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Preface

The purpose of mathematical programming, or optimization, is to maximize
or minimize an objective function considering some constraints. One of the
applications of mathematical programming is to design and control communi-
cation networks, which consist of multitudes of nodes and links. For example,
when the capacity of each link is given in a network, a key problem is to
find an optimum set of routes on which a traffic flow from a source node to
a destination node can be maximized. Another related example is as follows:
when the capacity and cost of each link in a network and a traffic demand
from a source node to a destination node are given, a frequent problem is to
find an optimum set of routes that minimizes the total cost of transmitting
the required traffic demand. These problems are solved using the techniques
raised in the field of mathematical programming. Linear Programming (LP)
is a special case of mathematical programming, where the objective function
and all the constraints are expressed as linear functions. Because most of many
basic and fundamental optimization problems on communication networks are
categorized into LP problems, this book focuses on LP.

There are several excellent books that well describe LP and its applications
to communication networks for undergraduate and graduate students. Most
of them explain how to theoretically solve optimization problems, while those
on communication networks may provide some simple examples of typical
applications of LP to communication networks by formulating problems on
network design and control.

When network operators or service providers design and control their net-
works in practical environments, in most cases they first formulate an op-
timization problem that corresponds to the desired communication networks
with required parameters, and they solve the problem by running an LP solver
on a computer. The engineers want to know how to apply LP to network de-
sign and control in their practical situations. However, there is a gap between
the theory of LP in the literature and its practical implementation. This book
was therefore written to fill this gap.

This book is intended to provide the fundamentals of LP as applied to com-
munication networks and a practical guide on how to solve the communication-
related problems using an LP solver. For this purpose, the GNU Linear Pro-
gramming Kit (GLPK) package, which is intended for solving LP, integer

ix
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linear programming (ILP), and mixed integer linear programming (MILP)
problems, is adopted in this book. GLPK is freely available. This book in-
troduces and explains typical practical problems for communication networks
and their solutions by providing sufficient programs for GLPK. GLPK sup-
ports the GNU MathProg modeling language, which is a subset of AMPL
(a modeling language for mathematical programming). The language is sup-
ported by most popular commercial mathematical programming solvers, for
example, CPLEX R©. Once readers understand how to solve LP problems for
communication networks using the GLPK descriptions in this book, they will
also able to easily apply their knowledge to other solvers. The book also pro-
vides practical algorithms for these problems by showing helpful examples
with demonstrations.

I have been using a draft of this book as the text for graduate courses and
seminars at The University of Electro-Communications, Tokyo Japan. The
draft has been continually enhanced to reflect the students’ feedback since
2008. These courses and seminars in which this material has been used have
attracted both academic and industrial practitioners, as design and control
for communication networks are among the key topics in the information and
communication technology industry. I was engaged in designing and control-
ling networks with NTT Laboratories, and have a rich background in practical
networking technologies as well as advanced research and development activ-
ities.

Because current books are not sufficient to bridge the gap between the
theory of LP and its practice for communication networks, I believe that this
book will serve as a useful addition to the literature. This book describes
not only fundamental and theoretical aspects, but also provides a practical
guide to the understanding of network control and design using mathematical
programming and algorithms.

Audience

This book is a good text for senior and graduate students in electrical en-
gineering, computer engineering, and computer science. Using it, students
will understand both fundamental and advanced technologies so that they
can better position themselves when they graduate and look for jobs in the
networking field. This book is also intended for telecommunication/network-
ing professionals, R&D managers, software and hardware engineers, system
engineers, who are currently active or anticipate future involvement in net-
working, as it allows them to design networks and network elements, or more
comprehensively collaborate with network designers in order to satisfy to their
customers’ needs.

The minimum requirement to understand this book is a knowledge of lin-
ear algebra and computer logic. Some background in communication networks
would be useful. All the concepts in this book are developed from intuitive
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basics, with further insight provided through examples of practical applica-
tions.

Organization

The book is organized as follows.

• Chapter 1 clearly describes optimization problems for communication
networks, including the shortest path problem, max flow problem, and
minimum-cost flow problem.

• Chapter 2 provides the fundamentals of linear programming and integer
linear programming as required to address several problems; it includes
an overview of the basic theory, formulations, and solutions.

• Chapter 3 introduces the LP solver, GLPK. How to obtain, install, and
use it are explained.

• Chapter 4 deals with basic problems for communication networks, which
are presented in Chapter 1. LP formulations and solutions using GLPK,
and typical algorithms by showing intuitive examples, are presented for
reference. GLPK tutorials for these problems are provided in detail.

• Chapter 5 presents several problems on finding disjoint paths for reli-
able communications. First, the basic problem of finding a set of disjoint
routes whose total cost is minimal, called the MIN-SUM problem, is con-
sidered. Several approaches, which include ILP, a disjoint shortest pair
algorithm, and Suurballe’s algorithm, are introduced to solve the prob-
lem. Second, the MIN-SUM problem in a network with shared risk link
groups (SRLGs) and its solutions are presented. Third, the MIN-SUM
problem in a multiple-cost network and its solutions are introduced.

• Chapter 6 describes the optimization problems in optical wavelength-
routed networks. For a basic optical network, the wavelength assignment
problem is considered. It is transferred into a graph coloring problem,
which is formulated as an ILP problem. The largest-degree-first ap-
proach, which is a heuristic algorithm, is presented as a fast-computation
approach. Second, wavelength assignment for an optical network with
multi-carrier distribution is also considered.

• Chapter 7 describes several routing strategies to maximize the network
utilization for various traffic-demand models. One useful approach to
enhancing routing performance is to minimize the maximum link uti-
lization rate, also called the network congestion ratio, of all network
links. Minimizing the network congestion ratio leads to an increase in
admissible traffic.
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• Chapter 8 presents routing problems in Internet Protocol (IP) networks.
A link-state-based routing protocol is widely used in IP networks, where
all packets are transmitted over shortest paths as determined by weights
associated with each link in the network. Determining the optimal rout-
ing through shortest-path routing means determining the optimal link
weights. This chapter deals with the optimization problem of finding a
set of link weights against network failures.

• Chapter 9 presents mathematical puzzles that can be tackled by integer
linear programming (ILP). They are the Sudoku puzzle, a river crossing
puzzle, and a lattice puzzle. The ILP formulations and solutions by
GLPK are presented. For the river crossing puzzle, the shortest path
approach is also introduced to solve the problem.

Programs and input data listed in this book

The programs and input data listed in this book are available at the following
site: http://www.crcpress.com/.
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Chapter 1

Optimization problems for
communications networks

Communication networks consist of nodes and links. Figure 1.1 shows an
example of a network. This network consists of six nodes, node 1 to node 6.
An arrow between two nodes is a connection, called a link, of those nodes. The
traffic has a direction from the tail to the head of the arrow. For example, the
arrow from node 1 to node 2 means that node 1 and node 2 are connected and
the traffic flows from node 1 to node 2. The network in which each link has
a direction, represented by a corresponding arrow, as shown in Figure 1.1, is
called a directed graph. A number on each link indicates its link cost. In the
case that the connection is represented by just a line, instead of an arrow, the
traffic can flow in both directions on the link. A network with links through
which the traffic flows in both directions is called a undirected graph.

This chapter introduces typical examples of the problems posed by com-
munication networks, starting with the shortest path problem.

Cost
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Figure 1.1: Network model with link costs.
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2 Linear Programming and Algorithms for Communication Networks

1.1 Shortest path problem

Consider that node 1 wants transmit traffic to node 6, as shown in Figure 1.1.
We need to find the path with the minimum cost to transmit the traffic. Nodes
1 and 6 are called source and destination nodes, respectively. The path with
the minimum cost from the source node to the destination node is called the
shortest path. The shortest path is determined by considering the link costs in
the network. This problem is called the shortest path problem. The problem
is solved and the solution is obtained, as shown in Figure 1.2. The shortest
path from node 1 to node 6 is 1 → 2 → 5 → 6, and the path cost, which is
the sum of costs of the links on the path, is 3 + 4 + 6 = 13.

Destination
Source

3

4

5 10

9
6

64

1

2

3
6

5

Cost

14
4

Figure 1.2: Shortest path from node 1 to node 6.

1.2 Max flow problem

Figure 1.3 shows a network that considers the capacity of each link. The
number on each link represents the link capacity; that is the maximum traffic
that can be transmitted through the link. Traffic volume, v, is injected from
node 1. How much maximum traffic can we send from node 1 to node 6? Which
route should the traffic be transmitted on? This problem is called the max flow
problem. Figure 1.4 shows the solution of this problem. The maximum traffic
volume from node 1 to node 6 is v = 195 and consists of five paths with their
corresponding traffic volumes of v1 to v5. v1 = 15 is sent on the first path,
1→ 2→ 5→ 6. v2 = 10 is sent on the second path, 1→ 2→ 3→ 6. v3 = 100
is sent on the third path, 1 → 3 → 6. v4 = 60 is sent on the fourth path,
1→ 4→ 3→ 6. v5 = 10 is sent on the fifth path, 1→ 4→ 6. The total traffic
v is v1+v2+v3+v4+v5 = 15+10+100+60+10 = 195. The traffic that flows
on each link does not exceed the link capacity. For example, the traffic on link
1→ 2 is v1 + v2 = 15+ 10 = 25, which does not exceed 25 (25 is the capacity
of link 1→ 2). The traffic on link 3→ 6 is v2 + v3 + v4 = 10+100+ 60 = 170
does not exceed 200 (200 is the capacity of link 1→ 2).
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1.3. MINIMUM-COST FLOW PROBLEM 3

25

15

100 200

70
60

30

15030

1

2

4

6

5

v
v

3
Destination

Source

Capacity

Figure 1.3: Network model with link capacities.
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Figure 1.4: Max flow routing from node 1 to node 6.

1.3 Minimum-cost flow problem

Figure 1.5 shows a network that considers the cost and capacity of each link.
The numbers on each link represents the link cost and the link capacity. The
traffic flow cannot exceed the link capacity. The traffic volume that is required
to be transmitted from a source node, node 1, to a destination node, node 6,
is set to v = 180. How can we send the required traffic volume from node 1 to
node 6 at the minimum cost? This problem is called the minimum-cost flow
problem. In the minimum-cost flow, the required cost for each link is defined
as the cost of the link × the traffic volume that flows on the link. We minimize
the sum of costs on the path(s) to send the traffic from node 1 to node 6.

Figure 1.6 shows the solution of the minimum-cost flow problem. The
traffic with the volume of v is divided into five paths, from v1 to v5. v1 = 15
is sent on the first path, 1→ 2→ 5→ 6. v2 = 10 is sent on the second path,
1 → 2 → 3 → 6. v3 = 100 is sent on the third path, 1 → 3 → 6. v4 = 25
is sent on the fourth path, 1 → 4 → 3 → 6. v5 = 30 is sent on the fifth
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9, 70
6, 60

6, 1504, 30
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Figure 1.5: Network with link costs and capacities.

path, 1 → 4 → 6. The total traffic volume is v = v1 + v2 + v3 + v4 + v5 =
15+ 10 + 100+ 25 + 30 = 180. The total cost is 3180. There is no traffic flow
that exceeds the capacity of the link on which it flows.
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Figure 1.6: Minimum-cost flow from node 1 to node 6.
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Chapter 2

Basics of linear
programming

An optimization problem is a problem that aims to find the best solution
from all feasible solutions. The best solution can be the minimum or maxi-
mum solution. An example of the former is finding the route from point A to
point B that takes the shortest time. An example of the latter is determin-
ing how a production factory can maximize its profit using limited materials.
Both problems are optimization problems. An optimization problem can be
solved by mathematical programming, a technique that expresses and solves
problems as mathematic models.

This chapter explains linear programming, which is a special case of math-
ematical programming.

2.1 Optimization problem

A businessman must travel from city A to city B on a business trip. He has
two choices as to the means of transportation: airplane or train. How can he
travel with the minimum cost given the following conditions?

• Condition 1: The price for a one-way ticket should not exceed $150.

• Condition 2: He should arrive at city B by 11:10 a.m.

• Condition 3: He should depart city A after 8:00 a.m.

He checks the airplane and train schedules, as listed in Table 2.1. There are
eight choices. He has to choose one of them. He has to choose one out of eight
choices; the one that satisfies all conditions and has the minimum cost. As
all the prices in the table are less then $150, they satisfy condition 1. As for
condition 2, choices 3 and 8 are cut because they arrive after 11:10 a.m. For
condition 3, choices 1 and 4 are cut because their departure times are before

5
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6 Linear Programming and Algorithms for Communication Networks

Table 2.1: Transportation details.

Choice Transportation Departure Arrival Price ($)
time time

1 Airplane 7:25 a.m. 8:40 a.m. 134.70
2 Airplane 9:50 a.m. 11:05 a.m. 136.70
3 Airplane 10:45 a.m. 12:00 a.m. 136.70
4 Train 7:56 a.m. 10:36 a.m. 138.50
5 Train 8:03 a.m. 11:03 a.m. 135.50
6 Train 8:20 a.m. 10:56 a.m. 138.50
7 Train 8:30 a.m. 11:06 a.m. 138.50
8 Train 8:33 a.m. 11:30 a.m. 135.50

8:00 a.m. Here, the businessman is left with choices 2, 5, 6, and 7. He refines
the selection using the minimum cost, which is choice 5. Therefore, he will
travel by train, leaving from city A at 8:03 a.m., and arriving at city B at
11:03 a.m., and spending $135.50.

An optimization problem consists of three components: decision variables,
objective function, and constraints. In case of the above example, the deci-
sion variables are transportation, departure time, arrival time, and price. The
objective function is the price. The constraints are conditions 1, 2, and 3. A
mathematical model can be established that encompasses all three compo-
nents.

• Decision variables: are the variables within a model that can be con-
trolled. If there are n decision variables, they are represented as
x1, x2, · · · , xn.

• Objective function: is the function that we want to maximize or mini-
mize. An objective function is written as f(x1, x2, · · · , xn). If we want
to maximize this function, we write

max
x1,x2,··· ,xn

f(x1, x2, · · · , xn). (2.1)

If the function should be minimized, we express it by

min
x1,x2,··· ,xn

f(x1, x2, · · · , xn). (2.2)

• Constraints: are conditions or limitations of the problem. Each is ex-
pressed in mathematical form as follows.

S1(x1, x2, · · · ) ≤ 0

S2(x1, x2, · · · ) ≤ 0

S3(x1, x2, · · · ) ≤ 0

. . . (2.3)
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2.2. LINEAR PROGRAMMING PROBLEM 7

2.2 Linear programming problem

A linear programming (LP) problem is an optimization problem in which the
objective function and all the constraints are expressed as linear functions.
Even if just one of them is not a linear function, this problem is not an LP
problem A linear function is expressed by

f(x1, x2, . . . ) = a1x1 + a2x2 + · · ·+ a0, (2.4)

where a1, a2, · · · , a0 are constants.

x2

Constraint 2
x3

x2

Objective function

x1

(a)  Two decision variables (b) Three decision variables 

x1

Constraint 1

Figure 2.1: Linear programming problem.

x1

x2

Figure 2.2: Example of nonlinear programming problem.

Figure 2.1 shows the appearance of linear functions. In Figure 2.1(a), there
are two decision variables. The objective function and constraints are depicted
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8 Linear Programming and Algorithms for Communication Networks

by lines. In Figure 2.1(b), there are three decision variables. The objective
function and decision variables are depicted by the planes. Figure 2.2 shows
an example of a nonlinear programming (NLP) problem; obviously it is not an
LP problem. The objective function and two constraints are linear functions,
but one constraint is not a linear function. Therefore, this problem is not an
LP problem.

Eqs. (2.5a)–(2.5f) show an LP problem. It consists of an objective function,
constraints, and two decision variables, which are expressed by x1 and x2.

Objective max x1 + x2 (2.5a)

Constraints 5x1 + 3x2 ≤ 15 (2.5b)

x1 − x2 ≤ 2 (2.5c)

x2 ≤ 3 (2.5d)

x1 ≥ 0 (2.5e)

x2 ≥ 0 (2.5f)

In general, an LP problem that maximizes an objective function is repre-
sented by the following formula:

Objective max c1x1 + c2x2 + · · ·+ cnxn (2.6a)

Constraints a11x1 + a12x2 + · · ·+ a1nxn ≤ b1 (2.6b)

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2 (2.6c)

. . .

am1x1 + am2x2 + · · ·+ amnxn ≤ bm (2.6d)

x1 ≥ 0 (2.6e)

x2 ≥ 0 (2.6f)

. . .

xn ≥ 0 (2.6g)

Eqs. (2.6e)–(2.6g) provide the ranges of the decision variables. Usually,
Eqs. (2.6e)–(2.6g) are not necessary for the LP problem. However, their in-
clusion makes it easy to handle the LP problem in a consistent manner.
Eqs. (2.6a)–(2.6g) are called a canonical form of an LP problem with maxi-
mization. They are also formulated by a matrix expression as follows:

Objective max cTx (2.7a)

Constraints Ax ≤ b (2.7b)

x ≥ 0, (2.7c)
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2.2. LINEAR PROGRAMMING PROBLEM 9

where

xT = [x1, . . . , xn] (2.8a)

bT = [b1, . . . , bm] (2.8b)

cT = [c1, . . . , cn] (2.8c)

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

⎤
⎥⎥⎥⎦ . (2.8d)

While Eqs. (2.5a)–(2.5f) represent an LP problem that maximizes an ob-
jective function, we can convert the objective function into a minimization
problem. To maximize x1 + x2 is to minimize −x1 − x2. If we multiply the
inequalities (2.5a)–(2.5d) by −1, the LP problem is transformed into

Objective min −x1 − x2 (2.9a)

Constraints −5x1 − 3x2 ≥ −15 (2.9b)

−x1 + x2 ≥ −2 (2.9c)

−x2 ≥ −3 (2.9d)

x1 ≥ 0 (2.9e)

x2 ≥ 0. (2.9f)

An LP problem that minimizes an objective function is represented by the
following formula:

Objective min c1x1 + c2x2 + · · ·+ cnxn (2.10a)

Constraints a11x1 + a12x2 + · · ·+ a1nxn ≥ b1 (2.10b)

a21x1 + a22x2 + · · ·+ a2nxn ≥ b2 (2.10c)

· · ·
am1x1 + am2x2 + · · ·+ amnxn ≥ bm (2.10d)

x1 ≥ 0 (2.10e)

x2 ≥ 0 (2.10f)

· · ·
xn ≥ 0. (2.10g)

Eqs. (2.10a)–(2.10g) are called a canonical form of an LP problem with min-
imization. They are also formulated by a matrix expression as follows:

Objective min cTx (2.11a)

Constraints Ax ≥ b (2.11b)

x ≥ 0, (2.11c)
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where

xT = [x1, . . . , xn] (2.12a)

bT = [b1, . . . , bm] (2.12b)

cT = [c1, . . . , cn] (2.12c)

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

⎤
⎥⎥⎥⎦ . (2.12d)

Let us reconsider the LP problem of Eqs. (2.5a)–(2.5f). Let y1, where
y1 ≥ 0, be added to constraint 5x1 + 3x2 ≤ 15, expressed by Eq. (2.5b). We
rewrite it as 5x1+3x2+y1 = 15. Let y2, where y2 ≥ 0, be added to constraint
x1 − x2 ≤ 2, expressed by Eq. (2.5c), and rewrite it as x1 − x2 + y2 = 2. Let
y3, where y3 ≥ 0, be added to constraint x2 ≤ 3 expressed by Eq. (2.5d), and
rewrite it as x2 + y3 = 3. A new LP problem is obtained by

Objective max x1 + x2 (2.13a)

Constraints 5x1 + 3x2 + y1 = 15 (2.13b)

x1 − x2 + y2 = 2 (2.13c)

x2 + y3 = 3 (2.13d)

x1 ≥ 0 (2.13e)

x2 ≥ 0 (2.13f)

y1 ≥ 0 (2.13g)

y2 ≥ 0 (2.13h)

y3 ≥ 0, (2.13i)

where y1, y2, and y3 are called slack variables.
In general, by introducing slack variables, an LP problem can be expressed

in the following form:

Objective max ormin c1x1 + c2x2 + · · ·+ cnxn (2.14a)

Constraints a11x1 + a12x2 + · · ·+ a1nxn = b1 (2.14b)

a21x1 + a22x2 + · · ·+ a2nxn = b2 (2.14c)

· · ·
am1x1 + am2x2 + · · ·+ amnxn = bm (2.14d)

x1 ≥ 0 (2.14e)

x2 ≥ 0 (2.14f)

· · ·
xn ≥ 0. (2.14g)
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2.2. LINEAR PROGRAMMING PROBLEM 11

Eqs. (2.14a)–(2.14g) are called a standard form of an LP problem. They are
also formulated by a matrix expression as follows:

Objective max ormin cTx (2.15a)

Constraints Ax = b (2.15b)

x ≥ 0, (2.15c)

where

xT = [x1, . . . , xn] (2.16a)

bT = [b1, . . . , bm] (2.16b)

cT = [c1, . . . , cn] (2.16c)

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

⎤
⎥⎥⎥⎦ . (2.16d)

x2

Conner 
point

Corner point

x1

Corner point

Feasible region

Corner point
Boundary

Figure 2.3: Nomenclature in linear programming problem.

