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Preface

The primary goal of these workshops is to bring together people who are involved
in the academic/practitioner interface in Logistics and Supply Chain Management.

The first three workshops of this series were held between 2003 and 2005 in
Berkeley, CA, while the fourth workshop was in Hamburg, Germany, in 2006.
Since 2007 the workshop has taken place every 2 years in Berkeley. Maintaining
this tradition, the eighth workshop was held there in October 2013 at the Claremont
Hotel Club & Spa.

This book is a collection of proceedings of this latest workshop. All of the papers
have been written by academic researchers in the field or industry leaders who have
an active consulting practice in Supply Chain Management. Each paper has been
carefully selected and reviewed by members of the Workshop Committee.

Addressing Quantitative Approaches in Logistics and Supply Chain Manage-
ment, the proceedings focus on the following topics:

• Vehicle Routing and Scheduling;
• Hub Location;
• Supply Chain Management;
• Courier, Express, and Parcel Service Network Design;
• Health Care Planning and Scheduling.

Hans-Jürgen Sebastian
Phil Kaminsky
Thomas Müller
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Part I
Vehicle Routing and Scheduling



Modeling Mixed Load School Bus Routing

James F. Campbell, Jeremy W. North and William A. Ellegood

Abstract Transporting pupils to and from schools is a complex and expensive
logistics problem for many public school districts, especially in rural areas where
travel distances are longer. In many regions of the world, students ride public transit
to school, but public school districts in the US and Canada generally provide trans-
portation in dedicated school buses. Each bus typically makes a sequence of trips
each morning and each afternoon, where each trip serves a separate school, usually
with staggered start times for different school levels (elementary school, intermediate
school, high school). This research explores whether the successful business logistics
practice of mixed loading can be applied to school bus transportation. Mixed load
school bus trips carry students for more than one school at the same time, and a mixed
load routing policy reduces the number of stops to pick up and drop off students, but
it adds travel distance at the end of a trip to visit multiple schools. We first provide
a general strategic analysis using continuous approximation modeling to assess the
conditions under which mixed loading is likely to be beneficial. Then we present a
discrete algorithm for finding mixed load bus trips. Results for benchmark data sets
explore the tradeoffs between minimizing the number of buses used and minimizing
the travel distance. We also present a case study for a Missouri school district to
illustrate the application of the models in practice. Results show that mixed load
bus routing can be beneficial when students are sparsely distributed, when a large
percentage of bus stops are shared by students of different schools, and when schools
are closer together.
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1 Introduction

An important logistics problem for public school districts is the transportation of
pupils to and from schools in a safe, reliable, and cost effective manner. While many
regions around the world rely heavily on students using existing public transporta-
tion systems, in the US and Canada, public school districts provide transportation
in dedicated school buses for all students who live more than a specified distance
from their school. According to the American School Bus Council, school bus trans-
portation represents the largest form of mass transit in the US, with over 480,000
school buses transporting about 26 million children each day, which is over half of
the schoolchildren in the US [2]. Further, they estimate that US school buses travel
5.76 billion miles per year at a cost of $21.5 billion, while providing a much more
efficient and environmentally friendly alternative to private automobiles.

School bus transportation may be provided by a school district using its own pri-
vate fleet of buses, or by a third party under contract to the school district. Recently,
increasing fuel prices and the economic downturn have increased pressures on opti-
mizing school bus transportation. Higher fuel prices translate to increased costs for
school bus transportation and have led many districts to redesign routes to reduce
travel distance and/or cut the availability of buses to some students [55]. The recent
economic recession has eroded tax revenues and increased pressures on regional and
local governments that typically provide funding for public school bus transportation.

As a concrete example, in Missouri (an “average” US state in terms of population
and area), school buses travelled nearly 124 million miles transporting more than one-
half million students to and from schools daily [42]. Missouri state statutes require
public school districts to make transportation available for all students that live more
than 3.5 miles from their school, but the state provides reimbursement of a significant
portion of transportation expenses for all students that live more than 1 mile from
school. Consequently, most Missouri school districts make transportation available
for all students who reside more than one mile from school, and some even use a
smaller distance of 0.5 mile. However, as a result of the recent economic decline,
Missouri reduced state aid for pupil transportation by 46 % [34], which forced indi-
vidual school districts to consider changes in school bus transportation plans and
budget cuts in other educational areas to offset the decreased support from the state.

Each local school district develops its school bus routing plans, with modifications
each year to reflect changes in enrollments, school building operations, transportation
costs, etc. Many districts still design school bus routes with a largely manual process,
though routing software packages and services provided by contractors are used in
some districts. However, the complexities of school bus routing (e.g., safety and
security restrictions, multiple routes per bus for different schools, varying start times,
uncertainties regarding the number of riders each day, variable loading and unloading
times, etc.) and idiosyncratic local conditions (traffic, weather, operating policies and
traditions) make many software solutions impractical without considerable manual
input [40, 60].
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This research extends the business logistics concept of mixed loads (e.g., carrying
a blend of different products on a single vehicle) to school bus routing. We consider a
typical morning trip of a school bus that carries students from many bus stops to their
school(s). A non-mixed bus trip transports students bound for a single school from
many bus stops to that school. A mixed bus trip transports students bound for two or
more schools to those schools. For example, a mixed trip for two schools will pick
up students for both schools at each bus stop and then deliver them in turn to the two
schools. Thus, a mixed bus trip carries students for two (or more) different schools at
the same time, while a non-mixed bus trip carries students for only a single school.
A typical bus routing plan uses a sequence of non-mixed bus trips, each serving a
single school, with all schools at each level (e.g., elementary schools, middle schools,
high schools) having the same starting (and ending) time. Some school districts have
employed mixed loads in places, but it is not widespread and a general analysis of
mixed loading is needed.

Our primary objectives are (1) to explore the utility of mixed load school bus trips
using a strategic analytical model for a generic school district, and (2) to develop
a discrete algorithm for finding good mixed load school bus trips, with a focus on
minimizing the total bus travel distance. We first undertake a general strategic analysis
using continuous approximation models for school bus transportation in a generic
school district to estimate potential savings from mixed trips. Analytical continuous
approximation models are based on a continuous spatial density of demand, rather
than discrete locations of demand points and they are useful for strategic and policy
analysis in transportation [19]. The strategic analysis allows an assessment whether
more detailed analysis would be worthwhile in light of potential savings in bus travel
distance and the expected disadvantages from mixed trips. However, the strategic
continuous approximation models do not provide actual bus routes for a particular
setting.

The second area of analysis is development of a discrete algorithm to determine
mixed load bus trips given a set of bus stops, schools and students to be transported.
This complements the strategic continuous approximation models with a composite
heuristic routing and scheduling algorithm that generates mixed load bus routes.
This algorithm is tested on benchmark data sets with up to 2,000 bus stops and 100
schools and results are compared to an alternative approach in the literature [48].
Finally, to tie together the two approaches we provide a case study for a semi-rural
school district in eastern Missouri to test both the utility of the analytical continuous
approximation models and the discrete algorithm in light of real-world complexities.

The remainder of this paper is organized as follows. Section 2 reviews the relevant
literature on both continuous approximation modeling and discrete school bus routing
research. Section 3 develops continuous approximation models for mixed and non-
mixed school bus trips in a generic school district, and compares mixed and non-
mixed routing under a variety of conditions. Section 4 presents the discrete mixed
load bus routing algorithm, along with results for benchmark data sets. Section 5
is the case study for a Missouri school district and Sect. 6 is the conclusion and
suggestions for future research.
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2 Literature Review

School bus routing is a particularly challenging variant of the vehicle routing problem
(VRP), and Park and Kim [47] documented a range of mathematical approaches in
their review of twenty-nine articles on the school bus routing problem (SBRP). All
of these articles viewed the SBRP from an operational perspective as a discrete VRP
between bus stops and schools. The majority of SBRP research has focused on one of
two objectives: minimizing bus travel distance (or the associated cost) or minimizing
the number of buses required (as a proxy for the fixed costs of providing the service).
However, a few authors have considered other objectives that address maximum
route lengths [14, 46], student ride times [4, 38, 59], or student walking distance to a
bus stop [5]. All these works treat demand for transportation as occurring at discrete
points (bus stops), usually with a specified number of students at each bus stop. We
will discuss the relevant mixed load discrete models at the end of this section, after
reviewing relevant literature with continuous approximation models.

Analytical continuous approximation models have long been used to gain strate-
gic insight into the impact of changes in transportation policy [41], and there is
considerable literature of their use for freight logistics systems and for public transit
systems. However, we are not aware of any continuous approximation models for
school bus transportation. Continuous approximation models rely on approximations
of expected distances for continuously distributed demand, and key foundational ref-
erences include Beardwood et al. [3], Daganzo [16, 17], Eilon et al. [23], and Larson
and Odoni [37].

Langevin et al. [36] and Ho and Wong [32] provide reviews of research that uses
continuous approximation modeling for freight logistics systems. More recent freight
transportation publications utilizing continuous approximation modeling expand the
approach to specific variants of the vehicle routing problem and examine methods
for approximating expected distances or defining service regions (e.g., [26, 27, 29,
45, 62]). For a procedure on how to develop implementable routes from continuous
approximation models, see del Castillo [22]. A number of recent publications have
considered more realistic cost scenarios and service level implications, including
Geunes et al. [30], Sankaran and Wood [56], Jabali et al. [33], Tsao and Lu [61] and
Davis and Figliozzi [20].

Szplett [58] reviews the literature on continuous approximation models for public
transit. More recent public transit research with continuous approximation models
considers fixed networks where the routes and stops do not change with demand [10,
18, 25, 44, 63], flexible networks that allow the routes, stops, or both to change
with demand [1, 28, 53, 65], and hybrid networks that combine features of these two
systems [11, 39, 52].

Although there is a vast literature on the VRP, there is limited research on the SBRP
and little research on discrete models for the mixed load SBRP. In the school bus
routing survey by Park and Kim [47], only five of the 29 articles addressed the mixed
loading variant of the SBRP, and these are briefly described here. Hargroves and
Demetsky [31] demonstrated the benefits of a computer assisted approach to design
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mixed load bus routes for a semi-rural district. Russell and Morrel [54] addressed a
mixed load SBRP with a heuristic that transported students first to the nearest school,
and then used an inter-school shuttle system to ferry students to their appropriate
school. A case study for special education students showed savings of 11 and 16 %
on total mileage and travel times, respectively. Chen et al. [12] provided a multi-
phase algorithm with a student “cross-dock” (transshipment point) for a rural district
in Alabama. Braca et al. [6] adapted the location-based heuristic for the capacitated
VRP from Bramel and Simch-Levi [7] in a cluster-first, route-second approach to
solve a mixed load SBRP in New York City. Spada et al. [57] compared heuristic
algorithms that focused on student ride times for a mixed load SBRP with two real
world problem instances and several large artificial data sets.

Campbell et al. [9] augmented the Park and Kim [47] SBRP review with five
new articles for the mixed load SBRP. Thangiah et al. [60] presented a multi-step
heuristic algorithm for five rural school districts in Pennsylvania, and also provided
a valuable discussion of the practical complexities of school bus routing, including
government regulations and reimbursement policies. De Souza and Siqueira [21]
applied the algorithm of Braca et al. [6] to ten cities in Brazil to explore the savings
from using fewer bus stops. Prasetyo et al. [51] described a GIS-based analysis to
develop bus routes in Indonesia. Kim et al. [35] considered a bus scheduling problem
that links a set of input non-mixed (single school) bus trips to form possibly mixed
load routes for a single bus that visits several schools in sequence. Two optimization-
based approaches are compared with a heuristic algorithm. Park et al. [48] modeled
the mixed load SBRP as a pickup and delivery problem with time windows with
the objective of minimizing the total number of buses. Using a heuristic algorithm,
computational results were presented in this paper and in the corrigendum [49, 50]
for the benchmark data sets introduced in Park and Kim [47]. Of the 10 papers on
the mixed load SBRP, the objectives pursued are primarily to minimize the number
of buses and minimize the bus travel distance.

3 Strategic Continuous Approximation Models

For our strategic analysis, we use continuous approximation modeling to analyze
the benefits of mixed trips for school bus transportation. We first formulate models
for the expected travel distance of mixed and non-mixed school bus routes for an
idealized school district containing two levels of schools (e.g., lower schools and
upper schools). Ellegood et al. [24] derived a more general model for multiple levels
of schools. We consider the morning bus trips that pick up students from bus stops and
deliver them to schools. The afternoon routing problem of delivering students from
the schools to their bus stops can be handled similarly by reversing the directions of
travel.

Suppose that each bus completes two trips in the morning, one for each level of
school. We assume that the upper level schools are served on the first bus trip, with
the lower level schools served on the second trip. The first trip starts at the bus depot,
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picks up students at bus stops and delivers them to their upper school. The second
trip is similar, but it starts from an upper school, rather than the depot. (Extension
to more than two schools is straightforward; see [24].) Once the bus has completed
its morning trips, it returns to the bus depot to wait for the afternoon trips to bring
students home from school.

A non-mixed bus trip picks up students attending only a single school and Fig. 1a
shows two non-mixed bus trips where the first trip serves the upper level school
(denoted U) and the second trip serves the lower level school (denoted L). Bus stops
are shown as diamonds and the two numbers by each bus stop indicate the number of
students for the upper and the lower school, respectively. Each bus in this illustration
carries 44 students. To transport all students, the non-mixed trips visit six of the bus
stops twice since these stops have students for both schools.

A mixed bus trip picks up all students at each bus stop, regardless of the student’s
school. Once the bus is full, it proceeds to deliver the students to each of their assigned
schools. Figure 1b shows two mixed bus trips serving the same set of bus stops and
students as in Fig. 1a. No stop is visited twice with mixed bus trips and the benefit
by having only one trip visit the farthest bus stops is clear. However, non-mixed trips
require traveling between schools U and L in Fig. 1b, since both mixed bus trips carry
students for both schools. Figure 1a, b shows how the total bus travel distance can be
reduced with mixed routing as long as schools are not too far apart. With non-mixed
trips in Fig. 1a, the two buses make a total of 13 stops at bus stops and two stops at
schools; with mixed trips in Fig. 1b, the two buses visit a total of only 7 bus stops,

Fig. 1 a Two non-mixed bus
trips: The solid trip is the first
trip (for school U) and the
dashed trip is the second trip
(for school L). b Two mixed
bus trips: The solid trip is the
first trip, the dashed trip is the
second trip, and each trip
picks up all students at a stop
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but make 4 visits to schools. Thus, the main advantages of mixed bus trips is that
each bus stop is visited only once (assuming a bus stop does not have more students
than can fit on the bus) and fewer stops are required to fill the bus. However, the main
disadvantage stems from the travel at the end of the trip between schools with the
bus only partially full.

With mixed bus trips, we assume the number of students at a bus stop is less than
the bus capacity. (Otherwise, a bus could be filled by visiting one stop, leaving the
remaining students to be picked up on another mixed bus trip.) In our model, the
mixed bus trips visit the required schools in sequence at the end of the trip, without
picking up any students between schools. Models for alternative mixed trip policies
(e.g., when not all students at a stop are picked up, or when students are picked up
between the schools at the end of the trip) are left for future research.

3.1 Expected Distance for Non-mixed School Bus Trips

Each non-mixed bus trip serves a single school and consists of three components:
(i) travel from the trip origin (the bus depot or a school) to the first bus stop; (ii) travel
from the first bus stop to the last bus stop while picking up students, and (iii) travel
from the last bus stop on the trip to the school. The expected distance for each of these
components of travel can be formulated using continuous approximation modeling
that treats discrete locations (bus stops or schools) with a continuous spatial density
over the service region to derive expected distances. We assume the school district
is a compact region A, covering an area A, and use L and U to indicate lower and
upper level schools, respectively. Let L be the set of indices for lower level schools,
where L = {1, 2, . . ., |L|} and U be the set of indices for upper level schools, where
U = {|L + 1|, . . ., |L| + |U |}. Then, let set J = L ∪ U be the set of indices of all
schools. The subscript j denotes a particular school. Each school is assumed to serve
a compact subregion of A, where school j serves region A j of area A j , and the school
subregions for each level fully cover A:

� j∈L A j = � j∈U A j = A. (1)

As is common in continuous approximation modeling, we assume the density of
bus stops is slowly varying over the region A j for each school. As in Campbell [8],
the expected distance of the first travel component (from the origin to the first bus
stop) for a non-mixed bus trip serving school j, is given by

DN
1 = K0(θ j )

√
A j , (2)

where θ j is the distance from the origin of the bus trip to the centroid of A j and
K0(θ j ) is a factor that depends on θ j and the metric. The K0 factor depends on the
distance between the origin or destination and the region A j , the shape of A j, and the
distance metric. We use the Euclidean metric throughout our analyses. In the special
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case where the bus trip origin is in the center of the region being served, then θ j = 0
and K0(θ j ) ≈ 0.383. When the bus trip origin is not in the center of the region being
served (i.e., θ j �= 0), then the K0 factors can be determined when region A j has a
regular shape such as a square, rectangle or circle from equations in Chap. 8 of Eilon
et al. [23]. For more general shapes and when the trip origin is outside the region A j ,
then Vaughan [64] provides the expression:

K0(θ j ) = θ j

[
1

√
A j

+
√

A j

8πθ2
j

]

. (3)

The expected travel distance for the third travel component (from the last bus stop
to the school) for a non-mixed bus trip serving school j is formulated similarly as

DN
3 = K0(ω j )

√
A j , (4)

where ω j is the distance from school j to the centroid of A j .
The expected travel distance for the second travel component (while picking up

students between the first and last bus stop) for a non-mixed bus trip serving school j
is formulated as the product of the number of stops on the trip, m j , and a “peddling”
factor K1(m j ) divided by the square root of the density of stops (from [8]),

DN
2 = m j

K1(m j )√
N j
A j

, (5)

where N j is the number of bus stops for school j. The peddling factor K1(m j ) for
the Euclidean metric is given in Table 1 (from [8], based on formulae in [16, 17]).

The expected total distance for our case with two morning bus trips can be deter-
mined using Eqs. (2), (4) and (5) twice: first for the trip starting at the depot and
serving an upper level school, and then for the trip starting at an upper school and
serving the lower level school. We assume the bus depot is located at the center of
the school district (region A) and the schools of each level are similar and centrally
located in compact regions. We use subscript U or L to denote the level of school, so
NU and NL are the average number of upper and lower level bus stops per school,

Table 1 Trip length peddling
factors for multi-stop trips

No. of stops, m K1(m)

1 0

2 0.73

3 0.68

4 0.63

5 0.60

≥6 0.57

http://dx.doi.org/10.1007/978-3-319-12856-6_8
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respectively. Also, let EU and EL denote the number of upper and lower level schools,
respectively.

If there was the same number of students (i.e., bus riders) for each school level, then
there would be an equal number of bus trips for each level, However, in general the
number of students is not the same for each level, so one level will require more trips
than the other, which influences the number of buses required. For example, suppose
12 bus trips are required to transport all students for the upper level schools, but only
8 bus trips are required for the lower level schools. Using 12 buses to complete all the
upper level trips simultaneously, would leave 4 unused buses when completing the
8 lower level trips. A similar situation holds if fewer trips are required at the upper
level. Because one important goal for school bus transportation is to reduce the total
number of buses required, we consider the situation with the minimum number of
buses, so each bus makes two trips. Thus, in the example above, only 10 buses would
be used, with two buses making two trips for the upper level schools. Adopting such
a policy may require adjusting school start times to try to equalize the number of
students at each start time, or allowing bus riders to wait longer at their schools before
classes begin. More broadly, a large imbalance in the number of students at different
levels of schools may lead a school district to consider strategically reorganizing
grade levels between buildings and/or adjusting school start times.

In the following analyses we use the minimum number of buses and allow the
number of trips for each school level to differ. Let P to denote the total population
of bus riders for all schools, which is modeled as a slowly varying spatial density
of students (number of students per unit area) for each school. We use a fleet of
homogeneous school buses, each with effective capacity C students. If buses travel
full for a portion of the trip, then the minimum number of bus trips required is the
smallest integer greater than P/C, or P/C if we ignore the fractional component.
We let fU and fL denote the fraction of these students for the upper and lower level
schools, respectively. If the density of bus riders for a particular level of school varies
slowly over the district, then the regions served by the different schools of that level
will be approximately the same size. Of course, in practice the regions served by
different schools will vary based on school sizes, population dynamics, geographic
and political boundaries, etc. (and these also change over time). Finally, we assume,
as is common, that there are more lower schools than upper schools.

First consider when the population for the upper schools is greater than or equal
that for the lower schools, i.e., fU ≥ 0.5. There will be fU P/C upper school trips
starting from the center of the school district, so

DN
1

∼= 0.383
√

A.

These trips end at an upper level school so

DN
3

∼= 0.383
√

A/EU .
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For the travel distance picking up students, note that the average number of stops per
trip can be written as the bus capacity divided by the number of upper level students
per stop:

mu = c
fU P

NU EU

= C NU EU

fU P
. (6)

From (5) and (6), along with AU = A/EU , we have

DN
2 = mU

K1(mU )
√

NU
AU

= C

fU P

√
NU EU

√
A. (7)

The total expected distance for the fU P/C upper school trips to serve EU schools
is then given by the sum of Eqs. (2), (4) and (7)

RN
U

∼=
[

fU P

C
0.383

(
1 + 1√

EU

)
+ √

EU K1(mU )
√

NU

] √
A. (8)

There are also (1−fU )P/C lower school trips whose distance is given in an anal-
ogous fashion, but where an upper school is the trip origin. If this origin is in the
center of the region it serves of area A/EU , then the distance for the lower school
trips is

RN
L

∼=
[
(1 − fU )P

C
0.383

(
1√
EU

+ 1√
EL

)
+ √

EL K1(mL)
√

NL

] √
A. (9)

Equation (9) is analogous to Eq. (8) with L replacing U, except for the first com-
ponent of travel where the upper school, rather than the depot, serves as the origin.
To return all buses to the depot adds a distance of

0.383
√

A
P

2C
,

so the total distance when fU ≥ 0.5 is

RN
U + RN

L
∼=

[
P

C
0.383

[
1

2
+ 1√

EU
+ 1√

EL
+ fU

(
1 − 1√

EL

)]

+√
EU K1(mU )

√
NU + √

EL K1(mL)
√

NL

] √
A. (10)

Now consider when the population for the upper schools is less than for the
lower schools so fU < 0.5. There will be fU P/C upper school trips whose distance
is given by Eq. (8), and these buses will also make fU P/C lower school trips with a
distance similar to (9), but with the population fU P/C, instead of (1−fU )P/C. Because
fU < 0.5, there will be an additional (1–2fU )P/C trips just for the lower schools that
will start at the depot and whose distance is given similar to (8). With the return to
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the depot of all buses, the net result is that the total distance when fU < 0.5 is

RN
U + RN

L
∼=

[
P

C
0.383

[
3

2
+ 1√

EL
− fU

(
1 − 2√

EU
+ 1√

EL

)]

+√
EU K1(mU )

√
NU + √

EL K1(mL)
√

NL

] √
A. (11)

3.2 Expected Distance for Mixed School Bus Trips

For mixed school bus trips, each bus stop is visited only once and all students at that
stop are picked up. (Each bus stop has students associated with only a single school
at each level.) Each mixed bus trip will then visit both an upper and a lower level
school to deliver students. The number of bus stops with mixed bus trips, denoted
�M, is likely to be less than the number of bus stops with non-mixed trips, denoted
�N, where the total number of bus stops with the non-mixed policy is just the sum
of the bus stops for each type of school:

�N ∼= NU EU + NL EL , (12)

where the approximation is good when the schools at each level have approximately
the same number of stops. In practice, the same physical location is often used as
a bus stop for different levels of schools, so many of the bus stops coincide, and in
general max {NU EU , NL EL} ≤ �M ≤ �N. If buses are full at some point on the
route, then the number of mixed trips can be approximated by �M/m, where m is the
average number of stops on a mixed bus trip, and no subscript is needed since bus
stops are no longer distinguished by school or school level.

Each mixed bus trip serves both a lower level school and an upper level school, and
includes three components: (i) travel from the trip origin (the bus depot or a school)
to the first bus stop; (ii) travel from the first bus stop to the last bus stop while picking
up students, and (iii) travel from the last bus stop on the trip to both schools to deliver
students. The expected distance of a mixed school bus trip is formulated similar that
for non-mixed bus trips, but the second component requires fewer stops since more
students are picked up at a stop, and the third component includes additional travel
between the upper and lower school at the end of the trip.

The expected travel distance of the first component (from the origin to the first
bus stop) of a mixed bus trip is

DM
1 = K0(θ)

√
A, (13)

where θ is the distance from the origin of the bus trip to the centroid of A. The
expected travel distance for the second component of a mixed bus trip is similar to
Eq. (5),
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DM
2 = m

K1(m)
√

�M

A

. (14)

The expected travel distance for the third component for a mixed bus trip is

DM
3 = K0(ω)

√
Aω + dist U L , (15)

where ω is the distance from the first school visited to the centroid of its school
region and distUL is the distance between the upper and lower school visited at the
end of the trip.

The expected total distance for our case with two morning bus trips can be deter-
mined using Eqs. (13)–(15): first for the trip starting at the depot, and then for the
trip starting at a school. To illustrate the mixed trip distance model with two levels
of schools (upper and lower schools), we assume the lower level school is visited
first. Therefore, the first trip ends at the upper school, where the second trip begins
(instead of at the depot). The expected distance for a mixed trip is formulated similar
to that for a non-mixed trip as above, but the fraction of upper and lower school
students is no longer a factor as all students at a stop are picked up with the single
bus visit. Thus, the expected distance of a mixed bus trip starting at the depot is

RM1 =
[

0.383

(
1 + 1√

EU
+ 1√

EL

)
+ mK1(m)

1√
�M

] √
A. (16)

The second mixed trip starts at an upper school, so when this is in the center of a
region of area A/EU , then the distance for this second mixed trip is

RM2 =
[

0.383

(
2√
EU

+ 1√
EL

)
+ mK1(m)

1√
�M

]√
A. (17)

When each bus makes two trips (one trip for each school level), then the minimum
number of buses required would be approximately P/2C, and the total travel distance
for all trips, with half from (16) and half from (17), is

RM =
[

0.383
P

C

(
0.5 + 1.5√

EU
+ 1√

EL

)
+ K1(m)

√
�M

] √
A. (18)

To return the buses to the depot would add an average distance of

0.383
√

A × P

2C

and make the total distance for all mixed bus trips:

RM =
[

0.383
P

C

(
1 + 1.5√

EU
+ 1√

EL

)
+ K1(m)

√
�M

] √
A. (19)
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3.3 Comparison of Mixed and Non-mixed Routing

The analytical models of non-mixed and mixed school bus travel distance derived
above depend on only a few basic parameters that describe the setting and the opera-
tions of the school district. For non-mixed trips, the expected distance also depends
on the distribution of students between the two school levels (i.e., fU ), while for
mixed trips the distribution of students between different school levels is not a factor
as all students at a stop are picked up together. However, with mixed trips the degree
to which stops are shared between schools and the distance between the upper and
lower schools are important factors (see Eq. (19)). To help identify the conditions
under which mixed trips are likely to be beneficial, we analyzed how the savings
from mixed trips are affected by key problem parameters.

For our general analysis, consider a baseline school district serving a geographic
area of A = 30 square miles with EU = 4 upper level schools and EL = 8 lower level
schools, where each school is centrally located in a compact region. There are P =
2,000 student bus riders with NU = 100 school bus stops per upper level school and
NL = 50 school bus stops per lower level school. Buses have capacity C = 50, so (at
least) 40 bus trips are required to transport all 2000 students.

The total distance using non-mixed trips is given by Eq. (10) or (11), depending
on whether the majority of students are for the upper or lower schools. The total
distance using mixed trips is given in Eq. (19). To assess how the estimated savings
from mixed trips are affected by proportion of shared bus stops, we analyzed varying
degrees of sharing of stops with a different mix of students for the two school levels.
In our baseline school district there are �N = 800 non-mixed bus stops with 400
for each level of school. With mixed trips, when 100 % of upper and lower school
stops are shared, then there are �M = 400 mixed bus stops. Similarly, when 50 % of
upper and lower schools stops are shared, then there are �M ≈ 533 mixed bus stops;
and when 0 % of upper and lower school stops are shared, then there are �M = 800
mixed bus stops.

Figure 2 plots the expected total travel distance of the mixed and non-mixed trips
for the baseline school district, but with varying numbers of bus stops. The dashed
curve shows the expected distance for non-mixed trips, while the other three curves
show the expected distance for mixed trips with 0, 50 and 100 % shared bus stops.
The three mixed trip curves document the reduced travel distance with an increasing
degree of sharing of the bus stops. This figure also illustrates how decreasing the
number of bus stops decreases the travel distance, especially with non-mixed trips
where the slope of the distance curve is steeper than for the distance curves for mixed
trips. The intersection of the dashed curve for non-mixed trips with the other curves
indicates the transition from non-mixed to mixed trips. With few bus stops, non-mixed
trips (dashed line) provide the lowest travel distance. However, as the number of bus
stops increases, then mixed trips are increasingly preferred, especially when there
is a large percentage of shared stops. For the baseline case of 800 bus stops, mixed
trips are better even with 0 % shared stops. Note that consolidation of bus stops to
produce fewer stops (which reduces travel distances), usually produces more shared
stops, which further reduces travel distances for mixed routes.
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Fig. 2 Travel distance as a function of the number of bus stops

Fig. 3 The impact of shared stops between school levels

Figure 3 shows the percentage savings in travel distance from mixed trips as a
function of the fraction of students attending upper schools. The three curves in the
figure show the savings with 0, 50 and 100 % shared stops. For the baseline school
district with 100 % shared stops, mixed bus trips reduce travel distance by about
10–13 %, compared to a non-mixed trips, depending on the distribution of the pop-
ulation between the school levels. The benefits from a mixed policy decrease as the
degree of sharing of bus stops declines, but increase slightly with the deviation from
an even mix of students between upper and lower schools. Note that with a 50–50
mix of students and 0 % shared stops, there is essentially no benefit from mixed trips.

Figure 4 shows the percentage savings in travel distance from mixed trips as a
function of the fraction of students attending upper schools for different numbers of
students in the district, while keeping the number of bus stops constant and with 50 %
shared stops. These results are also with the baseline of four upper level schools and
eight lower level schools. The curves in Fig. 4 show the how the savings increase



Modeling Mixed Load School Bus Routing 17

Fig. 4 The impact of the number of students within a district: 50 % shared stops

up to almost 20 % with only 1000 students. This is due to the increasing effectiveness
of the mixed trips in visiting fewer stops to fill the bus; non-mixed trips must visit
many more stops to fill the bus when each stop has very few students. The results are
very similar with 100 % shared stops, but savings are 3–5 % greater than in Fig. 4.

The results as exemplified above suggest how mixed trips can reduce travel dis-
tance for a school district. In addition to the influences highlighted above, the mag-
nitude of the benefits from mixed routing depends on the travel distance between the
schools at the end of each trip. The continuous approximation models use expected
travel distances based on the schools being randomly located in the district and cen-
trally located relative to the students they serve. Therefore, when there are only a
few schools, the expected distances between schools can be quite large. In practice,
several schools are often located close together to provide efficiencies in operations
and joint access to facilities (such as athletic fields). In these cases, the travel dis-
tance between schools could be quite small and the benefits from mixed trips would
be even greater than suggested above. See Ellegood et al. [24] for a more detailed
analysis of school locations.

The results of the strategic modeling suggest that mixed school bus trips have the
potential to reduce travel distances, especially in larger districts with few students per
stop and when a large percentage of stops are shared. These are characteristics of rural
school districts where students live far apart; hence there are few students per bus stop
and the bus stop density is low, and districts cover large geographic regions. While
the continuous approximation modeling is useful to suggest that mixed trips may be
beneficial, this approach does not provide implementable routes. So to complement
the strategic analysis, we develop a heuristic to determine mixed load bus routes
where bus stops and schools are specified as discrete points.
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4 Discrete Mixed Trip Bus Routing Algorithm

A discrete school bus routing problem consists of a set of students at bus stops, a
set of schools, a depot (sometimes co-located with a school), a set of operational
parameters, and a set of capacitated buses. Diverging from the continuous approx-
imation approach, the discrete problem models the depot, the bus stops, and the
schools as discrete points in a service area. The distances between these points may
be calculated using the point coordinates and a particular metric (e.g., straight line
distances), via shortest paths on a network, or from travel on the underlying road
network. Travel times between these points are then estimated based on the travel
distance. The goal of our discrete model for mixed trip school bus routing is to create
a near-optimal set of bus routes that ensure that each student is delivered to their
school within a specified time window. We also include a riding time limit for each
student to prevent the creation of excessively long routes. Thus, unlike the contin-
uous approximation modeling, in this section the time windows for delivery to the
schools will be respected, so the solution involves both routing and scheduling of
the bus trips. The most common criteria pursued in school bus routing problems
are minimization of total travel distance or the total number of buses required. Our
hybrid algorithm addresses both of these criteria, though with greater attention to
minimizing the total travel distance.

We have developed a three-phase heuristic solution algorithm for the mixed
trip school bus routing problem in the spirit of Thangiah et al. [60], where indi-
vidual heuristic components for route creation and route improvement are used in
sequence. The first phase of the heuristic is a mixed load implementation of the
Savings Method [13], followed by two distance-based improvement heuristics. The
second phase of the heuristic seeks to reduce the number of bus trips by combining
shorter bus trips when favorable, and it also incorporates the distance improvement
procedures utilized in phase one. This phase is repeated until no improvement occurs.
The output of this phase is a set of possibly mixed load bus trips that are then linked
together in the third phase of the heuristic to reduce the number of buses required. In
each phase of the algorithm, no improvement is accepted unless the bus capacity and
maximum student ride times are respected. The algorithm is summarized in Fig. 5.

The construction heuristic of phase 1 begins with a modified implementation of
the Clarke and Wright savings heuristic, similar to the approach in Russell and Morrel
(1986). In this heuristic, a positive “savings” value is generated for each pair of bus
stops and these are sorted in decreasing order. Preliminary bus trips are created which
include the trip origin, a bus stop, and the destination school for the students at that
stop. These preliminary trips are iteratively merged in decreasing order of savings
until either all of the bus stops have been assigned to a trip, or all savings values
have been considered. The mergers allow one trip to be added to the end of the other,
and whenever there are two schools involved these schools are visited in sequence
at the end of the trip. Thus, with two different schools to be visited there are four
possible configurations of the resulting merged bus trip depending on which original
trip comes first and which school is visited first. Figure 6 illustrates this procedure
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Phase 1: Construct a set of mixed load bus trips
1a. Modified Clark & Wright trip construction heuristic 
1b. Two-Opt distance improvement heuristic
1c. Stop Exchange distance improvement heuristic

Phase 2: Reduce the number of trips and total distance
While the set of trips is still changing: 

Trip Remove bus reduction heuristic
Two-Opt distance improvement heuristic
Stop Exchange distance improvement heuristic
Two-to-one bus reduction heuristic
Two-Opt distance improvement heuristic
Stop Exchange distance improvement heuristic
Update the set of bus trips

End

Phase 3: Link bus trips to form bus routes

loop

Fig. 5 Three-phase mixed load SBRP heuristic

origin

origin

origin

Bus stop

School A

School B

(a)

(b)

(c)

Fig. 6 Savings procedure for mixed trips. a Original two trips. b One trip: School A before School
B. c One trip: School B before School A

with two of the four possible configurations for merging trips that have two different
destination schools.
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Figure 6a shows two original trips from the same origin, but to different schools.
Figure 6b, c shows two possible merged trips where the (lower) two-stop original
trip precedes the (upper) one-stop original trip. In Fig. 6b, the two trips are merged
to form a single trip visiting school A prior to school B. Figure 6c has the same
sequence of stops from merging the trips, but here school B is visited before school
A. The other two configurations possible for savings calculations with mixed trips
insert the single bus stop of the upper original trip before the two stops in the lower
original trip.

Once the savings procedure creates initial trips, they are processed with two
improvement heuristics. The well-known two-opt heuristic [15] is an improvement
procedure that removes two non-adjacent arcs in a trip and replaces them with two
new arcs that recreate the trip. The stop exchange heuristic attempts to improve
the preliminary set of bus trips by switching two bus stops between a pair of trips.
The exchange is accepted if the resulting total distance for the two new trips is less
than the total distance for the two initial trips and if both new trips are feasible.
A bus stop can be moved to a new trip only if that trip is already visiting the school
associated with the stop being switched. Note that the heuristic does not distinguish
between mixed and non-mixed trips when performing exchanges, but does ensure the
feasibility requirements are respected. Both of these improvement heuristics are used
to improve the initial trips. See Campbell et al. [9] for details on the implementation.

The second phase of the heuristic seeks to reduce the number of trips and the total
travel distance by iterating through a series of trip reduction and distance reduction
heuristics. First, a trip reduction heuristic is employed with the goal of eliminating
any trip that utilizes less than half of the capacity of a bus by relocating their stops to
other trips. Stops are removed from short trips and relocated to other trips that have the
available capacity and will not violate the trip time limit or the school time window.
If an entire trip can be eliminated, then the number of buses required is reduced. This
is followed by application of the two-opt heuristic and the stop exchange heuristic,
as described above.

Next, the two-to-one bus reduction heuristic is used to merge two underutilized
trips into a single (longer) trip. This heuristic reorders the stops from two trips to
create a single trip visiting the same school(s). As before, the bus capacity, trip
travel time limit and school time windows must be obeyed in the resulting trip. This
procedure is followed by application of the two-opt heuristic and the stop exchange
heuristic, as described above. At the end of the second phase of the heuristic, the
algorithm has created a set of bus trips where each originates at the depot, visits one
or more bus stops, and then visits the necessary schools.

The third and final phase of the heuristic is designed to sequentially link bus trips
to form bus routes in an effort to reduce the number of buses required. Thus, once a
trip from phase two has been completed and a bus is empty at a school, rather than
having the bus return to the depot it attempts to travel directly to a bus stop to begin
another trip. To accomplish this, we implement a binary integer programming model
to minimize the number of buses.

We formulate this trip linking problem on a directed graph G = (V, A) where
the vertex set V = {�}

⋃
T consists of the depot � and the set of vertices T that
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correspond to the bus trips. Each trip is represented as a single vertex, and the distance
di j represents the distance from the last stop of trip i∈T, which is at a school, to the
first bus stop of trip j∈T. The asymmetry of the distance matrix (di j �= d ji ) is an
important aspect of this problem, because the first and last stops of two trips i and j
are generally not the same. To determine the trip linkages, a binary decision variable
Xi j ∈ {0, 1} equals one if bus trip i∈T immediately precedes bus trip j∈T on a bus
route, and 0 otherwise. Note that when

� j∈T Xi j = � j∈T X ji = 0,

then trip i is not linked to any other trip.
Trip Linking Model

maximize �i∈T � j∈T Xi j (20)

subject to

�i∈T Xi j ≤ 1 ∀ j ∈ T (21)

� j∈T Xi j ≤ 1 ∀i ∈ T (22)

Xii = 0 ∀i ∈ T (23)

Xi j ∈ {0, 1} ∀i, j ∈ N (24)

Objective (20) maximizes the total number of trip linkages in the solution. This
minimizes the number of buses required (for the set of input trips) because each
linkage reduces the number of trips by one. Constraint (21) ensures that each trip can
have at most one immediate predecessor trip and constraint (22) ensures that each
trip can have at most one immediate successor trip. Constraint (23) prevents trips
from being linked to themselves, and constraint (24) establishes a binary restriction
on the decision variable. The trip linking model takes as input a set of mixed bus
trips created in the first two phases of the heuristic. The output is a set of mixed load
routes to be driven by a bus, where each route consists of one or more mixed load
trips.

To test the three-phase heuristic algorithm, we considered the benchmark mixed
load school bus routing problems in Park et al. [48]. We solved 16 instances from
their “random” data set where the number of schools ranges from 6 to 100 and the
number of bus stops ranges from 250 to 2000. The depot is centrally located, while
the schools and bus stops are located randomly across a 20 × 20 mile square region.
Each school has a randomly chosen earliest start time between 7:00 and 11:00 a.m.,
and a time window for arrival of buses between 10 and 30 min long. The number
of students at each bus stop was generated randomly and the capacity of the bus is
set at 66. The loading and unloading (service) times for students are given by the
regression models in Braca et al. [6]. Note that the random assignment of school start
times is rather unrealistic as a school district will typically coordinate school start
times to facilitate bus transportation.



