
 123

Transactions on
Large-Scale
Data- and Knowledge-
Centered Systems XXLN

CS
 9

07
0

Abdelkader Hameurlain • Josef Küng • Roland Wagner
Editors-in-Chief

Jo
ur

na
l S

ub
lin

e Sherif Sakr · Lizhe Wang
Albert Zomaya
Guest Editors

Special Issue on Advanced Techniques
for Big Data Management

Lecture Notes in Computer Science 9070

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/8637

http://www.springer.com/series/8637

Abdelkader Hameurlain • Josef Küng
Roland Wagner • Sherif Sakr
Lizhe Wang • Albert Zomaya (Eds.)

Transactions on
Large-Scale
Data- and Knowledge-
Centered Systems XX
Special Issue on Advanced Techniques
for Big Data Management

123

Editors-in-Chief

Abdelkader Hameurlain
IRIT, Paul Sabatier University
Toulouse
France

Josef Küng
FAW, University of Linz
Linz
Austria

Roland Wagner
FAW, University of Linz
Linz
Austria

Guest Editors

Sherif Sakr
King Saud bin Abdulaziz University

for Health Sciences
Riyadh
Saudi Arabia

Lizhe Wang
Chinese Academy of Sciences
Beijing
China

Albert Zomaya
The University of Sydney
Sydney
Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-46702-2 ISBN 978-3-662-46703-9 (eBook)
DOI 10.1007/978-3-662-46703-9

Library of Congress Control Number: 2015934899

Springer Heidelberg New York Dordrecht London
© Springer-Verlag Berlin Heidelberg 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

Preface

Data constitute a key resource in the modern world. Big data is a popular term which
has been recently used to describe the exponential growth and availability of data. In
particular, big data is a new phenomenon which represents the outcome of the
development and the convergence of a range of technological advances in communi-
cation and computing sciences. In particular, the radical expansion and integration of
computation, networking, digital devices, and data storage has provided a robust
platform for the explosion in big data as well as being the means by which big data is
generated, processed, shared, and analyzed. Big Data has commonly been characterized
by 3V properties which refer to huge in Volume, consisting of terabytes or petabytes of
data; high in Velocity, being created in or near real time; and diverse in Variety of type,
being structured and unstructured in nature. IDC predicts that the worldwide volume of
data will reach 40 zettabytes by 2020 where 85% of all of this data will be of new data
types and formats including server logs and other machine generated data, data from
sensors, social media data, and many more data sources. All these varieties of data
types need to be harnessed to provide a more complete picture of what is happening in
various application domains.

In general, data are not useful in and of themselves. They only have utility if
meaning and value can be extracted from them. Therefore, given their utility and value,
there are always continuous increasing efforts devoted to producing and analyzing
them. In principle, big data discovery enables data scientists and other analysts to
uncover patterns and correlations through analysis of large volumes of data of diverse
types. Insights gleaned from big data discovery can provide businesses with significant
competitive advantages, such as more successful marketing campaigns, decreased
customer churn, and reduced loss from fraud. In practice, the growing demand for
large-scale data processing and data analysis applications spurred the development of
novel solutions from both industry and academia.

This TLDKS Special Issue presents a representative selection of articles covering a
wide range of important topics in the domain of advanced techniques for big data
management. The first article “A Proxy Service for Multi-tenant Elastic Extension
Tables” by Haitham Yaish et al. proposes a multi-tenant database proxy service called
Elastic Extension Tables Proxy Service (EETPS) that combines each tenant relational
tables and virtual relational tables and makes them act and operate virtually as one
single database schema for each tenant. In particular, the service allows data to be
accessed by calling functions and avoids efforts associated with writing SQL queries
and backend data management code. In addition, the proposed scheme allows the
service provider tenants to focus on their core business and easily create their SaaS,
mobile, web, and desktop software applications.

In recent years, consumption of video streams has risen sharply. This phenomenon
has played a role in shaping Internet traffic. In their article “Boosting Streaming Video
Delivery with WiseReplica” Guthemberg Silvestre et al. introduce WiseReplica as an

adaptive replication scheme for peer-assisted VoD systems that enforces the average
bitrate for Internet videos. WiseReplica relies on machine-learned ranking in order to
save storage and bandwidth from the vast majority of non-popular contents for the most
watched videos.

In the past decade, the Web has been evolving to a sink of disparate information
sources which are totally isolated from each other. The technology of Linked Data
promises to connect such information sources in order to enable their better exploita-
tion by humans or automated programs. The article “A Cloud-Based, Geospatial
Linked Data Management System” by Kyriakos Kritikos et al. proposes a novel, cloud-
based geospatial LD management system which can scale out or scale in according to
the incoming load in order to serve the respective user requests with the appropriate
service level. On top of this system lies an LD-as-a-service offering which abstracts
away the user from any LD publishing complexities and provides all the appropriate
functionality for enabling a full LD management.

The Random Prism classifier has recently been proposed as an alternative to the
popular Random Forests classifier, which is based on decision trees. In principle,
Random Prism is based on the Prism family of algorithms, which is more robust to
noise. The article “A Scalable Expressive Ensemble Learning Using Random Prism:
A MapReduce Approach” by Frederic Stahl et al. provides a detailed and exhaustive
description of Random Prism and Parallel Random Prism approaches. Additionally, the
article also provides a formal theoretical scalability analysis of Random Prism and
Parallel Random Prism, which examines the scalability to much larger computer
clusters. This examination provides a theoretical underpinning that can be used for
scalability of the MapReduce framework. It also presents a thorough experimental
study of Parallel Random Prism’s scalability.

In practice, popular frameworks which are supporting the MapReduce programming
model for Big Data applications do not flexibly adapt to these environments. Instead,
these frameworks, including Hadoop, typically divide data evenly among worker nodes
which induces the well-known problem of stragglers on slower nodes. The first invited
article of this special issue “Performance Analysis of Adapting a MapReduce Frame-
work to Dynamically Accommodate Heterogeneity” by Jessica Hartog et al. presents an
alternative MapReduce framework, called MARLA, which divides each worker’s labor
into subtasks, delays the binding of data to worker processes, and thereby enables
applications to run faster in performance-heterogeneous environments. In addition, the
article explores and characterizes the opportunity for performance gains, and identifies
when the benefits outweigh the costs of the proposed approach.

In general, a Content Distribution Network (CDN) is a distributed network of
servers and file storage devices that replicates content/services (e.g., files, video, audio,
etc.) on a large number of surrogate systems placed at various locations, distributed
across the globe. In practice, CDNs that are using cloud resources such as storage and
compute have started to emerge. Unlike traditional CDNs hosted on private data
centers, cloud-based CDNs take advantage of the geographical availability and the pay-
as-you-go model of cloud platforms. Therefore, the Cloud-based CDNs (CCDNs)
promote the content-delivery-as-a-service cloud model. The second invited article of
this special issue “An overview of Cloud-Based Content Delivery Networks: Research
Dimensions and State of the Art” by Meisong Wang et al. presents a comprehensive

VI Preface

study of Cloud CDNs. In particular, the article presents a state-of-the-art survey on
current commercial and research-driven Cloud CDNs and presents an analysis of
current Cloud CDN based on a comprehensive taxonomy. In addition, the article
identifies some of the promising research opportunities in the Cloud CDN area.

We would like to note that the publication of this TLDKS Special Issue would not
have been possible without the help of many people. First, we would like to thank all the
authors who submitted their articles to this special issue. We are grateful to all the
reviewers for their very valuable efforts to ensure the high quality of the selected articles
for this special issue. We also acknowledge the work of Abdelkader Hameurlain, Josef
Küng, and Roland Wagner, Editors-in-chief of the TLDKS journal, for their confidence
and help. Finally, we are particularly grateful to Gabriela Wagner for her valuable
guidance and administrative assistance during the whole process of preparing this
special issue.

January 2015 Sherif Sakr
Lizhe Wang

Albert Zomaya

Preface VII

Organization

Editorial Board

Reza Akbarinia Inria, France
Bernd Amann Laboratoire d’Informatique de Paris 6 / Université

Pierre et Marie Curie, France
Dagmar Auer FAW, University of Linz, Austria
Stéphane Bressan National University of Singapore, Singapore
Francesco Buccafurri Università degli Studi Mediterranea di Reggio

Calabria, Italy
Qiming Chen HP Laboratories, USA
Tommaso Di Noia Politecnico di Bari, Italy
Dirk Draheim University of Innsbruck, Austria
Johann Eder Alpen-Adria-Universität Klagenfurt, Austria
Stefan Fenz Vienna University of Technology, Austria
Georg Gottlob Oxford University, UK
Anastasios Gounaris Aristotle University of Thessaloniki, Greece
Theo Härder Technical University of Kaiserslautern, Germany
Andreas Herzig IRIT, Paul Sabatier University, France
Hilda Kosorus FAW, University of Linz, Austria
Dieter Kranzlmüller Ludwig-Maximilians-Universität München,

Germany
Philippe Lamarre INSA Lyon, France
Lenka Lhotská Czech Technical University in Prague,

Czech Republic
Vladimir Marik Czech Technical University in Prague,

Czech Republic
Mukesh Mohania IBM Research, India
Franck Morvan IRIT, Paul Sabatier University, France
Kjetil Nørvåg Norwegian University of Science and Technology,

Norway
Gultekin Ozsoyoglu Case Western Reserve University, USA
Themis Palpanas Paris Descartes University, France
Torben Bach Pedersen Aalborg University, Denmark
Günther Pernul University of Regensburg, Germany
Klaus-Dieter Schewe Johannes Kepler University of Linz, Austria
David Taniar Monash University, Australia
A Min Tjoa Vienna University of Technology, Austria
Chao Wang Oak Ridge National Laboratory, USA

Contents

A Proxy Service for Multi-tenant Elastic Extension Tables 1
Haitham Yaish, Madhu Goyal, and George Feuerlicht

Boosting Streaming Video Delivery with WiseReplica 34
Guthemberg Silvestre, David Buffoni, Karine Pires, Sébastien Monnet,
and Pierre Sens

A Cloud-Based, Geospatial Linked Data Management System 59
Kyriakos Kritikos, Yannis Rousakis, and Dimitris Kotzinos

A Scalable Expressive Ensemble Learning Using Random Prism:
A MapReduce Approach . 90

Frederic Stahl, David May, Hugo Mills, Max Bramer,
and Mohamed Medhat Gaber

Performance Analysis of Adapting a MapReduce Framework
to Dynamically Accommodate Heterogeneity . 108

Jessica Hartog, Renan DelValle, Madhusudhan Govindaraju,
and Michael J. Lewis

An Overview of Cloud Based Content Delivery Networks: Research
Dimensions and State-of-the-Art . 131

Meisong Wang, Prem Prakash Jayaraman, Rajiv Ranjan, Karan Mitra,
Miranda Zhang, Eddie Li, Samee Khan, Mukkaddim Pathan,
and Dimitrios Georgeakopoulos

Author Index . 159

http://dx.doi.org/10.1007/978-3-662-46703-9_1
http://dx.doi.org/10.1007/978-3-662-46703-9_2
http://dx.doi.org/10.1007/978-3-662-46703-9_3
http://dx.doi.org/10.1007/978-3-662-46703-9_4
http://dx.doi.org/10.1007/978-3-662-46703-9_4
http://dx.doi.org/10.1007/978-3-662-46703-9_5
http://dx.doi.org/10.1007/978-3-662-46703-9_5
http://dx.doi.org/10.1007/978-3-662-46703-9_6
http://dx.doi.org/10.1007/978-3-662-46703-9_6

A Proxy Service for Multi-tenant Elastic
Extension Tables

Haitham Yaish1,2(&), Madhu Goyal1,2, and George Feuerlicht2,3,4

1 Centre for Quantum Computation and Intelligent Systems,
University of Technology Sydney,

P.O. Box 123, Broadway, NSW 2007, Australia
2 Faculty of Engineering and Information Technology,

University of Technology Sydney,
P.O. Box 123, Broadway, NSW 2007, Australia

{haitham.yaish,madhu.goyal-2,

george.feuerlicht}@uts.edu.au
3 Unicorn College, Prague, Czech Republic

4 University of Economics, Prague, Czech Republic

Abstract. An important challenge in the design of multi-tenant databases that
support Software as a Service (SaaS) applications is providing a platform
that manages multiple tenants’ data in single database storage. To address this
challenge, we have previously proposed a multi-tenant database schema called
Elastic Extension Tables (EET) that uses single shared database and shared
schema for all tenants. In this paper, we extend this work with a multi-tenant
database proxy service called Elastic Extension Tables Proxy Service (EETPS)
that combines tenants’ relational tables with virtual relational tables into single
database schema for each tenant. This service enables data access by calling
functions in order to avoid writing SQL queries and backend data management
code. It allows the tenants to focus on their core business and easily create SaaS,
mobile, web, and desktop software applications. We present the EETPS algo-
rithms and perform several experiments to assess their feasibility and effec-
tiveness by comparing the performance of retrieving data from traditional
physical tables, virtual tables, and integrated physical and virtual tables.

Keywords: Cloud Computing � Software as a Service � Multi-tenancy �
Multi-tenant database � Elastic Extension Tables

1 Introduction

Software as a service (SaaS) is a Cloud Computing service model that exploits econ-
omies of scale for SaaS service providers by offering single configurable software and
computing environment for multiple tenants. It is an emerging software application
service model and a significant current topic in the software industry. Also, SaaS can be
defined as a model where the service provider hosts the applications and customers
accesses these applications via the internet [19]. Configuration is one of the main
characteristics of multi-tenant SaaS applications that allows SaaS vendors to run a single
instance of the application. This requires a multi-tenant aware design with a single

© Springer-Verlag Berlin Heidelberg 2015
A. Hameurlain et al. (Eds.): TLDKS XX, LNCS 9070, pp. 1–33, 2015.
DOI: 10.1007/978-3-662-46703-9_1

codebase and metadata capability. Multi-tenant aware application enables each tenant to
design different parts of the application, and automatically configure its behaviour
during runtime without redeploying the application [3]. Multi-tenant databases manage
two types of data: shared data and tenant’s isolated data. Combining these two types of
data gives tenants a complete view of the data which suits their business requirements
[6, 16]. There are various approaches of multi-tenant database schema designs and
techniques that address multi-tenant database challenges [21, 23], but there are also
remaining challenges [2].

Designing and developing a configurable multi-tenant SaaS application is a com-
plicated task due to the lack of support for a manageable database schema, and the
complexities associated with providing configurable database fields [8, 9, 14, 18]. In
[21, 23], we proposed a configurable database design technique for multi-tenant
applications called Elastic Extension Tables (EET) that consists of Common Tenant
Tables (CTT), Extension Tables (ET), and Virtual Extension Tables (VET). This
design enables tenants to build their virtual database schema by creating the required
number of tables and columns, creating virtual database relationships, and assigning
suitable data types and constraints for table columns during multi-tenant application
runtime. In this paper, we propose a multi-tenant database proxy service called Elastic
Extension Tables Proxy Service (EETPS). This service is based on EET, and it inte-
grates, generates, and executes tenants’ queries by using a codebase solution that
converts multi-tenant queries into traditional database queries and execute them in a
RDBMS. It provides new features, include: (1) allowing cloud database service pro-
viders to offer three EET database models, and database tenants to choose from any of
these database models; (2) allowing extensions to the traditional Relational Database
Management Systems (RDBMS) during applications’ runtime; (3) avoiding the need to
write SQL queries, learning special programming languages, and writing backend data
management codes by calling functions from EETPS. This service retrieves simple and
complex queries including join operations, filtering on multiple properties, and filtering
of data based on subquery results. We present sample algorithms for five EETPS
functions, and we carry out five types of experiments to verify the effectiveness
of EETPS. The results of these experiments indicate that EET multi-tenant schema and
EETPS is suitable for storing and retrieving data for software applications in general
and SaaS applications in particular.

The remainder of this paper is organized as follows. Section 2 reviews related work.
Section 3 describes the Elastic Extension Tables. Section 4 describes the Elastic
Extension Tables Proxy Service. Section 5 presents the Elastic Extension Tables Proxy
Service algorithms. Section 6 gives our experimental results, and Sect. 7 concludes this
paper and describes the future work.

2 Related Work

A number of multi-tenant database schema designs and techniques have studied and
implemented to address multi-tenant database challenges. This section presents seven
multi-tenant database schema techniques, including Private Tables, Extension Tables,
Universal Table, Pivot Tables, Chunk Table, Chunk Folding, and XML Table [1, 2, 8,

2 H. Yaish et al.

9, 12, 15]. All of these seven multi-tenant database schema techniques are based on
traditional RDBMS [5, 17]. Moreover, we describe the storage model design of
SalesForce and discuss its special programming and query languages. Furthermore, we
discuss some of the limitations of NoSQL (Not Only SQL).

The Private Tables technique allows each tenant to have his own private tables,
which can be extended and changed [1, 2]. Using this multi-tenant query technique can
be transformed from one tenant to another by renaming tables, and metadata without
using extra columns like ‘tenant_id’ to distinguish and isolate the tenants’ data. In
contrast, many tables are required to satisfy each tenant needs. Therefore, this tech-
nique can be used if there are fewer tenants using it, to produce sufficient database load
and good performance [2].

The Extension Tables are separated tables joined with the base tables by adding
tenants’ columns to construct logical source tables [1, 2]. This technique has been
adapted from the Decomposed Storage Model that splits up n-column table into n
2-column tables joined using surrogate keys [1]. Multiple tenants can use the base
tables as well as the extension tables [9]. This technique is considered superior to the
Private Tables approach described above. Nevertheless, in this approach, the number of
tables increases with increasing number of tenants, and with the variety of their dif-
ferent business requirements [1].

The Universal Table is a table that contains additional columns of the base
application schema columns, which enable tenants to store their required columns. It is
structured with two main columns ‘tenant_id’ and ‘table_id’, and other generic data
columns, which have a flexible VARCHAR data type in which different data types with
different data values can be stored in these columns [1, 15]. It is a flexible technique
that enables tenants to extend their tables in different ways according to their business
needs. However, the rows of the universal table can be too wide with an overhead in
the number of NULL values, which the database has to handle [1].

In the Pivot Tables technique, the application maps the schema into generic
structure in the database, in which each column of each row in a logical source table is
given its own row in the Pivot Table. The rows in the Pivot Table comprise of four
columns, including tenant, table, column, and row that specifies which row in the
logical source table they represent. As well as a single data type column that stores
the values of the logical source table rows according to their data types in the desig-
nated pivot Table [1, 9]. For example, the Pivot Tables can have two pivot tables, the
first table ‘pivot_int’ to store INTEGER values, and the second table ‘pivot_str’ to store
STRING values. The performance benefits are achieved by avoiding NULL values and
by selectively reading from smaller numbers of columns [1].

The Chunk Table is another generic structure technique that is similar to Pivot
Table. Except, it has a set of data columns with a mixture of data types that replacing the
column ‘col’ in the Pivot Table with ‘chunk’ column in the Chunk Table. This technique
partitions the logical source table into groups of columns. Each group assigned to a
chunk ID and mapped into an appropriate Chunk Table. This technique has four
advantages over Pivot Table. (1) Reducing metadata storage ratio, (2) reducing the
overhead of reconstructing the logical source tables, (3) reducing the number of col-
umns, and (4) providing indexes. This technique is flexible, but it adds complexity to the
database queries [1].

A Proxy Service for Multi-tenant Elastic Extension Tables 3

The Chunk Folding is a schema mapping technique that partition logical source
tables into chunks vertically [1, 9]. These chunks are folded in different physical tables
and joined together, where a chunk of columns is partitioned into a group of columns
and each group has a chunk id [9]. Aulbach et al. (2008) perform experiments to
measure the efficiency of Chunk Table and Chunk Folding techniques, and they found
that Chunk Folding technique outperform the Chunk Table technique. Additionally,
they state that the performance of this technique is enhanced by mapping the most
frequently used tenants’ columns of the logical schema into conventional tables, and
the majority of tenants do not use the remaining columns in the Chunk Tables.
However, the main limitation of the Chunk Folding technique is that the common
schema must be known in advance, which is not a practical solution for multi-tenant
databases. This issue also exists in Extension Tables, Pivot Tables, and Chunk Table.

The XML Table database extension technique is a combination of relational
database systems and Extensible Markup Language (XML) [2, 8, 9]. The extension of
XML can be provided as native XML data type, or storing the XML document in the
database as a Character Large Object (CLOB) or Binary Large Object (BLOB) [2].
XML data type facilitating the creation of database tables, columns, views, variables
and parameters, and isolating the application from relational data model [8]. This
technique satisfies tenants’ needs because their data can be handled without changing
original database relational schema, and XML data type can be supported by several
relational database products [8, 9]. In contrast, this technique reduces the data access
performance using XML files [2], and Heng et al. (2012) state that this technique has
the highest response time, in other words, it was the slowest technique in comparison
with Private Tables, Universal Tables, Pivot Tables, Chunk Table and Chunk Folding
techniques.

In summary, although Heng et al. (2012) use the Elastic Extension Tables (EET)
name that proposed in [21], but using this name for the Salesforce storage model is
incorrect. Heng et al.’s paper [12] conducted a number of significant experiments to
evaluate retrieving data from six different multi-tenant schemas used in multi-tenant
SaaS applications including Private Tables, Universal Tables, Pivot Tables, Chunk
Table, Chunk Folding, and XML Table. The results of these experiments show that
retrieving data from Universal Table is faster than from other schemas except the Private
Tables schema. Aulbach et al. (2009) conduct experiments that compare Private Tables
schema and the Universal Table (Spare Columns) schema. The results of these exper-
iments show that the Universal Table schema has the same or better performance than
the Private Tables schema when retrieving or inserting data, except when inserting a
large number of data, the Universal Table schema is slower than the Private Tables
schema. Such experimental results lead to the conclusion that the performance of the
Universal Table schema is the best out of the five multi-tenant schemas, as the Private
Tables schema is only suitable for a small number of tenants. Overall, the experimental
results make the Universal Table schema the optimal schema to use for a multi-tenant
database when it is compared to Pivot Tables, Chunk Table, Chunk Folding, and XML
Table. However, as noted earlier the Universal Table can be too large introducing
overhead with the number of NULL values, which the database has to handle. Ulti-
mately, this suggests that the current available multi-tenant database schemas still have
remaining challenges and issues. Based on this conclusion, we proposed in [21] EET

4 H. Yaish et al.

multi-tenant schema and in [23] we evaluated this schema by comparing it with the
Universal Tables schema that is the optimal commercially available multi-tenant data-
base schema, which is used by Salesforce. The experiments of EET evaluation show
significant performance improvements obtained using EET when compared to Universal
Tables, making EET schema a good candidate for the management of multi-tenant data
in SaaS applications.

Salesforce, the pioneer of SaaS CRM applications has designed and developed a
storage model to manage its virtual database structure by using a set of metadata,
universal data table, and pivot tables. This set of metadata and tables get converted to
objects that the Universal Data Dictionary (UDD) keeps track of them, their fields and
relationships, and other object definition characteristics. In addition, it provides a special
object-oriented procedural programming language called Apex that has the following
functions. First, declare program variables, constants and execute traditional flow
control statements. Second, declare data manipulation operations. Third, declare the
transaction control operations. Then Salesforce compiles Apex code and stores it as
metadata in the UDD [20]. In addition, it has its own Query Languages, first, Salesforce
Object Query Language (SOQL), which retrieve data from one object at a time. Second,
Salesforce Object Search Language (SOSL), which retrieve data from multiple objects
simultaneously [10, 20]. NoSQL is a non-relational database management system
approach designed to handle storing and retrieving large quantities of data, and it
includes services such as MongoDB, Cassandra, CouchDB, Google App Engine Da-
tastore, and others. This technique avoids joining operations, filtering on multiple
properties, and filtering of data based on subqueries results. Therefore, the efficiency of
its simple query is very high, but this is not the case for complex queries. Moreover,
unless configuring NoSQL consistency models in protective modes of operation,
NoSQL database typically do not ensure data consistency [4, 11]. Indrawan-Santiago
[13] states that NoSQL should be seen as a complimentary solution to relational dat-
abases in providing enhanced data management capability, not as a replacement for it.

3 Elastic Extension Tables

The proposed Elastic Extension Tables (EET) database schema is a novel way of
designing and creating a multi-tenant database that consists of three types of tables
[21, 23]. The first type is Common Tenant Tables (CTT) which are physical tables
shared between tenants using a RDBMS. These physical relational tables can be
applied to any business domain database such as CRM, Accounting, Human Resource
(HR), or other business domains. The second type is Virtual Extension Tables (VET),
which allow tenants to extend the existing business domain database, or have their own
configurable database through creating their virtual database structures from scratch by
creating (1) virtual database tables, (2) virtual database relationships, and (3) other
database constraints. The third type is Extension Tables (ET), which consists of eight
physical tables that are used to construct VETs [21, 23]. The data architecture details
of the eight ETs of EET are shown in Fig. 1 and listed as follows: (1) the ‘db_table’
ET allows tenants to create virtual tables and give them unique names. (2) The
‘table_column’ ET allows tenants to create virtual columns for a virtual table stored in

A Proxy Service for Multi-tenant Elastic Extension Tables 5

the ‘db_table’ ET. (3) The table row ETs store records of virtual extension columns in
three separate tables. These tables are separated to store small data values in the
‘table_row’ ET such as NUMBER, DATE-and-TIME, BOOLEAN, VARCHAR and
other data types. While the large data values stored in two other tables: the first one
is the ‘table_row_blob’ ET, which stores a Uniform Resource Identifier (URI) for
virtual columns of Binary Large Object (BLOB) data type. The second one is the
‘table_row_clob’ ET, which stores Character Large Object (CLOB) values for virtual
columns with TEXT data type. These three row ETs are capable to store data types,
including traditional relational data, texts, audios, images, videos, and XML in struc-
tured, unstructured, and semi-structured format. The structured data, such as traditional
relational data can be stored in CTTs and VETs using ETs. The unstructured data files
such as images, audios, videos can be stored in EET, by storing the URI of a file
in the ‘table_row_blob’ ET. Then the actual physical file can be stored in a folder of a
file system, and then this file can be accessed using the URI that stored in the
‘table_row_blob’ ET and mapped to the physical file that stored in a folder. The semi-
structured data such as XML files can be stored in two ways. Firstly, using the same
method as used for storing unstructured data, then accessing the XML file using the
URI that stored in the ‘table_row_blob’ ET and mapped to the physical XML file that
stored in a folder. Secondly, XML files can be stored as text in the ‘table_row_clob’
ET as a CLOB file, and then accessed from the ‘table_row_clob’ ET. (4) The
‘table_relationship’ ET allows tenants to create virtual relationships for their virtual
tables with any of CTTs or VETs. (5) The ‘table_index’ ET is used to add indexes to
virtual columns. These indexes reduce the query execution time when tenants retrieve
data from the VET. (6) The ‘table_primary_key_column’ ET allows tenants to create
single or composite virtual primary key for virtual extension columns that are stored in
the ‘table_column’ ET [21, 23]. Figure 1 shows the details of multi-tenant EET
database schema.

The effectiveness of accessing data from EET was evaluated in [23], and it will be
confirmed in this paper. Furthermore, the multi-tenant schema includes access control
data architecture that allows each tenant to have a number of users with different types
of access privileges [22].

4 Elastic Extension Tables Proxy Service

This paper proposes a multi-tenant database proxy service called EETPS that combines,
generates, and executes tenants’ queries by using a codebase solution that first converts
multi-tenant queries into traditional database queries, and then executes the queries in a
RDBMS. This service has three objectives: (1) to allow the tenants’ applications
to retrieve table rows from CTTs, VETs, or both CTTs and VETs. (2) to allow tenants
to extend a business domain database that based on traditional RDBMS during their
applications’ runtime; (3) to avoid efforts associated with writing SQL queries and
backend data management code by calling functions from this service, which retrieves
simple and complex queries including join operations, union operations, filtering on
multiple properties, and filtering of data based on subqueries results. These functions
return a two dimensional array (Object [α] [β]), where α is the number of array rows

6 H. Yaish et al.

that represents a number of retrieved rows, and β is the number of array columns that
represent a number of retrieved columns for a particular CTT or VET. These functions
are designed to retrieve tenants’ data from the following tables:

• One table, either a CTT or a VET.
• Two tables have One-to-One, One-to-Many, Many-to-One, Many-to-Many, or

Self-referencing relationships. These relationships can be between two VETs, two
CTTs, or one VET and one CTT.

• Two tables based on a common field between them, by using different types of joins
including Left Join, Right Join, Inner Join, Outer Join, Left Excluding Join, Right
Excluding Join, and Outer Excluding Join. The Join operations can be used between
two VETs, two CTTs, or a VET and a CTT.

Fig. 1. Elastic Extension Tables

A Proxy Service for Multi-tenant Elastic Extension Tables 7

• Two tables by using the union operator that combines the result-set of these tables
whether they are CTTs or VETs.

• Two or more tables that have relationships between them, by using filters on
multiple tables, or filtering data based on the results of subqueries.

Moreover, EETPS functions have the capabilities of retrieving data from CTTs or VETs
by using the following query options: Logical Operators, Arithmetic operators,
Aggregate Functions, Mathematical functions, Using Single or Composite Primary
Keys, Specifying Query SELECT clauses, Specifying Query WHERE Clause, Speci-
fying Query Limit, and Retrieving BLOB and CLOB Values. The overview architecture
of the service is shown in Fig. 2. This architecture shows the four main layers of EETPS
architecture, including the Presentation Layer, the Application Programming Interface
(API) layer, the Service Layer, and the Domain Layer. The Presentation Layer repre-
sents the applications that access EET database through EETPS such as SaaS, mobile,
web, and stand-alone applications. The API Layer is the EET Data Retrieval API. The
Service Layer consists of EETPS, and finally, the Domain Layer is EET that consists of
three types of tables CTT, ET, and VET. The Presentation Layer allows the tenants to
retrieve data by calling functions from EETPS through the API Layer, and passing
parameters to these functions. When invoked, EETPS function generates a tenant query
from CTTs and/or VETs by using the ET and a number of query options, and then
executes the query in a RDBMS. The RDBMS returns the retrieved table rows from
EET and passes these rows back to EETPS to store them in an array. Finally, EETPS
returns the tenant’s requested data in an array to the tenant through the API Layer.

Using this service on top of EET multi-tenant database schema gives the service
provider tenants a choice of the following three database models (Fig. 4):

• Multi-tenant relational database. This database model allows tenants to use a
standard relational database schema for a particular business domain database
without the need to extend the existing database structures. This business domain
database can be shared between multiple tenants and differentiate between them by
using a Tenant ID column in the physical tables. This model can be applied to any
business domain database.

• Integrated multi-tenant relational database with virtual relational database.
This database model allows tenants to use a standard relational database schema or
a particular business domain, extend it by adding additional virtual database tables,
and combine these tables with the existing database structure by creating virtual
relationships between them.

• Multi-tenant virtual relational database. This database model allows tenants to
use their own configurable database through creating their virtual database schema
from the scratch, by creating virtual database tables, virtual database relationships,
and other database constraints to satisfy the requirements of their business
applications.

For example, if a service provider offers a Sales database schema to be used by multiple
tenants, and on top of this database schema the service provider uses EETPS, then this
service provider is able to use the three database models listed above that fulfill various

8 H. Yaish et al.

business requirements. In this example, we assume that the service provider has three
tenants. The first user has evaluated the Sales database and found that this database suits
his business requirements without any modifications. Therefore, this user will use the
Sales database schema as originally provided by the service provider as illustrated in
Fig. 3(a). The second user has evaluated the Sales database schema and found that he
needs to add extra tables to fulfill his business needs. Thus, this user created VET 1,
VET 2, and VET 3, and then, created virtual database relationships between these VETs
and the existing physical tables (CTTs) in the sales database schema. The database
model for this user is shown in Fig. 3(b). The third user has evaluated the same database
schema and found that it did not suit his business requirements, and decided not to
use the Sales database schema at all, and instead created virtual relational tables from
scratch and established database relationships between them as shown in Fig. 3(c).
When these three users have created and configured their database structures, they can
retrieve data from their databases by calling functions from EETPS. This example
illustrates the three database models that EETPS and EET schema provide. Using these
database models, users can design their databases and automatically configure their
behaviors during runtime. For more details about how to manage EET, we refer the
reader to [24].

Proxy Service

Generating Query

Executing Query

Storing
Retrieved
Rows in

Two
Dimensional

Array

Single Table
Function

Master-details
Relationship Function

Left Join
Function

Targeted Tables
Function

Union
Function

Query Options

Select Clause

Where
Clause

Query
LIMIT

Single & Composite
PK

Logical Operations Arithmetic Operations

Aggregate
Functions

Mathematical
Functions

API

Fig. 2. EETPS overview architecture Fig. 3. The EETPS three database models
example

A Proxy Service for Multi-tenant Elastic Extension Tables 9

5 Elastic Extension Tables Proxy Service Algorithms

In this section, we present the main algorithms of EETPS functions and some subsidiary
algorithms of these main algorithms. Each of these algorithms has a special abbreviation
structure that is used to define its variables. The structure of the abbreviation consists of
two parts. The first part is a prefix that consists of the abbreviation of the algorithm
name. The second part is a suffix name that represents the variable name. For example,
STQrowID is one of the definition names that is presented for the Single Table Query
algorithm, which is the first algorithm that is presented in this section. The prefix of the
abbreviation consists of the initial characters of the algorithm name, which is STQ, and
the suffix of the abbreviation is rowID. This abbreviation pattern is also used for the rest
of the algorithms. In addition, common definitions are used in the following algorithms,
and for simplicity we are listing them at the beginning of this section as follows:
T denotes a tenant ID. B denotes a table name. S denotes a string of the SELECT clause
parameters. W denotes a string of the WHERE clause. F denotes the first result number
of a query limit. M denotes the maximum number of a query limit.

5.1 Single Table Query Algorithm

This section presents the main algorithm and some subsidiary algorithms of the Single
Table function that retrieves table rows from a CTT or a VET. This algorithm has three
different cases to retrieve table rows from a VET. Firstly, retrieving rows from a VET
by specifying a set of primary keys. Secondly, retrieving rows from a VET by spec-
ifying a set of table rows IDs that are stored in ‘table_row’ ET. Thirdly, retrieving all
rows of a CTT or a VET without specifying any primary key or row ID.

Single Table Main Algorithm: This algorithm is used to retrieve table rows from one
single table either a CTT or a VET, and it is outlined in Algorithm 1.

Definition 1 (Single Table Query Main Algorithm). STQrowID denotes a set of table
rows IDs. STQPK denotes a set of primary keys. STQtype denotes the table type (CTT or
VET). STQindex denotes a set of VET indexes. STQPKIndex denotes a primary key
indexes of a VET. STQCTT denotes a set of retrieved rows from a CTT. STQVET denotes
a set of retrieved rows from a VET. STQarray denotes a two dimensional array that
stores the retrieved rows.

Fig. 4. The three EETPS database models

10 H. Yaish et al.

.

Get Table Row Query Algorithm: This subsidiary query algorithm is used to retrieve
tenant’s table rows from a VET. The database query of this algorithm uses UNION
operator keyword to combine the result-set of three SELECT statements for three
tables, including the ‘table_row’, the ‘table_row_blob’, and the ‘table_row_clob’ ETs
when the VET contains BLOB and/or CLOB. However, if the VET does not contain
BLOB and CLOB then this algorithm do not use the UNION operator in the query and
instead it retrieve data from only the ‘table_row’ ET. The details of this algorithm are
outlined in Algorithm 2.

Definition 2 (Get Table Row Query Algorithm). GTRQrowID denotes a set of table
rows IDs. GTRQPK denotes a primary key row matrix with 2 rows and n columns. The
first row stores a GTRQPK0;i that denotes a value of virtual primary key column ID
stored in the ‘table_column_id’ column of any of the three ETs, including the
‘table_row’, the ‘table_row_blob’, and the ‘table_row_clob’. The second row stores a
GTRQPK1;i that denotes the value of the GTRQPK0;i. GTRQM denotes the maximum
amount number of a query limit that will be retrieved from the ‘table_row’ ET.
GTRQqueryStr denotes a string contains the structure of a select statement that is

A Proxy Service for Multi-tenant Elastic Extension Tables 11

executed in this algorithm. GTRQrows denotes the retrieved rows from RDBMS after
executing the GTRQqueryStr.

.

Store Rows in Array Algorithm: This subsidiary algorithm is used to store the
retrieved data from a CTT or a VET in a two-dimensional array. The number of array
rows corresponds a number of retrieved rows, and the number of array columns cor-
responds a number of retrieved columns. The column names are stored in the first
element of the two-dimensional array, and the columns’ values are stored in the rest of
the array elements. The details of this algorithm are outlined in Algorithm 3.

Definition 3 (Store Rows in Array Algorithm). SRArowsList denotes a set of retrieved
rows from a CTT or a VET where each of these rows is denoted by SRArow. Each
SRArow is a set of columns and each column is denoted by SRAcol. SRArown(SRAcolm)
denotes a value stored in the SRAcolm of the SRArown. SRArowsListSize denotes the size
of the SRArowsList. SRArowSize denotes the size of the SRArow. SRAcolNames denotes a set of
column names of a CTT or a VET. SRAcolNamesSize denotes the size of the SRAcolNames.
SRAarray denotes a two dimensional array to store the retrieved rows.

.

12 H. Yaish et al.

Convert CTT Structure to VET Structure Algorithm: This subsidiary algorithm is
used to convert the retrieved data from a CTT into VET structure that consists of two-
dimensional array, the number of array rows represents a number of retrieved rows, and
the number of array columns represents a number of retrieved columns of a CTT. The
column names are stored in the first element of the two-dimensional array, and the data
in these columns are stored in the rest of the array elements. The details of this
algorithm are outlined in Algorithm 4.

Definition 4 (Convert CTT to VET Structure Algorithm). CCVSrowList denotes a set
of retrieved rows from a CTT where each row is denoted as CCVSrow. Each CCVSrow is
a set of columns and each column is denoted by CCVScol. CCVSrown(CCVScolm) denotes
a value stored in the CCVScolm of the CCVSrown. CCVSrowListSize denotes the size of
CCVSrowList, and the size of each CCVSrow in the CCVSrowList is denoted by
CCVSrowSize. CCVScolNames denotes a set of a CTT columns’names. CCVScolNamesSize
denotes the size of the CCVScolNames. CCVSarray denotes a two dimensional array that
stores the retrieved row s from a CTT.

.

5.2 One-to-Many Query Algorithm

This algorithm retrieves table rows from two CTTs, two VETs, or one VET and one
CTT. These two tables may have any of the following database relationships between
them: One-to-One, One-to-Many, Many-to-One, Many-to-Many, or Self-referencing.
In this section, a sample algorithm of the One-to-Many relationship is presented as
outlined in Algorithm 5.

Definition 5 (One-to-Many Query Algorithm). OTMQmaster denotes the master table
of the One-to-Many relationship. OTMQdetails denotes the details table of the One-to-
Many relationship. OTMQmasterPK denotes a row matrix with 2 rows and n columns.
The first row stores OTMQmasterPK0;i that denotes a primary key column name of a table.
The second row stores OTMQmasterPK1;i that denotes a table primary key value of the

A Proxy Service for Multi-tenant Elastic Extension Tables 13

OTMQmasterPK0;i. OTMQtype denotes the OTMQdetails type (CTT or VET). OTMQdetailsFK

denotes a set stores foreign keys columns’ names of the details table. OTMQswapPK

denotes a row matrix with 2 rows and n columns to store. The first row stores a
OTMQswapPK0;i that denotes the columnname of a foreign key. This foreign key belongs to
the details table and refers to a primary key in the master table. The second row stores
OTMQswapPK1;i that denotes a value of the OTMQswapPK0;i. OTMQrows denotes a set of
retrieved rows from a VET. OTMQarray denotes a two dimensional array to store the
retrieved rows.

.

5.3 Union Query Algorithm

This algorithm retrieves a combined result-set of two or more tables, whether they are
CTTs, VETs or a combination of CTTs and VETs, and then stores the result-set in an
array. The details of this algorithm are outlined in Algorithm 6.

Definition 6 (Union Query Algorithm). UQtables denotes a set of CTTs and/or VETs
tables names. UQcolNames denotes a matrix with 1 row and n columns. Each column
in this matrix contains of a set of arbitrary table columns which are related to a table in
UQtables. UQW denotes a set of WHERE clauses which are related to the UQtables and the
columns are ordered according to the table orders of UQtables. UQWi denotes an element
of the set UQW .UQrows denotes a set of retrieved rows from a CTT or a VET where each

14 H. Yaish et al.

row is denoted as UQrow. Each UQrow is a set of columns and each column is denoted by
UQcol. UQrown(UQcolm) denotes a value stored in UQcolm of UQrown. UQtablesSize denotes
the size of UQtables. UQrowSize denotes the size of UQrow. UQcolNamesSize denotes the size
ofUQcolNames.UQarray denotes a two dimensional array that stores the retrieved rows.

.

5.4 Join Query Algorithm

This algorithm retrieves a combined table rows from two CTTs, two VETs, or a VET
and a CTT based on a common field between them using different types of joins
including Left Join, Right Join, Inner Join, Outer Join, Left Excluding Join, Right
Excluding Join, and Outer Excluding Join. In this section, a sample algorithm of the
Left Join is outlined in Algorithm 7.

Definition 7 (Left Join Query Algorithm). LJQleftTable denotes a left table of the left
join operation. LJQrightTable denotes a right table of the left join operation. SleftTable
denotes a string of the SELECT clause for the left table. SrightTable denotes a string of the
SELECT clause for the right table. WleftTable denotes a string of the WHERE clause for
the left table. WrightTable denotes a string of the WHERE clause for the right table.
LJQleftPK denotes a set of primary keys of the left table. LJQrightPK denotes a set of
primary keys of the right table. LJQrightFK denotes a set of foreign keys of the right table
refrencing the primary keys of the left table. LJQtwoVETs denotes a rowmatrix with n rows
and 2 columns. The first column stores a LJQtwoVETsn;0 that denotes a ‘table_row_id’ of
the LJQleftTable: The second column stores a LJQtwoVETsn;1 that denotes a ‘table_row_id’ of
the LJQrightTable:LJQCTTandVET denotes a row matrix with n rows and 2 columns. The first
column stores a LJQCTTandVETn;0 that denotes the primary key of the LJQleftTable which is a
CTT. The second column stores a LJQCTTandVETn;1 that denotes a ‘table_row_id’ of the
LJQrightTable which is a VET. LJQleftRows denotes a set of rows of the left table.

A Proxy Service for Multi-tenant Elastic Extension Tables 15

.

16 H. Yaish et al.

LJQrightRows denotes a set of rows of the right table. LJQset denotes a set which consist of
two elements. The first element is the LJQrightRows, and the second element is the
LJQleftRows. LJQrows denotes a set of rows for a left CTT and right CTT. LJQarray denotes
a two dimensional array that stores the retrieved rows.

5.5 Targeted Tables Query Algorithm

This algorithm combines the result-set of two, or more tables, whether they are CTTs,
VETs or a combination of both types of tables. It uses query filters on multiple tables or
filtering of data based on the results of subqueries. These complex queries can be
executed by calling the function that executes this algorithm. Figure 5 shows an example
of a set of tables that have relationships between them. Table A (Root Table) and table C
have a Many-to-Many database relationship, while table B is a join table that construct
the relationship. Table C and table D have a One-to-Many relationship. Finally, Table D
and table E (Targeted Table) have a One-to-Many relationship. This algorithm filters the
data in the Targeted Table E based on a number of query results obtained from table A to
table D.

Definition 8 (Targeted Tables Query Algorithm). TTQtables denotes a set of CTTs
and/or VETs names. TTQtablesSize denotes the size of TTQtables. TTQPK denotes a set of
row matrix with 2 rows and n columns. The first row stores the column name of a table
primary key. The second row stores the value of a table primary key. TTQselect denotes
a set of SELECT clauses, where each table in TTQtables may have a SELECT clause.
TTQwhere denotes a set of WHERE clauses, where each table in TTQtables may have
a SELECT clause. TTQtype denotes a table type of a table in TTQtables. TTQtablesi denotes
a current root table. TTQtablesiþ1 denotes a current targeted table. Figure 6 shows an
example of current root table and current targeted table that this algorithm may reaches
during iterating the targeted table sequence list. TTQrelation denotes a relationship
between two tables. TTQPKi denotes a primary key set for a current root table in
the TTQtables. This set has only primary key IDs without values that can be obtained

Targeted Table
 E

Root Table
 A

 B

 C

 D

Fig. 5. Targeted Tables example

A Proxy Service for Multi-tenant Elastic Extension Tables 17

while iterating the loop of the algorithm for the current root table. TTQarray denotes a
two dimensional array that stores the retrieved rows.

.

6 Performance Evaluation

In [24] we have explored the potential of using EET multi-tenant database schema, and
we performed several experiments to assess the effectiveness of EET by comparing it
with Universal Table Schema Mapping (UTSM), which is one of the multi-tenant
database schema techniques implemented commercially. Significant performance
improvements were observed using EET when compared to UTSM, making EET
schema a good candidate for the management of multi-tenant data in SaaS applications.
In this paper, five types of experiments were performed to verify the practicability of

Fig. 6. Current Root Table and Current Targeted Table

18 H. Yaish et al.

EETPS. These experiments are classified according to the complexity of the queries into
five categories: simple, simple-to-medium, medium, medium-to-complex, and complex.
These five experiments show comparisons between the response time of retrieving data
from CTTs, VETs, or both CTTs and VETs. The response time of retrieving data from
EET is evaluated by accessing EETPS functions.