Figure 2.3 shows terminology for an LP problem with two decision vari-
ables. A boundary is a constraint that expresses the upper or lower bound
of an inequality or equality. The feasible region is an area delineated by the
boundaries. A corner point is an intersection of the boundaries.

The following problem is an example of an LP problem with two decision
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variables, x and y:

Objective max x+ y (2.17a)

Constraints 5x+ 3y ≤ 15 (2.17b)

x− y ≤ 2 (2.17c)

y ≤ 3 (2.17d)

x ≥ 0 (2.17e)

y ≥ 0. (2.17f)

1

2

3

4

5

Feasible 
region

y

3≤y

1535 ≤+ yx

2≤− yx

0 1 2 3 4 5
0

1 region

x

Figure 2.4: Constraints in linear programming problem.

Figure 2.4 shows ranges of constraints as Eqs. (2.17b)–(2.17f). The area
bounded by the constraints is the feasible region. Let z be the objective func-
tion, z = x + y. We want to maximize the objective function, z. We rewrite
this function as y = −x + z. The slope of this function is −1, and this func-
tion intersects the y-axis at (0, z). If we move this function up along the y-axis
while keeping its slope, z increases. On the other hand, if we move it down
along the y-axis, z decreases. As shown in Figure 2.5, the maximum value of
z is determined by moving the objective function up along the y-axis while
keeping the slope, −1, under the condition that the function passes through
the feasible region.

As shown in Figure 2.5(a), let us start from y = −x+0. We then move the
objective function up along the y-axis until it touches the corner point (2, 0),
as shown in Figure 2.5(b). The function becomes y = −x+ 2. Next, move it
up to touch the corner point (0, 3), as shown in Figure 2.5(c). The function
becomes y = −x + 3. We continue moving this function up until it reaches
the end corner point of the feasible region, (65 , 3), as shown in Figure 2.5(d).
The function becomes y = −x + 21

5 . The function is no longer moved up,
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0 1 2 3 4 5
0

1

2

3

4

5
y

x

3≤y

2≤− yx

0+ yx

1535 ≤+ yx

0 1 2 3 4 5
0

1

2

3

4

5

x

3≤y

2≤− yx

1535 ≤+ yx

y

Feasible 
region

Feasible 
region

0=+ yx 2=+ yx

0=+ yx(a) 2=+ yx(b)

0 1 2 3 4 5
0

1

2

3

4

5
y

x

3≤y

2≤− yx

1535 ≤+ yx

0 1 2 3 4 5
0

1

2

3

4

5

x

3≤y

2≤− yx

21

1535 ≤+ yx

y

Feasible 
region

Feasible 
region

5
21

=+ yx

3=+ yx(c)
5
21

=+ yx(d)

3=+ yx

Figure 2.5: Solution by moving y = −x+ z.

as this corner point is the one where the objective function passes through
the feasible region. Therefore, we obtain the maximum value of the objective
function z = 6

5 + 3 = 21
5 , as shown in Figure 2.6.

In this example, we have two decision variables, so the objective function
is expressed by a line and the feasible region is expressed by a two-dimensional
area surrounded by several lines. In the case of three decision variables, a three-
dimensional space is considered. The objective function is expressed by a plane
and the feasible region is expressed by a space surrounded by some planes
associated with their constraints. For the general case of n decision variables,
an n-dimensional space is considered. The objective function is expressed by
a hyperplane, and the feasible region is expressed by a space surrounded by
some hyperplanes associated with their constraints.

Let us consider how to obtain an optimum solution of an LP problem in
general. In an LP problem, if the problem has an optimum solution and at
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1

2

3

4

5
y

3≤y

1535 ≤+ yx

2≤− yx

Maximum x + y

3=y

Feasible 
region

0 1 2 3 4 5
0

1

x

5
6

=x

5
213

5
6 of Maximum =+=+ yx

region

Figure 2.6: Result by moving y = −x+ z.

least one corner point of the feasible region exists, an optimum solution is
one of the corner points. Therefore, we are able to get the optimum solution
by checking each value of the objective function associated with every corner
point.

Figure 2.7 shows every corner point. There are five corner points, (0, 0),
(0, 3), (65 , 3), (

21
8 , 58 ), and (2, 0). Table 2.2 shows all the values of x + y for

every corner point. At the corner point of ( 65 , 3), x + y = 21
5 = 4.2 is the

maximum value among the values of x+y associated with every corner point.

2.3 Simplex method

If the number of decision variables and the number of constraints becomes
large, the complexity of obtaining all the corner points and their corresponding
values of the objective function is significant. This makes the computation
times so long that the solution cannot be obtained in a practical time. To
solve this issue, a more efficient way of finding the optimum solution for an
LP problem, called the simplex method, was invented by Dantzig.

The simplex method uses the idea that at least one of the corner points is
the optimum solution. We select one of the corner points as a starting point.
We then walk along the boundary lines. In the case of a maximizing problem,
we walk along the paths on which the value of the objection function does
not decrease. In the case of a minimizing problem, we walk along paths on
which the value of the objection function does not increase. In other words, if
we cannot find a path that improves the value of the objective function at a
certain corner point, the corner point is the optimum solution.
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⎠
⎞

⎜
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⎛

8
5,

8
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⎟
⎠
⎞

⎜
⎝
⎛ 3,

5
6

1535 ≤+ yx
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region

0 1 2 3 4 5
0

1

x

)0,2()0,0(

region

Figure 2.7: Corner points of feasible region.

Table 2.2: Values of x+ y for every corner point.

Corner point x+ y
(x, y)

(0, 0) 0
(0, 3) 3
(6
5 , 3)

21
5 = 4.2

(218 , 5
8 )

13
4 = 3.25

(2, 0) 2

Figure 2.7 has five boundaries: (0, 0) ↔ (0, 3), (0, 3) ↔ (65 , 3), (
6
5 , 3) ↔

(218 , 58 ), (
21
8 ,

5
8 ) ↔ (2, 0), and (2, 0) ↔ (0, 0). Let us start at the corner point

of (0, 0). We have two possible paths, (0, 0)→ (0, 3) and (0, 0)→ (2, 0), from
(0, 0). At the corner point of (0, 0), the value of the objective function is 0. At
the corner points of (0, 3) and (2, 0), the values of the objective function are
3 and 2, respectively. The values of the objective function of both paths are
increased. Therefore, we can choose either path. In Figure 2.8, we choose path
(0, 0) → (0, 3), and (0, 3) → (65 , 3) is considered. The value of the objective
function at the corner point of (65 , 3) is 4.2, which is increased compared with
the value of 3 associated with (0, 3). If we continue to move from (65 , 3) to
(218 , 58 ), the value of the objective function, which is 3.25, decreases. Therefore,
the corner point of (65 , 3) gives the maximum solution, where the value of the
objective function is 4.2.

From the starting corner point of (0, 0), Figure 2.9 shows the case that
the other path, (0, 0) → (2, 0), is selected; in Figure 2.8, (0, 0) → (0, 3) is
selected. The value of the objective function at (0, 2) is 2. We keep moving to
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1

2

3

4
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3≤y

1535 ≤+ yx

2≤− yx

)3,0(

⎟
⎠
⎞

⎜
⎝
⎛

8
5,

8
21

⎟
⎠
⎞

⎜
⎝
⎛ 3,

5
6 Corner point x + y

(0,0) 0
(0,3) 3
(6/5,3) 4.2

(21/8,5/3) 3.25

M i

Feasible 
region

Increase

Decrease

Increase

0 1 2 3 4 5
0 x

)0,2()0,0(

Maximum

Figure 2.8: Example of simplex method. Search for boundary route of (0, 0)↔
(0, 3)↔ (

6
5 , 3

)
.

the corner points (218 , 5
8 ) and (65 , 3). The values of the objective function are

3.25 and 4.2, respectively. They are increasing, so that we keep moving to the
next corner point, (0, 3). However, the value of the objective function at this
corner point is 3, which is decreased. Therefore, the maximum solution is the
corner point of (6

5 , 3), where the value of the objective function is 4.2. The
maximum solution in Figure 2.9 is the same as that in Figure 2.8.

0 1 2 3 4 5
0

1

2

3

4

5

y

x

3≤y

1535 ≤+ yx

2≤− yx

)0,2()0,0(

)3,0(

8

5
,

8

21

3,
5

6

Corner point x + y

(0,0) 0

(0,2) 2

(21/8,5/8) 3.25

(6/5,3) 4.2

(0,3) 3

Maximum

Feasible
region

Increase

Increase

Decrease

Increase

Figure 2.9: Example of simplex method. Search for boundary route of (0, 0)→
(2, 0)→ (

21
8 , 5

8

)→ (
6
5 , 3

)
.

Let us consider another example LP problem. A small factory uses a ma-
chine to produce two products: bread and noodles. How much powder is used
to produce bread and noodles so as to maximize the profit per day? With 1
kilogram of powder, the profits of bread and noodles are $5 and $3, respec-
tively. The machine is not able to produce more than one product at the same



�

�

“K15229” — 2012/7/18 — 14:35
�

�

�

�

�

�

2.3. SIMPLEX METHOD 17

time. Both products are made with the same material, powder. The holding
bin can keep only 80 kilograms of powder per day. The maximum runtime
for the machine is 20 hours per day. The average times to make bread and
noodles are 30 and 10 minutes per kilogram, respectively.

As the decision variables to this optimization problem, let x be the weight
of powder (kg) to produce bread, and y be the weight of powder (kg) to
produce noodle. This problem is formulated as an LP problem as follows:

Objective max 5x+ 3y (2.18a)

Constraints x+ y ≤ 80 (2.18b)

30x+ 10y ≤ 1200 (2.18c)

x ≥ 0 (2.18d)

y ≥ 0. (2.18e)

Eq. (2.18a) indicates the total profit of bread and noodle per 1 kg. We want
to maximize this profit. Eq. (2.18b) indicates the constraint of the limitation
of the powder. The powder used to produce either product must not exceed
80 kg. Eq. (2.18c) indicates the constraint of the total production time, which
must be less than 20 hours, 20× 60 = 1200 minutes. Eqs. (2.18d) and (2.18e)
indicate non-negative values of x and y. The constraints of Eqs. (2.18b)–
(2.18e) are plotted in Figure 2.10.

40
60
80

100
120
140
y

30x + 10y ≤ 1200

x + y ≤ 80Feasible 
region

0 10 20 30 40 50 60
0

20
x

region

Figure 2.10: Feasible region.

We use the simplex method to solve this problem, as shown in Figure 2.11.
Let us start at the corner point of (0, 0). The value of the objective function is
0. Here, we have two paths, (0, 0)→ (0, 80) and (0, 0)→ (40, 0). The values of
the objective function are 240 and 200, respectively. They are increasing, so
that we can select either of them to move. Let us move to the corner point of
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(0, 80)

y

0
20
40
60
80

100
120
140

x

30x + 10y ≤ 1200

x + y ≤ 80

(20,60)

Corner point 5x + 3y
(0,0) 0
(0,80) 240
(20,60) 280
(40,0) 200

Maximum

Increase

Increase

Decrease

Feasible 
region

0 10 20 30 40 50 60
0 x

(40,0)(0, 0)

Figure 2.11: Example of simplex method. Search for boundary route of
(0, 80)↔ (20, 60).

(0, 80). The next corner point is (20, 60). The value of the objective function
at this corner point is 280, which is increased compared with the value of 240
associated with (0, 80). We then move to the next corner point: (40, 0). At this
corner point, the value of the objective function is 200, a decrease. Therefore,
the maximum solution is at the corner point of (20, 60), where the value of
the objective function is 280. We conclude that making 20 kg of bread and 60
kg of noodles achieves the maximum profit, $280 per day.

2.4 Dual problem

Considering the problem of the bread and noodle factory, Eqs. (2.18a)–(2.18e),
let us change the name of the decision variables from x to x1 and from y to x2

to deal with the problem in a more general manner. In other words, x1 is the
weight of powder (kg) to produce bread and x2 is the weight of powder (kg)
to produce noodles. We rewrite the problem into an LP problem formulation
as follows:

Objective max z = 5x1 + 3x2 (2.19a)

Constraints x1 + x2 ≤ 80 (2.19b)

30x1 + 10x2 ≤ 1200 (2.19c)

x1 ≥ 0 (2.19d)

x2 ≥ 0. (2.19e)

In agreement with the prior solution, the maximum solution is (x1, x2) =
(20, 60), and z = 280.

Here, we introduce new non-negative variables, y1 (≥ 0) and y2 (≥ 0). Let
us multiply Eq. (2.19b) by y1, and Eq. (2.19c) by y2; the following equations
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2.4. DUAL PROBLEM 19

are yielded:

x1y1 + x2y1 ≤ 80y1 (2.20)

30x1y2 + 10x2y2 ≤ 1200y2. (2.21)

After we sum Eqs. (2.20) and (2.21), we obtain

(y1 + 30y2)x1 + (y1 + 10y2)x2 ≤ 80y1 + 1200y2. (2.22)

By comparing Eq. (2.22) to the objective function, Eq. (2.19a), we can assume

y1 + 30y2 ≥ 5 (2.23)

y1 + 10y2 ≥ 3. (2.24)

From Eqs. (2.22), (2.23), and (2.24), we obtain

5x1 + 3x2 ≤ (y1 + 30y2)x1 + (y1 + 10y2)x2 ≤ 80y1 + 1200y2. (2.25)

From Eqs. (2.22) and (2.23), the upper bound of 5x1 + 3x2 is 80y1 + 1200y2.
To minimize the upper bound 80y1 + 1200y2, we consider the following LP
problem.

Objective min w = 80y1 + 1200y2 (2.26a)

Constraints y1 + 30y2 ≥ 5 (2.26b)

y1 + 10y2 ≥ 3 (2.26c)

y1 ≥ 0 (2.26d)

y2 ≥ 0 (2.26e)

by solving this problem, the optimum solution is obtained as (y1, y2) = (2, 0.1),
and w = 280. The solution is the same as that yielded by Eqs. (2.18a)–(2.18e).

The problem of Eqs. (2.18a)–(2.18e) is the dual problem of Eqs. (2.26a)–
(2.26e), and vice versa. The main problem is called the primal problem and
the other is called the dual problem; y1 and y2 are called dual variables. In
general, if one LP problem is the dual problem of another LP problem, both
objective functions have the same optimum value, as will be described later.

We can explain the problem of Eqs. (2.26a)–(2.26e) as follows: y1(≥ 0)
is the cost per kilogram of powder to produce bread or noodles, $/kg; y2(≥
0) is cost to run the machine per minute, $/min. The objective function,
w = 80y1 + 1200y2, is the total cost for using the powder and running the
machine. We want to minimize the total cost. Eq. (2.26b) indicates that the
cost of using 1 kg of powder and running the machine to produce bread is
y1[$/kg]+30[min/kg]×y2[$/min], and this cost must not be lower than $5/kg,
which is the profit of bread when 1 kg of powder is used. Eq. (2.26c) indicates
that the cost of using 1 kg of powder and running the machine to produce
noodles is y1[$/kg]+10[min/kg]× y2[$/min], and this must not be lower than
$3/kg, which is the profit of noodles when 1 kg of powder is used.
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20 Linear Programming and Algorithms for Communication Networks

The relationship between the primal problem and the dual problem is
explained as follows. Eqs. (2.27a)–(2.27c) show the primal LP problem as

Objective max cTx (2.27a)

Constraints Ax ≤ b (2.27b)

x ≥ 0, (2.27c)

where

xT = [x1, . . . , xn] (2.28a)

bT = [b1, . . . , bm] (2.28b)

cT = [c1, . . . , cn] (2.28c)

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

⎤
⎥⎥⎥⎦ , (2.28d)

where x are the decision variables, and A, b, and c are parameters.
The dual problem of Eqs. (2.27a)–(2.27c) is represented by

Objective min bTy (2.29a)

Constraints ATy ≥ c (2.29b)

y ≥ 0, (2.29c)

where

yT = [y1, . . . , ym]. (2.30)

In the dual problem, y are decision variables, and A, b, and c are the same
parameters as the primal problem.

In the dual theorem, for a pair of primal and dual problems, if there is
an optimum solution of either the primal problem or the dual problem, it is
guaranteed that an optimum solution of the other problem exists. Moreover,
both optimum values of the objective functions are the same.

2.5 Integer linear programming problem

An LP problem in which decision variables take only integer values is called
an integer linear programming (ILP) problem. In the previous problems, de-
cision variables were considered real numbers and non-negative values. Some
problems need only integer values as decision variables, such as the number
of people or the number of pieces.

The methods described in Sections 2.2 and 2.3 are not able to be applied
as they were designed to solve ILP problems. An LP problem, in which the
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decision variables include both integer values and real values, is called a mixed
integer linear programming (MILP) problem.

