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Preface

Rapid advances in communication technology have opened up the possibility of
large-scale control systems in which the control task is distributed among several
processors and the communication among the processors, sensors, and actuators is
via communication channels. Such control systems may be distributed over large dis-
tances and may use large numbers of actuators and sensors. The possibility of such
networked control systems motivates the development of a new chapter of control
theory in which control and communication issues are integrated, and all the limita-
tions of communication channels are taken into account. There is an emerging litera-
ture on this topic; however, at present there is no systematic theory of estimation and
control over communication networks. This book is concerned with the development
of such a theory.

This book is primarily a research monograph that presents, in a unified man-
ner, some recent research on control and estimation over communication channels.
It is essentially self-contained and is intended both for researchers and advanced
postgraduate students working in the areas of control engineering, communications,
information theory, signal processing or applied mathematics with an interest in the
emerging field of networked control systems. The reader is assumed to be competent
in the basic mathematical techniques of modern control theory.

By restricting ourselves to several selected problems of estimation and control
over communication networks, we are able to present and prove a number of results
concerning optimality, stability, and robustness that are of practical significance for
networked control system design. In particular, various problems of Kalman filtering,
stabilization, and optimal control over communication channels are considered and
solved. The results establish fundamental links among mathematical control theory,
Shannon information theory, and entropy theory of dynamical systems. We hope
that the reader finds this work both useful and interesting and is inspired to explore
further the diverse and challenging area of networked control systems. This book is
one of the first research monographs on estimation and control over communication
networks.

The material presented in this book derives from a period of fruitful research col-
laboration between the authors on the area of networked control systems beginning
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in 1999 and is still ongoing. Some of the material contained herein has appeared as
isolated results in journal papers and conference proceedings. This work presents
this material in an integrated and coherent manner and presents many new results.
Much of the material arose from joint work with students and colleagues, and the au-
thors wish to acknowledge the major contributions made by Veerachai Malyavej, lan
Petersen, Rob Evans, Teddy Cheng, Efstratios Skafidas, and Valery Ugrinovskii. Our
thanks for the help with some figures in the book go to Teddy Cheng and Veerachai
Malyavej. We are also grateful to our colleagues Girish Nair, Daniel Liberzon, Vic-
tor Solo, Tamer Basar, David Clements, and Andrey Barabanov who have provided
useful comments and suggestions.

The authors wish to acknowledge the support they have received throughout the
preparation of this work from the School of Electrical Engineering and Telecommu-
nications at the University of New South Wales, Sydney, and the Faculty of Math-
ematics and Mechanics at the Saint Petersburg University. The authors are also ex-
tremely grateful for the financial support they have received from the Australian Re-
search Council, the Russian Foundation for Basic Research (grant 06-08-01386), and
the Research Council of the President of the Russian Federation (grant 2387.2008.1).

Furthermore, the first author is grateful for the enormous support he has received
from his wife Elena and daughter Julia. Also, the second author is indebted to the
endless love and support he has received from his wife Natalia and children Mikhail
and Katerina.

Alexey S. Matveev Saint Petersburg, Russia
Andrey V. Savkin Sydney, Australia
March 2008
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1

Introduction

1.1 Control Systems and Communication Networks

Control and communications have traditionally been different areas with little over-
lap. Until the 1990s it was common to decouple the communication issues from con-
sideration of state estimation or control problems. In particular, in the classic control
and state estimation theory, the standard assumption is that all data transmission re-
quired by the algorithm can be performed with infinite precision in value. In such an
approach, control and communication components are treated as totally independent.
This considerably simplifies the analysis and design of the overall system and mostly
works well for engineering systems with large communication bandwidth. However,
in some recently emerging applications, situations are encountered where observa-
tion and control signals are transmitted via a communication channel with a limited
capacity. For instance, this issue may arise with the transmission of control signals
when a large number of mobile units needs to be controlled remotely by a single
decision maker. Since the radio spectrum is limited, communication constraints are
a real concern. In [199], the design of large-scale control systems for platoons of
underwater vehicles highlights the need for control strategies that address reduced
communications, since communication bandwidth is severely limited underwater.
Other recent emerging applications are micro-electromechanical systems and mo-
bile telephony.

On the other hand, for complex networked sensor systems containing a very large
number of low-power sensors, the amount of data collected by the sensors is too large
to be transmitted in full via the existing communication channel. In these problems,
classic control and state estimation theory cannot be applied since the controller/state
estimator only observes the transmitted sequence of finite-valued symbols. So it is
natural to ask how much transmission capacity is needed to achieve a certain control
goal or a specified state estimation accuracy. The problem becomes even more chal-
lenging when the system contains multiple sensors and actuators transmitting and
receiving data over a shared communication network. In such systems, each mod-
ule is effectively allocated only a small portion of the network total communication
capacity.

A.S. Matveev and A.V. Savkin, Estimation and Control over Communication Networks, 1
doi: 10.1007/978-0-8176-4607-3 1,
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2 1 Introduction

Another shortcoming of the classic control and estimation theory is the as-
sumption that data transmission and information processing required by the con-
trol/estimation algorithm can be performed instantaneously. However, in complex
real-world networked control systems, data arrival times are often delayed, irregular,
time-varying, and not precisely known, and data may arrive out of order. Moreover,
data transferred via a communication network may be corrupted or even lost due to
noise in the communication medium, congestion of the communication network, or
protocol malfunctions. The problem of missing data may also arise from temporary
sensor failures. Examples arise in planetary rovers, arrays of microactuators, and
power control in mobile communications. Other examples are offered by complex
dynamic processes like advanced aircraft, spacecraft, and manufacturing processes,
where time division multiplexed computer networks are employed for exchange of
information between spatially distributed plant components.

On the other hand, for many complex control systems, it can be desirable to dis-
tribute the control task among several processors, rather than using a single central
processor. If these processors are not triggered by a common clock pulse, and their
computation, sampling, and hold activities are not synchronized, we call them asyn-
chronous controllers. In addition, these processors need not operate with the same
sampling rate, and so-called multirate sampling in control systems has been of inter-
est since the 1950s (see, e.g., [54,80,230]). The sampling rates of the controllers are
typically assumed to be precisely known and integrally proportional, and sampling
is synchronized to make the sampling process periodic, with a period equal to an in-
tegral multiple of the largest sampling period. However, in many practical situations,
the sampling times are irregular and not precisely known. This occurs, for example,
when a large-scale computer controller is time-shared by several plants so that con-
trol signals are sent out to each plant at random times. It should be pointed out that
the multitask allocation for large multiprocessor computers is a very complex and
practically nondeterministic process. In fact, the problem of uncertain and irregular
sampling times often faces engineers when they use multiprocessor computer sys-
tems and communication networks for operation and control of complex physical
processes. In all these applications, communication issues are of real concern.

Another rapidly emerging area is cooperative control of multiagent networked
systems, especially formations of autonomous unmanned vehicles; see, e.g., [9,51,
76,159, 160, 169]. The key challenge in this area is the problem of cooperation be-
tween a group of agents performing a shared task using interagent communication.
The system is decentralized, and decisions are made by each agent using limited
information about other agents and the environment. Applications include mobile
robots, unmanned aerial vehicles (UAVs), automated highway systems, sensor net-
works for spatially distributed sensing, and microsatellite clusters. In all these ap-
plications, the interplay between communication network properties and vehicle dy-
namics is crucial. This class of problems represents a difficult and exciting challenge
in control engineering and is expected to be one of the most important areas of con-
trol theory in the near future.
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A slightly different approach was proposed in the signal processing community
where problems of parameter estimation in sensor networks with limited communi-
cation capacity were studied (see, e.g., [6,7] for a survey).

These new engineering applications have attracted considerable research interest
in the last decade; however, the interplay between control and communication is a
fundamental topic, and its origins go back much earlier than that. For example, in
1948 Wiener introduced the term cybernetics and defined it as control and communi-
cation in the animal and the machine [218]. Furthermore, ideas on importance of the
information-based approach to control can be found in the work of many researchers
over several decades.

All these engineering applications and fundamental questions motivate devel-
opment of a new chapter of mathematical electrical engineering in which control
and communication issues are combined, and all the limitations of the communica-
tion channels are taken into account. The emerging area of networked control sys-
tems lies at the crossroads of control, information, communication, and dynamical
system theory. The importance of this area is quickly increasing due to the grow-
ing use of communication networks and very large numbers of sensors in mod-
ern control systems. There is now an emerging literature on this topic, (see, e.g.,
[15,27,39,42,48,58,64,74,128, 133, 135]) describing a number of models, algo-
rithms, and stability criteria. However, currently there is no systematic theory of
estimation and control over communication networks. This book is concerned with
the development of such a new theory that utilizes communications, control, infor-
mation, and dynamical systems theory and is motivated by and applied to advanced
networking scenarios.

The literature in the field of control over communication networks is vast, and
we have limited ourselves to references that we found most useful or that contain
material supplementing the text. The coverage of the literature in this book is by no
means complete. We apologize in advance to the many authors whose contributions
have not been mentioned. Also, an excellent overview of the literature in the field
can be found in [142].

In conclusion, the area of networked control systems is a fascinating new disci-
pline bridging control engineering, communications, information theory, signal pro-
cessing, and dynamical system theory. The study of networked control systems rep-
resents a difficult and exciting challenge in control engineering. We hope that this
monograph will help in some small way to meet this challenge.

1.2 Overview of the Book

In this section, we briefly describe the results presented in the book.

1.2.1 Estimation and Control over Limited Capacity Deterministic Channels

Chapter 2 provides basic results on connections between problems of estimation and
control over limited capacity communication channels and the entropy theory of dy-
namical systems originated in the work of Kolmogorov [82, 83]. The paper [141]
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imported the concept of topological entropy into the area of control over communi-
cation channels. In Chap. 2, we use the so-called “metric definition” of topological
entropy and derive several important properties of it. In particular, we present a sim-
ple proof of the well-known result asserting that the topological entropy of a discrete-
time linear system is given by

H(A) = > logy(max{L,|\l}), (1.2.1)
i=1,2,....n
where A is the matrix of the linear system and { A1, Ao, ..., A, } is the set of eigenval-

ues of the matrix A. In this chapter, we give a necessary and sufficient condition for
observability over a limited capacity channel in terms of an inequality between the
channel capacity and the topological entropy of the open-loop plant. Furthermore,
we show that the similar inequality

H(A) <R (1.2.2)

is a necessary and sufficient condition for stabilizability of a linear plant via a digital
channel. Here H(A) is defined by (1.2.1) and R is the capacity of the determinis-
tic digital channel. It should be pointed out that similar results were first proved in
the work of Nair and Evans [137, 138]. Furthermore, we prove that under the same
inequality (1.2.2) between the channel capacity and the topological entropy of the
plant, the cost in the problem of linear-quadratic (LQ) optimal control via a digi-
tal channel can be brought as close as desired to the cost in the classic LQ optimal
control problem.

Chapter 3 extends the stabilization result of Chap. 3 to the much more general
case of linear plants with multiple sensors and multiple digital communication chan-
nels. Moreover, it is not assumed that the channels are perfect; i.e., time-varying
delays and data losses are possible.

In Chap. 4, we consider problems of detectability and output feedback stabiliz-
ability via limited capacity communication channels for a class of nonlinear systems,
with nonlinearities satisfying a globally Lipschitz condition. We derive sufficient
conditions for stabilizability and detectability and present a constructive procedure
for the design of state estimators and stabilizing output feedback controllers. Finally,
we present an illustrative example in which a stabilizing output feedback controller
is designed for a robotic flexible joint with video measurement transmitted to the
controller location via a wireless limited capacity communication channel.

Chapter 5 addresses the problem of robust state estimation over limited capacity
communication channels. Robustness is one key requirement for any control system.
That is, the requirement that the control system will maintain an adequate level of
performance in the face of significant plant uncertainty. Such plant uncertainties may
be due to variation in the plant parameters and to the effects on nonlinearities and
unmodeled dynamics that have not been included in the plant model. In fact, the
requirement for robustness is one of the main reasons for using feedback in control
system design. In this chapter, we consider a plant modeled by an uncertain system
with uncertainties satisfying so-called integral quadratic constraint. This uncertainty



1.2 Overview of the Book 5

description was first introduced in the work of Yakubovich on absolute stability (see,
e.g., [222]). A robust coder—decoder—estimator is designed for such uncertain plants.

Chapter 13 studies the problem of linear-quadratic Gaussian (LQG) optimal con-
trol over a limited capacity communication channel. This problem is considered for
a discrete-time linear plant and a finite time interval. We derive an optimal coding—
decoding—control strategy for this problem. One consequence of the main result of
this chapter is that an analog of the separation principle from linear stochastic control
does not hold for problems of optimal Gaussian control via limited capacity chan-
nels.

1.2.2 An Analog of Shannon Information Theory: Estimation and Control
over Noisy Discrete Channels

In Chaps. 6-8, we present several results that can be viewed as an analog of Shannon
information theory for networked control systems. We consider problems of stabi-
lization and state estimation of unstable linear discrete-time plants via stationary,
memoryless, noisy discrete channels, which are common in classic information the-
ory.
The main result of Chap. 6 is that stabilizability (detectability) with probability
1 of a linear unstable plant without plant disturbances is “almost” equivalent to the
inequality
H(A) <, (1.2.3)

where ¢ is the Shannon ordinary capacity of the channel and H (A) is the topological
entropy of the open-loop plant defined by (1.2.1).

In Chap. 7, we address similar stabilization and state detection problems; how-
ever, it is assumed that the plant is affected by disturbances. We prove that an “al-
most” necessary and sufficient condition for existence of a coder—decoder pair such
that solutions of the closed-loop system are bounded with probability 1 is the in-
equality

H(A) < ¢, (1.2.4)

where ¢ is the zero error capacity of the channel. The Shannon ordinary capacity ¢
of the channel is the least upper bound of rates at which information can be transmit-
ted with as small a probability of error as desired, whereas the zero error capacity cq
is the least upper bound of rates at which it is possible to transmit information with
zero probability of error. The concept of the zero error capacity was also introduced
by Shannon in 1956 [189]. Unlike the Shannon ordinary capacity, the zero error ca-
pacity may depend on whether the communication feedback is available. The general
formula for ¢ is well known, whereas the general formula for ¢y is still missing.

The results of these two chapters have significant shortcomings. The results of
Chap. 6 do not guarantee any robustness subject to disturbances. On the other hand,
the results of Chap. 7 are quite conservative. Indeed, usually, ¢¢ is significantly less
than ¢. Moreover, ¢g = 0 for many channels. Also, despite 50 years of research in
information theory started by Shannon, there is no general formula for ¢.
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To overcome these shortcomings, in Chap. 8, we introduce the concept of stabi-
lizability in probability. This kind of stabilizability means that one can find a coder—
decoder pair such that the closed-loop system satisfies the following condition: For
any probability 0 < p < 1, a constant b, > 0 exists such that:

Pllz@®)| <b]>p Vt=1,2,.... (1.2.5)

The main result of Chap. 8 is that stabilizability in probability is almost equivalent
to the inequality (1.2.3).

Combining the results of Chaps. 6 and 8, it can be shown that if the inequality
(1.2.4) holds, then the constants b, in (1.2.5) can be taken so that

sup b, < oo.
p—1

On the other hand, if ¢g < H(A) < ¢, then

sup b, = oo.
p*)];

Similar results were derived in Chaps. 7 and 8 for state estimation problems.
It should be pointed out that the procedures for the design of controllers and state
estimators proposed in Chaps. 6-8 are quite constructive. Furthermore, it is very

important that all these coder—decoder pairs require uniformly bounded over infinite
time memory and computational power.

1.2.3 Decentralized Stabilization via Limited Capacity Communication
Networks

The advanced networking scenario is considered in Chap. 9. In this chapter, we study
linear plants with multiple sensors and actuators. The sensors and actuators are con-
nected via a complex communication networks with a very general topology. The
network contains a large number of spatially distributed nodes that receive and trans-
mit data. Each node is equipped with a CPU. For some nodes, coding and decoding
algorithms are fixed, for other nodes, they need to be designed. Moreover, data may
arrive with delays, be lost, or become corrupted. The goal is to stabilize a linear plant
via such a network. We give a necessary and sufficient condition for stabilizability.
This condition is given in terms of the so-called rate (capacity) domain of the com-
munication network. Our results show that the problem of networked stabilization is
reduced to the very hard long-standing problem of information theory: calculating
the capacity domain of communication networks.

1.2.4 H° State Estimation via Communication Channels

In Chap. 10, a different approach to state estimation via communication channels
is presented. In this new problem statement, the channel transmits a continuous-
time vector signal. The limited capacity of the channel means that the dimension
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of the signal to be transmitted is smaller than the dimension of the plant measured
output. Our goal is to design a coder at the transmitting end of the channel and a
decoder—estimator at the receiving end so that the state estimate produced by the
coder—decoder pair satisfies a standard requirement from H° filtering theory. It
should be pointed out that the state estimator designed in Chap. 10 is linear and
time-invariant.

1.2.5 Kalman Filtering and Optimal Control via Asynchronous Channels with
Irregular Delays

In Chaps. 11 and 12, discrete-time linear plants with Gaussian disturbances are con-
sidered. The system under consideration has several sensors and measurements are
transmitted to the estimator or controller via parallel communication channels with
independent delays. Unlike Chaps. 2-9 where the communication channels transmit
symbols from finite alphabets, in these chapters we assume that transmissions are
performed with infinite precision in value; i.e., the channels transmit discrete-time
sequences of real numbers or vectors. However, data may be lost or arrive out of
order.

In Chap. 11, we assume that the probability distributions of the channels delays
are known. Under this assumption, we derive an analog of the Kalman filter and solve
the LQG optimal control problem. In Chap. 12, we consider a more complicated
situation where the control loop is not perfect and control signals arrive to several
actuators via asynchronous communication channels. Based on the results of the
previous chapter, we give a solution of the optimal control problem for such systems.
It should be pointed out that unlike Chaps. 2-9, all the optimal state estimators and
controllers of Chaps. 11 and 12 are linear.

1.2.6 Kalman Filtering with Switched Sensors

In Chaps. 14 and 15 we consider plants with multiple sensors communicating to
the state estimator via a set of independent channels. The bandwidth limitation con-
straint is modeled in such a manner that the state estimator can communicate with
only one sensor at any time. So the state estimation problem is reduced to finding a
suitable sensor scheduling algorithm. In Chap. 14 we consider the system with asyn-
chronous communication channels between the sensors and the state estimator. As in
Chaps. 11 and 12, sensor data arrive with irregular delays and may be lost. Using the
results of Chap. 11, we derive an optimal sensor scheduling rule. The construction of
the optimal state estimator is based on solving the Riccati equations and a dynamic
programming equation.

Chapter 15 considers the sensor switching problem for uncertain plants, with un-
certainties satisfying integral quadratic constraints. Such uncertain system models
were studied in Chap. 5. Furthermore, we use robust state estimation results from
Chap. 5. As in Chap. 14, our sensor switching algorithm requires solving a set of
Riccati equations and a dynamic programming equation. Because solving a dynamic
programming equation is a computationally expansive procedure, in both Chaps. 14
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and 15, we propose suboptimal state estimators that are designed using ideas of so-
called model predictive control. Such state estimators require much less computa-
tional power and are more implementable in real time.

1.2.7 Some Other Remarks

The chapters of this book can be divided into two groups. In Chaps. 2-9, and 13,
we consider communication channels that transmit a finite number of bits; in other
words, elements form a finite set. On the other hand, in Chaps. 10-12, 14, and 15,
transmissions are performed with infinite precision in value; i.e., the communication
channels under consideration transmit real numbers or vectors.

It should be pointed out that the state estimation and control systems designed in
Chaps. 2-9, and 13-15 can be naturally viewed as so-called hybrid dynamical sys-
tems; see, e.g., [104, 173,174,177, 185,211]. The term “hybrid dynamical system”
has many meanings, the most common of which is a dynamic system that involves
the interaction of discrete and continuous dynamics. Such dynamic systems typi-
cally contain variables that take values from a continuous set (usually the set of real
numbers) and symbolic variables that take values from a finite set (e.g., the set of
symbols {q1, g2, - - ., qr }). A model of this type can be used to describe accurately a
wide range of real-time industrial processes and their associated supervisory control
and monitoring systems. In Chaps. 2-9, and 1315, the plant state variables are con-
tinuous, whereas data transmitted via digital finite capacity channels can be naturally
modeled as symbolic variables.

Discrete-time plants are under consideration in Chaps. 2 and 3, 6-9, and 11-14.
Chapters 4 and 5, 10 and 15 study continuous-time plants.

Stochastic models are addressed in Chaps. 6—8 and 10-14, whereas all other
chapters consider deterministic models.

The design procedures of Chaps. 10—12 result in linear state estimators and con-
trollers. The state estimators and controllers in all other chapters are highly nonlinear.

Finally, plants with parametric uncertainties are studied in Chaps. 2, 5, and 15.

1.3 Frequently Used Notations

is defined (set) to be

and

or

implies

is equivalent to

corresponds to, is associated with

is identical to

the end of proof

{e1,€2,...,en} the set composed by the elements ey, es, ..., e,

{e € E: P(e)holds} the set of all elements e € E with the property P(e)

T U <2
&

DIIII
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E = {e} this means that the elements of the set £ are denoted by e
the empty set

|S] the size (cardinality) of the set S

ds the counting measure S’ C S — |S’| if the set S = {s} is
finite, and the Lebesgue measure if S = RF*

1) the dot - in brackets underscores that the preceding symbol
is used to denote a function

® a ’void” symbol; it is used to symbolize that the contents of

something are null; for example, the memory is empty,
no message is received (which may be interpreted as
receiving a message with the null content)

" the ”alarm” symbol; it is used to mark “undesirable” events

R,C,Z the sets of real, complex, and integer numbers, respectively

sgn the sign of the real number =

f(t+0) the limit of the function f(-) at the point ¢ from the right
ft+0):= 6>&’1r1f61H0f(15 +e€)

f(t—0) the limit of the function f(-) at the point ¢ from the left

flt=0)= _lim f(t—o)

Real interval Integer interval
with end points tg,t; € R with end points tg,t1 € Z
a) [to,t1] :={teR:to<t<t1} [to:t]:={t€Z:tog<t<t1}
b) [to,t1) :=={teR:to <t <t} [to:t1):={t€Z:tg<t<ti}
¢ (to,ta] :={teR:tg<t<t1} (to:t1]:={t€Z:to<t<ti}
d) (to,t1) :={teR:to<t<t1} (to:t1):={t€Z:to <t <ti}
t1 may equal +oo0 in the cases b) and d).

to may equal —oo in the cases c) and d).

lim z; = limsupz; the upper limit of the real-valued sequence:
1o 1—00

lim x; = limsupz; := lim supz;
i— 00 i—00 k—oo i>k

lim z; = liminf z; the lower limit of the real-valued sequence:

i—00 100
lim z; = liminf z; := lim inf ;
i— 00 i—00 k—ooi>k

1 the imaginary unit

Rez,Imz the real and imaginary parts of the complex number z
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[]
]

log,,
log, 0
log, oo
In

0-(£o0)
x; T oo

Introduction

()|t

= min k: the integer ceiling of the real number z
kEZ:k>a

:= max k: the integer floor of the real number z

ke€Z:k<z
the logarithm base a € (0,1) U (1, 00)

= —00

= +00

the natural logarithm

=0

this means that the real-valued sequence =1, x2, . . .
increases x; < ;41 and x; — 00 as i — o0

the restriction of the function z(t) of ¢
on [to : t1] if ¢ is the integer variable and
on [tg, t1] if ¢ is the real variable
the open ball centered at z with the radius r
the volume (Lebesgue measure) of the set S C RF:
the index may be dropped if & is clear from the context
the closure of the set S
the interior of the set S
the dimension of a linear space L
the dimension of the vector =
the transpose
= (Df, ey D;) ', where D, is a q; X T matrix
the norm in R™ given by

Hx”p = (Zz 1 ‘JZ |) ifp € [1’00)
maxi=i,..n ‘-rz‘ ifp =

for == col(z1,...,2,)

the standard Eucledian norm || - || = || - ||2

the space of p € [1, 00) power integrable vector-functions f(-):

1Ol = (/f pdt) < oo

the direct sum of linear subspaces; the direct sum
of the empty group of subspaces is defined to be {0}
the standard inner product in the Eucledian space R™

, Tp)
“Yn)

= col (zq,...
y = col (y1,...

) :inyi for
i=1
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ker A
ImA
AlL
tr A
det A
o(A)
ot (A)
o~ (A)
M,(A)
My(A)
Munst(A)

diag(Al, ey Ak)

| Al

D im Qi =0
H;L:m AZ - Is
deg ¢(-)
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the linear hull of a subset S of a linear space
the unit m x m matrix;
the index may be dropped if m is clear from the context
the zero m X n matrix
the kernel of the matrix (operator) A:
ker A := {z: Az =0}
the image of the matrix (operator) A:
ImA :={y: Jz,y = Az}
the restriction of the operator (matrix) A
on the linear subspace L
the trace (the sum of the diagonal elements)
of the square matrix A
the determinant of the square matrix (operator) A
the spectrum of A
:={A € d(A) : |A\| > 1}: the unstable part of the spectrum
:=0(A) \ ot (A): the stable part of the spectrum
the invariant subspace of A
related to the spectrum set 0 C o(A)
:= M- (4): the invariant subspace related to
the stable part of the spectrum
:= M+ (a) the invariant subspace related to
the unstable part of the spectrum
the diagonal block-matrix with the square matrices A;
along the diagonal and zero blocks outside the diagonal
the norm of the matrix (operator) A:
1AL := sup, 4o |4l = supy, 1 Az

where || - || is a given vector norm

whenever m > n, where (); are elements of a common
linear space, and 0 is the zero of this space

whenever m > n, where A; are s X s-matrices

the degree of the polynomial (-)

the inequality up to a polynomial factor:

a polynomial (-) exists
Ft) S 9t) < {such that £(£) < o(t)g(t) w}

the equality up to a polynomial factor:

f(r)=g(r) & f(r) S g(r)&g(r) < f(r)
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the propability

the mathematical expectation

:= P(F = f) for arandom variable I' € §
and an element f € §

the conditional probability given that F' = f

whenever P(f) =0

the probability distribution of the random variable G
the probability distribution of the random variable G

{ given that F' = f

the probability density of a random vector V' € R?
the probability density of a random vector V' € R?

{ given that F' = f

the indicator of the random event E:

Ir = 1if E holds, and I = 0 otherwise

“almost surely, with probability 1”

the differential entropy of the random vector V'

h(V) :=— /pv(v) log, py (v) dv

In conclusion, we note that the capital script letters will be mostly used to denote
deterministic functions. The measurable space is a pair [, X, where U is a set and
2 is a o-algebra of subsets V' C U.
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Topological Entropy, Observability, Robustness,
Stabilizability, and Optimal Control

2.1 Introduction

In this chapter, we study connections among observability, stabilizability, and op-
timal control via digital channels on the one hand, and topological entropy of the
open-loop system on the other hand. The concept of entropy of dynamic systems
was originated in the work of Kolmogorov [82,83] and was inspired by the Shan-
non’s pioneering paper [188]. Kolmogorov’s work started a whole new research di-
rection in which entropy appears as a numerical invariant of a class of deterministic
dynamic systems (see also [162]). Later, Adler and his co-authors introduced topo-
logical entropy of dynamic systems [2], which is a modification of Kolmogorov’s
metric entropy. The paper [140] imported the concept of topological entropy into the
theory of networked control systems. The concept of feedback topological entropy
was introduced, and the condition of a local stabilizability of nonlinear systems via a
limited capacity channel was given. In this chapter, we extend the concept of topolog-
ical entropy to the case of uncertain dynamic systems with noncompact state space.
Unlike [140], we use a less common “metric”’definition of topological entropy intro-
duced by Bowen (see, e.g., [26]). The “metric definition” is, in our opinion, more
suitable to the theory of networked control systems. The main results of the chap-
ter are necessary and sufficient conditions of robust observability, stabilizability, and
solvability of the optimal control problem that are given in terms of inequalities be-
tween the communication channel data rate and the topological entropy of the open-
loop system. The main results of the chapter were originally published in [171].
Notice that the results on stabilizability of linear plants via limited capacity commu-
nication channels were proved by Nair and Evans (see, e.g., [137, 138]).

The remainder of the chapter is organized as follows. Section 2.2 introduces the
concept of observability of a nonlinear uncertain system via a digital communica-
tion channel. The definition of topological entropy and several conditions for ob-
servability in terms of topological entropy are given in Sect. 2.3. In Sect. 2.4, we
calculate the topological entropy for some important classes of linear systems. Sec-
tion 2.5 addresses the problem of stabilization of linear systems. The problem of
linear-quadratic (LQ) optimal control via a limited capacity digital channel is solved

A.S. Matveev and A.V. Savkin, Estimation and Control over Communication Networks, 13
doi: 10.1007/978-0-8176-4607-3 2,
© Birkhduser Boston, a part of Springer Science + Business Media, LLC 2009
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in Sect. 2.6. Finally, Section 2.7 presents the proofs of some results from Sects. 2.4,
2.5, and 2.6.

2.2 Observability via Communication Channels

In this section, we consider a nonlinear, uncertain, discrete-time dynamic system of
the form:
z(t+1)=F(x(t),w(t)), =(l)eX, x(t)eX, (2.2.1)

where ¢ = 1,2,3,..., z(t) € R" is the state; w(t) € {2 is the uncertainty input;
X C R™is agiven set; X; C X is a given nonempty compact set; and 2 C R™ is a
given set. Notice that we do not assume that the function F'(-, -) is continuous.

In our observability problem, a sensor measures the state x(¢) and is connected to
the controller that is at the remote location. Moreover, the only way of communicat-
ing information from the sensor to that remote location is via a digital communication
channel that carries one discrete-valued symbol A(jT") at time jT, selected from a
coding alphabet §) of size [. Here T > 1 is a given integer period,and j = 1,2,3, .. ..

This restricted number ! of codewords h(jT') is determined by the transmission
data rate of the channel. For example, if x is the number of bits that our channel can
transmit, then [ = 2* is the number of admissible codewords. We assume that the
channel is a perfect noiseless channel and that there is no time delay. Let R > 0
be a given constant. We consider the class € of such channels with any period T'
satisfying the following transmission data rate constraint:

log,
T

The rate R = 0 corresponds to the case when the channel does not transmit data at
all.

We consider the problem of estimation of the state x(¢) via a digital communi-
cation channel with a bit-rate constraint. Our state estimator consists of two com-
ponents. The first component is developed at the measurement location by taking
the measured state z(-) and coding to the codeword h(j7"). This component will
be called a “coder.” Then the codeword h(jT') is transmitted via a limited capacity
communication channel to the second component, which is called a “decoder.” The
second component developed at the remote location takes the codeword h(j7") and
produces the estimated states &((j —1)T+1),...,&(j7 — 1), &£(§7"). This situation
is illustrated in Fig. 2.1 (where y = = now).

The coder and the decoder are of the following forms, respectively:

& (2.2.2)

hGT) = F; (a(HT) (223)
HG-DT+1)
: = G; [h(T), h(2T), ... h((j — V)T),h(jT)].  (2.2.4
ST - 1) [W(T), h(2T), ..., (G = V)T), h(GT)].  (2.24)
2(4T)
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u(t) v(41°) t(31°) #(6)
> Coder >»» * Decoder ——»

channel

Nonlinear
System

Fig. 2.1. State estimation via digital communication channel

Here j =1,2,3,....
We recall that for a vector x = col [ml o xn] from R",
|z]|oo == max |z;|. (2.2.5)
j=1,....n
Furthermore, || - || denotes the standard Euclidean vector norm:

Definition 2.2.1. The system (2.2.1) is said to be observable in the communication
channel class Cr, if for any € > 0, a period T' > 1 and a coder—decoder pair (2.2.3),
(2.2.4) with a coding alphabet of size | satisfying the constraint (2.2.2) exist such
that

lz(t) —2(t)|lo <€ Vt=1,2,3,... (2.2.6)

for any solution of (2.2.1).

2.3 Topological Entropy and Observability of Uncertain Systems

In this section, we introduce the concept of topological entropy for the system (2.2.1).
In general, we follow the scheme of [154]; however, unlike [154], we consider un-
certain dynamic systems.

Notation 2.3.1. Forany k > 1, let X, := {x(1),2(2),...,x(k)} be the set of solu-
tions of (2.2.1) with uncertainty inputs from {2.

Definition 2.3.2. Consider the system (2.2.1). For k > 1 and ¢ > 0 we call a finite
set Q C Xy an (k,e)—spanning set if for any x4(-) € Xy, an element xp(-) €
Q exists such that ||z4(t) — xp(t)||eec < € forallt = 1,2,... k. If at least one
finite (k,€)—spanning set exists, then q(k,e€) denotes the least cardinality of any
(k, €)—spanning set. If a finite (k, €)—spanning set does not exist, then q(k, ) := oo.

Now we are in a position to give a definition of topological entropy for the un-
certain dynamic system (2.2.1).
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Definition 2.3.3. The quantity

H(F(-,-),%1,%, () := lim limsup ]1 log, (q(k,€)) (2.3.1)

€—> k—>OC
is called the topological entropy of the uncertain system (2.2.1).

Remark 2.3.4. Notice that the topological entropy may be equal to infinity. In the
case of a system without uncertainty with continuous F'(-,-) and compact X, the
topological entropy is always finite [154].

Remark 2.3.5. We use Bowen’s “metric” definition of topological entropy that is dif-
ferent from the more common “topological” definition (see, e.g., p. 20 of [154]).
In the case of a continuous system without uncertainty, both definitions are equiva-
lent [154].

Now we are in a position to present the main result of this section.

Theorem 2.3.6. Consider the system (2.2.1), and assume that X = X1 (hence, X is
compact). Let R > 0 be a given constant. Then the following two statements hold:

()If R < H(F(-,-),%1,X,(2), then the system (2.2.1) is not observable in the
communication channel class €,

(ii) If R > H(F(-,-), %1, X, 2), then the system (2.2.1) is observable in the com-
munication channel class Cg.

In order to prove Theorem 2.3.6, we will need the following definition and
lemma.

Definition 2.3.7. Consider the system (2.2.1). For k > 1 and € > 0, we call a finite
set S C Xy, an (k, €)—separated set if for distinct points x4(-), zp(-) € S, we have
that ||xq(t) — 2p(t)||cc > € for some t = 1,2,... k. Let s(k,¢€) denote the least

upper bound of the cardinality of all (k,€)—separated sets. Notice that s(k, €) may
be equal to infinity.

Lemma 2.3.8. For any system (2.2.1),

lny T sup ]16 logy(s(k, €) = H(F(-, ), X1, X, 2). (2.3.2)

Proof of Lemma 2.3.8. We first observe that s(k, €) > q(k, €). Indeed, if s(k, €) =
oo, then this inequality always holds. If s(k, €) < oo, then a finite (k, ¢)—separated
set S of maximal cardinality exists and any such set must also be an (k, ) —spanning
set. Furthermore, we prove that s(k, 2¢) < q(k, €). Indeed, if ¢(k, ¢) = oo, then this
inequality obviously holds. If ¢(k,¢) < oo, then a finite (k, ¢)—spanning set () of
cardinality q(k, €) exists. Let S be any (k, 2¢)—separated finite set and s be its cardi-
nality. We take s open balls of radius € centered at the points of this (&, 2¢) —separated
set S. Then all these open balls do not intersect with each other. On the other hand,
each of these balls must contain an element of the (k, €)—spanning set Q. Since the
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balls do not intersect, we have s < ¢(k, €). It means we have proved that ¢(k, €) is no
less than the cardinality of any (k, 2¢)—separated set. Therefore,s(k, 2¢) < q(k, ¢€).
We have proved that

s(k,2€) < q(k,e) < s(k,e).

This obviously implies that

1 1
lim limsup | logy(s(k,€)) = lim limsup | log,(q(k,€)).
e—0 Lo k e—=0 oo k

Now the statement of the lemma immediately follows from the definition of the topo-
logical entropy (2.3.1). a

Remark 2.3.9. Notice that g(k, €) and s(k, €) increase with decreasing e. Therefore,
the corresponding limits lim._.¢ in (2.3.1) and (2.3.2) may be replaced by sup, .

Proof of Theorem 2.3.6. Statement (i). We prove this statement by contradiction.
Indeed, assume that the system is observable in the communication channel class
Cr with R < H(F(-,-),%X1,X,2). Let a be any number such that R < a <
H(F(-,-),%1,X%,2). Then, it follows from Lemma 2.3.8 that a constant ¢ > 0 exists
such that 1

limsup | log,(s(k,2¢)) > a. (2.3.3)
k—o0 k
Consider a coder—decoder pair (2.2.3), (2.2.4) such that the condition (2.2.6) holds,
and let 7" > 0 be its period. The inequality (2.3.3) implies that an integer £ > 0 and
an (k, 2¢)—separated set S of cardinality N exist such that

log, N
082V o (2.3.4)
k
and & P
. 235
k4T~ a (2.35)

Notice that inequality (2.3.5) is satisfied for all large enough k. Let 57 > 0 be the
integer such that
(J—-DT <k<jT. (2.3.6)

Furthermore, let S be any set of solutions on the time interval ¢ = 1,2,... 5T
coinciding with S for t = 1,2, ..., k. Then S is obviously an (k, 2¢)—separated set
of cardinality /N. We now prove that

e N p. (2.3.7)
3T

Indeed, from (2.3.4)—(2.3.6), we obtain
logy N logy N k k k

= >«

R.
iT roGT o YT Yk
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Furthermore, let S be the set of all sequences (1), #(2),...,2(jT) produced
by (2.2.3), (2.2.4). Then, the cardinality of S does not exceed ZJ Slnce 10g,2 > R,
condition (2.2.2) implies that [Y < N. Because condition (2.2.6) must be satlsﬁed for
any solution of (2.2.1) with some Z(1),#(2),...,2(jT) € S, this implies that two
elements z,(-), 2, (-) of S and an element &(-) of S exist such that condition (2.2.6)
holds with z(-) = x4(-) and z(-) = x3(+). This implies that ||z (t) — 2p(f)||cc < 2€
forallt =1,2,...,57T. However, the latter inequality contradicts to our assumption
that the set S is (T, 2¢)—separated. This completes the proof of this part of the
theorem.
Statement (ii). If the inequality R > H(F'(-,-), X1, X, {2) holds, then for any
e > 0, an integer £ > 1 and an (k, ¢)—spanning set () of cardinality N exist such
that logg N < R.Now introduce a coder—decoder pair of the form (2.2.3), (2.2.4) with
= kand [ = N as follows. Because () is an (k, ¢)—spanning set, for any solution
x( ) of (2.2.1), an element z! )( -) of @ exists such that ||m(1)( t) — 2(t)||so < € for
all t = 1,2,..., k. Furthermore, because the system (2.2.1) is time-invariant and
X = X4, for any solution z(-) of (2.2.1) and any j = 1,2, ..., an element m(J)( -) of
@ exists such that

125 (8) = 2(t)]|oe < €
Vt = (j—l)k—l—l,(j—1)k;—|—2,...,jk. (2.3.8)

Let f;(x(-)) be the index of this element $(J ) in Q. Now introduce the following
coder—decoder pair

h(jk) = fi(z(-)); (2.3.9)
B~ Dk +1) (1)
5 = . (2.3.10)
2k —1) 2D (k1)
z(jk) l‘l()j)(k‘)

It follows immediately from (2.3.8) that the condition (2.2.6) holds. Furthermore, by
construction, the coder—decoder pair satisfies the communication constraint (2.2.2).
This completes the proof of the theorem. O

Remark 2.3.10. Theorem 2.3.6 gives an “almost” necessary and sufficient condition
for observability in the communication channel class €. Notice that in the critical
case R = H(F'(-,-), %1, X, {2), both possibilities can occur. Indeed, let F'(z, ) = x
for any x; then it is obvious that H(F'(-,-), X1, X, {2) = 0. However, if ¥ = X =
{z¢}, then the corresponding system is observable in the communication channel
class €. On the other hand, if X1 = X = {xg,z1} where 2y # w1, then the
corresponding system is not observable in the communication channel class €.

Definition 2.3.11. The system (2.2.1) is said to be robustly stable if for any € > 0,
an integer k > 1 exists such that
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lz(t)]|ec <€ VEt>k (2.3.11)
for any solution x(-) of the system (2.2.1).

Proposition 2.3.12. Consider the system (2.2.1), and assume that (2 is compact,
F(-,-) is continuous, and the system (2.2.1) is robustly stable. Then

H(F(-,"),%1,%,02) =0.

Proof of Proposition 2.3.12. Let ¢ > 0 be given and & > 1 be an integer
such that (2.3.11) holds. Since X1, 2 are compact and F'(-, -) is continuous, a finite
(k, €)—spanning set () exists. Let N be the cardinality of @). For any j > k, intro-
duce the set (); by extension of solutions of (2.2.1) from ) with arbitrary w(t) € 2
for t > k. The cardinality of @); is IV for any j. The condition (2.3.11) obviously
implies that

lx(t) — xp(t)||oo < 26 YVt >k

for any solution z(-) of (2.2.1), any j, and any a3 (-) from @Q;. Therefore, for any j,
Q; is a (j, 2¢)—spanning set. Hence, ¢(j,2¢) < N for any j, and by Definition 2.3.1,
H(F(-,-),%X1,%, ) = 0. This completes the proof of the proposition. O

Definition 2.3.13. Let x(-) be a solution of (2.2.1). The system (2.2.1) is said to be
locally reachable along the trajectory x(+) if a constant § > 0 and an integer N > 1
exist such that for any k > 1 and any a,b € R" such that

(k) = all < dljz(k)ll, |lz(k+ N) = bl < éflz(k + N)|,
a solution Z(+) of (2.2.1) exists with
Z(k)=a, Z(k+N)=0.

Definition 2.3.14. A solution x(-) of (2.2.1) is said to be separated from the origin,
if a constant 5y > 0 exists such that

lz(t)]] > 00 WVt >1.
We will use the following assumptions.

Assumption 2.3.15. The system (2.2.1) is locally reachable along a trajectory sepa-
rated from the origin.

Assumption 2.3.16. The system (2.2.1) is locally reachable along a trajectory x(-)
such that ||x(t)||cc — 00 ast — oc.

Theorem 2.3.17. Consider the system (2.2.1). The following two statements hold:

(i) If Assumption 2.3.15 is satisfied, then H(F(-,-),%1,%,{2) = oo; hence, ac-
cording to Theorem 2.3.6, the system (2.2.1) is not observable in the communi-
cation channel class € with any R;
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(ii) If Assumption 2.3.16 is satisfied, then for any coder—decoder pair of the form
(2.2.3), 224)withany T, R

sup [|z(t) = 2(t)[[eo = 00,
tvx(')

where the supremum is taken over all times t and all solutions x(-) of the system
(2.2.1).

Proof of Theorem 2.3.17. Statement (i). Suppose that Assumption 2.3.15 holds,
and let N be the integer from Definition 2.3.13. It follows from Assumption 2.3.15
that the system has a trajectory x(-) and a vector ag # 0 exists such that the follow-
ing property holds: For any c¢1, co, ¢3, . .. from the interval [0, 1], a solution Z(-) of
(2.2.1) exists with the property Z(jN) = x(jN) + cjag for j = 1,2,3,.... Now
forany M > 1 and 5 > 1, consider the set SfQ of such solutions over the inter-

val t = 1,2,...,jN with ¢; taking discrete values 0, ..., " Then S7, is

< JN, Haﬂ‘” ) —separated and the cardinality of S{W is M7. Hence, by Lemma 2.3.8,

1 ,
H(F(-,-),%1,X,02)> lim limsup .__ log, (M’
(F(), 20, %,0) > Jim Tmsup | loga(M)
) 1
= A}Enoo N logy (M) = cc.
This completes the proof of this part of the theorem.

Statement (ii). Suppose that Assumption 2.3.16 holds, and let /N be the inte-
ger from Definition 2.3.13. Furthermore, consider a coder—decoder pair of the form
(2.2.3), (2.2.4) with some parameters [, T. It follows from Assumption 2.3.16 that
the system has a trajectory x(-) and a vector ap # 0 and a sequence {d;} where
dj > 0,dj+1 > dj,limj_. d; = oo exist such that the following property holds:
For any sequence {c;} where ¢; € [0,d,], a solution Z(-) of (2.2.1) exists with
the property Z(jNT') = z(jNT) + cjao for j = 1,2,3,.... Now for some
M > IV and any i > 1, consider the set S%, of such solutions over the interval
t =iNT,iNT +1,...,i*>NT, with c; taking discrete values 0, J&Idj, ceey Mj\zldj.
Then S%, is <i2N T, di”i‘}”* ) —separated and the cardinality of S, is M(*~9_ On
the other hand, by the time i2NT, the channel can transmit 1N various symbolic
sequences. Since M > [N, M=) > [©*N for large 4. It means that for large i, there
will be at least two distinct elements of S, coded by the same symbolic sequences.
Furthermore, the set S, is (izN T, %laolle ) —separated and d; — oo as i — oo.
The statement (ii) follows immediately from this. a

Remark 2.3.18. Notice that it is not surprising in Theorem 2.3.17 that topological
entropy is infinite for a large class of systems with disturbances, since the number
of unknowns in the system, i.e., initial state and disturbances, grows to infinity with
time.
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2.4 The Case of Linear Systems

In this section, we first consider a linear system without uncertainty:
x(t+1)=Ax(t), z(1)€ X4, (2.4.1)

where t = 1,2,3,..., z(t) € R™ is the state, X; C R" is a given compact set, and
A is a given square matrix.
We will suppose that the following assumption holds.

Assumption 2.4.1. The origin is an interior point of the set X1: A constant § > 0
exists such that
lalleo <0 = a € X;.

Furthermore, let S(A) = {A1, A2, ..., A, } be the set of eigenvalues of the matrix
A. Introduce the following value:

H(A):= > logy(max{L,[Xi[}). (2.4.2)
N ES(A)

Topological entropy of linear systems without uncertainty is described by the
following theorem.

Theorem 2.4.2. Consider the system (2.4.1), and suppose that Assumption 2.4.1
holds. Then, the topological entropy of the system (2.4.1) is equal to H(A) where
H(A) is defined by (2.4.2).

To prove Theorem 2.4.2, introduce the following linear system:
x(t+1) = Ax(t), =(1) e R™ (2.4.3)

The only difference between this system and the system (2.4.1) is that in (2.4.3),
initial conditions x(1) take values in the whole space R".
We will need the following lemma.

Lemma 2.4.3. Consider the system (2.4.1). Let o be a given constant such that
o > H(A), where H(A) is defined by (2.4.2), and let 3 > 0 be a given con-
stant. Then for any € > 0, an integer kg exists such that for any k > ko, a set
Qe = {x1(-),...,an ()} of N solutions of the system (2.4.3) fort = 1,2,... .k
exists with the properties | 10g,(N) < «, and for any z.(-) € Xy, an element
™) (\) € Q... exists such that

k
B lwa(t) = 2™ @))? +

(max lza(t) - 2 ()| oo < €. (2.4.4)

)
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The proof of Lemma 2.4.3 is given in Sect. 2.7.

Proof of Theorem 2.4.2. Let H denote the entropy of the system (2.4.1). We prove
that H = H(A). First prove that if « > H(A), then H < a. Lemma 2.4.3 with
{8 = 0 immediately implies the existence of an (k, €)—spanning set of cardinality N
where }C logy(N) < « for any € > 0 and all large enough k. Now Definition 2.3.3
of the topological entropy implies that H < «. Since « is any number that is greater
than H(A), we have proved that H < H(A).

Now we prove by contradiction that H > H(A). Indeed, assume that this is not
true and H < H(A). This inequality can hold only for positive H (A). Therefore,
the matrix A has at least one eigenvalue A with |A| > 1. By a linear change of state
variable, the matrix A can be transformed to the form:

AT 0
()

where all eigenvalues of A™ lie outside of the closed unit disk, and all eigenvalues
of A~ lie inside of the closed unit disk. Then H(AT) = H(A). Furthermore, let
x = col (z7,27) be the corresponding partitioning of the state vector x, m™* > 0
be the dimension of z*, and X} := X; N {col (z*,0)}. Assumption 2.4.1 implies
that a convex set ) C X exists with V,,(2) > 0, where m := m™ and V,,, (")
denotes the m-dimensional volume of a set. Moreover,

Vm(Akg.)) = Vm(AJer.)) =
|det AT |*V,, (D) = 2MEA Y, (D). (2.4.5)

On the other hand, the assumption H < H (A) and Definition 2.3.3 of the topological
entropy imply that an € > 0, a constant H, a time sequence k; — 0o, and a sequence
of (k;, e)—spanning sets of cardinality IV; exist such that

; log,(N;) < H < H(A). (2.4.6)
i
It follows from (2.4.5) and (2.4.6) that

lim ]\1] Vin (AR 1Y) = cc. (2.4.7)

On the other hand, because we have an (k;, €)—spanning set of cardinality N;, any

element of the set A*~19) must belong to one of IV; balls with radius € in || - ||

metric. This obviously contradicts to (2.4.7). This completes the proof of Theorem

24.2. O
The following corollary immediately follows from Theorem 2.4.2.

Corollary 2.4.4. Consider the system (2.4.1), and suppose that Assumption 2.4.1
holds. Then, the topological entropy of the system (2.4.1) is equal to 0 if and only if
|A| < 1 for any eigenvalue X of the matrix A.
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Remark 2.4.5. Theorem 2.4.2 together with Theorem 2.3.6 give an “almost” neces-
sary and sufficient condition for observability of the system (2.4.1) in the communi-
cation channel class €.

Remark 2.4.6. Another proof of Theorem 2.4.2 is given in [216] (see Theorem 7.12).
Notice that, in fact, results similar to Theorem 2.4.2, but stated in different terms,
were derived in [115,137,140]. Also, Theorem 2.4.2 is a reminder of the well-known
result on topological entropy of algebraic automorphisms of torus; see, e.g., [3].

Now consider a linear, uncertain, discrete-time dynamic system of the form:
z(t+1) =[A+ Bw(t)]| z(t), (1) € X1, (2.4.8)

where t = 1,2,3,..., z(t) € R™ is the state, w(t) € (2 is the uncertainty matrix,
X; C R™is a given compact set, {2 C R"*™ is a given set, and A, B are given
matrices of corresponding dimensions.

We suppose that the following assumptions hold.

Assumption 2.4.7. The matrix A has at least one eigenvalue X outside the unit cir-
cle: |\| > 1.

Assumption 2.4.8. The pair (A, B) is reachable (see, e.g., [12], p.94).

Assumption 2.4.9. The origin is an interior point of the set 2: a § > 0 exits such
that
lw]eo <6 = we N

Here || - || o is the induced matrix norm related to the vector norm (2.2.5).
Now we are in a position to present the following corollary of Theorem 2.3.17.