6.1 Experimental Setup

EETPS was implemented in Java 1.6.0, Hibernate 4.0, and Spring 3.1.0. The database
is PostgreSQL 8.4 and the application server is Jboss-5.0.0.CR2. Both, the database
and the application server are deployed on the same PC. The operating system is
Windows 7 Home Premium, with Intel Core i5 2.40 GHz CPU, 8 GB of RAM
memory, and 500 GB of hard disk storage.

6.2 Experimental Data Set and Results

EETPS was developed to serve multiple tenants running in a single application
instance, but the aim of the experiments is to evaluate the performance and show the
differences between retrieving data of CTTs, VETs, or both CTTs and VETs together
for a single tenant. As long as in the multi-tenant database, each tenant’s data is isolated
in a separate table partition, these experiments can evaluate the effectiveness of
retrieving each single tenant’s data from EET multi-tenant database. Furthermore, these
experiments are performed using a single server instance, and we do not considered
scale-up or scale-out multi-tenant database issues in this paper. In the five experiments,
the test is performed on fourteen queries twice, the first test to retrieve only 1 row, and
the second test to retrieve 100 rows by using the same queries. In order to produce
accurate comparisons, the same data input is used for CTTs, VETs and CTT-and-VET
to retrieve the same data output. The execution times of these query experiments are
recorded based on six data sets for all the five types of experiments. These six data sets
contain, (1) 500 rows, (2) 5,000 rows, (3) 10,000 rows, (4) 50,000 rows, (5) 100,000
rows, and (6) 200,000 rows. In this section, the average execution time is computed by
executing ten tests on each of the six data sets to show accurate results. All of these data
sets were for one tenant. In all the experimental diagrams, the vertical axis shows the
execution time in milliseconds, and the horizontal axis shows the total number of rows
that stored in a tenant’s table. In the five experiments, the ‘tenant_id’ equals 1000.
The CTTs that are used in the experiments, including ‘product’, ‘sales_fact’ and
‘sales_details’, and the corresponding ‘db_table_id’ of VETs for these tables are 16,
17, and 18 respectively. The data structures used for the queries in the various
experiments are shown in Fig. 15, and listed below:

(1) Simple Query Experiment – Single Table (Exp. 1): In this experiment, the
function of the Single Table Query Algorithm that retrieves data from a CTT is
invoked by executing Query 1 (Q 1) that comprises of the Individual Query (IQ)
1, and retrieve the same data from a VET by executing Query 2 (Q 2) that
comprises of IQ2 – IQ4. These experimental tests show how the Single Table

A Proxy Service for Multi-tenant Elastic Extension Tables 19

Algorithm retrieves physical rows from a CTT and virtual rows from a VET. The
three cases that this algorithm is handling are described in Sect. 5. This experi-
ment studies the third case that retrieves all rows of the ‘product’ CTT and the
‘product’ VET from the Single Table function without specifying any primary
keys or row IDs; the structure of the ‘product’ table is shown in Fig. 7(a). The
‘db_table_id’ of the ‘product’ VET equals 16. The experimental results of Exp. 1
shows that the performance of the query execution time of a VET is faster than a
CTT when 1 or 100 of table rows are retrieved. The details of the queries used in
this experiment are shown in Tables 3 and 4, the output of these queries is shown
in Fig. 8, and the throughputs of this experiment are depicted in Fig. 16(a) and (b).

(2) Simple-to-Medium Query Experiment – One-to-Many (Exp. 2): In this
experiment, the function of One-to-Many Query Algorithm is invoked to retrieve
data from two CTTs by executing Query 3 (Q 3) that comprises of IQ5, two VETs
by executing Query 4 (Q 4) that comprises of IQ6 and IQ7, and CTT-and-VET by

Fig. 7. The tables structures used in the experiments

Fig. 8. The outputs of the Simple Query Experiment (Single Table)

20 H. Yaish et al.

executing Query 5 (Q 5) that comprises of IQ8 and IQ7 respectively. The focus of
this experiment is to study each of these two table combinations that have a One-
to-Many relationship between them. The master table of this relation is the
‘product’ table, and the details table is the ‘sales_fact’ table. The structure of these
two tables is shown in Fig. 7(a) and (b). The value of the ‘product_id’ column that
is used in this experiment equals 100 for both the ‘product’ CTT and VET. The
‘product_id’ of the VET is represented as the number 58. The experimental results
of Exp.2 show that there is an approximate symmetry in the performance of the
query execution time of VET and CTT-and-VET and they are one time faster than
CTT when 1 row is retrieved. On the other hand, when 100 rows are retrieved, the
query execution time of CTT is faster than VET, and CTT-and-VET is the fastest
of the three queries. Moreover, the experimental results show that the execution
time of CTT is approximately the same when 1 row and 100 rows are retrieved,
whereas it increases for VET and CTT-and-VET when 100 rows are retrieved.
The details of the queries used in this experiment are shown in Tables 3 and 4, the
output of these queries is shown in Fig. 9, and the throughputs of this experiment
are depicted in Fig. 16(b) and (c).

(3) Medium Query Experiment - Union (Exp. 3): In this experiment, the function
of the Union Query Algorithm that retrieve data from two tables is invoked by
using a union operator for two CTTs by executing Query 6 (Q 6) that comprises of
IQ9 and IQ10, for two VETs by executing Query 7 (Q 7) that comprises of IQ2,
IQ3, IQ11, IQ12, IQ13, and IQ14, and for CTT-and-VET by executing Query 8
(Q 8) that comprises of IQ9, IQ12, IQ13, and IQ14 respectively. The aim of using
this algorithm is to study, retrieving data from two tables. The first table is the
‘product’ table, and the second table is the ‘sales_fact’ table. The structures of

Fig. 9. The outputs of the Simple-to-Medium Query Experiment (One-to-Many)

A Proxy Service for Multi-tenant Elastic Extension Tables 21

these two tables are shown in Fig. 7(a) and (b). In Q 6, in the SELECT clause two
physical columns ‘product_id’ and ‘price’ are specified for the ‘product’ CTT, and
two physical columns ‘sales_fact_id’ and ‘unit_price’ are specified for the
‘sales_fact’ CTT. In Q 7, in the SELECT clause two virtual columns are specified.
The first column ID is 47, and the second column ID is 52 for the ‘product’ VET
that equals 16. The column ID 47 corresponds to the ‘product_id’ column, and the
column ID 52 corresponds to the ‘price’ column of the ‘product’ VET. In addi-
tion, in the SELECT clause two virtual columns are specified for the ‘sales_fact’
VET that equals 17. The first column is 55, and the second column is 61. The
column ID 55 corresponds to the ‘sales_fact_id’ and the column ID 61 corre-
sponds to the ‘unit_price’ of the ‘sales_fact’ VET. Finally, in Q 8, in the SELECT
clause two physical columns ‘product_id’ and ‘price’ are specified for the
‘product’ CTT, and two virtual columns for the ‘sales_fact’ VET. The first column
is 55, and the second column is 61. The experimental results of Exp. 3 shows that
the query execution time of VET is faster than CTT, and CTT-and-VET is the
fastest of the three queries when 1 and 100 rows are retrieved. Moreover, this
experiment shows that the query execution times of the three types CTT, VET,
and CTT-and-VET are approximately the same when 1 row, and 100 rows are
retrieved. The details of the queries used in this experiment are shown in Tables 3
and 4, the output of these queries is shown in Fig. 10, and the throughputs of this
experiment are depicted in Fig. 16(e) and (f).

(4) Medium-to-Complex Query Experiment – Left Join (Exp. 4): In this experi-
ment, the function of the Left Join Query Algorithm is invoked to use a left join
between three types of table combinations. First, two CTTs by executing Query 9
(Q 9) that comprises of IQ15 – IQ17. The two CTTs are the ‘product’ CTT and the

Fig. 10. The outputs of the Medium Query Experiment (Union)

22 H. Yaish et al.

‘sales_fact’ CTT. Second, two VETs by executing Query 10 (Q 10) that comprises
of IQ2, IQ18, IQ19, IQ4, and IQ21. The two VETs are the ‘product VET that
equals 16, and the ‘sales_fact’ VET that equals 17. Third, a CTT and a VET by
executing Query 11 (Q 11) that comprises of IQ15, IQ8, IQ20, IQ1, and IQ21
respectively. These two tables are the ‘product’ CTT, and the ‘sales_fact’ VET that
equals 17. Figure 11 shows the three Left Join operations that are used in this
experiment. The experimental results of Exp. 4 shows that the query execution time
of CTT-and-VET is faster than CTT, and the VET is the fastest of the three queries
when 1 row and 100 rows are retrieved. The details of the queries used in this
experiment are shown in Tables 3 and 4, the output of these queries is shown in
Fig. 12, and the throughputs of this experiment are depicted in Fig. 16(g) and (h).

(5) Complex Query Experiment – Targeted Tables (Exp. 5): In this experiment, the
function of the Targeted Table Query Algorithm is invoked to join two CTTs
by executing Query 12 (Q 12) that comprises of IQ22 and IQ23, two VETs by

Fig. 11. The three left joins of the Left Join experiment

Fig. 12. The output of the Medium-to-Complex Query Experiment (Left Join)

A Proxy Service for Multi-tenant Elastic Extension Tables 23

executing Query 13 (Q 13) that comprises of IQ24 – IQ27, and CTT-and-VET by
Query 14 (Q 14) that comprises of IQ28, IQ22, IQ29, and IQ27 respectively. This
experiment is used to study, retrieving data from three targeted tables. The first
table is the ‘product’ table, the second table is the ‘sales_fact’ table, and the third
table is ‘sales_fact_details’. The structure of these three tables is shown in Fig. 7(a),
(b) and (c). These tables have relationships between them, and multiple query filters
are used in each of these tables to filter data based on the results of subqueries,
starting from the ‘product’ table (Root Table) until the ‘sales_fact_details’ table
(Targeted Table). The ‘product’ table is filtered by retrieving only products with
product IDs equal to 100. Then the ‘sales_fact’ table is filtered by retrieving the
sales transactions that their product IDs match the sales IDs that are retrieved from
the ‘product’ table, and the quantity values that are greater or equal than 9000.
Finally, the ‘sales_fact_details’ table is filtered by retrieving the sales details that
their sales IDs matches sales IDs retrieved from the ‘sales_fact’ table, and the sales
discounts that are greater or equal 30 %. Figure 13 shows how the queries are
filtered from the three tables. In Q 12, the three CTTs are used as stated above. The
Q 13 uses three VETs, including the ‘product VET that equals 16, the ‘sales_fact’
VET that equals 17, and the ‘sales_fact_details’VET that equals 18. The Q 14 uses
two CTTs and one VET. The two CTTs are the ‘product’ CTT and the ‘sales_fact’
CTT, and the VET is the ‘sales_fact_details’ that equals 18. The experimental
results of Exp. 5 shows that the query execution time of CTT is faster than VET,
and CTT-and-VET is the fastest of the three queries that retrieve 1 row. On the
other hand, 100 rows are retrieved, the query execution time of VET is faster than
CTT, and CTT-and-VET is the fastest of the three queries. Most importantly, the
query execution times when retrieve 1 row or 100 rows from a VET or a CTT-and-
VET are approximately the same, whereas the increase in retrieving 100 rows from
CTT is approximately 70 % higher than when 1 row is retrieved. The details of
the queries used in this experiment are shown in Tables 3 and 4, the output of these
queries is shown in Fig. 14, and the throughputs of this experiment are depicted in
Fig. 16(i) and (j).

Fig. 13. The query filters of the Targeted Tables experiment

24 H. Yaish et al.

The above five experiments are summarized in Fig. 17 and Table 1 that show the
average query execution times of the six data sets for each experiment when 1 row is
retrieved, and in Fig. 18 and Table 2 that show the query execution times when 100
rows are retrieved. The results indicate that most of the experiments performed on

Fig. 14. The outputs of the Complex Query Experiment (Targeted Tables)

Fig. 15. The structures of the query used in the experiments

A Proxy Service for Multi-tenant Elastic Extension Tables 25

T
im

e
(S

ec
)

Number of tenant’s rows
(a) Single Table 1 Row (Exp. 1)

T
im

e
(S

ec
)

Number of tenant’s rows
(b) Single Table 100 Rows (Exp. 1)

T
im

e
(S

ec
)

Number of tenant’s rows
(c) One-to-Many 1 Row (Exp. 2)

T
im

e
(S

ec
)

Number of tenant’s rows

(d) One-to-Many 100 Rows (Exp. 2)

T
im

e
(S

ec
)

Number of tenant’s rows
(e) Union 1 Row (Exp. 3)

T
im

e
(S

ec
)

Number of tenant’s rows
(f) Union 100 Rows (Exp. 3)

T
im

e
(S

ec
)

Number of tenant’s rows
(g) Left Join 1 Row (Exp. 4)

T
im

e
(S

ec
)

Number of tenant’s rows
(h) Left Join 100 Rows (Exp. 4)

T
im

e
(S

ec
)

Number of tenant’s rows
(i) Targeted Tables 1 Row (Exp. 5)

T
im

e
(S

ec
)

Number of tenant’s rows

(j) Targeted Tables 100 Rows (Exp. 5)

0

0.2

0.4

0.6

CTT
(Q1)

VET
(Q2)

0

0.2

0.4

0.6

CTT
(Q1)

VET
(Q2)

0

0.2

0.4

0.6
CTT (Q3)

VET (Q4)

CTT &
VET (Q5)

0

0.2

0.4

0.6
CTT (Q3)

VET (Q4)

CTT &
VET (Q5)

0

0.2

0.4

0.6

0.8 CTT (Q9)

VET
(Q10)

CTT &
VET
(Q11)

0

0.2

0.4

0.6

0.8
CTT (Q6)

VET (Q7)

CTT &
VET (Q8)

0

0.2

0.4

0.6

0.8 CTT (Q9)

VET
(Q10)

CTT &
VET
(Q11)

0

0.5

1

1.5
CTT (Q6)

VET (Q7)

CTT &
VET (Q8)

0

0.5

1 CTT (Q9)

VET
(Q10)

CTT &
VET
(Q11)

0

0.5

1

1.5 CTT (Q9)

VET
(Q10)

CTT &
VET
(Q11)

Fig. 16. The queries results

26 H. Yaish et al.

T
IM

E
 (S

E
C

)

0

0.2

0.4

0.6

0.8

1

CTT

VET

CTT
&
VET

Fig. 17. The average experimental results of
retrieving 1 row

T
IM

E
 (S

E
C

)

0

0.2

0.4

0.6

0.8

1

1.2

CTT

VET

CTT
&
VET

Fig. 18. The average experimental results of
retrieving 100 rows

Table 1. The average experimental results of retrieving 1 row in milliseconds

Retrieving 1 Row CTT VET CTT-and-VET

Single Table (Exp. 1) Q 1 Q 2
352 249

One-to-Many (Exp. 2) Q 3 Q 4 Q 5
465 244 238

Union (Exp. 3) Q 6 Q 7 Q 8
579 435 313

Left Join (Exp. 4) Q 9 Q 10 Q 11
621 468 526

Targeted Tables (Exp. 5) Q 12 Q 13 Q 14
640 876 536

Table 2. The average experimental results of retrieving 100 rows in milliseconds.

Retrieving 100 Rows CTT VET CTT-and-VET

Single Table (Exp. 1) Q 1 Q 2
520 346

One-to-Many (Exp. 2) Q 3 Q 4 Q 5
485 524 325

Union (Exp. 3) Q 6 Q 7 Q 8
580 391 316

Left Join (Exp. 4) Q 9 Q 10 Q 11
920 709 829

Targeted Tables (Exp. 5) Q 12 Q 13 Q 14
1075 889 566

A Proxy Service for Multi-tenant Elastic Extension Tables 27

EETPS functions improved the query execution time for retrievals from VET and CTT-
and-VET when compared to retrieval using CTT (traditional physical tables). Except in
two cases the results show increase in execution times: first, when 100 rows are
retrieved from the One-to-Many function, VET is slightly slower than CTT, and sec-
ond, when 1 row is retrieved from the Targeted Tables function VET is slower than
CTT and the average difference between them is 236 ms.

Table 3. The experiments queries

Query
No.

Query Name A set of Individual Query (IQ) Executed in
an Algorithm Sequentially (The Details are
in APPENDIX II)

Q 1 Single Table Query for
a CTT

IQ1

Q 2 Single Table Query for
a VET

IQ2, IQ3, and IQ4

Q 3 One-to-Many Query for
two CTTs

IQ5

Q 4 One-to-Many Query for
two VETs

IQ6, and IQ7

Q 5 One-to-Many Query for
a CTT and a VET.

IQ8, and IQ7.

Q 6 Union Query for Two
CTTs

IQ9, and IQ10

Q 7 Union Query for Two
VETs

IQ2, IQ3, IQ11, IQ12, IQ13, and IQ14

Q 8 Union Query for a CTT
and a VET

IQ9, IQ12, IQ13, and IQ14

Q 9 Left Join Query for two
CTTs

IQ15, IQ16, and IQ17

Q 10 Left Join Query for two
VETs

IQ2, IQ18, IQ19, IQ4, and IQ21

Q 11 Left Join Query for a
CTT and a VET

IQ15, IQ8, IQ20, IQ1, and IQ21

Q 12 Targeted Tables Query
for two CTTs

IQ22, and IQ23

Q 13 Targeted Tables Query
for two VETs

IQ24, IQ25, IQ26, and IQ27

Q 14 Targeted Tables Query
for a CTT and a VET

IQ28, IQ22, IQ29, and IQ27

28 H. Yaish et al.

Table 4. The experiments queries details

Individual
Query (IQ)

Query Details

IQ1 SELECT * FROM product p WHERE p.tenant_id = 1000 ORDER BY
p.product_id LIMIT 1;

IQ2 SELECT tc.table_column_id FROM table_column tc WHERE tc.
tenant_id = 1000 and tc.db_table_id = 16 and tc.
is_primary_key_column = true ORDER BY tc.table_column_id;

IQ3 SELECT distinct ti.table_row_id FROM table_index ti WHERE ti.
tenant_id = 1000 and ti.db_table_id = 16 and ti.table_column_id = 47
LIMIT 1;

IQ4 SELECT tr.table_column_id, tr.value, tr.table_row_id, tr.serial_id FROM
table_row tr WHERE tr.tenant_id = 1000 and tr.db_table_id = 16 and
tr.table_row_id IN (1100) ORDER BY 3,4 LIMIT 8 OFFSET 0;

IQ5 SELECT * FROM sales_fact sf WHERE sf.tenant_id = 1000 andsf.
product_id = 100 ORDER BY sf.sales_fact_id LIMIT 1;

IQ6 SELECT trs.table_column_id FROM table_relationship trs WHERE trs.
tenant_id = 1000 and trs.db_table_id = 17 and trs.table_type = 2 and
trs.target_table_id = ’16’ and (trs.table_column_id = 58 or trs.
target_column_id = 58) ORDER BY 1 ASC;

IQ7 SELECT tr.table_column_id, tr.value, tr.table_row_id, tr.serial_id FROM
table_row tr WHERE tr.tenant_id = 1000 and tr.db_table_id = 17 and
tr.table_row_id IN (SELECT distinct tr.table_row_id From table_index
tr WHERE tr.tenant_id = 1000 and tr.db_table_id = 17 and ((tr.
table_column_id = ’58’ and tr.value = ’100’)) LIMIT 1 OFFSET 0)
ORDER BY 3,4 ASC LIMIT 11 OFFSET 0;

IQ8 SELECT trs.table_column_id FROM table_relationship trs WHERE trs.
tenant_id = 1000 and trs.db_table_id = 17 and trs.table_type = 1 and
trs.shared_table_name = ’product’ and trs.
shared_column_name = ’product_id’ ORDER BY 1 ASC;

IQ9 SELECT p.product_id, p.price FROM product p WHERE p.
tenant_id = 1000 ORDER BY p.product_id LIMIT 1;

IQ10 SELECT sf.sales_fact_id, sf.unit_price FROM sales_fact sf WHERE sf.
tenant_id = 1000 ORDER BY sf.sales_fact_id LIMIT 1;

IQ11 SELECT tr.table_column_id, tr.value FROM table_row tr WHERE tr.
tenant_id = 1000 and tr.db_table_id = 16 and tr.table_row_id IN (1100)
and table_column_id in (47,52) ORDER BY tr.table_row_id, tr.
serial_id LIMIT 2 OFFSET 0;

IQ12 SELECT tc.table_column_id FROM table_column tc WHERE tc.
tenant_id = 1000 and tc.db_table_id = 17 and tc.
is_primary_key_column = true ORDER BY tc.table_column_id;

IQ13 SELECT distinct ti.table_row_id FROM table_index ti WHERE ti.
tenant_id = 1000 and ti.db_table_id = 17 and ti.table_column_id = 55
LIMIT 1;

IQ14 SELECT tr.table_column_id, tr.value FROM table_row tr WHERE tr.
tenant_id = 1000 and tr.db_table_id = 17 and tr.table_row_id IN

(Continued)

A Proxy Service for Multi-tenant Elastic Extension Tables 29

Table 4. (Continued)

Individual
Query (IQ)

Query Details

(200001) and table_column_id in (55,61) ORDER BY tr.table_row_id,
tr.serial_id LIMIT 2 OFFSET 0;

IQ15 SELECT c.COLUMN_NAME FROM INFORMATION_SCHEMA.
TABLE_CONSTRAINTS pk,INFORMATION_SCHEMA.
KEY_COLUMN_USAGE c WHERE pk.TABLE_NAME = ’product’
and CONSTRAINT_TYPE = ’PRIMARY KEY’ and c.
TABLE_NAME = pk.TABLE_NAME and c.
CONSTRAINT_NAME = pk.CONSTRAINT_NAME;

IQ16 SELECT c.COLUMN_NAME FROM INFORMATION_SCHEMA.
TABLE_CONSTRAINTS pk,INFORMATION_SCHEMA.
KEY_COLUMN_USAGE c WHERE pk.
TABLE_NAME = ’sales_fact’ and
CONSTRAINT_TYPE = ’PRIMARY KEY’ and c.
TABLE_NAME = pk.TABLE_NAME and c.
CONSTRAINT_NAME = pk.CONSTRAINT_NAME;

IQ17 SELECT * FROM product lt LEFT JOIN sales_fact rt ON lt.
product_id = rt.product_id LIMIT 1 OFFSET 0;

IQ18 SELECT trs.table_column_id FROM table_relationship trs WHERE trs.
tenant_id = 1000 and trs.db_table_id = 17 and trs.table_type = 2 and
trs.target_table_id = ’16’ and (trs.table_column_id = 47 or trs.
target_column_id = 47) ORDER BY 1 ASC;

IQ19 SELECT trl.table_row_id, trr.table_row_id FROM table_index trl,
table_index trr WHERE trl.tenant_id = 1000 and trr.tenant_id = 1000
and(((trl.db_table_id = 16 and trl.table_column_id = 47) and(trr.
db_table_id = 17 and trr.table_column_id = 58) and trl.value = trr.
value)) LIMIT 1 OFFSET 0;

IQ20 SELECT cttl.product_id, trr.table_row_id as right_row_id FROM
product cttl, table_index trr WHERE cttl.tenant_id = 1000 and trr.
tenant_id = 1000 and((trr.db_table_id = 17 and trr.
table_column_id = 58 and trr.value = CAST(cttl.product_id AS
TEXT))) LIMIT 1 OFFSET 0;

IQ21 SELECT tr.table_column_id, tr.value, tr.table_row_id, tr.serial_id FROM
table_row tr WHERE tr.tenant_id = 1000 and tr.db_table_id = 17 and
tr.table_row_id IN (200001) ORDER BY 3,4 LIMIT 11 OFFSET 0;

IQ22 SELECT sf.sales_fact_id FROM sales_fact sf WHERE sf.
tenant_id = 1000 and sf.quantity > = 9000 and product_id = 100
ORDER BY sf.sales_fact_id;

IQ23 SELECT * FROM sales_details sd WHERE sd.tenant_id = 1000 and sd.
discount > = 30 and (sales_fact_id in (9, 12, 16, … and other IDs))
ORDER BY sd.sales_details_id LIMIT 1;

IQ24 SELECT * FROM table_relationship trs WHERE trs.tenant_id = 1000
and trs.db_table_id = 16 or trs.target_table_id = 16 ORDER BY trs.
table_relationship_id;

(Continued)

30 H. Yaish et al.

7 Conclusion

In this paper, we have proposed a multi-tenant proxy service for EET called EETPS,
which integrates, generates, and executes tenants’ queries by using a codebase solution
that converts multi-tenant queries into traditional database queries and execute them in a
RDBMS. This service has three objectives. Firstly, it allows the users to choose from
three EET database models, including multi-tenant relational database, integrated
multi-tenant relational database with virtual relational database, and virtual relational
database. Secondly, it allows users to extend their database schemas, by extending a
single schema of a business domain database based on a traditional RDBMS during the
application’s runtime. Thirdly, it avoids programming effort associated with writing

Table 4. (Continued)

Individual
Query (IQ)

Query Details

IQ25 SELECT tr.table_column_id, tr.value, tr.table_row_id, tr.serial_id FROM
table_row tr JOIN table_column tc ON tr.table_column_id = tc.
table_column_id and tr.tenant_id = tc.tenant_id and tr.db_table_id = tc.
db_table_id WHERE tc.is_primary_key_column = ’t’ and tr.
tenant_id = 1000 and tr.db_table_id = 17 and tr.table_row_id IN
(SELECT distinct tr.table_row_id FROM table_row tr WHERE tr.
tenant_id = 1000 and tr.db_table_id = 17 and tr.table_column_id = 60
and(cast(value as numeric) > = ’9000’) and tr.table_row_id IN
(SELECT tr.table_row_id FROM table_index tr WHERE tr.
tenant_id = 1000 and tr.db_table_id = 17 and((tr.
table_column_id = ’58’ and tr.value = ’100’)))) ORDER BY 3,4 ASC;

IQ26 SELECT * FROM table_relationship trs WHERE trs.tenant_id = 1000
and trs.db_table_id = 17 or trs.target_table_id = 17 ORDER BY trs.
table_relationship_id;

IQ27 SELECT tr.table_column_id, tr.value, tr.table_row_id, tr.serial_id FROM
table_row tr WHERE tr.tenant_id = 1000 and tr.db_table_id = 18 and
tr.table_row_id IN (SELECT distinct tr.table_row_id FROM table_row
tr WHERE tr.tenant_id = 1000 and tr.db_table_id = 18 and tr.
table_column_id = 81 and(cast(value as numeric) > = ’30’) and tr.
table_row_id IN (SELECT distinct tr.table_row_id From table_index tr
WHERE tr.tenant_id = 1000 and tr.db_table_id = 18 and((tr.
table_column_id = ’80’ and tr.value = ’9’) OR (tr.
table_column_id = ’80’ and tr.value = ’12’) OR (… and other symetric
query filters, but with different values)) LIMIT 1 OFFSET 0)) ORDER
BY 3,4 ASC;

IQ28 SELECT * FROM table_relationship trs WHERE trs.tenant_id = 1000
and trs.shared_table_name = ’product’ ORDER BY trs.
table_relationship_id;

IQ29 SELECT * FROM table_relationship trs WHERE trs.tenant_id = 1000
and trs.shared_table_name = ’sales_fact’ ORDER BY trs.
table_relationship_id;

A Proxy Service for Multi-tenant Elastic Extension Tables 31

SQL queries and backend data management code by utilizing the EETPS functions.
EETPS functions execute simple and complex queries including join operations, fil-
tering on multiple properties, and filtering of data based on subqueries results. Addi-
tionally, we have presented five sample algorithms for EETPS functions, and carried out
five experiments for these functions to verify the effectiveness of EETPS. We classified
these experiments according to the complexity of the queries. The five experiments
show comparisons between the response time of retrieving data from CTTs, VETs, and
both CTTs and VETs. The results of most of the experiments indicate improved per-
formance of queries from VET and CTT-and-VET using EETPS functions when
compared to queries using CTT (traditional physical tables). These results confirm the
effectiveness of using EETPS and EET multi-tenant database and the associated three
types of database models, making the EET multi-tenant schema and EETPS suitable for
the software applications in general and SaaS applications in particular.

Our future work will focus on extending EETPS queries by adding GROUP BY and
ORDER BY query clauses, and applying join operations to more than two tables.
In addition, we plan to optimize data retrieval of EET by adding methods to determine
the optimal query execution plans, and caching the frequently used queries to reduce the
EETPS processing time and to minimize the use of EET database resources. We also
plan to perform experiments to evaluate the applicability of EETPS to unstructured and
semi-structured data. Furthermore, we plan to build the API for EETPS that will allow
the users to retrieve data from EET. We also plan to focus on the scalability of EET and
EETPS, and evaluate the performance in a scalable environment.

Acknowledgments. All authors wish to acknowledge UTS FEIT Research Seed Fund 2014 for
financial support, and George Feuerlicht wishes to acknowledge the support of GAČR grant
No. P403/11/0574.

References

1. Aulbach, S., Grust, T., Jacobs, D., Kemper, A., Rittinger, J.: Multitenant databases for
software as a service: schema mapping techniques. In: Proceedings of the 34th SIGMOD
International Conference on Management of Data, pp. 1195–1206. ACM, Vancouver (2008)

2. Aulbach, S., Grust, T., Jacobs, D., Kemper, A., Seibold, M.: A comparison of flexible
schemas for software as a service. In: Proceedings of the 35th SIGMOD International
Conference on Management of Data, pp. 881–888. ACM, Rhode Island (2009)

3. Bezemer, C., Zaidman, A.: Multi-tenant SaaS applications: maintenance dream or nightmare?
In: Proceedings of the Joint Workshop on Software Evolution and International Workshop on
Principles of Software Evolution, pp. 88–92. ACM, Antwerp (2010)

4. Bobrowski, S.: Optimal multitenant designs for cloud apps. In: 4th International Conference
on Cloud Computing, pp. 654–659. IEEE Press, Washington (2012)

5. Demchenko, Y., Grosso, P., de Laat, C., Membrey, P.: Addressing big data issues in
scientific data infrastructure. In: International Conference on Collaboration Technologies
and Systems, pp. 48–55. IEEE, California (2013)

6. Domingo, E.J., Nino, J.T., Lemos, A.L., Lemos, M.L., Palacios, R.C., Berbís, J.M.G.:
CLOUDIO: A cloud computing-oriented multi-tenant architecture for business information
systems. In: 3rd International Conference on Cloud Computing, pp. 532–533. IEEE Press,
Madrid (2010)

32 H. Yaish et al.

7. Dimovski, D.: Database management as a cloud-based service for small and medium
organizations. Master Thesis, Masaryk University Brno (2013)

8. Du, J., Wen, H.Y., Yang, Z.J.: Research on data layer structure of multi-tenant e-commerce
system. In: International Conference on Industrial Engineering and Engineering
Management, Xiamen, pp. 362–365 (2010)

9. Foping, F.S., Dokas, I.M., Feehan, J., Imran, S.: A new hybrid schema-sharing technique for
multitenant applications. In: Fourth International Conference on Digital Information
Management, pp. 1–6. IEEE Press, Michigan (2009)

10. Force.com. http://www.salesforce.com/us/developer/docs/soql_sosl/salesforce_soql_sosl.pdf
11. Google Developers. https://developers.google.com/appengine/docs/python/datastore/overview

#Comparison_with_Traditional_Databases
12. Heng, L., Dan, Y., Xiaohong, Z.: Survey on multi-tenant data architecture for SaaS. Int.

J. Comput. Sci. Issues(IJCSI) 9(6) (2012)
13. Indrawan-Santiago, M.: Database research: are we at a crossroad? Reflection on NoSQL. In:

15th International Conference on Network-Based Information Systems, pp. 45–51. IEEE
Press, Melbourne (2012)

14. Kwok, T., Nguyen, T., Lam, L.: A software as a service with multi-tenancy support for an
electronic contract management application. In: International Conference on Services
Computing, pp. 179–186. IEEE, Hawaii (2008)

15. Liao, C.F., Chen, K., Chen, J.J.: Toward a tenant-aware query rewriting engine for universal
table schema-mapping. In: Cloud Computing Technology and Science, pp. 833–838. IEEE,
Taipei (2012)

16. Liu, G.: Research on independent SaaS platform. In: Information Management and
Engineering, pp. 110–113. IEEE, Chengdu (2010)

17. Martinez, C.G.: Study of Resource Management for Multitenant Database Systems in Cloud
Computing. Doctoral Thesis, University of Colorado (2012)

18. Mietzner, R., Unger, T., Titze, R., Leymann, F.: Combining different multi-tenancy patterns
in service-oriented applications. In: Enterprise Distributed Object Computing Conference,
pp. 131–140. IEEE, Auckland (2009)

19. Mietzner, R., Metzger, A., Leymann, F., Pohl, K.: Variability modeling to support
customization and deployment of multi-tenant-aware software as a service applications. In:
ICSE Workshop on Principles of Engineering Service Oriented Systems, pp. 18–25. IEEE,
Vancouver (2009)

20. Weissman C.D., Bobrowski S.: The design of the force.com multitenant internet application
development platform. In: Proceedings of the 35th SIGMOD International Conference on
Management of Data, pp. 889–896. ACM, Rhode Island (2009)

21. Yaish, H., Goyal, M., Feuerlicht, G.: An elastic multi-tenant database schema for software as
a service. In: Ninth IEEE International Conference on Dependable, Autonomic and Secure
Computing, pp. 737–743. IEEE, Sydney (2011)

22. Yaish, H., Goyal, M., Feuerlicht, G.: Multi-tenant database access control. In: International
Conference on Computational Science and Engineering, pp. 870–877. IEEE, Sydney (2013)

23. Yaish, H., Goyal, M., Feuerlicht, G.: Evaluating the performance of multi-tenant elastic
extension tables. In: The International Conference on Computational Science, pp. 614–626.
Elsevier, Cairns (2014)

24. Yaish, H., Goyal, M., Feuerlicht, G.: Multi-tenant elastic extension tables data management.
In: The International Conference on Computational Science, pp. 2168–2181. Elsevier,
Cairns (2014)

A Proxy Service for Multi-tenant Elastic Extension Tables 33

http://www.salesforce.com/us/developer/docs/soql_sosl/salesforce_soql_sosl.pdf
https://developers.google.com/appengine/docs/python/datastore/overview#Comparison_with_Traditional_Databases
https://developers.google.com/appengine/docs/python/datastore/overview#Comparison_with_Traditional_Databases

Boosting Streaming Video Delivery
with WiseReplica

Guthemberg Silvestre1(B), David Buffoni2, Karine Pires2,
Sébastien Monnet2, and Pierre Sens2

1 CNRS, LAAS, 7 Avenue du Colonel Roche, 31400 Toulouse, France
gdasilva@laas.fr

2 UPMC Sorbonne Universités, LIP6, CNRS, INRIA, 4 Place Jussieu, Paris, France
{david.buffoni,karine.pires,sebastien.monnet,pierre.sens}@lip6.fr

Abstract. Streaming video consumption has risen sharply over the last
years. It has not only reshaped the Internet traffic, it has also changed
the manner of watching videos. Users are progressively moving from
the old-fashioned scheduled television to video-on-demand (VoD) ser-
vices. As broadcasting future seems to be online, customers have become
more sensitive to VoD quality, expecting ever-higher bitrates and lower
rebuffering. In this context, average bitrate is a key quality of service
(QoS) metric. Therefore, content delivery networks (CDNs) and con-
tent providers must be committed to enforce average bitrate through
service-level agreement (SLA) contracts. Adaptive content replication
is a promising technique towards this goal. However, this still offers a
major challenge for CDN providers, particularly as they aim to avoid
waste of resources. In this work, we introduce WiseReplica, an adaptive
replication scheme for peer-assisted VoD systems that enforces the aver-
age bitrate for Internet videos. Using an accurate machine-learned rank-
ing, WiseReplica saves storage and bandwidth from the vast majority
of non-popular contents for the most watched videos. Simulations using
YouTube traces suggest that our approach meets users expectations effi-
ciently. Compared to caching, WiseReplica reduces the required replica-
tion degree for the most-watched videos by two orders of magnitude, and
under heavy load, it increases the average bitrate by roughly 85 %.

Keywords: Peer-to-peer (P2P) · Video on-demand (VoD) · Caching ·
Replication · Service-level agreement (SLA) · Prediction

1 Introduction

The increasing consumption of Internet videos has made fundamental changes
in the Internet traffic and consumers’ behaviour. Cisco System, Inc1 forecasts
that the sum of all forms of video traffic will be in the range of 80 to 90 percent of

1 Cisco Visual Networking Index: Forecast and Methodology, 2013–2018. www.cisco.
com, 2014.

c© Springer-Verlag Berlin Heidelberg 2015
A. Hameurlain et al. (Eds.): TLDKS XX, LNCS 9070, pp. 34–58, 2015.
DOI: 10.1007/978-3-662-46703-9 2

http://www.cisco.com
http://www.cisco.com

Boosting Streaming Video Delivery with WiseReplica 35

global consumer traffic by 2018, including video on-demand (VoD), live stream-
ing, and peer-to-peer (P2P) file sharing. In fact, as the Internet access has become
ubiquitous, continuously faster, and cheaper, streaming video has become main-
stream. Users are progressively moving from the old-fashioned scheduled televi-
sion to VoD services. This contributes to increase the expectations of consumers
on Internet video delivery.

Since broadcasting future seems to be online, customers have become more
sensitive to VoD quality, expecting ever-higher bitrates and lower rebuffering.
Contrary to many traditional workloads, e.g. social network messaging or search
engines, specifying just latency as quality of service (QoS) metric does not suf-
fice. Instead, streaming traffic requires proper average bitrate to avoid rebuffer-
ing and improve user experience. For example, Dobrain et al. [13] found that
a 1 % increase in buffering ratio can reduce the consumer’s expected viewing
time by more than three minutes. Balachandran et al., observe that increased
average bitrate in Internet video delivery leads to a better user experience for
viewers with mobile devices [3]. This suggests that service-level agreement (SLA)
contracts must include average bitrate as a key QoS metric.

Yet, current Content Delivery Networks (CDN) platforms are not ready to
fulfil the requirements of the increasing demand for VoD services and meet con-
sumers’ expectations. Through fine-grained client-side measurements from over
200 million client viewing sessions, Liu et al. [21] showed that 20 % of these ses-
sions experience a rebuffering ratio of at least 10 %, 14 % of users have to wait
more than 10 s for video to start up, more than 28 % of sessions have an average
bitrate less than 500 Kbps, and 10 % of users fail to see any video at all.

To deal with these issues, CDN providers have started to combine datacen-
ters and edge network resources in hybrid designs2. This includes peer-assisted
VoD systems [17] whose deployment requires hybrid CDN platforms. The aim
of peer-assisted VoD systems is to take advantage of both infrastructure-based
resources and P2P communication facilities. Huang et al. [17] suggest the use
of peer-assisted VoD systems to improve resource allocation for Internet video
delivery. They argue that devices on edge networks, e.g. set-top-boxes, contribute
with storage and bandwidth to video delivery, reducing dramatically the burden
on infrastructure-based servers, and cutting operations costs. Many recent stud-
ies [10,18,25] confirm that exploring peer-assisted VoD system permits enhanc-
ing resource allocation for streaming videos, but none has properly evaluated
the performance of video delivery regarding SLA enforcement.

In fact, there exists an increasing need for more research in easy-to-deploy,
self-adapting techniques for ensuring tough QoS guarantees brought by the cloud
paradigm. However, efficient resource allocation on hybrid CDNs to meet user
expectations imposes big challenges, particularly for resource-hungry services as
VoD. This paper identifies adaptive content replication as one of such challenges.
Adaptive replication plays an important role on the content availability of dis-
tributed systems, contributing directly to both storage and bandwidth provision.

2 Akamai acquires Red Swoosh. http://www.akamai.com/html/about/press/releases/
2007/press 041207.html, April 2007.

http://www.akamai.com/html/about/press/releases/2007/press_041207.html
http://www.akamai.com/html/about/press/releases/2007/press_041207.html

36 G. Silvestre et al.

As the popularity of a video varies, the number of replicas, or peers serving that
video, must be adapted accordingly. Generally speaking, the faster and more
precise the replication scheme reacts to changes on videos demand, the better is
the resource allocation and content availability.

Considering average bitrate as target QoS metric, we make a case for a
SLA-driven replication scheme named WiseReplica that allows us to meet users’
expectations in peer-assisted VoD system properly. We assume the system must
enforce the right average bitrate for each video through SLA contracts. Our
ultimate goal is two-fold: (i) to prevent SLA violations and (ii) to reduce the
number of video replicas. To perform efficient Internet video replication, Wis-
eReplica relies on a novel, accurate machine-learned ranking of Internet videos.
To rank video in order of demand, our prediction model encompasses multiple
measurements of Internet video activity in peer-assisted VoD system, including
active viewers, video duration, average serving time, and mean time between
requests view. The use of this prediction model in WiseReplica provides the
ability to adapt the replication degree of videos dynamically according to their
encoding settings and popularity, reducing storage usage and enhancing network
provision. We make two main contributions:

Investigate how predictable is a ranking of Internet videos. We design
a learning model to capture the dynamic behaviour of streaming video demand.
The model makes predictions based on lightweight measurements of the request
arrival process. Using a novel machine-learned ranking, we predict demand of a
video accurately. Thus, the higher the rank position, the higher the demand for
fresh replicas. According to the video ranking position, VoD services operators
can define and evaluate different replication policies. For instance, top-ranked
Internet videos may be twice as much replicated as those ranked in the second
position. This intuitive model allows us to decouple streaming demand from
replication policy. Our model is flexible and can learn from different sources and
big amounts of data, providing a robust framework for controlling VoD resource
allocation. Simulations using YouTube traces, with non-stationary behaviours,
suggest that our model is very accurate in predicting the ranking of Internet
videos. Since our ranking of videos is based on random forests, a parallelizable,
state-of-the-art machine learning method, it fits runtime requirements of large
VoD systems.

Enforce average bitrate through SLA-based video replication. Based
on our machine-learned ranking of Internet video, we designed and evaluated
WiseReplica, an easy-to-deploy, SLA-based replication scheme that meets users’
expectations for VoD services. WiseReplica is fully compliant with peer-assisted
VoD systems in hybrid CDN platforms. It operates adaptive replication over sets
of devices located close to each other in edge networks, namely storage domains.
WiseReplica functioning per storage domain is straightforward. Gradually, it
verifies the rank position of a video whenever a new local request arrives, and
adapts the replication degree accordingly. Using a collaborative caching, video
replicas are either pre-fetched or removed randomly. We show through simula-
tions using YouTube traces that WiseReplica outperforms a non-collaborative

Boosting Streaming Video Delivery with WiseReplica 37

caching approach by preventing violations, reducing storage usage, and enhanc-
ing network resources provision. Furthermore, our replication scheme is easy to
adopt and flexible enough to offer interoperability with de facto approaches,
including HTTP adaptive streaming technique and BitTorrent protocol [32].

This work is organized as follows. In Sect. 2, we present the context and chal-
lenges of this research. We describe in details our prediction model to rank Inter-
net videos in order of demand in Sect. 3. Section 4 describes the approach of our
adaptive replication scheme, WiseReplica. We explain our simulation method-
ology in Sect. 5. We then analyse the performance of WiseReplica in Sect. 6.
Related works are discussed in Sect. 7, just before the conclusion in Sect. 8.

2 Context and Challenges

In this section, we describe the context and the challenges of this work.

2.1 Improving Content Availability to Better User Experience

Many studies have shown that quality of user experience while watching online
videos is related to the good quality of content transmission. They presented
many strategies to enhance the video content availability and its distribution.
Most of these studies analyse in the field are focused on Youtube, being this
the major player of video content distribution [1,5,6,14]. These studies include
the analysis of crawled data from Youtube APIs and comparisons of caching
strategies from collected data of users’ point of view (HTTP logs from ISP or
local networks).

Dobrian et al. [13] study has shown the correlation between the user engage-
ment and the video quality, being the Buffering Ratio (fraction of the total
session time spent in buffering) and Rendering Rate (frames per second) the
most critical metric over the total played time for short videos, the current tar-
get of our method. This characterizes the relation between quality of service and
user experience and endures the importance of avoidance of SLAs violations,
which minimizes buffering ratio, confirming the main metric of evaluation in our
work.

Furthermore, Finamore et al. [15] stated that the download bitrate of the
video plays a fundamental role in video playback quality. They measured the
smoothness of the playback by the bitrate ratio, defined as the ratio between
the average session download bitrate and the video encoding bitrate. Considering
different bitrates in the input dataset is a key aspect of the rendering rate metric
in user engagement and playback quality.

Another important concern in studying the availability of Internet videos was
to provide a SLA-based solution with the minimum constrains regarding deploy-
ment. However, recent studies [2,34] are based in substantial changes in the
normally used stack of protocols and network infra-structure and they become
hard to be considered as a feasible solution. Our solution takes in account a

38 G. Silvestre et al.

well-know and largely used infra-structure and have no changes in the stack
protocol. Despite all these research efforts, enforcing video availability in large
peer-assisted VoD systems remains a challenging issue.

2.2 On the Track of YouTube Popularity Growth Curves
and High Quality Videos

A fair reproduction of user interactions to Internet videos is essential to evaluate
peer-assisted VoD systems properly. Hence, we study in this work a workload
that combines YouTube traces [14] to well-known videos’ access patterns [33].
We are particularly interested in reproducing realistic popularity growth curves,
considering advanced coding setting and common VoD demand patterns.