In general, it takes more time to solve an ILP problem than an LP one. Let
us consider Eqs. (2.17a)–(2.17f) again, and assume that the decision variables
are limited to integer values:

Objective max x+ y (2.31a)

Constraints 5x+ 3y ≤ 15 (2.31b)

x− y ≤ 2 (2.31c)

y ≤ 3 (2.31d)

x = 0, 1, · · · (integer value) (2.31e)

y = 0, 1, · · · (integer value). (2.31f)

0 1 2 3 4 5
0

1

2

3

4

5
y

x

3≤y

1553 ≤+ xy

2≤− yx

zyx =+

0 1 2 3 4 5

Figure 2.12: Feasible region of integer linear programming problem.

In an LP problem, at least one of the corner points is the optimum solution.
Therefore, we need check only the corner points to determine the optimum
solution. However, in an ILP problem, we have to check every possible grid
point in the feasible region to identify the optimum value of the objective
function, as shown in Figure 2.12. In Figure 2.12, we need to check the value
of the objective function of four grid points: (0, 3), (1, 2), (1, 3), and (2, 1). We
find that the optimum solution is (1, 3), and that the maximum value of the
objective function is 4.
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Let us consider a large-scale ILP problem as follows:

Objective max x+ y (2.32a)

Constraints 5x+ 3y ≤ 1500 (2.32b)

x− y ≤ 200 (2.32c)

y ≤ 300 (2.32d)

x = 0, 1, · · · (integer value) (2.32e)

y = 0, 1, · · · (integer value). (2.32f)

Figure 2.13 shows that we need to find the values of the objective function
by considering several grid points. The optimum solution is the grid point of
(120, 300), and the maximum value of objective function is 420. This problem
takes some time to calculate the solution because we have to consider many
more grid points than those in Figure 2.12.

0 100 200 300 400 500
0

100

200

300

400

500
y

x

300≤y

150053 ≤+ xy

200≤− yx

zyx =+

Figure 2.13: Image for feasible region of large-scale integer linear programming
problem.

Exercise 2.1

Solve the following LP problem.

Objective max 8x1 + 6x2

Constraints 2x1 + x2 ≤ 30

x1 + 2x2 ≤ 24

x1 ≥ 0

x2 ≥ 0
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Exercise 2.2

Solve the following LP problem.

Objective max 10x1 + 12x2

Constraints 2x1 + 3x2 ≤ 30

3x1 + 2x2 ≤ 24

x1 ≥ 0

x2 ≥ 0

Exercise 2.3

Solve the following LP problem.

Objective min 80x1 + 1200x2

Constraints x1 + 30x2 ≥ 5

x1 + 10x2 ≥ 3

x1 ≥ 0

x2 ≥ 0

Exercise 2.4

Solve the following ILP problem.

Objective max 10x1 + 12x2

Constraints 2x1 + 3x2 ≤ 30

3x1 + 2x2 ≤ 24

x1 = 0, 1, · · ·integer value
x2 = 0, 1, · · ·integer value

Exercise 2.5

Solve the following ILP problem.

Objective max 12x1 + 10x2

Constraints 2x1 + 3x2 ≤ 30

3x1 + 2x2 ≤ 24

x1 = 0, 1, · · ·integer value
x2 = 0, 1, · · ·integer value
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Chapter 3

GLPK (GNU Linear
Programming Kit)

This chapter introduces the software sufficient to solve LP problems. This
software is called the GNU linear programming kit (GLPK). It is easy to ana-
lytically solve an LP problem with a few decision variables by hand. However,
if the number of decision variables increases, the manual approach becomes
infeasible. Therefore, a practical tool is required to solve LP problems using
computers. Both commercial and free programs have been released to solve
LP problems. In this book, the free software, named GLPK, is used as an LP
solver.

3.1 How to obtain GLPK and install it

GLPK is freely available. GLPK is an open-source software package to solve
LP problems, developed by Andrew O. Makhorin. It is a set of routines written
in ANSI C and organized in the form of a callable library. GLPK supports the
GNU MathProg modeling language, which is a subset of AMPL (a modeling
language for mathematical programming). The language is supported by pop-
ular commercial mathematical programming solvers, for example, CPLEX R©.
Once readers understand how to solve mathematical programming problems
on communication networks using GLPK in this book, they will also be able
to easily tackle similar problems by applying other solvers. GLPK is available
for download from this website:

http://www.gnu.org/s/glpk/

This book uses GLPK version 4.45. The installation manual can be
found on the website. After installation and configuring GLPK path, use the
command ‘glpsol --version’ to show GLPK version. The information of
GLPK is shown as Listing 3.1.

25
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26 Linear Programming and Algorithms for Communication Networks

Listing 3.1: Console

1 $ glpsol --version
2 GLPSOL: GLPK LP/MIP Solver , v4.45
3
4 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010 Andrew Makhorin , Department for Applied Informatics , Moscow
6 Aviation Institute , Moscow , Russia. All rights reserved .
7
8 This program has ABSOLUTELY NO WARRANTY .
9
10 This program is free software ; you may re-distribute it under the terms
11 of the GNU General Public License version 3 or later.

3.2 Usage of GLPK

Let us solve an LP problem involving Eqs. (2.17a)–(2.17f) by GLPK. A file
that describes the optimization problem is called a model file. Listing 3.2
shows the model file of the LP problem for Eqs. (2.17a)–(2.17f).

Listing 3.2: Model file: lp-ex1.mod

1 /* lp-ex1.mod */
2
3 var x >= 0 ;
4 var y >= 0 ;
5
6 maximize z: x + y ;
7 s.t. st1: 5*x + 3*y <= 15 ;
8 s.t. st2: x - y <= 2 ;
9 s.t. st3: y <=3 ;
10
11 end ;

To solve this problem with GLPK, we type the command line ‘glpsol’,
as shown at line 1 in Listing 3.3. In this command line, ‘-m’ is an option
indicating that ‘lp-ex1.mod’ is the model file (Listing 3.2). Option ‘-o’ in-
dicates the output file lp-ex1.out (Listing 3.4). After running this command,
GLPK will report as shown in Listing 3.3.

Listing 3.3: Console

1 $ glpsol -m lp-ex1.mod -o lp-ex1.out
2 GLPSOL : GLPK LP/MIP Solver , v4.45
3 Parameter(s) specified in the command line:
4 -m lp-ex1.mod -o lp-ex1.out
5 Reading model section from lp-ex1.mod...
6 11 lines were read
7 Generating z...
8 Generating st1...
9 Generating st2...
10 Generating st3...
11 Model has been successfully generated
12 GLPK Simplex Optimizer , v4.45
13 4 rows , 2 columns , 7 non -zeros
14 Preprocessing...
15 2 rows , 2 columns , 4 non -zeros
16 Scaling ...
17 A: min|aij| = 1.000e+00 max|aij| = 5.000e+00 ratio = 5.000e+00
18 Problem data seem to be well scaled
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19 Constructing initial basis ...
20 Size of triangular part = 2
21 * 0: obj = 0.000000000e+00 infeas = 0.000e+00 (0)
22 * 3: obj = 4.200000000e+00 infeas = 0.000e+00 (0)
23 OPTIMAL SOLUTION FOUND
24 Time used: 0.0 secs
25 Memory used: 0.1 Mb (108176 bytes)
26 Writing basic solution to ‘lp-ex1.out ’...

The above report shows the generation of the objective function and con-
straints, the optimization process by GLPK, and the determination of the
optimum solution. The optimum solution and the value of the objective func-
tion are shown in output file ‘lp-ex1.out’ (Listing 3.4).

Listing 3.4: Output file: lp-ex1.out
1 Problem : lp
2 Rows: 4
3 Columns : 2
4 Non-zeros: 7
5 Status : OPTIMAL
6 Objective: z = 4.2 (MAXimum )
7
8 No. Row name St Activity Lower bound Upper bound Marginal
9 ------ ------------ -- ------------- ------------- ------------- ----------

10 1 z B 4.2
11 2 st1 NU 15 15 0.2
12 3 st2 B -1.8 2
13 4 st3 NU 3 3 0.4
14
15 No. Column name St Activity Lower bound Upper bound Marginal
16 ------ ------------ -- ------------- ------------- ------------- ----------
17 1 x B 1.2 0
18 2 y B 3 0
19
20 Karush -Kuhn -Tucker optimality conditions:
21
22 KKT.PE: max.abs.err = 2.22e-16 on row 1
23 max.rel.err = 2.36e-17 on row 1
24 High quality
25
26 KKT.PB: max.abs.err = 0.00e+00 on row 0
27 max.rel.err = 0.00e+00 on row 0
28 High quality
29
30 KKT.DE: max.abs.err = 5.55e-17 on column 1
31 max.rel.err = 1.85e-17 on column 1
32 High quality
33
34 KKT.DB: max.abs.err = 0.00e+00 on row 0
35 max.rel.err = 0.00e+00 on row 0
36 High quality
37
38 End of output

Lines 1–5 in Listing 3.4 show the information of the optimum problem.
Line 6 shows that the maximum value of the objective function is 4.2. Lines
8–13 show the information of the objective function and constraints. Lines
15–18 show the information of the optimum values of the decision variables.
Values in the column ‘Activity’ in lines 17 and 18 show that the optimum
value of (x, y) is (1.2, 3).

Listing 3.5 shows the model file for the LP problem of Eqs. (2.18a)–(2.18e).



�

�

“K15229” — 2012/7/18 — 14:35
�

�

�

�

�

�

28 Linear Programming and Algorithms for Communication Networks

Listing 3.5: Model file: lp-ex2.mod

1 /* lp-ex2.mod */
2
3 var y1 >= 0 ;
4 var y2 >= 0 ;
5
6 minimize w: 80*y1 + 1200* y2 ;
7 s.t. st1: y1 + 30*y2 >= 5 ;
8 s.t. st2: y1 + 10*y2 >= 3 ;
9
10 end ;

We run GLPK by the command line ‘glpsol -m lp-ex2.mod -o

lp-ex2.out’. The optimum solution is (y1, y2) = (2, 0.1), and the value of
the objective function is w = 280.

Exercise 3.1

A factory produces health food. There are four raw materials, A, B, C, and
D, that can be used to produce the food. At least 18 kg of protein, 31 kg of
carbohydrate, and 25 kg of fat are required to produce the food. Ingredients
of each raw material are shown in Table 3.1.

Table 3.1: Ingredients of each raw material.
Raw Nutrient ratio Price ($/kg)

materials Protein Carbohydrate Fat
A 0.18 0.43 0.31 5.00
B 0.31 0.25 0.37 7.50
C 0.12 0.12 0.37 3.75
D 0.18 0.50 0.12 2.50

1. The factory wants to produce the food while minimizing the nutrient
cost. Formulate an LP problem.

2. Solve the LP problem.

3. Let this above problem be a primal problem. Formulate the dual prob-
lem.

4. Solve the dual problem and compare the solution with that of the primal
problem.

Exercise 3.2

A factory produces three hair treatment products, regular shampoo, ex-
clusive shampoo, and conditioner. They use the basic chemicals, A, B, and C,
in specified proportions, as shown in Table 3.2. The profit values of regular
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shampoo, exclusive shampoo, and conditioner are 1.5, 2.0, and 2.5 $/liter,
respectively. The factory wants to sell at least 30 liters of exclusive shampoo.

Table 3.2: Raw materials for hair treatment products.

Ratio of basic chemicals used for hair Quantity
Raw treatment products in stock

material Regular shampoo Exclusive shampoo Conditioner (liters)
A 0.3 0.5 0.2 100
B 0.6 0.3 0.1 150
C 0.1 0.2 0.7 200

1. The factory wants to get the maximum profit. Formulate the problem
as an LP problem.

2. Solve the LP problem.

3. Let the above problem be a primal problem. Formulate the dual problem.

4. Solve the dual problem and compare the solution with that of the primal
problem.
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Chapter 4

Basic problems for
communication networks

This chapter describes basic problems posed by communication networks that
can be tackled by linear programming. Formulations, solutions by GLPK, and
related algorithms for various problems are presented in this chapter.

4.1 Shortest path problem

4.1.1 Linear programming problem

The network is represented by directed graph G(V,E), where V is the set of
vertices (nodes) and E is the set of links. A link from node i to node j is
expressed by (i, j) ∈ E; dij is the link cost of (i, j); xpq

ij , where 0 ≤ xpq
ij ≤ 1, is

the traffic volume from node p ∈ V to node q ∈ V routed through (i, j) ∈ E.
In Figure 4.1, considering node 1 as a source node (p = 1) and node 4 as a
destination node (q = 4), we want to find the shortest path from node 1 to
node 4. The shortest path problem is formulated as the following LP problem.

Objective min 5x12 + 8x13 + 2x23 + 7x24 + 4x34 (4.1a)

Constraints x12 + x13 = 1 (4.1b)

x12 − x23 − x24 = 0 (4.1c)

x13 + x23 − x34 = 0 (4.1d)

0 ≤ x12 ≤ 1 (4.1e)

0 ≤ x13 ≤ 1 (4.1f)

0 ≤ x23 ≤ 1 (4.1g)

0 ≤ x24 ≤ 1 (4.1h)

0 ≤ x34 ≤ 1 (4.1i)

31
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1

2

3

4

8 4

5 7

2

Cost

DestinationSource

Figure 4.1: Network model of shortest path problem. Number on each link
represents link cost.

The decision variables are x12, x13, x23, x24, and x34. Eq. (4.1a) expresses
the objective function to find the minimum path cost from node 1 to node
4. Eq. (4.1a) indicates the objective function, which is the sum of the costs
of links along the path(s). In Eq. (4.1a), the costs of links that are not part
of the path(s) are not considered as the value of xij is 0 when (i, j) is not
on the path(s). Eqs. (4.1c)–(4.1i) shows the constraints. Eqs. (4.1b)–(4.1d)
indicate flow conservation. Eq. (4.1b) maintains the condition of flows at the
source node, node 1. The outgoing traffic volume from node 1, x12 + x13, is
equal to 1, which is the incoming traffic volume, as shown in Figure 4.2(a).
Node 1 transmits the traffic volume of 1. Eq. (4.1c) maintains the condition of
flows at an intermediate node, node 2. It expresses the fact that the incoming
traffic volume of node 2, x12, is equal to the outgoing traffic volume of node
2, x23 + x24, as shown in Figure 4.2(b). Eq. (4.1d) maintains the condition of
flows at an intermediate node, node 3. It expresses the fact that the incoming
traffic volume of node 3, x13 + x23, is equal to the outgoing traffic volume of
node 3, x34, as shown in Figure 4.2(c). Eqs. (4.1e)–(4.1i) present the ranges
of xij .

At the destination node, node 4, the condition that maintains flows, is

x24 + x34 = 1, (4.2)

as shown in Figure 4.2(d). However, Eq. (4.2) is obtained by using Eqs. (4.1b)–
(4.1d). Therefore, Eq. (4.2) is always guaranteed if Eqs. (4.1b)–(4.1d) are sat-
isfied. Therefore, Eqs. (4.1b)–(4.1d) are enough to maintain flow conservation.

Let us solve the LP problem presented in Eqs. (4.1a)–(4.1i) using GLPK.
The model file for this problem is shown in Listing 4.1.

Listing 4.1: Model file: sp-ex1.mod

1 /* sp-ex1.mod */
2
3 /* Decision variables */
4 var x12 <=1, >=0 ;
5 var x13 <=1, >=0 ;
6 var x23 <=1, >=0 ;
7 var x24 <=1, >=0 ;
8 var x34 <=1, >=0 ;
9
10 /* Objective function */
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Figure 4.2: Input/output of traffic at each node.

11 minimize PATH_COST: 5*x12 + 8*x13 + 2*x23 + 7*x24 + 4*x34 ;
12
13 /* Constraints */
14 s.t. NODE1: x12 + x13 = 1 ;
15 s.t. NODE2: x12 - x23 - x24 = 0 ;
16 s.t. NODE3: x13 + x23 - x34 = 0 ;
17
18 end;

Lines 4–8 define the decision variables, xij , for (i, j), and express the
ranges for Eqs. (4.1e)–(4.1i). Line 11 expresses Eq. (4.1a), where the objec-
tive function is minimized. Lines 14–16 express the constraints as presented
in Eqs. (4.1b)–(4.1d).

To solve this problem with GLPK, we run command line ‘glpsol’ as
shown on line 1 in Listing 4.2. In this command line, ‘-m’ is an option to
indicate that ‘sp-ex1.mod’ is the model file (Listing 4.1). Option ‘-o’ in-
dicates the output file sp-ex1.out (Listing 4.3). If we run this command,
GLPK reports Listing 4.2.

Listing 4.2: Console

1 $ glpsol -m sp-ex1.mod -o sp-ex1.out
2 GLPSOL : GLPK LP/MIP Solver , v4.45
3 Parameter(s) specified in the command line:
4 -m sp -ex1.mod -o sp-ex1.out
5 Reading model section from sp-ex1.mod...
6 19 lines were read
7 Generating PATH_COST...
8 Generating NODE1 ...
9 Generating NODE2 ...

10 Generating NODE3 ...
11 Model has been successfully generated
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12 GLPK Simplex Optimizer , v4.45
13 4 rows , 5 columns , 13 non -zeros
14 Preprocessing...
15 3 rows , 3 columns , 6 non -zeros
16 Scaling ...
17 A: min|aij| = 1.000e+00 max|aij| = 1.000e+00 ratio = 1.000e+00
18 Problem data seem to be well scaled
19 Constructing initial basis ...
20 Size of triangular part = 3
21 * 0: obj = 1.200000000e+01 infeas = 0.000e+00 (0)
22 * 2: obj = 1.100000000e+01 infeas = 0.000e+00 (0)
23 OPTIMAL SOLUTION FOUND
24 Time used: 0.0 secs
25 Memory used: 0.1 Mb (108469 bytes)
26 Writing basic solution to ‘sp-ex1.out ’...

The above report describes the generation of the objective function and
constraints, the optimization process by GLPK, and the identification of the
optimum solution. The optimum solution and the value of the objective func-
tion are shown in the output file ‘sp-ex1.out’ (Listing 4.3).

