.

By continuing likewise, we construct a sequence D[0]
∗ ≤ D

[1]
∗ ≤ . . . ≤ D

[pj−1]
∗

and the alphabets (9.7.23) for all i = i1, . . . , ipj such that for any s = 1, . . . , pj ,

i) the control ucom
is (t − dis→j) from the alphabet Uis→j can be uniquely deter-

mined from the knowledge of a vector Hj,s such that

∥∥Hj,s − CjAdis→j−1Bisu
com
is (t− dis→j)

∥∥ < D
[s−1]
∗ . (9.7.27)

ii) the following inequality holds:
∥∥∥∥∥∥
Hj −

∑

i=is,...,ipj

CjA
di→j−1Biu

com
i (t− di→j)

∥∥∥∥∥∥
< D

[s−1]
∗ . (9.7.28)

For s := pj , (9.7.28) has the form (9.7.27) withHj,pj := Hj known. So ucom
is (t−

dis→j) with s = pj can be determined. Then for s = pj − 1, (9.7.28) takes the form
(9.7.27) with known

Hj,pj−1 := Hj − CjAdi
pj→j

−1Bipj ucom
ipj (t− dipj→j).

This permits us to determine ucom
is (t − dis→j) with s = pj − 1. Then we subtract

from Hj the found addends
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Hj,pj−2 := Hj −
∑

i=ipj−1,ipj

CjA
di→j−1Biu

com
i (t− di→j)

and find ucom
is (t − dis→j) with s = pj − 2. All required controls can be found by

continuing likewise. ⊓⊔
Lemma 9.7.42 shows that the actuators can send as much information as desired

by means of control and with the required delays to any given sensor. The next lemma
extends this conclusion to the case where all sensors should receive data simultane-
ously.

Lemma 9.7.44. Suppose that R1)–R3) hold and a finite set of messages Mi,j is as-
signed to any feedback tunnel, which are enumerated by (i, j) ∈ CVP, where CVP
is given by (9.4.6) (on p. 294). Let at any time t ∈ [θr : (θ+1)r−n−d], where θ ≥ 1
and d := max(i,j)∈CVP di→j , every actuator i picks messages µi→j(t) ∈ Mi,j to
all concerned sensors j, i.e., such that (i, j) ∈ CVP.35

Then each actuator i can be equipped with a rule converting the set of related
messages {

µi→j(t)
}
j:(i,j)∈CVP

7→ ucom
i (t) (9.7.29)

into the second addend from (9.7.21) (on p. 349) so that at any time t ∈ [θr :
(θ + 1)r − n] every sensor j can recognize all required messages

µi→j
(
t− di→j

)
, i : (i, j) ∈ CVP, t− di→j ≥ θr (9.7.30)

from the knowledge available to this sensor. The conversion rules and the algorithms
of recognition can be chosen independent of θ and t.

Remark 9.7.45. Since the required transmissions from C1) (on p. 352) concern mes-
sages taken from a priori-known finite sets according to the discussion preceding
C1), Lemma 9.7.44 justifies the possibility of C1) and completes the proof of the a)
⇒ b) part of Theorem 9.4.27 (on p. 300) by Remark 9.7.40.

Proof of Lemma 9.7.44. Let every actuator i first convert the set of all dispatched
messages from (9.7.29) into a compound message µi(t), so that any original message
µi→j(t) from the set and its indices i, j are uniquely reconstructable from µi(t). This
compound message will be delivered to every concerned sensor j, where the proper
part will be extracted. The message µi(t) can be taken from a specific finite set Mi.

The remainder of the proof involves merely adjusting the arguments from the
proof of Lemma 9.7.42 to the current context. In so doing, we pick the control alpha-
bets (9.7.23) in a special way. We first observe that due to (9.4.7) (on p. 294),

CjA
di→j−1Bi 6= 0⇔ Li,j := kerCjA

di→j−1Bi 6= R
dim(ui), ∀(i, j) ∈ CVP.

Hence the Lebesgue measure of the linear subspace Li,j is zero; and so is that of the
union

⋃
j:(i,j)∈CVP Li,j . Thus for any i, a control ui ∈ Rdim(ui) exists such that

35It is assumed that every message µi→j(t) should be delivered to sensor j with the delay
di→j given by (9.4.7) (on p. 294). We set µi→j(t) := ⊛ for t ∈

`

(θ+1)r−n−d : (θ+1)r
´

.
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CjA
di→j−1Biu

i 6= 0, ∀j : (i, j) ∈ CVP. (9.7.31)

To any actuator i = 1, . . . , l, we assign a finite control alphabet Ui =
{
uiµ
}
µ∈Mi

whose elements are in a one-to-one correspondence with the messages from Mi and
have the following form:

uiµ = aiµu
i, where aiµ ∈ R. (9.7.32)

As in the proof of Lemma 9.7.42, these alphabets will be chosen successively for
i = 1, . . . , l. For i = 1, the numbers a1

µ, µ ∈M1 are chosen so that the set

{
CjA

d1→j−1B1u
1
µ

}
µ∈M1

is 2D
[0]
∗ -separated for any sensor j such that (1, j) ∈ CVP. HereD[0]

∗ is the constant
from (9.7.25). This is possible thanks to (9.7.31) and (9.7.32). The numbers a2

µ, µ ∈
M2 are chosen so that the set

{
CjA

d2→j−1B2u
2
µ

}
µ∈M2

is 2D
[1]
∗ -separated for any sensor j : (2, j) ∈ CVP. Here D[1]

∗ is defined as in
(9.7.26) with iν := ν:

D
[1]
∗ := D

[0]
∗ + max

j=1,...,k
max
µ∈M1

∥∥CjAd1→j−1B1u
1
µ

∥∥ .

Here and throughout, we assume that di→j := 1 if (i, j) 6∈ CVP and note that

CjA
di→j−1Bi = 0, ∀ (i, j) 6∈ CVP (9.7.33)

due to (9.4.6) (on p. 294). The numbers a3
µ, µ ∈M3 are chosen so that the set

{
CjA

d3→j−1B3u
3
µ

}
µ∈M3

is 2D
[2]
∗ -separated for any sensor j : (3, j) ∈ CVP, where

D
[2]
∗ := D

[1]
∗ + max

j=1,...,k
max
µ∈M2

∥∥CjAd2→j−1B2u
2
µ

∥∥ .

By continuing likewise, we construct a sequence D[0]
∗ ≤ · · · ≤ D

[l−1]
∗ , control

alphabets Ui =
{
uiµ
}
µ∈Mi

for all actuators i, and ensure that the following claims
hold:

i) For any actuator i = 1, . . . , l, any control ui ∈ Ui can be uniquely recognized
by any sensor j : (i, j) ∈ CVP from the knowledge of a vector Hi,j such that

∥∥Hi,j − CjAdi→j−1Biui
∥∥ < D

[i−1]
∗ ;
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ii) The numbersD[i]
∗ are related by the recursion

D
[i]
∗ := D

[i−1]
∗ + max

j=1,...,k
max
µ∈Mi

∥∥CjAdi→j−1Biu
i
µ

∥∥ . (9.7.34)

Finally, we introduce the following conversion rule of the form (9.7.29)
{
µi→j(t)

}
j:(i,j)∈CVP

7→ µi(t) 7→ ucom
i (t) := uiµi(t)

(t) ∈ Ui. (9.7.35)

To complete the proof, we show that for any t ∈ [θr : (θ + 1)r − n], any
sensor can recognize all required messages (9.7.30) and the controls ui(t − di→j)
with (i, j) ∈ CVP from the knowledge available to this sensor. The proof will be by
induction on t = θr, θr + 1, . . ..

For t = θr, the claim is evident: Since n ≥ di→j ≥ 1 by (9.4.7) (on p. 294),
no message from (9.7.30) should be recognized and ui(t − di→j) = 0 by R3) (on
p. 353). Let the claim be true for all times t′ ≥ θr not exceeding t − 1, where
t ∈ (θr : (θ + 1)r − n]. By retracing the arguments underlying (9.7.25) with regard
to (9.7.33), we see that

∥∥∥∥∥Hj −
l∑

i=1

CjA
di→j−1Biu

com
i (t− di→j)

∥∥∥∥∥ < D
[0]
∗ ,

where Hj is a vector computable from the knowledge available to sensor j. Then
(9.7.34) and (9.7.35) imply that

∥∥Hi,j − CjAdi→j−1Biu
com
i (t− di→j)

∥∥ < D
[i−1]
∗ ,

where
Hi,j := Hj −

∑

i′>i

CjA
di′→j−1Bi′u

com
i′ (t− di′→j).

By putting i := l here with regard to (9.7.33) and i), we see that sensor j can recog-
nizeCjAdl→jBlu

com
l (t−dl→j) and if (l, j) ∈ CVP, the control ucom

l (t−dl→j). Af-
ter this, the sensor acquires the knowledge ofHl−1,j . Then by considering i := l−1
likewise, we see that sensor j can compute CjAd(l−1)→jBl−1u

com
l−1 (t − d(l−1)→j)

and if (l− 1, j) ∈ CVP, the control ucom
l−1 (t− d(l−1)→j). The proof is completed by

continuing likewise. ⊓⊔

9.8 Proofs of the Lemmas from Subsect. 9.5.2 and Remark 9.4.28

9.8.1 Proof of Lemma 9.5.6 on p. 303

(i) is immediate from Definition 9.5.5 (on p. 303).
(ii) Let BC denote the corresponding networked block code, and N and rcode =

{rT }T∈T stand for its length and rate ensemble, respectively. We recall that BC
is an admissible data processing strategy A ∈ A considered on the time interval
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[0 : N − 1] and processing outer inputs in the form yT ∈ [1 : FT ], T ∈ T, and
rT = N−1 log2 FT . By Definition 9.5.5 (on p. 303), it should be shown that an
errorless block code of arbitrarily large length exists whose rate ensemble approaches
an ensemble with positive entries at the positions from T∗.

To this end, we employ Assumption 9.4.20 (on p. 298) and prolong the strategy
A from [0 : N − 1] to [0 : N∗] ⊃ [0 : N − 1] to reset the network to the initial state
at time t = N∗. Then by Assumption 9.4.22 (on p. 299) the resultant strategy can be
repeated on the intervals [0 : N∗ − 1], [N∗ : 2N∗ − 1], . . . , [(m− 1)N∗ : mN∗ − 1],
where m is arbitrary. For any i = 0, . . . ,m − 1, the ith copy of BC located in
[iN∗ : iN∗ +N − 1] can be employed for errorless transmission of messages y

[i]
T ∈

[1 : FT ], T ∈ T. During the entire interval [0 : mN∗ − 1], whole ensembles of

messages {y[i]
T }i=0,...,m−1,T∈T can be transmitted. They can be put into a one-to-

one correspondence with the ensembles {yT ∈ [1 : (FT )m]}T∈T by expansion

yT =

= 1+
(
y
[0]
T − 1

)
+
(
y
[1]
T − 1

)
FT+

(
y
[2]
T − 1

)
(FT )2+· · ·+

(
y
[m−1]
T − 1

)
(FT )m−1.

It follows that we have constructed an errorless block code with the lengthmN∗ and
the rate ensemble

{
log2(FT )m

mN∗

}

T∈T

=

{
log2 FT
N∗

}

T∈T

=

{
N

N∗
rT

}

T∈T

.

Since rT > 0∀ T ∈ T∗, letting m→∞ completes the proof.
(iii) By Definition 9.5.5 (on p. 303), r = {rT }T∈T can be approximated

|rT − r′T (m)| ≤ ε

2
∀ T ∈ T (9.8.1)

by the rate ensembles
{
r′T (m) = FT (m)

N ′(m)

}
T∈T

of errorless networked block codes

BC ′(m) ∼ A
′(m),m = 0, 1, . . . of arbitrarily large block lengths N ′(m)

m→∞−−−−→
∞. By passing to a subsequence, it can be ensured that the initial states M0[A′(m)]
of these codes are equivalent to each other modulo the partition from (ii) of As-
sumption 9.4.20 (on p. 298). For any m = 1, 2, . . ., we construct the new code
A(m) as follows: First, the strategy A

′(0) is extended on a time interval of dura-
tion not exceedingN ′(0)+ δTmax to reset the network to the state initial for A

′(m),
where δTmax is the constant from Assumption 9.4.20; and second, the resultant strat-
egy is concatenated with A

′(m). These operations are possible thanks to Assump-
tions 9.4.20 and 9.4.22 (on p. 299). The required data transmission is in fact accom-
plished by the A

′(m) part of A(m). It follows that this block code is errorless and
N ′(m) ≤ N(m) ≤ N ′(m)+δTmax+N ′(0), which implies thatN ′(m)/N(m)→ 1

as m → ∞. For the rate ensemble
{
rT (m) = FT (m)

N(m)

}
T∈T

of the constructed block
code, we have

rT (m)− r′T (m) = r′T (m)

[
N ′(m)

N(m)
− 1

]
(9.8.1)−−−→ 0 as m→∞.



360 9 Decentralized Stabilization via Limited Capacity Communication Networks

Since the block codes ∼ A(m) have a common initial state by construction, the
proof is completed by invoking (9.8.1). ⊓⊔

9.8.2 Proof of Lemma 9.5.8 on p. 304

The second inclusion from (9.5.22) (on p. 305) is evident. To prove the first one, we
pick an element {rα} from the set on the left. By (9.5.22), an ensemble

r = {rα,i}(α,i)∈Tmw ∈ CD
[
PREFmw ⊞ CBE(NW)�Tmw

]

exists such that rα =
∑
i∈Imw
→α

rα,i ∀α. Let 0 < δ < min(α,i):rα,i 6=0 rα,i and N =
1, 2, . . . be given. By Definition 9.5.5 (on p. 303), there exists an errorless networked
block code BC hosted by and serving the above network and transmission scheme,
respectively, with block length N ≥ N whose rate ensemble (9.5.19) (on p. 303)
approaches r with accuracy δ.

Now we construct a block code BCnew serving PREFmw⊞CBE(NW)⊞SUFFq
mw

and transmitting constant messages µα ∈ [1 : Fα] from the source to the output node
∼ xα for all α. Here Fα :=

∏
i∈Imw
→α

Fα,i. Specifically when receiving the message
µα from the source ∼ xα, any sensor node j ∈ Jmw←α expands it in the form

µα = µα,i1α + Fα,i1α(µα,i2α − 1) + Fα,i1αFα,i2α(µα,i3α − 1) + · · ·
· · ·+ Fα,i1α · · ·Fα,ipα−1

α
(µα,ipα

α
− 1), µα,iσα ∈ [1 : Fα,iσα ] (9.8.2)

and interprets µα,iσ as the individual message from the source ∼ xα to the output
node i = iσ, thus creating the situation where BC can operate. Here {i1α, . . . , ipα

α }
is an enumeration of Imw→α. The signals µα,i are processed by the rules of BC. So
every signal µα,i is correctly decoded at time N − 1 at the actuator node i. Into
the additive channel from SUFFq

mw going to the output node ∼ xα, the actuator
node emits the corresponding addend from (9.8.2). The addition is performed by the
channel. So the correct message arrives at the output node ∼ xα, and an errorless
BCnew is constructed. The entries of its rate vector (9.4.13) (on p. 298)

log2 Fα
N

=
∑

i∈Imw
→α

log2 Fα,i
N

approach those rα =
∑
i∈Imw
→α

rα,i of {rα} with accuracy≤ δ|Imw→α|, where δ > 0 is
arbitrary. The proof is completed by invoking Definition 9.4.17 (on p. 298). ⊓⊔

9.8.3 Proof of Lemma 9.5.10 on p. 306

(i) Let r = {rα}n
+

α=1 belong to the set in the left-hand side of (9.5.25), and δ >
0, N = 1, 2, . . . be given. By Definition 9.4.17 (on p. 298), an errorless BC hosted
by PREFmw ⊞ CBE(NW) ⊞ SUFF+

mw with block length N ≥ N exists whose rate
vector (9.4.13) (on p. 298) approaches r with accuracy δ.
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We are going to transform it into a code BCnew serving PREFmw ⊞CBE(NW)⊞
SUFF

+

mw. To this end, we introduce an enumeration Gν = {i1ν, . . . , ipν
ν } for any ν.

For BCnew, the νth source produces a constant message µν ∈ [1 : F ν ], where
F ν :=

∏
α∈Gν

Fα and Fα is the size of the alphabet of the source ∼ xα. On getting
access to this message, each sensor node j ∈ Jmw←α (with α ∈ Gν) expands it in the
form (9.8.2) (where α := ν and Fν,i := Fi). The quantities µν,iφν are interpreted

as messages from the node α = iφν , φ = 1, . . . , pν of BC. These messages are then
processed by the rules of the original BC. So at t = N − 1, the message µν,α is
correctly decoded by the output node∼ xα. This node collects information from the
actuator nodes i ∈ Imw

→α, which are common for all modes α ∈ Gν within a given
group. Since the channels from SUFF+

mw have the maximal possible cardinalities,
all data from the above actuator nodes can be removed to the single representative
of the group of output nodes ∼ xα, α ∈ Gν retained in SUFF

+

mw as compared with
SUFF+

mw. It follows that all messages µν,α with α ∈ Gν can be correctly decoded at
this node. The original message µν is restored by (9.8.2). Thus an errorless BC

new

is constructed.
The entries of its rate vector (9.4.13) (on p. 298)

log2 F ν
N

=
∑

α∈Gν

log2 Fα
N

approach those of the vector
{∑

α∈Gν
rα
}s
ν=1

with accuracy ≤ δmaxν |Gν |. Let-
ting δ → 0 shows that the domain in the left-hand side of (9.5.25) (on p. 306) is a
subset of that in the right-hand side by Definition 9.4.17 (on p. 298).

Conversely, let r = {rα}n
+

α=1 belong to the set in the right-hand side of (9.5.25)
(on p. 306), and let 0 < δ < minα:rα>0 rα, N = 1, 2, . . . be given. By Def-
inition 9.4.17 (on p. 298), an errorless block code BC hosted by PREFmw ⊞

CBE(NW)⊞SUFF
+

mw

{
log2 Fν

N

}s
ν=1

approaches the vector
{∑

α∈Gν
rα

}s
ν=1

with accuracy δ. We are going to transform

it into a code BCnew hosted by PREFmw ⊞ CBE(NW) ⊞ SUFF+
mw.

Let the source∼ α of PREFmw produce constant messages µα ∈ [1 : Fα], where
Fα := max

{
⌊2(rα−δ)N⌋; 1

}
. Any sensor node j ∈ Jmw

←α, α ∈ Gν has access to all
messages µα′ coming from the same group of input nodes α′ ∈ Gν . So all these
sensor nodes may convert these messages into the common natural µν by (9.8.2)
(modified just as in the first part of the proof). Then µν is interpreted as a common
message broadcasted from the source ∼ ν, as is required by PREFmw. Moreover,
this message is a legal input for BC since

µν ≤
∏

α∈Gν

Fα ≤
∏

α∈Gν

⌊
2(rα−δ)N

⌋
≤
⌊
2N(

P
α∈Gν

rα−δ|Gν |)
⌋
≤ F ν .

The messages µν are then processed by the rules of BC and thus are correctly de-
coded at the output node∼ ν from the data received over the corresponding channel

with block lengthN≥ N exists whose rate vector
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of SUFF
+

mw. The clones of this channel are all channels from SUFF+
mw arriving at the

nodes∼ xα, α ∈ Gν . So at any of the latter nodes, µν can also be correctly decoded
and thus µα can be correctly restored via the expansion (9.8.2). Thus an errorless
BCnew is constructed.

For the entries of its rate vector (9.4.13) (on p. 298), we have

log2 Fα
N

= max

{
log2⌊2(rα−δ)N⌋

N
; 0

}

∈
[

log2 max
{
2(rα−δ)N − 1; 1

}

N
,max {rα − δ; 0}

]
.

Since δ < rα whenever rα > 0, the ends of this interval are close to rα for N ≈ ∞
and δ ≈ 0. It follows that the domain in the right-hand side of (9.5.25) is a subset of
that in the left-hand side by Definition 9.4.17, which completes the proof.

(ii) Modulo apparent technical details, the proof is similar to that of (i). ⊓⊔

9.8.4 Proof of Remark 9.4.28 on p. 300

To prove this remark, we basically repeat the arguments from the proof of the ne-
cessity part of Theorem 9.4.27 (on p. 300) given in Sect. 9.6. This proof derived the
required claim d) from stability under zero noises and stable modes. In other words,
the stability assumption of c) was utilized only partly. Now we consider a more gen-
eral situation where the plant noises may be nonzero within the first m time steps:

ξ(t) ≡ 0 ∀t ≥ m, χj(t) ≡ 0, ξα(t) = 0, x0
α = 0 ∀t ≥ 0, α ≤ 0. (9.8.3)

So the sequence of the plant noises is of the form

Ξ = {ξ(0), ξ(1), . . . , ξ(m− 1), 0, 0, . . .}, ξ(t) ∈Munst(A). (9.8.4)

Retracing Steps 1 and 2 of the Initial Proof

They are retraced with the following modifications.
Step 1 (see Subsect. 9.6.2 starting on p. 325).

m.1) Unlike (i) on p. 324, the sources (associated with unstable modes xα) produce
not only the matching mode x0

α of the initial state but also the relevant part
Ξ[ν] := {[ξ(t)][ν]}t≥0 of the noise sequence (9.8.4). Here ν := ν(α) is the
serial number of the group from (9.4.8) (on p. 295) containing xα.

m.2) The rule (9.6.4) (on p. 326) to restore the observation from the data currently
available at the jth sensor node is modified as follows:

yj(t) = Cj

{
Atx0

j+


 ∑

i:(i,j)∈CVP

t−di→j∑

θ=0

At−1−θBiui(θ)


+

t−1∑

θ=0

At−1−θξj(θ)

}
.
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Explanation 9.8.1. We recall that x0
j is the vector of the data received by the jth

sensor node from all initial sources of NW1. This vector has the form (9.4.8) (on
p. 295), where all missing data are substituted by zeros and all modes received from
the sourcers are put in the proper places. The vector ξj(θ) is the similar partial re-
construction of the entry ξ(t) from (9.8.4) based on the available source data.

Observation 9.8.2. Since the above formula restores the observations correctly,
Lemma 9.6.4 (on p. 326) remains true with (9.8.3) substituted in place of (9.6.1).

Step 2 (see Subsect. 9.6.3 starting on p. 326).

• The operation of the actuator nodes is changed as was discussed in Observa-
tion 9.6.9 (on p. 328).

With regard to the necessity to take into account the extra term

t−1∑

θ=0

At−1−θξ(θ)

in (9.6.7), the conclusion of this observation now transforms as follows:

Atx0 +

t−1∑

θ=0

At−1−θξ(θ) −
∑

i∈Imw
→α

xu,i(t)



α

∈ [−D∞, D∞] ∀α, t. (9.8.5)

We recall that D∞ denotes the supremum (9.4.4) (on p. 292).
As a result, the following claim is established.

Lemma 9.8.3. Suppose that the network NW 1 := PREFmw ⊞ CBE(NW) is fed
by the inputs described in m.1) on p. 362. Then this network can be equipped with
an admissible data processing strategy such that the outputs xu,i(t) of the actuator
nodes (marked by i) satisfy (9.8.5) whenever (9.8.3) holds and ‖x0‖ ≤ Dx, ‖ξ(t)‖ ≤
D, where Dx, D are taken from (9.4.3) (on p. 292).

Errorless Block Code for the Network PREFmw ⊞ CBE(NW) with the
Communication Scheme Tmw

Now we consider the prefix PREFmw and the data communication scheme Tmw in-
troduced on p. 307. We recall that the data sources of this prefix are associated with
the subspaces from (9.5.26) (on p. 307) and enumerated by ν = 1, . . . , g. In accor-
dance with the scheme Tmw, data should be transmitted from any such source∼Mν

to all actuators i that control the subspace Mν .

Lemma 9.8.4. For any ν, there exists i = iν such that (ν, iν) ∈ Tmw and the capac-
ity domain CD[PREFmw ⊞ CBE(NW)�Tmw] contains a rate ensemble {rT }T∈Tmw

with rν,iν > 0∀ ν.
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Proof. Let ν be chosen. By applying Lemma 7.6.7 (on p. 212) to the plant x[ν](t +
1) = A|Mνx[ν](t) + ξ[ν](t), we see that m and two admissible disturbances

Ξs[ν] = {ξs[ν](0), ξs[ν](1), . . . , ξs[ν](m− 1), 0, 0, . . .}, ‖ξs[ν](θ)‖ ≤ D, s = 1, 2

exist that drive this plant from 0 at t = 0 to the states xs[ν](m) at t = m such that

‖x1
[ν](m) − x2

[ν](m)‖ > 2D∞. Since we deal with the norm ‖ · ‖ := ‖ · ‖∞in this
chapter, an unstable mode xα exists such that

‖x1
α(m)− x2

α(m)‖ > 2D∞, ν(α) = ν. (9.8.6)

Note that Imw→α = Imw→ν(α), where Imw→ν is the set of actuators controlling the
subspace Mν (see p. 307). So thanks to (9.8.5) and (9.8.6), the number s = 1, 2 is
recognizable from the knowledge of

∑

i∈Imw
→ν

xu,i(t) (9.8.7)

provided that the block code from Lemma 9.8.3 is fed by x0 := 0 and Ξs[ν] at any
input node∼ xα such that ν(α) = ν, whereas all other nodes are fed by Ξ[ν(α)] := 0.
Then all input nodes from any group in (9.4.8) (on p. 295) are fed by identical data.
These nodes are departing points for the cloned channels from PREFmw. So all these
channels except for one may be discarded, which transforms PREFmw into PREFmw.
The source ∼ ν produces s = 0, 1; the conversion s 7→ Ξs[ν] is performed at the
related sensor nodes. All other sources produce the output 1, which is converted into
the zero sequence at any concerned sensor node.

Since s is recognizable from the sum (9.8.7), it can be also recognized from the
knowledge of some addend xu,i(t), i = iν ∈ I→ν . By doing so, we obtain a block
code transmitting without an error one bit from ν to iν , and zero bits from ν′ to i′ for
all other pairs (ν′, i′) ∈ Tmw. The network initial state for this code is identical to
that for the strategy from Lemma 9.8.3. By invoking Assumption 9.4.20 (on p. 298),
we prolong the block code to reset the network to this initial state. After this the block
codes related to ν = 1, . . . , g can be concatenated to form a block code transmitting
without an error one bit from ν to iν for all ν, and zero bits from ν′ to i′ for the other
pairs (ν′, i′) ∈ Tmw. The proof is completed by (ii) of Lemma 9.5.6 (on p. 303). ⊓⊔

Completion of the Proof of Remark 9.4.28 on p. 300

By (ii) of Lemma 9.5.10 (on p. 306) and Lemma 9.8.4, the capacity domain
CD
[
PREFmw ⊞ CBE(NW)�Tmw

]
contains a rate ensemble {rα,i}(α,i)∈Tmw such

that rα,iν > 0 for all α ∈ Gν and ν = 1, . . . , g. Here Gν is the νth group of modes
from (9.4.8) (on p. 295). Then the first inclusion from (9.5.22) (on p. 305) implies
that CD

[
PREFmw ⊞ CBE(NW) ⊞ SUFFq

mw

]
contains a rate vector with positive en-

tries, which completes the proof. ⊓⊔
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H∞ State Estimation via Communication Channels

10.1 Introduction

One approach to the problem of state estimation via limited capacity communication
channels was proposed in [220] and developed in [45, 100, 132, 133, 184] (see also
Chaps. 2–7 of this book). In this framework, the observation must be coded into
a sequence of finite-valued symbols and transmitted via a digital communication
channel. With the approach of [45, 100, 133, 184], classic Kalman and H∞ state
estimation theory cannot be applied since the estimator only observes the transmitted
sequence of finite-valued symbols. In fact, we need to design a hybrid dynamical
system that consists of two subsystems. The first subsystem, which is called coder,
receives real-valued measurements and converts them into a finite-valued symbolic
sequence that is sent over the limited capacity communication channel. The second
subsystem (decoder) receives this symbolic sequence and converts it into a real-
valued state estimate. In other words, such state estimators with bit-rate constraints
form an important subclass of so-called hybrid dynamic systems. In general, hybrid
systems are those that combine continuous and discrete event dynamics and involve
both real and symbolic variables; see, e.g., [104, 174, 177, 185, 211].

Another approach was proposed in [175] where the bandwidth limitation con-
straint was modeled in a manner that the state estimator can communicate with
only one of several sensors at any time instant (this approach will be presented in
Chaps. 14 and 15 of this book). The main disadvantage of both these approaches is
that the state estimation systems proposed in [45, 100, 132–135, 175, 184, 220, 221]
are highly nonlinear and contain symbolic variables. In this chapter, we propose a
new problem statement. In our new problem statement, the communication chan-
nel transmits a continuous time vector signal. The limited capacity of the channel
means that the dimension of the signal transmitted by the channel is smaller than
the dimension of the measured output of the system. Our goal is to design a linear
time-invariant coder that transforms the measured output into the signal to be trans-
mitted and a linear time-invariant decoder that transforms the transmitted signal into
the state estimate. This approach simplifies the problem and allows for obtaining
more constructive and understandable results. The main advantage is that estimation

A.S. Matveev and A.V. Savkin, Estimation and Control over Communication Networks,
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system obtained in this chapter is linear and time-invariant. This allows for applying
conventional linear control theory to the problem of state estimation with bandwidth
limitation constraints. Unlike [45,132,133,220] where the Kalman filtering problem
was considered and [100, 175, 184] where the set-valued approach to state estima-
tion was employed, in this chapter we consider the case of H∞ state estimation.
The main result of the chapter shows that the linear H∞ control theory when suit-
ably modified provides a good framework for the problem of limited communication
state estimation. This result was originally published in [168].

It should be pointed out that the proposed state estimation method is computa-
tionally nonexpansive and easy to implement in real time. The obtained results can
be extended to the case of uncertain linear systems.

The remainder of the chapter is organized as follows. In Sect. 10.2, we introduce
the class of systems under consideration. The main results of the chapter and their
proofs are given in Sect. 10.3.

10.2 Problem Statement

We consider the linear system defined on the infinite time interval [0,∞):

ẋ(t) = Ax(t) +Bw(t); x(0) = 0;

z(t) = Kx(t);

y(t) = Cx(t) + v(t), (10.2.1)

where x(t) ∈ Rn is the state; w(t) ∈ Rp and v(t) ∈ Rl are the disturbance in-
puts; z(t) ∈ Rq is the estimated output, and y(t) ∈ Rl is the measured output, and
A,B,K , and C are given matrices.

The state estimation problem is to find an estimate ẑ of z in some sense using
the measurement of y. One of the most common frameworks for the state estima-
tion problem is based on the H∞ theory. More precisely, the problem of H∞ state
estimation can be stated as follows; e.g., see [14, 66, 130]:

Given a constant γ > 0, find a causal unbiased filter ẑ(t) = F [t, y(·) |t0] if it
exists such that

J := sup
[w(·),v(·)]∈L2[0,∞)

‖z(·)− ẑ(·)‖22
‖w(·)‖22 + ‖v(·)‖22

< γ2. (10.2.2)

Let m < l be given. We will consider the problem of H∞ state estimation via a
communication channel of dimension m.

Suppose estimates of the output z(t) are required at a distant location and are
to be transmitted via a limited capacity communication channel such that only m
real numbers may be sent at each time t. We consider a system that consists of the
coder, the transmission channel, and the decoder. Using the measurement y(·) |t0,
the coder produces a vector ŷ(t) of dimension m that is transmitted via the channel
and then received by the decoder. In its turn, the decoder produces an estimate ẑ(t)
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-

[w(t), v(t)]
Plant -

y(t)
Coder -

ŷ(t)

Channel
Decoder -

ẑ(t)

Fig. 10.1. H∞ state estimation via communication channel.

that depends only on ŷ(·) |t0. The block diagram of this state estimator is shown in
Fig. 10.1.

We consider the class of linear time-invariant coders of the form

ẋc(t) = Acxc(t) +Bcy(t); xc(0) = 0;

ŷ(t) = Ccxc(t) +Dcy(t), (10.2.3)

where ŷ(t) ∈ Rm is the signal transmitted via the communication channel. Note that
the dimension of the coder state vector xc(t) may be arbitrary.

Also, we consider linear time-invariant decoders of the form

ẋd(t) = Axd(t) +Bdŷ(t); xd(0) = 0;

ẑ(t) = Cxd(t). (10.2.4)

The system (10.2.4) is an estimator for the system (10.2.1), and we wish to make the
dynamics of (10.2.4) as close as possible to the dynamics of (10.2.1).

Definition 10.2.1. Consider the system (10.2.1). Let γ > 0 and m < l be given. The
H∞ state estimation problem via a communication channel of dimension m with
disturbance attenuation γ is said to have a solution if a coder of the form (10.2.3)
and a decoder of the form (10.2.4) exist such that the condition (10.2.2) holds.

The problem of H∞ state estimation via limited capacity communication chan-
nel is to find matrix coefficientsAc, Bc, Cc, and Bd (if they exist) to satisfy the H∞

requirement (10.2.2). This problem is difficult. In this chapter, we consider a simpli-
fied problem statement:

Suppose that Bd is given. Find the coefficients of the coder (10.2.3) such that
condition (10.2.2) holds.

Definition 10.2.2. Consider the system (10.2.1). Let γ > 0,m < l, andBd be given.
The H∞ state estimation problem via a communication channel of dimension m
with disturbance attenuation γ is said to have a solution with the decoder (10.2.4) if
a coder of the form (10.2.3) exists such that the requirement (10.2.2) holds.

10.3 Linear State Estimator Design

The main result of this chapter requires the following assumptions.

Assumption 10.3.1. The pair (A,B) is controllable.
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Assumption 10.3.2. The pair (A,K) is observable.

Assumption 10.3.3. The pair (A,C) is observable.

Our solution to the above problem involves the following Riccati algebraic equa-
tions:

AY + Y A T + Y

[
1

γ2
K TK − C TC

]
Y +BB T = 0, (10.3.5)

A TXǫ +XǫA+Xǫ

[
1

ǫ
BdB

T
d −

1

γ2
BB T

]
Xǫ +K TK = 0. (10.3.6)

Now we are in a position to present the main result of this chapter.

Theorem 10.3.4. Consider the system (10.2.1), suppose that Assumptions 10.3.1–
10.3.3 hold, and that the coefficient Bd of the decoder (10.2.4) is given. Let γ > 0
be a given constant and m be a given integer. Then, the following statements are
equivalent:

(i) The H∞ state estimation problem via a communication channel of dimension
m with disturbance attenuation γ has a solution with the decoder (10.2.4).

(ii) A constant ǫ > 0 exists such that the algebraic Riccati equations (10.3.5) and
(10.3.6) have stabilizing solutions Y ≥ 0 and Xǫ ≥ 0 such that ρ(Y Xǫ) < γ2

where ρ(·) denotes the spectral radius of a matrix.

Furthermore, suppose that condition (ii) holds. Then, the coder (10.2.3) with

Ac =

(
Ãc −B̃cC
−BC̃c A

)
; Bc =

(
B̃c
0

)
; Cc =

(
C̃c 0

)
;

Ãc = A+BC̃c − B̃cC +
1

γ2
BB TXǫ;

B̃c =

[
I − 1

γ2
Y Xǫ

]−1

Y C T, C̃c =
1

ǫ
B T
dXǫ (10.3.7)

solves the H∞ state estimation problem via a communication channel of dimension
m with disturbance attenuation γ with the decoder (10.2.4).

Proof of Theorem 10.3.4: Statement (i)⇒ (ii). Assume that condition (i) holds,
and consider the decoder (10.2.4). Introduce a new vector variable x̃ := x(t)−xd(t).
Then x̃(t) satisfies the equation

˙̃x(t) = Ax̃(t) +Bŷ(t) +Bw(t); x̃(0) = 0. (10.3.8)

Furthermore, introduce

z̃(t) := Kx̃(t); ỹ(t) := Cx̃(t) + v(t). (10.3.9)

Now consider the linear system (10.3.8), (10.3.9) and suppose that ŷ(t) is the control
input, w(t) and v(t) are the disturbance inputs, ỹ(t) is the measured output, and z̃(t)
is the controlled output. The requirement (10.2.2) can now be rewritten as
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J := sup
[w(·),v(·)]∈L2[0,∞)

‖z̃(·)‖22
‖w(·)‖22 + ‖v(·)‖22

< γ2. (10.3.10)

Now the coder (10.2.3) can be considered as an output feedback controller with
input ỹ(·) and output ŷ(·). Furthermore, this controller solves the output feedback
H∞ control problem (10.3.10). Note that the H∞ control problem (10.3.10) is a
singular problem. The approach taken to solve this singular problem is a perturbation
approach such as contained in [81]. As it was shown in [81], since the controller
(10.2.3) solves the H∞ control problem (10.3.10), a small ǫ > 0 exists such that the
same controller solves the nonsingularH∞ control problem

J := sup
[w(·),v(·)]∈L2[0,∞)

‖z̃(·)‖22 + ǫ‖ỹ(·)‖22
‖w(·)‖22 + ‖v(·)‖22

< γ2. (10.3.11)

Now condition (ii) follows from the standard H∞ control theory; e.g., see [151],
p.73. This completes the proof of this part of the theorem.

Statement (ii)⇒ (i). Suppose that condition (ii) holds. Then, it follows from the
standard H∞ control theory (e.g., see [151], pp. 73 and 78) that the linear output
feedback controller

˙̃xc(t) = Ãcx̃c(t) + B̃cỹ(t); x̃c(0) = 0;

ŷ(t) = Ccx̃c(t) (10.3.12)

with the coefficients defined by (10.3.7) solves theH∞ control problem (10.3.11) for
the system (10.3.8), (10.3.9). Since z̃ = z− ẑ, the H∞ requirement (10.2.2) follows
from (10.2.2). Furthermore, since ỹ(t) = y(t) − Cxd(t) and xd(t) is defined by
(10.2.4), (10.3.12) can be rewritten in the form (10.2.3) with the coefficients defined
by (10.3.7). This completes the proof of Theorem 10.3.4.
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Kalman State Estimation and Optimal Control Based
on Asynchronously and Irregularly Delayed
Measurements

11.1 Introduction

In this chapter, we study discrete-time linear partially observed systems with Gaus-
sian disturbances. Various sensor signals or even parts of a sensor output are com-
municated to the observer or controller over parallel channels with independent de-
lays. Messages may arrive out of order; there may be periods when no information
is received. Data transferred via a channel may be corrupted or even lost due to,
e.g., noise in the communication medium and protocol malfunctions. The situation
is complicated by the fact that many communication channels do not satisfy the time
invariance condition [208, 232]. The reasons for it vary depending on the type of the
channel. In some cases, this may be due to the relative motion of the transmitter and
the receiver, as well as due to oscillator drifts and phase noise coupled with multipath
effects [208]. For digital networked channels, the origins of the phenomenon may be
traced back, in particular, to competition between channels for the network resources.
As a result, the prognosis of the future states of the communication medium is often a
hard task; and we suppose that the statistics of the transmission delays is not known.
At the same time, it is characteristic of many channels that each message transferred
is marked with a “time stamp” indicating the moment of the transfer beginning; and
we assume this.

The minimum variance state estimation problem is solved and an analog of the
Kalman filter is proposed. For a finite horizon linear-quadratic Gaussian (LQG) op-
timal control problem, we obtain the solution in the form of the above filter coupled
with the controller optimal in the deterministic linear-quadratic optimization prob-
lem. We also derive the solution for the infinite-horizon problem of minimizing the
average cost per unit time. To this end, we introduce a concept of observability via
communication channels that may lose data. A number of criteria for such an ob-
servability are offered. The main results of this chapter were originally presented
in [105, 106].

When dealing with the state estimation problem, we suppose that the control
strategy is given. We also assume that there may be a difference between the control
currently produced by the controller and that acting upon the plant. This difference
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may be caused by a variety of reasons, e.g., the noise, delays, and data dropout in the
control loop. At the same time, this chapter addresses the optimal control problems in
the case where the control loop is perfect; i.e., the control generated by the controller
acts upon the plant immediately and with no distortion. Generalizations on the case
of nonperfect control loop will be considered in the next chapter, and in doing so, the
results on the state estimation from this chapter will be employed.

The issue of state estimation and control over communication channels with data
dropouts and delays was addressed in, e.g., [13, 72, 92, 93, 97, 98, 131, 146, 163, 186,
187, 194–196, 209, 210, 225, 226, 231] (see also the literature therein). In [194, 195],
the data losses are interpreted as sharp increases of the sensor noise level, which oc-
cur independently as time progresses and with a given probability. In [13], dropout in
both observation and control loops was treated, and it was assumed that data losses
happen independently and are equivalent to receiving the zero signal. An overview
of practical advances in the area of estimation and control under data losses is of-
fered in [196]. The paper [92] discusses a design of a dropout compensator. In [98],
observability of linear systems is studied in the situation where the probability of
loss of no more than m packets in every lot of k > m ones is kept above a certain
level. In [225, 226, 231], stabilization problems were considered under the assump-
tion that the durations of the chains of successive packet losses are upper bounded.
The paper [72] studies problems of optimal control over communication links with
data dropout in the cases where the dropout acknowledgment signal is and is not
available, respectively. The case of randomly delayed measurements was systemat-
ically studied by Ray et al. (see [93, 97, 209, 210] and the literature therein) under
the assumption that the sensor delays τ do not exceed the sampling rate (i.e., they
are binary τ ∈ {0, 1} in the discrete-time setting) and form a stationary sequence
of mutually independent random quantities with a priori known statistics, and the
communication channels do not lose signals.

The body of the chapter is organized as follows. In Sect. 11.2, the state esti-
mation problem is posed. Its solution is given by the state estimator described in
Sect. 11.3. Section 11.4 offers conditions for stability of this estimator. Sections 11.5
and 11.6 are devoted to finite and infinite horizon optimal control problems, respec-
tively. Sections 11.7, 11.9, and 11.10 contain the proofs of the main results from
Sects. 11.3, 11.5, 11.4, and 11.6. Section 11.8 offers the proofs of several proposi-
tions from Sect. 11.4, which in fact constitute criteria for observability via commu-
nication channels.

11.2 State Estimation Problem

We consider multiple sensor discrete-time linear systems of the form:

x(t+1) = A(t)x(t)+B(t)u(t)+ξ(t) t = 0, . . . , T−1, x(0) = a; (11.2.1)

yν(t) = Cν(t)x(t) + χν(t) ν = 1, . . . , l, t = 0, . . . , T. (11.2.2)

Here x(t) ∈ Rn is the state; u(t) ∈ Rm is the control; ξ(t) ∈ Rn is a process
disturbance; yν(t) ∈ Rkν is a sensor output; and χν(t) is a noise. The measurement
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yν(t) produced at a time t is sent to the estimator via a communication channel and
arrives at the time t + τν(t) ≥ t. We put τν(t) := ∞ if the signal yν(t) is lost.
Otherwise the estimator receives the signal yν(t)+λν (t) at the time t+τν(t), where
λν(t) is the transfer error. We however shall not make an explicit use of λν(t) and
merely add λν(t) to χν(t) in (11.2.2). So χν(t) is interpreted as the sum of the
measurement and transfer errors. A particular vector yν may equal either the entire
output of a sensor or only a part of it.

Denote by Y (t) the vector incorporating all the observation signals that arrive at
the estimator at the time t:

Y (t) :=
(
yν [θ]

)
(ν,θ)∈S(t)

, where S(t) :=
{
(ν, θ) : θ + τν(θ) = t

}
. (11.2.3)

(If no signal arrives, i.e., S(t) = ∅, the vector Y (t) is defined to be 0 ∈ R for
consistency.) We assume that the producer (sensor) of any measurement received is
recognizable. If the sensor output was partitioned into several portions to be trans-
ferred over parallel channels, there is a way to recognize which part of the output is
represented by the message arrived. With regard to the messages time stamps, these
assumptions mean that the set S(t) becomes known at the time t. We also suppose
that at this time the estimator is aware of the control u(t− 1). The problem is to find
the minimum variance estimate of the state x(t) based on the available data:

Y(t) := [Y (0), Y (1), . . . , Y (t)], S(t) := [S(0), S(1), . . . , S(t)],

U(t− 1) := col [u(0), . . . , u(t− 1)]. (11.2.4)

This problem will be examined in the case where the control is generated by a
given rule of the form

u(t) = U [t,Y(t),S(t), h(t)] . (11.2.5)

The variable h(t) is introduced to express a possible difference between the current
control generated by the controller and that acting upon the plant. For example, for-
mula (11.2.5) may shape into

u(t) = U∗ [t,Y(t),S(t)] + h(t),

where the first and second addends on the right stand for the control generated by the
controller and additive noise in the control loop, respectively. Another example is

u(t) = v[t− h(t)], v(t) = V [t,Y(t),S(t), v(0), . . . , v(t− 1)] ,

where v(t) is the control currently generated by the controller and h(t) is the delay in
the control loop. The case where h(t) takes only two values 0, 1 and u(t) = h(t)v(t)
models data dropout in the control loop.

The problem of state estimation will be studied under the following assumptions.

Assumption 11.2.1. In (11.2.1) and (11.2.2), the random vectors a, ξ(t), and χν(t),
ν = 1, . . . , l are Gaussian and independent with Eξ(t) = 0 and Eχν(t) = 0. The
mean Ea and the correlation matrices
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Raa := E[a−Ea][a−Ea] T, Rξξ(t) := Eξ(t)ξ(t) T,

Rνχχ(t) := Eχν(t)χν(t)
T (where ν = 1, . . . , l) (11.2.6)

are known. So are the matrices A(t), B(t), and Cν(t).

and χν(t) and bounded by a known constant: τν(t) ≤ σ whenever τν(t) 6=∞.

Assumption 11.2.3. At any time t, the estimator gets aware of the control u(t− 1).

Assumption 11.2.4. In (11.2.5), the random variables h(t) take values in a common
finite set and, along with the transmission delays, are independent of a, ξ(t), χν(t).

In particular, this means that through the knowledge of u(t − 1), the estimator does
not acquire an additional information about x(t), as compared with that contained in
Y(t) and S(t). Note in conclusion that (almost surely)

S(t1) ∩ S(t2) = ∅ whenever t1 6= t2, and (ν, θ) ∈ S(t)⇒ θ ≤ t. (11.2.7)

11.3 State Estimator

11.3.1 Pseudoinverse of a Square Matrix and Ensemble of Matrices

To describe the state estimator, we need some preliminaries. As is well known, any
nonsingular k × k square matrix M has a unique inverse M−1, i.e., an k × k matrix
such that MM−1 = M−1M = I . In some applications, an analog of the inverse
matrix is required in the case where the initial matrix M is singular detM = 0.

One of such analogs is the pseudoinverse [25, 30, 157] of M , which is the matrix
+

M
associated with the linear operator M−1

0 πM . Here πM is the orthogonal projection
of Rk onto ImM , the space Rk is equipped with the standard inner product

〈a, b〉 =
k∑

i=1

aibi a = col (a1, . . . , ak), b = col (b1, . . . , bk),

and the operator M0 : (kerM)⊥ → ImM is obtained by restricting M on
(kerM)⊥, where ⊥ stands for the orthogonal complement.

For any nonsingular matrix M , the pseudoinverse clearly equals the inverse.
More generally, for any block matrix of the form

M =

(
M 0
0 0

)
(11.3.1)

with the square nonsingular block M, the following relation evidently holds:

+

M =

(
M−1 0

0 0

)
.

Assumption 11.2.2. The measurement transmission delays are independent of a, ξ(t),
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This observation aids to compute the pseudoinverse of any normal M TM = MM T

(in particular, self-adjoint M T = M ) matrix M . To this end, it suffices to note that
first, such a matrix can be reduced to the form (11.3.1) by a similarity transformation
M 7→MU := UMU−1 with an orthogonal matrix U and, second, the pseudoinverse
is invariant with respect to this transformation:

MU = UMU−1 ⇒
+

M = U−1
+

MUU. (11.3.2)

Now we proceed to the case introduced in the following.

Definition 11.3.1. A square ensemble Λ of matrices over a finite set S = {s} is
composed of several matrices Λs2s1 enumerated by the pairs (s1, s2) with s1, s2 ∈ S,
each of the size k(s1)× k(s2), where k(s) are some natural numbers.

By picking an enumeration {s(1), . . . , s(q)} of S, such ensembles can be put in the
one-to-one correspondence Λ↔M with square k × k block matrices

M =




Λ
s(1)
s(1) Λ

s(2)
s(1) Λ

s(3)
s(1) . . . Λ

s(q)
s(1)

Λ
s(1)
s(2) Λ

s(2)
s(2) Λ

s(3)
s(2) . . . Λ

s(q)
s(2)

· · · · · · ·
· · · · · · ·

Λ
s(1)
s(q) Λ

s(2)
s(q) Λ

s(3)
s(q) . . . Λ

s(q)
s(q)



, k :=

∑

s∈S
k(s). (11.3.3)

The ensemble
+

Λ corresponding to
+

M is called the pseudoinverse of Λ, and inverse if

the matrix M is nonsingular. In the latter case,
+

Λ is also denoted by Λ−1.
The matricesM produced by various enumerations can clearly be obtained from

each other by a similarity transformation with a permutation matrix U . Since such a

matrix U is orthogonal, the property (11.3.2) implies that the pseudoinverse
+

Λ does
not depend on the enumeration of S.

Some further properties of the pseudoinverses are discussed in Appendix B.