22 J.F. Campbell et al.

Table 2 Results on random benchmark data sets with 45 min maximum ride time

Park et al. [48–50] Three phase heuristic

Data set Stops Schools Distance #Buses Distance #Buses

RSRB01 250 6 11,954,142 30 8,351,909 34

RSRB02 250 12 12,262,879 29 9,427,990 26

RSRB03 500 12 21,834,065 56 17,590,183 54

RSRB04 500 25 24,172,922 59 14,918,581 45

RSRB05 1,000 25 40,008,910 98 31,228,776 108

RSRB06 1,000 50 43,981,860 89 28,956,790 77

RSRB07 2,000 50 77,579,541 154 56,239,960 174

RSRB08 2,000 100 82,475,521 157 66,344,133 165

Average 938 35 39,283,730 84 29,132,290 85

Table 3 Percent savings on
random data sets with 45 min
maximum ride time

Percent savings

Data set Distance (%) #Buses (%) CPU time (s)

RSRB01 30 −13 31.3

RSRB02 23 10 16.2

RSRB03 19 4 78.7

RSRB04 38 24 59.7

RSRB05 22 −10 398.3

RSRB06 34 13 148.7

RSRB07 28 −13 1868.9

RSRB08 20 −5 2678.6

Average 27 1 660.1

Tables 2, 3, 4 and 5 display the results for the algorithm with a maximum riding
time of 45 and 90 min for any student. The first column of the tables displays the
name of the data set. The second and third columns of Tables 2 and 4 indicate the
number of bus stops and schools. The fourth and fifth columns of Tables 2 and 4
provide the travel distance and the number of buses from Park et al. [49, 50], the best
known results for this dataset in the literature. Park et al. [48] presented a heuristic to
minimize the number of buses required and we obtained their detailed results for each
bus route, and then generated the corresponding travel distance shown in column 4.
Columns 6 and 7 of Tables 2 and 4 provide the travel distance and the number of
buses from our heuristic. Tables 3 and 5 show the percentage savings in distance and
buses from the three-phase heuristic, relative to the values from Park et al. [48–50].
The last column of Tables 3 and 5 provides the cpu time for the three-phase heuristic,
which seems quite reasonable given that routes are designed at the beginning of the
school year. Bold numbers in the table designate the minimum values.

Figure 7 plots the percentage savings in travel distance and buses for the three-
phase heuristic for the problems in Tables 2, 3, 4 and 5. These results show how the
heuristic consistently finds bus trips with shorter total travel distance, averaging 27
and 19 % shorter for the problems with a 45 and 90 min ride time, respectively.
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Table 4 Results on random benchmark data sets with 90 min maximum ride time

Park et al. [48–50] Three phase heuristic

Data set Stops Schools Distance #Buses Distance #Buses

RSRB01 250 6 10,707,222 27 8,540,572 33

RSRB02 250 12 12,079,821 23 9,427,990 26

RSRB03 500 12 19,250,780 47 17,590,183 54

RSRB04 500 25 20,846,180 46 14,918,581 45

RSRB05 1,000 25 35,792,599 79 31,228,776 108

RSRB06 1,000 50 38,847,232 72 28,956,790 77

RSRB07 2,000 50 69,245,736 134 56,239,960 174

RSRB08 2,000 100 78,390,582 142 66,344,133 165

Average 938 35 35,645,019 71 29,155,873 85

Table 5 Percent savings on
random data sets with 90 min
maximum ride time

Percent savings

Data set Distance (%) #Buses (%) CPU time (s)

RSRB01 20 −22 48.9

RSRB02 22 −13 16.2

RSRB03 9 −15 78.7

RSRB04 28 2 59.7

RSRB05 13 −37 398.3

RSRB06 25 −7 148.7

RSRB07 19 −30 1868.9

RSRB08 15 −16 2678.6

Average 19 −17 662.3

In terms of the number of buses required, the three-phase heuristic in aggregate
saves 1 bus (<1 %) with the 45 min ride time limit, but requires 17 % more buses
with the 90 min time limit. The strong performance for travel distance relative to
Park et al. [49, 50] is not surprising given our primary focus on minimizing travel
distance with mixed trips, compared to their focus on minimizing the number of
buses. However, the attention in the three-phase heuristic to minimizing the number
of buses does pay dividends, especially with the tighter ride time limits. Figure 7
does suggest the tradeoff between buses and travel distance as greater savings in
travel distance does seem associated with using more buses. However, care is needed
when interpreting these results as they are relative to the solutions in Park et al. [49,
50], whose performance may depend on the problem parameters (number of schools,
ride time limit, etc.). These results do show that the three-phase heuristic performs
quite well in its primary objective of minimizing travel distance with mixed trips,
and also does well to minimize the number of buses required with short ride time
limits. However, with the longer ride time limits, the procedure in Park et al. [48] is
better able to exploit the additional trip times to reduce the number of buses, though
at the expense of greater travel distances.
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Fig. 7 Percentage savings
compared to benchmark
results
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5 Case Study

This section describes a case study for the Windsor School District (WSD), a semi-
rural school district located approximately 25 miles south of St. Louis, Missouri, to
demonstrate the applicability of the models and some of the real-world complications
in school bus routing. The school district has approximately 3,000 students, 2,300
of whom are transported to and from school by school buses. WSD has five schools;
Windsor High School (HS) for grades 9–12, Windsor Middle School (MS) for grades
6–8, Windsor Intermediate School (IS) for grades 3–5, Windsor Elementary School
(WE) for grades Pre K-2, and Freer Elementary School (FE) for grades Pre K-3. Note
that this includes four levels of schools and an overlap in grade 3 between IS and
FE. The school district is approximately a rectangle of 17.1 square miles, measuring
5.25 miles north-to-south and 3.25 miles east-to-west. For this case study, the buses
and the student population being served by special-needs buses are excluded. One
complication for WSD concerns the students in grade 3. Elementary school students
in the southwest quadrant of the district attend nearby school FE for grades Pre K-3,
but all other elementary students attend school WE for grades Pre K-2, and then
move to the intermediate school IS for grade 3. Another interesting feature of WSD
is that schools HS, MS and IS are very close together in the east-central part of the
district, with WE and the bus depot also located nearby. Table 6 provides basic data
on the grades and bus riders for each school. The mix of schools and overlapping
assignments of grades reflects the complexity of real-world school planning.

Currently WSD utilizes mixed routing with 22 buses, with each bus completing
two trips in the morning and two trips in the afternoon. We concentrate on the
morning trips in the case study. Currently, the first trip for all 22 buses is a mixed trip
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Table 6 Schools, grades and bus riders for the Windsor School District

HS MS IS WE FE Total

Grades 9–12 6–8 3–5 Pre-K-2 Pre-K-3 -

Bus rider population 484 806 405 387 219 2,301

for students attending MS and HS, with each trip starting at the bus depot, making an
average 8.4 stops picking up approximately 7 students per stop, and then transporting
the students to MS first, and then to HS. All second trips for students attending IS or
an elementary school begin at HS, with eight of the mixed trips serving the students
for IS and FE (with an average of 6.4 students per stop) and the remaining fourteen
mixed trips serving students for IS and WE (with an average of 5.2 students per stop).

The current policy in WSD can be analyzed using the continuous approximation
travel distance equations developed in this research. To calculate the total expected
distance for the current WSD mixed bus trips, we use the actual locations of the bus
depot and the schools, but assume that the bus stops are randomly located over the
district. The current mixed routing policy for WSD has a total expected travel distance
from the continuous approximation models for both sets of 22 trips of 296.6 miles
(see [9] for details). In addition to analyzing the current policy for WSD, we also
analyzed serving all students with non-mixed trips, where the first set of 22 trips
consists of 8 non-mixed HS trips and 14 non-mixed MS trips, and then the second
set of 22 trips consists of 10 non-mixed trips for IS, 8 non-mixed trips for WE, and
4 non-mixed trips for FE. This produced a total expected travel distance only 1 %
greater than with mixed trips. A closer examination of the travel distance for each
school revealed a long distance travel between the schools in the mixed trips serving
far apart schools IS and FE, due to the start time for IS preceding that for FE. Thus, FE
students in the southwest were being transported across the district to IS to meet its
earlier start time, before returning back to FE (with the later start time). To eliminate
this long travel distance for the FE students, we considered a hybrid strategy where
the first 22 trips are mixed trips for HS and MS, but the second trips are split into 14
mixed trips for nearby schools IS and WE, and then 4 non-mixed trips for FE and 4
non-mixed trips for IS. This hybrid strategy produced savings in travel distance of
8.5 %, which shows the benefits of tailoring school bus transportation to the specific
details in the school district, especially school locations. These results suggest that
replacing the current transportation policy with a non-mixed policy throughout the
district will result in a negligible change in the total distance travelled, but using a
hybrid policy could result in a noticeable reduction in the total distance travelled
(about 8.5 %).

We also applied the three-phase heuristic to develop discrete mixed trip bus routes
for WSD. We first geocoded the bus stop and school locations and calculated the
road travel distance using the shortest path through the road network between pairs
of locations. Then, we analyzed the current bus routes in WSD by modeling each
of the routes for the 22 buses to determine the total travel distance was 434.9 miles.
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As expected, this is considerably larger than the distance from the continuous approxi-
mation models as that used straight-line distances and the heuristic uses shortest paths
on the actual road network. Lengthy travel was observed again for back-and-forth
travel between FE and IS due to the start time conflict for these schools. We then used
the three-phase heuristic to determine the bus routes, and it produced much shorter
routes totaling 329.2 miles with only 17 buses. Interestingly, the heuristic produced
non-mixed trips routes serving FE and mixed trips serving the other schools, which
reflects the hybrid strategy that was suggested to be beneficial by the continuous
approximation modeling. These hybrid routes from the discrete heuristic used fewer
buses than the current routes in WSD (17 vs. 22), and they respected the 45 min
ride time restriction and school start times employed by WSD. However, the routes
from the heuristic were of longer duration and carried more students than the routes
currently used by WSD, as the heuristic tended to better fill the buses. We acknowl-
edge though that there may be good practical reasons to design somewhat shorter
routes, so that some unexpected delays en route (e.g., traffic congestion, longer than
expected loading) can be accommodated without making the students arrive late at
school. We also used the three-phase heuristic with an additional restriction that all
trips should be non-mixed, and this produced routes requiring 21 buses and a total
distance of 354.8 miles, an increase of 7.8 % compared to the mixed trips. So in
summary, the results for the discrete model with the three-phase heuristic for the
WSD case study are in general agreement with the findings from the continuous
approximation modeling in showing the benefits of mixed trips and the value of a
hybrid strategy. However, we do underline that caution is needed when comparing
the travel distances from the continuous approximation model and the heuristic due
to the different ways of measuring distance. Note also that the shortest path distances
used in the heuristic may understate actual bus travel distances, because the large
buses may not always follow shortest paths on the roads for safety reasons.

6 Conclusions and Future Research

School bus routing is an important part of student transportation and mixed loading
is one simple technique that may help improve bus routes and reduce costs for school
districts. In this paper, we describe our research using analytical continuous approx-
imation models and a discrete three-phase heuristic to evaluate mixed bus trips. The
continuous approximation approach uses very limited data to approximate expected
school bus travel distances. These strategic models help to identify conditions under
which mixed school bus trips may be beneficial. Results showed that mixed trips
are more beneficial when students are sparsely distributed, when there are many bus
stops, and when a large percentage of stops are shared. The results also show that
mixed routing is more beneficial when the distribution of students between schools
is uneven.

With the discrete mixed load bus routing heuristic we generated actual bus routes
and compared their performance to best known results on large benchmark problems.
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Our approach created routes with considerably less travel distance than another
method from the literature, though the number of buses required was often larger.
Results showed the tradeoff between minimizing the number of buses, which may
require some longer routes than desired, and minimizing travel distance, but with
more buses. A case study was presented to demonstrate the applicability of both
modeling approaches in practice, and results for the case study were quite similar
for both modeling approaches.

A synthesis of results suggests that mixed school bus trips may often be able to
reduce travel distances for schools that are not too far apart, and that mixed trips are
likely to be more beneficial in rural school districts due to the low density of stops and
the fewer students per stop. Further, a hybrid routing strategy may often be desirable,
where nearby schools can be served on mixed trips but widely separated schools are
served using non-mixed trips. More generally, we have shown how the continuous
approximation models and discrete routing algorithms can be used together to provide
valuable insights for school bus routing.

We must note that our research focused primarily on modeling the school bus travel
distance, as that is an important financial concern. However, actual school bus routes
are subject to a variety of complicated practical and local issues, including safety, road
type, bus route length, stop location, student age conflicts, walking distance, etc. [43].
Also, many educational issues are relevant for school bus routing, because school
bus transportation policies (route lengths, start times, composition of ridership, etc.)
may influence educational achievement. This is certainly an issue of importance
for school transportation personnel, educators, students and their parents, but it is
beyond the scope of this research. So, we must emphasize that while this research has
demonstrated the promise from mixed load school bus trips in terms of reducing bus
travel distance, these improvements are not guaranteed in any particular setting and
extrapolation of results from one district to another is not recommended. However,
the continuous approximation modeling approach provides a relatively easy way to
assess the potential improvements from mixed trips.

Several promising areas of future research stem from the ideas in this paper. One
extension would be to consider different versions of mixed bus trips where students
are picked up between the schools at the end of the trip. Another area of future
research involves analyzing bus stop consolidation policies, since combining bus
stops can reduce the bus travel distance, though at the added expense of students
traveling (e.g., walking) farther to reach the bus stop. Fewer bus stops may increase
the inconvenience of bus riding and lead to more students choosing alternative means
of getting to school (riding a bike, driving or riding with parents or others). Thus,
the model choice decision for the trip to and from school is an interesting area where
utility models with mode choice may be useful.
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Some Numerical Studies for a Complicated
Hub Location Problem

J. Fabian Meier and Uwe Clausen

Abstract We consider a complicated hub location problem which includes multi-
allocation, different hub sizes and different transport volumes on different week
days. Furthermore, we consider transport costs per vehicle and not per volume which
transforms the cost function into a step function and makes the problem numerically
very hard. In our previous work we developed a heuristic approach which we now
want to compare to CPLEX results for general and simplified models.

1 Introduction

Hub location problems have become classic challenges in the area of discrete opti-
mization. The original problems, as they are very well described in [1], use a graph
of depots which are connected by transport arcs. The task is to transport a given
set of shipments from their sources to their sinks in a cost-optimal way. For that,
some depots are equipped as hubs; then one assigns to every shipment a path from
its source to its sink using only hubs in between. The total cost is the sum of the
transport costs (for every shipment on every arc it uses) and the costs for the hubs
(some problems require a fixed number of hubs p which is equivalent to assigning
zero cost to the first p hubs and infinite costs to the following ones).

Themain idea of hub location problems is economies of scale: Bundling shipments
usually decreases the unit transport costs and may hence be beneficial even if it
requires detours and costly facilities. Classic hub location problems usually assume
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fixed unit costs for each transport arc; to simulate economies of scale they reduce the
unit costs on hub-hub-connections by a factor α because “usually” these arcs carry
more overall weight. This simplification increases the solvability but also limits the
applicability of the model.

We investigate the problem from the point of viewof a less-than-truckload network
planner. A large number of small shipments has to be transported from their source
depots to their sink depots. A vehicle can transport many of these shipments, so that
it is advantageous to bundle shipments for transport: Instead of direct transport we
establish hubs as transhipment points. We ask the strategic questions:

• Where should hubs be established?
• What transhipment capacities should be assigned to them?

To give a cost-efficient answer to such questions, we have to balance the strategic
costs of establishing transhipment capacitieswith the prospective tactical/operational
costs of the transport. Our model incorporates the following challenges:

• Truck-based transport costs. If we send a truck from A to B, the resulting cost
depends on general vehicle costs, driver salary and fuel consumption. The filling
quota of the truck has little influence on the fuel consumption and nearly no
influence on the other terms. Thus we obtain a good approximation of the real
costs if we measure transport costs “by vehicle” instead of “by volume” [2]. On
each connection A → B, the cost per volume becomes a step function. Such
vehicle based costs were already considered in the mathematical models of [8, 9].

• Multi-allocation. Every shipment can be independently routed, so that each depot
can be connected to many others. If it turns out to be cheaper to have some direct
transports, this is also possible.

• A weekday-based schedule. We consider a European network where the travel time
between two depots/hubs is one to four days. As our shipping volumes depend on
the day of the week, we use a cyclic model with five time slices to represent the
working days.

• Variable hub sizes. We assign a transhipment to every possible hub. It can be
chosen on a continuous scale. Hubs of different capacities were considered by [7],
but our weekly schedule adds an additional flavour: Strategic decisions have to be
equal for every day of the week, i.e. the transhipment capacity of a hub is the same
on every week day.

• Buffering. We want to analyse the effect of buffering, i.e. the possibility of storing
a shipment in a hub for a day to get a cheaper transport on the next day. Therefore,
we consider a scenario with a separate buffering capacity for every hub, which can
also be chosen on a continuous scale at the strategic level. Buffering is considered
as a “transport in time” lasting one day. In principle, buffering actions can be
chained, but as our real world instances have strict transport time limits this is
usually not possible.

Section2 will define and discuss mathematical models for the strategic planning
problem that was just outlined. These have a huge number of binary variables, so
that we define restricted models in Sect. 3 that are easier to solve. Section4 briefly
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describes our heuristic approach which is detailed in [3]. In Sect. 5, we state and
discuss the numerical results of both the MIP approaches and the heuristic approach.
A short conclusion completes the paper.

2 The Mathematical Models

Westartwith a given set of D of depots. The depots are all interconnected by transport
connections. A transport connection can be used by shipments to get from one depot
to another; it has a travel time (in days) and cost factor which is the cost per vehicle on
this connection. We consider a homogeneous fleet as one usually uses the maximal
allowed truck size on European connections. The situation can be depicted by a
directed graph: The nodes are formed by the (depot, weekday) pairs, and a transport
connection from depot A to depot B which needs n days connects (depotA, d) with
(depotB, d + n (mod 5)) for each weekday d (shown in Fig. 1).

Furthermore we have a large number of shipments. These shipments all have a
source depot, a sink depot, a volume and a maximal travel time. The routes can use
every depot for transhipment or buffering which is equipped with the appropriate hub
capacity. The transhipment capacities of the hubs have to be chosen large enough
to work for every weekday, i.e. they need to handle the maximal transhipment that
happens throughout the week. A route can consist of arbitrary many steps as long as
the maximal travel time is not exceeded.

There are two general approaches to model the routing of the shipments: A route-
based or a flow-based view.

In the route-based view, each possible route for a shipment is represented by a
binary variable from which exactly one has the value 1. Without any restrictions on

Fig. 1 The time expanded network: each arc represents a movement in space and (cyclic) time
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the possible paths, the number of variables is exponential in the number of edges of
the graph.Hence this kind ofmodel can only be sensibly appliedwhenwe have strong
restrictions on the number of possible paths (like in our paper [5] or in classical hub
location problems [1], where at most three edges per path were allowed) or apply an
approach like column generation. As column generation failed to give good results
in a simpler model with truck-based costs [6], we will not use this approach in the
general case, but wewill come back to it in the next section to build restrictedmodels.

The flow-based view is inspired by the multi-commodity flow problem, but
with the major difference that shipments cannot be split, so that we need a binary
variable for each (shipment, edge) pair, stating if the edge is used by the ship-
ment. As the number of commodities and the number of edges are each of order
(#depots)2 · (#days per week), we get approximately (#depots)4 · (#days per week)2
binary variables. Due to the maximal travel time of each shipment, some of these
variables can be set to zero in preprocessing.

Firstly, we will construct a mathematical model without shipment buffering, then
we will add this feature later. Let D be the set of depots and W = {0, 1, 2, 3, 4} be
the set of week days. Furthermore we have a set Q of shipments. For every q ∈ Q
we denote by qso ∈ D, qsi ∈ D, qday ∈ W , amq and timeq the source, sink, starting
day, amount and maximal travel time respectively.

The most important variable is the binary flow variable fqabw. It states whether
the shipment q ∈ Q uses the arc a → b, a �= b with starting day w. To form a flow
it has to fulfill the following three conditions (trab is the number of days to travel
from a to b):

∑

d∈D,d �=qso

fqqsodqday = 1 q ∈ Q (1)

∑

d∈D,d �=qsi,w∈W

fqdqsiw = 1 q ∈ Q (2)

∑

a∈D,a �=d

fqad(w−trad mod 5) =
∑

b∈D,b �=d

fqdbw

q ∈ Q, d ∈ D, w ∈ W, d �= qsi, d = qso ⇒ w �= qday (3)

Equation (1) states that each shipment leaves its source depot on the respective
day, while Eq. (2) indicates that each shipment has to reach the sink depot (on an
arbitrary week day). Equation (3) matches the flows for any other depot and time.
As the last parameter of f stands for the starting day, we have to reduce w on the left
hand side. To model the maximal travel time of each shipment we add the times of
all used edges (4):

∑

a �=b∈D,w∈W

fqabw · trab ≤ timeq q ∈ Q (4)
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Let us introduce some auxiliary variables: We define tabw to be the transport
volume on the edge a → b starting on day w, vabw the number of vehicles on that
edge, udw the total transhipment at depot d on day w and umax

d the maximum over w
of udw. These variables are defined by the Eqs. (5–8) (size is the size of a vehicle in
units of volume):

tabw =
∑

q∈Q

amq · fqabw a �= b ∈ D, w ∈ W (5)

vabw · size ≥ tabw a �= b ∈ D, w ∈ W (6)

udw =
∑

b∈D

tdbw −
∑

q∈Q:qso=d ,qday=w

amq d ∈ D, w ∈ W (7)

umax
d ≥ udw d ∈ D, w ∈ W (8)

Using the parameters truckcostab for the costs of using a truck on connection
a → b and transcostd for the strategic costs of having transhipment capacity, we can
state the objective function as:

∑

a,b∈D,w∈W

vabw · truckcostab +
∑

d∈D

umax
d · transcostd (9)

Let us call this problem Multi-Allocation Weekday Scheduled Strategic Planning
ProblemMAWSSPP. To get the buffering version BMAWSSPP, we need to introduce
the possibility to store a commodity in a hub for a day. For this, we use the flow
variables fqddw which describe a “transport” from d to itself lasting one day. The
buffering is also a strategic cost which is charged similarly to the transshipment cost
(but with the factor buffcost). For that bdw and bmax

d are analogously defined to udw

and umax
d . We write:

bdw =
∑

q∈Q

fqddw · amq d ∈ D, w ∈ W (10)

bmax
d ≥ bdw d ∈ D, w ∈ W (11)

The constraints (1–5) are transformed to:

∑

d∈D

fqqsodqday = 1 q ∈ Q (12)

∑

d∈D,w∈W

fqdqsiw = 1 q ∈ Q (13)

∑

a∈D

fqad(w−trad mod 5) =
∑

b∈D

fqdbw



38 J.F. Meier and U. Clausen

q ∈ Q, d ∈ D, w ∈ W, d �= qsi, d = qso ⇒ w �= qday (14)
∑

a �=b∈D,w∈W

fqabw · trab +
∑

d∈D,w∈W

fqddw ≤ timeq q ∈ Q (15)

tabw =
∑

q∈Q

amq · fqabw a, b ∈ D, w ∈ W (16)

These five equations only differ from their counterparts by usage of buffering flows
fqaaw. For (15) we added a term adding one day for every buffering. We note that
the (following) Eqs. (17) and (19) are unchanged, while (18) gets an additional term:
Without it, buffered shipments would be charged twice for transhipment, but we
chose only to charge incoming shipments.

vabw · size ≥ tabw a �= b ∈ D, w ∈ W (17)

udw =
∑

b∈D

tdbw −
∑

q∈Q:qso=d ,qday=w

amq − bd(w−1mod 5) d ∈ D, w ∈ W (18)

umax
d ≥ udw d ∈ D, w ∈ W (19)

The cost function is extended by an extra term:

∑

a,b∈D,w∈W

vabw · truckcostab +
∑

d∈D

umax
d · transcostd

+
∑

d∈D

bmax
d · buffcostd (20)

Let us note that our modelling of the buffering feature includes the possibility
of chaining buffering edges which means buffering a shipment for more than one
day. We see no theoretic reasons for stronger constraints, but in practice the maximal
transport time restrictions often exclude long buffering.

One can improve the solvability of the problem by discarding some variables in
preprocessing. The largest number of eliminated variables can normally be achieved
by the following argument:

fqabw = 1 ⇒ trqsoa + trab + trbqsi ≤ timeq , (21)

if we make the reasonable assumption that transport times fulfill the triangle inequal-
ity. Variables not fulfilling condition (21) can hence be eliminated from the equations.
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3 Restricted Mathematical Models

A way to improve solvability of the MAWSSPP is to drastically reduce the number
of involved binary variables.Wewant to define restrictedmodels whose solutions are
still valid solutions for MAWSSPP (and hence also for BMAWSSPP). We consider
two approaches:

1. Weconsider the same transport plan for everyday (Sameday).By this, the number
of routes that have to be assigned is reduced by a factor of five. Furthermore, it
reflects the reality in many non-automatized settings.

2. We allow at most one hub on each route (Onehub). This leads to a massive
reduction in the number of binary variables (detailed below).

Let us first discuss the elimination of weekdays. Until now, we assumed one
shipment for every (source depot, sink depot, week day) triple, possibly of size zero.
Nowwe define a “super shipment” for every pair (source depot, sink depot) which has
themaximal size of all five attached shipments.We call the set of super shipments Qs

and furthermore reuse the variables f , v, t and u, which are now time independent (we
can thus dispense with umax). Solving the routing problem for these super shipments
(with quintupled costs) automatically gives a solution for the original problem. The
model now looks like this:

∑

d∈D,d �=qso

fqqsod = 1 q ∈ Qs (22)

∑

d∈D,d �=qsi

fqdqsi = 1 q ∈ Qs (23)

∑

a∈D,a �=d

fqad =
∑

b∈D,b �=d

fqdb d ∈ D, d �= qsi, d �= qso (24)

∑

a �=b∈D

fqab · trab ≤ timeq q ∈ Qs (25)

tab =
∑

q∈Qs

amq fqab a �= b ∈ D (26)

vab · size ≥ tab a �= b ∈ D (27)

ud =
∑

b∈D

tdb −
∑

q∈Qs :qso=d

amd d ∈ D (28)

min 5 ·
( ∑

a,b∈D

vab · truckcostab +
∑

d∈D

ud · transcostd
)

(29)

For the Onehub model, we opted for a route-based-approach, because we can
now easily describe the routing of a shipment by giving the intermediate hub d as
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rqd . A direct routing can be represented by d = qsi or d = qso. In this way we
reduce the number of binary variables from about (#days per week)2 · (#depots)4 to
approximately (#days per week) · (#depots)3.

We keep all the other variables except for f . Hence, we can leave the objective
function unchanged. Essentially, we have to make four changes:

• Delete the flow conditions (1–4).
• The transport volume tabw is now calculated as:

tabw =
∑

q∈Q,
qso=a,
qday=w

rqb · amq +
∑

q∈Q,
qsi=b,

qday=w−trda

rqa · amq a �= b ∈ D, w ∈ W (30)

• We have to ensure that for every commodity exactly one route is chosen:

∑

d∈D

rqd = 1 q ∈ Q (31)

• The maximal travel time constraint has to be rewritten:

∑

d∈D

rqd · (
trqsod + trdqsi

) ≤ timeq q ∈ Q (32)

In our paper [4, Sect. 4] we considered additional inequalities to strengthen the
formulation, which were not very successful in the two-hub-case. Following Martin
Baumung’s good unpublished results for the one-hub-case, we reconsider them. The
idea is that we can calculate the minimal flow from a subset K ⊂ D to D\K as

minflow
(
K , D\K

) =
∑

q∈Q,qso∈K ,qsi∈D\K

amq (33)

From that we know that the number of vehicles going from K to D\K is at least
	minflow(K , D\K )/size
. Due to the rounding up procedure, this bound is stronger
than the original LP bound. To avoid adding huge numbers of inequalities, we con-
sider this only for |K | = 1 and |K | = |D|−1. In the first case, we can even consider
the outgoing flow of every day separately. In the end, we get:

∑

b∈D

vabw ≥
⌈( ∑

q∈Q:qso=a,qday=w

amq

)
/size

⌉
a ∈ D, w ∈ W (34)

∑

a∈D,w∈W

vabw ≥
⌈( ∑

q∈Q:qsi=b

amq

)
/size

⌉
a ∈ D (35)
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4 A Short Description of the Heuristic Approach from [3]

In [3] we developed a general modelling language for shipment based transport prob-
lems, i.e. problems that consist of a large number of (unsplittable) shipments which
have to be transported through a graph. It is based upon the following paradigms:

1. The routes of the shipments are considered as independent variables, while all
other variables (like number of trucks, transhipment capacities, buffering capac-
ities, etc.) are calculated from the chosen routes.

2. Each shipment has a set of admissible routes. Constraints that depend on more
than one route are modelled in the cost function.

3. Aneighbour of a given solution is created by taking a small subset of the shipments
and replacing their routes by others. To avoid extremely large neighbourhoods we
discard neighbours which fail to fulfill a special local optimality criterion detailed
in [3].

The model and the neighbourhood creation scheme allow us to implement a
Simulated Annealing algorithm. The numerical results are given in the next section.

5 Numerical Results

We want to compare three different approaches:

1. The full model solved by CPLEX.
2. Heuristic results based upon Sect. 4.
3. The results of CPLEX for the restricted models.

We will use the seven benchmark instances I5, I10, I20, I30, I40, I50 and I60 with
the respective number of depotswhich are basedupondata froma largeEuropean road
freight company. We solved each of it twice: with buffering and without buffering.
The results are summarized in Table1. We used a computer with 3.4 GHz and 16GB
RAM for six hours, both for the heuristic and for CPLEX 12.6.0.

Contrary to our expectation, the buffering advantage does not show up in our
heuristic results. Especially for the larger instances, we tend to get better results in
the non-buffering case. There are practical and numerical reasons for this: Firstly,
the option “buffering” increases the size of the search space and so slows down the
heuristic. Secondly, the larger instances offer more other possibilities for consolida-
tion so that buffering is not so important.

Comparing heuristic and CPLEX we see that although we drastically reduced the
number of variables by preprocessing CPLEX fails for each of the instances over 20
depots. We see that the heuristic works well for the small instances; for the larger
ones, we have no comparison.

Hence we solved the restricted models Sameday and Onehub with the same
solver and computer. The results are shown in Tables2 and 3.We see that our heuristic
outperforms all of them.
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Table 1 Results of the heuristic approach compared to the results of CPLEX with preprocessing

Inst Heur Heur buf CPLEX CPLEX buf

I5 29,206,387 19,221,750 29,206,387 19,221,750

LB 29,206,387 19,221,750

I10 101,029,802 90,112,421 101,029,802 91,972,141

LB 101,029,802 82,633,347

I20 156,016,297 149,190,951 201,129,327 No solution

LB 135,228,841 No solution

I30 324,679,889 347,634,809 No solution No solution

I40 468,567,791 470,264,568 No solution No solution

I50 668,569,617 683,945,737 No solution No solution

I60 978,018,115 977,338,269 No solution No solution

Every problem is considered with and without the possibility of buffering

Table 2 Results from Sameday compared to the best known results

Inst SAMEDAY Lower bound Best known Best known with buff

I5 30,171,383 30,171,383 29,206,387 19,221,750

I10 133,023,575 133,023,575 101,029,802 90,112,421

I20 222,652,292 163,991,639 156,016,297 149,190,951

I30 597,737,936 363,056,830 324,679,889 324,679,889

I40 No solution 468,567,791 468,567,791

I50 2,169,759,985 670,424,018 668,569,617 668,569,617

I60 No solution 978,018,115 977,338,269

Table 3 Results from Onehub (minimum of the results with and without strengthening inequali-
ties) compared to the best known results

Inst ONEHUB Lower bound Best known Best known with buff

I5 29,206,387 29,206,387 29,206,387 19,221,750

I10 119,128,292 119,128,292 101,029,802 90,112,421

I20 200,685,015 188,607,303 156,016,297 149,190,951

I30 642,446,816 295,834,506 324,679,889 324,679,889

I40 7,881,411,010 381,556,712 468,567,791 468,567,791

I50 3,225,667,487 526,796,494 668,569,617 668,569,617

I60 4,813,948,039 739,362,497 978,018,115 977,338,269

6 Conclusion

The results show that the realistic hub location problem that we stated is very difficult
for standard MIP solvers. This difficulty persists not only if we do preprocessing but
also when we drastically reduce the complexity of the model. On the other hand, a
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heuristic approach based on [3] performs well. Hence we will follow two paths for
the further development:

On the one hand, we will improve our heuristic by proper gauging. A heuristic
procedure involves a huge number of search parameters which have to be calibrated
by statistical methods. On the other hand, we will aim for better lower bounds by
solving relaxed hub location problems, preferably with a Benders’ decomposition
approach.
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Maintenance Enterprise Resource Planning:
Information Value Among Supply
Chain Elements

Rogers Ascef, Alex Bordetsky and Geraldo Ferrer

Abstract Maintenance Supply Chain (MSC) involves Maintenance, Repair and
Overhaul (MRO) organizations and the relationships within and across suppliers
and customers. These organizations work with the probability of equipment failure,
maintenance and user requirements of spare parts. All of these elements increase
uncertainty in this environment. Besides, it is difficult to integrate and process infor-
mation to maintain good inventory control. This high uncertainty and lack of integra-
tion of information cause spare parts inventory excesses and shortages. This research
proposes a newmodel based on information processing theories to connect the lateral
elements of the supply chain, increase vertical information and transform the MSC
into a system to decrease shortages and excesses of inventory. This research incor-
porates a simulation to compare the new model with traditional models of inventory
control. This study claims that when using the new model with different demands of
maintenance, inventory cost is lower than with traditional models of inventory con-
trol. The research uses information processing theory as the framework to decrease
uncertainty, and consequently decrease excesses and shortages of spare parts inMSC.

1 Introduction

The 2007 United States Census showed that expenses in Repair and Maintenance
Service were US$137 billion. In comparison, Aircraft Manufacturing sales were
US$84 billion [34]. Fabry and Schmitz-Urban wrote that the maintenance sector in
Germany had greater turnover (e 250 billion) thanmany other industrial sectors, such
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as VehicleManufacturing (e 135 billion) [10]. “American businesses and consumers
spend approximately US$1 Trillion every year on assets they already own”, a good
part of this on maintenance expenses [6, p. 130].

When Pan Am and Eastern Airlines went bankrupt, they held an excess inventory
of spare parts of approximately $700 million and $200 million, respectively [19]. In
themilitary environment, a 2009U.S.Department ofDefense (DoD) report stated that
nearly 17%of all items in the inventorywere inactive, and they valued approximately
US$15 billion [8].Most of these items had been purchased as spares for maintenance
purpose, a problem that illustrates the challenge ofmanaging theMaintenanceSupply
Chain.

The maintenance environment includes components with stochastic failure rate,
different types of failure to be repaired, great numbers of spare parts for repair and
long lead-times to perform maintenance and to purchase spare parts. Frequently,
maintenance does not incorporate fluctuations in equipment usage, changes in envi-
ronmental conditions and equipment age [24, p. 18]. The maintenance supply chain
elements tend to be disconnected from each other, causing shortages and excesses
of materials. All these factors can result in delays and high uncertainty in the main-
tenance process. High uncertainty and lack of information integration cause excess
and shortage of spare parts. This misinformation causes low availability of aircraft,
equipment or systems, increasing holding costs.

Some researchers have proposed solutions to mitigate the problem. Ghobbar and
Friend studied aircraft companies and found that at least 50% of companies were
not satisfied with their system of inventory control [19]. Newman proposed an MRP
model of preventive maintenance [28]. Molinder used simulation to analyze the
effects of different sources of uncertainty [27]. Ettkin and Jahnig [9] presented a
framework to adapt MRPII to maintenance functions with the benefit of waste reduc-
tion. Swanson [33] discussed the use of information-process theory in maintenance
management. She conducted a survey in many maintenance, repair and operations
(MRO) organizations to show how uncertainty is affected by the use of information
systems in maintenance operations. In spite these contributions, the literature still
lacks a model that integrates all MRO elements.

This paper seeks to fill this gap. The purpose of this experiment is to test a new
integrated model between maintenance supply chain elements to match inventory
level withmaintenance requirements to decrease inventory cost. This study compares
the new model with traditional inventory model of control with different amounts
of maintenance demand to inventory costs. This research is important because the
result reduces uncertainty and, consequently, decreases cost and increases equipment
availability.

This study applies an information processing approach to analyze the informa-
tion integration between the elements of the maintenance supply chain. It expands
on the idea that new information, such as ERP, can increase the capacity of informa-
tion processing, and consequently can decrease uncertainty and costs. The specific
research question addressed in this chapter is:

Does Maintenance Enterprise Resource Planning (MERP) decrease inventory
costs compared with the use of traditional inventory models?
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This study is divided in five sections: literature review, proposed model, method-
ology, results and discussions. The proposed model shows how the model integrates
the information. The methodology presents the hypothesis and experimental proce-
dure of the research. Finally, the study analyzes and explains the result, and suggests
future research.

2 Literature Review

2.1 Information Processing Theory

Frequently, the information about failed components isn’t available, maintenance
information doesn’t integrate across supply divisions, and, the inventory control has
to use past information to predict the purchasingmaterial. This entire gap causes high
uncertainty in theMSC environment. Galbraith defines “uncertainty as the difference
between the amount of information necessary to perform a task and the information
already possessed by the company” [17]. He analyzed the relation between uncer-
tainty and information to formulate the information processing theory. His theory
claims that “the greater the task uncertainty, the greater the amount of information
that must be processed among decision makers during task execution in order to
achieve a given level of performance” [16]. He argued that there are two organi-
zational strategies to manage the uncertainty: to reduce the need for information
processing or to increase the capacity to process information.

To reduce the need for information requires the creation of slack resources or the
existence of self-contained tasks. Moreover, Galbraith indicated that investment in
vertical information system and the creation of lateral relations increase the volume
to process information. He argued that “the greater the uncertainty, the lower the
decision-making and the integration is then maintained by lateral relations” [16].

The concept of this information theory was used in many activities. There are
studies in the application of theory to propose structural modification in organiza-
tions with vertical analysis and horizontal information systems to increase the infor-
mation process [5]. Swanson applied the information-processing model to analyze
maintenance management [33]. She found that maintenance organizations respond
to environmental complexity with the use of computerizedmaintenancemanagement
systems, preventive and predictivemaintenance systems, coordination, and increased
workforce.

Other research presents a new perception of information sharing within sup-
ply chains based on organizational information processing theory. Posey and Bari
propose a conceptual model that shows that if information within and across
supply chains are more compatible with each other, they can increase information-
processing capabilities [29]. Flynn and Flynn explain that some firms found alter-
natives to processing information by using “management-intensive solutions, rather
than technology-intensive solutions” [14, p. 1044].
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This study uses the two strategies to coordinate uncertainty in Galbraith infor-
mation process theory, and compare their efficiency. As the reductionist approach to
manage uncertainty, we use the most commonmodel of inventory control: Economic
Order Quantity (EOQ). The alternative approach, with increased capacity to process
information in the Supply Chain, is the Maintenance Enterprise Resource Planning
(MERP).

The two approaches are linked by the ability of the organization to coordinate
and process the information. If the firm cannot integrate the information available
in multiple departments, if non-routine events are more frequent than the capacity
of the firm to process information, or if the technology available cannot increase the
information processing capacity of the firm, then the firm must use a reductionist
strategy to process information. That is, the firm adopts simple deterministic models
for decision making, using basic static information allied to expensive protections,
such as inventory buffers, to support the organization in the face of uncertainty.

On the other hand, if the firm can integrate lateral and vertical information within
and across organizations, if the firm has low decision-making processing time, and
if the firm can integrate the elements of supply chain, then the MERP model can
increase the capacity of information processing and decrease the uncertainty in this
environment, resulting in lower inventory costs and more responsiveness to any
external or internal change. An application of the Galbraith theory with the supply
chain model of research is represented in Fig. 1.

Fig. 1 A supply chain application of galbraith strategies



Maintenance Enterprise Resource Planning … 51

2.2 Enterprise Resources Planning (ERP)

Vollmann et al. [35] presented two interesting definitions about ERP. For the infor-
mation technology community, ERP is a term that integrates the application program
in finance, manufacturing, logistics, sales and marketing, human resources, and the
other functions in an organization. From the manager’s viewpoint, ERP represents
a comprehensive software approach to support decisions concurrent with planning
and controlling the business [35]. ERP seeks to integrate information of the organi-
zation through best practice functionality and system interoperability with common
databases and interfaces [26].

ERP is an offshoot of the tool Material Requirement Planning (MRP). MRP’s
function is to prepare a master production schedule (MPS) and a list of materials
required for the production process. This technique was developed in 1960 and
became more accessible with the development of computers that could process the
large database that it requires. Subsequently, this technique evolved into the tool
known as Manufacturing Resource Planning (MRP II), which expanded the benefit
to the incorporate manufacturing planning beyond materials acquisition. The new
technology required more computing power while more integrated decision-making
was achieved. ERP is an extension of MRP II that seeks to integrate information and
processes across the companies in the supply chain, using electronic data interface
(EDI). Interested readers are encouraged to read more in [35].

The proposed model uses ERP techniques to reduce uncertainty in the main-
tenance supply chain. Ghobbar and Friend [19] surveyed 287 aircraft companies
(96 airline operators and 56 maintenance service organizations) to find how they
determined reorder point systems for their parts and components for operation and
maintenance. They found that 66% of the maintenance organizations and 57% of
airline operator organizations did not use MRP, “were aware of MRP but had nei-
ther used nor investigated it further.” The results showed that more than 50% of
companies were not satisfied with their inventory management system [19].