Proposition 2.4.10. Consider the system (2.4.8). If Assumptions 2.4.1 and 2.4.7—
2.4.9 hold, then for any coder—decoder pair of the form (2.2.3), (2.2.4) with any
T R

sup [|lz(t) — &(t)[| oo = oo,

t,z()
where the supremum is taken over all times t and all solutions x(-) of the system
(2.4.8).

Remark 2.4.11. Proposition 2.4.10 shows that any state estimator with bit rate con-
straints for a linear unstable system is not robust. For example, all estimators from
[204] will produce infinite error under any small parametric perturbation of the ma-
trix A.

Proof of Proposition 2.4.10. This statement follows from the statement (ii) of
Theorem 2.3.17. Assumptions 2.4.1 and 2.4.7 imply that the system (2.4.8) has a so-
lution () such that ||2(¢)||~ tends to infinity as ¢ tends to infinity and Assumptions
2.4.8 and 2.4.9 imply that the system is locally reachable along any its trajectory that
tends to infinity. This completes the proof of Proposition 2.4.10. a
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As an illustrative example, consider a linear, uncertain, discrete-time dynamical
system of the form:

x(t+1)=[A+ Bw®)]z(t)+0b, =z(1)€ Xy, (2.4.9)

where t = 1,2,3,..., z(t) € R™ is the state, w(t) € {2 is the uncertainty matrix,
X1 C R™is a given compact set, b € R"™ is a given vector, and A, B are given
matrices of corresponding dimensions.

We will need the following assumptions.

Assumption 2.4.12. The uncertainty w(t) satisfies the standard norm bound con-
dition (see, e.g., [148, 151, 174,178, 180]): ||w(t)|| < ¢, where ¢ > 0 is a given
constant.

Assumption 2.4.13. The matrix A is stable; i.e., |\| < 1 for any its eigenvalue M.

Assumption 2.4.14. The following frequency domain condition holds:

1
max ||(z] — A)7'B|| < . (2.4.10)
z€C:|z|=1 c

Proposition 2.4.15. Consider the uncertain system (2.4.9), and let ¢ > 0 be a given
constant. Suppose that Assumptions 2.4.8 and 2.4.12-2.4.14 are satisfied. Then the
following two statements hold:

(i) If b = 0, then the topological entropy of the system (2.4.9) is equal to 0;
(ii) If b % 0, then the topological entropy of the system (2.4.9) is equal to .

Proof of Proposition 2.4.15. Statement (i). According to a discrete-time analog of
the circle stability criterion from the theory of absolute stability (see, e.g., [144]), the
frequency domain inequality (2.4.10) implies that the uncertain system (2.4.9) with
b = 0 and the uncertainty satisfying Assumption 2.4.12 is robustly stable. Therefore,
this part of Proposition 2.4.15 follows from Proposition 2.3.12.

Statement (ii). It is obvious that if b # 0 then any trajectory of the system (2.4.9)
is separated from the origin. Furthermore, Assumption 2.4.9 immediately follows
from Assumption 2.4.12. Assumptions 2.4.9 and 2.4.8 imply that the system is lo-
cally reachable along any trajectory separated from the origin. Therefore, Assump-
tion 2.3.15 holds. Now the statement (ii) follows from Theorem 2.3.17. This com-
pletes the proof of this proposition. a

2.5 Stabilization via Communication Channels

In this section, we consider a linear, discrete-time controlled system without uncer-
tainty of the form:

x(t+1) = Ax(t) + Bu(t), =z(1) € Xy, (2.5.1)
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where t = 1,2,3,..., x(t) € R" is the state, u(t) € R™ is the control input,
X1 C R™ is a given compact set, and A, B are given matrices of corresponding
dimensions.

We consider the problem of stabilization of the linear system (2.5.1) via a dig-
ital communication channel with a bit-rate constraint. Our controller consists of
two components. The first component is developed at the measurement location
by taking the measured state x(-) and coding to the codeword h(j7 + 1). This
component will be called “coder.” Then the codeword h(jT + 1) is transmitted
via a limited capacity communication channel to the second component, which is
called a “decoder-controller.” The second component developed at a remote loca-
tion takes the codeword h(jT + 1) and produces the sequence of control inputs
u(JT+1),...,u((j+1)T —1),u((j+1)T). This situation is illustrated in Fig. 2.2.

(1) hig1') h{31")
Linear Plant »  Coder [» 3l Decoder-

Controller
channel

u(t)

Fig. 2.2. Control via digital communication channel

Our digital communication channel carries one discrete-valued symbol 2 (jT+1)
at time j7 + 1, selected from a coding alphabet § of size [. Here 7" > 1 is a given
integer period, and j = 0,1,2,....

This restricted number [ of codewords h(jT + 1) is determined by the trans-
mission data rate of the channel. Let ® > 0 be a given constant. We consider the
class € of such channels with any period 7" satisfying the transmission data rate
constraint (2.2.2).

The coder and the decoder-controller are of the following form:

RGT +1) = F (xR 5 (252)

u(§jT +1)
: — U (hiy Wity ooy ) - (25.3)
WG+ -1 | ’
u((j+1)T)
We will need the following standard assumption.

Assumption 2.5.1. The pair (A, B) is stabilizable (see, e.g., [63]).

Definition 2.5.2. The linear system (2.5.1) is said to be stabilizable in the commu-
nication channel class Cg if a period T > 1 and a coder—decoder-controller pair
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(2.5.2), (2.5.3) with a coding alphabet of size | satisfying the constraint (2.2.2) exist
such that the closed-loop system (2.5.1), (2.5.2), (2.5.3) is stable in the following
sense: For any ey > 0, an integer k > 1 exists such that

le()]oo <€ VE>k (2.5.4)

for any solution [x(-), u(-)] of the closed-loop system with initial condition x(1) €
X5

Now we are in a position to present the main result of this section.

Theorem 2.5.3. Consider the system (2.5.1). Let R > 0 be a given constant and
H(A) be the value (2.4.2). Suppose that Assumptions 2.4.1 and 2.5.1 are satisfied.
Then the following two statements hold:

(i) If R < H(A), then the system (2.5.1) is not stabilizable in the communication
channel class Cgr;

(i) If R > H(A), then the system (2.5.1) is stabilizable in the communication
channel class Crg.

The proof of Theorem 2.5.3 is given in Sect. 2.7.

Remark 2.5.4. Theorem 2.5.3 gives an “almost” necessary and sufficient condition
for stabilizability of linear systems in the communication channel class €. Notice
that in the critical case R = H (A), both possibilities can occur. Indeed, first consider
the system (2.5.1) with a stable matrix A. In this case, H(A) = 0 and the system is
stabilizable in the communication channel class € because the open-loop system is
stable.

On the other hand, if we take the system (2.5.1) with a matrix A with all its eigen-
values on the unit circle, then H(A) = 0 according to Corollary 2.4.4. However, the
system is obviously not stabilizable in the communication channel class €.

2.6 Optimal Control via Communication Channels

In this section, we address the problem of optimal control of the linear system (2.5.1)
via a digital communication channel with a bit-rate constraint.

We will consider the following quadratic cost function associated with the linear
system (2.5.1) and initial condition z(1):

+o0
Tieole(D)] = Y [2()*CTCa(t) + u(t) "Gu(t)], 2.6.1)

t=1

where C and G = G'" are given matrices of corresponding dimensions.
We will need the following assumptions that are standard for linear-quadratic
optimal control problems.
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Assumption 2.6.1. The pair (A, C) has no unobservable nodes on the unit circle
(see, e.g., [63]).

Assumption 2.6.2. The matrix G is positive definite.
In this section, we consider the following optimal control problem:
J1,00[z(1)] — min. (2.6.2)

If we do not have any limited capacity communication channel and the whole state
x(+) is available to the controller, then the problem (2.5.1), (2.6.1), (2.6.2) is the
standard linear-quadratic optimal control problem and its solution is well known
(see, e.g., [63]). Under Assumptions 2.5.1,2.6.1, and 2.6.2, for any initial condition
x(1), the optimal control is given by

u(t) = Kaz(t), (2.6.3)

where
K =—(G+B"PB)"'B"PA (2.6.4)

and the square matrix P is a solution of the discrete-time algebraic Riccati equation
A(P-PB(G+B"PB) 'B"P)A+C"C—P=0 (2.6.5)

such that the matrix A + BK is stable (has all its eigenvalues inside the unit circle).
Furthermore, the optimal value of the cost function is given by

S la(1)] = z(1) " Pa(1). (2.6.6)

Definition 2.6.3. The optimal control problem (2.5.1), (2.6.1), (2.6.2) is said to be
solvable in the communication channel class Cg if for any € > 0, a period T > 1
and a coder—decoder-controller pair (2.5.2), (2.5.3) with a coding alphabet of size |
satisfying the constraint (2.2.2) exist such that the following conditions hold:

(i) The closed-loop system (2.5.1), (2.5.2), (2.5.3) is stable in the following sense:
For any ey > 0, an integer k > 1 exists such that (2.5.4) is satisfied for any
solution [x(-), u(-)] of the closed-loop system with initial condition x(1) € X1;

(ii) For any solution [z(-),u(-)] of the closed-loop system with initial condition
x(l) S 361,

J100[2(1)] < JP0 [2(1)] + €, (2.6.7)

where Jfﬁ;o [x(1)] is given by (2.6.6).
Now we are in a position to present the main result of this section.

Theorem 2.6.4. Consider the system (2.5.1) and the cost function (2.6.1). Let R > 0
be a given constant and H(A) be the value (2.4.2). Suppose that Assumptions 2.4.1,
2.5.1,2.6.1, and 2.6.2 are satisfied. Then the following two statements hold:
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(i) If R < H(A), then the optimal control problem (2.5.1), (2.6.1), (2.6.2) is not
solvable in the communication channel class €g;

(ii) If R > H(A), then the optimal control problem (2.5.1), (2.6.1), (2.6.2) is solv-
able in the communication channel class €.

The proof of Theorem 2.6.4 is given in Sect. 2.7.

Remark 2.6.5. Theorem 2.6.4 gives an “almost” necessary and sufficient condition
for solvability of the optimal control problem in the communication channel class
Cr. Notice that in the critical case R = H(A), both possibilities can occur. In-
deed, consider the system (2.5.1) with a stable matrix A and nonzero B. In this case,
H(A) = 0. If we take the cost function

+oo
Tiolz(D)] =Y [[u(®)]?,
t=1

then the optimal control input is zero, and the optimal control problem is solvable in
the communication channel class €.
On the other hand, if we take the cost function

+oo
Tiecle(D)] =Dz @) + lu(®)]?,
t=1

then the optimal control problem is obviously not solvable in the communication
channel class €.

Remark 2.6.6. Notice that according to the results of Chap. 3, the rate of exponential
decay of the closed-loop system cannot be greater than R — H(A). However, the
rate of exponential decay of a linear optimal closed-loop system can be greater than
R — H(A). Our coder—decoder-controller closely approximates the trajectory of the
optimal linear system on the time interval £ = 1,2,...,T and guarantees just con-
vergence to the origin for ¢ — oo. Roughly speaking, the closeness to the optimal
cost is determined mostly by transient response, whereas the decay rate is determined
by behavior on infinity. That is why two closed-loop systems may have very close
quadratic costs and completely different decay rates. It should also be pointed out
that when we decrease € we have to increase the period 7'.

Comment 2.6.7. Notice that the problem of linear-quadratic optimal control via a
limited capacity communication channel but with an instantaneous data rate was
explicitly solved for scalar plants in [143].

2.7 Proofs of Lemma 2.4.3 and Theorems 2.5.3 and 2.6.4

We first prove Lemma 2.4.3 from Sect. 2.4.
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Proof of Lemma 2.4.3. Consider the set A = {a1,...,an}, where 1 < a1 <
. < a,y, are defined by the following rule: a; € A if and only if a; > 1 and
the matrix A has an eigenvalue A such that |A\| = a;. In other words, A is the set
of all possible magnitudes of unstable eigenvalues of A. Now we partition the set
S(A) = {1, A2, ..., A\, } of eigenvalues of the matrix A into groups S, S1, ..., Sm
as follows. The set Sy consists of all eigenvalues A such that || < 1. Furthermore,
forany i = 1,...,m, the set S; consists of all eigenvalues A such that |\| = a;.
Without any loss of generality, we consider real matrices A of the form

Ap0 ...0
0 A;...0
A= . . . , (2.7.1)
0 ...0 A,
where S(A;) = S; fori = 0,1,..., m. Indeed, any matrix A can be transformed

to the form (2.7.1) by a linear transformation, and the value H(A) and the property
stated by this lemma are obviously invariant under any linear transformation. Also,
let 2); be the corresponding linear transformation of the set X;. Obviously, 2); is
also compact. Notice that H(A) = H(Ao) + H(A1) +--- + H(Ap), H(Ap) =0,
and H(A;) > 0 for any i > 0.

Furthermore, let n; > 0 be the number of elements in .S;. For any 7 we take
numbers ¢;, b; satisfying the following rules: ¢g > by > 1;¢; > b; > a; fori =
1,...,m;and )" nilogy(¢;) = a. Such numbers obviously exist because a@ >
H(A). Since the set )1 is compact, for some d > 0, ), is a subset of the set

Da:={z e R": ||z|| < d}. (2.7.2)
Consider the partitioning of the state vector z(t) corresponding to (2.7.1):

z(t) = col [yo(t), y1(t), ..., ym(t)],

where y;(t) € R™. Furthermore, for any 7, k introduce integers N; j as follows: IV; j,
is the largest integer such that IV, ,, < cf. Now consider the set (0 of solutions of
the system (2.4.3) defined by initial conditions from ), of the following form: n;
components of the vector y;(1) take all possible values in the discrete set { —d, —d +

Nf:iil oo, d — Nﬁil ,d}. The cardinality N}, of the set @, can be estimated as
follows:

_ T0 1 Mo,
Ni = Ny, X Nyj x - x Nom

< ko s ek

By our construction, Y ., n; logy(¢;) = a; hence, logy (Ni,) < a - k for any k.
Now let

xa(t) = col [ya,O(t)v ya,l(t)v cee 7ya,m(t)}

be any solution of (2.4.1) with the matrix A of the form (2.7.1). Then we can take a
solution
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k k
2 0(t) = col [y (1), 41" (1), B (1)
of (2.4.3) from @)1, such that

. d ,
l9ai(D) =P Wl < | Vil
ik

Now we prove that the condition (2.4.4) holds if k is large enough. Indeed, because
b; is strictly greater than the absolute value of any eigenvalue of A;, a constant ¢ > 0
exists such that

i () lloo < by lya(1) oo 2.7.3)
Iy ()] < ebf Iy (1) ]l (2.7.4)

forany ¢ =0, 1,..., m. Furthermore, from (2.7.4) we have

k. m

k
an £) = 2B 2 =33 Iyaa() — v )]

t=1 i=
m

0

N > &
2 p2i—t 275
<A Y b Nip —1)2° (2.7.5)

=0 t=1

Jk

Because b; < ¢; and ’ — 1 as k — oo, from (2.7.5) we obtain that

k
Jim > llza(t) — 2® (1)) = 0. (2.7.6)
=1

Moreover, from (2.7.3) we have

t_man ||$a(t) - x(k)(t)Hoo =

=1,...,

() (k) -
Jmax,max lyai(t) =y (D)oo <
max  max b0 @ (2.7.7)
t=1,...,k 1=0,....m v N@k —1 ' o

Nk
Because b; < ¢; and C,;’“

i

— 1l as k — oo, from (2.7.7) we have

k
Jim max [la(t) — 2 (1) o = 0. (2.7.8)
Finally, (2.7.6) and (2.7.8) immediately imply (2.4.4). This completes the proof of
the lemma. 0

Proof of Theorems 2.5.3 and 2.6.4. It is obvious from Definitions 2.5.2 and 2.6.3
that the condition for solvability of the optimal control problem in the communi-
cation channel class €y is stronger than that for stabilizability in the same class.
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Therefore, it is enough to prove statement (i) of Theorem 2.5.3 and statement (ii) of
Theorem 2.6.4.

Statement (i) of Theorem 2.5.3. We prove this statement by contradiction. Indeed,
assume that the linear system is stabilizable in the communication channel class €
with R < H(A). From Theorem 2.4.2 we know that H (A) is the topological entropy
of the system (2.4.1). Therefore, it follows from Lemma 2.3.8 that a constant €, > 0
exists such that ]

lim sup y log,(s(k',€.)) > R. (2.7.9)

k' —o0
Consider a coder—decoder-controller pair (2.5.2), (2.5.3) such that the requirements
of Definition 2.5.2 hold, and let 7" > 0 be its period. Furthermore, let & > 1 be an
integer from the condition (2.5.4) of Definition 2.5.2 corresponding to €y = ;e*.
The inequality (2.7.9) implies that an integer j > 0 and an (57, €, )—separated
set S of cardinality N exist such that IO%TN
(JT, €, )—separated set S of cardinality N with
points z4(-), zp(-) € S, we have

> R. Moreover, we can take an

longN > R such that for distinct

|za(t) — xp(t)]|co > €x forsome t=k,k+1,...,57T. (2.7.10)

Furthermore, let S be the set of all possible control sequences u(1),u(2),...,u(jT)
E)roduced by (2.5.2), (2.5.3). Then, the cardinality of S does not exceed lj Since

Og? > R, the condition (2.2.2) implies that [/ < N. Because the condition (2.5.4)

1
2

(2.5.3) with some control input from S and the cardinality of S is less than the cardi-
nality of S, two elements x,(-), z(- of S and an element u (1), uo(2), ..., uo(j7T)
of S exist such that the condition (2.5.4) holds with z(-) = x4(-) + 2y (-) and
x(-) = xp(+) + x4 (), where x,,(+) is the solution of the system

Xy (t + 1) = Az, (t) + Buo(t),

where x,,(1) = 0. This implies that ||z, (t) — 2p(t)||cc < € forall t = k, k +
1,...,7T. However, the latter inequality contradicts to (2.7.10). This completes the
proof of this part of the theorem.

Statement (ii) of Theorem 2.6.4. Assume that R > H(A), and prove that the
optimal control problem is solvable via a communication channel with capacity R.
Let € > 0 be a given constant. We will build a coder—decoder-controller pair (2.5.2),
(2.5.3) with the communication channel class € such that the condition (2.6.7)
holds.

Since the set X; is compact, a constant Dy > 0 exists such that X; C By :=
{z : ||z|lcc < Dy}. Consider the system:

To(t+1) = Ax,(t), x4(1) € Bo. (2.7.11)

w1th €0 = €« must be satisfied for any solution of the closed-loop system (2.5.1)—

Introduce the following notation:

opt

Me

£)TCTCa(t) + ult) "Gu(t)], (2.7.12)

t=1
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where the sum is taken for the solution of the optimal closed-loop system (2.5.1),
(2.6.3)—(2.6.5) with the initial condition z:(1).
It is obvious that a constant § > 0 exists such that

O] 0] €
oD ()] = AP )] <, (2.7.13)

forany T' > 1 and for any (") (1), (2 (1) from By such that ||z (1)—23) (1)|| o <
6. Furthermore, a constant ¢ > 0 exists such that

t
max Ji¥

max Pz <e (2.7.14)

for any solution of the closed-loop optimal linear system (2.5.1), (2.6.3)—-(2.6.5).
Introduce the following constants:

€ a
a:= , b:= . 2.7.15
2(c+3) \/1+a ( )

The closed-loop optimal linear system (2.5.1), (2.6.3)—(2.6.5) is exponentially stable.
Hence, a time kg exists such that for any k£ > kg the inequality

b

zopi (£ + E)lloo < lTop ()0 (2.7.16)
holds for any solution of the closed-loop optimal linear system (2.5.1), (2.6.3)—
(2.6.5) andt=1,2,....

Now introduce
'272 4

and let o be any constant such that H(A) < « < R. From (2.7.16) and Lemma
2.4.3, we obtain that an integer k exists, satisfying (2.7.16) and the inequality

€0 := min {5 b o h. 6} (2.7.17)

R
2.7.1
k>R—a’ (2.7.18)

and such that a set Q. = {z1(:),...,zn(:)} of N solutions of the system (2.7.11)
fort = 1,2,...,k exists with the properties ,1€ log,(N) < «, and for any solution
xo () of (2.7.11), an element iy (+) € Q. exists such that

k
BY la(t) = zmin()]* +

,max |2a(t) — Zmin(t)]|co < €o, (2.7.19)

)

where we take 3 := ||C"C.
We will build a coder—decoder-controller with the period

T:=k—1. (2.7.20)
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Let fo(z(1)) be the index of the element xpmin(-) € Q. such that (2.7.19) holds
for the solution of (2.7.11) with the initial condition x,(1) = x(1). Moreover, let
u(-) be the optimal control input in (2.5.1), (2.6.3)—~(2.6.5) with the initial con-

dition Zop(1) = @min(l). Now introduce the following coder-decoder pair for
t=1,2,...,T:
h(1) = folw(1)); (2.7.21)
u(1) u(1)
5 —|: . (2.7.22)
u(T —1) a(T —1)
u(T) u(T)
Furthermore, for any j = 1, 2, .. ., introduce the constants D; > 0 as follows:
D; =V Dy. (2.7.23)

Also, introduce the set B; := {z : ||z|lc < D;}.

We now prove that z(7T + 1) € B; for any solution of the closed-loop system
(2.5.1), (2.7.21), (2.7.22) with the initial condition z(1) € By. Indeed, any solution
x(t) of (2.5.1), (2.7.21), (2.7.22) can be represented as

x(t) = wope(t) + za(2), (2.7.24)

where xp is the solution of the optimal linear system (2.5.1), (2.6.3)-(2.6.5) with
the initial condition Zop (1) = Zmin(1) and x,(t) is the solution of the linear system
(2.7.11) with the initial condition 4 (1) = (1) — Zop(1). From (2.7.16) we have

b
lzopt(T"+ Dllo <, Do- (2.7.25)

Furthermore, since ¢g < SDO by (2.7.17), the inequality (2.7.19) implies that
[|2a(T + 1)||oo < 5Do. From this and (2.7.25) we obtain

2(T +1)][e < H%pt(T + Dlfoo + [2a(T + 1) [|oo < bDo.

Hence, (T + 1) € B;.
Now introduce the following coder—decoder-controller for ¢t = j7T + 1,jk +
2,...,(j+1)T and for z(jT + 1) € B, as follows:

h(jT + 1) := fo <b1jx(jT + 1)> ; (2.7.26)
u(jT 4 1) (1)
: —p | . (2.7.27)
u((j+1)T —1) a(T —1)
u((j+1)T) u(T)

Here j =1,2,....
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It is obvious that if (z(-), u(+)) is a solution of (2.5.1), (2.7.26), (2.7.27) for t =
JT+1,...,(j + )T with z(§T + 1) € By, then (5 z(-), 5 u(-)) is a solution of
(2.5.1), (2.7.21), (2.7.22) for t = 1,...,T with 2:(1) € By. Since we have proved
that 2(T" 4+ 1) € By for any solution of (2.5.1), (2.7.21), (2.7.22) with (1) € By,
we obtain by mathematical induction that x(jT" + 1) € Bj for all j. Hence, the
closed-loop system (2.5.1), (2.7.21), (2.7.22), (2.7.26), (2.7.27) is well defined for
allt =1,2,....

Because the cardinality of the set (). is N and ,1 logo N < a < R, the condi-
tion (2.7.18) holds and T" = k — 1, the coder—decoder-controller (2.7.21), (2.7.22),
(2.7.26), (2.7.27) is from the communication channel class Cx.

Now we prove that the closed-loop system (2.5.1), (2.7.21), (2.7.22), (2.7.26),
(2.7.27) satisfies the condition (2.6.7) of Definition 2.6.3.

Introduce the following notation:

r

Tirlz(D)] = [w(t)"C Ca(t) + u(t) "Gu(t)], (2.7.28)

t=1

where the sum is taken for the solution of the closed-loop system (2.5.1), (2.7.21),
(2.7.22), (2.7.26), (2.7.27) with the initial condition 2:(1). Since ¢y < § by our defi-
nition (2.7.17), inequality (2.7.19) implies that

[2(1) = Zmin(1)]loo < 6.
From this and (2.7.13) we obtain
I e(D] = S lwmin(D]] < |- (2.7.29)

Moreover, (2.7.17) and (2.7.19) also imply that

T
€
Z 1C(xa(t) = Zmin(1))||” < 4
t=1
This and (2.7.29) imply that
o €
| rlz()] = T z(1)])] < . (2.7.30)

Now we derive an upper estimate for Jj7 1 (j41yr[z(1)] forany j = 1,2,.. ..
From (2.7.14) and (2.7.30) we obviously obtain that

Jirlz()] < c+ ; (2.7.31)

It is obvious that if (x(-),u(-)) is a solution of (2.5.1), (2.7.26), (2.7.27) for t =
JT+1,...,(j+1)T, then ( (), 5 u(-)) is a solution of (2.5.1), (2.7.21), (2.7.22)
fort =1,...,T. Therefore, (2.7.31) implies that

€ .
Tirgenrle(D)] < (e+ )b, (2.7.32)
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From this and (2.7.15) we have
€. — .
Jri1,00[x(1)] < (¢ + 2) Z p2i —
j=1
€

e, b? €
(c+2)1_b2—(c—|—2)a—2. (2.7.33)

Furthermore,

Toole ()] = TP [a(V)] < [y rfe(D)] - T O]
+J741.002(1)]. (2.7.34)

This and the estimates (2.7.30) and (2.7.33) immediately imply (2.6.7).

Finally, the Lyapunov stability condition (2.5.4) follows immediately from the
property proved above that z(j7" + 1) € B; for any solution of the closed-loop
system (2.5.1), (2.7.21), (2.7.22), (2.7.26), (2.7.27) with the initial condition x(1) €
By. This completes the proof of the statement. a
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Stabilization of Linear Multiple Sensor Systems via
Limited Capacity Communication Channels

3.1 Introduction

In this chapter, we study a stabilization problem via quantized state feedback for a
linear time-invariant partially observed system. We consider a multi-channel com-
munication between multiple sensors and the controller, where each sensor is served
by its own finite capacity channel, and there is no information exchange between the
sensors. Furthermore, there is no feedback communication from the controller to the
sensors, and the sensors have no direct access to control. The objective is to estab-
lish, first, the tightest lower bounds on the capacities of the channels for which the
stabilization is possible and, second, the rate of exponential stability that is achiev-
able for given capacities obeying those bounds. To this end, we obtain necessary and
sufficient conditions for stabilizability.

Another crucial point is that we do not assume the channels to be perfect. Sensor
signals may incur independent and time-varying delays and arrive at the controller
out of order. There may be periods when the sensor is denied access to the chan-
nel. Transmitted data may be corrupted or even lost. However, we assume that the
communication noise is compensated, and so ultimately it reveals itself only in the
form of decay of the channel information capacity. For example, employing error
correcting block codes [68, Chap. 12] means that the channel is partly engaged in
transmission of redundant check symbols, which decreases the average amount of
the primal messages carried from the sensors. We suppose that error correction is
the function of the channel; i.e., the corresponding coder and decoder are given and
considered as part of what is termed “channel” in this chapter. The key assumption
is that the time-average number of bits per sample period that can be successfully
transmitted across the channel during a time interval converges to what we call the
transmission capacity as the length of the interval becomes large. The stabilizability
region is given in terms of these capacities. Note that bounded communication de-
lays do not influence them and, thus the region, although they affect the design of the
stabilizing controller.

In the particular case where the channels are perfect and the system is detectable
via each sensor, the conditions for stabilizability obtained in this chapter are in har-

A.S. Matveev and A.V. Savkin, Estimation and Control over Communication Networks, 37
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mony with those from Theorem 2.5.3. Thus we show that in this case, multiple com-
municating sensors and channels with separate capacity constraints may be treated
as a single sensor and as a single channel with a united constraint, respectively.
However, employing multiple sensors usually means that there are problems with
detectability by means of a single sensor, and then the model with nondetecting sen-
sors is often a good option.

Stabilization with limited information feedback was studied in the presence of
transmission delays in [221]. Unlike the current chapter, the transmission time re-
quired to transfer one bit was assumed constant, a continuous-time linear plant and
a network with the simplest topology and constant access channels were considered,
and conditions for nonasymptotic stability but a weaker property called containabil-
ity were established.

Multiple sensor systems were examined in [204]. Considered were perfect (i.e.,
noiseless and undelayed) channels under the assumption that the control is known
at the sensor sites. The arguments from [204] also presuppose that the system is re-
ducible to the real-diagonal form so that any “mode” is in a simple relation with any
sensor. The latter means that the mode either does not affect the sensor outputs or
can be completely determined from these outputs.! A Slepian-Wolf-type stabilization
scheme was proposed and was shown to achieve stability under certain conditions
on the channels data rates. The answer is given in terms of the controller parameters
called the rate vectors. They are tuples of naturals, with each being the number of the
quantizer levels with respect to a certain state coordinate. These conditions can be
reformulated in terms of the capacities of the channels. The criterion for stabilizabil-
ity via the above scheme reduces to solvability of some linear system of inequalities
in integers. In [205], this result was extended to the case where the signals from
multiple sensors are transmitted to a single controller over a network of independent
perfect channels with a fixed topology.

In this chapter, we show that stabilizable systems exist, which, however, cannot
be stabilized by means of the aforementioned control scheme. Moreover, insuffi-
cient are all schemes that merely have some features in common with that one (see
Sect. 3.9).% This stresses that stabilizability should be tested in the class of all con-
trollers with a given information pattern. Such an analysis is offered in this chapter,
which gives rise to the additional job: to show that there is no gap between the neces-
sary and sufficient conditions, where all and the specific controllers proposed in this
chapter are concerned, respectively. To achieve this objective, not only time averag-
ing but also convex duality techniques are employed. The final criterion is given in
terms of only the plant and channel parameters.

The case of multiple sensors and actuators, where each sensor is directly linked
with every actuator by a separate perfect channel, was studied in [139] for real-

"The arguments from [204] do not much require the diagonal form. However, the assump-
tion that the system can be decomposed into independent subsystems each in simple relations
with the sensors seems to be crucial.

2For example, stabilization may be due to a control scheme that is not recurrent but is
cyclic (i.e., periodically varies in time).



3.2 Example 39

diagonalizable systems. Separate necessary and sufficient conditions for stabilizabil-
ity were obtained. In general, they are not tight [139]. In the case where the system is
stabiliazible by every actuator and detectable by every sensor, a common necessary
and sufficient criterion was established in [139].

In this chapter, we consider the case where the system is not necessarily reducible
to a diagonal form. It is shown that nontrivial Jordan blocks may make it impossible
to disintegrate the system into state-independent subsystems each in simple relations
with the sensors. To treat this case, we propose sequential stabilization based on
triangular decomposition of the system into state-dependent subsystems. They are
stabilized separately and successively. In doing so, their interinfluence is interpreted
as an exogenous disturbance. This disturbance can be treated as exponentially decay-
ing since thanks to the triangular architecture of the system, disturbance of any given
subsystem is generated by the preceding ones, which are supposed to be already
stabilized according to the sequential stabilization approach. The controller design
employs ideas related to those from [149] as well as [28, 135, 136,204]. Other ideas
concern an account for transmission delays and disturbances decaying at a known
rate. No other characteristics of the disturbance (e.g., an upper bound) are assumed
to be known. Apart from state-dependency, the subsystems are also dependent via
control. Since it is common, the control aimed to stabilize a particular subsystem
may disturb the others. We offer a method to cope with this problem.

The main results of this chapter were originally published in [115].

The body of the chapter is organized as follows. We first illustrate the problem
statement and the main result by an example in Sect. 3.2. The general problem state-
ment is given in Sect. 3.3. Section 3.4 offers basic definitions and assumptions. The
main result is presented in Sect. 3.5. Its proof is given in Sects. 3.7 and 3.8, where
necessary and sufficient conditions for stabilizability are, respectively, justified. In
Sect. 3.6, the main result is applied to the example from Sect. 3.2. The concluding
Sect. 3.9 comments on an important assumption adopted in this chapter.

3.2 Example

We first illustrate the class of problems to be studied by an example.

We consider a platoon composed of k vehicles moving along a line and enumer-
ated from right to left. The dynamics of the platoon are uncoupled, and the vehicles
are described by the equations

J?, = Vi, 'Uz = U, 1= 1,...,]41, (321)

where x; is the position of the ith vehicle, v; is its velocity, and u; is the control
input. Each vehicle is equipped with a sensor giving the distance y; = x; — z;—1
from it to the preceding one for ¢ > 2 and the position y; = x; for¢ = 1. It is also
served by a digital communication channel over which the measurement y; is sent
to the central controller. To this end, the sensor signals are sampled with a period
A > 0. This channel is delayed, nonstationary, and lossy and transmits on average
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¢; > 0 bits per sample period. Employing the data that arrive over all channels, the
central controller produces the control inputs for all vehicles at the sample times. The
objective is to stabilize the platoon motion about a given constant-velocity trajectory:
v; = 09, 2;(t) = 29 + 00t Vi. This situation is illustrated in Fig. 3.1 for k = 4.

Fig. 3.1. Platoon of autonomous vehicles.

In this context, we pose the following questions:

(i) What is the minimum rate of the information transmission for which stabiliza-
tion is possible?

(ii) Which rate of stability can be achieved for channels with given capacities ¢;
and sample period A?

More precisely, we are interested in the rate p at which the platoon is able to approach
the desired trajectory:

i) = o] < Koau2, Jait) — af —olt] < Koap®/®.

As will be shown in Sect. 3.6, stabilization of the platoon is possible for any
capacities ¢; > 0 and at any rate

—Cmin .
w> uo =2 ,  where c¢pip 1= mmkci.
1=1,...,
At the same time, no rate y < 0 is achievable.
Now consider another situation where the sensor system accommodated by each
vehicle is able to give the distances to [ < k vehicles to the right, as well as to [
vehicles to the left. Then the platoon motion remains stabilizable for any capacities

¢;. However, the above threshold stability rate 1.0 is changed: 10 = v/2~ "', Here
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Ch.l _mln{ckl,c,(”),cf’l)} if 20>k,

and ¢y —mln{ckl,ckl,ckl)} if 20 <k, where
;
c(l) ‘= min L E C; E C; = E C;
LA S A P ADAC AR 1k—z , ”
Jj=1 J=i+1
c(4) : mln c(5) min ¢
ki E : I i
L A1 4 =142,

() 1
= 3.2.2
ki T k1k—z,§;1cj ( )
j 1

In the situation at hand, every vehicle is equipped with several sensors, each pro-
ducing data about its relative position with respect to some other vehicle. Due to the
limited capacity of the channel, the entire cumulative sensor data cannot be commu-
nicated from the vehicle to the controller. This gives rise to two natural questions:

(iii) In which way should the bits of the message currently dispatched from every
vehicle be distributed over data from different sensors?
(iv) Which information should be carried by the bits assigned to every sensor?

The objective of this chapter is to present a general theory that enables one to
obtain answers to the questions like those in (i)—(iv).

3.3 General Problem Statement

We consider linear discrete-time multiple sensor systems of the form
x(t+ 1) = Ax(t) + Bu(t); x(0) = xp; (3.3.1)

yj(t) = Ojl‘(t), j = 1,...,k‘. (332)

Here 2(t) € R” is the state; u(t) € R™ is the control; and y;(t) € R"v3 is the

output of the jth sensor. The system is unstable: There is an eigenvalue A\ of the

matrix A with |A| > 1. The objective is to stabilize the plant: x:(t) 12, .

We consider a remote control setup. Each sensor is served by its own communi-
cation channel capable of transmitting signals from a finite alphabet €;. Over this
channel, the jth coder sends a message e;(t) € €; based on the prior measurements

ej(t) = &;[t,y;(0),...,y; ()] (3.3.3)

On the basis of the data e(t) received over all channels up to the current time ¢, the
decoder selects the control
u(t) =Ult, e(t)]. (3.3.4)

In this situation illustrated by Fig. 3.2, the controller is constituted by the decoder
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Fig. 3.2. Feedback control via communication channels.

and the set of coders each serving a particular sensor
€= [81()7’8k()7u()] (3.3.5)

Transmitted messages incur delays and may be lost: The message e(t) dispatched
at time ¢ arrives at the decoder at the discrete time

t+ 75t e(t)] > ¢,
where 7;[t, e(t)] := oo if it is lost. So the data available to the decoder at time ¢ are
e(t) == [er(t),... ,ex(t)], where e;(t):=[e;(61),..., ej(90§)] (3.3.6)
are the data that arrived via the jth channel by the time ¢:
{6h <Oy <--- <005}:{0:0,1,...19+Tj[0,6(0)] <t}.

The main question to be considered is what is the minimum rate of the infor-
mation exchange in the system for which stabilization is possible? In other words,
we look for necessary and sufficient conditions for stabilizability expressed in terms
of the channels transmission capacities ¢y, . . ., ¢i, along with the plant-sensors pa-
rameters A, B, C;. Roughly speaking, such a capacity is the average number of bits
transmitted over the channel during the sample period, despite the losses and delays.
The rigorous definition will be offered in Subsect. 3.4.1.

3.4 Basic Definitions and Assumptions

3.4.1 Transmission Capacity of the Channel

It should be remarked that there may be a difference between the number of bits that
happen to reach the decoder thanks to occasional favorable circumstances and the
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number of bits that can be successfully transmitted under any circumstances. In fact,
these numbers give rise to two concepts of capacity. The first and second of them are
concerned in the necessary and sufficient conditions for stabilizability, respectively.
To simplify matters, we postulate that these capacities coincide: The discrepancy
between those numbers is considerably less than the time of a long experiment.

We also consider the case where there is an uncertainty about the channel. Specif-
ically, its regime of operation given by the distribution of integer transmission delays
7,(t, e) over time ¢ and dispatched messages e may not be known in advance. How-
ever, we suppose that it satisfies certain assumptions, and the designer of the con-
troller is aware of some lower and upper bounds for the number of bits transmitted
across the channel during a time interval of a given duration.

To specify the details, we start with the following.

Definition 3.4.1. We say that a message e(t) is transmitted within a time interval
[to : t1] if it departs and arrives at times t and t + 7;[t, e(t)] from this interval:

t,t+ 7j[t, e(t)] € [to : t1].
The length or duration of a discrete time interval [t : ¢1] is defined to be ¢ — tg.

Assumption 3.4.2. For each channel, two integer functions b; (r) and b;r(r) of time
r exist such that

(i) no more than bj (r) bits are brought by the transmissions that occur within any
time interval [tq : t1] of length r;

(ii) given a time interval of duration r, a way exists to transmit without losses and
errors no less than b, (r) bits of information within this interval;

(iii) as the length r of the interval increases, the averaged numbers b;r(r) /7 and

b; (r)/r converge to a common limit

b (r bt (r
¢;j = lim ]T( ) = lim ji ) (3.4.1)
rTr—00 T—00

called the transmission capacity of the channel.

Explanation 3.4.3. Claim (i) means that® the number of sequences ej(t1) from
(3.3.6), where only messages dispatched after ¢, are admitted, does not exceed
907 (t1=t0) I claim (i), the “way” is constituted by encoding and decoding rules.
The former translates b-bit words 3 = (51,...,0),8; = 0,1 into sequences of
messages e € €; sent consecutively during the interval at hand. The decoder trans-
forms the sequence of messages that arrived within this interval into a b-bit word 3.

. . /
The overall transmission must be errorless: 3" = 3.

We suppose that the designer of the controller is aware of these rules, along with
the functions b (r), b;“(r). A regime of the channel operation {7;(-)} compatible
with these data is said to be possible.

3For a given regime of the channel operation.
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3.4.2 Examples

Now we offer examples of channels satisfying Assumption 3.4.2. (Other examples
can be found in [111].) In this subsection, N; denotes the size of the jth channel
alphabet €¢;.

Noiseless instantaneous channel. The channel is constantly accessible; any trans-
mission is successful and instantaneous. Then

by (r) = [(r+1)logy NjJ, b;r(r) = [(r+1)-logy Nj[, ¢; =log, N;.

Explanation 3.4.4. We recall that the symbols |a| and [a] stand for the integer floor
and ceiling of a real number a, respectively; i.e.,

la] :=max{k=0,£1,£2,...: k < a},
[a] := min{k =0,+1,£2,...: k > a}.
Periodic-access noiseless instantaneous channel. Within any time interval [ih; :
(t+1)h; —1] with a given h; > 1, the channel is open for transmission only at times

t from the sliding window ¢t € W, +1ih;, where W; C [0 : h; — 1] is a given set with
dj < h; elements. Any transmission is successful and instantaneous.* Then

T+1 _ r d
b;‘(r) = {dj { h; -‘ log, Nj-‘ ; by (r) = {dj LMJ log, NjJ , 6= h; log, N;.

Aperiodic-access noiseless instantaneous channel. The channel is open for trans-
mission occasionally at times t; < to < ...; any transmission is successful and in-
stantaneous. The access rate stabilizes as the duration of the time interval increases:

pt' ) =" =) Tmax{oc —n:t' <t, <t, <t"} - p as ' —t — o0

Then
by (r) = {r log, N; tiIZlg/,L(t,t + ’I“)J ;

bj(r) = {logz N; (r ~sup p(t, t+ 1) + 1)-‘ ,
>0
¢; = plogy N;.

Noiseless instantaneous channel with periodically varying alphabet. At time t,
only a part &;(t) C &; of the channel alphabet €; can be used.’ This part varies
periodically &;(t + h;) = &;(t) and contains N;(¢) < N; elements. Transmission
of any message e € &;(t) is successful and instantaneous 7(¢, e) = 0. In this case,

“This type of communication is typical for control networks [75, 153].
3This can be modeled by dropout 7;(, e) = co of messages e & &;(t).
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h; h.
r+17 < _ r !
o= || Lo mo | o= ||| Sw o).
J t=1 Jd =1
h;

¢ = s Z logy N;(t).

J =1

Noiseless instantaneous channel with aperiodically varying alphabet. In the previ-
ous example, the available part of the channel alphabet varies not necessarily peri-
odically. The average number of bits per unit time that can be communicated via the
transmission scheme at hand stabilizes as the length of the time interval increases

ﬁj(to,tl) = tl — to Z 10g2 ﬁoo as t] — to — OQ.

t=to

In this case,

by (r) = {rtiggﬁj(t,t—l-r)J , bj(r) = {rsupﬁj(t,t—l—r)-‘ ;¢ =057

t>0

Constant-access error-corrected instantaneous channel. The transmissions are
instantaneous, and the channel is constantly accessible. It is noisy and lossy, but the
errors are corrected by means of a block code [68, Ch.12]. Any block has length [;,
encodes m; < [; information messages, and contains [; — m; check symbols carry-
ing no new information. Those messages will be received simultaneously when the
last symbol of the block arrives at the controller. While a current block is transmitted,
the next block is being formed. In this case, we have

O i 0 I S

=" logy N.

s
J .
L

Delayed channels. Suppose that in any of the above examples, the transmission
time 7;(t,e) € [0 : 7'jJr ]. (In the examples concerning time-varying alphabets, this
inclusion should hold only for e € &;(¢).) Then the corresponding formulas for c;
and bj (t) remain true, whereas the function b; (r) is transformed by the rule

by (r) == max{b; (r — 7';_); 0}.

Conclusion 3.4.5. Bounded time delays do not alter the transmission capacities in
the above examples.

3.4.3 Stabilizable Multiple Sensor Systems

Now we introduce the concept of stabilizability examined in this chapter.
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Definition 3.4.6. We say that a controller (3.3.5) uniformly and exponentially sta-
bilizes the system at the rate u € (0,1) if the corresponding trajectories obey the
inequalities

e < Ko, |lu@®)] < Kut  VE=0,1,2,... (3.4.2)

whenever ||xo|| < Ko. This must be true irrespective of the possible regime of the
channels operation. The constants K, and K, must not depend on time t and this
regime. The above requirements should be satisfied for arbitrary K, and the con-
stants K, and K, may depend on K.

Definition 3.4.7. The system is said to be uniformly and exponentially stabilizable
at the rate ;1 € (0, 1) if a controller (3.3.5) exists that uniformly and exponentially
stabilizes the system at this rate.

This controller may depend on i, along with bj(~), b; (-),and A, B, Cj.

Definition 3.4.8. The system uniformly and exponentially stabilizable at some rate
i € (0, 1) is said to be uniformly and exponentially stabilizable. The infimum value
of w is called the rate of exponential stabilizability.

3.4.4 Recursive Semirational Controllers

Formulas (3.3.3) and (3.3.4) describe the widest reasonable class of controllers: The
only requirement to them is nonanticipation. Study of this class is instructive with
respect to necessary conditions for stabilizability. At the same time, the complexity
of the corresponding controllers is not bounded: They are formally permitted to carry
out an asymptotically infinite amount of computations per sample period.

It will be shown that conditions necessary for stabilization by means of a nonan-
ticipating controller are simultaneously sufficient for existence of a more realistic
stabilizing controller that carries out a bounded (as time progresses) number of op-
erations per unit time and employs a bounded memory. This subsection provides a
formal description of the general class of the corresponding controllers.

We start with two preliminary technical definitions.

Definition 3.4.9. A map F(-) from a subset D of an Euclidean space R® = {w} into
a finite set § is said to be semialgebraic if the following two statements hold:

(i) The map acts by checking a given set of inequalities
l,(w) >0, v=1,...,N% (3.4.3)

with (multivariate) rational functions 1,(-) (whose domains include D) and
forming the sequence of the answers A = [Ay,..., Ays], where A, =1
if the vth inequality is satisfied and 0 otherwise;

(ii) The value F(w) is uniquely determined by the distribution A of the answers
over the set of inequalities:
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Explanation 3.4.10. If the set D is connected, the denominator of the rational func-
tion I, (w) from (3.4.3) does not change the sign as w runs over D. So multiplying by
this denominator transforms (3.4.3) into an inequality with a polynomial left hand
side. This demonstrates that the level sets {w : F(w) = f} of the map F(-) are
semialgebraic [22], and explains the term introduced in Definition 3.4.9.

Definition 3.4.11. A map F(-) from the product D x & of a set D C R® and a
finite set & into another finite set § is said to be semialgebraic if the map F(-, g) is
semialgebraic for any g € ®.

Definition 3.4.12. A map Z(-) from the product D x & of a set D C R® and a
finite set & into an Euclidean space R? is said to be semirational if this map is
representable in the form

Z[ng]:Z*[ng75r(ng)} VZGD,Q€®,

where the map F(-) : D x & — § into a finite set § is semialgebraic and the function
Z2(-, g, [) is rational for any g € &, f € §.

Explanation 3.4.13. A vector function is rational if all its scalar entries are ratios of
two polynomials. These ratios should be well defined on D.

Remark 3.4.14. Definition 3.4.12 clearly concerns the case of amap Z(-) : D — RP.

Definition 3.4.15. The coder (3.3.3) is said to be simple semirational r-step recur-
sive (where r = 1,2, ...) if the following statements hold:

(i) At any time t = ir, the entire code word composed by all code symbols
E; = (ejlir], e;lir + 1], e;[(i + 1)r — 1])

that will be consecutively emitted into the channel during the forthcoming op-
eration epoch [ir : (i + 1)r — 1) is generated by the coder;
(ii) This code word is produced via a recursion of the form:

E; =& (w;), zi[(i + 1)r] := Zjw;] € R%, z;(0) :== z?, where
w; = col (zj[ir},yj[(i —Dr+1],...,y; [z’r]),
(y;(t) == 0Vt < 0); (3.4.4)

(iii) The functions € ;(-) and Z;(-) are semialgebraic and semirational, respectively.

Explanation 3.4.16. It is assumed that the maps € (-) and Z;(-) are defined on the set
D; x R""™v3, where D; C R*, the function Z;(-) takes values in D;, and z? € D;.

Definition 3.4.17. The decoder (3.3.4) is said to be simple semirational r-step recur-
sive if the following statements hold:
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(i) At any time t = 1ir, the decoder generates the control program
U; = col (ufir], ... u[(i+ 1)r —1])

for the entire forthcoming operation epoch;
(ii) This program is produced via a recursion of the form:

U, = u[z(ir),er(ir)}, 2+ 1)) = z[z(ir),er(ir)} ER®, 2(0)= 2"
Here e" (ir) is the data arrived at the decoder during the previous epoch:

e”(ir) := [e] (ir),... e} (ir)], ej(ir) == [e;(67), ..., ej(HZ_;v)],
where {07 <05 <---< 92;} ={0:(i—1r<0+70,e0)] <ir}.b

(iii) The maps U(-) and Z(-) € D are semirational functions of z € D and e". Here
D C RS is some set, and z° € D.

Remark 3.4.18. Since the functions Z;(-), €;(-), U(-), Z(-) do not vary as time pro-
gresses, the coders and decoders introduced by these definitions perform a limited
(as t runs over t = 0, 1,...) number of operations per step.

Remark 3.4.19. The special coders and decoder that will be proposed in this chapter
to stabilize the plant (3.3.1), (3.3.2) exhibit stable behaviour of the controller inner
dynamical variables z; and z.

Explanation 3.4.20. Definitions 3.4.15 and 3.4.17 are not intended to describe the
entire class of controllers with limited algebraic complexities. Their purpose is to
underscore critical features of the controller to be proposed that ensure its member-
ship in this class, while omitting many details.

Remark 3.4.21. In fact, Definitions 3.4.15 and 3.4.17 permit both encoding and de-
coding rules to be altered finitely many times. For example, the recursion from (3.4.4)
may be of the form

Z.j(wi) if Z k

, 345
Zj,i(w,;) ifi <k ( )

i+ 1] = {

where the functions Z;, Z;;(-) are semirational. To embed this case into the formal-
ism from Definition 3.4.15, it is sufficient to add one more scalar component ( € R
to the vector z;, which evolves as the counter: (; 11 := (;+1, (o := 0. Corresponding
to ¢ is the set A(¢) = (Aq,..., Ay) of the “answers” A, resulting from checking
the set of the inequalities (; > —1/2+v,v = 1,..., k. It remains to note that (3.4.5)
is reduced to the form from (3.4.4) by picking in (3.4.4)

°If this set is empty (which necessarily holds for ¢ = 0), then e; (ir) := ®, where ® is a
special “void” symbol.
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Zj,O(w) if A(C) = (07 BERE) 0)
2w, (= 2,w) A = (L....1),
Zju(w) otherwise

where v is the serial number of the last affirmative answer: A, =1, 4,,1 = 0.

3.4.5 Assumptions about the System (3.3.1), (3.3.2)
Assumption 3.4.22. The pair (A, B) is stabilizable.

The next assumption concerns the subspaces that are not observed and detected,
respectively, by a given sensor:

L7 ={zeR":C;A"z=0 Vvel0:n—1]},

Ly = Mug(A)NL7°. (3.4.6)

Here Mnsi(A) is the unstable subspace of the matrix A4, i.e., the invariant subspace
related to the unstable part 0™ (A) := {\ € o(A) : |A| > 1} of the spectrum o (A).

Definition 3.4.23. A spectral set o C o(A) is said to be elementary if it consists of
either one real eigenvalue or a couple of conjugate complex ones.