11.3.2 Description of the State Estimator

We denote by x̂(j|t) the minimum variance estimate of the state x(j) based on

Y (0), . . . , Y (t), S(0), . . . , S(t), u(0), . . . , u(t− 1),

where Y (θ) and S(θ) are given by (11.2.3). Being coupled with certain n×n matri-
ces

Pij(t), P ij(t), i, j = 0, . . . , σ

(where σ is taken from Assumption 11.2.2), the tuple of the estimates

X̂(t) =
[
x̂(t|t), x̂(t− 1|t), . . . , x̂(t− σ|t)

]
(11.3.4)

may be generated recursively by the following analog of the Kalman filter.



376 11 Kalman State Estimation and Optimal Control Based on Delayed Measurements

Recursive State Estimator

The next tuple X̂(t+ 1) of the estimates is generated by equations

x̂(j|t+ 1) = x̂(j|t) +
∑

(ν,θ)∈S(t+1)

K
(ν,θ)
t+1−j(t+ 1) [yν(θ) − ŷν(θ|t)] , (11.3.5)

where j = t+ 1, t, t− 1, . . . , t+ 1− σ,

x̂(t+ 1|t) := A(t)x̂(t|t) +B(t)u(t),

and
ŷν(θ|t) := Cν(θ)x̂(θ|t). (11.3.6)

(We recall that any sum over the empty set is defined to be zero.) The gain matrices
Ks
j (t) are enumerated by the pairs [j, s = (ν, θ)] with j = 0, . . . , σ and s ∈ S(t)

and have the size n× kν . These matrices are calculated as follows:

Ks
j (t) =

∑

(ν,θ)∈S(t)

Pj,t−θ(t)Cν(θ)
T
+

Λ(t)s(ν,θ). (11.3.7)

Here
+

Λ(t) is the pseudoinverse of the following square ensemble Λ = Λ(t) of matri-
ces over the finite set S(t):

Λ(t)s2s1 = Cν1(θ1)Pt−θ1,t−θ2(t)Cν2 (θ2)
T +∆s2

s1 ;

∆s2
s1 :=

{
Rν1χχ(θ1) if s1 = s2
0 otherwise

;

∀s1 = (ν1, θ1), s2 = (ν2, θ2) ∈ S(t). (11.3.8)

The square ensembles {Pij(t)}σi,j=0, {P ij(t)}σi,j=0 of n × n-matrices over the set
[0 : σ] are generated recursively

7→

{
Pij(t)

}
7→

{
P ij(t)

}
7→

{
Pij(t+ 1)

}
7→; (11.3.9)

P ij(t) := Pij(t)−
∑

(ν,θ)∈S(t)

K
(ν,θ)
i (t)Cν (θ)Pt−θ,j(t); (11.3.10)

Pij(t+ 1) :=





A(t)P ij(t)A(t) T +Rξξ(t) if i = j = 0

A(t)P i,j−1(t) if i = 0, j ≥ 1

P i−1,j(t)A(t) T if i ≥ 1, j = 0

P i−1,j−1(t) if i, j ≥ 1

. (11.3.11)

The recursion (11.3.5), (11.3.9) is initialized by the formulas:

A(−1) := I, B(−1) := 0, u(−1) := 0, x̂(−1| − 1) := Ea;

x̂(−1− j| − 1) := 0 j = 1, . . . , σ; (11.3.12)
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Pij(0) =

{
0 if i ≥ 1 or j ≥ 1

Raa if i = j = 0
. (11.3.13)

Note that in (11.3.5), (11.3.7), and (11.3.10), the sums are over the signals arrived
at the moment under consideration.

If no information is received at time t+ 1, the recursion step (11.3.5), (11.3.10)
becomes much simpler:

P ij(t+ 1) = Pij(t+ 1), x̂(t+ 1|t+ 1) = A(t)x̂(t|t) +B(t)u(t);

x̂(j|t+ 1) = x̂(j|t) for j = t, t− 1, . . . , t+ 1− σ.
Remark 11.3.2. Since the above estimator generates estimates of not only the current
but also past states, it has points of similarity with the fixed-lag smoother [125,129].

11.3.3 The Major Properties of the State Estimator

Theorem 11.3.3. Suppose that Assumptions 11.2.1–11.2.4 hold. Then the above es-
timator generates the sequence of minimum variance estimates; i.e.,

x̂(j|t) = E [x(j)|Y(t),S(t),U(t − 1)] (11.3.14)

whenever t − σ ≤ j ≤ t and j ≥ 0. Here Y(t), S(t), and U(t − 1) are defined by
(11.2.4), and σ is the constant from Assumption 11.2.2.

The matrices Pij(t), P ij(t), i, j = 0, . . . , σ generated by the estimator are the
conditional covariance matrices of the estimation errors

e(θ|s) := x̂(θ|s)− x(θ). (11.3.15)

More precisely, the following relations hold whenever t− i ≥ 0 and t− j ≥ 0:

P ij(t) := E
[
e(t− i|t)e(t− j|t) T

∣∣S(t)
]
;

Pij(t) := E
[
e(t− i|t− 1)e(t− j|t− 1) T

∣∣S(t− 1)
]
.

(11.3.16)

Furthermore, the estimation errors (11.3.15) do not depend on the control
(11.2.5) (on p. 373).

The proof of this theorem and the remark to follow will be given in Sect. 11.7.
The following remark presents useful technical facts.

Remark 11.3.4. (i) An access of the estimator to the quantity h(t) from (11.2.5) and
moreover, the knowledge of the entire sequences S(θ), 0 ≤ θ ≤ T and h(θ), 0 ≤
θ ≤ T − 1 at any time t do not alter the minimum variance state estimate:

x̂(j|t) = E [x(j)|Y(t),S(t),U(t − 1)]

= E [x(j)|Y(t),S(t), h(0), . . . , h(t− 1)]

= E [x(j)|Y(t),S(T ), h(0), . . . , h(T − 1)] (11.3.17)

whenever t− σ ≤ j ≤ t and j ≥ 0.
(ii) Given S(0), . . . , S(T ), h(0), . . . , h(T − 1), the estimation errors (11.3.15)

(where max{s−σ, 0} ≤ θ ≤ s) are independent of the observationsY (0), . . . , Y (s).
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11.4 Stability of the State Estimator

The stability of the estimator is essential when estimation is performed over a long
period of time. As is well known, the observation delays are the source of potential
instability [93,97,209,210]. In this section, we show that the proposed state estimator
is stable provided natural assumptions hold. For the sake of conciseness, we confine
ourselves to the case when the system (11.2.1), (11.2.2) (but not the communication
channels) is stationary.

We start with definitions required to state the assumptions under which the sta-
bility issues will be addressed.

11.4.1 Almost Sure Observability via the Communication Channels

Definition 11.4.1. Consider the plant (11.2.1), (11.2.2) (on p. 372) with the noises
and control removed

x(t+ 1) = Ax(t), yν(t) = Cνx(t) ν = 1, . . . , l. (11.4.1)

This system is said to be observable via the communication channels on the interval
[t0, t1] (for a given realization of the random delays {τν(t)}) if every state x(t0) can
be determined from the knowledge of the observations that are both dispatched and
received within this interval.

Proposition 11.4.2. The system (11.4.1) is observable via the communication chan-
nels on the interval [t0, t1] (for a given realization of the random delays {τν(t)}) if
and only if the following symmetric nonnegative n× n-matrix is positive-definite:

M(t0, t1) :=
∑

(ν,θ):t0≤θ,
θ+τν(θ)≤t1

(
Aθ−t0

) T
C T
νCνA

θ−t0 . (11.4.2)

The proofs of the results formulated in this section will be given in Sect. 11.8.
If a realization of {τν(t)} is not fixed, the matrix (11.4.2) is random.

Definition 11.4.3. Let an integer σ∗ = 0, 1, . . . exist such that M(t0, t1) > 0 almost
surely for some, possibly random, time instant t0 = t0(t1) ∈ [t1 − σ∗, t1] whenever
t1 ≥ σ∗. Then the system (11.4.1) is said to be almost surely observable via the
communication channels.

In fact, the matrix M(t0, t1) can be replaced here by the easier computable matrix

M(t0, t1) :=

t1∑

θ=t0

l∑

ν=1

αν(θ)
(
Aθ−t0

) T
C T
νCνA

θ−t0 ; (11.4.3)

αν(t) :=

{
0 if the signal yν(t) is lost, i.e., τν(t) =∞
1 otherwise
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since M(t0, t1) ≤ M(t0, t1) ≤ M(t0, t1 + σ) due to Assumption 11.2.2. Thus
verification of the above observability requires only the statistics of the data dropouts.
It can be shown that whenever detA 6= 0, the system (11.4.1) is observable via the
communication channels if and only if M(T − σ∗, T ) > 0 ∀T ≥ σ∗ almost surely
for some σ∗ = 0, 1, . . .. Note that the random time instant t0 is not employed here.

Observability via the communication channels apparently implies that

The system (11.4.1) is observable in the standard sense.

In the remainder of this subsection we consider only such systems. Then the system
is clearly observable via the communication channels whenever they do not lose
signals. To state other criteria, we say that a finite nonempty set

T ⊂
{
(ν, t) : ν = 1, . . . , l, t = 0, 1, . . .

}
(11.4.4)

is representative for the system (11.4.1) if and only if

⋂

(ν,t)∈T

kerCνA
(t−t−) = {0}, where t− := min{t : (ν, t) ∈ T}. (11.4.5)

Proposition 11.4.4. The system (11.4.1) is observable via the communication chan-
nels if and only if an integer σ∗ = 0, 1, . . . exists such that the set

T(T ) :=
{
(ν, t) : T − σ∗ ≤ t ≤ T and the signal yν(t) is not lost

}

contains a representative subset almost surely for all T ≥ σ∗.
Now we offer a number of facts concerning representative sets.

Proposition 11.4.5. Denote by O the collection of all matricesA such that the system
(11.4.1) is observable in the standard sense. For almost all A ∈ O (with respect to
the Lebesgue measure), any finite set (11.4.4) such that the set Tν := {t : (ν, t) ∈ T}
contains n elements (the νth sensor output is not lost n times) for all ν = 1, . . . , l is
representative.

By combining Propositions 11.4.4 and 11.4.5, we see that almost all observable (in
the standard sense) systems are observable via the communication channels with
“low rates” of data dropout. The last property means that for some integer σ∗ > n,
each channel does not lose (almost surely) at least n messages in every set of σ∗
consecutively dispatched messages.

Proposition 11.4.6. Any finite set of the form

T = {(ν, θ) : ν = 1, . . . , l, θ = t, t+ 1, . . . , t+ n− 1}

(the channels lose no sensor signal dispatched within some time interval of duration
n) is representative.
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Thus an observable (in the standard sense) system is observable via the communi-
cation channels if for some σ∗ > n, any time interval of duration σ∗ contains a
subinterval of duration n − 1 such that all messages sent via the channels within it
arrive (sooner or later) at the destination point. Note that this subinterval is common
for all channels. The next proposition shows that if detA 6= 0, this subinterval may
depend on the channel.

Proposition 11.4.7. Suppose that detA 6= 0. Any finite set T such that the set Tν is
an interval tν , tν + 1, . . . , tν + n − 1 of the length n (consequent n outputs of the
νth sensor are not lost) for all ν = 1, . . . , l is representative.

Proposition 11.4.8. Let a(λ) := det(λI − A) be the characteristic polynomial of
the matrix A. For t = 0, 1, . . ., we denote by pt(λ) the remainder of λt when divided
by a(λ). Suppose that for any ν = 1, . . . , l, the set Tν consists of n elements Tν =
{t1 < t2 < . . . < tn} and the polynomials

pt1−t−(λ), pt2−t−(λ), . . . , ptn−t−(λ),

where t− is defined in (11.4.5), are linearly independent. Then the set T is represen-
tative.

11.4.2 Conditions for Stability of the State Estimator

Now we suppose that the following three additional assumptions hold.

Assumption 11.4.9. The coefficients of the system (11.2.1), (11.2.2) (on p. 372) do
not vary in course of time: A(t) ≡ A, Cν(t) ≡ Cν .

Assumption 11.4.10. The process disturbance in (11.2.1) and the noises in (11.2.2)
are statistically stationary and nonsingular:

Rξξ(t) ≡ Rξξ > 0, Rνχχ(t) ≡ Rνχχ > 0.

Assumption 11.4.11. The system (11.4.1) is either almost surely observable via the
communication channels (see Definition 11.4.1) or stable.

The following theorem is the main result of this section.

Theorem 11.4.12. Suppose that Assumptions 11.2.1– 11.2.4 (on pp. 373 and 374),
and 11.4.9–11.4.11 hold. Then the state estimator described in Subsect. 11.3.2 (start-
ing on p. 375) is a.s. uniformly exponentially stable; i.e.,

σ∑

j=0

‖e(t− j|t)‖ ≤ cρt−t0
σ∑

j=0

‖e(t0 − j|t0)‖ (11.4.6)

whenever t ≥ t0. Here e(θ|t) are the errors (11.3.15) that occur provided the noises
are removed from (11.2.1) and (11.2.2) (on p. 372). The constants c > 0 and ρ ∈
(0, 1) do not depend on t, t0 and the initial states of both the system and the estimator.
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It is tacitly assumed that the estimator gain matrices from (11.3.5) are calculated in
the presence of the noises for a specific initial data of the recursion (11.3.9) and fixed.

The proof of Theorem 11.4.12 will be given in Sect. 11.9.

Remark 11.4.13. Consider two initial random vectors a1 and a2 in (11.2.1). By
(11.3.13), each of them ai gives rise to its own sequence of the estimator gain ma-

trices
i

Ks
j(t). It follows from (11.4.6), along with (11.3.15), (11.3.16) and (11.3.7),

(11.3.8), that the discrepancy between these matrices is exponentially small
∥∥∥∥

2

Ks
j(t)−

1

Ks
j(t)

∥∥∥∥ ≤ c∗(a1, a2)ρ
t
∗ a.s.,

where ρ∗ ∈ (0, 1). Thus the influence of the initial state a on the proposed state
estimator vanishes in course of time.

11.5 Finite Horizon Linear-Quadratic Gaussian Optimal Control
Problem

Now we revert to the controlled system (11.2.1), (11.2.2) (on p. 372) and consider
the problem of minimizing the quadratic cost functional over a finite horizon

IT := E

T−1∑

t=0

[x(t + 1) TQ(t+ 1)x(t+ 1) + u(t) TΓ(t)u(t)] . (11.5.1)

Here Q(t + 1) ≥ 0 and Γ(t) > 0 are symmetric n × n and m × m matrices,
respectively.

Now the observations are sent to not the observer but to the controller. In this
and the next sections, we consider the case where the control acts upon the plant
immediately and with no distortion. This means that in (11.2.5) (on p. 373), the
variable h(t) takes only one value and so can be dropped. Hence the natural class of
control strategies is given by

u(t) = U [t,Y(t),S(t),U(t− 1)] , (11.5.2)

where U(·) is a deterministic function and Y(t),S(t),U(t−1) are defined in (11.2.3)
and (11.2.4) (on p. 373). It should be remarked that by recursive excluding u(θ) from
the right-hand side, (11.5.2) can be shaped into the form u(t) = Ψ [t,Y(t),S(t)]
similar to (11.2.5).

In the other respects, the situation does not change. In particular, the measure-
ment signals still incur random irregular delays and are sealed with time stamps.

To present the solution, we consider first the problem of minimizing the func-
tional (11.5.1) subject to the constraints (11.2.1) in the case where the process dis-
turbances are removed (ξ(t) ≡ 0) and the entire state x(t) is immediately accessible
by the controller. As is well known (see Appendix C), the solution of this simplified
problem is given by the linear feedback u(t) = −L(t)x(t), where
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L(t) = F (t)−1B(t) T [Q(t+ 1) +H(t+ 1)]A(t); (11.5.3)

F (t) := Γ(t) +B(t) T [Q(t+ 1) +H(t+ 1)]B(t), (11.5.4)

and the symmetric n×n-matricesH(T ), H(T − 1), . . . , H(0) are calculated recur-
sively in accordance with the following difference Ricatti equation:

H(t) = L(t) TΓ(t)L(t) +AL(t) T [Q(t+ 1) +H(t+ 1)]AL(t)

where AL(t) := A(t)−B(t)L(t). (11.5.5)

Here t = T − 1, T − 2, . . . , 0 and the recursion is initialized by putting H(T ) := 0.
It is easy to see that H(t) ≥ 0 ∀t. So the matrix F (t)−1 in (11.5.3) does exist since

F (t) = Γ(t) +B(t) TQ(t+ 1)B(t) +B(t) TH(t+ 1)B(t) ≥ Γ(t) > 0. (11.5.6)

Now we are in a position to state the main result of the section.

Theorem 11.5.1. Suppose that Assumptions 11.2.1 and 11.2.2 (on p. 374) hold. Then
the optimal strategy (11.5.2) exists and is given by the formula

u(t) = −L(t)x̂(t|t) for t = 0, 1, . . . , T − 1. (11.5.7)

Here the gain matrices L(t) are determined by (11.5.3)–(11.5.5), and x̂(t|t) is the
estimation of the current state x(t) generated by the estimator from Subsect. 11.3.2.

Now this estimator should be implemented at the controller site.
The proof of Theorem 11.5.1 will be given in Sect. 11.7.

11.6 Infinite Horizon Linear-Quadratic Gaussian Optimal
Control Problem

In this section, we consider the infinite-horizon time-invariant system (11.2.1),
(11.2.2) and deal with the problem of minimizing the average cost per unit time

lim
T→∞

T−1IT . (11.6.1)

Here IT is defined by (11.5.1). Apart from Assumptions 11.2.1 and 11.2.2 (on
p. 374), several additional assumptions are adopted. The first of them extends As-
sumption 11.4.9 (on p. 380).

Assumption 11.6.1. The coefficients of both the system (11.2.1), (11.2.2) (on p. 372)
and the functional (11.5.1) (on p. 381) do not vary as time progresses:

A(t) ≡ A, B(t) ≡ B, Cν(t) ≡ Cν , Q(t) ≡ Q, Γ(t) ≡ Γ.

Assumption 11.6.2. The pairs (A,B) and (A,Q) are stabilizable and detectable,
respectively.
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The next assumption relaxes Assumption 11.4.10 (on p. 380) by dropping the re-
quirement that the noises should be nonsingular.

Assumption 11.6.3. The noises in (11.2.1) and (11.2.2) are statistically stationary:

Rξξ(t) ≡ Rξξ, Rνχχ(t) ≡ Rνχχ.

Assumption 11.6.4. A constant p ∈ (0,+∞) exists such that

E tr [P00(t)− P 00(t)] ≤ p ∀t = 0, 1, 2, . . . . (11.6.2)

Here Pij(t), P ij(t) are the symmetric n × n matrices generated by the estimator
from Subsect. 11.3.2 (starting on p. 375).

It should be remarked that the matrices Pij(t), P ij(t) are generated by formulas
(11.3.7)–(11.3.11), (11.3.13), which do not employ controls. So they are well defined
in the current situation, where the controls have not been specified yet.

An informal interpretation of Assumption 11.6.4 proceeds from the fact that by
(11.3.14), (11.3.15), and (11.3.16), P00(t) and P 00(t) are the covariance matrices
of the current state estimation errors that occur, respectively, before and after the
arrival of the current observation message. So the quantity E tr [P00(t) − P 00(t)]
from (11.6.2) evaluates to what extent this message improves the accuracy of the
estimate. In view of this, we call this quantity the efficiency of the tth message. Thus
Assumption 11.6.4 means that there is no observation message with arbitrarily high
efficiency.

A criterion for Assumption 11.6.4 to hold will be offered at the end of this sec-
tion.

Now we consider the algebraic Ricatti equation

H = L T
HΓLH + (A−BLH) T(Q+H)(A−BLH) (11.6.3)

with respect to the unknown n× n symmetric matrix H . Here

LH := F−1
H B T(Q+H)A, FH := Γ +B T(Q+H)B. (11.6.4)

Under the circumstances, this equation is well known to have a solutionH for which
the matrix

AH := A−BLH (11.6.5)

is asymptotically stable:

‖(AH)t‖ ≤ cρt t = 0, 1, 2, . . . (11.6.6)

for some c > 0, ρ ∈ (0, 1). This solution is unique and nonnegative. In particular,
the last property implies that the inverse matrix F−1

H in (11.6.4) does exist.
Now we are in a position to state the main result of the section.
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Theorem 11.6.5. Suppose that Assumptions 11.2.1, 11.2.2 and 11.6.1–11.6.4 (on
pp. 373 and 382) hold. Then the feedback

u(t) = −LH x̂(t|t) (11.6.7)

furnishes the minimum of the average cost for unit time (11.6.1) over all control
strategies (11.5.2). In (11.6.7), the estimate x̂(t|t) is generated by the state estimator
from Subsect. 11.3.2 (starting on p. 375).

The proof of this theorem will be given in Sect. 11.10.
As will be shown in Sect. 11.10 (for details, see Lemma 11.10.1 on p. 397), the

stationary control gain (11.6.7) can be viewed as the limit of the optimal nonstation-
ary gain (11.5.7). At the same time, both gains are fed by the state estimate produced
by the common and nonstationary estimation algorithm.

We close the section with sufficient conditions for Assumption 11.6.4 to hold and
the control strategy (11.6.7) to stabilize the system.

Proposition 11.6.6. Suppose that Assumptions 11.2.1, 11.2.2 and 11.6.1–11.6.3 (on
pp. 373 and 382) are true. Assumption 11.6.4 (on p. 383) holds, and the control
strategy (11.6.7) stabilizes the system

sup
t=0,1,...

E‖x(t)‖2 <∞

whenever at least one of the following claims is true:

(i) The uncontrolled plant (11.2.1), (11.2.2) (on p. 372) is asymptotically stable:
‖At‖ ≤ γµt for t = 0, 1, 2, . . . and some γ > 0, µ ∈ (0, 1);

(ii) This plant is almost surely observable via the communication channels.1

The proof of this proposition will be given in Sect. 11.10.

11.7 Proofs of Theorems 11.3.3 and 11.5.1 and Remark 11.3.4

Proof of Theorem 11.3.3 and Remark 11.3.4 (on p. 377). Consider the linear space

Z :=
{
Z = {zν,j}lν=1

σ
j=0 : zν,j ∈ R

kν ∀ν, j
}
.

We recall that l is the number of sensors, kν is the dimension of the νth sensor output,
and σ is taken from Assumption 11.2.2 (on p. 374). We also set

x(−σ) := x(−σ + 1) := · · · := x(−1) := 0

and introduce the vectors

1See Definition 11.4.3 on p. 378.
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X(t) := col
[
x(t), x(t − 1), . . . , x(t− σ)

]
;

Z(t) :=
{
zν,j
}
∈ Z, where zν,j :=

{
yν(t− j) if (ν, t− j) ∈ S(t)
0 otherwise

.

(11.7.1)

The vector Z(t) can be interpreted as composed of the currently arrived observations
Y (t) from (11.2.3) (on p. 373) supplemented with several zeros. In terms of X(t)
and Z(t), relations (11.2.1) and (11.2.2) (on p. 372) take the forms, respectively:

X(t+ 1) = A(t)X(t) + B(t)u(t) + E ξ(t) t = 0, . . . , T − 1; (11.7.2)

X(0) = a := col (a, 0, . . . , 0); (11.7.3)

Z(t) = C
[
t, S(t)

]
X(t) + Ξ

[
t, S(t)

]
t = 0, . . . , T. (11.7.4)

Here

A(t) :=




A(t) 0 0 · · · 0 0
I 0 0 · · · 0 0
0 I 0 · · · 0 0
0 0 I · · · 0 0
· · · · · · · ·
· · · · · · · ·
0 0 0 · · · I 0




and
E := col

[
I, 0, . . . , 0

]

B(t) := col
[
B(t), 0, . . . , 0

] .

(11.7.5)
Furthermore for any t ≤ T , S ⊂ {(ν, j) : ν = 1, . . . , l, j = 0, . . . , σ}, and X =
col (x0, x1, . . . , xσ) ∈ R(σ+1)n, the following relations hold:

C[t, S]X := {zν,j}lν=1
σ
j=0 ∈ Z,

where zν,j :=

{
Cν(t− j)xj if (ν, t− j) ∈ S
0 otherwise

; (11.7.6)

Ξ[t, S] := {ζν,j}lν=1
σ
j=0 ∈ Z,

where ζν,j :=

{
χν(t− j) if (ν, t− j) ∈ S
0 otherwise

. (11.7.7)

Formula (11.2.5) (on p. 373) shapes into

u(t) = U [t, Z(0), . . . , Z(t), S(0), . . . , S(t), h(t)] .

By Assumptions 11.2.2 and 11.2.4 (on p. 374), the quantities {τν(t)} and {h(t)}
are independent of a, {ξ(t)}, and {χν(t)}. So evidently are the random sets {S(t)}
defined by (11.2.3) (on p. 373). Then (11.2.7) (on p. 374) implies that the vectors
a, ξ(t), and Ξ[t, S(t)] conditioned over

S(0), . . . , S(T ), h(0), . . . , h(T − 1) (11.7.8)
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are (singular) Gaussian and independent. This yields that conditioning all random
vectors over (11.7.8) reduces the system to that considered in the classic Kalman
filtering theory. This theory gives the expression for the minimum variance estimate
X̂(t|t) ofX(t) based onZ(0), . . . , Z(t), and due to the preliminary conditioning, the
quantities from (11.7.8). This estimate is generated recursively by the corresponding
Kalman filter so that only the sets S(0), . . . , S(t) from (11.7.4) and u(0), . . . , u(t−
1) are required to compute X̂(t|t). This implies (i) of Remark 11.3.4 (on p. 377) and
means that X̂(t|t) is in fact the minimum variance estimate of X(t) based on

Z(0), . . . , Z(t), S(0), . . . , S(t), and u(0), . . . , u(t− 1).

Theorem 11.3.3 (on p. 377) results from putting (11.7.5)–(11.7.7) into the equa-
tions giving the solution of the classic minimum variance estimation problem; i.e.,
formulas (C.8)–(C.13) (on pp. 510 and 511), along with elementary transformations
of the resultant formulas. This also gives the last claim of Theorem 11.3.3 and (ii) of
Remark 11.3.4 (on p. 377) thanks to (ii)–(iv) of Theorem C.2 (on p. 511).

Proof of Theorem 11.5.1 (on p. 382). In terms of the vectors (11.7.1), the problem
under consideration takes the form:

minimize E

T−1∑

t=0

[X(t+ 1) TQ(t+ 1)X(t+ 1) + u(t) TΓ(t)u(t)] ; (11.7.9)

where Q(t) :=




Q(t) 0 · · · 0
0 0 · · · 0
0 0 · · · 0
· · · · · ·
0 0 · · · 0



, (11.7.10)

subject to the constraints (11.7.2)–(11.7.4) and

u(t) = U [t, Z(0), . . . , Z(t), S(0), S(1), . . . , S(t), u(0), . . . , u(t− 1)] . (11.7.11)

Now in (11.7.8), h(t) take only one value and so may be ignored. As was shown, the
vectors a, ξ(t), andΞ[t, S(t)] conditioned overS(0), . . . , S(T−1) are Gaussian and
independent. This yields that the problem resulting from (11.7.2)–(11.7.4), (11.7.9),
and (11.7.11) by expanding the class of admissible controls as follows:

u(t) = U [t, Z(0), . . . , Z(t), S(0), . . . , S(T − 1), u(0), . . . , u(t− 1)]

reduces to a particular case of the standard LQG optimal control problem (see Ap-
pendix C starting on p. 509). By Theorem C.5 (on p. 513) from this appendix, the
solution of the latter problem is given by the linear feedback u(t) = −F(t)X(t)
that is optimal for the problem of minimizing the functional (11.7.9) subject to the
constraints (11.7.2) and (11.7.3) in the case where ξ(t) ≡ 0 and the entire state X is
measured. This controller is fed by the minimum variance estimate X̂(t|t) of X(t)
based on the observationsZ(0), . . . , Z(t) and the known controls u(0), . . . , u(t−1).
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This estimate is generated recursively by the Kalman filter so that only the sets
S(0), . . . , S(t) from (11.7.4) are in fact required to compute X̂(t|t). Calculating the
gain matrix F(t) employs the coefficients of the functional (11.7.9) and the equation
(11.7.2) for the time instants t, t + 1, . . . , T . Since these coefficients do not depend
on the sets S(0), . . . , S(T − 1) and are known in advance, the control appears to
be of the form (11.7.11). So it furnishes the optimum over the strategies given by
(11.7.11).

Theorem 11.5.1 (on p. 382) results from putting the expressions (11.7.5)–(11.7.7)
and (11.7.10) into the equations giving the solutions of the minimum variance state
estimate and the standard LQG control problems, respectively (i.e., formulas (C.8)–
(C.13) and (C.18)–(C.21) on pp. 510–512 from Appendix C), along with elementary
transformations of the resultant formulas.

11.8 Proofs of the Propositions from Subsect. 11.4.1

Proof of Proposition 11.4.2 (on p. 378). Given two processes

pi =
(
[xi(t)]

t1
t=t0 , [Yi(t)]

t1
t=t0

)
, i = 1, 2

in the system (11.4.1) (here Yi(t) is given by (11.2.3) (on p. 373), where S(t) is
replaced by Ŝ(t) := {(ν, θ) ∈ S(t) : θ ≥ t0}), we have thanks to (11.2.3), (11.4.1),
and (11.4.2),

[x2(t0)− x1(t0)]
T

M(t0, t1)[x2(t0)− x1(t0)] =

t1∑

t=t0

‖Y2(t)− Y1(t)‖2.

So
(
Y1(t) = Y2(t)∀t = t0, . . . , t1

)
⇒ p1 = p2 if and only if M(t0, t1) > 0. ⊓⊔

Proof of Proposition 11.4.4 (on p. 379). Note first that whenever t0 ≥ t1 − σ∗,
(11.4.3) (on p. 378) yields

z TM(t0, t1)z =
∑

(ν,θ)∈T(t1):θ≥t0

∥∥CνAθ−t0z
∥∥2
. (11.8.1)

If T(t1) contains a representative subset T, then putting here t0 := t− the constant
t− from (11.4.5) (on p. 379) makes the sufficiency part of the proposition apparent.

Conversely, let the system (11.4.1) be observable via the communication chan-
nels; i.e., there is σ∗ ≥ 0 such that M(t0, t1) > 0 for some t0 ∈ [t1 − σ∗, t1] almost
surely. Then (11.8.1) implies that the set T := {(ν, θ) ∈ T(t1) : θ ≥ t0} is represen-
tative since t0 < t− ⇒ detA 6= 0. ⊓⊔

Proposition 11.4.6 (on p. 379) is evident.
Proof of Proposition 11.4.8 (on p. 380). By the definition of p t(λ),

λt = bt(λ)a(λ) + p t(λ), (11.8.2)
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where bt(λ) is a polynomial. Thanks to the assumptions of the proposition, p s1(λ),
. . . , p sn(λ) (where si := ti − t−) is the basis in the space of all polynomials of
degree≤ n− 1. So for j = 0, . . . , n− 1,

λj =

n∑

i=1

γ
(j)
i p si(λ) =

n∑

i=1

γ
(j)
i λsi −

[
n∑

i=1

γ
(j)
i bsi(λ)

]
a(λ)

for some γ(j)
i ∈ R. Since a(A) = 0, we get

CνA
j =

n∑

i=1

γ
(j)
i CνA

ti−t− ,
⋂

t∈Tν

kerCνA
t−t− =

n⋂

i=1

kerCνA
ti−t−

⊂
n−1⋂

j=0

kerCνA
j ,

⋂

(ν,t)∈T

kerCνA
t−t− ⊂

n−1⋂

j=0

l⋂

ν=0

kerCνA
j = {0}. ⊓⊔

Proof of Proposition 11.4.7 (on p. 380). Pick ν = 1, . . . , l. Suppose that

n−1∑

j=0

γjp tν+j−t−(λ) ≡ 0

for some γj ∈ R, and denote γ(λ) := γ0 + γ1λ+ · · · γn−1λ
n−1. Then by (11.8.2)

γ(λ)λtν−t− =



n−1∑

j=0

γjbtν+j−t−(λ)


 a(λ).

Since a(0) 6= 0, the polynomials a(λ) and λtν−t− are coprime. So the polynomial
a(λ) of degree n must divide the polynomial γ(λ) of degree≤ n−1. Hence γ(λ) ≡
0, γ0 = · · · = γn−1 = 0; i.e., the polynomials p tν−t−(λ), . . . , p tν+n−1−t−(λ) are
linearly independent. Proposition 11.4.8 completes the proof. ⊓⊔

Proof of Proposition 11.4.5 (on p. 379). Since

P(A) := det

l∑

ν=1

n−1∑

j=0

AjCνC
T
ν (A T)

j

is evidently a nonzero polynomial in the entries of the matrix A, and O = {A :
P(A) 6= 0}, the set O is of full Lebesgue measure in the space of all n× n matrices
A. Now let a tuple t = {t1, . . . , tn} of integers ti ≥ 0, ti 6= tj ∀ i 6= j be given. It is
easy to see that for any t = 0, 1, . . ., the coefficients of the polynomial

p t(λ) = p t(0) + · · ·+ p t(n− 1)λn−1

from Proposition 11.4.8 (on p. 380) are polynomials in the entries of A. So is

pt(A) := det

(
p t1 (0) ... p t1 (n−1)
... ... ...

p tn (0) ... p tn (n−1)

)
.
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Note that pt(A) 6≡ 0. Indeed, otherwise, any polynomial a(λ) = λn + · · · of degree
n would divide some nonzero polynomial of the form γ1λ

t1 + · · ·+ γnλ
tn . In terms

of the roots λ1, . . . , λn of a(λ), this implies

q(λ1, . . . , λn) := det

(
λ

t1
1 ... λt1

n
... ... ...
λtn
1 ... λtn

n

)
= 0.

This relation holds at least for all real λi. At the same time,

q(λ1, . . . , λn) =
∑

α

(−1)inv(α)λ
tα(1)

1 · · ·λtα(n)
n

(the sum is over all permutations α = [α(1), . . . , α(n)] of {1, 2, . . . , n} and
inv(α) is the number of inversions in the permutation) a nonzero polynomial and
so q(λ1, . . . , λn) 6= 0 for some real λi. The contradiction obtained proves that
pt(A) 6≡ 0. Hence the set Rt := {A ∈ O : pt(A) 6= 0} is of full measure. So is
the set R :=

⋂
t Rt.

Now let A ∈ R. It is easy to see that any set T with the properties described
in Proposition 11.4.5 (on p. 379) satisfies the hypotheses of Proposition 11.4.8 (on
p. 380), which completes the proof. ⊓⊔

11.9 Proof of Theorem 11.4.12 on p. 380

The state estimator introduced in Subsect. 11.3.2 (starting on p. 375) is in fact the
conventional Kalman filter related to the representation of the system in the aug-
mented form (11.7.2)–(11.7.4) (on p. 385). However in the vast literature on the
Kalman filter, the authors failed to find a reference that proves Theorem 11.4.12. The
reason is that the nonstationary (in the sensor part) system (11.7.2), (11.7.4) loses ob-
servability due to the state augmentation. In the case of unstable but observable in
the sense of Assumption 11.4.11 (on p. 380) system (11.4.1), this causes violation
of assumptions under which the stability of the Kalman filter was established in the
studies known to the authors. In view of this, we adduce an independent proof. It
employs a slightly refined standard technique.

From now on, Assumptions 11.2.1–11.2.4 (on pp. 373 and 374), and 11.4.9–
11.4.11 (on p. 380) are supposed to hold. Introduce the following vector and matri-
ces:

E(t) :=




e(t|t)
...

e(t− σ|t)


 , P(t) :=



P00(t) · · ·P0σ(t)

...
Pσ0(t) · · ·Pσσ(t)


 ,

P(t) :=



P 00(t) · · ·P 0σ(t)

...
P σ0(t) · · ·Pσσ(t)


 . (11.9.1)



390 11 Kalman State Estimation and Optimal Control Based on Delayed Measurements

Here e(θ|t) are the estimation errors (11.3.15) (on p. 377), Pij(t), P ij(t) are the
matrices generated by the estimator, and σ is taken from Assumption 11.2.2 (on
p. 374). By Theorem 11.3.3 (on p. 377) and (11.3.7)–(11.3.11), (11.3.13) (on p. 376),
these errors and matrices do not depend on the control (11.2.5) (on p. 373). For
simplicity, we assume that u(t) ≡ 0. In the remainder of the section, “constant”
means “deterministic constant.”

Lemma 11.9.1. Constants β > 0, β > 0 exist such that P(t) ≤ βI and P(t) ≤ βI
almost surely for all t.

Proof. Suppose that the first case from Assumption 11.4.11 (on p. 380) holds; i.e.,
the system (11.4.1) (on p. 378) is almost surely observable via the communication
channels.2 In view of (11.2.3) (on p. 373) and (11.4.2) (on p. 378), one can suppose
that in Definition 11.4.3, t0(t1) is a deterministic function of t1, S(0), . . . , S(t1).
Furthermore, the matrixM [t0(t1), t1] is determined by the sample sequence assumed
by τν(t) over the time interval [t0(t1), t1] of a bounded duration t1 − t0(t1) ≤ σ∗.
There are no more than finitely many such sample sequences (up to the change of
the variable t 7→ t− t0(t1)) even if t1 is not fixed. This implies that for some µ > 0,

∥∥M [t0(t1), t1]
−1
∥∥ ≤ µ a.s. whenever t1 ≥ σ∗. (11.9.2)

Choose t1 ≥ σ∗ and denote

t0 := t0(t1), S(t0, t1) := {(ν, θ) : t0 ≤ θ, θ + τν(θ) ≤ t1}.

By (11.2.1) and (11.2.2) (on p. 372),

x(t) = At−t0x(t0) +

t−1∑

p=t0

At−1−pξ(p) whenever t > t0; (11.9.3)

yν(t) = CνA
t−t0x(t0) + Cν

t−1∑

p=t0

At−1−pξ(p) + χν(t) whenever t ≥ t0;

∑

(ν,θ)∈S(t0,t1)

(A T)θ−t0 C T
ν yν(θ) =

∑

(ν,θ)∈S(t0,t1)

(A T)θ−t0C T
νCνA

θ−t0

︸ ︷︷ ︸
M(t0,t1)

x(t0)

+
∑

(ν,θ)∈S(t0,t1)

(A T)θ−t0C T
ν


Cν

θ−1∑

j=t0

Aθ−1−jξ(j) + χν(θ)


 . (11.9.4)

Put s := t1 +σ+1 and for j = 0, . . . , σ, consider the following estimate of x(s−j):

x̃(s− j) := As−j−t0M(t0, t1)
−1

∑

(ν,θ)∈S(t0,t1)

(A T)θ−t0C T
ν yν(θ).

2See Definition 11.4.3 on p. 378.
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Now we invoke the notation S(s − 1) from (11.2.4) (on p. 373). Then (11.3.14)–
(11.3.16) (on p. 377) imply

trPjj(s) = E
[
‖e(s− j|s− 1)‖2

∣∣S(s− 1)
]

≤ E
[
‖x(s− j)− x̃(s− j)‖2|S(s− 1)

]
. (11.9.5)

We recall that the symbol tr stands for the trace of a matrix. By (11.9.3) and (11.9.4),

x(s− j)− x̃(s− j) =

s−1−j∑

i=t0

As−1−i−jξ(i)

−As−t0−jM(t0, t1)
−1

∑

(ν,θ)∈S(t0,t1)

(A T)θ−t0C T
ν


Cν

θ−1∑

j=t0

Aθ−1−jξ(j) + χν(θ)


 .

We note that t1 − t0 = t1 − t0(t1) ≤ σ∗ by Definition 11.4.3 (on p. 378), and we
denote

a := max{‖At‖ : t = 0, . . . , σ∗ + σ + 1}, c := max{‖Cν‖ : ν = 1, . . . , l}.
Then in view of (11.9.2),

1/2E
[
‖x(s− j)− x̃(s− j)‖2|S(s− 1)

]
≤ [σ∗ + σ]a2 trRξξ

+ a4µ2c2σ∗l
[
c2a2σ2

∗l trRξξ + max
ν=1,...,l

trRνχχ
]
.

Here s = t1 + σ + 1 and t1 ≥ σ∗ is arbitrary. Thus trPjj(t) is bounded above. To
complete the proof, we note that P jj(t) ≤ Pjj(t) thanks to (11.3.16) (on p. 377) and
employ (11.9.1).

Now suppose that the second case from Assumption 11.4.11 (on p. 380) holds;
i.e., the system (11.4.1) (on p. 378) is stable. By taking x̃(s′) := 0 ∀s′ in (11.9.5)
and invoking Assumption 11.2.2 (on p. 374), we see that trPjj(t) is still bounded
above. After this, the proof is completed as in the previous case. ⊓⊔

From now on, we consider the vectors E(t) given by (11.9.1) in the case where
the noises are removed from the plant equations (11.2.1) and (11.2.2) (on p. 372).

Lemma 11.9.2. Constants α, α, β, β > 0, and t∗ exist such that for t ≥ t∗,
αI ≤ P(t) ≤ βI, αI ≤ P(t) ≤ βI a.s.; (11.9.6)

E(t+ 1) = AE(t) + V (t+ 1) a.s.,

where V (t+ 1) :=
[
P(t+ 1)P(t+ 1)−1 − I

]
AE(t); (11.9.7)

E(t) TP(t)−1E(t)− E(t − 1) TP(t− 1)−1E(t− 1) ≤ −V (t) TP(t)−1V (t)

−
∑

(ν,θ)∈S(t)

e(θ|t) TC T
ν

[
Rνχχ

]−1

Cνe(θ|t) a.s. (11.9.8)
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Proof. The upper bounds from (11.9.6) are established by Lemma 11.9.1. To obtain
the lower ones, let us fix a realization of τν(t) by conditioning all random quantities
over τν(t). It follows from (11.3.14)–(11.3.16) (on p. 377) and (11.9.1) that the error
covariance matrices are no less P(t) ≥ P f (t),P(t) ≥ P f (t) than those in the case
where the observations are received without losses and delays; i.e., S(t) = {(ν, t) :
ν = 1, . . . , l}. Then with regard to Assumptions 11.2.1 and 11.4.10 (on pp. 373 and
380) and well-known facts about the asymptotic behaviour of the classic Kalman
filter [123, p.100] applied to the augmented system, we conclude that the matrices
P f (t) and P f (t) are bounded from below by constant positive-definite matrices for
large t. This completes the proof of (11.9.6).

Relations (11.9.7) and (11.9.8) are immediate from, e.g., (54)–(56) and (58) [43].
It was assumed in [43] that the noise Ξ in (11.7.4) (on p. 385) is nonsingular, and the
matrix A in (11.7.2) is invertable. The first requirement can be met by substituting
χ̂ν(t) in place of zeros in (11.7.7) (on p. 385). Here χ̂ν(t) ∈ Rkν are Gaussian mu-
tually independent and independent of τν(t), ξ(t), χν (t) zero-mean random vectors
with Eχ̂ν(t)χ̂ν(t)

T = I . It is easy to check that this does not alter the Kalman filter
formulas. The invertability of A was employed in (57) [43] to ensure that

D ≥ 0 & P > 0 & APA T +D > 0 ⇒ A T[APA T +D]−1A ≤ P−1.

However this implication holds for any matrix A, which can be proved by consider-
ing a nonsingular perturbation Aε, detAε 6= 0,Aε → A as ε → 0 of A and letting
ε→ 0 in the above inequality. ⊓⊔

By (11.9.6) and (11.9.8),

β −1‖E‖2 ≤W (t,E) := E TP(t)−1E ≤ α−1‖E‖2 a.s. whenever t ≥ t∗,
(11.9.9)

W [t+ 1,E(t+ 1)] ≤W [t,E(t)] a.s. whenever t ≥ t∗. (11.9.10)

This implies that the state estimator is Lyapunov stable. The following lemma shows
that the additional estimate

λW [t+ r,E(t + r)] ≤W [t,E(t)] a.s. whenever t ≥ t̂ (11.9.11)

implies the exponential stability. Here λ > 1, t̂ = t∗, t∗+1, . . ., and r = 1, 2, . . . are
constants.

(on p. 380) is true.

Proof. By (11.9.6) and (11.9.7),

‖E(t+ 1)‖ ≤ βα−1‖A‖‖E(t)‖ a.s.

whenever t ≥ t∗. For t ≤ t∗, (11.2.1), (11.2.2), and (11.3.5)–(11.3.11) (on pp. 372,
376) yield E(t + 1) = R(t)E(t), where R(t) = R[t, S(0), . . . , S(t + 1)] and R is
a deterministic function. The random sequence S(0), . . . , S(t∗ + 1) assumes only

Lemma 11.9.3. Suppose that (11.9.11) holds. Then the conclusion of Theorem 11.4.12
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finitely many samples. Hence ‖R(t)‖ ≤ f ∀t = 0, . . . , t∗ a.s. for some constant f .
By the foregoing, there is µ > 1 such that

‖E(t2)‖ ≤ µt2−t1‖E(t1)‖ a.s. whenever t2 ≥ t1. (11.9.12)

Thanks to (11.9.10), (11.9.11), λW [t,E(t)] ≤ W [θ,E(θ)] a.s. whenever t − r ≥
θ := max{t0, t̂}. Then invoking (11.9.9) gives

‖E(t)‖ ≤
√
βα−1λ−j/2‖E(θ)‖ a.s. whenever t− jr ≥ θ = max{t0, t̂}.

Now let t ≥ t0. By employing the above inequality with j ≥ r−1(t− θ)− 1 if t ≥ t̂
and (11.9.12) otherwise, and putting κ :=

√
βα−1λ, ρ := λ−r

−1/2 < 1, we get

‖E(t)‖ ≤





κρt−θ
{
‖E(t0)‖ if t0 ≥ t̂,
‖E(t̂ )‖

(11.9.12)
≤ µbt−t0‖E(t0)‖ if t0 < t̂,

}
and t ≥ t̂,

µt−t0‖E(t0)‖ if t < t̂





≤





κ if t0 ≥ t̂ and t ≥ t̂,
κρt0−btµbt if t0 < t̂ and t ≥ t̂,
µbtρt0−bt if t < t̂



 ρt−t0‖E(t0)‖.

This clearly implies (11.4.6) (on p. 380) with a properly chosen constant c. ⊓⊔

The remainder of the section is devoted to proving (11.9.11). In so doing, the
following fact will play a key role.

Lemma 11.9.4. Deterministic sequences {κ(i)}∞i=0, {d(i)}∞i=0 ⊂ (0,∞) exist such
that

W [t+ k,E(t+ k)] ≤ κ(k)‖e(t|t)‖2 + d(k)

t+k∑

j=t+1

V (j) TP(j)−1V (j) (11.9.13)

a.s. whenever k ≥ σ and t ≥ t∗. If the system (11.4.1) (on p. 378) is stable, these
sequences can be chosen so that

κ(k)→ 0 as k →∞ and d := sup
k
d(k) <∞. (11.9.14)

Proof. Owing to (11.9.7) and (11.9.9),

E(t+ k) = AkE(t) +

t+k∑

j=t+1

At+k−jV (j);

αW [t+ k,E(t+ k)] ≤ ‖E(t+ k)‖2 ≤ 2‖AkE(t)‖2 + 2

k−1∑

i=0

∥∥Ai
∥∥2

t+k∑

j=t+1

‖V (j)‖2.
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Here ‖V (j)‖2 ≤ βV (j) TP(j)−1V (j) by (11.9.6), and due to (11.7.5) (on p. 385),

Ak =

(
Ak 0···0
...

...
Ak−σ 0···0

)
.

So ‖AkE(t)‖ ≤ ‖Ak‖‖e(t|t)‖ thanks to (11.9.1). Thus (11.9.13) does hold with

κ(k) := 2α−1
∥∥Ak

∥∥2
, d(k) := 2α−1β

k−1∑

i=0

∥∥Ai
∥∥2
. (11.9.15)

If the system (11.4.1) (on p. 378) is stable, so evidently is (11.7.2) (on p. 385). Then
(11.9.14) is immediate from (11.9.15). ⊓⊔

Proof of (11.9.11) in the case of stable system (11.4.1). Pick t ≥ t∗ + 1 and
k ≥ σ. By neglecting the last summand on the right in (11.9.8) and summing the
resultant inequalities over t = t, . . . , t+ k, we get

W [t+ k,E(t+ k)] +

t+k∑

t=t

V (t) TP(t)−1V (t) ≤W [t− 1,E(t− 1)]

a.s. Here thanks to (11.9.13) and (11.9.14),

t+k∑

t=t

V (t) TP(t)−1V (t) ≥ d−1 {
W [t+ k,E(t+ k)]− κ(k)‖e(t− 1|t− 1)‖2

}

a.s. Furthermore, due to (11.9.1) and (11.9.9),

‖e(t− 1‖t− 1)‖2 ≤
∥∥E(t− 1)

∥∥2 ≤ βW [t− 1,E(t− 1)] a.s.

Thus
λ(k)W [t+ k,E(t+ k)] ≤W [t− 1,E(t− 1)] a.s.,

where

λ(k) := (1 + d−1)[1 + d−1βκ(k)]→ 1 + d−1 > 1 as k →∞

by (11.9.14). Picking k such that λ(k) > 1 yields (11.9.11) with r := k + 1. �

In the case where the system (11.4.1) is not stable, we need more preliminaries.

Lemma 11.9.5. Suppose that Q1(z) and Q2(z) are nonnegative quadratic forms in
z ∈ Rp, and Q2(z) = 0 whenever Q1(z) = 0. A constant γ > 0 exists such that

Q1(z) ≥ γQ2(z) ∀z.
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Proof. For i = 1, 2, introduce the symmetric p × p matrix Ωi related to Qi(z) =
z TΩiz, and denote by π the orthogonal projection onto L := (kerΩ1)

⊥. Since
Qi(z) = 0⇔ Ωiz = 0, then z − πz ∈ kerΩ1 ⊂ kerΩ2 ∀z. So

Qi(z) = [(z − πz) + πz] TΩi[(z − πz) + πz] = (πz) TΩi(πz) = Qi(πz).