Newman [28] argued that MRP could be used for Preventive Maintenance
Requirement Planning where its use could have multiple benefits: part consumption
could be tracked and maintenance personnel could be better used. His model showed
some aspect for integrating Maintenance Schedule with Supply Chain Management.

Molinder [27] studied how an MRP system was affected by stochastic demand
and lead times. He used a “simulation with the objective of analyzing the effects
of different sources of uncertainty in MRP systems”. He found that high variability
had a strong effect on the level of safety stock and safety lead-time required. An
adaptation of MRP to maintenance had predicted this uncertainty.

Bojanowski [4] developed a variant of MRP, the Service Requirement Plan-
ning (SRP), to prioritize routine mechanical inspection and machine maintenance
sequences. Ettkin and Jahnig [9] presented a framework for adapting MRPII to
maintenance function for waste reduction. They thought that this model could be
used successfully in maintenance management because of the similarities between
manufacturing and maintenance processes.
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Wemmerlov and Whybark [36] showed different approaches to choose lot size
using MRP, and compare a number of alternatives such as Economic Order Quan-
tities (EOQ), Periodic Order Quantities (POQ), Part Period Balancing (PPB), and
Wagner-WithinAlgorithm (WW).Wemmerlov andWhybark [36] demonstratedwith
no uncertainty, the best result was Wagner-Within Algorithm, but with great com-
putational cost. Under demand uncertainty the inventory cost is 0.19% higher with
EOQ than with WW, and PPB is 0.67% lower than the WW model. Therefore, all
three models can produce good solutions. Under uncertainty, the inventory cost has
no difference, “EOQ rule carries with it its own safety stock” [36, p. 16] .

Silver et al. [31] did an experiment with lot sizing for individual items with time-
varying demand. They add the Silver-Meal Heuristic (SM) that has similar result
with Wagner-Within Algorithm to compare the cost with the other models. They
conclude that SM and WW have better cost than the others models [31, pp. 198–
218]. Gaither [15] complement with other experiment that include Gaither model.
The experiment shows the performance of the models that can be used as guidelines
for MRP systems.

Whybark andWilliams [37] studied the use of safety stock and safety lead-time in
MRP in response to four types of demand uncertainty: demand timing and quantity,
and supply timing and quantity.

There is some confusion about remanufactured and maintenance management.
The concepts are different, and so is their management; “Remanufactured process is
an industrial process in which worn-out products are restored to like-new condition
[30, p. 295]”. Remanufacturing implies equipment disassembly and complete recov-
ery. “It requires the repair or replacement of worn out or obsolete components and
modules” [11, p. 87]. Generally inoperable units are disassembled, cleaned, repaired,
and placed in inventory to assemble a new unit. On the other hand, “Maintenance
constitute a series of actions necessary to restore or retain an item in an effective
operational state” [3, p. 1]. Maintenance Management is the planning and execution
of scheduled and unscheduledmaintenance tomaintain the availability of equipment.
Remanufacturing may be considered a type of maintenance.

There are studies evaluatingMRP for remanufactured industries such as [7],which
proposes a new MRP that calculates the number of units produced each period and
the number of components needed to assemble the products [7]. Ferrer andWhybark
[11, 12] presents the “first fully integrated material planning system to facilitate
the management of remanufacturing facility” [12]. Other researchers seek to find the
optimal number of used products, or “cores”, to procure and disassemble and the
optimal quantities of new parts to procure [18].

So, there are many studies that apply MRP with environmental uncertainty, many
examples of MRP’s use in a variety of industry sectors, and new MRP’s use in the
remanufacturing sector. But there are few studies of MRP’s use in the maintenance
sector; a few models only mention the possibility. This research fills this gap and
presents a model that connects the elements of maintenance supply chain.
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3 Maintenance Enterprise Resource Planning (MERP)

3.1 The Difference Between Manufacturing and Maintenance
Organizations

Why not use traditional MRP/ERP in the MSC since it is used a lot in the manu-
facturing supply chain? First of all, both environments present uncertainty but the
maintenance environment has uncertainty practically in all levels of planning. Cohen
affirm that “the majority of existing ERP software programs don’t have the capabil-
ity to manage complex service supply chain scenarios” [6] and Maintenance Supply
Chain is one of these scenarios.

The demand of manufacturing supply chain is predictable. On the other hand,
MSC is unpredictable because many services are trigged when failure occurs. Even
scheduled maintenance is difficult to forecast. Because of the dynamics of MSC
environment inventory management uses to pre-position resource to decrease the
uncertainty. Manufacturing supply chain tries to maximize velocity of resource. The
performance metric in manufacturing supply chain is the fill rate. For MSC, it is
availability of equipment [6, pp. 132–133].

To manage MSC, the managers have to work with client information about the
equipment as well as failures, operations, utilization forecast. Many times, they can-
not forecast when failures will happen. And when it happens, maintenance shops
don’t know the material that they will use to fix the failure. The material that is
used in maintenance is disconnected to production, so uncertainty is present in many
processes.

For the manufacturing supply chain, the demand is also challenging, but they
know the material to assemble the system and know the material supplier. Lead-time
of the supplier may also be varied, but MSC has a lot of variability because many
items are discontinued and difficult to purchase.

Sometimes, the maintenance supply chain may use some concepts of the remanu-
facturing supply chain such as the overhaul of the equipment, but the management of
failure, corrective and preventive maintenance, availability of equipment are unique
to the maintenance supply chain.

Although there are similarities among manufacturing industries such as the tradi-
tional manufacturing process (shop floor scheduling and assembly, e.g.) [18], both
involve suppliers, plants and customers. There is, however, significant difference
according Table1.

The different characteristics of the Maintenance Supply Chain show that there is
the need to develop a specific planning and control system in this environment. The
idea is to adapt the elements of ERP to develop a specific model for the Maintenance
Supply Chain.
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Table 1 Characteristics of manufacturing supply chain versus maintenance supply chain

Maintenance supply chain Manufacturing supply chain

Process [18] It requires special
operational processes and
skills, such as disassembly,

Manufacture follows a logic
sequence of production

inspection, testing,

and repair

Time response [6, pp. 131–132] ASAP (same day or next
day)

Standard, can be scheduled

Routing [30] Probabilistic time and
occurrence of maintenance
task

Manufacturing task is
predictive and assembled
with logical form

Inventory management [30] High level of uncertainty
inherent in the maintenance

Fixed material quantity to
attend to final

process and unique in product assembly

corrective maintenance

Bill of material Probabilistic with no fixed Fixed quantity

material and quantity

Nature of demand [6, pp. 131–132] Always unpredictable,
sporadic

Predictable, can be forecast

Lead time Uncertain because items
can be obsolete, or

Suppliers known.
Agreements and contracts

are no longer manufactured. are done more predictably

Unknown suppliers

Number of SKU [6, pp. 131–132] High Limited

3.2 Independent and Dependent Demand

The Maintenance Enterprise Resource Planning—MERP model seeks to connect
the elements of MSC and decrease the degree of separation among the elements of
supply chain. When these elements are connected, a new collaboration network is
formed. These environments allow availability of information, decreasing delay and
uncertainty and increasing timely response.

The traditional inventory control system works with the assumption that all items
are independent in demand, meaning that the demand for an item is independent
of other items. Traditional inventory control for this model is the Economic Order
Cost (EOQ) model, Production Order Quantity and Quantity Discount Model [21,
pp. 489–490].

Traditional MRPworks with assumption that there are independent demand items
and dependent demand items. Independent demand items are end-product items in
manufacturing, such as an aircraft or engine [35, p. 134]. Dependent demand means
that the demand for one item is related to the demand for another item. The items to
assemble the aircraft have dependent demand [21, pp. 562–563].
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MERP model uses the assumption that maintenance is an independent demand.
Scheduled and unscheduled maintenance is performed in aircrafts, engines, genera-
tors and landing gears are considered independents events. Dependent demand items
are the spare parts that are used to do the maintenance.

Corrective maintenance includes all unscheduled maintenance actions, as a result
of system/product failure, to restore the system to a specified condition. Unsched-
uledMaintenancemay bemeasured in terms of frequency or elapsed time. Preventive
maintenance includes all scheduled maintenance actions performed to retain a sys-
tem or product in a specified operational condition [24, p. 4.18]. It covers periodic
inspections, critical-item replacement, periodic calibration, and the like. Preventive
maintenance may be measured in terms of frequency or elapsed time. Many items
use-time between overhaul (TBO) or a scheduled program of maintenance (e.g., cars
with maintenance programming of miles driven; aircraft with maintenance program-
ing of hours flown) [3, pp. 16–17].

3.3 MERP Description

MERPhas threemodules that are responsible to integrate and process the information
within and across the organization, thesemodules compose the Planning System. The
first module is Maintenance and Operation Planning (MOP) that calculates a long
time corrective and preventivemaintenance forecast based in client information (e.g.,
failure rate, equipment use). MOP calculates per-year, the quantity of maintenance
and the budge. If this scenario is feasible, the information is transferred to MMPS;
if not, new scenario is calculated.

If the scenario is approved, Master Maintenance Planning Schedule (MMPS) cal-
culates the quantity of maintenance per period. To calculate, the MMPS takes infor-
mation on the items in stock and in production. Afterwards, this function produces
the quantity of Work Order that has to be opened. The information of work order
is then transferred to Maintenance Material Requirement Planning (MMRP). Based
on a bill of maintenance that is dynamic, updates are made to the work order and the
system then calculates the quantity of material that is needed to do the maintenance.
Afterwards, the MMRP takes information of stock, acquisition, transportation and
lead-time, and calculates the quantity that has to be purchased. If this scenario is
feasible, the information is transferred to CMMS and PMS; if not, a new scenario
is calculated. The representation of MERP is in Fig. 2. The correspondence between
some modules of MRPII and MERP is in Table2.

3.4 MERP-System Integration and Operation

This section explains the main tasks of each system and how the information are
integrated and processed. The explanation is based on Fig. 2.
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Fig. 2 MERP representation

Table 2 Correspondence between MRP and MERP modules

Traditional MRPII MERP

SOP—Sales and Operation Planning MOP—Maintenance and Operating Planning

MPS—Master Production Schedule MMPS—Maintenance Master Planning Schedule

MRP—Material Requirement Planning MMRP—Maintenance Material Requirement Planning

• Configuration System
The main tasks of this function are:

– Basic Information: this function is responsible for registering the initial infor-
mation of the system and its components as part number, NSN, unit of issue,
and price.

– Primary Configuration: this function is responsible for registering the basic
configuration of the reparable items of the system. The system can be composed
of many reparable items. This function assembles the structure of system with
quantity and position. Example: One car has two batteries, two air conditioners,
or, an airplane has two engines, two generators. An engine of an aircraft has two
fuel pumps.
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– Maintenance Configuration: this function permits the registration of the type of
maintenance that the systemand its repairable have. It records the type ofmainte-
nance (e.g., Preventive/Predictive Maintenance or Corrective Maintenance), the
maintenance cycle, MTBUR, maintenance tasks, tools, man/hour and material
that is need to do the maintenance.

Information shared:

– With information about maintenance performed in the organization and at the
client, the system updates the information about configuration, andmaintenance
to send to Planning System (e.g., MTBUR, TBO, maintenance time, lot size,
lead time).

• Control System
The main tasks of this function are:

– UtilizationControl: this function controls the use of equipment and its repairable
items in the organization and at the client, such as the system records prediction
of the use of equipment.

– Reliability Control: based on failure and maintenance data and utilization of
the item, this function calculates the Mean Time Between Failure—MTBF and
Mean Time Between Unscheduled Replacement (MTBUR) of the reparable
item. This function sends information to Maintenance Configuration about the
MTBUR of the item.

MTBUR is the probability of remove a reparable and replace some spare in
unscheduled maintenance part during a given period under specified operating
conditions [3, p. 2,112].

MTBUR = 1

λ
(1)

where λ is referred as the remove and replace spare part spare in unscheduled rate.

– Maintenance Control: this function controls maintenance cost, the maintenance
due date, man-hours used, and life cycle cost.

Information shared:

– This function sends information about MTBUR and use of equipment (e.g.,
update MTBUR, forecast of use of equipment, numbers of equipment in use).

• Purchase Management System—PMS:
The main tasks of this function are:

– This function control and execute the purchases to the organization.

Information shared:
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– This function receives the purchase planning and updates the stages of purchas-
ing processes and delivery time. This function sends information to MMPS and
the MMRP algorithm.

• Transportation Management System—TMS:
The main tasks of this function are:

– This function plan, control the transportation of equipment and spare parts from
clients and suppliers.

Information shared:

– This function supplies information about transportation of the item. It supplies
data to MMPS and MMRP.

• Warehouse Management System—WMS
The main tasks of this function are:

– This function controls the stock of the warehouses by receiving, picking and
shipping the material.

Information shared:

– This function controls the stock and gives information about the quantity of
material in stock to MOP, MMPS and MMRP.

• Computerized Maintenance Management System—CMMS:
The main tasks of this function are:

– This function plan and control the execution of maintenance tasks and updates
the information about the material and man/hours that are used in Maintenance
Configuration.

Information shared:

– This function receives the maintenance planning and updates the stages of the
maintenance processes and delivery time. This function sends information to
configuration system, MMPS and MMRP algorithm.

• Client System
This module connects information between the client and organization manage-
ment. The communication can use electronic data interchange (EDI), machine to
machine (M2M) techniques, or client-server architecture.

– Item Information: this function is responsible to register the initial information
of the equipment, such as the serial number of a part number, manufacture data,
or lifetime.

– Real Configuration Management: this function is responsible for assembly of
the actual configuration of the equipment. This function controls when the item
was installed or removed from the equipment.
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– Computerized Maintenance Management System (CMMS): this function reg-
isters and controls maintenance that is done with the client, and updates the
information about the material and man/hours that are used in Maintenance
Configuration.

– Warehouse Management System–WMS: WMS controls the stock with the
client, if it is needed, and connects the information about the stock with organi-
zation’s management.

• Supplier System
This module connects information with suppliers. The communication can use
electronic data interchange (EDI), machine-to-machine (M2M) techniques, or
client-server architecture. The information about stock, purchase, reliability, and
transportation are shared and exchanged in this function.

• Planning System
Planning System is formed by three modules that connect and process information
with the others systems.

– Maintenance and Operation Planning (MOP)
This function calculates the quantity of corrective maintenance (CM) and preven-
tive maintenance (PM) in a long-time period (2–5years). This function receives
information about MTBUR, TBO, Configuration, Utilization Forecast, Preventive
and Corrective Maintenance Cost and calculates the quantity of maintenance in a
period.
A generator of an aircraft is used to illustrate the maintenance forecast calculate.
This scenario has 300 aircraft; the quantity per assembly (QPA) is 2 generators.
The forecast is to fly an average of 75h per month for each aircraft by year y and
y+ 1. MTBUR rate is 5,000h, and the Time Between Overhaul (TBO) is 3,000h.
These parameters calculate an estimation of maintenance per year. The parameters
are in the Table 3.
To calculate the average quantity of maintenance, the parameters are multiplied.
The formula is at Table4. The PM maintenance is the same as the average calcu-
lated. For CM, a service level (k) is entered to find the item in the stock. In this
example, Poisson distribution is used, but it can use another distribution depending
on the item. It was used with 90% probability to find the item in stock when it
was required. The result is at Table4.

– Master Maintenance Planning Schedule (MMPS)

Table 3 Parameters to calculate the quantity of Corrective and Preventive Maintenance

Year QPA # of aircraft Utilization per month MTBUR TBO Period

5,000 3,000

x y h λ =1/MTBUR z=1/TBO t

y 2 300 75 0.001 0.0003 12

y+1 2 300 75 0.001 0.0003 12
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Table 4 MOP—Quantity of corrective and preventive maintenance

Average CM Average PM SL(k) Qtt CM Qtt PM

μ(cm) = x y h
λ t

μ(pm) = x y h z t p(k; λ) = λk

K ! e
−λ

108 180 0.9 121 180

108 180 0.9 121 180

To calculate the quantity of maintenance that a maintenance shop has to do in
a period of time, the model sums the quantity of CM and PM, the quantity of
maintenance of a specific reparable and decreases the quantity of equipment that
it has in stock and work orders.
Basically, to calculate the master maintenance planning, this function takes infor-
mation from the Configuration System about the average of maintenance time
(MT) of PM and CM, lot size (LS) to do the maintenance (if applicable), and
safety stock (SS) of the reparable. To illustrate the calculation, the maintenance
time is 1 period; safety stock is 0, and lot size is 1.

The elements of MMPS are:
Maintenance Forecast (MF), based in MOP. It can be expressed in

MF(t) = (CM + PM)(t)/(p) (2)

where t is a time frame of the period (this research is used “week” as time frame)
and p is number of events in the period, in this case 52week per year.
Example for t=1,

MF(1) = (121 + 180)/52 = 5.79

• Ending Order (EO)(t) is based on information at end of work order in shop, in a
period t.

• Starting Inventory (SI) is the quantity of the stock at the end of the period before:

SI(t) = EI(t − 1) (3)

Example for t = 2:
SI(2) = EI(1) = 0

• Ending Inventory (EI) is the quantity of equipment after processing the quantity
that arrived and quantity that was used:

EI(t) = SI(t) + EO(t) + RO(t) − MF(t) (4)
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Example for t=3:

EI(3) = 0 + 0 + 5.79 − 5.79 = 0

• Receiving Order (RO) is when the Maintenance Order will finish and is ready to
use. It can be expressed:

RO(t) = (MF + SS)(t) − (EO + SI)(t) (5)

Example for t(2):

RO(2) = (5.79 + 0)(2) − (0 + 0)(2) = 5.79.

RO only can be processed if there is a time period available in function of MT. In
RO(1) is 0 because it is not possible to process a maintenance in the same period
because the MT=1.

• Work Order (WO) is the moment that the service order is sent to the shop office
to do maintenance. This order is:

WO(t) = RO(t + MT) (6)

Where MT is maintenance time in week. In this example is 1week.
Example for t=1:

WO(1) = RO(1 + 1) = 5.79

• PMOrder (PWO) is calculatedbymultiplying theWorkOrder and theproportionof
preventivemaintenance over the total ofmaintenance in a year. It can be expressed:

PWO(t) = WO(t) ∗ PM/(PM + CM)(y) (7)

Example for t=1 and y=y:

PWO(1) = 5.79 ∗ (180/(121 + 180)(y)) = 5.79 ∗ 0.6 = 3.47

• CM Order (CWO) is calculated by multiplying the Order and the proportion of
corrective maintenance over the total of maintenance in a year. It can be expressed:

CWO(t) = WO(t) ∗ (CM/(PM + CM))(y)) (8)

Example for t=1:

CWO(1) = 5.79 ∗ (121/(121 + 180)y) = 5.79 ∗ 0.4 = 2.33
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Table 5 Master Maintenance Planning Schedule–MMPS to Reparable

Year y−1 y

Generator Period 52 1 2 3 4

Parameters Maintenance Forecast (MF) 5.79 5.79 5.79 5.79

Maintenance time (MT) 1 Ending Order (EO) 5.79

Lot Size 1 Starting Inventory (SI) 0 0 0 0

Safety Stock 0 Ending Inventory (EI) 0 0 0 0 0

Rec. Order (RO) 0 5.79 5.79 5.79

Proportion Work Order (WO) 5.79 5.79 5.79

PM CM PM Order (PWO) 3.47 3.47 3.47

0.6 0.4 CM Order (CWO) 2.33 2.33 2.33

The information of PWO and CWO is transferred to MMRP and CMMS at the
end of each period; the system recalculates the quantity again. The sequence of the
events in a year or in week time frame 1–4 is in Table5.

3.4.1 Maintenance Material Requirement Planning–MMRP

After the system generates the Schedule and Corrective planning of Maintenance
in MMS, the MMRP function can generate the Material Purchase Planning. In this
Example, the Part Number A is used in preventive and corrective maintenance of the
generator. In the Preventive Maintenance, the average used is 10, and the corrective
maintenance is 7.

TheQuantity perMaintenance (QM) is calculated by the average ofmaterial that is
used in the preventive (QMP) and corrective maintenance (QMC). This information
comes from CMMS. Planning Module consolidates the information and sends it to
MMRP.

The elements of demand of Part Number “A” of MMS are:

• Preventive Order Demand (POD) represents the material that is used in any pre-
ventive maintenance per reparable. It can be expressed:

POD(t) = QMP ∗ PWO(t); (9)

Example for t=1:
POD(1) = 10 ∗ 3.46 = 34.6

• Corrective Order Demand (COD) represents the material that is used in any cor-
rective maintenance per reparable. It can expressed:

COD(t) = QMC ∗ CWO(t) (10)
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Table 6 Consolidate Demand of Spare Parts

Part A Year y-1 y

Generator
Maintenance

QM Week Number 52 1 2 3 4

Preventive 10 PO Demand
(POD)

34.6 34.6 34.6 34.6

Corrective 7 CO Demand
(COD)

16.3 16.3 16.3 16.3

Total Demand
(TOD)

50.9 50.9 50.9 50.9

Example for t=1:
COD(1) = 7 ∗ 2.33 = 16.29

• Total demand (TOD) is the sum of the demand in a time frame:

TOD(t) = POD(t) + COD(t) (11)

Example for t=1:
POD(1) = 34.6 + 16.3 = 50.9.

All calculations can be seen in the Table6.
When the demand is consolidate is possible to calculate the material to purchase.

In this example the stock starts with 51.4. The calculation can be seen at Table7 As
was discussed, regarding the lot size used in MRP, this research chose to use EOQ
because the computational cost is low and the total cost of inventory is near the other
models explained by [35].

Table 7 MMRP of Part A

Year y-1 y

Part A Week Number 52 1 2 3 4 5

Total Demand
(TOD)

50.9 50.9 50.9 50.9 50.9

Lead Time (LT) 4 Ending Requisi-
tion (ER)

155

Lot Size (LS) 155 Starting Inven-
tory (SI)

51.4 0.5 104.6 53.7 2.8

Safety Stock (SS) 0 Ending Inventory
(EI)

51.4 0.5 104.6 53.7 2.8 106.9

EOQ 155 Receiving Requi-
sition (RR)

0 0 0 0 155

Purchasing Req-
uisition (PR)

155
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The following assumption is used to calculate EOQ. The average of demand in
a period of 1-year (D), K is the fixed cost and H is the holding cost. The EOQ
formula is:

EOQ =
√
2K D

H
(12)

The safety stock (SS) is service level required (z), multiplies for the standard
deviation in a period of 1year (STD), and square root of the lead time (Lt).

SS = Z ∗ STD ∗ √
Lt (13)

In the example, the item has a fixed cost of $ 50.00 and the Holding Cost for
week is equal the price of the item ($20.00) multiplied by the annual rate of 22%.
Transforming this rate per week, the holding cost is $ 0.21 and the Lead-Time is
4weeks. The average of demand of 1year is 50.90. So, the result is:

EOQ =
√
2 ∗ 50 ∗ 50.90

0.21
= 154.56

SS=0 because STD is 0 in this example.
Lot size= roundup EOQ=155
The elements of MMPS are:

• Total Demand (TOD) is the sum of demand at Table6.
• EndingRequisition (ER) is the informationwhen the requisition is active andwhen
the material will arrive. This information comes from TMS and PMS.

• Starting Inventory (SI) is the quantity of the stock at the end of the period before:

SI(t) = EI(x − 1) (14)

Example for t=2:

SI(2) = EI(2 − 1) = 0.5

• Ending Inventory (EI) is the quantity of material after processing the quantity that
arrived and quantity that is used. It can be expressed:

EI(t) = SI(t) + ER(t) + RR(t) − TOD(t) (15)

Example for t=1:

Ex : EI(1) = 51.4 + 0 + 0 − 50.9 = 0.5
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• Receiving Requisition (RR) is when the Requisition Order will finish and is ready
to use. This time is used to make the decision to order or not.

If SI(t) + ER(t) − TOD(t) < SS(t), then RR(t) = EOQ (16)

Example t=5:

SI(5) + ER(5) − TOD(5) < SS(5) ≥ (2.8 + 0 − 50.9) < 0, soRR(5) = 155.

This function can only be processed if the lead-time permits.

• Purchasing Requisition (PR) is the moment that the purchase order is sent to the
supplier. It can be expressed:

PR(t) = RR(x + Lt) (17)

Where Lt is lead time. In this example Lt=4.

Example for t=1
PR(1) = RR(1 + 4) = R(5) = 155

The sequence of the events in a year or in week time frame 1–5 is in Table7

4 Methodology

This section presents the research question with hypotheses and describes the exper-
iment designed to answer the question.

The purpose of this experiment is to test a new collaboration model between
maintenance supply chain elements, tomatch inventory tomaintenance requirements
and to decrease inventory cost. This research is important because the result tries to
reduce uncertainty and consequently, to decrease cost and increase the availability
of the equipment.

This investigation applies information processing theoretical approach to analyze
the integration of information between the elements of themaintenance supply chain.
It expands the idea that with the new technology and techniques (e.g., ERP), that
if the new model connects the elements of supply chain, then it can increase the
capacity of information processing and consequently decrease uncertainty and costs.
The specific research question addressed in this chapter is:

Does Maintenance Enterprise Resource Planning (MERP) decrease inventory
costs compared with the EOQ model?

To answer this question, the experiment will test seven hypotheses:
H–1: There is significant difference between different inventory models and

quantities of maintenance on inventory cost.
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H-2 to H-7 (to each level of maintenance): Inventory cost is lower using MERP
than the EOQ model with different quantities of maintenance.

4.1 Independent Variable

• Inventory Model: represents the rule that managers can use to decrease the costs
associated with maintaining an inventory and meeting customer demand [23].
There are two nominal levels for this variable.

1. Maintenance Enterprise Resource Planning (MERP)-represents a model that
increases the capacity to process information by connecting the elements of the
supply chain to work as a system. The model was explained in the preceding section.

2. Economic Order Quantity (EOQ)–Harris [20] created a model that seeks to
minimize the order cost and holding costs [20]. This is one of earliest and most
well-known inventories [31].

EOQ model uses the following formula:

EOQ =
√

2KD

H
(18)

EOQ=order sizes in units, D= total demand in unit period, H=cost to hold a unit
per period of time, K=accounts for when an order is placed [32, p. 33].

In this experiment, the demand will be sum of demand in one year before the
period of planning.

Thismodel represent a continuous review policy (Q,R), whenever inventory levels
fall to reorder level (ROP) anorder forQunits is placed [32]. TheROPhas two factors:
First is the average of demand (D̄) during lead-time (Lt), and second is the safety
stock (SS), which is the “amount of inventory that the distributor needs to keep at the
warehouse to protect against deviations from the average demand during lead time”
[32, p. 42].

ROP = Lt ∗ D̄ + z ∗ ST D ∗ √
Lt (19)

z is a constant associated service level and STD is standard deviation of average
demand in the period.

• Quantity of Maintenance: represents a quantity of maintenance that will be per-
formed in a period.

The maintenance can be measured by frequency or elapsed time. This experiment
will use the quantity of maintenance by elapsed time (e.g., aircraft maintenance
occurs after 100h flown, Generator TBO occurs after 3,000h flown).

To change the quantity of maintenance in this experiment, manipulate the quantity
of hours per month that an aircraft flies. The range of this variable uses equal interval
scales that will vary from very low to high. High represents when an aircraft flies
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Table 8 Level of Quantity
of Maintenance

Range Quantity

High-H 205

Medium High-MH 165

Medium-M 125

Low Medium-LM 85

Low-L 45

Very Low-VL 5

internationally; on average it represents 12h per day. Generally, airplane flies six
days a week (48h), and monthly, (192h). So the research starts the range (very low)
with 5h monthly, and increases with interval of 40h until reaching 205h. The range
can be seen in the in the Table8.

The research will simulate the inventory cost of each model having high or low
maintenance. The intention is to check how the models affect the inventory cost with
high or low material consumption in an uncertain maintenance environment.

Thisway, nomatterwhich reparable ormaterial consumption used, the importance
is with the range of the amount of maintenance and the behavior that the stock will
have. Thus, the experiment is intended to cover the full range of maintenance and
material consumption possible and analyze it in each inventory model.

4.2 Dependent Variable

• Inventory Cost: the dependent variable is inventory cost. To calculate the inventory
cost, this research uses three components: holding cost, fixed cost and shortage
cost.

1. Fixed cost: K is accounted, every time that it is placed an order;

Ck = K ∗ N (20)

N quantity of order in a period.

2. Holding Cost(h): also referred to as a inventory carrying cost, “is accumulated
per unit held in inventory per day that the unit is held” [32]. Ballou and Srivastava
[1] affirms that 80% holding costs is referred to as a capital cost [1, p. 348]. Cost
of capital can vary from 5 to 35%. Others variable costs compose the holding
cost such as insurance, shelf life limitations and operating cost involved storing
inventory or cost of operating warehouse facility [35, p. 138]. In this research
will use annual Holding Cost Per Unit:

Ch = C ∗ H(in $/item in inv./year) (21)
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Table 9 Total cost calculate

Sum of qty negative stock
in a period

qty ordered in a period Sum of qty positive stock
after in a period

Qty 100 39.00 21,360.10

Parameters P=21.6 K=54 h=0.4

Total Cost Shortage Cost Order Cost Holding Cost

12,810.04 2,160.00 2,106.00 8,544.04

Table 10 Factorial design
of experiment

Independent variable Inventory models

Quantity of maintenance EOQ MERP

High Inventory cost Inventory cost

Medium-high Inventory cost Inventory cost

Medium Inventory cost Inventory cost

Low-medium Inventory cost Inventory cost

Low Inventory cost Inventory cost

Very low Inventory cost Inventory cost

3. Shortage Cost—occurs when demand exceeds the available inventory for an
item. It is related to the level of customer service that the organization wants to
reach. It can be like a missed chance of profit, which is called the opportunity
cost. In this research, this cost is the quantity missed (S) of item in period times
the price of the item (P):

Cs = P ∗ S (22)

4. Total cost (TC): is the sum of the there components: fixed, holding and shortage
cost. It is represented in the following formula:

TC = Ck + Ch + Cs => TC = K ∗ N + H ∗ Q + P ∗ S (23)

An example of the calculation is at Table9.
The factorial design 2×6 of the experiment is represented in Table10.

4.3 Simulation Experiment

To compare the effect of the models over inventory cost, we do a simulation experi-
ment with empirical data. This empirical experiment controls all internal threats and
seeks to study the relations “under a pure and uncontaminated condition” [25, p.
581].
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The result of the experiment is compared and analyzed to support the hypotheses,
or not. The experiment design is:

Situation An
1—————X(EOQ)———————–O

Situation An
1—————X(MERP)———————O

n is the number of sample per quadrant in factory design.
Basically the purpose of the simulation experiment is to test the hypotheses derived

from the theory. The weakness of generalizing the hypotheses is compensated for
per strong internal validity [25]. The simulation represents the reality of an environ-
ment. The simulation manipulates the independent variables and records the depen-
dent variable to analyze. This kind of experiment allows for “all of the roles of the
research scientist without having to contend with the time-consuming process of data
collection” [2].

The time of the experiment is of 4years, (y−2, y−1, y, y+1). In each year, it
will set up the weekly average usage to process the quantity of maintenance. In y−2
and y−1, it will calculate the demand of corrective and preventive maintenance, the
spare part consumption of the maintenance, and the weekly average. For the y, and
y+1 are simulated 52 events for year with total 104 events for sample. Then, the
result experiment is recorded.

The Simulator was programmed using Visual Basic for application along with
Microsoft Excel. The Excel is used to produce a useful and comfortable tool [22].
It permits easy testability and repetition of the experiment. The simulation was pro-
grammed to produce 50 samples in each quadrant of the factorial design. The simu-
lation ultimately creates 600 samples.

The simulator utilizes a lot of Excel worksheets to process, record and analyze
the information. The first step is to fill in the variable and fix parameters. With this
information, the quantity of PM and CM per year (MOP function) are calculated.
Based on the weekly average of maintenance, the simulator creates a random Poisson
number/quantity of maintenance per week to represent the uncertainty.

For an EOQ simulation, the material consumption used in maintenance is
processed and calculated for the EOQ (EOQ Demand is the sum of 52week -1year-
old demand before of actual period week of calculation; ROP uses the average of
demand in this period). With EOQ and ROP data, the experiment simulates 2years
of consumption and replacement of stock. To decrease the stock weekly and increase
uncertainty, the simulation uses a random Poisson distribution to calculate the con-
sumption of material. In the end, simulator records the EOQ costs.

ForMERP, it is uses the samedata ofmaintenance (MOP) andgenerate aMPSwith
the quantity of PMandCM.Afterwards, it generates the spare parts to purchase based
on MMRP. To decrease the weekly stock and increase uncertainty, the simulation
uses a random Poisson distribution to calculate consumption of material.

At the end of each procedure, the EOQ andMERP cost and quantities are recorded
and the simulator repeats the experiment fifty times with random maintenance and
consumption of material. After recording 50 samples, the simulator changes the
parameters and processes again until finishing the last parameter. The procedure is
in Fig. 3.
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Paramet

Samples

Fig. 3 Simulation procedure

For the H-1, the samples are statically tested with an analysis of the variance
(ANOVA) to support the hypothesis that there is a significant difference between the
two models. For H-2 to H-7, because the samples are paired, (i.e., the simulation
uses the same parameters to produce results in EOQ and MERP), it will use a t-test
to check the hypotheses.

4.4 Assumption and Fixed Parameters of the Simulation

• Assumptions for MERP:

1. The simulation calculates the requirements at the beginning of period.
2. The simulation tries to meet requirements for future periods;
3. The decisions occur weekly.
4. The cost does not change significantly with time.
5. Supplier delivers the requirement on time; deliveries don’t have uncertainty.
6. The experiment puts uncertainty only on demand requirement (requirement

for more or less than planned using Poisson distribution)
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Table 11 Fixed parameters Parameter Value

Fixed cost (K) $54.00

Item price $20.00

Tax annual holding cost(H) $22%a.a

Number of aircraft X 300

QPA of generator in aircraft
X

2

QPA of Part A in Preventive
maintenance of Generator

QPA=10 Probability of
change=100%

QPA of Part A in Corrective
maintenance=10

QPA=10 Probability of
change=80%

Service level 0.90

Lead time spare part 4weeks

Frame time of experiment 52week /year

• Assumption for EOQ:

1. It uses a continuous review policy for purchases.
2. ROP and EOQ use historic demand for 1year.
Fixed parameters are at Table11.

5 Results

• Hypothesis 1 - There is significant difference between MERP and EOQ inventory
models, and different quantities of maintenance on inventory costs.

To test this experiment, the simulation generates 50 results to each quadrant of a
factorial design. Analysis of variance (ANOVA)was used to compare the systematics
variance in the data to the amount of unsystematic variance and presents the result
at Table12.

ANOVA produces a F-statistic or F-ratio to support that the means of the experi-
ments are equal or not. The significance level tested is 95%. The test is at Table13.

After analyzing the results, researchers can infer that:

– There is a significant main effect of the type of inventory model on inventory cost,
F(5,588)=470.26, p<0.001, ω2 = 0.78.

– There is a significant main effect of the quantity of maintenance on inventory cost,
F(1,588)=579.94, p<0.001, ω2 = 0.19.

– There is a significant interaction effect between inventory models and quantity of
maintenance on the inventory cost, F(5, 588) = 14.30, p < 0.001, ω2 = 0.02.
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Table 12 Result
of experiment after
simulation

Independent variable Inventory models

Quantity of maintenance EOQ MERP

High 5,604.73 3,845.59

Medium-high 5,250.52 3,451.92

Medium 4,371.84 2,996.56

Low-medium 3,711.36 2,489.34

Low 2,686.83 1,833.45

Very low 1,265.09 685.99

Table 13 ANOVA table Source SS df MS F p-value

Models 972,559,674 5 194,511,934 470.26 9.32E-203

Qty Maintenance 239,876,513 1 239,876,513 579.94 1.11E-89

Interaction 29,570,294 5 5,914,058 14.30 3.18E-13

Error 243,210,640 588 413,623

Total 1,485,217,122 599

This indicates that EOQ and MERP models are affected differently by quantity of
maintenance.

ω2 represents the variance estimate for the effect divided by the total variance [13,
p. 446].

The result supports Hypothesis 1 that there is significant difference between the
two inventory models, and quantity of maintenance on inventory cost.

• H-2 to H-7 (to each level of maintenance): Inventory cost is lower using MERP
than the EOQ model with different quantity of maintenance.

After Simulator produced 50 samples to each level of maintenance, it was done a
dependent t-test to p ≤ 5%.With result at Table14, researchers can infer that on aver-
age the experiment present that the inventory cost is significant lower using MERP
than the EOQ model with different quantity of maintenance according Table14.

Effect size ( r ) is “ simply an objective and (usually) standardized measure of the
magnitude of observed effect” [13, p. 56]. The formula to calculate the effect size is:

(2) r =
√

t2

t2 + d f
(24)

6 Discussion

The study tests a new collaboration model between maintenance supply chain ele-
ments. It matches inventory to maintenance requirements in order to decrease inven-
tory costs. We compare the new model with the traditional inventory model and at
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Table 14 H-2-H-7-Dependent t-test

Maintenance Qtt Parameters EOQ MERP

Mean 5,604.73 3,845.59

Std. Error Mean 150.51 18.89

mean difference (MERP - EOQ) 1,759.14

Std. dev. 1,091.74

Std. error 154.40

High t-test 11.39

p-value (one-tailed, lower) 1.11E-15

r (effect size) 0.85

Confidence interval 95.% lower 1,448.87

Confidence interval 95.% upper 2,069.41

Margin of error 310.27

Mean 5,250.52 3,451.92

Std. Error Mean 178.77 16.71

Mean difference (MERP - EOQ) 1,798.60

Std. dev. 1,283.77

Std. error 181.55

Medium-High t-test 9.91

p-value (one-tailed, lower) 1.37E-13

r (effect size) 0.82

Confidence interval 95.% lower 1,433.76

Confidence interval 95.% upper 2,163.45

Margin of error 364.84

Mean 4,371.84 2,996.56

Std. Error Mean 135.19 14.03

Mean difference (MERP - EOQ) 1,375.27

Std. dev. 967.83

Std. error 136.87

Medium t-test 10.05

p-value (one-tailed, lower) 8.59E-14

r (effect size) 0.82

Confidence interval 95.% lower 1,100.22

Confidence interval 95.% upper 1,650.33

Margin of error 275.06

Mean 3,711.36 2,489.34

Std. Error Mean 112.47 10.79

Mean difference (MERP - EOQ) 1,222.02

Std. dev. 800.92

Std. error 113.27

Low-Medium t-test 10.79

p-value (one-tailed, lower) 7.62E-15

r (effect size) 0.84

(continued)
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Table 14 (continued)

Maintenance Qtt Parameters EOQ MERP

Confidence interval 95.% lower 994.40

Confidence interval 95.% upper 1,449.64

Margin of error 227.62

Mean 2,686.83 1,833.45

Std. Error Mean 79.35 8.42

Low Mean difference (MERP - EOQ) 853.38

Std. dev. 559.40

Std. error 79.11

t-test 10.79

p-value (one-tailed, lower) 7.67E-15

r (effect size) 0.84

Confidence interval 95.% lower 694.40

Confidence interval 95.% upper 1,012.36

Margin of error 158.98

Mean 1,265.09 685.99

Std. Error Mean 79.82 6.69

Mean difference (MERP - EOQ) 579.10

Std. dev. 562.68

Std. error 79.57

Very Low t-test 7.28

p-value (one-tailed, lower) 1.23E-09

r (effect size) 0.72

Confidence interval 95.% lower 419.18

Confidence interval 95.% upper 739.01

Margin of error 159.91

different quantities of maintenance. The research question is supported by the result
of seven hypotheses.

The first hypothesis shows that there are strong differences in inventory costs
using models with different quantities of maintenance. Models, quantities of main-
tenance and their interactions have a significant effect on inventory cost. Although
the experiment demonstrates that both models purchase almost the same quantity of
material, inventory cost is different between the models when different quantities of
maintenance are applied.

The second through the seventh hypotheses are supported by the dependent sta-
tistic t-test. The t-test supports that when MERP is used to manage inventory, the
cost is lower than with EOQ. Therefore, we can infer that there is strong evidence
that Maintenance Enterprise Resource Planning (MERP) model decreases inventory
costs when compared to the EOQ model.
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This research extends the use of information processing theory to supply chain
management by creating a model that integrates information within and across the
supply chain. Because of the complexity of the maintenance environment, the model
organizes, shares and integrates information among the elements of the supply chain
(e.g., MTBUR, BOM, hours of flight). MERP framework increases the integration
capability, and consequently, can increase supply chain performance. So, the model
extends the Galbraich (1973) proposal where with high uncertainty, there is more
need for processing information. This model increases the lateral and vertical inte-
gration providing a great increase in cost performance in supply chains. Posey and
Bari [29] propose a framework to supply chain but didn’t test the framework. This
experiment complements the study of [29] by showing results that are proposed in
their framework.