Listing 4.3: Output file: sp-ex1.out

1 Problem : sp
2 Rows: 4
3 Columns : 5
4 Non -zeros: 13
5 Status : OPTIMAL
6 Objective: PATH_COST = 11 (MINimum )
7
8 No. Row name St Activity Lower bound Upper bound Marginal
9 ------ ------------ -- ------------- ------------- ------------- -----------
10 1 PATH_COST B 11
11 2 NODE1 NS 1 1 =

12
12 3 NODE2 NS 0 -0 =

-6
13 4 NODE3 NS 0 -0 =

-4
14
15 No. Column name St Activity Lower bound Upper bound Marginal
16 ------ ------------ -- ------------- ------------- ------------- -----------
17 1 x12 NU 1 0 1

-1
18 2 x13 B 0 0 1
19 3 x23 B 1 0 1
20 4 x24 NL 0 0 1

1
21 5 x34 B 1 0 1
22
23 Karush -Kuhn -Tucker optimality conditions:
24
25 KKT.PE: max.abs.err = 0.00e+00 on row 0
26 max.rel.err = 0.00e+00 on row 0
27 High quality
28
29 KKT.PB: max.abs.err = 0.00e+00 on row 0
30 max.rel.err = 0.00e+00 on row 0
31 High quality
32
33 KKT.DE: max.abs.err = 0.00e+00 on column 0
34 max.rel.err = 0.00e+00 on column 0
35 High quality
36
37 KKT.DB: max.abs.err = 0.00e+00 on row 0
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38 max.rel.err = 0.00e+00 on row 0
39 High quality
40
41 End of output

Lines 1–5 show the information of the optimum problem. Line 6 shows
that the minimum value of the objective function is 11. Lines 8–13 show the
information of the objective function and constraints. Lines 15–21 show the
information of the optimum value of the decision variables. Values in the
column ‘Activity’ in lines 17–21 show that the optimum solution is x12 = 1,
x13 = 0, x23 = 1, x24 = 0, x34 = 1. In other words, the shortest path is
1→ 2→ 3→ 4, and the cost of this path is 11.

In general, the problem to find the shortest path is formulated as an LP
problem:

Objective min
∑

(i,j)∈E

dijxij (4.3a)

Constraints
∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = 1, if i = p (4.3b)

∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = 0, ∀i 	= p, q ∈ V (4.3c)

0 ≤ xij ≤ 1, ∀(i, j) ∈ E. (4.3d)

xij and dij are the decision variable and the link cost of (i, j), respectively.
Eq. (4.3a) is the objective function that minimizes the path cost from node p
to node q. xij is the traffic volume from node p to node q routed through (i, j).
Eqs. (4.3b)–(4.3d) are the constraints. Eqs. (4.3b)–(4.3c) express the condi-
tions of the flow conservation. Eq. (4.3b) maintains the flows at the source
node, node p. The difference between the incoming traffic volume and the
outgoing traffic volume,

∑
j:(i,j)∈E xij −

∑
j:(j,i)∈E xji, is 1. Here, the outgo-

ing traffic volume at node p is 1. Eq. (4.3c) maintains flows at intermediate
node i, where i 	= p, q. The outgoing traffic volume at node i,

∑
j:(i,j)∈E xij ,

is equal to the incoming traffic volume at node i,
∑

j:(j,i)∈E xji. Eq. (4.3d) is
the range of xij .

At the destination node, node q, the condition to maintain flows is

∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = −1, if i = q (4.4)

Eq. (4.4) must be satisfied. However, Eq. (4.4) is deducted using Eqs. (4.3b)–
(4.3c). Therefore, Eq. (4.4) is guaranteed by Eqs. (4.3b) and (4.3c), which is
proved below.

Proof:
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Eq. (4.3b) is written by

∑
j:(p,j)∈E

xpj −
∑

j:(j,p)∈E

xjp = 1. (4.5)

Eq. (4.3c) expresses a set of N − 2 equations for i ∈ V , i 	= p, q. Let us take a
sum over the left sides of Eq. (4.5) and N−2 equations expressed in Eq. (4.3c)
and a sum over the right sides of them. As both sums are equal,

∑
j:(p,j)∈E

xpj+
∑

i∈V,i�=p,q

∑
j:(i,j)∈E

xij−
∑

j:(j,p)∈E

xjp−
∑

i∈V,i�=p,q

∑
j:(j,i)∈E

xji = 1 (4.6)

is obtained. Using the following relationships given by
∑

j:(p,j)∈E

xpj +
∑

i∈V,i�=p,q

∑
j:(i,j)∈E

xij =
∑
i∈V

∑
j:(i,j)∈E

xij −
∑

j:(q,j)∈E

xqj

and
∑

j:(j,p)∈E

xjp +
∑

i∈V,i�=p,q

∑
j:(j,i)∈E

xji =
∑
i∈V

∑
j:(j,i)∈E

xji −
∑

j:(j,q)∈E

xjq ,

Eq. (4.6) is transformed to

∑
i∈V

∑
j:(i,j)∈E

xij −
∑

j:(q,j)∈E

xqj −
∑
i∈V

∑
j:(j,i)∈E

xji +
∑

j:(j,q)∈E

xjq = 1. (4.7)

Using
∑
i∈V

∑
j:(i,j)∈E

xij −
∑
i∈V

∑
j:(j,i)∈E

xji = 0,

Eq. (4.7) becomes

∑
j:(q,j)∈E

xqj −
∑

j:(j,q)∈E

xjq = −1. (4.8)

Eq. (4.8) is a simplification of Eq. (4.4).
As the model file describes sp-ex1.mod (Listing 4.1), it must be modified

when some network conditions, including the topology and the link costs,
are changed. It takes time to manually change the model file. Moreover, it
is easy to make mistakes when modifying the model file. To avoid this issue,
GLPK allows us to use a model file in conjunction with a separate input file.
The general model is written in the model file, while the parameters or data
including topology and link costs are written in the input file. If the network
conditions are changed, we only have to modify the input file, without touching
the model file.

Eqs. (4.3a)–(4.3d) are separately written in the model file as shown in
Listing 4.4, and the input file as shown in Listing 4.5.
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Listing 4.4: Model file: sp-gen.mod
1 /* sp -gen.mod */
2
3 /* Given parameters */
4 param N integer , >0;
5 param p integer , >0;
6 param q integer , >0;
7
8 set V := 1..N;
9 set E within {V,V};

10
11 param cost{E};
12
13 /* Decision variables */
14 var x{E} <= 1, >= 0;
15
16 /* Objective function */
17 minimize PATH_COST: sum{i in V} (sum{j in V} (cost[i,j]*x[i,j] ) ) ;
18
19 /* Constraints */
20 s.t. SOURCE{i in V: i = p && p != q}:
21 sum{j in V} (x[i,j]) - sum{j in V}(x[j,i]) = 1;
22 s.t. INTERNAL {i in V: i != p && i != q && p != q }:
23 sum{j in V} (x[i,j]) - sum{j in V}(x[j,i]) = 0;
24 end;

Lines 4, 5, 6, and 11 of the model file in Listing 4.4 define the types of
parameters for the number of nodes, N , source node, p, destination node, q,
and link costs.

Listing 4.5: Input file: sp-gen1.dat
1 /* sp -gen1.dat */
2
3 param p := 1;
4 param q := 4;
5 param N := 4;
6
7 param : E : cost :=
8 1 1 100000
9 1 2 5

10 1 3 8
11 1 4 100000
12 2 1 100000
13 2 2 100000
14 2 3 2
15 2 4 7
16 3 1 100000
17 3 2 100000
18 3 3 100000
19 3 4 4
20 4 1 100000
21 4 2 100000
22 4 3 100000
23 4 4 100000
24 ;
25 end;

Lines 3–5 of the input file in Listing 4.5 define the values of parameters p,
q, and N . Lines 8–23 define the link cost of (i, j). To handle the case of two
nodes with no link between them (e.g., (1, 1) and (1, 4)), the cost for (i, j) is
set to a large enough number that the pair will never be considered in forming
the shortest path. In this case, we set the cost to 10000.
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We run a command line ‘glpsol’ as shown on line 1 in Listing 4.6. The
model file, the input file, and the output file are specified by options. Option
‘-m’ indicates model file sp-gen.mod, as shown in Listing 4.4. Option ‘-d’

indicates the corresponding input file sp-gen1.dat, as shown in Listing 4.5.
Option ‘-o’ indicates the output file sp-gen1.out. After running the com-
mand, GLPK will report Listing 4.6. The result is the same as the program
in Listing 4.1. The output file sp-gen1.out is shown in Listing 4.7.

Listing 4.6: Console: sp-gen1.txt

1 $ glpsol -m sp-gen.mod -d sp-gen1.dat -o sp-gen1.out
2 GLPSOL: GLPK LP/MIP Solver , v4.45
3 Parameter(s) specified in the command line:
4 -m sp-gen.mod -d sp-gen1.dat -o sp-gen1.out
5 Reading model section from sp-gen.mod...
6 25 lines were read
7 Reading data section from sp-gen1.dat...
8 25 lines were read
9 Generating PATH_COST...
10 Generating SOURCE ...
11 Generating INTERNAL ...
12 Model has been successfully generated
13 GLPK Simplex Optimizer , v4.45
14 4 rows , 16 columns , 34 non -zeros
15 Preprocessing...
16 3 rows , 9 columns , 15 non -zeros
17 Scaling ...
18 A: min|aij| = 1.000e+00 max|aij| = 1.000e+00 ratio = 1.000e+00
19 Problem data seem to be well scaled
20 Constructing initial basis ...
21 Size of triangular part = 3
22 * 0: obj = 1.000000000e+05 infeas = 0.000e+00 (0)
23 * 6: obj = 1.100000000e+01 infeas = 0.000e+00 (0)
24 OPTIMAL SOLUTION FOUND
25 Time used: 0.0 secs
26 Memory used: 0.1 Mb (125211 bytes)
27 Writing basic solution to ‘sp-gen1.out ’...

Listing 4.7: Output file: sp-gen1.out

1 Problem : sp
2 Rows: 4
3 Columns : 16
4 Non -zeros: 34
5 Status : OPTIMAL
6 Objective: PATH_COST = 11 (MINimum )
7
8 No. Row name St Activity Lower bound Upper bound Marginal
9 ------ ------------ -- ------------- ------------- ------------- -----------
10 1 PATH_COST B 11
11 2 SOURCE [1] NS 1 1 =

12
12 3 INTERNAL [2] NS 0 -0 =

7
13 4 INTERNAL [3] NS 0 -0 =

4
14
15 No. Column name St Activity Lower bound Upper bound Marginal
16 ------ ------------ -- ------------- ------------- ------------- -----------
17 1 x[1,1] NL 0 0 1 100000
18 2 x[1,2] B 1 0 1
19 3 x[1,3] B 0 0 1
20 4 x[1,4] NL 0 0 1 99988
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21 5 x[2,1] NL 0 0 1 100005
22 6 x[2,2] NL 0 0 1 100000
23 7 x[2,3] NU 1 0 1 -1
24 8 x[2,4] B 0 0 1
25 9 x[3,1] NL 0 0 1 100008
26 10 x[3,2] NL 0 0 1 100003
27 11 x[3,3] NL 0 0 1 100000
28 12 x[3,4] NU 1 0 1 < eps
29 13 x[4,1] NL 0 0 1 100012
30 14 x[4,2] NL 0 0 1 100007
31 15 x[4,3] NL 0 0 1 100004
32 16 x[4,4] NL 0 0 1 100000
33
34 Karush -Kuhn -Tucker optimality conditions:
35
36 KKT.PE: max.abs.err = 0.00e+00 on row 0
37 max.rel.err = 0.00e+00 on row 0
38 High quality
39
40 KKT.PB: max.abs.err = 0.00e+00 on row 0
41 max.rel.err = 0.00e+00 on row 0
42 High quality
43
44 KKT.DE: max.abs.err = 0.00e+00 on column 0
45 max.rel.err = 0.00e+00 on column 0
46 High quality
47
48 KKT.DB: max.abs.err = 0.00e+00 on row 0
49 max.rel.err = 0.00e+00 on row 0
50 High quality
51
52 End of output

We can use the same model file, Listing 4.4, for different shortest path
problems. For example, for the shortest path problem as shown in Fig-
ure 1.1, which is an LP problem, we modify only the input file, as shown
in sp-gen2.dat, Listing 4.8. No modification of the model file is required.

Listing 4.8: Input file: sp-gen2.dat

1 /* sp -gen2.dat */
2
3 param p := 1;
4 param q := 6;
5 param N := 6;
6
7 param : E : cost :=
8 1 1 100000
9 1 2 3

10 1 3 5
11 1 4 9
12 1 5 100000
13 1 6 100000
14 2 1 100000
15 2 2 100000
16 2 3 4
17 2 4 100000
18 2 5 4
19 2 6 100000
20 3 1 100000
21 3 2 100000
22 3 3 100000
23 3 4 100000
24 3 5 100000
25 3 6 10
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26 4 1 1000000
27 4 2 100000
28 4 3 6
29 4 4 100000
30 4 5 100000
31 4 6 14
32 5 1 100000
33 5 2 100000
34 5 3 100000
35 5 4 100000
36 5 5 100000
37 5 6 6
38 6 1 100000
39 6 2 100000
40 6 3 100000
41 6 4 100000
42 6 5 100000
43 6 6 100000
44 ;
45 end;

4.1.2 Dijkstra’s algorithm

The shortest path from a source node to a destination node can be obtained
by Dijkstra’s algorithm [1]. It is a more effective way of finding a solution
in networks that have non-negative link cost values, compared with the way
to solve an LP problem. In Dijkstra’s algorithm, nodes in the network are
divided into three types of nodes, which are a visiting node, a visited node,
and an unvisited node. At the initial stage, the source node is set as a visiting
node, and other nodes are set as unvisited nodes. Set the distance to zero for
the source node and to infinity (∞) for all other nodes. The distance between
nodes adjacent to the visiting node are computed by adding the cost of the
link between the visiting node and each adjacent node to the distance of the
current node. Next, select the next node to visit. Repeat the process until
every node in the network becomes a visited node. This process yields the
shortest paths from the source node to all nodes in the network.

The procedure of Dijkstra’s algorithm is expressed as follows:

• Step 1: Set distances from a source node to every node, except the source
node, to ∞, and set the distance of the source node to 0.

• Step 2: Mark the source node as a visiting node, and other nodes as
unvisited nodes.

• Step 3: For the visiting node, compute the distance to unvisited adjacent
nodes by adding the cost of the link between the current node and each
adjacent node to the distance of the current node. If the distance is
less than the previously recorded distance, update the distance. For an
unvisited node whose distance is updated, the path from the source
node via the previous hop node is recorded. The visiting node becomes
an visited node. Note that, if a node is an visited node, the distance will
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not be updated and it is guaranteed to be a component of the shortest
path tree.

• Step 4: Choose an unvisited node whose distance is shortest among
unvisited nodes and set it to the visiting node.

• Step 5: If all nodes in the network are marked as visited nodes, the
process is finished. Otherwise, repeat the same process from step 3.

Figure 4.3 explains how Dijkstra’s algorithm finds the shortest path from
node 1 to node 6, step by step. D(i) denotes the distance from node 1 to node
i. Figure 4.3(a) shows the network and link costs. As Step 1, the distance
of node 1 is set to 0, and those of other nodes are set to ∞, as shown in
Figure 4.3(b).

Mark node 1 as a visiting node and mark the other nodes as unvisited
nodes, as illustrated in Figure 4.3(c) (step 2). In Figure 4.3, a current node
and visited nodes are colored in black, and unvisited nodes are colored in
white. Node 1 has three unvisited adjacent nodes, which are nodes 2, 3, and
4. Their distances, which were set to ∞, are updated. The distances of node
2, node 3, and node 4 are updated to D(2) = 2, D(3) = 1, and D(4) = 5,
respectively (step 3).

In Figure 4.3(d), node 3 is selected because its distance from node 1 is the
shortest among the unvisited nodes. Node 1 is marked as a visited node, and
node 3 is updated from an unvisited node to the visiting node. Therefore, the
shortest path on 1→ 3 is determined and will not be updated (step 4).

Consider three unvisited adjacent nodes, which are nodes 2, 4, and 5, from
the visiting node, node 3 (step 3). The distance on path 1 → 3 → 2 is 3.
However, the previously computed (recorded) distance, D(2) = 2, for path
1 → 2, is smaller than D(2) = 3 for path 1 → 3 → 2. Therefore, we keep
D(2) = 2 with path 1→ 2. The distance on path 1→ 3→ 4 is 4. This value
is smaller than the recorded distance, D(4) = 5. Therefore, D(4) is updated
as D(4) = 4 for path 1 → 3 → 4. The distance on path 1 → 3 → 5 is 2. It is
smaller than the recorded distance, D(5) =∞. Therefore, D(5) is updated as
D(5) = 2. After computing the distances on all the unvisited adjacent nodes,
node 3 is marked as a visited node.

Figure 4.3(e), D(2) = 2 and D(5) = 2 are the smallest values among
distances of unvisited nodes. Either node 2 or node 5 can be selected as a
visiting node. Let us consider that node 2 is selected as a visiting node. The
distance on path 1 → 2 → 4 is 5. However, the recorded distance, D(4) = 4,
from path 1 → 3 → 4, is less than that of path 1 → 2 → 4. Therefore,
D(4) = 4 from path 1 → 3 → 4 is kept (Step 3). Node 2 becomes a visited
node.

In Figure 4.3(f), D(5) = 2 is the smallest value among distances of un-
visited nodes, so node 5 is selected as a visiting node, Step 4. Node 5 has
two unvisited adjacent nodes, which are nodes 4 and 6. The distance on path
1 → 3 → 5 → 4 is 3. This number is smaller than the previous recorded
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(d) Node 3 selected(c) Distance to adjacent node updated

1 6

2 4

3 5

1
2

2
3

3

1

1
2

5

5

1 6

2 4

3 5

1
2

2
3

3

1

1
2

5

5

(a) Network model

1 6

2 4

3 5

1
2

2

3

3

1

1
2

5

5

(b) Distance initialized

1 6

2 4

3 5

1
2

2

3

3

1

1
2

5

5

D(2)=

D(3)= D(5)=

D(4)=

D(6)=D(1)=0

D(2)=2

D(3)=1 D(5)=

D(4)=5

D(6)=D(1)=0

D(2)=2

D(3)=1 D(5)=2

D(4)=4

D(6)=D(1)=0

Source

Destination

1 6

2 4

3 5

1
2

2
3

3

1

1
2

5

5

(g) Node 4 selected

1 6

2 4

3 5

1
2

2
3

3

1

1
2

5

5

(h) Shortest path found

1 6

2 4

3 5

1
2

2
3

3

1

1
2

5

5

1 6

2 4

3 5

1
2

2
3

3

1

1
2

5

5

(e) Node 2 selected (f) Node 5 selected

D(2)=2

D(3)=1 D(5)=2

D(4)=3

D(6)=4D(1)=0

D(2)=2

D(3)=1 D(5)=2

D(4)=4

D(6)=D(1)=0

D(2)=2

D(3)=1 D(5)=2

D(4)=3

D(6)=4D(1)=0

D(2)=2

D(3)=1 D(5)=2

D(4)=3

D(6)=4D(1)=0

Figure 4.3: Example of Dijkstra’s algorithm.
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distance, D(4) = 4. Therefore, D(4) = 3 is overwritten. The distance on path
1 → 3 → 5 → 6 is 4. We replace D(6) = ∞ by D(6) = 4, as step 3. Node 5
then becomes a visited node.

In Figure 4.3(g), node 4 is selected as a visiting node (step 4). It has an
unvisited adjacent node, node 6. The distance on path 1→ 3→ 5→ 4→ 6 is
8, which is larger than the recorded distance, D(6) = 4. Therefore, D(6) = for
path 1→ 3→ 5→ 6 is kept. Node 4 then becomes a visited node. We repeat
the process for node 6. Finally, every node in the network becomes a visited
node, and the process stops (step 5). Therefore, the shortest path from node
1 to node 6 is found to be 1→ 3→ 5→ 6, and the distance is 4.