The form Q1(z) is positive-definite on L and hence Q1(z) ≥ γQ2(z) ∀z ∈ L for
some γ > 0. Thus Q1(z) = Q1(πz) ≥ γQ2(πz) = γQ2(z) ∀z. ⊓⊔

Lemma 11.9.6. A constant γ > 0 exists such that

It :=
t+σ∑

t=t0(t)


1

2
V (t) TP(t)−1V (t) +

∑

(ν,θ)∈S(t)

e(θ|t) TC T
ν

[
Rνχχ

]−1
Cνe(θ|t)




≥ γ
∥∥e
[
t0(t)|t0(t)

]∥∥2
a.s. ∀t ≥ t∗ + σ∗ + 1. (11.9.16)

Here σ∗, t0(t), and t∗ are the time instants from Definition 11.4.3 (on p. 378) and
Lemma 11.9.2.

Proof. In view of (11.9.6) and the inequality t− t0(t) ≤ σ∗ from Definition 11.4.3,
V TP(t)−1V ≥ β−1‖V ‖2 in (11.9.16). Furthermore χ T[Rνχχ]−1χ ≥ υ−1‖χ‖2,

where υ := maxν ‖Rνχχ‖. Hence It is no less than the minimum value of the cost
functional in the following optimization problem:

minimize
1

2β

t∑

t=t0(t)+1

‖V (t)‖2+υ−1
t∑

t=t0(t)

∑

(ν,θ)∈S(t):θ≥t0(t)
εt−θ(t)

TC T
νCνεt−θ(t)

subject to

E(t) = col
[
ε0(t), . . . , εσ(t)

]
= AE(t− 1) + V (t), t = t0(t) + 1, . . . , t

and E[t0(t)] = E[t0(t)]. The change of the variable t 7→ t− t0(t) shapes it into

minimize Ĩ :=
1

2β

k∑

t=1

‖V (t)‖2+υ−1
k∑

t=0

∑

(ν,θ):θ≥0,

[ν,θ+t0(t)]∈S[t+t0(t)]

εt−θ(t)
TC T

νCνεt−θ(t)

subject to

E(t) = AE(t− 1) + V (t), t = 1, . . . , k, E(0) = Z.

Here k := t−t0(t) ≤ σ∗ andZ = col (z0, . . . , zσ) = E[t0(t)]. As is well known, the
above minimum value is a nonnegative quadratic form Q1(Z) in Z . Let Q1(Z) = 0
for some Z . Then V (t) = 0 for t = 1, . . . , k. So (11.7.5) (on p. 385) imply εj(t) =
At−jz0 whenever t− j ≥ 0. Whence



396 11 Kalman State Estimation and Optimal Control Based on Delayed Measurements

0 = υĨ =

k∑

t=0

∑

(ν,θ):θ≥0,

[ν,θ+t0(t)]∈S[t+t0(t)]

z T
0 (A T)θC T

νCνA
θz0

(11.2.3)
===

t∑

t=t0(t)

∑

(ν,θ):θ≥t0(t),
τν(θ)+θ≤t

z T
0 (A T)θ−t0(t)C T

νCνA
θ−t0(t)z0

(11.4.2)
=== z T

0M [t0(t), t]z0.

Due to Definition 11.4.3 (on p. 378), z0 = 0 and so Q2(Z) := ‖z0‖2 = 0. By
Lemma 11.9.5, Q1(Z) ≥ γ‖z0‖2 ∀Z . The number γ may depend on the sample
assumed by the sequence S̃(0), . . . , S̃(k), where

S̃(t) :=
{
(ν, θ) : θ ≥ 0, [ν, θ + t0(t)] ∈ S[t+ t0(t)]

}
.

Since k ≤ σ∗ and S̃(t) ⊂ {(ν, θ) : 0 ≤ θ ≤ σ∗, 1 ≤ ν ≤ l}, there are only finitely
many such samples. By minimizing γ over them, we arrive at the assertion of the
lemma. ⊓⊔

Proof of (11.9.11) in the case where the system (11.4.1) is observable via
the communication channels. Let t ≥ σ∗ + t∗ + 1. By summing (11.9.8) over
t = t0(t), . . . , t+ σ, we get

W [t+σ,E(t+σ)]+
1

2

t+σ∑

t=t0(t)

V (t) TP(t)−1V (t)+It ≤W
(
t0(t)− 1,E

[
t0(t)− 1

])
.

By Lemma 11.9.6, the sum of the second and third summands on the left is no less
than

1

2

t+σ∑

t=t0(t)

V (t) TP(t)−1V (t) + γ
∥∥e
[
t0(t)|t0(t)

]∥∥2

≥ γω
[
t+ σ − t0(t)

]
W [t+ σ,E(t + σ)].

Here ω(j) := (κ[j] + d[j])−1, γ := min{γ, 1/2} and the inequality holds by
Lemma 11.9.4. Since t− t0(t) ≤ σ∗ by Definition 11.4.3,

ω[t+ σ − t0(t)] ≥ ω := min
j=σ,σ+σ∗

ω(j) > 0.

With regard to (11.9.10), we see that

(1+γ ω)W [t+σ,E(t+σ)] ≤W [t0(t)−1,E(t0(t)−1)] ≤W [t−σ∗−1,E(t−σ∗−1)].

Thus (11.9.11) does hold with r := σ + σ∗ + 1. ⊓⊔
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11.10 Proofs of Theorem 11.6.5 and Proposition 11.6.6 on p. 384

Throughout the section, Assumptions 11.2.1, 11.2.2 (on pp. 373 and 374), and
11.6.1–11.6.4 (on p. 383) are assumed to hold. We start with recalling well-known
facts concerning Ricatti equations [8, 30, 85]. In so doing, we equip the solution of
the Ricatti difference equation (11.5.5) (on p. 382) and the corresponding matrices
(11.5.3) and (11.5.4) with the index T : HT (t), LT (t), FT (t).

Lemma 11.10.1. (i) Infinite sequences ofm×n andm×m matrices L(0), L(1), . . .
and F (0), F (1), . . . , respectively, exist such that

LT (t) = L(T − t), FT (t) = F (T − t)

whenever t ≤ T . Furthermore

L(t)→ LH , F (t)→ FH as t→∞.

Here LH and FH are given by (11.6.4) (on p. 383), where H is the solution of the
algebraic Ricatti equation (11.6.3) (on p. 383) for which the matrix A − BLH is
asymptotically stable.

(ii) Let x ∈ Rn, u ∈ Rm, T = 1, 2, . . ., and t = 0, . . . , T − 1. Put x+ :=
Ax+Bu. Then the following relation holds:

x T
+HT (t+ 1)x+ − x THT (t)x + x T

+Qx+ + u TΓu

=
[
u+ LT (t)x

] T
FT (t)

[
u+ LT (t)x

]
. (11.10.1)

We preface the proof of Theorem 11.6.5 (on p. 384) with three lemmas. The first of
them gives a useful representation of the functional (11.5.1) (on p. 381).

Lemma 11.10.2. Suppose that a control strategy (11.5.2) (on p. 381) is chosen. Con-
sider the corresponding process and the output

X̂(t),
{
Pij(t)

}σ
i,j=0

,
{
P ij(t)

}σ
i,j=0

t = 0, 1, . . . (11.10.2)

of the state estimator described in Subsect. 11.3.2 (starting on p. 375). Then for any
T = 1, 2, . . ., the value of the cost functional (11.5.1) is given by the formula

IT = E

T−1∑

t=0

[
u(t) + LT (t)x̂(t|t)

] T

FT (t)
[
u(t) + LT (t)x̂(t|t)

]
+ ∆T . (11.10.3)

Here x̂(t|t) is the first component of the output (11.3.4) (on p. 375) of the estimator
and

∆T :=

T−1∑

t=0

tr [{HT (t+ 1) +Q}Rξξ] + tr [HT (0)Raa]

+ E

T−1∑

t=0

tr
[
LT (t) TFT (t)LT (t)P 00(t)

]
. (11.10.4)
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Remark 11.10.3. It follows from (11.3.7), (11.3.8), (11.3.10), (11.3.11), and (11.3.13)
(on p. 376) that the quantity (11.10.4) does not depend on the control strategy
(11.5.2).

Proof of Lemma 11.10.2. For t = 0, . . . , T − 1, put x := x(t) and u := u(t) into
(11.10.1). By (11.2.1) (on p. 372), x+ = x(t+ 1)− ξ(t) in (11.10.1). Summing the
resultant formulas over t gives

E

T−1∑

t=0

[x(t+ 1)− ξ(t)] T
[HT (t+ 1) +Q]︸ ︷︷ ︸

NT (t)

[x(t+ 1)− ξ(t)]

−E

T−1∑

t=0

[x(t) THT (t)x(t) − u(t) TΓu(t)]

=

T−1∑

t=0

E [u(t) + LT (t)x(t)]
T
FT (t) [u(t) + LT (t)x(t)]︸ ︷︷ ︸

κ(t)

. (11.10.5)

Here

[x(t+ 1)− ξ(t)] T
NT (t) [x(t+ 1)− ξ(t)] = x(t+ 1) TNT (t)x(t + 1)

− [x(t+ 1)− ξ(t)] T
NT (t)ξ(t)−ξ(t) TNT (t) [x(t+ 1)− ξ(t)]−ξ(t) TNT (t)ξ(t)

and
x(t+ 1)− ξ(t) = Ax(t) +BU[t,Y(t),S(t),U(t− 1)]

is independent of ξ(t). So

E [x(t+ 1)− ξ(t)] T
NT (t) [x(t+ 1)− ξ(t)] = Ex(t+ 1) TNT (t)x(t + 1)

−Eξ(t) TNT (t)ξ(t) = Ex(t+ 1) TNT (t)x(t + 1)− tr [NT (t)Rξξ].

This and (11.2.1), (11.5.1) (on pp. 372 and 381) shape (11.10.5) into

IT −
T−1∑

t=0

tr [NT (t)Rξξ]−Ea THT (0)a︸ ︷︷ ︸
tr [HT (0)Raa]

=

T−1∑

t=0

κ(t).

By (11.3.15) (on p. 377),

u(t) + LT (t)x(t) = d(t)− LT (t)e(t|t),

where d(t) := u(t) + LT (t)x̂(t|t). So

κ(t) = Ed(t) TFT (t)d(t) −Ee(t|t) TLT (t) TFT (t)d(t)

−Ed(t) TFT (t)LT (t)e(t|t) + Ee(t|t) T LT (t) TFT (t)LT (t)︸ ︷︷ ︸
ΩT (t)

e(t|t). (11.10.6)
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Due to (11.5.2) and (11.3.14) (on pp. 381 and 377),

d(t) = D[t,Y(t),S(t),U(t− 1)],

whereas
e(t|t) = E

[
x(t)|Y(t),S(t),U(t − 1)

]
− x(t)

by (11.3.15) (on p. 377). This implies that in (11.10.6), the second and third sum-
mands on the right equal 0 [30][Lemma 1.9.9]. The last summand amounts to

tr
{
ΩT (t)E

[
e(t|t)e(t|t) T

]}
= tr

{
ΩT (t)EE

[
e(t|t)e(t|t) T

∣∣∣S(t)
]}

(11.3.16)
==== tr

[
ΩT (t)EP 00(t)

]
.

Summarizing, we arrive at (11.10.3). ⊓⊔
The next lemma establishes a technical fact about the matrices (11.3.7) and

(11.3.8) (on p. 376).

Lemma 11.10.4. For any t = 0, 1, . . .,

∑

s1,s2∈S(t)

Ks1
0 (t)Λ(t)s2s1K

s2
0 (t) T = P00(t)− P 00(t). (11.10.7)

Proof. In the proof, we employ properties of the pseudoinverse
+

Λ(t) listed in Ap-
pendix B (starting on p. 507). Due to (11.3.7) (on p. 376),

∑

s1∈S(t)

Ks1
0 (t)Λ(t)ss1 =

∑

s1,(ν2,θ2)∈S(t)

P0,t−θ2(t)C
T
ν2

+

Λ(t)s1(ν2,θ2)Λ(t)ss1

(a)
=

∑

(ν2,θ2)∈S(t)

P0,t−θ2(t)C
T
ν2 [Λπ(t)]

s
(ν2,θ2)

.

Here (a) holds by the first formula from (B.1) (on p. 508) and Λπ is defined in Ap-
pendix B. Furthermore,

∑

s2∈S(t)

Ks2
0 (t) [Λπ(t)]

s
s2

(11.3.7)
===

∑

(ν1,θ1),s2∈S(t)

P0,t−θ1(t)C
T
ν1

+

Λ(t)s2(ν1,θ1) [Λπ(t)]
s
s2

(b)
=

∑

(ν1,θ1)∈S(t)

P0,t−θ1(t)C
T
ν1

+

Λ(t)s(ν1,θ1)
(11.3.7)
=== Ks

0(t). (11.10.8)

Here (b) holds by the third formula from (B.1) (on p. 508). By taking into account
the second one and summarizing, we see that the left-hand side of (11.10.7) amounts
to
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∑

s2∈S(t)

∑

(ν,θ)∈S(t)

P0,t−θ(t)C
T
ν [Λπ(t)]

s2
(ν,θ)K

s2
0 (t) T

=





∑

(ν,θ)∈S(t)


 ∑

s2∈S(t)

Ks2
0 (t) [Λπ(t)]

(ν,θ)
s2


CνP0,t−θ(t)

T





T

(11.10.8),(11.3.16)
========





∑

(ν,θ)∈S(t)

K
(ν,θ)
0 (t)CνPt−θ,0(t)





T

(11.3.10),(11.3.16)
======== P00(t)−P 00(t).⊓⊔

Lemma 11.10.5. Consider the feedback (11.6.7) (on p. 384), the corresponding pro-
cess, and the output (11.3.4) (on p. 375) of the state estimator described in Sub-
sect. 11.3.2 (starting on p. 375) . Then

ω := sup
t=0,1,...

E‖x̂(t|t)‖2 <∞. (11.10.9)

Proof. Pick t = 0, 1, . . . and denote

S := S(t+ 1), K(ν,θ) := K
(ν,θ)
0 (t+ 1).

By (11.3.5), (11.6.5), and (11.6.7) (on pp. 376, 383, and 384),

x̂(t+ 1|t+ 1) = AH x̂(t|t) +
∑

(ν,θ)∈S
K(ν,θ)

[
yν(θ)− ŷν(θ|t)

]

(11.2.1),(11.2.2),(11.3.6)
============ AH x̂(t|t) +

∑

(ν,θ)∈S:θ≤t
K(ν,θ)

[
Cν

(
x(θ) − x̂(θ|t)

)
+ χν(θ)

]

+
∑

ν:(ν,t+1)∈S
K(ν,t+1)

[
Cν
{
Ax(t) +Bu(t) + ξ(t)

}
+ χν(t+ 1)

− Cν
{
Ax̂(t|t) +Bu(t)

}] (11.3.15)
=== AH x̂(t|t)− η(t). (11.10.10)

Here η(t) := η1(t) + η2(t) + η3(t) + η4(t) and

η1(t) := −
∑

(ν,θ)∈S
K(ν,θ)χν(θ), η2(t) := −

∑

ν:(ν,t+1)∈S
K(ν,t+1)Cνξ(t),

η3(t) :=
∑

(ν,θ)∈S:θ≤t
K(ν,θ)Cνe(θ|t), η4(t) :=

∑

ν:(ν,t+1)∈S
K(ν,t+1)CνAe(t|t).

Let the symbol Ec stand for the conditional mathematical expectation with respect to
S(t+1) = [S(0), . . . , S(t+1)]. From the point of view of their conditional distribu-
tions with respect to S(t+1), the vectors e(θ′|t) with θ′ ≤ t and both ξ(t) and χν(θ)
with θ ∈ S(t + 1) are independent due to (11.2.7), along with (11.2.1), (11.2.2),
(11.3.14), and (11.3.15) (on pp. 372, 374, and 377). So for i = 1, 2 and j = 3, 4, we
have Ecηi(t)ηj(t)

T = Ecηi(t)Ecηj(t)
T = 0. Likewise Ecη1(t)η2(t)

T = 0. Since
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the errors e(θ|t) with θ ≤ t are functions of S(t) and the vectors a, ξ(i), χν(i) that
are independent of S(t+ 1) =

[
S(t), S(t+ 1)

]
, we have

Ece(θ
′|t)e(θ′′|t) T = E

[
e(θ′|t)e(θ′′|t) T

∣∣∣S(t)
]

(11.3.16)
==== P t−θ′,t−θ′′(t)

for θ′, θ′′ = max{t− σ, 0}, . . . , t. Hence putting

S := {ν : (ν, t+ 1) ∈ S(t+ 1)},

we get

Ecη(t)η(t)
T =

4∑

i=1

Ecηi(t)ηi(t)
T + Ecη3(t)η4(t)

T + Ecη4(t)η3(t)
T

=
∑

(ν,θ)∈S
K(ν,θ)Rνχχ

[
K(ν,θ)

] T
+

∑

ν1,ν2∈S
K(ν1,t+1)Cν1RξξC

T
ν2

[
K(ν2,t+1)

] T

+
∑

(ν1,θ1),(ν2,θ2)∈S:θi≤t
K(ν1,θ1)Cν1P t−θ1,t−θ2(t)C

T
ν2

[
K(ν2,θ2)

] T

+
∑

ν1,ν2∈S
K(ν1,t+1)Cν1AP 00(t)A

TC T
ν2

[
K(ν2,t+1)

] T

+
∑

ν1∈S,(ν,θ)∈S:θ≤t
K(ν1,t+1)Cν1AP 0,t−θ(t)C

T
ν

[
K(ν,θ)

] T

+
∑

ν1∈S,(ν,θ)∈S:θ≤t
K(ν,θ)CνP t−θ,0(t)A

TC T
ν1

[
K(ν1,t+1)

] T

.

By invoking (11.3.11) (on p. 376), we get

Ecη(t)η(t)
T =

∑

(ν1,θ1),(ν2,θ2)∈S
K(ν1,θ1)Cν1Pt+1−θ1,t+1−θ2(t+1)C T

ν2

[
K(ν2,θ2)

] T

+
∑

(ν,θ)∈S
K(ν,θ)Rνχχ

[
K(ν,θ)

] T

(11.3.8)
====

∑

s1,s2∈S
Ks1Λ(t+1)s2s1

[
Ks2

] T (11.10.7)
==== P00(t+1)−P 00(t+1) =: ∆P (t+1).

Then (11.6.2) (on p. 383) yields

E‖η(t)‖2 = tr Eη(t)η(t) T = E tr Ecη(t)η(t)
T

= E tr ∆P (t+ 1) ≤ p. (11.10.11)

To complete the proof, note that (11.10.10) and (11.6.6) (on p. 383) imply
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‖x̂(t|t)‖ ≤ cρt‖x̂(0|0)‖+ c

t−1∑

j=0

ρt−1−j‖η(j)‖

≤ cρt‖x̂(0|0)‖+ c



t−1∑

j=0

ρt−1−j




1/2

︸ ︷︷ ︸
≤(1−ρ)−1/2



t−1∑

j=0

ρt−1−j‖η(j)‖2



1/2

.

We finish by employing (11.10.11) and the apparent inequality (a+b)2 ≤ 2(a2+b2)

E‖x̂(t|t)‖2 ≤ 2c2


ρ2tE‖x̂(0|0)‖2 + (1− ρ)−1p

t−1∑

j=0

ρt−1−j




≤ 2c2
[
E‖x̂(0|0)‖2 +

p

(1− ρ)2
]
<∞. ⊓⊔

Proof of Theorem 11.6.5. Due to (11.5.6) (on p. 382) and (11.10.3),

lim
T→∞

T−1IT ≥ lim
T→∞

T−1∆T

for any control strategy (11.5.2) (on p. 381). So in view of Remark 11.10.3, it suffices
to show that

d(T ) :=
1

T
E

T−1∑

t=0

[
u(t) + LT (t)x̂(t|t)

] T

FT (t)
[
u(t) + LT (t)x̂(t|t)

]
→ 0

as T →∞ for the feedback (11.6.7) (on p. 384). Pick ε > 0. By (i) of Lemma 11.10.1,

‖LT (t)− LH‖ ≤ γ <∞, ‖FT (t)‖ ≤ f <∞
for all T = 1, 2, . . . , t = 0, 1, . . . , T , and an integer N ≥ 1 exists such that

‖LT (t)− LH‖ ≤ ε
whenever t = 0, 1, . . . , T − N and T = N,N + 1, . . .. For T ≥ N + 1, relation
(11.6.7) implies

d(T ) =
1

T

T−1∑

t=0

Ex̂(t|t) T
[
LT (t)− LH

] T
FT (t)

[
LT (t)− LH

]
x̂(t|t)

≤ 1

T

T−1∑

t=0

‖FT (t)‖‖LT (t)− LH‖2E‖x̂(t|t)‖2
a)
≤ ω

T

T−N∑

t=0

‖FT (t)‖︸ ︷︷ ︸
≤f

‖LT (t)− LH‖2︸ ︷︷ ︸
≤ε2

+
ω

T

T−1∑

t=T−N+1

‖FT (t)‖︸ ︷︷ ︸
≤f

‖LT (t)− LH‖2︸ ︷︷ ︸
≤γ2

≤ ωf
[
ε2
(

1− N

T

)
+
N

T
γ2

]
,

lim
T→∞

d(T ) ≤ ωfε2.
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Here a) holds due to (11.10.9). The proof is completed by letting ε→ 0. ⊓⊔
Proof of Proposition 11.6.6. Statement (i). By the last claim from Theorem 11.3.3

(on p. 377), the estimation errors (11.3.15) (on p. 377) are not affected by the control
(11.5.2) (on p. 381). Put U(·) ≡ 0 in (11.5.2). Then (11.2.1) (on p. 372) implies

E[x(t)−Ex(t)][x(t) −Ex(t)] T = AtRaa (A T)t +
t−1∑

j=0

At−1−jRξξ (A T)t−1−j .

As is well known,

E[x−E(x|V)][x −E(x|V)] T ≤ E[x−Ex][x −Ex] T

for any random vector x and quantity V. By putting here

x := x(s), V := [Y(t),S(t),U(t− 1)]

and invoking (11.3.15) (on p. 377), we get

Ee(s|t)e(s|t) T ≤ E[x(s)−Ex(s)][x(s) −Ex(s)] T

≤ P :=

∞∑

j=0

[
Aj (Raa +Rξξ) (A T)

j
]
.

Then (11.3.16) (on p. 377) yields

0 ≤ EP 00(t) ≤ P, 0 ≤ EP00(t) ≤ P.

In view of (11.3.15), (11.3.16), and (11.10.9) this completes the proof in the case (i).
Statement (ii). We still assume that U(·) ≡ 0 in (11.5.2) (on p. 381). In view of

(11.2.3) and (11.4.2) (on pp. 373 and 378), one can assume that in Definition 11.4.3
(on p. 378), t0(t1) is a deterministic function of t1, S(0), . . . , S(t1). Furthermore, the
matrix M [t0(t1), t1] is determined by the realization of τν(t) over the time interval
[t0(t1), t1] of a bounded duration t1 − t0(t1) ≤ σ∗. There are no more than finitely
many such realizations up to the change of the variable t 7→ t − t0(t1) even if t1 is
not fixed. This implies that for some constant µ > 0,

∥∥M [t0(t1), t1]
−1
∥∥ ≤ µ a.s. whenever t1 ≥ σ∗. (11.10.12)

Choose t1 ≥ σ∗ and denote

t0 := t0(t1), S(t0, t1) := {(ν, θ) : t0 ≤ θ, θ + τν(θ) ≤ t1}.

Put s := t1 + σ + 1 and for j = 0, . . . , σ, consider the following estimation of
x(s− j):

x̃(s− j) := As−j−t0M(t0, t1)
−1

∑

(ν,θ)∈S(t0,t1)

(A T)θ−t0C T
ν yν(θ).
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Then (11.3.14)–(11.3.16) (on p. 377) imply

trPjj(s) = E
[
‖e(s− j|s− 1)‖2|S(s− 1)

]

≤ E
[
‖x(s− j)− x̃(s− j)‖2|S(s− 1)

]
.

Here S(s− 1) is given by (11.2.4) (on p. 373). By (11.9.3) and (11.9.4) (on p. 390),

x(s− j)− x̃(s− j) =

s−1−j∑

i=t0

As−1−i−jξ(i)

−As−t0−jM(t0, t1)
−1

∑

(ν,θ)∈S(t0,t1)

(A T)θ−t0C T
ν


Cν

θ−1∑

j=t0

Aθ−1−jξ(j) + χν(θ)


 .

Note that t1 − t0 = t1 − t0(t1) ≤ σ∗ by Definition 11.4.3 (on p. 378). Denote

a := max{‖At‖ : t = 0, . . . , σ∗ + σ + 1}, c := max{‖Cν‖ : ν = 1, . . . , l}.

Then in view of (11.10.12),

1/2E
[
‖x(s− j)− x̃(s− j)‖2|S(s− 1)

]
≤ [σ∗ + σ + 1]a2 trRξξ

+ a4µ2c2(σ∗ + 1)l
[
c2a2(σ∗ + 1)2l trRξξ + max

ν=1,...,l
trRνχχ

]
. (11.10.13)

Here s = t1 +σ+1 and t1 ≥ σ∗ is arbitrary. Thus trPjj(t) is bounded from above.
To complete the proof, we note that EP jj(t) ≤ EPjj(t) thanks to (11.3.16) (on
p. 377) and invoke (11.3.15) and (11.10.9) (on pp. 377 and 400). ⊓⊔
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Optimal Computer Control via Asynchronous
Communication Channels

12.1 Introduction

In this chapter, we proceed with studying problems of optimal control via delayed,
lossy, and asynchronous communication channels. In the previous chapter we ad-
dressed such a problem under the assumption that unlike the observation channels,
the control loop is perfect, and so the controller output acts upon the plant immedi-
ately. Now we focus on the case where the control loop is delayed and lossy. As for
the observations transmission and plant, the situation is just like in Chap. 11.

Specifically, we consider finite-horizon linear-quadratic optimal control prob-
lems for discrete-time partially observed systems perturbed by white noises. Data
are sent from the sensors and controller to the controller and actuators, respectively,
over parallel randomly delayed channels. Various signals are transferred with in-
dependent and a priori unknown transmission times. The signals may arrive out of
order; there may be periods where no signal is received. The transmitted data may
be lost due to, e.g., noise in the communication medium and protocol malfunctions.

We still suppose that any transmitted message is equipped with a time stamp in-
dicating the moment of the transfer beginning. Hence the observations transmission
times become known to the controller at the moments when the messages arrive at it.
Likewise, the control signal transmission times become known at the actuators sites.
We also suppose that this information is sent back, maybe, with delays and not con-
tinuously to the controller via special feedback control channels. As a result, there
is an awareness about the bygone states of the communication medium, whereas its
future states are unknown.

In this chapter, the solution of an analog of the classic finite-horizon linear-
quadratic Gaussian (LQG) optimal control problem (see Appendix C starting on
p. 509) is obtained for two different problem settings.

In the first one, the actuators are basically capable only to execute the currently
received control signal. (In other words, they are not equipped with computing or
memory modules.) So the (central) controller bears the entire responsibility for
achieving the optimal performance. In this case, we suppose that this controller is
given an additional information: The statistics of the data delays and dropouts in
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the control channels is known in advance. However no such information is available
for the channels carrying data from the sensors. Furthermore, we suppose that the
feedback control channels do not drop data and provide delays not exceeding the
sample period. Under certain technical assumptions, an optimal strategy to control
the plant is obtained. It is shown that the optimal control results from feeding a linear
feedback with a minimum variance state estimate, along with several past controls.
To generate this estimate, the recursive state estimator from Subsect. 11.3.2 (starting
on p. 375) is employed. Explicit formulas for the gain matrices of the optimal feed-
back are offered. The core of them is constituted by a finite set of coupled difference
Riccati equations.

It should be remarked that many communication channels do not satisfy the time
invariance condition, and a reliable prognosis of the future states of the communi-
cation medium is often a hard problem (see, e.g., [208], [232]). This is taken into
account in the second setup of the LQG optimal control problem considered in this
chapter. It is not assumed any longer that the statistics of data delays and dropouts
is known in advance. Moreover, no restrictions on this statistics are imposed. Sim-
ilarly, it is not assumed any longer that the delays in the feedback control channels
do not exceed the sample period: These delays may be arbitrary. Another distinction
with the previous problem setup is that now each actuator is endowed with a rather
powerful computing module, which can be viewed as a local controller. The central
controller remains in use. It collects data from the sensors and sends messages to the
local controllers. We also suppose that the system disintegrates into multiple semi-
independent subsystems. Each local controller serves its own subsystem, which do
not interact. There also is an uncontrolled subsystem affecting all controlled ones.

We have in mind the situation where due to the limited bandwidths of the control
channels, the local controllers cannot have access to the entire sensor data. This gives
rise to the role of the central controller as a processor and compressor of these data.
Ideally, this controller might generate the control for each subsystem. However its
unawareness about the time that will be taken to transmit the control restricts its
ability to achieve the best performance without an aid of the local controllers.

We show that this performance can be achieved via certain distribution of con-
trol functions between the central and local controllers. More precisely, we consider
the performance best under the artificial assumption that all sensor data are resent
from the central controller to the local ones. An outline of this distribution is as fol-
lows. Proceeding from the sensor data, the central controller forms a whole package
of controls for any subsystem at each sampling time and sends these packages via
the control channels. On arrival of such a package at a subsystem, its local controller
chooses the proper member of the package, proceeding from its time stamp, and then
corrects this member. The correction is generated recursively by the local controller.
In doing so, it employs the information about the past actuator inputs for the corre-
sponding subsystem but does not utilize the sensor data. As a result, the performance
optimal in the idealized circumstances where the control channels bandwidths con-
straints are neglected is achieved without transmission the entire sensor data to the
subsystems. The sizes of the control packages are determined explicitly. The crucial
point is that under certain circumstances, these sizes may be far less than those in
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the case where all observations are actually transmitted to the subsystems. Anyhow
these sizes must be compared with the actual bandwidths of the channels to decide
whether the above scheme is acceptable. Furthermore, the influence of the package
length on the transmission time should be also taken into account.

More specifically, we offer an explicit description of the optimal control strategy
for the corresponding LQG optimal control. This strategy consumes minimum vari-
ance estimates of the current and several past system states, along with the states of
an auxiliary random process. These estimates are produced by a filter similar in spirit
to that from Subsect. 11.3.2 (starting on p. 375). However in view of the difference
caused by the concern for the auxiliary process, we offer an independent description
of the corresponding state estimator, as well as the proof of its optimality.

The main results of this chapter were originally presented in [105, 109].
The body of the chapter is organized as follows. Sections 12.2 and 12.4 present

the first and second setups of the LQG optimal control problem, respectively. The
corresponding optimal control strategies are described in Sects. 12.3 and 12.7, re-
spectively. The strategy from Sect. 12.7 employs a minimum variance state estima-
tor offered in Sect. 12.6, which is prefaced by an informal discussion of ways to
distribute estimation functions over the central and local controllers in Sect. 12.5.
The proofs of the results stated in Sects. 12.3, 12.6, and 12.7 are given in Sects. 12.8,
12.9, and 12.10, respectively.

12.2 The Problem of Linear-Quadratic Optimal Control via
Asynchronous Communication Channels

12.2.1 Problem Statement

In this section, we proceed with studying discrete-time linear systems of the forms:

x(t+ 1) = A(t)x(t) +B(t)u(t) + ξ(t) t = 0, . . . , T − 1;

x(0) = a; (12.2.1)

yν(t) = Cν(t)x(t) + χν(t) ν = 1, . . . , l, t = 0, . . . , T. (12.2.2)

We recall that x(t) ∈ Rn is the state; u(t) ∈ Rm is the control; ξ(t) ∈ Rn is a
process disturbance; yν(t) ∈ Rkν is a sensor output; and χν(t) ∈ Rkν is a noise. A
particular vector yν may equal either the entire output of a sensor or only a part of it.

Measurements transmission. Like in Sect. 11.2, the observations yν are com-
municated from the sensors to the controller via noisy, lossy, and delayed observation
channels. We do not specify a policy to deal with messages that simultaneously ar-
rive at the controller via parallel observation channels. This policy may consist in
either accepting all messages or choosing a selection of them in accordance with a
certain algorithm. However, we assume that no signal is accepted twice. As a result,
the controller consumes the observations yν(θ) with (ν, θ) ∈ S(t) at the current time
t. Here set S(t) of signals accepted at time t may be empty and satisfies (11.2.7):
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S(t1) ∩ S(t2) = ∅ whenever t1 6= t2,

and (ν, θ) ∈ S(t)⇒ θ ∈ {0, 1, . . . , t}. (12.2.3)

Typically it consists of all pairs (ν, θ) for which the observation signal yν(θ) pro-
duced at time θ arrives at the controller at time t.

Transmission of control signals. The system contains several actuators. So u =
col
(
u1, . . . , uq

)
, where ui is the input of the ith actuator. Unlike Sects. 11.5 and

11.6, this input is transmitted from the controller via a randomly delayed ith control
channel (see Fig. 12.1). If several messages arrive out of order over this channel,
accepted is the most updated (i.e., produced at the latest moment) of them. If no
message arrives, the last accepted one is kept employed. Hence in (12.2.1),

u(t) = col [u1(t), . . . , uq(t)], ui(t) = vi[t− θi(t)] ∈ R
mi . (12.2.4)

Here vi(t) is the output currently emitted by the controller into the ith control chan-
nel. Furthermore, θi(t) ≥ 0 and

t1 − θi(t1) ≤ t2 − θi(t2) whenever t1 ≤ t2. (12.2.5)

(We assume that ui(t) := 0 and so θi(t) := t + 1, vi(−1) := 0 in (12.2.4) if no
message has arrived until t.)

Fig. 12.1. Multiple sensor and actuator control system.

The problem is to minimize the quadratic cost functional

IT := E

T−1∑

t=0

G[t, x(t + 1), v(t)],

where G[t, x, v] := x TQ(t+ 1)x+ v TΓ(t)v. (12.2.6)
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Here Q(t + 1) ≥ 0 and Γ(t) > 0 are symmetric n × n and m × m matrices,
respectively, and

v := col
(
v1, . . . , vq

)
. (12.2.7)

The time taken by the communication channel to transfer a message becomes
known a posteriori due to the time stamp. The producer of any measurement received
is supposed to be recognizable. If the sensor output was partitioned into several por-
tions, there is a way to recognize which part of the entire output is brought by the
message arrived. In brief, this means that the set S(t) and the delay θi(t) become
known to the controller and at the ith actuator site, respectively, at time t.

Feedback control channels. The information about θi(t) is sent back to the
controller via feedback control channels. This transmission may be with delays and
not continuous. As a result, the controller becomes aware of θi(s) with (i, s) ∈ T(t)
at time t, where

T(t) ⊂ {(i, s) : i = 1, . . . , q, s = 0, . . . , t}.

The controller may also have access to a side information about the past states of the
communication medium. This information received at the time t is represented by an
element p(t) of a finite set P. The natural class of control strategies is as follows:

v(t) = col [v1(t), . . . , vq(t)] = U [t,Y(t),S(t), η(0), . . . , η(t)] , where

Y(t) := [Y (0), Y (1), . . . , Y (t)], Y (τ) :=
{
yν [θ]

}
(ν,θ)∈S(τ)

;

S(t) := [S(0), S(1), . . . , S(t)];

η(τ) :=
[
T(τ), {θi(s)}(i,s)∈T(τ), p(τ)

]
, (12.2.8)

and U(·) is a deterministic function. (As before, S(t) = ∅ ⇒ Y (t) := 0 ∈ R.)

12.2.2 Assumptions

Now we state the assumptions under which the problem posed in the previous sub-
section will be studied. The first of them is a mere replica of Assumption 11.2.1 (on
p. 373). We adduce it here once more for the convenience of the reader.

Assumption 12.2.1. The random vectors a, ξ(t), and χν(t), ν = 1, . . . , l from
(12.2.1) and (12.2.2) are Gaussian and independent with Eξ(t) = 0 and Eχν(t) =
0. The mean Ea and the correlation matrices

Raa := E[a−Ea][a−Ea] T, Rξξ(t) := Eξ(t)ξ(t) T,

Rνχχ(t) := Eχν(t)χν(t)
T, ν = 1, . . . , l (12.2.9)

are known. So are the matrices A(t), B(t), and Cν(t).

The following assumption generalizes the first part of Assumption 11.2.2 and, in fact,
specifies and expends Assumption 11.2.4 (on p. 374).
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Assumption 12.2.2. The transmission delays in all communication channels as well
as the side information accessible by the controller are independent of the plant.
The measurement transmission delays are independent of those in feedforward and
feedback control channels and the side information.

In other words, the random sets {S(θ)} and quantities {η(t)} from (12.2.8) are
independent of a, {ξ(τ)}, and {χν(τ)}. The sets {S(θ)} are independent of {η(t)}.
The last claim implies that the side information represented by p(t) characterizes
only the control channels and does not concern the observation ones.

The next assumption is similar to the second part of Assumption 11.2.2.

Assumption 12.2.3. The delays in the communication channels are bounded by
known constants: t−θ ≤ σ if (ν, θ) ∈ S(t) and θi(t) ≤ σ∗ for all t and i = 1, . . . , q.

Assumption 12.2.4. The delays in the feedback control channels do not exceed the
sample period, and these channels do not lose signals:

(i, t) ∈ T(t) ∪ T(t+ 1) for all t and i = 1, . . . , q.

Thus the currently received information about the control channels can be repre-
sented by the tuple

κ(t) :=
[
I(t), θ+(t), θ−(t), p(t)

]
. (12.2.10)

Here
I(t) := {i = 1, . . . , q : (i, t) ∈ T(t)}

and the vectors θ±[t] := col
(
θ±1 [t], . . . , θ±q [t]

)
are given by

θ+i (t) :=

{
θi(t) if i ∈ I(t)
0 otherwise

;

θ−i (t) :=

{
θi(t− 1) if i 6∈ I(t− 1)

0 otherwise
. (12.2.11)

Notation 12.2.5. The symbol Υ stands for the set of the values that can be taken by
the tuple (12.2.10).

Remark 12.2.6. We pick p∗ ∈ P and put p(s) := p∗, I(s) := ∅, θi(s) := 0 for s < 0.
Then the second formula from (12.2.11) is of sense for t = 0.

Remark 12.2.7. In terms of the tuples (12.2.10), the strategies (12.2.8) take the form

v(t) = V [t,Y(t),S(t),κ(0), . . . ,κ(t)] . (12.2.12)

The last assumption to follow means that the control channels are systems with a
finite aftereffect.
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Assumption 12.2.8. A known constant σ = 0, 1, . . . exists such that the conditional
distribution of the quantities (12.2.10) satisfies the following relation:

P
[
κ(t+ 1) = κ

∣∣κ(t) = κt, . . . ,κ(0) = κ0

]

= P
[
κ(t+ 1) = κ

∣∣κ(t) = κt, . . . ,κ(t− σ̂) = κt−bσ
]
,

where σ̂ := min{σ, t}, (12.2.13)

for any κ,κ0, . . . ,κt ∈ Υ, t = 0, 1, . . .. This distribution is known in advance.

Remark 12.2.9. For t ≤ σ, the right-hand side of (12.2.13) is necessarily identical to
its left-hand side.

Notation 12.2.10. For any κ = [I, θ+, θ−, p] ∈ Υ, we set θ±(κ) := θ±.

Remark 12.2.11. It follows from (12.2.11) that the probability (12.2.13) equals 0
whenever the ith coordinate of both θ−(κ) and θ+(κt) is nonzero for some i.

Note that the side information p(t) from (12.2.8) may, for example, concern the
transmission times of the control signals overtaken by other ones in the course of
transfer via control channels. Since any actuator employs the most updated control,
this information is not incorporated into the sequences θi(0), θi(1), . . .. However, it
may be transmitted via the feedback control channels to the controller and be useful
for statistical prognosis of future delays in the control channels.

12.3 Optimal Control Strategy

In this section, we present the solution of the problem posed in Subsect. 12.2.1. The
main result of this section states that the strategy optimal in the class (12.2.12) exists
and can be implemented by a feedback of the form:

v(t) = −L[t,κ(t), . . . ,κ(t − σ)]x̂(t|t)

−
σ∗∑

j=1

Lj [t,κ(t), . . . ,κ(t − σ)]v(t− j). (12.3.1)

Here v is the controller output (12.2.7), σ∗ and σ are the constants from Assump-
tions 12.2.3 and 12.2.8, respectively, v(s) := 0 ∀s < 0, and the tuple κ(t) is defined
by (12.2.10). Furthermore, x̂(t|t) is the estimate of the current state x(t) generated
by the estimator from Subsect. 11.3.2 (starting on p. 375). This estimator is imple-
mentable at the controller site since Assumption 12.2.4 implies that the controller
is aware of the controls u(θ) with θ ≤ t − 1 at the current time t. (In other words,
Assumption 11.2.3 on p. 374 holds.)

Remark 12.3.1. Under the circumstances, the conclusions of Theorem 11.3.3 (on
p. 377) hold. In particular, the estimator from Subsect. 11.3.2 produces minimum
variance estimates x̂(j|t) of x(j) with max{t− σ, 0} ≤ j ≤ t based on Y(t),S(t),
and u(0), . . . , u(t− 1).
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The proofs of the claims stated in this section will be given in Sect. 12.8.
In (12.3.1), them×nmatrixL(t,κ) andm×mmatrices L1(t,κ), . . . ,Lσ∗(t,κ)

are the functions of t = 0, . . . , T − 1 and the parameter

κ = (κ0, . . . ,κσ) ∈ Υσ+1. (12.3.2)

We recall that Υ is the set of the values that can be taken by the tuple (12.2.10). The
matrix-functions corresponding to the optimal strategy can be calculated in advance.
To this end, a certain κ-parametric system of difference Riccati equations should be
solved. This system is with respect to the following matrices H(t,κ), t = 0, . . . , T :

H(t,κ) =




Hxx(t,κ) Hx1(t,κ) . . . Hxσ∗(t,κ)
H1x(t,κ) H11(t,κ) . . . H1σ∗(t,κ)
H2x(t,κ) H21(t,κ) . . . H2σ∗(t,κ)

...
...

...
...

Hσ∗x(t,κ) Hσ∗1(t,κ) . . . Hσ∗σ∗(t,κ)



. (12.3.3)

Here the sizes of the blocks are as follows:

Hxx(t,κ) Hxj(t,κ) Hjx(t,κ) Hij(t,κ)
n× n n×m m× n m×m

Specifically, computation of the gain matrices from (12.3.1) follows the diagram

(12.3.4)

Here for any matrix functionD(κ) of κ ∈ Υ and the tuple (12.3.2),

Pt,κ {D(·)}
:=
∑

κ∈Υ

P
[
κ(t+ 1) = κ

∣∣κ(t) = κ0, . . . ,κ(t− σ) = κσ
]
D(κ), (12.3.5)
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where P [κ(t+ 1) = κ| . . .] is the conditional distribution from Assumption 12.2.8.
The other calculations depicted in (12.3.4) by arrows employ the matrix B̂i(t)(i =

1, . . . , q) expressing the influence of the ith actuator on the dynamics:

B̂i(t) := B(t)Ji,

Ji := col [0m1×mi , . . . , 0mi−1×mi , Imi , 0mi+1×mi , . . . , 0mq×mi ], (12.3.6)

wherem1, . . . ,mq are the respective dimensions of the actuators inputs from (12.2.4)
and Imi occupies the ith position. We also put for κ ∈ Υ and the tuple (12.3.2),

κ ⊕ κ := (κ,κ0, . . . ,κσ−1); (12.3.7)

B
j
θ(t) :=

∑

i:θi=j

B̂i(t) θ = col [θ1, . . . , θq] ∈ R
q, j = 0, . . . , σ∗; (12.3.8)

Hxp(t,κ) := 0n×m, Hpx(t,κ) := 0m×n, Hip(t,κ) := Hpi(t,κ) := 0m×m

for p := σ∗ + 1. We also invoke Notation 12.2.10 and set

θ(κ,κ) := θ−(κ) + θ+(κ0), (12.3.9)

where κ0 is the first component of the tuple (12.3.2). Then in (12.3.4),

F (t,κ,κ) := Γ(t) +H11(t+ 1,κ ⊕ κ)

+ B0
θ(κ,κ)(t)

T [Hxx(t+ 1,κ ⊕ κ) +Q(t+ 1)]B0
θ(κ,κ)(t)

+H1x(t+ 1,κ ⊕ κ)B0
θ(κ,κ)(t) + B0

θ(κ,κ)(t)
THx1(t+ 1,κ ⊕ κ); (12.3.10)

M(t,κ,κ) := N(t+ 1,κ,κ)A(t), where

N(t+ 1,κ,κ) := B0
θ(κ,κ)(t)

T [Hxx(t+ 1,κ ⊕ κ) +Q(t+ 1)]

+H1x(t+ 1,κ ⊕ κ); (12.3.11)

Mj(t,κ,κ) := N(t+ 1,κ,κ)Bj
θ(κ,κ)(t) +H1(j+1)(t+ 1,κ ⊕ κ)

+ B0
θ(κ,κ)(t)

THx(j+1)(t+ 1,κ ⊕ κ). (12.3.12)

Here Q(t),Γ(t) are the coefficients of the cost functional (12.2.6).
The matrices H(T,κ), H(T − 1,κ), . . . , H(0,κ) are generated recursively in

accordance with the scheme
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(12.3.13)

More precisely,

Hij(t,κ) = Pt,κ

{
Hij(t, ·,κ))

}
∀i, j = x, 1, . . . , σ∗, (12.3.14)

where the operator Pt,κ is defined by (12.3.5) and

Hxx(t,κ,κ) = AL(t,κ,κ) T [Hxx(t+ 1,κ ⊕ κ) +Q(t+ 1)]AL(t,κ,κ)

−AL(t,κ,κ) THx1(t+ 1,κ ⊕ κ)L(t,κ)

− L(t,κ) TH1x(t+ 1,κ ⊕ κ)AL(t,κ,κ)

+ L(t,κ) T [H11(t+ 1,κ ⊕ κ) + Γ(t)]L(t,κ); (12.3.15)

Hxj(t,κ,κ) = AL(t,κ,κ) T [Hxx(t+ 1,κ ⊕ κ) +Q(t+ 1)] Bj
L(t,κ,κ)

−AL(t,κ,κ) THx1(t+1,κ⊕κ)Lj(t,κ)−L(t,κ) TH1x(t+1,κ⊕κ)Bj
L(t,κ,κ)

+L(t,κ) T [H11(t+ 1,κ ⊕ κ) + Γ(t)] Lj(t,κ)+AL(t,κ,κ) THx(j+1)(t+1,κ,κ)

− L(t,κ) TH1(j+1)(t+ 1,κ ⊕ κ;

Hjx(t,κ,κ) = Hxj(t,κ,κ) T; (12.3.16)

Hij(t,κ,κ) = Bi
L(t,κ,κ) T [Hxx(t+ 1,κ ⊕ κ) +Q(t+ 1)] Bj

L(t,κ,κ)

−Bi
L(t,κ,κ) THx1(t+1,κ⊕κ)Lj(t,κ)−Li(t,κ) TH1x(t+1,κ⊕κ)Bj

L(t,κ,κ)

+Li(t,κ) T [H11(t+ 1,κ ⊕ κ) + Γ(t)] Lj(t,κ)+Bi
L(t,κ,κ) THx(j+1)(t+1,κ⊕κ)

+H(i+1)x(t+ 1,κ ⊕ κ)Bj
L(t,κ,κ)− Li(t,κ) TH1(j+1)(t+ 1,κ ⊕ κ)

−H(i+1)1(t+ 1,κ ⊕ κ)Lj(t,κ) +H(i+1)(j+1)(t+ 1,κ ⊕ κ). (12.3.17)

Here i, j = 1, . . . , σ∗. The recursion is initialized by putting H(T,κ) := 0.

Remark 12.3.2. The matrix F (t,κ) given by (12.3.4) and (12.3.10) is positive-
definite for all t and κ. Hence the inverse matrix F (t,κ)−1 employed in (12.3.4)
does exist.

Now we are in a position to formulate the main result of the section.

Theorem 12.3.3. Suppose that Assumptions 12.2.1–12.2.4, and 12.2.8 hold. Then a
strategy optimal in the class (12.2.8) exists. This strategy is given by formula (12.3.1).
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12.4 Problem of Optimal Control of Multiple Semi-Independent
Subsystems

12.4.1 Problem Statement

In this section, we continue to treat the problem of minimizing the quadratic cost
functional (12.2.6) for the linear plant (12.2.1), (12.2.2). However, now we deal with
a different situation, as compared with the previous two sections of this chapter. The
major distinctions are as follows:

(d1) We do not assume any longer that the statistics of the data delays in the control
channels is known in advance. Moreover, now there are no assumptions about
the statistical properties of these channels.

(d2) We do not assume any longer that the delays in the feedback control channels
are less or equal to the sample period. Now arbitrary delays are admitted.

(d3) We suppose that the system consists of multiple subsystems, either controlled
or uncontrolled. Thus in (12.2.1),

x = col (x0, x1, . . . , xq), xi ∈ R
ni ,

u = col (u1, . . . , uq), ui ∈ R
mi , (12.4.1)

where x0 corresponds to the uncontrolled part, and xi, ui are the state and control
for the ith subsystem. Every controlled subsystem does not influence any other
subsystem.