This research adds a new scientific approach to MRP by adding a new theory
on the use of MRP. In the early days, “MRP was neglected in academic curricula
in favor of intellectually challenging statistical and mathematical techniques. Aca-
demics considered the study of MRP vocational rather than scientific” [30, p. 375].
This experiment uses the principle of information-processing theory to integrate
lateral relation and increase vertical information to decision makers, a principle of
MRP. Using MRP techniques, this model can increase the capacity of information
processing and decrease uncertainty in the maintenance supply chain.

Further, this model brings a new framework to the maintenance supply chain. A
literature review shows scarce research about models that attend to this environment.
This model brings a new management dimension to maintenance supply chain. With
it, MRO organizations can integrate the use of equipment, predict maintenance and
material, and consequently, decrease inventory costs. This framework fits well in
organizations that specialize in management maintenance and service supply chain.

Reducing inventory costs can now be explained. The integration of information
decreases the degree of separate information, so that there is both a reduction in
uncertainty and an increased information processing capacity. “Traditional inven-
tory management, in the pre-computer days, could not process and integrate the
information because of limitations imposed by the information-processing tools”.
Almost all those approaches suffered from this imperfection causing development of
elaborate mathematics models working in isolation, such as with the EOQ and ROP
models [30, pp. 377–378].

The new model decreases the volume of uncertainty by putting the maintenance
demand as a mitigating factor. So, demand forecasting mitigates uncertainty and
consequently the quantity of the stock needed to attend the maintenance is lower
than the buffer class in EOQ.

This simulation controls the unbiased variables and manipulates the independent
variables to measure the dependent variables. This model studies only an aircraft, a
generator and a spare part, but the pattern observed in this experiment can be applied
to any reparables or spare parts. Only the basic parameters change, yet the results
are the same because the models tested the high and low quantities of maintenance
demand. So the spare parts have to follow the same pattern for any reparable. This
model can be used for all items of an aircraft, and results will be the same. By putting
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all reparables and spare parts inMERPmodels, managers can simulate the fleet usage
and can adjust the quantity to fit their budget. Nowadays, the only limitations are the
processing capacity, which, is easily overcome with the improved capacity of new
computers and networks.

This model can also bring new approaches to manage maintenance. For example,
car dealers have to maintain a high inventory to attend to corrective and preventive
maintenance. If cars now have technologies such as machine-to-machine (M2M)
that transmit mileage, MERP can calculate and forecast maintenance and material
requirements and decrease the materials inventory for shop maintenance. All com-
panies doing maintenance can use this framework to improve their supply chain.

This research uses uncertainty in demand only. For future research, it is suggested
to put uncertainty into lead time, and to study new buffers against such uncertainty
such as Demand-Driven MRP [30]. Other useful research would include testing this
model in a real environment to record the data and compare it across the simulations
performed.
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Strategic Planning of Optimal Networks
for Parcel and Letter Mail

Martin Nikolas Baumung, Halil Ibrahim Gündüz, Thomas Müller
and Hans-Jürgen Sebastian

Abstract This paper considers postal logistics, more precisely, the distribution
networks for letter mail and parcel mail. The main service provided by postal compa-
nies is letter mail and parcel mail transportation and delivery. In this market segment
there have been two key efforts during the last few years: reduction in transporta-
tion and delivery time (service quality) and minimization of costs. Both efforts—
reduction of service time and minimization of costs for providing the promised
services—have a strong impact on the quality of the strategic planning phases of the
respective distribution networks. In this article we introduce the structure of a typical
distribution network for letter mail and for parcel mail, and we describe the main
subnetworks. Furthermore, this paper deals with two selected projects on optimiza-
tion of such networks. Each of the projects covers system analysis, modeling, and
for the second project, also the development of an optimization algorithm.

1 Introduction

The increasing market competition and the service focus of customers force logistics
service providers, such as postal organization and express shipment companies, to
re-evaluate and to continuously improve their networks for parcel, letter, and freight
mail. The core service provided by postal companies is parcel and letter mail trans-
portation and delivery.
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Worldwide, the parcel mail market is rapidly growing, while the volume of letter
mail is decreasing. This situation causes changes in the distribution networks.

1.1 Postal Network Design

A typical distribution network for parcel or letter mail can be described briefly by
the following subnetworks (see Fig. 1):

Mail collection subnetwork: In this network, mail (i.e. parcels or letters) is
collected from different mail sources (e.g. mailboxes, business customers) and trans-
ported to sorting centers. Consolidation points (CoP) are used to switch from small
vehicles to bigger vehicles, which then transport the mail to the sorting centers.

Sorting centers (SC): Sorting centers are big automated sorting facilities for parcel
or letter mail, which work in two different modes during different time intervals. The
input sorting center (ISC) performs sorting with respect to the destination sorting
center (SC) (in Germany, characterized by the first two digits of the 5-digit zip-code),
while the output sorting center (OSC) performs sorting processes for the distribution
and delivery to the final destination.

Long-haul transportation subnetwork: The subnetwork takes care of the mail
exchange between the sorting centers (overnight). The main idea is to use bigger and
faster vehicles for long distances and to consolidate mail at a subset of sorting centers
which are used as hubs. In real world applications, the long-haul transportation
subnetwork is often realized in two different transportation modes (e.g. air–road,
road–rail).

hub (air, rail)

terminalterminal

road-hub (SC)

CoP

DS/DB

distribution

DD

delivery /
last mile

LHT - mode 2

mailbox

CoP

SCSC

subnetwork for
collecting mail

LHT -mode 1

mail collection long haul
transportation (LHT)

distribution /
delivery-last mile

Fig. 1 Components/Subnetworks of a distribution network for letter and parcel mail
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Distribution subnetwork: In this subnetwork, the mail is distributed by transporta-
tion from the sorting centers tomini-hubs (called: delivery stations (DS) in the case of
letter mail, and delivery bases (DB) in the case of parcel mail) using vehicle routes.
At the mini-hubs a final sorting in sequence takes place for each of the assigned
delivery districts (DD).

Delivery (last mile) subnetwork: Each postman has an allocated delivery district.
He/She starts the delivery route at themini-hub,moves to the delivery district and vis-
its it in a predefined (optimal) sequence and finally returns to the mini-hub (DS/DB).

This brief description of the complex networks in postal logistics suggests that
the problem of optimizing such a network may become complicated. Of course the
instances of such networks in different countries differ significantly. For example,
an instance of the DHL’s parcel mail network in Germany in 2011 is characterized
by:

• 33 sorting centers (parcel mail centers), 203 delivery bases, 790 million parcels
per year, 7,600 vehicles for the parcel mail delivery, 7,500 delivery districts.

• In 2011, the letter mail network of Deutsche Post in Germany consisted of: 82
sorting centers (plus the international sorting center), 3,100 delivery stations, 66
million letter mails per day, 53,000 delivery districts, 80,000 postmen, 110,000
mail boxes.

Although the networks for parcel and letter mail are separated, there are synergies.
The delivery of parcels and letters is realized together (same postman, same vehicle)
for a large number of delivery districts. Further, the distribution of parcels and letters
is done by the same vehicles if this makes sense.

From this data it follows that the optimization problem is very complex for both
German networks of DPDHL. In addition, the acquisition of all data which is needed
to feed the respective optimization models requires methods from data and system
analysis.

For such complex problems, it is well known that introducing planning phases is
necessary in order to reduce complexity and to deal with a collection of models with
different time and resource granularity.

In this paper we mainly focus on the strategic planning phase. The strategic plan-
ning phase deals with long-term decisions related to the network infrastructure:

• decisions related to the quantity and quality of the main resources (locations, facil-
ities, vehicles, human resources) and the method of acquisition of these resources
and

• the selection of services to be offered.

1.2 Problems Studied

We will consider problems and models which originate in the postal logistics area
(outlined briefly above), on a more generic level for applications in different areas.
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Further, we will discuss one real-world application from DPDHL for each generic
model.

The first group of generic models deals with the strategic optimization of parcel
mail distribution networks. The real-world application is DHL’s national parcel mail
network for Germany. The key to the success of this approach is the modeling of
a sequence of three optimization models, starting with the simplest case, and elab-
orating models which are becoming more and more complicated and detailed. In
the following these three models are briefly described, however only the first-stage
model is covered in this paper while the two other models will be subjects of future
works.

The first-stage model is the location/allocation model, which selects sorting cen-
ters from a given finite set of candidates and allocates geographic areas to the selected
sorting centers, where the allocated areas are composed of 5-digit zip-code areas.
The objective is to minimize costs. The solution represents the overall design of
the parcel mail network. The service quality, which can be reached with this cost-
minimized network, is computed after the strategic optimization by approximating
the transportation process within this network. The model was implemented using
themodeling languageAIMMS [1] and theDHL problem instances have been solved
to optimality by CPLEX [11].

The second-stage model adds service quality constraints (e.g. next day delivery
of 90 percent of all products) to the cost minimization model. Unfortunately, this
requires time as an explicit factor in the optimization model in order to estimate
transportation time from the network sources to the final destination. This model
cannot be solved to optimality using solvers, available today.Therefore,wedeveloped
metaheuristics to solve the optimization problems.

The third-stage models are the computationally most challenging models in this
collection. Optimization of the locations of delivery bases (i.e. the mini-hubs of a
parcel mail network) requires that the sorting centers and their allocated areas are
given. The approximate solution of this third-stagemodel forDHL’s problem instance
leads to an interesting application with a high potential for cost savings.

The second group of models relate to a long-haul transportation subnetwork with
hubs. In the parcel mail network discussed above, no hubs are used between the par-
cel mail centers within the long-haul transportation network. This is the main reason
why the overall strategic optimization problem is tractable. However, the long-haul
transportation subnetwork between the sorting centers is much more complicated
in letter mail distribution networks, such as the Deutsche Post’s national letter mail
transportation network, because consolidation with hubs is necessary. It shows that
the well-known hub location models cannot be used to adequately model this prob-
lem.

The solution of the hub location problem is the key to the strategic optimization
of the overall network in the case when subsets of sorting centers are used as hubs
in the long-haul transportation subnetworks.
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We have developed a new model, which is “trip-based” rather than “flow-based”,
and a collection of heuristics and metaheuristics. In this paper we will show that this
approach is able to solve the hub location problem for the long-haul transportation
network for letter mail within Germany.

1.3 Literature Review

In this paper we mainly focus on the strategic network design of mail service
providers. In the context of optimization, network design problems usually con-
sist of two interrelated problems: to determine the number and locations of hubs
and depots and to allocate geographic areas to these facilities. These problems either
belong to the class of hub location or to the group of p-hub median problems. Hub
location models are well studied in literature and can be found in [7, 26] or [29].
A literature review and some recent trends are given in [2]. Efficient algorithms for
the single allocation p-hub median problem can be found in [16]. Further discussion
of the related p-hub center problem is introduced by [15, 24].

Network design problems have a lot of real world applications, i.e. railroad or
airline network design. On a generic level, [37] studied the optimization of logistic
networks considering strategic, tactical and operational costs and developed a corre-
sponding tabu search algorithm. Applications of network design problems to postal
logistics have been studied in several different countries [4] restructured the logistic
system of the Swiss parcel delivery network and decided upon the number, location,
capacity, and service areas of different transshipment points [36] present a heuristic
solution concept for the design of the hub transportation network for parcel service
providers in Austria and [31] optimized highway transportation at the United States
Postal Service.

Reference [34] gives an overview on optimization approaches in the strategic and
tactical planning of postal networks and [35] gives an insight to the current state of
the art applications at Deutsche Post DHL. Operative aspects like the determination
of transport routes, etc. for a private parcel service provider in Poland are considered
by [28]. Reference [21] studied similar location-routing problems for fast-delivery
subnetworks in urban areas. Reference [6] proposed a hybrid tabu search/branch-and-
bound algorithm for the direct flight network design problem and [23] developed a
Dantzig-Wolfe decomposition approach for optimizing the letter mail flight network
of Deutsche Post DHL. Reference [3] created a system to optimize the design of
service networks for delivering express packages for UPS. A survey of planning
models for long-haul operations was published by [20]. On a more generic level,
[38] developed a multi-stage facility location problem with staircase costs, which
finds many applications in postal logistics.

The sheer size of Deutsche Post DHL’s parcel mail network made it necessary to
analyze the network as well as the data. As a result of this analysis, we were able to
make meaningful assumptions in order to adapt and simplify the model to make it
computationally tractable.As for the lettermail network, the peculiarities ofDeutsche
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Post DHL’s long-haul transportation network inside the letter mail network made it
necessary to develop a new approach to economies of scale, which is introduced in
Sect. 3.

The remainder of this paper is structured as follows. In Sect. 2 we present a model
to optimize the German parcel mail network of DHL along with corresponding
results. In Sect. 3 we focus on optimizing the long-haul transports in Deutsche Post
DHL’s letter mail network. We propose a generic model which considers the pecu-
liarities of this subnetwork, and we describe a metaheuristic solution approach and
provide some results. The paper ends with a conclusion in Sect. 4.

2 Modeling and Optimizing the German Parcel Mail Network
of DHL

A comprehensive and nationwide cost analysis of parcel mail distribution was last
performed in the years 1995–1997 after the European liberalization of the telecom
market. During that time, the whole distribution network of Deutsche Post DHL was
restructured. Since this reorganization, the number and location of sorting centers
have slightly changed. Hence, a complete analysis of the current and the future
parcel mail distribution network is necessary due to the rapidly increasing B2C
market. Between 2000 and 2011, the parcel mail distribution in Germany recorded
an expansion of 50% (see Fig. 2).

Since 2007, revenue in the parcel business has increased on average by 3.5%
annually and it went up by as much as nearly 10% in the first half of 2011. As a
result, this growing market already makes up around one-fifth of the total revenue
[14]. The analysis of the parcel distribution network is therefore an important step to
ensure that the parcel business continues to contribute earnings. The main focus of
this section is to find the optimal number and location of sorting centers as well as
the optimal allocation of geographic areas to them. For this purpose, a first strategic
model is described in the next section.

Fig. 2 Development of the
parcel mail market from 2000
to 2011 in Germany

2000 01 02 03 04 05 06 07 08 09 10 2011

1,771

1,185

development of the parcel market
(in million items)

growth
of nearly
50 %
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2.1 Strategic Model Formulation

The location-allocation model is defined on a weighted (not necessarily complete)
directed graph G = (V , A, C). The node set V consists of disjoint subsets S, I , J ,
and T . S is the set of geographic areas (e.g. 5-digit zip-code areas). Sorting centers
are represented by both node sets I and J . While I is the representative set for the
potential input sorting centers, J represents the potential set of output sorting centers.
Each input/output SC has a sorting capacity K1

i /K
2
j and opening fixed costs F1

i /F
2
j .

T is the set of the delivery bases/stations. Further, to each DB/DS, represented by
the node set T , the overall parcel mail volume bt and parcel mail volume bs

t from
each s area is known. The graph contains the following set of arcs (see Fig. 3):

• (s, i) with s ∈ S, i ∈ I (parcel mail collection)
• (i, j) with i ∈ I , j ∈ J (long-haul transportation)
• (i, t) with i ∈ I , t ∈ T (direct transportation from ISC to DB/DS)
• (j, t) with j ∈ J , t ∈ T (parcel mail distribution)

C is a function which associates transportation costs to every arc in the set A, where
c1si denotes the unit costs of transportation of parcel mail collection, c2ij the unit

costs of transportation of long-haul transportation, c3it the unit costs of transportation
of direct shipment from ISC to DB/DS, and c4jt the unit costs of transportation of
parcel mail distribution. The task is to determine the location of open sorting centers,
the assignment of areas to open input sorting centers, the assignment of delivery
bases/stations to output sorting centers, and the transport flows of the network with
minimum overall costs, such that the following constraints hold:

• Each area is assigned exactly to one open ISC.
• Each DB/DS is assigned at most to one open OSC.
• Each collected itemof parcelmailmust be transported to its destinationDB through
either long-haul or direct transportation.

area 1

area 2

ISC 1

ISC 2

OSC 1

OSC 2

DB 1

DB 2

s i j t

csi cij cjt

cit

1 2

3

4

Fig. 3 Schematic representation of the parcel distribution network
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• Each incoming transport flow equals the outgoing transport flow of each ISC/OSC.
• The total parcel mail collection of areas assigned to an open ISC does not exceed
the sorting capacity.

• The total parcel mail distribution through long-haul transportation to delivery
bases/stations assigned to an open OSC does not exceed the sorting capacity.

We introduce the following binary decision variables:

xsi =

{
1, if area s ∈ S is assigned to ISC i ∈ I
0, otherwise

yjt =

{
1, if DB/DS t ∈ T is assigned to OSC j ∈ J
0, otherwise

zit =

⎧
⎨

⎩

1, if a direct transport from ISC i ∈ I to DB/DS t ∈ T
is performed

0, otherwise

ui =

{
1, if ISC i ∈ I is open
0, otherwise

vj =

{
1, if OSC j ∈ J is open
0, otherwise

Further, we introduce the following flow decision variables:

f t
ij ≥ 0 : flow from ISC i ∈ I to OSC j ∈ J with destination DB/DS t ∈ T

f 3it ≥ 0 : flow from ISC i ∈ I to DB/DS t ∈ T
f 4jt ≥ 0 : flow from OSC j ∈ J to DB/DS t ∈ T

A mixed integer linear program can now be stated as follows:

min z =
∑

s∈S, i∈I, t∈T

c1si · bs
t · xsi +

∑

i∈I, j∈J, t∈T

c2ij · f t
ij +

∑

i∈I, t∈T

c3it · f 3it (1)

+
∑

j∈J, t∈T

c4jt · f 4jt +
∑

i∈I

F1
i · ui +

∑

j∈J

F2
j · vj

subject to

∑

i∈I

xsi = 1 ∀ s ∈ S (2)

∑

j∈J

yjt ≤ 1 ∀ t ∈ T (3)

∑

s∈S

bt
s · xsi =

∑

j∈J

f t
ij + f 3it ∀ i ∈ I, t ∈ T (4)

∑

i∈I

f t
ij = f 4jt ∀ j ∈ J, t ∈ T (5)
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∑

i∈I

f 3it +
∑

j∈J

f 4jt = bt ∀ t ∈ T (6)

f 4jt ≤ bt · yjt ∀ j ∈ J, t ∈ T (7)

N · zit ≤ f 3it ∀ i ∈ I, t ∈ T (8)

M · zit ≥ f 3it ∀ i ∈ I, t ∈ T (9)
∑

s∈S, t∈T

bt
s · xsi ≤ K1

i · ui ∀ i ∈ I (10)

∑

t∈T

f 4jt ≤ K2
j · vj ∀ j ∈ J (11)

MinISC ≤
∑

i∈I

ui ≤ MaxISC (12)

MinOSC ≤
∑

j∈J

vj ≤ MaxOSC (13)

xsi, yjt, zit, ui, vj ∈ {0, 1} ∀ s ∈ S, i ∈ I, t ∈ T (14)

f t
ij, f 3it , f 4jt ≥ 0 ∀ i ∈ I, j ∈ J, t ∈ T (15)

The objective functionminimizes the sumof parcelmail collection, long-haul, and
parcel mail distribution transportation costs, and the sum of fixed costs for opening
input/output sorting centers. Constraints (2) guarantee the single assignment of an
area to an ISC. Each DB/DS is assigned to at most one OSC through constraints
(3). In theory, it is possible that a DB/DS receives its overall parcel mail volume by
direct transportation from all input sorting centers. In this case, there is no assignment
necessary to anOSC. Constraints (4) and (5) describe the flow conservation at sorting
centers. In constraints (4), the incoming parcel mail volume at an ISC from the
assigned areas and with unique DB/DS destination must equal the outgoing volume.
The outgoing volume is described by the right-hand side of the equation and can be
transported through long-haul or direct mode. In constraints (5), the incoming parcel
mail volume at an OSC from all input sorting centers with unique DB/DS destination
must equal the outgoing volume to the sameDB/DS.Moreover, constraints (6) ensure
that the overall parcel mail volume of a DB/DS is satisfied by transport flows from
the input and output sorting centers. While constraints (7) and (9) imply that a
transport flow is only possible if the corresponding assignment exists (M = ∞),
constraints (8) allow a direct transport flow from an ISC to a DB/DS if it is bigger
or equal to a minimum flow N > 0. Capacity constraints of the open input/output
sorting centers are satisfied through inequalities (10) and (11). The number of open
input/output sorting centers is restricted between a given minimum and maximum
number through inequalities (11) and (12). Finally, constraints (13) and (14) state
the binary or positive continuous nature of the decision variables.
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Table 1 Number of variables
of the SC model compared to
the number of variables based
on the aggregation of areas,
the focus on delivery stations
with guideline roles, and the
restriction of the area
assignment to the 7 nearest
input sorting centers
(Preprocessing)

Variable Model Preprocessing

xsi 271,722 4,676

yjt 108,075 3,283

zit 108,075 15,477

ui 33 33

vj 33 33

f t
ij 3,566,475 108,339

fit 108,075 15,472

fjt 108,075 3,283

Total 4,270,563 150,596

2.2 Scenarios and Results

In the parcel distribution network being considered, 8,234 5-digit zip-code areas, 33
input/output sorting centers, 230 delivery bases (including 27 international European
bases), and 3,075 delivery stations (for combined delivery of parcels and letters)
exist. This numbers lead to more than 4 million decision variables and 500,000
constraints in themodel of Sect. 2.1. For reasons of simplification and proportionality,
we aggregated the areas by the first three digits of the 5-digit zip-code. Therefore,
only 668 areas must be considered. Instead of 3,075 delivery stations, we focused
on those with guideline roles (leading function for up to 15 delivery stations) as
representatives, and reduced the number to 246. Further, we restrict the assignment of
the areas to 7 nearest input sorting centers. In the sameway,we restrict the assignment
of the delivery bases/stations to the 7 nearest output sorting centers. We observed
that more than 7 nearest sorting centers did not improve the solution. Under these
assumptions and restrictions, defined together with Deutsche Post DHL, the number
of decision variables and constraints of the model could be reduced drastically (see
Tables 1 and 2). The model finally was solved to optimality with CPLEX 12.4 in
acceptable time. Therefore, it was possible to analyze several different scenarios.
Some of these scenarios will now be introduced and the according results will be
presented.

In our scenarios we do not distinguish between input and output sorting centers
(I = J). Therefore, we can omit one of the binary variables ui or vj and constraints
(12) or (13). The following basis scenarios have been investigated amongmany others
with different sets of costs and capacity parameters:

Scenario 1 Our first scenario (called “baseline scenario”) represents the current
parcel distribution network. In this scenario, all 33 location variables
are fixed to the value ‘1’ and the assignment variables are fixed accord-
ing to the assignment of the current network. Hence, we only decide
about the transportation flows of 2.8 million parcels of a representative
day in 2012. All potential locations have the same fixed costs and the
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Table 2 Number of
constraints of the model
compared to the number of
constraints based on the
aggregation of areas, the
focus on delivery station with
guideline roles, and the
restriction of the area
assignment to the 7 nearest
input sorting centers
(Preprocessing)

Constraints Model Preprocessing

(1) 8,234 668

(2) 3,275 469

(3) 108,075 15,477

(4) 108,075 3,283

(5) 3,275 469

(6) 108,075 15,477

(7) 108,075 15,477

(8) 108,075 15,477

(9) 33 33

(10) 33 33

(11) 2 2

(12) 2 2

Total 555,229 66,867

current sorting capacity. Direct transportation flows are omitted. The
resulting objective value is used for comparisons.

Scenario 2 In addition to scenario 1, a new different assignment is allowed.
Scenario 3 In addition to scenario 2, the location and the number of sorting centers

are not fixed.
Scenario 4 In addition to scenario 3, further potential sorting center locations are

available (a total of 80 potential locations).
Scenario 5 Same as scenario 2, but direct transports to delivery bases/stations are

allowed if the minimum flow exceeds N .
Scenario 6 Same as scenario 3, but direct transports to delivery bases/stations are

allowed if the minimum flow exceeds N .

We now compare themodel costs of the baseline scenario with the other described
scenarios. First of all, all scenarios reduce the model costs (see Table 3). Even a new
assignment of areas in the present situation leads to a reduction of approximately 2%
(scenario 2). The results of scenario 3 shows that a significant model costs reduction
close to 5% is possible. This is based on the fact that some of the sorting centers are
not necessary in the model to handle the overall parcel mail volume from the areas to
the delivery bases/stations. Considerations of including direct transports also slightly
improve the model costs reduction (see Table 3, scenarios 5 and 6).

In another investigation, we fixed the number of open sorting centers of the base-
line scenario to different values using constraints (12) with MinISC = MaxISC =
MinOSC = MaxOSC and assumed an uncapacitated case. Additionally, we repeated
the investigation of the costs for the increasing parcel mail quantities of 25, 50, and
100%, respectively, to the baseline scenario. All model costs curves for the different
assumed parcel mail volume look similar (see Fig. 4). Obviously, model costs do not
have a one-to-one relationship to the parcel mail volume. Moreover, the model costs
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Table 3 Scenario 1 is our
baseline scenario. Model
costs of scenarios 2–5 are
compared with scenario 1,
and the reduction is given in
percent

Scenario Model costs
reduction in (%)

Direct
transport

1 0.00 no

2 1.98 no

3 5.08 no

4 5.61 no

5 2.75 yes

6 6.12 yes

total costs (baseline)

total costs (volume +25%)

total costs volume +50%)

total costs (volume +100%)

number of
sorting centers

daily
total costs

a b

< 0.5 %

1.00

1.20

1.33

1.50

Fig. 4 Model costs curves for different number of sorting centers and scenarios considering a future
increase in parcel mail volume. The best solution of the baseline scenario is set to the reference
value 1.0

only differ less than 0.5% within a range [a, b] number of sorting centers for all four
volume scenarios (see Fig. 4, depicted gray area).

Altogether, the results show that scenarios with direct transportation mode, mod-
ified geographical assignment and fewer sorting centers, respectively, are more cost
efficient than the current parcel distribution network.

3 Long-haul Transportation in the Letter Mail Network

As stated earlier, one major difference between the long-haul transports in the parcel
and letter mail transportation networks is the use of hubs. While no hubs are used
in the German parcel mail network because of full truckloads between the sorting
centers, hubs are used in the German letter mail network, since letters are much
smaller than parcels, resulting in less-than truckload shipments between sorting
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centers despite the daily letter mail volume being far greater than the parcel one.
Therefore, in order to reduce transportation costs, carriers have to exploit economies
of scale through the consolidation of flows between the sorting centers by using hubs.

In addition to solving a location/allocation model like the one described above,
it is also necessary to decide upon the location of the hubs used for the long-haul
transports and the allocation of the sorting centers to the hubs. That kind of decision,
i.e. the design of a hub-and-spoke network, is usually made by solving so-called hub
location problems, which have been the subject of numerous works. We refer to [7];
and [2] for a comprehensive review and to [10] for an insight to the current status of
this research field.

Economies of scale achieved through consolidation of flows is the raison d’être
for hub-and-spoke networks and is usually modeled by discounting the unit costs of
transportation for inter-hub flows with a discount factor 0 < α < 1 to reflect the
consolidation of flows between hub nodes. Let G = (N, A) be a complete graph,
where N = {1, . . . , n} denotes the set of sorting centers and potential hub location
respectively, then cij indicates the unit costs of transportation between the nodes i
and j for every ordered pair (i, j) ∈ N × N . Assuming that flows between sorting
centers i and j go through paths i → k → l → j, where k and l are hub nodes, the
total unit costs of transportation can be expressed by cijkl = cik + αckl + clj with
0 < α < 1. While this approach is widely spread in the literature because of its
simplicity, it has been facing substantial criticism e.g. [9, 25].

This criticism mainly addresses the fact that the discount factor α is flow-
independent, meaning that it does not depend on the actual flow on the hub arcs.
This is a mismatch between the model and the underlying idea that economies of
scale are achieved through consolidation of flows on arcs with high flows, since
it often leads to optimal solutions in which some hub arcs carry considerably less
flow than most of the non-hub arcs [9]. As a consequence, there is no reason why
economies of scale should apply to hub arcs only. Furthermore, it is not clear what
value should be used for α. Values used in the literature range from 0.25 [16] up to
0.7–1.0 [13]. Another issue with this approach to modelling economies of scale is the
fact that the number of hubs needs to be determined in someway in the corresponding
models. This is either done by predefining the number p of hubs to be installed in
so-called p-hub Median problems [8] or by assuming that installing a hub in a node
k of the network incurs fixed costs Fk in hub location problems [30]. Some authors
have tried to avoid the above mentioned criticisms and introduced flow-dependent
discount factors, resulting in non-linear objective functions which can be approx-
imated by piecewise linear functions e.g. [5, 27, 29]. In a simpler approach, [32]
consider flow thresholds for every hub-arc. These thresholdsmust be reached in order
for the unit costs of transportation on a particular arc to be discounted [9] introduced
the so-called hub arc location problem, where hub arcs are explicitly selected instead
of hub nodes. This usually leads to solutions with hub arcs carrying more flow than
in the corresponding hub location problems.

Even if the approaches mentioned above do provide considerable improvements
to the way economies of scale are modeled in hub location models, some of the
major criticisms mentioned earlier still apply. In all of the works mentioned above,
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Fig. 5 Unit costs of
transportation for different
vehicle capacities as a
function of the vehicle load

economies of scale still apply to hub arcs only, and the number of hubs still needs
to be restricted in some way. To resolve these problems, we have developed a new
approach to economies of scale in hub-and-spoke networks, which is trip-based.
While in all of the works mentioned above, transportation costs are always incurred
by flows between nodes, we chose an approach in which transportation costs are
incurred by vehicle trips. This approach has two advantages. If we assume fixed
costs cfix

f = cf for a specific vehicle trip f , then the unit costs of transportation as a
function of the vehicles load lf is given by

cfix
f
lf

, if lf > 0

0, otherwise,

which is a very simple but adequate description of economies of scale illustrated in
Fig. 5 for different vehicle capacities K1, K2, and K3.

The second advantage of this approach is the fact that it allows easy consideration
of different kinds of consolidation. Traditional hub location models only consider
the consolidation of items with different origins and destinations on hub arcs, even
though, according to [12], there are several ways in which items can be consolidated.
The consolidation of items with the same origin and different destinations or with
different origins and the same destination, as illustrated in Fig. 6, is of great interest
and relevance when optimizing long-haul transports in letter mail networks, since it
is a very effective way to reduce transportation costs.

3.1 Problem and Formulation

The main focus of this section is to find the optimal number and locations of sorting
centers to be used as hubs in the long-haul transports in Deutsche Post DHL’s letter
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Fig. 6 Consolidation of
items with different origins
and the same destination
according to [12], a without
consolidation. b with
consolidation

SC

SC

SC

SC

SC

SC

Hub

Hub

(a)

(b)

mail transportation network. This problem in fact is, if we look at the long-haul
subnetwork only, a hub location problem. However, one distinctive feature of this
problem is the absence of fixed costs for using a sorting center as a hub and the desire
not to restrict the number of hubs in any way. Because of these characteristics, in
order to optimize, we used the above mentioned idea to consider costs for vehicle
trips instead of costs for flows, since it does not require the number of hubs to be
restricted in any way in order to provide meaningful solutions. Therefore, as a part
of the above-mentioned hub location problem, we also need to generate a set of
cost-minimal vehicle trips and to allocate flows to these vehicle trips, ensuring that
all items are shipped from their origin to their destination.

Another peculiarity of the problem studied is the fact that the hub nodes are
not capacitated. This assumption is realistic, since all the sorting takes place in the
inbound sorting centers (see Fig. 1) and the items are only transshipped in the hubs.
However, the sorting capacities in the outbound sorting centers are restricted and
decrease with time. For the sake of simplicity, the sorting capacities were discretized
and are checked at regular intervals (see Fig. 7).

Fig. 7 Discretized
time-varying sorting capacity
function according to [22]
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Consider the complete graph G = (N, E), where N = {1, . . . , n} represents the
set of nodes corresponding to origins/destinations as well as potential hub locations
and E is the set of edges. Let aij denote a transportation request from i ∈ N to node
j ∈ N , and mij denote the corresponding letter mail volume from node i ∈ N to node
j ∈ N , ta

ij the time when the letter mail volume becomes available at node i, and lijkl

a path from node i ∈ N to node j ∈ N via hubs k and l ∈ N . For every node i, let t1i
denote the opening time and t2i the closing time of node i ∈ N . Because of the time
window

[
t1i , t2i

]
in every node of the network, not every path lijkl is feasible. A path

is only feasible if the time windows defined by the earliest arrival time and latest
departure time and the time window of the respective nodes overlap for every node
on the path. We define the set Hij to contain all combinations (k, l) of hubs, such that
the resulting path lijkl is feasible with regard to time.

The above-mentioned path lijkl only gives a rough idea of how the flow is actually
routed through the network. This depends on how the flows on a specific path lijkl are
allocated to vehicle trips. Formally, a vehicle trip f ∈ F corresponds to an alternating
sequence of nodes and arcs on the graph G, where F denotes the set of all vehicle
trips. Let Sf denote the set of all nodes and Pf the set of all arcs for a specific
vehicle trip f ∈ F, t1f ,s the arrival time of trip f in node s, and t2f ,s the corresponding
departure time. The path lijkl for transportation request aij can now be split into three
distinct transportation requests ā1ik , ā2kl, and ā3lj, which need to be fully allocated to

some vehicle trips f ∈ F. For this we need to make sure that the requests ā1ik , ā2kl,
and ā3lj are compatible, with regard to time, with the vehicle trips they are allocated
to. By Fā1ik

, Fā2kl
, and Fā3lj

we denote the sets of vehicle trips f ∈ F compatible

with ā1ik , ā2kl, and ā3lj, meaning that the corresponding arcs (i, k), (k, l), or (l, j) need

to be elements ofPf and the time windows [t1f ,i,t2f ,i] , [t1f ,k ,t2f ,k] etc. need to overlap
with the earliest arrival time and latest departure time for the transportation requests
in the nodes i, k, l, and j. The set A contains all transportation requests ā where m̄
represents the corresponding volume. Finally Ej denotes the set of all transportation
requests ending in node j ∈ N , EF

j the set of vehicle trips compatible with the

aforementioned transportation requests, and EF ,τ
j the subset of EF

j containing all
vehicle trips arriving in node j after time τ .

min z =
∑

f ∈F

cf · zf +
∑

k∈B

cHub · yk (16)

subject to
∑

(k,l)∈Hij

xijkl = 1, ∀i, j ∈ N (17)

∑

l∈N

xijkl ≤ yk, ∀i, j, k ∈ N (18)

∑

l∈N

xijlk ≤ yk, ∀i, j, k ∈ N (19)
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∑

f ∈Fā

zf
ā = 1, ∀ā ∈ A (20)

zf
ā ≤ zf ,∀f ∈ F ,∀ā ∈ A (21)
∑

ā∈A
qā

f ,p · zf
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j ,∀j ∈ N,∀τ ∈ [t1j ; t2j ] (23)

yk ∈ {0, 1} ∀k ∈ N (24)

zf ∈ {0, 1} ∀f ∈ F (25)

xijkl ∈ [0, 1] ∀i, j, k, l ∈ N (26)

zf
ā ∈ [0, 1] ∀ā ∈ A ,∀f ∈ F (27)

The routing variables xijkl ∈ [0, 1] represent the fraction of volume mij on the
corresponding path lijkl. The binary variables zf ∈ {0, 1} are equal to 1 if vehicle

trip f ∈ F is realized, and 0 otherwise, while the continuous variables zf
ā ∈ [0, 1]

represent the fraction of transportation request ā ∈ A allocated to vehicle trip f ∈ F.
Finally, the binary variables yk ∈ {0, 1} are equal to 1 if node k ∈ N may be used as
a hub and equal to zero otherwise. The problem can then be formulated as follows:

The objective function (16) aims at minimizing the total costs consisting of fixed
set-up costs for the located hubs and fixed transportation costs for the vehicle trips.
Constraints (17) ensure that for every pair (i, j) the total volume mij is routed via
some feasible hubs k and l. Constraints (18) and (19) state that nodes k and l may
only be used as hubs if they are hub nodes. Constraints (20) guarantee that every
transportation request is fully allocated to vehicle trips, while constraints (21) states
that requests only can be allocated to vehicle trips that are realized. Constraints
(22) impose capacity constraints on every vehicle trip. Constraints (23) ensure that
capacity constraints hold for all destination nodes j at every (discrete) point in time.
Finally, constraints (24)–(27) state the binary or continuous nature of the decision
variables.

3.2 Solution Approach and Results

Themodel given in the previous section is a possiblemathematical formulation for the
problem described above. When trying to optimize the long-haul transports between
the 82 sorting centers in Deutsche Post DHL’s letter mail transportation network,
the problem very quickly becomes computationally intractable for commercial MIP
solvers. Hence, the problem was solved by means of a two-stage heuristic approach.
We start by constructing a feasible solution which is then improved by a tabu search
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procedure. Tabu search is a metaheuristic solution technique which has proven to be
very successful in solving optimizations problems with a complex solution space.
For details of tabu search, we refer to [17–19].

3.2.1 Construction Heuristic

In order to construct a first feasible solution, we identify arcs of the network which
offer a high potential for consolidation. This is done by computing all paths feasible
with regard to time for every origin-destination relation in the long-haul transporta-
tion network and then calculating the maximum flow compatible with regard to time
on every arc of the network. The arc with themaximal compatible flow is then chosen
and used to generate a new vehicle trip between the corresponding nodes.

During this procedure we allocate the maximum flow possible to the new trip,
where one can chose between vehicles with different capacities as part of the pro-
cedure. Alternatively, the maximum flow also can be allocated to an existing tour
which is extended and/or altered during this process if necessary.

Eventually, the flows need to be adjusted for all of the origin-destination relations
allocated in the current iteration. This adjustment not only affects the flow on the
chosen arc but the flows on the arcs of all alternative feasible paths as well. This
procedure is repeated until all flows have been allocated to vehicle trips and feasibility
for the above mentioned problem is hereby guaranteed. The construction heuristic
can be summarized as follows:

Step 1 For each origin-destination relation (i, j), compute all feasible path from i
to j via a maximum of two hubs which are feasible with regard to time

Step 2 For every arc of the network, calculate the maximum flow compatible with
regard to time windows

Step 3 Find the arc with the highest maximum compatible flow
Step 4 Create a new or extend an existing vehicle trip and allocate as much flow

as possible
Step 5 Adjust the flows for all origin-destination relations allocated in step 4 on

every feasible path computed in step 1
Step 6 Repeat Steps 1 to 5 until all flows are allocated

3.2.2 Tabu Search

In the second stage, this first feasible solution is then improved by means of a tabu
search procedure. For this we defined several neighborhood move procedures which
can be categorized into two groups. Procedures from the first group deal with location
decisions concerning the hubs while those from the second group address the vehicle
trips.
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Add/Drop Starting with a set of nodes containing the current
potential hub nodes, this procedure adds a new or
removes an existing potential hub node to/from the
aforementioned set.

Swap This procedure adds a node to the set of potential hub
nodes if it is currently not contained in the set and
removes it from the set if it currently is among the
set’s elements.

Merge Merges two existing vehicle trips if the resulting trip
remains feasible with regard to capacity and time.
The vehicle’s capacity can be increased as a part of
the process.

Increase/Decrease capacity Increases or decreases the capacity of the vehicle for
a specific trip if the trip’s feasibility is not affected.
Feasibility can be affected by an insufficient capacity
of the corresponding vehicle or delays in the vehi-
cle’s trip resulting from vehicle with a higher capacity
being slower.

Remove Removes an existing vehicle trip if it does not cur-
rently have any flows allocated to it or if these can be
allocated to existing vehicle trips.

Swap request This procedure de-allocates a transportation request
from a vehicle trip and allocates it to an existing or a
new vehicle trip. This can increase the original trip’s
flexibility with regard to time and therefore allow
other moves which were previously infeasible.

These local search procedures are embedded in and guided by a tabu search proce-
dure. Our observation was that the neighborhood is too large for all its improving
solutions to be generated and identified. We therefore opted for a k best search prob-
abilistic tabu search [33], which randomly selects one of the above mentioned neigh-
borhood move procedures, where all procedures share the same probability of being
selected. In every iteration of the tabu search procedure, the best improving move
among the k best is selected and the procedure is repeated until a maximum number
of iterations or a maximum number of iterations with no improving neighborhood
move is reached.

3.2.3 Results

The proposed two-stage heuristic solution procedure described above was coded in
C++ and executed on an Intel� Xeon� X5680 3.3GHz CPU with 48GB of RAM.
It was used to optimize the long-haul transports in Deutsche Post DHL’s letter mail
transportation network. This network features a total of 82 sorting centers resulting
in a total of 6,642 relations to be considered.