4.1.3 Bellman-Ford algorithm

As Dijkstra’s algorithm can only be applied to networks that have non-
negative link costs, the Bellman-Ford algorithm was introduced to rectify this
shortcoming [2]. Note that the correct answer cannot be obtained if there is a
negative loop in the network. In a negative loop, the summation of unlimited
distance becomes smaller with each iteration. Therefore, the shortest path
can-not be determined.

In Dijkstra’s algorithm, a node with the shortest distance is selected as a
visiting node among unvisited nodes, and the distances of the adjacent nodes
from the visiting node are updated or not. Then, the visiting node becomes
a visited node, and a new visiting node is found again among the unvisited
nodes. Once a node becomes a visited node, the distance is guaranteed to be
the shortest one. In the Bellman-Ford algorithm, a node is not categorized by
visited or not. The distance of every node can be changed up to N − 1 times
to obtain the shortest path, where N is the number of nodes in the network.

The procedure of the Bellman-Ford algorithm is expressed as follows:

• Step 1: Set distances from the source node to every node, except the
source node, to ∞, and set the distance for the source node to 0.

• Step 2: At each node, select an adjacent node so that the summation
of the distance of the adjacent node and the cost of the link from the
adjacent node to its own node is minimized. Set the selected adjacent
node to be the previous hop node.

• Step 3: The process finishes if step 2 is repeated N−1 times. Otherwise,
repeat step 2.

Figure 4.4 shows an example of the Bellman-Ford algorithm. D(i) is de-
noted as the distance from node 1 to node i. P (i) is denoted as a previous
hop node of node i. The network consists of six nodes, N = 6, as shown in
Figure 4.4(a). We want to find the shortest path to every node, from node 1.
Figure 4.4(b), the distance of node 1 is set to 0 while those of the others are
set to ∞ (step 1).
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Figure 4.4: Example of Bellman-Ford algorithm.
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Figure 4.4(c), distances are updated at the first iteration. The distances,
from node 1, to adjacent nodes of allD(i)s are computed. Here, adjacent nodes
of node 1 with D(i) 	=∞ are node 2 and node 3. Therefore, we compute the
distances only for node 2 and node 3. Because node 2 is an adjacent node
of node 1, D(2) = D(1) + 3 = 3 < ∞ is updated. The previous hop node
of node 2 is P (2) = 1. Because node 3 is another adjacent node of node 1,
D(3) = D(1) + 2 = 2 < ∞ is updated. The previous hop node of node 3 is
P (3) = 1.

Figure 4.4(d) shows distance updates in the second iteration. Nodes with
D(i) 	= ∞ are node 1, node 2, and node 3. Nodes whose distances will be
changed are adjacent nodes of node 1, node 2, and node 3. These are node
2, node 3, node 4, and node 5. An adjacent node is selected so that the
summation of the distance of the adjacent node and the cost of the link from
the adjacent node to its own node is minimized. As a result, the updated
distances are D(3) = 1, D(4) = 5, and D(5) = 7. P (i)s become P (3) = 2,
P (4) = 3, and P (5) = 3. In the case of negative distances, while D(3) < D(2)
is satisfied in Figure 4.4(c), D(3) is updated as shown in Figure 4.4(d). This
differs from Dijkstra’s algorithm, which accepts only non-negative distances.

The process is repeated until N − 1 = 5 times, as shown in Figure 4.4(e),
Figure 4.4(f), and Figure 4.4(g). The shortest paths from node 1 to every node
are obtained, as shown in Figure 4.4(h).

4.2 Max flow problem

4.2.1 Linear programming problem

The max flow problem involves finding the traffic flows that maximize traffic
volume transmitted from a source node to a destination node, under the con-
straint that the traffic volume passing through any link cannot exceed that
link capacity. Figure 4.5 shows a network model of the max flow problem. The
value on each link indicates the link capacity.

The network is represented by directed graph G(V,E), where V is the set
of vertexes (nodes) and E is the set of edges (links). A link from node i to node

1

2

3

4

15 18

14 10

4

Capacity

DestinationSource

v v

Figure 4.5: Network model of max flow problem. Number on each link repre-
sents link capacity.
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j is expressed by (i, j) ∈ E. cij is the link capacity of (i, j). xpq
ij , where 0 ≤

xpq
ij ≤ cij , is the traffic volume from node p ∈ V to node q ∈ V routed through

(i, j) ∈ E. As the network model in Figure 4.5, the optimization problem that
maximizes traffic volume v from source node p ∈ V to destination node q ∈ V
is expressed as follows:

Objective max v (4.9a)

Constraints x12 + x13 = v (4.9b)

x12 − x23 − x24 = 0 (4.9c)

x13 + x23 − x34 = 0 (4.9d)

0 ≤ x12 ≤ 14 (4.9e)

0 ≤ x13 ≤ 15 (4.9f)

0 ≤ x23 ≤ 4 (4.9g)

0 ≤ x24 ≤ 10 (4.9h)

0 ≤ x34 ≤ 18 (4.9i)

The decision variables are v, x12, x13, x23, x24, and x34. Eq. (4.9a) represents
the objective function that maximizes the traffic volume, v from node 1 to
node 4. Eqs. (4.9b)–(4.9i) are the constraints. Eqs. (4.9b)–(4.9d) indicate flow
conservation. Eq. (4.9b) is the constraint to maintain flows at the source
node, node 1. The outgoing traffic volume from node 1, x12 + x13, is equal to
v. Eq. (4.9c) is a constraint to maintain flows at an intermediate, node 2. The
incoming traffic volume to node 2, x12, is equal to the outgoing traffic volume
from node 2, x23 + x24. Eq. (4.9d) is a constraint to maintain flows at an
intermediate node, node 3. The incoming traffic volume to node 3, x13 + x23,
is equal to the outgoing traffic volume from node 3, x34. The constraint to
maintain flows at the destination node, node 4, x24 + x34 = v, is obtained
using Eqs. (4.9b)–(4.9d). Therefore, x24 + x34 = v is always guaranteed if
Eqs. (4.9b)–(4.9d) are satisfied. Eqs. (4.9e)–(4.9i) show the ranges of xij . Each
traffic volume passing through (i, j) is less than or equal to the link capacity
of (i, j).

Let us solve the LP problem presented in Eqs. (4.9a)–(4.9i) by using
GLPK. The model file for Eqs. (4.9a)–(4.9i) is shown in Listing 4.9.

Listing 4.9: Model file: mf-ex1.mod

1 /* mf-ex1.mod */
2
3 /* Decision variables */
4 var v ;
5 var x12 <=14, >=0 ;
6 var x13 <=15, >=0 ;
7 var x23 <=4, >=0 ;
8 var x24 <=10, >=0 ;
9 var x34 <=18, >=0 ;
10
11 /* Objective function */



�

�

“K15229” — 2012/7/18 — 14:35
�

�

�

�

�

�

4.2. MAX FLOW PROBLEM 47

12 maximize TRAFFIC : v ;
13
14 /* Constraints */
15 s.t. NODE1: x12 + x13 = v ;
16 s.t. NODE2: x12 - x23 - x24 = 0 ;
17 s.t. NODE3: x13 + x23 - x34 = 0 ;
18
19 end ;

After the program is run using ‘glpsol’, GLPK displays the process, as
shown in Listing 4.10. The output file, ‘mf-ex1.out’, is obtained, as shown
in Listing 4.11. The optimum solution is v = 28, x12 = 14, x13 = 14, x23 =
4, x24 = 10, and x34 = 18. In other words, there are three routes for the
maximum flows. Route 1 is (1 → 2 → 4) and has traffic volume v1 = 10.
Route 2 is (1 → 2 → 3 → 4) and has traffic volume v2 = 4. Route 3 is
(1 → 3 → 4) and has traffic volume v3 = 14. The total traffic volume is
v = v1 + v2 + v3 = 28.

Listing 4.10: Model file: mf-ex1.txt

1 $ glpsol -m mf-ex1.mod -o mf-ex1.out
2 GLPSOL : GLPK LP/MIP Solver , v4.45
3 Parameter(s) specified in the command line:
4 -m mf -ex1.mod -o mf-ex1.out
5 Reading model section from mf-ex1.mod...
6 20 lines were read
7 Generating TRAFFIC ...
8 Generating NODE1 ...
9 Generating NODE2 ...

10 Generating NODE3 ...
11 Model has been successfully generated
12 GLPK Simplex Optimizer , v4.45
13 4 rows , 6 columns , 10 non -zeros
14 Preprocessing...
15 1 row , 2 columns , 2 non-zeros
16 Scaling ...
17 A: min|aij| = 1.000e+00 max|aij| = 1.000e+00 ratio = 1.000e+00
18 Problem data seem to be well scaled
19 Constructing initial basis ...
20 Size of triangular part = 1
21 * 0: obj = 1.000000000e+01 infeas = 0.000e+00 (0)
22 * 2: obj = 2.800000000e+01 infeas = 0.000e+00 (0)
23 OPTIMAL SOLUTION FOUND
24 Time used: 0.0 secs
25 Memory used: 0.1 Mb (107670 bytes)
26 Writing basic solution to ‘mf-ex1.out ’...

Listing 4.11: Model file: mf-ex1.out

1 Problem : mf
2 Rows: 4
3 Columns : 6
4 Non-zeros: 10
5 Status : OPTIMAL
6 Objective: TRAFFIC = 28 (MAXimum )
7
8 No. Row name St Activity Lower bound Upper bound Marginal
9 ------ ------------ -- ------------- ------------- ------------- -----------

10 1 TRAFFIC B 28
11 2 NODE1 NS 0 -0 =

-1
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12 3 NODE2 NS 0 -0 =
1

13 4 NODE3 NS 0 -0 =
1

14
15 No. Column name St Activity Lower bound Upper bound Marginal
16 ------ ------------ -- ------------- ------------- ------------- -----------
17 1 v B 28
18 2 x12 B 14 0 14
19 3 x13 B 14 0 15
20 4 x23 NU 4 0 4 < eps
21 5 x24 NU 10 0 10 1
22 6 x34 NU 18 0 18 1
23
24 Karush -Kuhn -Tucker optimality conditions:
25
26 KKT.PE: max.abs.err = 0.00e+00 on row 0
27 max.rel.err = 0.00e+00 on row 0
28 High quality
29
30 KKT.PB: max.abs.err = 0.00e+00 on row 0
31 max.rel.err = 0.00e+00 on row 0
32 High quality
33
34 KKT.DE: max.abs.err = 0.00e+00 on column 0
35 max.rel.err = 0.00e+00 on column 0
36 High quality
37
38 KKT.DB: max.abs.err = 0.00e+00 on row 0
39 max.rel.err = 0.00e+00 on row 0
40 High quality
41
42 End of output

The general formulation of the max flow problem is presented as follows:

Objective max v (4.10a)

Constraints
∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = v, if i = p (4.10b)

∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = 0, ∀i 	= p, q ∈ V (4.10c)

0 ≤ xij ≤ cij , ∀(i, j) ∈ E (4.10d)

The decision variables are v and xij . Eq. (4.10a) represents the objective
function that maximizes the traffic volume v from source node p to destination
node q. Eqs. (4.10b)–(4.10d) shows the constraints. Eq. (4.10b) maintains
flows at source node p. The outgoing traffic volume from the source node
p is equal to v,

∑
j:(i,j)∈E xij −

∑
j:(j,i)∈E xji. Eq. (4.10c) maintains flows at

intermediate nodes, i, where i 	= p, q. The outgoing traffic volume from node i,∑
j:(i,j)∈E xij , is equal to the incoming traffic volume to node i,

∑
j:(j,i)∈E xji,

as shown in Eq. (4.10c). Eq. (4.10d) is the range of xij , which must not exceed
cij .

Eqs. (4.10a)–(4.10d) are separately written in a model file as shown in
Listing 4.12, and in an input file for the network in Figure 4.5 as shown in
Listing 4.5.
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Listing 4.12: Model file: mf-gen.mod

1 /* mf -gen.mod */
2
3 param N integer , >0 ;
4 param p integer , >0 ;
5 param q integer , >0 ;
6
7 set V := 1..N ;
8 set E within {V,V} ;
9

10 var TRAFFIC >= 0 ;
11
12 param capa{E} ;
13
14 var x{E} >= 0 ;
15 maximize FLOW: TRAFFIC ;
16 s.t. INTERNAL {i in V: i != p && i != q && p != q }:
17 sum{j in V} (x[i,j]) - sum{j in V}(x[j,i]) = 0 ;
18 s.t. SOURCE{i in V: i = p && p != q}:
19 sum{j in V} (x[i,j]) - sum{j in V}(x[j,i]) = TRAFFIC ;
20 s.t. CAPACITY {(i,j) in E}: x[i,j] <= capa[i,j];
21 end ;

Listing 4.13: Input file: mf-gen1.dat

1 /* mf -gen1.dat */
2
3 param p := 1;
4 param q := 4;
5 param N := 4;
6
7 param : E : capa :=
8 1 1 0
9 1 2 14

10 1 3 15
11 1 4 0
12 2 1 0
13 2 2 0
14 2 3 4
15 2 4 10
16 3 1 0
17 3 2 0
18 3 3 0
19 3 4 18
20 4 1 0
21 4 2 0
22 4 3 0
23 4 4 0
24 ;
25 end;

Lines 3–5 of input file ‘mf-gen1.dat’ in Listing 4.13 define parameters p,
q, andN . Lines 7–23 define the capacity of each link. In the case that two nodes
(e.g., (1, 1) or (1, 4)) have no lonk connecting them, the link capacity is set to
0. The input file of the network in Figure 1.3 is written in ‘mf-gen2.dat’; see
Listing 4.14. Using the same model file, shown in Listing 4.12, we can obtain
the solution, shown in Figure 1.4.

Listing 4.14: Model file: mf-gen2.dat

1 /* mf -gen2.dat */
2
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3 param p := 1;
4 param q := 6;
5 param N := 6;
6
7 param : E : capa :=
8 1 1 0
9 1 2 25
10 1 3 100
11 1 4 70
12 1 5 0
13 1 6 0
14 2 1 0
15 2 2 0
16 2 3 30
17 2 4 0
18 2 5 15
19 2 6 0
20 3 1 0
21 3 2 0
22 3 3 0
23 3 4 0
24 3 5 0
25 3 6 200
26 4 1 0
27 4 2 0
28 4 3 60
29 4 4 0
30 4 5 0
31 4 6 30
32 5 1 0
33 5 2 0
34 5 3 0
35 5 4 0
36 5 5 0
37 5 6 150
38 6 1 0
39 6 2 0
40 6 3 0
41 6 4 0
42 6 5 0
43 6 6 0
44 ;
45 end;

4.2.2 Ford-Fulkerson algorithm

The Ford-Fulkerson algorithm is another approach to solve the max flow prob-
lem [3]. The idea of the Ford-Fulkerson algorithm is as follows. Consider a
network whose link capacities are given. First, a path that links source and
destination nodes is selected and the largest possible traffic flow is assigned
under the constraint that the traffic volume passing through each link does not
exceed the link capacity. The resulting path is called the augmenting path.
The network with residual capabilities after the setting of the augmenting
path is considered. This is called the residual network. For the residual net-
work, an additional traffic flow is assigned if possible and it is added to the
current flows. The residual network is updated considering the current flows.
This process is repeated until no other additional traffic flow can be assigned.
After the process is completed, the assigned traffic flow is the sum of the flows
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on the augmenting paths.
The procedure of the Ford-Fulkerson algorithm is expressed as follows:

• Step 1: Set traffic volumes of every flow to 0.

• Step 2: Create a residual network based on the current flows.

• Step 3: For the residual network defined in Step 2, if there is any path
that transmits any traffic from the source node to the destination node,
select it. Assign the largest possible traffic flow to the selected path
under the constraint that the traffic volume passing through each link
does not exceed the link capacity. The assigned flow is added to the
current flows, and step 2 is reentered. Otherwise, go to Step 4.

• Step 4: Traffic volume on the current flows in the network becomes the
solution of the max flow problem. The process is finished.

Figure 4.6 shows an example of the Ford-Fulkerson algorithm. Fig-
ure 4.6(a) is a network model. There are six nodes, node 1 to node 6. We
want to find the max flow from the source node, node 1, to the destination
node, node 6. This network model is the same as the network model in Fig-
ure 1.3.

Figure 4.6(b) shows that a flow is added on the network in Figure 4.6(a).
We select path 1→ 2→ 5→ 6 among the possibilities as an augmenting path
at this time. The capacity on this path is limited by link (2,5), because it has
the smallest capacity on the path. The maximum traffic volume that can be
sent through this path is 15. After the first iteration, the residual network
becomes the network in Figure 4.6(b). The capacities of links (1,2), (2,5), and
(5,6) are decreased by 15. We then add opposite-directed links (6,5), (5,2),
and (2,1) with the value of traffic flow of 15. In other words, the capacity of
link (i, j), Q, is decreased by traffic flow p. Therefore, the residual capacity on
(i, j) becomes Q−p. We decrease the capacity by adding the opposite-directed
link (j, i) with the traffic volume of p. Then, a new residual network is created
based on the augmenting path of 1→ 2→ 5→ 6.

Figure 4.6(c) shows that a flow is added to the network in Figure 4.6(b)
as the second additional flow. We select path 1 → 2 → 3 → 6 among the
possibilities as an augmenting path at this time. The maximum traffic volume
that can be sent through this path is 10, since it is limited by the capacity
on (1, 2) = 10. At this step, the residual network becomes the network in
Figure 4.6(c). We repeat the process for the third additional flow. Path 1 →
3→ 6 is selected. The maximum flow on this path is 100. Path 1→ 4→ 3→ 6
is selected for the fourth additional flow. The maximum flow on this path is
60. Path 1 → 4 → 6 is selected for the fifth additional flow. The maximum
flow on this path is 10. These are shown in Figure 4.6(d), Figure 4.6(e), and
Figure 4.6(f).

We are not able to place an additional flow on the residual network, as
shown in Figure 4.6(f). The sum of the volumes of current traffic flows that
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Figure 4.6: Example of Ford-Fulkerson algorithm.
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are directed from node 6 to node node 1 becomes the volume of the max flow
that we want to obtain, as shown in Figure 4.6(f). Figure 4.6(g) shows the
solution of the max flow problem; the volume of the max flow is 195.

4.2.3 Max flow and minimum cut

A subset of nodes that includes source node and excludes destination node is
called a cut. There may be several cuts on a network. Figure 4.7 shows only
four examples of cuts between the source node, node 1, and the destination
node, node 6, for the network in Figure 4.6(a). Other cuts are possible. The
total value of link capacities on the cut is called the capacity of the cut.
The relationship between the traffic volume and the capacity of the cut is as
follows.