(d4) As before, there is a central controller receiving data over the observation and
feedback control channels and emitting messages into the (feedforward) control
channels (see Fig. 12.2). However, now every controlled subsystem is equipped
with its own local controller. Its output ui acts upon the subsystem immediately.

The claims (d1) and (d2) mean that Assumptions 12.2.8 and 12.2.4 are dropped and
relaxed, respectively. So with respect to the points concerned in these assumptions,
now a more general situation is considered. At the same time, the situation is more
special in another respect owing to (d3).

The properties (d1) and (d2) make a prognosis of the future delays in the control
channels impossible and thus the side information p(t) from (12.2.8) meaningless.
So we do not assume any longer that it is available.

It should be also remarked that the last claim from (d3) concerns only the dynam-
ics and is not extended on the observations. In particular, the sensors may produce
characteristics of the relative motion of the subsystems.

Other features of the data transfer remain unchanged. In particular, the data re-
ceived by the central controller at time t are represented by S(t) and

Y (t) =
{
yν [θ]

}
(ν,θ)∈S(t)

, (12.4.2)
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Fig. 12.2. Platoon of semi-independent subsystems.

where the set S(t) of signals accepted at time t satisfies (12.2.3) (on p. 408). The
messages vi dispatched by the central controller via the ith control channel incur
random delays. So at time t the ith local controller receives

uri (t) = vi[t− θi(t)], (12.4.3)

where θi(t) ≥ 0. If several messages arrive out of order, accepted is the most updated
of them, as before. If no message arrives, the last accepted one is kept employed. So
(12.2.5) still holds. (Now we put uri (t) := 0 and so θi(t) := t + 1, vi(−1) := 0 in
(12.4.3) if no message has arrived until t. This choice of control will be altered since
it is not optimal.) Thanks to the time stamps, the delay θi(t) becomes known to the
ith local controller at time t. This information is sent back to the central controller
via the delayed feedback control channels. Thus at the current time t, this controller
gets aware of some delays θi(s) with s ≤ t. The corresponding pairs (i, s) constitute
a certain set, which is denoted by T(t).

To complete the problem statement, information constraints should be specified.
If the local controllers do not take part in control generating, the following class of
control strategies is natural:

vi(t) = Vi [t,Y(t),S(t),T(0), . . . ,T(t),Θ(0), . . . ,Θ(t)] i = 1, . . . , q,

where Θ(t) :=
{
θi(s)

}
(i,s)∈T(t)

, (12.4.4)

Y(t) and S(t) are defined in (12.2.8) and Vi(·) are deterministic functions. But we
shall in fact consider the opposite extreme in the problem statement. It results from
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ignoring the control channels bandwidths constraints and assuming that all sensor
data can be resent from the central controller to the local ones. Furthermore, it is
supposed that there is an instantaneous exchange of information about the delays
θi(t) in the control channels between the local controllers. In such artificial circum-
stances, these controllers acquire crucial advantage over the central one by having
access to more information. (The central controller is not aware of the times that will
be taken to transmit its outputs to the subsystems.) So it is beneficial to commission
the local controllers to generate controls. We also suppose here that these controllers
are able to manage it, having enough computational power to process the entire bulk
of the sensor data. Then the delays in the control channels become in effect a part of
the observation delays, and the following class of strategies is natural:

ui(t) = Ui

[
t,Y(τ),S(τ),

(
θj [s]

)q
j=1

t

s=0

]
τ := t− θi(t), i ∈ [1 : q]. (12.4.5)

As will be shown, the corresponding optimal strategy can be implemented in such
a way that the bandwidth constraints are not violated (at least in some cases), and
the above imaginary exchange of information about θi(t), along with other artificial
assumptions, is not employed. Thus it can be implemented in the real circumstances.

In conclusion, we recall that if no message has arrived via the ith control channel
until t, then τ = −1 in (12.4.5) by the definition of θi(t). In view of this, we put
S(−1) := ∅, Y(−1) := 0 ∈ R in order that (12.4.5) be true for all t.

12.4.2 Assumptions

Now we state the assumptions adopted to deal with the problem posed in the previous
subsection. In particular, they more formally specify the properties (d1)–(d4) (on
p. 415).

We suppose that Assumption 12.2.1 (on p. 409) is valid. So is Assumption 12.2.2
(on p. 410) with the references to the “side information” dropped (since now it is
void).1 The following assumption extends Assumptions 12.2.3 and 12.2.4.

Assumption 12.4.1. The times taken by the communication channels to transmit
messages are bounded from above by a known constant σ for any observation chan-
nel and σi for the ith control channel. A constantσf ≥ 1 exists such that (i, θ) ∈ T(t)
whenever θ ≤ t− σf and i = 1, . . . , q. This constant is known a priori.

Due to the last claim, at the time t the central controller is aware of the local
controls ui(s) with s ≤ t − σf , e.g., by duplicating the calculations in accordance
with (12.4.5). Furthermore

t− s ≤ σ whenever (ν, s) ∈ S(t). (12.4.6)

Assumption 12.4.2. The delays in the feedback control channels do not exceed those
in the observation ones:

1The variable p(τ ) is also dropped in the last formula from (12.2.8) (on p. 409).
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t− s ≥ σf − 1 whenever (ν, s) ∈ S(t).

At least one of any µi messages dispatched successively within a time interval of
duration µi − 1 via the ith control channel is not lost. Here µi ≥ 1 is a known
constant for any i.

Assumption 12.4.3. The nominal model of the plant

x(t + 1) = A(t)x +B(t)u

disintegrates into an uncontrolled and q independent controlled parts affected by the
uncontrolled one:

x0(t+ 1) = A0(t)x0(t),

xi(t+ 1) = Ai(t)xi(t) +Ai(t)x0(t) +Bi(t)ui(t). (12.4.7)

Neither the observations nor the noises disintegrate in a similar way. In particu-
lar, some characteristics of the relative motion of the subsystems may be observed.

Assumption 12.4.4. The performance index (12.2.6) has a special structure:

G(t, x, u) =

q∑

i=1

Gi(t, x, u), where

Gi(t, x, u) =
[
x T
iQi(t+ 1)xi + 2x T

0Qi(t+ 1)xi + u T
i Γi(t)ui

]
. (12.4.8)

Here Qi(t) ≥ 0, Qi(t), Γi(t) > 0 are matrices of matching dimensions with
Qi(t),Γi(t) symmetric.

12.5 Preliminary Discussion

As will be shown, the optimal control is determined, in harmony with Theorem C.5
(on p. 513), on the basis of the minimum variance estimate of the current state x(t).
In accordance with (12.4.5), the estimate is based on Y(τ),S(τ), τ = t − θi(t),
and (θj [s])

q
j=0

t
s=0. This section offers an informal discussion of ways to distribute

estimation functions over the central and local controllers.
The central controller receives the sensor data but is not aware of all controls (and

delays θi) affecting the current state. On contrary, the local controllers are aware of
these controls but have no direct access to the sensor data. So it seems reasonable to
split the dynamics into “control-induced” part given by

xc(t+ 1) = A(t)xc(t) +B(t)u(t), xc(0) = 0

and the remainder xu(t) := x(t)− xc(t). Assumption 12.4.3 implies that for the ith
subsystem, the first part of the dynamics obeys the equations
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xci (t+ 1) = Ai(t)x
c
i (t) +Bi(t)ui(t), xci (0) = 0 (12.5.1)

and can be computed by the ith local controller. Hence the role of the central one can
be confined to estimating xu(t) given, in particular, Y(τ),S(τ), where τ = t−θi(t).

To reach the ith subsystem at time t, the estimate must be dispatched at time
τ . Thus at the moment τ , the central controller should produce a prognosis of the
state xu(t). Unfortunately the time t is unknown at this moment. A way to cope
with this trouble is to estimate the states for all t = τ, . . . , τ + σ, where σ is a
known upper bound for θi, and to send all estimates to the subsystems, where the
proper one can be chosen on the basis of the time stamp. The set of the estimates
must be extended still further since the estimator (Kalman filter) compares currently
arrived observations with their estimates. Now these observations yν(s), (ν, s) ∈
S(τ) concern time instants s in the past. This and (12.4.6) imply that the estimates
of the states at t = τ − σ, . . . , τ − 1 should be also produced.

The above scheme has at least two drawbacks. Firstly, the Kalman filter requires
the estimates of x(θ) (not xu(θ)). Secondly, the local controllers are endowed with
infinite dynamics, which may cause instability. Indeed, let, e.g., ξ(t) ≡ 0 in (12.2.1)
and Ai(t) = 0 in (12.4.7). Then the closed-loop ith subsystem is described by equa-
tions (12.4.5), (12.5.1), and

xi(t+ 1) = Ai(t)xi(t) +Bi(t)ui(t).

This subsystem may be stable only if the uncontrolled ith subsystem is stable since
δxi(t+ 1) = Ai(t)δxi(t) for δxi(t) := xi(t)− xci (t).

A way to get rid of the above infinite dynamics is to commission the central
controller to estimate the auxiliary process ω(t, τ) that follows the uncontrolled dy-
namics only since some moment σ−(τ) ≤ τ , i.e., u(t) := 0 for t ≥ σ−(τ) and is
identical to x(t) until it

ω(t, τ) := x(t) −
t−1∑

j=σ−[τ ]

t−1∏

ν=j+1

A(ν)B(j)u(j). (12.5.2)

The above moment must be chosen so that

sup
τ

[τ − σ−(τ)] <∞.

The corresponding estimates ω̂(t|τ) can actually be produced if the process ω(t, τ)
is not affected by the controls unknown to the central controller. By the remark fol-
lowing Assumption 12.4.1, this is true if

σ−(τ) ≤ max{τ − σf + 1, 0}.

So the central controller sends the following package of the estimates to the ith sub-
system:

col
(
ω̂i[0], . . . , ω̂i[σ]

)
, ω̂i[j] := ω̂i[τ + j|τ ]. (12.5.3)
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On its arrival at a time t ≥ τ , the estimate x̂i(t) of xi(t) can be computed by the
ith local controller in accordance with (12.5.2), where t = τ + θi(t), and Assump-
tion 12.4.3

x̂i(t) = ω̂i[θi(t)] +

t−1∑

j=σ−[t−θi(t)]

t−1∏

ν=j+1

Ai(ν)Bi(j)ui(j). (12.5.4)

The second summand in (12.5.4) can be generated especially simply if

σ−(τ) := max{f(τ)− f, 0}, f(t) := max {if : if ≤ t, i = 0, 1, . . .} ,
(12.5.5)

where f ≥ σf is an upper bound for the delays θi(t). Indeed then the lower limit in
the sum equals f(t)− f if t− θi(t) ≥ f(t) and f(t)− 2f otherwise. (The case t ≤ 2f
is neglected here.) Thus

x̂i(t) = ω̂i[θi(t)] + x
(η)
i (t),

where η = 1 if θi(t) ≤ t− f(t) and η = 2 otherwise, and the vector

xi(t) := col [x(0)
i (t), x

(1)
i (t), x

(2)
i (t)]

is given by

x
(η)
i (t) :=

t−1∑

j=f(t)−ηf

t−1∏

ν=j+1

Ai(ν)Bi(j)ui(j). (12.5.6)

Like xci (t), this vector can be generated by the ith local controller recursively:

x
(η)
i (t+ 1) = Ai(t)x

(η)
i (t) +Bi(t)ui(t) whenever t+ 1 6= f(t+ 1),

otherwise, x
(0)
i (t+ 1) = 0,

x
(j+1)
i (t+ 1) = Ai(t)x

(j)
i (t) +Bi(t)ui(t), j = 0, 1. (12.5.7)

The disturbance of the state xi(t) does not influence {xi(θ)} for θ ≥ t+3f thanks to
the second equation from (12.5.7). In this sense, the dynamics of (12.5.7) are finite.

To supply the Kalman filter with the estimates of the currently arrived observa-
tions, the estimates x̂(s|τ) of the states x(s) at s : ∃ν, (ν, s) ∈ S(τ) are required.
By Assumptions 12.4.1 and 12.4.2, τ − σ ≤ s ≤ τ − σf + 1. So these states are
affected by the controls u(0), . . . , u(τ − σf ) known to the central controller at time
τ by the remark following Assumption 12.4.1. Thus their estimates can actually be
generated. Summarizing, we conclude that it is reasonable to commission the central
controller to generate at time t the estimates

X̂(t) = col
[
x̂(t− σ|t), . . . , x̂(t− σf + 1|t), ω̂(t|t), . . . , ω̂(t+ σ|t)

]
(12.5.8)

and focus the local controllers on producing the correction terms by (12.5.7).
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As will be shown, the optimal control depends on the state estimates linearly with
the coefficients known in advance. Since the dimension of the control is typically less
than that of the state, it is beneficial to replace the estimates by their multiples by the
above coefficients in the packages transferred via the control channels. After this,
the entries of the packages can be considered as components of future controls. To
form the ultimate control, each of them should be assembled with a complementary
component generated by the local controller. With a slight abuse of exactness, it can
be said that the control components generated by the central and local controllers
are those determined by the observations and the history of the subsystem control,
respectively.

The above distribution of estimation functions is not unique, and other schemes
can be proposed. For example, it is easy to see that thanks to (12.4.7) and (12.5.2),
the members of the package (12.5.3) are related with a simple recursion

ω̂0(s+ 1|τ) = A0(s)ω̂0(s|τ), ω̂i(s+ 1|τ) = Ai(s)ω̂i(s|τ)+Ai(s)ω̂0(s|τ), s ≥ τ.

So only the launching members ω̂i(τ |τ) and ω̂0(τ |τ) may be sent over the ith con-
trol channel. On their arrival at time t, the above recursion should be executed for
s = τ = t− θi(t), τ +1, . . . , t−1 by the ith local controller to produce the estimate
ω̂i(t|τ) required. This approach may reduce the traffic over the control channel espe-
cially if the dimensions of the states xi and x0 are small enough. However this is for
the expense of a larger amount of computations carried out by the local controller,
which must execute the above recursion with renewed initial data at any time when
new message arrives. This may be especially troublesome whenever the dimension
n0 of x0 is large. In this chapter, we bear in mind the case where n0 >> 1 and the
local controllers have low computational powers. This forces avoidance of control
algorithms for which the local controllers must process a large amount of data. In
view of this, we focus on the packaged control scheme.

12.6 Minimum Variance State Estimator

In this section, we present a recursive algorithm by which the central controller can
generate the estimates (12.5.8). It has much in common with the algorithm from
Subsect. 11.3.2 (starting on p. 375).

Let a control strategy (12.4.5) and an integer f ≥ σf be chosen, where σf is
taken from Assumption 12.4.1. We define σ−(t) by (12.5.5) and put

δη(j|t) :=

min{t−σf ,j−1}∑

i=σ−(t)+(η−1)f

j−1∏

ν=i+1

A(ν)B(i)u(i) η = 1, 2,

j = σ−(t) + f + 1, . . . , t+ σ + 1, t ≥ max{f − σ, 0}, (12.6.1)

where σ is taken from (12.5.8). Coupled with these vectors and certain n×n-matrices

Pij(t), P ij(t), i, j = −σ, . . . , σ,
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the estimations (12.5.8) may be generated by the following analog of the Kalman
filter.

Recursive State Estimator.

The next set X̂(t+ 1) of the estimates is given by equations

x̂(i|t+1) = x̂(i|t)+γt+1−i(t+1)+α(i|t), i = t+1−σ, . . . , t+2−σf ; (12.6.2)

ω̂(j|t+1) = ω̂(j|t)+γt+1−j(t+1)+

{
0 if t+ 1 6= νf ∀ν = 2, 3, . . .
δ1(j|t)− δ2(j|t) otherwise

(12.6.3)

for j = t+ 1, . . . , t+ 1 + σ.
Here

x̂(t+ 2− σf |t) := A(t+ 1− σf )x̂(t+ 1− σf |t),
ω̂(t+ 1 + σ|t) := A(t+ σ)ω̂(t+ σ|t) (12.6.4)

is the state prognosis without taking into account the newly arrived data,

γr(t+ 1) :=
∑

(ν,θ)∈S(t+1)

K(ν,θ)
r (t+ 1) [yν(θ)− Cν(θ)x̂(θ|t)] (12.6.5)

is the correction of the (t+ 1− r)th state estimation on the basis of these data, and

α(j|t) :=

{∏j−1
ν=t−σf +2A(ν)B(ϑ)u(ϑ) if j − 1 ≥ ϑ := t+ 1− σf

0 otherwise
. (12.6.6)

The gain matrices Ks
j (t) are indexed by pairs [j, s] with j = −σ, . . . , σ and s =

(ν, θ) ∈ S(t) and have the dimension n×kν . Their computation is discussed further.
The next set of the vectors (12.6.1) is generated by the following equations, where

j = σ−(t+ 1) + f + 1, . . . , t+ σ + 2

and
δη(t+ σ + 2|t) := A(t+ σ + 1)δη(t+ σ + 1|t);

t+ 1 6= νf
∀ν = 2, 3, . . .

∣∣∣∣⇒

∣∣∣∣∣∣∣∣∣∣∣∣

δ1(j|t+ 1) =

{
δ1(j|t) + α(j|t) if 0 ≤ t+ 1− σf
0 otherwise

δ2(j|t+ 1) =




δ2(j|t) + α(j|t) if

{
σ−(t) + f

≤ t+ 1− σf

}

0 otherwise

.

∃ν = 2, 3, . . . : t+ 1 = νf
∣∣∣⇒ δ1(j|t+ 1) = δ2(j|t) + α(j|t), δ2(j|t+ 1) = 0.

(12.6.7)
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The gain matrices from (12.6.5) are calculated as follows:

Ks
j (t) =

∑

(ν,θ)∈S(t)

Pj,t−θ(t)Cν(θ)
T
+

Λ(t)s(ν,θ). (12.6.8)

Here
+

Λ(t) is the pseudoinverse of the square ensemble of matrices2 Λ(t) = Λ over
the finite set S(t) that is given by

Λs2s1 = Cν1(θ1)Pt−θ1,t−θ2(t)Cν2 (θ2)
T +

{
Rν1χχ(θ1) if s1 = s2
0 otherwise

, (12.6.9)

where si = (νi, θi) ∈ S(t). The matrices Pij(t), P ij(t) are generated recursively

· · · 7→ {Pij(t)} 7→ {P ij(t)} 7→ {Pij(t+ 1)} 7→ · · · ; (12.6.10)

P ij(t) = Pij(t)−
∑

(ν,θ)∈S(t)

K
(ν,θ)
i (t)Cν(θ)Pt−θ,j(t); (12.6.11)

Pij(t+ 1) =





A(t + σ)P ij(t)A(t+ σ) T

+Rξξ(t+ σ)
if i = j = −σ

A(t+ σ)P i,j−1(t) if i = −σ, j > −σ
P i−1,j(t)A(t + σ) T if i > −σ, j = −σ
P i−1,j−1(t) if i, j > −σ

. (12.6.12)

The recursion (12.6.7) is initialized by (12.6.1) with t := max{f − σ, 0}. The
recursion (12.6.2), (12.6.3), (12.6.10) is initialized by the formulas:

ω̂(j|−1) :=

{
ẑ(j) if 0 ≤ j ≤ σ − 1

0 if j = −1
if σ ≥ 1, ω̂(−1|−1) := Ea if σ = 0;

x̂(i| − 1) :=

{
Ea if i = −σf
0 otherwise

, Pij(0) := P 0
ij(σ).

Here ẑ(t), t = 0, . . . , σ − 1 and P 0
ij(t), t = 0, . . . , σ are the solutions for the equa-

tions
ẑ(0) := Ea, ẑ(t+ 1) = A(t)ẑ(t), (12.6.13)

P 0
ij(0) =

{
0 if i > −σ or j > −σ
Raa if i = j = −σ, ;

P 0
ij(t+ 1) =





A(t)P 0
ij(t)A(t) T +Rξξ(t) if i = j = −σ

A(t)P 0
i,j−1(t) if i = −σ, j > −σ

P 0
i−1,j(t)A(t) T if i > −σ, j = −σ
P 0
i−1,j−1(t) if i, j > −σ

.

(We put u(θ) := 0, A(θ) := I, B(θ) := 0 for θ ≤ −1.)

2See Subsect. 11.3.1 starting on p. 374.
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Remark 12.6.1. Formula (12.6.9) is a replica of (11.3.8) (on p. 376). Formulas
(12.6.8) and (12.6.12) differ from (11.3.7) and (11.3.11) (on p. 376), respectively,
only by the fact that now the indices i and j range over wider sets.

Theorem 12.6.2. Suppose that Assumptions 12.2.1, 12.2.2, 12.4.1, and 12.4.2 (on
pp. 409, 410, 417, and 417) hold and that a control strategy (12.4.5) (on p. 417) is
chosen. Then the above estimator generates the minimum variance estimates; i.e.,
whenever max{t− σ, 0} ≤ i ≤ t− σf + 1 and max{t, 0} ≤ j ≤ t+ σ, we have

x̂(i|t) = E
[
x(i)

∣∣Y(t),S(t),Υ(t)
]
,

ω̂(j|t) = E
[
ω(j, t)

∣∣Y(t),S(t),Υ(t)
]
, (12.6.14)

where Y(t) and S(t) are defined in (12.2.8), and

Υ(t) := col
[
θ(0), . . . , θ(t− σf )

]

θ(s) := col
[
θ1(s), . . . , θq(s)

] if t ≥ σf (12.6.15)

and Υ(t) := 0 ∈ Rq otherwise. The matrices Pij(t), P ij(t) generated by the esti-
mator are the conditional covariance matrices of the errors

e(θ|s) := ω̂(θ|s)−ω(θ, s) ( = x̂(θ|s)−x(θ) whenever θ ≤ s−σf+1). (12.6.16)

More precisely, whenever i, j = −σ, . . . , σ and t− i ≥ 0, t− j ≥ 0,

P ij(t) := E
[
e(t− i|t)e(t− j|t) T

∣∣S(t)
]
,

Pij(t) := E
[
e(t− i|t− 1)e(t− j|t− 1) T

∣∣S(t− 1)
]
. (12.6.17)

The proof of this theorem will be given in Sect. 12.9.

12.7 Solution of the Optimal Control Problem

Consider first the problem of minimizing the functional (12.2.6) (on p. 408) subject
to the constraints (12.2.1) (on p. 407) in the case where the process disturbances are
removed (ξ(t) ≡ 0) and the entire state x is accessible for “on-line” measurements.
As was remarked in Sect. 11.5 (starting on p. 381), the solution of this problem is
given by the feedback u(t) = −L(t)x(t), where the gain matrix L(t) is calculated in
correspondence with (11.5.3)–(11.5.5) (on p. 382). Under Assumptions 12.4.3 and
12.4.4 (on p. 418), these relations take the form

ui(t) = −Li(t)xi(t)− Li(t)x0(t), where i = 1, . . . , q;

Li(t) = Fi(t)
−1Bi(t)

T [Qi(t+ 1) +Hi(t+ 1)]Ai(t); (12.7.1)
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Li(t) = Fi(t)
−1Bi(t)

T

{
[
Qi(t+ 1) T +Hi(t+ 1) T

]
A0(t)

+ [Qi(t+ 1) +Hi(t+ 1)]Ai(t)

}
;

Fi(t) := Γi(t) +Bi(t)
T [Qi(t+ 1) +Hi(t+ 1)]Bi(t). (12.7.2)

Here the matrices Hi(t), H i(t) of dimensions ni × ni and n0 × ni, respectively, are
calculated recursively for t = T, T − 1, . . . , 0 as follows:

Hi(T ) := 0, Hi(T ) := 0 ∀i, Hi(t) = Li(t)
TΓi(t)Li(t)

+ [Ai(t)−Bi(t)Li(t)] T [Qi(t+ 1) +Hi(t+ 1)] [Ai(t)−Bi(t)Li(t)] ; (12.7.3)

Hi(t) = Li(t)
TΓi(t)Li(t)

+A0(t)
T
[
Qi(t+ 1) +Hi(t+ 1)

]
[Ai(t)−Bi(t)Li(t)]

+
[
Ai(t)−Bi(t)Li(t)

] T
[Qi(t+ 1) +Hi(t+ 1)] [Ai(t)−Bi(t)Li(t)] . (12.7.4)

It is easy to see that Hi(t) ≥ 0 ∀i, t. This and (12.7.2) imply that Fi(t) ≥ Γi(t) > 0,
and so the matrix Fi(t)−1 in (12.7.1) does exist.

Corresponding to (12.4.1) (on p. 415) is the following partition:

ω̂(j|t) = col [ω̂0(j|t), . . . , ω̂q(j|t)] .

We also denote

σi := σi + µi − 1, σ := max{σ1, . . . , σq}, f := max{σ, σf}, (12.7.5)

where σi, σf , and µi are the constants from Assumptions 12.4.1 (on p. 417) and
12.4.2 (on p. 417), respectively.

Control Strategy

At the current time t, the central controller produces the tuple (12.5.8) (on p. 420) of
the estimates by the algorithm described in Sect. 12.6 (starting on p. 421). The con-
stants σ in (12.5.8) and f in (12.6.3) and (12.6.7) are defined by (12.7.5). For each
i = 1, . . . , q, this controller sends via the ith control channel the control package

p(i) = col
(
v
(i)
0 , . . . , v

(i)
σi

)
, (12.7.6)

where v(i)
j ∈ Rmi is given by

v
(i)
j := −Li(t+ j)ω̂i(t+ j|t)− Li(t+ j)ω̂0(t+ j|t), j ∈ [0 : σi]. (12.7.7)
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In its memory, the ith local controller stores, firstly, the last accepted pack-
age (12.7.6); secondly, the time si of this package transmission; thirdly, the time
τi elapsed since the arrival of this package; and fourthly, an auxiliary vector

xi(t) = col
[
x

(0)
i (t), x

(1)
i (t), x

(2)
i (t)

]

whose dimension is thrice that of xi. At the current time t, this controller, firstly,
refreshes p(i), si and sets τi := 0 if an updated package3 arrives; secondly, forms
the current output

ui(t) := v
(i)
si+τi

− Li(t)×





x
(0)
i (t) if t < f

x
(2)
i (t) if f ≤ t− θi − τi < f(t)

x
(1)
i (t) otherwise

, (12.7.8)

where f(t) is the quantity (12.5.5) (on p. 420); and thirdly, sets τi := τi + 1 and
calculates the next vector xi(t+ 1) by formulas (12.5.7) (on p. 420). This controller
is initialized at t = 0 by putting

s0 := 0, τ0 := 0, xi(0) := 0, p(i) := col
(
v̂
(i)
0 , . . . , v̂

(i)
σi

)
,

where
v̂
(i)
j := −Li(j)ẑi(j)− Li(j)ẑ0(j),

the vectors ẑ(j) are defined by (12.6.13) (on p. 423), and col
[
ẑ0(j), . . . , ẑq(j))

]
is

the partition of ẑ(j) corresponding to (12.4.1) (on p. 415).
Due to (12.7.1), (12.7.2), and (12.7.3), the gain matrices Li(t) employed by the

ith local controller in (12.7.8) are calculated on the basis of the data related to only
the ith subsystem and the uncontrolled part of the plant.

Now we are in a position to state the main result of this section.

Theorem 12.7.1. Let Assumptions 12.2.1, 12.2.2, and 12.4.1–12.4.4 (on pp. 409,
410, 417, and 418) hold. Then the above control algorithm furnishes the optimum
of the cost functional (12.2.6) (on p. 408) in the class of strategies given by (12.4.5)
(on p. 417).

The proofs of the results stated in this section will be given in Sect. 12.10.
This algorithm provides an optimal way to control not only the entire set of sub-

systems but also each of them. To specify this statement, suppose that all subsystems
except for the ith one are controlled in accordance with some fixed strategies of the
form (12.4.5). Consider the problem of optimal control of the ith subsystem:

min E

T−1∑

t=0

Gi[t, xi(t+ 1), ui(t)] subject to xi(0) = ai;

xi(t+ 1) = Ai(t)xi(t) +Ai(t)x0(t) +Bi(t)ui(t) + ξi(t) (12.7.9)

3In other words, a package produced later than the currently employed one.



12.8 Proofs of Theorem 12.3.3 and Remark 12.3.1 427

t = 0, . . . , T − 1 in the class (12.4.5) with i fixed. Here

Gi[t, xi, ui] := x T
i Qi(t)xi + 2x0(t)

TQi(t)xi + u T
i Γi(t)ui

is in fact taken from (12.4.8) (on p. 418) and ξ = col (ξ0, . . . , ξq) is the partition of
the disturbance from (12.2.1) (on p. 407) that corresponds to (12.4.1) (on p. 415).
The solution for this problem is given by the following proposition.

Proposition 12.7.2. The optimal way to control the ith subsystem is to employ the
above algorithm restricted to the ith local controller. In other words, the parts of the
algorithm that concern all local controllers except for the ith one are discarded, as
well as the control packages are not sent from the central controller to them.

Remark 12.7.3. So far we assumed that if several messages arrive at a subsystem out
of order, accepted is the most updated of them. It can be shown that, in fact, this
policy is optimal.

12.8 Proofs of Theorem 12.3.3 and Remark 12.3.1

Proof of Remark 12.3.1 (on p. 411). It suffices to justify the assumptions of Theo-
rem 11.3.3 (on p. 377). We first show that the control given by (12.2.4) (on p. 408)
and (12.2.12) (on p. 410) has the form (11.2.5) (on p. 373) with

h(t) := [κ(0), . . . ,κ(t+ 1)] . (12.8.1)

Indeed, Assumption 12.2.4, Notation 12.2.10, and (12.2.10) and (12.2.11) (on pp. 410
and 411) imply that

θ(t) := col [θ1(t), . . . , θq(t)]

= θ+(t) + θ−(t+ 1) = θ+[κ(t)] + θ−[κ(t + 1)]. (12.8.2)

So θi(t) = Θi[h(t)], and (12.2.4) and (12.2.12) yield that the control has the required
form:

u(t) = U [t,Y(t),S(t), h(t)] .

Here the blocks Ui(·) of the partition U(·) = col
[
U1(·), . . . ,Uq(·)

]
matching that

from (12.2.4) are defined as follows:

Ui
[
t, Y0, . . . , Yt, S0, . . . , St, h

]

:= Vi
[
t− θi, Y0, . . . , Yt−θi , S0, . . . , St−θi ,κ0, . . . ,κt−θi

]
,

where Vi(·) and θi are the ith components of

V(·) = col
[
V1(·), . . . ,Vq(·)

]

from (12.2.12) and Θ[h], respectively, and κj are the components of h =
{
κs
}t+1

s=0
.
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To complete the proof, we note that Assumptions 12.2.1–12.2.4 (on pp. 409 and
410) imply Assumptions 11.2.1–11.2.4 (on p. 373) of Theorem 11.3.3 (on p. 377),
and we apply this theorem. ⊓⊔

but also Remark 11.3.4 (on p. 377) is true. With regard to (12.8.1), this remark shapes
into the following claim, which aids in proving Theorem 12.3.3.

Remark 12.8.1. (i) The minimum variance estimates x̂(j|t) of x(j) (where max{t−
σ, 0} ≤ j ≤ t) based on

Y(t),S(t), u(0), . . . , u(t− 1)

are equal to those based on

Y(t),S(t),κ(0), . . . ,κ(t).

(ii) Given S(0), . . . , S(t),κ(0), . . . ,κ(t), the estimation errors

e(j|t) := x̂(j|t)− x(j), (12.8.3)

where max{t− σ, 0} ≤ j ≤ t, are independent of the observations Y (0), . . . , Y (t).

We recall that the estimates x̂(j|t) are produced by the estimator from Subsect. 11.3.2.
The remainder of the section is devoted to the proof of Theorem 12.3.3. This

proof is broken into the string of four steps.

1) Like in Sect. 11.7 (starting on p. 384), we rewrite the problem in a more standard
form by augmenting the system state.

2) We offer concise forms of relevant relations in terms of the coefficients from the
augmented problem.

3) The cost functional is shaped into a form convenient for further analysis. (This is
a key step.)

4) Theorem 12.3.3 is proved by accomplishing such an analysis.

1) Augmenting the system state. To this end, we introduce the linear space

Z :=
{
Z = {zν,j}lν=1

σ
j=0 : zν,j ∈ R

kν ∀ν, j
}

and put x(θ) := 0, v(θ) := 0 for θ ≤ −1. Here σ is taken from Assumption 12.2.3
(on p. 410). We also invoke the constant σ∗ from this assumption and for t = 0, 1, . . .,
we introduce the vectors

X(t) := col
[
x(t), . . . , x(t− σ), v(t − 1), . . . , v(t− σ∗)

]
,

θ(t) := col [θ1(t), . . . , θq(t)] ; (12.8.4)

Z(t) :=
{
zν,j
}
∈ Z, where

zν,j :=

{
yν(t− j) if (ν, t− j) ∈ S(t)
0 otherwise

. (12.8.5)

Since Assumptions 11.2.1–11.2.4 hold, not only the conclusion of Theorem 11.3.3
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In terms of these vectors, the problem under consideration takes the form:

minimize I := E

T−1∑

t=0

G [t,X(t+ 1), v(t)] , where

G [t,X, v] := X TQ(t+ 1)X + v TΓ(t)v, (12.8.6)

subject to the constraints

X(t+ 1) = Aθ(t)(t)X(t) + Bθ(t)(t)v(t) + E ξ(t) t = 0, . . . , T − 1; (12.8.7)

X(0) = a := col (a, 0, . . . , 0); (12.8.8)

Z(t) = C
[
t, S(t)

]
X(t) + Ξ

[
t, S(t)

]
t = 0, . . . , T ; (12.8.9)

v(t) = V [t, Z(0), . . . , Z(t), S(0), S(1), . . . , S(t),κ(0), . . . ,κ(t)] . (12.8.10)

Here for any t = 0, . . . , T and θ = col (θ1, . . . , θq), θi = 0, . . . , σ∗,

Q(t) :=




Q(t) 0 · · · 0
0 0 · · · 0
0 0 · · · 0
· · · · · ·
0 0 · · · 0



,

Bθ(t) := col
[
B0
θ(t), 0, . . . , 0

∣∣Im, 0, . . . , 0
]
,

E := col
[
In, 0, . . . , 0

]
;

(12.8.11)

Aθ(t) :=




A(t) 0 · · · 0 0
In 0 · · · 0 0
0 In · · · 0 0

. . . . . . . . . . . . . . .
0 0 · · · In 0

B1
θ(t) · · · B

σ∗−1
θ (t) B

σ∗
θ (t)

0 · · · 0 0
0 · · · 0 0

. . . . . . . . . . . . . . . . . . . . . . . . .
0 · · · 0 0

0
0 · · · 0 0
Im · · · 0 0
0 · · · 0 0

. . . . . . . . . . . . . . . . . . . . . . . . .
0 · · · Im 0




. (12.8.12)

The lines within matrices separate their “x”- and “v”- parts, and the matrices B
j
θ(t)

are defined by (12.3.6) and (12.3.8) (on p. 413). Furthermore for any

t ≤ T, S ⊂ {(ν, j) : ν ∈ [1 : l], j ∈ [0 : σ]}, X = col (x0, x1, . . . , xσ, v1, . . . , vσ∗),

the following relations hold:

C[t, S]X := {zν,j}lν=1
σ
j=0 ∈ Z, where

zν,j :=

{
Cν(t− j)xj if (ν, t− j) ∈ S
0 otherwise

; (12.8.13)
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Ξ[t, S] := {ζν,j}lν=1
σ
j=0 ∈ Z, where

ζν,j :=

{
χν(t− j) if (ν, t− j) ∈ S
0 otherwise

. (12.8.14)

When dealing with the augmented system, it is natural to employ the minimum
variance estimate

X̂(t|t) = E
[
X(t)

∣∣Z(0), . . . , Z(t), S(0), . . . , S(t),κ(0), . . . ,κ(t)
]
. (12.8.15)

Thanks to (i) of Remark 12.8.1, (12.8.4), (12.8.5), and (12.8.10),

X̂(t|t)
= col [x̂(t|t), x̂(t− 1|t), . . . , x̂(t− σ|t), v(t − 1), . . . , v(t− σ∗)] . (12.8.16)

So the estimation error can be expressed in terms of (12.8.3):

E(t) := X̂(t|t)−X(t)

= col [e(t|t), e(t− 1|t), . . . , e(t− σ|t), 0, . . . , 0] . (12.8.17)

2) Concise form of relations (12.3.10)–(12.3.17) (on pp. 413 and 414). This form
is in terms of the coefficients from (12.8.6) and (12.8.7), along with the following
matrices:

H(t,κ) :=




Hxx(t,κ) 0 · · · 0
0 0 · · · 0

. . . . . . . . . . . . . . . .
0 0 · · · 0

Hx1(t,κ) · · · Hxσ∗(t,κ)
0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . .
0 · · · 0

H1x(t,κ) 0 . . . 0
H2x(t,κ) 0 . . . 0
. . . . . . . . . . . . . . . . .
Hσ∗x(t,κ) 0 . . . 0

H11(t,κ) . . . H1σ∗(t,κ)
H21(t,κ) . . . H2σ∗(t,κ)
. . . . . . . . . . . . . . . . . . . . . . . . .
Hσ∗1(t,κ) . . . Hσ∗σ∗(t,κ)




; (12.8.18)

L(t,κ) :=
[
L(t,κ), 0, . . . , 0

∣∣L1(t,κ), . . . ,Lσ∗(t,κ)
]
. (12.8.19)

Here the partitions correspond to (12.8.12). We recall that κ is the tuple (12.3.2)
(on p. 412) and the operations Pt,κ and ⊕ are defined by (12.3.5) and (12.3.7) (on
p. 413), respectively.

Lemma 12.8.2. Suppose that t = 0, . . . , T − 1 and κ = [κ0, . . . ,κσ] ∈ Υσ+1

are given. Let the dot · stand for the variable κ ∈ Υ. We also invoke the notation
θ(κ,κ) defined by (12.3.9) (on p. 413) and Notation 12.2.10 (on p. 411). Then the
following statements hold:

(i) The matrix F (t,κ) introduced in (12.3.4) (on p. 412) is positive-definite and

F (t,κ) = Pt,κ

{
Γ(t) + Bθ(·,κ)(t)

T
[
H(t+ 1, ·⊕ κ)

+ Q(t+ 1)
]
Bθ(·,κ)(t)

}
; (12.8.20)
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F (t,κ)L(t,κ) = Pt,κ

{
Bθ(·,κ)(t)

T
[
H(t+ 1, ·⊕ κ)

+ Q(t+ 1)
]
Aθ(·,κ)(t)

}
; (12.8.21)

H(t,κ) = L(t,κ) TΓ(t)L(t,κ)+

Pt,κ

{
[
Aθ(·,κ)(t)−Bθ(·,κ)(t)L(t,κ)

] T
[
H(t+ 1, ·⊕ κ)

+ Q(t+ 1)
] [

Aθ(·,κ)(t)−Bθ(·,κ)(t)L(t,κ)
]
}
. (12.8.22)

We recall that the matrices Bθ(t),Q(t+ 1), and Aθ(t) are defined by (12.8.11)
and (12.8.12).

(ii) For any X = col (x0, . . . , xσ, v1, . . . , vσ∗) and v ∈ Rm, we put

X+(·) := Aθ(·,κ)(t)X + Bθ(·,κ)(t)v.

Then

Pt,κ

{
X+(·) T [H(t+ 1, ·⊕ κ) + Q(t+ 1)]X+(·)

}
−X TH(t,κ)X

+ v TΓ(t)v = [v + L(t,κ)X ]
T
F (t,κ) [v + L(t,κ)X ] . (12.8.23)

Proof. Statement (i). Note first that (12.3.5) (on p. 412), (12.8.22), and the bound-
ary condition H(T,κ) = 0 imply recursively that H(t,κ) ≥ 0. Then (12.3.5) and
(12.8.20) yield F (t,κ) > 0. Rewriting relations (12.8.20)–(12.8.22) in terms of the
entries from (12.8.11), (12.8.12), (12.8.18), and (12.8.19) demonstrates that these
relations are merely another form of (12.3.10)–(12.3.17) (on pp. 413 and 414).

Statement (ii) By (12.8.22),

Pt,κ

{
Aθ(·,κ)(t)

T [H(t+ 1, ·⊕ κ) + Q(t+ 1)] Aθ(·,κ)(t)

}
− H(t,κ)

= L(t,κ) TPt,κ

{
Bθ(·,κ)(t)

T [H(t+ 1, ·⊕ κ) + Q(t+ 1)] Aθ(·,κ)(t)

}

−L(t,κ) TPt,κ

{
Γ(t)+Bθ(·,κ)(t)

T [H(t+ 1, ·⊕ κ) + Q(t+ 1)] Bθ(·,κ)(t)

}
L(t,κ)

+ Pt,κ

{
Aθ(·,κ)(t)

T [H(t+ 1, ·⊕ κ) + Q(t+ 1)]Bθ(·,κ)(t)

}
L(t,κ)

(12.8.20), (12.8.21)
========= L(t,κ)F (t,κ)L(t,κ) T.
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In view of this, relationship (12.8.23) is immediate from (12.8.20) and (12.8.21). ⊓⊔

3) Transformation of the cost functional. This transformation plays a key role in
proving Theorem 12.3.3.

Lemma 12.8.3. Suppose that a control strategy (12.8.10) is chosen. Consider the
estimates (12.8.15) and put

κ(t) := [κ(t), . . . ,κ(t− σ)],

where σ is the constant from Assumption 12.2.8 (on p. 411). We recall that κ(s) is
defined for s < 0 by Remark 12.2.6 and (12.2.10) (on p. 410). For any t = 0, . . . , T ,
the following representation of the cost functional from (12.8.6) holds:

I = E

t−1∑

s=0

G[s,X(s+ 1), v(s)] + EX(t) TH[t,κ(t)]X(t)

+ E

T−1∑

s=t

[
v(s) + L[s,κ(s)]X̂(s|s)

] T

F [s,κ(s)]

×
[
v(s) + L[s,κ(s)]X̂(s|s)

]
+ ∆(t), (12.8.24)

where

∆(t) := tr
T−1∑

s=t

{
E
(
L[s,κ(s)] TF [s,κ(s)]L[s,κ(s)]P 00(s)

)

+
(
Q(s+ 1) + EHxx[s+ 1,κ(s+ 1)]

)
Rξξ(s)

}
. (12.8.25)

Here P 00(s) is the matrix generated by the estimator from Subsect. 11.3.2 (start-
ing on p. 375 ), and Rξξ(t) is the disturbance correlation matrix from (12.2.9) (on
p. 409).

Proof. The proof will be by induction on t = T, T − 1, . . . , 0. For t = T , (12.8.24)
is immediate from (12.8.6), (12.8.18), and the boundary condition H(T,κ) = 0 ⇔
H(T,κ) = 0. Suppose that (12.8.24) holds for t := t+ 1 ≤ T ; i.e.,

I = E

t−1∑

s=0

G[s,X(s+ 1), v(s)] + Ev(t) TΓ(t)v(t) + ∆(t+ 1)

+ EX(t+ 1) T {H[t+ 1,κ(t+ 1)] + Q(t+ 1)}︸ ︷︷ ︸
N(t+1)

X(t+ 1)

+ E

T−1∑

s=t+1

[
v(s) + L[s,κ(s)]X̂(s|s)

] T

F [s,κ(s)]
[
v(s) + L[s,κ(s)]X̂(s|s)

]
.



12.8 Proofs of Theorem 12.3.3 and Remark 12.3.1 433

By (12.8.7),
X(t+ 1) = X+(t) + Eξ(t),

where the vector
X+(t) := Aθ(t)(t)X(t) + Bθ(t)(t)v(t)

and the quantity κ(t+ 1) are independent of ξ(t) due to Assumptions 12.2.1, 12.2.2
(on pp. 409 and 410), (12.8.7), (12.8.9), and (12.8.10). Since Eξ(t) = 0, this yields

EX(t+ 1) TN(t+ 1)X(t+ 1) = EX+(t) TN(t+ 1)X+(t)

+ Eξ(t) TE TN(t+ 1)Eξ(t). (12.8.26)

Owing to (12.2.9) (on p. 409), (12.8.11), and (12.8.18), the second summand on the
right amounts to

Eξ(t) T
{
Hxx[t+ 1,κ(t+ 1)] +Q(t+ 1)

}
ξ(t)

= tr
[{
Q(t+ 1) + EHxx[t+ 1,κ(t+ 1)]

}
Rξξ(t)

]
.

To compute the first one, note that by (12.3.9) (on p. 413) and (12.8.2), θ(t) =
θ[κ(t + 1),κ(t)]. Due to (12.8.7), (12.8.9), and (12.8.10), X(t) and v(t) are deter-
ministic functions of

Π := [a, {χν(0)}lν=1, . . . , {χν(t)}lν=1, ξ(0), . . . , ξ(t− 1), S(0), . . . , S(t)]

and κ(0), . . . ,κ(t), where Π and {κ(s)} are independent thanks to Assump-
tions 12.2.1 and 12.2.2 (on pp. 409 and 410). Hence putting K := [κ(α), . . . ,κ(t)],
where α := max{t− σ, 0}, we get

E
[
X+(t) TN(t+ 1)X+(t)

∣∣X(t) = X, v(t) = v,K
]

=

E

{[
Aθ[κ(t+1),κ(t)]X + Bθ[κ(t+1),κ(t)]v

] T[
H[t+ 1,κ(t+ 1)] + Q(t+ 1)

]

×
[
Aθ[κ(t+1),κ(t)]X + Bθ[κ(t+1),κ(t)]v

]∣∣∣∣∣K
}

(12.3.7)
===

∑

κ∈Υ

{
P
[
κ(t+1) = κ

∣∣K
][

Aθ[κ,κ(t)]X+Bθ[κ,κ(t)]v
] T[

H[t+1,κ⊕κ(t)]+Q(t+1)
]

×
[
Aθ[κ,κ(t)]X + Bθ[κ,κ(t)]v

]}
.

Here P
[
κ(t + 1) = κ

∣∣K
]

= P
[
κ(t + 1) = κ

∣∣κ(t)
]

by Assumption 12.2.8 (on
p. 411). So invoking (12.3.5) (on p. 412) shows that the conditional expectation under
consideration equals
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Pt,κ(t)

{[
Aθ[·,κ(t)]X + Bθ[·,κ(t)]v

] T[
H[t+ 1, ·⊕ κ(t)] + Q(t+ 1)

]

×
[
Aθ[·,κ(t)]X + Bθ[·,κ(t)]v

]}

(12.8.23)
=== X

T
H [t,κ(t)]X − v TΓ(t)v

+
{
v + L [t,κ(t)]X

} T
F [t,κ(t)]

{
v + L [t,κ(t)]X

}
.

Thus in (12.8.26), the first summand on the right equals

EX(t) TH[t,κ(t)]X(t)−Ev(t)Γ(t)v(t) + µ(t), where

µ(t) := E
{
v(t) + L[t,κ(t)]X(t)

} T

F [t,κ(t)]
{
v(t) + L[t,κ(t)]X(t)

}
.

Now we employ the notation E(t) from (12.8.17) and denote

Λ := [S(0), . . . , S(t),κ(0), . . . ,κ(t)]. (12.8.27)

Then

µ(t) = E
{
v(t) + L[t,κ(t)]X̂(t|t)︸ ︷︷ ︸

w(t)

−L[t,κ(t)]E(t)
} T

F [t,κ(t)]

×
{
w(t) − L[t,κ(t)]E(t)

}

= Ew(t) TF [t,κ(t)]w(t) + EE(t) TL[t,κ(t)] TF [t,κ(t)]L[t,κ(t)]E(t)

− 2EE
[
w(t) TF [t,κ(t)]L[t,κ(t)]E(t)

∣∣∣Λ
]
. (12.8.28)

Due to (12.8.10) and (12.8.15), w(t) is a deterministic function of Λ and Z(0), . . . ,
Z(t). At the same time, E(t) is independent ofZ(0), . . . , Z(t) given Λ, and EE(t) =
0 due to (ii) of Remark 12.8.1, (12.8.5), and (12.8.17). Hence the last summand on
the right in (12.8.28) is zero. The second one equals

δ := tr E
{
L[t,κ(t)] TF [t,κ(t)]L[t,κ(t)]E

[
E(t)E(t) T

∣∣Λ
]}
.

By Assumption 12.2.2 (on p. 410), the S and κ-parts of (12.8.27) are independent.
At the same time, Remark 12.3.1 (on p. 411) and the last claim of Theorem 11.3.3 (on
p. 377) guarantee that the estimation error (12.8.17) is not affected by the controls.
Hence it is not influenced by κ(0), . . . ,κ(t). It follows that

E
[
E(t)E(t) T

∣∣Λ
]

= E
[
E(t)E(t) T

∣∣S(0), . . . , S(t)
]
.

By Remark 12.3.1, Theorem 11.3.3, and (12.8.17), the conditional expectation on
the right amounts to
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


P 00(t) · · · P 0σ(t)
. . . . . . . . . . . . . . . . .
P σ0(t) · · · P σσ(t)

0
0 0


 .

In view of (12.8.19), this yields

δ = tr E
{
L[t,κ(t)] TF [t,κ(t)]L[t,κ(t)]P 00(t)

}
.

Summarizing, we arrive at (12.8.24). ⊓⊔

4) Completion of the proof of Theorem 12.3.3 (on p. 414). By (i) of Lemma 12.8.2
and (12.8.8) and (12.8.18), relation (12.8.24) with t := 0 implies that for any control
strategy (12.8.10),

I ≥ ∆(0) + Ea THxx[0,κ(0)]a.