We study the data crawled by Figueiredo et al. [14], whose datasets are cur-
rently available online3. The dataset allows us to characterize the growth pat-
terns of YouTube videos. In particular, they analysed three types of YouTube
videos sets: videos that appear on YouTube top list, videos that were banned
from YouTube due to copyrights violations, and videos that were randomly
selected through API calls. They crawled once a number of videos’ daily fea-
tures. For each video, there are up to 100 daily measurements, or daily available
samples, per feature. In this work, we are mostly interested in the measurements
of view data feature, that depicts the popularity growth curve of a video through
a array of cumulative number of daily views ranging from 0 to the total number
of views.

In order to reproduce realistic, high quality videos encodings, we consider the
YouTube advanced encoding settings4. Table 1 depicts the set of high definition
(HD) video encodings that we use in this work.

Table 1. Advanced encoding settings for YouTube videos used in this work.

Type Video bitrate Mono audio bitrate Stereo audio bitrate 5.1 Audio bitrate

1080p 50 Mbps 128 kbps 384 kbps 512 kbps

720p 30 Mbps 128 kbps 384 kbps 512 kbps

480p 15 Mbps 128 kbps 384 kbps 512 kbps

360p 5 Mbps 128 kbps 384 kbps 512 kbps

2.3 Investigating Network Resources Provision for Internet Videos

Replication schemes have become an important building block for Internet video
providers to improve content availability and meet consumers’ expectations. An
3 The Tube over Time: Characterizing Popularity Growth of YouTube Videos. http://

www.vod.dcc.ufmg.br/traces/youtime/data/, January 2013.
4 Advanced encoding settings for YouTube videos. http://support.google.com/

youtube/bin/answer.py?hl=en-GB&answer=1722171, June 2014.

http://www.vod.dcc.ufmg.br/traces/youtime/data/
http://www.vod.dcc.ufmg.br/traces/youtime/data/
http://support.google.com/youtube/bin/answer.py?hl=en-GB&answer=1722171
http://support.google.com/youtube/bin/answer.py?hl=en-GB&answer=1722171

Boosting Streaming Video Delivery with WiseReplica 39

adaptive replication scheme should offer content replica maintenance to handle
popularity growth properly.

Non-collaborative caching remains the simplest approach to provide adaptive
replication of web content [20]. They adapt the replication degree to the con-
tent popularity using cache replacement policies, and assuming fair-sharing as
a key scheduling strategy. But, Internet videos’ workloads on peer-assisted VoD
systems bring major obstacles to non-collaborative caching, e.g. the resource
imbalance in peers for replicas, and a growing need for high bitrate provision for
meeting consumers’ expectations. Therefore, relying just on cache replacement
policies and fair-sharing scheduling can undermine the performance of the whole
system.

Recent studies have sought an optimal solution to this problem. For instance,
Chang and Pan [10] propose a modelling framework towards optimal caching
strategies, including collaborative caching. They confirm that this problem is
NP-hard, and only suboptimal solutions can be found.

2.4 Challenges

In order to meet increasing consumers’ expectations on Internet videos, a good
peer-assisted VoD system must overcome the following challenges:

1. It must cope with dramatic, unexpected variations in videos popularity.
2. It must avoid waste of resources, and reduce as much as possible storage and

network usage on peers of edge networks.
3. It must prevent rebuffering of VoD streaming through a self-adaptive, easy-

to-deploy technique.

Our simulations suggest that meeting consumers’ expectations in terms of
average bitrate is a difficult task, specially under heavy load. State-of-the-art
approaches fail to handle these challenges mostly because they are not able
(i) to capture VoD demand, and (ii) to define a metric to measure consumers’
expectations. WiseReplica copes with these issues by inferring users’ expecta-
tions for videos and predicting the amount of resources to fulfil the demand in a
self-adaptive way. Our findings show that this approach produces a good balance
between resource allocation and users’ satisfaction.

3 A Machine-Learned Ranking of Internet Videos

We designed a prediction model for ranking Internet videos in order of demand.
In this work, video demand involves both popularity and QoS requirements.
Our main goal is to provide an intuitive, accurate method to capture requesting
behaviours of streaming videos. In this section, we highlight the foundations of
our statistical learning approach. First, we present a brief overview of statistical
learning. Then we explain the model, describing our learning-to-rank problem.
Finally, we describe our implementation and we present a framework for ranking
predictions.

40 G. Silvestre et al.

3.1 An Overview About How to Learn from Data

Statistical learning is about learning from seen data in order to predict unseen
data with minimal error. Data comprise inputs x represented by a vector with
a fixed number of dimensions p (x ∈ X ⊂ R

p) from the input space X . In
our problem, x is a video, represented by a vector of measurements from video
sessions’ activity.

In supervised learning, each input measurement is coupled with a y, a label
selected by an oracle, from the output space Y. To learn, we take N pairs (x, y)
drawn independently and identically distributed (i.i.d.) from a fixed but unknown
joint probability density Pr(X,Y). This is true for both training and testing
datasets. For instance, we consider the training dataset S = {xi, yi}N

i=1 of N
pairs (x, y). Using this dataset, the supervised learning algorithm searches for a
function f : X → R in a fixed function class F . State-of-the-art algorithms, such
as support vector machines (SVM) [11] or ensemble methods [16], aim to find
f� in F with the lowest empirical risk defined as:

f� ∈ arg min
f∈F

remp(f) (1)

where remp(f) = 1
N

∑N
i=1 I{f(x) �=yi} is computed over the training set, and I{.} is

the indicator function which returns 1 if the predicate {.} is true and 0 otherwise.
In other terms, remp is a quality measure relating the label to the prediction
provided by the function f on the training dataset S.

To model our prediction problem, we use a statistical learning approach
called learning-to-rank. This approach has been a hot topic in Machine Learn-
ing community for the last 10 years. It combines properties of two well-known
other approaches: regression, where y ∈ Y ⊂ R; classification where y ∈ Y ⊂
{0, 1, ...,K} with K ≥ 1. In learning-to-rank approach, y gives an indication on
the target order (formally represented by a permutation σ ∈ Σ).

3.2 A Ranking Model for Internet Videos

The main purpose of our learning model is to capture popularity growth dynam-
ics and system resources availability of peer-assisted VoD systems. Therefore, we
assume that prediction model must allow us to rank Internet videos in order of
demand. This can be modelled as a learning-to-rank problem.

Given an i.i.d. sample (x, y) such as described in Subsect. 3.1, we model
inputs and outputs as follows.

Inputs. We represent the input space x is a video described as 10 lightweight
measurements from the request arrival process. These measurements are video
size, network availability, network usage (load), current number of viewers and
replicas, inter-arrival time between requests (delta), aggregate number of views,
mean of time between requests (mtbr), life time, and average bitrate. We com-
pute averages and means from up to the five last requests. Our goal is to gather
as much information about users’ interactions as possible in an easy manner to

Boosting Streaming Video Delivery with WiseReplica 41

make accurate predictions about the ranking of videos. To extend our model, one
can easily add further features or measurements such as geographical location,
social network interactions data, buffering ratio, rate of buffering events, session
join time, rendering quality, rate of bitrate switch, etc.

Outputs. The supervision y associated to each input video x is based on four
possible ordered values which gives an indication for the final target ranking. In
our model, Y ∈ {0, 1, 2, 3}, whose labels are {non-popular, popular, very popular,
viral} respectively. It represents a natural ranking for Internet videos. Using
this ranking model, we intend to provide a measure of video demand, which is
closely related not only to the popularity, but also to the consumption of system
resources.

Finally, the learning-to-rank module finds a function f from Eq. (1) with
the constraint of maintaining the prediction order: ∀i, j, i �= j, yi > yj then
f(xi) > f(xj) explained in [7]. In that case, theoretical performance guaran-
tees are provided. Practically, the use of the mean square error (y − f(x))2

instead of the indicator function I{.} (which is hard to optimize because it is
non-differentiable) allows us to ensure a calibrated learning to rank algorithm.
A calibrated algorithm means there is a theoretical link between the approxima-
tion of the empirical risk, that is easier to optimize, and its non-differentiable
version [7,9,31,35].

3.3 Framework for Learning and Predicting, and Implementation

We implement our model using ensemble methods. According to Friedman et al.,
ensemble learning consists of a set of very popular supervised methods, that
are robust, simple to train and tune, and have a remarkable prediction per-
formance. Our implementation is based on Scikit-learn, a general-purpose
machine learning library [26].

We designed a simple framework to use our learning module, depicted in
Fig. 1. Our framework has two phases: (i) learning and (ii) predicting. Each
phase has its own YouTube-like workload. Learning is a preliminary phase that
commonly runs offline in a batch mode, while the prediction can go online. In
this work, both phases are performed with data from simulations. In the learning
phase, we first generate the training dataset, described in Subsect. 5.4. Then we
feed this training dataset to our learning model, represented here as module of

Fig. 1. Framework for learning and predicting ranking of Internet videos.

42 G. Silvestre et al.

WiseReplica, in order to identify YouTube ranking patterns. Once the learning
phase has been accomplished, WiseReplica can use its learning module in a pre-
dicting phase, as indicated in the left-hand side of Fig. 1. In this phase, inputs
come for measurements of the request arrival process of workload 2, that permit
accurately ranking Internet videos in order of hotness and instrumenting replica-
tion accordingly inside storage domains. We highlight WiseReplica functioning,
including storage domains, in the next section.

4 Boosting VoD Delivery: The WiseReplica Approach

In this section, we describe WiseReplica replication scheme. First, we highlight
how WiseReplica operates in edge networks, by in introducing the concept of
storage domains. Then, we explain its replication strategy based on predictions
of ranking of video demand.

4.1 Distributing VoD with Storage Domains

We assume that WiseReplica operates in peer-assisted VoD systems deployed on
hybrid CDN platforms. We consider the hybrid CDN design called Caju, that is
detailed in our previous work [30] as our target platform. It is based on sets of
devices located close to customers, named storage domain. A storage domain is a
logical entity that combines resources from both datacenters and edge networks
in the last mile of the content delivery chain. As Fig. 2 shows, devices in a storage
domain can play either a coordinator or peer role.

Coordinator is a server or a small-sized cluster of servers deployed in the
nearby datacenter. We assume that the coordinator performs scheduling of video
requests for the local storage domains. Therefore, it runs the main instance of
WiseReplica, and keeps information about resources consumption. Its main goal
is to maintain the right number of replicas per video in the local peers, by pre-
fetching or deleting sources. Instead of always contacting the content providers,
coordinators might interoperate in logically centralized way to fetch videos that
have been vanished from a storage domain. They store the most recent videos
in their own cache for replication purposes. Whenever a new replica is neces-
sary, the coordinator pushes it to a randomly, uniformly selected peer. Similarly,
coordinators send video deletion requests to local peers.

Peers is a set of devices located close to each other through which customers get
network access, e.g. home gateways connected to the same digital subscriber line
access multiplexer (DSLAM). These devices actually deliver videos to customers
in a storage domain, being the main source of storage and network resources.
They execute scheduling and replication commands sent by the storage domain’s
coordinator. Each peer contributes with a percentage of storage and network
resources to the system, as in a collaborative caching. In the local cache is applied
the LRU policy for videos replacement.

This model is specially interesting for the problem of videos delivery as
it takes advantage of nodes geographical position [6]. It provides two main

Boosting Streaming Video Delivery with WiseReplica 43

Fig. 2. Storage domains.

infrastructure properties to WiseReplica: replication group and hop limit. The
replication group allows WiseReplica to adapt video replication for smaller sets
of peers, most likely connecting customers with similar content interests. By
enforcing a hop limit, storage domains avoid jitter, ensure low latencies, and
permit WiseReplica improving the efficiency of network resource provision.

In addition, we assume that a storage domain enforces an initial placement
policy. This policy defines the minimum replication degree m for initial copies
for any new, just fetched Internet video. Request scheduling is simple. A view
request is served by at most R nodes with uniform load. Available sources come
from r = min(n,R), where n is the number of current replicas. In this work, we
consider m equals to two and R equals to five as default settings. For requests
scheduling, this approach enforces well-known policies for peers in edge networks,
including nearest source selection and multi-sourcing.

4.2 Self-Adapting Replication According to the Ranking of Internet
Videos

Our utmost goal is to contribute to meet increasing customers expectation on
Internet videos using peer-assisted VoD systems. To enhance VoD delivery, we
assume that rebuffering is a major issue to be addressed. We propose to cope with
this issue by enforcing minimum average bitrate of each streaming as the main
QoS metric. In this scenario, content and CDN providers must be committed
to enforce minimum average bitrate for videos through SLA contracts. Since

44 G. Silvestre et al.

Internet videos delivery is a resource-hungry service, we must also adapt the
network provision and storage usage as we aim to prevent violations. To this
end, we propose WiseReplica, an adaptive replication scheme for peer-assisted
VoD systems based on storage domains.

WiseReplica maintains replicas inside a storage domain. Running on the
coordinator, it adapts the replication degree of Internet videos of a storage
domain according to a machine-learned ranking. Our scheme follows a three-
part procedure:

Collect Information from the Request Arrival Process. For each video
request, WiseReplica collects 10 lightweight measurements. The goal is to gather
comprehensive information for measuring the video demand and accurately pre-
dicting the raking. As described in Sect. 3, they are video size, network availabil-
ity, network usage (load), current number of viewers and replicas, inter-arrival
time between requests (delta), aggregate number of views, mean of time between
requests (mtbr), life time, and average bitrate. We compute averages and means
from the last up to five requests. It is important to notice that all these mea-
surements can be easily collected in the storage domain’s coordinator.

Rank Internet Videos in Order of Demand. Based on the measurements
of the request arrival process, we use the learning model described in Sect. 3
for predicting the rank position of Internet videos demand. We can predict the
video rank for each view from the second request. The ranking comprises infor-
mation about demand and QoS requirements. Predictions are quite essential
for enhancing VoD delivery. Since our learning model make predictions on a
request basis, WiseReplica can react to the video demand as promptly as the
rank position evolves. Indeed, ranking is an intuitive way to capture the demand
of videos in peer-assisted VoD systems. The higher is the demand rank position
of an Internet video, the higher is the demand for it. There are four positions
on our machine-learned ranking: non-popular, popular, very popular, and viral.
WiseReplica has a straightforward strategy to perform replication according to
hotness rank positions. Videos that fall into the lowest rank position can have
their replication degree reduced, otherwise they need more replicas. Thus, the
maintenance of replication degree of Internet video, including video creations
and deletions in peers, relies on replication policies.

Enforce Replication Policy Accordingly and in Time. The goal of repli-
cation policies is two-fold: first (i) ensure consumers’ expectations in time and
(ii) reduce the total number of replicas as much as possible. For that, WiseReplica
must adapt replication of videos according to the forecasts of their rank positions.
Our replication scheme enforces two types of replica maintenance policies: dele-
tion and creation policy. In this work, we enforce a single video deletion policy.
Whenever the coordinator receives a request to a video in the non-popular rank,
the deletion policy says that one replica is deleted until the minimum replication
degree m is reached. Similarly, our scheme periodically runs a maintenance pro-
cedure (e.g. each five minutes) to smoothly enforce the deletion policy for inactive
videos. This allows WiseReplica to reduce the total number of replicas. To cope

Boosting Streaming Video Delivery with WiseReplica 45

with SLA violations and meet customers’ expectations, we evaluate four quite
simple policies, namely uniform, linear, quadratic, and exponential. They are
respectively defined as follows: B,Br,Br2, and Br, where B is a constant that
represents the target number of replicas, and r ∈ {1, 2, 3} the rank positions.
We report on creation policies’ performances in Sect. 6.

Our findings show that this approach produces a good balance between
resource usage and consumers’ satisfaction. It is important to note, however,
WideReplica does not cover video durability, neither does fault-tolerant mecha-
nisms (e.g. failure detection/recovery procedures). Rather, our goal is to improve
VoD availability, boosting network provision, meeting consumers’ expectations
on VoD services, and reducing storage usage as much as possible. To this end,
WiseReplica combines lightweight measurements, accurate predictions of Inter-
net videos ranking, and replication policies enforcement in a particularly novel,
flexible way. In peer-assisted VoD systems, it can easily interoperate with de
facto approaches, including HTTP adaptive streaming technique and swarming
protocols, such as BitTorrent.

5 Simulation Methodology

We simulate a peer-assisted VoD system based on a hybrid CDN design
called Caju [30]. We evaluate WiseReplica using YouTube traces. We compare
WiseReplica performance with other two adaptive replication schemes, namely
non-collaborative caching and Oracle-like collaborative caching. The aim of our
simulations is to study in details the variability of demand and resource allo-
cation of VoD services on edge networks, and the performance of replication
schemes in enforcing expected Internet video availability.

5.1 Workload from YouTube Traces and SLA Definition

The workload and SLA definitions are at the core of our evaluation. We define a
workload that captures the main features of VoD services using YouTube traces,
and a SLA contract that meets users’ expectations.

In the workload definition, we are particularly interested in reproduce a real-
ist request arrival process, placing the emphasis on popularity growth and video
encodings. Thus, we use YouTube traces, presented in Subsect. 2.2. Before inte-
grating YouTube traces to our workload, we first preprocessed their YouTube
datasets to remove inconsistent measurements, such as videos with no views.
Basically, we got rid of videos with small number of total views (those smaller
than the first quartile) and videos with few daily measurements (those smaller
than the third quartile). That allowed us to pick off 20 % most representative
YouTube growth patterns, accounting for 21827 distinct curves. Then, we ran-
domly selected, with a uniform distribution, curves from this preprocessed data
to be assigned to videos of our workload. Similarly, we assigned high quality
YoutTube video encodings to our workload videos, based on advanced settings
depicted in Table 1. To summarize, Table 2 lists default values for workload

46 G. Silvestre et al.

Table 2. Default values for workload parameters.

Workload

Requests per user uniform

Experiment duration 4 h

Mean requests per second 100

Requests fractions 5 % of creations, 95 % of views

Video size (follows Pareto) shape = 3, between 13 MB and 1.6 GB

Video popularity (Zipf-Mandelbrot) shape = 0.8, cutoff = number of videos

Videos’ creation (Poisson) λ = creations per second

Popularity growth from YouTube traces 21827 distinct patterns

YouTube encoding settings (bitrates) 5 Mbps, 15 Mbps, 30 Mbps, 50 Mbps

parameters. Finally, videos are always divided and distributed in chunks or seg-
ments of fixed size, 2 MB.

In terms of SLA definition, we assume that content and content delivery
providers are committed to improving the Internet video availability for cus-
tomers in a content-oriented approach. In our case, a good peer-assisted VoD
system must ensure videos availability by avoiding rebuffering. Therefore, we
consider a global, simple SLA contract drawn up to provide a minimal average
bitrate according to each Internet video encoding setting. A SLA violation hap-
pens whenever the system fails to enforce the minimal average bitrate for any
viewer session.

5.2 Evaluation Scenario

Our evaluation scenario (Fig. 3) includes 4002 nodes, arranged across two stor-
age domains. There are one coordinator and 2000 peers per storage domain.
Storage and network capacities differ according to the device role. Coordinators
have 20 TB of storage capacity and full-duplex access link of 4 Gbps. Peers con-
tribute 200 GB each, equipped with 100 Mbps full-duplex links. Note that the
two coordinators contribute with a small fraction of aggregate edge resources,
i.e. 5 % of the storage capacity and only 2 % of the total network capacity. This
draws our attention to the performance of replication schemes towards peers
resource allocation. We assume only 1 % peers’ storage is available for caching
additional replicas, namely 2 GB.

We implemented and evaluate this work using simulation. To this end, we
developed a simulation tool on top of PeerSim [24] to implement storage domains
in edge network and bandwidth scheduling.Our design focus on network’s re-
source allocation accuracy for simulating bitrate enforcement and concurrent
videos views properly. Design and implementations details of our tools to sim-
ulate network resource scheduling are available in our previous work [28]. We
have performed our simulations using servers equipped with Intel Xeon E5450
3.00 GHz, and a RAM of 4 GB.

Boosting Streaming Video Delivery with WiseReplica 47

Fig. 3. Evaluation scenario.

5.3 Comparable Replication Schemes

We compare WiseReplica with two other schemes.

Non-collaborative Caching. Adaptive replication schemes based on non-
collaborative caching, such as those that uses Least Recent Used (LRU) algo-
rithm, are easy to implement and deploy. A new replica is created in a peer
whenever a user requests to view a video. LRU replacement is enforced regard-
ing the static percentage of the local storage capacity for caching of 1 %.

Oracle-LikeCollaborativeCaching.This is an idealized benchmark case. Here,
we assume a peer-assisted VoD system deployed in a network that runs a deadline-
aware transport protocol, similar to Wilson et al. [34] work. Based on our previous
work with AREN [29], an adaptive replication scheme for edge networks, we imple-
mented a benchmark replication scheme that relies on bandwidth reservation and
collaborative caching to provide an adaptive number of replicas for videos. We
replicate videos according to aggregate network usage by enforcing a low and high
thresholds. This makes the video replication a function of bandwidth reservation,
and ensures that network and storage provision follows video demand properly, as
depicted in Fig. 4. Per video, we consider two percentage thresholds for aggregate

Fig. 4. Oracle-like bandwidth management for a video, illustrating aggregate band-
width for N replicas and b available bandwidth, bandwidth reservation (bandwidth
usage) and thresholds (Pmin and Pmax).

48 G. Silvestre et al.

network usage: Pmin and Pmax. Our replication strategy works as follows. A video
v that has N replicas in peers with network capacity of b requires more replicas
if the current bandwidth reservation U(v) > Pmax

∑N
i=1 b. Similarly, if U(v) <

Pmin

∑N
i=1 b, replicas can be deleted. Otherwise, keep the replication degree.

Although this empirical approach is hard to be adopted in a real deployment, our
previous results [29] suggest that it allows us to achieve near-optimal results, pre-
venting all SLA violations, enhancing network usage and decreasing storage usage
dramatically.

5.4 Collecting the Datasets for Learning

To perform rank predictions of Internet videos, we need training datasets from
which we can learn the behaviour of video demand in peer-assisted VoD systems.
In this section, we explain the methodology to gather data for these predictions.

The training dataset of our prediction model comes from measurements of the
request arrival process on per-assisted VoD systems, as described in Subsect. 3.2.
Each line of our training dataset has 11 values, 10 input measurements about a
video current state, and a rank position. Although, the datasets evaluated in this
work were synthetically collected by performing simulations with the Oracle-like
benchmark replication approach (detailed in Subsect. 5.3), similar datasets can
be collected from monitoring systems of running CDN systems.

In this work, Oracle-like benchmark replication approach (Subsect. 5.3) rep-
resents the near-optimal way to serve VoD service according to video encodings
and popularity, whose functioning we are very interested in learning. In this
empirical approach, a video requires additional replicas only if there exists a cer-
tain number of concurrent accesses, where concurrence is measured by checking
a high threshold of the current reserved bandwidth, as detailed in Subsect. 5.3.
We assume that popular videos are those that have additional replicas during its
lifetime. Since Internet videos popularity distribution follows a Zipf-like distribu-
tion [33], concurrent access are rare events as well as popular videos classified by
this approach, thus it provides a quite fair approach to identify popular videos.

Raw data from Oracle-like technique permits easily distinguishing between
two ranking positions only, non-popular and popular videos, i.e. requests to
non-popular videos are all those that do not trigger any replica creation, or
those that resulted in deletions. However, there is a lack of information about
different ranking positions of popular videos. Hence, depending on the frequency
of replica creation, we add information to requests to popular videos classifying
them in popular, very popular, or viral. To define these three levels of hotness,
we run simulations with YouTube traces, collected the distribution of replicas
creation in milliseconds, and split it in three nearly equal parts by observing the
66-percentile and 33-percentile inter-creation time for new replicas. This means
that the higher is the frequency of replica creation, the hotter is the video, and
the higher is the ranking position. Now, collected data suit model’s definitions
well.

Boosting Streaming Video Delivery with WiseReplica 49

6 Evaluation

The utmost goal of our performance evaluation is two-fold: (i) measure the accu-
racy of our learning model in ranking Internet videos in order of hotness, and
(ii) evaluate the performance of our replication scheme in meeting viewers’ expec-
tations in peer-assisted VoD systems. Further details about evaluation set-up are
available in Sect. 5.

6.1 Performance Evaluation Metrics

We aim to evaluate the performance of two main WiseReplica modules: machine-
learned ranking and replication strategy. Hence we group evaluation metrics as
follows:

Machine-Learned Ranking Accuracy. We adopt the normalized Discounted
Cumulative Gain (nDCG) criterion as the main evaluation metric for our learn-
ing model. nDCG is a standard quality measure in information retrieval, espe-
cially for Web search [19,22]. We implement DCG measure proposed by Burges
et al. [8]. Therefore, DCG is defined as DCGL =

∑L
i=1

2F (i)−1
log2(1+i) , where L is the

global set of ranked videos, and F (i) is the rank position of ith video. To com-
pute nDCG, we divide DCG measure by the idealized DCG with perfect order of
the set L. Thus, the perfect model scores 1. Unlike typical information retrieval
problems, as a ranking of web content, our model does not have the notion of
query. Instead, we rely on nDCG robustness to measure the performance of our
learning model as a global ranking problem. Since the ranking problem shares
properties with both classification and regression problems, we compare nDCG
to other three popular machine learning metrics: the mean square error, a stan-
dard metric for regressions; precision, for classification; and a less robust, well-
known variant of nDCG, namely in this work nDCG(2), described by Croft et al.
in [12]. We evaluate three different state-of-the-art ensemble learning methods
available in Scikit-learn library: Random Forest, Extremely Random-

ized Trees, and Gradient Tree Boosting. Moreover, we report briefly on
the sample size for learning, number of estimators or learners of ensemble meth-
ods, measurements or features importance, and the computational overhead of
our model, including memory usage and computation time for prediction.

Metrics for Replication Strategies in Peer-Assisted VoD Systems. Ass-
uming that content and CDN providers are committed to enforcing bitrate as
main QoS metric through SLA contracts, we consider SLA violation as the
primary performance metric. Thus, a SLA violation happens whenever the peer-
assisted VoD system does not provide the minimum average bitrate for prevent-
ing rebuffering. This measures the WiseReplica capacity of meeting consumers’
expectations. We also investigate the impact of our replication scheme using
storage domains in peer-assisted VoD systems. To this end, our evaluation met-
rics are network and storage usage. Finally, we compare WiseReplica results
with a non-collaborative caching and the Oracle-like assumption, described in
Subsect. 5.3.

50 G. Silvestre et al.

6.2 Fitting and Measuring the Accuracy of Our Ranking Model

The evaluation of our learning model comprises: ensemble method selection,
number of estimators, sample size for learning, and inputs’ relative importance.
In this subsection, we aim to evaluate the most important settings and tune
our model towards higher accuracy, using the learning framework described in
Subsect. 3.3.

Selecting and Fitting an Ensemble Method. Ensemble methods have
become very popular in statistical learning. Their algorithms combine several
estimators or week learners to provide robust learning models and prevent
overfitting. We fit and evaluate our model with three methods from Scikit-

learn library: Random Forest(RF), Extremely Randomized Trees(ET),
and Gradient Tree Boosting(GB). We consider two distinct samples with
124,000 lines each, one for training and other for testing. We set to 10 the
number of estimators as a common setting. All other parameters have default
settings. Based on four metrics detailed on Subsect. 6.1, Random Forest fits
our model better. Figure 5 depicts three of these metrics. Random Forest per-
forms particularly well in nDCG score, the main metric for ranking problems.
While Extremely Randomized Trees and Gradient Tree Boosting score
0.9126 and 0.4128 respectively, Random Forest scores 0.9594. In terms of pre-
cision, Random Forest slightly better, with a score of 0.9922. Extremely

Randomized Trees scores 0.9899, and Gradient Tree Boosting scores
0.9502. It also outperforms the other two methods regarding the mean square
error metric, scoring 0.0094 compared to 0.0122 with Extremely Random-

ized Trees and 0.1021 with Gradient Tree Boosting. nDCG(2) metric

Fig. 5. Ensemble methods evaluation:
Random Forest(RF), Gradient

Tree Boosting(GB) and Extremely

Randomized Trees(ET).

Fig. 6. Overhead for different number of
estimators of Random Forest.

Boosting Streaming Video Delivery with WiseReplica 51

confirms these results. Therefore, we select Random Forest method for imple-
menting our prediction model and nDCG as the key accuracy metric for ranking
predictions.

Adjusting the Number of Estimators to Learn. According to Friedman
et al., Random Forest performs predictions by building a collection of de-
correlated trees, namely estimators, and then averages them. We investigated
the impact of the number of estimators in ranking accuracy, memory and com-
putation time. We varied the number of estimators progressively from 10 to
1000, with the same previous samples. Results show that the number of estima-
tors has a negligible impact in the accuracy of our model. While a model with
10 estimators scores 0.9594, 1000 scores 0.9569, slightly worse. One reason for
this might be the number of inputs, relatively small, that is likely to require
a small number of estimators. Yet, the number of estimators impacts on the
model overhead, specially for computation time. As depicted in Fig. 6, the com-
putation time ranges from 0.3 ms with 10 estimators to almost 26 ms with 1000
ones. Although the worst case still represents low overhead, the lower the better.
Memory overhead is rather negligible, ranging from 30 to 32 MB. Overall, our
model has a quite low overhead, suitable for going online in large peer-assisted
VoD systems. Since there is no evidence to increase the number of estimators,
we keep 10 estimators as a default, fair setting.

Evaluating Bigger Samples for Fitting the Model. Towards a higher
accuracy, we evaluated bigger samples for fitting our prediction model in its
learning phase, described in Subsect. 3.3. We collected more information by run-
ning longer simulations. As expected, Fig. 7 confirms that we improve accuracy
through bigger samples. The improvement in accuracy was slight, about 0.03 as
we use a sample size almost six times bigger, i.e. 683,000. It is quite important to
highlight, though, that this has no impact on computation time of predictions.
Thus, we use the biggest sample for the remaining evaluations.

Analysing the Relative Importance of Model’s Inputs. We were par-
ticularly interested in evaluating the contribution of each input of our model,
described in Subsect. 3.2. Scikit-learn library allows us to measure the relative
importance of each input for predicting the ranking position using the Random

Forest method. Figure 8 highlights the relative importance for all 10 inputs
of our ranking model. The two most relevant inputs are the current number of
viewers and network availability. These inputs alone account for 99.6 % of the
all model’s accuracy. It seems quite reasonable, since the former measures the
demand for a video and the later depicts the offer of network resources, the main
system feature for enforcing average bitrate. Based on the analysis of the current
datasets, the remaining eight inputs are less important to the ranking model’s
accuracy. Surprisingly, the number of replicas, current network load, and video

52 G. Silvestre et al.

Fig. 7. Accuracy with different sample
sizes.

Fig. 8. Relative importance to ranking
of the 10 model’s inputs.

size seem to be useless to our model. It is likely that network availability is a
particularly good measurement, making these eight inputs rather redundant. For
simplicity, we include all inputs in the rest of the work. This is harmless for the
model’s accuracy.

6.3 Evaluating Replication Strategies in Peer-Assisted VoD
Systems

In this subsection we analyse the replication strategy used in WiseReplica. First,
we evaluate four simple replication policies. Then, we compare WiseReplica with
a non-collaborative caching and Oracle-like benchmark replication approach,
both described in Subsect. 5.3. We evaluate their capacity to meet consumers’
expectation by observing the number of violations. In addition, we compare their
resource allocation performance regarding network and storage usage.

Enforcing Simple Replication Policies on Ranked VoD. For the three
highest rank position, WiseReplica enforces a replica creation policy, described
in Subsect. 4.2. It defines the replication degree growth factor. Considering the
smallest evaluated system load (with mean video size of 20 MB), we analyse
four simple creation policies, namely uniform, linear, quadratic, and exponen-
tial. Table 3 shows the number of violations by varying B from 2 to 6. Overall,
creation policies that take into account the rank positions, i.e. linear, quadratic,
and exponential, performed better. Results show that there is relatively small
difference for B ≥ 3, suggesting that our ranking model reacts promptly to modi-
fications on network availability, preventing over-replication. However, for B ≥ 5,
it appears that replication increases the network load system load, causing few
more violations. We selected the linear policy with B = 4 that seems to be the
most resilient towards proper resource allocation, providing a fair replication
degree growth factor.

Boosting Streaming Video Delivery with WiseReplica 53

Table 3. Replication policies.

Load Resiliency. A good replication strategy must cope with changes on the
system load. We vary the global load of the system by changing the mean video
size, described in Subsect. 5.1. Assuming the three mean video sizes, namely
20 MB, 30 MB and 40 MB, caching had 1814, 3864, and 7049 violations respec-
tively, while WiseReplica had only 6, 77, and 106. Figure 9 compares the number
of violations using WiseReplica and a non-collaborative caching. As the load of
the system increases, concurrency in bitrate allocation also increases, causing
more violations. WiseReplica outperforms caching mostly because it predicts
and prevents useless replication. Therefore, we set to the highest evaluated sys-
tem load, 40 MB, as the default mean video size workload setting.

Benefits of Prediction on Storage Usage. We aim to adapt the number
of replicas to the number of views of a video, especially for the most popular
ones. Figure 10 plots the maximum number of replicas for the 1 % most popular
videos. Using caching, the maximum number of replicas is high, ranging from 816
to 1367. The Oracle-like assumption allows to decrease significantly the lower
and upper limits, to 10 and 190. WiseReplica also reduces the maximum replica
range, which is from 19 to 160. More interestingly, the shape of the replication

Fig. 9. Mean video size. Higher loads increase the concurrence in network resources,
as a result, more violations.

54 G. Silvestre et al.

curves of WiseReplica and Oracle-like are quite similar indeed. It confirms that
our predictions are accurate, and that a simple replication policy works properly.

Reducing the number of replicas implies that the systems requires less storage
for replication. Figure 11 shows storage usage for replicas by replication scheme.
Although WiseReplica utilizes more storage than Oracle-like, its usage remains
two orders of magnitude smaller than a non-collaborative caching. The maximum
storage usage for Oracle-like, WiseReplica, and a non-collaborative caching were
34, 85, and 7921 GB respectively. WiseReplica creates more replicas than Oracle-
like because it does not rely on bandwidth reservation to prevent violations. Yet,
WiseReplica maintains replicas efficiently, keeping storage usage very low, and
making cache replacement policies unnecessary. This suggests that the LRU
policy, which would eventually be enforced in peers cache, has no impact on the
WiseReplica performance.

Enhancing Bitrate Provision for Meeting Consumers’ Expectation.
WiseReplica performance is also quite similar to Oracle-like regarding preventing
violations. Each point of the Fig. 12 represents the number of SLA violations for
intervals of five minutes. Overall, caching caused 7049 violations affecting 86 %
of all viewers, WiseReplica had just 106 violations, and Oracle-like, evidently,
none. Compared to caching, WiseReplica prevents nearly 99 % of violations.
It copes with violations by (i) creating new replicas for hot videos only, and
(ii) adapting the number of replicas according to the rank position. Vertical
lines in Fig. 12 represent the first access to the 10 videos with the worst content
provision through caching. They account for 80.62 % of all caching violations.
The appearance of these videos puts the system under heavy load, which makes
caching fail to prevent violations.

Figure 13 depicts the average bitrate for viewers of the 10 videos with the
worst content provision using caching. When caching was under heavy load,

Fig. 10. The maximum number of
replicas for the 1 % most popular
videos.

Fig. 11. Storage usage for replication.

Boosting Streaming Video Delivery with WiseReplica 55

Fig. 12. SLA violations. Vertical lines
highlight the first view to 10 videos
with the worst content provision using
caching.

Fig. 13. Bitrate for viewers of the 10
most popular videos under heavy load.

half of viewers experienced a very low bitrate, ranging between 230 Kbps and
2575 Kbps. The mean bitrate with caching was 43 Mbps. On average, Wis-
eReplica improved this bitrate by roughly 85 % under heavy load. Actually it
performs almost as well as the Oracle-like assumption, that improved bitrate
provision by 93 %. These finds suggest that WiseReplica largely outperforms
caching, fairly meeting consumers’ expectations under heavy load conditions.

7 Related Work

Our related work is two-fold: Internet videos and adaptive replication schemes.

Internet videos: Recent studies [14,33] have drawn attention to reach a better
understanding of Internet videos properties, such as popularity growth. They
point out that well-known popularity characteristics are applicable to multime-
dia content. For instance, Internet videos popularity distribution follows power
law, and popularity bursts have a short duration and are quite likely to hap-
pen just after the content publication. Dobrian et al. [13] shed some light on
the performance of Internet videos provision on CDNs. They show that average
bitrate plays an important role in videos availability. A hybrid solution between
CDNs and P2P is presented by Mansy et al. [23]. Their purpose is to model and
analyze a live video system and one of their main concerns is to adapt bitrate for
guarantee user satisfaction. Adhikari et al. [1] work described the YouTube video
delivery system through measurements of DNS resolutions and video playback
traces. One of their findings is that over a globally distributed network (Planet-
Lab) most part of the nodes have a nearby Youtube video cache server to delivery
the video data. Moreover, Brodersen et al. [6] presented a detailed study over the
strong connection between popularity and geographic locality of Youtube videos.

56 G. Silvestre et al.

These facts endure our decision of a locality aware solution for infrastructure.
Liu et al. [21] make a case for a video control plane that can use a global view
of client and network conditions to dynamically optimize the video delivery in
order to provide a high quality viewing experience despite an unreliable delivery
infrastructure. However, the granularity of their server selection mechanism is at
a CDN, ignoring edge resources. WiseReplica addresses this issue by adapting
replication close to the viewers. Thus, WiseReplica can be play an important
role in collaborating with an Internet control plane.

Adaptive replication schemes: Non-collaborative caching remains the sim-
plest approach to provide popularity-aware replication of web content through
cache replacement policies [20]. However, we showed when we adapt the number
of replicas according to the Internet video popularity properly, cache replacement
policy becomes redundant. EAD [27] and Skute [4] adapt the number of replicas
by using a cost-benefit approach over decentralized and structured P2P sys-
tems. EAD creates and deletes replicas throughout the query path with regard
to object hit rate using an exponential moving average technique. Similarly,
Skute provides a replication management scheme that evaluates replicas price
and revenue across different geographic locations. Despite presenting an efficient
framework for replication, they provide an inaccurate bitrate provision, hence
inappropriate for high-quality video delivery. WiseReplica copes with this issue
by analysing the request arrival process, performing accurate predictions about
the ranking of Internet videos, and maintaining replication degree accordingly.

8 Conclusions

In this work, we presented WiseReplica, a SLA-based, adaptive replication scheme
for meeting customers’ expectations and enhancing resource allocation in peer-
assisted VoD systems. To adapt replication, WiseReplica relies on a prediction
model for ranking Internet videos in order of demand. Our intuitive model is flex-
ible, and can learn from different sources and big amounts of data, providing a
robust framework for controlling VoD resource allocation. Simulations using You
Tube traces suggest that our ranking predictions of videos are important to enha-
nce video delivery in peer-assisted VoD systems, allowing us to self-adapt replica-
tion degree to video demand properly. WiseReplica increases the average bitrate
provision by roughly 85 %, contributing decisively to enhance viewing experience
of users. Our future work will mainly cover a proof-of-concept prototype for eval-
uating WiseReplica in a real testbed.

References

1. Adhikari, V.K., Jain, S., Chen, Y., Zhang, Z.-L.: Vivisecting youtube: an active
measurement study. In: INFOCOM (2012)

2. Alizadeh, M., Greenberg, A., Maltz, D.A., Padhye, J., Patel, P., Prabhakar, B.,
Sengupta, S., Sridharan, M.: Data center TCP (DCTCP). In: SIGCOMM (2010)

Boosting Streaming Video Delivery with WiseReplica 57

3. Balachandran, A., Sekar, V., Akella, A., Seshan, S., Stoica, I., Zhang, H.: Develop-
ing a predictive model of quality of experience for internet video. In: SIGCOMM
(2013)

4. Bonvin, N., Papaioannou, T.G., Aberer, K.: A self-organized, fault-tolerant and
scalable replication scheme for cloud storage. In: SOCC (2010)

5. Braun, L., Klein, A., Carle, G., Reiser, H., Eisl, J.: Analyzing caching benefits
for youtube traffic in edge networks - a measurement-based evaluation. In: NOMS
(2012)

6. Brodersen, A., Scellato, S., Wattenhofer, M.: Youtube around the world: geographic
popularity of videos. In: WWW (2012)

7. Buffoni, D., Calauzenes, C., Gallinari, P., Usunier, N.: Learning scoring functions
with order-preserving losses and standardized supervision. In: ICML (2011)

8. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender,
G.: Learning to rankusing gradient descent. In: Proceedings of the 22nd International
Conference on Machine Learning (2005)

9. Calauzenes, C., Usunier, N., Gallinari, P., et al.: On the (non-) existence of convex,
calibrated surrogate losses for ranking. In: Neural Information Processing Systems
(2012)

10. Chang, L., Pan, J.: Towards the optimal caching strategies of peer-assisted VoD
systems with HD channels. In: ICNP (2012)

11. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
12. Croft, W.B., Metzler, D., Strohman, T.: Search Engines: Information Retrieval in

Practice. Addison-Wesley, Reading (2010)
13. Dobrian, F., Sekar, V., Awan, A., Stoica, I., Joseph, D., Ganjam, A., Zhan, J.,

Zhang, H.: Understanding the impact of video quality on user engagement. In:
SIGCOMM (2011)

14. Figueiredo, F., Benevenuto, F., Almeida, J.M.: The tube over time: characterizing
popularity growth of youtube videos. In: WSDM (2011)

15. Finamore, A., Mellia, M., Munafò, M.M., Torres, R., Rao, S.G.: Youtube every-
where: impact of device and infrastructure synergies on user experience. In: IMC
(2011)

16. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction: With 200 Full-Color Illustrations.
Springer, New York (2001)

17. Huang, C., Li, J., Ross, K.W.: Can internet video-on-demand be profitable? In:
SIGCOMM (2007)

18. Huang, Y., Fu, T.Z., Chiu, D.-M., Lui, J.C., Huang, C.: Challenges, design and
analysis of a large-scale P2P VoD system. In: Sigcomm (2008)

19. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques.
ACM TOIS 20, 422–446 (2002)

20. Jin, S., Bestavros, A.: Popularity-aware greedy-dual-size web proxy caching algo-
rithms. In: ICDCS (1999)

21. Liu, X., Dobrian, F., Milner, H., Jiang, J., Sekar, V., Stoica, I., Zhang, H.: A case
for a coordinated internet video control plane. In: SIGCOMM (2012)

22. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

23. Mansy, A., Ammar, M.H.: Analysis of adaptive streaming for hybrid CDN/P2P
live video systems. In: ICNP (2011)

24. Montresor, A., Jelasity, M.: PeerSim: a scalable P2P simulator. In: P2P (2009)
25. Parvez, N., Williamson, C., Mahanti, A., Carlsson, N.: Analysis of bittorrent-like

protocols for on-demand stored media streaming. In: SIGMETRICS (2008)

58 G. Silvestre et al.

26. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in Python. JMLR 12, 2825–2830 (2011)

27. Shen, H.: An efficient and adaptive decentralized file replication algorithm in P2P
file sharing systems. IEEE Trans. Parallel Distrib. Syst. 21, 827–840 (2010)

28. Silvestre, G., Fernandes, S., Kamienski, C., Sadok, D.: Most wanted internet appli-
cations: a framework for P2P identification. In: CNSR (2010)

29. Silvestre, G., Monnet, S., Krishnaswamy, R., Sens, P.: Aren: a popularity aware
replication scheme for cloud storage. In: ICPADS (2012)

30. Silvestre, G., Monnet, S., Krishnaswamy, R., Sens, P.: Caju: a content distribution
system for edge networks. Technical report, UPMC Sorbone Universités (2012)

31. Steinwart, I.: How to Compare different loss functions and their risks. Constr.
Approx. 26, 225–287 (2007)

32. Bittorrent. http://bittorrent.com
33. Szabo, G., Huberman, B.A.: Predicting the popularity of online content. Commun.

ACM 53, 80–88 (2010)
34. Wilson, C., Ballani, H., Karagiannis, T., Rowstron, A.: Better never than late:

meeting deadlines in datacenter networks. In: SIGCOMM (2011)
35. Zhang, T.: Statistical behavior and consistency of classification methods based on

convex risk minimization. Ann. Stat. 32(1), 56–134 (2004)

http://bittorrent.com

A Cloud-Based, Geospatial Linked
Data Management System

Kyriakos Kritikos1(B), Yannis Rousakis1, and Dimitris Kotzinos1,2

1 Information Systems Laboratory, Institute of Computer Science,
Foundation of Research and Technology - Hellas (FORTH),

N. Plastira 100, 700 13 Heraklion, Crete, Greece
{kritikos,rousakis,kotzino}@ics.forth.gr

2 Lab. ETIS (ENSEA/UCP/CNRS UMR 8051),
Department of Computer Science, University of Cergy-Pontoise,

2 av. Adolphe Chauvin, 95000 Pontoise, France

Abstract. The Web has been evolving to a sink of disparate informa-
tion sources which are totally isolated from each other. The technology
of Linked Data (LD) promises to connect such information sources in
order to enable their better exploitation by humans or automated pro-
grams. While various LD management systems have been proposed, only
few of them are able to handle geospatial data which are becoming quite
popular nowadays and lead to the creation of large geospatial footprints.
However, none of the few systems that support Linked Open Geospa-
tial Data is able to scale well to handle the increasing load from user
queries. In addition, the publishing of geospatial LD also becomes quite
advantageous due to complexity reasons. To this end, this article pro-
poses a novel, cloud-based geospatial LD management system which can
scale out or scale in according to the incoming load in order to serve
the respective user requests with the appropriate service level. On top
of this system lies a LD-as-a-service offering which abstracts away the
user from any LD publishing complexities and provides all the appro-
priate functionality for enabling a full LD management. We also study
and propose architectural solutions for the distributed update problem.
The proposed system is evaluated under heavy load scenarios and the
results show that the respective improvement in performance incurred
is quite satisfactory and that the scaling actions are performed at the
appropriate time points.