Theorem 4.2.1 The traffic volume of the max flow is equal to the minimum
capacity of the cut.

In other words, we can find the minimum value of the capacity of the cut
to obtain the solution of the max flow. Figure 4.7(a) shows that the minimum
cut is 195, which is the same as the max flow solution. Theorem 4.2.1 indicates
that the max flow of a network is limited by the minimum capacity of the cut
(the bottleneck of the network).
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Figure 4.7: Example of max flow and minimum cut.
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Figure 4.8: Network model of minimum-cost flow problem. Number on each
link represents link cost and link capacity.

4.3 Minimum-cost flow problem

4.3.1 Linear programming problem

The minimum-cost flow problem is to find the traffic flows whose cost is min-
imized so as to satisfy a traffic demand from a source node to a destination
node, under the constraint that the traffic volume passing through each link
cannot exceed the link capacity. Figure 4.8 shows a network model of the
minimum-cost flow problem. Values on each link represent link cost and link
capacity. The required cost for flows each link is defined as the link cost ×
the traffic volume passing through the link. We find paths and traffic volumes
that achieve the minimum cost.

The network is represented by directed graph G(V,E), where V is the set
of vertices (nodes) and E is the set of links. A link from node i to node j is
expressed by (i, j) ∈ E. cij is the link capacity of (i, j). xpq

ij , where 0 ≤ xpq
ij ≤

cij , is the traffic volume from node p ∈ V to node q ∈ V routed through
(i, j) ∈ E. Given the network model in Figure 4.5, the minimum-cost flow
problem minimizes the total cost required to transmit traffic volume v from
source node p ∈ V and is formulated as follows.

Objective min 3x12 + 8x13 + 2x23 + 12x24 + 6x34 (4.11a)

Constraints x12 + x13 = 12 (4.11b)

x12 − x23 − x24 = 0 (4.11c)

x13 + x23 − x34 = 0 (4.11d)

0 ≤ x12 ≤ 5 (4.11e)

0 ≤ x13 ≤ 13 (4.11f)

0 ≤ x23 ≤ 4 (4.11g)

0 ≤ x24 ≤ 9 (4.11h)

0 ≤ x34 ≤ 10 (4.11i)

The decision variables are x12, x13, x23, x24, and x34. Eq. (4.11a) indicates the
objective function that minimizes the cost to send the demanded traffic vol-
ume, v = 12, from node 1 to node 4. Eqs. (4.11b)–(4.11i) show the constraints.
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Eqs. (4.11b)–(4.11d) represent flow conservation. Eq. (4.11b) maintains the
condition of flows at the source node, node 1. The incoming traffic volume to
node 1, x12 + x13, is 12. Eq. (4.11c) maintains the condition of flows at an
intermediate node, node 2. The incoming traffic volume , x12, and outgoing
traffic volume, x23 + x24, at node 2 are equal. Eq. (4.11d) maintains the con-
dition of flows at an intermediate node, node 3. The incoming traffic volume,
x13 + x23, and the outgoing traffic volume, x34, at node 3 are equal. The con-
dition of flows at the destination node, node 4, x24 + x34 = 12, is obtained
using Eqs. (4.11b)–(4.11d). Therefore, x24 + x34 = 12 is always guaranteed
if Eqs. (4.11b)–(4.11d) are satisfied. Eqs. (4.11e)–(4.11i) show the ranges of
xij . Each traffic volume passing through (i, j) is less than or equal to the link
capacity of (i, j).

Let us solve the LP problem presented in Eqs. (4.11a)–(4.11i) using GLPK.
A model file for Eqs. (4.11a)–(4.11i) is shown in Listing 4.15.

Listing 4.15: Model file: mcf-ex1.mod

1 /* mcf -ex1.mod */
2
3 /* Decision variables */
4 var x12 <=5, >=0 ;
5 var x13 <=13, >=0 ;
6 var x23 <=4, >=0 ;
7 var x24 <=9, >=0 ;
8 var x34 <=10, >=0 ;
9

10 /* Objective function */
11 minimize COSTFLOW : 3*x12 + 8*x13 + 2*x23 + 12*x24 + 6*x34 ;
12
13 /* Constraints */
14 s.t. NODE1: x12 + x13 = 12 ;
15 s.t. NODE2: x12 - x23 - x24 = 0 ;
16 s.t. NODE3: x13 + x23 - x34 = 0 ;
17
18 end ;

After the program is run by ‘glpsol’, we obtain x12 = 5, x13 = 7,
x23 = 3, x24 = 2, and x34 = 10. These three routes are the solution. Route 1
is (1→ 2→ 4), and its traffic volume is v1 = 2. Route 2 is (1→ 2→ 3→ 4),
and its traffic volume is v2 = 3. Route 3 is (1→ 3→ 4), and its traffic volume
is v3 = 7. The total traffic volume is v = v1+ v2+ v3 = 12. The total required
cost of these traffic flows is 161.

The general formulation of the minimum-cost flow problem is as follows.
Traffic volume from node p to node q is v. The link cost of (i, j) is defined as
d(ij). The link capacity of (i, j) is defined as cij .

Objective min
∑

(i,j)∈E

dijxij (4.12a)
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Constraints
∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = v, if i = p (4.12b)

∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = 0, ∀i 	= p, q ∈ V (4.12c)

0 ≤ xij ≤ cij , ∀(i, j) ∈ E (4.12d)

xijs are decision variables. Eq. (4.12a) indicates the objective function that
minimizes the cost to send the demanded traffic volume, v, from node p to
node q. Eqs. (4.12b)–(4.12d) show the constraints. Eqs. (4.12b) and (4.12c)
maintain flow conservation. Eq. (4.12b) maintains flows at the source node,
node p. The outgoing traffic volume from node p,

∑
j:(i,j)∈E xij−

∑
j:(j,i)∈E xji,

is equal to the traffic volume v. Eq. (4.12c) maintains flows at intermediate
nodes, i, where i 	= p, q. The outgoing traffic volume,

∑
j:(i,j)∈E xij , and the

incoming traffic volume,
∑

j:(j,i)∈E xji, are equal at each intermediate node.

Eq. (4.12d) is the range of xij . Each traffic volume passing through (i, j) is
less than or equal to the link capacity of (i, j).

Eqs. (4.12a)–(4.12d) are written, respectively, in a model file, shown in
Listing 4.16, and in an input file for the network in Figure 4.8 as shown in
Listing 4.17.

Listing 4.16: Model file: mcf-gen.mod

1 /* mcf -gen.mod */
2
3 param N integer , >0 ;
4 param p integer , >0 ;
5 param q integer , >0 ;
6 param TRAFFIC , >= 0 ;
7
8 set V := 1..N ;
9 set E within {V,V} ;
10 set EM within E ;
11 param capa{E} ;
12 param cost{EM} ;
13
14 var x{E} >= 0;
15 minimize FLOW_COST: sum{i in V} (sum{j in V} (cost[i,j]*x[i,j] ) ) ;
16 s.t. INTERNAL {i in V: i != p && i != q && p != q }:
17 sum{j in V} (x[i,j]) - sum{j in V}(x[j,i]) = 0 ;
18 s.t. SOURCE{i in V: i = p && p != q}:
19 sum{j in V} (x[i,j]) - sum{j in V}(x[j,i]) = TRAFFIC ;
20 s.t. CAPACITY {(i,j) in E}: x[i,j] <= capa[i,j] ;
21
22 end ;

Listing 4.17: Input file: mcf-gen1.dat

1 /* mcf -gen1.dat */
2
3 param p := 1 ;
4 param q := 4 ;
5 param N := 4 ;
6 param TRAFFIC := 12 ;
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7
8 param : E : capa :=
9 1 1 0

10 1 2 5
11 1 3 13
12 1 4 0
13 2 1 0
14 2 2 0
15 2 3 4
16 2 4 9
17 3 1 0
18 3 2 0
19 3 3 0
20 3 4 10
21 4 1 0
22 4 2 0
23 4 3 0
24 4 4 0
25 ;
26 param : EM : cost :=
27 1 1 100000
28 1 2 3
29 1 3 8
30 1 4 100000
31 2 1 100000
32 2 2 100000
33 2 3 2
34 2 4 12
35 3 1 100000
36 3 2 100000
37 3 3 100000
38 3 4 6
39 4 1 100000
40 4 2 100000
41 4 3 100000
42 4 4 100000
43 ;
44 end;

Lines 3–6 of the input file ‘mf-gen1.dat’, as in Listing 4.17, define pa-
rameters p, q, N , and v. Lines 8–24 define the capacity of each link.

In the case that two nodes (e.g., (1, 1) or (1, 4)) have no link, the link
capacity is set to 0. Lines 26–42 define the cost of each link. In the case of no
link between nodes, the cost is set to a high value. It is set to 10000 in this
data file.

An input file for the network in Figure 1.5 is shown by ‘mcf-gen2.dat’;
see Listing 4.18. Using the same model file as shown in Listing 4.16, we can
obtain the solution as shown in Figure 1.6.

Listing 4.18: Input file: mcf-gen2.dat

1 /* mcf -gen2.dat */
2
3 param p := 1 ;
4 param q := 6 ;
5 param N := 6 ;
6 param TRAFFIC := 180 ;
7
8 param : E : capa :=
9 1 1 0

10 1 2 25
11 1 3 100
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12 1 4 70
13 1 5 0
14 1 6 0
15 2 1 0
16 2 2 0
17 2 3 30
18 2 4 0
19 2 5 15
20 2 6 0
21 3 1 0
22 3 2 0
23 3 3 0
24 3 4 0
25 3 5 0
26 3 6 200
27 4 1 0
28 4 2 0
29 4 3 60
30 4 4 0
31 4 5 0
32 4 6 30
33 5 1 0
34 5 2 0
35 5 3 0
36 5 4 0
37 5 5 0
38 5 6 150
39 6 1 0
40 6 2 0
41 6 3 0
42 6 4 0
43 6 5 0
44 6 6 0
45 ;
46 param : EM : cost :=
47 1 1 100000
48 1 2 3
49 1 3 5
50 1 4 9
51 1 5 100000
52 1 6 100000
53 2 1 100000
54 2 2 100000
55 2 3 4
56 2 4 100000
57 2 5 4
58 2 6 100000
59 3 1 100000
60 3 2 100000
61 3 3 100000
62 3 4 100000
63 3 5 100000
64 3 6 10
65 4 1 100000
66 4 2 100000
67 4 3 6
68 4 4 100000
69 4 5 100000
70 4 6 14
71 5 1 100000
72 5 2 100000
73 5 3 100000
74 5 4 100000
75 5 5 100000
76 5 6 6
77 6 1 100000
78 6 2 100000
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79 6 3 100000
80 6 4 100000
81 6 5 100000
82 6 6 100000
83 ;
84 end;

4.3.2 Cycle-canceling algorithm

This subsection describes another approach to solving the minimum-cost flow
problem, the cycle-canceling algorithm. Also called Klein’s algorithm, the con-
cept of the cycle-canceling algorithm is as follows. First, check if there is any
feasible flow (solution) that can carry the required traffic demand from a
source node to a destination node without considering the cost in the network
whose capacities are given. If there is a feasible flow, consider the residual ca-
pacities of the network after the traffic flow is assigned. This network is called
the residual network. In the residual network, after checking if there is a loop,
or a cycle, with negative cost, the optimality of current flow assignment is
judged. If there is any negative loop, the current flow is not considered the
minimum cost flow because it is possible that the cost could be reduced. The
process of flow assignment is repeated until no negative loop exists. When the
process finishes, the assigned traffic flow is guaranteed as the minimum cost
flow.

The procedure of the cycle-canceling algorithm is as follows:

• Step 1: Check if there is any feasible traffic flow to send the required
traffic demand from a source node to a destination node, without con-
sideration of the cost. If there is no feasible traffic flow, the algorithm
finishes.

• Step 2: Create a residual network that has residual capacities after the
traffic flow is assigned.

• Step 3: For the residual network, check if there is any negative loop;
the current flow is not considered the minimum cost flow. Go to Step 4.
Otherwise, go to Step 5.

• Step 4: Reduce the cost by injecting traffic flow into the negative loop.
The negative loop is then canceled. Then, go to Step 2.

• Step 5: The cost of the traffic flows on the network becomes the mini-
mum. The algorithm is finished.

Figures 4.9–4.11 provide an example of the cycle-canceling algorithm.
First, we consider the max flow problem from node 1 to node 4, as in Step 1.
Figure 4.9(a) shows the network model considering link costs and link capaci-
ties, which is the same as the network in Figure 4.8(a). To determine whether
there is a feasible flow, we create an auxiliary network as in Figure 4.9(b),
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1

2

3

4

8, 13 6, 10

3, 5 12, 9

2, 4
v=12 v=12

(a) Network for minimum-cost flow problem

(b) Auxiliary network

1

2

3

4

13 10

5 9

4
v=12 v=12

Capacity

X Yw

Cost, volume

DestinationSource

DestinationSource

w

Figure 4.9: Network for minimum-cost flow problem and auxiliary network.

1

2

3

4
13 10

5 9

4X Yw=12 w=12
v=12 v=12

7

5

DestinationSource

Capacity

Figure 4.10: Initial flow assignment.

where node X and node Y are newly defined. Consider the network in Fig-
ure 4.9(b) and set the capacities of links from node X to node 1 (the original
source node), and from node 4 to node Y (the original destination node) to
v, which is equal to the traffic demand for the original minimum-cost flow
problem.

As the objective of Step 1 is to determine whether there is a feasible flow,
we do not consider the cost. We solve the max flow problem from the auxiliary
network in Figure 4.9(b). Set w to find the maximum traffic volume that can
be sent from node X to node Y . If w = v, there is a feasible solution for the
minimum-cost flow problem. If w < v, there is no feasible solution. Note that
it is impossible for the case of w > v to occur as the capacities of the added
links are v. Figure 4.10, the solution of the max flow problem is w = v = 12.
This is an initial flow assignment. There are two traffic flows for the initial
flow assignment. The first traffic volume on flow 1→ 2→ 4 is 5. The second
traffic volume on flow 1 → 3 → 4 is 7. This initial flow assignment does not
have to be the minimum-cost flow.

In Step 2, create a residual network considering the initial flow assignment.
The residual network for the initial flow assignment is shown in Figure 4.11(a).
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-3, 5

Cost, capacity

1

2

3

4
8, 6 6, 3

12,  4

2, 4 -12,  5

-8, 7 -6, 7

-3, 5

Cost, capacity

1

2

3

4
8, 6

12,  7

2, 1
-12,  2

-8, 7
-6, 10

(a) First flow assignment
(A negative loop exists )

(b) Second flow assignment
(No negative loop)

-2, 3

(A negative loop exists.) (No negative loop)

(c) Solution of minimum-cost flow

5

Flow volume

1

2

3

4
7

2

3

10

Figure 4.11: Example of cycle-canceling algorithm.

The residual network is created by following, for the most part, the method
described in Section 4.2.2. For path 1 → 2 → 4 with the traffic volume of 5,
the capacities of links (1, 2) and (2, 4) are decreased by 5; (4, 2) and (2, 1),
which take the opposite direction on the path, are granted the capacity of
5. The link costs in the opposite direction of the path become −12 and −3,
respectively. For path 1 → 3 → 4 with the traffic volume of 7, the capacities
of links (1, 3) and (3, 4) are decreased by 7; (4, 3) and (3, 1), which take the
opposite direction on the path, are granted the capacity of 7. The link costs
on the opposite direction of the path become −6 and −8, respectively.

In Step 3, for the residual network in Figure 4.11(a), check if there is a
negative loop or not. As total cost of loop 2→ 3→ 4→ 2 is 2+6+(−12) = −4,
the loop forms a negative loop. As long as there is a negative loop, if we inject
a traffic flow into the negative loop, the cost is decreased. Therefore, we inject
the maximum traffic volume of 3 into loop 2 → 3 → 4 → 2. The cost is
decreased. Repeat step 2 and create a residual network based on the current
flow assignment, as shown in Figure 4.11(b).

There is no negative loop in Figure 4.11(b) and so we are unable to decrease
the cost. Therefore, the assigned flow on the network becomes the minimum-
cost flow, as shown in Figure 4.11(c).

The cycle-canceling algorithm is based on the following theorem.

Theorem 4.3.1 A feasible traffic flow assignment is a solution of the
minimum-cost flow problem, if the residual network of the assignment con-
tains no negative loop.
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1

2

3

4

8 4

5 7

2

Cost

DestinationSource

(a) Shortest path problem

(b) Minimum-cost flow problem

1

2

3

4

8, 1 4, 1

5, 1 7, 1

2, 1

Cost, capacity

DestinationSource

v=1 v=1

Figure 4.12: Shortest path problem and minimum-cost flow problem.

4.4 Relationship among three problems

The shortest path problem and the max flow problem are special cases of the
minimum-cost flow problem.

The shortest path problem can be solved by the minimum-cost flow prob-
lem, as shown in Figure 4.12. However, we consider only link cost in the
minimum-cost flow problem. The capacity of each link is set to 1. The traffic
demand is assumed to be 1. The solution of this problem becomes a solution
of the shortest path problem.

The max flow problem can be solved by the minimum-cost flow problem,
as shown in Figure 4.13. In the minimum-cost flow problem, we add a direct
connection from a source node to a destination node to the network for the
max flow problem. The cost of the link is set to a non-negative value (e.g.,
1), and the link capacity is set to a large value (e.g., 1000). In addition, set
the traffic demand to a large value (e.g., 1000). For each link in the original
network for the max flow problem, keep the link capacities as they are and
set each cost to 0. If we solve the minimum-cost flow problem, the flows that
are sent through the original network, which does not include for the added
link, provide the solution of the max flow problem.

Exercise 4.1

Find the shortest path from node 1 to node 6 in the network in Figure 4.14.
In addition, find the shortest path from node 2 to node 6.



�

�

“K15229” — 2012/7/18 — 14:35
�

�

�

�

�

�

4.4. RELATIONSHIP AMONG THREE PROBLEMS 63

(a) Max flow problem

(b) Minimum-cost flow problem

1

2

3

4

0, 15 0, 18

0, 14 0, 10

0, 4
v=1000 v=1000

1

2

3

4

15 18

14 10

4
v v

1, 1000

Capacity

DestinationSource

Cost, capacity

DestinationSource

Figure 4.13: Max flow problem and minimum-cost flow problem.

Exercise 4.2

If link (4, 5) of the network in Figure 4.14 fails, find the shortest path from
node 1 to node 6. In addition, find the shortest path from node 2 to node 6.

Exercise 4.3

Find the minimum-cost flow from node 1 to node 6 in the network in
Figure 4.14.

Exercise 4.4

Find the max flow from node 1 to node 6 in the network in Figure 4.15.

Exercise 4.5

Find the minimum-cost flow from node 1 to node 4 in the network in
Figure 4.16.

4, 40

2, 40

3,100

3, 10

2, 20

2, 20

1, 20

1, 30
2, 50

5, 50

1, 301, 30
v=80 v=80

1

2 3

4 5

6

Cost, capacity

DestinationSource

Figure 4.14: Network for shortest path and minimum-cost flow problems.
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Source

Figure 4.15: Network for max flow problem.