By (12.8.25), the obtained lower bound does not depend on the control. This bound
is evidently attained at the strategy v(t) = −L[t,κ(t)]X̂(t|t), which equals (12.3.1)
(on p. 411) thanks to (12.8.16) and (12.8.19). ⊓⊔

Concluding remarks. The representation (12.8.6)–(12.8.10) moves the problem
under consideration into the area of LQG control of systems whose coefficients are
determined by a finite-state Markov chain.4 This area has received considerable at-
tention (see, e.g., [1, 35, 36, 56, 79], we refer the reader to [36, 67, 78] for a survey).
It however was mainly focused on continuous-time case, noise-free discrete-time
systems, or systems with incomplete observation of the Markov parameters. In the
corresponding literature, the authors failed to find a reference that directly proves
Theorem 12.3.3. In view of this, we offered an independent proof, which is based on
the standard technique.

12.9 Proof of Theorem 12.6.2 on p. 424

The proof is based on the state augmenting technique considered in Sect. 11.7 (start-
ing on p. 384). Like in that section, we introduce the linear space

Z :=
{
Z = {zν,j}lν=1

σ
j=0 : zν,j ∈ R

kν ∀ν, j
}
,

where l and σ are taken from (12.2.2) (on p. 407) and Assumption 12.4.1 (on p. 417),
respectively, and put

x(θ) := 0, u(θ) := 0, A(θ) := I, B(θ) := 0 ∀θ ≤ −1.

Then formula (12.6.1) (on p. 421) makes sense for j = t + 1 − σ, . . . , t + 1 + σ
and t = 0, 1, . . .. For any τ ≥ 0, we consider the process x(t, τ) that is identical to

4Indeed, the tuples r(t) := [κ(t + 1), κ(t), . . . , κ(t − σ + 1)] form such a chain due
to Assumption 12.2.8 (on p. 411). At the same time, θ(t) = Θ[r(t)] by (12.8.2), where
Θ[κ0, κ1, . . . , κσ] := θ−(κ0) + θ+(κ1) and θ±(·) is defined by (12.2.11) (on p. 410).
So in (12.8.7), the coefficients Aθ(t)(t) and Bθ(t)(t) are deterministic functions of t and r(t).
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{x(t)} until t = τ − σf + 1 and then proceeds in correspondence with the system’s
uncontrolled dynamics. We also denote

X(t) := col
[
x(t+σ, t), . . . , x(t−σ, t)

]
, Ω(t) := col

[
ω(t+σ, t), . . . , ω(t−σ, t)

]
;

∆η(t) := col
[
δη(t+ σ + 1|t), . . . , δη(t− σ + 1|t)

]
η = 1, 2;

W (t) :=
{
wν,j

}
∈ Z, wν,j :=

{
yν(t− j) if (ν, t− j) ∈ S(t)
0 otherwise

. (12.9.1)

It is easy to check that the evolution of this vectors is governed by the equations

X(t+ 1) = A(t)X(t) + B(t)u(t+ 1− σf ) + Eξ(t+ σ), X(0) = Ω0; (12.9.2)

Ω(t+1) = A(t)Ω(t)+D(t)
[
∆1(t)−∆2(t)

]
+Eξ(t+σ), Ω(0) = Ω0; (12.9.3)

∆1(t+ 1) = A11
∆ (t)∆1(t) + A12

∆ (t)∆2(t) + B1
∆(t)u(t+ 1− σf ),

∆1(0) = 0; (12.9.4)

∆2(t+ 1) = A22
∆ (t)∆2(t) + B2

∆(t)u(t+ 1− σf ), ∆2(0) = 0; (12.9.5)

W (t) = C
[
t, S(t)

]
X(t) + Ξ

[
t, S(t)

]
t = 0, . . . , T. (12.9.6)

Here

A(t) :=




A(t+ σ) 0 · · · 0 0
I 0 · · · 0 0
0 I · · · 0 0
· · · · · · ·
0 0 · · · I 0



, D(t) :=





the unit matrix if
t+ 1 = f(t+ 1)
t+ 1 6= f

and the zero matrix
otherwise

, (12.9.7)

where f is defined by (12.5.5) (on p. 420) and the size of D(t) equals that of A(t).
Furthermore,

Aηη∆ (t) :=





A(t+ 1) if

{
t ≥ σf + (η − 1)f − 1 and[
t+ 1 6= f(t+ 1) or t+ 1 = f

]
}

0 if

{
t+ 1 < σf + (η − 1)f or

t+ 1 = νf for some ν = 2, 3, . . .

} ;

E := col (I, 0, . . . , 0), A12
∆ (t) :=

{
A(t+ 1) if t+ 1 = f(t+ 1), t+ 1 6= f

0 otherwise
;

B(t) := B〈σ〉(t), B1
∆(t) := B〈σ+1〉(t), where

B〈s〉(t) := col
[
As,As−1, . . . ,A2−σf

, I, 0, . . . , 0
]
B(t+ 1− σf );

Aη :=

η∏

j=2−σf

A(t+ j); (12.9.8)



12.9 Proof of Theorem 12.6.2 437

B2
∆(t) :=

{
B1

∆(t) if t+ 1 ≥ σ−(t+ 1) + f + σf

0 otherwise
;

Ω0 := col [x0(σ), x0(σ − 1), . . . , x0(0), 0, . . . , 0] . (12.9.9)

Here x0(0), x0(1), . . . are determined recursively

x0(0) := a, x0(t+ 1) = A(t)x0(t) + ξ(t)

and for any

t ≤ T, S ⊂ {(ν, j) : ν = 1, . . . , l, j = 0, . . . , σ}, X = col (x−σ , x−σ+1, . . . , xσ),

the following relations hold:

C[t, S]X := {wν,j}lν=1
σ
j=0 ∈ Z, where

wν,j :=

{
Cν(t− j)xj if (ν, t− j) ∈ S
0 otherwise

; (12.9.10)

Ξ[t, S] := {ζν,j}lν=1
σ
j=0 ∈ Z, where

ζν,j :=

{
χν(t− j) if (ν, t− j) ∈ S
0 otherwise

. (12.9.11)

By (12.4.5) (on p. 417),

ui(tc) = Ui[tc,Y(τ),S(τ), θ(0), . . . , θ(tc)] for tc := t+ 1− σf ,

where Y(τ),S(τ) are defined in (12.2.8) (on p. 409), τ := tc − θi(tc) ≤ t, and

θ(s) := col [θ1(s), . . . , θq(s)] .

Hence in (12.9.2)–(12.9.5),

u(t+1−σf ) = U
[
t,W (0), . . . ,W (t),S(t), θ(0), . . . , θ(t+ 1− σf )

]
, (12.9.12)

where U(·) is a deterministic function. By Assumption 12.2.2 (on p. 410), the ran-
dom sets {S(t)} from (12.4.2) (on p. 415) and the tuples of the delays {θ(t)} are
independent of a, {ξ(t)}, and {χν(t)}. Then (12.2.3) (on p. 408) and (12.9.9) imply
that the vectors Ω0, {ξ(t+ σ)}, and {Ξ[t, S(t)]} conditioned over

S(0), . . . , S(T − 1) and θ(0), . . . , θ(T − 1)

are (singular) Gaussian and independent. This and (12.9.2), (12.9.6), and (12.9.12)
imply that the estimate

X̂(t) := E
[
X(t)

∣∣∣W (0), . . . ,W (t), S(0), . . . , S(T − 1), θ(0), . . . , θ(T − 1)
]
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is generated by the ordinary Kalman filter (see Subsect. C.2 in Appendix C). By
invoking the corresponding formulas (C.8)–(C.13) (on pp. 510 and 511) , it is easy to
see that only the sets S(0), . . . , S(t) (and the delays θ(0), . . . , θ(t−σf ) if t ≥ σf ) are
used to compute X̂(t). So in view of (12.4.2) (on p. 415), (12.9.1), and the definition
of Υ(t) from (12.6.15) (on p. 424),

Ẑ(t) = E
[
Z(t)

∣∣∣Y(t),S(t),Υ(t)
]
,

where Y(t) and S(t) are defined in (12.2.8) (on p. 409). Furthermore (12.9.2) and
(12.9.3) yield

Ω(t+ 1)−X(t+ 1) = A(t) [Ω(t)−X(t)]

+ D(t)
[
∆1(t)−∆2(t)

]
−B(t)u(t + 1− σf )︸ ︷︷ ︸

Zt+1

, Ω(0)−X(0) = 0,

where Zt is a deterministic function of Y(t),S(t) and Υ(t). Hence

Ω̂(t+1)−X̂(t+1) = A(t)
[
Ω̂(t)− X̂(t)

]
+Zt+1, Ω̂(0)−X̂(0) = 0, (12.9.13)

and X(t) − X̂(t) = Ω(t) − Ω̂(t), where Ω̂(t) := E
[
Ω(t)

∣∣∣Y(t),S(t),Υ(t)
]
. By

the Kalman filter formulas (C.8)–(C.13), X̂(t) obeys the first equation from (12.9.2)
where the noise Eξ(t+σ) is replaced by a correction term δ generated by the Kalman
filter. Thanks to (12.9.13), Ω̂(t) obeys the first equation from (12.9.3) where the noise
is replaced by the same term δ.

The statement of Theorem 12.6.2 (on p. 424) results from putting the expres-
sions (12.9.1)–(12.9.11) into the equations (C.8)–(C.13) (on pp. 510 and 511) of the
conventional Kalman filter, along with elementary transformations of the resultant
formulas and taking into account (iv) of Theorem C.2 (on p. 511) in Appendix C.

12.10 Proofs of Theorem 12.7.1 and Proposition 12.7.2

From now on, Assumptions 12.2.1, 12.2.2, and 12.4.1–12.4.4 (on pp. 409, 410, 417,
and 418) are supposed to hold. This section is organized as follows. Its first and
second subsections contain auxiliary lemmas and the proof of Theorem 12.7.1 (on
p. 426) in the case of a single subsystem, respectively. The proof of this theorem
in the general case is offered in the third subsection, where Proposition 12.7.2 (on
p. 427) is also proved.

12.10.1 Preliminaries

We recall that θi(t) is the time elapsed since the departure of the control message
currently employed by the ith subsystem. If no message has arrived until t, then
θi(t) := t+ 1. Furthermore, θ(t) := col

[
θ1(t), . . . , θq(t)

]
.
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Lemma 12.10.1. For any i = 1, . . . , q and t = 0, . . . , T , the inequality θi(t) ≤
σi + µi − 1 holds. Here σi and µi are the constants from Assumptions 12.4.1 and
12.4.2 (on pp. 417 and 417), respectively.

Proof. Put s := t−θi(t). Assumption 12.4.2 ensures that among the messages m(s̃)
dispatched via the ith control channel at times s̃ = s + 1, . . . , s + µi, there is at
least one m′ = m(s′) that reaches the ith subsystem. Let t′ denote its arrival time.
If s = −1, the subsystem has received no message until t and thus t′ > t. Suppose
that s ≥ 0 and denote by m the message employed by the subsystem at the time t.
It was departed at s < s′, and so it is less updated than m′. Employed is the most
updated message arrived until t. Thus t′ > t; i.e., this inequality holds in any case.
By Assumption 12.4.1 (on p. 417), t′ − s′ ≤ σi. Thus

s+ θi(t) = t < t′ ≤ s′ + σi ≤ s+ µi + σi ⇒ θi(t) < µi + σi,

which completes the proof. ⊓⊔

Lemma 12.10.2. Suppose that a control strategy (12.4.5) (on p. 417) is chosen. Con-
sider the corresponding process in the system (12.2.1), (12.2.2) (on p. 407), the
output (12.5.8) (on p. 420) of the state estimator described in Sect. 12.6, and the
minimum variance estimates

x̂i(t) := E
[
xi(t)

∣∣Y(τ),S(τ), θ(0), . . . , θ(t)
]
; (12.10.1)

x̂0|i(t) := E
[
x0(t)

∣∣Y(τ),S(τ), θ(0), . . . , θ(t)
]
, (12.10.2)

where τ := t− θi(t). Then for any i = 1, . . . , q, t = 0, . . . , T , we have

x̂0|i(t) = ω̂0[t|τ ], x̂i(t) = ω̂i[t|τ ] +





x
(0)
i (t) if t < f

x
(2)
i (t) if f ≤ τ < f(t)

x
(1)
i (t) otherwise

. (12.10.3)

Here col [ω̂0(j|t), . . . , ω̂q(j|t)] is the partition of ω̂(j|t) corresponding to (12.4.1)

(on p. 415) and f(t), x
(η)
i (t) are defined by (12.5.5) and (12.5.6) (on p. 420), respec-

tively.

Proof. Pick i = 1, . . . , q and put x̂0(t) := x̂0|i(t). Assumption 12.4.3 (on p. 418)
and (12.5.2) (on p. 419) yield

xi(t) = ωi(t, τ) + λi(t, τ), where λi(t, τ) :=

t−1∑

r=σ−(τ)

t−1∏

ν=r+1

Ai(ν)Bi(r)ui(r)

for i ≥ 1, λ0(t, τ) := 0, and τ := t − θi(t). By (12.4.5) (on p. 417), λi(t, τ) is a
deterministic function of Y(τ),S(τ), and θ(0), . . . , θ(t). This and (12.10.1) give

x̂i(t) = E
{
ωi [t, τ ]

∣∣∣Y(τ),S(τ), θ(0), . . . , θ(t)
}

+ λi(t, τ).
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Due to (12.2.1), (12.2.3), (12.4.5), and (12.7.5) (on pp. 407, 408, 417, and 425),

ωi(t, τ) = Ωi [t, τ,Ξ,Y(τ),S(τ),Υ(τ)] ,

where Ξ :=
[
a, {ξ(s)}t−1

s=0

]
, the quantity Υ(τ) is defined in (12.6.15) (on p. 424),

and Ωi(·) is a deterministic function. Here the quantities {θ(s)} are independent of
Ξ and H(s′) := [Y(s′),S(s′)] by Assumption 12.2.2 (on p. 410). So the following
relation holds for the conditional distributions:

p
{
dΞ|H[τ ], θ(0), . . . , θ(t)

}
= p {dΞ|H(s)}

∣∣
s=t−θi(t)

= p {dΞ|H(s),Υ(s)}
∣∣
s=t−θi(t)

.

Therefore

E
{
ωi [t, τ ]

∣∣∣H(τ), θ(0), . . . , θ(t)
}

= E
{

Ωi [t, τ,Ξ,H(τ),Υ(τ)]
∣∣∣H(τ), θ(0), . . . , θ(t)

}

=

∫
Ωi [t, τ,Ξ,H(τ),Υ(τ)] p[dΞ|H(τ), θ(0), . . . , θ(t)]

=

∫
Ωi [t, s,Ξ,H(s),Υ(s)] p[dΞ|H(s),Υ(s)]

∣∣∣
s=t−θi(t)

= E
{
ωi [t, s]

∣∣∣Y(s),S(s),Υ(s)
} ∣∣∣

s=t−θi(t)

(12.6.14)
==== ω̂i[t|t− θi(t)].

Then (12.10.3) is immediate from (12.5.5), (12.5.6), (12.7.5) (on pp. 420 and 425),
and Lemma 12.10.1. ⊓⊔

12.10.2 Proof of Theorem 12.7.1 on p. 426: Single Subsystem

In this case, the subsystem’s serial number i can take only one value i = 1. However
in the formulas to follow, we employ the general notation i instead of using merely
1. These formulas can actually be considered for any i in the general case of many
subsystems and will be utilized in the next subsection, where this case is discussed.

We are going to show first that the problem can be reduced to the standard LQG
optimal control problem. To this end, we denote σ̃ := σi + µi + σ − 1, where σ, σi,
and µi are taken from Assumptions 12.4.1 and 12.4.2 (on pp. 417 and 417), consider
the linear space

Ẑ :=
{
Z = {zν,j}lν=1

eσ
j=0 : zν,j ∈ R

kν ∀ν, j
}
,

where l is taken from (12.2.2) (on p. 407) and kν is the dimension of the sensor
output yν , and put

x(−σ̃) := x(−σ̃ + 1) := · · · := x(−1) := 0, si(−1) := 0;
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X(t) := col
[
x(t), x(t − 1), . . . , x(t− σ̃)

]
, W̃ (t) :=

{
w̃ν,j

}
∈ Ẑ;

w̃ν,j :=

{
yν(t− j) if (ν, t− j) ∈ S[τi(t)] and τi(t) > τi(t− 1)
0 otherwise

,

(12.10.4)

where τi(t) := t− θi(t). In terms of these vectors, the primal problem shapes into

minimize E

T−1∑

t=0

[X(t+ 1) TQ(t+ 1)X(t+ 1) + ui(t)
TΓi(t)ui(t)] subject to

(12.10.5)
X(t+ 1) = Ã(t)X(t) + B̃(t)ui(t) + E ξ(t) t = 0, . . . , T − 1; (12.10.6)

X(0) = a := col (a, 0, . . . , 0); (12.10.7)

W̃ (t) = C̃
{
t, S[τi(t)], θi(t), θi(t− 1)

}
X(t)

+ Ξ̃
{
t, S[τi(t)], θi(t), θi(t− 1)

}
; (12.10.8)

ui(t) =

Ui

{
W̃ (0), . . . , W̃ (t), S(0), S(1), . . . , S[t− θi(t)], θ(0), . . . , θ(t)

}
. (12.10.9)

Here τi(t) := t− θi(t) and E := col (I, 0, . . . , 0),

Ã(t) :=




A(t) 0 . . . 0 0
I 0 . . . 0 0
0 I . . . 0 0
· · · · · · ·
0 0 . . . I 0



, Q(t) :=




Q̃(t) 0 · · · 0
0 0 · · · 0
0 0 · · · 0
· · · · · ·
0 0 · · · 0



, (12.10.10)

where Q̃(t) := Q(t) and Q(t) is taken from (12.2.6) (on p. 408). Furthermore,

B̃(t) := col
[
B̃(t), 0, . . . , 0

]
,

where the matrix B̃(t) := col [0, B1(t)] describes the influence of the control u1 on
the process x = col [x0, x1] and B1(t) is taken from (12.4.7) (on p. 418). For any
t ≤ T ,

S ⊂ {(ν, j) : ν = 1, . . . , l, j = 0, . . . , σ̃}, θ′ ≥ θ′′,
and X = col (x0, x1, . . . , xeσ) ∈ R(eσ+1)n, the following relations hold:

C̃[t, S, θ′, θ′′]Z := C[S]X

Ξ̃[t, S, θ′, θ′′] := Ξ[t, S]

}
if t− θ′ > t− 1− θ′′,

otherwise,
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{

C̃[t, S, θ′, θ′′]Z := 0

Ξ̃[t, S, θ′, θ′′] := 0
,

where C[S]X and Ξ[t, S] are defined by (12.9.10) and (12.9.11) (on p. 437) with
σ := σ̃. The random sets {S(j)} and delays {θi(j)} are independent of a, {ξ(j)},
{χν(j)} by Assumption 12.2.2 (on p. 410). So by (12.2.3) and (12.2.5) (on p. 408),
the vectors a, ξ(t), and Ξ̂{t, S[τi(t)], θi(t), θi(t − 1)} conditioned over S(0), . . .,
S(T−1), θ(0), . . . , θ(T−1) are Gaussian and independent. This yields that the prob-
lem resulting from (12.10.5)–(12.10.9) by expansion the class of admissible controls
(12.10.9) as follows:

ui(t) = Ui

{
W̃ (0), . . . , W̃ (t), S(0), S(1), . . . , S(T − 1), θ(0), . . . , θ(T − 1)

}

in fact reduces to a particular case of the standard LQG optimal control problem (see
Appendix C starting on p. 509). The solution of the latter problem is given by the
linear feedbackui(t) = −L(t)X(t) that is optimal for the problem of minimizing the
functional (12.10.5) subject to the constraints (12.10.6) in the case where ξ(t) ≡ 0
and the entire state X is measured. This feedback is fed by the minimum variance
estimate X̂(t|t) of X(t) based on the observations W̃ (0), . . . , W̃ (t). This estimate
is generated recursively by the Kalman filter (see Appendix C) so that only the sets
S[0], . . . , S[t−θi(t)] and the tuples θ(0), . . . , θ(t) from (12.10.8) are in fact required
to compute X̂(t|t). This in particular means that

X̂(t|t) = E
(
X [t]

∣∣∣
{
W̃ [j]

}t
j=0

,
{
S[j]

}t−θi(t)

j=0
,
{
θ[j]
}t
j=0

)
. (12.10.11)

Calculating the gain matrix L(t) employs the coefficients of the functional (12.10.5)
and the equation (12.10.6) for the time instants t, t+1, . . . , T . Since these coefficients
do not depend on {S(j)}, {θ(j)} and are known a priori, the control appears to be of
the form (12.10.9). So it furnishes the optimum over the strategies given by (12.10.9).

By invoking the formulas for the solution of the standard linear-qudratic control
problem (i.e., formulas (C.18)–(C.21) on p. 512), it is easy to check that the above
feedback ui(t) = −L(t)X(t) has the form ui(t) = −L∗(t)x(t), where X(t) is the
tuple from (12.10.4) and ui(t) = −L∗(t)x(t) is the optimal feedback for the problem
of minimizing the functional (12.2.6) (on p. 408) subject to the constraints (12.2.1)
(on p. 407) in the case where ξ(t) ≡ 0 in (12.2.1) and the entire state x = col [x0, x1]
is measured. Likewise, it is straightforward to verify that the last feedback looks as
follows:

ui(t) = −Li(t)xi(t)− Li(t)x0(t),

where Li(t), Li(t) are defined by (12.7.1)–(12.7.4) (on p. 424). Summarizing we see
that the solution for the initial problem is given by

ui(t) = −Li(t)ˆ̂xi(t)− Li(t)ˆ̂x0(t),

where
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ˆ̂xj := E{xj(t)|W̃ [0], . . . , W̃ [t], S[0], . . . , S[t− θi(t)], θ(0), . . . , θ(t)}.

Invoking (12.2.3) (on p. 408) and (12.10.4) demonstrates that

ˆ̂xj := E{xj(t)|Y[τ ],S[τ ], θ(0), . . . , θ(t)},

where τ = t− θi(t), and by (12.10.1) and (12.10.2), the optimal feedback takes the
form

ui(t) = −Li(t)x̂i(t)− Li(t)x̂0|i(t).

Employing (12.10.3) shapes this formula into

ui(t) = −
{
Li[τ + θi(t)]ω̂i[τ + θi(t)|τ ] + Li[τ + θi(t)]ω̂0[τ + θi(t)|τ ]

}

− Li(t)×





x
(0)
i (t) if t < f

x
(2)
i (t) if f ≤ t− θi(t) < f(t)

x
(1)
i (t) otherwise

. (12.10.12)

Now consider the control algorithm described in Sect. 12.7 (starting on p. 424). By
the definition of θi(t), the control package currently used by the local controller was
departed at the time τ . So by (12.7.7) (on p. 425), the summand in the curly brackets
{· · · } from (12.10.12) equals the member v(i)

θi(t)
of this package. Here θi(t) = τi+si,

where τi and si are the numbers generated by the ith local controller. It follows that
(12.10.12) takes the form (12.7.8) (on p. 426). ⊓⊔

12.10.3 Proofs of Theorem 12.7.1 and Proposition 12.7.2: Many Subsystems

We start with a lemma that was in fact proved in the case of a single subsystem in
the preceding subsection.

Lemma 12.10.3. Let i = 1, . . . , q be given, and let any subsystem except for the
ith one be controlled in accordance with some given strategy of the form (12.4.5)
(on p. 417). Consider the problem (12.7.9) (on p. 426) of optimal control of the ith
subsystem, where the control strategy is sought in the class (12.4.5) with i fixed. The
solution for this problem is given by the feedback

ui(t) = −Li(t)x̂i(t)− Li(t)x̂0|i(t). (12.10.13)

Here x̂i(t), x̂0|i(t) are the estimates (12.10.1), (12.10.2) and Li(t), Li(t) are defined
by (12.7.1)–(12.7.4) (on p. 425).

Proof. For j = 1, . . . , q, consider the matrix

B̃j(t) := col [0, . . . , 0, Bj(t), 0, . . . , 0]

that describes the influence of the jth control uj on the process x = col [x0, . . . , xq].
Here the matrix Bj(t) is taken from (12.4.7) (on p. 418) and occupies the (j + 1)th
position. Introduce also the process x∗(t) generated by the equations
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x∗(t+ 1) = A(t)x∗(t) +
∑

j 6=i
B̃j(t)uj(t), x∗(0) = 0. (12.10.14)

In terms of the difference x(t) := x(t) − x∗(t), relations (12.2.1) and (12.2.2) (on
p. 407) take the form:

x(t+1) = A(t)x(t)+B̃i(t)ui(t)+ξ(t) t = 0, . . . , T−1, x(0) = a; (12.10.15)

yν(t) := yν(t)− Cν(t)x∗(t) = Cν(t)x(t) + χν(t), (12.10.16)

where ν = 1, . . . , l and t = 0, . . . , T . Put

Ỹ (t) :=
{
yν [θ]

}
(ν,θ)∈S(t)

, Ỹ(t) := [Ỹ (0), . . . , Ỹ (t)].

We are going to show first that

Ỹ(t) = Ỹ [Y(t),F(t)] , Y(t) = Y

[
Ỹ(t),F(t)

]
, (12.10.17)

where F(t) := [S(t), θ(0), . . . , θ(t−1), t] and Y(t) is defined in (12.2.8) (on p. 409).
(We recall that capital script letters denote deterministic functions.) For t = 0,
(12.10.17) is evident since x∗(0) = 0 by (12.10.14). Let (12.10.17) be true for some
t. If S(t+ 1) = ∅, then Y (t+ 1) = Ỹ (t+ 1) = 0 ∈ R and so (12.10.17) does hold
for t := t+1. Suppose that S(t+1) 6= ∅. Due to (12.4.5) (on p. 417) and (12.10.14),

x∗(s) = X∗[Y(s− 1),S(s− 1), θ(0), . . . , θ(s− 1), s].

Hence for s ≤ t+ 1,

x∗(s) = X
[
Y(t),S(t), θ(0), . . . , θ(t), s

] (12.10.17)
==== X̃

[
Ỹ(t),S(t), θ(0), . . . , θ(t), s

]
.

This and the definition of yν(t) from (12.10.16) clearly imply (12.10.17) for t :=
t+ 1.

Relations (12.10.17) shape (12.4.5) (on p. 417) into

ui(t) = U

[
t, Ỹ(τ),S(τ), θ(0), . . . , θ(t)

]
τ := t− θi(t). (12.10.18)

Let x = col (x0, . . . , xq) be the partition corresponding to (12.4.1) (on p. 415). For the
similar partition x∗(t) = col [x∗,0(t), . . . , x∗,q(t)], Assumption 12.4.3 (on p. 418)
and (12.10.14) imply that x∗,j(t) = 0 for j = 0, i. Hence

x0(t) = x0(t), xi(t) = xi(t) ∀t. (12.10.19)

So in view of (12.4.8) (on p. 418), the problem (12.7.9) (on p. 426) can be rewritten
in terms of the vector x(t):

minimize E

T−1∑

t=0

Gi[t, x(t+ 1), ui(t)]

subject to (12.10.15) and (12.10.16) (12.10.20)
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over the control strategies (12.10.18). Here Gi(·) is taken from (12.4.8) (on p. 418).
This problem can be reduced to a particular case of the standard LQG optimal

control problem just as it was done in Subsect. 12.10.2. Now one, however, should
replace (12.10.4) by

X(t) := col
[
x(t), x(t − 1), . . . , x(t− σ̃)

]
, W̃ (t) :=

{
w̃ν,j

}
∈ Z;

w̃ν,j :=





yν(t− j) if

{
(ν, t− j) ∈ S[τi(t)] and
τi(t) > τi(t− 1)

0 otherwise
, (12.10.21)

where τi(t) := t− θi(t), put

x(−σ̃) := x(−σ̃ + 1) := · · · := x(−1) := 0, θi(−1) := 0,

and define the matrices B̃(t) in (12.10.6) and Q̃(t) in (12.10.10) by the formulas

Q̃(t) :=




0 . . . Qi(t) . . . 0
· · · · ·

Qi(t)
T . . . Qi(t) . . . 0

· · · · ·
0 . . . 0 . . . 0



, B̃(t) :=




B̃i(t)
0
·
0


 .

Here the partition of the n × n matrix Q̃(t) corresponds to the partition of the state
from (12.4.1), all three nonzero blocks of Q̃(t) belong to the ith row and column,
and the enumeration of the rows and columns starts with 0.

By retracing the arguments from Subsect. 12.10.2, and invoking (12.10.19),we
see that the solution for the problem under consideration is given by the feedback

ui(t) = −Li(t)ˆ̂xi(t)− Li(t)ˆ̂x0(t),

where

ˆ̂xj := E{xj(t)|W̃ [0], . . . , W̃ [t], S[0], . . . , S[t− θi(t)], θ(0), . . . , θ(t)}.

Invoking (12.2.3) (on p. 408) and (12.10.21) demonstrates that

ˆ̂xj := E{xj(t)|Ỹ[τ ],S[τ ], θ(0), . . . , θ(t)},

where τ = t − θi(t). Relations (12.10.1), (12.10.2), and (12.10.17) complete the
proof. ⊓⊔

Remark 12.10.4. For each i, the auxiliary problem considered in Lemma 12.10.3 was
introduced under the assumption that the control strategies for all subsystems except
for the ith one are given. The minimum value of the cost functional in this problem
does not depend on these strategies. This follows from, e.g., the fact that the problem
can be rewritten in the form (12.10.5)–(12.10.9), which is invariant with respect to
the above strategies.
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Proofs of Theorem 12.7.1 (on p. 426) and Proposition 12.7.2 (on p. 427). Lem-
ma 12.10.3 and Remark 12.10.4 imply that the optimal way to control the ith sub-
system is given by (12.10.13). This is true for not only the auxiliary problem (12.7.9)
(on p. 426) associated with only this subsystem but also for the primal one concern-
ing the entire set of subsystems. Denote τ := t − θi(t). Then relations (12.10.3)
shape (12.10.13) into (12.10.12). Now consider the control algorithm described in
Sect. 12.7. By the definition of θi(t), the control package currently used by the ith
local controller was departed at the time τ . So by (12.7.7) (on p. 425), the addend
in the curly brackets from (12.10.12) equals the member v(i)

θi(t)
of this package. Here

θi(t) = τi+si, where τi and si are the numbers generated by the ith local controller.
It follows that (12.10.12) takes the form (12.7.8) (on p. 426). ⊓⊔
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Linear-Quadratic Gaussian Optimal Control via
Limited Capacity Communication Channels

13.1 Introduction

In this chapter, we proceed with studying optimal control problems in the case where
controls are communicated via limited bandwidth channels. A situation of such a
kind has been addressed in Sect. 12.4. However the issue of limited bandwidth was
taken into account only implicitly to motivate distribution of control functions be-
tween the central and local controllers. The objective of this chapter is to address
this issue explicitly. In other words, now examined is the performance best in the
case where the bit-rate of the control channel is finite and given. Another distinction
is that now we examine the case where the actuators are basically capable only to
execute the currently received control signal, whereas actuators endowed with rather
powerful computing modules were considered in Sect. 12.4. We also drop the system
disintegration assumptions from Sect. 12.4 and deal with general linear plants.

Specifically, we study a finite-horizon linear-quadratic optimal control problem
for a discrete-time partially observed system with Gaussian disturbances. The con-
troller produces a control signal based on the prior observations. Unlike the clas-
sic linear-quadratic Gaussian (LQG) control problems (see Appendix C starting on
p. 509), this signal is communicated to the actuators over a digital channel. This chan-
nel is capable of transferring no more than a given number of bits of information per
unit time. So on its way to the actuator, the control signal must be first encoded, then
transmitted, and finally decoded (see Fig. 13.1). The algorithms of encoding and de-
coding are part of the control strategy, which should be designed to achieve the best
performance. The focus is on memoryless (static) decoders. This corresponds to the
case where actuators are not equipped with computing and memory modules. The
controller has access to the sensor data with arbitrarily high accuracy, which may be
due to, e.g., the fact that it is colocated with the sensors. Unlike Chaps. 11 and 12,
both observation and control channels provide no delays and dropouts.

We prove that the optimal strategy does exist (i.e., the minimum of the cost func-
tional is attained) and demonstrate how this strategy can be designed. We also prove
that the current optimal control codeword transmitted over the channel is determined
on the basis of the minimum variance estimate of the current state. In this sense, this
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Fig. 13.1. Control system with a limited capacity channel.

estimate remains to be a “sufficient statistics,” as in the classic LQG control theory.
However the natural hypothesis that the optimal control strategy always consists in
generating the standard LQG optimal control and its proper encoding (and decoding
after transmission) fails to be true. This is proved by a counterexample. It shows that
the best performance may be neither achieved nor approached if the codeword to be
transmitted over the channel is generated from the knowledge of exclusively LQG
optimal controls.

The main results of this chapter were originally presented in [110].
The body of the chapter is as follows. Section 13.2 presents the problem state-

ment. Its solution is offered in Sect. 13.5. It is prefaced with Sects. 13.3 and 13.4.
The former recalls some required classic results, whereas the latter shows that in gen-
eral, the LQG optimal control and the minimum variance state estimate is not and is,
respectively, a “sufficient statistics” for the coder. Sections 13.6 and 13.7 contain the
proofs of the results of the chapter.

13.2 Problem Statement

The System

Consider the following discrete-time linear system:

x(t+1) = A(t)x(t)+B(t)u(t)+ξ(t) t = 0, . . . , T−1, x(0) = a; (13.2.1)

y(t) = C(t)x(t) + χ(t) t = 0, . . . , T. (13.2.2)

Here x(t) ∈ Rn and u(t) ∈ Rm are the state and control, respectively; ξ(t) ∈ Rn is
a process disturbance; y(t) ∈ Rk is the measured output; and χ(t) is a measurement
noise. The vectors a, ξ(t), and χ(t) are random and satisfy the following.

Assumption 13.2.1. The vectors a, ξ(t), and χ(t) are Gaussian and independent
with Eξ(t) = 0 and Eχ(t) = 0. The mean Ea and the correlation matrices

Raa := E[a−Ea][a−Ea] T, Rξξ(t) := Eξ(t)ξ(t) T,

Rχχ(t) := Eχ(t)χ(t) T (13.2.3)

are known. So are the matrices A(t), B(t), and C(t).
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The Control Loop

The actuators are situated at a remote location, where the control signals are sent over
a digital communication channel. It is able to transfer no more than a given number
b of bits per unit time. So the control must be in fact generated as an b-bit codeword
e(t). This is done by the controller-coder on the basis of the prior observations:

e(t) = E[t, y(0), . . . , y(t)] ∈ E. (13.2.4)

(We recall that capital script letters denote deterministic functions.) Here E = {e}
is the channel’s alphabet. Since the “physical” nature of the elements e now is of no
importance, we assume that E = [1 : N ], where N := 2b.1 The code-symbol e(t) is
transmitted and then translated by a decoder into the “final” control signal u(t) that
acts upon the plant (see Fig. 13.1). We consider the case of a memoryless decoder:

u(t) = U[t, e(t)] ∈ R
m. (13.2.5)

Thus the control strategy consists of the coder (13.2.4) and the decoder (13.2.5).

LQG Optimal Control Problem with Communication Capacity Constraints

Introduce the functional

IT := E

T−1∑

t=0

[
x(t+ 1) TQ(t+ 1)x(t+ 1) + u(t) TΓ(t)u(t)

]
. (13.2.6)

Here Q(t + 1) ≥ 0 and Γ(t) > 0 are symmetric n × n and m × m matrices,
respectively. In this chapter, we consider the following problem.

Let the bit-rate of the channel b be given. We wish to minimize the functional
(13.2.6) over the class of control strategies described by (13.2.4) and (13.2.5).

In doing so, we consider only measurable functions E(·) in (13.2.4).

Remark 13.2.2. Putting (13.2.4) into (13.2.5) yields that

u(t) = V[t, y(0), . . . , y(t)].

For given t, the function V[t, ·] can take any values from Rm. However, their number
must not exceed a given constant N . This makes the difference with the standard
setup of the stochastic optimal control problem (see, e.g., [11, 19, 85, 123,198]).

13.3 Preliminaries

The posed problem resembles the standard LQG optimal control problem2 in many
respects. So it does not come as a surprise that the solutions of these two problems
have much in common. For the convenience of the reader, we repeat the relevant
formulas concerning the standard LQG problem from Appendix C in this section.

1We do not suppose further that b is natural. So N is not necessarily a natural power of 2.
2See Subsect. C.1 in Appendix C.
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Minimum Variance State Estimate

Let a control strategy (13.2.4), (13.2.5) be given. Then the state estimate

x̂(t|t) = E
[
x(t)

∣∣y(0), . . . , y(t)
]

(13.3.1)

can be generated recursively by the Kalman filter:

x̂(t+ 1|t+ 1) := x̂(t+ 1|t) +K(t+ 1)
[
y(t+ 1)−C(t+ 1)x̂(t+ 1|t)

]
; (13.3.2)

P (t+ 1) := A(t)P (t)A(t) T +Rξξ(t), where

x̂(t+ 1|t) := A(t)x̂(t|t) +B(t)u(t), P (t) := P (t)−K(t)C(t)P (t); (13.3.3)

K(t) := P (t)C(t) T
+

Λ(t), Λ(t) := Λ := C(t)P (t)C(t) T +Rχχ(t), (13.3.4)

and
+

Λ is the pseudoinverse of the matrix Λ (see Subsect. 11.3.1 starting on p. 374).
The estimation process is initialized by putting

x̂(−1| − 1) := Ea, P (0) = Raa,

u(−1) := 0, B(−1) := 0, A(−1) := In. (13.3.5)

Solution for the Deterministic Linear-Quadratic Optimal Control Problem

We mean the problem of minimizing the functional (13.2.6) subject to the constraints
(13.2.1) in the case where the process disturbances are removed (ξ(t) ≡ 0) and the
entire state x is accessible for “on-line” measurements. The solution for this problem
is given by the feedback u(t) = −L(t)x(t), where

L(t) = F (t)−1B(t) T [Q(t+ 1) +H(t+ 1)]A(t),

F (t) := Γ(t) +B(t) T [Q(t+ 1) +H(t+ 1)]B(t), (13.3.6)

and the symmetric n×n-matricesH(T ), H(T − 1), . . . , H(0) are calculated recur-
sively fromH(T ) := 0 in accordance with the following difference Ricatti equation:

H(t) := L(t) TΓ(t)L(t) +AL(t) T [Q(t+ 1) +H(t+ 1)]AL(t),

AL(t) := A(t)−B(t)L(t). (13.3.7)

13.4 Controller-Coder Separation Principle Does Not Hold

One of the major results of the classic LQG control theory is the controller-estimator
separation principle. It states that LQG optimization problem always disintegrates
into two independent problems. One of them is the deterministic linear-quadratic
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optimal control problem that results from dropping noises in the system model. Its
solution is given by a linear feedback. The other one is the problem of minimum
variance state estimation. The solution of the original stochastic problem results from
merely putting such an estimate in place of the state in the feedback rule.3

A natural approach to control the plant via a limited capacity communication
channel is to separate the control and encoding functions. In other words, the idea is
to produce first the control that is optimal under neglecting the capacity constraints;
i.e., the classic LQG optimal control

u LQG(t) := −L(t)x̂(t|t).

Then this control must be coded, transmitted, and decoded with the resultant signal
acting upon the plant (see Fig. 13.2). The encoding–decoding algorithm is optimized
to achieve the best performance possible within this design scheme. A natural ques-
tion is whether this approach permits to achieve the best performance. Were the an-
swer always in the affirmative, it might be said that the controller-coder separation
principle holds.

Fig. 13.2. A control system based on the controller-coder separation principle.

In this section, we show that this principle does not hold: Problems exist for
which the answer is in the negative. To precise this statement, note that this principle
in fact restricts the admissible control strategies to a certain subclass S sep. Its critical
feature is that the current codeword is generated from the knowledge of exclusively
LQG optimal controls; i.e., (13.2.4) is replaced by

e(t) = E [t, u LQG(0), . . . , u LQG(t)] ∈ E. (13.4.1)

Thus the strategies from S sep are described by (13.2.5) and (13.4.1), whereas the
primal class of strategies S is given by (13.2.4) and (13.2.5). It is clear that S sep ⊂
S. In this section, we show that problems exist for which the minimum of the cost
functional over S is strictly less than its infimum over S sep.

Specifically, this holds for the following particular case of the primal problem
(13.2.1), (13.2.2), and (13.2.6):

3See Appendix C starting on p. 509 for details.
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x(t+ 1) =

(
0 1
1 0

)
x(t) +

(
1
1

)
u(t) + ξ(t) t = 0, 1, x(0) = a;

y(t) = x(t) + χ(t), x ∈ R
2, u ∈ R, T = 2;

Ea = 0, Raa = Rξξ(t) = Rχχ(t) = I;

IT = E
{
x2(2)2 +

1

2
x2(1)2 + u(1)2 + u(0)2

}
. (13.4.2)

Theorem 13.4.1. Consider the particular case (13.4.2) of the LQG optimal control
problem with communication capacity constraints posed in Sect. 13.2. Suppose that
the channel transmits one bit of information per unit time; i.e., b = 1 and N = 2.
Then

inf
S sep

IT > inf
S

IT ;

i.e., the infimum of the cost functional IT from (13.4.2) over the control strategies
based on the controller-coder separation principle is strictly greater than that over
the primal class of control strategies given by (13.2.4) and (13.2.5).

At the same time, a weaker estimator-coder separation principle is true. This
claim is specified by the following.

(13.2.2), the cost functional (13.2.6), and the LQG optimal control problem with
communication capacity constraints, where optimization is over all control strate-
gies (13.2.4), (13.2.5). Then the optimal control strategy exists. The optimal rule
(13.2.4) to produce codewords has the form

e(t) = E
[
t, x̂(t|t)

]
. (13.4.3)

Here x̂(t|t) is the minimum variance estimate (13.3.1) of the current state x(t) and
E [t, x] is a deterministic function.

Thus like in the classic LQG optimal control problem, the minimum variance state
estimate is a sufficient statistic. Furthermore, the Kalman filter producing this esti-
mate appears to be a part of the solution of the optimal control problem with com-
munication constraints.

Remark 13.4.3. Let a decoding rule (13.2.5) be given. Then formula (13.4.3) for the
optimal encoding algorithm (13.2.4) can be obtained by the standard stochastic op-
timal control technique, e.g., by retracing the arguments from [200]. In doing so, it
is convenient to put (13.2.5) into (13.2.1), thus excluding the variable u(t), and to
interpret e(t) as a control ranging over a finite set E. The admissible “control strate-
gies” are given by (13.2.4). (In [200], controls were taken from a finite-dimensional
linear space, whereas now they are limited to a finite set. However this difference in
fact influences neither the arguments nor the conclusion from [200].) The existence
of the optimal encoding rule holds due to finiteness of the set E of “controls” e and
can be established via the standard dynamic programming arguments.

Modulo this remark, Theorem 13.4.2 mainly focuses on the existence of the optimal
decoding rule. The proof of this theorem will be given in Sect. 13.6.

Theorem 13.4.2. Suppose that Assumption 13.2.1 holds. Consider the system (13.2.1),
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13.5 Solution of the Optimal Control Problem

To complete the description of the optimal control strategy, we note first that the de-
coding rule (13.2.5) is determined by the sequence ω0, . . . , ωT−1 of the reproduction
(control) alphabets

ωt = col
[
u

(1)
t , . . . , u

(N)
t

]
, u

(e)
t := U[t, e] ∈ R

m,

whose elements are enumerated by the symbols e of the channel alphabet
E = [1 : N ]. Indeed,

U[t, e] = u
(e)
t ∀t = 0, . . . , T − 1, e ∈ E. (13.5.1)

So the decoding scheme can be identified with the sequence {ωt}. Such a sequence
related to the optimal strategy is said to be optimal.

In determining this strategy, the following dynamical programming procedure
plays a key role:

qT (x) := 0 7→ · · · 7→ qt(x, ωT−1, . . . , ωt) 7→ · · · 7→
7→ · · · 7→ q0(x, ωT−1, . . . , ω0) 7→ q−1(x, ωT−1, . . . , ω−1), (13.5.2)

where x ∈ Rn. Its step is as follows:

qt(x,

w︷ ︸︸ ︷
ωT−1, . . . , ωt) (13.5.3)

↓
qNt (x,w) :=

∫

Rn

qt(x+ z, w) N
[
d z
∣∣∣0,K(t)Λ(t)K(t) T

]
(13.5.4)

↓
rt−1(x, u, w) :=

∥∥F (t− 1)1/2 [L(t− 1)x+ u]
∥∥2

+qNt
[
A(t− 1)x+B(t− 1)u,w

] (13.5.5)

↓
qt−1(x, ωT−1, . . . , ωt, ωt−1) := min

e=1,...,N
rt−1(x, u

(e)
t−1, w). (13.5.6)

Here ωt−1 = col (u(1), . . . , u(N)) and N (dx|m,M) is the Gaussian distribution
with the mean m and the correlation matrix M . In (13.5.4) and (13.5.5), K(t),Λ(t)
and L(t), F (t) are the matrices (13.3.4) and (13.3.6) generated by the Kalman fil-
ter and related to the solution of the deterministic linear-quadratic optimal control
problem, respectively. To define L(−1) and F (−1), we set
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Q(0) := 0 and Γ(−1) := Im

[see also (13.3.5)]. Then

L(−1) = 0 and F (−1) = Im. (13.5.7)

For t = T , the argumentw should be dropped everywhere.

Remark 13.5.1. The superfluous alphabet ω−1 is introduced for uniformity of nota-
tions. Only alphabets ω−1 containing 0 are considered.

Due to this remark, q−1(·) does not depend on ω−1. Specifically,

r−1(x, u, w) = ‖u‖2 + qN0 (x,w)

and (13.5.6) implies that

q−1(x,w, ω−1) = q−1(x,w) = qN0 (x,w), w = col (ωT−1, . . . , ω0).

Given t = 1, . . . , T and ωT−1, . . . , ωt−1, we introduce the encoding rule (13.4.3)
(for t := t− 1) by putting

E(t− 1, x) := E [t− 1, x|ωT−1, . . . , ωt−1] := e, (13.5.8)

where e is the index furnishing the minimum on the right in (13.5.6). The function

x 7→ E[t− 1, x|ωT−1, . . . , ωt−1]

can be chosen measurable [217, Sec.I.7].
Now we are in a position to complete the description of the optimal control.

Theorem 13.5.2. Consider the LQG optimal control problem with communication
capacity constraints posed in Sect. 13.2. Suppose that Assumption 13.2.1 (on p. 448)
holds. Then the optimal reproduction alphabets

ωopt
t = col

[
o
u(1)
t , . . . ,

o
u(N)
t

]
, t = 0, . . . , T − 1

are those furnishing the minimum of q−1(Ea, w) over w = col (ωT−1, . . . , ω0).
Here a is the initial vector from (13.2.1) (on p. 448). The optimal rules to produce
codewords (13.4.3) (on p. 452) and to decode them (13.2.5) (on p. 449) are deter-
mined by these alphabets as follows:

E(t, x) := E[t, x|ωopt
T−1, . . . , ω

opt
t ] in (13.4.3) and U(t, e) :=

o
u(e)
t in (13.2.5).

Here E [t− 1, x|ωT−1, . . . , ωt−1] is defined by (13.5.8).

The proof of this theorem will be given in Sect. 13.6.
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Comments on the Basic Dynamical Programming Procedure (13.5.4)–(13.5.6)

Since the optimal encoding rule has the form (13.4.3), it is convenient to reformulate
the primal problem as that of optimal control of the minimum variance state estimate
generated by the Kalman filter. To this end, we note that elementary transformations
shape (13.3.2) and (13.2.2) into

x̂(t+ 1|t+ 1) = A(t)x̂(t|t) +B(t)u(t) + β(t);

y(t) = C(t)x̂(t|t) + γ(t), t = −1, . . . , T − 1;

x̂(−1| − 1)
(13.3.5)
=== Ea, where γ(t) := C(t)e(t) + χ(t);

β(t) := K(t+ 1)C(t+ 1)A(t)e(t)

+K(t+ 1)C(t+ 1)ξ(t) +K(t+ 1)χ(t+ 1); (13.5.9)

and

e(j) := x(j)− x̂(j|j) for j ≥ 0, e(−1) := 0;

ξ(−1) := a−Ea, C(−1) := 0, χ(−1) := 0. (13.5.10)

The following lemma summarizes the required technical facts about the system
(13.5.9) and will be proved in Sect. 13.6.

Lemma 13.5.3. The following statements are true:

(i) The “noises” β(t), γ(t) in (13.5.9) do not depend on the control strategy;
(ii) The random vector β(t) is zero-mean Gaussian and independent of the prior

observations y(0), . . . , y(t);
(iii) The correlation matrix of the “noise” β(t) is given by

Eβ(t− 1)β(t− 1) T = K(t)Λ(t)K(t) T. (13.5.11)

Here K(t) and Λ(t) are the matrices (13.3.4) generated by the Kalman filter.
(iv) The primal problem posed in Sect. 13.2 is to minimize the functional

JT := E

T−1∑

t=0

G

[
x̂(t|t), u(t), t

]
, where

G(x, u, t) := [u+ L(t)x] TF (t)[u + L(t)x], (13.5.12)

over the processes in the system (13.5.9). Here L(t) and F (t) are given by
(13.3.6).