1 Introduction

While the Web is evolving extremely in many aspects and gets evens bigger, it
still lacks mechanisms through which disparate but related information sources
can be queried to obtain particular data for the current user task at hand. In fact,
this is one of the major disadvantages of the Web which leads to user frustration
as well as to many isolated islands of information which although related cannot
be easily connected.
c© Springer-Verlag Berlin Heidelberg 2015
A. Hameurlain et al. (Eds.): TLDKS XX, LNCS 9070, pp. 59–89, 2015.
DOI: 10.1007/978-3-662-46703-9 3

60 K. Kritikos et al.

The technology of Linked Data (LD) promises to remedy the above problem
by enabling data to reference other data and be linked to them. In this sense,
a user query targeting different information islands can be able to discover all
needed information by exploiting the links between these islands. However, the
big problem with LD technology is that it has not reached the performance levels
and maturity of the traditional database technology. In addition, by also consid-
ering that users are increasingly providing a geospatial aspect to the description
of the information that they publish (e.g., consider that images taken by various
devices are now tagged with geospatial information), another problem is raised
concerning the efficient evaluation of respective geospatial queries by exploiting
the LD technology.

The current LD management systems are making good progress towards solv-
ing the above problems with commercial LD engines such as Virtuoso1 reaching
a good level of performance by exploiting different storing techniques at the
physical level (e.g., no-sql-like solutions). However, such systems are not able
to handle all possible cases in geospatial information management. In addition,
they cannot reach good performance levels for all possible types of queries. They
are also not very scalable unless the user pays a great amount of money so that
particular clustered or cloud-based versions of these systems is exploited to guar-
antee a certain scalability level. Finally, usually such systems enforce the user to
handle low-level details inherent to the LD technologies used.

In the context of the InGeoCloudS project (www.ingeoclouds.eu), a LD Man-
agement System (LDMS) has been developed which provides satisfactory query
performance levels and supplies a Linked Data Management API/service which is
language independent and hides the complexities of the LD technology from the
end-user. This API also provides particular functionality which is able to manage
not only normal but also geospatial LD in terms of storing, updating, querying
and exporting them. Moreover, this API also provides the functionality of export-
ing INSPIRE-compliant data which is a feature highly important for geospatial
data providers if we consider the current and future INSPIRE2 directives. In this
paper, apart from analysing the functionality of the API and its most important
features, we will also describe in detail the cloud-based architecture of the LDMS
which enables it to be quite scalable and able to supply appropriate quality levels
to the normal or geospatial queries posed. The latter is proven through a thor-
ough empirical evaluation which also partially justified particular features of the
architecture proposed as well as the scalability policies enforced.

The rest of the article is structured as follows. Section 2 reviews related work.
Section 3 provides background knowledge useful for the proper comprehension
of the article and its proposed system. Sections 4 and 5 analyse the proposed
system and in particular the functional and architectural extensions made to
its previous and more limited version. Section 5 presents and discusses empirical
evaluation results with respect to the query performance of the proposed system.
Finally, Sect. 6 concludes the article and draws directions for further research.
1 http://virtuoso.openlinksw.com/.
2 http://inspire.jrc.ec.europa.eu/.

http://www.ingeoclouds.eu
http://virtuoso.openlinksw.com/
http://inspire.jrc.ec.europa.eu/

A Cloud-Based, Geospatial Linked Data Management System 61

2 Related Work

To the best of our knowledge, there is no geospatial data management sys-
tem that is scalable, supplies high performance levels and provides all appropri-
ate management functionality in a LD technology-independent way. Our claim
is backed up by the following table which classifies and compares the related
approaches with respect to particular comparison criteria. These criteria include:

– distribution: a characterization of whether the approach is centralized, clus-
tered or cloud-based which is related to the approach capability to scale in
order to exhibit better performance levels.

– store type: the type of store (i.e., research (and open) or proprietary) which
can have an influence on the cost of the respective approach based on the
required capabilities.

– geospatial support: indicates the level of geospatial support provided by the
approach (i.e., none, basic and advanced), where the difference between a basic
and advanced support is that the second enables the use of more advanced
geospatial operators, such as (feature) aggregation operators.

– service level: indicates the level of the services offered (i.e., RDF query or full
management services). Obviously, a full management service level is preferred
as the additional effort in adapting a particular approach selected will be
minimal.

– input mapping: indicates the capability of the approach to map input data of a
different form to RDF ones (i.e., none, relational and multiple input formats).
This is a very interesting and important aspect, especially if we consider the
current form of the Web and the need for transforming data from various
formats into RDF ones. Thus, a data mapping approach supporting multiple
input formats will be preferred. Please note that as the relational mapping is
the most involved one, especially in terms of realization, an approach is evalu-
ated as supporting multiple input formats when it supports at least relational
mapping along with the mapping from one or more additional formats. Please
consider that such kind of mapping might also be used for doing on the fly
SPARQL to SQL rewritings so that we can query the original data sources.

As it can be seen from Table 1, our approach is the sole approach evaluated
with the best possible choice for each criterion. Next comes Oracle with two
particular disadvantages with respect to our approach: (a) it is a proprietary
solution and (b) does not support the mapping of data from various formats
to RDF. Virtuoso is another good alternative, which apart from being propri-
etary has the disadvantage of providing only basic geospatial support. Another
possibility is the Strabon RDF store which however does not offer a data input
mapping functionality. The worst approaches seem to be the cloud/clustered
research ones which do not provide geospatial and full RDF management sup-
port as well as input mapping functionality. This seems quite reasonable if we
consider the fact that such approaches have been developed to showcase how
Cloud-based technologies can be exploited to boost the query answering time.

62 K. Kritikos et al.

Table 1. Comparison analysis of related work

Approach Distribution Store Geospatial Service Input

type support level mapping

Hausenblas [13] cloud research none query none

Stein and Zacharias [20] cloud research none query none

Bugiotti et al. [2] cloud research none query none

Ladwig and Harth [12] cloud research none query none

Guéret et al. [6] clustered/cloud research none query none

Yars2 [7] clustered research none query none

Mika and Tummarello [14] clustered research none query none

Tanimura et al. [22] clustered research none query none

Husain et al. [9] clustered research none query none

Sun and Jin [21] clustered research none query none

Papailiou et al. [17] clustered research none query none

Franke et al. [4] clustered research none query none

Ravindra et al. [18] clustered research none query none

Newman et al. [16] clustered research none query none

Dydra cloud proprietary none management none

AllegroGraph clustered/cloud proprietary basic management none

BigData clustered proprietary none management none

OWLIM clustered/cloud proprietary basic management none

Virtuoso clustered/cloud proprietary basic management multiple

Oracle clustered/cloud proprietary advanced management relational

Strabon [11] centralized research advanced management none

RDF-3X [15] centralized research basic management none

Parliament [1] centralized research basic management none

Yago2 [8] centralized research basic management none

TDB centralized research none management none

Our approach cloud research advanced management multiple

In the following, we analyze the related work by also clustering it accord-
ing to its distribution capability into different groups mapping to separate sub-
sections. We should also highlight Geoknow (http://www.geoknow.eu/project)
as an interesting project focusing on addressing the whole management life-cycle
of open geo-spatial LD and supporting the respective SDI standards. However,
this project does not focus on scalability, elasticity and reliability issues.

2.1 Distributed Approaches

In this category, the related work relies on a distributed approach which is either
realized in a cluster of machines or exploits cloud resources. In either type of real-
ization, the approaches attempt to split the data and computation across the
available machines or resources. However, the cloud-based approaches are bet-
ter as they can automatically scale indefinitely through the triggering of scaling

http://www.geoknow.eu/project

A Cloud-Based, Geospatial Linked Data Management System 63

rules while the clustered-based approaches are limited based on the size of the
underlying data centre (if it really exists) as well as they need additional effort in
terms of development of the respective tools to enable automated scaling. More-
over, Cloud-based approaches exhibit good query performance levels which are
far better than those exhibited by clustered approaches. In both types of real-
ization, we also see either the use of well-known proprietary RDF management
systems or customed and special-purpose (research-based) RDF Stores with, how-
ever, limited capabilities, such as the partial support of the standard LD query
language SPARQL3. All research approaches do not offer any geo-spatial support.
They also do not provide web or REST [3] services [19] through which a user
can exploit the functionality provided. The well-known proprietary RDF stores
do provide basic geo-spatial functionality as well as SPARQL end-points along
with other services and APIs to enable the appropriate LD management. How-
ever, they do not usually enable the automatic mapping between relational and
RDF data which is a critical feature for enabling the benefits that LD technology
brings about by transforming data in their original, relational form to LD.

Research Approaches. BigQuery4 is a web service running on the Google
Cloud that enables performing SQL-like queries and interactive analysis on mas-
sive data sets typically using a small number of very large, append-only tables.
To enable the semantic aspect, Dr. Hausenblas [13] has extended BigQuery with
the capability to load RDF/N-Triples content and query this content using Big-
Query’s syntax.

Stein and Zacharias [20] have developed the Stratustore prototype system
which acts as a back end for the Jena semantic framework and stores LD in
SimpleDB. The queries are realized through TripleMatch objects and exploit a
particular entity-oriented mapping where one item represents the data known
for a particular subject and the attributes map to the subject URI and to the
predicates which are related to this subject.

Bugiotti et al. [2] have implemented a research prototype in the Amazon
Cloud where RDF files are stored in the Amazon Simple Storage Service and
SimpleDB is used for indexing purposes. Four different indexing strategies have
been realized which were evaluated for different types of queries to assess the
most prevailing one.

Ladwig and Harth [12] have developed a research LD storage and querying
prototype which exploits distributed key-value stores and especially Cassandra.
This prototype has realized two alternative storage schemes: (a) a hierarchical
layout scheme based on supercolumns and (b) a flat layout scheme. The flat
scheme was empirically assessed to lead to a better triple pattern query time.

The TripleCloud RDF management system [6] can exploit two cloud-based key
value stores: (a) HBase5 and (b) Google App Engine Datastore as the data layer
on top of the eRDF framework [5] by relying on the fact that these stores provide
common methods which map directly to the primitives required by eRDF.
3 http://www.w3.org/TR/2013/REC-sparql11-query-20130321/.
4 https://cloud.google.com/bigquery/.
5 http://hbase.apache.org/.

http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://cloud.google.com/bigquery/
http://hbase.apache.org/

64 K. Kritikos et al.

Yars2 [7] is a federated semantic search engine for performing interactive
query answering over heterogeneous LD collected from many disparate Web
sources. The local indexing scheme adopted comprises: (a) keyword indices based
on Apache Lucene to enable keyword lookups, (b) full quad sparse indices, and
(c) join indices to speed up queries. For global-based indexing, three partitioning
methods are employed to decide on the node where a particular quad will be
indexed.

Mika and Tummarello [14] have produced a research prototype in the form
of a back-end for the Sesame Triple Store which exploits Pig to load and query
RDF data, where RDF loading is performed by converting RDF to Pig’s data
model.

Tanimura et al. [22] have implemented a scalable RDF data processing frame-
work which exploits parallel database processing over the Google File System
(GFS). Hadoop is used as the basic infrastructure based on GFS and MapReduce
while Pig is used as the data processing platform. For efficient RDF querying,
a particular RDF storage scheme which combines vertical partitioning with the
Hadoops key-value data format was adopted.

Husain et al. [9] have developed a scalable and fault-tolerant framework which
exploits a particular scheme for storing RDF Data in the Hadoop File System
and supports data intensive query processing.

A RDF storage and querying prototype system has been implemented in [21]
based on MapReduce and HBase. The realized storage scheme employs six HBase
tables to cover all RDF triple pattern combinations, while triples are indexed
through the HBase index structure on row key.

A distributed RDF prototype store is presented in [17] based on MapReduce
and HBase. The storage scheme employs three indices to cover particular triple
pattern combinations stored in HBase tables in the form of key-value pairs.

Franke et al. [4] have implemented a prototype with two different distributed
RDF storage schemes based on HBase and MySQL Cluster, respectively. The
HBase database schema relies on creating two tables for storing RDF triples,
while the MySQL-based scheme relies on a simple table which has as columns
the triple subjects, predicates and objects, respectively.

An extension of the RAPID prototype system is proposed in [18] which relies
on Pig and Hadoop and exploits PigLatin as the high-level language to support
ad-hoc processing and querying over large data-sets.

An RDF molecule-based store has been realized in [16] by exploiting Hadoop
to scale-out the distributed query processing. A number of extensions with
respect to molecule hierarchy and structure are proposed to the initial mole-
cule definition to resolve particular query performance issues.

Proprietary Approaches. Dydra6 is a multi-tenant, cloud-based graph data-
base deployed on the Amazon Cloud, which exhibits various features, such as
versioning and disaster recovery. RDF data are stored as a property graph which
directly represents the relationships between them.
6 www.dydra.com.

http://www.dydra.com

A Cloud-Based, Geospatial Linked Data Management System 65

AllegroGraph7 is a high-performance, persistent graph database which effi-
ciently utilizes memory in conjunction to disk-based storage to scale to billions of
quads without compromising performance. It is offered via standalone, clustered
and cloud-based versions. It fully supports SPARQL, exploits 7 indices for triple
storage and exhibits advanced text indexing per predicate, while a column-based
compression of indices is also imposed for reduced paging and better perfor-
mance. Concerning the geo-spatial support, it provides a novel mechanism for
efficient storage and retrieval of 2D geo-spatial data by also supporting both
Cartesian and spherical coordinate systems.

BigData8 is a horizontally scaled storage and computing fabric featuring
high concurrency and high aggregate I/O rates. It is offered in a standalone or
clustered mode. It includes a RDF database which supports RDFS and performs
distributed operations on a cluster with dynamic key-range sharding of indices.
This database also supports full-text indexing suitable for entity matching and
integration hooks for full text search and indexing using Lucene. Basic geospatial
support has been recently advertized through the creation of a new geospatial
index and the use of one and many Z-values for points and regions, respectively.

OWLIM9 is a family of semantic repositories which exploit native RDF
engines developed in Java as well as Sesame and Jena for RDF management
and guaranteeing high-performance levels. It is offered via different versions: a
standalone, a clustered and a cloud-based one. The clustered version of OWLIM
(OWLIM-SE) exploits file-based indices in order to scale to billions of state-
ments. A literal index is also built for faster lookups of numeric and date/time
object values, while index compression can also be switched on. OWLIM-SE
supports 2D spatial data which use the WGS84 Geo Positioning RDF Vocab-
ulary, while R-Tree indices are created for these data to allow the evaluation
of particular query types which exploit particular topological relation functions.
Only spherical Coordinate Reference Systems (CRSs) are supported.

Virtuoso10 is a middleware and database engine hybrid combining the func-
tionality of R/ODBMS, RDF Stores, and Web Application and File Servers. It
is offered via three variants: (a) standalone, (b) clustered, and (c) cloud-based.
The current version of Virtuoso employs a column-based indexing scheme. Two
main indices are created on RDF data as well as three partial indices. Strings
are given a unique Integer ID to save space but also to keep a full text index of
them. Geometries are represented as object values in an RDF quad conforming
to the WKT vocabulary and are indexed through R-Trees. Only 2D geometries
are currently supported.

Oracle11 provides an open, scalable, secure and reliable RDF management
platform called Oracle Spatial and Graph RDF Semantic Graph. Oracle performs
7 www.franz.com/agraph/allegrograph/.
8 www.systap.com/bigdata.htm.
9 www.ontotext.com/owlim&www.ontotext.com/owlim/geo-spatial.

10 http://virtuoso.openlinksw.com.
11 http://www.oracle.com/technetwork/database-options/spatialandgraph/overview/

rdfsemantic-graph-1902016.html.

http://www.franz.com/agraph/allegrograph/
http://www.systap.com/bigdata.htm
http://www.ontotext.com/owlim&www.ontotext.com/owlim/geo-spatial
http://virtuoso.openlinksw.com
http://www.oracle.com/technetwork/database-options/spatialandgraph/overview/rdfsemantic-graph-1902016.html
http://www.oracle.com/technetwork/database-options/spatialandgraph/overview/rdfsemantic-graph-1902016.html

66 K. Kritikos et al.

semantic indexing by exploiting a particular index type which makes use of infor-
mation extractors and annotators to semantically index documents in relational
tables. Oracle exhibits advanced data manipulation and spatial analysis features
including a whole portfolio of functions for spatial data mining, geometric unions
and intersections, and linear inferencing. It also includes a GeoRaster datatype to
store and manage image and gridded raster data and meta-data. 3D geo-spatial
data are supported to enable the storage and management of lines, surfaces,
triangulated irregular networks, point clouds, and terrain models. Such data are
indexed through R-Tree indices. Oracle considers the Whole Earth geometry
model to take into account the curvature of Earths surface when performing cal-
culations on geodetic data, supports over 30 of most commonly used distance and
area units, and provides comprehensive tools for managing CRSs and respective
projections based on the European Petroleum Survey Group model and data set.

2.2 Centralized Approaches

Some centralized approaches, such as Strabon [11], offer good geo-spatial sup-
port in terms of: (a) geo-spatial operators that can be used in GeoSPARQL
(http://www.opengeospatial.org/standards/geosparql) queries and (b) special-
ized indices as well as query evaluation/optimization methods. Such approaches
also provide a SPARQL end-point to be used for basic RDF data management.
Moreover, they have shown good performance in evaluating particular types
of geo-spatial queries. We should highlight here that no thorough performance
evaluation of geo-spatial queries has been conducted in the cloud. This could be
utilized to assess whether cloud capabilities are indeed exploited by RDF Stores
which adopt a cloud-based architecture to become more scalable.

Strabon [11] is an open-source, geo-spatial RDF store prototype which exploits
Sesame and PostGIS. It is able to exploit both the WKT and GML vocabularies
for the representation of 2D geometries and offers functions from the OpenGIS
Simple Feature Access for SQL OGC standard to manipulate spatial literals
and provide support for multiple CRSs. The RDF triples are stored using the
one table per predicate scheme of Sesame and dictionary encoding. The spatial
literals are stored in a table with a particular schema accommodating for an id
column, which represents the unique encoding of a spatial literal based on the
mapping dictionary, as well as a value column with a PostGIS geometry data
type for storing the geometry determined by the spatial literal and a srid column
to store the original CRS of the geometry.

Parliament [1] is an open-source RDF triple store which exploits a particular
storage and indexing scheme based on linked lists and memory-mapped files.
A particular extension to Parliament has been developed to enable the indexing
of geospatial data and the evaluation of GeoSPARQL queries. Three indices are
employed for geo-spatial data: (a) a R-Tree index, (b) a temporal index, and
(c) a basic numeric index for optimizing range queries on numeric data types.
Both WKT and GML are supported for representing geometries.

http://www.opengeospatial.org/standards/geosparql

A Cloud-Based, Geospatial Linked Data Management System 67

RDF-3X [15] is a complete, open-source RDF management system based
on three key principles: (a) physical design is workload independent, (b) query
processor is RISC-style relying on merge joins, and (c) the query optimizer
focuses on join order for the generation of plans. RDF-3X stores all triples in a
clustered B+-tree. RDF-3X models 2D spatial data through WKT and indexes
them via R-Trees.

YAGO2 [8]12 is an extension of the YAGO Knowledge Base enabling the
modeling of entities, facts and events according to the additional aspects of time
and space. Time is represented via the yagoDate data type typically with a
resolution of days or sometimes in years. All entities with a permanent spatial
extent on Earth are subsumed by the yagoGeoEntity class. The position of such
entities is described via geographical coordinates expressed via a special data
type called yagoGeoCoordinates which is a pair of latitude and longitude values.
As this is quite restricting for locations with a physical extent, particular rules
are exploited in order to assign a specific position for particular location types,
such as cities or military and industrial establishments. Special types of spatial
relations are exploited to express a permanent location of an entity, to associate
facts with the location they concern, and to express relations between time and
location.

TDB13 is part of Jena for RDF storage and querying and can be used as a
high performance store on a single machine which can be accessed either through
scripts or programmatically via the Jena API. The indexing scheme of TDB com-
prises: (a) a node table (dictionary) storing the representation of RDF terms,
(b) three full triple and quad indexes for unnamed and named graphs, respec-
tively and (c) the prefixes table which uses a node table and a index for GPU.

3 Background

In our previous work [10], we have developed a similar system to the one being
proposed in this article for which the basic components were analysed. The
added-value and advancement of this article lies on the fact that a better system
architecture has been adopted which takes into account the current and prospec-
tive usage of the system and is able to scale appropriately in such a way that
the query performance remains at satisfactory levels while the updating of LD
is carried out in a lazy fashion by considering the fact that such updating does
not jeopardise the integrity of the application running on top of the system as
well as does not deteriorate the system’s performance. In addition, the exposed
functionality of the system has been extended to also handle geospatial LD as
well as different publishing and exporting ways. Moreover, in comparison to pre-
vious work, the system has been heavily tested and evaluated to indicate that it
exhibits the desired performance under the most extreme situations.
12 www.mpi-inf.mpg.de/yago-naga/yago/.
13 http://jena.apache.org/documentation/tdb.

http://www.mpi-inf.mpg.de/yago-naga/yago/
http://jena.apache.org/documentation/tdb

68 K. Kritikos et al.

In order to acquaint the prospective user with our previous work and cor-
responding system version, the next subsections analyse the previous system
architecture and its main basic components.

3.1 Previous System Architecture

The architecture of the previous version of the system, shown in Fig. 1, comprised
a component called Distributor responsible for processing user requests in terms
of Linked Data Management Service (LMS) methods and then forwarding each
request to one or more Scaling Layers. The latter components were responsible
for the management of data pertaining to one or more data providers (and thus
corresponding RDF graphs) such that data partitioning among different layers
and replication at same layer was achieved in order to sustain a high-level of data
reliability and integrity. Each scaling layer consisted of many image instances,
called just instances from now on, each exposing the basic system functionality
in terms of LD Management and containing a LMS implementation and an
underlying Virtuoso Universal Server exploited by this service. Each scaling layer
was responsible of forwarding a user query or export request to one instance,
thus catering for load balancing, and all update requests to all instances to
guarantee that all such instances were mapping to the same RDF data. As LMS
and Virtuoso constitute the backbone of our system providing the basic LD
management functionality exposed by it, they are analysed in the following two
subsections.

3.2 LD Management Service

The two variants of our system rely on Virtuoso as the back-end triple store. While
Virtuoso offers a SPARQL end-point, a REST-based Service called LMS was devel-
oped which exposes an API that provides all appropriate management function-
ality to be exploited by data providers and potential users of geo-spatial Linked
Open Data (LOD). This service abstracts way from the particularities of any RDF
Data Management API exposed by an underlying triple store and enables the
simple and intuitive use of a specific set of LOD management methods. In fact,
with little re-engineering effort (mostly concerning connection peculiarities), LMS
could well function with a different underlying store. LMS allows a programmatic
as well as a web-based access to its methods, where the web-based access can be
facilitated through the development of particular forms accessible via a browser in
a specific URL. Moreover, LMS exposes a querying capability that allows produc-
ing results in the following formats: “sparql-results/xml”, “sparql-results/json”,
“sparql-results/tsv” and “sparql-results/csv”14. In addition, importing and

14 xml → http://www.w3.org/TR/rdf-sparql-XMLres/.
json → http://www.w3.org/TR/2013/REC-sparql11-results-json-20130321/.
csv and tsv → http://www.w3.org/TR/2013/REC-sparql11-results-csv-tsv-20130
321/.

http://www.w3.org/TR/rdf-sparql-XMLres/.
http://www.w3.org/TR/2013/REC-sparql11-results-json-20130321/.
http://www.w3.org/TR/2013/REC-sparql11-results-csv-tsv-20130321/
http://www.w3.org/TR/2013/REC-sparql11-results-csv-tsv-20130321/

A Cloud-Based, Geospatial Linked Data Management System 69

Fig. 1. The previous architecture of the LD Management System

exporting functionality is exposed which can handle a variety of LD formats,
such as RDF/XML, NTriples15, and Turtle16.

LMS exposes the following methods:

– ldquery: It takes as input the SPARQL query as a String and optionally a time-
out and row limit parameters and returns the result in the format requested
by the user.

– ldupdate: Similarly to ldquery, this method takes as input a SPARUL (SPARQL
1.1 Update Language17) update statement (along with the same optional para-
meters) and applies/executes it.

– addR2RMLMappings: It takes as input the mapping specified as String in
R2RML (RDB to RDF Mapping Language18), which is a W3C Recommen-
dation that aims at enabling the description of customized mappings between
a relational database and RDF datasets, as well as the name of the graph
to be created and initiates the relational-to-linked data mapping procedure
offered by Virtuoso Triple Store.

– ldexport: It exports either a complete graph or a set of statements, which
involve from zero to at most three URIs (pertaining to the URIs of subject,

15 http://www.w3.org/2001/sw/RDFCore/ntriples/.
16 http://www.w3.org/TR/turtle/.
17 http://www.w3.org/TR/sparql11-update/.
18 http://www.w3.org/TR/r2rml/.

http://www.w3.org/2001/sw/RDFCore/ntriples/
http://www.w3.org/TR/turtle/
http://www.w3.org/TR/sparql11-update/
http://www.w3.org/TR/r2rml/

70 K. Kritikos et al.

predicate and object in a RDF triple) provided as parameters, in the format
requested. The exporting result is inline in the response.

– ldimport: Apart from the indirect importing imposed by a specific relational-to-
LD mapping (see addR2RMLMappings method), a data provider can directly
import RDF data into the system through the use of this method. To this end,
the RDF data to be imported are either inline in the request or a URL must
be provided from which they can be fetched. Import execution can be blocking
or non-blocking, where the size of the imported data can be the determinant
factor in the selection of one of these two import types.

– import status: When a non-blocking import request has been made by a data
provider, the status of the respective import can be inquired through calling
this method.

Each method is accessed via a specific URL (which has the same prefix
but just the postfix is modified to match the name of the method – e.g., for
ldquery, the URL is: https://portal.ingeoclouds.eu/ingeoclouds-api/linkeddata/
rest/ld/ldquery). In case user input is wrong, meaningful exception messages
are returned to the user (e.g., wrong SPARQL syntax). A user-friendly doc-
umentation of LMS has been produced in HTML format via Enunciate and is
accessible in a specific URL19. Enunciate was also exploited to produce the inter-
face definition documents (WADL and WSDL) and the required XSD schemas.
LMS exploits the following java modules: (a) the Sesame RDF Data Manage-
ment API which provides bridge methods between a user application (which
is LMS in this case) and an underlying Triple Store, (b) the Virtuoso’s JDBC
driver (for properly exploiting Virtuoso via the Sesame API), and (c) Jersey (for
REST-based realization of LSM).

3.3 Virtuoso Universal Server

Virtuoso Universal Server is a hybrid of a database engine and a middleware
which combines the functionality of a traditional RDBMS, an ORDBMS, a RDF-
Store, a virtual database, a web application server and a file server. It maps to a
single-threaded server process supporting multiple Web and Internet protocols,
such as HTTP, HTTPs, WebDav, SOAP, UDDI, SPARQL and SPARUL. More-
over, for enabling the development of database-based applications and system
integration, Virtuoso has implemented a wide variety of industry standard data
access APIs, such as ODBC, JDBC, OLE DB, and ADO .NET. Virtuoso Uni-
versal Server can be exploited either in a standalone, clustered or cloud-based
manner. As the latter two exploitation ways are not free, we have relied on the
first one to build our system and have realized update synchronization mecha-
nisms to enable its transformation into a clustered set of Triple Stores via also
exploiting cloud-based technologies.

Virtuoso supports not only the querying and updating of LD through the
SPARQL language but also their complete management by offering various low-
level SQL functions that can be exploited. In addition, from version 7 and on,
19 https://portal.ingeoclouds.eu/ingeoclouds-api/linkeddata/.

https://portal.ingeoclouds.eu/ingeoclouds-api/linkeddata/rest/ld/ldquery
https://portal.ingeoclouds.eu/ingeoclouds-api/linkeddata/rest/ld/ldquery
https://portal.ingeoclouds.eu/ingeoclouds-api/linkeddata/

A Cloud-Based, Geospatial Linked Data Management System 71

Virtuoso enables the representation of features in a two-dimensional space, by
realizing a new geometry data type (virtrdf:Geometry) and a corresponding
R-Tree index, and in this way allows the use of spatial operators (actuall SQL
MM functions) in SQL and SPARQL queries20. This feature was proprietary in
the version 6 of Virtuoso that was exploited by our previous work but it can now
be fully exploited in our new version of the LD Management system proposed
in this article. As it will be seen in the next section, through this new feature,
the user has now the capability to perform geospatial queries in two different
ways, where the inline Virtuoso way has a better performance but lacks particu-
lar geospatial functionality. In this way, the user has the ability to choose one of
these two ways depending on the desired geospatial functionality to be exploited
in the respective queries and his/her query performance requirements.

Fully supporting a set of geospatial functions is not common in the corre-
sponding systems. The available standards like GeoSPARQL are rather young
and the respective systems offer limited support, as discussed also in the previ-
ous sections. Virtuoso on the other hand provides a very good infrastructure to
extend and build our own functionalities.

4 LD Management Service Extensions

While the initial functionality of LMS focused mainly on providing basic LD
management functionality, it became apparent that there was a need for also
appropriately handling the special LD type of geospatial data. Apart from this,
additional importing requirements were set based on the feedback from particu-
lar data providers in the InGeoCloudS project, while some performance problems
were identified due to the use of Strings as the main representations of the LMS
methods’ input and output (I/O). Moreover, due to the fact that it is imposed
that the INSPIRE directives should be embraced by data providers until 2020, it
was also decided to realize INSPIRE exporting functionality for the LD stored.
To this end, LMS was extended according to the following aspects: (a) addi-
tional methods were introduced which enable the management of geospatial LD,
(b) an additional import method was introduced, (c) methods for exporting LD
in INSPIRE format were implemented and (d) the handling of I/O now occurs
via java streams. The additional methods realized are the following:

– geoldquery: This method is similar to ldquery but allows the issuing of
GeoSPARQL queries instead of SPARQL ones. The realization of this method
relied on the exploitation of the USeekM framework21.

– geoldtransform: This method can be used to transform (Geo)SPARQL results
of any format into a feature collection representation format, such as GML22

and KML23. As some of these formats enable a direct representation of the
20 http://docs.openlinksw.com/virtuoso/rdfsparqlgeospat.html.
21 https://dev.opensahara.com/projects/useekm.
22 http://www.opengeospatial.org/standards/gml.
23 http://www.opengeospatial.org/standards/kml.

http://docs.openlinksw.com/virtuoso/rdfsparqlgeospat.html
https://dev.opensahara.com/projects/useekm
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/kml

72 K. Kritikos et al.

results in a map-based GUI, this along with the previous method constitute
added-value functionality useful for building geospatial applications.

– INSPIRE export: Thismethod canbe used to export theLD stored in INSPIRE.
The input required for this method is the geospatial theme for which the
data need to be exported as well as a set of SPARQL FILTER constraints
which impose filtering conditions on the data to be returned. Internally, each
theme is mapped to a particular SPARQL query which is first joined with
the FILTER constraints and then issued to the underlying store. The results
obtained are mapped to INSPIRE based on a particular mapping from the
geo-scientific spatial observation model (GSOM) [10] to INSPIRE. GSOM
has been proposed at the conceptual level as a means to integrate the various
information sources involved in the InGeoCloudS project and as well as an
information model that complements INSPIRE in particular aspects, such as
the complete modelling of events and geo-scientific activities. To this end,
the GSOM-to-INSPIRE mapping involved in the realization of this method is
incomplete due to the fact that some GSOM information is not included in
INSPIRE.

– inspire query export: This method is also able to export LD in INSPIRE for-
mat. The difference with respect to the previous method lies on the fact that a
direct (Geo)SPARQL query is provided by the user which is used to fetch the
SPARQL results and then transform them into the INSPIRE format. Inter-
nally, the method is able to recognize the theme(s) involved in the query as
well as the mappings from SPARQL variables to GSOM entities and based on
these to perform the LD to INSPIRE transformation.

– theme query info: This method takes as input the name of one theme and
returns to the user useful information that can be used to invoke one of
the previous INSPIRE export methods. The information returned includes
the exact SPARQL query issued as well as the names of the variables that
can be filtered along with a short description of their semantics and their
domain of values. Through this information, the user can understand which
filtering conditions suit his/her needs and then use them either to invoke the
inspire export along with the theme name or the inspire query export method
via joining the theme’s SPARQL query with the desired filtering conditions
and using the result as input to this method.

– addXSLMappings: this method can be used to indirectly import the data of a
provider into the underlying triple store through exploiting as input an XSLT
specification which indicates the way the provider’s XML-based data can be
transformed into RDF ones.

The last method completes the import capabilities of the LMS which relieve
the user from the peculiarities of the publishing process by also enabling him/her
to provide the less possible input and can cater for different LD publishing
cases: (a) the provider directly imports the LD him/herself and has the direct
control of what is imported. If his/her data are not in LD form, then obviously a
transformation is needed. This publishing way is appropriate when the provider’s
original data are in LD form or when he/she desires to transform a portion of

A Cloud-Based, Geospatial Linked Data Management System 73

his/her original data and have it published in the system (e.g., for privacy reasons
does not desire to publish all of his/her data); (b) the provider has relational data
and desires to import them into the system. An R2RML specification is then
defined and fed to the system which initiates the unidirectional relational-to-
LD mapping process that also caters for keeping the two different forms of data
synchronized. This automated publishing way is appropriate when the provider’s
data are in relational form and the provider has the capability to define an
R2RML specification. The data provider can control which data are transformed
and imported via the R2RML specification; (c) the provider has XML-based data
and needs to transform and store them in the system. This publishing way is
similar to the previous one with the following exceptions: not relational but XML
data are concerned, the XML data need to be provided inline in the respective
method request and the synchronization is not fully automated as new data need
to indirectly imported into the system by calling again the addXSLMappings
method.

5 Linked Data Management Architecture

5.1 Previous Architecture Drawbacks and Current Solutions

While the previous architecture is able to address well the need of storing a huge
amount of data as well as of performing load balancing in order to guarantee
a certain level of LD query/export performance, it suffers from the following
drawbacks: (a) it is quite costly as it includes many load balancing components
and even more image instances, (b) the query performance was not adequate
in the case of queries not targeting a particular RDF graph, as query results
from all scaling layers had to be collected and joined before being returned to
the user and (c) updating was performed across all instances of a particular
scaling layer, thus creating increased traffic in the system as well as increasing
the update execution time (which could also deteriorate query performance in
cases or domains where the update frequency is higher).

To resolve the above drawbacks, it was decided to rely on a more simplified
architecture which is less costly and draws additional resources only when really
needed. On the other hand, such an architecture provides the necessary sophisti-
cation to adequately handle the challenges of distributed operations. This deci-
sion also relied on the current and forthcoming patterns of system usage where it
is expected that the majority of user requests will require querying and exporting
functionality and not updating one. In fact, in all of the applications currently
supported by the system, the updating was performed sparsely and only in some
cases a little bit more frequent in terms of a few times per day (e.g., consider
that a set of earthquakes occurring at the same day in a certain country cannot
lead to a frequent and enormous updating of the data stored in the system).
By also considering that through testing it was observed that the performance
of Virtuoso was stable even for an increasing and huge amount of LD stored, it
was then decided that there was no need for partitioning the data into different
RDF Stores scattered in different instances.

74 K. Kritikos et al.

However, before sketching and then realizing the new architecture, it had to
be decided how to deal with the issue of updating as this was creating traffic to
the system if all Virtuoso servers involved in the instances had to be updated.
Furthermore, the problem of updating new instances to the most up-to-date RDF
content had to be resolved. To this end, it was decided: (a) to directly update
a Virtuoso server only in one instance, from now on called the master instance,
via LMS and propagate the changes only to the current instances running, from
now on called slave instances, in the load balancing component (which are of
course less than those used in the previous architecture) and (b) lazy update the
image used to create new slave instances, from now on called slave image, in a
timely fashion (e.g., every half an hour) and only when updates have previously
occurred after the previous image updating. While the first decision does not
totally remedy the first problem, we followed it by having in mind the fact that
the current (master and slave) instances should be up-to-date with respect to the
RDF content while new slave instances can be allowed to be a little bit out of date
as this does not jeopardize the proper functioning of the applications supported
by the system. Such lazy updating was rather a necessity by considering the fact
that image updating can take minutes and is costly so it cannot be performed
each time a single update is performed in the system.

The above decisions had to be properly backed up by the respective tech-
nologies exploited. On one hand, the free and latest version of Virtuoso does not
allow the updating of many Virtuoso servers that might form a certain cluster in
an automated way. Such an updating is a proprietary feature of all Virtuoso ver-
sions. To this end, we proceeded in developing our own mechanism for updating
the current running Virtuoso servers by exploiting the underlying SQL function-
ality of Virtuoso. In the first place, we created triggers on the master instance
that were used when the main RDF table of the respective Virtuoso server was
updated (i.e., the one named RDF QUAD) to update the Virtuoso servers in
the (running) slave instances. However, this ended up becoming quite slow as
the update was finished only when all Virtuoso servers were updated. To solve
this, we decided to follow a log-based approach where the triggers write into a
specific file what is updated (in the form of actual SQL statements) and then a
Java program consumes the entries of this log file and is responsible for updating
the remaining Virtuoso servers. This component, which is named as Updater, is
also responsible for updating the slave image only every half an hour and only
when an update has occurred after the last slave image updating. It exploits the
Amazon Web Services SDK for java (http://aws.amazon.com/documentation/
sdk-for-java/) to find out the IPs of the remaining Virtuoso instances as well
as perform the slave image updating. Through this solution, the LD updating
ends when the Virtuoso instance receiving the update request finishes processing
it; the Virtuoso servers of the slave instances are updated subsequently via the
Updater. As such, there is no actual delay in performing LD updating and we
allow for a small inconsistency until LD updating is propagated to the remaining
Virtuoso servers which, as already stated, is acceptable.

On the other hand, the (basic) load balancer (LB) offered by the currently
exploited cloud (Amazon EC2) does not offer the capability to route an update

http://aws.amazon.com/documentation/sdk-for-java/
http://aws.amazon.com/documentation/sdk-for-java/

A Cloud-Based, Geospatial Linked Data Management System 75

request to just one instance. On the contrary, each request is propagated in a
round-robin manner to only one instance belonging to the load balanced group.
Moreover, through experiments, we have also noticed that co-locating LMS with
Virtuoso created memory issues in cases of demanding queries and increased
query load as the container in which LMS was deployed required at least 2 GB
of main memory. To solve this problem, it was decided to use LMS as a first
entrance of user requests which will process them and then decide to connect:
(a) either to the Virtuoso residing at the master instance in case of update
requests or (b) to the Amazon Load Balancer which will redirect the connection
request to the next instance in the load balancing group in case of query or
export requests. This solution has the advantage that LMS can base its decision
upon the respective LMS method called and thus it is easy to implement the
connection policy to the appropriate Virtuoso instance. To not consume many
resources which are not actively exploited (i.e., in the case of infrequent updates
to the master instance), it was decided to include the master instance in the load
balancing group of Amazon LB which of course also includes one or more slave
instances that are inserted or removed from it in terms of particular scale-in
and scale-out policies/rules. As such, query/export requests are also answered
by the master instance. The LB group was set to have at least one instance and
to remove the newest instances developed when they are no more needed so that
the master instance is always present even when one instance has been left in
the group.

Based on the above analysis, the following sub-section provides an insight on
the new architecture proposed and its main advantages.

5.2 Architecture

Figure 2 shows the new architecture of our LD Management System. As it can be
seen, the topmost component is LMS which is regarded as a first level of user-
request processing and which issues connection requests to either the master
instance or to Amazon LB depending on the type of method requested. Ama-
zon LB is regarded as the second level of user-request processing and routes
each incoming connection to that Virtuoso engine running in the appropriate
instance from its group. Then the respective instance selected constitutes the
final processing level for user requests where low level RDF management com-
mands are executed in the underlying Virtuoso server. In case of updates, only
the master instance is selected and after the update of respective Virtuoso server,
the triggers produce the respective entries in the log file which are consumed
by the Updater in order to update the Virtuoso servers of the slave instances.
The Updater also updates the slave image every half an hour only when updates
have occurred in the meantime between the latest image update.

To further enhance the availability of the system, each instance (slave or mas-
ter) includes a small script which checks the availability of the respective com-
ponent implementations included in it: (a) the Virtuoso server and (b) Updater
in case of a master instance, and reboots them if needed. In addition, the master
instance is backed up via LMS by a back-up instance which temporarily takes

76 K. Kritikos et al.

Fig. 2. The new architecture of the LD management system

over until the master instance is up again. As the master instance is a vital com-
ponent of the system, there is also a script in the instance hosting LMS which
is informed when the master instance is down and attempts to reboot it.

As it can be easily understood, the difference between a master and a slave
instance is that a master instance has triggers associated to the RDF QUAD
table of Virtuoso server and also includes the Updater component.

The image updating relies on the EBS-back up mechanism of Amazon which
enables to create snapshots of image volumes and then the respective AMIs out
of them which can then be used to create new instances in a rapid manner. This
also ensures that: (a) system data become reliable as they are stored across many
places in the Amazon Cloud and (b) as snapshots are incremental, the system
cost is increased only in terms of what is updated. When back-up takes place,
the master instance is shut down to ensure that image creation does not lead to
any file integrity issues. In this case, query and export requests are served by the
slave instances in the Amazon LB group while update requests are served by the
backup master instance. When the master instance is up again, it is updated by
the backup instance based on the RDF updating mechanism mentioned above.

The advantages of the proposed architecture are the following: (a) it is not
very costly: LMS can be hosted in a small-sized instance and new slave instances
are created only when the load is assessed to be heavy for the current instances
running while one or more created instances are deleted when the load is not so
heavy any more but after a particular period passed by such that we avoid any
circular scale-in and scale-out effect which can become quite costly, (b) updating
is eventually propagated to all instances running and to those instances that will
be created, (c) load balancing can guarantee a satisfactory performance level for
query/export requests which represent the majority of the user requests incurred,

A Cloud-Based, Geospatial Linked Data Management System 77

and (d) the system reliability level has been increased as the availability of most
components is checked and controlled.

The obvious disadvantage of this architecture is the one concerning the han-
dling of updates. LD updates lead to applications that might not be well informed
for a particular amount of time. This does not constitute a major limitation for
the current applications supported but certainly limits the application of the
system in terms of reaching out real-time (emergency) applications. Another
limitation is that LMS is the only component in the system that constitutes a
single point of failure as when it fails, user requests cannot be processed any
more. However, the load on this component is minimal and the processing effort
is also quite minimal as it is actually moved to the respective Virtuoso instance.
In addition, another script runs in the instance hosting LMS which can take care
of rebooting it when it goes down. This means that it is not very probable that
the component can really reach its limits such that it can fail and when it fails,
it can be rebooted rapidly. Obviously, a fatal failure cannot always be neglected
so one small extension to the current system architecture would be to add an
Amazon LB on top of LMS, fixed to have just one instance, such that when it
permanently goes down a new instance hosting it can be created. Amazon LB is
not a single point of failure as it is replicated so in this sense there would not be
any single point of failure in the system any more. However, this will add some
small latency in handling user requests as well as an additional operating cost
to the system.

The advantages of the proposed architecture can have an effect only when the
system is properly configured. This means that the image updating and scaling
policies should be specified in such way that the system functions as desired
without raising any significant issue, such as very frequent image updating that
leads to system performance deterioration or circular scaling actions that raise
the system cost in terms of the resources used. The next section identifies the
experiments that have been performed to determine the correct content of these
policies as well as for evaluating the query/export performance of the proposed
system.

6 Evaluation and Implementation

6.1 Experiment Set-Up

Two main experiments were performed each having the goal to measure the
average query performance and cpu load in the course of time when a partic-
ular number of concurrent users is issuing a specific number of queries for a
standalone and a load-balancing based configuration. In the first experiment,
100 concurrent users were created and each was able to issue 50 requests, while
in the second experiment, the respective numbers were 50 and 50, respectively,
for the concurrent user and request numbers. In the standalone configuration,
depending on whether we desire to evaluate the old or the new LMS system, the
LMS either connects only to the Virtuoso engine of the master instance or to
the respective scaling layers which are related to the content of the queries to

78 K. Kritikos et al.

be performed, while in the load-balancing configuration (LB for short), which
reflects our proposed system architecture, LMS connects to the Amazon LB
which redirects the connection to the next instance in the LB group.

As it can be understood, we are attempting to evaluate not only the new LMS
system but also the old one. In order to be fair in the comparison of the two
LMS systems, we regard that there are two scaling layers in the old system that
are obviously related to the content of cross-layer queries. This is the minimum
and meaningful configuration of the LMS system which can be used for the
comparison as in the minimalistic case where just one scaling layer is involved,
then the performance of the old LMS system will be either better (if many nodes
are involved) or equivalent (if just one node is involved in the layer) to the one
of the new LMS system configured in standalone mode.