Any such set is associated with one or more Jordan blocks in the real Jordan repre-
sentation of the matrix A. These blocks are of the form

ATO0OO---0
OATO---0
O0AT---0
0O00A---0
0000--- 1T
0000---A

If o consists of one real eigenvalue A, all entries have the size 1 x 1 and A = \. If

o is composed by a couple of conjugate complex eigenvalues d(cos ¢ =+ 2sin ¢), the

cosp sine
—sing cosp | °

The symbol M, stands for the invariant subspace of A related to o. We also
introduce the subspace L N M, (= Ly N M, if o C o*(A)) of states z €
M, ignored by the jth sensor. All sensors altogether give rise to a whole variety
{L;°n MU}?:1 of subspaces.

size of all entriesis 2 x 2 and A = d

Assumption 3.4.24. Consider an elementary subset o C o (A) of the unstable part
of the spectrum that gives rise to more than one real Jordan block. The following
statement holds for any such a subset:
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(i) The variety {L; N M, };‘f:l of unobservable subspaces of M, has the atomic
structure: The space M, can be decomposed into a direct sum

My=M'®---@& M™ (3.4.7)

of atom subspaces M so that any unobservable subspace L7 N My is the sum
of several atoms

L;(0):=L; N My = ®ieryMy,  where 1(j) C[1:m,]. (3.4.8)
Here the set 1(j) may be empty.” Assumption 3.4.24 is trivially satisfied whenever

there is no elementary spectral set o with the properties described in its preamble. In
other words, the following claim holds.

Remark 3.4.25. Assumption 3.4.24 is valid whenever any elementary subset o C
o7 (A) of the unstable part of the spectrum gives rise to only one real Jordan block.

This clearly holds if the matrix A has no multiple unstable eigenvalues. As is well
known, the last property is true for almost all (with respect to the Lebesgue measure)
matrices A. So Assumption 3.4.24 is valid for most square matrices A.

At the same time, the matrix A has multiple unstable eigenvalues for interesting
application examples. Among them, there is the simplest dynamical system & = u.
Indeed, suppose that the control is constant on any sample period of duration A,
denote v := 2, and consider the trajectory only at sample times:

x(r) = x(rA), o(r) =v(tA), u(r) =u(rA+0). (3.4.9)
Then

A2

z(r+ 1) =a(r)+A-v(r) + 5

u(t), o(r+1)=v(1)+ A ulr).

So the matrix A = (} 4) has the eigenvalue 1 of multiplicity 2. Observe that this
eigenvalue gives rise to only one Jordan block. So Assumption 3.4.24 is fulfilled,
although the matrix has multiple unstable eigenvalues.

Remark 3.4.26. Assumption 3.4.24 also holds if sensor detects or ignores any of the
aforementioned subspaces M, only completely:

either M,NL; ={0} or M,CL; (3.4.10)

for any “unstable” ¢ C o (A) elementary set o and sensor j.

In this case, the decomposition (3.4.7) is trivial: m, = 1, M} = M,.
It should be noted that the condition (3.4.10) is sufficient but not necessary for
Assumption 3.4.24 to hold, as is demonstrated by the following.

"The direct sum over the empty set is defined to be the trivial subspace {0}.
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Example 3.4.27. Consider the system whose dynamical matrix is a Jordan block

zi(t+1) =Xz (t) + 0 +bfult) wi(t)
ra(t+1) = Aza(t) + x1(t) +boult)  y2(t) = ot
: : : . Al > 1. (3411

:Cd(t + 1) = )\(L’d(t) + (L'dfl(t) + béu(t) yd(t) = CL’d(t)
The system is served by d sensors. Their unobservable subspaces are, respectively,
Ly ={z:21=0}, L, ={x:2;=22=0},...,
oLy y={r:x1=---=2q-1 =0}, L; ={0}. (34.12)

So (3.4.10) does not hold for the only elementary set o = {\} and any sensor except
for the dth one. At the same time, Assumption 3.4.24 is true by Remark 3.4.25.

It should be noted that the statement (i) from Assumption 3.4.24 necessar-
ily holds for any elementary set ¢ C o+ (A) giving rise to only one real Jordan
block.? This observation, first, explains why such sets are not considered in Assump-
tion 3.4.24, and, second, it demonstrates that the property (i) is natural.

A typical example of the situation forbidden by this assumption is as follows:

o(t+1) = da(t) +u(t) € R?, A>1, where z=(zr1,22). (3.4.13)
There are three sensors
y1(t) = x1(t), y2(t) = x2(t), ys(t) = z1(t) — za(2), (3.4.14)
whose nondetectable subspaces equal the following lines, respectively,
Ly ={x:21 =0}, Ly ={z:22=0}, L3 ={z:x1 =2}

(see Fig. 3.3). There is only one elementary spectral set o = {\}, which gives rise
to two Jordan blocks of size 1 x 1. It is easy to see that the plane M, = R? cannot
be decomposed into a direct sum (3.4.7) so that its special partial sub-sums give each
of the three lines L ,¢ = 1, 2, 3 from Fig. 3.3, as is required by Assumption 3.4.24.

Assumption 3.4.24 is technical and is imposed to simplify matters. The case
where this assumption is violated will be addressed in Sect. 3.9.

3.5 Main Result

The stabilizability conditions to be presented are constituted by a set of inequali-
ties. These inequalities can be enumerated by groups of sensors J C [1 : k]. The
inequality depends on the group via the space of states nondetectable by this group:

8See Lemma 3.8.3 on p. 66.
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Fig. 3.3. The unobservable subspaces.

L(J) := ﬂ L. (3.5.1)

JjeJ

We recall that L is given by (3.4.6). For consistency, we assign the unstable sub-
space Myns(A) to the empty group.

Different groups J may produce a common space L(J) and thus a common in-
equality. So it is beneficial to parametrize the inequalities not by the groups of sensors
but by the nondetectable subspaces (3.5.1). To this end, we introduce the following.

Notation 3.5.1. The set of all subspaces L C R™ of the form L = L(J) except for
L = {0} is denoted by £ = {L}. (Here J runs over all groups of sensors J.)

As discussed, the size of £ may be less than the number of all such groups.
Now we are in a position to state the main result of the chapter.

Theorem 3.5.2. Suppose that Assumptions 3.4.2, 3.4.22, and 3.4.24 (on pp. 43 and
49 ) hold. Then the following two statements are equivalent:

(i) The system (3.3.1), (3.3.2) is uniformly and exponentially stabilizable;’
(ii) For every subspace (3.5.1) L € £ constituted by all states nondetectable by a
certain group of sensors, the following inequality holds:

log, |det A|| < Z ¢, where
J¢J(L)
JL):={j=1,....k:Cjz=0 VoecL}. (352

Here A|y, is the operator A acting in its invariant subspace L, the sum is over
the sensors that do not completely ignore the subspace L at hand, and c; is the
transmission capacity (3.4.1) of the jth channel.

Now suppose that the equivalent claims (i) and (ii) are true. If the matrix A has no
stable eigenvalues 0= (A) := {\ € o(A) : |\| < 1} = 0, the rate 1° of exponential
stabilizability of the system is given by

9See Definition 3.4.8 on p. 46.
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1
log, 1 — max <log2 |det A|| — g](:m cj>. (3.5.3)
J

Moreover, this formula is true whenever o~ (A) # () and the quantity in the right-
hand side is no less than maxye - (a) |Al.

The proof of this theorem will be given in Sects. 3.7 and 3.8. In Sect. 3.7, we
prove its necessity part (i) = (ii). The converse (i) < (ii) is established in Sect. 3.8,
where formula (3.5.3) is also justified.

Remark 3.5.3. The quantity log, | det A|| from (3.5.2) and (3.5.3) equals the topo-
logical entropy'? of the linear system

x(t+1)=Ax(t), z(t)eL, =z(1)eX CL,
where X1 C L is an arbitrary compact set for which 0 is an interior (in L) point.

This holds thanks to Theorem 2.4.2 (on p. 21), since the subspaces L. € £ are A-
invariant and all eigenvalues A of A|y, are unstable |\| > 1 by (3.4.6) and (3.5.1).

By Remark 3.5.3, the quantity log, | det A| 1| represents the unit time increment
of the number of bits required to describe the state of the open-loop (u(-) = 0)
system (3.3.1) considered on the invariant subspace L. At the same time, the right-
hand side of the inequality from (3.5.2) can be interpreted as the joint capacity of all
channels except for those carrying no information about the state x € L. (The latter
channels serve the sensors that completely ignore such states Cjx = 0 Vo € L.)
Thus the condition (3.5.2) means that the amount of information concerning the state
x € L that the decoder may receive over all channels for the unit time exceeds
the unit time growth of the number of bits required to describe the state to a given
high accuracy. It should be noted here that some bits counted in (3.5.2) characterize
the state € L only partly. They correspond to any sensor whose outputs are not
sufficient to reconstruct the entire state x € L. Moreover all sensors may be of such
a kind. Nevertheless, when inequalities (3.5.2) are taken for all subspaces L € £,
they constitute a sufficient and necessary criterion for stabilizability.

In general, the number of inequalities (3.5.2) does not exceed that of “unstable”
invariant subspaces. It also does not exceed the number 2% of all groups .J of sensors.
Moreover, the inequalities may be directly parameterized by these groups:

logy |det Al | <D ¢j. (3.5.4)
JgJ

Here L(J) is given by (3.5.1) and J ranges over all subsets J C [1 : k] except
those for which L(J) = {0}. As discussed, (3.5.4) may contain more inequalities
than (3.5.2) does. Indeed, if L(.J;) = L(Jz2) for Jy # Jo, then L(J1) = L(J2) =
L(J1 UJy) and so the sets J1, Ja, J1 U Jo are served by a single inequality in (3.5.2).
At the same time, they give rise to three inequalities in (3.5.4), with those for J = J;
and J = .J, being trivial consequences of the inequality with J = J; U Js.

19See Definition 2.3.3 on p. 16.
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Generally speaking, relations (3.5.2) are not independent. However, revealing
“superfluous” inequalities is usually a harder task than direct verification of the entire
inequality set (3.5.2).

Formula (3.5.3) holds only under special circumstances described in Theorem3.5.2.
In general, the conditions for exponential stabilizability at the rate p are structurally
altered as y passes any element p,, of the set

{IAN:xea (A} ={p1>p2>...>pp}, (3.5.5)

while continuously running over [0, 1). The point is that the “modes” € M,» from
the invariant subspace M, related to the spectral set

o’ :={XAea(A): [\ =p}

are stabilized at any rate ;1 > p, “for free.” At the same time, their stabilization at
arate ;1 < p, requires special efforts and so demands communication resources,
which causes alteration of the stabilizability conditions as y passes p,.

To extend formula (3.5.3) to the general case, we introduce the following analogs
of the subspaces (3.5.1):

LY(J) := M, N ﬂ L,
jed

where the unobservable subspace Lj_(’ of the jth sensor is given by (3.4.6) (on p.49).
For consistency, we assign L”(()) := My and put L°(J) := L(J).

An exhaustive characterization of the rate of exponential stabilizability is offered
by the following proposition. To simplify notations, its statement proceeds from the
stabilizability criterion in the form (3.5.4).

Proposition 3.5.4. Suppose that Assumption 3.4.2 (on p. 43) and (i) of Theorem 3.5.2
(on p. 52 ) hold, the pair (A, B) is controllable, and Assumption 3.4.24 (on p. 49) is
true for any elementary spectral set o C o(A). Let v. denote the maximal integer
v =1,...,p for which the following set of inequalities holds:

v—1 v—1
(Z dim L”‘(J)) logy py > Y logy |det Al (| =D ¢
a=0 a=0 JQJ

VJeEY = {J Cikl: L)@ L' ()@ - @ L¥(J) # {0}}, (3.5.6)

and v, := 0 if such an integer does not exist."!
The rate 1i° of the exponential stabilizability of the system is given by

1 .-
0 _ .
log, p” = max S dim Lo (J) o;)logz |det Al pa(s)| — ]Zg;] ¢|. (357

"'We suppose that the last case holds whenever o~ (A) = ().
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The proof of this proposition will be given in Sect. 3.8.

Remark 3.5.5. It is easy to see that log, ’det A\LQ(J)’ = dim L*(J) - logg p, for
« > 1. It follows that, first, whenever (3.5.6) holds for some v > 1, it also is true for
all lesser v and, second, uo < pu,, where pg := 0.

3.5.1 Some Consequences from the Main Result

Remark 3.5.6. The conditions (3.5.2) imply that the system is detectable via the en-
tire set of the sensors.

Indeed, otherwise (3.5.2) fails to be true for

k
L:=(L; #{0}

j=1
since then the sum in (3.5.2) is over the empty set, which is defined to be 0.

Remark 3.5.7. If the system is detectable by each sensor L, = {0} Vj, the set £
contains only one unstable space M5 (A) and so (ii) reduces to only one inequality,

k

10gy [ Al My ()| < € 1= Z -
=1

The sum ¢ can be interpreted as the capacity of the channel composed of all channels
at hand. At the same time, log, |A[s, (4)| equals the topological entropy H(A)
of the open-loop plant (3.3.1) by Theorem 2.4.2 (on p. 21). So the inequality is in
harmony with Theorem 2.5.3 (on p. 26) concerning the case of one perfect channel.

3.5.2 Complement to the Sufficient Conditions

The sufficiency part (ii) = (i) of Theorem 3.5.2 can be enhanced by the following.

Proposition 3.5.8. Suppose that Assumptions 3.4.2, 3.4.22, and 3.4.24 (on pp. 43
and 49 ) hold and (ii) of Theorem 3.5.2 (on p. 52) is true. Then the system (3.3.1),
(3.3.2) is uniformly and exponentially stabilizable by means of simple semirational
r-step recursive coders and a decoder.'>

Moreover, coders and decoders of such a kind fit to uniformly and exponentially
stabilize the system at any rate  exceeding the rate u° of exponential stabilizability
w > p®, which is given by (3.5.3).

The proof of this proposition will be given in Sect. 3.8, where a stabilizing controller
will be described explicitly. It will be shown that the controller exhibits stable behav-
ior of its inner dynamical variables z; and z from (3.4.4) and (ii) of Definition 3.4.17
(see p. 47).

Remark 3.5.9. The step r can be chosen common for all coders and the decoder.

12See Definitions 3.4.15 and 3.4.17 on p. 47.
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3.5.3 Complements to the Necessary Conditions

The (i) = (ii) part of Theorem 3.5.2 can be complemented by the following facts.

Remark 3.5.10. The implication (i) = (ii) remains true even if Assumption 3.4.24
(on p. 49) is dropped.

This easily follows from the proof of this implication presented in Sect. 3.7.

If in (3.5.2) the nonstrict inequality sign is substituted in place of the strict one,
the resultant inequalities form necessary conditions for the property that is weaker
than stabilizability. The rigorous statement of this fact is given by the following.
Lemma 3.5.11. Let a controller (3.3.5) exist that makes the trajectories of the
closed-loop system bounded

sup |z(®)] <00 VKg > 0. (3.5.8)
lzo || <Ko,t=0,1,...

Then (ii) of Theorem 3.5.2 holds with < replaced by < in (3.5.2).
Proof. We first show that the property (3.5.8) can be extended on the control:

sup lu(®)|| < oo VKo > 0. (3.5.9)
[|[zo||<Ko,t=0,1,...
To this end, we modify the decoder (3.3.4) by putting U(-) := 7U(-), where 7 is the
orthogonal projection from R? onto the orthogonal complement M, := (ker B)™ to
the kernel ker B := {u : Bu = 0}. This modification does not alter the action of the
controller on the plant since B = Bw. So (3.5.8) is kept true. At the same time, a
constant ¢ > 0 exists such that ||u|| < ¢||Bu|| whenever u € M,,. So

lu@)| < e Bu@)| E2 cllz(t + 1) - Az@®)|| < ellz(t + V)] + ¢ || Al [lz@)]

Thus we see that (3.5.8) entails (3.5.9).
Now we pick p € (0, 1). The transformation
2(t) == pla(t), v(t) = plul(t) (3.5.10)
establishes a one-to-one correspondence between the trajectories {z(t), u(t)} and
{z(t),v(t)} of the open-loop systems given by, respectively, (3.3.1) and the equation
2(t+1) = pAz(t) + pBo(t), 2(0) = wo. (3.5.11)
We equip the latter with the sensors y; = C;z,j € [1 : k], the coders

€j (t) = 8j [ta gj (0)7 Mflgj(l)v /’Lizgj (2)7 CERE ,uit?jj (t)}a
and the decoder
v(t) = Ut e(t)] .
Here £;(-) and U(-) are the parts of the controller making the trajectories of the
original system bounded. It is easy to see that (3.5.10) still holds for the closed-
loop systems. Then Definition 3.4.6 (on p. 46) implies that the proposed coders and
decoder uniformly and exponentially stabilize the system (3.5.11) at the rate p. The

proof is completed by applying the (i) = (ii) part of Theorem 3.5.2 to the system
(3.5.11) and letting 4 — 1 — 0. a
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3.6 Application of the Main Result to the Example from Sect. 3.2

In this section, we justify the statements from Sect. 3.2. We recall that they concern
a platoon of k vehicles described by (3.2.1). Each of them is equipped with a sensor
giving the distance y; = x; — x;—; from it to the preceding vehicle for ¢ > 2 and
the position y; = 1 for ¢ = 1. It is also served by a communication channel with
the transmission capacity ¢; > 0 carrying signals to the controller with the sample
period A > 0. The objective is to stabilize the platoon motion about a given constant-
velocity trajectory: v; = vf, z;(t) = 2? + v)t Vi.
The substitution of the variables

Vi 1=V — v?, Tp =T —x? — v?t
keeps the dynamics equations unchanged and shapes the control goal into z; =
0, v; = 0. To put the problem into the discrete-time framework adopted in this chap-
ter, we consider the trajectory only at sample times; i.e., we introduce the variables
(3.4.9), where now x, v, and u are marked by the lower index ;. We also modify the

sensor output by subtracting the sensor signal corresponding to the desired trajectory.
Then

A2
(T4 1) =a(1) + A v (1) + 5 ui (1), vi(t+1)=0v(7) + A u(r),
y,(T) = .’Ez(T) — (L’Z‘,l(’r), (361)
where x( := 0. Now
A 0 O 0
0 A2 0 --- 0
A= 0 0 Az 0 f A —a=(9)

0 0 0 Ay,

The unique elementary spectral set ¢ = {1} gives rise to k Jordan blocks. The

nonobservable and nondetectable subspaces (3.4.6) coincide and equal
LJ_ = {I = 001(21,11)1, .. .,zk,wk) Lz = O,UJj = 0},
where z;:=x; —x;_1, w; :=v; —V;_1,
and zg := vg := 0. Assumption 3.4.24 holds with
ML= {r:z; =0,w; =0Vj #i}, i=1,...,my =k

Assumption 3.4.22 is immediate from (3.6.1). Since | det A|;,| = 1 for any invariant
subspace L, Theorem 3.5.2 guarantees that

The platoon is uniformly and exponentially stabilizable under arbitrary transmis-
sion capacities ¢; > 0.
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To determine the rate of stabilizability °, note that the states nondetectable by
(maybe, empty) group J C [1 : k] of sensors constitute the subspace

L(a) = {XZZJ‘ =0, w; =0Vj 63}

Since dim L(J) = 2(k — |3|), where |d] is the size of J, relation (3.5.3) shapes into

lo ¢ = cInlIl?
gy 11° M\ ( 2; a)
where ¢pin := min kcj. (3.6.2)
j=

=1,...,

It follows that

—Cmin

For the platoon at hand, the rate of the exponential stabilizability equals /2
per sample period.

Now consider the situation where the sensor system accommodated by each ve-
hicle gives the distances to [ < k vehicles to the right, as well as to [ vehicles to the
left. (We assume an imaginary vehicle that is numbered by 0 and stays at the origin.)
Then clearly

L;:{x:zi:O,wizo Vi:max{j—l—l—l,l},...,min{j—i—l,k}}.

Assumption 3.4.24 remains true with the same subspaces M?, and the platoon evi-
dently remains uniformly and exponentially stabilizable. What can be said about the
rate of stabilizability? Now the collection £ introduced in Notation 3.5.1 (on p. 52)
consists of spaces L(J) related to sets J, which along with any element j € J contain
a certain interval of the form

[f—1+1:i+0N[1:k] >, i=1,...,k

Such sets are said to be wide. To proceed, we consider separately two cases.
1. Let 21 > k. Then any two aforementioned intervals contain a common point.
It follows that apart from J = (), the wide sets J are only intervals of the form

1:4], i>1+1, or [i:k], i<k—-1+1.

By retracing (3.6.2), we see that u* = v/2 ', where ¢ is given by (3.2.2) (on
p.41).
2. Now let 2] < k. Then the sets

M:i—1Ufi+1:k, i=1+2... k-1,
[i: K], 1=2,...,1+2,
1:4, i=k—1,....k—1
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are wide. By restricting the maximum in (3.6.2) to only these sets J, we see that
ul > /2 ~*! where ¢k is given by (3.2.2) (on p. 41). In fact, u° = /2 M To

prove this, it suffices to show that
1
k— 3] 262 o
J¢a
for any wide set J. To this end, we put
i—:=min{j:j€J} and iy :=max{j:j €}

Then

(3.6.3)

i-<l4+1=[i—:l+1CJ and iy >k—Il+1=k—-1+1:i4]C]

by the definition of the wide set. Hence
{]J€H}:HIUU857

where the sets J,, are pairwise disjoint and each of them has the form

do={i}, i=1+2,....k—1, or
Jo=1[1:4, i=1,...,01+1, or

Jo=[i k), i=k—1I+1,...

By (3.2.2) (on p. 41),

1
9] Z Cj > Chl-
v

Jj€dv
This implies (3.6.3) as follows:

1 S 1
¢ = dv ¢j > C -
b1 22 k- 2= Py 2

JEIv

3.7 Necessary Conditions for Stabilizability

3.7.1 An Extension of the Claim (i) from Theorem 2.5.3 (on p. 26)

k.

This theorem deals with an instantaneous and lossless channel. Now we show that its
statement (i) remains true for delayed and lossy channels considered in this chapter.
For technical reasons, which will become clear soon, we extend the class of systems

and consider ones of the following form
x(t+ 1) = Ax(t) + B[t,u(0),...,u(t)],

where B(-) is a given function. We also recall that the matrix A is unstable.

(3.7.1)
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Lemma 3.7.1. Suppose that there is only one channel k = 1. Then H(A) < ¢ := ¢;
whenever the system (3.7.1) is uniformly and exponentially stabilizable. Here H(A)
is the topological entropy (2.4.2) (see p. 21) of the open-loop system (3.3.1).

Proof. Suppose first that H(A) > ¢. By putting
v(t) := Bt,u(0),...,u(t)], Xy = {z:||z]| <1}, and B:=1,

we shape (3.7.1) into (2.5.1) (on p. 24) with u(t) := v(¢). From this point, the proof
proceeds by merely retracing the arguments from the proof of (i) from Theorem 2.5.3
(see p. 30), where T := 1 and R € (¢, H(A)) are taken. However when the set S
of all possible control sequences v(0), ..., v(T') is examined, it should be noted that

now its size |§| does not exceed 201 (7) by (i) of Assumption 3.4.2 (on p. 43). At the

same time, limy o b (T)/T = ¢ < R due to (3.4.1) (on p. 43). So 22/ < Rif
T is large enough, which keeps all arguments from the proof of (i) of Theorem 2.5.3
true and so entails a contradiction to the stabilizability of the system.

Thus H(A) < c. To prove the strict inequality H(A) < ¢, we employ the hint
similar to that from the proof of Lemma 3.5.11 (on p. 56). In other words, we con-
sider the process z.(t) := s'x(t). It clearly satisfies the equation of the form (3.7.1)

To(t + 1) = seAx, (t) + 5 TEBlE, u(0), . .., u(t)].

To keep this system stable, the constant »¢ > 1 is chosen so that s»¢y1 < 1, where i is
taken from (3.4.2) (on p. 46). Then by the foregoing, H (»xA) < c¢. It remains to note
that H(s»cA) > H(A) owing to (2.4.2) (on p. 21). O

Lemma 3.7.1 evidently remains true if the regime of the channel operation (given
by 71(+)) is known in advance.

3.7.2 An Auxiliary Subsystem

To prove (3.5.2) (on p. 52), we revert to the system (3.3.1) and pick a subspace L € £
constituted by the states not detectable by a certain group of sensors. Then we restrict
ourselves to trajectories {x(t)}22,, starting at zp € L and apply Lemma 3.7.1 to
them. More precisely, we take into account that {z(¢)} may leave L due to controls,
and we consider x, (t) := 7x(t). Here 7 is a projector from R™ onto L. It is easy to
check that the evolution of z, is governed by the equation of the form (3.7.1):

t—1
xp(t+1) = A|lpzr(t) + 7Bu(t) + Z(WA — Am) AT Bu(i),
i=0
xp(t) € L, 2 (0) =z9. (3.7.2)

Remark 3.7.2. The first equation simplifies if A = Aw. However, such a projector
m exists if and only if an A-invariant subspace exists that is complementary to L,
which is not true in general.



3.7 Necessary Conditions for Stabilizability 61

Notation 3.7.3. For I C [1 : k|, the symbol Ct denotes the block matrix that results
from arranging the blocks C; with i € I into a column.
For any entities v; enumerated by i € [1 : k], the symbol vy is defined likewise.

We interpret (3.7.2) as equations of an imaginary system and equip it with the sensor
yr(t) = Cyexp(t). (3.7.3)
Here J¢ := {j : j ¢ J} is the complement to the set
J={j:Cjz=0Vx e L}

of sensors ignoring the subspace L. We also suppose that all channels with j & J are
commissioned to transmit ¥y,.

The sum in the right-hand side of (3.5.2) (on p. 52) equals the capacity of the
union of these channels. Hence (3.5.2) follows from Lemma 3.7.1 applied to the
system (3.7.2), (3.7.3). To complete the proof, it suffices to show that this system
is stabilizable whenever the original one (3.3.1), (3.3.2) can be stabilized. In doing
s0, one must cope with the fact that the trajectory of the original closed-loop system
(3.3.1)—(3.3.4) may leave the subspace L. So the observations (3.3.2) and the entries
of (3.7.3) may differ. Moreover, the sensors omitted in (3.7.3) may see the state x(¢)
for ¢ > 1. It should be shown that they are yet useless and can be dropped.

3.7.3 Stabilizability of the Auxiliary Subsystem

Lemma 3.7.4. Let the system (3.3.1), (3.3.2) be exponentially stabilized by some
controller, and let the regime of the channels operation be known in advance. Then
the system (3.7.2), (3.7.3) is also exponentially stabilizable.

Proof. We first show that for x¢ € L, the process in the original closed-loop system
obeys the relations
es(t) = &t ese(t —1)],
ys(t) =Y [t ese(t —1)], yse(t) = yo(t) +Y"[t,ese(t —1)]. (3.7.4)

We recall that the data e;(¢) that arrived via the jth channel by time ¢ is given by
(3.3.6) (on p. 42). The observation yy,(¢) is defined by (3.7.2) and (3.7.3) for the
sequence of controls u(t) identical to that driving the original system.

Fort = 0, we have

2(0) € L=y;(0)=0 and y;c(0) =yL(0).

So (3.7.4) with t = 0 follows from (3.3.3). Now suppose that (3.7.4) with t := 6
holds for all 8 < ¢. Then

es(0) =€ [0,e50(t — 1)



62 3 Stabilization of Multiple Sensor Systems via Limited Capacity Channels

and so

e(0) = [es(0),esc(0)] = €0, e (t)] 222 w(0) =W [0, e5-(t)]  (3.7.5)
for 6 < t. Now we invoke (3.3.1) and note that

ro€ L= ATy e L= CjA™ g =0 and (I —7)A"2e =0.

As a result, we see that

t
yolt+1) = CyA ™  ag + Y " CrA™ Bu(0) = Y [t + 1, e5:(t)],
N~ ;6 4 =0
yre(t+1) —yp(t +1) = Cye [x(t + 1) — ma(t +1)] = Cye(I — m) A zg
5
t
+Cye Y (I —m) A Bu(0) = Y"'[t+ 1, e50(t)];
6=0

i.e., the last two relations from (3.7.4) do hold with ¢ := ¢ + 1. Then the first relation
follows from (3.3.3).

It follows from (3.3.3) and (3.7.4) that the signal e . (t) is determined by the
prior measurements from (3.7.3),

ege(t) = ELlt,yr(0),...,yc(t)].

Now we interpret this as the equation of the coder and the last relation from (3.7.5)
(where 0 := t) as that of the decoder for the system (3.7.2), (3.7.3). By the forego-
ing, this coder—decoder pair generates the trajectory wz:(t), u(t),t = 0,1, ..., where
x(t),u(t) is the trajectory of the original closed-loop system. So the inequalities
(3.4.2) (on p. 46) are inherited by the system (3.7.2), (3.7.3), which completes the
proof. O

3.7.4 Proof of the Necessity Part (i) = (ii) of Theorem 3.5.2

As discussed, this implication is immediate from Lemmas 3.7.1 and 3.7.4.

3.8 Sufficient Conditions for Stabilizability

In this section, we suppose that the assumptions and (ii) of Theorem 3.5.2 (on p. 52)
hold, and until stated otherwise, adopt one more assumption.

Assumption 3.8.1. The system (3.3.1) has no stable |\| < 1 eigenvalues M.

In the general case, a stabilizing controller will be obtained by applying that pre-
sented below to the unstable part of the system.
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3.8.1 Some Ideas Underlying the Design of the Stabilizing Controller

To stabilize the system, we employ the scaled quantization scheme (see, e.g., [28,73,
135,136,149, 184,204]). It was mainly developed for only one channel and is briefly
as follows. Both coder and decoder compute a common upper bound § of the current
state norm ||z || := max; |x;|. They are also given a partition of the unit ball into m
balls (cubes) with small radii < ¢(m). The number m matches the channel capacity
so that the serial number of the cube can be communicated to the decoder. The coder
determines the current state from the observations and notifies the decoder which
cube contains this state divided by ¢. Since the decoder knows 4, it thus becomes
aware of a ball B with the radius < d¢(m) containing the current state. Then it
selects a control that drives the system from the center of this ball to zero. The ball
itself is expanded because of the unstable dynamics of the system and transformed
into a set D (B) centered about zero: D (B) C B§'. So the radius « can be taken
as a new upper bound 6. Here o < d¢(m)u, where p characterizes the expansion
rate of the system. If ¢(m)u < 1, the bound § is thus improved 0 := d¢(m)pu < &
and by continuing likewise, it is driven to zero  — 0, along with the state .

In the context of this paper, a problem with the above scheme is that no coder may
be aware of the entire state x. So a natural idea [204] is to disintegrate the system
(3.3.1) into subsystems each observable by some sensor. Then each subsystem can be
stabilized by following the above lines, provided the stability condition ¢(m)u < 1
holds for it. In fact, this condition means that there is a way to communicate a suffi-
ciently large amount of information from the subsystem to the decoder: the smaller
the radius ¢(m), the larger the size m of the partition, and so the larger the number
of bits required to describe which of m cubes contains the state.

No channel in itself may meet the above stability condition. At the same time,
this condition may be met if several channels are commissioned to transmit infor-
mation about a given subsystem. Then each channel may carry only a part of this
information, whereas the decoder assembles these parts, thus getting the entire mes-
sage (see Fig. 3.4). Certainly, these channels should be chosen among those serving
the sensors that observe the subsystem at hand.

1

e=(e'y..e')

Fig. 3.4. Distribution of data over parallel channels.
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Since a given sensor may observe several subsystems, the above scheme means
that each channel must transmit a set of messages each concerning a particular sub-
system (see Fig. 3.5a). As aresult, each subsystem is served by a variety of channels,
whereas every channel is fed by several subsystems (see Fig. 3.5b). This gives rise to

Subsystems Channels

T 2> > e——
Subsystem1 \

> > 0 ——

Subsystemz > > 3> e———
> >0 e ———
> > > ——

: Channel
Subsystemq i N

Fig. 3.5(a). Data transfer over a given Fig. 3.5(b). Data transfer over all chan-
channel. nels.

Decoder

the question: Is it possible to distribute the required information about each particular
subsystem over parallel channels in such a way that the total amount of information
carried via every channel meets its capacity? It will be shown via convex duality
arguments that the answer is in the affirmative whenever (ii) of Theorem 3.5.2 holds.

Another problem is how to employ a sensor observing the subsystem only partly.
Certainly, this problem does not hold if there are no such sensors and subsystems:
The state of each subsystem either is completely determined from or does not af-
fect the outputs of any given sensor. Decomposition into a set of such subsystems
is possible. However, in general, these subsystems are dependent. The reasons for
this are twofold. First, the control is common. Second, Jordan blocks may entail an
unavoidable interinfluence between the states of the subsystems.

To illustrate the last claim, we invoke the system (3.4.11) (on p. 51) whose dy-
namical matrix is the standard Jordan block. The unobservable subspaces of the sen-
sors are given by (3.4.12). There are no other invariant proper subspaces.!'? So this
system cannot be decomposed into subsystems with independent open-loop dynam-
ics. At the same time, any sensor except for the last one observes the state x only
partly. So to exclude such a partial vision, disintegration into state-dependent sub-
systems is unavoidable.

To deal with them, we employ sequential stabilization. We define the sth subsys-
tem as that described in the sth row from (3.4.11). Its state is 2. Then we stabilize
the first subsystem, which is independent of the others. This makes x; exponentially
decaying. In the equations of the second subsystem, we interpret £ as an exogenous
disturbance. By constructing a device stabilizing this subsystem under any exponen-
tially vanishing disturbances, we make xo exponentially decaying. The entire system
is stabilized by continuing likewise.

These arguments, however, do not take into account that the control affects all
subsystems, and some of them may be unstabilizable (although the entire system

BSee the proof of Lemma 3.8.3 on p. 66.
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is controllable). For example, the subsystems with s > 2 are unstabilizable if b; =

1,bo =--- =bg = 0in (3.4.11). This obstacle can be easily overcome via increasing
the sample period.
Indeed, let us pick r = 1,2,. ... The state z; := x(ir) evolves as follows:
Ty = A"z + BU, (3.8.1)
where

U’ = col [u(ir),u(ir + 1),...,u(ir+r—1)] and

r—1
BU =Y A"'"IBu; (382)
j=0

is the state to which the control program U = col [uo, ceey ur_l] drives the system
at time ¢t = r from z(0) = 0. Since the system (3.3.1) with no stable modes is
controllable by Assumption 3.4.22 (on p. 49), the operator B is onto if r > n.
Related to the decomposition of the system state = col (2, ..., z%) into the states
x' of subsystems is a block partition

BU = col [B1U,...,ByU|.

Since all operators B have full rank, any subsystem is controllable. Moreover, any
control action y = B,U in the sth subsystem can be implemented by a control U
that does not disturb the other subsystems: B;U = 0Vj # s.

3.8.2 Plan of Proving the Sufficiency Part of Theorem 3.5.2

Summarizing, we adopt the following plan.

Step 1. We decompose the system so that, first, for any given sensor, the state of each
subsystem either does not affect or is determined from the sensor outputs
and, second, the decomposition is triangular. The latter permits us to employ
the sequential stabilization approach.

Step 2. We increase the sample period and, for each subsystem, offer a class of con-
trollers stabilizing it under any exponentially decaying disturbance. In doing
s0, we assume that the coder is aware of the current state at any sample time
t = ir, and there is a way to communicate as much information as desired
from the coder to the decoder.

Step 3. Within the above class, we point out the controller that requires a nearly
minimum bit-rate of such a communication.

Step 4. We show that if all subsystems are equipped with these controllers, the entire
system is stabilized.

Step 5. We obtain conditions under which the entire set of these controllers can be
implemented'* by means of real channels and sensors. These conditions are
not constructive and require that a linear system of inequalities be solvable
in integers.

“In particular, the required information traffic can be arranged.
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Step 6. By employing convex duality arguments, we show that these conditions are
equivalent to (ii) of Theorem 3.5.2.

Step 7. We drop Assumption 3.8.1 and show that (ii) of Theorem 3.5.2 suffices to
stabilize the system with both unstable and stable eigenvalues (modes).

3.8.3 Decomposition of the System

Now we perform step 1 of the above plan. In other words, we represent the system
as a set of subsystems interacting in a special manner. The main result is as follows.

Proposition 3.8.2. Suppose that Assumption 3.8.1 (on p. 62) holds. Then after a
proper one-to-one linear transformation and partition of the state

= col(zt,... 2% (3.8.3)

into several blocks x° € R™ interpreted as the states of subsystems, the following
statements hold:

(i) The unobservable subspace (3.4.6) (see p. 49) Lj_o = Lj_ of any sensor is
composed of several blocks:

L ={z:2°=0Vs € O,}, where O, C [1:d];

(ii) The block representation of the dynamics equations (3.3.1) is lower triangular:
2 (t+1) =Y Aua'(t)+ Ba(t), s=1,....d (3.8.4)
i=1

By (i), the states z° of subsystems s ¢ O; do not affect the outputs of the jth
sensor, whereas the states z° with s € O, are uniquely determined from these out-
puts.

The remainder of the subsection is devoted to the proof of Proposition 3.8.2. We
start with two technical facts.

Lemma 3.8.3. The claim (i) of Assumption 3.4.24 (on p. 49) holds for any elemen-
tary spectral set o.

Proof. In view of Assumption 3.4.24, it suffices to prove the lemma assuming that
the set o gives rise to only one real Jordan block. We put M := M, , A, := A|y and
note that det[A\] — A,] = ©(\)P, where the polynomial ¢ is irreducible over the field
of real numbers. By employing the basis in M reducing A, to the real Jordan form,
it is easy to see that the formula £(v) := ker [¢(A,)]” produces (p + 1) distinct

{0V =L0)C L) C--CLlp)=M

invariant subspaces and dim £(v) = v deg . We are going to show that there are no
other invariant subspaces.
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Indeed let L be such a subspace and i be the minimal annihilating polynomial
of L. Then ¢ is a divisor of P and so ¢ = ¢”, v =0,...,p. Hence

L C ker [@(AU)]V = L(v).

At the same time, Theorem 2 of [61, p. 180] implies that dim . = deg. Thus
dim L = vdegp = dim L(v), and so L = L(v).

As a result, we see that all invariant subspaces L; N M, are among L£(0), ...,
L(p). It remains to pick M} := £(1),m, := p, and fori = 2,...,p, choose M¢ so
that £L(i — 1) & M = L(i). O

The next lemma plays the key role in the proof of Proposition 3.8.2.

Lemma 3.8.4. In Assumption 3.4.24 (on p. 49), the atoms M. i = 1,...,m,, can
be chosen so that all partial direct sums of the form

1 i .
M, @& M, 1=1,...,m,,
are A-invariant.

Proof. We consider the set of atoms with the minimal size m,,. We also introduce the
undetectable subspaces L; := L; N M, of M,, then we form all their intersections

I/ﬁ :LJI mijp,
and then we form all algebraic sums (not necessarily direct) of such intersections
L¥ =L 4 4+ LY.

Here p, r and the subspaces L,v, Lf), are chosen arbitrarily. Let 9t denote the set of
all L*"s. It is clear that

1) Any space L € 91 is invariant and decomposable into a direct sum of several
atoms;

) LeM=LNL; eM Vj;

3) M, € 9,

4 L' L"eMm=L +L"eM,

5) The set 9 is finite.

Now we pick a minimal element L,,;, among L € 9, L # {0}, i.e., such that
LCLmin&LGW&L#{O}jL:Lmin-

By trying here L := Ly, N Lj, we see that either Lin C L; or Liyin N L; = {0}.
Hence any L; contains either all atoms constituting L., or none of them. So these
atoms can be replaced by their sum in (i) of Assumption 3.4.24. Since the number
of all atoms is minimal, only one atom is concerned: Li, = M. By permuting the
atoms, we set ¥ = 1. Then the claim of the lemma does hold for i = 1 by 1).
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Now let Lyyin denote a minimal element among L € 9 such that L D M} and
L # M}!.By?2)and4),

L:=M}!+LjN Ly, € M.

So the minimum property yields that either L = M} or Ly,i, C L. In terms of the
decomposition from 1)
Lmin = M; &b Mmin cMm

(where My is the sum of several atoms), this means that either Myy,in N L; = {0}
or Myin C Lj. Like above, this implies that M,,;, consists of only one atom M.
By permuting the atoms, we set v = 2, thus making the claim of the lemma true for
1 = 2 by 1). The proof is completed by continuing likewise. a

Proof of Proposition 3.8.2. We decompose the spectrum
o(A)=c'U---Ug?
into the union of disjoint elementary sets. Then
R" =M @& Mg,

and any invariant subspace L is decomposed

into the invariant subspaces L (v) := L; N M,». So it suffices to show that, for any
v, linear coordinates in M~ and their block partition exist for which any subspace
Lj_(y), j =1,...,k, is the direct sum of several “blocks” and the operator A|y/ .
has a lower triangular form with respect to this partition. These blocks z* are in fact
given by Lemma 3.8.4:
2t e M —tl

More precisely, it suffices to pick a basis in each subspace M¢, i = 1,...,myv,
unite them to produce a basis in M+, and then consider the coordinates with respect

to this basis and their partition that corresponds to the partition z = e R L
of z into 2 € Me* ~H 1, O

3.8.4 Separate Stabilization of Subsystems

In this subsection, we perform step 2 (see p. 65) of the plan from Subsect. 3.8.2.

Introducing Subsystems

We pick an integer parameter r and focus attention only on the states at times 7; =
1 - r. The evolution of these states is given by (3.8.1) (on p. 65), which evidently
inherits the lower triangular structure from (3.8.4),
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S
i = DAL + B (3.8.5)
v=1

fors =1,...,d. Here
xf = a%(1), U; = col [u(r),...,u(ri +7—1)],

and the diagonal coefficients from (3.8.5) are the rth powers of the matching coeffi-
cients from (3.8.4), Agg) = AL,.
The sth subsystem is described by the following equations:

l‘;?_,'_l :A:gxf+%gUz+£g71, 1=0,1,.... (3.8.6)

Here in accordance with (3.8.5),
s—1
&,i(t)=0 for s=1 and &it) = ZA(JV):E;’ otherwise.  (3.8.7)
v=1

In this subsection, we ignore this rule and interpret &, ;(¢) as an exogenous dis-
turbance. This permits us to study each subsystem independently of the others. We
also suppose that the disturbance decays at a known rate pe:

‘gs,i

with K¢ unknown, and offer a controller that stabilizes the sth subsystem under all
such disturbances. In doing so, we assume that the current state =7 is measured on-
line. The proposed controller uses only finitely many bits of information about z;.

< Kept, pe €[0,1), i=0,1,... (3.8.8)

Remark 3.8.5. The controller will be mainly based on the ideas from [28, 73, 77,
135,136, 149, 184,201, 204]. Major distinctions concern two points. First, we take
into account exogenous disturbances decaying at a known rate. Second, we consider
the case where the transmission of the above bits to the decoder takes some time
(specifically, r units of time). This implies complements to the stabilization scheme,
e.g., the need to quantize not the current state but the state prognosis.

We first introduce components of which the coder and the decoder will be assembled.

Quantizer

To communicate a continuous sensor data over a discrete (digital) channel, an analog-
to-digital converter is required.

Definition 3.8.6. An m-level quantizer Q° in R™* is a partition of the closed unit
ball B} C R™ with respect to some norm || - || into m disjoint sets Q1, . . . , Qm each
equipped with a centroid ¢%¢ € Q.

Such a quantizer converts any vector 2° € Q; into its quantized value Q°(x°) := q%
and any vector z° ¢ B} outside the unit ball into an alarm symbol Q°(z*) := Q.
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Definition 3.8.7. The quantizer is said to be r-contracted (for the sth subsystem) if

AT (Q—q%) Cpa:ByV¥Q =Q;, i=1,...,m, where pq: € (0,1). (3.8.9)
The constant pq= € (0,1) is called the contraction rate.

Definition 3.8.8. The quantizer is said to be polyhedral if the quantizer map Q°(+)
is semialgebraic' with linear functions l;(z*) = alx® + b;,i € [1 : M®] in (3.4.3)
(on p. 46).

In other words, such a quantizer acts by checking the linear inequalities /;(x®) >
0,7 € [1 : M*] and forming the tuple A(x*) whose ith entry is 1 (yes) if the inequal-
ity is satisfied and O (no) otherwise. The quantizer output is uniquely determined by
the distribution of answers (yes, no) over the set of inequalities, i.e., by this tuple.

Remark 3.8.9. Not only nonstrict but also strict inequalities can be considered here.
This holds since the results of checking the strict I;(«*) > 0 and nonstrict —I;(x*) >
0 inequalities, respectively, are uniquely determined from each other by the negation.

Remark 3.8.10. For polyhedral quantizers, any level domain ); (along with Q :=
{z® : Q°(«®) = I}) is the union of a finite number of convex polyhedra.

Note also that for such quantizers, the ball from Definition 3.8.6 is a convex polytop.

Example 3.8.11. One of the simplest examples of a quantizer is given by the uniform
partition of the square with the side length 2 into m = N? congruent subsquares
(see Fig. 3.6, where N = 12). The norm in Definition 3.8.6 is given by ||z||s =
max{|z1],|z2|},x = col (z1,22). The centroid is the center of the corresponding
subsquare. This quantizer is polyhedral and served by 2(/N + 1) linear inequalities:

.’tlz—l-i-(i—].) =1,...,N, z; > 1,

2
2
N7

P
20> -1+ (i—1)_,i=1,...,N, a3>1. (3.8.10)

N
In this case, it is convenient to split the tuple A(x) of answers into two subtuples
A;(x) and Ay (z) related to the first and second subsets of inequalities, respectively.
If all entries of either A; () or Ax(z) equal each other (all are 1 or all are 0), the
quantizer output is X4. Otherwise
2 1 2 1
s =col | —1 1 — 1 -1 o — 1
%) = col (—1+fi 1] 4yl -3+ ),

where 7, (for v = 1, 2) is the maximal serial number of the inequality for which the
affirmative answer 1 is written in the tuple A, ().

15See Definition 3.4.9 on p. 46.



3.8 Sufficient Conditions for Stabilizability 71
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Fig. 3.6. Uniform square quantizer.

Explanation 3.8.12. In (3.8.10), the strict inequalities are taken for ¢ = N to make
the quantizer’s effective domain {x : Q%(x) # "4} closed, as is required by Defini-
tion 3.8.6.

Remark 3.8.13. Example 3.8.11 is easily generalized on the case of the general Eu-
clidean space R™¢. Then the uniform partition of the cube with side length 2 into
N™s congruent subcubes is performed. The centroid is the center of the correspond-
ing subcube. This quantizer is still polyhedral.

Remark 3.8.14. The last example entails that for any 7, a polyhedral r-contracted
quantizer exists.

Indeed, the set Q — ¢¥,Q = Q; from (3.8.9) is the cube with side length 2/N
centered about zero. Equivalently, this is the ball of radius 1/N with respect to the
norm

E}
Ns

|2% oo := max{\x‘ﬂ,...,\x

Lo et =col(af,...,x5).  (38.11)

So to ensure (3.8.9), it suffices to pick N > ||A%, ||, Where || - || is the matrix
norm matching (3.8.11): [|A|| oo := max s =1 [[A2*[|cc-

Assumption 3.8.15. In the remainder of this subsection, we suppose that a polyhe-
dral r-contracted quantizer is given (for any r).

As will be shown, the number of its levels determines the communication bit rate
required for stabilization. So an r-contracted quantizer with the minimal number of
levels is of special interest. Such a quantizer will be offered in Subsect. 3.8.5.

Deadbeat Stabilizer

This is a linear transformation N of an initial state =} into a control program U that
drives the unperturbed §, ; = 0 subsystem (3.8.6) to zero,
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0=2ai(=2°(r)) = ALl + B,U for U :=Nzj andany z. (3.8.12)
A particular deadbeat stabilizer with advanced properties'® will be proposed in Sub-

sect. 3.8.6.

Assumption 3.8.16. In the remainder of this subsection, we suppose that a deadbeat
stabilizer is given.

Parameters
Apart from r, the controller employs two more parameters p and «y chosen so that
r>mn, v > || Ass|”, and 1> p > max{pe, pa-}, (3.8.13)

where Ay, pe, and pas are taken from (3.8.4), (3.8.8), and (3.8.9), respectively.

Description of the Coder and Decoder

Both coder and decoder compute controls UF, U and upper bounds &%, §¢ for the
state norm ||z ||, respectively. Actually, acting upon the plant is the control Uf. The
initial bounds are common: §§ = 6 = & > 0. (The inequality 6y > ||=§|| may be
violated.) At any time 7; = ir, the coder selects a finite-bit message based on x; and
sends it to the decoder. We suppose that this message arrives by time 7,4 1.

Specifically, the coder and decoder operate as follows.
The sth coder (at the times ¢t = 7,7 =1,2,...)

c.1) Proceeding from the knowledge of the current state 2], computes the prognosis
zj, of the state at £ = 7,1,

B, = Alat + BLUS (3.8.14)

5871

¢.2) Employs the r-contracted quantizer Q° to compute the quantized value ¢; of
the scaled state at ¢t = 7,41,

eii=[0¢] B, @i= Q%[ (3.8.15)

¢.3) Encodes this quantized value g; for transmission and sends it to the decoder;
c.4) Computes the next control program by means of the deadbeat stabilizer N and
corrects the upper bound,

Uity = N[éf 52 ]’ 0i 1 =05 X <Qi>p,’yv where (3.8.16)
G4 a7 _ [pitq AR,
= {O otherwise, (a)p s = {ry otherwise, (3.8.17)

!These properties are beneficial when all subsystems are stabilized simultaneously.
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The sth decoder (at the times ¢t = 7,2 = 2,3,...)

d.1) Decodes the newly received data and thus acquires g;_1;
d.2) Computes the current control program and corrects the upper bound,

U =N[0l @1 ], 0y =0 x (qi1),., - (3.8.18)

K3

Remark 3.8.17. For definiteness, the initial control programs U§, U, U, U{ are
taken to be zero.

Explanation 3.8.18. We introduced separate controls U£, U£ and bounds &%, §¢ to

stress that the coder and decoder compute them independently. However, it easily
follows from (3.8.16), (3.8.18) and induction on ¢ that they in fact coincide,
od=0¢,, Ul=Uf  i=1,2,.... (3.8.19)

Remark 3.8.19. The second relation from (3.8.19) implies that the error in the state
prognosis (3.8.14) is equal to the disturbance from (3.8.6),
T =i — s (3.8.20)

Explanation 3.8.20. To be communicated across the channel, the quantized value g;
should be encoded into a code word (e, [ir], e[ir + 1],...,es[(i + 1)r — 1]) € €7,
whose symbols are consecutively emitted into the sth channel during the forthcoming
operation epoch [ir : (i + 1)r).