By Theorem 13.4.2, attention can be restricted to the control strategy

Wt := [E(t, ·),U(t, ·)], t = −1, . . . , T − 1 (13.5.13)

with encoding rules of the form (13.4.3). Formally, W−1 should be considered here
although it does not influence the evolution of the system since B(−1) = 0 by
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(13.3.5). We also recall that the decoding rule is determined (13.5.1) by the sequence
{ωt}T−1

t=−1 of reproduction alphabets each enumerated by the elements e of the chan-
nel alphabet. So the primal problem posed in Sect. 13.2 can be shaped into

min
ω−1,...,ωT−1

min
W−1⊏ω−1,...,WT−1⊏ωT−1

JT , (13.5.14)

where Wt ⊏ ωt
def⇔ U(t, e) ∈ ωt ∀e and JT is taken from (13.5.12).

Formulas (13.5.4)–(13.5.6) in fact result from applying the dynamical program-
ming technique to the problem of finding the second min in (13.5.14). The function
qt(·) employed in these formulas is the standard “cost-to-go:”

qt(x, ωT−1, . . . , ωt)

:= min
Wt⊏ωt,...,WT−1⊏ωT−1

E

(
T−1∑

θ=t

G[x̂(θ|θ), u(θ), θ]
∣∣∣x̂(t|t) = x

)
. (13.5.15)

In particular, q−1(Ea, ωT−1, . . . , ω0) equals the second min from (13.5.14). Re-
lation (13.5.14) also illustrates the fact that minimizing q−1(Ea, w) over w =
(ωT−1, . . . , ω0), as is suggested by Theorem 13.5.2, gives rise to optimal alphabets.

13.6 Proofs of Lemma 13.5.3 and Theorems 13.4.2 and 13.5.2

Proof of Lemma 13.5.3. Statement (i) is straightforward from (13.3.4), (13.3.5), and
(iii) of Theorem C.2 (on p. 511).

Statement (ii) follows from (ii) of Theorem C.2, along with Assumption 13.2.1
and (13.2.1), (13.2.2) (on p. 448).

Statement (iii). Due to (13.2.1), (13.2.2), (13.3.1), and (13.5.10) (on pp. 448, 450,
and 455), the estimation error e(t|t) is determined by a, ξ(0), . . ., ξ(t−1), χ(0), . . .,
χ(t). So by Assumption 13.2.1 (on p. 448), it is independent of the zero-mean vectors
ξ(t) and χ(t+ 1). Hence the definition of β(t) from (13.5.9) implies that

Eβ(t−1)β(t−1) T = K(t)C(t)A(t−1)
[
Ee(t−1)e(t−1) T

]
A(t−1) TC(t) TK(t) T

+K(t)C(t)
[
Eξ(t− 1)ξ(t− 1) T

]
C(t) TK(t) T +K(t)

[
Eχ(t)χ(t) T

]
K(t) T

(13.2.3), (C.15)
======= K(t)C(t)

[
A(t− 1)P (t− 1)A(t− 1) T +Rξξ(t− 1)

]
C(t) TK(t) T

+K(t)Rχχ(t)K(t) T (13.3.3)
=== K(t)

[
C(t)P (t)C(t) T +Rχχ(t)

]
K(t) T

(13.3.4)
=== K(t)Λ(t)K(t) T.

(We put P (−1) := Ee(−1)e(−1) T = 0.)
Statement (iv) follows from Lemma 11.10.2 (on p. 397) applied to the system

(11.2.1), (11.2.2) (on p. 372) with only one sensor l = 1 served by a perfect (i.e.,
providing no delays and data dropouts) channel. ⊓⊔
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To prove the existence part of Theorem 13.4.2 (on p. 452), we employ the refor-
mulation of the primal problem in the form described in (iv) of Lemma 13.5.3.

Remark 13.6.1. From now on, the sum in (13.5.12) is taken from t = −1.

This does not change the problem since the optimal value of u(−1) equals 0 due to
(13.5.7). Then the extra summand added to the sum from (13.5.12) vanishes.

The next lemma plays a key role in the proof and is based on the standard dy-
namic programming arguments.

Lemma 13.6.2. Suppose that a time instant t = −1, . . . , T , reproduction alphabets
ωt, . . . , ωT−1, and a “beginning” W−1, . . . ,Wt−1 of a control strategy (13.5.13)
are given. Then

min
Wt⊏ωt,...,WT−1⊏ωT−1

JT = Jt + Eqt
[
x̂(t|t), ωT−1, . . . , ωt

]
. (13.6.1)

Here Js with s ∈ [−1 : T ] is defined by (13.5.12) (on p. 455) with s put in place of T .

This minimum is attained at the control strategies
o

Wt, . . . ,
o

WT−1 given by (13.4.3),
(13.5.1), and (13.5.8) (on pp. 452, 453, and 454).

Remark 13.6.3. Since any sum from j = s− to j = s+ < s− equals zero, J−1 = 0
in (13.6.1) with t := −1. If t := T , then min on the left and ωT−1, . . . , ωt on the
right should be dropped.

Corollary 13.6.4. The minimum of the cost functional over the control strategies
employing a given set of alphabetsω0, . . . , ωT−1 (i.e., such that Wj ⊏ ωj ∀j) equals

q−1(Ea, ωT−1, . . . , ω0)

and is attained at the strategies
o

W0, . . . ,
o

WT−1.

Proof of Lemma 13.6.2. The proof will be by induction on t = T, . . . ,−1. For
t := T , the claim is obvious since qT (·) ≡ 0 by (13.5.2) (on p. 453). Suppose that it
is true for some t ≥ 0, and the following strategies and alphabets are given:

W−1, . . . ,Wt−2, ωt−1, . . . , ωT−1.

In the remainder of the proof, we consider strategies Wt−1, . . . ,WT−1 such that
Wj ⊏ ωj . Now suppose that Wt−1 is also given. By the induction hypothesis,

min
Wt,...,WT−1

JT = Jt + Eqt
[
x̂(t|t), ωT−1, . . . , ωt

]

(13.5.9),(13.5.12)
======== Jt−1 + Eψ

[
x̂(t− 1|t− 1), u(t− 1), β(t− 1)

]
,

where

ψ(x, u, β) :=
∣∣F (t− 1)1/2[u+ L(t− 1)x]

∣∣2

+ qt
[
A(t− 1)x+B(t− 1)u+ β, ωT−1, . . . , ωt

]
.
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We denote by pY (dY ) and pβ(dβ) the probability distributions of the vectors Y :=
col [y(0), . . . , y(t − 1)] and β(t − 1), respectively. These vectors are independent,
and β(t−1) is zero-mean Gaussian with the correlation matrix (13.5.11) (on p. 455)
by (ii) and (iii) of Lemma 13.5.3 (on p. 455), whereas x̂(t − 1|t − 1) and u(t − 1)
are functions of Y . Hence

pβ(dβ) = N
[
dβ|0,K(t)Λ(t)K(t) T

]

and

Eψ
[
x̂(t− 1|t− 1), u(t− 1), β(t− 1)

]

=

∫
ψ
[
x̂(t− 1|t− 1), u(t− 1), β

]
pY (dY )pβ(dβ).

(13.5.4), (13.5.5)
========

∫
rt−1

[
x̂(t− 1|t− 1), u(t− 1), ωT−1, . . . , ωt

]
pY (dY );

min
Wt,...,WT−1

JT = Jt−1 +

∫
rt−1

[
x̂(t− 1|t− 1), u(t− 1), ωT−1, . . . , ωt

]
pY (dY )

= Jt−1 + Ert−1

[
x̂(t− 1|t− 1), u(t− 1), ωT−1, . . . , ωt

]
; (13.6.2)

min
Wt−1,...,WT−1

JT = min
Wt−1

min
Wt,...,WT−1

JT

= Jt−1 + min
Wt−1

∫
rt−1

[
x̂(t− 1|t− 1), u(t− 1), ωT−1, . . . , ωt

]
pY (dY ).

Now it becomes apparent that the optimal strategy Wt−1 is given by (13.4.3),
(13.5.1) (where t := t − 1), and (13.5.8). For this strategy, the second summand
in the last expression equals

Eqt−1[x̂(t− 1|t− 1), ωT−1, . . . , ωt−1]

due to (13.5.6) (on p. 453). Thus (13.6.1) does hold with t := t−1, which completes
the proof. ⊓⊔

Thus to justify Theorems 13.4.2 and 13.5.2 (on pp. 452 and 454), it remains to
show that the minimum minw q−1(Ea, w) is attained. To this end, some properties
of the functions qt(·) from (13.5.2) should be revealed. To this end, we denote

⇂ ω ⇃:= min
{∥∥u(1)

∥∥, . . . ,
∥∥u(N)

∥∥
}

(13.6.3)

whenever ω = col
(
u(1), . . . , u(N)

)
and u(i) ∈ Rm.

Lemma 13.6.5. Constants a−1, . . . , aT , b−1, . . . , bT > 0 exist such that

0 ≤ qt(x, ωT−1, . . . , ωt) ≤ at
(
‖x‖2+ ⇂ ωT−1 ⇃2 + · · ·+ ⇂ ωt ⇃2

)
+ bt (13.6.4)

for all t, x, ωT−1, . . . , ωt.
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Proof. The proof will be by induction on t = T, . . . ,−1. For t = T , (13.6.4) holds
since qT (·) ≡ 0 by (13.5.2) (on p. 453). Let (13.6.4) be true for some t = 0, . . . , T .
Due to the inequality ‖x+ z‖2 ≤ 2(‖x‖2 + ‖z‖2) and (13.5.4) (on p. 453), we get

0 ≤ qt(x+ z, ωT−1, . . . , ωt)

≤ at
(
2‖x‖2 + 2‖z‖2+ ⇂ ωT−1 ⇃2 + · · ·+ ⇂ ωt ⇃2

)
+ bt; (13.6.5)

0 ≤ qNt (x, ωT−1, . . . , ωt) ≤ at
(
2‖x‖2+ ⇂ ωT−1 ⇃2 + · · ·+ ⇂ ωt ⇃2

)
+ bt

+ 2

∫

Rn

‖z‖2 N
[
dz
∣∣∣0,K(t)Λ(t)K(t) T

]
.

Denote the sum of the last two summands by bt−1 and put

κ := 2 max
t=−1,...,T

[
‖F (t)1/2‖2 + ‖F (t)1/2L(t)‖2

]
,

a := 2 max
t=−1,...,T

[
‖A(t)‖2 + ‖B(t)‖2

]
. (13.6.6)

Then (13.5.5) (on p. 453) yields

0 ≤ rt−1(x, u, ωT−1, . . . , ωt) ≤ κ
(
‖x‖2 + ‖u‖2

)
+ bt−1

+ 2at

≤a
(
‖x‖2+‖u‖2

)
︷ ︸︸ ︷∣∣A(t− 1)x+B(t− 1)u

∣∣2 +at

(
⇂ ωT−1 ⇃2 + · · ·+ ⇂ ωt ⇃2

)
. (13.6.7)

This and (13.5.6) (on p. 453) result in (13.6.4) with t := t−1 and at−1 := max{κ+
2ata; at}. ⊓⊔
Corollary 13.6.6. For any t = −1, . . . , T , the functions qt(·), qNt (·), rt(·) are con-
tinuous. (We put rT (·) := 0.)

Indeed, let us argue by induction on t = T, . . . ,−1. For t = T , the claim is evident.
Suppose that it holds for some t = 0, . . . , T . Formula (13.5.4) (on p. 453), along with
the estimate (13.6.5) and the Lebesgue dominated convergence theorem, ensures that
the function qNt (·) is continuous. Then by (13.5.5) and (13.5.6) (on p. 453), so are
rt−1(·) and qt−1(·).

Now we are going to show that the functions qt(·) are actually continuous in a
stronger sense. This fact plays a key role in proving that the minimum of q−1(Ea, ·)
is attained. To this end, we introduce the following.

Definition 13.6.7. An alphabet ω = col [u(1), . . . , u(N)] is called a slight limit point
of a sequence of alphabets

{ω(j)}∞j=1, ω(j) = col [u(1)(j), . . . , u(N)(j)]

if and only if a nonempty set of indices I ⊂ {1, . . . , N} exists such that the following
statements are true:
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(i) Whenever i ∈ I , the following limit exists:

lim
j→∞

u(i)(j) =: u(i)
∞ ;

(ii) Whenever i 6∈ I , the following relation holds:

‖u(i)(j)‖ → ∞ as j →∞;

(iii) The alphabet {u(i)}Ni=1 consists of (maybe, repeating) limit points u(i)
∞ , i ∈ I .

If (ii) holds for all i = 1, . . . , N , the sequence is said to increase without limits.

Lemma 13.6.8. Suppose that t = −1, . . . , T and sequences of alphabets

{ωt(j)}∞j=1, . . . , {ωT−1(j)}∞j=1, ωθ(j) = col [u(1)
θ (j), . . . , u

(N)
θ (j)]

are given. Then the following statements hold:

(i) If each of them {ωθ(j)}∞j=1 has a slight limit point ωθ, then for any R > 0,

qt
[
x, ωT−1(j), . . . , ωt(j)

]
→ qt

[
x, ωT−1, . . . , ωt

]
(13.6.8)

as j →∞ uniformly over ‖x‖ ≤ R;
(ii) If t ≤ T − 1 and at least one of the sequences {ωθ(j)}∞j=1 with θ ≥ max{0, t}

increases without limits, then

qt
[
x, ωT−1(j), . . . , ωt(j)

]
→∞ as j →∞ ∀x.

Proof. The proof will be by induction on t = T, . . . ,−1. For t = T , the statements
(i) and (ii) are obvious since qT (·) ≡ 0 by (13.5.2) (on p. 453). Let they hold for
some t ∈ [0 : T ]. It should be shown that these statements are valid for t := t− 1.

Statement (i). Introduce the set Iθ associated with the sequence {ωθ(j)}∞j=1 by
Definition 13.6.7. Thanks to (13.6.3), a constant d > 0 exists such that

∥∥u(i)
θ (j)

∥∥ ≤ d ∀i ∈ Iθ, ⇂ ωθ(j) ⇃≤ d

for all θ, j. So whenever ‖x‖ ≤ R, (13.6.4) gives

0 ≤ qt[x+ z, ωT−1(j), . . . , ωt(j)] ≤ at
[
2R2 + 2‖z‖2 + (T − t)d2

]
+ bt. (13.6.9)

The function on the right is integrable with respect to

N [dz|0,K(t)Λ(t)K(t) T].

Hence the Lebesgue dominated convergence theorem, the induction hypothesis, and
(13.5.4) (on p. 453) imply that

qNt
[
x, ωT−1(j), . . . , ωt(j)

]
→ qNt

[
x, ωT−1, . . . , ωt

]
as j →∞ (13.6.10)
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uniformly over ‖x‖ ≤ R. Whenever i ∈ It−1, we get by letting j → ∞ and taking
into account (13.5.5) (on p. 453),

rt−1

[
x, u

(i)
t−1(j), ωT−1(j), . . . , ωt(j)

]
≤ max
‖x‖≤R,‖u‖≤d

{
∥∥F (t−1)1/2[L(t−1)x+u]

∥∥2

+ qNt
[
A(t− 1)x+B(t− 1)u, ωT−1(j), . . . , ωt(j)

]
}

→ max
‖x‖≤R,‖u‖≤d

{
∥∥F (t− 1)1/2[L(t− 1)x+ u]

∥∥2

+ qNt
[
A(t− 1)x+B(t− 1)u, ωT−1, . . . , ωt

]
}
<∞.

Now let s 6∈ It−1. Thanks to Remark C.4 (on p. 512),

‖F (τ)1/2u‖2 = u TF (τ)u ≥ 2γ‖u‖2 ∀τ, u,

where γ > 0. By employing the evident inequality ‖u+ v‖2 ≥ 1/2‖u‖2−‖v‖2 and
(13.5.5) (on p. 453), (13.6.6), we see that

rt−1

[
x, u

(s)
t−1(j), ωT−1(j), . . . , ωt(j)

]
≥
∥∥∥F (t− 1)1/2

[
L(t− 1)x+ u

(s)
t−1(j)

]∥∥∥
2

≥ 1/2
∥∥F (t− 1)1/2u

(s)
t−1(j)

∥∥2 −
∥∥F (t− 1)1/2L(t− 1)x

∥∥2

≥ γ
∥∥u(s)

t−1(j)
∥∥2 − κR2 →∞ (13.6.11)

as j → ∞. So by letting j → ∞, it follows from (13.5.6) (on p. 453) that whenever
‖x‖ ≤ R and j is large enough,

qt−1

[
x, ωT−1(j), . . . , ωt−1(j)

]
= min

i∈It−1

rt−1

[
x, u

(i)
t−1(j), ωT−1(j), . . . , ωt(j)

]

(13.5.5),(13.6.10)−−−−−−−−−→ min
i∈It−1

rt−1

[
x, lim
j→∞

u
(i)
t−1(j), ωT−1(j), . . . , ωt(j)

]

= qt−1

[
x, ωT−1, . . . , ωt−1

]
uniformly over ‖x‖ ≤ R.

The last relation holds by (iii) of Definition 13.6.7 and (13.5.6). Thus (i) of the lemma
does hold for t := t− 1.

Statement (ii). If one of the sequences

{ωt(j)}∞j=1, . . . , {ωT−1(j)}∞j=1

increases without limits, then (13.5.4) (on p. 453), Fatou’s lemma, and the induction
hypothesis ensure that

qNt [x, ωT−1(j), . . . , ωt(j)]→∞ as j →∞,



462 13 LQG Optimal Control via Limited Capacity Channels

and so (ii) with t := t − 1 is straightforward from (13.5.5) and (13.5.6) (on p. 453).
If the sequence {ωt−1(j)}∞j=1 increases without limits, (ii) with t := t − 1 follows
from (13.6.11). ⊓⊔

Proofs of Theorems 13.4.2 and 13.5.2 (on pp. 452 and 454). Modulo Corol-
lary 13.6.4, it remains to show that the minimum of q−1(Ea, w) over
w = col (ωT−1, . . . , ω0) is achieved. To this end, we pick minimizing sequences
{ω0(j)}∞j=1, . . . , {ωT−1(j)}∞j=1:

q−1

[
Ea, ωT−1(j), . . . , ω0(j)

]
→ inf

ω′0,...,ω
′
T−1

q−1

[
Ea, ω′T−1, . . . , ω

′
0

]
(13.6.12)

as j → ∞. By passing to subsequences, one can ensure that each sequence
{ων(j)}∞j=1 either has a slight limit point ων or increases without limits. How-
ever the second case in fact holds for no sequence due to (ii) of Lemma 13.6.8.
Then (i) of this lemma ensures that the left-hand side of (13.6.12) converges to
q−1

[
Ea, ωT−1, . . . , ω0

]
, which completes the proof. ⊓⊔

13.7 Proof of Theorem 13.4.1

We start with calculation of the function r0(·) given by (13.5.5) (on p. 453) . Since
the permutation of the components u(1)

t , u
(2)
t of ωt does not affect r0(·), it suffices to

find r0(·) assuming that u(1)
t ≤ u(2)

t . In this section, we use the notation

Φ(z) :=
1√
2π

∫ z

−∞
exp

(
−1

2
s2
)
ds.

Lemma 13.7.1. In the new variables

z1 =
x1 + x2

2
, z2 =

x1 − x2

2
, ∆±1 := u

(2)
1 ± u

(1)
1 ,

the function r0(·) looks as follows:

r0(x1, x2, u, ω1) = 2
(z1

2
+ u
)2

+ 2
(z1 + z2 + u

2
+ u

(1)
1

)2

−
√

1.8

π
∆−1 exp

[
− (∆+

1 + z1 + z2 + u)2

1.8

]

+ 2∆−1
(
z1 + z2 + u+ ∆+

1

)
Φ
(
− ∆+

1 + z1 + z2 + u√
0.9

)
+ 0.45. (13.7.1)

Proof. Elementary calculations in accordance with (13.3.3)–(13.3.7) (on p. 450)
show that
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P (0) = I, Λ(0) = 2I, K(0) = 1/2I, P (0) = 1/2I;

K(0)Λ(0)K(0) T = 1/2I, P (1) = 3/2I, Λ(1) = 5/2I, K(1) = 3/5I;

P (1) = 3/5I, K(1)Λ(1)K(1) T = 9/10I, F (1) = F (0) = 2;

L(1) = 1/2(0, 1), L(0) = 1/4(1, 1).

Relations (13.5.4)–(13.5.6) (on p. 453) imply

q2(·) ≡ 0, qN2 (·) ≡ 0, r1(x1, x2, u) = 2
(
x2/2 + u

)2
;

q1(x1, x2, u
(1)
1 , u

(2)
1 ) = 2 min

{(
x2/2 + u

(1)
1

)2
;
(
x2/2 + u

(2)
1

)2}

=

{
2
(
x2/2 + u

(2)
1

)2
if x2 ≤ −∆+

1

2
(
x2/2 + u

(1)
1

)2
if x2 > −∆+

1

.

By invoking (13.5.4) (on p. 453) once more, we have

qN1
(
x1, x2, u

(1)
1 , u

(2)
1

)
= 2

∫ −∆+
1 −x2

−∞

(
x2/2 + z/2 + u

(2)
1

)2 N (dz|0, 0.9)

+ 2

∫ ∞

−∆+
1 −x2

(
x2/2 + z/2 + u

(1)
1

)2 N (dz|0, 0.9)

= 2

∫ ∞

−∞

(
x2/2 + z/2 + u

(1)
1

)2 N (dz|0, 0.9)

+ 2

∫ −∆+
1 −x2

−∞

[(
x2/2 + z/2 + u

(2)
1

)2 −
(
x2/2 + z/2 + u

(1)
1

)2] N (dz|0, 0.9)

= 2
(
x2/2 + u

(1)
1

)2
∫ ∞

−∞
N (dz|0, 0.9) + 2

(
x2/2 + u

(1)
1

) ∫ ∞

−∞
z N (dz|0, 0.9)

+ 1/2

∫ ∞

−∞
z2 N (dz|0, 0.9) + 2∆−1

[∫ −∆+
1 −x2

−∞

(
x2 + ∆+

1

)
N (dz|0, 0.9)

+

∫ −∆+
1 −x2

−∞
z N (dz|0, 0.9)

]
= 2
(
x2/2+u

(1)
1

)2
+2∆−1

(
x2+∆+

1

)
Φ
(
−∆+

1 + x2√
0.9

)

−
√

1.8

π
∆−1 exp

[
− (∆+

1 + x2)
2

1.8

]
+ 0.45. (13.7.2)

Then (13.7.1) is straightforward from (13.5.5) (on p. 453) . ⊓⊔
By employing elementary calculus, formula (13.7.1) gives rise to the following.

Corollary 13.7.2. The function r0(·) can be represented in the form:

r0(z1, z2, u, ω1) =
z2
2

2
+ 2
(z1 + u

2
+ u

(1)
1

)
z2

+

{
ϕ+(z1, u, ω1) + O +(z2, z1, u, ω1)

2∆−1 z2 + ϕ−(z1, u, ω1) + O−(z2, z1, u, ω1)
.
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Here ϕ±(·), O±(·) are continuous functions and

O±(z2, z1, u, ω1)→ 0 as z2 → ±∞, respectively.

Corollary 13.7.3. Let ωt = col [u(1)
t , u

(2)
t ], t = 0, 1 be given and u(1)

0 ≤ u(2)
0 . Then

for ν = 1, 2, the following inequality holds:

r0(z1, z2, u
(ν)
0 , ω1) ≥ q0(z1, z2, ω0, ω1)

+ max
{
λν(z1) + (−1)ν

[
u

(2)
0 − u

(1)
0

]
z2 + O ν(z2, z1);0

}
. (13.7.3)

Here λν(·), O ν(·) are continuous functions, O ν(z2, z1)→ 0 as (−1)νz2 →∞, and
q0(·) is given by (13.5.6) (on p. 453).

Proof. Let ν = 2. (For ν = 1, the arguments are similar.) By (13.5.6) (on p. 453),

r0(z1, z2, u
(j)
0 , ω1) ≥ q0(z1, z2, ω0, ω1)

for j = 1, 2. This and Corollary 13.7.2 yield

q0(z1, z2, ω0, ω1) ≤ r0(z1, z2, u(1)
0 , ω1) =

z2
2

2
+ 2
(z1 + u

(1)
0

2
+ u

(1)
1

)
z2

+ ϕ+(z1, u
(1)
0 , ω1) + O +(z2, z1, u

(1)
0 , ω1) = r0(z1, z2, u

(2)
0 , ω1) +

[
u

(1)
0 − u

(2)
0

]
z2

+ϕ+(z1, u
(1)
0 , ω1)− ϕ+(z1, u

(2)
0 , ω1)︸ ︷︷ ︸

−λ2(z1)

+ O +(z2, z1, u
(1)
0 , ω1)− O +(z2, z1, u

(2)
0 , ω1)︸ ︷︷ ︸

−O 2(z2,z1)

.

Invoking that
r0(z1, z2, u

(2)
0 , ω1) ≥ q0(z1, z2, ω0, ω1),

we arrive at (13.7.3) with ν = 2. ⊓⊔

Another technical fact concerns the alphabets furnishing the minimum

Q := min
w=ω1,ω0

q−1(Ea, w) = min
w
qN0 (0, w)

= min
w

∫

R2

q0(x,w) p(dx), p(dx) := N
[
dx
∣∣0; 1/2I

]
. (13.7.4)

Lemma 13.7.4. If ωt = col
[
u

(1)
t , u

(2)
t

]
, t = 0, 1 furnish the minimum (13.7.4) and

u
(1)
t ≤ u(2)

t , then in fact u(1)
0 < u

(2)
0 .

Proof. Suppose to the contrary that u(2)
0 = u

(1)
0 =: u. This and (13.5.6) (on p. 453)

imply that the functional
∫

R
r0
(
x, u, ω1

)
p(dx) attains the minimum value over u, ω1

at u, ω1. The change of the variables

u↔ u, u
(1)
1 ↔ v

(1)
1 := u

(1)
1 + u/2, u

(2)
1 ↔ v

(2)
1 := u

(2)
1 + u/2
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makes all the summands in (13.7.1) except for the first one independent of the vari-
able u. It follows that u furnishes the minimum of the integral of the first summand

2

∫ (x1 + x2

4
+u
)2

p(dx) =
1

8

∫ (
x1 +x2

)2
p(dx)+u

∫ (
x1 + x2

)
p(dx)

︸ ︷︷ ︸
=0

+2u2;

i.e., u = 0. Thus (0, 0), ω1 furnish the minimum in (13.7.4). So for any u > 0,

∫
r0(x, 0, ω1) p(dx) ≤

∫
min

{
r0(x, u, ω1); r0(x,−u, ω1)

}
p(dx),

0 ≤
∫

min
α=1,2

u−1
{
r0[x, (−1)αu, ω1]− r0[x, 0, ω1]

}
p(dx)

=

∫
min

{
∂r0
∂u

[
x, uθ′(x), ω1

]
;−∂r0

∂u

[
x,−uθ′′(x), ω1

]}
p(dx), (13.7.5)

where θ′(x), θ′′(x) ∈ [0, 1]. By putting t := 1 into (13.5.5) (on p. 453) and invoking
the first relation from (13.7.2), we get

∂r0
∂u

[
x, u, ω1

]
= 2

∫ −∆+
1 −x1−u

−∞

[x1 + u+ z

2
+ u

(2)
1

]
N (dz|0, 0.9)

+ 2

∫ ∞

−∆+
1 −x1−u

[x1 + u+ z

2
+ u

(1)
1

]
N (dz|0, 0.9) + 4u+ x1 + x2. (13.7.6)

Hence for u ≈ 0, the function
∣∣∂r0
∂u (·)

∣∣ is estimated from above by a function inte-
grable over p(dx). So letting u→ +0 in (13.7.5) gives

0 ≤ −
∫ ∣∣∣∣

∂r0
∂u

[
x, 0, ω1

]∣∣∣∣ p(dx)⇒
∂r0
∂u

[
x, 0, ω1

]
= 0 ∀x

in violation of (13.7.6). The contradiction obtained proves that u(1)
0 < u

(2)
0 . ⊓⊔

Now we in fact start the immediate proof of Theorem 13.4.1 (on p. 452).
Suppose to the contrary to its conclusion that the infimum of the cost functional
over S equals that over S sep. From now on, the cost functional is taken in the
form JT given by (13.5.12) (on p. 455). Consider a sequence {sj}∞j=1 of control
strategies that asymptotically minimizes the functional over S sep. Corresponding
to it are sequences of controls {uj(t)}∞j=1 and reproduction alphabets

{
ωt(j) =

col
[
u

(1)
t (j), u

(2)
t (j)

]}∞
j=1

with u(1)
t (j) ≤ u(2)

t (j). Here t = 0, 1.

Lemma 13.7.5. The sequences {ωt(j)}∞j=1 asymptotically furnish the minimum Q
from (13.7.4), and JT [sj]

j→∞−−−→ Q.

Proof. Thanks to (13.5.15), Q = infS JT , where infS JT = infS sep JT by assump-
tion. This gives the second claim of the lemma. Then (13.5.15) (on p. 456) and The-
orem 13.4.2 (on p. 452) complete the proof. ⊓⊔
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This lemma and retracing the arguments from the last paragraph in Sect. 13.6
show that passing to a subsequence ensures existence of a slight limit point ωt =

col
[
u

(1)
t , u

(2)
t

]
of {ωt(j)}∞j=1 and also the following fact.

Remark 13.7.6. The pair ω0, ω1 furnishes the minimum (13.7.4).

Lemma 13.7.7. The asymptotically minimizing sequence {sj} can be chosen so that
ωt(j)→ ωt as j →∞ ∀t.

Proof. Note that
u

(1)
t (j) ≤ u(2)

t (j) ∀j ⇒ u
(1)
t ≤ u(2)

t .

Lemma 13.7.4 and Remark 13.7.6 yield u(1)
0 < u

(2)
0 . Then Definition 13.6.7 (on

p. 459) implies that ω0(j) → ω0 as j → ∞. Suppose that ω1(j) 6→ ω1. Then

Definition 13.6.7 ensures that u(1)
1 = u

(2)
1 =: u. For any j, replacing the control

u1(j) by the constant u results in a new strategy s∗j ∈ S sep and changes the alphabet
ω1(j) := ω1. Thus it suffices the prove that the sequence {s∗j} is asymptotically
minimizing.

Since the strategies sj and s∗j are identical for t = 0, so are the corresponding
summands EG

[
x̂(0|0), u(0), 0

]
in (13.5.12) (on p. 455), and these strategies give

rise to a common estimate x̂(1|1) with a probability distribution p1(dx). Then

EG
[
x̂(1|1), uj(1), 1

] (13.5.15)
≥

∫

R2

q1
[
x, ω1(j)

]
p1(dx)

(13.6.4),(13.6.8)−−−−−−−−→
∫

R2

q1
[
x, (u, u)

]
p1(dx)

(13.5.5),(13.5.6)
========

∫

R2

∥∥∥F (1)1/2
[
L(1)x̂(1|1) + u

]∥∥∥
2

p1(dx) = EG
[
x̂(1|1), u, 1

]
.

The proof is completed as follows:

inf
S sep

JT = lim
j→∞

JT
[
sj
]
≥ lim sup

j→∞
JT
[
s∗j
]
≥ inf

S sep

JT . ⊓⊔

Proof of Theorem 13.4.1 (on p. 452). Now we complete the proof. We recall that
we started from the assumption that the conclusion of the theorem violates. At t = 0,
the LQG optimal control is given by

u LQG(0) = −L(0)x̂(0|0) = −1/4
[
x̂1(0|0) + x̂2(0|0)

]
= −1/2ẑ1.

Here we employ the new variables

ẑ1 = 1/2
[
x̂1(0|0) + x̂2(0|0)

]
, ẑ2 = 1/2

[
x̂1(0|0)− x̂2(0|0)

]
,

as before. So far as sj ∈ S sep, the control uj(0) is a function of u LQG(0) and so

uj(0) = V[ẑ1]. Since uj(0) ∈ ω0(j), we have uj(0) = u
(νj[bz1])
0 (j), where νj(·) ∈

{1, 2} is a deterministic function. Thanks to the second claim of Lemma 13.7.5 and
(13.5.5), (13.5.12), and (13.5.15) (on pp. 453 and 455), we have
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Q = lim
j→∞

JT (sj) ≥ lim sup
j→∞

Er0
[
x̂(0|0), uj(0), ω1(j)

]

= lim sup
j→∞

Er0
[
ẑ1, ẑ2, u

(νj[bz1])
0 (j), ω1(j)

]
.

Corollary 13.6.6 (on p. 459) and Lemma 13.7.7, along with the estimate (13.6.7) (on
p. 459) and the Lebesgue dominated convergence theorem, ensure that

Er0
[
ẑ1, ẑ2, u

(νj [bz1])
0 (j), ω1(j)

]
−Er0

[
ẑ1, ẑ2, u

(νj [bz1])
0 , ω1

]
→ 0

as j →∞. Thus
Q ≥ lim sup

j→∞
Er0

[
ẑ1, ẑ2, u

(νj [bz1])
0 , ω1

]
.

Now we employ (13.7.3). As follows from Corollary 13.7.3 and Lemma 13.7.4, the
set

Mν(z1) :=
{
z2 : λν(z1) + (−1)ν

[
u

(2)
0 − u

(1)
0

]
z2 + O ν(z2, z1) ≥ 1

}

contains an infinite subinterval of the real line for any z1 and ν = 1, 2. Denote by
IM(·) the indicator function of the set M. It follows from (13.7.3) that

Er0
[
ẑ1, ẑ2, u

(νj [bz1])
0 , ω1

]
≥ Eq0

[
ẑ1, ẑ2, ω0, ω1

]
+ EI

M
νj [bz1](bz1)

[
ẑ2
]
.

Owing to (13.5.15) (with t := 0, ωj := ωj), (13.5.12) (on p. 455) and Remark 13.7.6,
the first summand on the right equalsQ. To estimate the second one, note that

x̂(0|0) = 1/2y(0) = 1/2[a+ χ(0)]

is a zero-mean Gaussian vector with the correlation matrix 1/2I . Hence ẑ1 and ẑ2 are
independent (nonsingular) Gaussian random quantities. It follows that the quantity

µ(z1) := min
ν=1,2

E
(
IMν(bz1)

[
ẑ2
]∣∣∣ẑ1

)

is strictly positive function of z1 = ẑ1. Thus

κ := EI
M

νj [bz1](bz1)
[
ẑ2
]

= EE
(
I
M

νj [bz1](bz1)
[
ẑ2
]∣∣∣ẑ1

)
≥ E

[
µ(ẑ1)

]
> 0.

Summarizing, we arrive at a contradiction:

Q ≥ lim sup
j→∞

Er0
[
ẑ1, ẑ2, u

(νj [bz1])
0 , ω1

]
≥ Q+ κ.

This proves that the initial hypothesis infS JT = infS LQG JT fails to be true and so
infS JT < infS LQG JT . ⊓⊔
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Kalman State Estimation in Networked Systems with
Asynchronous Communication Channels and
Switched Sensors

14.1 Introduction

In this chapter, we consider the sensor control problem that consists in estimating
the state of an uncertain process based on measurements obtained over asynchronous
communication channels from noisy controlled sensors.

The classic estimation theory deals with the problem of forming an estimate of
a process given measurements produced by sensors observing the process. The stan-
dard assumption is that data transmission and information processing required by the
algorithm can be performed instantaneously. However in a number of newly arisen
engineering applications, only a limited number of sensors can be remotely linked
with the estimator via low bandwidth communication channels during any measure-
ment interval; and the estimator can dynamically select which sensors use the chan-
nels. This gives rise to the sensor control (scheduling) problem. Such a problem may
also arise when a flexible or intelligent sensor is able to operate in several modes
and the estimator can dynamically switch this mode. Finally, sensor control prob-
lems arise when measurements from a large number of sensors are available to the
estimator, but the computational power is such that only data from a small selection
of the sensors can be processed at any given time, hence, forcing the estimator to
dynamically select which sensor data are important for the task at hand.

Sensor scheduling has been addressed for continuous-time stochastic systems
in [17,126,155] under the assumption that the information exchange is instantaneous.
It was assumed that the process is generated by a known linear system driven by a
white noise. It is shown that the optimal sensor schedule can be computed before the
experiment has commenced, and this schedule is independent of the sensor data.

In this chapter, a sensor control problem is studied for a networked system. We
consider a discrete-time linear partially observed system with Gaussian disturbances.
The observations are sent to the estimator over communication channels, which pro-
vide random transmission delays, may lose data, and do not keep the succession of
messages. The estimator is given a dynamic control over the measurements: It ad-
ministrates forming messages to be sent from sensors. The corresponding control

A.S. Matveev and A.V. Savkin, Estimation and Control over Communication Networks,
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Fig. 14.1. Networked estimator with switched sensors.
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is transmitted from the estimator to the remote sensor locations over communica-
tion channels with the features outlined (see Fig. 14.1). We consider the case where
any message transferred via the channel is marked with a time stamp indicating the
moment of the transfer beginning, which is characteristic of many channels. As a
result, there is an awareness about the bygone states of the communication medium,
whereas its future states are unknown. The statistics of the data delays in the com-
munication channels is assumed to be known. The objective is to find a minimum
variance state estimation. The minimum is over not only state estimates but also
nonanticipating sensor control strategies.

The optimal state estimate and sensor control strategy are obtained. It is shown
that the estimate is generated by an analog of the conventional Kalman filter provided
the control strategy is given. We also demonstrate that the optimal sensor control can
be computed by solving a difference Riccati equation and a dynamic programming
procedure. It is proved that this control depends only on the history of the commu-
nication medium monitoring and does not employ the sensor data. Finally we apply
ideas of model predictive control (see, e.g., [29]) to derive a nonoptimal but imple-
mentable real-time method for sensor control.

The main results of this chapter were originally presented in [118].
Its outline is as follows. Section 14.2 offers the problem statement. Section 14.3

contains the basic assumptions. The minimum variance state estimator and the opti-
mal sensor control strategy are presented in Sects. 14.4 and 14.6, respectively. The
proofs of the main results from these sections are given in Sects. 14.5 and 14.7,
respectively. In Sect. 14.8, we apply the model predictive control approach.

14.2 Problem Statement

We consider the following discrete-time linear system:

x(t+ 1) = A(t)x(t) + ξ(t) t = 0, . . . , T − 1, x(0) = a; (14.2.1)

y(t) = C(t)x(t) + χ(t), t = 0, . . . , T. (14.2.2)

Here x(t) ∈ Rn is the state; ξ(t) ∈ Rn is a process disturbance; y(t) ∈ Rk is the
vector comprising the outputs of the sensors; and χ(t) ∈ Rk is a noise.

Measurements transmission. The observations are sent to the estimator via
communication channels. Due to the limited bandwidth of the channels, the entire
information represented by y cannot be sent. Its part to be transmitted is chosen dy-
namically by the estimator by generating the sensor control u ∈ U ⊂ Rs. As a result,
transmitted is the vector

ω(t) = D[t, u(t)]y(t) ∈ R
l. (14.2.3)

Here D(t, u) is a given l × k matrix-function and the dimension of ω(t) is typically
less than that of y(t).
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Remark 14.2.1. In this remark, we consider examples of sensor control and assume
for the sake of simplicitness that any scalar coordinate yi of the vector y from (14.2.2)
represents the output of a particular sensor.

(i) The sensor control may consist in selecting a set of sensors to be linked
with the estimator. Then u = col (i[1], . . . , i[l]) indicates the serial numbers i[ν] =
1, . . . , k of the corresponding sensors and ω := col

(
yi[1], . . . , yi[l]

)
. (We suppose

that as many as l sensors can be simultaneously connected with the estimator.)
(ii) Suppose that the sensors are organized into several groups

y1, y2, . . . , yk =
∣∣y1, . . . , yg[1]

∣∣yg[1]+1, . . . , yg[2]
∣∣ . . .

∣∣yg[l−1]+1, . . . , yg[l]
∣∣,

each deputing one signal to be transmitted. Then in the previous example, the set of
sensor controls U consists of the tuples u = col (i[1], . . . , i[l]) such that g[ν − 1] +
1 ≤ i[ν] ≤ g[ν] for all ν, where g[0] := 0. (Fig. 14.1 concerns this case with l = q.1)

(iii) Any group is equipped with a preprocessor converting linearly the measure-
ments produced by this group into a single scalar signal

ων := α(ν, 1)yg[ν]+1 + · · ·+ α(ν, pν)yg[ν]+pν
(pν := g[ν]− g[ν − 1])

to be transmitted. Then

ω = col (ω1, . . . , ωl)
u = col (u1, . . . , ul)

, where uν := col [α(ν, 1), . . . , α(ν, pν)] .

It is natural to normalize uν , e.g., as follows:

α(ν, i) ≥ 0, α(ν, 1) + · · ·+ α(ν, pν) = 1.

The set U consists of all tuples u normalized in such a way. This means that all linear
“conversions” are admitted.

The vector ω from (14.2.3) is partitioned into several portions to be communi-
cated over parallel channels

ω = col
(
ω1, . . . , ωq

)
, ων ∈ R

lν . (14.2.4)

These portions incur independent transmission delays. So the estimator receives

z(t) :=
{
ων [θ]

}
(ν,θ)∈S(t)

(14.2.5)

at the time t. Here S(t) is some, maybe, empty set such that

(ν, θ) ∈ S(t)⇒ θ ≤ t and S(t1) ∩ S(t2) = ∅ whenever t1 6= t2. (14.2.6)

Remark 14.2.2. The observation signals may arrive at the estimator out of order.
They may be also lost due to, e.g., noise in the communication medium and pro-
tocol malfunctions.

1Fig. 14.1 depicts a particular and yet typical case of the system considered in this chapter.
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Transmission of the sensor controls. The sensor control is also sent from the
estimator to the sensors over communication channels. (They are called the control
channels as distinct from those transferring the measurements and called the obser-
vation ones.) Several channels are employed since the sensors may be distributed
over a variety of locations. Correspondingly, the control u is subjected to a fixed par-
tition u = col (u1, . . . , ur), with ui transmitted via the ith control channel. These
channels provide random transmission delays and may lose data. As a result, the
sensors receive and employ in (14.2.3) the following control at the current time t:

u(t) = col
(
u1

[
t− τ1(t)

]
, . . . , ur

[
t− τr(t)

])
. (14.2.7)

Here
u(θ) = col [u1(θ), . . . , ur(θ)]

is the control produced by the estimator at time θ.

Remark 14.2.3. If several messages arrive via the ith control channel out of order,
accepted is the most updated of them (i.e., produced at the latest moment). If no
message arrives at the current time, the sensor control ui is kept unchanged. If no
message has arrived until t, we put ui(t) := u0

i , where the control u0 is chosen a
priori. Then τi(t) := t+ 1 and u(−1) := u0 in (14.2.7). Hence

τi(t) ≥ 0 and t1 ≤ t2 ⇒ t1 − τi(t1) ≤ t2 − τi(t2). (14.2.8)

Information about the past states of the communication network. Many com-
munication channels equip the messages transferred with time stamps. This enables
one to calculate the time taken to transmit the message at the moment of its arrival.
We suppose that the estimator has access to this information. In particular, it is aware
of the control channel transmission times: Their values are revealed at the sensor sites
and sent to the estimator via the observation channels. The estimator can likewise re-
ceive information about channels competing with control and observation ones for
network resources, which may be useful to predict future states of the channels serv-
ing the system at hand. All the above information concerns the bygone states of the
communication medium.

Notation 14.2.4. The information about the bygone states of the communication net-
work currently received by the estimator is organized in a tuple denoted by κ(t).

Although we do not specify the content of the message κ, some assumptions about
it will be given in the next section.

Problem statement. The class of admissible control strategies is as follows:

u(t) = U
[
t,Z(t− 1),∆(t)

]
, where

Z(t) := col
[
z(0), . . . , z(t)

]
for t ≥ 1, Z(−1) := 0 ∈ R,

and ∆(t) := col
[
κ(0), . . . ,κ(t)

]
. (14.2.9)

The problem is to find a minimum variance estimate of the current state x(t) from
(14.2.1). In other words, we look for a deterministic function of the observations
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x̂(t|t) = X
[
t,Z(t),∆(t)

]
(14.2.10)

that, along with the function U(·) from (14.2.9), minimizes the total estimation error

I :=

T∑

t=0

E
∥∥e(t|t)

∥∥2
, e(t|t) := x(t) − x̂(t|t). (14.2.11)

14.3 Assumptions

In this section, we state the assumptions adopted in this chapter.

14.3.1 Properties of the Sensors and the Process

Assumption 14.3.1. The vectors a, ξ(t), andχ(t) from (14.2.1) and (14.2.2) are ran-
dom, Gaussian, and independent with Eξ(t) = 0 and Eχ(t) = 0. The mean Ea and
the correlation matrices

Raa := E[a−Ea][a−Ea] T, Rξξ(t) := Eξ(t)ξ(t) T, Rχχ(t) := Eχ(t)χ(t) T

are known. So are the matricesA(t), B(t), C(t), andD(t, u) from (14.2.1)–(14.2.3).

Assumption 14.3.2. The quantities {κ(t)} from Notation 14.2.4 are random and
independent of a, {ξ(t)}, and {χ(t)}.

Assumption 14.3.3. Given t = 0, . . . , T , the matrix functionD(t, ·) from (14.2.3) is
defined on a finite set U ⊂ Rs. Consider the partition

D(t, u) = col
[
D1(t, u), . . . , Dq(t, u)

]

corresponding to the partition (14.2.4) of the vector ω. Whenever ν 6= η, the follow-
ing relation holds:

Dν(θ, u)Rχχ(θ)Dη(θ, u)
T = 0 ∀θ, u.

The last claim is true, e.g., in the cases from Remark 14.2.1 if the various scalar en-
tries χ1(θ), . . . , χk(θ) of the noise χ(θ) are independent. The last condition is natu-
ral in the context of Remark 14.2.1 where these entries represent noises in different
sensors.

Typically, any control channel serves a particular group of sensors, and these
groups employ disjoint sets of observation channels. (See Fig. 14.1.) Then a given
observation signal ων from (14.2.4) is affected by only one control ui from (14.2.7).
A generalization of this property gives rise to the following assumption.

Assumption 14.3.4. For any ν ∈ [1 : q], a set Iν ⊂ [1 : r] exists such that the matrix
Dν(t, u) depends only on the entries ui of u = col (u1, . . . , ur) with i ∈ Iν .
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14.3.2 Information about the Past States of the Communication Network

We suppose that this information includes the observation channel time stamps. In
view of Notation 14.2.4, this gives rise to the following.

Assumption 14.3.5. The estimator is able to determine the set S(t) from (14.2.5) at
the current time t; i.e., S(t) = S[t,κ(t)].

We recall that capital script letters denote deterministic functions.
It is tacitly supposed in Assumption 14.3.4 that the observation ων is produced

by the sensors controlled by the signals ui with i ∈ Iν . The corresponding delays
τi(θ) from (14.2.7) can be determined on the basis of the time stamps at the moment
θ when the signal ων departs. We suppose that this information is attached to ων in
the observation message. As a result, we arrive at the following assumption.

Assumption 14.3.6. At the current time t, the estimator is able to determine the de-
lays τi(θ) from (14.2.7) for i ∈ Iν and (ν, θ) ∈ S(t); i.e.,

τi(θ) = Ti
[
θ,κ(t)

]

whenever an index ν exists such that (ν, θ) ∈ S(t) = S[t,κ(t)] and i ∈ Iν . Here the
function Ti(·) takes integer values and 0 ≤ Ti(θ,κ) ≤ θ + 1.

14.3.3 Properties of the Communication Network

Assumption 14.3.7. The delays in the communication channels are bounded by
known constants: t − θ ≤ σ and Ti(θ,κ) ≤ σ∗ whenever (ν, θ) ∈ S(t,κ) and
i ∈ Iν . Here S(·) and Ti(·) are taken from Assumptions 14.3.5 and 14.3.6, respec-
tively.

The following assumption is adopted only to simplify the formulations.

Assumption 14.3.8. The set Υ of the values that can be taken by the tuple κ from
Notation 14.2.4 is finite.

The next assumption to follow means that the communication medium is a system
with a finite aftereffect.

Assumption 14.3.9. A known constant σ = 0, 1, . . . exists such that for any t =
0, 1, . . . and κ0, . . . ,κt+1 ∈ Υ, the following relation (where σ[t] := min{σ, t})
holds for the conditional distribution of the tuple κ from Notation 14.2.4:

P
[
κ(t+ 1) = κt+1

∣∣κ(t) = κt, . . . ,κ(0) = κ0

]
=

P
[
κ(t+ 1) = κt+1

∣∣κ(t) = κt, . . . ,κ(t− σ[t]) = κt−σ(t)

]
. (14.3.12)

This distribution is known in advance for all t = 0, 1, . . . , T .

Note that (14.3.12) is trivially true if t ≤ σ since then σ(t) = t.

Remark 14.3.10. We suppose that (14.2.6) and (14.2.8) hold almost surely.

Remark 14.3.11. We restrict ourselves to consideration of the sensor control strate-
gies (14.2.9) and state estimates (14.2.10) with measurable functions U(·) and X(·),
respectively.
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14.4 Minimum Variance State Estimator for a Given Sensor
Control

In this section, we assume that the sensor control (14.2.9) is chosen and fixed. Under
this assumption, we find the minimum variance state estimate (14.2.10). As will be
shown in Sect. 14.6, this estimate is a part of the solution of the primal problem stated
in Sect. 14.2. More precisely, after determining the optimal control strategy (14.2.9),
the complete solution results from supplementing it with the estimate found in this
section.