We should also note that we have decided that it is not meaningful to com-
pare the performance of the two versions of the system in the distributed case.
This decision relied on the results of the standalone configuration where it was
apparent that the old system has a worse performance with respect to the new
one for cross-queries (which span different scaling layers). It is actually expected
that in the distributed case, again the new system will have an even better
performance than the old one.

Each experiment focused on a particular type of query (both are shown in
the paper’s appendix):

– geospatial query: the first query focuses on providing particular information
(e.g., latitude, longitude, depth, magnitude and date) for all earthquakes that
have occurred in the region of the Crete island (main land and surrounding sea
with a particular radius). Apart from checking a huge amount of RDF data
(around 2 million triples), this query imposes a geospatial filter on the area
where the earthquake to be returned has occurred. Thus, apart from requiring
the existence of normal RDF indices, it also requires exploiting a geospatial
index. To this end, this query is quite demanding in processing effort and
when a particular query load is imposed on just one Virtuoso engine, it is
expected that the respective hosting VM will reach a high CPU load leading
to a continuous deterioration of query response time.

– complex normal query: the second query is more complex than the first as
it includes optional clauses while it also involves processing a bigger amount
of data with respect to the first query. In fact, the respective data set over
which the query is posed comprises of 253 millions triples which as an amount
is of course more than hundred times greater than the previous query one.
This query involves obtaining all lithostratigraphy analysis samples related to
various areas in Europe along with additional information, such as the drilling
depth, the elevation, the reliability of the sample as well as the minimum
and maximum depth involved in the respective sampling activity. While not
requiring a geospatial index, due to the huge amount of data that has to be
processed and the use of the optional clause, this query is expected to be more
demanding that the first both in terms of main memory and CPU load.

A Cloud-Based, Geospatial Linked Data Management System 79

We should note here that these two queries represent the minimum and maxi-
mum complexity of queries that are posed in the LSM system. In this way, these
queries are expected to map to the exact load range that is imposed to the sys-
tem. Thus, all other queries have a complexity between the complexity range of
these two queries and respective load that is expected to be between the load
imposed by these two queries.

To conduct the experiments, Apache JMeter was used which enabled us not
only to automate the issuing of the queries but also to store information about
all the requests issued by all clients and especially the requests’ response time.
The standalone experiments involved measuring the CPU every 10 s and the
respective measurement values were collected via the assistance of the ‘sar’ tool.
All this information was then processed to produce the respective graphs.

The VM hosting Virtuoso was a m1-large Amazon VM with the following
characteristics: 2 vCPUs, 7.5 GB of main memory and a 200 GB of storage,
while a m3-medium Amazon VM (1 vCPU, 3,75 GB main memory and 20GB
storage) was used to host Tomcat (version 7) on which the LMS was deployed.
As the requirements on the VM hosting LMS were not so strict, we have decided
to have a differentiation and assign a VM with less capabilities on LMS. As it
has already been observed, the Tomcat container on which LMS was deployed
did not need more than 3 GB of main memory at all cases. On the other hand,
Virtuoso did require a VM with very good characteristics due to the load devel-
oped when processing RDF management requests. An even stronger VM could
be exploited but the cost budget is quite limited and restricted based on the
amount of funding for the sort of activities performed which is attributed to the
InGeoCloudS project. The Amazon LB was configured to have a minimum and
desired capacity of 1 instance with the maximum capacity reaching 3 instances
again due to reasons of cost.

6.2 Analysis

Standalone Experiment Results. We start the presentation and analysis
of the results by concentrating on the standalone experiment configurations in
order to also highlight why particular scalability policies were finally followed.

Figures 3(a), (b) show the results of the first experiment for the standalone
configuration. Figure 3(a) shows the progress in average query time for every 50
requests that get served by the system for the first query. Figure 3(b) shows the
progress in average CPU time per 10 s (which was the measurement frequency
for ‘sar’).

We should highlight here that each line in all graphs presented is named
in a particular way to denote the configuration and the version of the system
evaluated. In this way, “standalone new” means new system with standalone
configuration, “standalone old” means old system with standalone configuration
and “lb new” means new system with LB configuration.

As it can be seen, Virtuoso’s behaviour with respect to query time seems to
be polynomial with a small increase pace for the new LMS system while for the
old LMS system the behaviour is almost opposite with high query times in the

80 K. Kritikos et al.

(a) 1st Query Performance (b) 1st Query CPU Load

Fig. 3. 1st Experiment results for the system’s standalone configuration

beginning which drop and become stabilized at some time point. In this way, it
is apparent that the new LMS system is better than the old one and more cost
effective as it uses just one instance instead of two. The query time decrease in
the old system is due to the distribution of the respective data in two instances,
thus requiring less processing per instance to be performed for each user query
request. We should also indicate that the initial high query time observed in
both system versions is due to a main memory effect where Virtuoso realizes
that its currently allocated main memory is not sufficient and attempts to gain
more resources, thus further delaying the servicing of the current requests. After
the main memory allocated reaches a particular value, then the query addressing
gets improved which subsequently leads to a good reduction in query time.

On the other hand, the CPU load follows a clear course on all system versions
where it sharply increases in the beginning and then increases in a very small
pace until a specific point (97.5 % and 90 % for the new and old LMS system,
respectively). This means that throughout the time where all requests are made,
the VMs/instances reach quite high numbers of usage. So, if the load was shared
between two or more VMs, then obviously the query service time would decrease
more sharply. Indeed, by lowering the number of concurrent users from 100 to 50,
then the CPU load gets decreased and the respective query time becomes quite
small. Thus, the results of the first query indicate that there is an opportunity
here for obtaining more resources in order to better serve the incoming requests
to the system.

We need to note here that the CPU load on the old system version is lower
than that imposed on the new one due to the rationale provided above for query
response time: less (related) data are stored in each VM which leads to a smaller
amount of processing.

A Cloud-Based, Geospatial Linked Data Management System 81

(a) 2nd Query Performance (b) 2nd Query CPU Load

Fig. 4. 2nd Experiment results for the system’s standalone configuration

Similarly to the above case, Figs. 4(a), (b) show the results of the second
experiment for the standalone configuration, where Fig. 4(a) shows the progress
in average query time for every 50 requests for the second query, while Fig. 4(b)
shows the progress in average CPU time per 10 s for the same query. It should
be noted here that based on the results of the 1st experiment, it was decided
that it is pointless in further checking the performance of the old system as it
is expected that this performance will be even worse for a query with a higher
complexity.

The depicted results indicate that the second query is indeed more complex
and leads to even worse results than the first, something that is expected based
on the nature of the second query and its characteristics. Concerning the average
query time, the behaviour of Virtuoso is similar (while the query time increase
pace is even smaller) to the first experiment case but the query times anticipated
are much worse ranging between 274 and 275 s (i.e., they are 9 times greater)
which is quite unacceptable for users especially in real world environments. We
should highlight at this point that although Virtuoso has a hard time in servicing
the requests, its behaviour is almost stable, which means that the system exhibits
a good reliability level.

As far as the CPU is concerned, the behaviour is again similar with respect
to the first experiment where we see a sharp increase in the beginning and then
an increase with a very small pace until a specific point (around 99 %). However,
the peak point is higher than that of the first query. This means that the VM
has a harder time than in the case of the first experiment and in both cases it
reaches its limits in terms of CPU usage. These two facts, i.e., sharper increase
and higher CPU peak values, also highlight the complexity difference between
the queries considered. Based on these results, there is a great need of scaling the

82 K. Kritikos et al.

system in order to reach good levels of query performance. Otherwise, we also
risk that the system might go down as it cannot anticipate reaching its limits
for a long time.

Both experiment results show that query time cannot be considered as a scal-
ing factor, especially as the respective behaviour exhibited by Virtuoso remains
at an acceptable, almost stable level. On the other hand, CPU can be considered
as a scaling factor which immediately indicates that the concerned VM has a
hard time in servicing the requests from the concurrent users. In fact, the VM’s
CPU usage reaches quite high values which can be considered dangerous for the
health of the VM if they remain for a quite long time. Thus, it is necessary for
the system to scale and obtain more resources in order to even the incoming
load across all the resources reserved. The results show that a CPU threshold of
70 % can be safely considered as the one that can determine when to scale.

Someone can argue that such a limit is quite low with respect to the peak
values exhibited in the two experiments. However, we set this limit at a much
lower value in order to cater for cases where the splitting of query work does not
lead to a sharp decrease in CPU time which indicates the necessity of further
increasing the resources to be utilized. This has been checked through other
experiments with the rest of the queries which show that this threshold really
discriminates when Virtuoso has a hard time in servicing the user requests. These
other experiments, by assessing the performance of queries whose complexity lies
in between those of the two queries considered, have shown that indeed a similar
behaviour is observed which lies in between the one exhibited by the addressing
of the two queries considered. To this end, we have considered not showing
these experiment results in this article. Based on the above analysis, the CPU
threshold determination method can be considered as rather complete by taking
an exhaustive approach to guarantee that the choice made has been correct.

The main question would then be for how long to wait until to scale by
considering that the average CPU value constantly remains above the threshold
obtained. The experiments show that the checking period should be as mini-
mum as possible in order to offload the current number of VMs for the current
load that is anticipated by them. To this end, it was decided that the checking
period should be 2 min so that we are confident that a temporal spike in load
is not experienced but a high load that is more or less constant. This period
length is appropriate to cater for both experiment cases where the higher need
of more instant reactiveness for the first experiment case is also covered (see
smaller response times for this case with respect to the second). By also consid-
ering that it takes time (some minutes) to create a new instance, the considered
period length seems appropriate. In case of a higher value we run into the dan-
ger of reserving more resources when it is already too late with respect to the
load incurred for the current instance. Again, this choice is guaranteed through
following an exhaustive approach both at real time as well as in extreme syn-
thetic cases for all types of queries issued by the respective applications. Thus,
it seems as the most appropriate solution for the current situation as well as
for forthcoming ones, once our system is exposed to an additional number of
end-user applications.

A Cloud-Based, Geospatial Linked Data Management System 83

Apart from scaling-out when more resources are needed, the system should
scale-in when there is no need to spend too much resources for the current load.
As the charging of VMs is hour-based, it is better to scale in nearly when one hour
of usage has been spent for a new resource/instance. This can be translated to a
scale-in policy which attempts to scale-in the system when the lower threshold of
30 % on average CPU is passed for two consecutive periods of 20 min. In this way,
by also assuming that a new VM is required for at most 20 min, we speculate
that it will be no longer needed for the next period of 40 min as long as the
average CPU is below 30 %. Via the use of two consecutive periods we also cater
for the case that we might have again increased load inside the one hour-space
of new VM usage, so we should retain it in this case as long as it is needed.

LB Experiment Results. The experiments conducted where repeated with
the LB configuration of the system based on the previously mentioned char-
acteristics of the LB as well as the scale-in and -out conditions and checking
periods proposed. The number of concurrent users and of requests per user did
not change. We have considered meaningful to also present the results for the
CPU in order to highlight the way the CPU load drops once additional resources
are reserved.

Concerning the first experiment, the results, which are shown in Figs. 5(a)
and (b), indicate that after 50 rounds (i.e., 2500 requests), the system scales-out
and its performance gets improved (almost 3 s gain which can be considered even
higher if we examine the respective raw query times). However, by also inspecting
the CPU load, it rather stays around high values (around 70 %) which necessi-
tates performing another scale out action. Indeed, the second scale-out action
(around 70th round) further improves the performance (less than 2.5 s from the
beginning) while the CPU load continuously drops until 40 %. It could be argued
that the performance is not significantly improved through the reservation of
additional resources. However, we should keep in mind that we present the cur-
rent average value whose calculation includes the values obtained from the very
beginning of the experiment. This means that the raw query times experienced
by the users will be even better. Moreover, if we had left the experiment to con-
tinue for further rounds, then the performance improvement would have been
even better, especially if we consider the significant drop in CPU (after 1250 s)
and the way the query time drops in the second scale-out.

The results for the 2nd experiment, which are shown in Fig. 6 indicate that
two scale-out actions have been performed at the 4th and 9th round. This high-
lights that the load created by 50 concurrent users with respect to the second
query cannot be tolerated alone by 2 VMs and a third one is also needed. Each
scale-out action has lead to a significant reduction of query time from 200 s to
160 s and further down to 100 s. By comparing the maximum and minimum
query time anticipated, we can clearly see that the final query time is one third
of the initial one. We should also note that while it might be seen that in the 1st
experiment, the scale-out is performed with a delay, this is not the actual case
as the query times in the involved experiments are of a different scale.

84 K. Kritikos et al.

(a) 1st Query Performance (b) 1st Query CPU Load

Fig. 5. 1st Experiment results for the system’s LB configuration

Concerning the CPU load, we certainly see some improvement, as CPU load
initially drops to 95 % and then to almost 92 %. However, this means that still
the VMs exploited reach high CPU load values and there is a risk for VMs health
deterioration. Unfortunately, the budget restrictions do not allow us to scale out
for reserving more resources. Furthermore, this is a sign that the query issued
is quite complex and even if the load on a particular VM is reduced, the CPU
processing load is not reduced in a high degree as Virtuoso seems to attempt
to exploit as much resources as possible in order to address the reduced load
incurred. In addition, the current number of users that exploit the respective
application does not mandate for actually exploiting such additional resources.

Actually, with this query, we needed to indicate the worst possible scenario
where a big number of concurrent users issue the most complex query to the
LMS system and to highlight the cost-effectiveness as well as the scalability of
the system in terms of query processing time. The results obtained indicate that
our goals have been achieved for both queries and thus for any other query
having a complexity in between the complexity exhibited by these two queries.

To summarize, we can clearly see that in both experiments, the scale-out
activities occur as soon as possible. In addition, the high limit on instance number
to be reserved is indeed the most appropriate as the less complex query obtains
both a great reduction in CPU load, which does not require reserving additional
resources, and a query time speed-up while for the second query there is a
significant speed-up but due to its high complexity, the CPU load is not highly
decreased, which mandates for spoiling cost-effectiveness if additional resources
are reserved. The low limit has been posed based on the current application
usage which does not go over more than ten concurrent users. If this changes
in the near future, then we will certainly attempt to raise this limit to better
handle the new and increased query traffic.

A Cloud-Based, Geospatial Linked Data Management System 85

(a) 2nd Query Performance (b) 2nd Query CPU Load

Fig. 6. 2nd Experiment results for the proposed system’s LB configuration

7 Conclusions and Future Work

This article has presented a cloud-based geospatial LD Management System
which is scalable, cost-effective and sustains good levels of (geospatial) query
performance. Apart from its performance and cost-effective capabilities, the sys-
tem offers a particular Service called Linked Data Management Service (LMS)
which exposes added-value functionality in terms of different ways of publishing,
exporting and querying geospatial LD. LMS relieves the application developer
from the peculiarities of the underlying triple store and as it is REST-based
enables the developer to use any programming language of his/her choice. More-
over, LMS caters for different LD publishing scenarios which vary in terms of
provider data format and publishing control and which require from the provider
the provisioning of the least possible amount of information. LMS also supports
standards, such as GeoSPARQL, SPARQL and INSPIRE. In fact, the support
of INSPIRE can be considered as a fundamental feature of LMS as it enables the
potential data providers exploiting it to follow the strict forthcoming INSPIRE
directive which dictates an INSPIRE-complianet form of data published and
exported by them. LMS finally supports simple and more advanced forms of
geospatial queries which require the use of sophisticated geospatial operators
and functions.

The evaluation conducted on the proposed system reveals its benefits in terms
of increased performance and scalability as well as justified the content of the
particular scalability policies followed. What remains to be performed is a more
thorough evaluation which includes highly demanding scenarios involving both
LD updating and querying. In addition, we will investigate additional scaling
factors which could be exploited towards performing the scaling activities of our
system. The VM’s main memory seems a very good candidate as Virtuoso tends

86 K. Kritikos et al.

to drop some queries when a particular and quite small limit of available main
memory is reached. Such scaling factors could be combined with the existing
ones in order to create more up-to-date scaling conditions which could involve
conjunctions or disjunctions of fine-grained conditions involving these factors
and their respective thresholds. It will also be investigated how Amazon could
support such more complex adaptation conditions as the current possibilities
offered include just the independent evaluation of fine-grained scaling conditions.

The following future work directions are envisioned. First, further enhancing
the reliability level of the system. Second, enabling full migration to different
cloud providers to avoid lock-in. Third, further enhancing the functionality of
LMS service by also enabling to cater even more advanced geospatial querying
scenarios as well as enabling the importing of different data formats apart from
RDF, XML and relational. Fourth, further enhancing the performance of even
the most demanding geospatial queries. Finally, an interesting research direction
to pursue would be to enable a bidirectional mapping between relational or
even XML data to RDF ones. Such a mapping would give the freedom to the
application or data provider to choose the way his/her data can be updated.
For instance, the provider might already have existing programs which update
a particular portion of his/her data in their original form but could also develop
new programs which, after moving towards LD, enable the updating of a different
data portion. As such, different updates on different data formats will be possible
with the capability to synchronize between them without also having to make
any modifications to existing data update programs.

Appendix A - Experiment SPARQL Queries

1st query

select ?earthquake ?id ?date ?asGML ?asWKT ?latitude ?longitude

?locstring ?doc ?docName ?depth ?magnitude where {

?earthquake a sci:S23_Earthquake;

crm:P7_took_place_at ?place;

crm:P1_is_identified_by ?id;

crm:P4_has_time-span ?date;

sci:O17_has_dimension ?dd;

crm:P70_is_documented_in ?doc.

?doc crm:P1_is_identified_by ?docName.

?place geo:hasGeometry ?point;

crm:P87_is_identified_by ?d;

crm:P87_is_identified_by ?long;

crm:P87_is_identified_by ?lat;

crm:P3_has_note ?locstring.

?d sci:O20_has_value ?depth.

?point geo:asGML ?asGML;

geo:asWKT ?asWKT.

filter(regex(?d,"/Depth/")).

filter(regex(?long,"/Longitude/")).

filter(regex(?lat,"/Latitude/")).

?dd crm:P90_has_value ?magnitude.

A Cloud-Based, Geospatial Linked Data Management System 87

?lat sci:O20_has_value ?latitude.

?long sci:O20_has_value ?longitude.

filter (bif:st_within(bif:st_geomfromtext(?asWKT),

bif:st_geomfromtext(’POLYGON((33 24, 33 26, 35 26, 35 24, 33 24))’))).

}

2nd query

select ?bhole ?bcode ?bname ?depth ?asGML ?elev ?top ?topVal ?bottom ?bottomVal

?layer ?LITHOSTRA1 ?RELIABILITY where {

?bhole a sci:S16_Borehole;

crm:P1_is_identified_by ?bcode;

crm:P1_is_identified_by ?bname;

sci:O7_consists_of ?bcollar;

crm:P43_has_dimension ?d;

sci:O9_contains_or_confines ?place.

OPTIONAL {

?place sci:O12_upper_vertical_limit ?top;

sci:O13_lower_vertical_limit ?bottom.

?top sci:O20_has_value ?topVal.

?bottom sci:O20_has_value ?bottomVal.

}

?d crm:P2_has_type "DEPTH";

crm:P90_has_value ?depth.

?bcollar geo:hasGeometry ?point;

crm:P87_is_identified_by ?el.

filter(regex(?el,"Elevation")).

?el sci:O20_has_value ?elev.

?point geo:asGML ?asGML.

filter(regex(?asGML,"EPSG:4326")).

?bname a crm:E41_Appelation.

?bcode a crm:E42_Identifier.

filter(regex(?bcode, "/ID/")).

?layer crm:P53_has_former_or_current_location ?place;

a crm:E26_Physical_Feature;

sci:O19_has_preferred_type ?l1;

crm:P2_has_type ?rel.

filter(regex(?rel, "Reliability/")).

?rel crm:P3_has_note ?RELIABILITY.

?l2 crm:P3_has_note ?LITHOSTRA1.

}

References

1. Battle, R., Kolas, D.: Enabling the geospatial semantic web with parliament and
geosparql. Semantic Web 3(4), 355–370 (2012)

2. Bugiotti, F., Goasdoué, F., Kaoudi, Z., Manolescu, I.: RDF data management in
the amazon cloud. In: Proceedings of 2012 Joined EDBT/ICDT Workshops, pp.
61–72. ACM, Berlin (2012)

88 K. Kritikos et al.

3. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture.
ACM Trans. Internet Technol. 2(2), 115–150 (2002). http://doi.acm.org/10.1145/
514183.514185

4. Franke, C., Morin, S., Chebotko, A., Abraham, J., Brazier, P.: Distributed seman-
tic web data management in hbase and mysql cluster. In: Proceedings of the 2011
IEEE 4th International Conference on Cloud Computing, pp. 105–112. CLOUD
2011. IEEE Computer Society, Washington, DC (2011), http://dx.doi.org/10.
1109/CLOUD.2011.19

5. Guéret, C., Groth, P., Oren, E., Schlobach, S.: eRDF: A Scalable architecture for
querying the Web of Data. http://bit.ly/eRDF tr

6. Guéret, C., Kotoulas, S., Groth, P.: TripleCloud: An infrastructure for exploratory
querying over Web-Scale RDF Data. In: Proceedings of the 2011 IEEE/WIC/ACM
International Conferences on Web Intelligence and Intelligent Agent Technology
(WI-IAT 2011), pp. 245–248. IEEE Computer Society, Washington, DC (2011)

7. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: a federated repository for
querying graph structured data from the web. In: Aberer, K., et al. (eds.) ASWC
2007 and ISWC 2007. LNCS, vol. 4825, pp. 211–224. Springer, Heidelberg (2007)

8. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: Yago2: a spatially and
temporally enhanced knowledge base from wikipedia. Artif. Intell. 194, 28–61
(2013). http://dx.doi.org/10.1016/j.artint.2012.06.001

9. Husain, M.F., Khan, L., Kantarcioglu, M., Thuraisingham, B.M.: Data inten-
sive query processing for large rdf graphs using cloud computing tools. In: IEEE
CLOUD, pp. 1–10. IEEE (2010). http://dblp.uni-trier.de/db/conf/IEEEcloud/
IEEEcloud2010.html#HusainKKT10

10. Kritikos, K., Roussakis, Y., Kotzinos, D.: Linked open GeoData management in
the cloud. In: 2nd International Workshop on Open Data (WOD 2013), Paris,
France (2013)

11. Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: a semantic geospatial
DBMS. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649,
pp. 295–311. Springer, Heidelberg (2012)

12. Ladwig, G., Harth, A.: CumulusRDF: linked data management on nested key-value
stores. In: Proceedings of the 7th International Workshop on Scalable Semantic
Web Knowledge Base Systems (SSWS 2011) (2011)

13. Le-Phuoc, D., Parreira, J.X., Hausenblas, M., Han, Y., Hauswirth, M.: Live linked
open sensor database. In: Proceedings of the 6th International Conference on
Semantic Systems, I-SEMANTICS 2010, pp. 46:1–46:4. ACM, New York (2010).
http://doi.acm.org/10.1145/1839707.1839763

14. Mika, P., Tummarello, G.: Web semantics in the clouds. IEEE Intell. Syst. 23(5),
82–87 (2008). http://dx.doi.org/10.1109/MIS.2008.94

15. Neumann, T., Weikum, G.: The rdf-3x engine for scalable management of rdf data.
VLDB J. 19(1), 91–113 (2010)

16. Newman, A., Li, Y.F., Hunter, J.: Scalable semantics - the silver lining of cloud
computing. In: Proceedings of the 2008 Fourth IEEE International Conference on
eScience, ESCIENCE 2008, pp. 111–118, IEEE Computer Society, Washington,
DC (2008). http://dx.doi.org/10.1109/eScience.2008.23

17. Papailiou, N., Konstantinou, I., Tsoumakos, D., Koziris, N.: H2rdf: Adaptive query
processing on rdf data in the cloud. In: Proceedings of the 21st International Con-
ference Companion on World Wide Web, WWW 2012 Companion, pp. 397–400.
ACM, New York (2012). http://doi.acm.org/10.1145/2187980.2188058

http://doi.acm.org/10.1145/514183.514185
http://doi.acm.org/10.1145/514183.514185
http://dx.doi.org/10.1109/CLOUD.2011.19
http://dx.doi.org/10.1109/CLOUD.2011.19
http://bit.ly/eRDF_tr
http://dx.doi.org/10.1016/j.artint.2012.06.001
http://dblp.uni-trier.de/db/conf/IEEEcloud/IEEEcloud2010.html#HusainKKT10
http://dblp.uni-trier.de/db/conf/IEEEcloud/IEEEcloud2010.html#HusainKKT10
http://doi.acm.org/10.1145/1839707.1839763
http://dx.doi.org/10.1109/MIS.2008.94
http://dx.doi.org/10.1109/eScience.2008.23
http://doi.acm.org/10.1145/2187980.2188058

A Cloud-Based, Geospatial Linked Data Management System 89

18. Ravindra, P., Deshpande, V.V., Anyanwu, K.: Towards scalable rdf graph analytics
on mapreduce. In: Proceedings of the 2010 Workshop on Massive Data Analytics
on the Cloud, MDAC 2010, pp. 5:1–5:6. ACM, New York (2010). http://doi.acm.
org/10.1145/1779599.1779604

19. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media, USA (2007)
20. Stein, R., Zacharias, V.: RDF on cloud number nine. In: 4th Workshop on New

Forms of Reasoning for the Semantic Web: Scalable and Dynamic, pp. 11–23.
CEUR (2010)

21. Sun, J., Jin, Q.: Scalable rdf store based on hbase and mapreduce. In: 3rd Inter-
national Conference on Advanced Computer Theory and Engineering (ICACTE
2010), pp. 633–636. IEEE (2010)

22. Tanimura, Y., Matono, A., Lynden, S., Kojima, I.: Extensions to the pig data
processing platform for scalable rdf data processing using hadoop. In: IEEE
30th International Conference on Data Engineering Workshops (ICDEW 2010),
pp. 251–256. IEEE Computer Society, Los Alamitos (2010)

http://doi.acm.org/10.1145/1779599.1779604
http://doi.acm.org/10.1145/1779599.1779604

A Scalable Expressive Ensemble Learning Using
Random Prism: A MapReduce Approach

Frederic Stahl1, David May2, Hugo Mills1, Max Bramer3,
and Mohamed Medhat Gaber4(B)

1 School of Systems Engineering, University of Reading,
Whiteknights, Reading RG6 6AY, UK

f.t.stahl@reading.ac.uk, hugo@carfax.org.uk
2 Real Time Information Systems Ltd,

1st and 2nd Floors, 8 South Street, Chichester PO19 1EH, UK
david.m@rtis.co.uk

3 School of Computing, University of Portsmouth,
Buckingham Building, Lion Terrace, Portsmouth PO1 3HE, UK

max.bramer@port.ac.uk
4 School of Computing Science and Digital Media, Robert Gordon University,

Riverside East Garthdee Road, Aberdeen AB10 7GJ, UK
m.gaber1@rgu.ac.uk

Abstract. The induction of classification rules from previously unseen
examples is one of the most important data mining tasks in science as
well as commercial applications. In order to reduce the influence of noise
in the data, ensemble learners are often applied. However, most ensem-
ble learners are based on decision tree classifiers which are affected by
noise. The Random Prism classifier has recently been proposed as an
alternative to the popular Random Forests classifier, which is based on
decision trees. Random Prism is based on the Prism family of algorithms,
which is more robust to noise. However, like most ensemble classification
approaches, Random Prism also does not scale well on large training
data. This paper presents a thorough discussion of Random Prism and
a recently proposed parallel version of it called Parallel Random Prism.
Parallel Random Prism is based on the MapReduce programming para-
digm. The paper provides, for the first time, novel theoretical analysis of
the proposed technique and in-depth experimental study that show that
Parallel Random Prism scales well on a large number of training exam-
ples, a large number of data features and a large number of processors.
Expressiveness of decision rules that our technique produces makes it a
natural choice for Big Data applications where informed decision making
increases the user’s trust in the system.

1 Introduction

Big Data technologies have opened the door wide for researchers to re-engineer
their data science products, allowing for unprecedented scalability. Scalability
is key to the success of cloud computing hosted applications. An enabler app-
roach providing scalability to a wide range of applications is the MapReduce
c© Springer-Verlag Berlin Heidelberg 2015
A. Hameurlain et al. (Eds.): TLDKS XX, LNCS 9070, pp. 90–107, 2015.
DOI: 10.1007/978-3-662-46703-9 4

Scalable Expressive Ensemble Learning Using Random Prism 91

framework [10]. Motivated by the recent developments in this area, we scale up
ensemble classification adopting rule-based classifiers, using MapReduce frame-
work. Ensemble classification is the training of individual and diverse base classi-
fiers and the integration of their predictive models into a combined classification
model. The aim of ensemble classifiers is to increase the predictive accuracy com-
pared with that of a single classifier. One of the best known ensemble learners is
Breiman’s Random Forests (RF) [7], which is based on Ho’s Random Decision
Forests (RDF) [14] ensemble classifier and Breiman’s Bootstrap aggregating
(Bagging) approach [6]. Bagging is used in RF to increase the ensemble classi-
fier’s stability and accuracy. In unstable classifiers small variations in the training
data cause major variations in the classification. The aforementioned ensemble
classifiers are based on decision trees. However, alternatives exist, such as Chan
and Stolfo’s Meta-Learning [9] which combines heterogeneous classifiers using a
Meta-Learning that makes use of different classifier combining strategies such as
voting, arbitration and combining.

Most rule based classifiers are either based on the ‘divide and conquer’ or
the ‘separate and conquer’ rule induction approaches [24]. ‘Divide and conquer’
based classifiers produce a decision tree, such as Quinlan’s C4.5 decision tree
induction algorithm [18]; ‘separate and conquer’ based classifiers produce a set
of IF...THEN classification rules, such as the Prism family of algorithms [4,5,8].
As pointed out in [20], most ensemble classifiers are based on the ‘divide and
conquer’ approach even though Prism classifiers have shown to be less vulnerable
to overfitting compared with decision tree based classifiers [4]. This is especially
the case when confronted with noise and missing values in the data [4]. A recently
developed ensemble classifier named Random Prism [20], which is inspired by RF
and RDF, makes use of the Prism family of algorithms as base classifiers. An
empirical evaluation of the Random Prism classifier shows that it outperforms
its standalone base classifier in terms of a better classification accuracy [20].
Further empirical experiments [20] show that Random Prism also has a higher
tolerance to noise compared with its base classifier.

However, also pointed out in [20] Random Prism’s CPU time consumption
is also considerably higher compared with that of a standalone Prism classifier.
This is because Random Prism builds for each base classifier a bag of size N of
the original training data [22], if N is the number of data instances in the orig-
inal training data. Thus even modest sized training data impose a considerable
computational challenge to ensemble learners using bagging, such as Random
Prism. A bag is a collection of data instances in which each data instance may
occur more than once. In order to tackle this problem of scalability to larger data
a parallel version of the Random Prism classifier, called Parallel Random Prism,
has been developed [22]. Parallel Random Prism is based on data parallelisation
and makes use of Google’s MapReduce programming paradigm [10]. In partic-
ular, Parallel Random Prism uses the Hadoop implementation of MapReduce
in order to distribute the induction of each individual base classifier on its own
bag to different machines in a computer cluster [1]. Thus the base classifiers are
induced concurrently. In this paper we use the expression parallel and distributed

92 F. Stahl et al.

in the context of algorithms interchangeably, both referring to the concurrent
execution of base classifiers through distribution of the training data to multiple
computer cluster nodes.

This paper provides a detailed and exhaustive description of Random Prism
and Parallel Random Prism approaches. Additionally, it also provides, for the
first time, a formal theoretical scalability analysis of Random Prism and Parallel
Random Prism, which examines the scalability to much larger computer clusters.
This contribution provides a theoretical underpinning that can be used for scal-
ability of the MapReduce framework. It also presents a thorough experimental
study of Parallel Random Prism’s scalability. In particular we look into its scal-
ability with respect to the number of training examples and number of features.
It is worth noting that we use the terms ‘feature’ and ‘attribute’ interchangeably
in this paper.

This paper’s structure is as follows: Sect. 2 presents the Random Prism
ensemble learner. The parallel version of Random Prism is outlined in Sect. 3.
Section 4 provides a theoretical scalability analysis of a standalone Prism classi-
fier, the Random Prism ensemble learner and then the Parallel Random Prism
approach. This formal scalability analysis is then supported by an empirical eval-
uation in Sect. 5. Finally, Sect. 6 closes the paper with some concluding remarks.

2 Random Prism

As aforementioned Random Prism is inspired by RDF and RF. Ho’s RDF app-
roach induces multiple trees, each induced on a random subset of the feature space
[14]. This is done in order to make the individual trees generalise better on
the training data, which Ho evaluated empirically. RF similarly to RDF induces
the trees on feature subsets. However, differently from RDF, RF uses a new ran-
dom subset of the feature space for evaluating the possible splits of each node in
the decision tree [7]. In addition, RF also uses ‘Bagging’ [6] in order to further
increase the predictive accuracy of the ensemble classifier. This is according to [12]
because the composite classifier model reduces the variance of the individual clas-
sifiers. However, the authors of [11] suggest that bagging not necessarily always
reduces variance, but also equalises the influence of training examples and thus
stabilises the classifier. Bagging builds for each base classifier a bootstrap sample
Di of a training dataset D using sampling with replacement [6]. Most commonly
Di is of size N where N is the number of training instances in D.

In this paper, we adopt PrismTCS which is a computationally efficient mem-
ber of the Prism family, and also maintains a similar predictive accuracy com-
pared with the original Prism classifier [5]. A good computational efficiency is
needed as ensemble learners generally do not scale well to large datasets. Due to
bagging even modest sized training data present a considerable computational
challenge to ensemble learners. In addition, the implemented base classifier makes
use of J-pruning as it not only generalises the induced classifier further, but also
lowers its runtime [19]. This is because J-pruning will reduce the number of rule
terms induced and thus lower the number of iterations of the base classifier [19].

Scalable Expressive Ensemble Learning Using Random Prism 93

The random feature subset selection of a random size is also implemented inside
the base classifier. This takes place for each rule and for each term expansion of
that rule. The resulting base classifier has been termed ‘R-PrismTCS’, where the
‘R’ stands for the ‘Random’ components in the base classifier (random feature
subset selection for each rule term and bagging).

Algorithm 1 shows the steps of R-PrismTCS with the exception of J-pruning.
F denotes the total number of features, D is the original training data and
rule set is an initially empty set of classification rules. The operation rule.add
Term(Ax) adds attribute value pair Ax as a rule term to rule and the operation
rule set.add(rule) adds rule to rule set. In step 2 for each Ax the conditional
probability p(class = i|Ax) is calculated, which is the probability with which Ax

covers the target class i.

Algorithm 1: R-PrismTCS Algorithm
D′ = build random sample with replacement from D;
D′′ = D′;
Step 1: find class i that has the fewest instances in D′′;
rule = new empty rule for target class i;

Step 2: generate a feature subset f of size m, where (F > m > 0);
calculate for each Ax in f p(class = i|Ax);

Step 3: select the Ax with the maximum p(class = i|Ax);
rule.addTerm(Ax);
delete all instances in D′′ that do not cover rule;

Step 4: repeat 2 to 3 for D′′ until D′′ only contains instances of target class i;

Step 5: rule set.add(rule);
create a new D′′ that comprises all instances of D′ except those that are
covered by all rules induced so far;

Step 6: IF (number of instances D′′ >1){ repeat steps 1 to 6 };

Figure 1 shows the conceptual architecture of Random Prism. Each R-Prism
TCS base classifier is induced on a training sample of size N from the training
data, where N is also the size of the training data. This sample is drawn using
random sampling with replacement. This statistically results in samples that
contain 63.2 % of the original instances, some of them drawn multiple times.
The remaining 36.8 % of the instances that have not been drawn are used as
validation data to estimate the individual R-PrismTCS classifier’s predictive
accuracy ranging from 0 to 1. We call this accuracy the classifier’s weight. The
individual classifier’s weights are then used to perform weighted majority voting
on unlabelled data instances. The weights can also be used to filter base classi-
fiers, i.e., retain the classifiers with high predictive accuracy and eliminate those
with a poor one according to a user’s predefined threshold.

Random Prism’s predictive accuracy has been evaluated empirically on
several datasets of the UCI repository [3,20]; and it has been found that Random

94 F. Stahl et al.

Fig. 1. The architecture of the Random Prism ensemble classifier.

Prism’s classification accuracy is superior to that of RrismTCS’s. Furthermore
results published recently in [20], show that Random Prism’s potential unfolds
when there is noise in the training as well as in the test data. Here Random
Prism clearly outperforms PrismTCS [20].

However, this paper is more concerned with the scalability of Random Prism
to large datasets. One would expect that the runtime of Random Prism inducing
100 base classifiers is approximately 100 times longer, compared with PrismTCS,
as Random Prism induces base classifiers with a bag of size N for each base clas-
sifier, where N is the total number of training instances. Yet, this is not the case
according to the results published in [20]. The reason for this is the random com-
ponent in R-PrismTCS, which only considers a random subset of the total feature
space for the induction of each rule term. Thus the workload of each R-PrismTCS
classifier for evaluating candidate features for rule term generation is reduced by
the number of features not considered for each induced rule term.

3 The Parallel Random Prism Classifier

This section addresses our proposal to scale up Random Prism ensemble learner
by introducing a parallel version of the algorithm. This will help to address the
increased CPU time requirements, and also the increased memory requirements.
The increased memory requirements are due to the fact that there are k data
samples of size N required if k is the number of R-PrismTCS classifiers and
N the number of total instances in the original training data. If k is 100, then

Scalable Expressive Ensemble Learning Using Random Prism 95

the required memory would be 100 times larger compared with the memory
requirements of the standalone PrismTCS classifier. The CPU requirements of
Random Prism are high, but not 100 times higher due to the random feature
subset selection. The parallelisation of the algorithm allows harvesting of the
memory and CPU time of multiple workstations for inducing the Random Prism
ensemble classifier.

In data parallelism smaller portions of the data are distributed to different
computing nodes on which data mining tasks are executed concurrently [23].
Ensemble learning lends itself to data parallelism as it is composed of many dif-
ferent data mining tasks, the induction of base classifiers, which can be executed
independently, and thus concurrently. Hence, a data parallel approach has been
chosen for Random Prism. However, there are some limiting factors concerning
scalability, which will be analysed in Sect. 4.

Section 3.1 highlights the MapReduce paradigm which has been adopted for
the parallelisation of Random Prism, and Sect. 3.2 highlights the architecture of
Parallel Random Prism.

3.1 Parallelisation Using the MapReduce Paradigm

A programming paradigm for parallel processing introduced by Google is MapRe-
duce [10]. It provides a simple way of developing ‘data’ parallel data mining
techniques and thus lends itself to the parallel development of ensemble learn-
ers [17]. In addition, MapReduce computer cluster implementations, such as
the open source Hadoop implementation [1] provide fault tolerance and auto-
matic workload balancing. Hadoop’s MapReduce implementation is based on
the Hadoop Distributed File System (HDFS), which distributes the data over
the computer cluster and stores it redundantly in order to speed up the data
access and establish fault tolerance.

Figure 2 illustrates a Hadoop computer cluster. MapReduce partitions an
application into smaller parts implemented as Mapper components. Mappers
can be processed by any computing node within a MapReduce cluster. The
aggregation of the results produced by the Mappers is implemented in one or
more Reducer components, which again can be processed by any computing node
within a MapReduce cluster.

MapReduce’s significance in the area of data mining is evident through its
adoption for many data mining tasks and projects in science as well as in busi-
nesses. For example, by 2008 Google made use of MapReduce in over 900 projects
[10], such as clustering of images for identifying duplicates [16]. In 2009 the
authors of [17] used MapReduce in order to induce and assemble numerous
ensemble trees in parallel.

Random Prism can be broken down into multiple R-PrismTCS classifiers
induced on bagged samples of the training data. Loosely speaking, Random
Prism can be parallelised using Hadoop through implementing R-PrismTCS clas-
sifiers as Mappers which can be executed concurrently in a MapReduce cluster.
More details on the Parallel Random Prism architecture are highlighted next in
Sect. 3.2.

96 F. Stahl et al.

Fig. 2. A typical setup of a Hadoop computing cluster. A physical node in the computer
cluster can execute more than one Mapper and Reducer.

3.2 Parallel Random Prism Classifier

Several aspects of the Random Prism algorithm have to be considered for the
parallelisation through data parallelism with the MapReduce paradigm. These
are the bagging procedure, the induction of R-PrismTCS classifiers and the
combination of the individual classifiers into a composite classifier.

Induction of R-PrismTCS Classifiers. As mentioned in Sect. 3.1, Ran-
dom Prism can be broken down into multiple R-PrismTCS classifiers induced
on bagged samples of the training data. These R-PrismTCS classifiers can be
induced independently. The only operation that requires the input of all clas-
sifiers is the aggregation of their individual sets of classification rules and their
weights. Hence, the induction of a R-PrismTCS classifier is implemented directly
in a Mapper. Multiple instances of this Mapper can be executed concurrently
in a Hadoop cluster. If there are more instances of Mappers than computing
nodes, then several Mappers queue to be executed on a node. Thus we keep the
computational nodes utilised through pipelining. However, the execution of p
Mappers at the same time is still concurrent, where p is the number of available
computing nodes in the cluster. Once the last mappers are executed on the clus-
ter there may be a small synchronisation overhead as some mappers may finish
earlier than others, thus leaving some of the computational nodes idle, but only
in the very last stage of the algorithm’s execution.

Scalable Expressive Ensemble Learning Using Random Prism 97

Bagging Procedure. The building of a boot strap sample from the training
data, using bagging, needs to be executed for each R-PrismTCS classifier in
order to create as diverse samples as possible (as required by Random Prism).
Thus bagging imposes a considerable computational overhead, which needs to be
addressed as well. In the proposed Parallel Random Prism classifier implementa-
tion, multiple bagging procedures are executed concurrently. This is realised by
integrating the bagging procedure in the Mapper that implements R-PrismTCS.
Thus the execution of p bagging procedures at the same time is concurrent, if p
is the number of available computing nodes in the cluster. The original training
is distributed to each computing node in the Hadoop cluster at the beginning of
Parallel Random Prism’s execution. We have not taken influence on how Hadoop
distributes the data. However, Hadoop typically distributes chunks and redun-
dant copies of the training data across the cluster. This partition and redundancy
reduces the communication overhead as well as provides more robustness in the
case a cluster node fails. This is done in order to keep the communication over-
head low. This way the original training data only needs to be communicated
once, as the local Mappers on a computing node only need the local copy of the
training data in order to build their individual samples.

Building of Composite Classifier. The aggregation of the individual
R-PrismTCS classifiers and their associated weights is implemented in a single
Reducer. Once the individual R-PrismTCS Mappers finish the induction of their
rulesets, they send the rulesets and their associated weights to the Reducer. The
Reducer simply holds a collection of classifiers with the weight. If a new unla-
belled data instance is presented, then the Reducer applies a weighted majority
voting of each classifier, or a subset of the best classifiers (according to their
weight), in order to label the new data instance. The data that is transmitted
from the Mapper to the Reducer is relatively small in size comprising all the rules
of the induced R-PrismTCS base classifiers. Nevertheless, we have incorporated
this communication in our analysis in Sect. 4. However, assuming that the num-
ber of R-PrismTCS classifiers is increasing, one may consider distributing the
computational and communication overhead (associated with the aggregation of
the classifiers) over several Reducers executed on different computational nodes.

Parallel Random Prism Architecture. Figure 3 shows the principal archi-
tecture of Parallel Random Prism using four Mappers, one Reducer and three
cluster nodes.

The input data (training data) is sent to each computing node. A computing
node can execute multiple Mappers. Each Mapper implements the R-PrismTCS
base classifier outlined in Algorithm1, creates a validation and a training set
and then produces a set of rules using the training data and a weight using
the validation data. Then each R-PrismTCS Mapper sends its ruleset and the
associated weight (determined using the validation data) to the Reducer. The
Reducer keeps a collection of the received classifiers and their weights and applies
a weighted majority voting of each, or a subset of the best classifiers, to new

98 F. Stahl et al.

Fig. 3. The Parallel Random Prism Architecture on a Hadoop cluster with two com-
putational nodes, four Mappers and one Reducer.

unlabelled data instances. The basic steps of Parallel Random Prism are outlined
in Algorithm 2.