1

2

3

4

7, 16 4, 12
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Figure 4.16: Network for minimum-cost flow problem.
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Chapter 5

Disjoint path routing

This chapter presents several problems on finding disjoint paths for reliable
communications. First, the basic problem of finding a set of disjoint routes
whose total cost is minimized, which is called a MIN-SUM problem, is consid-
ered. Several approaches, which include integer linear programming (ILP), a
disjoint shortest pair algorithm, and the Suurballe algorithm, are introduced
to solve the problem. Second, the MIN-SUM problem in a network with shared
risk link groups (SRLGs) and its solutions are presented. Third, the MIN-SUM
problem in a multiple-cost network and its solutions are introduced.

5.1 Basic disjoint path problem

5.1.1 Integer linear programming problem

With optical fiber bandwidth and node capacity increasing explosively, a break
in a fiber span or node failure can cause a huge amount of damage to cus-
tomers. Therefore, network providers should design survivable networks that
minimize the communication loss. Disjoint path routing enhances the surviv-
ability of a network. Several disjoint paths, which are routed without sharing
the same links or nodes, must be set between source and destination nodes.

A set of node disjoint paths does not share any common node with any
other, while a set of link disjoint paths does not share any common link with
any other. A set of link disjoint paths is a subset of node disjoint paths. Let
us consider a set of link disjoint paths to simplify the discussion. Link disjoint
paths are simply called disjoint paths in Sections 5.1 and 5.2, while node
disjoint paths are considered in Section 5.3.

Consider the problem of finding a set of K disjoint paths from a source
node to a destination node. In the network model in Figure 5.1, a set of two
disjoint paths from node 1 to node 6 is searched for, where K = 2. A simple
algorithm is considered to deal with the problem as follows. The first path is
selected as the shortest path of 1→ 2→ 3→ 6. To find the second path, links

65
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used in the first path is deleted as the second path is not allowed to use them.
A network for the second path search is shown in Figure 5.2. However, no
path is found from node 1 to node 6 in Figure 5.2. If a path of 1→ 4→ 3→ 6
is selected as the first path, the second path is found as 1 → 2 → 5 → 6.
Therefore, the algorithm in which the shortest path is selected as the first
path does not always give any feasible solution for this problem, even if a
feasible solution exists.

2

1 2

5

3 6

4
1

1 1 1

2 1

Cost

DestinationSource

Figure 5.1: Network model with link costs.

2

1 2

5

3 6

4
1

2 1

Cost

DestinationSource

Figure 5.2: Network after the first path is selected.

Next, consider the problem of finding a set of K disjoint paths from a
source to a destination node so that the total costs of the paths can be min-
imized. The problem is called the MIN-SUM problem. The network is repre-
sented by directed graph G(V,E), where V is the set of vertices (nodes) and
E is the set of links. A link from node i to node j is expressed by (i, j) ∈ E.
xk
ij is the portion of the traffic on path k ∈ M from node p ∈ V to node

q ∈ V routed through (i, j) ∈ E, where xk
ij takes a binary value, 0 or 1, and
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M = {1, 2, · · · ,K}. If path k is routed through (i, j), xk
ij = 1. Otherwise,

xk
ij = 0. dij is the link cost of (i, j).
The MIN-SUM problem, finding a set of K disjoint paths from a source

to a destination node, is formulated as the following ILP problem:

Objective min
∑
k∈M

∑
(i,j)∈E

dijx
k
ij (5.1a)

Constraints
∑

j:(i,j)∈E

xk
ij −

∑
j:(j,i)∈E

xk
ji = 1, ∀k ∈M, if i = p(5.1b)

∑
j:(i,j)∈E

xk
ij −

∑
j:(j,i)∈E

xk
ji = 0, ∀k, i(	= p, q) ∈ V (5.1c)

xk
ij + xk′

ij ≤ 1, ∀k, k′(k 	= k′) ∈M, (i, j) ∈ E (5.1d)

xk
ij = {0, 1}, ∀k ∈M, (i, j) ∈ E (5.1e)

xij and dij are the decision variable and the link cost of (i, j), respectively.
Eq. (5.1a) is the objective function that minimizes the total costs of K paths.
Eqs. (5.1b)–(5.1e) are the constraints. Eqs. (5.1b) and (5.1c) express the con-
ditions of flow conservation. Eq. (5.1b) maintains the flows at the source node,
node p. The different between the incoming traffic volume and the outgoing
traffic volume,

∑
j:(i,j)∈E xij −

∑
j:(j,i)∈E xji, is 1. Here, the outgoing traf-

fic volume at node p is 1. Eq. (5.1c) maintains flows at intermediate node i,
where i 	= p, q. The outgoing traffic volume at node i,

∑
j:(i,j)∈E xij , is equal

to the incoming traffic volume at node i,
∑

j:(j,i)∈E xji. Eq. (5.1d) indicates

that different paths must not share any common link. Eq. (5.1e) expresses the
range of xij .

Eqs. (5.1a)–(5.1e) are separately written in the model file as shown in
Listing 4.4 and input file that represents a network in Figure 5.2 as shown in
Listing 5.2.

Listing 5.1: Model file: djp-gen.mod

1 /* djp -gen.mod */
2
3 /* Given parameters */
4 param K integer , >0 ;
5 param N integer , >0 ;
6 param p integer , >0 ;
7 param q integer , >0 ;
8
9 set V := 1..N ;

10 set E within {V,V} ;
11 set M := 1..K ;
12
13 param cost{E};
14
15 /* Decision variables */
16 /* var x{E,M} >=0, <=1, integer ; */
17 var x{E,M} binary ;
18
19 /* Objective function */
20 minimize PATH_COST: sum{k in M} sum{i in V} (sum{j in V}
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21 (cost[i,j]*x[i,j,k])) ;
22
23 /* Constraints */
24 s.t. SOURCE{i in V, k in M: i = p && p != q}:
25 sum{j in V} (x[i,j,k]) - sum{j in V}(x[j,i,k]) = 1 ;
26 s.t. INTERNAL {i in V, k in M: i != p && i != q && p != q }:
27 sum{j in V} (x[i,j,k]) - sum{j in V}(x[j,i,k]) = 0 ;
28 s.t. DISJOINT {i in V, j in V, k1 in M, k2 in M: k2 !=k1}:
29 x[i,j,k1] + x[i,j,k2] <= 1 ;
30 end;

Lines 4, 5, 6, 7, and 13 of the model file in List 5.1 define the types of
parameters for the number of paths, K, the number of nodes, N , source node,
p, destination node, q, and link costs, respectively.

Listing 5.2: Input file: djp-gen1.dat

1 /* djp -gen1.dat */
2
3 param K := 2 ;
4 param N := 6 ;
5 param p := 1 ;
6 param q := 6 ;
7
8 param : E : cost :=
9 1 1 100000
10 1 2 1
11 1 3 100000
12 1 4 2
13 1 5 100000
14 1 6 100000
15 2 1 100000
16 2 2 100000
17 2 3 1
18 2 4 100000
19 2 5 2
20 2 6 100000
21 3 1 100000
22 3 2 100000
23 3 3 100000
24 3 4 100000
25 3 5 100000
26 3 6 1
27 4 1 100000
28 4 2 100000
29 4 3 1
30 4 4 100000
31 4 5 100000
32 4 6 100000
33 5 1 100000
34 5 2 100000
35 5 3 100000
36 5 4 100000
37 5 5 100000
38 5 6 1
39 6 1 100000
40 6 2 100000
41 6 3 100000
42 6 4 100000
43 6 5 100000
44 6 6 100000
45 ;
46 end;



�

�

“K15229” — 2012/7/18 — 14:35
�

�

�

�

�

�

5.1. BASIC DISJOINT PATH PROBLEM 69

Lines 3–6 of the input file in Listing 5.2 define the values of parameters
K, N , p, and q. Lines 8–44 define the link cost of (i, j). To handle the case
of two nodes with no link between them, the cost for (i, j) is set to a large
enough number that the pair will never be considered in forming the selected
paths. In this case, we set the cost to 10000.

After the program is run using ‘glpsol’, we find two disjoint routes of
1→ 4→ 3→ 6 and 1→ 2→ 5 → 6. The minimum value, which is the total
cost of the two paths, is 8.

5.1.2 Disjoint shortest pair algorithm

The MIN-SUM problem, finding a set of two disjoint paths from a source to
a destination node, can be solved by the disjoint shortest pair algorithm [1].
It is a more effective way of finding a solution, compared to solving an ILP
problem, presented in Section 5.1.1.

The procedure of the disjoint shortest pair algorithm is expressed as fol-
lows:

• Step 1: Find the first shortest path in a given network.

• Step 2: Reverse the directions of links on the first shortest path and
make these link costs negative.

• Step 3: Find the second shortest path in the modified network.

• Step 4: A duplicated link that is used in both first and second shortest
paths with different directions is deleted.

• Step 5: The remaining links on the first and second shortest paths form
two disjoint paths.

Figure 5.3 explains how the disjoint shortest pair algorithm finds two dis-
joint paths from node 1 to node 6 to minimize the total cost of the paths, step
by step. Figure 5.3(a) shows the network and link costs. In Step 1, the first
shortest path, 1 → 2 → 3 → 6, is found as shown in Figure 5.3(b). In Step
2, the directions of links on the found shortest path, which are (1, 2), (2, 3),
and (3, 6), are reversed, and these link costs are made negative. The modified
network is made as shown in Figure 5.3(c). In step 3, the second shortest
path, 1 → 4 → 3 → 2→ 5 → 6, is found for the modified network, as shown
in Figure 5.3(d). Note that, in the case, there is a link cost that has a negative
value; the Bellman-Ford algorithm, not Dijkstra’s algorithm, is used to find
the shortest path. In Step 4, as shown in Figure 5.3(e), a duplicated link that
is used in both the first and second shortest paths with different directions,
which is (2, 3), is deleted. In Step 5, as shown in Figure 5.3(f), the remaining
links on the first and second shortest paths form two disjoint paths, which are
1→ 4→ 3→ 6 and 1→ 2→ 5→ 6.
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Figure 5.3: Example of disjoint shortest path algorithm.

5.1.3 Suurballe’s algorithm

In the disjoint shortest pair algorithm, even when a network does not have any
negative link cost, the Bellman-Ford algorithm, not Dijkstra’s algorithm, must
be used, as negative link costs appear in the modified network. Suurballe’s
algorithm [2, 3] is also an algorithm that can solve the MIN-SUM problem
to find a set of two disjoint paths from a source to a destination node. In
Suurballe’s algorithm, as the modified network does not include any negative
link cost, the algorithm is able to use Dijkstra’s algorithm, which has lower
computation complexity than the Bellman-Ford algorithm.

The procedure of Suurballe’s algorithm is expressed as follows:

• Step 1: Find the shortest path tree and the first shortest path in a given
network.
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• Step 2: Using the shortest path tree and the first shortest path obtained
in Step 1, a modified network is constructed in the following way. The
link cost of (i, j) in the modified network, denoted as d′ij , is given by

d′ij = dij −D(j) +D(i), (5.2)

where dij is the link cost of (i, j) and D(i) is the total cost from the
source node to node i in the given network. In the modified network,
the directions of links on the first shortest path are reversed.

• Step 3: Find the second shortest path in the modified network.

• Step 4: A duplicated link that is used in both the first and second
shortest paths with different directions is deleted.

• Step 5: The remaining links on the first and second shortest paths form
two disjoint paths.

Consider that the given network has non-negative link costs. In Step 2,
if (i, j) is on the shortest path tree obtained in Step 1, d′ij = 0 by D(j) =
D(i) + dij . Otherwise, d′ij ≥ 0 as D(j) ≥ D(i) + dij . As a result, all link costs
in the modified network are non-negative.

Figure 5.4 explains how Suurballe’s algorithm finds two disjoint paths
from node 1 to node 6 to minimize the total cost of the paths, step by step.
Figure 5.4(a) shows the network and link costs. Step 1 finds the shortest path
tree from node 1 and the first shortest path, 1 → 2 → 3 → 6, as shown in
Figure 5.4(b). Step 2 modifies the network, as shown in Figure 5.4(c). The
directions of links on the found shortest path, which are (1, 2), (2, 3), and
(3, 6), are reversed, and the link cost of (i, j), d′ij , is given by Eq. (5.2). In
Step 3, the second shortest path, 1 → 4 → 3 → 2 → 5 → 6, is found for
the modified network, as shown in Figure 5.4(d). As the modified network
does not have any negative link cost, Dijkstra’s algorithm is used to find the
shortest path. In Step 4, as shown in Figure 5.4(e), the duplicated link that is
used in both first and second shortest paths with different directions, which
is (2, 3), is deleted. In Step 5, as shown in Figure 5.4(f), the remaining links
on the first and second shortest paths form two disjoint paths, which are
1→ 4→ 3→ 6 and 1→ 2→ 5→ 6.

5.2 Disjoint paths with shared risk link group

5.2.1 Shared risk link group (SRLG)

SRLG is defined as a group of links that are affected simultaneously when a
network failure occurs. In the network in Figure 5.5, S(i, j, g) indicates the
SRLG information, where S(i, j, g) = 1 or means that link (i,j) does or does
not belong to SRLG g, respectively; (5,7) and (3,7) belong to the same SRLG
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Figure 5.4: Example of Suurballe’s algorithm.

group 1. Figure 5.6 shows an SRLG example for (5,7) and (3,7). Both links
use the same optical fiber by using wavelengths λ1 and λ2, respectively. Nodes
3, 5, and 7 are routers, which are switch packets, and an optical crossconnect
that links these nodes, which are switch wavelength paths. If the optical fiber
between the crossconnect and node 7 is cut, (3,7) and (5,7) are disconnected
simultaneously as λ1 and λ2 are not available. Note that although (5, 6) and
(2, 6) belong to only SRLG 1 in Figure 5.6, a link may generally belong to
more than one SRLG. For example, a link could belong to two SRLGs when
one SRLG is a optical fiber and the other is a conduit.

Let us find two disjoint paths from node 1 to node 7 to minimize the total
cost of the paths. If we search for two disjoint paths without considering SRLG
by simply solving the MIN-SUM problem presented in Section 5.1, we obtain
the two paths of 1 → 2 → 3 → 7 and 1 → 4 → 5 → 7. However, using (3, 7)
and (5, 7) for different disjoint paths yields the risk of simultaneous failure,
as they both belong to SRLG 1. Therefore, if we consider SRLG, these paths
are not disjoint in terms of SRLG.
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Figure 5.5: Network model with SRLG. If (i, j) belongs to SRLG g, S(i, j, g) =
1, otherwise S(i, j, g) = 0.

5.2.2 Integer linear programming

Let us find K disjoint paths from a source to a destination to minimize the
total cost of the paths, considering SRLG so that at least one path is available
if a single network failure occurs. The network is represented by directed graph
G(V,E), where V is the set of vertices (nodes) and E is the set of links. A
link from node i to node j is expressed by (i, j) ∈ E. xk

ij is the portion of
the traffic on path k ∈ M from node p ∈ V to node q ∈ V routed through
(i, j) ∈ E, where xk

ij takes a binary value, 0 or 1, and M = {1, 2, · · · ,K}. If
path k is routed through (i, j), xk

ij = 1. Otherwise, xk
ij = 0. dij is the link cost

of (i, j).
The MIN-SUM problem to find a set of K disjoint paths from a source

to a destination node considering SRLG is formulated as the following ILP
problem.

Objective min
∑
k

∑
ij

dijx
k
ij (5.3a)

Constraints
∑

j:(i,j)∈E

xk
ij −

∑
j:(j,i)∈E

xk
ji = 1, ∀k ∈M, if i = p (5.3b)

∑
j:(i,j)∈E

xk
ij −

∑
j:(j,i)∈E

xk
ji = 0, ∀k ∈M, i(	= p, q) ∈ V

(5.3c)

xk
ij + xk′

ij ≤ 1, ∀k, k′ ∈M, (i, j) ∈ E (5.3d)
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Figure 5.6: Example of SRLG.

xk
ij + xk′

i′j′ + S(i, j, g) + S(i′, j′, g) ≤ 3,

∀k, k′, (k 	= k′) ∈M, (i, j), (i′, j′), ((i, j) 	= (i′, j′)) ∈ E

(5.3e)

xk
ij = {0, 1}, ∀k ∈M, (i, j) ∈ E (5.3f)

When SRLG is considered, Eq. (5.3e) is added to Eqs. (5.1b)–(5.1e) as a
constraint. In Eq. (5.3e), when (i, j) and (i′, j′), where (i, j) 	= (i′, j′), are
on paths k and k′, where k 	= k′, respectively, it cannot be allowed that
both S(i, j, g) = 1 and S(i′, j′, g) = 1. In other words, if xk

ij + xk′
i′j′ = 2,

S(i, j, g) + S(i′, j′, g) ≤ 2.
Eqs. (5.3b)–(5.3f) are separately written in the model file as shown in

Listing 5.3 and the input file that represents the network in Figure 5.5 as
shown in Listing 5.4.

Listing 5.3: Model file: djp-s-gen.mod

1 /* djp -s-gen.mod */
2
3 /* Given parameters */
4 param K integer , >0 ;
5 param N integer , >0 ;
6 param p integer , >0 ;
7 param q integer , >0 ;
8 param G integer , >0 ;
9
10 set V := 1..N ;
11 set E within {V,V} ;
12 set M := 1..K ;
13 set R := 1..G ;
14 set ER within {E,R} ;
15



�

�

“K15229” — 2012/7/18 — 14:35
�

�

�

�

�

�

5.2. DISJOINT PATHS WITH SHARED RISK LINK GROUP 75

16 param cost{E} ;
17 param S{ER} ;
18
19 /* Decision variables */
20 var x{E,M} binary ;
21
22 /* Objective function */
23 minimize PATH_COST: sum{k in M} sum{i in V} (sum{j in V}
24 (cost[i,j]*x[i,j,k])) ;
25
26 /* Constraints */
27 s.t. SOURCE{i in V, k in M: i = p && p != q}:
28 sum{j in V} (x[i,j,k]) - sum{j in V}(x[j,i,k]) = 1 ;
29 s.t. INTERNAL {i in V, k in M: i != p && i != q && p != q }:
30 sum{j in V} (x[i,j,k]) - sum{j in V}(x[j,i,k]) = 0 ;
31 s.t. DSJ{i in V, j in V, k1 in M, k2 in M: k2 !=k1}:
32 x[i,j,k1] + x[i,j,k2] <= 1 ;
33 s.t. SRLG_DSJ {(i1,j1) in E, (i2,j2) in E, g in R, k1 in M, k2 in M:
34 k2 != k1 && !(i1=i2 && j2=j2)}:
35 x[i1,j1,k1] + x[i2,j2 ,k2] + S[i1,j1,g] + S[i2,j2,g] <=3 ;
36 end ;

Lines 4–8, 16, and 18 of the model file in List 5.3 define the types of
parameters for the number of paths, K; the number of nodes, N ; source node,
p; destination node, q; the number of SRLGs, G; link costs, and SRLGs,
respectively.