100 M.N. Baumung et al.

Fig. 8 Total transportation
costs for the best solutions
obtained for different
numbers of hub nodes in the
long-haul network of
Deutsche Post DHL’s letter
mail network
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Fig. 9 Total transportation
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obtained for decreasing letter
mail volume

letter mail volume

to
ta

l t
ra

ns
po

rt
at

io
n 

co
st

s 1.0

1.0 0.975 0.95 0.925 0.9

0.975

0.95

In the so-called baseline scenario we considered present-day volumes and the cor-
responding optimization led to a substantial cost reduction with only minor changes
to the long-haul network’s hub configuration. Most notably though, despite only
considering transportation costs and not assuming any fixed costs for hub location,
the optimization showed that it is not optimal to use all nodes of the network, as
hub nodes as the classical hub location models mentioned above would suggest (c.f.
Fig. 8).

We considered other different scenarios taking into account a decrease in letter
mail volume of up to 10%.As can be seen in Fig. 9, total transportation costs decrease
with decreasing letter mail volume, but to a lesser extent. That is, a decrease in letter
mail volume of 10% leads to a decrease in total transportation costs of less than
2.5%. This can be explained by the assumption that costs for vehicle trips are fixed
and do not depend on the vehicle load. Therefore, total transportation costs can only
be reduced by reducing the number of vehicle trips required to transport all of the
letter mail. This is in sharp contrast to the classical models, where transportation
costs are a linear function of the volume, and a decrease in letter mail volume leads
to an equivalent drop in transportation costs.
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Fig. 10 Average unit costs of
transportation for increasing
total letter mail volume

total letter mail volume
av

er
ag

e 
un

it 
tr

an
sp

or
ta

tio
n 

co
st

s

This issue is also reflected in Fig. 10, which depicts the impact of increasing total
letter mail volume on average unit costs of transportation in the long-haul transporta-
tion network. The relationship is clearly not linear and unit costs of transportation
decrease asymptotically for increasing letter mail volume, as suggested in Fig. 5.

Altogether, the above results show that the chosen approach for modelling
economies of scale is adequate and provides meaningful results. Furthermore, our
approach also revealed potential to substantially reduce the total transportation costs
in Deutsche Post DHL’s long-haul transportation network.

4 Conclusion

The analysis of the results for the parcelmail network shows that solutionswith direct
transportation mode, modified geographical assignment and less sorting centers,
respectively, are cost efficient. However, we do not consider any service-level aspects
in our strategicmodel. In this context, the so called E+ 1 ratio (percentage of parcels,
which reach their destination within the next day) is a key performance indicator for
quality. Currently, on average 85% of all parcels reach their recipients the next day.
A post analysis revealed that all scenarios could fulfill the current E+1 ratio.

In future, it is proposed that the E+1 ratiowill be increased to 95%by 2022. There-
fore, we formulated an extended strategic MILP model with transportation times to
perform analyses on the E+1 ratio. However, only small instances can currently be
solved to optimality with CPLEX because of the high degree of complexity. To cope
with real-world instances, a heuristic approach based on tabu search has been devel-
oped and is currently under investigation. First investigations show very promising
results. Hence, quality aspects also should be included in the location-allocation
process. The results of these investigations will be presented in follow-up scientific
publications.

As far as the letter mail network is concerned, our results reveal substantial opti-
mization potential in the long-haul transportation network and also support the sound-
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ness of the newly developed approach to model economies of scale in hub location
models in an adequate way. In future, we plan to integrate service quality constraints
into themodel aswell in order to be able to analyze the impact of quality requirements
on transportation costs and hub location decisions.

Currently, we assume that all the letter mail volume has to reach destination the
next day (i.e. a E+1 ratio of 100%), which is very expensive in terms of transportation
costs because of the time window given for the long-haul transportation. Hence,
transportation costs could be significantly reduced by hypothetically allowing E+1
ratios of under 100%. These considerations will be subject of future work.
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Abstract This paper considers the postal logistics area, more precisely, the
distribution networks for letter mail. A main service provided by postal compa-
nies is letter mail transportation and delivery. In this market segment there have been
two key efforts during the last few years: reduction in transportation and delivery
time (service quality) and minimization of costs under service quality constraints.
Both efforts—reduction of service time and minimization of costs for providing the
promised services—have a strong impact on the quality of the strategic and the tacti-
cal planning phases of the respective distribution networks. The Operations Research
type of analytical models used in the strategic and tactical planning phases of distrib-
ution networks in postal organizations are: facility location, location routing, service
networks design, and vehicle routing and scheduling models. In this article we intro-
duce the structure of a typical distribution network for letter mail and for parcel mail,
and we describe the main subnetworks. This paper is also concerned with projects on
optimization of such subnetworks. Therefore, we have selected three projects dealing
with different subsystems and covering the strategic and the tactical planning phases
as well. The projects are in the areas of collecting mail from mailboxes (vehicle
routing), replanning of delivery station locations (facility location combined with
vehicle routing), and reducing deadheading in the last mile (facility location com-
bined with vehicle routing). Each of the projects covers system analysis, modeling,
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1 Introduction

The increasing market competition and the service focus of customers force logistics
service providers, such as postal organizations and express shipment companies, to
evaluate and to continuously improve their networks for letter, parcel, and freight
mail.

The key service provided by postal companies is letter mail and parcel mail
transportation and delivery. In this market segment there have been two key efforts
during the last few years:

• reduction in transportation and delivery time (service quality)
• minimization of costs under service quality constraints

In addition, the goal of ‘green logistics’ has become more and more important and
is today firmly established as one of the core values of several leading postal service
providers, such as Deutsche Post DHL.

Both efforts—the reduction of service time and the minimization of costs for
providing the promised services—have a strong impact on the quality of the strategic
and the tactical planning phases of the respective distribution networks. Instead of
using simple techniques in order to get a quick solution, advanced model-based
optimization and simulation are needed today.

Optimization of facility locations and the allocation of customers to the facilities,
such as terminals, depots, sorting centers, and hubs, are the most important decisions
within the strategic planning phase. If the facilities and their locations are selected
and the allocation of customers is done simultaneously, the tactical planning phase
includes the optimization of transportation and delivery (the last mile) in order to
determine the routes and the schedules for the fleet of vehicles used in the distribution
network. The Operations Research type of analytical models used in the strategic
and tactical phases of planning of distribution networks in postal organizations are:
facility location, location routing, service network design, and vehicle routing and
scheduling models (problems).

1.1 The Distribution Networks for Letter Mail and Parcel Mail

In this section we introduce the structure of a typical distribution network for letter
mail, parcel mail, or both types of mail together (see also [17]). In Fig. 1 such a
network is shown, and numbers for sorting centers and delivery stations are men-
tioned that relate to the distribution network of Deutsche Post DHL for letter mail
within Germany. This network can be considered to be composed of four main stages
(subnetworks):

• Stage 0—mail collection: This subnetwork collects the mail from different mail
sources, and uses consolidation points in order to transport the mail to the sorting
centers.
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Fig. 1 Components/subnetworks of a distribution network for letter mail and parcel mail

• Stage 1—long haul transportation (LHT): This subnetwork realizes the exchange
of mail between sorting centers. The idea is to use consolidation and bigger or
faster vehicles for the long distances between sorting centers [5].

• Stage 2—distribution: These distribution networks (used in a more narrow sense)
distribute the mail from sorting centers to mini-hubs (so-called delivery stations
or delivery bases), where the final preparation for the postmen’s tours takes place
and where the postmen usually start their delivery routes (the last mile).

• Stage 3—delivery (last mile): Postmen visit their assigned delivery districts in
order to deliver the mail to private households or to business customers.

If one were to compare such a distribution network in postal logistics with a clas-
sical distribution network for physical goods, several important differences would
become evident (e.g. a small number of product types in the postal case, but a huge
number of mail sources, mail final destinations, and commodity exchange processes
within the same stage). We go slightly further into the details of the stages (subnet-
works) described above in order to be able to characterize the special optimization
projects that we will discuss in Sects. 2–4 in detail. First, we consider the subnet-
works for collecting mail. Usually, each sorting center (SC) has its own network for
mail collection. The main objects belonging to the mail collection networks are

• mail sources, e.g., mailboxes, business customers, retail stores (may also be used
as consolidation terminals), and

• collection routes, which performmail transportation from the mail sources to their
allocated sorting centers.
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Sorting centers for letter or parcel mail, respectively, are big automated facilities
which implement the sorting part (the production) within these distribution networks.

Sorting centers for letter mail work in two different modes: SCA and SCE. The
SCA mode performs the sorting of collected mail with respect to the destination SC
(in Germany, the destination SC is characterized by the first two digits of the zip
code). The SCE mode undertakes automated sorting of the incoming mail from the
long-haul transportation network with respect to distribution (from the SC to the
delivery stations) and with respect to the delivery (last mile) (sorting according to
the sequence in which the postman visits his DD). Usually, the geographic areas
allocated to the SCA mode and the SCE mode of an SC are identical. However,
there is an option to use some of the sorting centers during several time periods of
the year as SCE centers only. Physically, the SCA and SCE sorting centers are the
same. An SC can operate either in SCA or in SCE mode, depending on time of day.
This is possible because of the high degree of flexibility of the automatized sorting
machines.

Long haul transportationmeans the global area transportation networkwhich con-
nects the sorting centers with each other. Consolidation is used in order to transport
big quantities ofmail over longer distances using larger vehicles or usingmulti-modal
transportation (e.g. road-air, road-rail).

Finally, there are subnetworks for distributing the mail from an SC (working in
SCE mode) to the delivery stations and the so-called last mile. A delivery station
(DS) is a mini-hub, where the final preparation for delivery takes place as performed
by the postmen. Then, the postmen pick up their sorted mail and start the delivery
process, each of them visiting their assigned delivery district (DD) by car, by bicycle,
or on foot in a predefined (ideally optimized) sequence.

Figure1 shows a more schematic picture of a distribution network for letter mail
and parcel mail. The subnetworks and their components are denoted by the abbrevi-
ations introduced before. In order to illustrate the dimension of an instance of such a
distribution network, we give some characteristic approximate numbers of Deutsche
Post DHL distribution network for letter mail within Germany:

• 40 million final destinations, including 3 million business customers
• approximately 68 million letters (of different types) every working day
• 1,08,000 mailboxes
• 82 sorting centers plus the international postal center in Frankfurt
• 3,100 delivery stations and 14,000 offices (retail)
• 53,000 delivery districts (3,500 visited on foot, 18,500 by bicycle, and 31,000 by
car)

There are approximately 80,000 postmen employed byDeutsche Post DHLwithin
the last mile in Germany.
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1.2 Strategic and Tactical Planning of Subnetworks

The huge size of the networks considered above does not allow the development of
an overall optimization model which has a chance of being solved either exactly or
approximately. Also, the acquisition of all data needed as an input for such a model
seems to be either impossible or much too demanding in terms of time and costs.
Therefore, in order to reduce complexity, the well known planning phases are intro-
duced. In addition, the overall network is heuristically decomposed into subnetworks
by introducing an overall service-quality level for the whole network (e.g., next-day
delivery for all postal products) and by assigning time windows and cut-off-times to
the predefined subnetworks (see Fig. 1), such that the overall service quality can be
fulfilled. This approach is described inmore detail in [16]. For example, the long-haul
transportation network for letter mail in Germany has a time window on weekdays
from 9 p.m. to 4 a.m. The cut-off time for the mail collection network is 9 p.m.
Comparable standards are found in [14] for transportation analysis and cost-savings
opportunities in the surface-transportation network at the United States Postal Ser-
vice. In the past, theDeutsche Post Chair of Optimization of DistributionNetworks at
RWTHAachen University and its predecessors have successfully executed a number
of projects dealing with the optimization of subnetworks of the distribution network
in postal logistics, e.g.,

• the optimization of the Deutsche Post Night-Airmail network for letter mail (LHT
subnetwork for letter mail) [3, 4, 8]

• the delivery station location optimization
• the swap body container transportation optimization problem (LHT network for
parcel mail) [16]

• the reassignment of mail sources to sorting centers

This paper is also concerned with projects on the optimization of such subnetworks.
Wewill describe the approaches and the results of three recent projects inmore detail.
We have selected these projects from different subsystems of the overall network,
andwe cover both the strategic and the tactical phases. The projects are in the areas of

• collection of mail from mailboxes (vehicle routing)
• replanning of delivery station locations (facility location combined with vehicle
routing)

• reduction of deadheading in the last mile (sequential facility location and vehicle
routing approach)

Each of the projects covers system analysis, modeling, development of optimization
algorithms, and implementation of a software prototype (decision support system).
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2 Optimization of Mailbox Collection Tours

In the collection part of a postal logistics network, mail is collected from different
types of locations, e.g.,mailboxes, business customers, and retail stores. The different
types of pick-up points can be distinguished by characteristics, such as their service
time windows, the collection frequency, or collected mail volume. In this section we
focus on the collection of letter mail from mailboxes. Even though mail volume is
generally small at mailboxes, mail often needs to be collected multiple times a day,
as mailboxes may fill up quickly. This especially holds if they are located in busy
spots, e.g., train stations. In Germany the collection times are noted on each mailbox
individually, and mail may not be collected from a mailbox before this specific time.
For this reason, service time windows in collection tours are determined by the
earliest arrival time, which is the collection time displayed on a mailbox. The latest
arrival time at a mailbox is not restricted as long as mail is not overflowing out of the
mailbox.

Multiple studies concerning the optimization of mailbox collection tours have
been published, e.g., by Laporte et al. [11] for Canada Post Corporation in Montreal,
by Mechti et al. [12] for the French postal service, and by Tarantilis et al. [19] for
someknownbenchmarks from the literature.None of themconsider restricted vehicle
capacities, as mail volume on a tour is small in general. However, the latest arrival
time at a depot or the maximal duration of tours prevent the introduced models from
visiting all mailboxes with a single tour.

2.1 Modeling and Solving

The optimization of mailbox collection tours may be modeled as a vehicle routing
problem (VRP) [20, 21]. As mentioned above, for the optimization of mailbox col-
lection tours at Deutsche Post DHL, timewindows need to be considered. Also, as we
are taking multiple sorting centers into consideration, we may change the allocation
of mailboxes. This decision is implicitly made by assigning a mailbox to a tour, as
each tour has a predefined start depot and end depot. Unlike other known models,
in our application, sorting capacities at mail sorting centers are restricted. Yet, as
collection tours may arrive until a defined final sorting time (cut-off time) has been
reached, the restricted capacity cannot be modeled as a single resource. Much more,
a certain arrival rate of mail at the sorting center must be met in order to guarantee
completion of sorting before cut-off. For model complexity reasons, this arrival rate
may be discretized into a set of points in time within the sorting time window of a
depot. Then, the mail volume arriving at the depot with a tour later than a certain
time is restricted. Figure2 shows an example of discretization of sorting capacities
for a generic sorting center, where Bg(τ ) denotes the letter mail quantity that can be
processed at depot g later than time τ .
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Fig. 2 Example of a
discretization of a
time-varying processing
capacity function

The problem was modeled as a multi-depot vehicle routing problem, where the
sorting capacities of the depots (sorting centers), whichmay vary over time, are taken
into account as restricted inter-tour resources [6], i.e., resources that are restricted
not to one tour but for all tours at the same time. The mathematical model and its
parameters, decision variables, restrictions, and the objective function are described
now.

Sets:

C set of customer nodes
G set of depot nodes
K set of vehicles or tours

V k set of feasible nodes for tour k ∈ K
Ak set of feasible arcs for tour k ∈ K
L set of points in time

Parameters:

o(k) start node/origin of tour k
d(k) end node/destination of tour k

ai lower bound for a resource at node i
bi upper bound for a resource at node i
tk
i j resource demand on direct link from node i to j for tour k ∈ K

Bg(τ�) mail that can be processed at depot g later than time �

ng number of tours that end at depot g
k(g, h) the hth vehicle ending at depot g

The objective (1) of the model minimizes the total costs accumulated along all
tours. Constraints (2) ensure that each customer i ∈ C is visited by one and only one
tour. Each tour k ∈ K contains a unique start depot o(k) and also a unique end depot
d(k) (see constraints (3)). The flow conservation of a tour k ∈ K at node i ∈ V k is
represented by constraints (4). With the binary routing variables xk

i j (5), constraints

Decision variables and resource vectors:

xk
i, j binary variable indicating that arc (i, j) is visited by tour k

T k,cost
d(k) accumulated costs of tour k at its destination depot d(k)

T k,load
i accumulated mail pick-up volume at node i of tour k
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T k,time
i accumulated travel and waiting time at node i of tour k

Sg
�,h partial sum of all loads arriving at depot g later than time � for the first

1, 2, . . . , h tours
fi j (T k

i ) max{ai , T k
i + tk

i j }
(6) and (7) simply state that the paths P = P(xk) on each tour k ∈ K have to
form resource-feasible paths. Inequalities (8) guarantee that the sequence of partial
sums is non-decreasing. Constraints (9) model the interdependency between arrival
time and collected load of a tour, and the corresponding partial sum. If tour k with
depot destination dk arrives after τ� (T k,time

d(k) > τ�), then the hth partial sum Sg
�,h must

exceed Sg
�,h−1 by the delivered volume T k,load

d(k) at depot dk . If τ� (T k,time
d(k) ≤ τ�) holds,

then constraints (8) and (9) allows the setting of Sg
�,h = Sg

�,h−1. Through constraints
(10), processing capacities after time � are restricted. Note that constraints (8)–(10)
are non-linear.

min
∑

k∈K

T k,cost
d(k) (1)

s.t.
∑

k∈K

∑

j :(i, j)∈Ak

xk
i j = 1 ∀i ∈ C (2)

∑

j :(o(k), j)∈Ak

xk
o(k), j =

∑

i :(i,d(k))∈Ak

xk
i,d(k) = 1 ∀k ∈ K (3)

∑

j :(i, j)∈Ak

xk
i j −

∑

j :( j,i)∈Ak

xk
ji = 0 ∀k ∈ K , i ∈ V k (4)

xk
i j ∈ {0, 1} ∀k ∈ K , (i, j) ∈ Ak (5)

T k
i ∈ [ai , bi ] ∀k ∈ K , i ∈ V k (6)

xk
i j ( fi j (T k

i ) − T k
j ) ≤ 0 ∀k ∈ K , (i, j) ∈ Ak . (7)

Sg
�,h−1 ≤ Sg

�,h ∀g ∈ G, � ∈ L , h ∈ {2, . . . , ng} (8)

(T k,time
d(k) − τ�)(Sg

�,h−1 + T k,load
d(k) − Sg

�,h) ≤ 0 ∀g ∈ G, � ∈ L , h ∈ {2, . . . , ng},
k = k(g, h) (9)

0 ≤ Sg
�,h ≤ Bg(τ�) ∀g ∈ G, � ∈ L , h ∈ {2, . . . , ng}

(10)

The model and its solution are based on the unified modeling and solution frame-
work by Irnich [10]. Tours are connected to a giant tour, where resources, such as
time and load, are restricted at each node. The consumption of resources along arcs
or tour segments is calculated through so-called resource extension functions (REFs)
(see [9]). To find a good feasible solution quickly for a problem instance, customer
nodes are iteratively inserted into dummy tours and re-inserted into tours through a
variable neighborhood descent (VND) algorithm. Also, iterations of destroy moves
followed by the VND are used to diversify solutions and to explore a bigger part of
the solution space. Details of the solution approach are described in [6, 10].
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Fig. 3 Comparison of total tour length (in minutes) of today’s tours and an optimized tour plan for
two neighboring pilot regions (denoted as areas A and B)

2.2 Implementation

At Deutsche Post DHL, most mailbox collection tours start and end at a depot. Here,
they pick up the keys for the mailboxes as well as a scanner, which they need to
document the mailboxes visited along a collection tour. After visiting all mailboxes,
the tour returns to the SC, bringing in the collected mail, the keys, and the scanner.

For the optimization of the collection tours, first the current tour plan is analyzed.
The arrival rate of mail volume with the current tours arriving at an SC is set as the
sorting center’s capacity. Mail brought in by new tours must not exceed this arrival
rate, i.e., with an optimized tour plan, more volume should arrive earlier than today
at each SC.

For analysis purposes, we used real data of two neighboring regions representing
urban and rural areas. Figure3 shows the total time of today’s tour plan and the result
of our optimization for the pilot regions. The tours contain more than 2,000 stops,
as each mailbox may be emptied multiple times per day. Through our optimization,
more than 20% of total tour time is saved in Area A (mostly urban areas) and about
10% inArea B (mostly rural areas). The results show that this approach is suitable for
urban areas as well as for rural areas. We assumed that, a simultaneous optimization
of neighboring areas could better exploit the optimization potentials. When solving
a multi-depot VRP with time windows (MDVRPTW) with two depots instead of
two separate single depot vehicle routing problems with time windows, 13% of total
tour time may be saved in Areas A + B. Despite the promising result, the absolute
decrease of total time is less than the sum for Area A and Area B. The reason for
this result is the heuristic approach, the large number of stops for Areas A + B and
therefore the growing complexity. The influence of time-varying sorting capacities
on the total tour length is shown in Fig. 4. Even though the optimized tour plan
(MDVRPTW with capacity constraints) is about 5% better than today’s tour plan
(Today), tour length can be significantly shortened when relaxing or removing the
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Fig. 4 Influence of time-varying sorting capacity constraints on total tour length

capacity constraints. This shows that every effort needs to be made to model sorting
capacities as accurately as possible.

Thanks to the results of successful pilots with the implemented prototype, the
model introduced above is today part of the software used for the operational plan-
ning of mailbox collection tours at Deutsche Post DHL. Since September 2008,
Deutsche Post DHL has realized a significant cost reduction by optimizing the mail-
box collection tours using this software.

3 Optimization of Delivery Stations

Weconsider now the subnetwork distribution and delivery of the last mile. Our goal is
the optimization of the delivery processeswithin this subnetworkby strategic network
design decisions.We introduced this network briefly in Sect. 1.1. The relevant objects
are sorting centers and the delivery stations for letter mail. Delivery stations are mini-
hubs where the final preparation (final sorting) of mail for the delivery takes place
(performed by the postman) and where the postman starts the delivery tours covering
his DD. Figure5 shows a simplified schematic picture of the subnetwork distribution
and delivery of the last mile.

In order to better understand the transportation link in stage 2 of the network, we
consider Fig. 6. In reality, the postman moves from the DS to the first customer of

Fig. 5 Schematic view of the subnetwork distribution and delivery of the last mile
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Fig. 6 Raw approximation of a delivery district by its center of gravity

the DD and after visiting all customers of the DD, the postman returns from the last
customer to the DS. Of course, the DS to first customer, last customer to DS links
are not productive from the standpoint of the core delivery process. They take time
and therefore the length of these unproductive links should be minimized. In order to
simplify the model, we concentrate the postman tours within the delivery districts by
using the center of gravity of the DD instead of considering a first and a last customer
of the postman tour. Then, we get an approximated distance: DS to center of gravity
of DD. The transportation links in stage 1 (see Fig. 5) are much more complicated,
because distribution from the SC to the assigned set of delivery stations is organized
by round trips. We will consider the type of round trips used in stage 1 later in detail.
After describing the network structure and the transportation processes, we have to
define the optimization problem. Of course, one may think about different, more -or
less- complex and complicated problems. We focus here on the following scenario:

• The sorting centers for letter mail belonging to a well defined geographic area are
given (i.e. locations and capacities are given). The well defined geographic area is
the area allocated to the considered SC (see Sect. 1.1).

• The allocated area considered above is composed of a set of 5-digit zip code areas
and is, at the same time, cut into a set of delivery districts. These delivery districts
and the routes used by the postman to visit them are assumed to be given.

• There is a set of potential DS locations consisting of existing delivery stations
and new locations. Each location belonging to the set of potential DS locations is
called a candidate location.

The problem is to select DS locations from the set of candidate locations such that
service quality requirements (restrictions) are fulfilled and an overall cost function
becomes minimal. We will call this problem in the following selection of optimal DS
locations.
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3.1 Mathematical Formulation and Solution Approach

The solution approach to the problem selection of optimal DS locations is model-
based. The mathematical model and its parameters, decision variables, restrictions,
and the objective function will be described now.

Notations:

J set of zip-code areas j
S I set of indices of potential delivery locations DL

SH set of indices of sorting centers SC
SS set of indices of other relevant locations SO
SI = {1, . . . , nI } nI number of potential delivery locations
SH = {nI + 1, . . . , nI + nH } nH number of SCs
SS = {nI + nH + 1, . . . , nI + nH + nS} nS number of SOs

A potential delivery location i , where i ∈ I , is either a DS (letter mail network
LN) or a delivery base (DB) (parcel mail network PN). Therefore, we get: SI =
SILN ∪ SI PN and SI SYN = SILN ∩ SI PN. SILN and SI PN denote the index sets of
the potential delivery locations for the letter mail or the parcel mail network. SI SYN

contains those potential delivery locations which can be used for both networks.
Thus, the model takes into account the synergies of both the letter mail and the
parcel mail networks.

Parameters:

fi fixed costs for opening delivery location i
f o
i annual fixed costs for operating delivery location i
ỹi 1 if DL i is open in the initial situation, otherwise 0

We distinguish between opening and annual operating fixed costs. Both costs
occur if a potential DL is selected and does not exist in the current configuration.
Otherwise only the annual operating fixed costs occur.

Decision variables:

xi j ∈ {0, 1} for i ∈ SI and j ∈ J
y j ∈ {0, 1} for i ∈ SI

xi j = 1 holds if zip-code area j is assigned to the potential DL i , xi j = 0
otherwise. yi = 1 holds if the potential delivery location i is selected (‘open’),
yi = 0 otherwise.

Restrictions:

∑

i∈SI

xi j = 1 ∀ j ∈ J (11)
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Each customer’s demand (zip-code area j ∈ J ) is completely fulfilled by delivery
locations SI. Together with xi j ∈ {0, 1}, Eq. (11) means single sourcing. Each
zip-code area is completely assigned to exactly one DL.

∑

i∈SILN

xi j = 0 ∀ j ∈ JPN (12)

∑

i∈SIPN

xi j = 0 ∀ j ∈ JLN (13)

The set J of zip-code areas contains, for example 5-digit zip-code areas j . A zip-
code area of this kind is covered by delivery districts for letter or for parcel mail
separately and also by districts which are designed for combined letter and parcel
mail delivery. JPN denotes the set of delivery districts for parcel mail delivery only
and JLN the set for letter mail delivery only. Then, (12) means that a delivery district
for parcel mail only cannot be allocated to a delivery location for letter mail only
and vice versa (13). In addition, we have a capacitated problem:

δi j xi j ≤ dmax
i ∀ i ∈ SI and j ∈ J (14)

This means that the demand δi j of zip-code area j for a sorting area within the DL
i ∈ SI must be smaller than the capacity dmax

i of the DL. If the potential DL i is
not open, yi = 0, then it is not allowed to assign zip-code areas to this not-selected
delivery facility.

xi j ≤ yi ∀ i ∈ SI and j ∈ J (15)

Objective function:

min z =
∑

i∈SI

∑

j∈J

ci j xi j +
∑

i∈SI

(
fi (1 − ỹi )yi + f o

i yi
)
, (16)

whereby ci j represents allocation costs if the zip-code area j is assigned to the DL
i ∈ SI (costs for the links from delivery location i to the center of gravity of a DD
belonging to j , aggregated over all delivery districts belonging to j).

The term
(

fi (1 − ỹi )yi + f o
i yi

)
describes annual fixed costs related to DL i and

the fixed costs for opening the location i. In the case where delivery location i already
exists (̃yi = 1), only annual operating fixed costs f o

i apply.
The mathematical model can be characterized as a two-stage facility location

problem. Also, it considers the synergies of both the letter and the parcel mail net-
works, whichmakes it interesting on the one hand but also very complex on the other.
Problem instances become too big for computing exact solutions using the existing
solvers and hardware. The approach is adapted to a replanning problem in contrast
to a complete new network design task. This means that some of the existing DS/DB
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locations will remain stable while others are questionable. Also, there are existing
round trips with related costs in the first distribution stage. These round trips should
be taken into account either by the model or by the solution approach, which extends
the problem in the direction of a location routing problem [13].

Concluding, we decided to develop a (meta-)heuristic approach, which was
designed and implemented by Hermanns [7]. Next, we explain this iterative 3-phase
heuristic approach.

• Start with the existing solution (distribution/delivery network). The algorithm
starts with the existing delivery locations and routes, checks feasibility, and com-
putes the related costs.

• Each iteration consists of 3 phases in the sequence:

1. location phase
2. allocation phase
3. routing phase

Location Phase

Selection of locations (from the set of potential delivery locations) which appear
attractive, to be used as DS/DB-facilities. This selection is independent of allocation
or routing decisions.

Allocation Phase

The locations chosen in phase 1 are now given. Customers (meaning delivery dis-
tricts) are allocated to these locations. If there is no feasible allocation (e.g. because
the capacities of the facilities selected in phase 1 are too small in order to satisfy
the customer demand) the solution determined in phase 1 cannot be accepted. If a
termination criterion is not fulfilled after diversification/intensivation steps, phase 1
must be repeated. In order to check the feasibility of the decisions made in phases
1 and 2 and to compute the related cost, the mathematical model described above
is used.

Routing Phase

From the existing solutionweknowan existing configuration of locations (and related
facilities), an allocation, and an existing set of routes (start = iteration 0). The same
applies after each iteration i. After phases 1 and 2 of iteration i+1, we know the
changes in locations and allocations compared to iteration i. Therefore, the routes
belonging to iteration i have now to be modified such that the location and allocation
decisions of iteration i+1 are taken into account.

After phases 1 to 3, a feasible solution has been constructed. If this solution is
better than the best known solution up to iteration i+1, it becomes the newbest known
solution.Otherwise, the algorithmeither stops or continueswith a diversification step.

In the followingwe present a modified approach, which can be characterized thus:

• The location phase (phase 1) controls the algorithm. We use different operators
e.g. the ‘add’ and ‘drop’ operators, which characterize the neighborhoods for local
search. Also, we introduce a diversification strategy in phase 1.
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• After selecting an operation in phase 1 (e.g. adding a closed candidate DL), we
solve the resulting allocation problem in phase 2. This can be done by using
a model-based approach applying a commercial MIP solver or by specialized
algorithms [7].

• Now, within this add/drop-loop (phase 1) we know the related optimal allocation
decisions and are therefore able to move to phase 3 in order to determine the best
related routing decisions. This is done by operations which modify the existing
routes by a route in the neighborhood.

Figure10 shows the flow of the used heuristic. In the prototype tool for planning
DS locations (TOPAS), the allocation problem in phase 2 is solved by a simple
heuristic (nearest location) in the uncapacitated case and by a knapsack algorithm
in the capacitated case. The overall algorithm is implemented as a tabu search and
as a simulated annealing metaheuristic as well [7]. The most interesting component
of the algorithm is the modification of the existing routes (known from the previous
iteration) taking into account the new location/allocation decisions.Wewill illustrate
theTOPASapproach to this problemusing an example. First, we show the complexity
of routes in this application area.

Example illustration

Let us assume that a route t0 contains several locations. We denote by

• H = {SC1} the set of sorting centers,
• I = {DS1, DS2, DS3, DS4} the set of potential delivery stations, and
• S = {SO1, SO2} set of other relevant (for the first distribution stage) locations.

In Fig. 7 the initial route t0 = (SC1, SO1, DS1, DS2, SO2, DS3) is illustrated.
Now, we consider an add move in phase 1, which adds DS4. In phase 2, customer 2
becomes allocated to DS4. Then, Fig. 8 shows a new tour t1, which is generated by
inserting DS4 between DS1 and DS2 and by deleting the direct link from DS1 to
DS2.

Fig. 7 An initial route t0
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Fig. 8 New route t1 = (SC1, SO1, DS1, DS4, DS2, SO2, DS3) after an add move in phase 1,
re-allocation in phase 2, and an insertion step in phase 3

Finally, in order to illustrate that different operations in phase 1 and different
types of routes require different algorithmic solutions, we consider a second example,
where the operator in phase 1 is the drop move and the considered tours are so-called
central tours from the sorting center SC1 to delivery locations DS1, DS2, and DS3.
The delivery stations have customers j1, j2, and j3 allocated to them, which represent
zip-code areas or regions composed of zip code areas. After dropping DS1, the tour
t20 becomes shorter t21. In iteration 2, because of the additional dropping of DS2,
all three customers j1, j2, and j3 must be allocated to DS3. The tours t12 and t22 are
now identical (see Fig. 9). All algorithms for the different categories are described
in detail in [7].

The software prototype TOPASwas first applied for the optimization of the deliv-
ery stations in the year 2008. Since 2009, Deutsche Post DHL has achieved extensive
economies by replanning the delivery station locations through using the prototype
tool TOPAS. The implementation of TOPAS at Deutsche Post DHL, algorithms,
numerical test and results, and economic results are described in [7] on pp. 139–160.

4 Reducing Deadheading on Postman Tours

In this section we consider now a part of the last mile of the letter mail network
in Germany. Postmen start their workday at a DS with administrative tasks and the
sorting of all/some letters according to the route they take when actually delivering
mail. Since the DS is not necessarily located inside a postman’s district, the postman
tour may start with deadheading (from the DS to the first delivery point, see Fig. 11).
It typically also ends with deadheading (from the last delivery point to the DS). In
order to increase productivity, a reduction of these unproductive parts of the tour is
reasonable. Onewaywould be to set upmany delivery stations close to or within each
DD, but this would lead to increasing distribution costs (of stage 2, see Sect. 1.1) and
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(a)

(b)

(c)

Fig. 9 Drop operations to different routes. a Two initial routes t10 and t20. b First iteration, one
possible result after drop DS 1. c Second iteration, one possible result after drop DS 2

overhead/operating costs. Therefore,we are addressing the issue of howunproductive
parts of postman tours can be reduced without introducing more delivery stations.

The solution to this problem is in the reorganization of the processes: The sort-
ing and delivery of mail should be done by different employees. In this way, the
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Fig. 10 Flow chart of
TOPAS solution approach

preparation and some kind of sorting can be performed in the DS by specialized
employees. Then, sorted mail is packed into boxes and shipped to transfer points by
car. There, postmen take over the boxes and start the delivery within the delivery
districts. An advantage of this solution is that transfer points have low operating



Recent Advances in Strategic and Tactical Planning … 123

Fig. 11 Deadheading on a
postman tour

costs and can be placed close to the delivery districts. Thus, postmen do not start
their tours with deadheading, or at least they start with less deadheading. Finally, the
task is to find the optimal number and location of transfer points, such that the sum of
deadheading, transportation, and operational costs for transfer points is minimized
(and the overall costs are lower than the costs for deadheading from the DS).

4.1 Mathematical Formulation

In order to model the problem, we assume that the set I of delivery districts and
the set J of potential transfer points are known. Furthermore, operational costs (fix
and variable costs) for transfer points, deadheading costs between each transfer point
(TP) and DD, and shipment costs are known. Our approach for modeling and solving
this problem is based on location routing theory [15] but it proceeds in two sequential
steps: the first step is the determination of the number and location of transfer points,
and the second step is the optimization of mail transportation costs from the DS to
the transfer points.

The objective of the first step is to minimize the sum of deadheading and opera-
tional costs, whereby the following restrictionsmust hold: EachDDmust be uniquely
assigned to a TP. Further, because of employment laws, at least two postmen must
start at the same TP. Additionally, due to space shortage at transfer points (these are,
e.g., garages, car ports) a maximum number of postmen can work at the same TP.
This problem is a capacitated warehouse location problem with single-sourcing con-
straints derived from [1]. Delivery districts relate to customers with demand 1 and
transfer points to warehouses, where the capacity is defined by the maximum num-
ber of postmen at a TP. The mathematical formulation and its parameters, decision
variables, restrictions, and the objective function will be described now.

Notations:

I set of delivery districts
J set of potential transfer points
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The set of delivery districts is known in advance and the division of the delivery
area is not a part of this problem. Further, the discrete set of potential transfer points
is a subset of nodes within the street network of the delivery area.

Parameters:

f j fixed costs of TP j
v j variable costs of TP j
ci j costs for deadheading between TP j and DD i
a j minimum number of delivery districts assigned to an open TP j
b j maximum number of delivery districts assigned to an open TP j

Fixed costs represent rent or leasing costs of a TP. Variable costs represent
expenses per postman at a TP. Costs for deadheading are calculated as the mini-
mum of the shortest paths from the TP j to each node of the DD i within the street
network of the delivery area. The minimum of the shortest paths is multiplied by two
(includes the way to and from the DD) and (time) travel costs. As mentioned above,
the parameters a j and b j restrict the number of assigned delivery districts (postmen)
to a TP j .

Decision variables:

y j ∈ {0, 1} binary variable indicating whether TP j is open or closed
xi j ∈ {0, 1} binary variable indicating whether DD i is assigned to TP j

xi j = 1 holds if DD i is assigned to the potential TP j , xi j = 0 otherwise. y j = 1
holds if the potential TP j is selected (‘open’), y j = 0 otherwise.

min
∑

j∈J

f j y j +
∑

j∈J

∑

i∈I

v j xi j +
∑

j∈J

∑

i∈I

ci j xi j (17)

s.t.
∑

j∈J

xi j = 1 ∀ i ∈ I (18)

xi j ≤ y j ∀ i ∈ I, j ∈ J (19)

a j y j ≤
∑

i∈I

xi j ∀ j ∈ J (20)

∑

i∈I

xi j ≤ b j y j ∀ j ∈ J (21)

xi j ∈ {0, 1} ∀ i ∈ I, j ∈ J (22)

y j ∈ {0, 1} ∀ j ∈ J. (23)

The objective function (17) is minimizing the sum of fixed, variable, and dead-
heading costs. Constraints (18) represent the single-sourcing constraints, which
means that each DD must be assigned to exactly one TP. On the other hand, con-
straints (19) restrict the assignment of a DD to a TP if and only if the TP is selected.
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A minimum number of delivery districts must be assigned to a selected TP (20), and
the number of assigned delivery districts cannot exceed a given upper bound (21).
Constraints (22) and (23) represent the binary requirement of the decision variables.
This problem was solved with the commercial solver MOPS [18].

Once the number and location of transfer points are determined, the task of the
second step is to ship the sorted mail to the transfer points. Service quality aspects
force postmen to start their delivery at the first delivery point at approximately 8.00
a.m. and the sorting ofmail to be finished by 6.30 a.m. in theDS. So the transportation
of sorted mail to transfer points can be performed only during the time window from
6.30 to 8.00 a.m.This problem relates to a vehicle routing problemwith timewindows
(VRPTW) (see [2]) and its solution approach is based on the unified modeling and
solution framework by Irnich [10].

4.2 Implementation

For application scope, both described problems and used solving methods were
implemented in a prototype. For a given set of delivery districts and potential trans-
fer points, the optimal number and location of transfer points and route plans from
the DS to the transfer points can be optimized. Further, for a period of time (from
Monday to Saturday) the overall cost (sum of deadheading, operational, and ship-
ment costs) can be compared to the cost of deadheading from the DS of the former
situation. Figure12 shows an example scenario for reducing deadheading with the
prototype. The prototype window is composed of four areas and will be described in
the following. For simplicity, we call the situation before installing transfer points
current state and the situation after installing transfer points new state.

The first area (Fig. 12a) contains information about each DD. In the order of
the columns we have the identifier, the mode of transport (by bicycle or on foot)
in the current state, the mode of transport in the new state, the deadheading in meters
of the current state, the deadheading in meters of the new state, the deadheading in
minutes of the current state, and finally the deadheading in minutes of the new state.
The last two rows contain the sum and average of deadheading in meters and minutes
of both states.

We retrieve the optimization data from the second area (Fig. 12b). In the first
column we have the identifier of the selected transfer points. The following columns
contain for each chosen TP its fixed costs, variable costs, minimum and maximum
number of possible assignments, and the number of assigned delivery districts and
their identifiers.

From the third area of the prototype (Fig. 12c) we gain cost information on the
current and new states for each scenario calculation. In the order of the columns we
have the identifier, the number of chosen transfer points, the sum of operating costs
per week, the sum of deadheading costs per week, the number of needed tours for
mail shipment to the transfer points, shipment costs per week, overall costs per week
of the new state, and finally overall deadheading costs of the current state.
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Fig. 12 Example scenario of deadheading reduction

The last area (Fig. 12d) is a visualization of the street network and delivery
districts. Further, the selected transfer points are represented by small quadratic
nodes and the DS is represented by a big quadratic node. The sequence of trans-
portation tours from the DS is represented by connection lines, whereby the dashed
line represents the return to the DS after the last visited TP on the tour. Moreover, the
prototype can be used for scenario analysis. First, if there is no information available
about potential transfer points, a set of potential transfer points is generated auto-
matically on a grid pattern and shifted to the nearest node on the street network. The
refinement of the grid pattern can be changed by the user if necessary. After the solu-
tion of this automatically generated scenario, local planners can retrieve information
on where and how many TPs should be located. As mentioned above, transfer points
are, e.g., car ports, whose availability at the locations suggested by the prototype has
to be checked. In the majority this is not the case and, therefore, available transfer
points close to the suggested ones must be found. After available potential transfer
points are found and imported into the prototype, a new scenario can be computed
and compared to the previous one(s). Furthermore, the prototype allows the user to
manually insert potential transfer points and to shift them by their coordinates. An
additional option window allows the user to fix transfer points, i.e. they have to be
selected by optimization, or to change the default values of a j and b j individually.
All described functionalities enable the generation and comparison of several dif-
ferent scenarios. This way, the prototype is a decision support system for retrieving
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information on where to search for suitable transfer points, where and how many to
locate, and how to assign delivery districts to them. In addition, the prototype can be
used to verify whether an already existing set of transfer points and its assignment
of delivery districts is still optimal or at least a good solution. This is necessary in
periodic cycles, because new potential transfer points could be available, or actual
costs changes could occur.