Denote by x̂(j|t) the minimum variance estimate of the state x(j) based on

z(0), . . . , z(t),κ(0), . . . ,κ(t).

Being coupled with certain matrices Pij(t), P ij(t), i, j = 0, . . . , σ, the tuple

X̂(t) = col
[
x̂(t|t), x̂(t− 1|t), . . . , x̂(t− σ|t)

]
(14.4.1)

may be generated recursively by the following analog of the filter described in Sub-
sect. 11.3.2 (starting on p. 375).

Explanation 14.4.1. Here σ is the constant from Assumption 14.3.7.

Recursive State Estimator

The next tuple X̂(t+ 1) is generated by equations

x̂(j|t+ 1) = x̂(j|t) +
∑

(ν,θ)∈S(t+1)

K
(ν,θ)
t+1−j(t+ 1) [ων(θ) − ω̂ν(θ|t)] , (14.4.2)

where j = t+ 1, t, . . . , t+ 1− σ and

x̂(t+ 1|t) := A(t)x̂(t|t), ω̂ν(θ|t) := Eν(θ)x̂(θ|t),
Eν(θ) := Dν

[
θ, u(θ)

]
C(θ). (14.4.3)

Here C(θ) and Dν [θ, u] are the matrices from (14.2.2) and Assumption 14.3.3, re-
spectively.

The gain matrices Ks
j (t) are enumerated by the pairs [j, s] with j = 0, . . . , σ

and s = (ν, θ) ∈ S(t), have the respective dimensions n × lν , lν = dim(ων), and
are calculated as follows:

Ks
j (t) =

∑

(ν,θ)∈S(t)

Pj,t−θ(t)Eν(θ)
T
+

Λ
s

(ν,θ). (14.4.4)

Here
+

Λ is the pseudoinverse of the square ensemble of matrices2 Λ over the set S(t)
that is given by

2See Subsect. 11.3.1 starting on p. 374.
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Λs2s1 = Eν1(θ1)Pt−θ1,t−θ2(t)Eν2 (θ2)
T

+

{
Dν1(θ1)R

ν1
χχ(θ1)Dν1(θ1)

T if s1 = s2
0 otherwise

, (14.4.5)

where
si = (νi, θi) ∈ S(t), Dν(θ) := Dν [θ, u(θ)].

The ensembles (over [0 : σ]) of matrices Pij(t), P ij(t) are generated recursively

7→ · · ·
{
P ij(t)

}
7→
{
Pij(t+ 1)

}
7→
{
P ij(t+ 1)

}
· · · 7→ (14.4.6)

by equations

Pij(t+ 1) =





A(t)P ij(t)A(t) T +Rξξ(t) if i = j = 0

A(t)P i,j−1(t) if i = 0, j ≥ 1

P i−1,j(t)A(t) T if i ≥ 1, j = 0

P i−1,j−1(t) if i, j ≥ 1

; (14.4.7)

P ij(t+1) = Pij(t+1)−
∑

(ν,θ)∈S(t+1)

K
(ν,θ)
i (t+1)Eν(θ)Pt+1−θ,j(t+1). (14.4.8)

The recursion (14.4.2), (14.4.6) is initialized by putting

A(−1) := I, x̂(−1| − 1) := Ea, x̂(−1− j| − 1) := 0 ∀j = 1, . . . , σ,

Rξξ(−1) := Raa, P (−1) := 0. (14.4.9)

Remark 14.4.2. Thanks to Assumptions 14.3.1, 14.3.4, and 14.3.6, the matrices
(14.4.3) with (ν, θ) ∈ S(t) become known to the decision maker at the time t.
(We suppose that the values u[t − σ̂(t)], . . . , u[t] are kept in its memory. Here
σ̂(t) := min{σ + σ∗, t+ 1} and σ, σ∗ are taken from Assumption 14.3.7.)

Remark 14.4.3. It is easy to see that the proposed state estimator is basically that from
Subsect. 11.3.2 (starting on p. 375) with the matrices Cν(θ) and Rνχχ(θ) altered as
follows:

Cν(θ) := Eν(θ), Rνχχ(θ) := Dν(θ)R
ν
χχ(θ)Dν (θ)

T.

The main result of this section is offered by the following.

Theorem 14.4.4. Suppose that the control strategy (14.2.9) (on p. 473) is chosen and
fixed. Then the above estimator generates the minimum variance estimations; i.e.,

x̂(j|t) = E [x(j)|Z(t),∆(t)]

whenever t− σ ≤ j ≤ t and j ≥ 0. Here Z(t) and ∆(t) are defined in (14.2.9). The
matrices Pij(t), P ij(t) generated by the estimator are the conditional covariance
matrices of the estimation errors e(θ|s) := x(θ)− x̂(θ|s). More precisely, whenever
i, j = 0, . . . , σ and t− i ≥ 0, t− j ≥ 0, the following relations hold:

P ij(t) := E
[
e(t− i|t)e(t− j|t) T

∣∣Z(t− 1),∆(t)
]
;

Pij(t) := E
[
e(t− i|t− 1)e(t− j|t− 1) T

∣∣Z(t− 1),∆(t− 1)
]
.
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14.5 Proof of Theorem 14.4.4

The critical point in the proof will be the following fact.

Lemma 14.5.1 ( [55]). Consider the linear discrete time system

X(t+ 1) = A(t)X(t) + Σ(t), X(0) = a, Z(t) = C(t)X(t) + Ξ(t). (14.5.1)

Here X(t) ∈ RN is the state, Σ(t) ∈ RN is the process disturbance, Z(t) ∈ RK

is the sensor output, and Ξ(t) ∈ RK is the noise. The matrix C(t) is a deterministic
function of the past measurements:

C(t) = C[t, Z(0), . . . , Z(t− 1)]. (14.5.2)

This function C[·] is measurable and bounded and, along with the matrices

A(0), . . . ,A(T − 1),

is known in advance. For any t, the vector Σ(t) is independent of

a,Σ(0), . . . ,Σ(t− 1),Ξ(0), . . . ,Ξ(t),

Gaussian, and zero-mean. The vector a is Gaussian. Given

t and Z(0), . . . , Z(t− 1),

the vector Ξ(t) is Gaussian, zero-mean, and independent of

a,Σ(0), . . . ,Σ(t− 1).

Then the minimum variance estimate

X̂(t) = E
[
X(t)

∣∣∣Z(0), . . . , Z(t)
]

(14.5.3)

is generated by the standard Kalman filter.

Remark 14.5.2. The formulas for the standard Kalman filter employ the correlation
matrices RΞΞ(t) of the noise Ξ(t). Under the circumstances, utilized are the condi-
tional covariance matrices

RΞΞ(t) := E
[
Ξ(t)Ξ(t) T

∣∣∣Z(0), . . . , Z(t− 1)
]
.

Remark 14.5.3. Apart from the state estimate, the Kalman filter generates apriorial
P(t) and aposteriorial P(t) covariance matrices of the estimation error. Under the cir-
cumstances, the filter generates conditional covariance matrices, where conditioning
is over Z(0), . . . , Z(t− 1).

The proof of Theorem 14.4.4 follows the lines of the state augmenting technique
considered in Sect. 11.7 (starting on p. 384).
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State Space Augmentation

Now we are going to rewrite the primal system introduced in Sect. 14.2 in the form
(14.5.1). To this end, we consider the linear space

Z :=
{
Z = {zν,j}qν=1

σ
j=0 : zν,j ∈ R

lν ∀ν, j
}
,

where q and lν are taken from (14.2.4) (on p. 472). Furthermore, we put

x(−σ) := x(−σ + 1) := · · · := x(−1) := 0

and introduce the vectors

X(t) := col
[
x(t), x(t − 1), . . . , x(t− σ)

]
,

Z(t) :=
{
zν,j
}
∈ Z, where zν,j :=

{
ων(t− j) if (ν, t− j) ∈ S(t)
0 otherwise

.

Here Z(t) can be interpreted as the vector (14.2.5) (on p. 472) supplemented with
several zeros. In terms of X(t) and Z(t), relations (14.2.1)–(14.2.5) (on pp. 471 and
472) take the form (14.5.1), where

A(t) :=




A(t) 0 0 ··· 0 0
I 0 0 ··· 0 0
0 I 0 ··· 0 0
0 0 I ··· 0 0
· · · ··· · ·
· · · ··· · ·
0 0 0 ··· I 0


 , Σ(t) = Eξ(t), E := col

[
I, 0, . . . , 0

]
;

a := col [a, 0, . . . , 0]. (14.5.4)

Furthermore for any t ≤ T and X = col (x0, x1, . . . , xσ) ∈ R(σ+1)n,

C[t]X :=
{
zν,j
}
∈ Z, where

zν,j :=

{
Dν [t− j, u(t− j)]C(t− j)xj if (ν, t− j) ∈ S(t)
0 otherwise

; (14.5.5)

Ξ[t] :=
{
ζν,j
}
∈ Z, where

ζν,j :=

{
Dν [t− j, u(t− j)]χ(t− j) if (ν, t− j) ∈ S(t)
0 otherwise

. (14.5.6)

Now choose and fix a realization ∆ = {κ0, . . . ,κT } of the random sequence
∆ = {κ(0), . . . ,κ(T )} that is taken with a positive probability. Until otherwise
stated, we shall deal with conditional distributions given ∆ = ∆. Under this assump-
tion, the sets S(t) = S[t,κt] and the delays τi(θ) = Ti[θ,κt], (ν, θ) ∈ S(t), i ∈ Iν
from (14.2.7) (on p. 473) are fixed due to Assumptions 14.3.5 and 14.3.6 (on p. 475).
Our next goal is to show that the assumptions of Lemma 14.5.1 hold under the cir-
cumstances. In so doing, we need more preliminaries.
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A Preliminary Technical Fact

It concerns the following quantities (where t ≤ τ ):

Yν,θ := Dν [θ, u(θ)]χ(θ),

Y t(τ) :=
{
Yν,θ

}
(ν,θ)∈S(τ),θ≤t, Y (t) := Y t(t). (14.5.7)

Lemma 14.5.4. Let t = 0, . . . , T . Given z(0), . . . , z(t− 1), the vectors

Y (t), Y t(t+ 1), . . . , Y t(T )

are mutually independent, zero-mean, Gaussian, and independent of

Y (0), . . . , Y (t− 1), a, ξ(0), . . . , ξ(t− 1).

Furthermore,

E
[
Yν′,θ′Y

T
ν′′,θ′′

∣∣∣z(0), . . . , z(t− 1)
]

= 0

whenever (ν′, θ′), (ν′′, θ′′) ∈ S(τ), (ν′, θ′) 6= (ν′′, θ′′), θ′, θ′′ ≤ t ≤ τ ;
E
[
Yν,θY

T
ν,θ

∣∣∣z(0), . . . , z(t− 1)
]

= Dν,θ[θ, u(θ)]Rχχ(θ)Dν,θ[θ, u(θ)] T

whenever (ν, θ) ∈ S(τ), θ ≤ t ≤ τ. (14.5.8)

Remark 14.5.5. Conditioning over z(0), . . . , z(t−1) is dropped everywhere if t = 0.

Remark 14.5.6. By (14.2.7) and (14.2.9) (on p. 473), u(θ) is a deterministic function
of z(0), . . . , z(t− 1) in (14.5.8).

Proof of Lemma 14.5.4. The proof will be by induction on t = 0, . . . , T . For
t = 0, the control u(0) is deterministic thanks to Remark 14.2.3 and (14.2.9) (on
p. 473). By Assumption 14.3.5 (on p. 475) and (14.5.7),

Y 0(t) = {Dν [0, u(0)]χ(0)}ν∈N(t),

where
N(t) := {ν : (ν, 0) ∈ S[t,κt]}.

Here the sets S[0,κ0], . . . , S[T,κT ] are disjoint owing to (14.2.6) (on p. 472), and
the vectorsDν [0, u(0)]χ(0) andDη[0, u(0)]χ(0) with ν 6= η are uncorrelated thanks
to Assumption 14.3.3 (on p. 474). So the statements to be proved follow from As-
sumption 14.3.1 (on p. 474).

Now suppose that these statements hold for some t. Owing to (14.5.7),

Y t+1(τ) =
[
Y t(τ),Yt+1(τ)

]
, where

Yt+1(τ) :=
{
Dν [t+ 1, u(t+ 1)]χ(t+ 1)

}
ν:(ν,t+1)∈S(τ)

(14.5.9)
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for any τ ≥ t+ 1. By the induction hypothesis, the tuples

Y (t), Y t(t+ 1), . . . , Y t(T ) (14.5.10)

are mutually independent, zero-mean, Gaussian, and independent of

Y (0), . . . , Y (t− 1), a, ξ(0), . . . , ξ(t− 1) given z(0), . . . , z(t− 1). (14.5.11)

Due to (14.2.1)–(14.2.4), (14.2.6), (14.2.7), and Assumptions 14.3.1 and 14.3.2 (on
pp. 471–474), z(t) and all random quantities from (14.5.10) and (14.5.11) are inde-
pendent of ξ(t). Thanks to (14.2.1)–(14.2.7), (14.2.9), and (14.5.7),

z(t) = Z
[
t, z(0), . . . , z(t− 1), Y (t), a, ξ(0), . . . , ξ(t− 1)

]
.

t(t+1), . . . , Y t(T )
are mutually independent, zero-mean, Gaussian, and independent of

Y (0), . . . , Y (t), a, ξ(0), . . . , ξ(t).

Their distributions given z(0), . . . , z(t) equal those given z(0), . . . , z(t− 1). Hence
(14.5.8) is true provided the conditioning is over z(0), . . . , z(t), whereas θ′, θ′′, θ ≤
t, τ ≥ t + 1. Note also that u(t+ 1) is a deterministic function of z(0), . . . , z(t) by
(14.2.7)–(14.2.9) and Assumptions 14.3.5 and 14.3.6 (on pp. 473–475). Furthermore
the vector χ(t + 1) is independent of ξ(t), z(t) and all vectors from (14.5.10) and
(14.5.11). By retracing the arguments from the first paragraph of the proof, we see
that given z(0), . . . , z(t), the tuples Yt+1(t+1), . . . ,Yt+1(T ) are mutually indepen-
dent, Gaussian, zero-mean, and independent of

Y (0), . . . , Y (t), Y t(t+ 1), . . . , Y t(T ), a, ξ(0), . . . , ξ(t).

This and (14.5.9) imply that (14.5.8) holds with t := t+1, and given z(0), . . . , z(t),
the vectors Y (t + 1), Y t+1(t + 1), . . . , Y t+1(T ) are mutually independent, zero-
mean, Gaussian, and independent of Y (0), . . . , Y (t), a, ξ(0), . . . , ξ(t). Thus the
statements of the lemma are true for t := t+ 1, which completes the proof. ⊓⊔

Completion of the Proof of Theorem 14.4.4

Now we recall that a realization of the random sequence {κ(0), . . . ,κ(T )} is fixed,
and we deal with the corresponding conditional distributions. Then the assumptions
of Lemma 14.5.1 hold for the augmented system. Indeed, formula (14.5.2) results
from (14.2.7), (14.2.9) (on p. 473), and (14.5.5). It follows from (14.2.1)–(14.2.7),
(14.2.9) (on pp. 471–473), (14.5.4), (14.5.6), and Assumptions 14.3.1 and 14.3.2 (on
p. 474) that the vector Σ(t) is independent of

a,Σ(0), . . . ,Σ(t− 1),Ξ(0), . . . , Ξ(t),

Gaussian, and zero-mean, whereas the vector a is Gaussian. Lemma 14.5.4 justifies
the last assumption of Lemma 14.5.1: Given t and Z(0), . . . , Z(t − 1), the vector
Ξ(t) is Gaussian, zero-mean, and independent of a,Σ(0), . . . ,Σ(t− 1).

It follows from the foregoing that given z(0), . . . , z(t), the tuplesY
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By Lemma 14.5.4, the standard Kalman filter (see Subsect. C.2 starting on
p. 510 in Appendix C) gives the minimum variance estimate X̂(t|t) of X(t) based
on Z(0), . . . , Z(t) and, due to the preliminary conditioning, κ(0), . . . , κ(T − 1).
This estimate is generated recursively so that only the sets S(0), . . . , S(t) and con-
trols u(0), . . . , u(t) from (14.5.5)–(14.5.7) are required to compute X̂(t|t). This,
(14.2.7), (14.2.9), and Assumptions 14.3.5 and 14.3.6 (on p. 475) imply that X̂(t|t)
is in fact the minimum variance estimate of X(t) based on Z(0), . . . , Z(t) and
κ(0), . . . ,κ(t), as is required.

Theorem 14.4.4 results from putting (14.5.4)–(14.5.6), and (14.5.8) into the for-
mulas of the standard Kalman filter (i.e., (C.8)–(C.13) on pp. 510 and 511), along
with elementary transformations of the resultant expressions.

14.6 Optimal Sensor Control

In this section, we obtain the optimal strategy to control the sensors. Along with the
estimate from the previous section, it constitutes the complete solution of the primal
problem.

Preliminaries

To introduce the optimal control, note that the recursion (14.4.6) (on p. 477) can be
written in the form

P (t) = P
{
P [t− 1], t,κ[t], u[t], . . . , u

[
t− σ̂(t)

]}
, (14.6.1)

where
P =

{
P ij
}σ
i,j=0

, σ̂(t) := min{σ + σ∗, t+ 1} (14.6.2)

and σ, σ∗ are taken from Assumption 14.3.7 (on p. 475). Indeed due to Assump-
tions 14.3.4–14.3.6, the matrix Dν [θ, u(θ)] with (ν, θ) ∈ S(t) = S[t,κ(t)] is deter-
mined by the tuple

p :=
{
t,κ := κ(t), u0 := u[t], . . . , ubσ(t) := u[t− σ̂(t)]

}
.

Specifically,

Dν [θ, u(θ)] = Dν,θ(p) := Dν

[
θ,
{
u

(j)
t−θ+Tj(θ,κ)

}
j∈Iν

]
C(θ). (14.6.3)

Here col (u(1)
i , . . . , u

(r)
i ) is the partition of ui corresponding to (14.2.7) (on p. 473),

and t − θ + Tj(θ,κ) ≤ σ̂(t) by Assumptions 14.3.6 and 14.3.7. The map P(·) in
(14.6.1) acts as follows:

α =
[
P , p

]ր P =
{
Pij
}

(14.6.3)−→ Dν,θ(p)

∣∣∣∣∣∣∣

7→ Λ
↓

7→ P(α) :=
{
P

+

ij

}σ
i,j=0

.
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Here Pij is the right-hand side of (14.4.7) (on p. 477) with t := t− 1, P ij(t− 1) :=
P ij , and the square ensemble of matrices Λ over S(t,κ) is given by (14.4.5) (on
p. 477), where

Pij(t) := Pij , Dν(θ) := Dν,θ(p), Eν(θ) := Dν(θ)C(θ),

and

P
+

ij := Pij −
∑

s1,s2∈S[t,κ]

B T
ν1,θ1

+

Λ
s2

s1Bν2,θ2 ,

where si = (νi, θi) and Bν,θ := Dν,θ(p)C(θ)Pt−θ,j . (14.6.4)

Dynamic Programming Procedure

The key point in solution of the primal problem is the procedure:

MT 7→ · · · 7→Mt :=
[
Wt(·),Wt(·),Wm

t (·)
]
7→ · · · 7→M0.

yy
(14.6.5)

Here Wt(·),Wt(·),Wm
t (·) are real functions of the variables

P , ∆ =
[
κ0, . . . ,κσ(t)

]
, U := col

[
u0, . . . , ubσ(t)

]
,

where σ(t) and σ̂(t) are defined in Assumption 14.3.9 (on p. 475) and (14.6.2),
respectively. The control variables on which the function Wt(·) depends in fact are
u0, . . . , ubσ(t+1)−1, and Wm

t (·) does not depend on u0. The recursion (14.6.5) is
initialized by putting WT (·) ≡ 0. Its step

Wt(·)→Wt(·)→Wm
t (·)→Wt−1(·)

is as follows:

Wt

[
P ,∆,U

]
:= tr P00

[
P, t,κ0,U

]

+Wt

{
P
[
P , t,κ0,U

]
,∆, u0, u1, . . . , ubσ(t+1)−1

}
, (14.6.6)

where P00(α) is the block of the matrix P(α);

Wm
t

[
P ,∆, u1, . . . , ubσ(t)

]
:= min

u∈U
Wt

{
P ,∆, u, u1, . . . , ubσ(t)

}
; (14.6.7)

Wt−1

[
P ,κ0, . . . ,κσ(t−1), u1, . . . , ubσ(t)

]

:=
∑

κ∈Υ

{
P
[
κ|κ0, . . . ,κσ(t−1)

]
×Wm

t

[
P,κ, {κθ}σ(t)−1

θ=0 , {uθ}bσ(t)
θ=1

]
}
. (14.6.8)
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Here P
[
κ|κ0, . . . ,κσ(t−1)

]
is the conditional probability of the event κ(t) = κ

given κ(t−1) = κ0, . . . ,κ(t−1−σ[t−1]) = κσ(t−1), which is known in advance
by Assumption 14.3.9 (on p. 475). Finally we put

Ut
[
P ,∆, u1, . . . , ubσ(t)

]
:= u∗,

where u∗ is an element furnishing the minimum in (14.6.7). Since the set U is finite
by Assumption 14.3.3 (on p. 474), such an element does exist.

Remark 14.6.1. It is easy to see that the functionsWt(·),Wt(·), and Wm
t (·) are mea-

surable. So the function Ut(·) can be chosen measurable as well (see, e.g., [217,
Sec. I.7]).

Main Result

The optimal sensor control strategy is described in the following theorem.

Theorem 14.6.2. The following statements hold:

(i) The infimum value of the error (14.2.11) (on p. 474) over all sensor control
strategies (14.2.9) and estimates (14.2.10) equals

EWm
0

[
0,κ(0), u0

]
.

Here u0 is taken from Remark 14.2.3 (on p. 473).
(ii) The infimum from (i) is attained at the control strategy

u(t) =

Ut

{
P
[
t− 1

]
,κ
[
t
]
, . . . ,κ

[
t− σ(t)

]
, u
[
t− 1

]
, . . . , u

[
t− σ̂(t)

]}
, (14.6.9)

along with the state estimate described in Sect. 14.4. We recall that

σ[t] := min{σ, t} and σ̂(t) := min{σ + σ∗, t+ 1},
where σ, σ∗, and σ are the constants from Assumptions 14.3.7 and 14.3.9 (on
p. 475), respectively. Furthermore, u(t) and P (t) = {P ij(t)}σi,j=0 are the sen-
sor control and ensemble of matrices, respectively, produced by the estimator
at time t.

Remark 14.6.3. Formulas (14.6.1) and (14.6.9) imply that the current optimal sensor
control is determined on the basis of the history of the communication medium obser-
vations: u(t) = F[t,κ(t), . . . ,κ(0)]. Thus the possibility to depend on z(0), . . . , z(t)
given by (14.2.9) (on p. 473) is not utilized.

Remark 14.6.4. Let the distribution {p0
κ := P

[
κ(0) = κ

]
}κ∈Υ be known in ad-

vance. Then the mathematical expectation

EWm
0

[
0,κ(0), u0

]
=
∑

κ∈Υ

p0
κWm

0

[
0,κ, u0

]

is computable a priori as a deterministic function of the control u0 from Re-
mark 14.2.3 (on p. 473). Its minimizing over u0 gives rise to an optimal value of
u0 thanks to (i) of Theorem 14.6.2.
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14.7 Proof of Theorem 14.6.2 on p. 484

Lemma 14.7.1. Consider a sensor control (14.2.9) (on p. 473) and denote

Ω(t) := col
[
a, ξ(0), . . . , ξ(t), χ(0), . . . , χ(t)

]
, (14.7.1)

where ξ(θ), χ(θ) are the noises from (14.2.1) and (14.2.2) (on p. 471). Then Z(t)
and u(t) are deterministic functions of Ω(t) and ∆(t). Here Z(t) and ∆(t) were
introduced in (14.2.9).

Proof. The proof is by induction on t. For t = 0, the claim is immediate from
(14.2.1)–(14.2.9) (on pp. 471–473). Let it be true for some t = θ ≤ T − 1. Then by
(14.2.9), the statement of the lemma holds for u(t) with t := θ+ 1. Hence it follows
from (14.2.1)–(14.2.5) and (14.2.7) that this statement is true for Z(t), t := θ + 1 as
well, which completes the proof. ⊓⊔

Lemma 14.7.2. For any control strategy (14.2.9) (on p. 473), the state estimate de-
scribed in Sect. 14.4, and τ = 0, . . . , T , the corresponding value of the cost func-
tional (14.2.11) (on p. 474) obeys the bound

I ≥
τ∑

t=0

E
∥∥e(t|t)

∥∥2

+ EWτ

{
P [τ ],κ[τ ], . . . ,κ

[
τ − σ(τ)

]
, u[τ ], . . . , u

[
τ − σ̂(τ + 1) + 1

]}
.

(14.7.2)

Here P (t), t = 0, . . . , T are the ensembles of matrices generated by the state esti-
mation algorithm from Sect. 14.4.

Proof. The proof will be by induction on τ = T, T − 1, . . . , 0. For τ = T , the
claim is evident since WT (·) ≡ 0. Let (14.7.2) hold for some τ = 1, . . . , T . Due to
Theorem 14.4.4 (on p. 477),

I ≥
τ−1∑

t=0

E
∥∥e(t|t)

∥∥2
+ E trP 00[τ ]

+ EWτ

(
P [τ ], {κ[t]}τt=τ−σ(τ), {u[t]}τt=τ−bσ(τ+1)+1

)
. (14.7.3)

the right

µ = EWτ

(
P [τ − 1], {κ[t]}τt=τ−σ(τ), {u[t]}τt=τ−bσ(τ)

)

≥ E

W︷ ︸︸ ︷
Wm
τ

(
P [τ − 1], {κ[t]}τt=τ−σ(τ), {u[t]}τ−1

t=τ−bσ(τ)

)
(14.7.4)

By (14.6.1), (14.6.6), and (14.6.7), we have for the sum µ of the last two addends on
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= EE
[
W
∣∣∣Ω(τ − 1),∆(τ − 1)

]
. (14.7.5)

Owing to Lemma 14.7.1, (14.6.1), and (14.4.9) (on p. 477),

P [τ − 1] and {u[t]}τ−1
t=τ−bσ(τ)

are deterministic functions of Ω(τ − 1) and ∆(τ − 1); so evidently are

κ[τ − 1], . . . ,κ
[
τ − σ(τ)

]
.

So the conditional mathematical expectation from (14.7.5) amounts to

∑

κ∈Υ

[
Wm
τ

(
P [τ − 1],κ, {κ[t]}τ−1

t=τ−σ(τ), {u[t]}τ−1
t=τ−bσ(τ)

)
×

× P
(
κ[τ ] = κ

∣∣∣Ω[τ − 1],∆[τ − 1]
)]
. (14.7.6)

Thanks to Assumption 14.3.2 (on p. 474), the random vector Ω(τ−1) is independent
of both κ[τ ] and ∆[τ − 1]. So

P
(
κ[τ ] = κ

∣∣Ω[τ − 1],∆[τ − 1]
)

= P
(
κ[τ ] = κ

∣∣∆[τ − 1]
)
.

Then in view of (14.3.12) (where t := τ − 1) and (14.6.8), the quantity (14.7.6)
equals

Wτ−1

(
P [τ − 1], {κ[t]}τ−1

t=τ−1−σ(τ−1), {u[t]}τ−1
t=τ−bσ(τ)

)
.

This and (14.7.3) imply (14.7.2) with τ := τ − 1. ⊓⊔

Corollary 14.7.3. For any control strategy (14.2.9) (on p. 473) and state estimate
(14.2.10) (on p. 474), the following inequality holds:

I ≥ EWm
0

[
0,κ(0), u0

]
. (14.7.7)

Indeed by Theorem 14.4.4 (on p. 477), it suffices to consider the estimate described
in Sect. 14.4. Then inequality (14.7.7) results from (14.7.2) with τ := 0 by following
the lines of (14.7.3)–(14.7.6), taking into account that now

∑
E‖e(t|t)‖2 does not

occur in (14.7.3), and invoking that P (−1) = 0 by (14.4.9) (on p. 477).

Lemma 14.7.4. Relation (14.7.2) holds with the equality sign for the control strategy
(14.6.9) (on p. 484).

Proof. The proof will be by induction on t = T, T − 1, . . . , 0. Since WT (·) ≡ 0, the
statement of the lemma holds for τ := T . If it is true for some τ = 1, . . . , T , then
(14.7.3) is valid with≥ replaced by =; so is (14.7.4) by the definition of Uτ (·). Hence
retracing the arguments from the proof of Lemma 14.7.2 shows that the statement
holds for τ := τ − 1. ⊓⊔
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Corollary 14.7.5. Relation (14.7.7) holds with the equality sign for the sensor con-
trol strategy (14.6.9) and the state estimate described in Sect. 14.4.

This corollary follows from Lemma 14.7.4 just like Corollary 14.7.3 results from
Lemma 14.7.2.

Proof of Theorem 14.6.2 (on p. 484). This theorem is straightforward from Corol-
laries 14.7.3 and 14.7.5. ⊓⊔

14.8 Model Predictive Sensor Control

The dynamic programming equations like those derived in Sect. 14.6 have been the
subject of intensive research in the field of optimal control theory. In realistic sit-
uations, solution of such equations is often a hard task. In this section, we apply
ideas of model predictive control (see, e.g., [29]) to give a nonoptimal but real-time
implementable method for sensor control. To simplify the presentation, we restrict
ourselves to consideration of a special case where minor alternations of the standard
model predictive control approach are required.

Suppose that there are one observation and one control channels q = r = 1 in
(14.2.4) and (14.2.7) (on pp. 472 and 473), and they keep the order of the messages.
In other words, any set S(t,κ) from Assumption 14.3.5 (on p. 475) is either empty
or contains one element s(t,κ), and

s(t1,κ1) < s(t2,κ2) whenever

t1 < t2, S(ti,κi) 6= ∅, and P [κ(t1) = κ1 ∧ κ(t2) = κ2] > 0.

We put s(t,κ) := ⊛ whenever S(t,κ) = ∅, where ⊛ is a special “void” symbol.

Remark 14.8.1. From now on, we consider the state estimate described in Sect. 14.4.

One-Zone-Ahead Optimal Control

The standard idea of the model predictive control is to pick the current control so
that the current state estimation error be minimal provided the previous controls are
chosen and fixed. Under the circumstances, this scheme needs modification since
the current control u(θ) may not affect observations received until θ and hence the
current error. So it is natural to minimize not the current but the summary error,
where the sum is over the times when observations affected by u(θ) arrive at the
estimator. Due to (14.2.3), (14.2.7) (on pp. 471 and 473), and Assumption 14.3.6 (on
p. 475), these times form the set

Jθ :=
{
t : s := s[t,κ(t)] 6= ⊛, s− T1[s,κ(t)] = θ

}
. (14.8.8)

For
θ ∈ Θ := {θ = 0, . . . , T : Jθ 6= ∅},
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we denote
τθ := min{t : t ∈ Jθ}.

Our assumptions imply that τθ′ < τθ′′ if θ′ < θ′′, θ′, θ′′ ∈ Θ. Furthermore we put

J∗ :=
{
t : 0 ≤ t < min

θ∈Θ
τθ
}
, Jθ :=

{
t : min

θ∈Θ,θ≥θ
τθ ≤ t < min

θ∈Θ,θ>θ
τθ
}
, (14.8.9)

where θ = 0, . . . , T and minθ∈∅ τθ := T + 1. The interval Jθ is the zone of the
influence of the control u(θ): All observations influenced by this control are received
within this interval, and no other observation arrives within it. This interval may
contain “void” times where no observation arrives. However it starts with a nonvoid
time instant. Accordingly the time immediately following this interval is nonvoid
and influenced by another control. The interval J∗ consists of times t such that no
observation has arrived until t. It is easy to see that

J∗ ∪ J0 ∪ . . . ∪ JT = [0, T ],

and the sets J∗, J0, . . . , JT are pairwise disjoint; some of them may be empty. Hence
the functional (14.2.11) (on p. 474) shapes into I = IT , where

Iθ := E
∑

t∈J∗

∥∥e(t|t)
∥∥2

+ E

θ∑

τ=0

∑

t∈Jτ

∥∥e(t|t)
∥∥2
. (14.8.10)

Definition 14.8.2. A sensor control strategy S0 is said to be one-zone-ahead optimal
if for any θ = 0, . . . , T and any other sensor control strategy S that coincides with
S0 on [0, θ − 1] provided θ ≥ 1, the following inequality holds:

Iθ
[
S0
]
≤ Iθ

[
S
]
.

Construction of the One-Zone-Ahead Optimal Control Strategy

By (14.8.8) and (14.8.10), the zone of the influence Jθ is determined uniquely

Jθ = Jθ(∆)

by the sequence ∆ =
{
κt
}T
t=θ

, where κt := κ(t). For any two sequences

∆′ =
{
κt
}θ
t=θ−σ(θ)

, ∆′′ =
{
κt
}T
t=θ+1

⊂ Υ,

we denote
∆′ ⋌ ∆′′ :=

{
κθ, . . . ,κT

}

and

Qθ(∆′) :=

{
∆′′ : Jθ(∆

′ ⋌ ∆′′) 6= ∅ and

P
({

κ(t)
}T
t=θ+1

= ∆′′
∣∣∣
{
κ(t)

}θ
t=θ−σ(θ)

= ∆′
)
> 0

}
. (14.8.11)



14.8 Model Predictive Sensor Control 489

Remark 14.8.3. Due to (14.3.12) (on p. 475) and the chain rule, the conditional prob-
ability from (14.8.11) amounts to

P
(

κT

∣∣∣κT−1, . . . ,κT−1−σ(T−1)

)
× P

(
κT−1

∣∣∣κT−2, . . . ,κT−2−σ(T−2)

)
× · · ·

· · · × P
(
κθ+1

∣∣∣κθ, . . . ,κθ−σ(θ)

)
.

Here the quantity P
[
κ|κ0, . . . ,κσ(t−1)

]
was introduced after formula (14.6.8) (on

p. 483) and is known a priori by Assumption 14.3.9 (on p. 475). Hence so is the
above probability from (14.8.11).

Now suppose that a sequence of controls U = col
[
u1, . . . , ubσ(θ)

]
and an element

∆′′ ∈ Qθ(∆′) are given. Consider a control variable u and equations (14.6.1) (on
p. 482), where t = θ, . . . , τ and

τ := max{t : t ∈ Jθ(∆
′ ⋌ ∆′′)}, κ(t) := κt,

u[θ] := u, u[θ − 1] := u1, . . . , u[θ − σ̂(θ)] := ubσ(θ).

Remark 14.8.4. The undefined controls u[θ + 1], . . . , u[τ ] formally may but in fact
do not occur in (14.6.1) (on p. 482).

Indeed by (14.6.3) and (14.6.4) (on pp. 482 and 483), occurring are controls that af-
fect an observation arriving within the interval [θ, τ ]. By the definition of the moment
τ , the last such observation is affected by u(θ). Since the communication channels
keep the order of the messages, all controls in question are generated until θ.

Thanks to Remark 14.8.4, the recursion (14.6.1) with t = θ, . . . , τ is well de-
fined. Along with the initial condition P (θ − 1) = P = P

T ≥ 0, it gives rise to a
sequence {

P
θ[
t, P , u,U,∆′,∆′′

]}τ
t=θ−1

. (14.8.12)

Now introduce the deterministic function

F[θ, P , u,U,∆′] :=
∑

∆′′∈Qθ(∆′)

P
[{

κ(t)
}T
t=θ+1

= ∆′′
∣∣∣
{
κ(t)

}θ
t=θ−σ(θ)

= ∆′
]
×

×
∑

t∈Jθ(∆′⋌∆′′)

trP
θ

00[t, P , u,U,∆
′,∆′′]. (14.8.13)

Here P
θ

00(·) is the block of P
θ
(·). Finally we put

Ũθ[P ,U,∆
′] := um,

where um is an element furnishing the minimum

min
u∈U

F[θ, P , u,U,∆′].

It is easy to see that the function F(·) is measurable. So the function Ũθ(·) can be
chosen measurable as well (see, e.g., [217, Sec. I.7]).
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Main Result

Theorem 14.8.5. Assume that there are one control and one observation channels,
and that these channels keep the order of the messages. Then the following sensor
control strategy is one-zone-ahead optimal:

u(t) = Ũt

{
P
[
t−1

]
, u
[
t−1

]
, . . . , u

[
t− σ̂(t)

]
,κ
[
t
]
, . . . ,κ

[
t−σ(t)

]}
. (14.8.14)

Here
σ̂[t] := min{σ + σ∗, t} and σ(t) := min{σ, t},

where σ, σ∗, and σ are the constants from Assumptions 14.3.7 and 14.3.9 (on p. 475),
respectively. Furthermore, P (t), t = 0, . . . , T is the ensemble of matrices generated
by the state estimator described in Sect. 14.4 (starting on p. 476).

Remark 14.8.6. For both optimal (14.6.9) (on p. 484) and one-zone-ahead optimal
(14.8.14) strategies, the current control u = u(t) is determined as an element mini-
mizing a certain function Gt(u). Here

Gt(u) = Wt{P [t− 1],κ[t], . . . ,κ[t− σ(t)], u, u[t− 1], . . . , u[t− σ̂(t)]}

in the case (14.6.9) (on p. 484) and

Gt(u) = F{t, P [t− 1], u, u[t− 1], . . . , u[t− σ̂(t)],κ[t], . . . ,κ[t− σ(t)]}

in the case (14.8.14). In the case (14.6.9), calculation of Gt(u) for a given u requires
certain functions WT [·], . . . ,Wt[·] to be determined in advance, which can be in-
terpreted as computation of infinite arrays of reals. In contrast such a calculation
requires computation of only a finite set of reals in the case (14.8.14).

Remark 14.8.7. It is straightforward to extend the approach considered in this sub-
section on a more general case where 1) the numbers of both observation and control
channels are arbitrary; 2) all channels keep the order of the messages; 3) the obser-
vation channels are synchronous, i.e., provide a common transmission time and lose
signals only simultaneously; and 4) the control channels are also synchronous.

Proof of Theorem 14.8.5

As long as the channels keep the order of the messages, the union J∗∪J1∪ . . .∪Jt is
an interval with the left end-point 0 for all t. Consider θ = 0, . . . , T and two sensor
control strategies S and S0 that coincide on [0, θ− 1]. They produce two sequences
of observations arriving at the estimator. Within the interval

J∗ ∪ J1 ∪ . . . ∪ Jθ−1,

the entries of these sequences are affected by common controls and hence coincide.
So do the related state estimates x̂S(t|t) and x̂S0(t|t). This and (14.8.10) imply
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∆Iθ := Iθ
(
S
)
− Iθ

(
S0
)

= ηS − ηS0 , where

ηS := E
∑

t∈Jθ

∥∥x(t)− x̂S(t|t)︸ ︷︷ ︸
eS(t|t)

∥∥2
. (14.8.15)

We denote

Q := {(t,κ) : s := s(t,κ) 6= ⊛ and s− T1(s,κ) = θ},

jθ(t) := 1 if t ∈ Jθ and jθ(t) := 0 otherwise. It follows from (14.8.8) and (14.8.9)
that almost surely

{
jθ(t) = 1

}⇔
t∨

t=θ

{
[t,κ(t)] ∈ Q

}∧ t∧

t′=t

{
s[t′,κ(t′)] = ⊛

∨
[t′,κ(t′)] ∈ Q

}
.

Hence the event {jθ(t) = 1} and thus the random quantity jθ(t) are measurable with
respect to the σ-algebra generated by

∆(t) := [κ(0), . . . ,κ(t)].

Then in view of (14.8.15),

ηS =

T∑

t=θ

Ejθ(t)
∥∥eS(t|t)

∥∥2

=

T∑

t=θ

EE
[
jθ(t)

∥∥eS(t|t)
∥∥2
∣∣∣ z(0), . . . , z(t− 1)︸ ︷︷ ︸

Z(t−1)

,∆(t)
]

=

T∑

t=θ

Ejθ(t)E
[∥∥eS(t|t)

∥∥2
∣∣∣Z(t− 1),∆(t)

]
Theorem 14.4.4
======== E

T∑

t=θ

jθ(t) trP
S

00(t)

= E
∑

t∈Jθ

trP
S

00(t) = E

µ︷ ︸︸ ︷
E
[ ∑

t∈Jθ

trP
S

00(t)
∣∣∣∆(θ)

]
. (14.8.16)

Here {PS

00(t)} is the sequence of the matrices generated by the algorithm described
in Sect. 14.4 for the strategy S. The quantity µ is the function of ∆ := ∆(θ):

µ = µ(∆) = E
[∑

t∈Jθ

trP
S

00(t)
∣∣∣∆(θ) = ∆

]

=
∑

∆′′

E
[∑

t∈Jθ

trP
S

00(t)
∣∣∣∆(θ) = ∆, {κ(t)}Tt=θ+1 = ∆′′

]
×

× P
[{

κ(t)
}T
θ+1

= ∆′′
∣∣∣∆(θ) = ∆

]
, (14.8.17)
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where ∆′′ = {κt}Tt=θ+1. By following the lines of Remark 14.8.3, it can be shown
that the above conditional probability equals

P
[{

κ(t)
}T
θ+1

= ∆′′
∣∣∣
{
κ(t)

}θ
θ−σ(θ)

= ∆′
]
,

where ∆′ :=
{
κt}θt=θ−σ(θ). By (14.8.11),

µ =
∑

∆′′∈Qθ(∆′)

{
P
[{

κ(t)
}T
θ+1

= ∆′′
∣∣∣
{
κ(t)

}θ
θ−σ(θ)

= ∆′
]

×
∑

t∈Jθ(∆′⋌∆′′)

E
[

trP
S

00(t)
∣∣∣κ(t′) = κt′ ∀t′

]}
. (14.8.18)

Here by (14.6.1) (on p. 482) and the definition of the sequence (14.8.12),

P
S

00(t) = P
θ

00

{
t, P

S

00[θ − 1], {uS[t′]}θt′=θ−bσ(θ),∆
′,∆′′

}
, (14.8.19)

where {uS[t′]} is the sequence of controls generated by the strategy S. By Lem-
ma 14.7.1 (on p. 485), any control uS[t′], t′ ≤ θ is a deterministic function of ∆ and

Ω(θ). By (14.6.1) (on p. 482), so is P
S

00[θ− 1]. Since Ω(θ) is independent of {κ(t)}
by Assumption 14.3.2 (on p. 474), we have for any deterministic function G(·),

E
(
G
[
Ω(θ),∆

]∣∣∣κ(t′) = κt′ ∀t′
)

= EG
[
Ω(θ),κ0, . . . ,κθ

]

= E
(
G
[
Ω(θ),∆

]∣∣∣κ(0) = κ0, . . . ,κ(θ) = κθ

)
.

This implies that in the mathematical expectation from (14.8.18), conditioning given
κ(t′) = κt′ ∀t′ can be replaced by that given ∆(θ) = ∆. This and (14.8.13),
(14.8.19) shape (14.8.18) into

µ = E

(
F

{
θ, P

S
[θ − 1], {uS[t′]}θt′=θ−bσ(θ),∆

′
}∣∣∣∣∣∆(θ) = ∆

)
.

Since the control strategies S and S0 coincide on [0, θ − 1], relations (14.2.9) and
(14.6.1) (on pp. 473 and 482) yield

uS[t′] = uS0

[t′], t′ = 0, . . . θ − 1 and P
S

[θ − 1] = P
S0

[θ − 1].

By (14.8.15) and (14.8.16),

∆Iθ = E

(
F

{
θ, P

S0

[θ − 1], uS[θ], {uS0

[t′]}θ−1
t′=θ−bσ(θ),∆

′
}

− F

{
θ, P

S0

[θ − 1], uS0

[θ], {uS0

[t′]}θ−1
t′=θ−bσ(θ),∆

′
})

.

By substituting here the control strategy S0 given by (14.8.14), we arrive at the
assertion of the theorem. ⊓⊔



15

Robust Kalman State Estimation with Switched
Sensors

15.1 Introduction

This chapter proceeds with consideration of the sensor scheduling problem, which
consists in estimating the state of an uncertain process based on measurements ob-
tained by switching a given set of noisy sensors.

Classic estimation theory deals with the problem of forming an estimate of a pro-
cess given measurements produced by sensors observing the process; e.g., see [8].
A standard solution is to compute the posterior density of the process state condi-
tioned on all the available measurements. A more difficult class of estimation prob-
lem arises in applications such as robotics, command and control, and networked
systems where an estimator is given dynamic control over the measurements. These
sensor scheduling problems occur, for example, when a flexible or intelligent sensor
is able to operate in one of several different measurement modes and the estima-
tor can dynamically switch the sensor mode. Alternatively several sensors may be
remotely linked to the estimator via a low bandwidth communication channel and
only one sensor can send measurement data during any measurement interval. Again
the estimator can dynamically select which sensor uses the channel. Finally, sensor
scheduling problems arise when measurements from a large number of sensors are
available to the estimator but the computational power is such that only data from
a small selection of the sensors can be processed at any given time, hence, forcing
the estimator to dynamically select which sensor data are important for the task at
hand. Sensor scheduling has been addressed for stochastic systems in [17, 126, 155]
where it is assumed that the process is generated by a known linear system with
Gaussian input noise. It is shown that the optimal sensor schedule can be computed
a priori and that this schedule is independent of the observed data. In particular a
sufficient statistic for a linear zero-mean Gaussian processes with linear sensors and
a minimum variance estimation objective is given by the estimation error covariance
matrix, which can be determined by the solution to a Riccati differential equation.
This matrix depends on the sequence of sensors used but is independent of the actual
observed measurements. Hence for any given sequence of sensors, the estimation
error covariance can be determined before the experiment has commenced. As a

A.S. Matveev and A.V. Savkin, Estimation and Control over Communication Networks,
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consequence the optimal sensor sequence can be determined a priori and is given by
the sequence which minimizes, under some measure (such as the trace of the error
covariance matrix at the final time) the precomputable solution to a Riccati differen-
tial equation.

In practice, however, it often occurs that the system model is not precisely known
and standard stochastic models cannot be readily applied. In the current chapter, we
follow the approach of Chap. 5, where the uncertainties are modeled by unknown
functions that satisfy an integral quadratic constraint. In this framework, the estima-
tion problem is one of characterizing the set of possible states that could have given
rise to the observed measurement. This makes the difference with Chap. 14, where
a stochastic plant model was employed, and the objective was to find a minimum
variance state estimate. Another distinction is that we do not assume any longer that
the channels provide delays and may lose messages.

The results of this chapter were originally published in [175,176] (see also [174]).
The remainder of the chapter is organized as follows. In Sect. 15.2, we introduce

a time-varying uncertain system in which the measurement process is defined by a
collection of given sensors that we call basic sensors. Without loss of generality it
is assumed that only one of the basic sensors can be used at any time. Hence, our
sensor schedule is a rule for switching from one basic sensor to another. Further-
more, we introduce the concept of uniform robust observability for such systems.
The objective is to ensure uniform robust observability and an optimal estimate of
the system state. We show that the optimal switching rule can be computed by solving
a set of Riccati differential equations of the game type and a dynamic programming
procedure. It is shown that for the framework considered here the optimal sensor
sequence depends on the history of measurements. This is unlike sensor scheduling
problems with Gaussian noise models and mean-square estimation criteria where
the sensor schedule is independent of the observed measurements and can be com-
puted a priori using only the statistical structure of the measurement and process
noise. In Sect. 15.3, we apply ideas of model predictive or finite horizon control (e.g.,
see [29]) to derive a nonoptimal but real-time implementable method for robust sen-
sor scheduling. Finally, in Sect. 15.4 we present the proofs of the main results of the
chapter.

15.2 Optimal Robust Sensor Scheduling

Consider the time-varying uncertain system defined on the finite interval [0, T ]

ẋ(t) = A(t)x(t) +B(t)w(t);

z(t) = K(t)x(t);

y∗(t) = C∗(t)x(t) + ν∗(t), (15.2.1)

where x(t) ∈ Rn is the state; w(t) ∈ Rp and ν∗(t) ∈ Rl are the uncertainty inputs;
z ∈ Rq is the uncertainty output; and y∗(·) is the continuously measured output.
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HereA(·), B(·), andK(·) are given piecewise continuous matrix functions. The ma-
trix function C∗(·) is defined by a particular sensor schedule used to measure the
system state. Note that the dimension of C∗(·) can change with time depending on
the sensors used. Let N be a given positive integer, and let

0 = t0 < t1 < t2 < . . . < tN = T

denote the permissible sensor switching times.
Suppose we have the following collection of measured outputs that are called

basic sensors:

y1(·) = C1(·)x(·) + ν1(·)
y2(·) = C2(·)x(·) + ν2(·)

...
...

yk(·) = Ck(·)x(·) + νk(·) (15.2.2)

whereC1(·), C2(·), . . . , Ck(·) are given matrix functions. Let Ij(·) be a function that
maps the set of past measurements {y∗(·) |tjt0} to the set of symbols {1, 2, . . . , k}.
Then for any sequence of functions {Ij}N−1

j=0 , we consider the following dynamic
sensor schedule:

∀j ∈ {0, 1, . . . , N}, y∗(t) = yij (t) ∀t ∈ [tj , tj+1),

where ij = Ij

[
y∗(·) |tjt0

]
. (15.2.3)

Hence the sensor schedule is a rule for sequencing the basic sensors and constructs
a sequence of symbols {ij}N−1

j=0 from the past measurements. Let L denote the class
of all sensor schedules of the form (15.2.2), (15.2.3).