Remark 3.8.21. Let m denote the number of the quantizer levels.” By ¢.3), the coder
sends on average logz(:"H) bits per unit time to the decoder.

In Subsect. 3.8.5, the minimum of this ratio over r-contracted quantizers will be
studied.

Observation 3.8.22. As follows from Definitions 3.4.15 and 3.4.17 (on p. 47), the
proposed coder and decoder are simple semirational one-step recursive.

We recall that the sample period was increased so that now one step is equivalent to
r former ones.

Remark 3.8.23. The inner dynamical variables 2*(= z,) and z of the coder and de-
coder (see Definitions 3.4.15 and 3.4.17) can be defined as z§ := (0¢,U ¢), z; := 6¢.

Stabilizing Properties of the Coder and Decoder

These properties are revealed by the following main result of the subsection.

Proposition 3.8.24. Suppose that Assumption 3.8.1 (on p. 62) and (3.8.13) hold, and
the disturbance in the sth subsystem (3.8.6) satisfies (3.8.8). Then the above coder—
decoder pair uniformly and exponentially stabilizes this subsystem:

25| < Kop', ||UY| < Kup' Vi>0whenever |lz5 < Ko.  (3.8.21)

Here p < 1 is the parameter of the controller from (3.8.13), and the constants
K., K, may depend on K¢ from (3.8.8) and K.

"Hence with regard to the extra alarm symbol, the quatizer output can take m + 1 values.
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Proof of Proposition 3.8.24

The remainder of the subsection is devoted to this proof, which is broken into the
string of several lemmas. We start with rough estimates of concerned variables.

Lemma 3.8.25. The following inequalities hold for alli > 1,h > 0, and p > h:

Jop't <65 <Gyt |UF| < INI6E_y,
lepll < @1 [|lail| + Kgpk| + Kor?[3(p, 1), (38.22)
where K{ := K¢/(aj — 1) and a is an arbitrary constant such that

as > || A, (3.8.23)
|3(p, h)| is the size of the set
Jp,h):={j=h,...,p—1:5>2& q_1 # &},
and the constant K., does not depend on xq, Ko, h, p, K¢.

Remark 3.8.26. Due to Assumption 3.8.1 (on p. 62), ||Ass|| > 1. Hence as; > 1 by
(3.8.23) and so the constant K é is well defined.

Explanation 3.8.27. If ||Ass|| > 1, the lemma remains true with as = ||Ass].
The constant a, is introduced for uniformity of the formulas concerning the cases
[[Ass|| > 1 and || Ass|| = 1, respectively.

Proof of Lemma 3.8.25. The first formula is immediate from (3.8.16) and (3.8.17)
since p < 1 <~y by (3.8.13). The second one results from (3.8.18) and (3.8.19) since
I q || <1 dueto (3.8.17). To prove the last formula, we first note that

by (3.8.17) and (3.8.18). Hence

p—1
(3.8.6) _ 1
gl SE2 || Arr Pz + 3 AT [B,U7 + €, ]
j=h
A3

8.8) _ s rp—1—7) _i—
< A"l |+ 1Bl INIG0 D [[Asel” P 47

~

JEIPR) < \p—1-3by (3.8.13)
p—1
, —1—j
TR ) Al
~~  j=h >

<pbby388)°  <al?T'7 by (38.23)

r(p—h)

(e s . . Qs -1

< alP |23 | + 1B [IN160[3(p, h)v7 2 + Kept ar —1 7
S
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which yields the last formula from (3.8.22). O
To justify stability, it suffices to show that §{ are true bounds for the state prog-
nosis
|77, ] <0f foralllarge .

Indeed, then ||e;|| < 1 Vi ~ oo by (3.8.15). Hence (3.8.16) and (3.8.17) ensure that
the bound &5 and thus 7§, , decay exponentially d7, , = pd for i ~ oo. Then so
does the state =7, ; thanks to (3.8.8) and (3.8.20); i.e., the system is stable. We start
by showing that even if the bound 45 is incorrect for some ¢, it becomes correct later.

Lemma 3.8.28. For any Ko, K¢, and io, an integer pg > 1iq exists such that the
bound &3 is correct ||z7, || < & for at least one index i € [ig : po] whenever
|5l < Ko and (3.8.8) holds.

Proof. With regard to (3.8.13), we pick a constant a, in (3.8.23) so that
a; <7. (3.8.24)

The symbol K (with possible indices) is used to denote a constant that depends on
Ky, K¢ but not z§ and ;. By putting h := 0 and the estimate |J(p,h)| < p—h
into the last inequality from (3.8.22), we see that

lzpiall < K" whenever |25l < Ko and (3.8.8) holds. (3.8.25)

Now suppose that the bound ¢f is incorrect for all ¢ from some interval [ig : i1]
with the left end . To estimate i1, we note that J(p, h) = @ for h := ig + 1 and
p =11 + 1 due to (3.8.15). So the last inequality from (3.8.22) yields

P % 041 —~. (3.8.20)
5,4l < a7 K o B 2, | SR o~ G
(3.8.8) . i . .
< aflhio) {K Yt Kép?“} + Kepy!

pe<l S ;
< afi) [K Yt Kg} + K¢

1<as i . .
(K KL+ Kea ),
At the same time, (3.8.16) and (3.8.17) entail that 65, | = ~df for i € [ig : i1]. So
51_61 — ,yilfio(sfo 2 ,yilfiopi07150’

where the last inequality is based on (3.8.22). Since the bound 4 is incorrect, it

follows that )
~s PN d1—d io
1< \xz‘l+1||< af \"" K+ K+ K

-0 T\ pio=1dy

By invoking (3.8.24), we conclude that 7; < i¢ + v, where
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log, (K o4 K¢+ Kg) — (ig — 1) logy p — log, do
v log, v — rlogy as
So one may pick po = ig + 1 + max{r, 0}. The claim of the lemma remains true

with the same py if the interval [ig : i1] does not exist, because then the bound df, i
correct. D

The next lemma in fact completes the proof of Proposition 3.8.24.

Lemma 3.8.29. Suppose that ||x§|| < Ko and (3.8.8) holds. Whenever the bound
05 becomes correct ||T3 || < 65, it is kept correct afterward, provided that i > ig.
Here iy is taken so that

o | As|ITK ‘

pac | Il Ass|"Ke <p5> <1 Vi>i (3.8.26)
p do p

Remark 3.8.30. Such an 7 exists due to the last inequality from (3.8.13).

Proof of Lemma 3.8.29. By (3.8.15), |le;|| < 1. So (3.8.16) and (3.8.17) imply
that

€; € Qa q; :qQ for some Q S {Qlanm}v
Uiy = N[6fai], 05 = pdf, (3.8.27)
where () are the level sets of the quantizer. By (3.8.12), the third relation yields
5ZCAZSq’L + SB z+1 =0.

Hence

(62‘C+1)_1 ||$Z+2H e ( 1+1) HA z+1 +3B U7+1||

= (050) " ALt — 5 AL G| S (00) AL [E G + €] - 0P AL
(3.8.15 ¢ _
& Az e el + (5) T AL
1+1

It follows from (3.8.9) and the first two relations in (3.8.27) that ||A§s [ez ] || <
pa=. We proceed by invoking (3.8.8) and the last relation from (3.8.27), along with
the first inequality from (3.8.22),

~1 4 pas v Pe_pas | Al Ke (pe 6326
o Sl < Ass||"K, < <1
(051) |78l < ) + | Ass|l e S ) % ;

Thus the bound 67, , is true, which completes the proof. O
Proof of Proposition 3.8.24. Consider the number py from Lemma 3.8.28, where
ig is taken from Lemma 3.8.29. By these lemmas, the bound 65 is true || 77, ;|| < 6F
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wheneveri > po. Then 67, | = pd§ Vi > po thanks to (3.8.15), (3.8.16), and (3.8.17).
With regard to the first relation from (3.8.22), we see that

§¢ < 8oyt for i < po, 6 =65 pimPo < bo ('y/p)popi for i > pog
6¢ < Ksp' Vi, where Kj:=do(v/p)".
(3.8.28)

This and the second formula from (3.8.22) give the second inequality in (3.8.21). To
prove the first one, we note that

(3.8.20)

(338, . (38.13
[ |

7 192 50+ Kept T2V KO i
|Z2y1 + &l < 05+ Kept < Kop i > po,

where Kg =p! (Ks+ Ke) .
For ¢ < pg + 1, inequality (3.8.25) yields

(i-1)

llz7] < K <K ::max{vmax K(j);Ko}.

Jj=1,....,p0

Thus the first inequality in (3.8.21) does hold with K, := max{KZ; K/p_po_l}.
(]
In conclusion, we observe that the coder and decoder inner dynamical variables
z7 and z; exponentially decay to zero thanks to Remark 3.8.23, (3.8.28), and the
second formulas from (3.8.19) and (3.8.22).

3.8.5 Contracted Quantizer with the Nearly Minimal Number of Levels

Now we in fact perform step 3 (on p. 65) from the plan described in Subsect. 3.8.2.

Let m denote the number of quantizer levels. Due to Remark 3.8.21 (on p. 73), the

r-contracted'® quantizer with the minimal value of the ratio logz(:"ﬂ) is of special

interest. For a given sample period r, such a quantizer is that with the minimum
number of levels. We start with obtaining a simple lower bound on this number.

Lemma 3.8.31. For any r-contracted quantizer,' the following inequality holds:
m > |det Asq|". (3.8.29)
Proof. Due to (3.8.9),
et A [V(Qi) = [det Al VIQ: = %] = V[47,(@: —4%)]
< pL.V[By] < V[BY].
Summing over ¢ = 1,..., m results in (3.8.29). a

18See Definition 3.8.7 on p. 70.
YStrictly speaking, we restrict ourselves to quantizers with measurable level domains.
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In fact, the lower bound (3.8.29) is tight. To show this we introduce the following.

Notation 3.8.32. The symbols < and = stand for inequality and equality up to a
polynomial factor. In other words,

fr) S g(r) & fr) <elr)glr)  Vr=1,2,...,

where ¢(r) is a polynomial in r, and

fr)=g(r) & f(r) S g(r)&g(r) < £(r).

When f(r) and g(r) depend on some other variables, the polynomial is assumed to
be independent of them.

Proposition 3.8.33. For any natural r, an r-contracted polyhedral®®

exists with the number of levels

quantizer Q°

ms < | det Agq|” (3.8.30)

Remark 3.8.34. To implement the controller introduced in Subsect. 3.8.4, it is re-
quired to communicate on average R := log2 (m+1) hig per unit time from the coder
to the decoder by Remark 3.8.21. Lemma 3.8.31 and Proposition 3.8.33 imply that

R > log, | det Ass| + aur, where «, — 0 as r — oo,

and for large r, the rate R can be made close to the asymptotic bound log, | det Ass|.
So the quantizer from that proposition can be viewed as almost optimal.

The proof of Proposition 3.8.33 employs the following technical observations.
Lemma 3.8.35. The following two statements hold:

(i) Whenever the claim of Proposition 3.8.33 is true for some matrix Ay, it is valid
for any similar matrix AL, = UAs UL,
(ii) Whenever this claim is true for two square matrices A, and A

. A’
for the block matrix Ags = ( 5 AQ, ) .

"

ws It is also true

Proof. Statement (i). Given r, consider a polyhedral r-contracted (for Ags) quan-
tizer with m2 < o(r)|det Ass|" levels, where ¢(+) is a polynomial. We also con-
sider the corresponding ball B} and norm | - || from Definition 3.8.6 (on p. 69).
Evidently, U” B} is the unit ball with respect to the norm ||2°||, := ||[U~"2*||. So
the partition U"Q1, ..., U" Qs of U " B}, where the centroid of U"Q; is defined to
be U"q;, is a quantizer. Since (AL,)" = UTAL,U™", (3.8.9) for A, is immediate
from this formula written for A,4. Consider the linear functions /;(«*) from Defini-
tion 3.8.8 (on p. 70) applied to the original quantizer. Then it is easy to see that the
new quantizer is also polyhedral and served by the functions [;(U ~"2*). The proof is

2See Definition 3.8.8 on p. 70.
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completed by observing that these quantizers have a common number of levels and
det Ags = det AL,

Statement (ii). Given r, the matrices A/, and A”; can be supplied with polyhedral
quantizers

s __ /! / / / s __ " /! " 1
Dl - Ql NQla"'an,;, NQm,;, and QZ - 17 Q17"'7Qm(y( NQm,;( )

respectively, such that m% < ¢¥(r)| det A% |" for both v = 7 and v = /7. Here ¢/ (r)
and " (r) are polynomials. Let « be vectors of dimension matching the size of Ass.
We partition them = = col (a/, 2”) in accordance with the block partition of the
matrix. We also introduce the norm ||z|| = max{||z’|’, ||=”||"}, where || - || and
I - || are the norms from Definition 3.8.6 (on p. 69) applied to the first and second
of the above quantizers, respectively. It is easy to see that the sets

Qij = {x:x’eQ;,x"eQ;‘/}, i=1,....m.,j=1,....,m/

equipped with the centroids ¢;; := col(q;,q}) form a quantizer °. Formulas
(3.8.9) written for A’ and A”, respectively, imply (3.8.9) for Ay, (with pqs =
max{pq:,pas} < 1). By considering the sets of linear functions [;(z'),i =
1,...,M;{and l;(2"),j = 1,..., M$ from Definition 3.8.8 applied to Q3 and 3,
respectively, it is easy to see that the quantizer ° is polyhedral and served by the
union of these sets with /;(2) and [ (z”") interpreted as functions of z = col (2’, z”).

For the number m; of the levels of the quantizer Q°, we have

my=my -] < @' (r)” (r) [det AL ["| det AL|" = p(r)[det Ase|". DO
~ ~ -
p(r

~

Proof of Proposition 3.8.33. By employing the real Jordan form of A, and
Lemma 3.8.35, the proof is reduced to the case where the matrix is a real Jordan
block. Let n, denote its size, A its eigenvalue, and w := |)\|. Then (see, e.g., [213,
Lemma 3.1, p. 64]) a polynomial (-) exists such that

[1]

(r):==w"p(r) AT, =0 as r — oo.

So ||Z(r)|| < p < 1forr =~ oco. Here || - || is the operator norm associated with
the norm ||z||c := max; |z;| in R™ = {z = col(zy,..., z,,)}. Balls with respect
to this norm are geometrically cubes. Multiplying ¢(r) by a sufficiently large scalar
factor makes the inequality ||=(r)|| < p true for all . Now consider the uniform
quantizer ° (see Example 3.8.11 and Remark 3.8.13 on pp. 70 and 71) partitioning
the cube B} into m? := k™ congruent subcubes @; with the side length 2, where
k := [w"p(r)]. The centroid g% is the center of ;. Then

IZ0)] < p= Z(M[Qi —¢%] C plQi — ¢

) w
= "By = ALIQi—q%] Cp

7‘%0,],,
k( )Bg C pBg.
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Thus the quantizer is r-contracted. The proof is completed by observing that

my = K" < [wp(r) + 1) < 277 (W)™ +1)

ng—1 r n 1<l det Ao | ns—1 r n
— on (\detAss| o(r) s+1) <7 9me 1 det Ay {90(7“) s+1].|:|

In Proposition 3.8.33, the contraction rate pns of the concerned quantizer is not
specified. At the same time, this rate can be made geometrically decreasing in r
provided that the number of levels m; is slightly increased.

Lemma 3.8.36. Ler n > H(A) = log,|det Ass| be given. Then for any r =
1,2,..., an r-contracted polyhedral quantizer Q° exists with the contraction rate
pa: = #*" and mi < 27 levels, where s = s, a_, € (0,1) does not depend on r.

Proof. In the above proof of Proposition 3.8.33, one should alter the choice of &
by k := [a"w"p(r)]. Here @ > 1 is a parameter to be adjusted. This evidently
provides the rate of contraction pg: < pa~" < a~" and gives rise to a quantizer
with m? & a7 = 2"[H(A)+n.log; ] Jevels. Then the statement of the lemma
results from properly adjusting the value of o > 1. ad

Remark 3.8.37. Proposition 3.8.33 and Lemma 3.8.36 hold for an arbitrary square
matrix Ags with no stable |A\| < 1 eigenvalues \.

3.8.6 Construction of a Deadbeat Stabilizer

When all subsystems are equipped with the proposed controllers, the stability of a
particular subsystem may be violated by the controllers serving other subsystems
since the control is common. To avoid this, it suffices to choose the controls in such
a way that they influence only the subsystem for which they are intended. For the
basic (unit) sample period, this may be impossible. Now we show that this can be
done if the sample period r is properly increased: The controls generated for a given
subsystem do not affect the states of the other ones at timest = -7,2 =0, 1,....

Common controls give rise to another trouble. The sth coder will be implemented
at the sites of all sensors observing the sth subsystem. To compute the states =] =
2®(7;) used by this coder, not only the observations but also controls must be known
at these sites. However, the sth coder may know the control only partly. It is aware of
its own summand in the overall control, which is the sum of the controls generated
for all subsystems. At the same time, it cannot determine the summands based on the
modes 27 invisible at its site. To overcome this obstacle, it suffices to note that the
controls must be known for only n times ¢ preceding 7;. So it suffices to ensure that
all controllers produce zero controls at these times.

Now we show that deadbeat stabilizers with the above properties do exist.

Lemma 3.8.38. Whenever r > n, a deadbeat stabilizer N for the sth subsystem
exists. Moreover, it can be chosen so that it generates control programs U =
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col (ug, ..., u,—1) vanishing since the time t = n, i.e., up, = -+ = up_1; = 0,
and does not disturb the other subsystems, i.e.,

B;,U =0 for j#s, U =Nz®, andany z°.

Proof. By (3.8.12), a deadbeat stabilizer is the right inverse to the operator DU :=
—A;B,U . In (3.8.1), BU is the state to which the control program U drives the
system (3.3.1) at time ¢ = r from x(0) = 0. By Assumption 3.8.1 (on p. 62), this
system has no stable modes. So it is controllable thanks to Assumption 3.4.22 (on
p- 49). It follows that the operator ‘B is onto. Moreover, 8|, is onto, where

M :={U :up,=+-=u,—1 =0}.

Indeed for any =, it suffices to pick the control program wuy, . . ., u,,—; that drives the
system from 0 at £ = 0 to A7, "x at t = n and to extend it by zeros to form U € M.
Then evidently BU = z. Now consider x such that in (3.8.3) all blocks are zeros
except for z° € R™s. Since this block can be chosen arbitrarily, it follows that the
operator B, maps L := {U € M : B;U = 0Vj # s} onto R". So evidently does
. It remains to define N as the right inverse to ©|L. O

3.8.7 Stabilization of the Entire System

Now we perform step 4 (on p. 65) from the plan described in Subsect. 3.8.2. We
revert to considering all subsystems in their actual relationship. In particular, this
means that the disturbance in (3.8.6) is given by (3.8.7). We also pick » > n and
suppose that the following assumptions hold for any s:

A.1) The block z*(7;) of the state can be determined at any time 7; = 4 - r at a certain
site (called the sth site);

A.2) Thereis a way to transfer the quantized value ¢; generated by the sth coder at the
step ¢.3) (on p.72) from the sth site to the decoder site during the time interval

[Ti : Ti+1).

Explanation 3.8.39. In A.2), considered is the site where the actual decoder (see
Fig. 3.2 on p. 42) should be situated.

Architecture of the Stabilizing Controller

Now we suppose that

SC.1) The sth coder from Subsect. 3.8.4 (starting on p. 68) is implemented at the
sth site from A.1) for every s;

SC.2) For all s, the sth decoder from Subsect. 3.8.4 is implemented at the site from
Explanation 3.8.39.

Remark 3.8.40. Assumption A1) makes SC.1) possible since the sth coder is driven
by the sequence of states 7 = x°(7;). Since the sth decoder is driven only by the
sequence of quantized values ¢;,7 = 0,1, ..., SC.2) is possible thanks to A.2).
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Each decoder produces its own sequence of controls
U = col [u®(ir), u®(ir + 1),...,u*(ir + r — 1)].

These sequences are summed over all decoders to produce the control sequence act-
ing upon the plant:

u(t) := ul (t) + u?(t) 4+ - + u’(t).

Specifying the Coders and Decoders

To complete their description, a quantizer, deadbeat stabilizer, and parameters r, v, p
from (3.8.13) should be chosen for each coder.

The parameter » > n has already been picked.

For any subsystem s, the quantizer and deadbeat stabilizer are taken from Propo-
sition 3.8.33 and Lemma 3.8.38, respectively.

The parameter v = +, is chosen to satisfy the second relation from (3.8.13).

As for the third relation, it is indefinite under the circumstances since p¢ from
(3.8.8) is not given. So now we pick the parameter p = p, in another way. It is
chosen successively for s = 1,2, ..., d and so that

1>p1>par, 1>ps>max{paz;p1}, 1> ps>max{pas;p2},...,
coy 1> pa > max{pqa; pi—1}, (3.8.31)

where pg- is taken from (3.8.9).

Stabilizing Properties of the Proposed Control Scheme

They are described by the following.

Proposition 3.8.41. Ler assumptions A.1) and A.2) be true. Then the controller pro-

posed in this subsection uniformly and exponentially stabilizes®' the entire system
(3.3.1) at the rate p = p;/r.

The remainder of the subsection is devoted to the proof of this proposition. We
preface it with a simple technical fact.

Lemma 3.8.42. Suppose that a trajectory of the system (3.3.1) satisfies the estimates
|zi| < Kop'y  ||U| < Kup's  i=0,1,2,..., (3.8.32)

where

v =a(r), 7 =1i-r,p€[0,1),U; := col[u(m),u(r; +1),...,u(r +r—1)].

Then (3.4.2) (on p.46) holds, where 1 := pl/r and the constants K., K,, are deter-
mined by K .., K, and p (for a given system).

2ISee Definition 3.4.6 on p. 46.
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Proof. Whenevert € [7; : T,41), we have
pi — Mﬂ, —_ Mﬂ—tut < M—r'ut _ p_l,ut.
So ‘
lu®)]] < U]l < Kup® < Kup™'p';
i.e., the second inequality from (3.4.2) does hold. We denote x := 1 + || A||. Then

t—1
lz@)]| = ||A"2(m) + Y AT Bu(j)
=i
t—1 )
< AP ()| + 32 AN B lul)
=i
t—1 ‘
< [N + 181 Y 1AI | x [l + o]
J=Ti
Tit1—1 ‘ -
< XTHIBI DD x| K+ K
J=Ti

where p’ < p~1ut. The index substitution j := 7; + v in the last sum proves that
(3.4.2) is true. a

Proof of Proposition 3.8.41. Suppose that ||z(0)| < Ky, where K is given.
The controls u* with s > 2 do not disturb the first block x} := x!(7;) of the state
at times 7; = ¢ - r since the deadbeat stabilizers are taken from Lemma 3.8.38. So
this block x},i = 0,1, ..., evolves just as in the first subsystem (3.8.6) driven by
the first coder and decoder and perturbed by the noise &; ;, which is zero by (3.8.7).
Then Proposition 3.8.24 and the first inequality from (3.8.31) imply that the first
subsystem s = 1 is uniformly exponentially stabilized (3.8.21) at the rate p := p;.
This and (3.8.7) imply that the noise &2 ; in the second subsystem (3.8.6) (where
s = 2) exponentially decays (3.8.8) at the rate p;.

Now we retrace the above arguments with respect to this subsystem and employ
the second relation from (3.8.31). As a result, we establish that this subsystem is
stabilized at the rate ps; i.e., (3.8.21) holds for s = 2 and p := p». By continuing
likewise, we see that for any s, inequalities (3.8.21) are true with p := p, and proper
constants K ,, K, (depending on s) whenever ||(0)] < K. Since pg > ps Vs by
(3.8.31), it follows that (3.8.32) holds with p := p, and some constants K, K,
depending on K. Lemma 3.8.42 and Definition 3.4.6 (on p. 46 ) complete the proof.

O

3.8.8 Analysis of Assumptions A1) and A2) on p. 81

Our next goal is to show that these assumptions stated in the previous subsection are
satisfied whenever > 2n and (3.5.2) (on p. 52) holds. This in fact will complete the
proof of Theorem 3.5.2. In this subsection, we perform the first step to this end.



84 3 Stabilization of Multiple Sensor Systems via Limited Capacity Channels

We start with assumption Al). By (i) of Proposition 3.8.2 (on p. 66), the unob-
servable subspace (3.4.6) Lj_(’ = L; of the jth sensor is composed of several blocks
x%, 5 € O; of the state (3.8.3). These blocks do not affect its outputs y;, whereas all
other blocks z°, s € O}, can be determined from these outputs.

Lemma 3.8.43. Whenever r > 2n, assumption Al) holds. For any s, the site of any
sensor j with O; > s can be taken as the sth site in Al).

Proof. We recall that the deadbeat stabilizers were taken from Lemma 3.8.38. So
they produce control programs with zeros at any place ¢ > n:

U = col(ug,...,u—1), w; =0 Vi>n.
For r > 2n, this means that the corresponding controls u(¢),t = 0,1,..., vanish
u(t) = 0 for at least n times ¢ preceding each 7, = ¢ - r,¢ = 0, 1,.. .. The proof is

completed by invoking the remarks from the paragraph prefacing Lemma 3.8.38. O

Remark 3.8.44. As is well known, the current state =° can be generated as a linear
function of n previous observations.

Now we turn to analysis of A.2). We recall that in A.2), the value ¢; is given by
an m:-level quantizer Q°. Description of such a value (which may equal *X) requires
bs = [logy(m?2 + 1)] bits. This number may exceed the capacity of the channel
that serves any particular sensor j observing the block z°. So we employ all such
channels. Specifically, the following scheme of transmission ¢; to the decoder site is
used for each subsystem s = 1,...,d:

T.1) The sth coder is implemented at the sites of all sensors j observing the state =%,
i.e., such that s € O;;

T.2) By employing a common encoding rule, the value ¢] produced at each of these
sites is then transformed into a b,-bit sequence 3; = (51, 32, - - -, Bp. ) of binary
digits 5, =0, 1;

T.3) By applying a common rule, this sequence 3 is split up into several subse-
quences ﬁf” each associated with one of the concerned sensors j, i.e., such
that s € Oy

T.4) Each of these sensors j sends only its own subsequence Bf’j over the attached
channel to the decoder site;

T.5) At the decoder site, the required value g; is reconstructed by reversing the rules
from T.2) and T.3).

We assume that the rules from T.2) and T.3) do not change as ¢ progresses and are
known at the decoder site. Furthermore, the rule from T.2) is lossless: The value ¢
can be reconstructed from 3. This makes T.5) possible.

Remark 3.8.45. The claims T.1)-T.4) can be interpreted as if the sth site from A.1)
is distributed over the sites of all sensors j such that s € O;.

Notation 3.8.46. We denote by bs; the number of bits in ﬁf’j whenever s € O, and
put bg; := 0 otherwise.
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The above scheme means that several binary words Bf’j ,5 € O; must be trans-
mitted over the common jth channel during any time interval [7; : 7;41) of duration
r — 1. By (ii) of Assumption 3.4.2 (on p. 43), this is possible if the total length of
these words does not exceed b; (r — 1). Summarizing, we arrive at the following
lemma.

Lemma 3.8.47. Assumption A.2) is satisfied whenever nonnegative integer numbers

bsj,s=1,...,d, j=1,...,k exist such that the following relations hold:
k d
Y by =bs = [logy(m) +1)] Vs, > by < by (r—1) Vj,
Jj=1 s=1

and by; =0 whenever s O;. (3.8.33)

Here k and d are the numbers of sensors and subsystems, respectively; m? is the
number of levels for the r-contracted quantizer taken from Proposition 3.8.33; and
by (+) and Oj are taken from (ii) of Assumption 3.4.2 (on p. 43) and (i) of Proposi-
tion 3.8.2 (on p. 66), respectively.

3.8.9 Inconstructive Sufficient Conditions for Stabilizability

These conditions are immediate from Proposition 3.8.41 and Lemmas 3.8.43 and
3.8.47. Obtaining them amounts to carrying out step 5 (on p. 65) from Subsect. 3.8.2.

Proposition 3.8.48. Suppose that the following system of relations:

k d
log, | det Aqs| < Zasj Vs, Zasj <¢; V), ag >0Vs, 7,
j=1 s=1

oagj =0 whenever s¢& O; (3.8.34)

is solvable in real numbers osj. Here Agg is taken from (ii) of Proposition 3.8.2 (on
p. 60) and c; is the transmission capacity (3.4.1) of the jth channel. Then the system
(3.3.1), (3.3.2) is uniformly and exponentially stabilizable.?*

Proof. 1t suffices to show that for all large r, the system (3.8.33) is solvable in non-
negative integers b;. Indeed such an r can be clearly chosen so that » > 2n. Then
Lemmas 3.8.43 and 3.8.47 ensure that assumptions A.1) and A.2) (on p. 81) hold.
Then Proposition 3.8.41 completes the proof.

We note first that in (3.8.33), the first relation can be replaced by the inequality

k
> by > [logy(ms + 1)]. (3.8.35)
j=1

22See Definition 3.4.8 on p. 46.
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Indeed, if after this the system is solvable, then a solution for the original relation
can be obtained by properly decreasing the non-negative integers b;. Specifically,
they are decreased to satisfy the first relation from (3.8.33), which may only enhance
the second relation and keep the third relation true.

We are going to show that a solution is given by bs; := |r - as;], provided
r & oo. Indeed the third relation in (3.8.33) follows from the last one in (3.8.34).
Furthermore,

k
Z bsj —— == Qs ey log, [ det Ags| + 525, where »5 > 0,
Jj=1
S 1 S
Moga(ms +1)] < ! logy(mi +1)+ 1]

(3.8.30) 1 oo
< . [log2 (¢s(r)|det Ags|" +1) + 1} log, | det Agql,

where @ (r) is a polynomial in 7. It follows that (3.8.35) does hold for all r = oo.
Likewise,

d
'r‘—>oo (3.8.34)
E bsj — ogj == ¢; —nj, Wwhere n; >0,

s=1
by (r—1) ga
——> ¢; as r — 00.
r
Thus the second relation from (3.8.33) is also true for all » & oo. a

3.8.10 Convex Duality and a Criterion for the System (3.8.34) to be Solvable
Now we perform step 6 (on p. 66) in the proof of the sufficiency part of Theo-
rem 3.5.2 by justifying the following claim.

Proposition 3.8.49. The system (3.8.34) is solvable in real numbers o; if and only
if (ii) of Theorem 3.5.2 (on p. 52) holds.

Then by invoking Proposition 3.8.48, we arrive at the following corollary.
Corollary 3.8.50. Let Assumption 3.8.1 hold. Then (ii) of Theorem 3.5.2 implies (i).

We preface the proof of Proposition 3.8.49 with a useful reformulation of (ii)
from Theorem 3.5.2 in terms of the decomposition from Proposition 3.8.2 (on p. 66).

Lemma 3.8.51. Along with the sets O; from (i) of Proposition 3.8.2, consider all
their unions O = UjeJ Oj, where J ranges over all groups of sensors. (The union
of the empty group of sets O; is included and interpreted as the empty set.) Then (ii)
of Theorem 3.5.2 is true if and only if for any such a union O # [1 : dJ,

D logy|det Al < > ;. (3.8.36)

sZ¢O 7:0; 70
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Proof. Due to (i) of Proposition 3.8.2, the sets (3.5.1) L =) L; have the form

jeJ
L={z:2°=0Vs e O}, where O:UOj'
jeJ
So (3.8.4) implies det A|;, = Hsgo det A,,. Hence the left-hand sides in (3.5.2)
(on p. 52) and (3.8.36) coincide. The proof is completed by observing that so do the
right-hand ones since in (3.5.2) J(L) = {j : O; C O} owing to (3.4.6), (3.5.1), and
(i) of Proposition 3.8.2. a

Proof of Proposition 3.8.49. Necessity. Let (3.8.34) have a solution c;. Then

k k
Z log, | det Ags| (3‘8<‘34) Z Zasj = Z Z Qs;
sZ0 sZ0 j=1 j=1sZ0O
d
B3 5 Fas< Y Yy 2T Y o
7:0;Z0 sgO 7:0;Z0 s=1 7:0;,20

i.e., (3.8.36) holds. By Lemma 3.8.51, so does (3.5.2) (on p. 52).

Sufficiency. Now suppose that (ii) of Theorem 3.5.2 is true. By Lemma 3.8.51,
this means that (3.8.36) holds for the union O of any sets O;, provided O # [1 : d].
It should be shown that (3.8.34) is solvable in real numbers ;.

Suppose the contrary. Then the following convex polyhedra in the space of ma-
trices o = (ag;) are disjoint:

k
Cl = o 10g2 ‘ det A€s| < Z QAgj Vs ’

Jj=1

d
Cy = {a:ZaSj < ¢ Vj,ae > 0Vs, 7, ag; :OifSQOj}.

s=1

Hence they can be separated by a hyperplane: A nonzero matrix v = (7,;) exists
such that

nf %jvsjasj > sup ;%jasj. (3.8.37)

The definition of C; implies that

d

k
inf E ’ysjasjzg inf E Vij O -
aeCy .
EN

= (@) k, ay>log, |det A, | £

Every infimum on the right is that of a linear functional over a half-space of (¢;)
bounded by a hyperplane with the normal vector (1,...,1). This infimum is finite
only if the functional is generated by a vector colinear with the normal vector. So
vsj = 05 Vj for some 6, > 0and ) _ 6, > 0. It follows that
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d
inf Z’ysjasj = Z 0slog, | det A
EN s=1

acCy

At the same time, the definition of C5 implies that

k
sup Z’ysjasj = sup Z(‘)Sasj = Z max Z 00
a€Ce g R = jo1 @20k aesh og,
k
=D _ ¢ maxbs.
j:1 - J
By (3.8.37), the cone
K:={0=(0,...,00) cRY: 0, >0}
contains a nonzero solution of the inequality
d k
> Oslogy [ det Ase| > ) ¢ maxd,. (3.8.38)
: s€0;
s=1 j=1

This cone can be partitioned into a finite number of convex polyhedral subcones
such that the right-hand side of (3.8.38) is linear on any subcone. It follows that
(3.8.38) must be satisfied on some extreme ray of some subcone. Any of them is
bounded by a finite number of hyperplanes, each described by an equation of the
form either 6, = 0 or 0, = 0,, where v # p and v, € O; for some j. This
implies [147, p. 104] that the extreme ray is described by a finite system of such
equations, which determines its solution uniquely up to multiplication by a scalar. It
is easy to see that the solution of such a system looks as follows: 6, = 6 whenever
s ¢ 0, and 5 = 0 otherwise. Here O C [1 : d] is some set, O # [1 : d]. For vectors
on the above extreme ray, we have # > 0, and (3.8.38) shapes into

D logy det A > > ¢

SO §:0;20
Changing
0:=0:= U o
j:0;CO
does not alter the right-hand side, and possibly increases the left-hand one, which

keeps the inequality true, in violation of (3.8.36). The contradiction obtained proves
that the system (3.8.34) is solvable in real numbers c;. a

3.8.11 Proof of the Sufficiency Part of Theorem 3.5.2 for Systems with Both
Unstable and Stable Modes

Now we do the final step 7 (on p.66) from Subsect. 3.8.2 by showing that in Corol-
lary 3.8.50, Assumption 3.8.1 can be dropped.



3.8 Sufficient Conditions for Stabilizability 89
Proposition 3.8.52. The statement (ii) of Theorem 3.5.2 implies (i).

Proof. Consider the system (3.3.1) (on p. 41) with both unstable and stable modes
that satisfies (ii). It is clear that it suffices to stabilize only its unstable part

xi(t+1)=Arxi(t) + 74 Bu(t), x4(0):=mrxo € Ly,
yi(t) = Czi(t). (3.839)

Here L := My (A) and L_ := Mg (A) are the invariant subspaces of A related
to the unstable and stable parts of its spectrum, 7 and 7_ are the projectors onto
L parallel to L_ and vice versa, respectively, and A+ := A|;, . Thanks to the

second relation from (3.4.6) (on p. 49), (ii) still holds for the system (3.8.39). By
the foregoing, this system can be uniformly and exponentially stabilized by some
controller. While constructing it, we employed the parameter » > 2n. Now we apply
this controller to the primal system (3.3.1). In doing so, the proof of possibility of
A.1) (on p. 81) from Subsect. 3.8.8 (starting on p. 83) should be revisited. Indeed
the sth coder can be implemented at the jth sensor site (where s € O;) only if
x%(7;), 7 := i-r can be determined there. Formerly this was done on the basis of the
past measurements from (3.8.39). Now we must employ the measurements (3.3.2)
(on p. 41). This is possible due to (3.4.6) (on p. 49) and (i) of Proposition 3.8.2 (on
p. 66) since the dynamics of the system (3.3.1) (on p. 41) is free u(t) = 0 at least n
time steps before 7;.

By Definition 3.4.6 (on p. 46), a constant i € [0, 1) exists such that whenever a
constant K is given and ||z¢|| < K, the following relations hold:

[rra() < Kfpf fu@®)| < Kup®  VE=0,1,2,....

The evolution of xz_(t) := mw_x(t) is described by the first two equations from
(3.8.39), where the index ; is switched to _. Since the operator A _ is stable and the
controls u(t) exponentially decay, so do the states ||z_(t)|| < K p*.Here p € (0,1)
does not depend on K. Since

le@] = [l () + z4 @ < [lz— @O + 24 D],

increasing p := max{u, p} yields (3.4.2) (on p. 46). Definitions 3.4.6— 3.4.8 (on
p. 46) complete the proof. a

3.8.12 Completion of the Proof of Theorem 3.5.2 and the Proofs of
Propositions 3.5.4 and 3.5.8

Proof of Theorem 3.5.2 (on p. 52). It was shown in Sect. 3.7 that (i) = (ii). The
converse (ii) = (i) is given by Proposition 3.8.52. So it remains to justify (3.5.3) (on
p- 53). To this end, we note that the transformation
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establishes a one-to-one correspondence between the trajectories {x(t), u(t)} and
{z(t),v(t)} of the systems given by, respectively, (3.3.1) (on p. 41) and the equation

2(t+1) = p L Az(t) + p ' Bo(t).

We equip the latter with the sensors §; = Cjz,j € [1 : k]. It easily follows from
Definitions 3.4.6 and 3.4.7 (on p. 46) that the initial system is uniformly and expo-
nentially stabilizable at a rate p’ € (0, u) if and only if the second one is uniformly
and exponentially stabilizable. By applying the (i) < (ii) part of Theorem 3.5.2 to
the second system in the case where o~ (A) = (), we get

—dim L - logy pu 4 logy [det Al < 325051y VL € £,

logy > maxpee ), <log2 |det Al = > ¢5r) Cj).

To arrive at (3.5.3), we note that the rate of exponential stabilizability z° is the infi-
mum of all such .
The last claim of Theorem 3.5.2 (on p. 52) follows from Proposition 3.5.4, which
will be justified next. O
Proof of Proposition 3.5.4 (on p. 54). When applied to the second system in the
general case, the criterion (3.5.4) (on p. 53) for stabilizability takes the form

=Y dim L¥(J)logy i+ Y logy |det Alpa()| <> ¢; VJ € ZY, (3.840)
a=0 a=0 J€J

where v = v, = 0,...,p is determined by the inequalities p, 11 < p < p, and
Pp+1 = 0. We recall that py := 1 and p,,v = 1,...,p are defined in (3.5.5) (on
p. 54). It follows that the rate . of the exponential stabilizability of the primal sys-
tem is the infimum of all z’s satisfying (3.8.40). The arguments from Remark 3.5.5
(on p. 55) show that this infimum lies in the interval [p,j*ﬂ, p,,*] . Hence (3.5.7) (on

p. 54) is straightforward from (3.8.40). a
Proof of Proposition 3.5.8 (on p. 55). This proposition is straightforward from
Observation 3.8.22 and Remark 3.8.44. a

3.9 Comments on Assumption 3.4.24

Now we explain why this assumption has such a big impact on the controller de-
sign. We also briefly discuss ideas underlying such a design in the case where this
assumption does not hold.

To start with, we illuminate the role of Assumption 3.4.24 (on p. 49).

Definition 3.9.1. A “subsystem” arising from (3.8.3) (on p. 66) is said to be in a
simple relation with the jth sensor if
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e cither it does affect the output of this sensor at all
e orthe state of this subsystem can be uniquely determined from the sensor outputs.

The simplest case in stabilization of a multiple sensor system is where the system
can be decomposed into independent subsystems each in a simple relation with any
sensor. For example, this holds if all eigenvalues of the system are different. How-
ever, this is impossible in general. As was shown, a nontrivial Jordan block may
form a barrier to decomposition into independent subsystems. The example (3.4.13),
(3.4.14) (on p. 51) proves that it may be still worse: The system cannot be disinte-
grated into (even dependent) subsystems each in simple relations with the sensors.
Assumption 3.4.24 in fact describes when this worst case does not occur.

So to deal with the general case where this assumption may be violated, one
should cope with the situation where some sensor partly observes some subsystem:
Its state cannot be determined at the site of this sensor although the sensor signals
contain information about this state. Then an additional problem arises: How do we
use this information in the coding and decoding scheme for stabilization purposes?
As will be shown, the answer requires the revision of some basic principles on which
the design of such schemes was based up to now.

3.9.1 Counterexample

To provide details, we pick natural ¢ and real A numbers such that

A

Q

Vol <R, 3.9.1)

and we revert to the example (3.4.13), (3.4.14) (on p. 51):

o(t+1) = da(t) +u(t) € R?,
yi(t) =z (t), wy2(t) =x2(t), y3(t) =z (t) —xa(t), (3.9.2)

where x = col (x1,x2). There are three sensors each served by an undelayed and
lossless channel of capacity ¢ bits per unit time; i.e., ¢; = ¢2 = ¢3 = ¢. The necessary
conditions for stabilizability (3.5.2) (on p. 52) take the form of the second relation
from (3.9.1) and are satisfied.

As was remarked in Subsect. 3.4.5, Assumption 3.4.24 does not hold: One of
the sensors observes a certain subsystem only partly for any decomposition of the
system (3.9.2).

For example, consider the natural decomposition = col (x1, z2), where x4
and x, are interpreted as the states of the subsystems. They are in simple relations
with the first and second sensors. However, they are not in such relations with the
third one. Indeed the state z; influences its outputs y3 = z1 — 2 but cannot be
determined on the basis of them. Moreover, the only linear coordinate (i.e., function)
of the state that can be determined on the site of the third sensor is its output ys (up
to a scalar factor). Likewise, the first and second sensors permit us to find only x
and x9, respectively. This conclusion holds for any decomposition.

In the remainder of this section, we justify the following two claims:
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1. The system (3.9.2) is stabilizable;
2. It cannot be stabilized by a controller with the following features F.1)-F.5).

Before specifying them, we note that they are characteristic for most of the relevant
controllers based on the design ideas presented in the literature (see, e.g., [28,89,90,
135-138, 149, 184,202,204, 221] and the literature therein). We also recall that for
the system (3.9.2), the controller consists of three coders and a decoder.

F.1) Not only the “mode” y; but also its upper (maybe incorrect) bound §; is deter-
mined at the sensor site;

F.2) The state x and these bounds in fact constitute the state of the closed-loop sys-
tem, which is time-invariant;

F.3) At the decoder site, the information about the “mode” y;(¢) comes to its quan-
tized scaled value e;(t) = Q;[6;(t)"1yi(t)] given by a static quantizer £;(-)
with convex level sets and the number m; of levels matching m; + 1 < 2¢ the
channel capacity??;

F.4) The nextbound d;(¢t+1) is determined from d; (¢) and the knowledge of whether
€; (t) = %;

F.5) Whenever all bounds are true 0;(t) > |y;(t)| Vi, they remain true afterward.

It is clear that these features mainly concern the coding algorithm.
In the remainder of this subsection, we prove claim 2. Claim 1 (i.e., stabilizability
of the system) will be justified in the next subsection.

Lemma 3.9.2. Let ¢ > 2 and a controller satisfying F.1)-E.5) be given. Then the
closed-loop system (3.9.2) is not stable. Moreover,

limsup sup [Jz(t)]] = oo (3.9.3)

t—oo IoEBé(
for all x > 0 and initial bounds 69 > 0.

Proof. By E2) and F4), §;(t + 1) = D;[d;(t)] whenever e;(t) # Y. We are going to
estimate D;(+) from below. Due to E.3), any quantizer £, is related to a partition of
the interval [—1, 1] into m; subintervals (level sets)

AY Al

Let a§i) and ﬁj@ denote the left and right end points of A(i), respectively. Since
m; < 2° — 1, one of them has the length

5](,? - ag? >2.27¢

Now we pick 0 > 0, set the initial bounds d;(0) = d2(0) = J, d3(0) = 24, and note
that all initial states from the segment

We recall that m; is the number of the quantizer outputs different from K. So the total
number of outputs is m; + 1.
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S :={xo = col ((50{5}) + 9,(504;3) +0):0<0 <2527}

give rise to common outputs for each quantizer © = 1,2,3 at £ = 0. So they give
rise to a common control u(0) = col (u1, us). For all these states, the above initial
bounds are correct. Then E.5) ensures that fori = 1,2

6i(1) = D4[0,(0)] = Di[0] = |yi(1)] = [Azi(0) + usl.
Here A\z;(0) + w; runs over an interval of length 2062~ ¢ as x ranges over .S. Hence
Di(6) > No2™° (3.9.4)

for 7 = 1, 2. This inequality is extended on ¢ = 3 by putting

01 (0) = 63(0) = 6, 62(0) = 26a
S = {ug = (60!} + 0,50 —0?) 1 0 < 0 < 26277}

and retracing the above arguments.
Now we suppose that (3.9.3) violates for some §? > 0 and x > 0

c:= sup lz(®)| < oo.
zo€BY,t=0,1,...

By decreasing x, one can ensure that x < min{é{,89, }63}. Then for all initial
states xg € BS‘ , the bounds §; are correct for ¢ = 0. Thanks to F.4) and E.5), they
remain correct for all £ and common for all z¢ € Ba‘. Then (3.9.4) yields

s (1)

Here \ ~ \/QSC by (3.9.1). So 0;(t) — oo as t — oo. As a result, the interval

[—2¢, 2¢] is covered by at most two intervals of the form J; (t)A;i) for each ¢ =
1,2, 3, provided ¢ is large enough. Since

[z@l < c= )] < 2¢,  i=1,2,3,

this and F.3) mean that for o € BS‘ each £; in fact acts as a binary quantizer
(i.e., that with only two outputs) at any large time. Thus the decoder receives in fact
no more than one bit of information about the processes with 2o € B{ via each
channel. By treating three channels as one and invoking Lemma 3.5.11 (on p. 56),
we arrive at the inequality A2 < 23 & X\ < 23/2 At the same time, ¢ > 2 and so

A~/ 97 > 23/2_ The contradiction obtained proves the lemma. a

3.9.2 Stabilizability of the System (3.9.2)

Now we show that despite Lemma 3.9.2, the system (3.9.2) is yet stabilizable. The
stabilizing controller will lack the properties F.2) and F.3). It will employ a 2-periodic
quantization scheme applied to not only scaled but also shifted observations.
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We offer only a sketch of the proof. This is because our objective is to highlight
the design ideas, whereas (3.9.2) is of little interest by its own right.

We equip every sensor with a coder (see Fig. 3.7). At any time, the jth coder
selects a code-symbol e;(¢) from the c-bits channel alphabet and sends it over the
jth channel to the decoder. Furthermore, this coder computes recursively an upper
bound ¢, (t) for the current observation

—0;(t) < y;(t) < 6;(t). (3.9.5)

This computation is driven by the sequence of messages sent from the jth coder to
the decoder, so that the decoder be able to compute §;(t) by itself.

Y = x, Coder €1
xr Sensor1| » 1> > ———
01 > |ya|| Channel ,

)
©

) ensor. > > >0 e———
o 2 82 = |y2||  Channel, a

@ S Ys = Ty — T2 | Coder, €3 4y, 0,, 03
ensor ip= > > I nei——
I:}e' 8 2 |ys||  Channel,

—>]

u
Fig. 3.7. Stabilization of the system (3.9.2).

We start to consider the stabilization process since the moment (treated as ¢ = 0)
when all bounds are correct. This may be due to the knowledge of such bounds for
the initial state. Otherwise this may be achieved during a preparatory stage of the
stabilization process via successive multiplying d; by a sufficiently large factor, like
in Subsect. 3.8.4 (see p. 68). As will be shown, these bounds are kept true afterward
by the algorithm to be proposed. It will be designed so that the following relations
between the bounds d; are also kept true:

01(t) = 62(t), 03(t) = d1(t) + 02(t)  at odd times ¢

N :=2°). 9.
02(t) = 01(t) + d3(t), d3(t) = 25]1\,(” at even times ¢’ ( ). 396)

Description of the Controller

The coders and decoder act in different ways at odd and even times .
At odd times, the state x(t) lies in the following square by (3.9.5):

o(t) € M(t) == {z: —6;(t) <v; < 5;(t),j =1,2}. (3.9.7)

1) By acting independently on and via their own observation and channel, respec-
tively, the first and second (j = 1, 2) coders in fact apply the uniform N2-level
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quantization scheme (see Example 3.8.11 on p. 70) to the square (3.9.7) and no-
tify the decoder which of the level domains contains the state (see Fig. 3.8a).
Formally, for 7 = 1, 2, the jth coder determines which interval

0 . ;20i(0)

where

G) )
[ )’ 3 ° N )

,U/i/ ’/-l/i/+1 'L./ZO,...’N_l,

contains
y;(t) :=y;(t) +6;(¢)

and notifies the decoder about its serial number i/ = ;U )

]
,,,,,,,,,,,,, d
6 =0;,=24 *2 [wi’ le)
]
<
(2
Diagonal oob
b@
SZ et
xQ
28]
-3 4 x; N
2
, ~XNE
ﬁ -4 2
e N
Fig. 3.8(a). Uniform square quantizer. Fig. 3.8(b). Location of the state.

2) At the same time, the third coder (; = 3) does the following:
a) finds which of 2N intervals

04(t
(Wi, Wit1), where w; :=1 JZ&T)’ (3.9.8)

contains y; (t);
b) uniformly partitions this interval into N/2 subintervals

Wi41 — Wy
N

[wgy), wEVH)), wz@) = w; +2v

(3.9.9)
and notifies the decoder which of them v = 0,..., N/2 — 1 contains y;(t),
and

¢) uses the remaining bit to make the decoder aware of whether ¢ is odd or even.

Explanation 3.9.3. In fact, the third sensor displays the orthogonal projection of the
point = col (z1,x2) onto the line ;1 = —z3. The embedding square (3.9.7)
is projected onto its diagonal. The set of the intervals (3.9.8) can be interpreted as
the uniform partition of the diagonal into 2N segments (see Fig. 3.8b). It is easy
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to check that the shadowed square from Fig. 3.8a (the quantizer level domain) is
projected onto the union of two neighboring segments. So the decoder can determine
this union from the data provided by the first and second coders. The bit from c)
enables the decoder to select the segment (3.9.8) that contains the projection from
the above two neighboring ones.