Since 2006, the prototype has been applied to more than 4,000 delivery districts
and Deutsche Post DHL has saved significant expenses by reducing deadheading on
their postman tours.

5 Conclusion

The distribution networks in the postal logistics area are very complex. Therefore,
decomposition into planning phases and subnetworks are necessary in order to opti-
mize the distribution networks. In detail we have described three successful projects
which have been executed by the Deutsche Post Chair of Optimization of Distri-
bution Networks at RWTH Aachen University and by Deutsche Post DHL. These
projects are examples of successful OR approaches in practice, consisting of prob-
lemanalysis, algebraic optimizationmodel development, solution of the optimization
problems (using standard software tools or metaheuristics as well), and development
of software prototypes. This paper does not only contain well known ORmodels and
algorithms, but it also contributes to the development of methods and algorithms. In
particular, it contains an approach to the multi-depot vehicle routing problem with
restricted inter-tour resources, a location-routing approach for replanning problems
by tabu search and a capacitated warehouse location-routing problem.

Each of the three projects was also successful from an economic point of
view. Extensive costs savings were achieved by the replanning of the subnetworks
described above using the three prototypes. At the same time the high service level
was maintained.
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Optimizing Long-Haul Transportation
Considering Alternative Transportation
Routes Within a Parcel Distribution Network

Matthias Meisen

Abstract Due to increasing costs, intense competition and increasingly demanding
customer expectations regarding delivery lead times parcel delivery services need to
continuously improve their logistics networks and processes. This paper analyses the
potential to improve both costs and delivery lead times by introducing alternative,
direct transportation routes. Here, direct transports avoid hubs within the distribution
network and, therefore, reduce transportation distance and time as well as sorting
time. To examine the optimization potential of these new transportation routes, we
consider a large-scale distribution network, where distinguishable items have to be
transported from sources through certain hubs to predetermined sinks. We introduce
a service network design model, which minimizes total long-haul transportation
costs within the delivery network while meeting predetermined service levels. The
model identifies the optimal transportation plan and decides if a service is offered at
a specific time period or not.

1 Introduction

The German parcel market has been facing some major structural changes during
the past years. While well-known direct commerce companies went out of business
new e-commerce companies, online auction sites and others have been helping to
increase the number of parcel shipments in Germany by 66% from 1995 to 2007
[19]. At the same time parcel services are exposed to the following challenges:

• The adoption of toll for trucks on theAutobahn, increasing diesel prices, increasing
wages and labour cost as well as new working time regulations in transportation
regarding driving time and rest periods have been leading to increasing costs.

• The expansion of parcel networks by most parcel services operating in Germany
have been leading to an intense competition with a high pricing pressure. While
the German consumer price index increased in total by almost 25% during the
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last 15years and by 7% from 2005 to 2009, the price index for parcel services
decreased by more than 3% in the same time period [20].

• The increasing costs andprice pressure are accomplishedbydemanding customer
expectations. This especially becomes noticeable in higher expectations regarding
the quality of services such as pickup and delivery as well as the claim for value-
added guaranteed services and the desire for shorter delivery lead times and amore
reliable compliance of the D+ 1-delivery.1

All of the abovementioned challenges force parcel services to continuously optimize
their logistics networks. The presented paper is motivated by a project at Deutsche
Post DHL where ways to reduce delivery lead times in the existing parcel network
were examined. One possible solution is the introduction of direct transportation
allowing selected transports to skip hubs and, thus, save both transportation and sort-
ing time. To identify the potential of direct transportation within the parcel network
of Deutsche Post DHL a mixed-integer linear program is introduced. A solution to
this model offers an optimal transportation plan with respect to cost while meeting a
predetermined service level, i.e., percentage of D+ 1-deliveries. To integrate service
level constraints into the model, it is necessary to include not only classical flow
conservation and capacity constraints to the model but also the notion of time. Yet,
this leads to a vast number of additional variables and constraints. However, clever
limitations of the solution space allow for the model to be implemented in AIMMS
[1] and solved with CPLEX [9].

2 The German Parcel Delivery Network of Deutsche Post DHL

With the arrival of the “Postreform” II in July 1995, the Deutsche Bundespost was
converted into a private enterprise with the aim of enabling greater efficiency, bet-
ter prices and better services [21]. The focus of this transformation was based on
a parcel network consisting of 33 hubs, which still are the core of DP DHL’s par-
cel distribution network. Besides these hubs, the network consists of approximately
200 delivery depots (German: Zustellbasis (ZB)), 3,000 delivery stations (German:
Zustellstützpunkt (ZSP)), 14.000 local affiliates, 2,500 Packstations and 1,000 Paket-
boxes.A simplified representation of the parcel distribution network ofDeutsche Post
DHL is shown in Fig. 1. One characteristic of the network is the partition into collec-
tion, long-haul transportation and distribution. The regional pick-up at local affiliates,
Packstations, Paketboxes or at customers is being held in the collection. After being
collected all parcels are shipped to one of the 33 outbound hubs (German: Paket-
zentrum Abgang (PZA)), where all items undergo an automated outbound sorting in
which the parcels are sorted by its particular hub destination. During and after the out-
bound sorting, the nationwide transport between the hubs, which is called long-haul,
takes place. In total there are 33 × 32 = 1,056 long-haul transportation links that
are served daily by Deutsche Post DHL. A second sorting takes place in the inbound

1 D+ 1 means that a parcel is delivered one day after being handed over to a parcel service.
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PZA

PZA

PZE

PZE

collection long-haul distribution

ZB/ZSP

ZB/ZSP

ZB/ZSP

ZB/ZSP

Sources (Local affiliates, Packstations, Paketboxes, key accounts, ...)

Sinks (Local affiliates, Packstations, key accounts, ...)

Fig. 1 A simplified representation of the parcel delivery network in Germany

hub (German: Paketzentrum Eingang (PZE)) where the parcels are sorted accord-
ing to their respective delivery depot or delivery station. After being transported to
a delivery depot or delivery station all parcels are delivered to their recipients. In
collection as well as in distribution the allocation of a delivery depot/delivery station
to a certain hub is unique.

2.1 Possible Extensions of the Network

In order to fulfill the customers’ desire for shorter delivery lead times, parcel services
like Deutsche Post DHL are continuously looking for ways to optimize their parcel
networks. One possible way to reduce lead times as well as to increase service levels
might be the extension of existing distribution networks by direct transportation
which leads to alternative transportation routes. Direct transportation services skip
hubs and, therefore, reduce transportation distance as well as transportation time
which might lead to decreasing production costs and an increasing service level.
In order to allow direct transportations the shipped parcels have to be prepared for
skipping hubs by a more accurate sorting. Looking at the structural organization
of the distribution network of Deutsche Post DHL (see Fig. 1), delivery depots and
delivery stations are the first possibilitywithin the parcel networkwhere an additional
sorting process could take place. The basic prerequisite for a “pre-sorting” is that the
delivery depot or delivery station is equipped with appropriate sorting equipment.
Due to the small physical sizes of delivery stations, such modifications can only be
realized in delivery depots. In the case of an adequate sorting in a delivery depot, the
sorted parcels can be shipped directly from a delivery depot to another delivery depot
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(see Fig. 2a) or from a delivery depot to an inbound hub (see Fig. 2b). Furthermore,
a possible refinement of the outbound sorting in the outbound hub enables direct
shipments from the outbound hub to a particular delivery depot (see Fig. 2c). Due
to further sorting processes that are needed in the destination, direct shipments to
delivery stations are not realizable. According to our explanations, there are three
possible direct shipments in the parcel network that cause the following alternative
transportation routes:

• Outbound delivery depot (ZB) → Delivery depot (ZB)
• Outbound delivery depot (ZB) → Inbound hub (PZE) → Delivery depot (ZB)
• Outbound delivery depot (ZB) → Outbound hub (PZA) → Delivery depot (ZB)

Extending the parcel network by these long-haul routes lead to the network illustrated
in Fig. 2d. The described alternative transportation routes do have the followingmain
advantages:

1. A faster nationwide transport: Due to direct transports, detours are avoided
and the holding time is reduced. This leads to a faster nationwide transport and
shorter lead times which might increase the D+ 1-ratio.

2. A relief of sorting capacities: Due to skipping hubs, sorting capacities in various
hubs are relieved. This is especially advantageous in sorting centers where the
capacity is a bottleneck. Thus, direct shipments lead to an increase of the D+ 1-
ratio by relieving the sorting capacities.

However, direct shipments do not only cause advantages. One main disadvan-
tage is that the shipped quantity outgoing from a delivery depot is usually small.
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PZE

PZE

ZB

ZB

ZB

ZB

PZA

PZA

PZE

PZE

ZB

ZB

ZB

ZB
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ZB
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ZB

PZA

PZA

PZE
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ZB
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(a) (b)

(c) (d)

Fig. 2 Direct transportation links within a distribution network. a Direct transportation from ZB
to ZB. b Direct transportation from ZB to PZE. c Direct transportation from PZA to ZB. d The
extended parcel network
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Fig. 3 A network extension
through direct transportation
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Accordingly, the capacity of direct shipments starting fromadelivery depotwould not
fully be used. Thus, cost savings resulting from shorter transportation distances are
counterbalanced by unused effects of consolidation. Moreover, delivery depots have
to be equipped with particular sorters in order to sort parcels. Such a retooling is
attended by costs and the economical benefit has to be proven for every delivery
depot independently. Finally, a pre-sorting in a delivery depot leads to an additional
sorting process. Although some parcels would possibly be sorted for direct shipment,
the remaining parcels are subjected to an additional sorting process without provok-
ing any extra benefits. As a result, a pre-sorting in delivery depots might lead to
higher sorting costs and longer lead times. The mentioned disadvantages show that
direct transports departing from a delivery depot are not reasonable. Therefore, from
now on we will disregard direct transports starting from a delivery depot. Instead,
we will focus on direct shipments from outbound hubs to various delivery depots as
shown in Fig. 3.

3 Network Design

Due to the mentioned challenges within the German parcel market, parcel services
are forced to optimize their logistics networks in order to stay competitive. Therefore,
an appropriate network design has an essential influence on the success of a parcel
service, since it does not only influence the type and quality of an offered service
but also determines the resulting costs [15]. In dependence of the importance and the
time horizon of the decisions that have to bemet, Crainic and Laporte [13] distinguish
between strategic (long-term), tactical (medium-term) and operational (short-term)
planning. As can be seen from the last section, we focus on tactical planning, which
dealswith the designof service networks. Services canbe transports or a repositioning
of vehicles.

Service network design models have been widely and intensively discussed in the
literature. Besides basicmodel formulations as can be seen inKim [16] or Irnich [15],
service network design models can be found in the literature for various transporta-
tion modes. There exist service network design models for railway transportation
(see Cordeau et al. [8]), maritime transportation (see Christiansen et al. [6, 7]),
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long-haul transportation (see Crainic [10] or Crainic and Laporte [13]) as well as for
multimodal transportation (see Crainic andKim [12]). Despite themany publications
focussing on network design and service network design, in the literature there are
only a few publications dealing with the application of these models for planning
parcel and postal networks. Exceptions are the publications by Armacost et al. [2],
Barnhart and Schneur [4], Barnhart et al. [3], Cheung et al. [5], Kim et al. [17], Kuby
and Gray [18] or Irnich [15].

Besides transportation costs, in many real-life transportation problems the factor
time plays a crucial role. This always holds, when shipped items need to arrive before
a particular time at a certain place. For considering arrival and departure times in
service network design models, the model formulation needs to be extended by
the dimension time transforming static models into dynamic models. An essential
methodical tool for modelling deterministic dynamic network design problems are
discrete time-space-networks [15]. In thesemodels, the planning period is discretized
in an adequate number of periods and a vertex is created for all physical locations in
each time period [14]. Thus, a time-space-network arises by duplicating the vertex
set V according to the periods of time. This means that a vertex vt corresponds to a
location v within the time period t . An arc between the vertices vt and wt ′ represents
either

• a service between various sites v andw that departs at time t from site v and arrives
at time t ′ or

• a sorting/handling of shipments at location v = w during the time from t to t ′.
Time-space-networks normally do have a large number of vertices and edges, even
though the number of physical locations might be quite moderate [15]. Both, the size
of the network as well as additional time constraints complicate the solving of these
models [11]. Thus, often heuristics or metaheuristics are used to solve deterministic
dynamic service network design models [14].

Until now we have only considered a physical parcel network, consisting of ver-
tices as locations and edges as transportation links. In order to consider arrival and
departure times of services, the network is extended by the dimension time leading to
a time-space-network shown in Fig. 4. The solid arcs in the graph describe transports

... t t + 1 t +2 t +3 t +4 t +5 ...

PZA

PZE

ZB

Fig. 4 The extended network as Time-Space-Network
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that depart from location i at time t and arrive at location j some periods later. Thus,
the arrival time depends on the departure time and the duration ti j of the offered trans-
portation service between i and j . The dotted lines describe procedures (e.g. sorting
processes) taking place at a particular location. Although the time-space-network in
Fig. 4 only includes one outbound hub (PZA), one inbound hub (PZE) and a single
delivery depot (ZB), it clearly demonstrates the size and complexity of time-space-
networks considering real-life sized parcel networks. Furthermore, the modelling of
time-space networks gets even more complicated by not only considering transports
but also heterogeneous goods shipped on the particular transportation links.

4 A Service Network Design Model for Optimizing Long-Haul
Transportation

We now introduce a mixed integer program, which minimizes the total long-haul
transportation cost within the in Sect. 2.1 described large-scale distribution network.
The model solution identifies the optimal transportation plan and decides in depen-
dency of a given service level, whether a service is offered at a specific time period
or not. Thus, we need flow conservation and capacity constraints as well as time
constraints.

4.1 Model Formulation

In order to formulate a service network design model we used the following assump-
tions:

• The total shipment is available in the hubs at time period t = 0. To ensure a realistic
view on the sorting process, we assumed that all items are sorted in the outbound
hub at the latest possible time during the sorting process. Under this assumption
we can calculate the number of sorted parcels in an outbound hub in advance. This
number is given in parameter st

u .
• We also assumed that additional costs of a more accurate sorting in the PZA will
be balanced through savings that result in the PZE due to a reduced number of
items that have to be sorted. Thus, we only consider transportation costs.

• Moreover, we assumed that the sorting capacity over the considered time period
is sufficient enough to sort all items.

• While sorting the parcels, we do not know the number of items with a given
destination that will be sorted in a certain time period. Thus, we assumed that for
each commodity k at every time period t the same percentage ratio ϕk

i is given in
hub i . The ratio ϕk

i can be calculated by dividing the shipped items of commodity k
at hub i by the total number of shipped items of site i . These priori calculated ratios
change when direct transportations take place which skip the inbound sorting.
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Since these changes cannot be described linear, we assumed these ratios to be
fixed.

For modelling the problem we will consider the large-scale network as a directed
graphN = (V ,A ). The verticesV of the networkN will be classified into the sets
U (set of all outbound hubs),W (set of all inbound hubs) and D (set of all delivery
depots and delivery stations). Thus, u ∈ U , w ∈ W and d ∈ D represent a vertex of
the respective set. Furthermore, the set A describes the set of all arcs (respectively
all transportation links) within the distribution network. The set K represents the
several commodities that are shipped through the network. Thereby, the parcels can
be distinguished by its respective destination within the network N . Last but not
least, the set T includes all time periods that are considered in the model. In the
following we will list all sets and parameters.

Sets:

A = {1, ..., A}: Set of all transportation routes (arcs)
U = {1, ..., U }: Set of all outbound hubs
W = {1, ..., W }: Set of all inbound hubs
D = {1, ..., D}: Set of all delivery depots and delivery stations
K = {1, ..., K }: Set of all commodities (parcels with destination k)
T = {0, ..., T }: Set of all time periods in the time-space network
F = {1, ..., F}: Set of all means of transport

V (i): Set of all predecessors of vertex i ∈ V
N (i): Set of all successors of vertex i ∈ V

Parameters:

ak
u : Quantity of items k to be shipped from outbound hub u

bk
d : Received items k at destination d

μt
w: Sorting capacity at inbound hub w

κ f : Capacity given by means of transport f
c f

i j : Cost of a service on link (i, j) using means of transport f
ti j : Transportation time on link (i, j)
ς : Given service level (D+ 1-ratio)

ϕk
i : Ratio of the items with destination k at site i

tE Si : Time of sorting end at site i
st

u : Bulk of sorted parcels in outbound hub u at time t
tD+1: Parcels, that arrive at a delivery depot or

delivery station before tD+1 will be delivered within D+ 1

The variables of our model are xt,k
i j , yt, f

i j , qt
i and st

w. Variable xt,k
i j describes

the flow of items k between two sites i and j at time t . yt, f
i j describes a binary

variable, which decides whether a service f is arranged between i and j at time t .
The variable qt

i models the quantity of the arriving shipments in location i at time t ,
whereas st

w describes the amount of parcels sorted at time t in the PZE. With these
sets, parameters, variables and assumptions we can now formulate a service network
design model for optimizing the long-haul transportation:
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min
∑

(i, j)∈A

∑

t∈T

∑

f ∈F
yt, f

i j · c f
i j (1)

s.t.
∑

i∈N (u)

∑

t∈T
xt,k

ui = ak
u ∀ u ∈ U , k ∈ K (2)

∑

i∈V (d)

∑

t∈T
xt,k

id = bk
d ∀ d ∈ D, k ∈ K (3)

∑

i∈V ( j)

∑

t∈T
xt,k

i j =
∑

l∈N ( j)

∑

t∈T
xt,k

jl ∀ j ∈ W , k ∈ K (4)

∑

k∈K
xt,k

i j ≤
∑

f ∈F
y f,t

i j · κ f ∀ (i, j) ∈ A , t ∈ T (5)

qt
j =

∑

i∈V ( j)

∑

k∈K
x

t−ti j ,k
i j ∀ j ∈ {W ∪ D} , t ∈ T (6)

st
w ≤ μt

w ∀ w ∈ W , t ∈ T (7)
∑

t∈T
st
w =

∑

t∈T
qt
w ∀ w ∈ W (8)

t∑

τ=0

sτ
w ≤

t∑

τ=0

qτ
w ∀ w ∈ W , t ∈ T (9)

tE Sw∑

τ=t

qτ
w ≤

tE Sw∑

τ=t

μτ
w ∀ w ∈ W , t ∈ T (10)

∑

j∈N (i)

xt,k
i j ≤

t∑

τ=0

sτ
i · ϕk

i −
t−1∑

τ=0

∑

j∈N (i)

xτ,k
i j

∀ i ∈ {U ∪ W } , t ∈ T , k ∈ K (11)

∑

l∈N ( j)

xt,k
jl ≤

tE Sw∑

τ=0

∑

i∈V ( j)

x
τ−ti j ,k
i j −

t−1∑

τ=0

∑

l∈N ( j)

xτ,k
jl

∀ j ∈ W , t ∈ T mit t > tE Sw , k ∈ K (12)

∑

d∈D

tD+1∑

τ=0

qτ
d ≥ ς ·

∑

d∈D

∑

k∈K
bk

d (13)

xt,k
i j ≥ 0 ∀ (i, j) ∈ A , t ∈ T , k ∈ K (14)

yt, f
i j ∈ {0, 1} ∀ (i, j) ∈ A , t ∈ T , f ∈ F (15)

qt
i ≥ 0 ∀ i ∈ {W ∪ D} , t ∈ T (16)

st
w ≥ 0 ∀ w ∈ W , t ∈ T (17)

The objective function of the model minimizes the sum of all transportation costs.
Restrictions (2)–(4) form the flow conservation constraints. Thus, constraints (2)
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ensure that all parcels leave the respective outbound hub whereas constraints (3)
make sure that all shipped items arrive at their designated destination. Equations (4)
guarantee the flow conservation of shipped parcels in all inbound hubs. Thus, all
parcels that are shipped to an inbound hub have to leave the hub after being sorted.
Nevertheless, a flow is only possible if a certain transportation capacity is provided
by a service which is modelled by the inequalities (5). Moreover, these constraints
restrict the maximum flow on a transportation link by the provided transportation
capacity. Restrictions (6) describe the arriving number of shipped items at the respec-
tive site which can be an inbound hub or a delivery station or a delivery depot. The
sorting process in the inbound hub is modelled by restrictions (7)–(10). Thereby, the
maximum number of sorted parcels per time period is restricted by the provided sort-
ing capacity of a hub (see restrictions (7)). Furthermore, all parcels need to be sorted
in the inbound hub (see constraints (8)) but the number of sorted parcels until a certain
time period is limited by the sum of already arrived parcels (see restrictions (9)). To
make sure that all parcels can be sorted in inbound hubs, inequalities (10) guarantee
a sufficient remaining sorting capacity for sorting all parcels which have not been
sorted or arrived yet. Moreover, restrictions (11) model the outgoing flow from a hub.
This flow is restricted by the number of parcels that have been sorted but not shipped.
The constraints (12) enable a balancing of shipped items after the end of the sorting
process. This balance is necessary since the fixed assumed ratios ϕk

w may slightly
change due to direct transportations. The predetermined service level is modelled
by inequality (13). By changing ς , the given service level can be in- or decreased.
In addition, constraints (14)–(17) describe the used variables. For the flows xt,k

i j , the
arriving parcels qt

i as well as for the sorted parcels st
w non-negativity constraints hold

(see constraints (14), (16) and (17)). Finally, (15) models a binary variable, which
decides whether a service is arranged or not. As for all basic network flow models
the supply needs to equal the demand for every commodity k ∈ K . Thus,

∑

u∈U
ak

u =
∑

d∈D
bk

d ∀ k ∈ K

holds, which is checked in advance.

4.2 Adjustments to the Model and Reduction of Variables

The above-introduced mixed-integer problem is very large for realistic problem
instances and a satisfactory solution is only realizable with an extensive comput-
ing time. As a realistic problem instance, we consider a network having 33 outbound
hubs, approximately 200 delivery depots and about 245 delivery stations. In this
large-scale distribution network exist about 8,000 transportation links at every time
period and, thus, there are about 8,000 binary decision variables at every time t . The
time is discretized into 29 time periods with a duration from 30min each. In order
to reduce the number of variables and constraints, we now present further adaptions
to the model.
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The first adaption is the limitation of direct transports to the 20 largest delivery
depots, whereby 33 × 180 = 5,940 binary variables can be dropped at each time
t . Moreover, all flow variables xt,k

i j contain the information, which commodity k
flows on link (i, j). At an outbound hub, this distinction is only relevant for those
parcels that can be shipped directly to a delivery depot. For all other items we only
need the information to which inbound hub the parcels have to be shipped. Since all
incoming items at the inbound hub are determined in the variableqt

w , we canmerge all
commodities that need to be shipped exclusively over a particular hub.Merging these
items lead to a total of 53 commodities (20 delivery depots, 33 inbound hubs) instead
of 445 commodities that have to be considered at an outbound hub. Thus, merging
diverse commodities causes a reduction of 33 × 392 = 12,936 flow variables at
every time t in each outbound hub. Nevertheless, at the inbound hub you have to
distinguish between all 445 commodities again. In addition, you can also a priori
forbid the flow of shipments on certain links. Since there exists a unique allocation
of a delivery depots and delivery stations to an inbound hub in the distribution, it
is only allowed to ship parcels to a particular inbound hub whose destination is a
delivery depot or a delivery station that is allocated to the particular hub. Therefore,
we introduce set Z(i) ∀ i ∈ {W ∪ D}which consists of all commodities k ∈ K , that
are allocated to a particular inbound hub or a particular delivery depot or delivery
station.

For adjusting our model according to these considerations, we introduce the sets
D1 and D2 as well as the sets K1, K2 and K3. The set D1 contains all delivery
depots, to which a direct transportation can be arranged. All other delivery depots
and delivery stations are combined in the set D2. Similarly, we introduce the sets
K1, K2 and K3. The set K1 consists of all commodities whose destination are
in set D1, the set K2 includes all commodities that are shipped to the sites D2
and K3 consists of all merged commodities, that are shipped to an inbound hub.
Accordingly, d1 represents a vertex from set D1, d2 describes a vertex from set D2
and kr represents a commodity out of set Kr ∀ r ∈ {1, 2, 3}. Simultaneously, we
consider the allocation from commodities to a respective vertex of the network. Thus,
only these commodities that are allocated to site ( j) can flow on transportation link
(i, j). Figure5 illustrates the introduced sets and allocations.

Since the flow from a source to a sink can be either directly or over a particular
inbound hub, flow conservation at the inbound hub holds automatically. Thus, the
flow conservation constraints at the hub can be disregarded.

A further reduction of variables arises from limitating departure times of services
in themodel to real departure times of services. It is useless to offer outgoing services
when there is almost no shipment available at a particular production site. Therefore,
we assumed that outgoing services from a hub are scheduled between tB Ai and tE Ai .
Since services are needed in order to have a flow, flow variables can also be limited
by departure times of real services.
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PZA PZE
∀ k1 ∈ Z(w)

∀ k1 ∈ Z(d1)

∀ k1
∈ Z(d1

)

∀ k2 ∈ Z(d2)

D1 (set of all ZB, to
which a direct

transportation is allowed)

D2 (set of all ZB/ZSP,
to which no

direct transportation
is allowed)

W (set of all PZE)

∀ k3 ∈ Z(w)

Goods
k1 ∈ K1

and k3 ∈ K3

are available
at a PZA

Fig. 5 Illustration of the introduced Sets

Limitations concerning the time are also reasonable for some constraints. Thus,
all constraints regarding sorting processes can be adjusted to the period in which the
sorting process takes place. This leads to the fact that possibly not all parcels can be
sorted at an inbound hub and, thus, cannot be transported to a delivery depot or a
delivery station so that the demand at these sites is not fulfilled. To avoid the violation
of these flow constraints, we introduce a time period tM where additional services
can be operated to balance shipments. The time tM is chosen in such a way that
tM > tD+1 holds. Thus, a service can be arranged at time tM , but shipped parcels
cannot be delivered with D+ 1. Moreover, the arriving time at delivery depots or
delivery stations will not be considered. The only thing of interest is the fact that
a balance of the items happens and that transportation costs for these services are
included in the model. Moreover, since we do not consider any sorting costs, parcels
leaving the PZA at time tM do not need to be sorted in the model and, thus, the
remaining sorting capacity does not need to suffice to sort all parcels. Therefore,
both mentioned restrictions can be removed from the model formulation.

Due to our changes, the restrictions from our latter model can be adjusted in
order to reduce the number of variables as well as the number of constraints. Since
the adjusted model is very large and the individual restrictions are pretty similar to
the already presented constraints we only want to give a few exemplary restrictions
to show how the adjustments are being implemented. Therefore, we will describe
restrictions dealing with outgoing flows at an outbound hub. In our model, each
outbound hub is having a particular supply that has to be shipped away, either to an
inbound hub or to a delivery depot. The Eqs. (18) and (19) guarantee that all items
k1 ∈ K1 and k3 ∈ K3 will be shipped away from outbound hubs.

∑

i∈{W ∪D1}

∑

t∈T
xt,k1

ui = ak1
u ∀ u ∈ U , k1 ∈ K1 (18)

∑

w∈W

∑

t∈T
xt,k3

uw = ak3
u ∀ u ∈ U , k3 ∈ K3 (19)
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Nevertheless, the outgoing flow needs to be restricted to the number of sorted parcels
that have not been shipped yet. Therefore, constraints (20) and (21) are introduced.

∑

i∈N (u)

xt,k1
ui ≤

t∑

τ=0

sτ
u · ϕk1

u −
t−1∑

τ=0

∑

i∈N (u)

xτ,k1
ui

∀ u ∈ U , k1 ∈ K1, tB Au ≤ t ≤ tE Au (20)

∑

w∈N (u)

xt,k3
uw ≤

t∑

τ=0

sτ
u · ϕk3

u −
t−1∑

τ=0

∑

w∈N (u)

xτ,k3
uw

∀ u ∈ U , k3 ∈ K3, tB Au ≤ t ≤ tE Au (21)

These restrictions hold exactly in that time, where transports take place (respectively
between tB Ai and tE Ai ). Similar adjustments can be done to all constraints from
the latter model with the aim of reducing the number of variables and constraints.
In the end, the presented model without any direct transports consists of 263,406
constraints and 160,903 variables whereof 11,476 are binary. In the case of direct
transports to the 20 biggest delivery depots the model includes 266,046 constraints
and 166,183 variables whereof 16,756 are binary.

5 Results

After having implemented the adjusted model by using the modelling language
AIMMS 3.10 [1], the problem is solved by using CPLEX 12.1 [9]. The com-
putational time is limited to 10,800s for every instance. Although the following
results are based on a problem instance that is comparable from its structure and
its size to the parcel distribution network of Deutsche Post DHL, the results are not
showing real transportation costs from Deutsche Post DHL for the German parcel
network.

5.1 The Baseline Scenario

In the baseline scenario we consider a parcel delivery network as described in Sect. 2,
where a direct transportation from an outbound hub to delivery depots is not allowed.
Thus, parcels have to be first shipped from an outbound hub to an inbound hub
and then from the specific inbound hub to an assigned delivery depot or delivery
station.

Figure6 shows the daily transportation cost of parcel distribution starting from
an outbound hub in dependence on a given D+ 1-ratio. It can be seen that the trans-
portation cost at the beginning increases only slowlywith an increase of service level.
Thus, there are only slight cost differences between a D+ 1-ratio of about 80% and
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Fig. 6 Transportation costs in dependency of a given D+ 1-ratio

a D+ 1-ratio of about 92%. This result can be explained by the fact that only a
few more services with a high degree of capacity utilization have to be arranged
between inbound sorting centers and delivery depots or delivery stations to increase
the service level. This observation changes with an increasing service level. Thus,
a higher number of services with a lower degree of capacity utilization are needed
for a further uprating of the D+ 1-ratio. In detail, the transportation cost rises by
1.6% (3.4%) in order to increase the D+ 1-ratio from 93–94% (94–95%). At the
same time Fig. 6 shows that a maximum D+ 1-ratio from 95% can be realized in
the baseline scenario. Accordingly, 5% of all shipped parcels in this scenario can
not be delivered within the next day due to transportation distances between sorting
centers as well as bottlenecks in the sorting process.

Moreover, Fig. 6 illustrates that transportation costs tend toe 750,000 by decreas-
ing the service level. In the formulated model, every parcel needs to be transported
from a source to a sink. Even if a D+ 1-ratio of 0% is pretended, transportation costs
from outbound sorting centers to final destinations are arising. This transportation
cost describes the most economical distribution of shipped parcels without any time
constraints.

Transportation costs in the baseline scenario

Transportation costs (allowing transports to the 20 largest ZB)
Transportation costs (allowing transports to the 5 largest ZB)
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800000
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Fig. 7 Transportation costs with and without direct transportations



Optimizing Long-Haul Transportation Considering Alternative Transportation … 143

Table 1 Cost savings and
service level improvements
through direct transports in
scenario 1

(a) Cost savings through direct transports

D+ 1-ratio in the Cost savings through

baseline scenario (%) direct transportations (%)

80 1.7

81 1.5

82 1.6

83 1.6

84 1.4

85 1.3

86 1.4

87 1.3

88 1.4

89 1.0

90 1.2

91 0.8

92 0.9

93 1.2

94 2.5

95 4.1

(b) Service level improvements

D+ 1-ratio in the Improvements of the D+ 1-ratio

baseline scenario (%) in percentage points through

direct transportations

90 2.63

91 2.48

92 2.05

93 1.50

94 1.14

93 0.83

5.2 Scenario 1: Direct Transportation

After describing a distribution network with no alternative transportation routes
allowed in the baseline scenario, direct transportations from outbound hubs to deliv-
ery depots are permitted in scenario 1. The number of delivery depots which can be
approached directly can be changed within the scenario. Thus, only delivery depots
which are not integrated to a hub are considered, so that direct transportations have a
real impact on the reduction of transportation distances. Figure7 shows a comparison
between transportation costs in the baseline scenario and transportation costs permit-
ting direct transportations to the 20, respectively the 5 largest delivery depots. It can
be seen that transportation costs in scenario 1 are lower than in the baseline scenario.
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A closer examination of the calculated results lead to the in Table 1a listed potential
of cost savings caused by direct transportations to the 20 largest delivery depots.

According to the results, the transportation costs can be reduced by 1.5% on
average due to direct transportations. Moreover, Fig. 7 shows the transportation costs
allowing only direct transportations to the 5 largest delivery depots. The illustration
clarifies that a significant part of cost savings already arise by allowing direct trans-
portations to only a few delivery depots. Thus, transportation costs can be reduced
by 1.1% on average when allowing direct transportations to the 5 largest deliv-
ery depots. These computational results show that the transportation costs decrease
the more direct transportations are allowed but the marginal benefit reduces by a
decreasing delivery depot size.

Alternatively, a service level increase in the parcel distribution can be contem-
platedwithout generating additional transportation costs.Table 1b shows service level
improvements plotted against the D+ 1-ratio of the baseline scenario. Although the
potential of optimization declines by an increase of the service level, the D+ 1-ratio
of the baseline scenario in the range from 90–95% can be improved on average by
1.77% points due to direct transportations. The main reasons for the existing poten-
tial of optimization are a release of sorting capacity helping to avoid or rather reduce
bottlenecks in the hubs as well as the reduction of transportation distances whereby
parcels arrive earlier at their final destination.

5.3 Scenario 2: Impact of an Increasing Shipping Volume

Between 1995 and 2007 the total volume of parcel shipments in Germany increased
by 66% [19]. Assuming a continuing trend the quantity of parcel shipments will
increase even more during the next years. Thus, scenario 2 elaborates the impact of
an increasing number of shipments to transportation costs. For the calculation, we
assume a 10% increase in total shipments. At first glance, the cost trends shown

Transportation costs in the baseline scenario
Transportation costs (allowing transports to the 20 largest ZB)

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 D+1-ratio

Costs

780000

800000

820000

840000

860000

880000

Fig. 8 Transportation costs with and without direct transportations
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Table 2 Cost savings and
service level improvements
through direct transports in
scenario 2

(a) Cost savings through direct transports

D+ 1-ratio in the Cost savings through

baseline scenario (%) direct transportations (%)

80 1.8

81 1.9

82 1.9

83 1.9

84 1.8

85 1.8

86 1.8

87 1.5

88 1.7

89 1.8

90 1.8

91 1.9

92 1.8

93 1.7

94 3.5

(b) Service level improvements

D+ 1-ratio in the Improvements of the D+ 1-ratio

baseline scenario (%) in percentage points through

direct transportations

90 3.54

91 2.87

92 2.26

93 1.68

in Fig. 8 are very similar to the results presented so far. But looking on it in more
detail and also considering the computational results, it appears that an increase in
shipments reinforces the positive effects of direct shipments. Table2a exhibits the
potential savings of direct shipments in case of an increased shipping volume in
dependence on a given service level. In this scenario the average cost savings due to
direct shipments are almost 2%. According to that an increase in shipping volumes
by 10% leads to an augmentation of the cost differences by 0.5%.

Besides increasing cost savings, service levels can be increased even more than in
the baseline scenario without causing additional costs.Table 2b shows the calculated
increases of the D+ 1-ratio in comparison to the baseline scenario considering an
increased shipment quantity. On average, the D+ 1-ratio in the range of 90% to
93% can be increased by 2.59 percentage points, whereas the improvement in the
same range in scenario 1 is only 2.17 percentage points.
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These results clarify that direct transports are getting even more economical
and profitable by an increase in shipping volumes. Increasing volumes lead to a
stronger utilization of sorting capacities in hubs and, thus, existing bottleneckswill be
reinforced by additional shipping quantities. Moreover, the increase in shipping
volumes cause a higher utilization of transportation capacities on direct transporta-
tion links.

6 Conclusion

Customers in the German parcel market increasingly expect high service levels and,
thus, short delivery lead times. Therefore, a project at Deutsche PostDHLwas carried
out to identify ways of enhancing the current service level within the German parcel
network. Motivated by this project the paper analyzes the potential of alternative,
direct transports to enhance the service level. In this context, a direct transport skips
a hub in the network. To evaluate the potential of direct transports a mixed-integer
linear program is formulated. The program minimizes the cost incurred by operating
the transportation network while meeting a predetermined service level constraint.

The biggest challenge for the model formulation arises from the explicit con-
sideration of the notion of time. Yet, without considering time within the network
the D+ 1 service level constraint could not be adequately formulated. Though, to
reduce the problem complexity direct transportation is limited to linking outbound
hubs with delivery depots in the network. Furthermore, the solution space is reduced
by limiting transports to practically feasible departure and or arrival times as well
as origin-destinations pairs. After all, reducing the problem complexity allows for
the model to be implemented in AIMMS and to be solved with CPLEX for real-life
sized instances.

The results presented in Sect. 5 show that introducing direct transports to a parcel
distribution network yield significant potential. For the underlying problem instance,
transportation costs are reduced by 1.5% on average for a fixed service level. When
instead fixing the budget for transportation costs service levels are increased by
0.83% on average. At the same time, the results support the assumption that the
marginal benefit of additional direct transports is decreasing. A significant share of
the identified potential is based on direct transports to the biggest delivery depots in
Germany.Whendecreasing the required size of directly connected delivery depots the
potential reduction of transportation costs decreases at the same time. Furthermore,
the positive cost effect of direct transports increases with a rising number of shipped
items.Assuming a 10% increase of shipments, transportation costs can be lowered by
2% in comparison to a scenario with no direct transports. Thus, direct transportations
seem to be an appropriate measure to reduce transportation costs within a parcel
distribution network while meeting predefined service levels. Based on the results of
the mentioned project at Deutsche Post DHL, the company is currently testing direct
transports from some outbound hubs to new build mechanized delivery depots.
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Although the results of the optimization are quite satisfactory, the computational
times of the problem are not. Further research will be done to develop a heuristical
solutionmethod and to compare the quality of the heuristical solutionwith the quality
of the solution obtained with CPLEX. Providing CPLEX with a start solution could
be another approach for reducing the computational times of the problem.
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New Approaches of Realizing an Optimized
Network

Julia Hillebrandt

Abstract Hub location is a strategic management decision with far-reaching conse-
quences for a company. Designing the hub network and the positions of the locations
are critical components according the delivery of the logistic system. Many of the
extant research deals with this issue. Yet, even if there is a network, it needs to be con-
tinuously adapted to the different conditions. Transportation quantity can increase the
degree of capacity of the logistic system, which, consequently, ascends the current
network load. The abilities of the network have to be reviewed and must be adjusted
if necessary. As a result of this, there will be a need to do a re-optimization inter-
mittently. This optimization is not finished after solving the problem. The research
questions are as follows: how to transform the network in the optimized network?
How to realize this improved adjustment? This paper deals with the topic of opti-
mizing adoption process: how to realize an optimized network with optimization
methods.

1 Introduction

As a result of the increase in trading via the Internet, the requirements of the parcel
network continue to evolve. To be prepared for future conditions, there must be an
ongoing optimization of the network. It continues to be a challenge to efficiently
transport the parcels. The parcel network is a hub location network with sorting
capacity at the different hubs.

If we assume, that the degree of packages will grow year over year in the next
years, there will be a need for a new sorting capacity. The development process of the
parcel network will spend much time. To minimize the risks to the network owner,
the change process must be made more comfortable for the owner. It is a great advan-
tage to realize such a target as early as possible to get experience with the network
configuration. This, at least, will guarantee a quality baseline of the network and
minimize disassembly costs. Hub location has been addressed by numerous papers
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in the literature. O’Kelly [1] presents the first mixed integer linear programming for-
mulation for the hub location problem. He showed that the problem is NP-hard, and
he suggested two heuristics for solving it. Based on the issue of this work, a wide
research area has resulted. An overview of hub location networks is provided by
Campbell [2], O’Kelly and Miller [3], and Skorpion-Kapov et al. [4]. Hubs serve as
transshipment points and allow indirect connections between sinks and sources. The
result is a hub-and-spoke network, in which flow between any origin and destina-
tion can only take place through the hubs. In a hub network we distinguish between
single and multiple assignments depending on connection between hubs and other
locations. In the single assignment, each sink or source is connected to exactly one
hub, in comparison to the multiple assignments, where every sink or source could
connect to more than one hub. The aim of a hub location network is to minimize the
complete transportation cost. There is a wide range of applications for the hub loca-
tion problem, including airline passenger flows, communication traffic, and package
delivery networks. Owing to these different areas of application, the models have to
deal with a huge amount of data. Yaman [19] explains allocation strategies in hub
networks. Thus, plenty of approaches have been developed for solving hub location
problems, such as problem-specific heuristics [1], tabu search [5], hybrids of genetic
algorithms and tabu search [6], and neural networks [7]. But the question is: What
happens after this optimization? How can we adapt an already established network
to new requirements? Some research papers have been published which handle the
issue of expansion as a hub location problem[8, 9]. These papers describe the con-
cept of reassigning capacities between hubs. Furthermore, Luss [10] also presents a
survey of capacity expansion network. Campbell [18] describes hub location for time
definite transportation. But this approach only deals with the description of which
size a hub should be extended. But none of these papers answer the question of
how to realize such a network after optimization. The question guiding this research
is, when the best time for the expansion would be. What happens to the sinks and
sources which are assigned to the hub during construction?Will they connect to other
hubs? This paper deals with this specific topic. The aim of this paper is to present
new approaches to realizing an optimized network with optimization models, which
describe the adoption process. It focuses on a single assignment hub location net-
work. Therefore, there are two different ideas—the big bang method and an iterative
approach. The main ideas will be presented in the next section.