Algorithm 2: Parallel Random Prism Algorithm
Step 1: Distribute a copy of the training data to each node in the cluster using
the Hadoop Distributed File System;

Step 2: Start k Mappers, where k is the number of R-PrismTCS classifiers
desired. Each Mapper comprises, in the following order;
- Build a training and validation set using Bagging;
- Induce a ruleset by applying R-PrismTCS on the training data;
- Calculate the ruleset’s weight using the validation data;
- Send the ruleset and its weight to the Reducer;

Step 3: Optionally the Reducer applies a filter to eliminate the worse and
retrain the strongest rulesets according to their weights;

Step 4: The Reducer returns the final classifier, which is a set of R-PrismTCS
rulesets, which perform weighted majority voting for each new unlabelled data
instance;

4 Theoretical Analysis of Parallel Random Prism

The complexity of PrismTCS is based on the number of probability calculations
for possible split values. In this paper this is denoted as the number of cutpoints.
In the ideal case, there would be one feature that perfectly separates all the
classes, or simply all data instances would belong to the same class. An average

Scalable Expressive Ensemble Learning Using Random Prism 99

case is difficult to estimate, as the number of iterations of PrismTCS is dependent
on the number of rules and rule terms induced, which in turn are dependent on
the concept encoded in the training data. However, it is possible to estimate
the worst case, assuming that N is the number of instances and M the number
of features in the training data. Furthermore a categorical feature will occur at
most in only one term per rule, whereas a continuous feature may occur in two
terms per rule, as two rule terms can describe any value interval in a continuous
feature. Thus in the worst case all features are continuous and all rules have
2Ṁ terms. Also in the worst case each (with the exception of 1) instance is
encoded in a separate rule which will lead to N − 1 rules in total. The −1 is
because if there is only one instance left in step 6 of the PrismTCS pseudocode,
then there is no need to generate a further rule for it. The complexity (number
of cutpoint calculations) of inducing the rth rule is 2M(N − r). The factor
(N − r) is the number of training instances not covered by the rules induced
so far, as mentioned above, in the worst case each rule covers only one training
instance. These uncovered instances are used for the induction of the next rule.
For example, the number of cutpoint calculations for a term of the first rule
(r = 1), where the training data is still of size N , would be 2M(N − 1). The
total number of cutpoint calculations for the whole rule in this case (r−1) would
be 2M(N−1) as there are 2M rule terms. This summed up for the whole number
of rules leads to:

TPrismTCS =
N−1∑

r=1

(2M) · (N − r) = 2M · N · (N − 1)
2

Which is equivalent to a complexity of O(N2 ·M). Please note that this estimate
for the worst case is very pessimistic and unlikely to happen. In reality larger
datasets often contain many fewer rules than there are data instances [21]. This
is because Random Prism is a stable classifier due to the usage of R-PrimTCS as
base classifier and bagging. Also stated before in Sect. 2, Random Prism employs
J-pruning which further reduces the number of rule terms per rule [19]. Hence,
in this case linearity can be exhibited as N2 is reduced to R2 where R is the total
number of rules. An empirical study presented in [21] suggests that the number
of rules and rule terms induced does not increase linearly with the number of
instances. Also results in [19] suggest a more linear scalability of PrismTCS.

Assuming on average a linear complexity O(N ·M) for PrismTCS, the com-
plexity with respect to N and M of Random Prism is a product of four factors.
The factors are PismTCS’s complexity O(N ·M), the average percentage of fea-
tures f considered by R-PrismTCS (this is a diminishing factor ranging between
0 and 1), the number of classifiers b (which is an increasing factor of a whole
number of at least 1 or higher) and a further diminishing factor d which reflects
the decrease of rules caused by having repeated instances in the training data
for each R-PrismTCS classifier. This leads to O(N · M) · f · b · d. As pointed
out in Sect. 2, one would intuitively expect the runtime of Random Prism to be
100 times longer, assuming 100 base classifiers are induced, compared with the
serial PrismTCS classifier. Yet the results in [20] show that the runtimes are

100 F. Stahl et al.

longer but not 100 times longer. In this particular case the increasing factor b
would be 100. However, factors f and d are diminishing and thus have a short-
ening influence on the runtime. In general as none of these factors comprises an
increasing dependence on N or M , this can be approximated to an overall linear
complexity of O(N · M). Please note that the complexity of building the com-
posite classifier is not dependent on the training data size but on the number of
classifiers. Also building the composite classifier is a computationally relatively
inexpensive operation. The bagging is also of linear complexity O(N) assuming
that the bag is of size N , as in Random Prism.

Stepping away from the complexity, the actual runtime Ttotal, which is needed
to execute the serial version of Random Prism, can be described by:

Ttotal =
b∑

i=1

(Tsam,i + Tcla,i + Tasm,i)

where Ttotal is the total serial runtime, b is the number of base classifiers, Tsam,i

is the time needed for sampling (using bagging) for classifier i; Tcla,i is the
execution time for classifier i and Tasm,i is the time needed to integrate classifier
i′s ruleset into the composite classifier. This description of Ttotal will be used as
a base for describing Parallel Random Prism’s runtime requirements.

As discussed, the basic Random Prism total runtime description Ttotal can
be extended for describing the Parallel Random Prism runtime as shown in the
equation below, where p is the number of computing nodes in the Hadoop cluster:

Ttotal(p) = Tcomdat · p +

b∑

i=1

Tsam,i

p
+

b∑

i=1

Tcla,i

p
+

b∑

i=1

Tcomres,i

p
+

b∑

i=1

Tasm,i

r

Tcomdat · p is a new term that describes the time needed to communicate the
training data to p mappers. p is defined as p = n · δ, where n is the number
of computational nodes int the cluster and δ is the number of mappers hosted
per n. Tcomres is also a new term that describes the time needed to commu-
nicate the R-PrismTCS rulesets and weights to the Reducer. Tsam,i, Tcla,i and
Tasm,i are the same terms as in the equation for the serial Random Prism algo-
rithm. However, in the parallel version Tsam,i (sampling using bagging) and Tcla,i

(R-PrismTCS induction) are executed concurrently using multiple Mappers on
p processors and hence their runtime can be divided by p.

Tasm,i (assembling of the composite classifier) is executed on r Reducers in
the Hadoop cluster. Hence the division by r. However, in the setup used for
the experiments in Sect. 5 only one reducer has been used, hence r = 1 in the
empirical results. The reason for setting r = 1 is because the computational
requirement for Tasm,i is very low. The only two terms that are not parallelised
are Tcomdat · p and Tasm,i and thus these present a computational bottleneck.
However, for term Tcomdat · p, the data transmitted to each node is a copy
of the original data and it is assumed that the time needed to perform the
transmission to each node is the same. Further assume that a star topology

Scalable Expressive Ensemble Learning Using Random Prism 101

network is used with a switch in the centre node, which is the actual setup
we used for our empirical evaluation in Sect. 5. In this case a multicast can be
used which transmits the training data from the original node only once to the
switch, which then multiplies the data and distributes them to each computing
node on a separate wire. Hence, in this case, we can ignore the multiplication of
Tcomdat,i with p as in this case p = 1. Tasm,i remains a computational bottleneck,
which increases with the number of base classifiers. However, its computational
requirements are relatively low even for large numbers of base classifiers and
is not expected to have a large impact on Ttotal(p). Nevertheless, it would be
possible to parallelise Tasm,i, at least to a certain extent, by using multiple
Reducers executed on different cluster nodes. One Reducer per two Mappers
could combine the rule sets of these two mappers. The Reducers’ outputs (again
rules sets) could then be combined similarly using further Reducers executed on
different cluster nodes. This may be beneficial for very large numbers of base
classifiers. The speed-up factor is a standard metric to evaluate the scalability of
parallel algorithms with respect to the number of computing nodes or processors
p being used [13,15]. It shows how much a parallel version of an algorithm is
faster compared with its single processor version. The generic formula for the
speed-up S(p) is:

S(p) =
runtime T on 1 processor

runtime T on p processors

For Parallel Random Prism the numerator of S(p) can be substituted by Ttotal(1)
and the denominator of S(p) can be substituted by Ttotal(p). Thus the speed-up
for Parallel Random Prism can be described by:

S(p) =
Ttotal(1)

Ttotal(p)
=

Tcomdat +
b∑

i=1

Tsam,i +
b∑

i=1

Tcla,i +
b∑

i=1

Tcomres,i +
b∑

i=1

Tasm,i

Tcomdat · p +

b∑

i=1

Tsam,i

p
+

b∑

i=1

Tcla,i

p
+

b∑

i=1

Tcomres,i

p
+

b∑

i=1

Tasm,i

r

Again, what can be seen is that the only limiting factors are Tcomdat · p and∑b
i=1 Tasm,i in the denominator of S(p) as they are not parallelised. Yet, the

time needed to execute Tasm,i and Tcomdat · p is neglectably small compared
with the parallelised portions of Parallel Random Prism. Thus we can assume
that the S(p) will be close to the ideal case, which is S(p) = p. For example, if
running Parallel Random Prism consumes 10000 ms on one node, then for using
4 nodes we would expect the runtime to be 2500 ms (4 times faster assuming the
ideal case), hence S(4) = 10000ms

2500ms = 4.
The formula for S(p) above could also be used to determine the theoretical

maximum speed-up, through building the derivative S′(p), and calculating its
x-axis intercepts and then determining subsequently its global maxima. However,
we refrain from this step.

Next Sect. 5 will provide an empirical analysis of Parallel Random Prism
supporting the theoretical analysis presented in this section.

102 F. Stahl et al.

5 Empirical Scalability Study

The empirical study comprises size-up and speed-up experiments on several
benchmark datasets. Size-up experiments examine the algorithm’s performance
(runtime) with respect to the size of the training data; and speed-up experiments
examine the algorithm’s performance with respect to the number of computing
nodes used, using speed-up factors as highlighted in the previous section. For
the experiments we used two synthetic datasets from the infobiotics data repos-
itory [2]. We have chosen these datasets as they can still be run on a single
computing node in our cluster, which can be used as a reference point. The
datasets are outlined in Table 1. The Hadoop cluster is hosted on 10 identical
off the shelf workstations, each comprising 1 GB memory, 2.8 GHz CPUs and
a XUbuntu operating system. The Hadoop version installed on the cluster was
0.20.203.0rc1. All experiments highlighted in this section measure the total run-
time from the loading of the data to the cluster, up to aggregating the results
at the Reducer.

Table 1. Datasets used for evaluation. Attributes hold double values and class values
are represented by a single character.

Test data Number of data instances Number of attributes Number of classes

1 50000 5 5

2 30000 3 2

Again, size-up experiments examine the performance of Parallel Random
Prism on a fixed number of cluster nodes with an increasing workload (train-
ing data size). In general a linear increase in the runtime with respect to the
training data size is desired. We produced larger versions of the two datasets in
Table 1 by appending the data to itself in vertical (multiplying instances) and
horizontal directions (multiplying attributes). Please note that this appending of
data does not introduce new concepts and hence does not take influence on the
rulesets produced. This is important as altered rule sets may result in different
runtimes of the system, and hence the size-up comparison would not be reliable.

The reasoning for this way of increasing the data size is that it will not
change the concept encoded in the data. Simply taking different sized samples
from the original training data will influence the concept and thus the runtime
needed to find rules describing the concept. Appending the data to itself allows
Parallel Random Prism’s runtime to be examined more precisely. The calcula-
tion of the weight of the individual R-PrismTCS classifiers might be influenced
by this way of building different sized samples as some instances may appear
in both, the training and the test set. However, this is not relevant for these
experiments, as this evaluation examines the computational performance and
not the classification accuracy. For all experiments we used 100 R-PrismTCS
base classifiers.

Scalable Expressive Ensemble Learning Using Random Prism 103

Fig. 4. Size up behaviour of Parallel Random Prism with respect to the number of
training instances. Headings Test 1 and Test 2 refer to the test datasets in Table 1.
These datasets have in this case been appended to themselves in order to increase the
number of training instances, while keeping the concept stable.

The first set of size-up experiments looks on the algorithm’s performance
with respect to the number of data instances. For each dataset an initial sample
of 10000 instances has been taken. Then this sample has been appended to itself
in a vertical direction as explained above. The runtime for different sizes of data
has been recorded and is plotted in Fig. 4 versus the data size. Please note that
an initial sample of 10000 instances may seem small. However, considering the
usage of 100 base classifiers would increase the sample in the memory so that the
Parallel Random Prism system has in fact to deal with 1000000 data instances
for a 10000 instance input sample.

In general we can observe a nice size-up that is close to being linear with
respect to the number of training instances. These results clearly support the
theoretical average linear behaviour.

The second set of size-up experiments looks at the algorithm’s performance
with respect to the number of features. The data has been appended to itself in
a horizontal direction as explained earlier in this section. Again, the number of
training instances is increasing by factor 100 due to the use of 100 base classifiers.
The runtime for different sizes of data has been recorded and is plotted in Fig. 5
versus the data size.

Note that for this set of size-up experiments there is no setup with only one
cluster node. The reason for this is that we used the original number of data
features for both datasets, which simply exceeds the computational capabilities
of one cluster node after the bagging procedure for 100 base classifiers.

In general we can observe a nice size-up that is close to being linear with
respect to the number of features. These results clearly support the theoretical
average linear behaviour.

The speed-up factors recorded for Parallel Random Prism, on both test
datasets and for different numbers of cluster nodes (up to the 10 available) are

104 F. Stahl et al.

Fig. 5. Size up behaviour of Parallel Random Prism with respect to the number of
features. Headings Test 1 and Test 2 refer to the test datasets in Table 1. These datasets
have in this case been appended to themselves in order to increase the number of
attributes, while keeping the concept stable.

displayed in Fig. 6. The theoretical ideal speed-up factors are plotted as a dashed
line. It can be seen that the speed-up factors achieved are very close to the ideal
linear case. This almost ideal speed-up has been verified by linear regression
equations also depicted in Fig. 6. There is a small discrepancy between the ideal
case and the actual speed-up factors, the more cluster nodes are used. However,
this discrepancy is expected and can be explained by the non parallel part of
Parallel Random Prism as mentioned in the previous section, which is the term∑b

i=1 Tasm,i and the communication overhead, which is Tcomdat · p in the equa-
tion for the speed-up of Parallel Random Prism. It is expected that there will be
an upper limit of the number of cluster nodes that are beneficial to reducing the

Fig. 6. The Speed-up factors for of Parallel Random Prism. The dashed line represents
the theoretical ideal speedup. Linear regression equations and R2 are displayed for the
two test cases.

Scalable Expressive Ensemble Learning Using Random Prism 105

runtime. However, considering the low discrepancy after using 10 cluster nodes
suggests that the impact of

∑b
i=1 Tasm,i and Tcomdat ·p is not very high and thus

the experiments are far from using the maximum number of cluster nodes that
are still beneficial to lowering the runtime. This is consistent with the theoretical
speed-up analysis in the previous section. Please note that the theoretical and
empirical analysis presented in this paper focuses on the algorithm rather than
the version of MapReduce being used. If the sample constructed constructed for
the R-PrismTCS classifier is bigger than the HDFS block size additional com-
munication overhead will be incurred and the less speedup can be achieved. The
samples constructed in the experiments outlined in this paper were not bigger
than the HDFS block size.

Loosely speaking, Parallel Random Prism indeed exhibits an linear scalability
with respect to the number of training instances and the number of features.
Furthermore, the algorithm also shows a near linear speed-up factor.

The current implementation of Parallel Random Prism is bound in its max-
imum parallelism by the number of R-PrismTCS classifiers utilised. However,
R-PrismTCS classifiers could also be parallelised. The Parallel Modular Classi-
fication Rule Induction (PMCRI) framework [19] for parallelising, amongst oth-
ers, the PrismTCS [5] classifier, can be used for parallelising the R-PrismTCS
classifier also. This is due to the similarity of the R-PrismTCS and PrismTCS
classifiers. However, this is outside the scope of this paper.

6 Conclusions

This paper presented work on a novel, well-scaling ensemble classifier called Par-
allel Random Prism. Ensemble classifiers exhibit a very high predictive accuracy
compared with standalone classifiers, especially in noisy domains. However, this
increase in performance is at the expense of computational efficiency due to
data replication and the induction of multiple classifiers. Thus ensemble classi-
fiers applied on modest size training data already challenge the computational
hardware. Section 2 highlighted alternative base classifiers to decision trees (on
which most ensemble classifiers are based), in particular the Prism approach. The
PrismTCS standalone classifier often outperforms decision trees when applied to
noisy data, and hence is a good candidate base classifier for ensemble classifiers.
Section 2 proposed the Random Prism ensemble learner with the PrismTCS
based R-PrismTCS base classifier. It summarised results concerning classifica-
tion accuracy and gave an initial empirical estimate of Random Prism’s runtime
requirements. Section 3 also highlighted a parallel version of Random Prism using
the Hadoop implementation of the MapReduce programming paradigm. Essen-
tially multiple R-PrismTCS base classifiers are executed concurrently on p com-
puting nodes in a Hadoop cluster. The only aspects of Random Prism that are
not parallelised are the inexpensive combining procedure of the individual classi-
fiers and the distribution of the original training data over the cluster. Section 4
gave a theoretical complexity analysis of Random Prism and a theoretical scala-
bility analysis of Parallel Random Prism. The parallel version of Random Prism

106 F. Stahl et al.

was examined in terms of its runtime with respect to the number of computing
nodes used. In general a close to linear scalability was expected, as the main part
of the workload, the base classifier induction was parallelised. However, the data
communication to the cluster nodes at the beginning and the combining proce-
dures were not parallelised, hence an upper limit of beneficial computing nodes
was expected. Section 5 further supported the theoretical analysis with empirical
results. In these results Parallel Random Prism’s linear scalability with respect
to the number of training instances and features was confirmed. These results
also showed that Parallel Random Prism exhibits an almost ideal speed-up for
up to 10 cluster nodes with a slightly increasing deterioration the more clus-
ter nodes are utilised. The results suggested that there is an upper limit (due
to the non-parallel parts of Parallel Random Prism). However, the results also
suggested that the cluster is far away from its maximum number of beneficial
cluster nodes.

References

1. Hadoop (2014). http://hadoop.apache.org/
2. Bacardit, J., Krasnogor, N.: The infobiotics PSP benchmarks repository. Technical

report (2008)
3. Bache, K., Lichman, M.: UCI machine learning repository (2013)
4. Bramer, M.A.: Automatic induction of classification rules from examples using

N-Prism. In: Bramer, M., Macintosh, A., Coenen, F. (eds.) Research and Develop-
ment in Intelligent Systems XVI, pp. 99–121. Springer-Verlag, London (2000)

5. Bramer, M.A.: An information-theoretic approach to the pre-pruning of classifica-
tion rules. In: Musen, M.A., Neumann, B., Studer, R. (eds.) Intelligent Information
Processing. IFIP, vol. 93, pp. 201–212. Springer, Boston (2002)

6. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
8. Cendrowska, J.: PRISM: an algorithm for inducing modular rules. Int. J. Man

Mach. Stud. 27(4), 349–370 (1987)
9. Chan, P., Stolfo, S.J.: Meta-Learning for multi strategy and parallel learning. In:

Proceedings of Second International Workshop on Multistrategy Learning, pp. 150–
165 (1993)

10. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51, 107–113 (2008)

11. Grandvalet, Y.: Bagging equalizes influence. Mach. Learn. 55(3), 251–270 (2004)
12. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. The Morgan

Kaufmann Series in Data Management Systems. Elsevier, Amsterdam (2011)
13. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative App-

roach, 3rd edn. Morgan Kaufmann, San Mateo (2003)
14. Ho, T.K.: Random decision forests. In: International Conference on Document

Analysis and Recognition, vol. 1, p. 278 (1995)
15. Hwang, K., Briggs, F.A.: Computer Architecture and Parallel Processing.

McGraw-Hill Book Co., New York (1987). International edition
16. Liu, T., Rosenberg, C., Rowley, H.A.: Clustering billions of images with large

scale nearest neighbor search. In: Proceedings of the Eighth IEEE Workshop on
Applications of Computer Vision, WACV 2007, Washington, DC, USA, p. 28. IEEE
Computer Society (2007)

http://hadoop.apache.org/

Scalable Expressive Ensemble Learning Using Random Prism 107

17. Panda, B., Herbach, J.S., Basu, S., Bayardo, R.J.: Planet: massively parallel learn-
ing of tree ensembles with mapreduce. Proc. VLDB Endow. 2, 1426–1437 (2009)

18. Quinlan, R.J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Francisco (1993)

19. Stahl, F., Bramer, M.: Computationally efficient induction of classification rules
with the PMCRI and J-PMCRI frameworks. Knowl.-Based Syst. 35, 49–63 (2012)

20. Stahl, F., Bramer, M.: Random prism: a noise-tolerant alternative to random
forests. Expert Syst. 31(4), 411–420 (2013)

21. Stahl, F., Bramer, M., Adda, M.: Parallel rule induction with information theoretic
pre-pruning. In: Bramer, M., Ellis, R., Petridis, M. (eds.) Research and Develop-
ment in Intelligent Systems XXVI, pp. 151–164. Springer, London (2010)

22. Stahl, F., May, D., Bramer, M.: Parallel random prism: a computationally efficient
ensemble learner for classification. In: Bramer, M., Petridis, M. (eds.) Research and
Development in Intelligent Systems XXIX, pp. 21–34. Springer, London (2012)

23. Tlili, R., Slimani, Y.: A hierarchical dynamic load balancing strategy for distributed
data mining. Int. J. Adv. Sci. Technol. 39, 29–48 (2012)

24. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques: Practical Machine Learning Tools and Techniques. The Morgan Kaufmann
Series in Data Management Systems. Elsevier Science, Amsterdam (2011)

Performance Analysis of Adapting a MapReduce
Framework to Dynamically Accommodate

Heterogeneity

Jessica Hartog(B), Renan DelValle, Madhusudhan Govindaraju,
and Michael J. Lewis

Department of Computer Science,
State University of New York (SUNY) at Binghamton,

Binghamton, NY 13902, USA
{jhartog1,rdelval1,mgovinda,mlewis}@binghamton.edu

http://www.cs.binghamton.edu

Abstract. When data centers employ the common and economical
practice of upgrading subsets of nodes incrementally, rather than replac-
ing or upgrading all nodes at once, they end up with clusters whose nodes
have non-uniform processing capability, which we also call performance-
heterogeneity. Popular frameworks supporting the effective MapReduce
programming model for Big Data applications do not flexibly adapt to
these environments. Instead, existing MapReduce frameworks, including
Hadoop, typically divide data evenly among worker nodes, thereby induc-
ing the well-known problem of stragglers on slower nodes. Our alternative
MapReduce framework, called MARLA, divides each worker’s labor into
sub-tasks, delays the binding of data to worker processes, and thereby
enables applications to run faster in performance-heterogeneous environ-
ments. This approach does introduce overhead, however. We explore and
characterize the opportunity for performance gains, and identify when
the benefits outweigh the costs. Our results suggest that frameworks
should support finer grained sub-tasking and dynamic data partitioning
when running on some performance-heterogeneous clusters. Blindly tak-
ing this approach in homogeneous clusters can slow applications down.
Our study further suggests the opportunity for cluster managers to build
performance-heterogeneous clusters by design, if they also run MapRe-
duce frameworks that can exploit them.

1 Introduction

Scientists continue to develop applications that generate, process, and ana-
lyze large amounts of data. The MapReduce programming model helps express
operations on Big Data. The model and its associated framework implementa-
tions, including Hadoop [1], successfully support applications such as genome
sequencing in bioinformatics [2,3], and catalog indexing of celestial objects in

This work was supported in part by NSF grant CNS-0958501.

c© Springer-Verlag Berlin Heidelberg 2015
A. Hameurlain et al. (Eds.): TLDKS XX, LNCS 9070, pp. 108–130, 2015.
DOI: 10.1007/978-3-662-46703-9 5

Performance Analysis of Adapting a MapReduce Framework 109

astroinformatics [4], by splitting data across processing nodes, applying the same
operation on each subset, and aggregating results.

When frameworks split data evenly across nodes, and when the map and
reduce functions are applied uniformly, the frameworks implicitly assume that
constituent nodes possess similar processing capability. When they do not, strag-
gler processes result and performance suffers [5,6].

We refer to clusters whose nodes exhibit non-uniform processing capability as
being performance-heterogeneous. Performance heterogeneity can result from data
center administrators upgrading subsets of nodes incrementally, rather than
replacing or upgrading all cluster nodes at once. This can result as funds become
available incrementally, as older nodes fail or become obsolete, and as new faster
processors continue to emerge. FutureGrid [7] and NERSC [8] exemplify perfor-
mance-heterogeneous clusters. The FutureGrid test-bed is a geographically dis-
tributed set of heterogeneous nodes that vary significantly in terms of processor
speeds, number of cores, available memory, and storage technologies. NERSC’s
Carver cluster includes a mix of Intel Nehalem quad-core processors, Westmere
6-core processors, and Nehalem-EX 8-core processors, for a total of 9,984 cores.

Hadoop [1], the de facto standard MapReduce framework, can perform poorly
in performance-heterogeneous environments [5,6,9,10]. To improve performance,
MapReduce applications, in concert with supporting frameworks, must consider
differences in processing capabilities of underlying nodes. Simply put, faster nodes
should perform more work in the same time, eliminating or greatly reducing the
need for applications to wait for straggler processes to finish [6,11]. Our MARLA
MapReduce framework [9] supports partitioning of labor into sub-tasks, and does
not rely on the Hadoop Distributed File System (HDFS) [12]. Instead, it uses a
standard implementation of Network File System (NFS); therefore, data need not
reside on worker nodes before a MapReduce application runs, and more capa-
ble nodes can eventually receive and process more data. MARLA therefore does
not require significant local storage space on worker nodes, but does require data
movement (via NFS or some other underlying file system) at runtime.

In this paper, we configure a cluster to exhibit varying degrees of performance-
heterogeneity, and test the effectiveness of splitting MapReduce applications with
several degrees of granularity. Using smaller sub-tasks increases the opportunity
to react to performance-heterogeneity, but also requires that the application
pause more often to wait for data to arrive. Our experiments help identify the
circumstances under which the benefits of fine-grained subtasking and delayed
data partitioning outweigh the associated costs. We vary cluster nodes to include
two and three different levels of processing capability, and configure different per-
centages of nodes at each level. For each cluster environment, we divide appli-
cation labor into different granularities of subtasks, to help identify the best
strategy for task distribution on clusters with different characteristics.

This paper makes the following contributions:

– It demonstrates how incremental upgrades of a cluster can affect perfor-
mance of MapReduce applications that do not respond to cluster performance-
heterogeneity. Application developers do not typically reap the performance
improvements that cluster providers purportedly pay for.

110 J. Hartog et al.

– It identifies an approach for MapReduce frameworks to improve performance
on clusters that contain nodes with non-uniform processing capabilities.

– It provides evidence that upgrades to a cluster that do not improve all nodes
of the cluster uniformly can have a range of impacts on the turnaround time of
MapReduce applications, suggesting that data center managers should care-
fully consider upgrades. These considerations should be made based upon
both the techniques employed by the MapReduce framework to respond to
heterogeneity, and the applications the framework runs most frequently.

The paper proceeds as follows: Sect. 2 describes related work, and Sect. 3 pro-
vides relevant background on our MARLA MapReduce framework, including
the mechanisms for dividing and sub-dividing tasks at runtime. Section 4 then
describes our testbed and experiments. Section 5 includes and analyzes results
from experiments running on clusters containing two levels of processing nodes
in varying percentages. Section 6 describes results for clusters that exhibit three
levels of node capability. Sections 8 describes our plans for future work.

This work is an extension of the conference publication in the IEEE BigData
Conference, Research Track [13]. The significant extensions in this submission
are the following: Sect. 5.2 has been added for a detailed discussion on the perfor-
mance effect of Progressive Granularity Changes. Figure 2 shows the execution
times when we follow a two tasks per worker splitting rule. During these tests
we incrementally perform upgrades on a subset of the nodes. Figure 3 shows the
results when we follow a two tasks per worker scenario as the cluster is incremen-
tally upgraded. In particular these results are presented relative to the execution
time of an un-upgraded cluster. Figure 4 shows these same relative results when
we follow a three tasks per worker splitting rule. Additionally we consider the
impact of all of our experimentation relative to the data size involved. These
results are considered in Fig. 12 and discussed in Sect. 7.

2 Related Work

Zaharia et al. [5] and Xie et al. [6] address MapReduce job scheduling in hetero-
geneous clusters. During speculative execution, Hadoop’s straggler mechanism
starts duplicate tasks when it discovers slow nodes, but this strategy falls short of
solving the problem in clusters with increased performance-heterogeneity. Fadika
et al. [10] show that Hadoop’s straggler mitigation scheme also falls short in non-
dedicated clusters with third-party load.

The LATE scheduler [5] allows Hadoop to speculatively execute the task
that the framework expects to complete furthest into the future. LATE relies
on HDFS for data placement and therefore can not delay the binding of data to
worker processes; this restriction limits the tasks that may benefit from specu-
lative execution.

Xie et al. [6] profile cluster node capabilities and skew data partitioning
accordingly; slow nodes receive less work than faster nodes. This static profil-
ing suffers when “surprise” third-party loads begin or end in the middle of a
MapReduce job, thereby altering a node’s ability to complete work compared to

Performance Analysis of Adapting a MapReduce Framework 111

the profile-based prediction. Furthermore, when faster nodes receive more work
and subsequently fail, the application stalls for longer than when slower nodes
fail.

Ahmad et al. [11] notice that Hadoop’s speculative execution favors local
tasks over remote tasks, and speculatively execute remote tasks only near the
end of the map phase. The authors’ Tarazu enhancement suite re-distributes
speculative execution of remote tasks based on an awareness of network commu-
nication. Tarazu monitors this communication to determine whether the map
phase or the shuffle phase creates the bottleneck. In contrast, our work delays
distributing data until just before workers need it, instead of making and then
reconsidering binding decisions. In addition, Tarazu considers clusters with two
classes of hardware, wimpy (Atom) nodes and brawny (Xeon) nodes. We find, as
shown by Nathuji et al. [14], that clusters more often have levels of hardware that
exhibit more closely-related performance than those considered for Tarazu. Our
work analyzes the scenario where the difference between worker nodes is a more
realistic depiction of the data center upgrade process described by Nathuji et al.

Our work studies how well a delayed task-to-worker binding of application
data to worker nodes allows a MapReduce framework to make efficient use of
performance-heterogeneous clusters, and the extent to which the strategy intro-
duces overhead in homogeneous clusters. We believe this paper to be unique in
varying both the granularity of data splits (and therefore the number of tasks),
and also the performance-heterogeneity of the underlying cluster.

3 Deferred Binding of Tasks

This paper characterizes the performance of delayed mapping of data and tasks
to worker nodes in the MARLA MapReduce framework.1 This section describes
important MARLA features and distinguishes MARLA from Hadoop, primarily
with respect to how the two frameworks operate on performance-heterogeneous
clusters. We have described MARLA in more detail elsewhere [9], including its
performance improvements on load-imbalanced clusters.

Clusters whose nodes possess non-uniform processing capabilities (some nodes
faster than others) undermine Hadoop’s strategy of partitioning data equally
across nodes and applying map and reduce methods uniformly. Workers on fast
nodes finish their work quickly but must wait for straggler workers on slower
nodes before the application completes.

MARLA works directly with existing cluster file systems instead of relying
on the Hadoop Distributed File System (HDFS) [12]. MARLA instead focuses
solely on map and reduce task management. MARLA uses a networked file sys-
tem (e.g. NFS) to decouple data management from the framework, allowing
the framework and the file system to address their separate concerns indepen-
dently. MARLA specifically targets high performance scientific compute clusters,
such as those at the National Energy Research Scientific Computing (NERSC)
1 MARLA stands for “MApReduce with adaptive Load balancing for heterogeneous

and Load imbalAnced clusters.”

112 J. Hartog et al.

Center [8]. To run Hadoop and HDFS, these HPC centers typically partition their
clusters and dedicate sub-parts for exclusive use by Hadoop [15]. MARLA can
instead operate on existing shared file systems such as NFS or GPFS [16]. This
feature increases the number of nodes available for MapReduce jobs, removes the
requirement that individual nodes contain significant local storage, and enables
MARLA to support scientific applications that require POSIX compliance.

The MARLA Splitter manages framework I/O. Framework configuration
parameters drive and determine the division of application input into chunks.
Different configuration parameters specify (i) the number of tasks, and (ii) the
number of cores on each worker node. Workers request tasks and receive all
associated input chunk data. To facilitate processing in a heterogeneous envi-
ronment, MARLA allows the user to configure a number of tasks for the data to
be split into. This parameter defines how many data chunks the input should be
divided into, which allows the user to adopt a bag-of-tasks approach to combat-
ing heterogeneity. After the Splitter divides the tasks into input data chunks,
it sub-divides those chunks into as many sub-tasks as there are cores on each
worker node, a value defined by a framework parameter. This is done to facilitate
multi-threading on worker nodes. When a worker node requests a task, the file
handle gets passed as an argument, and the file system ensures that the worker
node can access the file.

Hadoop instead splits and replicates data based on block size, and places it
based on node storage capacity, among other factors. Data placement influences
the nodes on which workers complete tasks, often well before the application
runs. Although tasks can migrate from one node to another at the request of
the Master, the system’s implicit preference toward local tasks makes it difficult
for Hadoop’s straggler mitigation technique to keep up with the non-uniform
processing capability of the cluster nodes when only portions of the cluster have
been upgraded [6,11].

MARLA’s TaskController, or Master, makes the user’s map and reduce
code available to workers, and starts and stops MapReduce jobs. The Task
Controller monitors task progress on behalf of worker nodes, and resubmits
failed tasks to the FaultTracker. The FaultTracker monitors tasks for failure,
issuing a “strike” against any node that fails on a task that a worker on another
node successfully completes. Three strikes relegate a worker to a blacklist,
precluding it from further participation in the job.

Originally, the slowest MapReduce tasks, straggler tasks, limited and deter-
mined the turnaround time of larger MapReduce jobs. Causes of straggler tasks
include less capable node hardware, external load, and variances in input chunk
data, some may require more processing than others. To adapt to these chal-
lenges without making assumptions based on static profiling, MARLA supports
the bag-of-tasks model to combat both static and dynamic heterogeneity.

In this paper we characterize the performance of this bag-of-tasks approach
within a MapReduce framework. We identify beneficial framework configura-
tions for adapting to performance-heterogeneous clusters. Assigning increasing
numbers of tasks per node allows frameworks to divide data and tasks to better
match node capabilities, but invites overhead.

Performance Analysis of Adapting a MapReduce Framework 113

4 Experimental Setup and Overview

Our experiments run on the Binghamton University Grid and Cloud Computing
Research Laboratory experimental research cluster, which comprises the follow-
ing components:

– 1 Master node running a 4 core Intel Xeon 5150 @ 2.66 GHz and 8 GB RAM
– 24 Baseline nodes - 4 core Intel Xeon 5150 @ 2.66 GHz and 8 GB RAM
– 24 Faster nodes - 8 core Intel Xeon E545 @ 2.33 GHz and 8 GB RAM
– 12 Fastest nodes - 32 core Intel Xeon E5-2670 @ 2.60 GHz and 126 GB RAM

Each node runs 64-bit Linux 2.6.32 and shares an NFS server. To emulate clus-
ters that evolve as described by Nathuji et al. [14], who report that data centers
perform partial upgrades of their compute and storage infrastructures approx-
imately every two years, we model incremental upgrades by enabling different
portions of the cluster containing different combinations of the three classes of
machines.

We do not include performance data for Hadoop as it does not support
deferred binding of tasks. In our earlier work, we compared Hadoop with our
MARLA framework for load imbalanced and fault-tolerance scenarios [9].
The comparison shows that MARLA and Hadoop had a similar performance
profile for processing floating point data in a homogeneous cluster. However,
in 75-node cluster with 600 cores, in which 75 % of the nodes have third-party
CPU and memory loads, MARLA takes 33 % less time than Hadoop to process
300 million matrices. For the widely used MapReduce benchmark of processing a
0.6 TB file for word frequency count, Hadoop and MARLA were tested for fault
tolerance. In this test, a 32-node cluster progressively lost 6, 8, 10, 12, 14, and
16 nodes. The results showed that MARLA consistently performed better than
Hadoop when faced with loss of nodes.

In this paper, our experiments multiply matrices containing random floating
point values. The CPU-intensity of matrix multiplication emulates the character-
istics and requirements of many Big Data applications. The differences between
Baseline, Faster, and Fastest nodes lie primarily in processor speeds and the
number of cores; therefore, CPU-intensive applications highlight this difference
most effectively. We report (i) the average time for ten runs of each experiment,
and (ii) the number of 33 × 33 matrices that are multiplied.

We design and run experiments on a cluster that utilizes a centralized file
system(NFS). We limit the scope of this paper to the realm of NFS for two
reasons. The first is based on our prior work MARIANE [15], in which we dis-
cuss how it is often the case that HPC environments are unable to utilize the
MapReduce paradigm because of the burdens imposed by HDFS. The MARLA
framework utilizes the same code-base as MARIANE as it was also designed with
such HPC environments in mind. A comparison of how the use of HDFS has an
effect on the performance of a MapReduce framework in such an environment
was previously considered in [15] and is omitted here due to space constraints.
The second reason we restrict our experiments to use of a centralized data store
is because of evidence that suggests that many companies, like Facebook, use

114 J. Hartog et al.

NFS alongside HDFS when processing Big Data [17]. Since HDFS does not sup-
port late-binding of tasks to workers, and that is the aspect of this framework
we wish to study, we limit our study to an NFS-based environment.

4.1 Clusters with Two Levels of Nodes

The first set of experiments varies the cluster configuration, the split granularity
(that is, the number of tasks-per-node into which the framework splits the prob-
lem), and the input data size. In particular, we run tests for all combinations of
the following:

– Cluster configuration: 16-node clusters with some Baseline nodes and some
Faster nodes, varying the percentages of each in increments of four nodes, or
25 % of the cluster nodes.2

– Split granularity: We vary the number of tasks per node from one to four. To
utilize the upgraded nodes most effectively, the number of cores parameter of
the MARLA framework is defined as eight. Recall that this parameter defines
how many sub-tasks to attribute to each task.

– Problem size: We use input matrices of size 33×33 randomly generated floating
point values, multiplying 500 K, 750 K, 1 M, 1.25 M, 1.5 M, 1.75 M, 2 M, and
2.25 M matrices during execution of the various MapReduce jobs.

Section 5 contains results for this set of experiments.

4.2 Clusters with Three Levels of Nodes

The second set of experiments studies the effect of introducing the third class of
Fastest nodes. We vary a 24-node cluster to contain all Baseline nodes, and then
a variety of upgrade combinations. In particular, we vary the number of Faster
nodes from zero to twenty-four, in increments of two. We simultaneously vary
the number of Fastest nodes from zero to twelve, in increments two. We use tuple
notation < b, f, t > to indicate the number of nodes at the < b = Baseline, f =
Fast, t = Fastest > levels. We run tests for all tuples < b, f, t > in the following
set: {< b, f, t > | b ∈ [0, 24], f ∈ [0, 24], t ∈ [0, 12]; 2b, 2f, 2t ∈ N; b+ f + t = 24}.

In this configuration, we also vary the number of cores per worker alongside
the number of tasks. This is done to identify what happens when the number of
cores in the configuration file is not reflective of the actual number of cores on
the most powerful of the nodes. To do this we consider splitting the tasks into
8 sub-tasks as we did for the previous experiments; we also consider splitting the
tasks into 32 sub-tasks in an effort to take full advantage of the Fastest nodes.
As with the previous set of experiments, we also vary the number of tasks. We
vary this parameter in the same manner as the previous set of experiments, from
one to four times the number of nodes in the cluster. Section 6 contains results
for this third set of experiments.
2 We do not use the Fastest node configuration for this set of experiments.

Performance Analysis of Adapting a MapReduce Framework 115

5 Variable Data Size Through Upgrade

This section describes results from tests that vary three different aspects of a
MapReduce matrix multiply application running over MARLA. In particular:

– Increasing the split granularity, the number of tasks per worker node into
which the original data set is split, provides more opportunity for Faster nodes
to receive and complete more work in smaller chunks than slower nodes. In
a 16 node cluster, results describe sets of runs with data split into 16 tasks
(1 per node), 32 tasks (2 per node), 48 tasks (3 per node), and 64 tasks (4 per
node).

– Altering the performance-heterogeneity of the cluster influences the degree to
which the system requires straggler mitigation. Results describe sets of runs on
a homogeneous system of all Baseline nodes (labeled “0 % Faster” in figures),
a system with 25 % of the system upgraded to Faster nodes, systems with 50 %
and 75 % Faster nodes, and a homogeneous system of 100 % Faster nodes.

– Varying the problem size ensures that trends exist as computational require-
ments of the application increase. Experiments set the size of matrices at
33 × 33 floating point numbers, and set the number of such matrices in
the input data at 500 K, 750 K, 1 M, 1.25 M, 1.5 M, 1.75 M, 2 M, and 2.25 M
matrices.

Four split granularities, five performance-heterogeneity levels, and eight input
set sizes translate to 160 different tests. Graphs depict the averages of ten runs
of each test. We plot portions of the data in several different ways to explore
trends and highlight results that provide insight.

5.1 Traditional Coarse-Grained Splits

Figure 1 plots only the data for the most coarse grain split granularity of one task
per worker node. This split mirrors the default behavior in Hadoop and explic-
itly disallows straggler mitigation because all nodes (no matter their capability)
receive exactly one task at the outset of the application. Each group of five bars
corresponds to a different problem size along the x-axis, the y-axis reflects exe-
cution time, and each bar corresponds to a different performance-heterogeneity
(or upgrade level). Larger problem sizes take longer to finish, and clusters with
75 % and 100 % upgraded nodes outperform less capable clusters. However, a
homogeneous cluster with all Baseline nodes, and clusters with 25 % and 50 %
upgraded nodes all perform the same.

To understand this behavior, consider an example. Suppose we have N worker
nodes and we assign N + 1 approximately equal sized tasks to each of them.
In order for this running time to be comparable to the case where we have
N tasks for N nodes, we would need a cluster configured in such a way that
the fastest node is nearly twice as fast as the slowest node. In this scenario, the
fastest node takes two tasks of equal size, and the slowest node takes one task
of that same size. This implies that the execution time of the job is not related

116 J. Hartog et al.

simply to the speed of the slowest node, but to the speed of the fastest node
relative to the slowest node.

Expanding this example shows us that in order for our cluster to be able
to achieve a performance improvement with 3N tasks per worker, the fastest
node would have to be able to compute at least one of the slowest node’s tasks;
meaning that the fastest node would have to complete three tasks before the
slowest node could finish two tasks. Note that the turnaround time in this case
will then depend on the ability of the fastest node to complete four tasks, but
that it is sufficient to complete three tasks before the slowest node completes
two tasks. This is because once three tasks have been completed by the fastest
node it will be free to request, and receive, more work from the Master which
will prevent the slowest node from receiving that same work. In this scenario,
the fastest worker node would have to be just over 1.5 times the speed of the
slowest worker. In addition to this, there would need to be enough faster nodes
in the cluster to be able to prevent all of the slower nodes from requesting an
additional (third) task.

Because of this, for a traditional coarse-grain data split, initial upgrades to
the cluster (even upgrading half of the cluster to machines with faster processors
and twice as many cores) does not improve matrix multiplication performance.
Overall application performance depends on stragglers on slower nodes, and the
coarse grain split precludes straggler mitigation. Upgrading most (75 %) or all
of the cluster to Faster nodes does improve performance.

Fig. 1. Execution time for the traditional one-task-per-worker initial data split, for
different problem sizes (groups of bars along the x-axis) and cluster upgrade levels
(one bars in each group, as per the in-graph legend).

Performance Analysis of Adapting a MapReduce Framework 117

5.2 Progressive Granularity Changes

In order to analyze what happens as we move from coarse granularity to fine
granularity with respect to the number of tasks, we perform experiments for each
multiple of the number of worker nodes as we move from one task per node to
four tasks per node. The results of this class of experiments follows are similar
to those seen in Fig. 1 and the analysis provided in Sect. 5.1.

Doubling the Number of Tasks. In this set of experiments, we consider
what happens when we double the number of tasks from one task per worker to
two. These results are presented in Fig. 2. When we compare these results with
those found in Fig. 1 and described in Sect. 5.1, they are very similar. The largest
degree of difference between the two sets of experiments is 3.77 %. The average
degree of difference between a one task per worker setup and the two task per
worker setup is only 1.72 %. The increase in execution time is as a result of the
overhead associated with worker nodes having to request additional work.

Fig. 2. This graph illustrates the execution times of our workload when we follow a two
tasks per worker splitting rule. During these tests we incrementally perform upgrades
on a subset of the nodes. On the X-axis is the number of matrices multiplied during
the test. On the Y-axis is the execution time in seconds.

To illustrate the effects of the overhead, we consider the change in execu-
tion time between one task per worker and two tasks per worker considering
file size. The percentage difference is 2.91 % on average for the smallest file
size tested, but this difference steadily decreases as low as 1.01 % as the file
sizes increase. Since this difference is not as prominent for the larger file sizes,
we determine that the overhead associated with requesting additional work is

118 J. Hartog et al.

relatively constant and does not depend on problem size. This tells us that the
percentage overhead associated becomes amortized. From this we can conclude
that as long as the file size is reasonably large, the cost of adding more tasks
from the same data will not produce a heavy negative impact on our execution
times provided the adaptability to heterogeneity is necessary.

Further, we expect similar performance for the one task per node and two
tasks per node schemas in most cases. The reason that we expect this is because
two tasks per node does not allow much room for adaptability to heterogeneity.
To illustrate the inability to adapt at this level of taks granularity, we present
Fig. 3. In the figure, the execution time of workloads is presented relative to their
execution time on the original (unupgraded) cluster. The trend of the data pre-
sented is that the execution times for the slightly upgraded clusters(25 % and 50 %
upgraded) are relatively consistent. These results also indicate a slight increase in
execution time for smaller file sizes relative to larger file sizes. This illustrates both
the overhead and the inability to adapt to heterogeneity at this level of task granu-
larity. In order to realize heterogeneity adaptability from such a small difference in
the number of tasks, the degree of heterogeneity would have to be high. In particu-
lar, for a cluster to be able to utilize the creation of one additional task per worker,
a fast node would have to be able to reliably complete two tasks before the slowest
node finished one task. Otherwise, the slowest node would be able to request its
second task and the entire job would complete only once the slowest node com-
pletes its second task. In short, an upgraded node would have to be roughly twice
as fast as an non-upgraded node in order to see an improvement in execution time
when there are two tasks per node.