Hence except for one bit, the remaining bits available to the third coder can be
used to improve the precision in location of the projection within the segment (3.9.8),
which is done by b).

Remark 3.9.4. In the more formal analytical way, the above arguments look as fol-
lows. It is easy to check that

d3(t)

g WP = N i@,

5a(t
(i + i) ?}\([) <ys(t) < (V) +il? +2)

So either i = i) +4{* ori = i +4i{*) + 1. Hence i can be found from the data
i1 i) given by the first and second sensors, and the bit from c).

3). Based on the data i1 from the first sensor, the decoder finds the strip

1 1
{2y € =01(0) + lufed it , )}
that contains x(¢). By finding ¢ on the basis of the data from the first and second
sensors, along with the bit from 2.c), and using the data v described in 2.b), it
finds another such strip (which is NV/2-times “narrower” than the first one)

{22 ys € =030 + [wf”, "))

3

Then the decoder selects a control driving the system from the center of the
intersection of the strips (the shadowed domain in Fig. 3.9a) to zero.

Fig. 3.9(a). Location of the state: the view Fig. 3.9(b). Domain transformation at an
of the decoder. odd step.



3.9 Comments on Assumption 3.4.24 97

Explanation 3.9.5. In fact, the decoder might locate the state better by computing the
shadowed domain from Fig. 3.8b. We make use of the domain from Fig. 3.9a since
this ensures stability by employing simpler formulas.

Remark 3.9.6. By invoking (3.9.2) and (3.9.7), it is easy to check that the selected
control drives the system to the state

zt+1)eMit+1):={z:—€ <y <€, —&’"<y;<e"},

where

9. c>2
e = Ay (N R 5, (23227 = §,(1)2/2 S 6, (1),

5 (9.0

e’ :=2\6,(t)N 201(t) 272 < 85(t).

. ~ -~
=53(t) by (3.9.6)

Thus, for one step, the domain M (t) locating the state M (t) > x(t) is stretched in
one direction and tightened in the other (see Fig. 3.9b).

2

It is easy to see that the area of the set M (t) progresses by multiplying by 22’3\

per odd step. So it decreases if A < \}2 23/2¢_This is a bit more restrictive than

the condition A < 23/2¢ from (3.9.1). This gap can be discarded by increasing the

sample period to r time units. Indeed, this “transforms” A into A", ¢ into rc¢, and the
‘. 3 1 . 3 1

above condition A < 2272 into A < 2272 & 23/2¢ for r & 0.

4). Both the jth coder and the decoder define the next number ¢; as the upper bound
for y; when x ranges over M (¢t + 1); i.e.,

(51(t + 1) = )\N_lél(t),
83(t+ 1) := AN 2685(t),

So(t+1) := N2 (t)N ! {1 + ]ﬂ .

Observation 3.9.7. This keeps (3.9.6) true at the next (even) time t :=t + 1.

Remark 3.9.8. For odd steps, the first and second coders use the available ¢ bits in
order to increase the accuracy of the state description by 2c¢ bits per step. Due to
the state dynamics, this is insufficient even to keep the accuracy at a given level.
Indeed the required number of bits is no less than the topological entropy of the
system at hand, which equals 2log, A ~ 3¢ by (3.9.1). This insufficiency can be
compensated by the bits available to the third sensor. However this sensor cannot
distinguish between points lying on lines parallel to x1 = x5. So the corresponding
bits can aid in refining the state description only in the perpendicular direction.

This explains why the state location domain is tightened in this direction and
stretched along the above line z; = x2. Another conclusion is that repeating of the
above scheme (where the first and second sensors supply a primary “rough” infor-
mation about the state and the third sensor is used to refine it) will stretch the state
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location domain along the line x1 = xo further and will not result in stabilization. So
the roles of the sensors should be interchanged. This is done at the even steps. Then
the first and third sensors supply primary data, whereas the second one refines it.

At even times, the state x(t) lies in the following parallelogram by (3.9.5):
x(t) € M(t) :={z: =6;(t) <y; < 6;(¢),i =1,3}, (3.9.10)

where 03(t) = 2" and 82 (t) = 8 (t) + d3(t) by (3.9.6) (see Fig. 3.10a).

T §
bl Na=T
151 )
Fig. 3.10(a). Location of the state: the view Fig. 3.10(b). Location of the state: the view
of the first and third sensors. of the decoder.

5). The operation 1) is carried out by the first and third coders ;7 = 1,3, and 2) is
.20 (t)

done by the second one j = 2 with w; altered: w; := 7"y
Explanation 3.9.9. By acting independently on and via their own observation and
channel, respectively, the first and third coders in fact apply the N2-level quantiza-
tion scheme to the parallelogram (3.9.10) and notify the decoder which of the sub-
parallelograms contains the state (see the shadowed parallelogram in Fig. 3.10a).

By projecting this sub-parallelogram on the line x; = 0, the decoder can deter-
mine a segment of length A := 25}2\,(” containing the measurement ys(t) = w2(¢)
from the second sensor. This segment intersects at most two intervals (3.9.8) of the
same length A. The interval (3.9.8) found by the second coder is among these two
ones. So the decoder can uniquely restore this interval by using the bit from c).

In the more formal analytical way, the above arguments look as follows. It is easy
to check that iV i3 € [0: N — 1] and
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~8a(t) + 50 [0 4 (2, (V=1 =i® —i0)] < 4(1)
< =0(t) + 26}2\/(t) [i(l) + Ni2 (N-1- i — i(l)) T 1}

either — do(t) + 25f\,(t) La(i(l),i@))J < ya(t)
< =0a(t) + % (|2, )] + 1)
or = da(t) + 3 ([ali™M,i®)] +1) <ya(t)
< =02(t) + 3 ([ai® i) +2)

where )
ali®,i®) = 7 (N =1=i® =) 440,
It follows that the serial number ¢ = 1,2 of the interval |w;,w;11) (with w; =

2% containing y»(t) equals either [a(i(V,i®)] or [a(i™,i®)] + 1. So it can

be found by the decoder on the basis of the data i(!),i(®) from the first and third
sensors and the information from 2.c).
So by using the data from b), the decoder can also determine the corresponding

subinterval (3.9.9) of length 4‘?\2,(;) .

Remark 3.9.10. The definition of the quantity w; from 3) is altered at even steps since
the projections of the quantizer level domains from Fig. 3.10a on the line x; = 0 are
arranged in a less regular way, as compared with Fig. 3.8a. In the case from Fig. 3.8a,
all projections can be obtained via successive displacement of one of them by exactly
. . 2
;he hﬁlf length. In the case from Fig. 3.10a, the displacement should be by 7, x
ength.

6) The decoder finds a domain containing z(¢) by intersecting two strips:

{x tyz € —d3(t) + [MES’S)),ME?S))H)}, {J: tyg € —02(t) + [wg”),wz(”“))}'

Then the decoder selects a control driving the system from the center of this
domain to zero (see Fig. 3.10b).

Remark 3.9.11. By invoking (3.9.2), itis easy to check that the selected control drives
the system to the state

zt+1)eM(t+1):={z: - <ys<e, —&" <yp<e"},
where
e = Ms(t)N7Y, & =172 —w)]

. 2/\(52@) _)\N—I—Q

2 2 53(t) < 3Ad3(t)N L.
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The set M'(t 4 1) is covered by the square

Mt+1):= {x D), | < 3)\53]5;) }

7) Both the jth coder and the decoder define the next number §; so that 6y = Jo
become the half length of the edge of M (¢t + 1) and 03 = §; + d2; i.e.,

6

(51(t + 1) = N2

01(%),

6

Gt +1):= N(N +2)

02 (t)v
S3(t+1) := 6AI3(t) N1
Thus the description of the stabilization process is completed.

Observation 3.9.12. For two steps, the square M(t) > x(t) with the edge 251 (t)
(where t is odd) is transformed into the square M (t + 2) with the edge

62
251 (t) X N3
So the system is stabilized if
A2 1.
?\m <le < \/623/2“. (3.9.11)

Remark 3.9.13. The condition (3.9.11) is a bit worse than the necessary condition for
stabilizability A < 23/2¢ from (3.9.1). This gap can be discarded by increasing the
sample period to r time units, where r is large enough. Indeed, this “transforms” A
into A", ¢ into 7¢, and the sufficient condition (3.9.11) for stabilizability into

A< 672257 o\ < 25672 & 23/2° for 1A o0.

Thus we see that even for a very simple system, violation of Assumption 3.4.24
(on p. 49) complicates the coding—decoding scheme.
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Detectability and Output Feedback Stabilizability of
Nonlinear Systems via Limited Capacity
Communication Channels

4.1 Introduction

In the previous chapter, the problem of stabilizability via limited capacity commu-
nication channels was studied for linear systems. In this chapter, we consider the
problem of stabilizability for nonlinear networked systems with a globally Lipschitz
nonlinearity that is common in absolute stability and robust control theories; see,
e.g., [144,151,222]. Furthermore, we obtain a criterion of detectability of a non-
linear system via limited capacity communication channels. Several results on state
feedback stabilization of uncertain plants via communication channels were obtained
in [150]. The problem of local stabilization of singular points of nonlinear networked
control systems was addressed in [140, 141]. Unlike [140, 141, 150], we consider a
much more difficult case of output feedback stabilization. A criterion for output feed-
back stabilization of networked nonlinear systems was given in [41]. However, the
systems considered in [41] are required to be transformable into some triangular
form, whereas the nonlinear systems studied in this chapter are not assumed to sat-
isfy such a strong requirement. The results of this chapter are given in terms of an
algebraic Riccati inequality that originates in the theory of robust and H*° control;
see, e.g., [148,151,174,178-180].

It should be pointed out that unlike Chaps. 2 and 3, which considered discrete-
time systems, this chapter deals with a continuous-time plant.

The remainder of the chapter is organized as follows. Section 4.2 addresses the
problem of detectability of a nonlinear system via a digital communication channel.
The output feedback stabilizability problem is studied in Sect. 4.3. As an illustration,
Sect. 4.4 presents simulation results on the output feedback control of a flexible joint
robotic system.

The main results of the chapter were originally published in [170]. The illus-
trative example from Sect. 4.4 was first presented in the paper [172], which also
contains an extension of the results of [170]. Moreover, further extensions of the re-
sults of this chapter to the case of nonlinear systems with monotonic nonlinearities
were obtained in [32].

A.S. Matveev and A.V. Savkin, Estimation and Control over Communication Networks, 101
doi: 10.1007/978-0-8176-4607-3_4,
© Birkhduser Boston, a part of Springer Science + Business Media, LLC 2009
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4.2 Detectability via Communication Channels

In this section, we consider nonlinear continuous-time dynamical systems of the
form:

i(t) = Ax(t) + Bif(2(t));
(t) = Kx(t);

y(t) = Cx(t) 4.2.1)

where z(t) € R" is the state; z(t) € RY is a linear output; y(t) € R” is the measured
output; A, By, K, and C' are given matrices of the corresponding dimensions, and
f(2(t)) € RP is a given continuous nonlinear vector function. We also assume that
initial conditions of the system (4.2.1) lie in a known bounded set X:

z(0) € Xo. 4.2.2)

We assume that the vector function f(-) satisfies the following globally Lipschitz
condition:

1f(z1) = F22)|? < llzs — 22> V1,20 (4.2.3)

The requirement (4.2.3) is a special case of a typical sector-type constraint from the
absolute stability theory; see, e.g., [144, 151,222]. A simple common example of
such a constraint is a scalar nonlinearity satisfying conditions f(0) = 0 and

f(z1) = f(z2)

21— 22

-1

=~ S 1 VZl, Z9.

In our detectability problem, a sensor measures the state 2(¢) and is connected to
the controller, which is at the remote location. Moreover, the only way of commu-
nicating information from the sensor to that remote location is via a digital commu-
nication channel that carries one discrete-valued symbol h(;7T) at time 5T, selected
from a coding alphabet §) of size [. Here T" > 0 is a given period,and j = 1,2,3, .. ..

This restricted number [ of code words h(j7") is determined by the transmission
data rate of the channel. For example, if 4 is the number of bits that our channel can
transmit at any time instant, then [ = 2* is the number of admissible code words. We
assume that the channel is a perfect noiseless channel and that there is no time delay.

We consider the problem of estimation of the state x(t) via a digital communi-
cation channel with a bit-rate constraint. Our state estimator consists of two compo-
nents. The first component is developed at the measurement location by taking the
measured output y(-) and coding to the codeword h(j7"). This component will be
called “coder.” Then the codeword h(jT) is transmitted via a limited capacity com-
munication channel to the second component, which is called “decoder.” The second
component developed at the remote location takes the codeword h(j7") and produces
the estimated state & (¢). This situation is illustrated in Fig. 2.1 (on p. 15).

The coder and the decoder are of the following forms:
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Coder:
RGT) = F; (yORT) (424)
Decoder:
2(t) 90" = G; (MT), h(2T), ..., h((j — 1)T), h(§T)). (4.2.5)
Here j =1,2,3,....

Definition 4.2.1. The system (4.2.1), is said to be detectable via a digital commu-
nication channel of capacity | if a coder—decoder pair (4.2.4), (4.2.5) exists with a
coding alphabet of size | such that

Jim [Jz(t) = #(t) oo = 0 (4.2.6)

for any solution of (4.2.1), (4.2.2), and (4.2.3). A coder—decoder pair (4.2.4), (4.2.5)
satisfying condition (4.2.6) is said to be detecting.

4.2.1 Preliminary Lemmas

We will consider the following pair of Riccati algebraic inequalities

(A—al)"X + X(A—al) + K"K + XB,B'X < 0; 4.2.7)
YA+ A" +YBBlY + K"K — a,C"C < 0, (4.2.8)

where I is the identity square matrix, and o > 0 and «; > 0 are given numbers.
In this subsection, we prove two preliminary lemmas.

Lemma 4.2.2. Suppose that for some o > 0, a solution X > 0 of the Riccati in-
equality (4.2.7) exists. Then a time Ty > 0 exists such that for any T > Ty and
any two solutions x1(-),x2(-) of the system (4.2.1), (4.2.2), (4.2.3), the following
inequality holds:

le1(t+T) — 2ot +T)|loo < eaTHxl(t) — z2(t)]| 0o 4.2.9)
forallt > 0.

Proof of Lemma 4.2.2. Let
() = e (a1 (t) — w2(t));
o(t) = e (f(Kar(t)) — f(Kua(t))). (4.2.10)
Then Z(-), ¢(-) obviously satisfy the equation

i(t) = (A — ad)i(t) + Bio(t);
Z(t) = Ka(t), (4.2.11)
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and the constraint

le@11* < I2@)]1*. (42.12)
Then according to the strict bounded real lemma (see, e.g., Lemma 3.1.2 of [151]
the system (4.2.11), (4.2.12) is quadratically stable. This implies that a time 7 > 0
exists such that for any 7' > Ty and any solution Z(-) of the system (4.2.11), (4.2.12),
the following inequality holds:

|#(t+ 7)o < |3(0)]oc ¥t > 0. “2.13)

The properties (4.2.13) and (4.2.10) immediately imply (4.2.9). This completes the
proof of Lemma 4.2.2. a

Now consider the following state estimator that will be a part of our proposed
coder:

2(t) = (A= GOVE(t) + Gy(t) + Bif(2(1));
z ) =0.

(t) = Kz(t), z(0)= (4.2.14)
Furthermore, we introduce the gain G by
G.=“y-lo (4.2.15)

2
where Y > 0 is a solution of (4.2.8).

Lemma 4.2.3. Suppose that for some o1 > 0, a solution Y > 0 of the Riccati
inequality (4.2.8) exists. Then a time Ty > 0 and a constant ag > 0 exist such that
ot +T) = &(t +T)loo < e |lx(t) = &(t)]| oo (4.2.16)

foranyt > 0,T > Ty and any solution of (4.2.1)-(4.2.3), (4.2.14), and (4.2.15).
Proof of Lemma 4.2.3 Let

§(t) == x(t) —x(t)); ((t) := K&(b);

o(t) == f(2(t) — f(Z(1)). (4.2.17)
Then &(+), ¢(+) obviously satisfy the equation
£(t) = (A= GO)(t) + Big(t) (4.2.18)
and the constraint
le@)1I* < lIc®)]*. (4.2.19)

Since Y > 0 is a solution of (4.2.8) and G is defined by (4.2.15), the matrix Y is
also a positive-definite solution of the Riccati inequality

(A= GCO)'Y +Y(A—GC)+ K"K + YBB]Y < 0.

Therefore, according to the strict bounded real lemma (see, e.g., Lemma 3.1.2 of
[151]), the system (4.2.17), (4.2.18), (4.2.19) is quadratically stable. Now the state-
ment of the lemma immediately follows from quadratic stability. This completes the
proof of Lemma 4.2.3. a
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4.2.2 Uniform State Quantization

Our proposed coder—decoder pair uses uniform quantization of the states Z of the
system (4.2.14) in which the same number of bits is used to quantize each state
variable. The corresponding quantizer was introduced in Remark 3.8.13 (on p. 71).
For the convenience of the reader, now we recall the basic formulas describing this
quantizer. Furthermore, now we consider the case where the effective quatization
domain is an arbitrary cube, whereas only the cube with side length 2 was considered
in Remark 3.8.13.

To quantize the state space of the estimator (4.2.14),let a > 0 be a given constant
and consider the set:

B, ={z eR":||z||cc <a}.

The state space of the system (4.2.14) is quantized by dividing the set B, into ¢"
hypercubes, where ¢ is a specified integer. Indeed, for each i € {1,2,...,n}, we
divide the corresponding component of the vector z; into ¢ intervals as follows:

. 2
Ii(a) := {ji:—a§£i<—a—|— a};
q

, 2 4
I;(a)::{a?i:—a—l— a§£i<—a+ a};
q q
i - 2a .
I(a) :==4%i:a— . <zi<ap,. (4.2.20)
Then for any & € B,, unique integers i1, iz, ..., i, € {1,2,..., ¢} exist such that

el (a)x I (a) x ... x I (a).

n

Also, corresponding to the integers ¢1, i2, . . ., i,,, We define the vector

—a+a(2iy,—1)/q
—a+a(2is—1)/q
n(i1, to, ... 0n) = ) ) 4.2.21)

—a+ a(2.in -1)/q

This vector is the center of the hypercube I} (a) x I2 (a) X ... x I7 (a) containing
the original point Z.

Note that the regions I (a) x I7 (a) x ... x I (a) partition the region B, into
q" regions; e.g., for n = 2 and ¢ = 3, the region B, would be divided into nine
regions as shown in Fig. 4.1.

In our proposed coder—decoder pair, each of these regions will be assigned a code
word and the coder will transmit the code word corresponding to the current state of
the system (4.2.14) Z(jT'). The transmitted code word will correspond to the integers
11,12, - .., in. In order that the communication channel be able to accomplish this
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Fig. 4.1. Uniform quantization of the state space.

transmission, the number ¢" of quantizer outputs should not exceed the size [ of the
channel alphabet $
q" <. (4.2.22)

The above quantization of the state space of the system (4.2.14) depends on the
scaling parameter a > 0. In our proposed coder—decoder pair, this parameter will be
the quantization scaling a(jT"), where j = 1,2, .. ..

We now suppose that the assumptions of Lemmas 4.2.2 and 4.2.3 are satisfied.
Then let 7" > 0 be a time such that the conditions (4.2.9) and (4.2.16) hold. Further-
more, introduce

mp := sup ||1'0||oc7 a(T) = (eaT + GiaDT)Tno;

zroEXo
gor (7 = 1)T)
q
(elameoG=INT 4 e=aoiTyy 5 =23 ... (4.2.23)

a(yjT) := +
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Introduce now our proposed coder—decoder pair:
Coder:

h(§T) = {i1,d2, .- in} (4.2.24)
for
(Z(JT) — 2(jT - 0) € I}, (a(§T)) x I}, (a(§T)) x ... x I]" (a(jT)) C Bajr);

Decoder:

#(0)=0; A1) = Ka(t),
@(t) = Ad(t) + Bif(5(t) Vt # jT;
E(GT) = 2T — 0) + nlin, i, - - . in)

for h(§T) = {i1, iz, ... in} Vj=1,2,.... (4.2.25)

We recall that v(t — 0) denotes the limit of the function v(+) at the point ¢ from the

left. Notice that our decoder is described by a differential equation with jumps.
Also notice that equations (4.2.25) are a part of both coder and decoder, and it

follows immediately from (4.2.9), (4.2.16) and initial condition Z(0) = 0 that

.f(T) S Ba(T)§ .f(jT) — .f(.]T - 0) S Ba(jT) (4.2.26)

forall j = 2,3, ... and for any solution of (4.2.1), (4.2.2), and (4.2.3).
The main requirement for our coding—decoding scheme is as follows:

g > e, (4.2.27)
Now we are in a position to present the main result of this section.

Theorem 4.2.4. Suppose that for some o > 0, a solution X > 0 of the Riccati in-
equality (4.2.7) exists and for some oy > 0, a solution' Y > 0 of the Riccati inequal-
ity (4.2.8) exists. Furthermore, suppose that for some T > 0 satisfying conditions
(4.2.9), (4.2.16) and some positive integer q, the inequality (4.2.27) holds. Suppose
also that the size | of the channel alphabet meets the requirement (4.2.22). Then the
coder—decoder pair (4.2.14), (4.2.15), (4.2.23), (4.2.24), (4.2.25) is detecting for the
system (4.2.1), (4.2.2), (4.2.3).

Proof of Theorem 4.2.4. Condition (4.2.27) implies that

lim a(jT) = 0.

J—00

Hence
lim |n(i, s, ..., in) = (2(T) = 3GT))| =0,

J—00
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where h(jT) = {i1,42,...,%n}. This implies that
lim (#(jT) — #(5T)) = 0.
j—o0
From this and Lemma 4.2.3 we obtain that
Jim (2(T) = #(T)) = 0

for any solution of the system (4.2.1), (4.2.2), (4.2.3). Detectability now immediately
follows from this and (4.2.25). This completes the proof of Theorem 4.2.4. O

4.3 Stabilization via Communication Channels

In this section, we consider a nonlinear continuous-time dynamic system of the form:

i(t) = Ax(t) + B1f(2(t)) + Baul(t);
z(t) = Kx(t);
y(t) = Cx(1), (4.3.28)

where x(t) € R”™ is the state; u(t) € R™ is the control input; z(¢) € R? is a linear
output; y(t) € R” is the measured output; A, By, Be, K, and C are given matrices
of the corresponding dimensions, and f(z(¢)) € R? is a given continuous nonlinear
vector function.

We also assume that initial conditions of the system (4.3.28) lie in a known
bounded set X (4.2.2). Furthermore, we suppose that the nonlinearity f(z) satis-
fies the constraint (4.2.3).

We consider the problem of output feedback stabilization of the nonlinear sys-
tem (4.3.28), (4.2.2), (4.2.3) via a digital communication channel with a bit-rate con-
straint. Our controller consists of two components. The first component is developed
at the measurement location by taking the measured output y(-) and coding to the
codeword h(jT"). This component will be called “coder.” Then the codeword h(jT")
is transmitted via a limited capacity communication channel to the second compo-
nent, which is called “decoder-controller.” The second component developed at a re-
mote location takes the codeword h(jT') and produces the control input u(t) where
t € [JT,(j + 1)T). This situation is illustrated in Fig. 2.2 (on p. 25), where now a
nonlinear plant is considered.

The coder and the decoder are of the following forms:

Coder:
h(jT) = F; (y(-)\éT) : (4.3.29)
Decoder-Controller:
u()| ST = G5 (MT), h(2T), ..., h((j — 1)T), A(jT)) . (4.3.30)

Here j =1,2,3,....
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Definition 4.3.1. The system (4.3.28) is said to be stabilizable via a digital commu-
nication channel of capacity l if a coder—decoder-controller pair (4.3.29), (4.3.30)
exists with a coding alphabet of size | such that

lim ||2(t)|lec =0;  lim [Ju(t)]|ec =0 (4.3.31)
t—oo t—o0
for any solution of the closed-loop system (4.3.28), (4.2.2), (4.2.3). A coder—decoder
pair (4.3.29), (4.3.30) satisfying condition (4.3.31) is said to be stabilizing.
We will need the following Riccati algebraic inequality:
AR+ RA+ K"K+ R(B1B{ —a2B2By)R< 0 (4.3.32)
and a related state feedback controller

u(t) = — O;Q BIRzx(t). (4.3.33)

Lemma 4.3.2. Suppose that for some ay > 0, a solution R > 0 of the Riccati
inequality (4.3.32) exists. Then the closed-loop system (4.3.28), (4.2.3), (4.3.33) is
globally asymptotically stable; i.e.,

lim ||2(t)|lec = 0. (4.3.34)
t—o0
Proof of Lemma 4.3.2 The system (4.3.28), (4.3.33) can be rewritten as
#(t) = (A — 0;2 ByBIR)x(t) + By f(2(t)) (4.3.35)

and the constraint (4.2.19). Since R > 0 is a solution of (4.3.32), it is also a solution
of the Riccati inequality

(A 0;2 BoBIR)'R+ R(A — O; ByBIR)
+K'K + RB1BR < 0.

Therefore, according to the strict bounded real lemma (see, e.g., Lemma 3.1.2 of
[151] the system (4.3.35), (4.3.33), (4.2.19) is quadratically stable. Now the state-
ment of the lemma immediately follows from quadratic stability. This completes the
proof of Lemma 4.3.2. ad

Now consider the following state estimator that will be a part of our proposed
coder:

i(t) = (A — GO)i(t) + Gy(t)
+B1f((t)) + Bau(t);
i(t) = Ki(t), #(0)=0, (4.3.36)

where the gain G is introduced by (4.2.15).
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We now suppose that the assumptions of Lemmas 4.2.2 and 4.2.3 are satisfied.
Thenlet T" > 0 be a time such that conditions (4.2.9) and (4.2.16) hold. Furthermore,
introduce a(jT') by (4.2.23).

Introduce now our proposed coder—decoder-controller pair:

Coder:

h(jT) = {i1,i2, ... in} (4.3.37)

for (2(jT) — &(jT —0)) € I} (a(3T)) x IZ, (a(jT)) x ... x I? (a(jT)) C Bagjry;
Decoder-Controller:

- 2(0) =0; 2(t) = Kz(t);

F(t) = A2(t) + B1f(5(t)) + Boult) Vt # jT;

2(T) = 2(GT — 0) + (i, iz, . .., in)

for h(jT) = {i1,in,....in} ¥i=1,2,...;
u(t) = —O;Z BIR:(t). 4.3.38)

Similar to the coder—decoder pair proposed for the detectability problem in
Sect. 4.2, the equations (4.3.38) are a part of both coder and decoder-controller. It
then follows immediately from (4.2.9), (4.2.16) and initial condition Z(0) = 0 that

#(T) € Baery; #(jT) — &(T — 0) € Bagr (4.3.39)

forall j = 2,3, ... and for any solution of (4.3.28), (4.2.2), and (4.2.3).
Now we are in a position to present the main result of this section.

Theorem 4.3.3. Suppose that for some o« > 0, a solution X > 0 of the Riccati
inequality (4.2.7) exists; for some ay > 0, a solution' Y > 0 of the Riccati inequality
(4.2.8) exists; and for some oo > 0, a solution R > 0 of the Riccati inequality
(4.3.32) exists. Furthermore, suppose that for some T > 0 satisfying conditions
(4.2.9), (4.2.16) and some positive integer q, the inequality (4.2.27) holds. Suppose
also that the size | of the channel alphabet meets the requirement (4.2.22). Then
the coder—decoder-controller pair given by (4.3.36), (4.2.15), (4.2.23), (4.3.37), and
(4.3.38) is stabilizing for the system (4.3.28), (4.2.2), (4.2.3).

Proof of Theorem 4.3.3 Condition (4.2.27) implies that lim; .. a(j7) = 0.
Hence
Jim [n(is,iz.... i) = @(T) - #(T))] =0,
where h(jT) = {i1,42,...,%n}. This implies that
lim (2(jT) — 2(yT)) = 0.

Jj—o0

From this and Lemma 4.2.3 we obtain that
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lim (z(jT) - &(jT)) =0
J—00
for any solution of the system (4.3.28), (4.2.2), (4.2.3). This and Lemma 4.3.2 implies
the stability of the closed-loop system. This completes the proof of Theorem 4.3.3.
O

4.4 Tllustrative Example

We consider the output feedback control problem of a one-link manipulator with a
flexible joint via limited capacity digital communication channels. A model of the
dynamics of the manipulator can be obtained from, e.g., [156,197] and is given as
follows:

z(t) = Kx(t); (4.4.40)
y(t) = Cx(t),
where
[6,, 0 1 0 0
oo |@m| . 4 |7486-1.25 486 0|
e | 1 0 0 0o 1’
Wy 195 0 —1950
[0 0 (4.4.41)
0 21.6 .
By = 0o | By = 0 | f(z(t)) = sin(z(t));
|—3.33 0

K=[0010]; C=[0010];

and 6,,, is the angular position of the motor, w,,, is the angular velocity of the motor,
6 is the angular position of the link, and w; is the angular velocity of the link. The
control u is the torque delivered by the motor.

We assume that only the angular position of the link 61, i.e., y, can be measured.
To measure 61, a visual sensing scheme can be adopted, as shown in Fig. 4.2. A
camera is mounted at a distance away from the manipulator and is connected to a
processor that captures and processes the images from the camera to determine the
angular position of the link 0;. The measured 6 is then fed to the coder, which
contains a state estimator, to generate the code words. By using any digital com-
munication channel that has a sufficient bandwidth, the code words are transmitted
to the decoder-controller, which then controls the motor to generate the appropriate
torque u. In this setting, the sensor, i.e., the camera and the image processor, and the
coder can be remotely located far away from the manipulator.

By choosing @ = 6, a; = 5, and ars = 5, we see that solutions X, Y, and R
exist that satisfy the Riccati inequalities (4.2.7), (4.2.8), and (4.3.32), respectively.
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Camera & Image Processor
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Fig. 4.2. Schematic of the vision-based control system.

The respective T values in Lemmas 4.2.2 and 4.2.3 are 0.94 and 0.91, and the value
ap in (4.2.16) is 3.1. Therefore, we choose the sampling period 7' = 1.0 second
so that both inequalities (4.2.9) and (4.2.16) hold. As for the value ¢, we picked
g = 2001 and this value satisfies the inequality (4.2.27);i.e., ¢ > 7.

By using (4.2.15) and (4.3.33), the corresponding state estimator gain and control
law are

G =[0.851.130.04 1.39] " x 10%

(4.4.42)
u(t) = [-2.05 —0.36 —1.28 —0.90] ().

For simulation purposes, the initial value of z is chosen as (0) = [1 1 1 1]",
and the value my is defined as my = 5. Finally, a simulation result is shown in
Figs. 4.3 and 4.4, and it agrees with the conditions (4.3.31).
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Fig. 4.4. Evolution of the control input u(t).
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5

Robust Set-Valued State Estimation via Limited
Capacity Communication Channels

5.1 Introduction

In this chapter, we consider the problem of robust state estimation via a limited ca-
pacity digital communication channel. Many recent advances in the area of robust
control system design assume that the system to be controlled is modeled as an un-
certain system; e.g., see [46, 148, 151]. There are many different types of uncertain
system models. The class of time-varying uncertain systems considered in this chap-
ter contains uncertainty that is defined by a certain integral quadratic constraint. This
class of uncertain systems originated in the work of Yakubovich on absolute stability
theory (see, e.g., [222,223]) and is a particularly rich uncertainty class allowing for
nonlinear, time-varying, dynamic uncertainties. Furthermore, a number of new ro-
bust control system design methodologies have recently been developed for uncertain
systems with integral quadratic constraints; e.g., see [148, 151,174, 178-180, 182].
In this chapter, we adopt the approach to the robust state estimation problem pro-
posed in [181] (also, see [148, 183]). Reference [181] builds on the deterministic
interpretation of Kalman filtering presented in [21]. This deterministic approach to
Kalman filtering also forms the launching point for the results of this chapter. As in
the previous chapter, we consider the case of continuous-time plants.

In [21], the following deterministic state estimation problem is considered: Given
output measurements from a time-varying linear system with noise inputs subjected
to an Ly norm bound, find the set of all states consistent with these measurements.
Such a problem is referred to as a set-valued state estimation problem. The solution
to this problem was found to be an ellipsoid in the state space that is defined by
the standard Kalman filter equations. Thus, the results of [21] give an alternative
interpretation of the standard Kalman filter. In [148,181,183] the results of [21] were
extended to the case of uncertain systems with integral quadratic constraints. In this
chapter, we employ the set-valued approach to the state estimation problem and the
deterministic interpretation of Kalman filtering from [148,181] in the situation where
state estimation is to be performed via a limited capacity communication channel.

In such a context, state estimation results for linear systems with bounded or
Gaussian noise were obtained in [45, 133, 220]. Some state estimation scheme rel-

A.S. Matveev and A.V. Savkin, Estimation and Control over Communication Networks, 115
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evant to the problem of stabilization via a limited capacity communication channel
was proposed in [70]. Also, in [70], the case of a linear system without uncertainty
over an infinite time interval was considered.

The remainder of the chapter is organized as follows. In Sect. 5.2, we introduce
the class of uncertain systems under investigation. Section 5.3 presents the statement
of the optimal robust state estimation problem and some preliminary results on ro-
bust set-valued state estimation originally published in [181]. In Sect. 5.4, we give a
solution to an optimal state estimation problem via limited capacity digital communi-
cation channels for the class of uncertain systems under consideration. Furthermore,
in Sect. 5.5, we propose a suboptimal state estimation algorithm that is computation-
ally nonexpansive and easily implementable in real time. Finally, in Sect. 5.6, proofs
of two lemmas on set-valued state estimation can be found.

The main results presented in this chapter originally appeared in the paper [100].
An analog of these results for systems without uncertainty was published before that
in [184], where some of the main ideas of the chapter were introduced. Also, some
versions of technical results on robust state estimation that are used in this chapter
were first obtained in [174, 176, 181, 183]. The uncertain system framework of this
chapter was presented in the monographs [148, 151, 174]. In [99], the results of this
chapter were successfully applied to the problem of precision missile guidance based
on radar/video sensor fusion. An extension of the results of the chapter can be found
in [33].

5.2 Uncertain Systems

In designing robust state estimation systems, one must specify the class of uncertain-
ties against which the state estimator is to be robust. The most common approach in
control engineering is to begin with a plant model that not only models the nominal
plant behavior but also models the type of uncertainties that are expected. Such a
plant model is referred to as an uncertain system.

There many various types of uncertain system models; e.g., see [46]. In this
chapter, we deal with uncertain plants with uncertainties satisfying so-called inte-
gral quadratic constraints.

5.2.1 Uncertain Systems with Integral Quadratic Constraints

Consider the time-varying uncertain system defined over the finite time interval
[0,NT]:

() (t) + v(t), (5.2.1)

where N > 0 is an integer; T > 0 is a given constant; x(t) € R™ is the state;
w(t) € R? and v(t) € R! are the uncertainty inputs; z(t) € RY is the uncertainty
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output and y(t) € R! is the measured output; and A(-), B(-), K(-), and C(-) are
bounded piecewise continuous matrix functions.
The uncertainty in (5.2.1) is described by an equation of the form:

] =265 2

where the following integral quadratic constraint is satisfied.

Let Xg = XOT > 0 be a given matrix, x9 € R"” be a given vector, d > 0 be a
given constant, and Q(-) = Q(-)" and R(-) = R(-)" be given bounded piecewise
continuous matrix weighting functions satisfying the following condition: A constant
0 > Oexists such that Q(¢) > 61, R(t) > dI forall ¢ . For a given finite time interval
[0, s], we will consider the uncertainty inputs w(-) and v(-) and initial conditions x(0)
such that

(@(0) — o) " Xo(x(0) — 20) + / (w(®) QM) w () +v(t) R(t)v(t))dt
0
<d +/ Iz (@)|>dt. (5.2.3)
0
The uncertainty input in (5.2.2) can be regarded as the feedback interconnection
with the uncertainty output z(¢) as shown in Fig. 5.1. The inequality (5.2.3) gives

some constraint on the sizes of the uncertainty inputs w(-), v(-) and on the size of
uncertainty in the initial condition.

o1(t) da(t)
z(t) u(t)
w(t) | | Nominal Clt)z(t)
system —>(+ y(t)

Fig. 5.1. Uncertain system.

This class of uncertainties was introduced in the theory of absolute stability by
Yakubovich (e.g., see [222]), and extensively studied in the theory of robust control
(e.g., see [148,151,174,178-181]).

5.2.2 Uncertain Systems with Norm-Bounded Uncertainty

An important class of uncertain systems satisfying the integral quadratic constraint
(5.2.3) consists of linear uncertain systems with uncertainties satisfying a standard
norm-bounded constraint. In this case, the uncertain system is described by the rela-
tionships
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@ = [A(t) + B(t) A1 () K (t)] z(t);
y=[C(t) + Aa(DE ()] (1), (52:4)

where A4 (t), As(t) are uncertainty matrices such that

|20 <1

for all £.
Also, the initial conditions are required to satisfy the following inequality:

(2 (0) — z0)" Xo (z(0) — o) < d. (5.2.6)

The block-diagram of such a system is shown in Fig. 5.2.

L‘\l(f} < A 4 » -'2\2(5]

Nominal

System C(t)x(t)

y(t)

Fig. 5.2. Uncertain system with norm-bounded uncertainty.

To verify that such uncertainty is admissible for the uncertain system (5.2.1),
(5.2.3),let w(t) := A1 () K (t)x(t), v(t) := Az(t) K (t)x(t), and z(t) := K (t)x(t).
Then the condition (5.2.3) is satisfied with Q(-) = I and R(-) = I.

5.2.3 Sector-Bounded Nonlinearities

This class of uncertainties arose from the celebrated theory of absolute stability; e.g.,
see [144,222,224]. Consider the time-invariant uncertain system (5.2.1) with scalar
uncertainty input w and uncertainty output z, and the uncertainty is described by the
equation

w(t) = ¢(2(1)), (5.2.7)

where ¢(-) : R — R is an uncertain nonlinear mapping.
This system is represented in the block diagram shown in Fig. 5.3.
We will suppose that the uncertain nonlinearity ¢(-) satisfies the following sector
bound (e.g., see [144]):
¢(2)

z

0< <k, (5.2.8)
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Nominal

System

S

Fig. 5.3. Uncertain system with a single nonlinear uncertainty.

where 0 < k < oo is a given constant associated with the system. Using the change
of variables Z = k/2z, w = ¢(2/kZ) — Z, this system is transformed into the system

B(t) = (A + ];BK)x(t) + Bi(t);

The bound (5.2.8) on the uncertainty in this system then becomes a standard bound
on the norm of the uncertainty input:

()] < [2(2)]- (5.2.9)

This observation motivates us to think of sector bounded uncertainty as a special case
of norm-bounded uncertainty.

Remark 5.2.1. Notice that the nonlinear system with a nonlinearity satisfying the
globally Lipschitz condition (4.2.3) (on p. 102) that was studied in Chap. 4 is a
special case of the system with norm-bounded nonlinearity.

5.3 State Estimation Problem

We consider the set-valued state estimation problem for the system (5.2.1), (5.2.3)
that can be stated as follows. Let y(t) = yo(¢) be a fixed measured output of the
uncertain system (5.2.1), and let s € [0, NT] be given time. Then find the corre-
sponding set X [0, yo (+) |5, d] of all possible states (s) at time s for the uncertain
system (5.2.1), with the uncertainty input and initial states satisfying the constraint
(5.2.3). The state estimator will be defined by the differential equation
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2(s) = [A(s) + P(s) [K(s) 'K (s) — C(s) "R(s)C ()] &(s)

+ P(s)C(s)"R(s)y(s), (0) = xo, (5.3.10)

where P(s) is the solution of the following Riccati differential equation:

+ P(s) [K ()" K(s) — CO(s) TR(S)C’(S)] P(s)+ B(S)Q(S)_lB(S)T,
P0) =X, ' (53.11)

Definition 5.3.1. The uncertain system (5.2.1), (5.2.3) is said to be robustly observ-
able on [0, NTY, if for any vector zo € R", any time s € [0, NT|, any constant
d > 0, any fixed measured output y(t) = yo(t), the set X [xo,vo(-)|§, d] is bounded.

The following result offers an exhaustive criterion for the system to be robustly
observable.

Lemma 5.3.2. Let Xy = X > 0 be a given matrix, and let Q(-) = Q(-)" and
R(-) = R(:)" be given matrix functions such that Q(-) > 81, R(-) > &1, where
& > 0. Consider the system (5.2.1) and the constraint (5.2.3) . Then the following
statements hold:

(i) The system (5.2.1), (5.2.3) is robustly observable on [0, NT] if and only if the
solution P(-) to the Riccati equation (5.3.11) is defined and positive-definite on
the interval [0, NT ;

(ii) If the system (5.2.1), (5.2.3) is robustly observable on [0, NT), then for any
vector xg € R™, any s € [0, NT], any constant d > 0, and any fixed measured
output y(t) = yo(t), the set X [xo,yo (+) |5, d] of all possible states x(s) at
time s is given by

X [.130, Yo () ‘S?d]
_ {w g (@ = 3() ()7 (s — (s)) } (5.3.12)

where

Ps [yO ()]

= /0 K@D = (C0)F(E) = yolt) " R(E) (C(0)F(E) — yo ()] dt.
(5.3.13)

The proof of Lemma 5.3.2 is given in Sect. 5.6.

Remark 5.3.3. The state estimator defined by (5.3.10) and (5.3.11) is of the same
form as the state estimator, which occurs in the output feedback H°° control prob-
lem; e.g., see [91, 130].
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In our state estimation problem, the state 2(s) should be estimated. Now consider
the case where the only way of communicating information from the measured out-
put y is via a digital communication channel with the following bit-rate constraint.
This channel can transmit codesymbols h = hy, at the time instants of the form k7.
The channel gives a limited finite number of admissible codesymbols h. This re-
stricted number of codesymbols h is determined by the data rate of the channel. If
N is the number of admissible codesymbols, then A = 2! where [ is the number of
bits that our channel can transmit at any time £7'. We assume that the channel is a
perfect noiseless channel and that there is no time delay in the channel. In this chap-
ter, we propose algorithms for state estimation via a digital communication channel
with the above bit-rate constraint. Our algorithms consist of two components. The
first component is developed at the measurement location by taking the measured
output signal y and coding it into the codesymbol hj at time k7. This component
will be called coder. Then the codesymbol hy, is transmitted via a limited capacity
communication channel to the second component, which is called decoder. The de-
coder takes the codesymbols h;, ¢ < k and produces the estimated state z(kT") that
is an approximation of the center of all possible states of the system at time k7. This
situation is illustrated in Fig. 5.4.

jl,f(f.} h(f,r‘-) h(fg;,) J.‘Uf:r]

Uncertain » Coder |» »mmmmmilssie=- Decoder —»
System

channel

Fig. 5.4. State estimation via digital communication channel.

The coder and decoder are defined by the following equations:
Coder:

h(kT) = Fiy (zo, dyy () [§7) ; (5.3.14)
Decoder:
If(kT) =Gk (.’to,d,ho,hl,...,hk). (5.3.15)
We recall that ||z||  := max |z;| forz = col [z, z2, ..., Zy).

Definition 5.3.4. Consider the system (5.2.1), (5.2.3) with a given d > 0. Let ¢ > 0
be a given constant, and let N' > 0 and 0 < M < N be given integers. The coder—
decoder pair (5.3.14), (5.3.15) is said to solve the state estimation problem via a
digital communication channel with the admissible number of codesymbols N on
the time interval [MT, N'T| with the precision level ¢ if

|3(kT) — 2(kT)| . < € (5.3.16)

Sforallzo,y (-), k= M,M +1,...,N. Here (kT) is defined by (5.3.10).
Moreover, if the constant € in (5.3.16) is the infimum over all precision levels
that can be achieved by coder—decoder pairs of the form (5.3.14), (5.3.15) with the
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admissible number of codesymbols N, the coder—decoder pair is said to be opti-
mal for the state estimation problem via a digital communication channel with the
admissible number of codesymbols N on the time interval [MT, NT).

Our problem is to design an optimal coder—decoder pair.

5.4 Optimal Coder-Decoder Pair

In this section, we construct an optimal coder—decoder pair for the problem of state
estimation with bit-rate constraints. To formulate the main results of the section,
we need to introduce the concept of strong robust observability that is close to the
concept of uniform robust observability from Chap. 15.

Definition 5.4.1. Consider the uncertain system (5.2.1), (5.2.3). Let X, [d] be the set
of all possible states i(s) at time s € (0, NT|, defined by (5.3.10) with all possible
initial conditions xo € R™ and all possible measured outputs yo(-) of the system
(5.2.1), (5.2.3). The uncertain system (5.2.1), (5.2.3) is said to be strongly, robustly
observable on [0, NT)| if it is robustly observable and for any time s € (0, NT] and
constant d > 0, the set X ,[d] is bounded.

Consider the following Riccati equation:

— X(s) = A(s) "X (s) + X (s)A(s)

— X (s)B(s)R™(s)B(s)"X (s) — K(s)"K(s), X(0)=0, (5.4.17)
where
A(t) :== A(t) + P()K (1)K (t) (5.4.18)
nd
) B(t) := —P(t)C(t)"R(t). (5.4.19)

Lemma 5.4.2. The uncertain system (5.2.1), (5.2.3) is strongly, robustly observable
on [0, NT| if and only if the solution P(-) to the Riccati equation (5.3.11) is de-
fined and positive-definite on [0, NT| and the solution X (-) to the Riccati equation
(5.4.17) is defined on [0, NT| and positive-definite on (0, NT). Furthermore, if the
system (5.2.1), (5.2.3) is strongly, robustly observable, then the set X, [d] is given by

X, [d] = {&, € R" : 27X (s5)2, < d}. (5.4.20)
The proof of Lemma 5.4.2 is given in Sect. 5.6.

Definition 5.4.3. Let X C R" be a convex bounded set and N > 0 be a given
integer. Furthermore, assume that X is partitioned into N nonintersecting sub-
sets I1,2o, ..., Iy equipped with points 1 € 11,....0n € Zn. The collection
VIX,N]=A{Z1,...,Zrr, 71, -, 7]n ) is called an |, Voronoi structure on the set X
ifllz — filloo < ||z — 7slloo foranyi=1,...,N, any x € I; and any s # i.
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Notation 5.4.4. Let V[X, N be an l, Voronoi structure. Then

DVRERAN) = swp o= (5.421)

i=1,....N, z€Z;

Definition 5.4.5. Let X be a given convex bounded set and N' > 0 be a given integer.
Then VX, N is said to be an optimal [, Voronoi structure on X if D(V[X,N]) <
D(V*[%,N)]) for any other |, Voronoi structure V*[%, N.

It is obvious that an optimal [, Voronoi structure exists on any convex bounded
set. Constructing optimal Voronoi structures has been the subject of much research in
the field of vector quantization theory and computational geometry; see, e.g., [23,62].

The Coder-Decoder Pair

Let Vi[Xpr[d],N] = {ZF,... N7k, 7k} be the I optimal Voronoi
structure on the set X7 [d] defined by (5.4.20), where k = M, M + 1,...,N. We
are now in a position to describe our proposed optimal coder—decoder pair of the
form (5.3.14), (5.3.15) associated with these structures.

Let 2(0) = z¢. Forany k = M,M + 1,..., N, we consider (5.3.10) on
[(k—1)T, (kT)]. Then, forallk = M, M +1,..., N, we define our coder—-decoder
pair as follows:

Coder:
hk)=1i if #(k) eIl C Xprld); (5.4.22)

Decoder:
z(kT)=qF if h(k)=i. (5.4.23)

Now we are in a position to present the main result of this chapter.

Theorem 5.4.6. Consider the uncertain system (5.2.1), (5.2.3). Let d > 0 be a given
constant, and N' > 0 and 0 < M < N be given integers. Suppose that this system
is strongly, robustly observable and that the sets Xpr [d] are defined by (5.4.20).

Then the coder—decoder pair (5.4.22), (5.4.23) is optimal for the state estima-
tion problem via a digital communication channel with the admissible number of
codesymbols N on the time interval [MT, NT.

Proof. According to Theorem 5.4.2, strong, robust observability implies that Xer [d]
is the set of all possible 2 (k7). Furthermore, it follows from Definition 5.4.5 that the
coding scheme that is based on a Voronoi optimal structure gives an optimal state
estimate. This completes the proof of this theorem. a

5.5 Suboptimal Coder-Decoder Pair

In the previous section, we proposed an optimal coder—decoder pair. The result was
given in terms of Voronoi structures. However, this method is computationally ex-
pensive. In this section, we describe another state estimation algorithm that is not
optimal but well suited to real time implementation.
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In this section, we propose a coder—decoder pair that uses the uniform quan-
tization of the estimated states introduced in the two previous chapters. Also, the
quantization parameters may be updated at every instant time k7.

To quantize the state space of (5.3.10), let a(k) > 0 be a given number and con-
sider the set By := {x(kT) € R" : |z;(kT)| < a(k) Vi}. We propose to quan-
tize each state component x;(kT') by means of ¢(k) intervals, where ¢(k) is a spec-
ified integer. Therefore, for n-dimensional state, the set B,y will be divided into
q(k)™ hypercubs. For each i € {1,2,...,n}, we divide the corresponding compo-
nent of the state vector z;(k7T") into ¢(k) intervals as follows:

I (a(k)) = {xi(kT) a(k) < 2 (kT) < —a(k) + 2;(5:))};

otk = (k) —ath) + %0 < 7)< ) + 00
Iy (ak)) = {xz(kT) a(k) - 2;((:)) < ai(kT) < a(k)} . (5.5.24)

Then for any &(kT') € B, ), unique integers
i1 e{1,2,....q(k)}, i €{1,2,...,qk)},..., in €{1,2,...,q(k)}
exist such that
E(KT) € I (a(k)) x I2 (a(k)) x ... x I["(a(k)). (5.5.25)
Also, corresponding to the integers 1, iz, . . . , ¢, We define the vector
—a(k) + a(k)(2i1 — 1) /q(k)

—a(k)+ a(k)(2is — 1 k
(11,02, ip) = () +af )( ? )/a(k) . (5.5.26)

—alk) + a(k) (20, — 1)/q(k)

This vector is the center of the hypercube
I (a(k)) x I3 (a(k)) x ... x I} (a(k))

containing the original point & (k7).

Note that the regions I} (a(k)) x I2 (a(k)) x ... x I/* (a(k)) partition By ) into
q(k)™ regions.

In the proposed coder—decoder pair, each region will be represented by a codesym-
bol, and the codesymbol corresponding to the vector Z(kT') will be transmitted via a
limited capacity channel.