2 New Approaches to Realizing an Optimized Network

In this paper, a special hub location problem will be studied. An example of this
hub network with three hubs is given in Fig. 1. Every item starts from a source to an
addressed sink. The task is to minimize the transportation costs. The difference of
a usual used hub location network is, that a sink can’t be a source. Furthermore the
items are addressed and can be clearly located. The baseline of this used network
is the parcel network as described in Müller and Hillebrandt [17]. The transported
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Fig. 1 An example of a hub network

items are parcels. The network is divided into three parts including a pre-, a main
and a post-sector. The following section describes the network in more detail.

In the first sector, the quantity flows from the sources to an inboundhub (ihub).This
hub works as a sorting center. It consolidates the quantity with the same outbound
hub (ohub). After consolidation it will transferred to an outbound hub and then
delivered to the different sinks. The outbound hub sorts the quantity to the different
addressed sinks. This network was optimized in Müller and Hillebrandt [17], the
result being, that there are hubs which should be closed and there are hubs which
should be expanded. The question is, then, what is the best way to do this? What is
the best time to rebuild a hub? The functionality and the safeguarding of the transport
chain have to be permanently and lastingly guaranteed, so that there is a good service
quality. Service quality means to send an item through the three parts (pre-, main,
und post-sector) of the network within defined time. This is a service standard for
the customers, who use this service for sending their items. Otherwise it means a
reduction of service quality and a potential of losing clients. The presented model
will be used to get a project schedule. It answers the question of where the different
sinks and sources will be assigned during the construction.

To implement the optimization to obtain a project schedule, two approaches were
identified. The main ideas are based on the concepts and strategies of software engi-
neering. There are two different approaches to realizing a network optimization of
existing software systems that are mentioned in literature, iterative approach and big
bang development [11, 12]. The strategy of iterative and incremental development
of software describes an iterative switching of individual components over time. The
old and new systems work simultaneously for a period of time, easing the transition.
One advantage of the iterative approach is the lower implementation risk. The user
can be trained according the project’s progress. This leads to new experiences being
gained. However, this approach requires a longer time horizon until the software is
fully operational and the data must be processed with each step in comparison to
other methods. Using the big-bang method means to implement the software with
all the components at a predetermined time. The existing system is replaced imme-
diately. The final state is reached in a straightforward way in comparison to the other
strategy. A disadvantage of the big bang approach is a high implementation risk,
owing to the short realizing time horizon. The flexibility is very limited. A tight
project management is required to ensure a smooth processing within the system.
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Both concepts should be used for the realization of an optimized network. The
basic ideas of the iterative approach are not directly transferable. The sorting capacity
is steadily expanded. The fixed costs of inbound and outbound sorting centers are
very high. Therefore, replacing a nearby sorting center is not common; it would be
too expensive to realize a one-by-one iterative approach. Consequently, the extension
is realized only in a sorting center. The sorting center should be extended until the
structural limitations of buildings and materials. The hubs could sort more quantity
and yet,more sinks and sources could be assigned,whichwould lead to cost reduction
at the network and a better handlingwith increasing quantity. Only the sorting centers
which help to improve the network load should be extending. The aim is to get a
quality and cost-effective network. An advantage of this approach is that the capacity
of each sorting center can be directly adapted to the specific parcel volume. If the
amount has not beenwidely developed, the expansion can be deferred over a period of
time. The sorting center could sort continuously and may not be closed for a longer
period. This leads to minimal restrictions on the quality of service. An adequate
extension cannot be guaranteed due to physical circumstances, such as an installation
of additional sorting lines. Moreover, not all existing systems can be extended and
will not always enable adjustments. In addition, a change in capacitance includes all
hardware and software components change at the same time.

With the big bang method the sorting centers will be expanded to their final size
after closing the sorting center. During the renewal of the sorting center a reduction in
the quality of the network is accepted. The sinks and sources are assigned to another
open sorting center during the extension. The open sorting centers take on the amount
of the expanding sorting center in order to sort it. After the reopening, reallocations
ensue. The costs decrease and the quality could increase for the complete network.
First, those sorting centers should be closed and expanded with the most significant
cost savings. An advantage of this approach is that an old sorting facility will be
completely replaced during a short time horizon. There is only one working and
operating system. The optimized network will be realized faster in comparison to
other strategies. The operation of the facility during the renovation is completely
shut down. No special arrangements need be taken during the reconstruction phase
in the sorting center. A disadvantage of this method is the reduction in service quality
during this construction phase. The process of reconstruction always entails under
difficult conditions. It requires a strict project management.

2.1 Big Bang Method

To formulate the problem, the following notations are defined:
I set of inbound sorting centers (i ∈ I)
J set of outbound sorting centers (j ∈ J)
F set of sinks (f ∈ F)
S set of sources (s ∈ S)
Io set of closing inbound sorting centers (io ∈ Io)
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Jo set of closing outbound sorting centers (jo ∈ Jo)
L status l of a sorting center: 1: renovation 2: reopened (l ∈ L)
T time periods(t ∈ T)
bt

s, f supply of source s with destination f at the time t
bet

f demand of sink f at the time t

c1s,i cost per item between source s and inbound sorting center i

c2i, j cost per item between inbound sorting center i and outbound sorting center j

c3j, f cost per item between sink f and outbound sorting center j at
amt

s amount of source s at time t
U Ai rebuild time of the inbound sorting center i
U E j rebuild time of the outbound sorting center j
O At fixed cost for opening at time t an inbound sorting center that is to be closed
O Et fixed cost for opening at time t an outbound sorting center that is to be

closed
K t

i,l capacity of an inbound sorting center i at the level l at time t
K nt

i,l capacity of an inbound sorting center j at the level l at time t
K Ot

j,l capacity of an outbound sorting center j at the level l at time t
SF factor of increasing
KQ rate of capacity
CK cost savings of consolidation

Decision variables:

xt
s,i

⎧
⎨

⎩

1, if a source s is located to an inbound sorting center i
at time t

0, otherwise

pt
j, f

⎧
⎨

⎩

1, if a sink f is located to an outbound sorting center i
at time t

0, otherwise

yt
i,o

{
1, if a closing inbound sorting center i is open at time t
0, otherwise

yet
j,o

{
1, if a closing outbound sorting center i is open at time t
0, otherwise

kat
i,l

{
1, if the status l of the inbound sorting center i is reached at time t
0, otherwise

ket
j,l

⎧
⎨

⎩

1, if the status l of the outbound sorting center j is reached at time t
time t

0, otherwise

k f,t
i, j flow between inbound sorting center i and outbound sorting center j with

destination f at time t
K At,i capacity adjustment factor for inbound sorting center i at time t
K Pt, j capacity adjustment factor for outbound sorting center j at time t
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The problem can be formally stated as follows:

Min �s�i�t c
1
s,i ∗ xt

s,i ∗ amt
s + C K ∗ �i� j�t� f c2i, j ∗ k f.t

i, j + � j� f �t c
3
i, j

∗ pt
j, f ∗ be f

t + �io�t O At ∗ yt
io

+ � jo�t O Et ∗ yet
jo (1)

�sbt
s,i ∗ xt

s,i = � j k
f,t

i, j ∀t ∈ T, f ∈ F, i ∈ I (2)

�i k
f,t

i, j = bet
f ∗ p f,t

i, j ∀t ∈ T, f ∈ F, j ∈ J (3)

� j pt
j, f = 1 ∀t ∈ T, f ∈ F (4)

�s x t
s,i = 1 ∀t ∈ S, t ∈ T (5)

�i Ki,1 − Ki,1 ∗ kat
i,1 + kat

i,2 ∗ K1,2 − �io K io,1 ∗ yt
io

≥ K Q ∗ � f bt
f

+ �i K At−1,i ∀t ∈ T, t > 1 (6)

� j K n j,1 − K n j,1 ∗ ket
j,1 + ket

j,2 ∗ K n j,2 − � jo K n jo,1 ∗ yet
jo ≥ K Q

∗ � f bt
f + � j K Pt−1, j ∀t ∈ T, t > 1 (7)

�s x t
s,i ≤ yt

io
∗ M ∀io ∈ Io, t ∈ T, i ∈ I, i = io (8)

� f pt
f, j ≤ yet

jo ∗ M ∀ jo ∈ Jo, t ∈ T, j ∈ J, j = jo (9)

yt
io

≥ yt+1
io

∀io ∈ Io, t ∈ T (10)

yt
io = yet

jo ∀io ∈ Io, jo ∈ jo, io = jo, t ∈ T (11)

�s� f bt
s, f ∗ xt

s,i ≤ Ki,1 − Ki,1 ∗ kat
i,1 + kat

1,2 ∗ Ki,2 + K At,i ∀t ∈ T, i ∈ I

(12)

� f bet
f ∗ pt

f, j ≤ K n j,1 − K n j,1 ∗ ket
j,1 + ket

j,2 ∗ kn j,2 + K Pt, j ∀t ∈ T, j ∈ J

(13)

kat
i,2 = kat−U Ai

i,1 ∀t ∈ T, i ∈ I (14)

ket
j,2 = ket−U Ai

j,1 ∀t ∈ T, j ∈ J (15)

�i K At,i ≤ M ∗ �i kat
i,1 − kat

i,2 ∀t ∈ T (16)

� j K Pt, j ≤ M ∗ � j ket
j,1 − ket

j,2 ∀t ∈ T (17)

K At,i ≤ SF ∗ (Ki,1 − Ki,1 ∗ kat
i,1 + Ki,2 ∗ K at

i,2) ∀t ∈ T, i ∈ I (18)

K Pt, j ≤ SF ∗ (K n j,1 − K n j,1 ∗ ket
j,1 + K j,2 ∗ ket

j,2) ∀t ∈ T, j ∈ J (19)

kat
i,1 ≥ kat

i,2 ∀t ∈ T, i ∈ I (20)

ket
j,1 ≥ ket

j,2 ∀t ∈ T, j ∈ J (21)

yt
io

∈ {0, 1}, yet
j0 ∈ {0, 1}, k f,t

i, j ≥ 0

kat
i,l ∈ {0, 1}, ket

j,l ,∈ {0, 1}, xt
s,i ∈ {0, 1}, pt

j, f ∈ {0, 1}

The objective function (1) minimizes the transportation costs, consisting of a pre-,
a main and a post-sector and also the fix cost for opening a closing sorting center.
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Constraint (2) ensures the flow conservation at the inbound sorting center. The whole
amount of the pre-sector has to be the same like the amount of the main sector.
This also applies accordingly for the constraint (3) for the outbound sorting center.
Constraints (4) and (5) are single allocation constraints. This ensures that every source
is allocated to an inbound sorting center and every sink to an outbound sorting center.
The constraint (6) ensures that a specified percentage of capacity must be reserved
for an unsorted quantity from previous periods. Only a limited loss of service quality
is accepted. The restriction (7) describes this analogy for an outbound sorting center.
If the sorting center is to be expanded, it should be closed first. Due to the closure of a
sorting center, a certain amount cannot be sorted. This case occurs when the adjacent
sorting centers also operate at limit and consequently there is no free additional
capacity. This can lead to deterioration in service quality. The amount will be sorted
in the subsequent period. This creates a trade-off between fast conversions of all
sorting centers to get a lower-cost network rapidly and to avoid deterioration of the
delivery quality during the expansion. Therefore, a percentage range has to be defined
at the beginning of the model run, regarding the extent of the sorting capacity that
is acceptable to lose during the expansion. So that during the expansion phase, no
model restrictions are violated, an appropriate auxiliary variable has to be declared.
Then the amount could collect in this variable for sorting during the next period.

A sink or source may not be assigned to a closed inbound or outbound sorting
center (restrictions 8 and 9). When an inbound sorting center is closed, it is also
closed in subsequent periods. This is ensured by the constraint (10). If an inbound
sorting center is closed the same outbound center is also closed (constraint 11). A
sorting center will only be assigned so much quantity as sorting capacity is present.
Consequently, it has to be checked as to which condition the sorting center is in.
There are three possibilities: the sorting center has its initial capacity, it is currently
under construction, or it is has expanded to its final size. If the sorting center is under
construction, no source or sink will be allocated to this sorting center. The situation
is illustrated in the constraint (12). The same applies with the constraint (13) for
the outbound sorting center. The constraint (14) ensures that during the extension of
the inbound sorting center, a conversion period is observed. The same is illustrated
by restriction (15) for the outbound sorting center. A capacity equalization variable
may only use during the renovation of an outbound or inbound sorting center (restric-
tions16 and17). The use of capacity balancing will automatically lead to a worse
delivery quality. In addition, the amount of a sorting center under construction is
located on the adjacent sorting centers. Thus, only a certain, predetermined percent-
age for each sorting center is used for the compensation of sorting adjacent quantity.
This is to prevent a single sorting center getting the entire shipment quantity of an
upgraded sorting center. This is ensured by constraint (18). The same fact is guaran-
teed by constraint (19) for the outbound sorting center. If a sorting center has to be
extended it, cannot be extended again (constraints 20 and21).
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2.2 Iterative Approach

To formulate the problem, the following notations are defined:

I set of inbound sorting centers (i ∈ I)
J set of outbound sorting centers (j ∈ J)
F set of sinks (f ∈ F)
S set of sources (s ∈ S)
Io set of closing inbound sorting centers (io ∈ Io)
Jo set of closing outbound sorting centers (jo ∈ Jo)
T time periods(t ∈ T)
bt

s, f supply of source s with destination f at the time t
bet

f demand of sink f at the time t

c1s,i cost per item between source s and inbound sorting center i

c2i, j cost per item between inbound sorting center i and outbound sorting center j

c3j, f cost per item between sink f and outbound sorting center j
Yt fixed cost for opening a to closing inbound sorting center at time t
K t

i capacity of an inbound sorting center i at time t
K nt

j capacity of an outbound sorting center j at time t
K Si,o rate of capacity at the inbound sorting center i with level o
K Po

j rate of capacity at the outbound sorting center j with level o
SF factor of increasing
CK cost savings of consolidation

[pt
j, f ] Decision variables:

xt
s,t

{
1, if a source s is located to an inbound sorting center i at time t
0, otherwise

pt
j, f

{
1, if a sink f is located to an outbound sorting center j at time t
0, otherwise

yt
io

{
1, if a closing inbound sorting center i is open at time t
0, otherwise

yet
jo

{
1, if a closing inbound sorting center i is open at time t
0, otherwise

kpat
i,o expansions level o of the inbound sorting I center at time t

kpet
j,o expansions level o of the outbound sorting j center at time t

K At,i capacity adjustment factor for inbound sorting center i at time t
K Pt, j capacity adjustment factor for outbound sorting center j at time t

k f,t
i, j flow between inbound sorting center i and outbound sorting center j with

destination f at time t
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Min �s�i�t c
1
s,i ∗ xt

s,i + C K ∗ �i� j�t� f c2i, j ∗ k f,t
i, j + � j� f �t c

3
i, j ∗ pt

j, f

∗ bet
f + �io�t Yt ∗ yt

io
+ � jo�t ∗ yet

jo (22)

�sbt
s, f ∗ xt

s,i = � j k
f,t

i, j ∀t ∈ T, f ∈ F, i ∈ I (23)

�i k
f,t

i, j = bet
f ∗ p f,t

i, j ∀t ∈ T, f ∈ F, j ∈ J (24)

� j pt
j, f = 1 ∀t ∈ T, f ∈ F (25)

�i x t
s,i = 1 ∀s ∈ S, t ∈ T (26)

yt
io

≥ yt+1
io

∀io ∈ Io, t ∈ T (27)

yt
io

= yet
jo ∀io ∈ Io, jo ∈ Jo, io = jo, t ∈ T (28)

�s x t
s,i ≤ yt

io
∗ M ∀io ∈ Io, t ∈ T, i ∈ I (29)

� f pt
f, j ≤ yet

jo ∗ M ∀ jo ∈ Jo, t ∈ T, j ∈ J (30)

�s x t
s,i ≤ K t

i + �o K Si,o ∗ kpat
i,o + K At,i ∀io ∈ I, t ∈ T (31)

� f pt
j, f ≤ K nt

j + �o K Pj,o ∗ kpet
j,o + K Pt, j ∀ jo ∈ J, t ∈ T (32)

�i K t
i + �o K Si,o ∗ kpat

i,o − �io Kio,1 ∗ yt
io

≥ K Q ∗ � f bt
f + �i k At−1,i

∀t ∈ T, t > 1 (33)

� j K nt
j + �o K Pj,o ∗ kpet

j,o − � jo K n jo,1 ∗ yet
jo ≥ K Q ∗ � f bt

f + �i k Pt−1, j

∀t ∈ T, t > 1 (34)

K At,i ≤ SF ∗ (�i K t
i + �o K Si,o ∗ kpat

i,o) ∀t ∈ T, i ∈ I (35)

K Pt, j ≤ SF ∗ (� j K nt
j + �o K Pj,o ∗ kpe j,ot) ∀t ∈ T, j ∈ J (36)

yt
io

∈ {0, 1}, yet
jo ∈ {0, 1}, k f,t

i, j ≥ 0, xt
s,i ∈ {0, 1}, pt

j, f ∈ {0, 1}
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The objective function (22) minimizes the transportation costs, consisting of a
pre-, a main and post-sector. Constraint (23) ensures the flow conservation at the
inbound sorting center. The whole amount of the pre-sector has to be the same as
the amount of themain sector. This also applies accordingly for constraint (24) for the
outbound sorting center. Constraints (25) and (26) are single allocation constraints.
This ensures that every source is allocated to exactly one inbound sorting center
and every sink to an outbound sorting center. When a sorting center is closed, it is
also closed in subsequent periods (restrictions 27 and28). Constraints (29) and (30)
ensure that a sink or source cannot be allocated to a closed sorting center. Each sorting
center has a capacity and can therefore only sort a limited quantity (constraints 31
and32). However, the capacity can increase over time with a capacity increasing
factor. Constraints (33) and (34) consider that a pre-defined service quality will be
reached. It also ensures that the quantity of the previous time horizons also has to
be sorted. In addition, the amount of a sorting center under construction is located
on the adjacent sorting centers. Thus, only a certain, predetermined percentage for
each sorting center is used for the compensation of sorting adjacent quantity. This is
to prevent a single sorting center getting the entire shipment quantity of an upgraded
sorting center. This is ensured by constraint (35). The same fact is guaranteed by
constraint (36) for the outbound sorting center.

3 Computational Results

3.1 Test Data

A common data set for hub location problems, which is usually used for building and
executing high effective tests concerning algorithms, has been already discussed by
Fotheringham[13] and also by O’Kelly [1]. This paper cannot use this common data
set, because it does not apply to capacity restrictions on the one hand; on the other
hand, this paper will handle source and sink as two different locations. Furthermore,
the respective paper does not include fixed costs. For testing the above-mentioned
models some data has been generated. Therefore,Gauss-Krüger coordinates of towns
and communes from all over Germany [14] have been collected. From this pool of
data random coordinates have been selected for sources and sinks. It was taken, that
the coordinates of sinks and sources are evenly distributed. The main idea was to
review and check the introduced models. Additionally, 80 random potential sorting
centers have been selected of this coordinates. From of the pool of 80 sorting centers,
8 were chosen and solved with a p-center model, which will be pictured later on.
The distances between source and sorting center, and sink to sorting centers, have
been calculated, using the Euclidean distance algorithm. Between sink and source,
packageswill be transferred and sorted in the sorting centers. The amount of packages
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is built as follows: To figure out which region in Germany has the highest gross
domestic product, a statistic provided by the Statistisches Bundesamt [15] has been
analyzed. The regions with the highest gross domestic products will be given the
most spending power and hence the biggest amount of items for transportation. The
data has been extracted using allocation methods which are in line with that gross
domestic product.

3.2 Initial Solution

With this generated data of the 80 potential sorting center locations, 8 locations shall
be evaluated, using a version of the p-center model. This result gives information
about the optimal solution of the relation between source and sink to p-sorting centers
to keep costs low. This result will be used as an initial solution for all models, which
are mentioned in this paper. The way, the p-center model is used in this paper, will
be described as follows.

To formulate the problem, the following notations are defined:

I set of inbound sorting centers (i ∈ I)
J set of outbound sorting centers (j ∈ J)
F set of sinks (f ∈ F)
S set of sources (s ∈ S)
ms f supply of source s with destination f
be f demand of sink f
c1s,i cost per item between source s and inbound sorting center i

c2i, j cost per item between inbound sorting center i and outbound sorting center j

c3j, f cost per item between sink f and outbound sorting center j
p quantity of open sorting centers

Decision variables:

xs,i

{
1, if a source s is located to an inbound sorting center i
0, otherwise

l j, f

{
1, if a sink f is located to an outbound sorting center j
0, otherwise

hi

{
1, if an inbound sorting center i is open
0, otherwise

b j

{
1, if an outbound sorting center i is open
0, otherwise

l f
i, j flow between inbound sorting center i and outbound sorting center j with
destination f

Min �s�i c
1
s,i ∗ ms, f ∗ xs,i + �i� j� f c2s,i ∗ k2i, j + � j� f c3s,i ∗ be f ∗ l j, f (37)
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�sms, f ∗ xs,i = � j k
f

i, j ∀ f ∈ F, i ∈ I (38)

�i k
f

i, j = be f ∗ l j, f ∀ f ∈ F, j ∈ J (39)

�i hi = p (40)

� j l j, f = 1 ∀ f ∈ F (41)

�I xs,i = 1 ∀s ∈ S (42)

� f l j, f = M ∗ b j ∀ j ∈ J (43)

�s xs,i = M ∗ h j ∀i ∈ I (44)

hi = b j ∀ j ∈ J, i ∈ I, i = J (45)

xs,i ∈ {0, 1}, l j, f ∈ {0, 1}, hi ∈ {0, 1}, b j ∈ {0, 1}, k f
i, j ≥ 0

The objective function (37) minimizes the transportation costs, consisting of a
pre-, a main and post-sector. Constraint (38) defines the flow conservation at the
inbound sorting center. The whole amount of the pre-sector must be equal to the
amount of the main sector. It also applies to constraint (39) depending on the out-
bound sorting center. Constraint (40) determines the quantity of open sorting centers.
Constraints (41) and (42) describe that every sink and source is allocated to just one
sorting center. Constraints (43) and (44) explain that sink and source can only be
allocated to an open sorting center. Constraint (45) shows, that the outbound sorting
center will be open, if the inbound sorting center is open, too. Executing this model,
we will receive the following result:

Figure2 gives information about all used coordinates and the solution of themodel
with the respective 8 chosen sorting centers. The light and dark green dots picture
the sink and the sources. The light blue crosses mark the potential sorting centers.
The red quadrates present the solution of the model.

3.3 Computational Results

With the models mentioned in this paper, the network expansion will be supported.
This support can be made in two different ways, using the big bang methods and
using the iterative approach. Therefore, using this generated data, the two models
have been used to obtain results, which are compared with each other. Furthermore,



New Approaches of Realizing an Optimized Network 161

Fig. 2 Initial solution with sink and sources and potential sorting centers

several parameter settings have been made. Different cases involving the number of
expanded sorting centers, the learning rate of costs between the sorting centers and
the service quality in the form of available sorting capacity have been dealt with.
The cases are calculated at an Intel Xeon double core 3.5 GHz processor with 48 GB
RAM. The models are implemented in AIMMS [15] and solved with CPLEX [16]
to prove and evaluate the results. Every case has a computing time up to 200,000
sec. The first calculation was using the big bang method. For the big bang method
the cost of rebuilding is needed. In this example every rebuild takes 2 time units.
The results are attached in the appendix. The following section discusses one result
using the big bang method in more detail. The main question of all these models is
to allocate the sources and the sinks to the sorting center to the sorting center during
the reconstruction.

We will now describe one of the attached cases more in detail. In the example,
one sorting center should be closed permanently and three sorting centers should
be rebuilt. The service level should be 80% of sorting capacity and 90% learning
rate between the sorting centers. Learning rate means that the higher amount in
the inbound sorting centers from the sources leads to cost saving effects for the
transportation between the sorting centers. The time horizon is about 4 time units.
These are the defined parameters. The sorting centers were assigned numbers for
identification. Figure3 shows the allocation in the pre-sector during the different
time horizons. The model result is to rebuild the sorting centers 12,565, 10,256,
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Fig. 3 Allocation of the sources to the sorting center during the four time periods with the big bang
method

and 11,328. There are rebuild during the first and the second time unit (red points).
Sorting center 153,630 should be closed permanently (dark green point). The sorting
centers 7,646, 7,179, 9,241, and 12,078 take the amount of the closed sorting center
during the expansion. In the post-sector the rebuild sorting centers are the same, of
course. The main function costs are about 58,114,397. If you compare the different
results, the overall cost are lower, if you only rebuild 2 sorting centers in comparison
to rebuild 4 sorting centers. Therefore, the model was calculated with the specified,
different parameters. The relevant results are attached.

Furthermore, the results of the iterative approach are also attached. Figure4 shows
one result more in detail. It describes the allocation of the sources in the pre-sector.
The time horizons for the increase of sorting centers are 4 time units. The red points
are the increased sorting centers and the dark green point is the permanently closed
sorting center. The parameters are the same as in the big bang method. The overall
costs are about 46,358,753. In this example, the savings of using the iterative approach
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Fig. 4 Allocation of the sources to the sorting center during the four time periods with the iterative
approach

is about 20%. The major distinction of the iterative approach is that the sources and
sinks could be allocated during the expansions process. There are no indirect routes.

3.4 Comparisons of Models

The basic structure of the iterative and the big bang approach are the same. There
are allocation variables and overall transportation costs. Furthermore, there are hubs
to close and reopen. The question is, when this rebuild should be. The main idea is
to send an addressed parcel from a source to a sink. The difference is the expansion
of the sorting capacity. On the one hand, with the iterative approach the capacity
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increases step-by-step. On the other hand, the big bang method makes the sorting
capacity quickly available. If the big bang method and the iterative approach will
be compared with each other, the overall costs of the iterative approach are much
cheaper. With the model parameters there is a saving about 15–21% of the cost in
comparison to the big bang method. The savings depend on the chosen parameters.
It was not possible to get a result of all parameter settings with the big bang method,
because some parameters are not solvable. Furthermore, both models rebuild nearly
the same sorting centers. The most cost savings of the iterative approach is that there
are no changes of routes for the parcel transportation. As long as there is enough
sorting capacity for the amount, the iterative approach should be the cheapest way
for a network extension. The question is how to realize such an iterative approach
in practice. There are no infinite expansions possible, because of physical restriction
of buildings and machines. The big bang methods in combination with the iterative
approach are more in common in a practicable use. This should be evaluated in
further papers.

4 Conclusion

This paper considers two approaches to realize an optimized network. The results
allow a comparison of optimal parcel network solutions. The results of the models
illustrate the different allocation of sources and sinks to the sorting centers during
the time horizons. The comparison of the models shows that the overall costs of the
iterative approach are much lower with the chosen parameters. The savings are about
15–21only one or two hubs in comparison to rebuilding more hubs during a defined
time. The reason is that the transportation costs aremuch higher during the rebuilding
process, than the advantage of the rebuild sorting centers. Furthermore, the model
was tested for small instances; if problem sizes become large, efficient heuristic
procedures are necessities for solving these large problems. The two approaches
need to be tested for their practical feasibility as well.

Attachment

See Tables1 and 2.
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Part V
Health Care Planning and Scheduling



A Mixed Integer Programming Approach
to Surgery Scheduling with Simultaneous
Decision Making

Halil Ibrahim Gündüz and Martin Nikolas Baumung

Abstract In recent years, hospitals have been affected by restrictive budgets that
call for greater efficiency and a better resource utilization. A hospital’s surgical suite
is not only widely recognized as being one of the major cost drivers, but also has
a huge impact on many other departments. It therefore is a priority to improve the
efficiency of this particular component. This work covers a real case of surgeon
and elective surgery scheduling for the Clinic Department of Otorhinolaryngology
and Plastic Head and Neck Surgery in University Hospital Aachen, Germany, and
aims at simplifying the regular planning process and improving the scheduling in
order to reduce costs related to the operating room time while considering two types
of resources—operating rooms and surgeons. Besides the scheduling of elective
surgeries from a waiting list on a weekly horizon, the allocation of surgeries to
operating rooms and the allocation of surgeons to the surgeries are also part of this
planning process. For this purpose, we developed a mixed integer linear programming
model, which aims at minimizing the costs for the operating room time required to
perform all of the surgeries. Because of the clinic department’s small size, and in
contrast to comparable approaches that can be found in the literature, the proposed
model addresses the scheduling and both of the allocation decisions simultaneously.
The lower bound, which proved to be quite weak in the original model, could be
improved drastically by adding valid inequalities. With this improved model, near
optimal solutions can be computed within a couple of minutes, and an analysis
revealed that these solutions comply with the conditions imposed by the hospital and
provide a very good utilization of the operating rooms.
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1 Introduction

In the last decades the health care sector in Germany has been affected by many
budget cuts that call for greater efficiency in the use of available resources in hospitals.
In particular the diagnostic—related group (DRG) was developed in the early 1980s
as a patient classification system to replace the cost-based reimbursement that had
been used up to that point. Patients within each group are regarded as clinically
similar and are expected to use the same level of hospital resources. The purpose of
the DRGs is to determine the payment of medicare to the hospital per group. While in
most countries, hospital-based DRGs are used for distribution of the health insurance-
related budget, in Germany they were transformed into a lump-sum system in 2003
and called the German-DRG (G-DRG). Since then it has been used for the settlement
of prices for the various types of treatment of individual cases. In addition to the
need for a greater efficiency on account of budget cuts or lump-sum systems, some
countries-similarly to Germany—are faced with an ageing population. Therefore,
the need for a better utilization of hospital resources is important and urgent e.g.
operating rooms and surgeons.

The operation theater has a direct impact on many divisions and is the central
engine of any hospital. The impact affects, for example, the necessary provision
of anesthesiologists, surgical nurses, surgical operation assistants, surgical wards,
and recovery units. Therefore, it is important to improve the efficiency of operation
theaters of hospitals in general or at least of the clinic department units of a hospital.
An improvement of the efficiency may lead to an increased number of performed
surgeries and thus, to a reduction in surgery waiting lists. Moreover, it also may
result in a better utilization of anesthesiologists and surgical nurses and hence lead
to increased productivity.

The remainder of this article is organized as follows. Existing approaches and
related problems from the literature are surveyed in Sect. 2. The article proceeds in
Sect. 3 with a description of the simultaneous surgery and surgeon scheduling prob-
lem, followed by a mixed integer formulation of the problem in Sect. 4. To acceler-
ate the mixed integer solvers handling instances of the model, we introduce some
improvements in Sect. 5. The model is refined in Sect. 6 with respect to the availability
of operating rooms and surgeons over the time horizon. In Sect. 7 we survey com-
putational results on problem instances of different sizes and diversity of surgeries.
Finally, we conclude in Sect. 8 and give a prospect for future work.

2 Survey of the Related Literature

In the literature related to operation room planning, researchers usually differen-
tiate between strategic, tactical, and operational decisions. Strategic decisions, for
instance, comprise case mix planning, defining a hospital’s surgery supply on a
long-term basis. Master surgery planning, defining operating room and surgeon
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availability, is an example of a tactical planning problem studied in the literature. In
this paper we focus on surgery scheduling, which is an operational problem thor-
oughly studied. Scheduling problems can be categorized with respect to the classes of
patients considered, namely elective and non-elective patients. For a comprehensive
review of the related literature, we refer to [2, 6, 10, 13].

According to [2], surgery scheduling can be divided into two separate schedul-
ing processes: Advance scheduling, which schedules each surgery for a specific day,
and allocation scheduling, which determines the exact starting time and the oper-
ating room that the surgery is performed in for all surgeries allocated to the same
day. Solving both scheduling problems together gives the best solutions in terms of
quality and feasibility, since both problems interact with each other. As solving both
problems simultaneously usually requires high computational resources, both types
of scheduling are often studied separately in the literature.

Works which focus on advance scheduling only, include, among others [8, 11, 14].
Reference [8] introduce a column-generation based approach to allocate surgeries
to operating rooms and days with the objective to minimize the cost of unexploited
opening hours and overtime. In [11], the authors consider the robust surgery loading
problem for a hospital’s operating theater department and assign surgeries and suf-
ficient planned slack to operating room days while maximizing capacity utilization
and minimizing the risk of having to cancel surgeries. Reference [14] provide an
integer linear problem used to assign elective surgeries to operating rooms while
mastering the risk of no realization and stabilizing the operating rooms’ utilization
time.

A number of studies focus on the allocation scheduling problem only. Refer-
ences [4, 5] formulate a multiple objective optimization model for scheduling elec-
tive surgeries on a daily basis. Reference [1] investigate the impact of allowing
patient recovery in the operating room when no recovery bed is available and pro-
pose a Lagrangian relaxation-based method to solve this particular operating theater
scheduling problem. In [9] the authors provide a mixed integer linear problem used
to determine the allocation of operating rooms and surgeons to surgeries, as well as
the sequence of surgeries within the individual operating rooms. The authors con-
sider various resources and operative constraints, but since the scheduling is done
on a daily basis, the problem is still simple enough to be solved exactly. References
[7, 12] both developed stochastic approaches for the allocation scheduling problem.

Some works consider advance scheduling and allocation scheduling in a single
problem. Reference [17] propose a formulation that includes both the planning and
scheduling of the surgeries and develop a heuristic procedure based on a genetic
algorithm to solve the resulting hard optimization problem. However, the set of surg-
eries assigned to a particular surgeon is known in advance and is not determined by
the algorithm. Reference [16] present a meta-heuristic algorithm for a model assign-
ing operating rooms and dates to a set of elective surgeries, as well as scheduling
the surgeries of each day and room and, simultaneously, creating a schedule for
each surgeon. In [15], the authors formulate an integer linear programming model
scheduling elective surgeries from a waiting list on a weekly basis while maximizing
the use of the operating rooms. However, as in [17], the allocation of surgeries to
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surgeons as well as the sequence of surgeries for each surgeon is given in advance and
not determined by the model. Non-optimal solutions are improved by a simple and
efficient heuristic. Reference [3] suggest a mixed integer linear problem approach,
which combines medium-term planning for surgery with short-term scheduling of
resources. Surgeons are treated as a resource and the need for a surgery for a specific
resource is given by parameters. The above mentioned research has much in common
with the model proposed below, except for the allocation of surgeons to surgeries.

In this work, surgeries and surgeons are scheduled simultaneously. A full problem
description is given in the next section.

3 Simultaneous Surgery and Surgeon Scheduling

This work is based on a cooperation with the Clinic Department of Otorhinolaryngol-
ogy and Plastic Head and Neck Surgery incorporated in University Hospital Aachen
and investigates the tactical problem of simultaneous surgery scheduling and the
assignment of surgeons and operating rooms. With 34 specialist clinics, 25 insti-
tutes, and five interdisciplinary units, University Hospital Aachen covers the entire
medical spectrum. It currently has around 1,240 beds and provides medical care for
approximately 47,000 inpatients and 153,000 outpatients per year. Overall, 52 oper-
ating rooms are available in the operation theater for all clinics. Depending on the
number of the urgency and surgery waiting list of each clinic, the operation manage-
ment weekly assigns operating rooms to each clinic. In return, each clinic department
has to submit a weekly time schedule of planned surgeries so that operations man-
agement can build a schedule for the necessary anesthesiologist, nursing teams, and
mobile specialized equipment.

In this paper, we provide a model which enables the Clinic Department of Otorhi-
nolaryngology and Plastic Head and Neck Surgery to establish a surgery schedule
for the week to come based on the assigned operating rooms and the list of surg-
eries to be performed. At this point, we consider elective surgeries only, since for a
weekly planning, only surgeries that can be well planned in advance can be taken into
account adequately. The schedule for elective surgeries is constructed considering
the following decisions:

1. Surgery assignment to days: Each surgery is assigned to a specific day within the
planning horizon, i.e. the week ahead.

2. Surgery assignment to operating rooms: Each surgery is assigned to a specific
operating room.

3. Surgery assignment to surgeons: Each surgery is assigned to a surgeon, who then
performs the surgery.

4. Surgery sequencing: All surgeries that have been assigned to the same operating
room on the same day are sequenced such that the starting and ending time of
each surgery is determined.
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It seemed appropriate to make all the above mentioned decisions simultaneously
because this approach yields better solutions than a sequential one and because the
clinic department is relatively small in size (e.g. 2 operating rooms and 4 surgeons
and approximately 30 surgeries per week), what keeps the resulting mathematical
problem tractable.

Other decisions, such as the allocation of nurses, anesthesiologists, etc., to surg-
eries are left aside, since they lie beyond the authority of the clinic department.

When planning a schedule, we pursue the goal of maximizing the utilization of
the assigned operating rooms, which helps to increase a hospital’s overall efficiency.
The operating rooms are available from 8.00 am to 4.00 pm, from Monday to Friday,
and need cleaning and disinfection, taking about 30 min, between each surgery.

4 Model Formulation

We give a formulation of the 5-day-ahead simultaneous surgery and surgeon schedul-
ing problem as a linear mixed-integer programming problem. For an overview of the
used symbols, parameters, and decision variables, we refer to Tables 1, 2 and 3. The
set of the elective surgeries is denoted by I , the set of available surgeons by K , the
set of available operating rooms by S, and the set of days of the time horizon by D
(Mon., Tue., Wed., Thurs., and Fri.).

We use four classes of binary and three classes of continuous decision variables to
formulate the model. The first decision of the model concerns the use of an operating
room on a day d, for which we introduce the binary decision variables yrd ∈ {0, 1}.
If yrd = 1 holds, then at least one surgery will take place in operation room r on day
d. For the assignment of a surgery to a surgeon, an operating room, and a day, we
introduce decision variables xirkd ∈ {0, 1}. If xirkd = 1 holds, then surgery i will be
assigned to surgeon k and operation room r on day d. The next two classes of binary
variables concern the precedence relations between each pair of surgeries i and j .
The first one, zijrd ∈ {0, 1}, refers to precedence relation in an operating room r on
day d and zijrd = 1 holds only if surgery i is performed (not necessarily directly)

Table 1 Symbols used in the
model formulation

Symbols Meaning

I Set of all elective surgeries

K Set of all available surgeons

R Set of all available operating rooms

D Set of days

i, j Surgery i, j ∈ I

k Surgeon k ∈ K

r, r1, r2 Operating room r, r1, r2 ∈ R

d, d1, d2 Day d, d1, d2 ∈ D
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Table 2 Decision variables used in the model formulation

Variables Meaning

yrd ∈ {0, 1} = 1 iff operating room r is used on day d

xirkd ∈ {0, 1} = 1 iff surgery i is performed by surgeon k on day d in operating room r

zi jrd ∈ {0, 1} = 1 iff surgery i is performed before j on day d in same operating room r

ui jkd ∈ {0, 1} = 1 iff surgery i is performed before j on day d by same surgeon k

birkd ∈ R+ Start time of surgery i performed by surgeon k on day d in operating room r

firkd ∈ R+ End time of surgery i performed by surgeon k on day d in operating room r

trd ∈ R+ End time of last surgery in operating room r on day d

Table 3 Parameters used in the model formulation

Parameters Meaning

Lb
r Last possible surgery start in operating room r

L f
r Last possible surgery end in operating room r

Crd Model fixed costs for using operating room r on day d

C̃r Occupation costs per minute of operating room r

SM Modification time of an operating room between two consecutive surgeries

SR Switching time of a surgeon between different operating rooms

prei Initiation time of surgery i

pi Duration of surgery i

posti Recovery from surgery i

timei = prei + pi + posti
M Big M

before j in the same operating room and on the same day. Similarly, the second one,
uijkd ∈ {0, 1}, refers to precedence relation of surgeon k on day d, and uijkd = 1
holds only if surgery i is performed (not necessarily directly) before j by the same
surgeon and on the same day. In addition, we introduce variables concerning start
times birkd ∈ R+ and end times firkd ∈ R+ for all surgeries i , surgeons k, operating
rooms r , and days d. Note that birkd = firkd = 0 holds if one of the following
restrictions is fulfilled:

• surgery i is not scheduled to operating room r
• surgery i is not assigned to surgeon k
• surgery i is not scheduled on day d

In our model, start and end time variables are coded as zero-based values. The value
0 represents the start time 8 a.m. and the start time of the first surgery of a day in an
available operating room can have the value 0.