This has been partially addressed by Ahmad et al. [11] when considering
clusters that have both extremely fast and extremely slow nodes. In particu-
lar, they consider a heterogeneous cluster of Intel Xeon server class hardware
and Intel Atom hardware. They discover that in Hadoop [1], “work stealing”
occurs, and is especially a problem toward the end of the map phase. In this
scenario, the Xeon nodes speculatively execute tasks whose data are local to
the Atom nodes. The non-local status of the data associated with the task is
the cause of this “work stealing” happening at the end of the map phase, since
Hadoop’s speculative execution prefers local tasks to remote ones. As a result of
“work stealing”, the Xeon nodes prevent the Atom nodes from preforming their
fair share of work. Tarazu [11], a Hadoop enhancement suite mitigated this prob-
lem by adding in communication aware speculative execution of tasks. However,
this late map phase “work stealing” is not a problem in our framework. Due to
the data visibility afforded to MARLA by use of a networked file system, the
concept of remote tasks does not exist. Additionally, MARLA has no preference
for local tasks over remote tasks, as all data is visible to all nodes. The Tarazu
enhanced Hadoop has not been analyzed within the context of upgrading clus-
ters as we have presented here; it focuses on the disparity between computation
capabilities of Xeon and Atom based hardware, a drastic difference. We believe
that a single node being upgraded to a node whose hardware is slightly more
powerful is a more plausible scenario for existing data centers, as opposed to
replacing one brawny node with eight wimpy ones.

Performance Analysis of Adapting a MapReduce Framework 119

Fig. 3. This graph illustrates the overhead results of our experiments when we follow a
two tasks per worker splitting rule. In particular, this graph shows the execution time
of this rule relative to the execution time of a traditional data-split rule. During these
tests we incrementally perform upgrades on a subset of the nodes. On the X-axis is
the number of matrices multiplied during the test. On the Y-axis is the execution time
of a two task per worker scenario relative to a one task per worker scenario.

Further Splitting Tasks. The results presented here correspond to what hap-
pens when the number of tasks available is three times the number of worker
nodes. We look at these results explicitly, as well as comparing them to the
results obtained in previous sections.

As with the previous granularity shift, we expect some deviation from the pre-
vious results because three tasks per node allows slightly more room to adapt to
heterogeneity. From our results, the amount of overhead increases as we increase
the number of tasks. This is expected because additional return trips to the mas-
ter node are required to be assigned more work. This introduces stalling between
tasks, which reduces turn around time. In particular when these results are com-
pared to those presented in the previous section, the additional overhead as a
result of generating yet more tasks can be seen. In this case we see a maximum
overhead of 4.90 % and an average overhead of 1.88 %. Additionally, it is again
confirmed that overhead is amortized as the problem size grows, ranging from
3.19 % overhead as we move from two to three tasks per worker for the smallest
problem size to 0.48 % overhead for the largest problem size.

Next consider the results seen in Fig. 4. Here we expect to see similar results to
that of Fig. 3. The data presented in this figure displays a slight change between
a 25 % upgraded cluster and a 50 % upgraded cluster, a trend which is not seen in
Fig. 3. This shows that while still not entirely able to adapt to this particular level
of performance-heterogeneity, three tasks per worker shows slight performance

120 J. Hartog et al.

Fig. 4. This graph displays the relative results of our experiments when we follow a
three tasks per worker splitting rule. During the experiments, we incrementally per-
form upgrades on a subset of the cluster. On the X-axis is the number of matrices
multiplied during the experiment. On the Y-axis is the execution time in seconds of
the MapReduce job relative to the time it took on the un-upgraded cluster.

improvements as smaller sections of the cluster are upgraded. This indicates
that further increasing the number of tasks will likely have a more dramatic
impact on turnaround time for these smaller percentage upgrade scenarios. This
is something we consider in the next section.

Note that in the data presented thus far our cluster is not heterogeneous
enough, nor the task granularity small enough, to see an improvement in per-
formance using the configurations presented. The reason we have not yet seen
performance improvements in most upgrade scenarios tested is because the
upgraded nodes are not fast enough as to be able to take over the execution
of all additional tasks that would be assigned to the stock (original) nodes when
assuming all nodes will process the same number of tasks.

5.3 Finer-Grained Splits

Figure 5 plots data for the same set of tests as Fig. 1, for the finest granularity
of the initial data split. This provides the most potential for Faster nodes to
complete initial small assignments quickly and then retrieve more data and exe-
cute more tasks than slower nodes. In this case the Baseline homogeneous cluster
(0 % Faster nodes) performs worst across all problem sizes, and the Faster homo-
geneous (100 % Faster) cluster performs best, two unsurprising results. The other
three clusters, however, perform very similarly to one another across all problem
sizes, despite the disparity between the number of upgraded nodes.

Performance Analysis of Adapting a MapReduce Framework 121

For a finer-grain data split, MARLA improves performance when the first
25 % of the cluster is upgraded, but subsequent upgrades to 50 % and 75 % do
not yield performance gains. Only when the entire cluster runs Faster nodes do
we see the next level of application performance improvement.

Fig. 5. This graph displays the results of our experiments when we follow a four tasks
per worker splitting rule across our cluster as we incrementally perform upgrades. On
the X-axis is the number of matrices multiplied during the test. On the Y-axis is the
relative time each incremental upgrade takes with respect to the un-upgraded cluster.

We plotted but did not include results for the 32-tasks (2 per node) and
48-tasks (3 per node) versions of Figs. 1 and 5. The two omitted graphs plot data
whose values closely approximates the data for Fig. 1. For example, runtimes are
only slightly longer in all cases for the 2 tasks-per-node experiments (on average,
values are 1.75 % longer and each individual value is within 4 % of its counter-
part). The small increase reflects the small overhead of worker nodes requesting
extra work rather than receiving it in the initial split. Figure 6, described next,
adequately demonstrates the similarity of the data for the omitted graphs.

5.4 Matrices per Second

As problem sizes grow linearly (e.g. the x-axis in Figs. 1 and 5, the average run-
time for each set of tests also grows linearly. To view more data in one place,
and to highlight the effect of performance-heterogeneity and split granularity
across all tests, Fig. 6 plots the average number of matrices multiplied per sec-
ond, for all six cluster configurations paired with all four split granularities.
Bars corresponding to the Baseline homogeneous (0 % Faster) and the 25 % and

122 J. Hartog et al.

50 % upgrades reflect similar runtimes for splits of one, two, and three tasks
per worker, with a small decrease in slope reflecting overhead. Similarly, all four
splits perform better at 75 % Faster and Homogeneous (100 %) Faster upgrade
levels, across all task split granularities, including 4 tasks per node. With the
finest grain split that we tested, performance on the intermediate (25 % and 50 %
upgrade levels) clusters closely matches performance on the 75 % upgrade level.

Thus, an application developer using a traditional coarse-grain split into
1 task per node would not benefit from any incremental upgrades of subsets of
cluster nodes. Only when the entire cluster contains Faster nodes does perfor-
mance increase. Splitting an application into too few tasks (even 2 or 3 per worker
node) similarly does not allow the application to benefit from partial upgrades.
Only when the application splits into 4 tasks per worker does the application
developer benefit from incremental cluster upgrades. Even then, only an upgrade
of the first and last 25 % of nodes improves performance. The upgrade of the first
25 % allows straggler mitigation strategies to become effective, and the upgrade
of the last 25 % helps reduce the appearance of stragglers by turning the cluster
homogeneous.

We plot Fig. 6’s data differently in Fig. 7. The downward trend across results
within each of the four set of bars depicts the overhead associated with worker
nodes having to retrieve more work, rather than receiving one initial task. In the
two homogeneous clusters (the leftmost and rightmost sets of bars in Fig. 7), this
overhead does not pay dividends for any split granularities; the trend continues

Fig. 6. Average number of matrices processed per second; averaged results across all
eight problem sizes. The X-axis displays split granularity in terms of the number of
tasks into which the problem is split. Y-axis displays the number of 33 × 33 matrices
multiplied per second in units of ten thousand. The graph includes sets of bars for six
different cluster configurations.

Performance Analysis of Adapting a MapReduce Framework 123

Fig. 7. Average number of matrices processed per second; averaged results across all
eight problem sizes. The X-axis displays performance heterogeneity in terms of the
percentage of the cluster that has been upgraded to Faster nodes. The Y-axis displays
the number of 33 × 33 matrices multiplied per second in units of ten thousand. The
graph includes sets of bars for four different split granularities.

through all four bars in both cases. Likewise, it does not pay dividends for a
cluster with 75 % of its nodes upgraded. Within the 25 % and 50 % upgrade
levels, only the rightmost bar is taller, illustrating the need for enough (4) tasks
per node in the split to realize improved performance from the first 25 % of nodes
being upgraded.

Conclusions: Cluster managers should not necessarily expect application per-
formance to improve at all due to partial upgrades, especially when the MapRe-
duce framework employs a traditional one-task-per-worker data split. Our results
in as displayed in Figs. 6 and 7 suggest that even MapReduce frameworks that
attempt to mitigate the effect of stragglers through the creation of additional
tasks may succeed only in adding overhead, and not decreasing runtimes when
they do not provide an adequate number of additional tasks. Such frameworks
can, however, reap the benefits of partial upgrades with sufficient split granular-
ities. In our tests, upgrading the first 25 % of nodes allowed MARLA to mitigate
the effect of stragglers well enough to have matrix multiply perform as well as a
more capable cluster that included 75 % Faster nodes.

6 Variability Between Upgrades

We introduce the following notation to facilitate discussion of this section’s exper-
iments and results. A series of tuples, < (pi, si) >, describes the heterogeneity of

124 J. Hartog et al.

a cluster configuration, where pi represents the percentage of the cluster that has
a speedup of si over the slowest node configuration. As a result of this notation, we
can accurately express the heterogeneity of the cluster with respect to N classes
of hardware, each represented by one entry in a vector of size N . In this vector, the
sum of all pi values is 100. When MARLA configuration causes tasks to sub-divide
into eight subtasks at each node, we observe speedup on Faster nodes to be 1.075,
and speedup on Fastest nodes to be 8.010. These numbers reflect performance on
homogeneous clusters of Baseline, Faster, and Fastest nodes when running matrix
multiplication.

This section describes results of experiments on a cluster that includes a third
class of compute nodes, namely the 32-core Fastest nodes described in Sect. 4.
Figure 8 shows results for an initial split of the matrix multiplication application
into 24 tasks (one per node), and for MARLA configured to split tasks into
eight subtasks at each node. Therefore, even the 32 node cluster uses 8 cores
at a time for each task. When we consider these results, we see two regions
that produce optimal run-times, namely < (19, 1.0), (65, 1.075), (16, 8.010) >
and < (3, 1.0), (65, 1.075), (32, 8.010) >.

Application runtimes for both of these configurations approximate those for
the Faster homogeneous cluster configuration, which appears in the lower right
corner of Fig. 8, with 100 % Faster nodes and 0 % Fastest nodes. Even for a coarse
grained task split of one task per node on a cluster configuration that does not
take full advantage of the Fastest nodes, run times improve.

Fig. 8. This contour plot shows the effects of varying two kinds of nodes within a
cluster with respect to computation time. In this case, the effect of 24 tasks in a
24 node cluster that assumes 8 sub-tasks for each task. The X-axis shows the percentage
of the cluster that has been upgraded to Faster nodes, while the Y-axis shows the
percentage of the cluster that has been upgraded to Fastest nodes. Impossible points
have been interpolated. The solid lines indicate the trends in the data.

Performance Analysis of Adapting a MapReduce Framework 125

Figure 9 shows results for an initial task split of 72 tasks, or three per worker.
Again, MARLA splits tasks into 8 subtasks at each node. Figure 9 shows that
some upgrades result in performance degradation. In particular, configurations
< (52, 1.0), (32, 1.075), (16, 8.010) > and < (20, 1.0), (64, 1.075), (16, 8.010) >
underperform surrounding data points. In this case, Faster nodes request addi-
tional work that they cannot complete to improve turnaround time, because
requests arrive after the new Fastest nodes have started executing additional
tasks. The new tasks on Faster nodes then increase the turnaround time as the
framework waits for them to finish. In other configurations, the Fastest nodes can
complete these tasks because they constitute a higher percentage of the cluster
and are able to get to these tasks before the Faster nodes can.

Comparing Figs. 8 and 9 shows that a split granularity of 72 tasks instead
of 24 enables MARLA to adapt to cluster upgrades more efficiently. The differ-
ence in performance between these two figures illustrates that with a finer task
granularity, upgrades to fewer nodes can still lead to faster execution times.

Fig. 9. This contour plot shows the effects of varying two kinds of nodes within a
cluster with respect to computation time. In this case, the effect of 72 tasks in a
24 node cluster that assumes 8 sub-tasks for each task. The X-axis shows the percentage
of the cluster that has been upgraded to Faster nodes, while the Y-axis shows the
percentage of the cluster that has been upgraded to Fastest nodes. Impossible points
have been interpolated. The solid lines indicate the trends in the data.

We also consider configurations where MARLA divides tasks into 32 sub-
tasks. Figure 10 indicate that when too few tasks exist, Baseline nodes incur
the overhead of 32 subtasks on a 4 core machine. This effect appears in the
time difference at configurations < (19, 1.0), (65, 1.075), (16, 8.010) > and <
(3, 1.0), (65, 1.075), (32, 8.010) > relative to the corresponding points in Fig. 8.
The best performance is achieved in a larger range of configurations when each
node processes 8 sub-tasks instead of 32. Therefore, the one-task per worker

126 J. Hartog et al.

heuristic fails when a MapReduce configuration does not match the cluster topol-
ogy. Furthermore, MARLA could improve by adapting to a cluster’s topology
without sacrificing the late binding of tasks to workers; we plan to study this as
future work.

Fig. 10. This contour plot shows the effects of varying two kinds of nodes within a
cluster with respect to computation time. In this case, the effect of 24 tasks in a
24 node cluster that assumes 32 sub-tasks for each task. The X-axis shows the percent-
age of the cluster that has been upgraded to Faster nodes, while the Y-axis shows the
percentage of the cluster that has been upgraded to Fastest nodes. Impossible points
have been interpolated. The solid lines indicate the trends in the data.

Figure 11 shows results of dividing work onto 72 tasks (three per worker), and
shows that upgrading impacts application turn-around time for smaller task gran-
ularities and for systems whose MARLA number-of-cores parameter is set prop-
erly. With 72 tasks and 32 sub-tasks per task, and more than 12.5 % Fastest nodes,
execution time drops below 100 s. Further, configurations that split into 32 nodes
perform better than when tasks split into only 8 subtasks, because the Fastest
nodes can use all 32 cores. In this case, performance improves more effectively
when the most powerful nodes in the cluster are using effectively utilized.

This section’s results indicate:

– The one task per worker heuristic combats performance-heterogeneity for the
configurations we tested, with three discrete levels of worker performance.

– A mis-configuration of a MapReduce framework that is not fully aware of clus-
ter topology can reduce the number of configurations that provide improved
performance as the cluster is upgraded.

– The addition of more tasks to the pool of tasks that needs to be completed
allows for a MapReduce framework to be configured so that it takes full
advantage of the Fastest nodes in the cluster and still sees improved turn-
around time for most cluster configurations.

Performance Analysis of Adapting a MapReduce Framework 127

Fig. 11. This contour plot shows the effects of varying two kinds of nodes within a
cluster with respect to computation time. In this case, the effect of 72 tasks in a
24 node cluster that assumes 32 sub-tasks for each task. The X-axis shows the percent-
age of the cluster that has been upgraded to Faster nodes, while the Y-axis shows the
percentage of the cluster that has been upgraded to Fastest nodes. Impossible points
have been interpolated. The solid lines indicate the trends in the data.

7 Conclusions

As we discussed in [9], we are able to accommodate heterogeneity in a cluster by
increasing the number of tasks associated with each worker node. Thus far using
experimentation on variable data sizes, variable degrees of heterogeneity in the
cluster, and various data partitioning rules we are able to provide the following
results:

– As the processing data size grows 4.5 fold, the amount of overhead produced as
a result of an increased number of tasks decreases, resulting in performance
improvement only when the file size is large. In the case of a four-task-per
worker ratio, the overall execution time increases by an average of 7.553 % in
the case of the smallest file, and decreases by an average of 1.661 % in the
case of the largest file. Therefore, frameworks should consider heterogeneity
mitigation using a bag-of-tasks mechanism only when the file size is large.

– An increase in task granularity can provide performance improvements even
in clusters that do not have a high degree of heterogeneity. For example,
increasing task granularity from two tasks per worker to four tasks per worker
generates, on average a 3.13 % improvement in execution time across our runs
executed using the largest input file. In particular, improvements are seen in
as little as a 25 % cluster upgrade in the case of four tasks per node; whereas
improvements are not seen until a 75 % upgrade for the two tasks per node
case.

128 J. Hartog et al.

– Higher task to worker ratios increase performance more for clusters that have
a small percentage of fast nodes than those with a small percentage of slow
nodes. In fact, for the largest data and a 75 % upgraded cluster, increasing the
task to worker ratio from two to four caused a 3.03 % execution time increase.
This is due to the overhead associated with the additional tasks. Whereas, for
a 25 % upgraded cluster a 10.36 % decrease in execution time was seen.

– The degree of heterogeneity is not only a factor of how many nodes are differ-
ent, but also the difference in computing ability of the various types of nodes.
This degree of heterogeneity can be used to help determine the optimial num-
ber of tasks that should be used to mitigate performance-heterogeneity in a
cluster.

The conclusions above are illustrated in Fig. 12. This figure displays the aver-
age execution time per task, normalized based upon the data size. As we increase
the number of tasks, we can see that performance decreases when the cluster is
homogeneous due to the additional overhead associated with these tasks. Perfor-
mance improvements are not seen even though there are upgrades to the cluster,
as in the two and three tasks per worker cases, since the degree of heterogene-
ity physically provided by these upgrades is small. Despite the additional over-
head associated with generation of four tasks per node, we can see performance
improvements based upon the degree of heterogeneity within the cluster.

Fig. 12. This graph displays the results of our experiments as we increase the number
of tasks per worker and as we incrementally perform upgrades to subsets of the cluster.
The data here is normalized based upon data size, with the average execution time of
data per configuration presented on the Y-axis. On the X-axis is the number of tasks
assigned for the job in our 16 node cluster configuration.

Performance Analysis of Adapting a MapReduce Framework 129

The degree of performance-heterogeneity in a cluster influences MapReduce
application performance. Some MapReduce frameworks can use relatively few
upgraded nodes for straggler mitigation and improved performance. But not
all upgrades influence performance equally. For example, applications that may
benefit significantly from upgrades to the first 25 % of nodes, may see no fur-
ther improvements in upgrades of an additional 25 % and even 50 % of nodes.
MARLA’s fine grained splitting of jobs into a larger number of smaller tasks, and
further splitting each task into one sub-task per core (on the cluster node with
the most cores) yields the best results for clusters with the most performance-
heterogeneity. For homogeneous clusters, however, having many tasks and sub-
tasks introduces overhead to tackle a straggler problem that is less pronounced.
Clusters with as few as three different classes of nodes can exhibit particular
configurations that support significantly improved performance, but not every
upgrade automatically leads to requisite performance gains.

8 Future Work

Our future work will encompass many facets of MapReduce and the processing of
large pieces of data. In addition to this work, we will run further experiments to
determine how the results presented here apply to other classes of applications.
We will confirm this within both heterogeneous and homogeneous settings for
memory, storage, and the network interconnect between nodes. Once we have
explored many classes of application, we intend to use all of the information
collected to define a mathematical model that will help determine the optimal
data-split configuration for a static cluster and a given class of workload. Devel-
opment of such a model will encourage use of MARLA in data centers and
HPC environments with centralized data stores who currently cannot get the
full benefit of Hadoop due to its early binding of tasks.

Another future direction is to use the insights gathered from this work
towards achieving energy efficiency with respect to our MapReduce framework
in a heterogeneous, non-dedicated cluster. Our future work seeks to develop
an efficient MapReduce framework that can dynamically assess the energy con-
sumption of worker nodes. We believe that our work should not require nodes to
be outfitted with expensive power meters as such a requirement will make this
framework impractical for many potential consumers. The results discussed in
this work will lead us toward development of an energy-aware, efficient, elastic,
dynamic MapReduce framework that can be deployed on any number of nodes.

References

1. Apache Hadoop. http://hadoop.apache.org
2. 1000 Genomes: A Deep Catalog of Human Genetic Variation. http://www.

1000genomes.org

http://hadoop.apache.org
http://www.1000genomes.org
http://www.1000genomes.org

130 J. Hartog et al.

3. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky,
A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., DePristo, M.A.: The
genome analysis toolkit: a mapreduce framework for analyzing next-generation
dna sequencing data. Genome Res. 20, 1297–1303 (2010)

4. Starr, D.L., Bloom, J.S., Brewer, J.M., Butler, N., Clein, C.: A map/reduce paral-
lelized framework for rapidly classifying astrophysical transients. In: Astronomical
Data Analysis Software and Systems XIX, Series, vol. 434. ASP Conference Series
(2010)

5. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving mapre-
duce performance in heterogeneous environments. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, Series,
OSDI 2008, pp. 29–42. USENIX Association, Berkeley (2008). http://dl.acm.org/
citation.cfm?id=1855741.1855744

6. Xie, J., Yin, S., Ruan, X., Ding, Z., Tian, Y., Majors, J., Manzanares, A., Quin,
X.: Improving mapreduce performance through data placement in heterogeneous
hadoop clusters. In: IPDPS Workshops, pp. 1–9 (2010)

7. The FutureGrid Resource Project: An XSEDE Resource Provider. https://portal.
futuregrid.org/about

8. National Energy Research Scientific Computing Center. http://nersc.gov
9. Fadika, Z., Dede, E., Hartog, J., Govindaraju, M.: Marla: mapreduce for hetero-

geneous and load imbalanced clusters. In: 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 49–56, May
2012

10. Fadika, Z., Dede, E., Govindaraju, M., Ramakrishnan, L.: Benchmarking mapre-
duce implementations for application usage scenarios. In: IEEE/ACM Interna-
tional Workshop on Grid Computing, pp. 90–97 (2011)

11. Ahmad, F., Chakradhar, S.T., Raghunathan, A., Vijaykumar, T.: Tarazu: optimiz-
ing mapreduce on heterogeneous clusters. ACM SIGARCH Comput Archit. News
40(1), 61–74 (2012)

12. HDFS. http://hadoop.apache.org/docs/hdfs/r0.22.0/hdfs design.html
13. Hartog, J., DelValle, R., Govindaraju, M., Lewis, M.: Configuring a mapreduce

framework for performance-heterogeneous clusters. In: Proceedings of the 2013
IEEE Big Data 2014 Conference, Research Track, Series, BigData 2014, Anchorage,
AL, USA (2014)

14. Nathuji, R., Isci, C., Gorbatov, E.: Exploiting platform heterogeneity for power effi-
cient data centers. In: Fourth International Conference on Autonomic Computing,
ICAC 2007, p. 5. IEEE (2007)

15. Fadika, Z., Dede, E., Govindaraju, M., Ramakrishnan, L.: Mariane: mapreduce
implementation adapted for HPC environments. In: IEEE/ACM International
Workshop on Grid Computing, pp. 82–89 (2011)

16. General Parallel File System. http://www-03.ibm.com/systems/software/gpfs
17. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H.,

Wyckoff, P., Murthy, R.: Hive: a warehousing solution over a map-reduce frame-
work. Proc. VLDB Endowment 2(2), 1626–1629 (2009)

http://dl.acm.org/citation.cfm?id=1855741.1855744
http://dl.acm.org/citation.cfm?id=1855741.1855744
https://portal.futuregrid.org/about
https://portal.futuregrid.org/about
http://nersc.gov
http://hadoop.apache.org/docs/hdfs/r0.22.0/hdfs_design.html
http://www-03.ibm.com/systems/software/gpfs

An Overview of Cloud Based Content Delivery
Networks: Research Dimensions

and State-of-the-Art

Meisong Wang1,2, Prem Prakash Jayaraman2, Rajiv Ranjan2,
Karan Mitra3, Miranda Zhang1,2, Eddie Li1,2, Samee Khan4,
Mukkaddim Pathan5, and Dimitrios Georgeakopoulos6(&)

1 Research School of Computer Science, ANU, Canberra, Australia
{u5454816,miranda.zhang,zheng.li}@anu.edu.au

2 CSIRO DP&S Flagship, Canberra, Australia
{prem.jayaraman,rajiv.ranjan}@csiro.au

3 Luleå University of Technology, SE-931 87 Skellefteå, Sweden
karan.mitra@ltu.se

4 North Dakota State University, Fargo, USA
samee.khan@ndsu.edu

5 Telstra Corporation, Melbourne, Australia
mukaddim.pathan@team.telstra.com

6 Royal Melbourne Institute of Technology, Melbourne, Australia
dimitrios.georgakopoulos@rmit.edu.au

Abstract. Content distribution networks (CDNs) using cloud resources such as
storage and compute have started to emerge. Unlike traditional CDNs hosted on
private data centers, cloud-based CDNs take advantage of the geographical
availability and the pay-as-you-go model of cloud platforms. The Cloud-based
CDNs (CCDNs) promote content-delivery-as-a-service cloud model. Though
CDNs and CCDNs share similar functionalities, introduction of cloud impose
additional challenges that have to be addressed for a successful CCDN
deployment. Several papers have tried to address the issues and challenges
around CDN with varying degree of success. However, to the best of our
knowledge there is no clear articulation of issues and challenges problems
within the context of cloud-based CDNs. Hence, this paper aims to identify the
open challenges in cloud-based CDNs. In this regard, we present an overview of
cloud-based CDN followed by a detailed discussion on open challenges and
research dimensions. We present a state-of-the-art survey on current commercial
and research/academic CCDNs. Finally, we present a comprehensive analysis of
current CCDNs against the identified research dimensions.

1 Introduction

The digital universe is doubling in size every two years. It is expected that the data we
create and copy will reach 44 zettabytes by 2020 [19]. The global internet video traffic
alone will comprise 79 percent of all Internet traffic in 2016, up from 66 percent in 2013
[18]. In our current Internet-driven world, consumers expect fast, always-on data access
from anywhere and any device. As a result, content providers are expected to confront

© Springer-Verlag Berlin Heidelberg 2015
A. Hameurlain et al. (Eds.): TLDKS XX, LNCS 9070, pp. 131–158, 2015.
DOI: 10.1007/978-3-662-46703-9_6

with the challenge of delivering optimised and streaming content to application running
on devices including tablets and smart-phones while ensuring high-speed access and
superior performance. The major challenges that the emerging applications bring to
the future internet [23] include the requirements of: (1) higher scalability, (2) higher
capability, (3) higher quality of service (QoS), (4) stronger interactivity, (5) dealing with
heterogeneity (e.g., device, network and application) and (6) security. Content delivery
networks (CDNs) are often required to face the data deluge to efficiently and securely
distribute content to a large number of online users. The growth of related technologies
such as accelerated web performance, rich media content streaming, IPTV, management
and delivery of user generated content over the last decade has led to the significant
adoption of CDNs. Cisco has estimated that over half of the internet traffic generated
will be carried out by content delivery networks by 2018.

A CDN is a distributed network of servers and file storage devices that replicates
content/services (e.g. files, video, audio etc.) on a large number of surrogate systems
placed at various locations, distributed across the globe. CDNs are highly flexible and
aims to improve the quality and scalability of the services offered over the Internet by
reducing the latency and efficiency of delivering contents to clients. The CDN maxi-
mises the bandwidth for accessing to data from clients throughout the network by
strategically placing content replica(s) at geographically distributed locations. The
concept of a CDN was conceived during the early days of Internet. By the end of
1990’s before CDNs from Akamai and other commercial providers managed to deliver
Web content (i.e., web pages, text, graphics, URLs and scripts) anywhere in the world,
and at the same time meet the high availability and quality expected by their end users.
Today, Akamai [22] delivers between fifteen to thirty percent of all Web traffic,
reaching more than 4 Tb per second.

In today’s dynamic Internet landscape, it is more important than ever for content
and service providers to understand the requirements and demands of users. For
instance, consider a video distribution services such as Netflix, YouTube and Quickflix.
When delivering video content to geographically distributed subscribers, the video
experience can vary depending on the delivery path to the subscriber. Studies [20, 21]
show that, the sensitivity of subscribers to video quality issues can greatly impact the
subscriptions to the services offered by the video distribution service providers.

Cloud computing is an emerging computing model where a myriad of virtualized
ICT resources are exposed as web utilities, which can be invoked and released in an on-
demand fashion [24, 25]. The concept of cloud computing is an immediate extension of
many well researched domains such as virtualisation, distributed, utility, cluster, and
grid computing. The most comprehensive, widely used and referred definition of cloud
computing in the literature is presented in [16]. It defines cloud computing as “A model
for enabling convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort or service
provider interaction”. A number of public cloud providers including Amazon Web
Services (AWS), Microsoft Azure, Salesforce.com and Google App Engine have been
emerged to be very successful in the recent past. The advent of virtualization has led to
the transformation of traditional data centres into flexible cloud infrastructure.

132 M. Wang et al.

In the days before cloud, the main way to address issues regarding performance,
availability and scale in CDN was for companies to physically replicate existing
infrastructure in other geographical locations in order to decrease the physical distance
between the end user and content servers. For example, deploy servers close to ISP
gateways. This approach was not only expensive but companies had to determine the
best replicate and server placement strategy [26]. The cloud model offers companies an
alternative and less expensive way to expand infrastructure, in particular the ability to
virtually scale across unlimited resources on demand without the need to buy expensive
hardware. The cloud and CDN have both evolved to be complimentary utility plat-
forms. The cloud provides virtually unlimited access to computational resources
(processing, storage and network infrastructure) via array of physical servers deployed
globally. Conversely, CDN provides an optimised repeatable delivery of content from
servers to end users (one-to-many). Using the cloud and CDN together can deliver a
holistic agile system that meets CDN demands and is economically viable. A cloud-
based CDN architecture can provide the following advantages [27]:

• An elastic platformwith ability to dynamically and easily scale capacity up and down.
• Hides the infrastructure complexity from CDN applications and content provides.
• Enable a QoS driven performance management.
• Open standard approach to tap into the capabilities of public clouds to scale during

peak demand.

A few studies [4, 23, 28–32] in the past have investigated CDN presenting over-
view and technical challenges in designing and implementing effective CDNs. Most of
the work has focused on commercial CDNs that work over private data centres. With
the current trends and advances in cloud computing and the mutual advantages that can
be leveraged by cloud and CDN, in this paper, we present a comprehensive study of
Cloud CDNs. We present a state-of-the art survey on current commercial and research
driven Cloud CDNs. We then present an analysis of current Cloud CDN based on a
comprehensive taxonomy. We finally identify the opportunities in the Cloud CDN area.

2 Content Delivery Network and Cloud Computing

2.1 Content Delivery Network

An overview of a typical CDN architecture is presented in Fig. 1. Depending on appli-
cation and content type the architecture of CDNs may vary However, all CDN
architectures mainly comprise of an origin server, a request redirecting mechanism and a
large number of surrogate cache servers namely Point of Presence (POP).

1. Origin server: is a powerful storage system that contains all the content and/or the
metadata of all the content. To achieve high performance of the whole CDN, the
content in the origin server are pushed to the POP servers (surrogate servers) that
are located at different geographical locations across the globe.

2. POP servers: are distributed in a large numbers at diverse areas in a CDN. The main
function of pop server is to offer the content based on user request. When the content
is not available locally, the pop server should pull it from the origin server and store it

An Overview of Cloud Based Content Delivery Networks: Research Dimensions 133

for the next probable requirement; as it might be possible that the same/other user(s)
in the region will require the content. Prefetching [2] is another important func-
tionality provided by the POP server where it fetches the content that clients may be
interested in from the origin server thereby reducing the chance of traffic congestion
especially during the high demand. Needless to say, prefetching needs to predict the
users’ preferential contents by synthesizing and analysing the historical information
such as access logs. It is evident that this kind of prefetching techniques may require
statistical data mining algorithms to determine what content to prefetch.

3. Request Redirecting mechanism: One of the functions of a CDN is to dynamically
redirect clients to the most optimal servers based on several QoS parameters such as
server load, latency, network congestion, client access networks, and proximity etc.
There are a variety of methods that can be used to implement this mechanism as
presented in Table 1 [3].

Fig. 1. The architecture of a Content Delivery network

Table 1. CDN Request Redirecting mechanisms

Global Server Load Balancing Global awareness
Smart authoritative DNS

DNS-based request routing
HTTP redirection
URL rewriting URL modification

Automation through scripts
Anycasting IP anycast

Application level anycast
CDN Peering Centralized directory model

Distributed Hash Table
Flooded request model
Document routing model

134 M. Wang et al.

Global Server Load Balancing (GSLB): aims to optimize resource use, maximize
throughput, minimize response time, and avoid overload of any one of the resources.
The capabilities that allow global server load balancing include global awareness and
smart authoritative domain name service (DNS). In GSLB, services nodes are aware of
information and status of other service nodes. This provides intermediate switching
nodes to be globally aware. To make use of the global awareness, intermediate switches
act as smart authoritative DNS, each switching between the best surrogate servers.

DNS-based request-routing: is widely used in the Internet. DNS based request-routing
is also used in many CDNs because of its ubiquity as a directory service. DNS servers
handle the domain name of the desired web site or content. The client initiates a name
lookup in a local DNS server, which is supposed to return the address of a surrogate
server near the client. If local DNS cache misses, it forwards the name lookup to
the DNS root server. DNS root server returns the address of the authoritative DNS
server for the web site. The Authoritative DNS server then returns the address of a
surrogate server near the client based on specialized routing, load monitoring and
Internet mapping mechanism. Finally, the client retrieves the content from the desig-
nated surrogate server. A number of studies have examined and reported the perfor-
mance and effectiveness of DNS [33, 34].

HTTP Redirection: takes advantage of the HTTP protocol’s redirection feature. This
mechanism builds on special Web servers that can inspect a client request and chooses
the most suitable surrogate server and redirect the client to those servers. This approach
provides the flexibility of managing replication with finer granularity (e.g., at page
level). However, it does pose significant overheads due to the introduction of extra
messages round trips.

URL Rewriting: can be one of the best and quickest ways to improve the usability
and search friendliness. A rewrite engine is software located in a Web application
framework running on a Web server that modifies a web URL’s appearance. Many
framework users have come to refer to this feature as a “Router”. This modification is
called URL rewriting. For example, request for web sites with images, the router can
rewrite the URLs of the images to point to the best surrogate servers.

Anycasting: is a new routing technology based on the Ipv6. It is a methodology in
which datagrams from a single sender are routed to the topologically nearest node in a
group of potential receivers, though it may be sent to several nodes, all identified by the
same destination address. CDNs may use anycast for routing user request to their
distribution centres or DNS.

CDN Peering: is a methodology where clients provide resources; the client can also use
these resources based on their requirements. This means that unlike client-server
systems, the content serving capacity of peer-to-peer networks can actually increase as
more users begin to access the content (especially with protocols such as Bittorrent that
require users to share). This property is one of the major advantages of using P2P
networks because it makes the setup and running costs very small for the original
content distributor. To locate the content in CDN peering [34], a centralised directory
model, distributed hash table, flooded request model or document routing model can be
used. In centralised P2P file-sharing service, a large server is used to provide directory

An Overview of Cloud Based Content Delivery Networks: Research Dimensions 135

service. The P2P application contacts the directory service, informing the directory
service of its IP address and the names of objects in its local disk that it is making
available for sharing. When an active peer obtains a new object or removes one, it
informs the directory server, which then updates its database. In a distributed hash
table, peers are indexed through hashing keys and are found through complex queries
within a distributed system. This approach is good in performing load balancing and
offloading loads to less-loaded peers. The flooded request model is simple but scales
poorly. When a node wants to find a resource on the network, which may be on a node
it does not know about, it could simply broadcast its search query to its immediate
neighbours. If the neighbours do not have the resource, it then asks its neighbours to
forward the query. This is repeated until the resource is found or all the nodes have
been contacted, or perhaps a network-imposed hop limit is reached.

2.2 Cloud Computing

Cloud computing [35, 36] assembles large networks of virtualised ICT services such as
hardware resources (such as CPU, storage, and network), software resources (such as
databases, application servers, and web servers) and applications. The advent of vir-
tualization has led to the transformation of traditional data centres into flexible cloud
infrastructure [44, 45]. With the benefit of virtualization, data centres progressively
provide flexible online application service hosting [17] such as: web hosting, search,
e-mails, and gaming. Largely, virtualization provides the opportunity to achieve high
availability of applications in data centres at reduced costs. In industry, these services
are referred to as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and
Software as a Service (SaaS) [46, 47]. Cloud computing services are hosted in large
data centres, often referred to as data farms, operated by companies such as Amazon
[10], Apple, Google, and Microsoft [8]. Cloud computing gives developers the ability
to marshal virtually infinite computing and storage based on amount of data to be
processed and stored; and number of people to be notified in real time. Cloud-based
ICT resources can be acquired under pay-per-use models and as needed, instead of
requiring upfront investments in resources that may never be used optimally. As
defined by National Institute of Standards and Technology [16], the five essential
characterises of cloud computing are:

• On-demand self-service.
• Broad network access.
• Resource pooling.
• Rapid elasticity.
• Measured service.

Another important characteristic of cloud computing that is gaining significant
momentum is Quality of Service (QoS) driven service delivery. For reliable and effi-
cient management of application performance hosted on the *aaS layers, system
administrators have to be fully aware of the compute, storage, networking resources,
application performance and their respective quality of service (QoS). QoS parameters
(e.g., latency, renting cost, throughput, etc.) play an important role in maintaining the

136 M. Wang et al.

grade of services delivered to the application consumer and administrator as specified
and agreed upon in the Service Level Agreement (SLA) document. The SLA guar-
antees scope and nature of an agreed QoS performance objective (also referred to as the
QoS targets) that the cloud application consumer and administrators can expect from
cloud service provider(s).

Though the notion of virtually unlimited resources is true in many aspects, there are
practical limitations to the realisation of this concept. For example, how to automati-
cally provision new resources as the demand for the service increases. Previous work
on resource provisioning in distributed computing environments [7, 37] enables its
users to manually modify the hardware resources of their running job flows.

3 Cloud CDNs

CDNs have made a significant impact on how content is delivered via the Internet to
the end-users [21]. Traditionally content providers have relied on third-party CDNs to
deliver their content to end-users. With the ever changing landscape of content types
e.g. moving for standard definition video to high definition to full high definition, it is a
challenge for content providers who either supplement their existing delivery networks
with third-party providers or completely rely on them to understand and monitor the
performance of their service. Moreover, the performance of the CDN is impacted by
the geographical availability of the third-party infrastructure. A cloud CDN (CCDN)
provides a flexible solution allowing content providers to intelligently match and place
content on one or more cloud storage servers based on coverage, budget and QoS
preferences [23]. The key implication is economies of scale and the benefits delivered
by the pay-as-you-go model. Using clouds the content providers have more agility in
managing situations such as flash crowds avoiding the need to invest in infrastructure
development.

As stated previously, clouds provide the end users with virtually infinite pool of
compute and storage resources with no capital investment in terms of hardware and
software. Therefore, CCDN systems can be very valuable in data processing and
delivery of content over the Internet. The main advantage of such a system would be
that they provide a cheaper means of hosting and deploying multi-tiered applications
that can scale based on the usage demands. Further clouds offer not only cheaper
content storage and distribution functionality, but also compute functionality such that
application and data processing can also be performed on clouds. Lastly, cloud offers
pay-as-you-model whereby the end-users can start and terminate the cloud resources
based on the amount of money they are willing to spend hosting their services without
entering into a complex contract with the cloud provider. Migration from traditional
client/server based CDNs to cloud computing model is a major transformation that
introduces great opportunities and challenges. The major advantages and opportunities
introduced by CCDNs include:

An Overview of Cloud Based Content Delivery Networks: Research Dimensions 137

1. Pay-as-you-go CCDN model: CCDN allows the users to consume the delivery
content using a pay-as-you-go model. Hence, it would be much more cost-effective
than owning the physical infrastructure that is necessary for the users to be the part
of CDN.

2. Increased point-of-presence: The content is moved closer to users with relative ease
in the CCDN system than the traditional CDN due to the omnipresence of cloud.
The Cloud-based content delivery network can reduce the transmission latency as it
can rent operating resources from the cloud provider to increase the reach and
visibility of the CDN on-demand.

3. CCDN Interoperability: CDN interoperability has emerged as a strategic important
concept for service providers and content providers. Interoperability of CDNs via
the cloud will allow content providers to reach new markets and regions and support
nomadic users. E.g., instead of setting up an infrastructure to serve a small group of
customers in Africa, taking advantage of current cloud providers in the region to
dynamically host surrogate servers.

4. Support for variety of CCDN application: The cloud can support dynamic changes
in load. This will facilitate the CDNs to support different kinds of applications that
have unpredictable bursting traffic, predictable bursting traffic, scale up and scale
down of resources and ability to expand and grow fast.

However, while cloud-based CDNs [5, 7] have made a remarkable progress in the past
five years, they are still limited in a number of aspects. For instance, moving into the
cloud might carry some marked security and performance challenges that can impact the
efficiency and productivity of the CDN thus affecting the client’s business. Further,
current CCDNs are more suited to distributing static content such as audio, video and
text. They are not well suited to serving dynamic content-based applications such as
collaborative audio-video processing and streaming. Moreover, CDNs are usually
owned by private and telecommunication companies making these services costly to the
end-users as they have to enter in legal contract to use CDN services. A categorical list
of technical issues and challenges in CCDN system is presented in Fig. 2 and the
following sections.

3.1 Dynamic Content Management

CDNs are designed for streaming staged content but do not perform well in situations
where content is produced dynamically. This is typically the case when content is pro-
duced, managed and consumed in collaborative activities. For example, an art teacher
may find and discuss movies from different film archives; the students may then edit the
selected movies. Parts of them may be used in producing new movies that will be sent to
the students’ friends for comments and suggestions. Current CDNs do not support such
collaborative activities that involve dynamic content creation.

3.2 Content Creation

Traditional CDNs are not designed to manage content (e.g., find and play high defi-
nition movies). This is typically done by CDN applications [42, 43]. For example,
CDNs do not provide services that allow an individual to create a streaming music

138 M. Wang et al.

video service combining music videos from an existing content source on the Internet
(e.g., YouTube), his/her personal collection, and from live performances he/she attends
using his/her smart phone to capture such content. This can only be done by an
application managing where and when the CDN will deliver the video component of
his/her music program. With CCDN, the end-user will act as both content creator and
consumer. CCDN needs to support this feature inherently. User-generated content
distribution is emerging as one of the dominant forms in the global media market.

Fig. 2. Classification of CCDN challenges and issues

An Overview of Cloud Based Content Delivery Networks: Research Dimensions 139

3.3 Content Heterogeneity

Existing Web 2.0 technologies currently support the authoring of structured multimedia
content (e.g., web pages linking images, sounds, videos, and animations). The CCDNs
will need to extend and broaden existing Web 2.0 strengths with a new environment
aimed at supporting the creation and consumption of interactive multimedia content
(e.g., interactive audio and video), as well as other novel forms of multimedia content
(e.g., virtual and augmented reality) that are currently not supported by existing Web 2.0
technologies and tools.

3.4 CCDN Ownership

Cloud CDN service providers either own all the services they use to run their CDN
services or they outsource this to a single cloud provider. A specialized legal and
technical relationship is required to make the CDN work in the latter case.

3.5 CCDN Personalisation

CDNs do not support content personalization. For example, if the subscriber’s behav-
iour and usage pattern can be observed, a better estimation on the traffic demand can be
achieved. The performance of content delivery is moving from speed and latency to
on-demand delivery of relevant content matching end-user’s interest and context.

3.6 Cost Models for Cloud CDNs

The cloud cost model works well as long as the network consumption is predictable for
both service provider and end-user. However, such predictions become very chal-
lenging with distributed cloud CDNs.

3.7 Security

CDNs also impose security challenges due to the introduction public clouds to store,
share and route content. The use of multi vendor public clouds further complicates this
problem. Security is the protection of content against unauthorised usage, modification,
tampering and protection against illegal use, hack attacks, viruses and other unwanted
intrusions. Further, security also plays an important role while accessing and delivering
content to relevant users [40].

3.8 Hybrid Clouds

The integration of cloud and CDN will also allow the development of hybrid CCDN that
can leverage on a combination and private and public cloud providers. E.g. the content
provider can use a combination of cloud service platforms offered by Microsoft Azure
and Amazon AWS to host their content. Depending on the pay-as-you go model, the

140 M. Wang et al.

content provider can also move from one cloud provider to another. However, achieving a
hybrid model is very challenging due to various CCDN ownership issues and QoS issues.

3.9 CCDN Monitoring

The CCDNs can deliver end-to-end QoS monitoring by tracking the overall service
availability and pinpoint issues. Clouds can also provide additional tools for monitoring
specific content e.g. video quality monitoring. However, developing a CCDN moni-
toring framework is always a challenge.