The Coder—Decoder Pair

We are now in a position to describe our proposed coder—decoder pair of the form
(5.3.14), (5.3.15).
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Let 2(0) = . Forany k = M,M + 1,..., N, we consider (5.3.10) on
[(k —1)T, (kT)]. Then, forall k = M, M +1,..., N, we define our coder—-decoder
pair as follows:

Coder:

h(k) := {i1,i9,...,in}
for @(k) € I} (a(k)) x I2(a(k)) x ... x I (a(k)) C By (5.5.27)
Decoder:
T(kT) =7 (i1, 42, ... ,in) for h(k) = {i1,i9,...,in}. (5.5.28)

Here the vector 7} (i1, 2, . . ., i,) is defined in (5.5.26).
The block-diagram of the uncertain system with a suboptimal coder—decoder pair
is shown in Fig. 5.5.

dil) | ®

Nominal

system State

estimator

()
Y

Quantizer

Vo ]

channel

jen :I

#(l) «—— Decoder

Fig. 5.5. Uncertain system with the suboptimal coder—decoder pair.

Remark 5.5.1. It should be pointed out that by our construction, the state estimate
7(k) necessarily belongs to B y,).

Now we are ready to present the main result of the section. This will require the
following notation.
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Notation 5.5.2. Let Z(-) := X(-)%, where X(-) is the solution to (5.4.17). Let
2i;(+) be the corresponding element of the matrix Z(-). Then we define a constant
ci(k) > 0 by the following equation:

ci(k) = \/25(kT) forall i=1,2,....,n, k=M,M+1,...,N. (55.29)
Note that z;;(KT) > 0 for all i,t > 0 because Z(t) is positive-definite.

Theorem 5.5.3. Consider the uncertain system (5.2.1), (5.2.3). Letd > 0, € > 0 be
given constants, N > 0 and 0 < M < N be given integers. Suppose that this system
is strongly, robustly observable and

ci(k)Vd
q(k) =6

foralli = 1,2,....nand k = M,M + 1,...,N. Then the coder—decoder pair
(5.5.27), (5.5.28) with

(5.5.30)

a(k) := max {ci(k)Vd} (5.5.31)

solves the state estimation problem via a digital communication channel with the
admissible number of codesymbols q(k)™ < N on the time interval [MT, NT| with
the precision level e.

Proof. We will prove that 2(kT') € B, and inequality (5.3.16) holds for any
k=M,M+1,...,N.Indeed, let z(-) be a solution of the system (5.2.1) with some
uncertainty input w(-) and v(-) satisfying (5.2.3), and let Z(-) be the corresponding
estimated state. It follows from the strong, robust observability and Theorem 5.4.2
that the ellipsoid (5.4.20) is the set of all possible estimated states Z(s). Thus we
have that

2(ET)|| 0o < i_nfaxn{ci(k)\/d}. (5.5.32)

Therefore, 2(kT') € By with a(k) defined by (5.5.31). Now the condition (5.3.16)
follows from (5.5.30) with a suitable ¢(k). This completes the proof of the theorem.

Remark 5.5.4. Notice that in [100], a slightly more general result was obtained. A
coder—decoder pair from [100] uses non-uniform quantization of the estimated states
in which different numbers of bits may be used to quantize various state variables.
In this chapter, for the sake of simplicity, we consider a coder—decoder pair that is
based on uniform quantization.

5.6 Proofs of Lemmas 5.3.2 and 5.4.2

Proof of Lemma 5.3.2. Statement (i): Necessity. In this case, we must establish the
existence of a positive-definite solution to the Riccati equation (5.3.11). This will
be achieved by showing that the cost function in a corresponding linear quadratic
optimal control problem is bounded from below.
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Given a measured output yo(-), we have by the definition of X[zo, yo(-)|5, d].
that z, € X[z, yo()|, d] if and only if there exist vector functions z(-), w(-) and
v(-) satisfying equation (5.2.1) and such that x(s) = x;, the constraint (5.2.3) holds,
and

yo(t) = C(t)x(t) + v(t) (5.6.33)

forall¢ € [0, s]. Substitution of (5.6.33) into (5.2.3) implies that z; € X[zo, yo(-)];, d]
if and only if an input w(-) € L3]0, s] exists such that

Jlzs,w(-)] < d, (5.6.34)

where J[xs, w(+)] is defined by

A
Jzs, w(-)] = (2(0) = z0) " Xo(2(0) — x0)
T (w®)TQ)w(t) — x(t) K (1)K (t)x(t) )
+ dt (5.6.35
/ <+< olt) = CO(1) "R (o (1) — C(t)a(e) ) 0
and x(-) is the solution to (5.2.1) with the input w(-) and boundary condition z(s) =
Ts.

Now consider the functional (5.6.35) with 2o = 0 and yo(-) = 0. In this case, .J
is a homogeneous quadratic functional with an end-point cost term. Also, consider
the set X;[0, 0, 1] corresponding to 29 = 0, yo(-) = 0 and d = 1. Since X;[0,0, 1]

is bounded, a constant hs > 0 exists such that all vectors x5 € R™ with ||zs|| = hs
do not belong to the set X0, 0, 1]. Hence,

Jlze,w(-)] > 1 (5.6.36)

for all z; € R™ such that ||zs|| = hs and for all w(-) € L2[0, s]. Since, J is a homo-
geneous quadratic functional, we have J[axs, aw(-)] = a®J[zs,w(-)] and (5.6.36)
implies that

w(.)gll,fz[o,s] Jzs,w(-)] >0 (5.6.37)
forall s € [0,T] and all 25 # 0.

The problem of minimizing the functional from (5.6.37) subject to the constraint
defined by the system (5.2.1) is a linear quadratic optimal control problem in which
time is reversed. In this linear quadratic optimal control problem, a sign indefinite
quadratic cost function is considered. Using a known result from the linear quadratic
optimal control theory, we conclude that the condition (5.6.37) implies that there
exists a solution =(+) to the Riccati equation

(1)

(5) = Z(s)A(s) + A(s)"Z(s) + Z(5) B(s)Q(s) "' B(s)"=(s)
+ K(s)"K(s) — C(s)"R(s)C(s) (5.6.38)

with the initial condition =(0) = Xp; e.g., see p. 23 of [34]. Furthermore, this
solution is positive-definite on [0, T]. From this, it follows that the solution to the
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Riccati equation (5.3.11) is given by P(-) := Z(-)~L. This completes the proof of
this part of the lemma.

Statement (ii) and the sufficiency part of statement (i). We have shown above
that 2, € Xs[xo, yo(-)|y,d] if and only if an input w(-) € L0, s] exists such that
the condition (5.6.34) holds for the functional (5.6.35). Now consider the following
minimization problem:

w(~)renll,r21[0,s] J[zs, w(-)], (5.6.39)
where the minimum is taken over all z(-) and w(-) connected by (5.2.1) with the
boundary condition x(s) = x. This problem is a linear quadratic optimal tracking
problem in which the system operates in reverse time. The solution to this tracking
problem is well known (e.g., see [87]). Indeed if the solution to the Riccati equation
(5.3.11) exists, then the matrix function Z(-) = P(-)~! > 0 is the solution to the
Riccati equation (5.6.38) with initial condition =(0) = Xj. From this, it follows
that the minimum in (5.6.39) is achieved for any xo and any yo(-). Furthermore as
in [21], we can write

min - J[zs, w(-)] = (zs — 2(s)) "Z(s)(zs — L(s)) — ps,
w(-)€Lx[0,s]
where p is defined as in (5.3.13) and #(s) is the solution to (5.3.10) with the initial
condition Z(0) = x¢. From this we can conclude that the set
Xslzo, yo()|2, d] = {zs € R™ : min  J[xs,w()] <d
0. wo(1)l3 ) = { Lomin Jlew()] < d)
is given by (5.3.12). This completes the proof of the lemma. a
Proof of Lemma 5.4.2. Necessity. It is obvious that strong robust observability
implies robust observability. Therefore, according to Lemma 5.3.2, the solution P(-)
to the Riccati equation (5.3.11) is defined and positive-definite on [0, NT|. We now
prove that the solution X (+) to the Riccati equation (5.4.17) is defined on [0, NT'] and
positive-definite on (0, NT]. It is obvious from (5.3.12) that the set X [0, yo(+)|§, d]
is not empty if and only if
d+ps[yo ()] >0, (5.6.40)
where p; [yo ()] is defined by (5.3.13). Thus we can compose the following con-
straint is satisfied by all solutions to the linear system (5.3.10):

/ [ IE @01 + (CO) - w(0) RO (COO — wo(t)] dt < d.
0 (5.6.41)
By using the linear substitution

y(t) == Ct)z(t) — yo(t), (5.6.42)

the constraint (5.6.41) can be rewritten as

/ 5@ Ri®) — IK®a0)?] dt < a (5.643)
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where this constraint is satisfied by all solutions to the following linear system:
z(t) = A@t)a(t) + B(t)y(t), #(0) = o, (5.6.44)

where A(t) and B(t) are defined by (5.4.18) and (5.4.19), respectively.

In this case, we must prove that a positive-definite solution to the Riccati equation
(5.4.17) exists. By the definition of X, [d], we have that &5 € X, [d] if and only if
there exist vector functions Z(-) and yo () satisfying the system equation (5.3.10) and
such that &(s) = & and the constraint (5.6.41) holds. If we treat yo(-) as the control
input of the system (5.3.10), it implies that &, € X,[d] if and only if yo(-) € L2[0, s]
exists such that

JlEs,y0()] < d, (5.6.45)

where J[x, yo(+)] is defined by

e [ TCWED — w0)" RO CEE) — ot
el = [ | ~ K @)

By using the linear substitution (5.6.42), we can rewrite (5.6.46) as

fg} dt. (5.6.46)

JlE,§0)) := J[Esp0()] = / S 9O RO ~ 1K OF0)] dt. (5647

Now &(-) is the solution to (5.6.44) with the control input g(-) and boundary con-
dition Z(s) = ar:G From (5.6.47), Jis a homogeneous quadratic functional. Now
consider the set X,[1] corresponding to d = 1. Since X,[1] is bounded, a constant
hs > 0 exists such that all vectors &, € R™ with ||Z5|| = hs do not belong to the set
X,[1]. Hence, R

J[Es,9()] > 1 (5.6.48)

for all &, € R™ such that ||#,]| = h and for all §(-) € L3[0,s]. Since J is a
homogeneous quadratic functional, we have that .J oz, aj(-)] = a2 J i y( )] and
(5.6.48) implies that R

g(.>é%£[o,s] JZs,35(-)] >0 (5.6.49)
for all Z; # 0. The problem of minimizing the functional from (5.6.49) subject to
the constraint defined by the system (5.6.44) is a linear quadratic optimal control
problem in which time is reversed. In this linear quadratic optimal control problem,
a sign indefinite quadratic cost function is considered. By using a known result from
the linear quadratic optimal control theory, we conclude that the condition (5.6.49)
implies that there exists a solution X (-) to the Riccati equation

—X(s) = A(s) "X (5) + X (5)A(s) — X (5)B(s)R ™" (5)B(s) "X (s) — K (s) 'K (),

with the initial condition X (0) = 0, for all s € (0, NT], such that X (s) > 0; e.g.,
see p. 23 of [34]. This completes the proof of this part of the lemma.

Sufficiency. We have already shown that &, € X, [d] if and only if yo(-) €
L]0, s] exists such that (5.6.45) is satisfied. Now consider the following optimiza-
tion problem:
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inf  J[&s,90)],
it [&s, ()]

where the infimum is taken over all solutions to (5.6.44) with the boundary condition
Z(s) = &. This optimal control problem is the standard linear quadratic optimal
control problem with a sign indefinite cost function. Using the standard result from
the theory of linear quadratic optimal control (e.g., see [34]), we obtain that

ot / [5) RO — |K@F0)] dt = 21X (5)is. (5.6.50)

From (5.6.50) and (5.6.43), we have that
1 X (s)Ts < d.
From this we can conclude that the set X,[d] is given by

X.Jd) = {3, e R" : 27X (s)d, < d}.

This completes the proof of the lemma. O
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An Analog of Shannon Information Theory: State
Estimation and Stabilization of Linear Noiseless Plants
via Noisy Discrete Channels

6.1 Introduction

In this chapter, we continue to consider the problems of state estimation and stabi-
lization for discrete-time linear partially observed time-invariant systems. We still
examine a remote control setup, where the sensors and decision maker (either ob-
server or controller) are physically distant and connected by a noisy digital com-
munication link. The critical feature of this chapter as compared with the previous
ones is the account for channel errors by adopting the stochastic discrete memory-
less channel model from the classic information theory. The objective is to examine
how the channel quantization effects and errors limit the capacity for stabilization
and reliable state estimation. The focus is on stabilizability and observability with
probability 1. In other words, the estimation/stabilization error should be made small
along (almost) any trajectory.'

In this chapter, we confine ourselves to consideration of the case where the uncer-
tainties in the system model can be neglected. This is a natural initial step in devel-
oping the theory. Its generalizations on the case of systems with additive exogenous
disturbances will be offered in Chaps. 7 and 8.

The main results of this chapter have points of similarity with the classic Shan-
non’s noisy channel coding theorem [188] and are partly based on it. This theorem
states that it is possible to ensure an errorless communication of information across
the channel with as large a probability as desired if and only if the source produces
data at the rate less than the fundamental characteristic of the noisy channel, in-
troduced by Shannon [188] and called the capacity c¢. Similarly it is shown in this
chapter that in order that the system be stabilizable/observable with as large a prob-
ability as desired or almost surely, it is sufficient and almost necessary that the unit

'A natural alternative approach deals with mth moment observability/stabilizability; see,
e.g., [72,77,101-103, 132-138, 164-166, 192]. With the strong law of large numbers in mind,
this approach can be viewed as aimed at making the time-average estimation/stabilization error
small along (almost) any trajectory. This formally permits the error at a given time to be large
but requires that large errors occur with a small frequency.

A.S. Matveev and A.V. Savkin, Estimation and Control over Communication Networks, 131
doi: 10.1007/978-0-8176-4607-3_6,
© Birkhduser Boston, a part of Springer Science + Business Media, LLC 2009
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time increment A (in bits) of the open-loop system state uncertainty be less than the
channel capacity c. This increment is given by the topological entropy of the system.
So the results of this chapter can also be viewed as natural extensions of the results
of Chaps. 2 and 3 on the case of a noisy channel. We also specify the necessity of the
bound ¢ by showing that whenever it is trespassed / > ¢, any estimation/stabilization
algorithm almost surely exponentially diverges. We also show that the inequality
¢ > h is necessary for certain weaker forms of observability/stabilizability. For
example, it holds whenever the time-average estimation/stabilization error is kept
bounded with a nonzero probability.

By following the lines of the classic information theory, we examine the role
of a possible communication feedback. This feedback holds where there is a way to
communicate data in the direction opposite to that of the feedforward communication
channel. As is known, even perfect (i.e., undelayed and noiseless) and complete (i.e.,
notifying the informant about the entire result of the transmission across the channel)
feedback does not increase the rate at which the information can be communicated
over the feedforward channel with as small probability of error as desired [44, 190].
In this chapter, we show that the communication feedback similarly does not alter
the stabilizability/observability domain. However, such a feedback aids to improve
the performance of the state estimator.

Specifically, we show that in the absence of a feedback communication, the es-
timation error can be made decaying to zero with as large a probability as desired
by a proper design of the observer. However, this is achieved at the expense of using
code words whose lengths grow as the estimation process progresses.> At the same
time, the increasing code words lengths mean that the memories of the coder and de-
coder should increase accordingly, and the per-step complexity of the observer may
be unlimited. At the same time, we show that these disadvantages can be discarded
if a perfect and complete feedback link is available. The main result of the chapter
concerning the state estimation problem states that then it is possible to design an
almost surely converging observer of limited complexity that employs fixed-length
code words, provided that ¢ > h. This is achieved via complete synchronization of
the coder and decoder, within which the coder duplicates the state estimate generated
by the decoder by employing the data received over the feedback link.

Unlike state estimation, stabilization needs far less feedback communication. We
first show that to design an almost surely stabilizing controller with limited complex-
ity employing fixed-length code words, a feedback link of arbitrarily small capacity
is sufficient, and a complete synchronization of the coder and decoder is not needed.
Second, we demonstrate that in fact such a feedback communication requires no
special means (like a special feedback link) since it can be implemented by means
of control. The feedback communication can be arranged thanks to the fact that on
the one hand, the decoder-controller influences the motion of the system and on the
other hand, the sensor observes this motion and feeds the coder by the observation.
So the controller can encode a message by imparting the motion of a certain specific

Despite of this, the observer produces an asymptotically exact state estimate online, i.e.,
with no delay. In other words, the estimate of the state at time ¢ is generated at time ¢.
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feature. In its turn, the coder can receive the message by observing the motion and
detecting this feature.

The main results of the chapter were originally published in [107, 108, 120].

In [201], the necessity of the inequality ¢ > h for almost sure observabil-
ity/stabilizability was established for channels more general than discrete and mem-
oryless. The sufficiency of the strict inequality ¢ > h was justified for a particular
example of a discrete memoryless channel: the erasure channel with a perfect and
complete feedback.

Observability and stabilizability of unstable linear plants over noisy discrete
channels were also addressed in, e.g., [77, 101-103, 164-166, 192, 229]. The rele-
vant problem of design of optimal sequential quantization schemes for uncontrolled
Markov processes was addressed in [24,204]. In [77, 164-166, 192], the focus is
on scalar noisy linear systems and mean-square (and more generally, mth moment)
observability/stabilizability. Both sufficient and necessary criteria for such an observ-
ability/stabilizability were given in [164—166] in terms of a new parametric notion
of the channel capacity (called anytime capacity) introduced in [164]. An encoder—
decoder pair for estimating the state of a scalar noisy linear system via a noisy binary
symmetric channel was proposed in [77]. It was shown by simulation that the esti-
mation error is bounded. Another such a pair was constructed in [192] for such a
channel with a perfect feedback. Conditions ensuring that the mathematical expec-
tation of the estimation error is bounded were obtained. In [229], the focus is on
stabilizability by means of memoryless controllers in the case where the channels
transmitting both observations and controls are noisy and discrete, and the plant is
scalar, linear, and stochastic. A stochastic setting for the stabilization problem was
investigated in [138], where an important fundamental result on minimum data rates
was obtained. However, the paper [138] deals with a noiseless deterministic chan-
nel. In [101, 103], the robust rth moment stability of uncertain scalar linear plants
with bounded additive disturbances was examined in the case where the signals are
communicated over the so-called truncation channel. It transmits binary code words
with dropping a random number of concluding (i.e., least important) bits. This par-
ticular example of the discrete memoryless channel generalizes the classic erasure
channel and is motivated by certain wireless communication applications in [101].
Minimum data rates for stabilization and state estimation via such channels were
also studied in many other papers in the area. With no intent to be exhaustive, we
mention [28,48,70,73,133,135-137, 149, 184,202, 204, 220, 221,227, 228]. Opti-
mization problems for noisy Gaussian channels with power constraints and perfect
finite alphabet channels were studied in, e.g., [127,203,204,206].

The observers and controllers considered in this chapter are based on quantizers
with adjusted sensitivity [28,204] implemented in the multi-rate fashion [149]. Such
a quantizer can be regarded as a cascade of a multiplier by an adjustable factor and an
analog-to-digital converter. To be transmitted across the channel, the outputs of this
converter are encoded by using low error block codes, whose existence is ensured by
the classic Shannon channel coding theorem. This is in the vein of the classic source-
channel separation principle [20, 60, 68]. In the context of estimating the state of an
unstable plant via a noisy channel, a similar approach was considered in [164] in the
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form of the following separation of the source and channel. At first, a coder—decoder
pair is designed under the assumption that the channel is perfect. Then another coder—
decoder pair is constructed to carry the outputs of the first coder reliably across the
channel. Various issues concerning stabilization and state estimation by means of
quantizers with adjusted sensitivity were addressed in, e.g., [28,70, 88,90, 204].

The view of the control loop as a link transmitting information was in fact con-
cerned in [47] in its “a posteriori” component. This means that the control loop does
transmit information, although its contents may not be not clearly specified a priori.
The “constructive” part of the same view is the idea that the control signals can be
employed as carriers of a priori prespecified information from the decoder-controller
to the coder. In some details, this issue was addressed in [166,201] (see also [167]
for a general discussion).

The body of the chapter is organized as follows. Sections 6.2, 6.5 and 6.4, 6.6
contain the statements of the state estimation and stabilization problems and present
their solutions, respectively. Section 6.3 establishes the notation and offers basic defi-
nitions and assumptions. The proofs of the main results are scattered over Sects. 6.7—
6.11.

6.2 State Estimation Problem

We consider unstable discrete-time invariant linear systems of the form:
x(t+1) = Ax(t), 2(0) = xo, y(t) = Cx(t). (6.2.1)

Here x(t) € R™ is the state and y(¢) € R™ is the measured output. The instability
means that there is an eigenvalue X of the matrix A with |A| > 1. The initial state
is a random vector. The objective is to estimate the current state on the basis of the
prior measurements.

We consider the case where this estimate is required at a remote location. The
only way to communicate information from the sensor to this location is via a given
random noisy discrete channel. So to be transmitted, measurements should be first
translated into a sequence of symbols e from the finite input alphabet € of the chan-
nel. This is done by a special system’s component, referred to as the coder. Its outputs
e are then transmitted across the channel and transformed by some sort of random
disturbance or noise into a sequence of channel’s outputs s from a finite output al-
phabet G. By employing the prior outputs s, the decoder(-estimator) produces an
estimate T of the current state x. In this situation illustrated in Fig. 6.1, an observer
is constituted by a coder—decoder pair.

The decoder is described by an equation of the form:

F(t) = X [t, 5(0), s(1), ..., s(t)]. (6.2.2)

We consider two classes of coders each giving rise to a particular problem setup.
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Feedback communication link

Decoder - |. DiscreTe
’7 estimator [~ Channel” € | Coder

State estimate o~
>

Fig. 6.1. Estimation via a limited capacity communication channel.

Coders with a Communication Feedback

The first class is related to feedback communication channels [190]: The result s(¢)
of the current transmission across the “feedforward” channel becomes known at the
coder site by the next time ¢ + 1. The coders from this class are said to be with a
feedback and given by an equation of the form:

e(t) = &t y(0), ..., y(t), s(0),....s(t —1)] € €. (6.2.3)

Coders without a Communication Feedback

The second class deals with the case where no such feedback is available. The cor-
responding coders are said to be without a feedback and given by an equation of the
form:

e(t) = E[t,y(0),...,y(t)] € €. (6.2.4)

Objective of State Estimation

The information received by the decoder is limited to a finite number of bits at any
time. So the decoder is hardly able to restore the state with the infinite exactness
Z(t) = x(t) for a finite time. In view of this, we pursue a more realistic objective of
detecting the unstable modes of the system and accept that an observer succeeds if

lx(t) —Z(t)]] — 0 as t — oo. (6.2.5)

Definition 6.2.1. The coder—decoder pair is said to detect or track the state whenever
(6.2.5) is true, and to keep the estimation error (or time-average error) bounded if the
following weaker properties hold, respectively:

t—1
. - .1 ~
Jim ) =3O <00, Jim 3 Je(6) = FO)] <0 620

Remark 6.2.2. The estimate Z(¢) of the current state x(¢) should be produced at the
current time ¢; no delay is permitted.
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The main question to be discussed is as follows:

How low can the data rate of the channel be made before the construction of a
coder—decoder pair detecting the state becomes impossible?

Explanation 6.2.3. Since the initial state is random, the process in the system is
stochastic. So the objective (6.2.5) or (6.2.6) may be achieved for some elementary
random events and fail to hold for others.

In this chapter, we focus on the cases where “detecting” means either “detecting
with as large probability as desired” or “detecting almost surely.”

Comments on Communication Feedback

The communication feedback enables the coder (6.2.3) to be aware of the actions of
the decoder via duplicating them in accordance with (6.2.2). This gives the coder the
ground to try to compensate for the previous channel errors. However, this feedback
does not increase the rate at which the information can be communicated across the
channel with as small probability of error as desired [44, 188]. At the same time, it
may increase the rate at which information can be transmitted with the zero proba-
bility of error [189]. The feedback also may increase the reliability function [233]
and simplify the coding and decoding operations [214]. For further discussion of this
issue and a detailed survey, we refer the reader to [214].

A discussion of the role of communication feedback in control and state estima-
tion was offered in, e.g., [201,202,204,206,219].

The perfect feedback communication link may model a situation where there is
a bi-directional data exchange between the coder and the decoder, and the transmis-
sion power of the decoder essentially exceeds that of the coder, so that the feedback
communication errors are negligible. Examples concern data exchange between a
satellite and Earth surface station, or underwater autonomous sensors and the base
station. For control systems, feedback communication of data from the decoder to
the coder does not require special means (like a special link) since transmission of as
much information as desired can be arranged by means of control (see Sect. 6.11).

6.3 Assumptions, Notations, and Basic Definitions

6.3.1 Assumptions

In this chapter, the noisy communication channel between the coder and the decoder
is interpreted as a stochastic map transforming input channel symbols into output
ones e — s. We suppose that the previous transmissions across the channel do not
affect the current one, and the channel is time-invariant. These properties are sum-
marized by the following.

Assumption 6.3.1. Given a current channel input e(t), the current output s(t) is
statistically independent of the other inputs and outputs e(j),s(j),j < t, and the
probability of receiving s given that e is sent does not depend on time:
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W (sle) := P[s(t) = s|e(t) = €], s€B,ec €.

Remark 6.3.2. This means that we consider a discrete memoryless channel [38, 50,
68,188, 190].

Remark 6.3.3. The above model incorporates the effect of message dropout by in-
cluding a special “void” symbol ® in the output alphabet &. Then s(t) = ® means
that the message e(t) is lost by the channel.

Other assumptions concern mainly the system (6.2.1).

Assumption 6.3.4. The system (6.2.1) does not affect the operation of the channel:
Given an input e(t), the output s(t) is statistically independent of the initial state xg
(along with the other channel inputs and outputs e(j), s(j),j < t).

Assumption 6.3.5. The initial state xo has a probability density po ().
Assumption 6.3.6. The pair (A, C) is detectable.

To state the results of the chapter, we need the notion of the Shannon’s capacity
of the channel. To recall it, we start with the following.

6.3.2 Average Mutual Information

Let F €¢ § = {f} and G € & = {g} be two random quantities defined on a
common probability space and with respective probability distributions P(df) and
P(dg).? The average mutual information between F and G is defined to be (see,
e.g., [38,50,65,68,152,188])

P(df,dg)

(df) © P(dg)’ (03

1.G) = [ Pr.dg)os, |,

Here P(df,dyg) is the joint distribution of F' and G, and P(Zf()d Qfa’g‘izlg) stands for
the density of this distribution with respect to the product measure P(df) @ P(dg).
Formula (6.3.1) holds if this density does exist; i.e., the joint distribution is absolutely
continuous with respect to the product measure. Otherwise I(F, G) := oc.

We recall that log, 0 := —oo and 00 - 0 := 0.

Remark 6.3.7. It can be shown that (either finite or infinite) integral from (6.3.1)
exists, and I(F, G) € [0, +o0] [65].

The entropy of a random quantity is defined as self-information: H(F) :=
I(F, F). It can be interpreted as an average amount of information (in bits) that one
receives when the result f of a random experiment becomes known [38, 50, 65, 68,

3For technical reasons, we suppose that § and & are separable metric spaces endowed with
the Borel o-algebras, and the quantities F' and GG are measurable as maps from the probability
space into § and &, respectively.
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188]. An equivalent contrapositive statement is that the entropy is an average amount
of information that one lacks before the experiment to uniquely and correctly foresee
its result. In other words, the entropy can be viewed as a measure of uncertainty. In
both cases, it is tacitly assumed that available is an apriorial statistical knowledge
about the experiment in the form of the probability distribution P (df).

The conditional entropy Hy(F') = Hg=4(F') is defined as the entropy produced
by the conditional distribution of F' given G = g, and the averaged conditional en-
tropy (equivocation) H(F|G) := EHg(F). The latter can be viewed as an average
uncertainty about the result of the experiment F' provided that the result of G is
known.

If the sets §, ® are finite, then the above formulas can be rewritten in terms of
the probability mass functions

pr(f)=PF =f), pclg):=P(G=yg), prc(f.g)=PF=fNG=yg)

as follows:

H(F) == pp(f)log,pr(f),

HG:(SF) = - stP(F = f|G = g)log, P(F = g|G = g)
:
g I
H(F|G) =~ fegz,g:e@pF’G(f’ 9)log, sz(é ’)g). (6.3.2)
prc(f,9)

I(F,G) = 1
e fegg:eeij’G(f’g) o8z pr(f)rc(g)

= H(F) — H(F|G) = H(G) — H(G|F).

Remark 6.3.8. By the last two relations, I(F, G) can be viewed as the number of
bits by which the uncertainty about the result of one of two experiments decreases
when the result of the other experiment becomes known. This supports the name of
I(F, G) as a mutual information.

6.3.3 Capacity of a Discrete Memoryless Channel

The Shannon capacity of such a channel is defined to be the maximum mutual in-
formation between the input and output of the channel (see, e.g., [38,50, 65,68, 188,
190]):
c=max[(E,S). (6.3.3)
Pp
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Here the maximum is over all probability distributions P on the input channel
alphabet € = {e}. Whereas P is interpreted as the probability distribution of a
random channel input F, the joint distribution of the channel input E and output S
is taken to be that of (e, s) when s results from sending e over the channel:

Pps(e,s):=W(sle)pr(e).

6.3.4 Recursive Semirational Observers

In the above problem statement, the complexity of an observer is not limited: It is
permitted to carry out an asymptotically infinite amount of computations per sample
period. At the same time, it will be shown that the conditions necessary for observ-
ability by means of such an observer are “almost sufficient” for existence of a more
realistic observer, which performs only finitely many operations per step.* This ob-
server consists of a semirational coder and decoder. They are basically defined in
Subsect. 3.4.4 (starting on p. 46) up to formalities caused by the difference in the
situations considered in this chapter and Chap. 3, respectively. (This difference con-
cerns mainly the channel model.) In this subsection, we adjust the corresponding
definitions from Subsect. 3.4.4 to the context of the current chapter. Moreover, with
the needs of Chap. 7 in mind, we extend these definitions by permitting the current
outputs of the coder and decoder to depend on the messages received during not
only the previous but also the current operation epoch. This feature is addressed by
dropping the attribute “simple” in the definitions.

Definition 6.3.9. The feedback coder (6.2.3) (on p. 135) is said to be semirational
r-step recursive (where r = 1,2, .. .) if the following statements hold:

(i) The coder starts working att = r and at any time t € [ir s+ l)r) (where
1 =1,2,...) generates the current output by equations of the form:

e(t) = 5t_ir{zc[ir],y[(i eyt s[G = D). st — 1}},

zelir] == Ze (zc[(z — 1)7“},Yi,5i) eR®,  2.(0):=2° (6.34)

co

wherei=1,2,...and

Y; := col (y[(i — D+ 1],...,y[ir]),
S; = (s[(i —1)r),..., slir — 1]) (6.3.5)

are the sequences of messages arrived at the coder from the sensor and decoder,
respectively, during the previous operation epoch;

(ii) The functions Z.(-) and Eo(-), . .., Er_1(-) are semirational and semialgebraic,
respectively.®

“This holds in the presence of a feedback communication link.
3See Definitions 3.4.9 and 3.4.12 on pp. 46 and 47, respectively.
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The coder (6.2.4) (on p. 135) without a feedback is said to be semirational r-step
recursive if it meets the requirements (i) and (ii) with the arguments of the forms s(0)
and S; dropped from the right-hand sides in (6.3.4).

A particular case of the situation from this definition is where, like in Defini-
tion 3.4.15 (on p. 47), the entire code word composed by all code symbols

E; = (e[ir], elir +1],...,€[(i + 1)r — 1])

that will be emitted into the channel during the forthcoming operation epoch [ir :
(¢ 4+ 1)r — 1] is generated by the coder at the beginning ¢ = ir of the epoch via an
equation of the form: E; = &|z(ir), Y;] with a semialgebraic function &(-).

Definition 6.3.10. The decoder (6.2.2) (on p. 134) is said to be semirational r-step
recursive if at any time t € [ir s+ 1)7‘),@' = 1,2,..., the current estimate is
generated by equations of the form:

F(t) == xt_ir{zd[ir], s[(i— 1)), ..., st — 1] }
zalir] = Zq ( [(z —1)r],S;) €R7,  z4(0) =23, (6.3.6)
where the functions Z4(-) and Xo(+), ..., Xy_1(-) are semirational and S; is given
by (6.3.5).

A particular case of the situation from this definition is where the entire sequence
of estimates R
X; = col (Z[ir], ..., z[(i + 1)r —1]) (6.3.7)

for the forthcoming operation epoch is generated via an equation of the form: X P =
X (zalir], S;) with a semirational function X(-).

As in Remark 3.4.18 (on p. 48), it should be noted that the coders and decoders
from the classes introduced by these definitions perform a limited (as ¢ runs over
t = 0,1,...) number of operations per step. Explanation 3.4.20 and Remark 3.4.21
(on p. 48) also extend to these coders and decoders.

6.4 Conditions for Observability of Noiseless Linear Plants

These conditions are given by the following theorem, which constitutes the main
result of this chapter with respect to the state estimation problem.

Theorem 6.4.1. Suppose that Assumptions 6.3.1 and 6.3.4—6.3.6 hold. Denote by
Aoy An

the eigenvalues of the system (6.2.1) repeating in accordance with their algebraic
multiplicities, and by ¢ the capacity (6.3.3) of the communication channel. Then the
following implications are true:
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e>HA) = Y log, |\l

AjiAi=1
a) A semirational finite-step b) For the arbitrary probability value
recursive decoder (6.3.6) and p € (0,1), a coder—decoder pair
coder with a feedback (6.3.4) without a feedback (6.2.2), (6.2.4)
exist that detect the state (i.e., exists that detects the state with the
(6.2.5) holds) almost surely. probability p or better.

4 4

¢) For any probability value p € (0, 1), a coder-decoder pair with a
feedback (6.2.2), (6.2.3) exists that keeps the estimation error bounded (i.e.,
the first relation from (6.2.6) holds) with the probability p or better.

4

d) A coder—decoder pair with a feedback (6.2.2), (6.2.3) exists that keeps
the estimation time-average error bounded (i.e., the second relation from
(6.2.6) holds) with a nonzero probability .

4

c> H(A)

The proof of this theorem will be given in Sects. 6.7-6.10.

Explanation 6.4.2. The implications a)V b) = ¢) = d) are evident. They are men-
tioned to stress that the claims a), b), ¢), and d) are included in the chain of implica-
tions with approximately identical extreme terms. Thus these statements are “almost
equivalent,” and the inequality ¢ > H (A) is sufficient and “almost necessary” for the
system (6.2.1) to be observable via the noisy communication channel.

Remark 6.4.3. The implication ¢ > H(A) = a) means that whenever the above
sufficient condition is met and a feedback communication is available, a reliable state
estimation can be accomplished by an observer with a limited complexity, which
performs a limited number of operations per step.

Remark 6.4.4. The corresponding observer (coder and decoder) will be explicitly
constructed in Subsect. 6.9.1 (see p. 168). However, the scheme (coding and decod-
ing rules) for transmission of information across the channel will not be described in
detail. The point is that the proposed observer employs block codes transmitting data
at a given rate below the channel capacity ¢ with a given probability of error. Classic
information theory guarantees existence of such a code. Moreover, invention of such
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codes is the standard long-standing task in information sciences. It is supposed that
a relevant solution should be borrowed to construct the observer.

Thus in the case where a perfect feedback communication link is available, the chap-
ter demonstrates that whenever almost sure observability holds, it can be ensured
by realistic observers with bounded (as time progresses) algebraic complexity and
memory consumption per step, which are based on classic block coding—decoding
schemes of communication.

Remark 6.4.5. By Theorem 2.4.2 (on p. 21), the quantity H(A) is the topological
entropy of the linear system (6.2.1). Hence for such systems, Theorem 6.4.1 can be
viewed as an extension of Theorem 2.3.6 (on p. 16) to the case of a noisy channel
and linear plant.

Comment 6.4.6. The paper [201] proves that the inequality ¢ > 7(A) is necessary for
existence of a coder—decoder pair tracking the state almost surely via noisy channels
more general than discrete memoryless. The sufficiency of the inequality ¢ > 7(A)
for almost sure observability was justified in [201] for a particular discrete memory-
less channel: the erasure channel with a finite alphabet.

Comparison with Shannon’s Channel Coding Theorem

In spirit, Theorem 6.4.1 resembles the celebrated Shannon’s channel coding theo-
rem [50, 60, 68, 188]. Indeed, the latter states that whenever the source produces
information at the rate R < c¢ bits per unit time, the success, i.e., errorless transmis-
sion, can be ensured with as large a probability as desired. If conversely R > ¢, this
is impossible. Here the means to ensure success are the rules to encode and decode
information before and after transmission, respectively. Theorem 6.4.1 asserts just
the same provided the “success” is understood as asymptotic tracking (6.2.5) of the
state, the “means” are the coder and decoder-estimator, and R is replaced by H (A).

This analogy is enhanced by the similarity between the quantities R and H (A).
Each of them can be interpreted as the unit-time increment of the number of bits
required to describe the entity that the receiver wants to know. Indeed in the context
of Shannon’s theorem, this entity is abstract information generated by a source at the
rate R, and the interpretation is apparent. In the case considered in this chapter, this
entity is the state, and the interpretation follows from Remark 3.5.3 (on p. 53).

Another point of similarity between Theorem 6.4.1 and the classic information
theory concerns the communication feedback. Whereas the classic theory states that
this feedback does not increase the rate R at which the information can be trans-
mitted with as small a probability of error as desired, Theorem 6.4.1 shows that the
feedback does not extend the class of systems for which state tracking (6.2.5) is pos-
sible with as small a probability of failure as desired. However, this concerns tracking
by means of arbitrary non-anticipating observers. At the same time, Theorem 6.4.1
states that feedback allows for tracking the state by means of an observer with a lim-
ited computational power and not only with as large a probability as desired but also
almost surely.



6.5 Stabilization Problem 143

6.5 Stabilization Problem

Now we consider a controlled version of the plant (6.2.1). In other words, we deal
with unstable linear discrete-time invariant linear systems of the form:

x(t+1) = Az(t) + Bu(t), z(0) = o, y(t) = Cx(t), (6.5.1)

where u(t) € R™ is the control. The objective is to design a controller that asymp-
totically stabilizes the system:

z(t) -0 and wu(t) —0 as t— oo.

We examine a remote control setup: The site where the control is produced is
physically distant from the sensor site. The only way to communicate data from the
second site to the first one is via a given discrete memoryless channel. Based on the
prior observations, the coder selects a message e from the input channel alphabet
¢ and emits e into the channel. In the channel, this message is transformed into a
symbol s from the output channel alphabet 8. Proceeding from the messages s up to
the current time ¢, the decoder(-controller) selects a control u(t) (see Fig. 6.2).

y Discrete
Sensor —» Coder — € w——l— G —>
channel

A4

Plant
Decoder

u

Fig. 6.2. Stabilization via a limited capacity communication channel.

Remark 6.5.1. In this situation, the controller is assembled of the coder and decoder.

In fact, the decoder is still given by an equation of the form (6.2.2). However,
now its output is not a state estimate but the control:

u(t) = t[t, s(0),s(1),...,s(t)]. (6.5.2)

We also still consider two classes of coders, each giving rise to a particular prob-
lem statement. The first class corresponds to the case where a feedback communica-
tion link from the decoder to the coder is available (see Fig. 6.3). The second class
is considered when there is no such feedback link (see Fig. 6.2). The coders from
these two classes are still described by equations of the forms (6.2.3) and (6.2.4),
respectively.

Remark 6.5.2. As will be shown in the next section, the feedback communication
link is of much lesser importance for the stabilization problem than for the state
estimation one. Only in order to demonstrate this explicitly, we continue to consider
coders with a communication feedback.
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Communication feedback
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Fig. 6.3. Stabilization under a communication feedback.

Definition 6.5.3. A coder—decoder pair is said to stabilize the system if
llz()] = 0 and |u(t)|| —0 as t — o0, (6.5.3)

and to keep the stabilization error (or time-average error) bounded if the following
weaker properties hold, respectively:

t—1
. .1
o el <o, Jim ;37 (@) < o (654

The main question to be studied is as follows:

What is the tightest bound on the data rate of the channel above which a stabi-
lizing coder—decoder pair exists?

Explanation 6.5.4. Since the initial state is random, the process in the system is
stochastic. So the objective (6.5.3) or (6.5.4) may be achieved for some elementary
random events and fail to hold for others.

In this chapter, we focus on the cases where “stabilizing” means either “stabiliz-
ing with as large probability as desired” or “stabilizing almost surely.”

Assumptions

Apart from Assumptions 6.3.1 and 6.3.4—6.3.6, now one more assumption is adopted.

Assumption 6.5.5. The pair (A, B) is stabilizable.

Recursive Semirational Controllers

In the above problem statement, the controller is formally permitted to carry out an
asymptotically infinite amount of computations per sample period. At the same time,
it will be shown that the conditions necessary for stabilizability by means of such a
controller are “almost sufficient” for existence of a more realistic controller, which
performs only a limited number of operations per step.



6.6 Conditions for Stabilizability of Noiseless Linear Plants 145

Remark 6.5.6. Such a controller exists irrespective of whether a feedback communi-
cation link is available, unlike the state estimation problem.

The aforementioned more realistic controller consists of a semirational coder
and decoder. Such a coder is introduced by Definition 6.3.9 (on p. 139). As for the
decoder, Definition 6.3.10 (on p. 140) serving the state estimation problem should be
slightly modified since now the decoder output is the control.

Definition 6.5.7. The decoder (6.5.2) is said to be r-step semirational recursive if
at any time t € [z’r s+ 1)r),i = 1,2,..., the current control is generated by
equations of the form:

u(t) = ut_,;r{zd[ir], s[(i — 1), s[t — 1] }
2alir] =24 ( - 1y S) ERY, 24(0) =20, (655)
where the functions Z4(+) and Uo(+), ..., U,_1(-) are semirational® and S; is given

by (6.3.5) (on p. 139).

A particular case of the situation from this definition is where like in Defini-
tion 3.4.17 (on p. 47), the control program

U; = col (ufir], ... u[(i+ 1)r —1]) (6.5.6)
for the entire forthcoming operation epoch is generated via an equation of the form:
Ui = U(Zd[’iT], Sz)

with a semirational function U(+).

6.6 Conditions for Stabilizability of Noiseless Linear Plants

6.6.1 The Domain of Stabilizability Is Determined by the Shannon Channel
Capacity

Theorem 6.6.1. Suppose that Assumptions 6.3.1, 6.3.4-6.3.6, and 6.5.5 hold. De-
note by A1, ..., \, the eigenvalues of the system (6.5.1) repeating in accordance
with their algebraic multiplicities, and by ¢ the Shannon capacity (6.3.3) of the com-
munication channel. Then the following implications are true:

> HA) = Y log, 1\
AjilAj[>1

4

5See Definition 3.4.12 on p. 47.
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4

a) A semirational finite-step recursive decoder (6.5.5) and coder (3.4.4) (on
p. 47) without a communication feedback exist that stabilize the system
almost surely.

4

b) A coder with a communication feedback (6.2.3) and a decoder (6.5.2)
exist that stabilize the system almost surely.

4

¢) For the arbitrary probability value p € (0,1), a coder with a
communication feedback (6.2.3) and a decoder (6.5.2) exist that stabilize
the system with the probability p or better.

4

d) A coder with a communication feedback (6.2.3) and a decoder (6.5.2)
exist that keep the time-average stabilization error bounded with a nonzero
probability .

4

c> H(A)

The proof of this theorem will be given in Sects. 6.7 and 6.11.

Explanation 6.6.2. The evident implications a) = b) = ¢) = d) are included in the
statement of the theorem due to the reasons commented on in Explanation 6.4.2.

Remark 6.6.3. The implications d) = ¢ > H(A) and ¢ > H(A) = a) mean that
the condition ¢ > H(A) necessary for stabilizability with a nonzero probability in
the weak sense (6.5.4) by means of a controller with unlimited complexity, which
employs a perfect communication feedback, is simultaneously “almost sufficient”
for stabilizability with probability 1 in the strong sense (6.5.3) and in the absence of
any communication feedback by means of a realistic controller with limited compu-
tational power.

Explicit constructions of the coder and decoder constituting this more realistic
controller will be offered in Subsects. 6.11.1 and 6.11.2 (see p. 185). This controller
is still concerned by the notes from Remark 6.4.4 (on p. 141) that address the coding—
decoding scheme of information transmission across the channel.
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Thus in particular, this chapter demonstrates that whenever almost sure stabi-
lizability holds, it can be ensured by realistic controllers with bounded (as time pro-
gresses) algebraic complexity and memory consumption per step, which are based on
classic block coding decoding schemes of communication. This is true irrespective
of whether a communication feedback is available.

Remark 6.6.4. As was remarked in Sect. 6.4, the quantity H (A) is the topological en-
tropy of the linear system (6.5.1) by Theorem 2.4.2 (on p. 21). Hence Theorem 6.6.1
can be interpreted as an extension of Theorem 2.5.3 (on p. 26) to the case of a noisy
channel.

Remark 6.6.5. In the case of the noiseless channel (€ = § and W (e|e) = 1), Theo-
rem 6.6.1 is also in harmony with Theorem 3.5.2 (on p. 52), where an undelayed and
lossless channel is considered.

Comment 6.6.6. In [201], the implication b) = ¢ > H(A) was proved for channels
more general than discrete memoryless. The sufficiency of the inequality ¢ > 7(A)
for almost sure stabilizability was justified in [201] for a special discrete memoryless
channel: the erasure channel with a finite alphabet.

The comments from Sect. 6.4 on the similarity between Theorem 6.4.1 and the
classic Shannon’s channel coding theorem equally concern Theorem 6.6.1.

6.7 Necessary Conditions for Observability and Stabilizability

In this section, we prove the d) = ¢ > H (A) parts of both Theorems 6.4.1 and 6.6.1.
So Assumptions 6.3.1 and 6.3.4-6.3.6 (and Assumption 6.5.5 in the case of Theo-
rem 6.6.1) are supposed to hold throughout the section. The proof is accomplished
via justifying the following two stronger statements.

Proposition 6.7.1. Let ¢ < H(A). Then the state cannot be observed with a bounded
error: For any coder (6.2.3) and decoder (6.2.2), the following two claims hold:

(i) The estimation error is almost surely unbounded

lim [|z(t) — Z(t)]| = o0 a.s. (6.7.1)

t—o0o

(ii) This divergence is as fast as exponential. Specifically, pick o > 1 so that

H(A) —c
1 . 1.2
0gy @ < dim(z) (6.7.2)
Then
tlim a zt) —z2@)| = oo a.s. (6.7.3)

The second statement is similar and concerns the stabilization problem.
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Proposition 6.7.2. Let ¢ < H(A). Then the plant cannot be stabilized with a

bounded error: For any coder (6.2.3) and decoder (6.5.2), the following two claims
hold:

(i) The state is almost surely unbounded

lim [[z(t)] = o0 a.s. (6.7.4)

t—o0o

(ii) This divergence is as fast as exponential. Specifically, pick o > 1 so that (6.7.2)
holds. Then
lim o '||2(t)]| = oo a.s. (6.7.5)

t—o0o

Remark 6.7.3. Propositions 6.7.1 and 6.7.2 entail that d) = ¢ > H(A) in both The-
orems 6.4.1 (on p. 140) and 6.6.1 (on p. 145).

For both theorems, the arguments underlying this remark are similar. For the
definiteness, we focus on the case of Theorems 6.4.1. Let d) be true. Suppose that
¢ < H(A). Then by (6.7.3), random times 0 < 71 < 7o < ... exist such that

lx(7:) — Z(7;)|| > @™ forall ¢ a.s.

Then

T

S - la(r) = &(m)| o™
1 2 150 —FO] 2 >

> — 00 as ¢ — 00 a.s.,
T+ 1 +1

in violation of d). The contradiction obtained proves that ¢ > H(A). O
The remainder of the section is devoted to the proofs of Propositions 6.7.1 and

6.7.2. We start by revealing relations between them, as well as their parts (i) and (ii).

This will show that the proofs ultimately reduce to proving (i) of Proposition 6.7.1.

6.7.1 Proposition 6.7.2 Follows from Proposition 6.7.1

This is justified by the following simple observation.

Lemma 6.7.4. Consider a controller consisting of a coder (6.2.3) and decoder
(6.5.2). Then there exist another coder and decoder-estimator of the form (6.2.2)

e(t) = Eult, Yun(0), .. o, Yun(t), 8(0), ..., s(t — 1)],
T (t) = X [t, 5(0), s(1),...,s(t)], (6.7.6)
which generate an estimate T, (t) of the state of the uncontrolled system (6.2.1)
Tun (t + 1) = Az (2), Zun(0) = o, Yun(t) = Cyn (1) (6.7.7)

and produce the estimation error identical to the stabilization error of the original
coder—decoder pair:

[ (t) = Zun (8) ]| = [l (E)]]- (6.7.8)
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Proof. Let in (6.7.6) the decoder generate the estimate via the recursion
Zun(t+1) = AZyn(t) — Bu(t), wu(t) :=UWU[t, s(0),s(1),...,s(t)], Zuw(0)=0,
where U(-) is taken from (6.5.2), and let the coder be defined by the formula
e(t) = E[t, yan(0) — CFun(0), ., Yun(t) — CTun(1), 5(0), . .., s(t 1)),

where &(-) is taken from (6.2.3). This formula presupposes that the coder also com-
putes the estimate Ty, ().

Now we consider the process {z(t), u(t)}2, generated in the system (6.5.1) by
the original coder and decoder. Arguing by induction on ¢, it is easy to see that, first,
both coder—decoder pairs give rise to common sequences {e(t)}, {s(¢)}, {u(t)}, and
second, y(t) = yun(t) — CZyn(t) and (6.7.8) does hold. O

Corollary 6.7.5. Proposition 6.7.2 follows from Proposition 6.7.1.

6.7.2 Relationship between the Statements (i) and (ii) of Proposition 6.7.1

This relation is revealed by the following.