Finally, for the calculation of variable occupation costs we have to determine
the end time of the last surgery on each day in each operating room. Therefore, we
introduce the continuous decision variables trd ∈ R+.
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Our objective is to find a cost optimal schedule for all surgeries. The most crucial
cost component is the occupation costs of operating rooms. Of non importance for
the underlying real costs are fixed costs for the use of an operating room. But we
still use them to avoid symmetries in the solution space and to model schedules
preferred by the surgeons and the management. Assume that an operating room is
used on Monday and Tuesday. We obtain the same objective if we, for example, shift
the Monday schedule to Wednesday and the Tuesday schedule to Friday. But the
preferred solution of the management is to have schedules starting on Monday and
continuing on the following days without a break. Let Crd denote the model fixed
costs for the use of operating room r on day d and let C̃r denote the occupation costs
per minute of operating room r . Then we have the following objective function:

min z =
∑

r,d

(Crd yrd + C̃r trd) (1)

For the realization of the above mentioned preferred solution in our model, we
use a strictly monotonically increasing fixed costs, i.e. Crd1 < Crd2 for all r ∈ R
and d1, d2 ∈ D with d1 < d2. Furthermore, sufficiently high fixed costs force the
model to make an efficient use of the available surgery time per operating room.

The necessary constraints can be classified into three major groups: one for the
assignment of surgeries, one for precedence relations between surgeries, and one
for the (start and end) times of the surgeries. In our problem all surgeries must
be scheduled during the regarded time horizon, i.e. each surgery must be exactly
assigned to one surgeon, one operating room, and one day:

∑

r,k,d

xirkd = 1 ∀ i ∈ I (2)

Surgeries can only be assigned to an operating room r on day d if it is used on
that day: ∑

i,k

xirkd ≤ Myrd ∀ r ∈ R, d ∈ D (3)

The next constraints concern the precedence relation between surgeries. In our
sense, precedence relations between a pair of surgeries only occur if they are both
performed in the same operation room and on the same day on the one hand and by
the same surgeon and on the same day on the other hand. For the establishment of
the precedences, we introduce the following three constraints:

zi jrd + z jird ≤
∑

k

xirkd ∀ i, j ∈ I, i < j, r ∈ R, d ∈ D (4)

If surgery i is not assigned to operating room r on day d, then the right-hand side
of inequality (4) is 0. Thus, the left-hand side must also be 0, i.e. zi jrd = z jird = 0
holds. If surgery i is assigned to operating room r on day d, then it is also assigned
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exactly to one surgeon according to constraints (2), and the right-hand side of (4)
equals 1. In this case surgery i can be in a precedence relation with j (predecessor
or successor). Then only one of the binary variables zi jrd and z jird can equal to 1
but it is not mandatory:

zi jrd + z jird ≤
∑

k

x jrkd ∀ i, j ∈ I, i < j, r ∈ R, d ∈ D (5)

Constraints (5) are equal to constraints (4) with switched roles of surgeries i and j :

zi jrd + z jird ≥
∑

k

(xirkd + x jrkd) − 1 ∀ i, j ∈ I, i < j, r ∈ R, d ∈ D (6)

Finally, if surgeries i and j are assigned to the same operating room r on same
day d, then both are exactly assigned to one surgeon, and the right-hand side of
inequality (6) is 2 − 1 = 1. Then at least one of the binary variables zi jrd and
z jird on the left-hand side must equal to 1 to fulfill the validity. In combination with
constraints (4) and (5), only one of both variables can equal to 1. Thus, surgery i
must be a predecessor or successor of j in the scheduling plan of operating room r
on day d. In all other cases the right hand side equals to 0 or −1, and the inequality
is automatically fulfilled because of the nonnegative values of all variables zi jrd . In
combination with constraints (4) and (5) it is obvious that then both variables zi jrd

and z jird must equal to 0, and there is no precedence relation between surgeries i
and j according to operating room r on day d.

By analogy with constraints (4)–(6), we introduce the following next three con-
straints concerning the precedence relations of surgeries according to surgeon and
day assignment. The only difference is that the role of the operating room is replaced
by a surgeon:

ui jkd + u jikd ≤
∑

r

xirkd ∀ i, j ∈ I, i < j, k ∈ K , d ∈ D (7)

ui jrd + u jird ≤
∑

r

x jrkd ∀ i, j ∈ I, i < j, k ∈ K , d ∈ D (8)

ui jkd + u jikd ≥
∑

r

(xirkd + x jrkd) − 1 ∀ i, j ∈ I, i < j, k ∈ K , d ∈ D (9)

Constraints (4)–(9) determine a sequence of scheduled surgeries per operating
room, per surgeon, and per day, and therefore help to determine start and end times of
each surgery and to avoid assignments of a surgeon to surgeries in different operating
rooms on the same day with time overlap. If a surgery is not assigned to an operating
room r and to surgeon k on day d, then the start and end time is set to 0 in our model
by the following two constraints:

birkd ≤ Mxirkd ∀ i ∈ I, r ∈ R, k ∈ K , d ∈ D (10)
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firkd ≤ Mxirkd ∀ i ∈ I, r ∈ R, k ∈ K , d ∈ D (11)

Thus, in combination with constraints (2), variables birkd and firkd can have a positive
nonzero value only for exactly one combination of r ∈ R, k ∈ K , and d ∈ D. To
determine the end time of a surgery j , we take into account that it must be greater or
equal to the maximum end time of all predecessors plus the overall duration and the
modification time before the start of surgery j . Constraints (12) fulfill this purpose
for the predecessors according to operating rooms and days:

∑

r,k

f jrkd ≥
∑

r,k

firkd + (timej + SM ) − M(1 −
∑

r

zi jrd)

∀ i, j ∈ I, i �= j, r ∈ R, k ∈ K , d ∈ D (12)

For a pair i and j of surgeries, the
∑

r zi jrd is equal to 0 if they are not in a
precedence relation according to any operating room. Then the right hand side of
constraints (12) is dominated by −M and therefore is negative. Thus, the inequality
is automatically satisfied. In the case where i is a predecessor of j , then

∑
r zi jrd = 1

holds, and the inequality reduces itself to
∑

r,k f jrkd ≥ ∑
r,k firkd + (timej + SM ).

Because of the precedence relation, both surgeries are assigned to the same operating
room r0 on the same day d0. Further, both can be scheduled to different surgeons
k1 �= k2 or to the same surgeon k1 = k2. As mentioned above, only one of the
variables firkd or f jrkd can have a positive value. Then, the inequality reduces to
f jr0k1d0 ≥ fir0k2d0 + (timej + SM ) for all pairs i, j , where i is a predecessor of j
according to operating room r0 and day d0.

∑

r,k

f jrkd ≥
∑

r,k

firkd + (timej + SR) − M(1 −
∑

k

ui jkd)

∀ i, j ∈ I, i �= j, r ∈ R, k ∈ K , d ∈ D (13)

By analogy with the same arguments, constraints (13) fulfill the above mentioned
purpose for the predecessors according to surgeons and days. The role of operating
rooms is replaced by surgeons and the modification time of operating rooms is
replaced by the switching time of surgeons between two different operating rooms.
Further, the latest end time of surgeries in operating rooms is restricted:

∑

r,k,d

firkd ≤ L f
r ∀ i ∈ I (14)

For the efficient use of operating rooms, all assigned surgeries should end as early
as possible, in particular the last surgery of each operating room and each day, i.e.
unnecessary gaps between two consecutive surgeries should be avoided. Therefore,
we introduce the following restrictions:
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∑

k

firkd ≤ trd ∀ i ∈ I, r ∈ R, d ∈ D (15)

For a given operating room r0 on day d0, constraints (15) force tr0d0 to equal
to the maximum of fir0kd0 . In combination with the objective (1), tr0d0 equals the
maximum of fir0kd0 , which is the end time of the last surgery in operating room r0
on day d0. Thus, unnecessary gaps between two consecutive surgeries are forced to
be eliminated by minimizing trd , i.e. the occupation costs. We determine the start
times of surgeries by backward calculation:

birkd = firkd − xirkd timei ∀ i ∈ I, r ∈ R, k ∈ K , d ∈ D (16)

If xirkd = 0 holds, then birkd = firkd applies in (16) and in addition, both vari-
ables are equal to 0 because of (10) and (11). In the case where xirkd = 1 holds,
then birkd = firkd − timei applies, i.e. the start time of a surgery is calculated by
the end time minus the overall duration (including initiation and recovery). Further-
more, the switching time of a surgeon between two assigned consecutive surgeries
in different operating rooms must be considered and linked to the end time and start
time, respectively. A surgeon can leave surgeries with the start of the recovery phase
and does not need to be present during the initiation phase:

b jr1kd + prej ≥ fir2kd − posti + SR − M(1 − ui jkd)

∀ i, j ∈ I, i �= j, r1, r2 ∈ R, r1 �= r2, k ∈ K , d ∈ D (17)

Constraints (17) concern only surgeries assigned to different operating rooms and
with existing precedence relation according to a surgeon. If there is no such prece-
dence relation (i.e. ui jkd = 0), the right-hand side of inequalities (17) is dominated by
−M . Thus, the right-hand side is negative and the inequality is automatically satisfied.
In all other cases the inequality reduces itself to b jr1kd + prej ≥ fir2kd − posti + SR ,
where fir2kd − posti is the planned end time of the surgical procedure of i , and
b jr1kd + pre j is the planned start time of the surgical procedure of j . Constraints
(17) ensure that the planned end time plus the switching time between operating
rooms is before the start time of surgical procedure for surgeries i and j , where j is
the successor of i according to a surgeon and a day.

∑

r,k,d

birkd ≤ Lb
r ∀ i ∈ I (18)

Further, the last possible start time of surgeries in operating rooms is restricted
by constraints (18).
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5 Improving the Formulation

We describe a bin packing subproblem, symmetry breaking inequalities, and an
estimation of costs to improve the formulation of the previous section. Our goal is
to achieve a formulation that the used MILP solver is able to solve faster or at least
to close the gap faster.

5.1 Subproblem: Bin Packing Problem

It is possible to determine the minimum of required operating rooms. If we only
concentrate on the problem of assigning all surgeries to operating rooms and days,
then the resulting problem is a bin packing problem, where the operating rooms per
day correspond to a bin, the available time of operating rooms to the volume of the
bins, the surgeries to the objects, and the overall duration of each surgery time to
the volume of the corresponding object. Further, the available time of each operating
room is the same, i.e. each bin has the volume but the problem can easily be extended
to a heterogeneous problem. Our goal is to minimize the number of used bins such
that all objects are uniquely assigned to a bin and volume restrictions of the used
bins are fulfilled.

We use the binary decision variables vrd ∈ {0, 1}. If vrd = 1 holds, then the bin
corresponding to operating room r and day d is used. For the assignment decision
of surgery to a bin, we introduce decision variables wird ∈ {0, 1}. If wird = 1
holds, then surgery i is assigned to the bin corresponding to operation room r and
day d. Note that the index number can be reduced by one. This can be achieved
by enumerating all combinations of the pair (r, d) and mapping them to a single
index. Then the classical model of a one-dimensional bin packing problem occurs.
Nevertheless, we use the following model formulation to obtain a better overall cost
lower bound for the MILP formulation in Sect. 4:

min z =
∑

r,d

vrd

The objective function minimizes the number of used operating rooms over the
time horizon D such that following constraints are satisfied:

∑

r,d

wird = 1 ∀ i ∈ I

Each surgery has to be uniquely assigned to a operating room and to a day:

∑

i

wird timei + ((
∑

wird) − 1)Sr ≤ Lr yrd ∀ r ∈ R, d ∈ D
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The duration (including initiation and recovery) of the assigned surgeries plus the
switching time between two surgeries must not exceed the available time of the
operating rooms. Note that at the end of a day there is no switching time necessary,
and therefore only (

∑
wird)−1) switching times occur per operating room and day.

For the solution of the bin packing problem it is not important which of the
operating rooms are used but for our main problem we prefer those with the earliest
possible days of the time horizon, because of the strictly monotonically increasing
fixed costs. Therefore, we add the following constraints, which are also known as
symmetry breaking constraints:

vrd1 ≥ vrd2 ∀ r ∈ R, d1, d2 ∈ D, d1 < d2

The objective value of this model provides a lower bound for the number of
necessary operating rooms. For this purpose, we introduce a further parameter L Br

for the MILP model in Sect. 4, which represents the objective value of the bin packing
subproblem, and we add constraints (19) to our MILP formulation:

∑

r,d

yrd ≥ L Br ∀ r ∈ R, d ∈ D (19)

Furthermore, we introduce parameter L B f ix . The calculation L B f ix = ∑
r,d Crd

vrd is a result of the bin packing problem, and we obtain a lower bound constraint
for the overall fixed costs of our MILP formulation:

∑

r,d

Crd yrd ≥ L B f ix (20)

5.2 Symmetry Breaking Constraints

In Sect. 4 we use strictly monotonically increasing fixed costs to obtain a preferred
solution of the management with schedules starting at the beginning of the time
horizon and continuing on the following days without a break. But in the solution
domain they are not forbidden. We can reduce the solution domain by adding the
following constraints:

yrd1 ≥ yrd2 ∀ r ∈ R, d1, d2 ∈ D, d1 < d2 (21)

Constraints (21) allow the model only to use an operating room r on a day d2 if the
same operating room is used on all previous days d1, i.e. d1 < d2. Note that feasible
solutions of the MILP in Sect. 4 are eliminated by constraints (21) but because they
are strictly monotonically increasing fixed costs, they are dominated by other feasible
solutions. In the case of constant fixed costs, shifting the same schedules to different
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days will result in the same objective. With constraints (21) these symmetries are
eliminated and therefore they are called symmetry breaking constraints.

Symmetries also occur through permutations of schedules according to the various
available operating rooms on the same day. By analogy, we can add constraints (22)
to break these symmetries, too:

yr1d ≥ yr2d ∀ r1, r2 ∈ R, r1 < r2, d ∈ D (22)

The symmetry breaking constraints can also be applied to the end time of each
day’s last surgeries:

trd1 ≥ trd2 ∀ r ∈ R, d1, d2 ∈ D, d1 < d2 (23)

tr1d ≥ tr2d ∀ r1, r2 ∈ R, r1 < r2, d ∈ D (24)

Note that constraints (21)–(24) can be applied in the described way as long as all
operating rooms are available throughout the time horizon and have the same time
capacity. Slight modifications are necessary if operating rooms are not available
throughout the time horizon, and these will be presented in Sect. 6.

5.3 Further Estimations and Valid Inequalities

It is easy to estimate a lower bound for the overall required occupation time of
operating rooms of the given set I of surgeries. First, we introduce the parameter
timeI = ∑

i timei, which corresponds to the sum of all surgery durations (including
initiation and recovery). Further, we know that modification times occur after each
surgery in each used operating room except the last surgery. In a worst case scenario,
each operating room is used on every day, thus, overall |R| times |D|. Then, N =
min{0, |I |−|R| |D|} is the least number of times where modification times are taken
into account: ∑

r,d

C̃r trd ≥ C̃r (timeI + SM (|I | − |N |)) (25)

The right-hand side of constraint (25) includes the estimated lower bound of time
for all surgery processes multiplied by the occupation costs per minute. Thus, the
occupation costs of the model on the left-hand side must be greater or equal to them.
A lifting is possible by replacing N with the to determined number of end-of-day
surgeries: ∑

r,d

C̃r trd ≥ C̃r (timeI + SM (|I | −
∑

r,d

yrd)) (26)

The number of last surgeries equals to
∑

r,d yrd , which is the overall number of used
operating rooms over the time horizon. By aggregation of constraints (20) and (25)
respectively (26), we obtain the following two constraints:
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∑

r,d

(Crd yrd + C̃r trd) ≥ L B f ix + C̃r (timeI + SM (|I | − |N |)) (27)

∑

r,d

(Crd yrd + C̃r trd) ≥ L B f ix + C̃r (timeI + SM (|I | −
∑

r,d

yrd)) (28)

The left-hand side of constraints (27) and (28) is the objective function from
Sect. 4 and must meet the above described lower bound value. So far, constraints (14)
represent time capacity constraints which can be strengthened. The time capacity of
each operating room on each day is defined by the latest possible end of a surgery L f

r .
Further, time resources are used by surgery and modification durations. Constraints
(29) restrict the time resource use by the given time capacity:

∑

i,k

xirkd timei + ((
∑

i,k

xirkd) − yrd)S
M ≤ L f

r yrd ∀ r ∈ R, d ∈ D (29)

If operating room r is used on day d, the right-hand side is L f
r , otherwise 0, and

none of the surgeries can be assigned to r on day d. The term
∑

i,k xirkd timei is
the duration of assigned surgeries to r on day d, and the term (

∑
i,k xirkd) − yrd is

the number of required modifications in r . Thus, the left-hand side represents the
sum of surgery and modification durations in operating room r on day d. Note that
gaps caused by surgeons’ switching times between different operating rooms are not
included.

∑

i,r,k,d

xirkd timei + ((
∑

i,r,k,d

xirkd) −
∑

rd

yrd)S
M ≤ L f

r

∑

rd

yrd (30)

Constraint (30) is the aggregate of constraints (29) over all operating rooms and the
time horizon. On the right-hand side of both inequalities we take into account the
latest possible end of a surgery L f

r . But with variable trd we determine the end of
the last surgery in operating room r on day d. Thus, we can replace L f

r yrd by trd

and get the constraints (31) and (32):

∑

i,k

xirkd timei + ((
∑

i,k

xirkd) − yrd)S
M ≤ trd ∀ r ∈ R, d ∈ D (31)

∑

i,r,k,d

xirkd timei + ((
∑

i,r,k,d

xirkd) −
∑

rd

yrd)S
M ≤

∑

rd

trd (32)

We observed commercial solvers generating first initial solutions with hardly
unbounded trd . Because of the objective function in an optimal solution, trd should
have the value 0 for not used operating rooms and at most the value L f

r for used
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operating rooms. But these are implications of the overall model and are not yet
included in our models’ constraints. Therefore, we add the following constraints to
the model:

trd ≤ L f
r yrd ∀ r ∈ R, d ∈ D (33)

If yrd = 0 holds, then trd has to be set to 0, too. In the case where yrd = 1 holds,
then trd is restricted to the latest possible end of the surgeries.

6 Refining the Model

In our MILP formulation in Sect. 4 we assume that every surgeon and operating
room is available throughout the time horizon. In reality, sometimes operating rooms
and surgeons are not available. In order to consider this, we introduce parameters
Ard ∈ {0, 1} and Akd ∈ {0, 1}. If Ard = 1 holds, then operating room r is available
on day d, otherwise Ard = 0 holds. The same applies for Akd with surgeon k and
day d. The MILP formulation must be extended with the following constraints:

yrd ≤ Ard ∀ r ∈ R, d ∈ D (34)

It is obvious that if Ard = 0 holds, then yrd is also 0, and therefore operating room
r on day d cannot be used.

∑

i,r

xirkd ≤ M Akd ∀ r ∈ R, d ∈ D (35)

If Akd = 1 applies then the right-hand side of (35) has a big value and therefore it
is valid. For the other case, where Akd = 0 applies, the right-hand side equals to 0.
Then, none of the surgeries and operating rooms can be assigned to surgeon k on day
d. Thus,

∑
i,r xirkd = 0 must hold to fulfill the inequality.

With the given non availability information we can also perform a short pre-
processing by fixing the following variables to the value 0. We fix variables yrd and
trd for r ∈ R and d ∈ D with Ard = 0. Variables xirkd , birkd , and firkd are also
fixed if Akd = 0 or Ard = 0 holds. We fix precedence relation variables zi jrd if
Ard = 0 holds. Moreover, variables ui jkd are fixed if Akd = 0 holds.

In some cases, e.g. medical reasons, surgeries must be assigned to a particular
surgeon (e.g. a professor or at least an assistant medical director). For this purpose,
we introduce a parameter Aik ∈ {0, 1} and the corresponding necessary constraints
(36): ∑

r,d

xirkd ≥ Aik ∀ i ∈ I, k ∈ K (36)

For surgeries which do not need to be assigned to a particular surgeon, the para-
meter Aik has the value 0. Then, the inequality is automatically satisfied. On the other
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hand, if at least one parameter Aik has the value 1, then surgeon k must be assigned
to surgery i in any of the operating rooms and on any day of the time horizon. In
combination with constraints (2), then

∑
r,d xirkd = 1 must hold.

In addition, the symmetry breaking (21) and (22) constraints must be slightly
modified to suit these requirements:

yrd1 ≥ yrd2 ∀ r ∈ R, d1, d2 ∈ D, d1 < d2 and Ard1 = 1

yr1d ≥ yr2d ∀ r1, r2 ∈ R, r1 < r2, d ∈ D and Ar1d = 1

By analogy, the same applies for constraints (23) and (24):

trd1 ≥ trd2 ∀ r ∈ R, d1, d2 ∈ D, d1 < d2 and Ard1 = 1

tr1d ≥ tr2d ∀ r1, r2 ∈ R, r1 < r2, d ∈ D and Ar1d = 1

Parameters Ard and Akd with value 1 indicate that operating room r and surgeon
k are available on day d but in some cases they are only partially available during the
day. To catch these cases, further parameters for time windows [a, b] are necessary.
We introduce La

rd and La
kd for the earliest availability time of operating room r and

surgeon k on day d, respectively. Lb
rd and Lb

kd denote the latest availability time
of operating room r and surgeon k on day d, respectively. Multiple time windows
could be applied by virtual duplication of the operating room r and surgeon k,
respectively. In the case of applied time windows, the volumes of the bin of the
introduced bin packing problem in Sect. 5.1 must be adjusted to a heterogenous
version. Time windows for surgeries are sometimes reasonable and necessary, too.
For example, children’s surgeries should be in the morning because children are
usually impatient and cannot go for as long as adults without eating or drinking. In
the same way, La

i and Lb
i describe the time window during which surgery i must be

performed:

La
rd(

∑

k

xirkd) ≤
∑

k

birkd ∀ i ∈ I, r ∈ R, d ∈ D, and Ard = 1 (37)

Lb
rd(

∑

k

xirkd) ≥
∑

k

firkd ∀ i ∈ I, r ∈ R, d ∈ D, and Ard = 1 (38)

In the case where a surgery i0 is assigned to operating room r0 on day d0, then the
expressions bi0r0kd0 and fi0r0kd0 have one nonzero value (exception: bi0r0kd0 can have
the value 0 if i0 is the first surgery of the day), say for example k0 (xi0r0k0d0 = 1).
Then, constraints (37) and (38) are reduced to La

r0d0
≤ bi0r0k0d0 and Lb

r0d0
≥ fi0r0k0d0 ,

respectively. Thus, constraints (37) and (38) force a surgery’s start time to be after the
earliest availability time and the end time to be before the latest possible availability
time of operating room on a certain day. If a surgery is not assigned to an operating
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room on a certain day, then the right- and left-hand sides of constraints (37) and (38)
have the same value, namely 0, and are therefore satisfied.

La
kd(

∑

r

xirkd) ≤
∑

r

birkd ∀ i ∈ I, k ∈ K , d ∈ D, and Ard = 1 (39)

Lb
kd(

∑

r

xirkd) ≥
∑

r

firkd ∀ i ∈ I, k ∈ K , d ∈ D, and Ard = 1 (40)

The same arguments apply for (39) and (40) with reverse role plays of surgeons
and operating rooms. They both enforce that surgeries assigned to a certain surgeon
must be scheduled during the availability time window of that surgeon.

La
i ≤

∑

r,k,d

birkd ∀ i ∈ I (41)

Lb
i ≥

∑

r,k,d

firkd ∀ i ∈ I (42)

Using the same arguments according to birkd and firkd outlined above, constraints
(41) and (42) force the start and end time of each surgery to be within the intended
time window.

Further, some surgeries include an infectious patient, and cleaning/disinfection
takes much longer than the general switching time. It is therefore necessary to sched-
ule these surgeries to the end of a day. The cleaning/disinfection can also take place
after the last possible end of a surgery, and the department does not then have to pay
for it. To distinguish between infectious and non-infectious patients, we require a
further parameter pi ∈ {0, 1}, where the value 1 represents an infectious patient at
surgery i :

pi

∑

j

zi jrd ≤ M(1 −
∑

k

xirkd) ∀ i ∈ I, r ∈ R, d ∈ D (43)

The inequality is always met if the patient of surgery i is not infectious or if
surgery i is not assigned to operating room r on day d. Otherwise, the inequality
is reduced to

∑
j zi jrd ≤ 0 for a pair (r0, d0) and thus, with nonnegative variables,∑

j zi jr0d0 = 0 applies. This means that surgery i has no successors in the assigned
operating room r0 on day d0 and constraints (37) serve their purpose. Note that for a
feasible solution,

∑
i pi ≤ ∑

r,d Ard must hold. The problem of too many infectious
patients can be avoided during the selection of the elective surgeries.
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7 Computational Results

In this section, the mathematical model presented in Sect. 4, including the valid
inequalities described there, is tested with different data sets. The mixed-integer
problem was implemented in AIMMS 3.13 × 64 associated with the solver CPLEX
12.5 × 64. The maximum computation time for the solution process was limited to
7,200 seconds and a single core per instance on a PC running under Windows® 7
and equipped with a 3.4GHz Intel c© Core™i7 processor.

7.1 Data Sets

The model was evaluated by solving a total of 120 test instances, where every instance
consists of a set of operating rooms, a set of surgeons, and a set of surgeries that are
to be performed, including information on the initiation time, the duration, and the
recovery time for each surgery. The instances are divided into the two categories small
(S) and large (L). The small instances feature two operating rooms, four surgeons,
and a total of thirty surgeries, and therefore correspond to the size of the Clinic
Department of Otorhinolaryngology and Plastic Head and Neck Surgery, whereas the
large instances consider four operating rooms, eight surgeons, and sixty surgeries.
Furthermore, we distinguish between low (L) and high (H) heterogeneity of the
surgeries’ durations. Eventually, we also distinguish between three different levels
of total operating room usage. In instances with a low (L) usage level, on average
50 % of the operating rooms are required, whereas 75 and 100 % are required for
the instances with medium (M) and high (H) usage level, respectively. All three
characteristics can be combined to describe an instance; therefore LHM describes
a large instance with a high duration volatility and a medium capacity usage. Ten
different instances have been generated for every of the twelve possible combinations
of the above mentioned characteristics, resulting in a total of 120 instances.

7.2 Results

Table 4 shows the results obtained for the small test instances, featuring two operating
rooms, four surgeons, and thirty surgeries, and therefore comparable in size to the
Clinic Department of Otorhinolaryngology and Plastic Head and Neck Surgery. With
exception of the instances 02SHH and 09SHH, all instances were solved to optimality
within the two hours of granted computational time, many of them within a couple
of minutes. Even though the instances 02SHH and 09SHH could not be solved to
optimality, the solutions found are still very good with gaps of 0.1 and 0.02 percent,
respectively.
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Fig. 1 Boxplot of
computation time with respect
to operating room usage
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As one can see from Table 4, the computation time required to solve the instances
varies greatly. A logarithmic boxplot of the CPU times required to solve the different
instances to optimality in Fig. 1 also reveals that, on average, the computation time
is much higher for the instances featuring a high operating room usage. This can
be explained by the fact that, when operating room usage is close to 100 %, finding
a feasible solution becomes increasingly difficult. However, we still find optimal
solutions to all but two instances.

7.3 Valid Inequalities

To study the effectiveness of the valid inequalities, we also implemented the model
introduced in Sect. 4 without the valid inequalities and symmetry breaking constraints
described in Sect. 5 and compared the results with the ones obtained for the small
sized instances from Sect. 7.2.

Table 5 gives the results for the small test instances, where gap 1 is the gap provided
by the solver and gap 2 is the gap with respect to the optimal solutions given in
Sect. 7.2. As we can see, no instance was solved to optimality within 2 hours of
computation time and no feasible solution was found for any of the instances with
a high operating room usage. The average optimality gap for the instances where a
solution was found is around 36 %. We also notice that, where applicable, gap 1 is
much larger than gap2, meaning that the lower bound provided by the model without
the valid inequalities is very poor. Therefore, the formulation featuring the valid
inequalities is clearly superior.



A Mixed Integer Programming Approach … 193

Ta
bl

e
5

R
es

ul
ts

fo
r

th
e

sm
al

lt
es

ti
ns

ta
nc

es
w

ith
a

lo
w

,m
ed

iu
m

,a
nd

hi
gh

us
ag

e
le

ve
lw

ith
ou

tt
he

va
lid

in
eq

ua
lit

ie
s

In
st

an
ce

So
lu

tio
n

C
PU

tim
e

(s
)

G
ap

1(
%

)
G

ap
2(

%
)

In
st

an
ce

So
lu

tio
n

C
PU

tim
e

(s
)

G
ap

1(
%

)
G

ap
2(

%
)

In
st

an
ce

So
lu

tio
n

C
PU

tim
e

(s
)

G
ap

1
G

ap
2

01
SL

L
13

5,
17

6
7,

20
0

1,
66

5.
99

40
.3

6
01

SL
M

18
5,

94
0

7,
20

0
2,

22
3.

09
17

.0
9

01
SL

H
n.

a.
7,

20
0

n.
a.

n.
a.

02
SL

L
15

4,
64

4
7,

20
0

1,
93

7.
61

60
.6

9
02

SL
M

17
6,

39
6

7,
20

0
2,

13
5.

11
11

.1
4

02
SL

H
n.

a.
7,

20
0

n.
a.

n.
a.

03
SL

L
14

4,
78

0
7,

20
0

1,
79

2.
05

18
.0

1
03

SL
M

n.
a.

7,
20

0
n.

a.
n.

a.
03

SL
H

n.
a.

7,
20

0
n.

a.
n.

a.

04
SL

L
20

2,
44

8
7,

20
0

2,
55

6.
13

95
.9

5
04

SL
M

20
8,

91
2

7,
20

0
2,

51
0.

09
30

.9
2

04
SL

H
n.

a.
7,

20
0

n.
a.

n.
a.

05
SL

L
13

6,
71

2
7,

20
0

1,
68

6.
39

11
.9

3
05

SL
M

18
4,

82
0

7,
20

0
2,

27
0.

22
16

.4
2

05
SL

H
n.

a.
7,

20
0

n.
a.

n.
a.

06
SL

L
18

0,
77

2
7,

20
0

2,
25

1.
05

87
.0

3
06

SL
M

21
8,

29
6

7,
20

0
2,

64
6.

67
37

.0
1

06
SL

H
n.

a.
7,

20
0

n.
a.

n.
a.

07
SL

L
15

1,
08

8
7,

20
0

1,
89

0.
60

56
.3

2
07

SL
M

18
5,

78
0

7,
20

0
2,

21
1.

85
16

.6
0

07
SL

H
n.

a.
7,

20
0

n.
a.

n.
a.

08
SL

L
17

5,
80

4
7,

20
0

2,
21

6.
28

70
.5

3
08

SL
M

20
6,

43
2

7,
20

0
2,

49
9.

28
29

.6
4

08
SL

H
n.

a.
7,

20
0

n.
a.

n.
a.

09
SL

L
14

3,
05

2
7,

20
0

1,
79

9.
89

39
.0

6
09

SL
M

21
8,

31
2

7,
20

0
2,

62
7.

54
37

.3
9

09
SL

H
n.

a.
7,

20
0

n.
a.

n.
a.

10
SL

L
16

9,
59

6
7,

20
0

2,
13

4.
22

75
.8

7
10

SL
M

16
3,

02
8

7,
20

0
1,

97
6.

80
2.

54
10

SL
H

n.
a.

7,
20

0
n.

a.
n.

a.

01
SH

L
14

4,
49

2
7,

20
0

1,
79

5.
18

18
.1

4
01

SH
M

21
3,

79
6

7,
20

0
2,

72
7.

04
34

.4
7

01
SH

H
n.

a.
7,

20
0

n.
a.

n.
a.

02
SH

L
21

3,
94

4
7,

20
0

2,
63

7.
83

57
.2

3
02

SH
M

21
4,

72
4

7,
20

0
2,

60
3.

13
34

.0
8

02
SH

H
n.

a.
7,

20
0

n.
a.

n.
a.

03
SH

L
14

4,
10

8
7,

20
0

1,
72

8.
30

39
.6

6
03

SH
M

19
4,

36
0

7,
20

0
2,

34
7.

68
21

.9
5

03
SH

H
n.

a.
7,

20
0

n.
a.

n.
a.

04
SH

L
15

8,
26

0
7,

20
0

1,
94

2.
59

29
.2

6
04

SH
M

21
7,

46
4

7,
20

0
2,

68
8.

28
36

.6
1

04
SH

H
n.

a.
7,

20
0

n.
a.

n.
a.

05
SH

L
13

0,
85

2
7,

20
0

1,
65

3.
39

35
.8

3
05

SH
M

21
5,

90
8

7,
20

0
2,

70
1.

54
35

.9
2

05
SH

H
n.

a.
7,

20
0

n.
a.

n.
a.

06
SH

L
19

0,
34

4
7,

20
0

2,
39

1.
88

54
.9

8
06

SH
M

21
4,

93
2

7,
20

0
2,

72
4.

64
34

.5
3

06
SH

H
n.

a.
7,

20
0

n.
a.

n.
a.

07
SH

L
13

5,
88

0
7,

20
0

1,
64

6.
02

10
.7

8
07

SH
M

18
3,

53
6

7,
20

0
2,

27
1.

41
15

.0
5

07
SH

H
n.

a.
7,

20
0

n.
a.

n.
a.

08
SH

L
15

6,
43

6
7,

20
0

1,
93

5.
35

51
.6

0
08

SH
M

21
4,

75
6

7,
20

0
2,

68
6.

85
34

.7
4

08
SH

H
n.

a.
7,

20
0

n.
a.

n.
a.

09
SH

L
15

5,
24

8
7,

20
0

1,
94

4.
70

26
.1

8
09

SH
M

18
6,

96
4

7,
20

0
2,

17
2.

05
16

.7
8

09
SH

H
n.

a.
7,

20
0

n.
a.

n.
a.

10
SH

L
15

5,
70

0
7,

20
0

2,
01

4.
00

52
.6

9
10

SH
M

18
5,

86
0

7,
20

0
2,

25
3.

88
34

.5
0

10
SH

H
n.

a.
7,

20
0

n.
a.

n.
a.



194 H.I. Gündüz and M.N. Baumung

Ta
bl

e
6

R
es

ul
ts

fo
r

th
e

la
rg

e
te

st
in

st
an

ce
s

w
ith

a
lo

w
,m

ed
iu

m
,a

nd
hi

gh
us

ag
e

le
ve

l

In
st

an
ce

So
lu

tio
n

C
PU

tim
e

[S
]

G
ap

In
st

an
ce

So
lu

tio
n

C
PU

tim
e

[s
]

G
ap

In
st

an
ce

So
lu

tio
n

C
PU

tim
e

[s
]

G
ap

01
L

L
L

N
.a

.
7,

20
0

N
.a

.
01

L
L

M
N

.a
.

7,
20

0
N

.a
.

01
L

L
H

N
.a

.
7,

20
0

N
.a

.

02
L

L
L

N
.a

.
7,

20
0

N
.a

.
02

L
L

M
N

.a
.

7,
20

0
N

.a
.

02
L

L
H

41
2,

06
0

7,
20

0
0.

29
%

03
L

L
L

N
.a

.
7,

20
0

N
.a

.
03

L
L

M
N

.a
.

7,
20

0
N

.a
.

03
L

L
H

44
6,

64
0

7,
20

0
8.

48
%

04
L

L
L

N
.a

.
7,

20
0

N
.a

.
04

L
L

M
N

.a
.

7,
20

0
N

.a
.

04
L

L
H

N
.a

.
7,

20
0

N
.a

.

05
L

L
L

N
.a

.
7,

20
0

N
.a

.
05

L
L

M
N

.a
.

7,
20

0
N

.a
.

05
L

L
H

N
.a

.
7,

20
0

N
.a

.

06
L

L
L

N
.a

.
7,

20
0

N
.a

.
06

L
L

M
N

.a
.

7,
20

0
N

.a
.

06
L

L
H

N
.a

.
7,

20
0

N
.a

.

07
L

L
L

N
.a

.
7,

20
0

N
.a

.
07

L
L

M
N

.a
.

7,
20

0
N

.a
.

07
L

L
H

N
.a

.
7,

20
0

N
.a

.

08
L

L
L

N
.a

.
7,

20
0

N
.a

.
08

L
L

M
N

.a
.

7,
20

0
N

.a
.

08
L

L
H

41
6,

15
6

7,
20

0
1.

30
%

09
L

L
L

N
.a

.
7,

20
0

N
.a

.
09

L
L

M
N

.a
.

7,
20

0
N

.a
.

09
L

L
H

N
.a

.
7,

20
0

N
.a

.

10
L

L
L

N
.a

.
7,

20
0

N
.a

.
10

L
L

M
N

.a
.

7,
20

0
N

.a
.

10
L

L
H

N
.a

.
7,

20
0

N
.a

.

01
L

H
L

N
.a

.
7,

20
0

N
.a

.
01

L
H

M
N

.a
.

7,
20

0
N

.a
.

01
L

H
H

N
.a

.
7,

20
0

N
.a

.

02
L

H
L

24
8,

64
0

7,
20

0
1.

32
%

02
L

H
M

N
.a

.
7,

20
0

N
.a

.
02

L
H

H
N

.a
.

7,
20

0
N

.a
.

03
L

H
L

N
.a

.
7,

20
0

N
.a

.
03

L
H

M
N

.a
.

7,
20

0
N

.a
.

03
L

H
H

N
.a

.
7,

20
0

N
.a

.

04
L

H
L

N
.a

.
7,

20
0

N
.a

.
04

L
H

M
N

.a
.

7,
20

0
N

.a
.

04
L

H
H

N
.a

.
7,

20
0

N
.a

.

05
L

H
L

N
.a

.
7,

20
0

N
.a

.
05

L
H

M
N

.a
.

7,
20

0
N

.a
.

05
L

H
H

N
.a

.
7,

20
0

N
.a

.

06
L

H
L

N
.a

.
7,

20
0

N
.a

.
06

L
H

M
N

.a
.

7,
20

0
N

.a
.

06
L

H
H

N
.a

.
7,

20
0

N
.a

.

07
L

H
L

N
.a

.
7,

20
0

N
.a

.
07

L
H

M
N

.a
.

7,
20

0
N

.a
.

07
L

H
H

38
6,

79
6

7,
20

0
0.

32
%

08
L

H
L

N
.a

.
7,

20
0

N
.a

.
08

L
H

M
N

.a
.

7,
20

0
N

.a
.

08
L

H
H

N
.a

.
7,

20
0

N
.a

.

09
L

H
L

N
.a

.
7,

20
0

N
.a

.
09

L
H

M
N

.a
.

7,
20

0
N

.a
.

09
L

H
H

N
.a

.
7,

20
0

N
.a

.

10
L

H
L

N
.a

.
7,

20
0

N
.a

.
10

L
H

M
N

.a
.

7,
20

0
N

.a
.

10
L

H
H

N
.a

.
7,

20
0

N
.a

.



A Mixed Integer Programming Approach … 195

7.4 Results for Large Instances

Even though this was not the primary target of this work, we also investigated the
model’s ability to handle instances corresponding to larger clinic departments. When
looking at larger instances with four operating rooms, eight surgeons, and sixty
surgeries, the model fails to find feasible solutions within the given computational
time for almost all instances (see Table 6). This is mainly due to the sharply increasing
problem size with a total of 279,640 variables, 222,020 of them being integer, and
2,122,411 constraints compared to 34,520 variables (27,310 of them being integer),
and 91,626 constraints for the small instances. These results show that the model
performs very well for small instances comparable in size to the environment found
in the Clinic Department of Otorhinolaryngology and Plastic Head and Neck Surgery
at University Hospital Aachen, but is clearly not suited for solving larger problems.

8 Conclusion and Future Work

In this paper, we address the problem of scheduling elective surgeries with simul-
taneous surgeon and operating room scheduling. We formulated a mixed integer
problem to assign a set of elective surgeries to operating rooms and surgeons while
sequencing them simultaneously. Taking into account many different real constraints
in University Hospital Aachen, some special features of the proposed model were
formed.

The proposed model was evaluated by solving several artificial test instances.
Numerical results indicated that the model works very well for environments com-
parable in size to the Clinic Department of Otorhinolaryngology and Plastic Head
and Neck Surgery. Almost all corresponding test instances were solved to optimality,
and the gap evaluations for the instances not solved to optimality showed that the
results were generally very good.

Because of the chosen formulation, the proposed model however is not apt to
solve larger instances, representing environments such as they can be found in other
clinic departments or other hospitals. Therefore, in future work, we will consider
other model formulations and solution techniques to solve the described problem.
A first simple heuristic, using the result of the solved bin packing problem to find
an allocation of surgeries to operating rooms and days as an initial solution, shows
some promising computational results for the large test instances.

Also, we are now working in a deterministic context. In future work, we will con-
sider uncertainty related to surgery duration and the arrival of non-elective patients,
in order to assess risks of overtime and surgery cancelation and possible operating
room idle time resulting from the deterministic model for the scheduling problem
that we considered here.
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