3.10 CCDN QoS

With the notion of virtually unlimited resources offered by the cloud, quality for service
plays a key role in CCDNs to maintain a balance between service delivery quality and
cost. Defining appropriate SLA’s to enforce QoS and guarantee service quality is very
important and is also challenging. Further, the notion of hybrid clouds further complicate
CCDN QoS challenges due to the involvement of multiple cloud providers with varying
SLAs. CCDNsmust accommodate highly transient, unpredictable users behaviour (arrival
patterns, service time distributions, I/O system behaviours, user profile, network usage,
etc.) and activities (streaming, searching, editing, and downloading).

3.11 CCDN Demand Prediction

It is critical that CCDNs are able to predict the demands and behaviours of hosted
applications, so that it can manage the cloud resources optimally. Concrete prediction or
forecasting models must be built before the demands and behaviours of CDN applications
can be predicted accurately. The hard challenge is to accurately identify and continuously
learn the most important behaviours and accurately compute statistical prediction func-
tions based on the observed demands and behaviours such as request arrival pattern,
service time distributions, I/O system behaviours, user profile, and network usage.

3.12 CCDN Cloud Selection

The diversity of offering by Cloud providers make cloud section to host CDN com-
ponents a complex task. A practical question to be addressed is: how well does a cloud
provider perform compared to the other providers? For example, how does a CDN
application engineer compare the cost/performance features of CPU, storage, and net-
work resources offered by Amazon EC2, Microsoft Azure, GoGrid, FelxiScale, Terre-
Mark, and RackSpace. For instance, a low-end CPU resource of Microsoft Azure is
30 % more expensive than the comparable Amazon EC2 CPU resource, but it can
process CDN application workload twice as quickly. Similarly, a CDN application
engineer may choose one provider for storage intensive applications and another for
computation intensive CDN applications. Hence, there is need to develop novel decision
making framework that can analyse existing cloud providers to help CDN service
engineers in making optimal selection decisions.

An Overview of Cloud Based Content Delivery Networks: Research Dimensions 141

3.13 Ubiquitous Content Delivery

Content delivery services will interact with the network and appropriately adjust its QoS
as needed to deliver content to a specific user based on content and user requirements for
maintaining its integrity, the device the user is using, his/her location, and the service
contracts. This is a requirement for CCDNs with the growing complexity in media types,
end-user access devices and intermediate network architectures.

3.14 Flexible Content Storage, Compression, and Indexing

Cloud storage resources allow content producers to store content on virtualized disks
and access them anytime from any point on the Internet. These storage resources are
different from the local storage (for example, the local hard drive) in each CPU resource
(e.g., Amazon EC2 instance types), which is temporary or non-persistent and cannot be
directly accessed by other instances of CPU resources. Multiple storage resource types
are available for building content orchestrator. Naturally, the choice of a particular
storage resource type stems from the format (e.g., structured vs. unstructured) of the
content. For instance, Azure Blob (https://azure.microsoft.com/en-us/) and Amazon S3
(http://aws.amazon.com/) storage resources can hold video, audio, photos, archived
email messages, or anything else, and allow applications to store and access content in a
very flexible way. In contrast, NoSQL (Not Only SQL) storage resources have recently
emerged to complement traditional database systems [12]. Amazon SimpleDB,
Microsoft Azure Table Storage, Google App Engine Datastore, MongoDB, and Cas-
sandra are some of the popular offerings in this category.

Though cloud environments are decentralized by nature, existing CDN application
architecture tends to be designed based on centralized network models. It is worth
noting that none of the existing cloud storage resources exposes content indexing APIs.
It is up to the CDN application designer to come-up with efficient indexing structure
that can scale to large content sizes to help end-users find and retrieve relevant content
effectively and efficiently. To facilitate new and better ways of content delivery using
CCDNs, advanced distributed algorithms need to be developed for indexing, browsing,
filtering, searching and updating the vast amount of information.

3.15 Other Challenges

Apart from the above CCDN specific challenges, there are also several important
factors specific to the CDN in a CCDN that affect the performance of service within the
cloud infrastructure. These include [1]:

– Network proximity: reduces the response time for improving the customers’ expe-
rience about the services offered via the CDN.

– Load balancing: improves the capability of the whole network by decreasing the
flash crowd situation i.e., it distributes the load to different nodes in a network such
that response times and system throughput improve.

142 M. Wang et al.

https://azure.microsoft.com/en-us/
http://aws.amazon.com/

– Local caching: fetches the content for the customer from the origin server and stores
it in a local server closer to the customer. This technique helps in significantly
reducing the response time.

– Request redirecting: plays a very pivotal role in the performance of a CDN service
as it redirects the customer’s request to the nearest cache server.

4 CCDNs Architecture and Services

Technically, architectures of CCDNs in existence are various in terms of the correlation
between CDN and Cloud. For instance, some CCDNs adopt the cloud-based store as
their origin server. In this kind of CCDNs, the general mechanism is similar as the
traditional CDNs’. Other architecture includes Master/Slave mechanism [4]. Specifi-
cally, in this kind of CCDNs [4, 14, 15, 23, 39] the functionality of master node is
managing, monitoring and provisioning slave nodes on demand. The slave nodes
combine the functions of POP servers. The data is replicated in the master nodes which
act as the origin server. When the slave node has to get some contents users require, it
only needs to communicate with the master node to fetch the content. A typical CCDN
architecture is presented in Fig. 3. As depicted in the Fig. 3, the POPs are distributed
across multiple cloud providers while the master node/origin server is responsible to
orchestrate the entire CDN functionality. Based on demand from various geographical
locations and QoS constraints, the master node will fire new slave POP nodes in close
proximity to origin of user requests.

Cloud-based CDNs offer a large number of additional services compared to tra-
ditional CDNs. These include:

Fig. 3. Cloud CDN typical architecture

An Overview of Cloud Based Content Delivery Networks: Research Dimensions 143

Cloud Security. The Cloud-based CDN providers can combine CDN security with the
performance of cloud-based distributed infrastructures to keep their customers’ web-
sites both high performance and secure. The following aspects are some instances of
services the providers may provide in this area:

1. Data Security: The Cloud-based CDN providers can apply and support advanced
standards and methods of security like PCI compliance, secure socket layer, and
digital rights management to offer the protection of their customers’ data.

2. High Availability: The providers offer the Cloud-based delivery of robust website
and application functionality in a high-performance manner.

3. Cloud DDoS Protection: It means the protection of websites via DDoS mitigation.
The CDN can support proactive monitoring and alerting.

4. Regulatory Compliance: The Cloud-based CDN enhance the CDN infrastructures
and services to meet the requirement of industrial and governmental standards for
protecting the customers’ personal or financial information.

Cloud-Based DNS. The Domain Name System (DNS) is a very important Internet
infrastructure that enables visitors to reach their website. DNS redirection has a very
crucial role to play in a Content Delivery Network, for it enables the users to get the
content they want from the available nearest surrogate server to reduce the response
time. Fetching the users’ preferential content form the optimal cache server can not
only improve the performance but reduce the chance of traffic congestion especially
during the rush time. Actually, DNS redirection is one of the mainly two techniques the
most CDN providers adopt in their architecture to achieve the aim of redirecting the
clients to the nearest surrogate server, the other is URL re-writing.

Cloud Storage. Taking advantage of Cloud Storage is a significant difference between
the Cloud-based CDN and the traditional CDN. For users, to Store, maintain, and
deliver a great mess of media, software, documents, or other digital objects is an
essential part of ensuring an outstanding online experience. By using the Cloud storage
functionality, the clients can effectively store a great amount of data and serve these
data to the users who need such data in different locations over the world reliably and
fastly. Furthermore, it is a very economical option. Though most Cloud-based CDN
providers in today’s world allege their Cloud storage designed for reliability, scale or
speed, anyway they always mention the advantages of Cloud storage as more as
possible, there are also some limitations of the Cloud storage [6]:

1. Due to some defective causes of the machines in the Cloud, the users’ data which
are stored in a Cloud Storage system can be corrupted and this would lead to the
situation that the Cloud Storage system returns incorrect results to the users.

2. The attacker may make a bug in the user’s programs to steal valuable information,
even control the user’s client to do Dos attacks or to spam.

3. In some rush time, because of the traffic jam, users might not be able to get access to
their data which are stored in the Cloud storage system accidentally.

The above disadvantages of Cloud storage may be extremely impossible, if the Cloud
Storage system is robust, well-management, well-designed etc. However, the first
importance of the fact is that when these bad events happen, it will be very difficult to

144 M. Wang et al.

find that who should be responded for that among the Cloud provider, the CDN
provider and the Customer when something goes wrong. As a consequence, it would be
necessary to build an accountable Cloud system which means it is easy to find whose
false when some mistakes happen in such kind of Cloud system. Implementing data
mining algorithms to analyze the log system is a good choice to address this problem.

Cloud Load Balancer. The Cloud load balancer provides the customers the flexibility
to manage their content delivery strategy. This service enables customers to specify
content delivery policies based on real-time conditions and user targets. The typical
cloud load balancing technology manages the customers’ application traffic and makes
decisions of where to route it. When a node in the Cloud system fails, a health check
process will remove it from rotation to keep maximum availability of the whole system.
The Cloud load balancer service should follow the pay-as-you-go model as well in term
of the hours the customers use, number of current connections and bandwidth [7].

Cloud Orchestrator. Cloud orchestration service offers enhanced flexibility and
elasticity of CCDN as it manages public and private cloud resources using the pay-as-
you-go model. Cloud orchestration operations include: (i) production: create and edit;
(ii) storage: uploading and scaling of storage space; (iii) keyword-based content tagging
and searching and (iv) distribution: streaming and downloading. At Cloud service level,
the orchestrator capabilities span across a range of operations such as selection,
assembly, deployment of cloud resources to monitoring their run-time QoS statistics
(e.g., latency, utilization, and throughput). The orchestrate supports deployment, con-
figuration and monitoring of content and cloud resources deployed across hybrid cloud
platforms using web-based widgets. These widgets hide the underlying complexity
related to cloud resources and provide an easy do-it-yourself interface for content
management. The cloud orchestration service is also responsible to manage the cloud
resources based on service providers SLAs.

5 Existing Cloud-Based CDNs

The current landscape of CCDNs leverages the flexibility of the cloud to easily and
quickly distribute content across the internet. The CCDNs landscape diversifies into two
primary forms namely web site content distribution and media distribution. Web site
content focuses mostly on serving static pages with a combination of text and other
media content while the media delivery CCDNs are dedicated to deliver high speed video
form content providers such as Netflix. The majority of the system use the architecture
presented in Fig. 3 with proprietary implementation of cloud storage architecture,
security, DNS, load balancer, CDN orchestrator and indexing mechanisms. In this sec-
tion, we will analyse the current state-of-the are in commercial and academic/research
based CCDN solutions.

An Overview of Cloud Based Content Delivery Networks: Research Dimensions 145

5.1 Rackspace Cloud Files

RackSpace offers “Cloud Files” [9] as a Cloud-based CDN service where the customers
can use virtually unlimited and on-demand cloud storage and high speed content
delivery over the Internet all over the world. The high-level architecture of Cloud Files
is shown in Fig. 4. As “Cloud Files” is a cloud based system, it offers pay-as-you-go
model which means that the users only need to pay for the amount of storage and
network bandwidth based on the actual usage. The “Cloud Files” takes advantage of
the Akamai Content Delivery Network to deliver the content worldwide. Akamai CDN
is one of the largest CDN providers in the world and has a large number of surrogate
servers around the world so that the content access latency is significantly minimized
even if the customers are far away from the origin server. In terms of content hosting,
Cloud Files make use of OpenStack for file storage functionality. The Cloud Files
supports API to that cloud and CDN resources can be managed programmatically. The
Cloud Files system uses Time-to-Live (TTL) timers to manage content that change
dynamically. The dynamic content to be shared using the CDN are associated with a
CDN-enabled container. The TTL of the container navigates to each file in the con-
tainer. When the TTL expires, the edge servers (POPs) will synchronise with the origin
server to update the changed content. It is not possible to have a TTL associate with
each individual file within a CDN-enabled container.

5.2 Amazon CloudFront

Amazon offers CloudFront as a content delivery service that can be integrated with their
widely popular Amazon Elastic Cloud Compute service [10]. Similar to Rackspace,
CloudFont is also offered as a pay-as-you-go model and supports both static and
dynamic content delivery along with live media streaming functionality. Using Cloud-
Front, the customers can store their content on the origin servers, or use the Amazon’s
Cloud Store service (Amazon S3).The customers can use simple APIs or the AWS

Fig. 4. Architecture of rackspace cloud files

146 M. Wang et al.

Management Console to register their origin servers with Amazon CloudFront. When
the customer has more than one server, he/she can use URL pattern matching to find
which origin server has the content, and the customer can assign one of those origin
servers as the default server. The most significant feature of Amazon’s CloudFront is that
it can be co-operated with several other Amazon Cloud Services. The architecture of
interactions between Amazon CloudFront and other AWS services is presented in Fig. 5.
One of the major difference between Rackspace Cloud Files and Amazon CloudFront is
that Rackspace utilizes Akamai CDN service that offers 219 CDN edge locations
worldwide compared to only 32 CDN edge locations offered by Amazon. The Cloud-
Front enables handing of dynamic content while delivering web content that change for
each end-user. It uses the concept of URL pattern matching which has to be defined
for the dynamic content being served to control the cache behaviour. When a URL
match succeeds for a dynamic content request, the corresponding cache behaviour is
invoked.

5.3 MetaCDN

MetaCDN [11] is another content delivery provider that offers two kinds of CDN
services: one for static content (e.g., websites) acceleration, and another for live mul-
timedia streaming. Unlike other CDN providers that have their own global distributed
system, MetaCDN take advantage of existing storage clouds and compute technology to
support its own services. Contrary to cloud providers such as Amazon and Rackspace
that offer diverse kind of additional services using their own infrastructure, MetaCDN
offers its services by integrating the offerings from several other public cloud providers
worldwide, thereby having in excess of 120 edge locations across the world for static
content delivery. In case of live streaming, they also have more than 40 edge servers
located around the world. As a consequence, MetaCDN is clearly illustrates the power
and value of combining the Cloud with the CDN for optimized content delivery over the
Internet. Figure 6 presents an overview of MetaCDN architecture [11].

The MetaCDN platform uses connectors to interface with public cloud storage
providers such as Amzaon S3, Limelight networks. The connector has the basic sets of
operations that are supported by most cloud storage providers. The MetaCDN also have
a number of core components responsible for functioning of the service. These include
the MetaCDN manager, QoS monitor, Allocator, Database and Load redirector. The
allocator selects the optimal service provider. The QoS monitor keeps track of cloud
storage performance and the CDN Manager tracks each user’s current deployments.
The database is used to store vital user and cloud storage mapping information and
finally the Load Redirector is responsible for distribute end-user requests to appropriate
POP servers. The MetaCDN system also provides user interfaces and APIs to configure
system via the web and programmatically.

5.4 Limelight Orchestrate: Limelight Networks

Limelight [13] is one of the biggest CDN providers in the world and offers services
such as cloud storage, web acceleration and media delivery. There are some typical

An Overview of Cloud Based Content Delivery Networks: Research Dimensions 147

products the Limelight offer like “Deep Insight” which gives the customers analytic
data which would be helpful for them to make business decisions. The Limelight
orchestrate is a content delivery network offered by Limelight networks. This service is
one of the world’s largest CDN. The Limelight orchestrate service features cloud

Fig. 5. Integration between the CloudFront and other Amazon services

Fig. 6. METACDN architecture

148 M. Wang et al.

storage, content control, security, traffic direction and mobile device content delivery.
The cloud part of the system take advantage of Limelight networks cloud storage
service. Figure 7 presents an overview of the orchestrate service.

5.5 MediaWise Cloud

The MediaWise cloud [14, 15] offers a novel cloud orchestration framework where any
user can become a CDN provider. As in MetaCDN, the MediaWise cloud leverages
multiple cloud providers and offers pay-as-you-go model. The end user can select any
public cloud provider simultaneously (e.g., Amazon and Rackspace) based on SLA,
price and QoS requirements to leverage services such as compute, storage and content
distribution at significantly lower costs. The main highlight of this approach is that a
customer is not locked to any particular cloud and CDN provider. Compared to other
cloud-based CDNs, another major highlight of the MediaWise cloud is that it supports
dynamic content delivery to enable collaborative activities such as collaborative con-
tent creation, indexing, storage and retrieval [38].

Figure 8 shows the reference architecture of MediaWise cloud. As can be seen in this
figure, the MediaWise cloud consists of a several components. These include: content
orchestrator, hybrid clouds, content access portal and the content management portal.
Using the content management portal, the users (content producers) can add, delete or
update content on any public clouds (e.g., Amazon and Rackspace). This content is then
available to the end users via the content access portal. As mentioned previously, the
MediaWise Cloud supports dynamic content creation and delivery. Using this func-
tionality, several users using the MediaWise clouds create multimedia content together

Fig. 7. Limelight Orchestrate –Overview (source: http://www.esg-global.com/lab-reports/limelight-
orchestrate-performance/)

An Overview of Cloud Based Content Delivery Networks: Research Dimensions 149

http://www.esg-global.com/lab-reports/limelight-orchestrate-performance/
http://www.esg-global.com/lab-reports/limelight-orchestrate-performance/

via the content access/management portal. This dynamic content can also be annotated
using keywords for efficient indexing, search and retrieval. As soon as the request the
content is generated from a user(s), it is forwarded it to the MediaWise Cloud content
orchestrator (MCCO) [39].

MCCO is the heart of MediaWise cloud. It monitors hybrid clouds and provide
mechanisms for QoS-aware cloud selection, scheduling and admission control. For
example, as soon as the use request comes from the end user (via the content access
portal) for content processing and delivery, the MCCO decides which virtual machine
(VM) to provision out of several VMs running on several public clouds. This decision
is based on the type of request and the QoS status of the VM on a particular public
cloud. Hence, the MediaWise cloud offers QoS-based content placement, delivery as
well as compute functionality that is critical in matching end-user SLAs.

5.6 Codeen

Codeen is an academic CDN test-bed developed at Princeton university (http://codeen.
cs.princeton.edu/). It is primarily used to support services delivered the Planet Lab
project, a global research networks that supports developments of new network services.
Codeen has many proxy nodes distributed at various planet lab node locations. The
proxy perform the role of POPs and request redirectors. A number of related projects
that use the Codeen CDN include web-based content distribution service, name lookup,

Fig. 8. The MediaWise Cloud architecture [14]

150 M. Wang et al.

http://codeen.cs.princeton.edu/
http://codeen.cs.princeton.edu/

synchronisation tools, activity monitoring and visualisation tools. A Codeen user sets
their cache to a nearby high bandwidth plant lab node location. Request to the codeen
node at the location is directed to the most appropriate member of the planet lab system
that has a cached copy of the file. This file is forwarded to the client. However, this
system lacks support for dynamic content distribution.

5.7 Comodin

COMODIN (COoperative Media On-Demand on the InterNet) is an academic CDN
providing streaming media service on current Internet infrastructure [41]. COMODIN
enables a collaborative experience while streaming media content via the Internet.
For examples, a group of users can coordinate the state of a media file (e.g. play, pause
etc.). COMODIN follows a two layer architecture comprising of a base plane and a
distributed set of playback components. The system employs IP-multicast to stream
data across multiple clients. This academic CDN focuses more on content control
collaboratively rather than content creation or distribution.

5.8 CoDaaS: An Experimental Cloud-Centric Content Delivery
Platform for User-Generated Contents

CoDaaS [42] is a cloud-centric content delivery system focused on distributing user-
generated content in the most economical fashion while respecting the Quality-of-
Service (QoS) requirements. It enables on-demand virtual content delivery to a targeted
set of users. The system is built of hybrid cloud environments. Figure 9 presents an
architecture overview of the CoDaaS system.

Fig. 9. CoDaaS system architecture

An Overview of Cloud Based Content Delivery Networks: Research Dimensions 151

The CoDaaS architecture consists of three layers namely the cloud layer, the content
service virtualizations layer and the security layer. The cloud layer comprises the hybrid
cloud from which resources are used to develop a content distribution overlay. It also
has a set of media rendering engines, managerial and service orchestration function. The
content service visualization does the operation of content distribution, processing,
storage and routing. This layer performs the function of a typical CDN. The security

Table 2. Commercial CDNs service analysis

152 M. Wang et al.

An Overview of Cloud Based Content Delivery Networks: Research Dimensions 153

module is responsible to ensure authorized, authenticated and accountable access to
resources across hybrid clouds. Finally, the inter-cloud messaging bus is employed to
integrate all participating components into an integrated media application.

6 Analysis of CCDNs Current State-of-the-Art

As mentioned in the previous section, most commercial CCDNs follow an identical
architecture. In the previous section, we presented some of the most popular commercial
CCDN architectures and a few academic CDNs. In this section, we will present a
twofold comprehensive analysis of commercial CCDNs based on services offered and
research dimensions. The services analysis is based on the following characteristics
(1) target audience; (2) services; (3) technology and characteristics. The research
dimensions used for analysis presented in Sect. 3 are (1) Hybrid cloud support; (2)
Content creation and management; (3) Content personalization; (4) Quality of Service;
(5) Indexing; (6) Cloud Selection; (7) Content Type. For academic CCDNs we only
focus on the research dimensions (Tables 2 and 3).

154 M. Wang et al.

T
ab

le
3.

C
om

m
es
rc
ia
l
C
D
N
s
re
se
ar
ch

di
m
en
si
on

s
an
al
ys
is

C
D
N

Pr
ov
id
er

na
m
e

H
yb
ri
d

cl
ou
d

su
pp
or
t

C
on
te
nt

cr
ea
tio

n
an
d
m
an
ag
em

en
t

Pe
rs
on
al
is
at
io
n

(U
se
r/
D
ev
ic
e)

Q
oS

In
de
xi
ng

C
lo
ud

se
le
ct
io
n

C
on
te
nt

ty
pe

A
ka
m
ai

[5
]

N
o

Pa
rt
ia
l
co
nt
en
t
m
an
ag
em

en
t

N
o/
Y
es

Y
es

T
itl
e
an
d
K
ey
w
or
d

N
ot ap

pl
ic
ab
le

W
eb

(s
ta
tic

an
d
dy
na
m
ic
)
an
d

M
ed
ia

L
im

eL
ig
ht

N
et
w
or
ks

[1
3]

N
o

Pu
bl
is
h
co
nt
en
t
us
in
g
w
eb

in
te
rf
ac
e

N
o/
Y
es

Y
es

T
itl
e
an
d
K
ey
w
or
d

N
ot ap

pl
ic
ab
le

W
eb

(s
ta
tic

an
d
dy
na
m
ic
)
an
d

M
ed
ia

R
ac
ks
pa
ce

C
lo
ud

Fi
le
s

[9
]

N
o

M
ai
nl
y
co
nt
en
t
st
or
ag
e
an
d

di
st
ri
bu
tio

n
us
in
g
A
ka
m
ai

N
o

Y
es
. U
si
ng

A
ka
m
ai

N
o

N
ot ap

pl
ic
ab
le

C
lo
ud

st
or
e
fo
r
an
y
ty
pe

of
co
nt
en
t

A
m
az
on

C
lo
ud
Fr
on
t

[1
0]

N
o

Pu
bl
is
h
co
nt
en
t
us
in
g
w
eb

in
te
rf
ac
e

an
d
A
PI
s

N
o/
Y
es

Y
es

T
itl
e
an
d
K
ey
w
or
d

N
ot ap

pl
ic
ab
le

W
eb

(s
ta
tic

an
d
dy
na
m
ic
)
an
d

M
ed
ia

A
cc
el
lio

n
(w

w
w
.

ac
ce
lli
on
.c
om

)
N
o

M
ai
nl
y
fi
le

sh
ar
in
g
an
d
m
ob
ile

co
lla
bo
ra
tio

n
N
o/
ye
s

N
o

N
o

N
ot ap

pl
ic
ab
le

C
lo
ud

st
or
e
fo
r
an
y
ty
pe

of
co
nt
en
t

E
dg
eS
tr
ea
m

(h
ttp

://
w
w
w
2.
ed
ge
st
re
am

.
co
m
/e
s/
)

N
o

Su
pp
or
t
to

pu
bl
is
h
co
nt
en
t
by

pr
ov
id
er
s

N
o/
Y
es

(e
dg
e

st
re
am

en
ab
le
d

de
vi
ce
)

Y
es

T
itl
e
an
d
K
ey
w
or
d

N
ot ap

pl
ic
ab
le

V
id
eo

st
re
am

in
g

C
lo
ud
Fl
ar
e
(h
ttp

s:
//

w
w
w
.c
lo
ud
fla
re
.c
om

/
fe
at
ur
es
-c
dn
)

N
o

N
o

N
o/
ye
s

Y
es

N
o

N
ot ap

pl
ic
ab
le

W
eb

si
te

co
nt
en
t
ac
ce
le
ra
tio

n

M
et
aC

D
N

[1
1]

Y
es

In
te
rf
ac
e
to

up
lo
ad

co
nt
en
t
(c
an
no
t

or
ch
es
tr
at
e
ne
w

co
nt
en
t
fr
om

ex
is
tin

g
co
nt
en
t)

N
o/
Y
es

Y
es

T
itl
e
an
d
K
ey
w
or
d

Y
es
.

W
eb

(s
ta
tic
)
an
d
va
ri
ou
s
co
nt
en
t

m
ed
ia

ty
pe
s
(v
id
eo
,
au
di
o,

im
ag
es

et
c.
)

M
ir
ro
r
Im

ag
e
(h
ttp

://
w
w
w
.m

ir
ro
r-
im

ag
e.

co
m
/

N
o

D
yn
am

ic
co
nt
en
t
pu
bl
is
hi
ng

su
pp
or
t

N
o/
Y
es

Y
es

T
itl
e
an
d
K
ey
w
or
d

N
ot ap

pl
ic
ab
le

M
os
tly

vi
de
o
(l
iv
e
st
re
am

in
g,

vi
de
o
on

de
m
an
d)

M
ax
C
D
N

(h
ttp

://
w
w
w
.

m
ax
cd
n.
co
m
)

N
o

O
nl
y
se
rv
e
w
eb

pa
ge
s
(s
ta
tic

an
d

dy
na
m
ic
)

N
o/
Y
es

N
o

N
o

N
ot ap

pl
ic
ab
le

W
eb

si
te

ac
ce
le
ra
tio

n

M
ed
iW

is
e
C
lo
ud

[1
4,

15
]

Y
es

Y
es
.G

ro
up

of
us
er
s
ca
n
cr
ea
te
co
nt
en
t

fr
om

ex
is
tin

g
co
nt
en
t.

Y
es
/Y
es

Y
es

T
itl
e,

ke
yw

or
d
an
d

vi
de
o
co
nt
ex
t

ac
ro
ss

cl
ou
ds

Y
es

V
id
eo
,
au
di
o
an
d
im

ag
es

C
O
D
E
E
N

(h
ttp

://
co
de
en
.c
s.
pr
in
ce
to
n.

ed
u/
)

N
o

Sp
ec
ifi
ca
lly

us
ed

co
nt
en
t
st
or
ag
e
an
d

di
st
ri
bu
tio

n
N
o/
N
o

N
o

N
o

N
ot ap

pl
ic
ab
le

A
ny

co
nt
en
t

C
O
M
O
D
IN

[4
1]

Y
es

Pa
rt
ia
lly

.
G
ro
up

of
us
er
s
ca
n
co
nt
ro
l

m
ed
ia

co
lla
bo
ra
tiv

el
y

N
o/
N
o

N
o

N
o

N
o

V
id
eo
,
au
di
o
an
d
im

ag
es

C
oD

aa
S
[4
2]

Y
es

Y
es
.
Su

pp
or
t
fo
r
us
er
-g
en
er
at
ed

co
nt
en
t

N
o/
Y
es

Y
es

N
am

e
N
o

V
id
eo
,
au
di
o
an
d
im

ag
es

An Overview of Cloud Based Content Delivery Networks: Research Dimensions 155

http://www.accellion.com
http://www.accellion.com
http://www2.edgestream.com/es/
http://www2.edgestream.com/es/
http://www2.edgestream.com/es/
https://www.cloudflare.com/features-cdn
https://www.cloudflare.com/features-cdn
https://www.cloudflare.com/features-cdn
http://www.mirror-image.com/
http://www.mirror-image.com/
http://www.mirror-image.com/
http://www.maxcdn.com
http://www.maxcdn.com
http://codeen.cs.princeton.edu/
http://codeen.cs.princeton.edu/
http://codeen.cs.princeton.edu/

7 Conclusion

Cloud-based CDNs have gained significant importance due to the wide-spread avail-
ability and adoption of cloud computing platforms. The integration of Cloud and CDN
has mutual benefits allowing content to be efficiently and effectively distributed in the
Internet using a pay-as-you-go model promoting the content-as-a-service model. We
identified the key challenges and research dimensions that need to be addressed in the
cloud-based CDN space. We have presented a state-of-the-art survey on existing
commercial and academic cloud CDN solutions. Finally, we provided a comprehensive
analysis of commercial and academic cloud CDNs against the service they offer and the
research dimensions identified in this paper.

Our findings show that current cloud CDN providers are mostly based on one cloud
platform and lacks support for the emerging form of content distribution namely
dynamic user-generated content. Since, the solutions are based on a single cloud
providers, the services lack consideration for cost models when taking advantage of
cloud content storage spaning multiple cloud providers. Further, most commercial and
few academic solutions do not support personalisation at user level. We believe, the
future of CCDN will be based around the need to support user created content and
ability to support hybrid cloud platforms and addressing the challenges such as QoS,
SLA, costing introduced by hybrid clouds.

References

1. Wang, L., Pai, V., Peterson, L.: The effectiveness of request redirection on CDN robustness.
web.cs.wpi.edu/*rek/DCS/D04/CDN_Redirection.ppt. Accessed 09 October 2014

2. Pallis, G., Vakali, A.: Insight and perspectives for content delivery networks. Commun.
ACM 49(1), 101–106 (2006)

3. Pathan, A.K., Buyya, R.: A taxonomy and survey of content delivery networks. Technical
Report, GRIDS-TR-2007-4, Grid Computing and Distributed Systems Laboratory, The
University of Melbourne, Australia, 12 Feb 2007

4. Li, L., Ma, X., Huang, Y.: CDN cloud: A novel scheme for combining CDN and cloud
computing. In: 2013 International Conference on Measurement, Information and Control
(ICMIC), vol. 01, pp. 687, 690, 16–18 August 2013

5. Akamai Technologies, Inc. (2014). www.akamai.com
6. A case for the Accountable Cloud. http://aws.amazon.com/cn/cloudfront/
7. Krauter, K., Buyya, R., et al.: A taxonomy and survey of grid resource management systems

for distributed computing. Softw. Pract. Exp. (SPE) 32, 135–164 (2002)
8. Microsoft Azure Cloud Services. http://www.windows.azure.com. Accessed 09 October

2014
9. Rackspace Cloud Files. http://www.rackspace.com.au/cloud/files. Accessed 06 August 2014
10. Amazon CloudFront. http://aws.amazon.com/cloudfront/. Accessed 09 October 2014
11. Broberg, J., Buyya, R., Tari, Z.: MetaCDN: Harnessing ‘Storage Clouds’ for high

performance content delivery. J. Netw. Comput. Appl. 32(5), 1012–1022 (2009). ISSN:
1084-8045. http://dx.doi.org/10.1016/j.jnca.2009.03.004

12. NoSQL. http://nosql-database.org/. Accessed 06 August 2014

156 M. Wang et al.

http://web.cs.wpi.edu/~rek/DCS/D04/CDN_Redirection.ppt
http://www.akamai.com
http://aws.amazon.com/cn/cloudfront/
http://www.windows.azure.com
http://www.rackspace.com.au/cloud/files
http://aws.amazon.com/cloudfront/
http://dx.doi.org/10.1016/j.jnca.2009.03.004
http://nosql-database.org/

13. Limelight Orchestrate CDN. http://www.limelight.com/services/orchestrate-content-delivery.
html. Accessed 06 August 2014

14. Georgakopoulos, D., Ranjan, R., Mitra, K., Zhou, X.: MediaWise - Designing a smart media
cloud. In: Proceedings of the International Conference on Advances in Cloud Computing
(ACC 2012), Banglore, India, 26–28 July (2012). http://arxiv.org/ftp/arxiv/papers/1206/
1206.1943.pdf

15. Ranjan, R., Mitra, K., Georgakopoulos, D.: MediaWise cloud content orchestrator.
J. Internet Serv. Appl. 4, 2 (2013)

16. Mell, P., Grance, T.: The NIST definition of cloud computing (draft). NIST special
publication, vol. 800, p. 145 (2011)

17. Gong, C., Liu, J., Zhang, Q., Chen, H., Gong, Z.: The characteristics of cloud computing. In:
2010 39th International Conference on Parallel Processing Workshops (ICPPW), pp. 275–
279 (2010)

18. Cisco: Cisco Visual Networking Index: Forecast and Methodology, 2013–2018. http://www.
cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/
white_paper_c11-481360.html. Accessed 09 October 2014

19. IDC: Data Growth, Business Opportunities, and IT Imperatives. http://www.emc.com/
leadership/digital-universe/2014iview/executive-summary.htm. Accessed 09 October 2014

20. Akamai: The Importance of Delivering A Great Online Video Experience. http://www.
akamai.com/dl/reports/jupiter_onlinevideoexp.pdf. Accessed: 09 October 2014

21. IneoQuest: The Case for Leveraging the Cloud for Video Service Assurance. http://www.
ineoquest.com/wp-content/uploads/2013/10/Whitepaper_Cloud_Services.pdf. Accessed 09
October 2014

22. BigData & CDN: http://www.slideshare.net/pavlobaron/bigdata-cdnoop2011-pavlo-baron.
Accessed 07 March 2014

23. Yin, H., Liu, X., Min, G., Lin, C.: Content delivery networks: A bridge between emerging
applications and future IP networks. Network, IEEE, 24(4), 52, 56, July–August 2010

24. Wang, L., Kunze, M., Tao, J., Laszewski, G.: Towards building a cloud for scientific
applications. Adv. Eng. Softw. 42(9), 714–722 (2011)

25. Wang, L., Fu, C.: Research advances in modern cyber infrastructure. New GenerComput. 28
(2), 111–112 (2010)

26. Mastin, P.: Is the cloud a CDN killer. http://cloudcomputing.sys-con.com/node/2628667.
Accessed 07 March 2014

27. Compton, K.: Marching towards cloud CDN. http://blogs.cisco.com/sp/marching-towards-
cloud-cdn/. Accessed 07 March 2014

28. Peng, G.: CDN: Content distribution network. Technical Report TR-125, Experimental
Computer Systems Lab, Department of Computer Science, State University of New York,
Stony Brook, NY, 2003. http://citeseer.ist.psu.edu/peng03cdn.html

29. Vakali, A., Pallis, G.: Content delivery networks: Status and trends. IEEE Internet Comput.,
68–74. IEEE Computer Society, November–December 2003

30. Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., Weihl, B.: Globally distributed
content delivery. IEEE Internet Comput. 6(5), 50–58 (2002)

31. Kung, H.T., Wu, C.H.: Content networks: Taxonomy and new approaches. In: Park, K.,
Willinger, W. (eds.) The Internet as a Large-Scale Complex System. Oxford University
Press (2002)

32. Wen, Y., Zhu, X., Rodrigues, J.J.P.C., Chen, C.W.: Cloud mobile media: Reflections and
outlook. IEEE Trans. Multimedia 16(4), 885, 902, June 2014

33. Shaikh, A., Tewari, R., Agrawal, M.: On the effectiveness of DNS-based server selection. In:
Proceedings of IEEE INFOCOM, Anchorage, AK, USA, pp. 1801–1810, April 2001

An Overview of Cloud Based Content Delivery Networks: Research Dimensions 157

http://www.limelight.com/services/orchestrate-content-delivery.html
http://www.limelight.com/services/orchestrate-content-delivery.html
http://arxiv.org/ftp/arxiv/papers/1206/1206.1943.pdf
http://arxiv.org/ftp/arxiv/papers/1206/1206.1943.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
http://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm
http://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm
http://www.akamai.com/dl/reports/jupiter_onlinevideoexp.pdf
http://www.akamai.com/dl/reports/jupiter_onlinevideoexp.pdf
http://www.ineoquest.com/wp-content/uploads/2013/10/Whitepaper_Cloud_Services.pdf
http://www.ineoquest.com/wp-content/uploads/2013/10/Whitepaper_Cloud_Services.pdf
http://www.slideshare.net/pavlobaron/bigdata-cdnoop2011-pavlo-baron
http://cloudcomputing.sys-con.com/node/2628667
http://blogs.cisco.com/sp/marching-towards-cloud-cdn/
http://blogs.cisco.com/sp/marching-towards-cloud-cdn/
http://citeseer.ist.psu.edu/peng03cdn.html

34. Mao, Z.M., Cranor, C.D., Boughs, F., Rabinovich, M., Spatscheck, O., Wang, J.: A precise
and efficient evaluation of the proximity between web clients and their local DNS servers.
In: Proceedings of the USENIX 2002 Annual Technical Conference, Monterey, CA, USA,
pp. 229–242, June 2002

35. Armbrust, M., et al.: A view of cloud computing. Commun. ACM Mag. 53(4), 50–58
(2010). doi:10.1145/1721654.1721672. ACM Press

36. Patterson, D.A.: Technical perspective: The data center is the computer. Commun. ACM
Mag. 51(1), 105–105 (2008). ACM Press

37. Hui, L.: Realistic workload modeling and its performance impacts in large-scale eScience
grids. IEEE Trans. Parallel Distrib. Syst. 21, 480–493 (2010)

38. Wang, C., Ranjan, R., Zhou, X., Mitra, K., Saha, S., Meng, M., Georgakopopulos, D.,
Wang, L., Thew, P.: A cloud-based collaborative video story authoring and sharing
platform. CSI J. Comput. 1(3), 66–76 (2012)

39. Ranjan, R., Mitra, K., Saha, S., Georgakopoulos, D., Zaslavsky, A.: Do-it-yourself content
delivery network orchestrator. In: Wang, X., Cruz, I., Delis, A., Huang, G. (eds.) WISE
2012. LNCS, vol. 7651, pp. 789–791. Springer, Heidelberg (2012)

40. Zhang, X., Du, H., Chen, J.-Q., Lin, Y., Zeng, L.-J.: Ensure data security in cloud storage.
In: 2011 International Conference on Network Computing and Information Security (NCIS),
vol. 1, pp. 284, 287, 14–15 May 2011

41. Russo, W., Mastroianni, C., Palau, C.E., Fortino, G.: CDN-Supported collaborative media
streaming control. IEEE MultiMedia 14(2), 60–71 (2007)

42. Jin, Y., Wen, Y., Shi, G., Wang, G., Vasilakos, AV.: CoDaaS: An experimental cloud-centric
content delivery platform for user-generated contents. In: 2012 International Conference on
Computing, Networking and Communications (ICNC), pp. 934, 938, 30 Jan – 2 Feb 2012

43. Li, H., Zhong, L., Liu, J., Li, B., Xu, B.: Cost-effective partial migration of VoD services to
content clouds. In: 2011 IEEE International Conference on Cloud Computing (CLOUD),
pp. 203, 210, 4–9 July 2011

44. Wang, L., Chen, D., Zhao, J., Tao, J.: Resource management of distributed virtual machines.
IJAHUC 10(2), 96–111 (2012)

45. Wang, L., Jie, W.: Towards supporting multiple virtual private computing environments on
computational Grids. Adv. Eng. Softw. 40(4), 239–245 (2009)

46. Wang, L., von Laszewski, G., Younge, A.J., He, X., Kunze, M., Tao, J., Cheng, F.: Cloud
computing: A perspective study. New Generation Comput. 28(2), 137–146 (2010)

47. Wang, L., Chen, D., Yangyang, H., Ma, Y., Wang, J.: Towards enabling cyberinfrastructure
as a service in clouds. Comput. Electr. Eng. 39(1), 3–14 (2013)

158 M. Wang et al.

http://dx.doi.org/10.1145/1721654.1721672

Author Index

Bramer, Max 90
Buffoni, David 34

DelValle, Renan 108

Feuerlicht, George 1

Gaber, Mohamed Medhat 90
Georgeakopoulos, Dimitrios 131
Govindaraju, Madhusudhan 108
Goyal, Madhu 1

Hartog, Jessica 108

Jayaraman, Prem Prakash 131

Khan, Samee 131
Kotzinos, Dimitris 59
Kritikos, Kyriakos 59

Lewis, Michael J. 108
Li, Eddie 131

May, David 90
Mills, Hugo 90
Mitra, Karan 131
Monnet, Sébastien 34

Pathan, Mukkaddim 131
Pires, Karine 34

Ranjan, Rajiv 131
Rousakis, Yannis 59

Sens, Pierre 34
Silvestre, Guthemberg 34
Stahl, Frederic 90

Wang, Meisong 131

Yaish, Haitham 1

Zhang, Miranda 131

	Preface
	Organization
	Contents
	A Proxy Service for Multi-tenant Elastic Extension Tables
	Abstract
	1 Introduction
	2 Related Work
	3 Elastic Extension Tables
	4 Elastic Extension Tables Proxy Service
	5 Elastic Extension Tables Proxy Service Algorithms
	5.1 Single Table Query Algorithm
	5.2 One-to-Many Query Algorithm
	5.3 Union Query Algorithm
	5.4 Join Query Algorithm
	5.5 Targeted Tables Query Algorithm

	6 Performance Evaluation
	6.1 Experimental Setup
	6.2 Experimental Data Set and Results

	7 Conclusion
	Acknowledgments
	References

	Boosting Streaming Video Delivery with WiseReplica
	1 Introduction
	2 Context and Challenges
	2.1 Improving Content Availability to Better User Experience
	2.2 On the Track of YouTube Popularity Growth Curves and High Quality Videos
	2.3 Investigating Network Resources Provision for Internet Videos
	2.4 Challenges

	3 A Machine-Learned Ranking of Internet Videos
	3.1 An Overview About How to Learn from Data
	3.2 A Ranking Model for Internet Videos
	3.3 Framework for Learning and Predicting, and Implementation

	4 Boosting VoD Delivery: The WiseReplica Approach
	4.1 Distributing VoD with Storage Domains
	4.2 Self-Adapting Replication According to the Ranking of Internet Videos

	5 Simulation Methodology
	5.1 Workload from YouTube Traces and SLA Definition
	5.2 Evaluation Scenario
	5.3 Comparable Replication Schemes
	5.4 Collecting the Datasets for Learning

	6 Evaluation
	6.1 Performance Evaluation Metrics
	6.2 Fitting and Measuring the Accuracy of Our Ranking Model
	6.3 Evaluating Replication Strategies in Peer-Assisted VoD Systems

	7 Related Work
	8 Conclusions
	References

	A Cloud-Based, Geospatial Linked Data Management System
	1 Introduction
	2 Related Work
	2.1 Distributed Approaches
	2.2 Centralized Approaches

	3 Background
	3.1 Previous System Architecture
	3.2 LD Management Service
	3.3 Virtuoso Universal Server

	4 LD Management Service Extensions
	5 Linked Data Management Architecture
	5.1 Previous Architecture Drawbacks and Current Solutions
	5.2 Architecture

	6 Evaluation and Implementation
	6.1 Experiment Set-Up
	6.2 Analysis

	7 Conclusions and Future Work
	References

	A Scalable Expressive Ensemble Learning Using Random Prism: A MapReduce Approach
	1 Introduction
	2 Random Prism
	3 The Parallel Random Prism Classifier
	3.1 Parallelisation Using the MapReduce Paradigm
	3.2 Parallel Random Prism Classifier

	4 Theoretical Analysis of Parallel Random Prism
	5 Empirical Scalability Study
	6 Conclusions
	References

	Performance Analysis of Adapting a MapReduce Framework to Dynamically Accommodate Heterogeneity
	1 Introduction
	2 Related Work
	3 Deferred Binding of Tasks
	4 Experimental Setup and Overview
	4.1 Clusters with Two Levels of Nodes
	4.2 Clusters with Three Levels of Nodes

	5 Variable Data Size Through Upgrade
	5.1 Traditional Coarse-Grained Splits
	5.2 Progressive Granularity Changes
	5.3 Finer-Grained Splits
	5.4 Matrices per Second

	6 Variability Between Upgrades
	7 Conclusions
	8 Future Work
	References

	An Overview of Cloud Based Content Delivery Networks: Research Dimensions and State-of-the-Art
	Abstract
	1 Introduction
	2 Content Delivery Network and Cloud Computing
	2.1 Content Delivery Network
	2.2 Cloud Computing

	3 Cloud CDNs
	3.1 Dynamic Content Management
	3.2 Content Creation
	3.3 Content Heterogeneity
	3.4 CCDN Ownership
	3.5 CCDN Personalisation
	3.6 Cost Models for Cloud CDNs
	3.7 Security
	3.8 Hybrid Clouds
	3.9 CCDN Monitoring
	3.10 CCDN QoS
	3.11 CCDN Demand Prediction
	3.12 CCDN Cloud Selection
	3.13 Ubiquitous Content Delivery
	3.14 Flexible Content Storage, Compression, and Indexing
	3.15 Other Challenges

	4 CCDNs Architecture and Services
	5 Existing Cloud-Based CDNs
	5.1 Rackspace Cloud Files
	5.2 Amazon CloudFront
	5.3 MetaCDN
	5.4 Limelight Orchestrate: Limelight Networks
	5.5 MediaWise Cloud
	5.6 Codeen
	5.7 Comodin
	5.8 CoDaaS: An Experimental Cloud-Centric Content Delivery Platform for User-Generated Contents

	6 Analysis of CCDNs Current State-of-the-Art
	7 Conclusion
	References

	Author Index