Lemma 6.7.6. The statement (ii) of Proposition 6.7.1 follows from (i).
Proof. Note that (6.7.3) results from applying (6.7.1) to the process

1o (t) = tw(t), T.(t):=a'2(t), e(t), s(t).
This is possible since the process is generated by (6.2.1), (6.2.2), and (6.2.3), where

A:=a A, X.lt, ] = a ' Xt, ],
and [y(0),...,y(t)] is replaced by
2.(0), ax,(1),..., o z.(t).
The condition H (a1 A) > ¢ holds since
H(a™tA) = Zmax{logz(afl\)\j\),O} = Z [max{log2 |Aj],logs a}—log, a]
Aj Aj

> Zmax{log2 IAj],0} —nlogy o = H(A) —nlogya >,
Aj

where n = dim(x) and the last inequality follows from (6.7.2). O

Corollary 6.7.5 and Lemma 6.7.6 permit us to focus on proving (i) of Proposi-
tion 6.7.1. In doing so, we employ the concepts described in the next subsection.
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6.7.3 Differential Entropy of a Random Vector and Joint Entropy of a
Random Vector and Discrete Quantity

Differential Entropy

To describe a random vector V' € R®* = {v} with the known probability density
pv (+), the infinite number of bits is required. So strictly speaking, its entropy is
infinite. At the same time, approximately

h(V) + sb+ log, V (B}) (6.7.9)

bits suffice to describe V' € R® to the b-bit accuracy [40]. Here the quantity h (V)
characterizes the vector at hand, is called the differential entropy of V, and is defined
as

h(V):=—=FElog,pv(V) = —/ py (v) logy pv (v) dv. (6.7.10)

s

Remark 6.7.7. The differential entropy can take either negative or infinite values.

Remark 6.7.8. If the accuracy is high b ~ oo and (V) € R, the second addend
in (6.7.9) dominates the others. At the same time, this addend is common for all
random vectors. In view of this, the differential entropy is not so much absolute as a
comparative measure of uncertainty. Indeed, h(V2) — h(V7) is approximately equal
to the difference in the numbers of bits required to describe V> and Vi, respectively,
to any common accuracy.

Now consider a random quantity F' € § assuming a finite number of values
|§| < oo. Note that the conditional distribution of V' given F' = f € § has a
density py (+| f).” The conditional differential entropy h§(V) = hp—¢(V) is defined
as the differential entropy produced by the conditional probability density of V' given
F = f, and the averaged conditional differential entropy

WVIF) = Bhie(V) == S PO = £) [ pv(olp)logspy(olf) do.

feT

Explanation 6.7.9. We put py (-|f) = 0 whenever P(F = f) = 0.

Joint Entropy of a Random Vector and Discrete Quantity
Observe first that the following formula is immediate from (6.3.2):
H(F,G)=H(G|F)+ H(F).
"Indeed for any measurable set M C R® and f such that P(F = f) > 0, one has
PVEMF=f)=P(F=f)"'"PVEMAF=f)<P(F=f)"'PVecM=

P(F=f)" [, pv(v)dv.So V(M) =0= P(V € M|F = f) = 0; i.e., the conditional
distribution is absolutely continuous with respect to the Lebesgue measure.
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Here both random quantities F, G assume only finitely many values.
This formula can be extended on the case where one of the quantifies is a random
vector to define the joint entropy of a random vector V' and discrete quantity F' as

H(V,F) := h(V|F) + H(F). (6.7.11)

The joint conditional entropy Hg—y(V, F) = Hy(V,F) =: $(g) is the joint en-
tropy of V' and F' with respect to the probability given G = ¢, and H(V, F|G) :=
E$(G) is the averaged joint conditional entropy. The conditional mutual informa-
tion Ig=4(V, F) and the averaged conditional mutual information I(V, F|G) are
defined likewise.

Some Properties of the Entropy and Mutual Information

Now we list general facts concerning the entropy and information that are required to
prove the necessity part of Theorem 6.4.1. In doing so, we suppose that the symbol F’
(possibly, with indices) stands for random quantities assuming finitely many values,
either V:=V or V := (V, Fy), V is a deterministic function, and h(V') € R.

—00 < H(V|F) < H(V) < +o0; (6.7.12)

I(V,F) = h(V) = (VIF) e R I[V,(F, F1)] = I[V, F] + IV, F7|F]; (6.7.13)

H(V, i|F) = (VIR F) + H(RF) > W(VIF), (6714
WV) < ;logz (27reEHVH2); (6.7.15)
h(V|F) = h[V = V(F)|F]. (6.7.16)

Remark 6.7.10. Inequality (6.7.15) expresses the maximizing property of the Gaus-
sian distribution: among all random vectors with zero mean and given variance, those
with symmetric Gaussian distribution have the maximum differential entropy [40].

Whenever the random variables V, I, F,> form a Markov chain (i.e., V and F5
are independent given F), the following data processing inequality holds:

I(V,F>) < I(F1, Fy). (6.7.17)

Justification of the listed properties can be found in many textbooks and mono-
graphs on information theory, see, e.g., [38,40, 50, 60, 65,68, 152, 188, 190]. At the
same time, though the joint entropy (6.7.11) is defined in terms of the classic entropy
of a discrete random quantity and the differential entropy of a random vector, it is
not as conventional and well studied a tool as the last two kinds of entropy. In view
of this, the formal justification of the properties (6.7.12) and (6.7.14) concerning the
joint entropy is offered in Appendix D.
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6.7.4 Probability of Large Estimation Errors

So far as asymptotic tracking does not concern the stable modes, it seems more or
less clear that the proof can be confined to systems with only unstable ones. This
fact will be formally justified in Subsect. 6.7.6 (starting on p. 156). It will also be
shown that without the loss of generality, one can assume that the initial state is a.s.
bounded and has a finite differential entropy. So from this point and until otherwise
stated, we adopt one more assumption.

Assumption 6.7.11. The system (6.2.1) has no stable |\| < 1 eigenvalues \. The
initial state xo has a finite differential entropy. A (deterministic) constant by € (0, 00)
exists such that ||xo|| < bo a.s.

In this subsection, we show that whenever the capacity (6.3.3) of the channel ¢
is less ¢ < H(A) than the topological entropy H(A) = log, | det A| of the system
(6.2.1), arbitrarily large estimation errors unavoidably occur with the probability ~
1-— H(‘ 4) (for large t). Specifically, the following claim holds.

Proposition 6.7.12. Let ¢ < H(A). Then for any coder (6.2.3) and decoder (6.2.2),
¢
H(A)

1 1—h(xo)+c+ 4 log, (2me max{b?, b3})
- X
H(A)

P||la(t) = 3(0)] > b] > 1~
Wb > 0,t>1, (6.7.18)

where by is the constant from Assumption 6.7.11 and n = dim(z).

For any sequence {b(t) > 0}7°, such that lOthb(t) — 0 ast — oo, we have
c
lim P |[l2(t) = 3(0)] > b(t)] = 1~ : 6.7.1
Jlim P|[lz(t) = 2(@)[| > (1) | = H(A) (6.7.19)

Remark 6.7.13. In particular, (6.7.19) holds whenever b(t) is a constant or polyno-
mial in ¢.

Remark 6.7.14. 1t is easy to see that (6.7.19) is a simple corollary of (6.7.18).

Remark 6.7.15. Relation (6.7.19) implies that ¢ > 7(A) whenever coder and decoder
exist that keep the mathematical expectation of the error (or at least the time average
§ 260 Ellz(6) — #(6)|| ) bounded.

Comment 6.7.16. An inequality similar to (6.7.18) can be obtained from Lemma 3.2
[201].

By means of Lemma 6.7.4, Proposition 6.7.12 can easily be extended on the
stabilization problem. This results in the following.
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Corollary 6.7.17. Let ¢ < H(A). Then for any controller consisting of a coder
(6.2.3) and decoder (6.5.2), the statements of Proposition 6.7.12 remain true, pro-
vided that in (6.7.18) and (6.7.19),

Plla(t)] > b and P[llo)] > b))
are substituted in place of, respectively,
P[Hx(t) 30| > b} and P[Hx(t) 3| > b(t)}.

The remainder of the subsection is devoted to the proof of Proposition 6.7.12.
We start with a technical fact. To state it, we denote by Ef := {e(0)}}_, and S{ :=
{s(0)}}_, the total data injected into and received over the channel, respectively, up
to time .

Lemma 6.7.18. For any coder—decoder pair with a feedback (6.2.2), (6.2.3), the con-
ditional differential entropy h[x(t)|S}) is finite and

h[x(t)|S5] > h[wo] +t[H(A) —¢] —c. (6.7.20)

Proof. Due to (6.2.1), the probability density p;(-|) of x(t) given S§ evolves as
follows:
pi(x|) = |det A|™" x po(A~"x|6).

By (6.7.10), this implies
h[m(t)|Sg] = h[:r0|Sg] + tlog, | det A, (6.7.21)

where log, | det A| = H(A) due to Assumption 6.7.11.
Since, thanks to Assumption 6.3.4, the random quantities x, e(t), s(t) form a
Markov chain given Séfl, they satisfy (6.7.17):

I[zo, s(t)\Sffl] < Ile(t), s(t)|5571].

Here I [e(t),s(t)|S5™"] < ¢ by (6.3.3) (on p. 138). So with regard to the second
relation from (6.7.13), we get

I[xo, St| = I[azo, (s(t), S(tfl)] = Iy, 5671} + I[aco, s(t)\Sffl]
< Iz, SE Y 4.
Iterating the obtained inequality yields that
Iz, S¢) < et + 1).
To complete the proof, we note that
I[zo, S§] = hlzo] — h[xolSé]
by (6.7.13), and employ (6.7.21) with 0 := . O
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Proof of Proposition 6.7.12. Pick t and denote by €2 the random event

Q= {Jla(t) - 2(1)| < b},
by p its probability, and by J its indicator: J = 1 if €2 holds and J = 0 otherwise.
Then
(6.7.14) (6.7.20)
Hz(t),9|55) = hla(t)|S§] = hlwo] —c+t[H(A)—c].  (6.7.22)
The random variable J takes only two values. So its entropy (given any event) does
not exceed 1. Hence
6.7.14
HIa(t),9|8] = hlz(t)|9, S5+ H[I|SE] <1+ Y P(I = 0)ho—q [2(t)[SE].

o=0,1
Repeating the arguments underlying (6.7.21) shows that
hy—o [x(t) ’56] = hj—g [x0|56] + tH(A).
Hence
H[0(t),9]58) < 1+ (1 phoco[e0|SE] + (1 — p)HH(A) + phacs [a(0)| 1]

(6.7.12)
< 1+ (1= p)ho—o[zo] + (1 — p)tH(A) + phy—1 [(t)|S].

Here ||| < by a.s. by Assumption 6.7.11. So

hg—o [zo] (6‘;15) Zlogz [2meE(|z0[?|d = 0)} < Zlogz [27reb(2)}.

Furthermore,

] C2DOLIO () — 3(8)[SE] S g [2(t) — B (D)]

©6.7.15)
< 9 log, [

hg—1 [l‘(t) | 56

2meB( ||o(t) - 2(0)]12 |2)| < 7 logy [2met?).
S ~ -~ 2
<b2 whenever 2 holds

Thus we see that
H[xz(t),9]55) <14+ (1—p)tH(A)+ Z [(1—p)log, (2meb?) + plog, (2meb?)]
<14 (1—-p)ytH(A) + Z log, (2me max{bj, b*}).
By combining this with (6.7.22), we get the following formula:
t{ [1-(1-p)|HA) - c} <1+ ;L log, (2memax{b3,b*}) — h(zo) +c.

It clearly implies (6.7.18). Remark 6.7.14 completes the proof. a
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6.7.5 Proof of Proposition 6.7.1 under Assumption 6.7.11

By Lemma 6.7.6, it suffices to prove the statement (i). Consideration can evidently
be confined to the system with full observation: y = x,C' = I in (6.2.1). Suppose
to the contrary to (i) that a coder—decoder pair exists that keeps the estimation error
bounded with a positive probability. By sacrificing a small probability, the error can
be made uniformly bounded: a constant b > 0 exists such that

P||la(t) - 2(0)] <bwt| > 0. (6.7.23)

Since H(A) > ¢ by the hypotheses of Proposition 6.7.1, it follows from Propo-
sition 6.7.12 that for any 1 > p > H(‘ A)» @ non-random time 73 > 0 exists such
that

Plle) -2 <b] <p  vezm.

Now we consider the tail of the process
x(t),2(t)et),s(t), t=m+1

in the conditional probability space given that ||z(7;) — Z(m )| < band S|* = S.
Here we employ an S € &7 F! such that

P[Ok] >0, where 0} :={llo(n) ~#(n)] <bA S =S},
The initial state x(7; + 1) = A™*1zq of this tail is a.s. bounded and

h(zo) € R EL2CI2 py 1o (7 +1)|0%] € R.

At the same time, the above conditioning does not alter the channel (considered for
t > 11) due to Assumptions 6.3.1 and 6.3.4 (on pp. 136 and 137). The signals

z(t),e(t), s(t), t>71+1
are still generated by (6.2.2) and (6.2.3), where S and
AT (1), A a(r + 1), .., A (1)
are substituted for
[5(0),...,s(r1)] and [y(0),...,y(m)],
respectively. Thus Proposition 6.7.12 can be applied once more. It follows that
Pﬂ\x(t) — 3| < b|le] <p V> m(S)

For 75 := maxg 72(S), we have
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P[[la(r2) = 2(r2)| < b|lla(m) = B(r)]| < b]

= > P[sI = S|llz(r) - &) < 0] P[la(r2) — #(r2)]| < b]028]
S
<Y P[SIg = S|lla(m) — 3l <] = .
S

Now we repeat the above arguments with respect to the tail on ¢ > 75 and condi-
tioning given that

e(r) =Z(m)l <b,  [z(r2) = Z(r2)[ <b, S|g* = S.

By continuing likewise, we get a sequence 0 < 73 < 72 < ... such that

Pit11,...,i =

= P|la(rin)=2(rin) | < bfla(r) =2l b, lo(m) =3 <] <p
for all <. Hence
Plle() -20)] <b ve| < P[l[z(m) —2(m)| <b Vil

= lim Pla(r) ~3(r)|| b ¥i=1,....K]

k k
= lim P[Hx(ﬁ) —3?(7'1)H < b} X Hpiu,...,iﬂ < klim I_IPFél 0,
i=2 =1

k—o0

in violation of (6.7.23). The contradiction obtained proves (6.7.1). O

6.7.6 Completion of the Proofs of Propositions 6.7.1 and 6.7.2: Dropping
Assumption 6.7.11

We do not suppose any longer that Assumption 6.7.11 (on p. 152) holds.

Extension of Proposition 6.7.1 (on p. 147) on systems with both unstable and
stable modes is based on the following proposition. To state it, we introduce the
invariant subspace M, of the matrix A related to the unstable part o := {\ €
o(A) : |A| > 1} of its spectrum, and the restriction A of A on M,y viewed as an
operator in M.

Proposition 6.7.19. Suppose that some coder (6.2.3) and decoder (6.2.2) keep the
estimation error bounded® with the probability better than p for the primal system
(6.2.1). Then such coder and decoder can be constructed for the following system:

$+(t+1) = A+Jf+(t>, J}+(t) € Mg, JJ+(O) = .I‘a_, y+(t) = Cl‘+(t> (6.7.24)
with some initial random vector J:g € Muns that satisfies Assumptions 6.3.4 and

6.3.5 (on p. 137) and is a.s. bounded and has a finite differential entropy.
8See Definition 6.2.1 on p. 135.
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Remark 6.7.20. Generally speaking, the system (6.7.24) is considered on a new un-
derlying probability space. However, Assumptions 6.3.1 and 6.3.4-6.3.6 are still true
and the channel parameters W (s|e) remain unchanged.

Explanation 6.7.21. Equations (6.7.24) describe the processes in the primal system
(6.2.1) starting at 2(0) = z§ € Myns. A certain technical nontriviality of Proposi-
tion 6.7.19 comes from the fact that due to Assumption 6.3.5, the probability to start
at 2(0) € Myny is zero (if My, # R™). At the same time, the assumptions of the
lemma allow the initial coder—decoder pair to produce asymptotically infinite estima-
tion errors with not only zero but also a positive probability. To keep the estimation
error bounded for the processes in the system (6.7.24), this pair will be modified.

Remark 6.7.22. Proposition 6.7.1 follows from Lemma 6.7.6 (on p. 149), Proposi-
tion 6.7.19, and the fact established in Subsect. 6.7.5.

Indeed, it suffices to prove (i) of Proposition 6.7.1 by Lemma 6.7.6. Suppose to
the contrary that (i) is violated: A coder—decoder pair exists that keeps the estimation
error bounded with a nonzero probability for the original system (6.2.1). Then by
Proposition 6.7.19, such a pair also exists for the auxiliary system (6.7.24). However
this contradicts the fact established in Subsect. 6.7.5 since H(A) = H(A;). The
contradiction obtained proves that (i) does hold.

Remark 6.7.23. Proposition 6.7.2 (on p. 148) follows from Proposition 6.7.1 (on
p. 147) by Corollary 6.7.5 (on p. 149).

Thus it remains to prove Proposition 6.7.19. We start with a simple computation.

Lemma 6.7.24. Suppose that Assumptions 6.3.1 and 6.3.4 (on pp. 136 and 137) hold
and that a decoder (6.2.2) and a feedback coder (6.2.3) are taken. Then the joint
distribution of the variables xo, E§ = (eq,...,et), and S§ = (so, ..., st) is given
by

P[dz,dS}, dE})
t
= H W(sjle;)d {ej, & (dz, 5371)} dsjdejPo(dx), (6.7.25)
j=0

where & (-) is obtained from the right-hand side of the coder equation (6.2.3):
Ealt, z0, SEY] = Et, O, ..., CAtzg, L] (% e(t)) . (6.7.26)

Furthermore, P(dx) is the probability distribution of xo, and §(e, e’') := 1 ife = €

and 6(e, e') := 0 otherwise.

Proof. The proof will be by induction on ¢. For ¢ = 0,

P[dx,dS}, dE}) = Pldz,dso, deg] = Pldx, dsgleq] P(deq)

Assumptions 6.3.1, 6.3.4 Assumption 6.3.1
——— P| ) —

dx|eg] Pldso|eo) P(deg

= W(so|eo)Pldz, deg]dso £19 W (soleo)d [0, €2(0, z) | dsodeo Po(dz);
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i.e., (6.7.25) does hold for ¢ = 0. Suppose that it holds for some ¢ = 0, 1, .... Then
Pldz,dS§™ dEST] = P[dz,dS), dsii1,dES, dey 1]
=P I:dl', dSé, d8t+1, dEé |6t+1] P [d€t+1]

Aovumptons 031832 P[dx, dSh, dES|ev 1] Pdsi 1 |er1] P [desyi]

= W(St+1 \et+1)P [dac, dSé, dE(t), d€t+1] d8t+1

6.7.26
S W (sis1lec1)d e, Ea(t + 1,2, S§)| P [dx, dSE, dE], |dsy1desi1.

This and the induction hypothesis show that (6.7.25) does hold for ¢t = ¢ 4 1. a

Corollary 6.7.25. Given a coder and a decoder-estimator, we denote by ) the ran-
dom event of keeping the error bounded (see the first formula in (6.2.6) on p. 135).
The conditional probability of this event given x(0) = x can be chosen so that it does
not depend on the distribution of the initial state x(0) provided Assumption 6.3.4
holds. This is true irrespective of whether this distribution has a probability density.

Indeed thanks to Lemma 6.7.24, the conditional distribution

P[dS|h|z(0) = ZHdsJ (sile;)d[ej, Exldya, SPHH)]

E|f j=0
t
H 81‘8 j,l‘ S‘] 1)]

does not depend on the distribution of the initial state. The proof is completed by
observing that

P(Qlz) = lim lim

HOOZHOO/{SI | Atz —X(t,S]h)|<kVt=0,.. ,}P[dS|6|x(0) :x],

where X(-) is the function from (6.2.2) (on p. 134).
We proceed with the following simple observation.

Lemma 6.7.26. Any random vector V. € R® with a bounded probability density
pv (V) < poo and a finite variance has a finite differential entropy h(V') € R.

Proof. The inequality h(V') < oo follows from from (6.7.15). At the same time,
hV) = —Elogypv (V) > —logy pec > —00. O

Proof of Proposition 6.7.19. Consider a coder (6.2.3) and a decoder (6.2.2) that keep
the estimation error bounded with the probability better than p for the primal system
(6.2.1). By invoking the notation po(-) from Assumption 6.3.5 (on p. 137) and €2
from Corollary 6.7.25 and putting
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Qsp:={x e R" : P(Qx) > p},

we get

p< P(Q)= P(Q|z)po(z) de = po(z)dr = P(xg € Qsp) > 0=
R Q>p

=3c>0:P(zo€ Q) >0, where Q:={z€Qsp:po(z)<c}
Then a compact subset QC @ exists such that [57, Sec.134Fb]

Plxg eé] = /épo(m) dx > 0.

Now we pass to the probability space related to the probability given xg €@Q). This
evidently keeps Assumptions 6.3.1 and 6.3.4-6.3.6 true and the channel parameters
W (s|e) unchanged. We assume that all random variables inherit their initial nota-
tions. Note also that in the new probability space, the initial vector x is a.s. bounded
and has a bounded density.

Now we denote by My, the invariant subspace of A related to the stable part
o~ :={A € o(A): |\ < 1} of its spectrum o(A). We also introduce the projector

w4 onto My, parallel to M and the compact set Q4 = w1 QC My, and we
define the initial vector in (6.7.24) to be 1:8“ := 7m4xo. This vector evidently has a
bounded probability density,

xar € Q- almost surely, (6.7.27)

and so the second moment of g is finite. Then Lemma 6.7.26 yields h(z{ ) € R.
The multivalued function

2y €Qy—V(ry)={e_e€Ll_:xy+ua_ eé}

has a closed graph Q) and so is upper-hemicontinuous. Thus there exists a single-
valued measurable selector [217, Sec.1.7]

T4 € Qr — x—(74) € V(xy).
By extending this selector as a measurable function on M,y and putting
X(@4) =24 + x-(24),

we get
zy € Q4 = x(z4) €QC Q = P[Q|x(z4)] > p. (6.7.28)

Now we are in a position to transform the original coder—decoder pair (6.2.3),
(6.2.2) serving the primal system into that keeping the estimation error bounded for
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the auxiliary one (6.7.24). We note first that the system (6.7.24) is observable thanks
to Assumption 6.3.6 (on p. 137). So for any ¢ > n — 1, there exists a deadbeat
observer, i.e., a linear transformation

[ (0), .,y ()] 2 2. (0),

where y 4 (¢) are taken from (6.7.24). We define a new coder and decoder as follows.
Fort =0,...,n — 1, they in fact do nothing. However, for the sake of definiteness,
we pick e, € € and put

Ext,y(0), ..., y(t), S5 = e, Xy [t, S =

For t > n, the new coder and decoder act as follows:

w = [y(0),...,y4(8), ST P4 [21(0), 8571 = €[t ]
= &{t —n,Cx[w+(0)],...,CA" X[z (0)], S5},
.53‘\ ( ) = f)C+ [t SO] . 7T+AW:X[t—TL,S:L]

Now consider the process

E(t) = [z(t),y(t), e(t), s(t), z(t)], t=0,1,...

generated by the original coder—decoder pair in the primal system (6.2.1) when
started with the initial random state y[x{]. It is easy to see that

mra(t), y4(t) =Crya(t), elt—mn), s{t—n), w+A"Z(t—n)

is a process generated by the new coder and decoder in the auxiliary system (6.7.24).
Here Z(t) := 0,e(t) := e, fort < 0, and s(—n), ..., s(—1) are mutually indepen-
dent and independent of £(¢),¢ = 0, 1, ... random quantities each with the distribu-
tion W (sle,). Hence for t > n,

s (t) = B4 (8)] = [mea(t) — mp A"E(t - )| < Il () — A3 (¢ — )]
— il A%t — n) = A"3(t = )] < s [ A” 12t — ) — B (¢ - n)].

So for the new coder—decoder pair and the system (6.7.24), the probability of keeping
the estimation error bounded is no less than that for the process £(t),t = 0,1, .. ..
The proof is completed by noting that the latter is given by

(6.7.27),(6.7.28)

P(Q) = EP[Q|x(z PQ)>p. O

6.8 Tracking with as Large a Probability as Desired: Proof of the
¢ > H(A) = b) Part of Theorem 6.4.1

In this section, we suppose that the assumptions of Theorem 6.4.1 (on p. 140) hold
and ¢ > H(A). The objective is to construct coder—decoder pairs that ensure b) of
Theorem 6.4.1. In doing so, one more assumption is adopted until otherwise stated.



6.8 Tracking with as Large Probability as Desired 161

Assumption 6.8.1. The system (6.2.1) has no stable |\| < 1 eigenvalues M.

In the general case, a tracking observer will be constructed in Sect. 6.10 by apply-
ing that presented below to the unstable part of the system, like in Subsect. 3.8.11
(starting on p. 88).

Observation 6.8.2. Due to Assumption 6.8.1, H(A) = log, | det A| and so the coni-
dition ¢ > H(A) takes the form

log, | det A| < c. (6.8.1)

We start with preliminaries concerning some well known facts and constructions
from the classic information theory (see, e.g., [37,38,50,59, 190]).

6.8.1 Error Exponents for Discrete Memoryless Channels
Block Code

A block code with block length r is a finite number N of the channel input code
words, each of length r,

E',... EN, El=(e},...,e\ ), el € €. (6.8.2)

This code is used to notify the recipient which choice of IV possibilities, labeled by ¢,
is taken by the informant by sending the corresponding word E* across the channel.
The average number of bits per channel use that can be communicated in this way

logy N
r

R:= (6.8.3)

is called the rate of the code. The decoding rule is a method to associate a unique ¢
with any output word of length r, that is, a map D,. : 6" — [1 : N], where

6" ={S =(s0,...,8r-1) : 5, € G Vj}

is the set of all such output words. The probability of incorrect decoding given that
the word E is sent over the channel is as follows:

r—1
err; := P[D,«(S) # z’EZ} = Z H W(sj|ej~), (6.8.4)
2D, (S)#i =0

where W (s|e) are the channel transition probabilities from Assumption 6.3.1 (on
p. 136). The maximum probability of error is given by

ERR = ERR[E', ..., BV, D,(-),r] := max_err;. (6.8.5)

i=1,....N
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Error Exponent

One of the basic results of the Shannon theory [188, 190,214] is the following.
Theorem 6.8.3. For any probability value p € (0, 1) and block lengthr, let R(r,p) :=

max R denote the maximum rate (6.8.3) achievable over block codes with block
length r and the error probability ERR < p. Then
lim R(r,p)=c¢  V¥pe(0,1),

where ¢ is the capacity (6.3.3) of the channel.

This yields that it is possible to send information at any rate R < ¢ through the
channel with as small a probability of error as desired by means of a proper block
code. This claim is not true if R > .

In the first case R < ¢, the error probability decreases exponentially as a function
of the block length. For a rigorous statement, we employ the symbols < and =< in-
troduced in Notation 3.8.32 (on p. 78). The following result is straightforward from,
e.g., Lemma I'V.1 and Theorem IV.1 [37] (see also [50,52,59]).

Theorem 6.8.4. For any 0 < R < candr = 1,2,..., there exist N ~ 2" input
code words (6.8.2) and a decoding rule D.,.(-) such that the maximum probability of
error (6.8.5) obeys the bound

ERR < 27"FEW) - B(R W) > 0. (6.8.6)

Here F(R,W) is independent of 1 but depends on the rate R and the channel W.

6.8.2 Coder—-Decoder Pair without a Communication Feedback

Now we introduce a coder—decoder pair (6.2.4), (6.2.2) that underlies the ¢ >
H(A) = b) part of Theorem 6.4.1 (on p. 140). This pair resembles that from Sub-
sect. 3.8.4. In particular, it employs a contracted quantizer.” The major difference is
that now the operation epochs [7; : ;1) of the observer are of increasing duration:
Ti+1—T; = T; — 00 as i — 00, whereas this duration was constant in Subsect. 3.8.4.

Remark 6.8.5. This difference will be discarded in the case where a communication
feedback is available (see Subsect. 6.9.1 starting on p. 168).

To construct an observer, we pick
1) two numbers 7 and R such that

logy |det Al = H(A) <n < R <¢;

2) aparameter v > [|A];
and then for any r = 1, 2, ..., we choose

°See Definition 3.8.7 on p. 70, where A, := A.
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3) acode book &, with N = N/ < 2" input code words (6.8.2) each of length 7
and a decoding rule D,.(-) with the properties described in Theorem 6.8.4; and

4) an r-contracted quantizer £,. from Lemma 3.8.36 (on p. 80) applied to Ass :=
A0,

Explanation 6.8.6. Inequality (6.8.1) makes 1) possible.

Explanation 6.8.7. In 2), ||A|| = max,.|,|=1 [[Az|| is the matrix norm associated
with the vector norm || - || from Definition 3.8.6 (on p. 69).

Observation 6.8.8. Whenever r is large enough r > r,, the quantizer outputs in-
cluding the alarm signal Y4 can be encoded by code words from the code book €,..

Indeed, this holds whenever N + 1 < N/, where N/ denotes the number of the
quantizer levels. By Lemma 3.8.36, N/ < 27", whereas N/ =~ 2" and n < R. It
follows that the inequality N/ + 1 < N/ does hold for r ~ oo.

Finally, we introduce the sequence of integers

ri =141 1=0,1,..., (6.8.7)

where
ro > max{n,r.} (6.8.8)

is an integer parameter of the observer and . is taken from Observation 6.8.8.

Description of the Coder and Decoder

Both coder and decoder compute their own estimates Z..(t), Z4(¢) and bounds for the
estimate exactness 0. (t), 04(t), respectively. Initially, they are given common and
arbitrarily chosen values of

Z.(0) =24(0) =29 and d.(0) = 64(0) = b > 0.
Remark 6.8.9. The inequality dp > ||Zo — 2(0)|| may be violated.
At any time ¢, both coder and decoder compute the next estimates and the bounds
via the recursions
To(t+1):= Az (1), Za(t+1):= AZ4(t),
Oc(t+ 1) :=0c(t), 0a(t+1):=0d4(t). (6.8.9)

However, at the times ¢ = 7;, where

i(i—1)
2
and r; is given by (6.8.7), they preface (6.8.9) by the following operations.

Tii=To+ - F+1ri_1 =179+ (6.8.10)

The coder (at the timest = 75,1 = 1,2,...)

OWe also invoke Remark 3.8.37 on p. 80 here.
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c¢.1) Proceeding from the previous measurements, calculates the current state z(7;);
c.2) Employs the quantizer ,., and computes the quantized value ¢.(7;) of the cur-
rent scaled estimation error

e(ri) == [6e(r)] a(m) — Be(m)]; (6.8.11)

¢.3) Encodes the quantized value ¢.(7;) by means of the code book €&,... The ob-
tained code word of length r; is transmitted across the channel during the next
operation epoch [7; : Ti41);

c.4) Finally, corrects the estimate and then the exactness bound

Be(mi) 1= Bo(m) + 0e(7) Qe (72),  Belms) 1= bolmi) X (<<1c<ﬂ‘)>%,w)m )

where  := {q ifq 7 K (@), = {” ifg 7% 68.12)

0 otherwise ’ v otherwise

and 5 € (0, 1) is the parameter from Lemma 3.8.36 (on p. 80).
Only after this, the coder performs the computations in accordance with (6.8.9).

Explanation 6.8.10. The step c.1) is possible since the system (6.2.1), which has no
stable modes by Assumption 6.8.1, is observable thanks to Assumption 6.3.6 (on
p. 137).

Remark 6.8.11. We recall that the quantized value of any vector outside the unit ball
is the alarm symbol "

Observation 6.8.12. The above coder does not employ the communication feedback,
i.e., has the form (6.2.4) (on p. 135).

The decoder (at timest = 7;,7 = 2,3,...)

d.1) Applies the decoding rule D, , to the data received within the previous op-
eration epoch [1;_1 : 7;) and thus computes the decoded value q;(7;) of the
quantized and scaled estimation error ¢.(7;—1);

d.2) Then corrects successively the estimate and the exactness bound

Za(ri) = Za(m) + 6a(rs) AT dq (7s),
a(ri) 1= 0a(r)  ((aa(r))..,) - (68.13)

Only after this does it perform the computations from (6.8.9).

Remark 6.8.13. The quantized valued ¢4(7;) determined by the decoder may be in-
correct q4(7;) # q.(7i—1) because of communication errors.

Remark 6.8.14. Instead of multiplying d.(7;) by ™ or " at the time 7; with keep-
ing d.(t) constant during the next operation epoch [r; : 7;41), the coder can con-
stantly multiply 6.(¢) by 3¢ or v at each step. Computing the large power A"i~!
employed in (6.8.13) can be distributed over the epoch [7;_1 : 7;) in the same way.
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Remark 6.8.15. The hint from the previous remark cannot be directly extended on
the decoder and quantity d, since the decoder becomes aware of the multiplier (s or
) only at the end of the current epoch [7;_1 : 7;). However, the decoder can perform
both computations and at time 7; choose between 04(7;—1)3"~* and d4(7;—1)7y" 2.

Remark 6.8.16. To communicate information across the channel, the proposed coder—
decoder pair employs block codes with increasing block lengths r;. At the same time,
the estimate Z(¢) of the current state x(¢) is produced at the current time ¢.

6.8.3 Tracking with as Large a Probability as Desired without a
Communication Feedback

Now we show that the above coder—decoder pair fits to track the state with as large a
probability as desired.

Proposition 6.8.17. For the arbitrary probability value p € (0,1), the coder—
decoder pair described in Subsect. 6.8.2 tracks (6.2.5) the state with probability p
or better provided that the parameter rq from (6.8.7) is large enough ro > ro(p).

Corollary 6.8.18. Suppose that Assumption 6.8.1 holds and that H(A) < c¢. Then
the statement b) from Theorem 6.4.1 (on p. 140) is true.

The remainder of the subsection is devoted to the proof of Proposition 6.8.17.
The values of the quantities Z4, T, d., 94 before and after the update at the time
7; are marked by ~ and T, respectively . We start with the following key fact.

Lemma 6.8.19. At any event where the decoder always decodes the data correctly
qa(Ti) = qe(Ti-1) Vi > 2,
the coder—decoder pair ensures asymptotic tracking (6.2.5) (on p. 135). Furthermore
() — 2, ()| < K™, i=1,2,..., (6.8.14)
where the constant K does not depend on i (but may depend on the event).
Proof. We start with showing that an index ¢ = 1, 2, . . . exists for which
le(m)]l <1, (6.8.15)
where the scaled error £(7;) is defined in (6.8.11). Indeed otherwise,
Qe(m) =28, 0, (Tig1) =0, (m)y"™ Vi>1; Z(t+1) = Az (t) Vi
So for i > 2, we have
le(ma)ll = [sz;} 7"-7‘60} 71HA” [0 — To] H e 75107_”

AN To — T A
< ( ) WH o= Zoll Al oo
vy do

AT [.130 — 3}\0] H
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in violation of the hypothesis ||e(7;)|| > 1Vi. Thus (6.8.15) does hold for some i.
Now consider an index ¢ such that (6.8.15) holds. Then (6.8.15) is still true for
1 := 1+ 1. Indeed

| == [0 (Tiv1)] H‘T (Ti41) = 2 (rig1)

s [5e(r)] T % HA”x (1i) — A" [Z, (13) + 6, (13)qe(73)] H

ard o7 ()™ [2(r) - &2 ()] ~a:(m) |

N~

le(Tit1)
(6.2.1),(6.8.10),(6.8.12)

— 7TL

v

Here ¢.(7;) is the quantized value of the vector v. So far as the quantizer is taken
from Lemma 3.8.36 (on p. 80), it is r;-contracted with the contraction rate »*". So
(3.8.9) (on p. 70) yields

le(Tisn)]l < 5" < 1; (6.8.16)

i.e., (6.8.15) does hold for 7 := i + 1.
It follows that (6.8.15) is true for all 7 > 7, where 7 is large enough. By (6.8.12),

i—1 .
b: (1) = 0, (r)se== 7.
We proceed by taking into account (6.8.11) and (6.8.15)

H.I(TZ) 7'Z H < 5 7-2) — 5% =0 (681())6 -
where & :=d.(7;)% POV

This evidently implies (6.8.14) and shows that the coder tracks the state.
As for the decoder, observe that

ai(n) =3, (m), i=12.... (6.8.17)

Indeed for ¢ = 1, this relation is evident. Suppose that this relation is true for some
7 > 1. Due to the absence of transmission errors,

6di(7'j):52:(7'j—1), ji=2,3,....
So

~ (6.8.13) ~_ _ . x
Ty (rig1) == T (Tis1) + 65 (1i41) A" da (Tit1)

2 AE () 4+ 0 () AT e () CE A [ () + 67 () e ()

68.12) . (6.8.9) _
—= A"Tl (1) == T_ (Tiy1);

i.e., (6.8.17) holds for 7 := ¢ + 1. Thus this relation is true for all z > 1.
Whenever 7; < t < 7,41, we have by (6.8.9)
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lo(®) = Fa(0)] = |4 () - w:ﬂm] | <" jage—

x(ri) = 2, (7)),
(6.8.

max [a(t) = Ga(t)]| S KA = Karitoss Il lox,

Ti<t<Tit1

(6.8.7),(6.8.10) Jrolitro) logs || All+ [Z“ro_ki(i;l)] logy > 6.8.18)

So far as log, s < 0, this maximum converges to 0 as 7 — o0; i.e., (6.2.5) (on p. 135)
does hold with Z(¢t) := Z4(t). O

Now we show that the assumption of Lemma 6.8.19 holds with high probability
provided the parameter 7 in (6.8.7) is large enough.

Lemma 6.8.20. The probability p,,, that the decoder decodes at least one message
incorrectly does not exceed

—roF
Pore < Kpw,p2 0.

Here the constant K g w,r does not depend on ro and the inequality holds with any
F € (0,F(R,W)), where F(R, W) is taken from (6.8.6).

Proof. Denote by E; and S; the messages of length 7;_; formed by the coder at
time 7;,_; and received by the decoder at time 7;, respectively. For simplicity of
notations, we assume that the map D,.(-) from Theorem 6.8.4 takes values directly
in the input code book The symbol Perr(7) stands for the probability that decoding
of S; is wrong: p,,. (¢ P{D Si] # EZ} . Since the estimate (6.8.6), along with
(6.8.4) and (6.8.5), nnphes that

max P{Dri_l[si} # E;

E€€,, ,

—Ti— F
} <cpw,rp2 N,
we have

Puli) = Y P[E =E]P{D, [S]#E,

j

Eee,,
_ 6.8.7 —(i—
< Ccrw,F Z P[E; =E]27 " F o crw,p2” (TIHTOL,
Eee,, |
oo oo c
Derr < Zperr(i + 1) < CRWF Z g~ (iHro)F — 21;,W’F127T0F' u
i=1 i=1

Comment 6.8.21. As was shown in [164], the probability of error cannot be made
small when stationary fixed-length block coding—decoding schemes are employed.

Proof of Proposition 6.8.17. 1t results from Lemmas 6.8.19 and 6.8.20. a
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6.9 Tracking Almost Surely by Means of Fixed-Length Code
Words: Proof of the ¢ > H(A) => a) part of Theorem 6.4.1

The observer from the previous section employs code words whose lengths increase
without limits as the estimation process progresses. So the complexities of the coder
and decoder should increase accordingly.'! In this section, we show that whenever
a communication feedback is available, asymptotic state tracking can be ensured
by a coder and decoder that perform a limited number of operations per step and
communicate information by means of fixed-length code words. Moreover, the state
can be tracked almost surely, whereas a weaker tracking with as large a probability
as desired was ensured in the previous section.

In doing so, we still consider the system (6.2.1) with no stable modes, i.e., adopt
Assumption 6.8.1, until otherwise stated. Extensions on systems with both stable and
unstable modes will be given in Sect. 6.10. We also suppose that the assumptions of
Theorem 6.4.1 (on p. 140) hold and that ¢ > H(A).

6.9.1 Coder—Decoder Pair with a Communication Feedback

To ensure almost sure state tracking, the coder—decoder pair from Subsect. 6.8.2 is
modified as follows:

i) The operation epochs are chosen to be of equal and fixed duration r¢; i.e., (6.8.7)
and (6.8.10) are replaced by, respectively,

rii=T0 and T; 1= 1r0;
ii) Instead of forming its own sequences of state estimates {Z.(¢)} and exactness
bounds {4.(t)}, the coder duplicates those generated by the decoder.

Explanation 6.9.1. To accomplish ii), the coder should be aware about the results
s(t) of transmission across the channel. This becomes possible thanks to the com-
munication feedback.

Specifically, now the coder prefaces (6.8.9) by the following actions at times t =
Ti,t=1,2,...:

e [t carries out the step c.1) (see p. 164) of the previous coder;
e Then it duplicates the steps d.1) and d.2) of the decoder;
e After this, the steps c.2) and c.3) of the previous coder are carried out.

Explanation 6.9.2. Now step c.4) of the previous coder is in fact accomplished by
carrying out step d.2) of the decoder.

For the convenience of the reader, now we describe the operation of the new
coder in a more systematic way.

The coder (at the times t = 7;,7 = 1,2,...)

""'The same feature is characteristic for anytime coding—decoding schemes considered in
[164,166].
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cc.l) Proceeding from the measurements obtained during the previous operation
epoch, calculates the current state z(7;);

cc.2) Applies the decoding rule D, to the data received within the previous epoch
[Ti—1 : 7;] via the feedback communication channel and thus gets aware of the
decoded value g4(7;) produced by the decoder at time 7;;

cc.3) Corrects successively the estimate and the exactness bound by duplicating the
actions of the decoder:

Bol(ri) = Bel(ri) + 8c(ri) A da (7).
bul(ri) i= be() x ((au(r))., )" (69.1)

cc.4) Employs the quantizer ,, and computes the quantized value g.(7;) of the
current scaled estimation error

e(n) == [6e(r)] " [w(m) — Ze(m)]; (6.9.2)

cc.5) Encodes the quantized value ¢.(7;) by means of the code book €&,,. The ob-
tained code word of the fixed length ry is transmitted across the channel during
the next operation epoch [7; : Ti41).

Only after this does the coder perform the computations in accordance with (6.8.9).
The decoder is not altered. In other words, it still operates as follows.

The decoder (at times ¢t = 7;,7 = 2,3,...)

d.1) Applies the decoding rule D, to the data received within the previous oper-
ation epoch [r;_; : 7;) and thus computes the decoded value ¢4(7;) of the
quantized and scaled estimation error g.(7;—1);

d.2) Corrects successively the estimate and the exactness bound in accordance with
(6.9.1), where Z4 and d4 are substituted in place of Z. and d., respectively.

Only after this does the decoder perform the computations from (6.8.9).

Explanation 6.9.3. For technical convenience, we put ¢.(7) := q4(m1) := X and
suppose that at times ¢ = 7, 71 the coder and decoder act accordingly.

Remark 6.9.4. As follows from the foregoing, the coder and decoder generate com-
mon state estimates and their upper bounds:'?

TE(m) =25 (r) and 0% (1) = 0% (m). (6.9.3)

Remark 6.9.5. Step cc.1) is possible by the arguments from Explanation 6.8.10 since
the duration of the operation epoch ry > n by (6.8.8). Moreover, the current state
can be obtained as a linear function of n previous measurements.

12We recall that their values before and after the update are marked by ~ and ™, respec-
tively.
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Observation 6.9.6. The coder and decoder introduced in this section are semira-
tional ro-step recursive.'?

This is straightforward from the description of the coder and decoder with regard
to the fact that the employed quantizer is taken from Lemma 3.8.36 (on p. 80) and so
is polyhedral.'*

Explanation 6.9.7. In (6.3.4) (on p. 139) and (6.3.6) (on p. 140), the states of the

coder and decoder can be defined as z. := [Z}, 0] and 24 := [T}, §, ], respectively.

6.9.2 Tracking Almost Surely by Means of Fixed-Length Code Words

The main result of the section is as follows.

Proposition 6.9.8. The coder—decoder pair introduced in Subsect. 6.9.1 detects the
state (i.e., (6.2.5) on p. 135 holds) almost surely, provided that the duration of the
operation epoch is large enough ro > (A, 2, W,~, R).

Here s is taken from Lemma 3.8.36 (on p. 80), W (+|-) is the matrix of the channel
transition probabilities, and R,y are the observer parameters from 1) and 2) (on
p. 162).
The value of (A, >, W,~, R) will be specified in Lemma 6.9.20 (on p. 177).
By taking into account Observation 6.9.6, we arrive at the following.

Corollary 6.9.9. Suppose that Assumption 6.8.1 (on p. 161) holds and that H(A) <
¢. Then the statement a) from Theorem 6.4.1 (on p. 140) is true.

The remainder of the section is devoted to the proof of Proposition 6.9.8.

Ideas and Facts Underlying the Proof of Proposition 6.9.8

We start with an informal discussion. The operation epoch [1;_1 : 7;) is said to be
regular if during it a message different from the alarm one is correctly transmitted
from the coder to the decoder

Qd(ﬂ:) = qc(Ti—l) #

and &/ (7;_1) is a true bound for the estimation error:
04 (rim1) = lJa(rie1) — T4 (1i-1)]-

Then the update (6.8.13) at time ¢t = 7; improves the error bound via multiplying by
»" < 1, while keeping it correct for the updated estimate, which can be proved like
(6.8.16).

Unfortunately, not each epoch is regular. First, the initial bound §;, may be in-
correct. This reason is weak since the algorithm would make the bound correct for a

13See Definitions 6.3.9 and 6.3.10 on pp. 139 and 140.
“See Definition 3.8.8 on p. 70.
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finite time in the absence of decoding errors (see the proof of Lemma 6.8.19). Sec-
ond, the epoch may be irregular due to such errors. Any of them may make not only
the current epoch irregular but also launch a whole “tail” of irregular epochs even
if the messages transmitted across the channel during the subsequent epochs were
decoded correctly. This holds if the transmission error makes the upper bound ¢ in-
correct. During this tail, the error bound would increase via multiplying by v"° > 1
in order to become correct once more. So any error has an after-effect, which evi-
dently remains true in the real circumstances where the subsequent epochs are not
necessarily “errorless.” A priori, it is not clear even that the chain of irregular epochs
will be broken and that a regular one will occur.

The proof is based on the fact that the probability of the decoding errors can be
made as small as desired by properly picking the duration of the operation epoch 7.
By the strong law of large numbers, this entails that the average frequency of the
decoding errors is small almost surely. In other words, the errors are rarely encoun-
tered. The next step is to evaluate the duration of the after-effect of each error and to
show that the average frequency wj,, of the irregular epochs does not exceed the av-
erage frequency of the above errors multiplied by a fixed factor. So wy,, is also small.
Hence not only regular epochs do follow any irregular one but also the average fre-
quency of regular epochs w;eg >> wj,;. By taking into account that at any irregular
epoch, the bound ¢4 is increased at most by multiplying by 7", we conclude that
(approximately)

6, (13) < Gosd 0@ 0% (0 as i — oo.
This convergence is extended on the estimation error on the grounds that §, (7;) is
the correct bound for this error for most of the 7’s.
Strong Law of Large Numbers

To carry out the first step of this plan, we shall use the following variant of the strong
law of large numbers [95, §32, p.53] (see also [145,161]).

Theorem 6.9.10. Suppose that §; is a flow of nondecreasing o-algebras in a prob-
ability space, the random variable J; is §;-measurable, and b; T oo, b; > 0,1 =
1,2,.... Suppose also that E|J;| < oo and

ZbQ { [Ji — B(J:|§i-1)] }<oo. (6.9.4)
Then with probability 1,

k

Z [Ji — E(J;|§i—1)] = 0 as k — cc. (6.9.5)

6.9.3 Proof of Proposition 6.9.8

We start with estimating the average frequency with which the decoding errors occur.
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Frequency of Decoding Errors

We consider the stochastic process generated by the coder—decoder pair in connec-
tion with the system (6.2.1). The symbols £; and S; stand for the code words formed
by the coder at time 7;_1 and received by the decoder at time 7;, respectively. We also
introduce the error indicator function:

Ierr(i) o L if DTO[ ] 7& E’Lv { > 2 (6 9 6)
0 otherwise o

Lemma 6.9.11. We pick 0 < F' < F(R, W), where F(R, W) is taken from (6.8.6).
Then the following relation holds almost surely, provided that the duration ro of the
operation epoch is sufficiently large:

err < F'ro 9.
Jim Z I 2- (6.9.7)

Proof. We are going to apply Theorem 6.9.10 to J; := I¢"(i) and b(i) := 4. The
o-algebra §; is taken to be that generated by the random quantities

.’tQ,SQ,. . ,Sz
Due to the construction of the coder,
Ei = 8*[2.7370’ SO? L) Si—l]a

where &, () is a deterministic function. It follows that 7¢'*(¢) is §;-measurable. Fur-
thermore,
0< Ierr( ) <1=0< E[Ierr( )|5i—1] <1 as,.,

which implies (6.9.4). So by Theorem 6.9.10,

lim kZ{I E[I° (§)|3— 1}} as. (6.9.8)

Now we are going to estimate E[I°"(4)|F,;—1]. Let I, denote the indicator of the
random event (2. By invoking Assumptions 6.3.1 and 6.3.4 (on pp. 136 and 137), we
get

[Ierr( )|§1 1] {]err(i)|$0,50,..- Si_ 1, E = &y [Z l‘o,So,..-,Si_l}}
=Y P[D,,[Si] # E|z0.So,...,Si-1,Ei = E|Ig,—g
E
(6.

=> P[D,,[8)] # E|Ei = E|Ip,-p 5 9o F(RW)
E
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Since F' < F(R, W), this implies
E[I°7(3)|Fi_1] < 277 Vi whenever 1 & 0. (6.9.9)
So by invoking (6.9.8), we see that almost surely

1 k
lim kZIe”(z)

k—oo

k

= kZEle” DIl lim, Z{fe" Bl (0)fia]} <2777,

k—o0

Influence of the Channel Errors on the Estimation Process

Our next goal is to discover how the channel noise affects the estimation errors. To
this end, we introduce the indicator functions of the following events:

: (6.9.10)

Remark 6.9.12. 1t is easy to see that
ox (1) + I () + 16" (i) = 1°7(i) and  Io(d) 4 I (i) = 1 — 1" (i). (6.9.11)
We first examine the evolution of the following quantities:
8 =01 (r) and =z :=|ZF (1) — x(1)]. (6.9.12)

Lemma 6.9.13. The following relations hold for any i > 1:

i = 61 {50 [Toli) + I () + I ()] + 7 [Ix() + I ()] | (69.13)

2z < zica|| A [Da () + I35 ()] + 85—15¢" Io (4)
+ || A["™ (zim1 + 6i1) [I§™(0) + ISE (4)] . (6.9.14)

Here s € (0, 1) is taken from Lemma 3.8.36 (on p. 80) and v > || A|| is the parameter
of the estimator from 2) on p. 162.

Proof. To prove (6.9.13), we note that

0 (6.9.12)

+ () B2 5= () ((q(z(n»%,v) == 5;_1 ((q(z(ﬂ)bﬁ)%.