As in Chap. 5, the uncertainty in the system (15.2.1) is required to satisfy the
following integral quadratic constraint.

Given X0 = X T
0 > 0, x0 ∈ Rn, d > 0 and a finite time interval [0, s], s ≤ T ,

we consider the class of uncertainty inputs col [w(·), ν∗(·)] ∈ L2[0, s] and initial
conditions x(0) such that

[x(0) − x0]
TX0[x(0)− x0] +

∫ s

0

[
‖w(t)‖2 + ‖ν∗(t)‖2

]
dt ≤

d+

∫ s

0

‖z(t)‖2dt. (15.2.4)

Notation 15.2.1. Let M ∈ L be a given sensor schedule and y∗(·) be the corre-
sponding realized measured output. Then for the finite time interval [0, s], s ≤ T ,
Xs [x0, y

∗(·) |s0, d,M] is the set of all possible states x(s) at time s for the uncertain
system (15.2.1) with the sensor scheduleM, uncertain inputs w(·) and ν∗(·), and
initial conditions satisfying the integral quadratic constraint (15.2.4) and compatible
with the given output y∗(·)|s0.
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The following definition is a natural extension of the concept of robust observ-
ability from Chap. 5.

Definition 15.2.2. Let M ∈ L be a given sensor schedule. The system (15.2.1),
(15.2.4) is said to be robustly observable with the sensor schedule M on the in-
terval [0, T ], if for any vector x0 ∈ Rn, any time s ∈ [0, T ], any constant d > 0, and
any realized measured output y∗(·) the set Xs [x0, y

∗(·) |s0, d,M] is bounded.

Notation 15.2.3. Let A(S) be some measure of the size of a bounded convex set
S. The hyperellipsoid centered about a ∈ Rn and determined by a square matrix
M = M T > 0 and a real d > 0 is denoted by

E(M,a, d) := {x ∈ R
n : (x− a) TM(x− a) ≤ d} . (15.2.5)

We suppose that the following assumptions hold.

Assumption 15.2.4. For all a1, a2, A(E(M,a1, d)) = A(E(M,a2, d)).

Assumption 15.2.5. If d1 > d2, then A(E(M,a, d1)) > A(E(M,a, d2)).

Assumption 15.2.6. A(E(M,a, d))→∞ as d→∞.

Notation 15.2.7. We will use the notation A(M,d) for the number A(E(M,a, d)),
where E(M,a, d) is defined by (15.2.5).

Explanation 15.2.8. This number does not depend on a by Assumption 15.2.4.

Definition 15.2.9. Let M ∈ L be a given sensor schedule. The uncertain system
(15.2.1), (15.2.4) is said to be uniformly and robustly observable with the sensor
scheduleM on [0, T ], if it is robustly observable with this sensor schedule and for
any vector x0 ∈ Rn, any constant d > 0, the following condition holds:

c[x0, d,M] := sup
y∗(·)
A(XT [x0, y

∗(·)|T0 , d,M]) <∞ (15.2.6)

where the supremum is taken over all fixed realized measured outputs y∗(t).

Notation 15.2.10. Let N0 ⊂ L denote the set of all sensor schedules such that the
system (15.2.1),(15.2.4) is uniformly and robustly observable.

Definition 15.2.11. The uncertain system (15.2.1), (15.2.4) is said to be uniformly
and robustly observable via synchronous sensor switching with the basic sensors
(15.2.2) on [0, T ] if the set N0 is nonempty. In other words, if a sensor schedule
exists such that the system (15.2.1), (15.2.4) is uniformly and robustly observable
with this schedule.

Definition 15.2.12. Assume that the uncertain system (15.2.1), (15.2.4) is uniformly
and robustly observable via synchronous sensor switching with the basic sensors
(15.2.2) on [0, T ]. Let x0 be a given vector and d > 0 be a given number. A sensor
scheduleM0 is said to be optimal for the parameters x0 and d if

c[x0, d,M0] = inf
M∈N0

c[x0, d,M],

where c[x0, d,M] is defined by (15.2.6).
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Let m := [i0, i1, . . . , iN−1], where 1 ≤ ij ≤ k be an index sequence defin-
ing a sensor schedule. Our solution to the optimal sensor scheduling problem with
continuous time measurements involves the following Riccati differential equations
associated with the sequence m:

Ṗm(t) = A(t)Pm(t) + Pm(t)A T(t) +

Pm(t)
[
K T(t)K(t)− C∗m(t) TC∗m(t)

]
Pm(t) +B(t)B T(t),

Pm(0) = X−1
0 (15.2.7)

and the following set of state estimator equations:

˙̂x(t) =
{
A(t) + Pm(t)

[
K T(t)K(t)− C∗m(t) TC∗m(t)

]}
x̂(t)

+Pm(t)C∗
′
m(t)y∗(t);

x̂(0) = x0. (15.2.8)

Here

C∗m(t) := Cij (t) for t ∈ [tj , tj+1), j = 0, 1, . . . , N − 1. (15.2.9)

Let x̂0 be a vector, and y∗(·) be a vector function. Introduce the following value:

F ij (x̂0, y
∗(·)) :=

∫ tj+1

tj

[
‖K(t)x̂(t)‖2 − ‖(C∗(t)x̂(t)− y∗(t))‖2

]
dt, (15.2.10)

where x̂(t) is the solution of (15.2.8) with x̂(tj) = x̂0 and C∗m(·) defined by (15.2.9)
with ij := i.

For all x̂0 ∈ Rn, j = 1, 2, . . . , N , and 1 ≤ ij ≤ k, introduce the functions

V̂j [x̂0, i0, i1, . . . , ij−1] ∈ R
n×n, vj [x̂0, i0, i1, . . . , ij−1] ∈ R

as solutions of the following dynamic programming procedure. Firstly, we define

vN [x̂0, i0, i1, . . . , iN−1] := 0 ∀x̂0, i0, i1, . . . , iN−1,

V̂N [x̂0, i0, i1, . . . , iN−1] := Pm(T )−1 ∀x̂0, m = [i0, i1, . . . , iN−1]. (15.2.11)

Note that we do not assume that the solution of the Riccati equation (15.2.7) exists on
[0, T ] for anym. If the solution does not exist for somem, we take Pm(T )−1 :=∞.

Furthermore, for all x̂0 ∈ Rn and j = 0, 1, . . . , N − 1, let ij(x̂0) be an index for
which the minimum in the following minimization problem is achieved:

min
i=1,2,...,k

sup
y∗(·)∈L2[tj ,tj+1]

A(V̂j+1[x̂(tj+1), i0, i1, . . . , ij−1, i], d̂), (15.2.12)

where
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d̂ := F ij (x̂0, y
∗(·)) + vj+1[x̂(tj+1), i0, i1, . . . , ij−1, i].

Note that this index may be nonunique. Moreover, if

sup
y∗(·)∈L2[tj ,tj+1]

A(V̂j+1[x̂(tj+1), i0, i1, . . . , ij−1, ij(x̂0)], d̂) <∞, (15.2.13)

then a matrix Mj(x̂0) > 0 and a number dj(x̂0) > 0 exist such that the supremum
in (15.2.13) is equal to A(Mj(x̂0), dj(x̂0)). Now let

V̂j [x̂0, i0, i1, . . . , ij−1] := Mj(x̂0);

vj [x̂(tj+1), i0, i1, . . . , ij−1] := dj(x̂0). (15.2.14)

The main result of this section is now given by the following theorem.

Theorem 15.2.13. Consider the uncertain system (15.2.1), (15.2.4) with the basic
sensors (15.2.2). Then, the following two statements are equivalent:

(i) The uncertain system (15.2.1), (15.2.4) is uniformly and robustly observable via
synchronous sensor switching with the basic sensors (15.2.2) on [0, T ];

(ii) The dynamic programming procedure defined by (15.2.11), (15.2.12), and
(15.2.14) has a finite solution

V̂j [x̂0, i0, i1, . . . , ij−1] > 0, vj [x̂0, i0, i1, . . . , ij−1] ≥ 0

for j = 0, 1, . . . , N − 1 for all x̂0 ∈ Rn.

Furthermore, if condition (ii) holds and ij(x̂0) is an index defined in the above
dynamic programming procedure, then the sensor schedule defined by the sequence
of indexes ij(x̂(tj)) is optimal.

The proof of Theorem 15.2.13 is given in Sect. 15.4.

15.3 Model Predictive Sensor Scheduling

The solution to the discrete-time dynamic equations derived in Sect. 15.2 has been
the subject of much research in the field of optimal control theory. It is difficult
to solve dynamic programming equations in realistic situations. In this section, we
apply ideas of model predictive control (e.g., see [29]) to give a nonoptimal but real-
time implementable method for sensor switching.

Definition 15.3.1. Assume that the uncertain system (15.2.1), (15.2.4) is uniformly
and robustly observable via synchronous sensor switching with the basic sensors
(15.2.2) on [0, T ]. Let x0 be a given vector and d > 0 be a given number. A sensor
schedule M0 ∈ N0 is said to be one-step-ahead optimal for the parameters x0

and d if for any j = 0, 1, . . . , N − 1, any realized measured output y∗(·)|tj0 and
any scheduleM such thatM coincides withM0 on [0, tj], the following condition
holds:
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sup
h(·)∈H

A(Xtj+1 [x0, h(·)|tj+1

0 , d,M]) ≥

sup
h(·)∈H

A(Xtj+1 [x0, h(·)|tj+1

0 , d,M0]),

where H := {h(·) ∈ L2[0, tj+1] : h(t) = y∗(t) ∀t ∈ [0, tj ]}.

Remark 15.3.2. The idea of Definition 15.3.1 is very straightforward: We wish to
design a schedule such that at any sensor switching time tj , the upper bound of the
size of the set of all possible states Xtj+1 [x0, y

∗(·)|tj+1

0 , d,M0] is minimal.

Let j ≤ N − 1 and i0, i1, . . . , ij−1 be a fixed sequence of indexes (1 ≤ ir ≤ k),
and let i = 1, 2, . . . , k. The result of this section involves the following k pairs of
Riccati differential equations associated with the sequence [i0, i1, . . . , ij−1, i] and
defined over the time interval [tj , tj+1]:

Ṗ i(t) = A(t)P i(t) + P i(t)A T(t) +

P i(t)[K T(t)K(t)− C T
i (t)Ci(t)]P

i(t) +B(t)B T(t);

P i(tj) = Pm(tj); (15.3.15)

−Ẏ i(t) = [A(t) + P i(t)K(t) TK(t)] TY i(t) +

Y i(t)[A(t) + P i(t)K(t) TK(t)] +K(t) TK(t)

+Y i(t)P i(t)K(t) TK(t)K(t) TK(t)P i(t)Y i(t);

Y i(tj+1) = 0. (15.3.16)

Here Pm(·) is the solution to the Riccati equation (15.2.7) with

C∗m(t) := Cir (t) for t ∈ [tr, tr+1), r = 0, 1, . . . , j − 1. (15.3.17)

Furthermore, introduce the following values:

ci[x0, d] := A
[
P i(tj+1)

−1, d+ x̂(tj)
TY i(tj)x̂(tj)

]
,

where x̂(t) is defined by (15.2.8). If for some i the solution to at least one of the
Riccati equations does not exist on the time interval [tj , tj+1], we take ci[x0, d] :=
∞.

Now we are in a position to present a method to design a one-step-ahead-optimal
sensor switching strategy.

Theorem 15.3.3. Consider the uncertain system (15.2.1), (15.2.4) with the basic
sensors (15.2.2). A schedule M0 is one-step-ahead optimal if and only if for any
j = 0, 1, . . . , N − 1, and any sensor index sequence i0, i1, . . . , ij associated with
some realized measured output y∗(·)|tj0 , the following two statements hold:

(i) For i = ij , the solution P i(·) to the Riccati equation (15.3.15) is defined and
positive-definite on the interval [tj , tj+1], and the solution Y i(·) to the Riccati
equation (15.3.16) is defined and nonnegative-definite on the interval [tj , tj+1];
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(ii) The following minimum:
min

i=1,2,...,k
ci[x0, d]

is achieved at i = ij .

Remark 15.3.4. Note that our method to design a one-step-ahead-optimal sensor
switching rule requires at each step an on-line solution to k pairs of Riccati dif-
ferential equations and a simple look-up procedure to determine which of the basic
sensors to use.

15.4 Proof of Theorems 15.2.13 and 15.3.3

To prove the main result of this chapter, we consider the time-varying uncertain sys-
tem:

ẋ(t) = A(t)x(t) +B(t)w(t);

z(t) = K(t)x(t);

y(t) = C(t)x(t) + v(t), (15.4.18)

where x(t) ∈ Rn is the state; w(t) ∈ Rp and v(t) ∈ Rl are the uncertainty inputs;
z(t) ∈ Rq is the uncertainty output; and y(t) ∈ Rl is the measured output; and
A(·), B(·),K(·), and C(·) are bounded piecewise continuous matrix functions.

The uncertainty in the above system is required to satisfy the following integral
quadratic constraint. Let X0 = X T

0 > 0 be a given matrix, x0 ∈ Rn be a given
vector, and d > 0 be a given constant. For a given finite time interval [0, s], we will
consider the uncertainty inputs w(·) and v(·) and initial conditions x(0) such that

[x(0)− x0]
TX0[x(0)− x0] +

∫ s

0

(‖w(t)‖2 + ‖v(t)‖2)dt

≤ d+

∫ s

0

‖z(t)‖2dt. (15.4.19)

The following definition is a natural simplification of Definition 15.2.9 for the
uncertain system (15.4.18) and (15.4.19).

Definition 15.4.1. The uncertain system (15.4.18), (15.4.19) is said to be uniformly
and robustly observable on [0, T ], if it is robustly observable and for any vector
x0 ∈ Rn, any constant d > 0, the following condition holds:

c[x0, d] := sup
y0(·)
A(XT [x0, y0(·)|T0 , d]) <∞, (15.4.20)

where the supremum is taken over all fixed measured outputs y0(t).
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Our necessary and sufficient condition for uniform and robust observability in-
volves the following Riccati differential equations:

Ṗ (t) = A(t)P (t) + P (t)A(t) T +

P (t)
[
K(t) TK(t)− C(t) TC(t)

]
P (t) +B(t)B(t) T. (15.4.21)

Also, we consider a set of state equations of the form

˙̂x(t) =
{
A(t) + P (t)

[
K(t) TK(t)− C(t) TC(t)

]}
x̂(t)

+P (t)C(t) Ty0(t); (15.4.22)

−Ẏ (t) =
[
A(t) + P (t)K(t) TK(t)

] T
Y (t)

+Y (t)
[
A(t) + P (t)K(t) TK(t)

]
+K(t) TK(t)

+Y (t)P (t)K(t) TK(t)K(t) TK(t)P (t)Y (t). (15.4.23)

The following lemma gives a necessary and sufficient condition for uniform ro-
bust observability.

Lemma 15.4.2. Let X0 = X T
0 > 0 be a given matrix. Consider the uncertain system

(15.4.18), (15.4.19). Then the system (15.4.18), (15.4.19) is uniformly and robustly
observable on [0, T ] if and only if the following two statements hold:

(i) The solutionP (·) to the Riccati equation (15.4.21) with initial conditionP (0) =
X−1

0 is defined and positive-definite on the interval [0, T ];
(ii) The solution Y (·) to the Riccati equation (15.4.23) with boundary condition

Y (T ) = 0 is defined and nonnegative-definite on the interval [0, T ].

Furthermore, if (i) and (ii) hold, then the upper bound (15.4.20) is given by

c[x0, d] = A
[
P (T )−1, d+ x T

0Y (0)x0

]
. (15.4.24)

Proof of Lemma 15.4.2. Necessity. The necessity of (i) immediately follows from
Definition 15.4.1 and Lemma 5.3.2 (on p. 120). Now we prove the necessity of (ii).
Indeed, Lemma 5.3.2 implies that the set XT [x0, y0(·)|T0 , d] is defined by

Xs[x0, y0(·)|s0, d] ={
xs ∈ R

n :
[xs − x̂(s)] TP (s)−1[xs − x̂(s)] ≤
d+ ρs[y0(·)]

}
, (15.4.25)

where

ρs[y0(·)] :=

∫ s

0

[
‖K(t)x̂(t)‖2 − ‖(C(t)x̂(t)− y0(t))‖2

]
dt (15.4.26)

and x̂(·) is defined by the equation (15.4.22) with initial condition x̂(0) = x0.
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This and the requirement (15.4.20) imply that

sup
y0(·)∈L2[0,T ]

∫ T

0

[
‖K(t)x̂(t)‖2 − ‖(C(t)x̂(t)− y0(t))‖2

]
dt <∞, (15.4.27)

where the supremum is taken over all solutions to the linear system (15.4.22) with
x̂(0) = x0. Using the linear substitution

ŷ(t) = C(t)x̂(t)− y0(t), (15.4.28)

the requirement (15.4.27) can be rewritten as

sup
ŷ(·)∈L2[0,T ]

∫ T

0

[
‖K(t)x̂(t)‖2 − ‖ŷ(t)‖2

]
dt <∞, (15.4.29)

where the supremum is taken over all solutions to the linear system

˙̂x(t) = [A(t) + P (t)K(t) TK(t)] x̂(t) + P (t)C(t) Tŷ(t) (15.4.30)

with x̂(0) = x0. Furthermore, (15.4.29) immediately implies that

sup
ŷ(·)∈L2[t0,T ]

∫ T

t0

[
‖K(t)x̂(t)‖2 − ‖ŷ(t)‖2

]
dt <∞, (15.4.31)

where the supremum is taken over all solutions to the linear system (15.4.30) with
x̂(t0) = x0. Moreover, it is easy to see that

sup
ŷ(·)∈L2[t0,T ]

∫ T

t0

[
‖K(t)x̂(t)‖2 − ‖ŷ(t)‖2

]
dt ≥ 0

for any x0. This and (15.4.31) immediately imply that condition (ii) holds; e.g., see
[34]. This completes the proof of this part of the theorem.

Sufficiency. Assume that conditions (i) and (ii) hold. Then, it follows from
Lemma 5.3.2 that the set Xs[x0, y0(·)|s0, d] is given by (15.4.25). Furthermore, using
the linear substitution (15.4.28) and standard results of the theory of linear quadratic
optimal control (e.g., see [34]), we obtain that

sup
y0(·)∈L2[0,T ]

∫ T

0

[
‖K(t)x̂(t)‖2 − ‖(C(t)x̂(t)− y0(t))‖2

]
dt

= x T
0Y (0)x0, (15.4.32)

where the supremum is taken over all solutions to the linear system (15.4.22) with
x̂(0) = x0. Finally, (15.4.25), (15.4.26) and (15.4.32) imply uniform and robust
observability and the equation (15.4.24). This completes the proof of the lemma. ⊓⊔

Proof of Theorem 15.2.13 (on p. 498). For all j = 0, 1, . . . , N − 1, x̂0 ∈ Rn,
1 ≤ i0 ≤ k, . . . , 1 ≤ ij−1 ≤ k, there exists a number sj[x̂0, i0, i1, . . . , ij−1] ≤ ∞
defined as
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sj [x̂0, i0, i1, . . . , ij−1] := sup
y∗(·)∈L2[tj ,T ]

A(XT [x0, y
∗(·)|T0 , d]),

where the supremum is taken over all solutions of the system (15.2.1), (15.2.4) with
the sensor switching sequence i0, i1, . . . , ij−1 on [0, tj) and x̂(tj) = x̂0.

According to Lemma 15.4.2, the set XT [x0, y
∗(·)|T0 , d] is always an ellipsoid of

the form
E(M,a, d) := {x ∈ R

n : (x− a) TM(x− a) ≤ d} ,
where M is a matrix from the finite set of matrices Pm(T )−1. Hence if

sj [x̂0, i0, i1, . . . , ij−1] <∞,

then a matrix V̂j [x̂0, i0, i1, . . . , ij−1] and a number vj [x̂0, i0, i1, . . . , ij−1] exist such
that

sj [x̂0, i0, i1, . . . , ij−1] =

A(E(V̂j [x̂0, i0, i1, . . . , ij−1], a, vj [x̂0, i0, i1, . . . , ij−1]))

for some vector a.
The dynamic programming procedure (15.2.11), (15.2.12), (15.2.14) can be de-

rived from Bellman’s principle of optimality (e.g., see [18]):
An optimal policy has the property that no matter what the previous decisions

(i.e., controls) have been, the remaining decisions must constitute an optimal policy
with regard to the state resulting from those previous decisions.

The optimality of the sensor switching policy defined in the theorem follows im-
mediately from the relationships (15.2.11), (15.2.12), and (15.2.14), and from Bell-
man’s principle of optimality. This completes the proof of this theorem. ⊓⊔

Proof of Theorem 15.3.3 (on p. 499). The statement of this theorem immediately
follows from Lemma 15.4.2. ⊓⊔



Appendix A: Proof of Proposition 7.6.13 on p. 215

We consider a nondecreasing flow of σ-algebras

F0 ⊂ F1 ⊂ F2 ⊂ . . .

in a probability space. Let τ be a Markov time1 with respect to this flow.

Notation A.1. Let Fτ denote the σ-algebra of random events R such that

R ∧ {τ = k} ∈ Fk for all k <∞.

In this appendix, the symbols τ and V (with possible indices) stand for a Markov
time and a random variable, respectively. The following properties are justified in,
e.g., Lemmas 1.5, 1.8, and 1.9 [94, Ch.1]:

τ is Fτ -measurable; (A.1)

Vk is Fk -measurable for all k <∞ ⇒ Vτ is Fτ -measurable ; (A.2)

τ ′ ≺ τ ′′ ⇒ Fτ ′ ⊂ Fτ ′′ ; (A.3)

P
[
V ∈ V

∣∣Fτ
]

=
∑

k

P
[
V ∈ V

∣∣Fk
]
· Iτ=k + Iτ=∞∧V ∈V. (A.4)

Explanation A.2. It is supposed that Vk is defined for k = 0, 1, . . . and k =∞. So in
(A.2), Vτ is well defined even if τ =∞.

Explanation A.3. The relation ≺ is defined in Notation 7.6.12 (on p. 215); and IR is
the indicator of the random eventR.

Proof of Proposition 7.6.13 (on p. 215). We are going to apply Theorem 6.9.10
(on p. 171) to the flow of σ-algebras F∗i := Fτi+1, i = 1, 2, . . . and

Ji := IVτi
∈V∧τi<∞, bi := i.

1See Definition 7.6.11 on p. 215.
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This flow is nondecreasing, and Ji is F∗i -measurable by (A.1)–(A.3). Relation (6.9.4)
(on p. 171) is true since 0 ≤ Ji ≤ 1 a.s. Thus (6.9.5) (on p. 171) holds a.s. by
Theorem 6.9.10 (on p. 171). Now in (6.9.5),

E[Ji|F∗i−1] = P [Vτi ∈ V ∧ τi <∞|Fτi−1+1]

(A.4)
==

∞∑

k=0

P [Vτi ∈ V ∧ τi <∞|Fk+1]Iτi−1=k + IVτi
∈V∧τi<∞∧τi−1=∞

a)
==

∞∑

k=0

P [Vτi ∈ V ∧ τi <∞∧ τi−1 = k|Fk+1]

τi−1≺τi
=====

∞∑

k=0

∞∑

j=k+1

P [Vτi ∈ V ∧ τi = j ∧ τi−1 = k|Fk+1]

=

∞∑

k=0

∞∑

j=k+1

P [Vj ∈ V ∧ τi = j|Fk+1]Iτi−1=k

b)
=

∞∑

k=0

∞∑

j=k+1

P
[
Vj ∈ V

]
P [τi = j|Fk+1]Iτi−1=k

τi−1≺τi
==== P (V)

∞∑

k=0

∞∑

j=0

P [τi = j|Fk+1]Iτi−1=k

= P (V)
∞∑

k=0

P [τi <∞|Fk+1]Iτi−1=k + P (V) Iτi<∞∧τi−1=∞︸ ︷︷ ︸
=0 a.s.

(A.4)
== P (V)P

[
τi <∞

∣∣Fτi−1+1

]
= P (V)P

[
τi <∞

∣∣F∗i−1

]
.

Here a) holds since {τi−1 = k} ∈ Fk ⊂ Fk+1 and

τi−1 ≺ τi ⇒ P
[
τi <∞∧ τi−1 =∞

]
= 0;

b) holds since Vj is independent of Fj , where Fj ∋ {τi = j} and Fj ⊃ Fk+1 for
j ≥ k + 1. Thus (6.9.5) (on p. 171) takes the form

1

k

k∑

i=1

IVτi
∈V∧τi<∞ − P (V)

1

k

k∑

i=1

P
[
τi <∞

∣∣F∗i−1

] k→∞−−−−→ 0 a.s.

By taking here V := V (where V is the image space of Vi; i.e., Vi ∈ V a.s.), we get

1

k

k∑

i=1

Iτi<∞ −
1

k

k∑

i=1

P
[
τi <∞

∣∣F∗i−1

] k→∞−−−−→ 0 a.s.

By combining the last two displayed formulas, we arrive at (7.6.5) (on p. 215). ⊓⊔



Appendix B: Some Properties of Square Ensembles of
Matrices

In this appendix, we consider square ensembles of matrices over a finite set S =
{s}.1 The entries of the ensemble Λ are denoted by Λs2s1 and are matrices of the
respective sizes k(s1) × k(s2), where the integers k(s), s ∈ S are given. Similarly
to matrices, we introduce the following natural operations:

The sum
Λ′ + Λ′′ = Λ⇔ Λs2s1 = (Λ′)

s2
s1

+ (Λ′′)
s2
s1
∀s1, s2;

The product

Λ′ ⋆ Λ′′ = Λ⇔ Λs2s1 =
∑

s∈S
(Λ′)

s
s1

(Λ′′)
s2
s ∀s1, s2;

The adjoint
Λ′ = Λ T ⇔ (Λ′)

s2
s1

=
(
Λs1s2
) T ∀s1, s2.

It is easy to see that endowed with the first two operations, the variety L(S) of en-
sembles constitute a ring [124] with unity: (Λunit)

s2
s1

:= Ik(s1) whenever s1 = s2
and (Λunit)

s2
s1

:= 0 otherwise. The transformation (11.3.3) (on p. 375) establishes
an isomorphism Λ ↔ M between this ring and that of k × k matrices M , where
k :=

∑
s∈S k(s). In particular, this implies that the inverse Λ−1 introduced in

Subsect. 11.3.1 (starting on p. 374) is the inverse in the ring L(S). Furthermore,
Λ↔M ⇒ Λ T ↔M T; (Λ T)

T
= Λ.

The symbol Λπ denotes the ensemble corresponding to πM under the isomor-
phism (11.3.3) (on p. 375). Here M ↔ Λ and πM is the matrix corresponding to the
orthogonal projection of Rk onto ImM .

Lemma B.1. The ensemble Λπ does not depend on the enumeration of the set S
underlying the isomorphism (11.3.3) (on p. 375).

Proof. Given two enumerations {s′(1), . . . , s′(q)} and {s′′(1), . . . , s′′(q)}, the ma-
trices M ′ and M ′′ related to a given Λ by the corresponding isomorphisms (11.3.3),

1See Definition 11.3.1 on p. 375.
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respectively, are clearly similar: M ′ = UM ′′U−1, where U is the matrix corre-
sponding to the permutation of the coordinates that transforms s′(ν) = s′′(jν)∀ν
the second enumeration into the first one. In other words, U is the block matrix
whose νth raw (0, . . . , 0, I, 0, . . . , 0) is constituted by the matrices of respective sizes
k[s′(ν)]×k[s′′(1)], . . . , k[s′(ν)]×k[s′′(q)]] with the unit matrix on the jν th position.
Since the matrix U is orthogonal, it establishes an automorphism of the Euclidean
space Rk onto itself. It follows that the matrix UπM ′′U−1 is the orthogonal projec-
tion from Rk onto

U ImM ′′ = Im
(
UM ′′U−1

)
= ImM ′.

Hence UπM ′′U−1 = πM ′ . This implies that the matrices πM ′′ and πM ′ are trans-
formed into a common ensemble Λπ by the isomorphisms (11.3.3) (on p. 375) cor-
responding to the enumerations {s′(1), . . . , s′(q)} and {s′′(1), . . . , s′′(q)}, respec-
tively. ⊓⊔

The next lemma gives some properties of the pseudoinverse
+

Λ introduced in Sub-
sect. 11.3.1 (starting on p. 374) and the ensemble Λπ.

Lemma B.2. The following relations hold for any square self-adjoint Λ = Λ T en-
semble of matrices Λ:

+

ΛΛ = Λπ, Λ T
π = Λπ,

+

ΛΛπ =
+

Λ. (B.1)

Proof. Under the isomorphism (11.3.3) (on p. 375), relations (B.1) shape into
+

MM = πM , π T
M = πM ,

+

MπM =
+

M, (B.2)

whereM ↔ Λ and so M T = M . By the definition on p. 374,
+

M = M−1
0 πM , where

M0 : (kerM)⊥ → ImM is obtained by restricting M on (kerM)⊥ and ⊥ stands
for the orthogonal complement. So we have

+

MM =
(
M−1

0 πM
)
M = M−1

0 (πMM)
(a)
= M−1

0 M
(b)
= (M |kerM⊥)

−1
M.

Here (a) holds since πM is a projection onto ImM and so πMMx = Mx∀x, and
(b) holds by the definition of M0. Now we observe that kerM⊥ = ImM so far as
M T = M [124]. Thus

+

MM = (M |ImM )−1M.

It follows that
+

MMx = x for x ∈ ImM , whereas
+

MMx = 0 for x ∈ (ImM)⊥ =

kerM . This means that
+

MM is the orthogonal projection of Rk onto ImM ; i.e., the
first relation from (B.2) does hold.

Well-known properties of orthogonal projections [124] are given by the second
relation from (B.2) and the relation πMπM = πM . Hence

+

MπM = M−1
0 πMπM = M−1

0 πM =
+

M ;

i.e., the last relation from (B.2) does hold as well. ⊓⊔



Appendix C: Discrete Kalman Filter and
Linear-Quadratic Gaussian Optimal Control Problem

In this appendix, we recall some classic results concerning minimum variance state
estimation and optimal control for discrete-time linear systems perturbed by Gaus-
sian white noises. The proofs of these results and their various extensions can be
found in many textbooks and monographs in the control theory; see, e.g., [8,30,85].

C.1 Problem Statement

The System

We consider discrete-time linear systems of the form:

x(t+ 1) = A(t)x(t) +B(t)u(t) + ξ(t) t = 0, . . . , T − 1, x(0) = a; (C.1)

y(t) = C(t)x(t) + χ(t) t = 0, . . . , T. (C.2)

Here x(t) ∈ Rn and u(t) ∈ Rm are the state and control, respectively; ξ(t) ∈ Rn is
a process disturbance; y(t) ∈ Rk is the measured output; and χ(t) is a measurement
noise. It is supposed that the system meets the following requirements.

Assumption C.1. The vectors a, ξ(t), and χ(t) are random, Gaussian, and indepen-
dent with Eξ(t) = 0 and Eχ(t) = 0. The mean Ea and the correlation matrices

Raa := E[a−Ea][a−Ea] T, Rξξ(t) := Eξ(t)ξ(t) T,

Rχχ(t) := Eχ(t)χ(t) T (C.3)

are known. So are the matrices A(t), B(t), and C(t).

The Control

The control should be generated on the basis of the available data, i.e., in the form

u(t) = U[t, y(0), . . . , y(t)]. (C.4)

The function U[·] can also depend on the known matrices and vector mentioned in
Assumption C.1.
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State Estimation Problem

In this problem, the control strategy (C.4) (identified with the function U[·]) is given.
The problem is to determine the best (minimum variance)

E‖x̂(t|t)− x(t)‖2 → min (C.5)

estimate x̂(t|t) ∈ Rn of the current state x(t) based on the currently available data
y(0), . . . , y(t). In other words, the estimate should be of the form

x̂(t|t) = X[t, y(0), . . . , y(t)],

where the function X[·] can also depend on the known matrices and vector mentioned
in Assumption C.1. The min in (C.5) is over all such functions X[·]. A well-known
fact from the probability theory (see, e.g., [94, Ch. 1]) states that the minimum vari-
ance estimate exists and equals the conditional mathematical expectation

x̂(t|t) = E
[
x(t)

∣∣y(0), . . . , y(t)
]
. (C.6)

Of interest are explicit formulas for x̂(t|t) that fit to generate it on-line, i.e., so that
the estimate x̂(t|t) of the current state x(t) is produced at the current time t.

Linear-Quadratic Gaussian (LQG) Optimal Control Problem

This problem is to minimize the quadratic cost functional

IT := E

T−1∑

t=0

[
x(t+ 1) TQ(t+ 1)x(t+ 1) + u(t) TΓ(t)u(t)

]
(C.7)

over the class of control strategies described by (C.4). HereQ(t+1) ≥ 0 and Γ(t) >
0 are symmetric n× n and m×m matrices, respectively.

C.2 Solution of the State Estimation Problem: The Kalman Filter

Let a control strategy (C.4) be given. Being coupled with certain n × n symmetric
matrices P (t), the minimum variance estimate (C.6) of the state x(t) can be gener-
ated recursively in the following way.

Kalman Filter

The next estimate is given by

x̂(t+ 1|t+ 1) := x̂(t+ 1|t) +K(t+ 1)
[
y(t+ 1)− C(t+ 1)x̂(t+ 1|t)

]
. (C.8)

Here
x̂(t+ 1|t) := A(t)x̂(t|t) +B(t)u(t); (C.9)



Discrete Kalman Filter and Linear-Quadratic Gaussian Optimal Control Problem 511

K(t) := P (t)C(t) T
+

Λ(t); (C.10)

Λ(t) := Λ := C(t)P (t)C(t) T +Rχχ(t); (C.11)

and
+

Λ is the pseudoinverse of the matrix Λ (see Subsect. 11.3.1 starting on p. 374).
The matrices P (t) are generated recursively via a scheme of the form

. . . 7→ P (t) 7→ P (t) 7→ P (t+ 1) 7→ . . .

as follows:

P (t) := P (t)−K(t)C(t)P (t), P (t+1) = A(t)P (t)A(t) T +Rξξ(t). (C.12)

The recursion is initialized by putting

x̂(−1| − 1) := Ea, P (0) = Raa,

u(−1) := 0, B(−1) := 0, A(−1) := In. (C.13)

The Kalman filter is a device that produces the state estimate x̂(t|t) along with
the matrices P (t) in accordance with formulas (C.8)–(C.13).

Properties of the Kalman Filter

Theorem C.2. Suppose that Assumption C.1 is valid. Then the following statements
hold:

(i) The output x̂(t|t) of the Kalman filter is the minimum variance estimate (C.6)
of the current state x(t);

(ii) The estimation error
e(t|t) := x(t) − x̂(t|t) (C.14)

is a zero-mean Gaussian random vector independent of the prior observations
y(0), . . . , y(t);

(iii) The control strategy (C.4) does not effect the estimation error (C.14): Any two
strategies give rise to common errors;

(iv) The matrices P (t), P (t) generated by the Kalman filter are the covariance ma-
trices of the estimation errors:

P (t) = Ee(t|t)e(t|t) T, P (t) = Ee(t|t− 1)e(t|t− 1) T, (C.15)

where e(t|t) is defined by (C.14),

e(t|t− 1) := x(t)− x̂(t|t− 1), (C.16)

and x̂(t|t− 1) is introduced by (C.9).
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C.3 Solution of the LQG Optimal Control Problem

This solution is given by the Kalman filter and the feedback optimal in the problem
of minimizing the cost functional (C.7) in the case where the noise is removed from
(C.1) and the entire state x(t) is accessible for on-line measurements. So we start
with recalling the construction of this feedback.

Deterministic Linear-Quadratic Optimal Control Problem

This is the problem of minimizing the cost functional (C.7) subject to the constraints

x(t+ 1) = A(t)x(t) +B(t)u(t), x(0) = a. (C.17)

Here a ∈ Rn is a given deterministic vector and minimization is over all control
programs u(0), . . . , u(T − 1).

Theorem C.3. The solution of the deterministic linear-quadratic optimal control
problem is generated by the feedback

u(t) = −L(t)x(t), (C.18)

where
L(t) = F (t)−1B(t) T [Q(t+ 1) +H(t+ 1)]A(t); (C.19)

F (t) := Γ(t) +B(t) T [Q(t+ 1) +H(t+ 1)]B(t), (C.20)

and the symmetric n× n-matrices

H(T ), H(T − 1), . . . , H(0)

are calculated recursively in accordance with the following difference Ricatti equa-
tion, where H(T ) = 0, AL(t) := A(t)−B(t)L(t), and t = T − 1, T − 2, . . . , 0,

H(t) = L(t) TΓ(t)L(t) +AL(t) T [Q(t+ 1) +H(t+ 1)]AL(t). (C.21)

It should be remarked that the optimal gain matrix L(t) does not depend on the
initial state a. For any a, the corresponding process generated by the feedback (C.18)
in the system (C.17) furnishes the minimum of the cost functional under the initial
condition x(0) = a.

Remark C.4. It easily follows from (C.20), (C.21), and the inequalities Q(t) ≥
0,Γ(t) > 0 that H(t) ≥ 0 and F (t) > 0.
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LQG Optimal Control Problem

Theorem C.5. Suppose that Assumption C.1 is valid. Then the solution of the LQG
optimal control problem results from replacing the state x(t) by its minimum vari-
ance estimate x̂(t|t) in the feedback (C.18) providing the solution for the correspond-
ing deterministic optimal control problem.

In other words, the solution of the LQG optimal control problem is given by

u(t) = −L(t)x̂(t|t).

Here L(t) is determined in accordance with (C.19)–(C.21), and x̂(t|t) is the output
of the Kalman filter.



Appendix D: Some Properties of the Joint Entropy of a
Random Vector and Discrete Quantity

In this appendix, we formally justify the properties (6.7.12) and (6.7.14) (on p. 151)
of the joint entropy of a random vector and discrete quantity. The only reason for
this special consideration is that the joint entropy is not as conventional and well-
studied a tool as the differential entropy of a random vector and the entropy of a
random discrete quantity. For the last two kinds of entropy, the above properties
are well known; see, e.g., [38, 40, 50, 60, 152, 190]. The arguments underlying these
properties basically remain in use for the case of the joint entropy.

D.1 Preliminary technical fact.

We start with showing that h(V |F ), H(V, F ), and I(V, F ) are finite if h(V ) ∈ R.

Lemma D.1. Suppose that V ∈ Rs and F ∈ F = {f} are the random vector
and quantity, respectively; the set F is finite; and h(V ) ∈ R. Then H(V, F ) ∈
R, I(V, F ) ∈ R, h(V |F ) ∈ R, and hf (V ) ∈ R whenever P (F = f) > 0.

Proof. By the arguments from the footnote on p. 150, there exists the conditional
probability density p(·|f) of the random vector V given that F = f . We denote by
p(f) := P (F = f) the probability mass function, and by df the counting mea-
sure: F′ ⊂ F 7→ |F′|, where |F′| is the size of the set F′. It is easy to see that
p(v|f)p(f) and p(v|f)p(f)

p(v)p(f) are the densities of the joint distribution of V and F

with respect to the product measures dv ⊗ df and P V (dv) ⊗ P F (df), respectively.
The standard arguments concerning the mutual information I(V, F ) defined by for-
mula (6.3.1) (on p. 137) and based on the Jensen inequality show that the function
p(v|f)p(f) log2

p(v|f)p(f)
p(v)p(f) is integrable with respect to dv ⊗ df and

I(V, F ) =

∫
p(v|f)p(f) log2

p(v|f)

p(v)
dvdf ≥ 0. (D.1)

Since for almost all v,
∑

f ′

p(v|f ′)p(f ′) = p(v)⇒ p(v|f)p(f) ≤ p(v), (D.2)



516 Some Properties of the Joint Entropy

the function p(v|f)p(f) log2 p(v) is summable for any f and

h(V ) = −
∑

f

∫
p(v|f)p(f) log2 p(v) dv.

At the same time, the integrand in (D.1) is equal to

p(v|f)p(f) log2 p(v|f)− p(v|f)p(f) log2 p(v).

Hence the function p(v|f)p(f) log2 p(v|f) is integrable with respect to dv ⊗ df . It
follows that whenever p(f) > 0, the function p(v|f) log2 p(v|f) is integrable and
the conditional differential entropy

hf (V ) = −
∫
p(v|f) log2 p(v|f) dv <∞.

Moreover,

h(V |F ) =
∑

f

p(f)hf (V ) = −
∫
p(v|f)p(f) log2 p(v|f) dvdf

= h(V )− I(V, F ) ≤ h(V ) <∞. (D.3)

On the other hand, whenever p(f) > 0,

hf (V ) = −
∫
p(v|f) log2 p(v|f) dv

= −
∫

{v:p(v|f)<1}
p(v|f) log2 p(v|f) dv −

∫

{v:p(v|f)≥1}
p(v|f) log2 p(v|f) dv

≥ −
∫

{v:p(v|f)≥1}
p(v|f) log2 p(v|f) dv

(D.2)
≥ −

∫

{v:p(v|f)≥1}

p(v)

p(f)
log2

p(v)

p(f)
dv

= − 1

p(f)

∫

{v:p(v|f)≥1}
p(v) log2 p(v) dv+

log2 p(f)

p(f)

∫

{v:p(v|f)≥1}
p(v) dv > −∞.

Thus we see that hf (V ) ∈ R. It follows that h(V |F ) ∈ R and so I(V, F ) ∈ R,
thanks to (D.3). ⊓⊔

Remark D.2. Formula (D.3) established in the proof of Lemma D.1 is identical to
the first part of (6.7.13) (on p. 151). In the particular case where V̂ = V , formula
(6.7.12) (on p. 151) follows from (D.1), (D.3), and Lemma D.1.
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D.2 Proof of (6.7.14) on p. 151.

H(V, F1|F )
(a)
=
∑

f

P (F = f)HF=f (V, F1)

(b)
=
∑

f

P (F = f)
[
hF=f (V |F1) +HF=f (F1)

]

(a)
=
∑

f

P (F = f)
∑

f1

P (F1 = f1|F = f)hF=f(V |F1 = f1) +H(F1|F )

=
∑

f,f1

P (F1 = f1∧F = f)hF=f∧F1=f1(V )+H(F1|F )
(a)
= h(V |F1, F )+H(F1|F ).

Here (a) holds by the definition of the averaged conditional entropy and (b) is valid
by (6.7.11) (on p. 151). Thus the first relation in (6.7.14) (on p. 151) does hold.

To prove the inequality from (6.7.14), we first note that due to (D.1),

I(V, F ) = −
∫
p(v|f)p(f) log2 p(f) dvdf+

∫
p(v|f)p(f) log2

p(v|f)p(f)

p(v)
dvdf

= H(F )−
∫
p(v)dv

∑

f

−p(v|f)p(f)

p(v)
log2

p(v|f)p(f)

p(v)
.

Here for almost all v, the sum is the entropy of a probability distribution over F.
Hence this sum is nonnegative, and we see that

I(V, F ) ≤ H(F ).

It follows that

H(V, F )
(a)
= h(V |F ) +H(F )

(b)
= h(V )− I(V, F ) +H(F ) ≥ h(V ).

Here (a) holds by (6.7.11) (on p. 151) and (b) is due to (D.3). Thus

H(V, F1|F ) =
∑

f

p(f)HF=f (V, F1) ≥
∑

f

p(f)hF=f(V ) = h(V |F );

i.e., the inequality from (6.7.14) (on p. 151) does hold. ⊓⊔

D.3 Proof of (6.7.12) on p. 151.

The strict inequalities from (6.7.12) are apparent from (6.7.11) (on p. 151) and
Lemma D.1. To prove the nonstrict one H(V̂ |F ) ≤ H(V̂ ), we invoke the cor-
responding property of the entropy of the discrete random quantities H(F1|F ) ≤
H(F1) [38, 40, 50, 60, 152, 190] and observe that
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H(V̂ |F ) = H(V, F1|F )
(6.7.14)
=== h(V |F1, F ) +H(F1|F )

=
∑

f,f1

P (F = f, F1 = f1)hF=f,F1=f1(V ) +H(F1|F )

=
∑

f1

P (F1 = f1)
∑

f

P (F = f |F1 = f1)hF1=f1(V |F = f) +H(F1|F )

=
∑

f1

P (F1 = f1)hF1=f1(V |F ) +H(F1|F )

(D.3)
≤
∑

f1

P (F1 = f1)hF1=f1(V ) +H(F1|F ) = h(V |F1) +H(F1|F )

≤ h(V |F1) +H(F1)
(6.7.11)
=== H(V, F1) = H(V̂ ). ⊓⊔
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72. O. C. Imer, S. Yüksel, and T. Başar. Optimal control of LTI systems over unreliable
communication links. Automatica, 42:1429–1439, 2006.
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σ-bounded, 252

absolute stability, 118
achievable rate ensemble, 303
achievable rate vector, 298
additive channel, 275
alarm control sequence, 181
alarm symbol, 69
alphabet, 41
anytime capacity, 248
average mutual information, 137
averaged conditional differential entropy,

150
averaged conditional entropy, 138
averaged conditional mutual information,

151
averaged joint conditional entropy, 151

basic sensors, 495
Bellman’s principle of optimality, 503
binary switching multiple access channel,

275
binary symmetric channel, 205
block code, 161, 204
block function, 204
block length, 161
bounded in probability sequence, 250
broadcasting channel, 275

capacity domain, 298, 303
central controller, 415
centroid, 69
channel administrator, 276
channel alphabet, 272

channel input alphabet, 249
channel memory, 273
channel output alphabet, 249
characteristic graph of a channel, 206
coder, 14, 25, 41, 121, 134, 143, 249, 256,

272
communication equations, 283
conditional differential entropy, 150
conditional entropy, 138
conditional mutual information, 151
contact nodes, 287
contracted quantizer, 70
contraction rate, 70
control channel, 408, 473
control strategy, 272
control-based extension, 294
controller-coder separation principle, 450

data communication scheme, 301
data injection prefix, 285
data processing equations, 283
data processing inequality, 151
data processing strategy, 288
data processor, 274
deadbeat observer, 160, 224, 254
deadbeat stabilizer, 181, 258
decentralized control strategy, 292
decoder, 14, 41, 121
decoder-controller, 25, 143, 256
decoder-estimator, 134, 249
decoding rule, 161, 204
delayed channel, 272
detectable via a digital communication

channel, 103
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deterministic network with interference, 275
differential entropy, 150
discrete Kalman filter, 509
discrete memoryless channel, 137
discrete-time algebraic Riccati equation, 27
distinguishable code words, 204
dynamic programming procedure, 498

element, 274
elementary spectral set, 49
entropy of a random quantity, 137
equivocation, 138
erasure channel, 205
error exponent, 162
errorless block code, 298
errorless decoding rule, 204

feedback communication channels, 135
feedback control alphabet, 234
feedback control channels, 409
feedback tunnel, 294

inner input, 282
inner output, 282
input alphabet, 134
input nodes, 288
integral quadratic constraint, 115, 117, 495,

500

joint conditional entropy, 151
joint entropy, 151

Kalman filter, 510

linear-quadratic Gaussian optimal control
problem, 509

local controller, 415
locally reachable, 19

Markov time, 215
master sensor, 333
master slave prefix, 334
memory alphabet, 279
minimum variance estimate, 373
mode-wise prefix, 295
mode-wise suffix, 296
mode-wise suffix with quantization, 296
model predictive sensor scheduling, 498
multimode channel, 278
multimode network, 278

multipath switching channel, 277
multiple access channel, 275

network data source, 285
network with unconstrained contact nodes,

288
networked block code, 297, 303
norm-bounded constraint, 117

observability via the communication
channels, 378

observable, 15
observation channel, 407, 473
observer, 134, 249
one-step-ahead optimal sensor schedule, 498
one-zone-ahead optimal sensor schedule,

488
operation epoch, 140
optimal control problem, 27
optimal sensor schedule, 496, 498
outer input, 282
outer output, 282
output alphabet, 134
output nodes, 288

perfect channel, 272
polyhedral quantizer, 70
pseudoinverse, 375

quadratic cost function, 26
quantized value, 69
quantizer, 69

rate ensemble, 303
rate of exponential stabilizability, 46
rate of the block code, 161
rate vector, 298
regular operation epoch, 170
Riccati differential equation, 497, 499, 501
robustly observable, 120, 496
robustly stable, 18

sector bounded nonlinearity, 118
semialgebraic, 46
semirational, 47
semirational coder, 139
semirational decoder, 140, 145
sensor control, 471
sensor schedule, 495
separated set, 16, 217
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sequential stabilization, 64
service interval, 340
set-valued state estimation problem, 115,
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Shannon capacity of a channel, 138
simple semirational recursive coder, 47
simple semirational recursive decoder, 47
slave sensor, 336
slight limit point, 459
source alphabet, 285
spanning set, 15
square ensemble of matrices, 375
stability in probability, 256
stabilizable system, 25
stabilizable via a digital communication

channel, 109
state estimator, 14, 497
strong law of large numbers, 171
strong robust observability, 122
suffix, 290
switching channel, 277
synchronous sensor scheduling, 495

synchronous sensor switching, 496, 498
system uncertainty, 495

time-varying uncertain system, 116
topological entropy, 15
transmission capacity, 42, 43
two-way switching channel, 276

uncertain system, 14, 494, 500
uncertainty input, 116
uncertainty output, 117
uniform and robust observability, 496, 498,

500, 501
uniformly and exponentially stabilizable

system, 46
uniformly and exponentially stabilizes, 46

Voronoi structure, 122

zero error capacity, 203, 204
zero error capacity with a delayed feedback,
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