(69 12)
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So (6.9.13) is immediate from (6.9.10) and the definition of <'>%,'y from (6.8.12). To
justify (6.9.14), we observe that

2 23 () — a(m) | L2 |77 (m) + 67 (1) A™ G () — a(m3)|
©2.1),689) HATO {A+(7'z )+ (5 (T5-1) c*]d (r:) — x(Ti_l)} ‘

= HATO [A+(Tz 1) = a(7i1) + 051 a (Tl)} H

If I (i) + 1SS (i) = 1, then qq(r;) = " and ¢4 (7;) = 0 by (6.8.12). So

(6.9.12) |

zi < JAINEE (rim1) — 2(ri) |l == A" 211

*

If Iy(i) = 1, then "X # q.(75-1) = qa(7i) =44 (73). So
zi = 6;—1||A™ [e(Ti—1) — qe(Tiz1)]

due to (6.8.11), where ¢.(7;—1) is the quantized value of €(7;_1 ). Hence by invoking
(3.8.9) (on p. 70), where pq = »°™ thanks to Lemma 3.8.36 (on p. 80), we get

z; < 3?706;_1. Finally, let I§™ (i) + IS (i) = 1. Then || a4 (1:)]] <1 andso

~ (6.9.12
zi < A (138 (rio1) = 2(ma)l| + 6i-1) E2 |

|A[" (2i—1 + di-1) -
Summarizing, we arrive at (6.9.14). O

Lemma 6.9.13 entails an important conclusion about the evolution of the ratio
& = z;/d;, which determines whether "X is sent over the channel:

qe(Ti) =R & & =2/6; > 1. (6.9.15)

Corollary 6.9.14. For i > 1, the following inequality holds:

S < {piir_ol iﬁﬁj Z 1} [1— I°"()] 4+ b/2[6 1 + 1] 1(0),  (6.9.16)

where 1°"" (i) is the error indicator function (6.9.6), and

_ (IIAII) s (A) " 6.9.17)
¥ V1

The proof is by merely checking (6.9.16) on the basis of (6.9.13) and (6.9.14).

How Often the Bound §. Generated by the Coder Is Incorrect?

The corresponding event can be also equivalently described in each of the following
two ways:
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e The alarm symbol *X is emitted into the channel;
e The inequality &; > 1 holds.

We are interested in the average frequency of this event.
The following lemma reveals an important relationship between this event and
the channel errors.

Lemma 6.9.15. Whenever &; > 1fori=i+1,....i+k, the number of the channel

errors within the interval [i + 1 : i + k| obeys the lower bound

L= =i+1,.. itk I7() =1}

&+l
log,[p™"] log, max {¢;. ¢ }
> o 4y - (6.9.18)
log, b+ logy[p~] logy b + logy[p~!]

Proof. 1f §; < 1 and I°"(i + 1) = 0, then (6.9.16) implies §; ; = »"® < lin
violation of the hypotheses of the lemma. Thus

§E<1=I"(+1)=1.

By invoking (6.9.16) once more, we get fori =i+ 1,...,7+ k,

< pa[1 = I (0)] + b1 T770) + L~ & 111 ()
<& {p[l = I ()] + oI ()} + Z max{1 — &_1,0}1°"(4).

The last summand may not vanish only if ¢ = ¢ + 1 and I°""(i + 1) = 1. Hence

b 4+ 1
1<& < @pk_lbl + 9 max{l — fi,O}pk_lbl_1 = p* b max {gi, & ;_ } ,

0 < (I—k)log,[p~ '] + llog, b + log, max {fi, 9

} ‘ ~ (69.18). O

Now we are in a position to give an answer to the question posed.

Corollary 6.9.16. For the indicator function I¢s1(1) <« & > 1, the following
relation holds almost surely:

k k
1 1
1 M < = -1 1: err( 9.
kh—>nolo B ;:1 Ies1(1—1)<fB:=pu klgr;c P 2221 I (1), (6.9.19)
where .
log,[p™]

. logy b + logy[p~!]

Remark 6.9.17. The lim in the right-hand side of (6.9.19) is estimated by (6.9.7).
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Proof of Corollary 6.9.16. If § > 1, the claim is obvious. Suppose that 3 < 1.
Then & < 1 for some ¢ = ¢*. Indeed otherwise, Lemma 6.9.15 with ¢ := 0 and
arbitrary £ yields

k &o+1
1 ) 1 log, max{&p, }
I I7(i) > p + lim — 2 )=
Jm g 2 ATO el b el 1]

which implies 5 > 1 in violation of the hypothesis. For k£ > i*, the set
{i" <i<k:Ieq(i) =1}

disintegrates into several intervals of respective sizes ki, ..., ks, which do not con-
tain 4* and are separated by intervals where £; < 1. Now we apply Lemma 6.9.15 to
the jth interval, picking 7 to be the integer preceding its left end. Then §, < 1, the
second ratio in (6.9.18) is nonpositive, and so the number /; of errors contained by
the interval at hand is no less than &; /.. Hence

k—o0

k s s
1 - .1 .1
fim 210 2 Jim D = lim D Ry

k k
! _ 1 .
= fim > T (i) = p im0 1:I£>1(2— 1) ’ = (69.19). O
p-

i=%*

Corollary 6.9.18. The indicator function I(i) «— I°"(i) = 1V Igs1(i —1) =1
a.s. obeys the inequality

k k
(6.9.7)
lim ;;I(i) < {2+ 1°g2f1}} x lim ;Zle”(i) <"p, (6.9.20)

r—00 Ing[P k—oo -
where | )
p =27t {2+ o827 } (6.9.21)
logy[p~!]

Indeed, this is immediate from Corollary 6.9.16, (6.9.7), and the apparent inequality
1) < I (i) + Tesa (i — 1).

Observation 6.9.19. It is easy to see that the first inequality in (6.9.20) is a direct
consequence of (6.9.16). In other words, it holds for any nonnegative solution &; of
the recursive inequalities (6.9.16) with i = 1,2, ..., where {I°™" (i)} is an arbitrary
sequence of reals I°* (i) = 0,1, and p, « € (0,1),b > 1 are arbitrary numbers.

Sufficient Conditions for Almost Sure Tracking

Now we bring the pieces together. We start with conditions, which can be used to pick
the duration r( of the operation epoch in order to ensure almost sure state tracking.
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Lemma 6.9.20. The coder—decoder pair introduced in Subsect. 6.9.1 tracks the state
a.s. whenever

w = logy [ '] — p{logy v + logy[5 ']} > 0 and
X = w(l —p) —plog, || Al > 0. (6.9.22)

Here » € (0,1) is the constant from Lemma 3.8.36 (on p. 80), ~y is the parameter
from 2) on p. 162, and p is given by (6.9.17) and (6.9.21).

Proof. The symbol ¢ (with a possible index) will be used to denote random constants
independent of ¢ and r(. For any a > 0, (6.9.20) implies

k
I(k) =Y _I(i) <k(p+a) for k= oo.
i=1

By 2) on p. 162, v > ||A]|, where ||A|| > 1 due to Assumption 6.8.1 (on p. 161).
Thus >z < 1 < ~.S0(6.9.10) and (6.9.13) yield

ol )’r‘o[(i)

x

k
8i < i1 {01 — I()] + 7" I(0)} Vi> 1 = 6 < 60 [ (

i=1
_ Gysdro (7)“3(’“) W20 650 (V)’"O(”“) — §o2krowe.
x x
where
wq 1= logy[57'] — [p+ a]{ logy v + logy [5~ }—O>w>0
Thus for o =~ 0, we have w, > 0 and
6 < d2770% 0 as i — oo. (6.9.23)

Now we note that due to (6.9.14),

2 < 6120 [1=1(i)] +HAHT°(%—1 +0i-1)1 (') < A7 2i-1 1 (i) +c27 0%,

k
vzl [14l16)] + c22 moee T [4l10i)]-
=1 J=i+1
The first relation from (6.9.22) implies p < 1. So
{i>1:16)=1}y#{i=1,2,...}

due to (6.9.20). It follows that for k = oo, the first summand vanishes and

k
2 <c Y 20w ArotTi),
i=k—1
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where [k — [ + 1 : k] is the largest subinterval of the set
Qi ={1<i<k:I(i)=1}

containing k. (If & & Qy, then [ := 0.) We proceed by taking into account the
inequality | < Zi:l I(i) =3(k) < k(p+ o) Vk = o0

k ! _
2 < 2 krowa Z 2(kfz‘)row(1HAHro(k*i) = 2 Frowa Z (QwaHAH)’“W
i=k—1 i=0

—krowa (Qua || A Tol oo 9—krowa (Qwa|| A rok(p+a)
L2 (2 laf)™" beso 27Hrove (240 | 4)

L (2 Al) "™ L= (2velA]) "
C

— B 9—kroXa
1= (2w Al)

)

where
6922

Thus o > 0 for a = 0. So

L, ©6212) |ZF () — x(m)|| = 0 as k — oo.

Here 7} (1) = 55:{ (7%) thanks to (6.9.3). To complete the proof, we note that for

Te <t < Tpg1 = Tk + 70, We have

[Za(t) — 2@

(6.2.1),(6.8.9) HAt ™ (EE () — () H

< [ Az (k) — 2 ()| =0,

since k — oo ast — oo. O

Completion of the Proof of Proposition 6.9.8

By Lemma 6.9.20, it suffices to show that (6.9.22) does hold whenever r( is large
enough. In its turn, this is true if p — 0 as 7¢ — oo. The required property is
established as follows:

1 b
6920 5 Fro {2+ 0820 }
log,[p~]

©9.17 o5 pPr {2 . 1+ rollog, [|All 4 logy 2]

— 0 as rg— oo. O
ro (logy v — log, [|A]) }
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6.10 Completion of the Proof of Theorem 6.4.1 (on p. 140):
Dropping Assumption 6.8.1 (on p. 161)

The implication ¢ > H(A) = a) A b) has been already justified for systems with
no stable modes. Now we consider the general case. Suppose that ¢ > H(A), and
consider the matrix A, from (6.7.24) (on p. 156), i.e., the “unstable part” of A.
Since H(A) = H(A,), the claims a) and b) are true for the system (6.7.24) with
xar := w420 by Corollaries 6.8.18 (on p. 165) and 6.9.9 (on p. 170).

Now we apply the corresponding coder—decoder pair to the primal system (6.2.1).
In doing so, we also alter the coder’s step c.1) (see p. 164) or cc.1) (see p. 169),
where it determines the current state x4 (7;) of (6.7.24). Formerly this step was done
on the basis of the past measurements from (6.7.24). Now we employ the observa-
tions from (6.2.1). Then thanks to Assumption 6.3.6 (on p. 137), it is possible to
compute 74 z(7;) as a linear function of the measurements received during the pre-
vious operation epoch, provided that 7o > n. Since evidently x4 (¢) := wyx(t), this
does not alter the operation of the observer. To complete the proof of the implication
¢ > H(A) = a) A b), we note that so far as x_ (t) := x(t) — x4 (t) — Oast — oo,
this observer tracks that state of (6.2.1)
a(t) =54 (O] = - (O) 42+ () =&+ ()] < Jlo—(B)| + s () = 5 (B)]] =20
whenever it detects the state of (6.7.24): ||z (t) — Z4(t)|| — O as t — .

The implications a) V b) = ¢) = d) are apparent, whereas d) = ¢ > H(A) was
justified in Sect. 6.7. ad

6.11 Stabilizing Controller and the Proof of the Sufficient
Conditions for Stabilizability

In this section, we prove the ¢ > H(A) = a) part of Theorem 6.6.1 (on p. 145). So
we suppose that the assumptions of Theorem 6.6.1 hold and that ¢ > H(A). Like in
Sect. 6.8, we first assume that the plant (6.5.1) (on p. 143) has no stable eigenvalues;
i.e., we adopt Assumption 6.8.1 (on p. 161) until otherwise stated. In the general
case of the plant with both unstable and stable modes, stabilization will be achieved
by applying the controller presented below to the unstable part of the system, like in
Subsect. 3.8.11 (starting on p. 88) and Sect. 6.10.

Remark 6.11.1. Assumptions 6.3.6,6.5.5, and 6.8.1 (on pp. 137, 144, and 161) imply
that the pairs (A, B) and (A, C') are controllable and observable, respectively.

For the problem of state estimation via a noisy channel, two algorithms were
proposed in Sects. 6.8 and 6.9, respectively. The first of them works in the absence
of the feedback communication link, employs code words whose lengths increase as
the estimation process progresses, and ensures observability with as large a proba-
bility as desired. The second algorithm uses fixed-length code words, has a limited
complexity, and guarantees almost sure observability, but it relies on the complete
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communication feedback. This feedback makes the coder aware about the result of
the transmission across the channel by the time of the next transmission.

In this section, we show that an almost sure stabilizing controller with the features
like those of the second observer can be constructed even if no special feedback
communication link is available. This will be accomplished via two steps.

Step 1. We show that such a controller can be designed whenever a feedback link is
yet available but has an arbitrarily small capacity.

Step 2. We show that in fact even such a low-capacity special link is not needed
since the required low-rate feedback information flow can be arranged by
means of proper control actions.

Remark 6.11.2. The feedback link concerned at step 1 should transmit one bit per
operation epoch by notifying the coder whether the signal received by the decoder
at the end of the previous epoch was the alarm one »X. The average rate of this
communication can be made arbitrarily small by taking the duration of the operation
epoch large enough.

Explanation 6.11.3. Communication of information can be arranged by means of
control thanks to the fact that the controller influences the plant motion, whereas the
sensor observes this motion. So the controller can encode a message by imparting the
motion of a certain specific feature. In its turn, the sensor can receive the message by
observing the motion and detecting this feature.

Remark 6.11.4. In the context of this section, only one bit per operation epoch should
be communicated by means of control. At the same time, communication of as much
information as desired can be arranged in such a way without violating the main
objective of stabilization [114].

6.11.1 Almost Sure Stabilization by Means of Fixed-Length Code Words and
Low-Rate Feedback Communication

In this subsection, we do step 1 and introduce the corresponding stabilizing con-
troller.

Components Used to Assemble the Coder and Decoder

The first four components are basically those chosen in Subsect. 6.8.2 to construct
an observer.
Specifically, we pick

1) two numbers 7 and R such that
log, |det Al <n < R < ¢

2) aparameter v > || A|| and a duration » = 1,2, ... of the operation epoch;
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3) acodebook &, with N = N/ = 2" input code words (6.8.2) (on p. 161) each of
length r and a decoding rule D,.(-) with the properties described in Theorem 6.8.4
(on p. 162);

4) the r-contracted quantizer £2,- from Lemma 3.8.36 '° applied to A, := A4;

5) A deadbeat stabilizer,'¢ i.e., a linear transformation of an initial state

2(0) =2 25 U = [u(0),u(1),...,u(n —1),0,0,.. ] (6.11.1)

into a sequence of controls driving the state to zero x(n) = 0;
6) An alarm control sequence

U»B = [uo,...,us_l,0,0,...},

which drives the system from z(0) = 0 to z(s) = 0.

Explanations 6.8.6 and 6.8.7 (on p. 163) concerning 1) and 2), respectively, re-
main active.

Remark 6.11.5. Due to Remark 6.11.1, a deadbeat stabilizer does exist [10, p. 253].

Explanation 6.11.6. The control sequence is extended by zeros from [0 : n — 1] onto
[0 : 00) in (6.11.1) for technical convenience.

Explanation 6.11.7. The alarm control sequence and its active length s will be spec-
ified further. The role of this sequence will be elucidated in the next subsection.

Notation 6.11.8. We extend the deadbeat stabilizer on the alarm symbol Y4 by putting
NOX) := U (6.11.2)

Definition 6.11.9. The number L(N) := max{n, s} is called the length of the dead-
beat stabilizer.

Explanation 6.11.10. We pick the duration r from 2) so large r > r, that
r>n-+ L(N) (6.11.3)

and the quantizer outputs including the alarm symbol ¥4 can be encoded by code
words from the code book €&,.. The latter is possible by Remark 6.8.8 (on p. 163).

Operation Epochs and an Intermediate Temporary Assumption

Like in the case of the observer from Subsect. 6.9.1, the controller operation is orga-
nized into epochs
[Ti : Tit1)s T =1r (6.11.4)

15See p. 80; we also invoke Remark 3.8.37 from p. 80 here.
16See p. 72 for the definition.
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of equal duration r. A fixed and independent of epoch sequence of operations is ex-
ecuted within any of them. In particular, at the beginning of any epoch, the coder
converts a quantizer output (which may equal the alarm symbol ) into a code word
of length r. This word is then transmitted across the channel during the operation
epoch. At the end of the epoch, the decoder decodes the sequence of messages re-
ceived within the epoch, thus trying to determine the original quantizer output.

Until the next subsection, we suppose that a low-rate feedback communication is
available by adopting the following.

Assumption 6.11.11. By the end 7;1 of the current operation epoch, the coder al-
most surely gets aware of whether the message received by the decoder as a result of
decoding at the beginning 7; of this epoch was the alarm one YA

Remark 6.11.12. This feedback communication has the size of a one-bit-per-operation-
epoch. By increasing the epoch duration r, the average bit rate of this communication
can be made arbitrarily small.

Remark 6.11.13. Assumption 6.11.11 may be true due to not only the presence of a
special feedback communication link but also the fact that the alarm signal is trans-
mitted over an especially reliable feedforward subchannel.

Remark 6.11.14. As will be shown in Subsect. 6.11.2, Assumption 6.11.11 can al-
ways be ensured by means of control via a proper choice of the alarm control se-
quence and epoch duration.

Coder-Decoder Pair Consuming a Low-Rate Communication Feedback

Both coder and decoder compute controls u.(t), uq(t) and upper bounds for the state
norm 6. (t), d4(t), respectively. Actually acting upon the plant is the control u,(t).
The initial bound is common:

5.(0) = 54(0) = 5o > 0.

Remark 6.11.15. The bounds 0. (t) and d4(t) may be incorrect. In particular, the in-
equality dp > ||z(0)|| may be violated.

Within any operation epoch [7; : 7;+1), the coder consecutively emits into the chan-
nel the symbols of the code word of the length r formed at time 7;, and the decoder
carries out the control program

U2 := col [wa(), ua(ms + 1), ..., ua(rip1 — 1)] (6.11.5)

generated at time 7;. These actions are prefaced at the times t = 7; by the following
operations.

The coder (at the times t = 7,7 = 1,2,...)

cs.1) Proceeding from the previous measurements, calculates the current state 2(7;);
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cs.2) Computes the prognosis of the state at the time ¢t = 7;41:

t—1
Be(t) = A"a(r;) + Y A" Buc(j); (6.11.6)

J=Ti
cs.3) If i > 3, corrects the state norm upper bound:

T

(qa(Ti-1))5. -
T

(qe(Ti—2) ey
(1) if qa(rio1) = & qe(mio) #0%,
(2‘) if ga(Ti—1) # & qe(Ti2) =R,

Pyt

0c(Ts) = 0c(Ts)

Pyt

<

= 0e(ms) qa(Ti—1) =& qe(Ti2) =%, (6.11.7)
1 if or
qa(Ti—1) 7 & qe(Ti—2) # 5,

Here 7 is the parameter of the controller (from 2) on p. 180), s« € (0, 1) is the
constant from Lemma 3.8.36 (on p. 80), which determines the contraction rate
of the quantizer at hand, and (q)}w is defined in (6.8.12); i.e.,

~ otherwise

(@), = {% ifg 7% 6.11.8)

cs.4) Employs the quantizer 9, and computes the quantized value ¢.(7;) of the
scaled state prognosis at the time 7;1:

(i) i= [6e(r)]  Belminr)y  ge(m) == Q. [e(m)]; (6.11.9)

¢s.5) Encodes this quantized value ¢.(7;) by means of the code book &, and thus
obtains the code word to be transmitted over the channel during the next oper-
ation epoch [7; : Tiy1);

cs.6) Finally, the coder computes the control program

U{;H = col [uc(Ti_;,_l), . ,uC(TH_Q — 1)]

for the operation epoch [7; 41 : 7;42) following the next one [1; : 7;41) and
then corrects the state upper bound:

Ufyy = 0c(7)N[ge(73)], 0c(7i) := de(m3) X (qc(Ti)Xw{, (6.11.10)
where (g),, _ is given by (6.11.8) and N is the deadbeat stabilizer.

The decoder (at the times t = 7,7 = 2,3,...)

ds.1) Applies the decoding rule D,.(-) to the data received within the previous oper-
ation epoch [7;_1 : 7;) and thus acquires the decoded value q4(7;) of ¢.(7i—1);
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ds.2) Computes the control program (6.11.5) for the next operation epoch [7; : 7;4+1)
and corrects the state upper bound

Uid = (5d(Ti)N[qd(Ti)], 5d(7_i) = 6d(7i) X <qd(7'i)>;’,y. (61111)

Remark 6.11.16. For uniformity of subsequent formulas, we assume that
CIc(Tk) = Qd(71+k) 1= M VEk <0,

and that the coder at time ¢t = 7y performs cs.6) and the decoder at time ¢t = 7
accomplishes ds.2) accordingly. Then (6.11.7) is in fact active for = 1,2 and Uy =
U{! = 6oUsx. For consistency, we also put U§ := Ug := §oUx.

Explanation 6.11.17. Although the coder is unaware of the entire sequence of con-
trols uq(¢) actually acting upon the plant, the operation cs.1) is possible. Moreover,
the current state (7;) can be found as a linear function of n previous observations.

This holds since the dynamics of the closed-loop system (6.5.1) (on p. 143) is free
u(t) = 0 for at least n time steps before 7; thanks to Definition 6.11.9 and Re-
mark 6.11.1, along with (6.11.1), (6.11.3), (6.11.4), (6.11.11), and Definition 6.11.9.

Remark 6.11.18. The decoded value ¢4(7;) from ds.1) may be incorrect gq(7;) #
qc(7i—1) due to the channel errors.

Explanation 6.11.19. The operation cs.3) is possible thanks to Assumption 6.11.11.

Remark 6.11.20. The operation cs.3) makes the bounds d. and d4 identical whenever
the transmission across the channel is errorless.

This claim is more rigorously specified by the lemma to follow. To state it, we
mark the values of d. and d, after and just before the updates in accordance with
(6.11.10) and (6.11.11) with the * and ~ indices, respectively. So the value 6§ (7;)
is taken after the correction (6.11.7).

Lemma 6.11.21. The step cs.3) ensures that whenever the current transmission is
errorless, the next state norm upper bounds produced by the coder and decoder,
respectively, are identical:

qc(Ti_l) = qd(n) — 56_(7'1) = (5;(7’1‘4_1), 1=1,2,.... (6.11.12)

Proof. 1Tt suffices to show that fori = 1,2, ...

<qc(n1)>%,wr. (6.11.13)

6;(7_2) = 6(1_(Ti+1) [ <qd(Tz)>

The proof will be by induction on i. For ¢+ = 1, the claim is evident. Suppose that
(6.11.13) holds for some 7 > 1. Then
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<Qd(7'i)>;,7 (6.11.10) r <Qd(7'i)>;,7

_ (6.11.7) oy _
5(; Ti4+1) —— 5c Ti r 5(: Ti) \4c\Ti)) ,. r
( + ) ( )<QC(T1Z—1)>%’,Y ( )< ( )> Y <Q(z(7—i—1)>%’,\/
(6.11.13) _ ro (6.11.11) _ <Qc(7'z)>:t
5(1 (Ti+1) <qC(Ti)>h7’y - 5d (Ti+2) <qd(7_‘+1)>7:y 5
v 2
ie., (6.11.13) with ¢ := ¢ + 1 does hold. a

Stabilization by the Coder-Decoder Pair Consuming a Low-Rate
Communication Feedback

The main property of the above coder—decoder pair is given by the following propo-
sition.

Proposition 6.11.22. Suppose that Assumption 6.11.11 holds. The coder—decoder
pair introduced in this subsection stabilizes the system almost surely, provided that
the duration r of the operation epoch is large enough: v > r(A, B, ¢, W,~, R).

Explanation 6.11.23. Here s« is taken from Lemma 3.8.36 (on p. 80), W(-|-) is the
matrix of the channel transition probabilities, and R, ~y are the controller parameters
from 1), 2) (on p. 180).

The proof of Proposition 6.11.22 will be given in Subsect. 6.11.3. The bound
r(A, B, >, W,~, R) can be specified from this proof (see Lemma 6.11.40 on p. 193).

Remark 6.11.24. Proposition 6.11.22 holds for any choice of the alarm control se-
quence Up.

6.11.2 Almost Sure Stabilization by Means of Fixed-Length Code Words in the
Absence of a Special Feedback Communication Link

Now we show that Assumption 6.11.11 can be always ensured, even if there is no
special feedback communication link. This means that almost sure stabilization by
means of fixed-length code words and a controller with a limited computational
power can be ensured in the absence of a special feedback communication link.

Communication Feedback by Means of Control

We start with an informal discussion. Assumption 6.11.11 to be ensured means that
at time 7,1, the coder can recognize whether the message determined by the decoder
as a result of decoding at time 7; was the alarm one K.

The idea is roughly as follows. In the first case ¢4(7;) = "X, the plant is affected
by a scaled (i.e., multiplied by the scalar positive factor) alarm control sequence Uk
during the epoch [7; : 7;11) by (6.11.2) and (6.11.11). In the second case, it is driven
by a control program U; produced by the deadbeat stabilizer U; = N(g) from a
vector ¢ := 04(7;)qa(7;) € R™. So it suffices that the coder be able to recognize at
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time 7;4; whether the control program U that acted upon the plant during the epoch
was the scaled alarm one or of the kind N(g), ¢ € R™. In doing so, the coder should
proceed from the sequence of observations received within this epoch:

Y = col[y(7),...,y(1iz1 — 1)]. (6.11.14)

Now we show that the coder can correctly accomplish this if the alarm control
sequence and the duration r of the operation epoch are chosen properly. Indeed, let us
first observe that the tuple of observations (6.11.14) is a linear function of the control
sequence and n-dimensional state z(7;). In the case where U; = N(q), ¢ € R", this
sequence lies in an n-dimensional space Im N as well, since the operator N is linear.
It follows that whenever ¢4 (7;) # "X, the tuple (6.11.14) lies in a certain specific 2n-
dimensional linear subspace L of the space of all possible observation sequences.
However, this space may be of larger dimension for large r. This makes it possible to
pick the alarm control sequence so that it generates the sequence of observations not
in L. Then the coder may recognize the event g4 (7;) = " by checking the relation

Y; & L.

To be specific, now we offer a particular example of this scheme.

Picking the Alarm Control Sequence

We first pick
e A control u, such that Bu, # 0 and
e A control sequence U_ := col[uy ,...,u, ] that drives the system from the

state £(0) = A" Bu, to z(n) = 0.
The alarm control sequence is defined as follows:
Ug = col [0,...,0,u,,0,...,0,uy,...,u,_1,0,...], s:=dn+1.
N 7 N 7
2n n

(6.11.15)

Remark 6.11.25. Tt is easy to see that this sequence drives the system from :(0) = 0

to z(s) = 0, as is required.

As will be shown (see Remark 6.11.27), this alarm control sequence does ensure
correct recognition of the event gq(7;) = .

Coder-Decoder Pair with No Communication Feedback

This is exactly the coder—decoder pair introduced in Subsect. 6.11.1 in which the
coder acquires the knowledge about ¢4(7;—1) to perform the step cs.3) (see p. 183)
in such a way that no special feedback communication link is employed.

So the description of the decoder (see p. 183) is not altered, whereas two more
steps are inserted into the description of the coder between steps cs.2) and cs.3).

Specifically, the coder first carries out steps cs.1) and cs.2) (see p. 183), then
prefaces step cs.3) with the following two ones to recognize the event gq(7;—1) = "X,
and proceeds by executing steps cs.3)—cs.6) (see pp. 183 and 183 ), as before.
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Additional Intermediate Steps

cs.2-3;) Proceeding from the previous measurements, the coder computes the states
2(1i—1 + 2n) and x(7—1 + 3n + 1);
¢s.2-35) The coder decides that g4(7;—1) = "X if and only if

o(ti1 +3n+1) # A" e (r_ 1 + 2n).

Remark 6.11.26. The step cs.2-31) is possible. Moreover, the required states can be
determined as linear functions of n previous measurements.

This is basically justified by the arguments underlying Explanation 6.11.17 since
the dynamics of the system is free w(t) = 0 for at least n time steps before the times
Ti—1+2nand 7,1 + 3n+ 1 dueto (6.11.1) and (6.11.15).

Remark 6.11.27. The steps cs.2-31) and cs.2-35) ensure correct recognition of the
event gq(7;—1) = 1.

Indeed, it suffices to note that due to (6.11.1) and (6.11.15),

0a(Ti—1)A"Bu, #0 if io1) ="
(T 1+3n+1)— A"y (r; 1 +2n) = alTi-1) we 0 qd(.T 1) .
0 otherwise
Since the coder and decoder at hand are in fact those from the previous subsec-
tion, Proposition 6.11.22 remains true for them with Assumption 6.11.11 dropped.
This gives rise to the following.

Proposition 6.11.28. The coder—decoder pair introduced in this subsection stabi-
lizes the system almost surely, provided that the duration r of the operation epoch is
large enough: r > r(A, B, 3, W,7, R).

Explanation 6.11.29. Explanation 6.11.23 equally concerns the case under current
consideration.

Observation 6.11.30. The coder and decoder considered in this subsection are semi-
rational r-step recursive.'’

This is straightforward from the constructions of the coder and decoder with
taking into account that the employed quantizer is taken from Lemma 3.8.36 (on
p. 80) and so is polyhedral,'® and cs.2-35) consists of checking a system of linear
inequalities.

Remark 6.11.31. The inner dynamic variables z. and z4 of the coder and decoder,
respectively, from (6.3.4) (on p. 139) and (6.5.5) (on p. 145) can be chosen as

ZC(iT) = [5;(7‘2‘),(5;(Ti,1),fl'\c(7'i+1),f/ﬁ\c(Ti),ZL'\c(Tifl)}7 Zd(ir) = 5;(71)

17See Definitions 6.3.9 and 6.5.7 on pp. 139 and 145.
18See Definition 3.8.8 on p. 70.
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As will be shown (see Remark 6.11.41 on p. 195), these inner variables a.s. con-
verge to 0 as ¢ — oo under the assumptions of Proposition 6.11.28.

The following claim is immediate from Proposition 6.11.28 and Observa-
tion 6.11.30.

Corollary 6.11.32. Suppose that Assumption 6.8.1 (on p. 161) holds and that H (A) <
¢. Then the statement a) from Theorem 6.6.1 (on p. 145) is true.

The remainder of the section is devoted to the proof of Proposition 6.11.22 and
to the completion of the proof of Theorem 6.6.1.

6.11.3 Proof of Proposition 6.11.22

The proof resembles that of Proposition 6.9.8.!° However there are important dif-
ferences. They basically proceed from the fact that now the coder and decoder are
not completely synchronized via the communication feedback, which is contrary
to Proposition 6.9.8. More precisely, the coder and decoder considered in Propo-
sition 6.9.8 produce common error upper bounds d., ; and state estimates 7., Z4.
Now only the bounds ., d4 are synchronized in a weaker sense: They are not always
common but only when the previous transmission across the channel is errorless (see
Lemma 6.11.21). At the same time, the controls produced by the coder are not put
in harmony with those generated by the decoder. In fact, the goal of the proof is to
demonstrate that being properly adjusted to the current circumstances, the arguments
from Subsect. 6.9.3 are not destroyed by these differences.

To start with, we rewrite the state prognosis (6.11.6) in a form more convenient
for further analysis.

Another Formula for the State Prognosis Generated by the Coder

Lemma 6.11.33. The state prognosis (6.11.6) obeys the following equation:

Te(Tig1) =6, (rim1) A" [e(riz1)— q. (ti-1)]

+ AT > AT IBlua(j) —ue(j)],  i>2. (6.11.16)

J=Ti-1

Here 5 is given by (6.8.12) (on p. 164) and e(1;—1) is defined by (6.11.9), where
ii=1—1 andéc(n,l) = 5;(Ti,1).

Proof. Suppose first that g.(7;—1) # "X Due to the first formula from (6.11.10) with
1 := 1 — 1 and the definition of the deadbeat stabilizer, the sequence of controls

Ue(Ti),y o te(Tipr — 1) (6.11.17)

See Subsect. 6.9.3 starting at p. 171.
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drives the system from the state o_ (7;,-1)q.(7;—1) at time 7; to the state O at time
Ti + n. Since u.(t) = 0fort = 7, +n,..., 741 — 1, the state 0 is kept unchanged
until the time 7,1 = 7; + 9. Hence

Ti+171
0o (tic1)A” Qe (1) + Y AT Bug(j) = 0. (6.11.18)

J=Ti

This is still true if g.(7;—1) = . Indeed, then 56 (1i—1) = 0, whereas (6.11.17) is
the alarm control sequence up to a scalar multiplier and so it drives the system from
the state 2:(7;) = 0 to z(7;41) = 0.

Subtraction (6.11.6) and (6.11.18) yields

Fe(ri1) = A" [2(m) — 8, (rim1) de (i)
=0, (1i—1)A" [5; (Ti,l)’lfc(n)— C*lc (Ti,l)] + A" [:c(n) — L/E\C(Ti)].
Here by (6.11.6) with ¢ := ¢ — 1 and (6.5.1) (on p. 143),

Ti—1
./IZ\C(TZ‘) = ATJ?(TZ‘_l) + Z ATiilijBuc(j),
J=Ti—1
T;,—1
2(r;) = A"z(rim1) + Y A" Bug(j).
J=Ti-1
As aresult, we arrive at (6.11.16) by taking into account (6.11.9). a

Frequency of Decoding Errors

Now we consider the stochastic process generated by the coder and decoder in con-
nection with the system (6.5.1) (on p. 143). The symbols F; and .S; stand for the
code words formed by the coder at time 7;—1 and received by the decoder at time 7,
respectively. We also invoke the indicator function (6.9.6) (on p. 172) of the decod-
ing error D,.[S;] # E;, and we pick 0 < F < F(R,W), where F(R,W) is taken
from (6.8.6) (on p. 162).
Observation 6.11.34. Lemma 6.9.11 (on p. 172) is still true with ro := .

This can be easily seen by retracing the arguments from the proof of this lemma.

Corollary 6.11.35. For the indicator function

T (i) o I () = 1V I (i — 1) = 1V I (i — 2) = 1, (6.11.19)
the following inequality holds a.s.:
1 -+
li I (i) < 3. 274, 6.11.20
P k ; (i) =3 ( )

Indeed, this is immediate from (6.9.7) (on p. 172) and the inequality
ferr(i) < Ierr(i) +Ierr(i . 1) +Ierr(i _ 2)-
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Influence of the Channel Errors on the Evolution of the Closed-Loop System

To analyze this influence, we first introduce the following linear operators by em-
ploying the deadbeat stabilizer (6.11.1) and its length L(N)*

L(N)—1
Q:[CO] (UQ, . 7UL(N)—1)] = Z AilijB’LLj;
z e R" 2 [u(0),...,u(n—1),0,0,...] & B(z). (6.11.21)

We also put 7—; := —1 and invoke Remark 6.11.16 (on p. 184) and the indicator
functions (6.9.10).
We first study the evolution of

0;: =0, (1;) and z; := ||Zc(Tig1)]]- (6.11.22)

Lemma 6.11.36. The following relations hold for j > 1 and i > 2:

5j:af4{%qﬁﬂﬁ-+m”u>+fﬂw>]+v (1) + 1) }
(e

T mo—m} (6.11.23)

2 < zia|| A" [T (i) 4+ IS5 ()]
+5i—1% [Io( )—|— Ig r( )+ Ierr( )] +(Sz 2d( )Ierr(i). (61124)

Here » € (0,1) and IAe”(z') are taken from Lemma 3.8.36 (on p. 80) and Corol-
lary 6.11.35, respectively; v > ||Al| is the parameter of the controller from 2) on
p- 180; 1o, Ix, I§™, I5%, 157 are defined by (6.9.10) (on p. 173); and

d(r) = |AJ* [1+ (Z) | max {18, | evs }. (6.11.25)
where Uy is the alarm control sequence and B, &€ are given by (6.11.21).
Proof. We start with proving (6.11.23):

(qa(rj-1))7, ,

(ge(Ti-2))%, ,

)

(6.11.22) (6.11.7)

Ly 6c (75) 55 (mj-1)

T

r <Qd(7'j—1)>%ﬂ

(6.11.10),(6.11.22)
T {ge(Ti-2)), .,

dj—1 <QC(7'j—1)>

2See Definition 6.11.9 on p. 181.
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Due to (6.9.10) (on p. 173) and (6.11.8), here the second multiplier and the ratio in
the last expression equal the first and second expressions in the curly brackets { }
from (6.11.23), respectively.

To justify (6.11.24), we denote by s’ and s” the first and second summands from
(6.11.16), respectively. Since in (6.11.16), g.(7;—1) is the quantized value of (7;_1)
by means of the r-contracted quantizer 9, with the contraction rate pg, = 2",
relation (3.8.9) (on p. 70) yields

if qo(7io1) # &
e if g 1
Il < - { JAN le(rion) | i gelri-1) = %}

2D 6513 [To (D) +I§™ (D) +I5% ()] +0, (rimn) e (rim ) | A|I" (B (0)+ 1S5 ().

Here
bc (ric1)lle(ri—1)|| = ||Ze(mi)l| = 251

by (6.11.9) and (6.11.22). As a result, we see that ||s’|| does not exceed the sum of
the first two summands from (6.11.24).

The second summand s from (6.11.16) can be rewritten in the following form
due to (6.11.10), (6.11.11), and (6.11.21):

" = a2 {5 (ri-1)Blaalrin)] - 6 (r-2)Blac(ri-2)] .

_ [ Blq) ifq # X
where  3(q) := {QU% otherwise ’

i (61113),6.11.22) o <Qd(7'i—2)>;,7 4 '
s A { <qC(Ti—3)>;,vﬁ[qd(TZ_l)] - ﬁ[%(ﬂ_2)] }

(6.11.26)
Whenever 7' (i) = 0, we have by (6.9.6) (on p. 172) and (6.11.19),

qa(Ti—1) = qe(Ti—2),  qa(Ti—2) = qe(Ti—3),

and so the expression embraced by the last curly brackets {} in (6.11.26) vanishes.
In any case,

1Bl < max{[|B], [€Ux||} for g := qa(7i-1), ge(Ti-2),

since

q#H= g <1= 89l <[IB].
At the same time,
(qa(Ti-2)),, .,
<y
(qc(Ti=3)) . - /

due to (6.11.8). As a result, we see that ||s”|| does not exceed the last summand from
(6.11.24), which completes the proof. a
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Now we focus on the evolution of the ratio &; := z;/d; determining whether the
alarm message "X is dispatched over the channel:

qC(TZ‘):*I*@&:Zi/5Z‘> 1. (6.11.27)
Lemma 6.11.37. For ¢ > 2, the following inequality holds:

S {pi;l ifﬁj Z 1} [1—To7(@)] + b/2[€ios + 117 (i), (6.11.28)

where the indicator function Terr () was introduced by (6.11.19) and

_ (II?II)T, b:=2(12)zr [1+d(r)]. (6.11.29)

Proof. Thanks to (6.11.23), (6.11.24), and (6.11.29)
& < {Gapa () + L]+ [1o0) + [576) + L 0)] |
A7) ma- v+ (1) - 0+ - - ) - 156 - 1))

-~
F

By (6.11.23),
O 1)
J(sjl S ,yr%727‘ = 2512 < y 7‘%747‘
Due to (6.9.6) (on p. 172), (6.9.10) (on p. 173), and (6.11.19),
/y " Ael‘l‘ - Ael‘l‘ - N Aerr N
< - - =
r<()) Fro+1-1m6,  1GL-1"6) =0,

for I := I§™, I3z 157 . Hence

& < [&m1pla) + 5 To()| [1 - fm(z‘)}
+ [&map{ ) + 150} + o {157 0) + 158 () + 1@} < (1) Tr(a)
+w%—4rd<r>fe“<> < [ 1o1x() + 2 1o ()] [1 = T ()]
+{(1) eap+ ] + 425 md(r) (i),

Here p < 1 owingto (6.11.29) and 2) on p. 180, and 5« < 1. So the factor multiplying
I°' () in the last summand does not exceed

Gt (1) + () 0 < (L) el v E2 b2 1),

202

Summarizing, we arrive at (6.11.28). O
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Remark 6.11.38. By (6.11.22) and (6.11.27), & = [6, (73] “NZe(7i41)]|. Since the

c
state prognosis Z.(7;+1) is computed by the coder only for ¢ > 1, the quantity

&; is defined only for such i’s. Nevertheless, we pick § € (1,00) for technical
convenience: This makes the equivalence from (6.11.27) true for all 7 due to Re-
mark 6.11.16 (on p. 184).

Corollary 6.11.39. The indicator function
I(i) «— I (i) =1V &y > 1 (6.11.30)
almost surely obeys the inequality

k
1 . log, b
li IG)<p:=3.-27F22 2 6.11.31
klnick; W =p { +10g2[p1}}’ ( )

where F' is taken from (6.11.20).

Indeed, thanks to Lemma 6.11.37 and Observation 6.9.19 (on p. 176),

u k
i i J log i 1 Terr /-y _(6.11.20)
lim k;I(Z)S {2+ 0 }} x lim kiz_:]e (Z):>(61131)

k—oo

Sufficient Conditions for Almost Sure Stability

Now we bring the pieces together. We start with conditions, which can be used to
pick the duration r of the operation epoch in order to ensure almost sure stability of
the closed-loop system.

Lemma 6.11.40. The coder and decoder at hand stabilize the system a.s. whenever

w = logy[s '] — 2p{log, v +log,y[3 ']} > 0 and
X :=w(l —p) —plogy ||A|| > 0. (6.11.32)

Here 5 € (0,1) is the constant from Lemma 3.8.36 (on p. 80), ~y is the parameter
of the controller from 2) on p. 180, and p is given by (6.11.31), along with (6.11.25)
and (6.11.29).

Proof. The symbol ¢ (with a possible index) will be used to denote random constants
independent of 7 and . For any a > 0, (6.11.31) implies

k

I(k) =Y _I(i) < k(p+a)

i=1

for k =~ oco. Since » < 1 < 7,(6.9.10) (on p. 173), (6.11.19), (6.11.23), and (6.11.30)
yield
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2\ " k 2r1(i)
5i < i {%’“[1 — I(3)] + (L) I(z‘)} Vi > 1=>6; < 50%"’“]]1 ()
1=
2rJ(k) k~ 2rk(p+o)
_ 50%7‘k: (7) SOO 60%’!“]{} (V) :60277“]{}(4}04’
V4 V4
where  wq 1= logy[> '] — 2[p + a]{ log, v + logy [5~ }—>w>0
Thus for o« =~ 0, we have w,, > 0 and

§; <27 50 as i — oo. (6.11.33)

This along with (6.11.10), (6.11.11), (6.11.13), and (6.11.22) imply that
uc(t) = 0, wu(t) =uq(t) =0 as t— oo. (6.11.34)

In particular, the second relation from (6.5.3) (on p. 144) holds.
To prove the first one, we note that due to (6.11.24) and (6.11.33)

% < 2| AITTG) + c”[éi,l 46, 4] < zi,1||A||rI(') + 2w v > 2

k
vzl (147 16)] + cZ 2 I (14716
=2 Jj=i+1
(We recall that Hf: o --- = 1 whenever # < a.) The first relation from (6.11.32)

implies p < 1. So an index ¢ > 2 exists such that (i) = 0 due to (6.11.31). It
follows that for & ~ oo, the first summand vanishes and

k
2 < c Z 2—z’rwa”A”r(k—i)’
i=k—1
where {k — 1 + 1,...,k} is the largest subinterval of the set
Qr:={2<i<k:I(i)=1}

containing k. (If k & Qy, then [ := 0.) Now we take into account that
k
Z =J(k) <k(p+a) Vk =~ oo

and proceed as follows:
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k l .
2 < chkrwa Z Q(kfi)rwa”A”’r‘(kfi) — 627’”“"* Z (2wQHAH)”
i=k—1 i=0
2ohree (20 Al)" oo 27Rren (20 A])
1— (2oa]lA)" T 1— (29| Al)"
o C
1— (2walA]) "

rk(p+a)

9—krXa

)

where x4 = wa[l — (p+ a)] — (p + @) log, || Al &na, x > 0.

o
Thus x, > 0 for a = 0. So

(6.11.22) |Ze(Trr1)|| = 0 as k — oc. (6.11.35)

2,
This and (6.11.6), (6.11.34) yield
A"x(r) — 0 as i — oo.

Since the matrix A has no stable modes by Assumption 6.8.1 (on p. 161), the matrix
A" is well defined and so z(7;) — 0 as ¢ — oo. To obtain the first relation from
(6.5.3) (on p. 144), we note that for7; <t < 141 =7; + 1,

t—1

lz()] = || A" a(m) + > A1 Bug(j)
=i
Ti4+1— 1
<A™ [ Hz@)I+ 1B llwal)]
=i
and invoke (6.11.34). O

Remark 6.11.41. As follows from Remark 6.11.31, (6.11.13), and (6.11.33)—(6.11.35),
the inner dynamical variables of the coder and decoder converge to 0 almost surely.

Proof of Proposition 6.11.22

By Lemma 6.11.40, it suffices to show that (6.11.32) does hold whenever r is large
enough. Owing to (6.11.25) and (6.11.29),
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! log,[1+d(r)] = 1{1 d(r)+1 {1—# ! }} = 2log, || Al|+] +1 !
0 r 0 r)+lo =2lo 0 0
082 F 082 82 i(r) 82 82771082

1 " 1 1
+ togy |1+ () |+ Loy max(1 Bl lewe ) + o1 + )

7—00 1

— Ao = 2log, || Al + logy v +loggy >,
logob 14 2rflogyy + 2log, s 1] + logy[1 + d(r)]
log,[p~!] r(logyy — log, [|All
rooo 2[108y ¥ 4 2logy 27 4 A
—_—
log, v — log, [| A

This and (6.11.31) yield p — 0 as r — oo, and we see that (6.11.32) does hold for
r X 00. (]

6.11.4 Completion of the Proof of Theorem 6.6.1

By Corollary 6.11.32, the implication ¢ > H(A) = a) is true for systems with no
stable modes. Now we consider the general case of systems with both unstable and
stable modes.

Suppose that ¢ > H(A), consider the invariant subspaces M,y and My of the
matrix A related to the unstable {A : |A| > 1} and stable {\ : |\| < 1} parts of its
spectrum, respectively, and denote by 7 and 7_ the projector onto M, parallel to
My and vice versa, respectively, and by A, and A_ the operator A acting in Mg
and Mg, respectively. The claim a) is true for the system

Ty (t + 1) = A+.’E+ (t) + ’/T+B’LL(t), Ty (0) = T4+ X9, y+(t) = C.’ﬂ+ (t) (61136)

by Corollary 6.11.32 since H(A) = H(A4).

Let us consider a coder and decoder stabilizing this system. While constructing
them, let us employ the state dimension n of the original system in (6.11.3) and the
alarm control sequence (6.11.15). Now we apply this coder and decoder to the primal
system (6.5.1). In doing so, we also alter the coder’s steps cs.1) (on p. 182) and cs.2-
31) (on p. 187), where it determines the state x (1) for 7 = 7;,7; + 2n,7; + 3n +
1. Formerly this was done on the basis of the past measurements from (6.11.36).
Now we employ the observations from (6.5.1). Then thanks to Assumption 6.3.6 (on
p. 137), it is possible to compute 7z (7;) = 2 (7;) because the dynamics of the
system (6.5.1) is free u(t) = 0 at least n time steps before 7;. Hence the coder and
decoder at hand can be applied to the primal system indeed.

As a result, we see that for the corresponding closed-loop system,

lrrz(t)]] — 0 and |Ju(t)]] — 0 as t— o0 a.s. (6.11.37)

So to complete the proof, it suffices to show that x_ () := 7m_x(t) — 0 whenever
(6.11.37) holds. To this end, we note that

r_(t+1)=A_z_(t) + 7 Bu(t), |A™] < cp™, m=0,1,2,...
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for some p € (0,1). Hence for any given ¢, and t > t,, we have

o)) = || ALz (0) + iA”%BumH < culllz—(0)]
j=0

Tx t—1
+ || Bll|[7—| ZMH”HU(J')IHZut*HHU(j)II ;
=t

=0
t—1
) _ . t—1—j 1
lim [z (t)] CIIBHHW—HLI{}OZ;M lu()
J=tx
Bl
< Bl o a0 as £ — oo,
T—p 4>,

where the last relation follows from (6.11.37). Thus a) does hold.
The implications a) = b) = ¢) = d) are apparent, whereas d) = ¢ > H(A)
holds by Remark 6.7.3 (on p. 148). a
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An Analog of Shannon Information Theory: State
Estimation and Stabilization of Linear Noisy Plants
via Noisy Discrete Channels

7.1 Introduction

In this chapter, we continue to address state estimation and stabilization over noisy
channels for discrete-time linear partially observed systems. As compared with the
previous chapter, the critical feature of this one is the account for the plant distur-
bances and sensor noises. The major points concern the case where these distur-
bances are uniformly and arbitrarily small (at any sample and time). We demonstrate
that in the face of both channel and system noises, the strong objective of trajectory-
wise (i.e., almost sure) stability or observability cannot be achieved by any means
and under any circumstances for many discrete memoryless channels of practical
interest, although it may yet be achieved for rather special channels.

We offer an exhaustive description of these two classes of channels. This descrip-
tion results from showing that the capability of the noisy channel to ensure almost
sure stability/observability of the plant is identical to its capability to transmit infor-
mation with the zero probability of error. The latter capability is studied in the zero
error information theory.! This theory reveals noisy channels capable of errorless
transmission of information and offers the corresponding coding—decoding schemes.
The zero error capacity ¢o [189] is the standard parameter characterizing the maxi-
mum rate at which data can be transmitted over the channel with no error. The results
of this chapter state that the boundary of the almost sure stabilizability/observability
domain is given by the channel zero error capacity.

We also show that if this boundary is trespassed, an unstable linear system can
never be stabilized or observed: The error is almost surely unbounded for all nonan-
ticipating time-varying algorithms of stabilization/observation (with infinite mem-
ories). It should be stressed once more that this holds under uniformly small plant
disturbances. So this phenomenon has nothing in common with, e.g., the well-known
fact that for the stable linear plant affected by the Gaussian white noise, the stabiliza-
tion error is yet a.s. unbounded. Indeed, the latter unboundedness ultimately results
from the fact that the sample sequences of the white noise are a.s. unbounded. On the

"We refer the reader to [84] for an excellent survey of this area.

A.S. Matveev and A.V. Savkin, Estimation and Control over Communication Networks, 199
doi: 10.1007/978-0-8176-4607-3_7,
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contrary, we show that in the face of channel errors, external disturbances obeying a
common and arbitrarily small deterministic bound at any sample and time unavoid-
ably accumulate and cause, sooner or later, arbitrarily large stabilization/estimation
errors.

Although noisy channels with a positive zero error capacity exist, the zero error
capacity of many communication channels of practical interest is equal to zero [84,
214]. For example, this holds for the erasure channel with the probability of erasures
p > 0, as well as for the binary symmetric channel with the crossover probability
0 < p < 1. The above negativ