Listing 5.4: Input file: djp-s-gen1.dat

1 /* djp -s-gen1.dat */
2
3 param K := 2 ;
4 param N := 7 ;
5 param p := 1 ;
6 param q := 7 ;
7 param G := 1 ;
8
9 param : E : cost :=

10 1 1 100000
11 1 2 1
12 1 3 100000
13 1 4 1.5
14 1 5 100000
15 1 6 100000
16 1 7 100000
17 2 1 100000
18 2 2 100000
19 2 3 1
20 2 4 100000
21 2 5 100000
22 2 6 1
23 2 7 100000
24 3 1 100000
25 3 2 100000
26 3 3 100000
27 3 4 100000
28 3 5 100000
29 3 6 100000
30 3 7 1
31 4 1 100000
32 4 2 100000
33 4 3 100000
34 4 4 100000
35 4 5 1
36 4 6 100000
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37 4 7 100000
38 5 1 100000
39 5 2 100000
40 5 3 100000
41 5 4 100000
42 5 5 100000
43 5 6 100000
44 5 7 1
45 6 1 100000
46 6 2 100000
47 6 3 100000
48 6 4 100000
49 6 5 100000
50 6 6 100000
51 6 7 1.5
52 7 1 100000
53 7 2 100000
54 7 3 100000
55 7 4 100000
56 7 5 100000
57 7 6 100000
58 7 7 100000
59 ;
60 param : ER : S :=
61 1 1 1 0
62 1 2 1 0
63 1 3 1 0
64 1 4 1 0
65 1 5 1 0
66 1 6 1 0
67 1 7 1 0
68 2 1 1 0
69 2 2 1 0
70 2 3 1 0
71 2 4 1 0
72 2 5 1 0
73 2 6 1 0
74 2 7 1 0
75 3 1 1 0
76 3 2 1 0
77 3 3 1 0
78 3 4 1 0
79 3 5 1 0
80 3 6 1 0
81 3 7 1 1
82 4 1 1 0
83 4 2 1 0
84 4 3 1 0
85 4 4 1 0
86 4 5 1 0
87 4 6 1 0
88 4 7 1 0
89 5 1 1 0
90 5 2 1 0
91 5 3 1 0
92 5 4 1 0
93 5 5 1 0
94 5 6 1 0
95 5 7 1 1
96 6 1 1 0
97 6 2 1 0
98 6 3 1 0
99 6 4 1 0

100 6 5 1 0
101 6 6 1 0
102 6 7 1 0
103 7 1 1 0



�

�

“K15229” — 2012/7/18 — 14:35
�

�

�

�

�

�

5.2. DISJOINT PATHS WITH SHARED RISK LINK GROUP 77

104 7 2 1 0
105 7 3 1 0
106 7 4 1 0
107 7 5 1 0
108 7 6 1 0
109 7 7 1 0
110 ;
111 end;

Lines 3–7 of the input file in Listing 5.4 define the values of parameters
K, N , p, q, and G. Lines 9–58 define the link cost of (i, j). To handle the case
of two nodes with no link between them, the cost for (i, j) is set to a large
enough number that the pair will never be considered in forming the selected
paths. In this case, we set the cost to 10000. Lines 60–109 define the SRLGs.
S(3, 7, 1) and S(5, 7, 1) are set to 1, and others are set to 0.

After the program is run using ‘glpsol’, we find two disjoint paths of
1 → 2 → 6 → 7 and 1 → 4 → 5 → 7, as shown in Figure 5.7. The minimum
value, which is the total costs of the two paths, is 7.

1.5

1 2 3 7

5

1 1 1
1 1 5

4

1

1
S(5, 7, 1)=1

S(3, 7, 1)=1

Cost

DestinationSource

6
1 1.5

Figure 5.7: Example of disjoint path solution considering SRLG.

5.2.3 Weight-SRLG algorithm

When network size becomes large, the complexity of the ILP computation
needed to tackle the MIN-SUM problem with SRLG presented in Section 5.2.2
increases and becomes difficult to solve. This section introduces a heuris-
tic algorithm to find disjoint paths with SRLG constraints. It is called the
weighted-SRLG algorithm (WSRLG) [4].

A k-shortest path algorithm is widely used to find disjoint paths because
of its simplicity [1, 5, 6]. Initially, the first path is searched for a given net-
work topology. Node disjoint paths are considered as disjoint paths in this
chapter. Next, the links and nodes used by the first path are deleted from the
given network topology. Note that deleting a node means that links that are
connected to it are also deleted. Then, the second shortest path is searched
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for in the modified network topology. In the same way, the k-shortest disjoint
path is searched for. Although the k-shortest path algorithm does not find the
maximum number of disjoint paths, Dunn et al. [7] showed that its results are
nearly equal to the max flow solution.

WSRLG treats the total number of SRLG members related to a link as
part of the link cost when the k-shortest path algorithm is executed. In WS-
RLG, a link that has many SRLG members is rarely selected as the shortest
path. Oki et al. observed that WSRLG finds more disjoint paths than the con-
ventional k-shortest path algorithm [4]. In addition, because WSRLG searches
for the weight of the SRLG factor using a modified binary search algorithm
while satisfying the required number of disjoint paths between source and
destination nodes, it can find cost-effective disjoint paths.

Let us define terminologies used in WSRLG. The network is represented
by directed graph G(V,E), where V is the set of vertexes (nodes) and E is the
set of links. A link from node i to node j is expressed by (i, j) ∈ E. dij is the
link cost of (i, j) in a given network. Ccomp(i, j) is the cost that is used in the
disjoint path computation. S(i, j, g) indicates the SRLG information, where
S(i, j, g) = 1 or means that link (i, j) does or does not belong to SRLG g,
respectively. α is a weight factor for SRLG. Dreq(p, q) is the required number
of disjoint paths from source node p to destination node q. Cpath(p, q) is the
sum of costs for all disjoint paths between nodes p and q.K(p, q) is the number
of obtained disjoint paths between nodes p and q. Ns is the number of SRLG
groups.

Ccomp(i, j) is defined by

Ccomp(i, j) =
1− α

dmax
ij

dij +
α

SRLGmax
max{SRLG(i, j), 1} (5.4)

SRLG(i, j) =

Ns∑
g

S(i, j, g) (5.5)

dmax
ij = max

i,j
dij (5.6)

and

SRLGmax = max
i,j

SRLG(i, j). (5.7)

Cpath(p, q) is expressed by

Cpath(p, q) =

K(p,q)∑
k=1

∑

(i,j)∈path k

dij , (5.8)

where path k is the kth shortest path found by the k-shortest path algorithm.
When SRLG(i, j) = 0, max{SRLG(i, j), 1} in the second term of Eq.( 5.4)

is set to 1 so that the hop count for the link can be considered. Therefore,
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the value of the second term in Eq.( 5.4) is affected by the hop count even
when (i, j) does not belong to any SRLG group, or SRLG(i, j) = 0. If (i, j)
does not belong to any SRLG, SRLG(i, j) = 0. SRLGmax determines the
sensitivity of α. The smaller the value of SRLGmax, the more sensitive to α
the value of Ccomp(i, j) is.

In WSRLG, α is set to an appropriate value using a modified version of
the well-known binary search method [8] so that Cpath(p, q) can be reduced as
much as possible under the condition that K(p, q) is equal to or larger than
Dreq(p, q).

Next, we explain why we modified the conventional binary search method.
In our estimate, K(p, q) and Cpath(p, q) mostly increase with α. However, this
estimate is not always true. K(p, q) and Cpath(p, q) does not always increase
monotonically with α. Therefore, the conventional binary search method may
miss an appropriate α that satisfies the required number of disjoint paths.
As a result, the α that is finally obtained by the conventional binary search
method does not satisfy the required number of disjoint paths. To avoid this
problem, the modified method searches for α while remembering the most
appropriate candidate in the regular binary search process.

The procedure of WSRLG is expressed below, step by step. As initial val-
ues, αmin = 0.0, αmax = 1.0, Ktemp =∞, and Ctemp =∞ are set. Here, ε is
used as a parameter to judge whether the modified binary search method con-
verges. It should be set considering the value of SRLGmax, which determines
the sensitivity of α.

Step 1: α =
αmin + αmax

2
.

Step 2: K(p, q) is calculated by the following k-shortest path algorithm
considering the SRLG constraints.

Step 3: If K(p, q) ≥ Dreq(p, q), then αmax = α is set. Otherwise, αmin =
α is set.

Step 4: If K(p, q) ≥ Dreq(p, q) and Cpath(p, q) < Ctemp, then αtemp = α,
Ktemp = K(p, q), and Ctemp = Cpath(p, q) are set.

Step 5: If αmax − αmin > ε, go to step 1. Otherwise, go to Step 6.

Step 6: IfKtemp ≥ Dreq(p, q), then α = αtemp. A set of disjoint paths ob-
tained with this α is considered a solution. Otherwise, no set of disjoint
paths that satisfies the required conditions is found.

The k-shortest path algorithm with SRLG is described below. First, we
set k = 1 as the initial value.

Step 1: The kth shortest path between source and destination nodes is
searched for based on link cost Ccomp(i, j). If the path is found, go to
Step 2. Otherwise, K(p, q) = k is set and the k-shortest algorithm is
ended.
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Step 2: Delete (i, j) and nodes that are on the kth shortest path. For all
gs, if S(i, j, g) = 1, all links (i′, j′) = 1, where S(i′, j′, g) = 1, are also
deleted.

Step 3: We set k = k + 1 and go to Step 2.

Consider WSRLG applied to the network model in Figure 5.5 to find two
disjoint paths from node 1 to node 7. Here, α is set to 1.0, as a special case.
WSRLG finds two disjoint paths of 1→ 2→ 6→ 7 and 1→ 4→ 5→ 7, which
is the same result as that using ILP, as shown in Figure 5.7. Ccomp(2, 6) and
Ccomp(5, 6) are twice as large as other Ccomp(i, j). The path of 1→ 2→ 6→ 7
is selected as the first shortest path first. Then, the path of 1 → 4 → 5 → 7
is found as the second shortest path. Therefore, WSRLG is able to find more
disjoint paths than the conventional k-shortest path algorithm.

5.3 Disjoint paths in multi-cost networks

5.3.1 Multi-cost networks

In the problems presented in Sections 5.1 and 5.2, the cost of each link is
considered to be the same for all k paths. Such a network is called a single-
cost network. On the other hand, the network in which each link can have a
different cost for k paths is called a multi-cost network. The applications of
such a network usually lie in the field of shared backup path protection [9,10].
In this case, the cost of a link for a backup path is often a fraction of that for
a working path. A backup path can share the bandwidth with other backup
paths, while a working path is unable to share the bandwidth with any other
path. As sharing the bandwidth leads to reduce the link cost, the link cost is
considered to depend on the level of sharing.

Examples of single-cost and multi-cost networks are shown in Figure 5.8,
where a number associated with each link indicates its cost. In a single-cost
network, one link cost is given for each link for all three disjoint paths in a
single-cost network. Each path cost is defined by the sum of the link costs
along the path in the network, as shown in Figure 5.8(a). In a multi-cost
network, a different link cost, which is associated with the kth path, is given
for each in a multi-cost network. The kth path cost is defined as the sum of
the link costs, which may be different from those for other different paths,
along the path in the network, as shown in Figure 5.8(b).

This section considers the MIN-SUM problem, which is a problem to find
disjoint paths to minimize the total cost of all paths, in a multi-cost network.
This section focuses on node disjoint paths. Node disjoint paths are simply
called disjoint paths in this section.
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Figure 5.8: Single-cost and multi-cost networks.

5.3.2 Integer linear programming problem

Consider the MIM-SUM problem in a multi-cost network to find a set of K
disjoint paths from a source to a destination node. The network is represented
by directed graph G(V,E), where V is the set of vertices (nodes) and E is the
set of edges (links). A link from node i to node j is expressed by (i, j) ∈ E.
xk
ij is the portion of the traffic on path k ∈ M from node p ∈ V to node

q ∈ V routed through (i, j) ∈ E, where xk
ij takes a binary value, 0 or 1, and

M = {1, 2, · · · ,K}. If path k is routed through (i, j), xk
ij = 1. Otherwise,

xk
ij = 0. dkij is the link cost of (i, j) on the kth path.
The MIN-SUM problem in a multi-cost network is formulated as an ILP

problem in the following:

Objective min
∑
k∈M

∑
(i,j)∈E

dkijx
k
ij (5.9a)

Constraints
∑

j:(i,j)∈E

xk
ij −

∑
j:(j,i)∈E

xk
ji = 1, ∀k ∈M, if i = p, (5.9b)

∑
j:(i,j)∈E

xk
ij −

∑
j:(j,i)∈E

xk
ji = 0, ∀k, i(	= p, q) ∈ V (5.9c)
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x1
ij1 + · · ·+ xK

ijK ≤ 1, ∀i(	= p), j1, · · · , jK ∈ V (5.9d)

x1
j1i + · · ·+ xK

jK i ≤ 1, ∀i(	= q), j1, · · · , jK ∈ V (5.9e)

xk
ij = {0, 1}, ∀k ∈M, (i, j) ∈ E (5.9f)

Eq. (5.9a) is the objective function that minimizes the total costs of K paths
in the multi-cost network. Eqs. (5.9b)–(5.9c) maintain flow conservation. To
ensure that the paths of each connection do not traverse the common transit
nodes, the node disjoint constraints are needed, as shown in Eqs. (5.9d) and
(5.9e) Eq. (5.9e) is the binary constraint for the ILP formulation.

As is the same with other ILP problems, when a network size becomes
large, the computation complexity of ILP increases and it becomes difficult
to solve it [11]. The following subsection introduces two heuristic algorithms,
which are called k-penalty with auxiliary link costs matrix (KPA) [12] and
k-penalty with initial link costs matrix (KPI) [13, 14].

5.3.3 KPA: k-penalty with auxiliary link costs matrix

J. Rak presented the KPA algorithm to find k-disjoint paths in a multi-cost
network in [12]. KPA finds the shortest path as the first path. The links on the
shortest path and those connected to the transit nodes on this path are con-
sidered as forbidden links for the next disjoint path to be found. Although the
k-shortest path algorithm, which is applied to a single-cost network, assigns
the forbidden links infinitely high cost [1,5,6], KPA gives them finite costs to
avoid the trap problem [12]. That is, the next path must pay a penalty for
using a forbidden link. Forbidden link cost is increased by the path cost of the
previously found path. Link costs are incrementally updated and kept in an
auxiliary link cost matrix. If any conflict (i.e. the current path is not disjoint
with all previously found paths) occurs, all found paths are deleted. Before
starting the process of finding k disjoint paths again, the costs of conflicting
links are incrementally increased by the cost of the last found path in the
previous iteration. The path cost is computed using the auxiliary link cost
matrix.

5.3.3.1 Terminology

The terminology in this section is shown in the following.
dr Demand to find a set of end-to-end k disjoint paths between a

pair of nodes (sr, tr)
sr Source node of demand dr
tr Destination node of demand dr
imax Maximum allowable number of conflicts
p Index of path 1, · · · , k
ηp pth path
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ah hth link, where h = 1, 2, . . .
ξh Cost of each link ah
ξph Cost of link ah of the pth path
ξp Cost of pth path that is a sum of ξph over traversed ah
ξauxh Auxiliary cost of link ah
ξaux,ph Auxiliary cost of link ah of the pth path
Ξp Initial matrix of link cost ξph
Ξaux Auxiliary matrix of link cost ξauxh

Ξaux,p Auxiliary matrix of link cost ξaux,ph

ic Conflict counter

5.3.3.2 Description

The procedure of KPA is presented in the following:
INPUT: Demand dr to find the set of k-disjoint paths between a pair of

nodes(sr, tr).
The initial link costs matrices Ξ1,Ξ2, ...,Ξk (one matrix for each
path) of a demand.
The maximum allowable number of conflicts, imax.

OUTPUT: The set of k-disjoint paths η1, η2, ..., ηk — all between a given pair
of demand source and destination nodes (sr, tr).
The total path cost of k-disjoint paths is

ξtotal =

k∑
p=1

∑
ah on path ηp

ξph. (5.10)

Step 1: Set ic = 1 and Ξaux,p = Ξp for p = 1, · · · , k.
Step 2: Set j = 1.
Step 3: Set Ξaux = Ξaux,j .
Step 4: Consider each path ηi from the set of previously found j−1 paths

and for each link ah, if ah is a forbidden link of the path ηi, then
increase the link cost ξauxh by path cost ξaux,i of ηi on the network
with costs matrix Ξaux,i. That is,

ξauxh = ξauxh + ξaux,i. (5.11)

The path cost is defined by

ξaux,i =
∑

ah on path ηi

ξaux,ih for i = 1, ..., j − 1. (5.12)
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Step 5: Find the shortest path ηj on the network with costs matrix Ξaux.
Step 6: If ηj is disjoint with the previously found j − 1 paths,

then set j = j + 1 and go to Step 7.
else

6a) Increase the costs ξaux,1h , · · · , ξaux,kh of each conflicting link ah
of ηj by path cost ξaux of ηj on the network with cost matrix
Ξaux. That is,

ξaux,ph = ξaux,ph + ξaux when p = 1, · · · , k, (5.13)

where path cost ξaux is defined by

ξaux =
∑

ah on path ηj

ξauxh , (5.14)

then delete the found paths and set ic = ic + 1.
6b) If ic > imax, then terminate and reject the demand, else go
to Step 2.

Step 7: If j > k, then terminate and return the found set of paths, else
go to Step 3.

Demand dr to find k disjoint paths from source node sr to destination node
tr, the link cost matrices for each disjoint path, and the maximum allowable
number of conflicts, imax, are initially given. KPA outputs the set of k disjoint
paths and the total costs of the k disjoint paths. KPA uses the shortest-path-
based algorithm. At Step 1, the conflict counter, ic, is set to 1 and the initial
cost matrix of the pth path, Ξp, is copied to the auxiliary cost matrix of the
pth path, Ξaux,p, for all paths, p = 1, . . . , k. Ξp is kept to compute the total
path cost using Eq. (5.10) after finding k disjoint paths. At Step 2, set j = 1
to find the first path. In Step 3, Ξaux,p is copied to Ξaux

h . Step 4 is skipped if
j = 1. To find the next paths ηj (j 	= 1), path ηj has to pay a penalty for using
one of the forbidden links, that is, links traversed by previously found paths
ηi (link disjoint), or links corrected to transit nodes used by previously found
paths (node disjoint). The cost of the forbidden links is increased by the costs
of all j − 1 previously found paths at Step 4. At Step 5, ηj is found as the
shortest path on the network with auxiliary cost matrix Ξaux. At Step 6, if ηj
is disjoint with the (j − 1) previously found paths, the index number of path
j is increased by one and the process goes to Step 7 to check if the required
number of k disjoint paths has been obtained. The process terminates if the
number of found disjoint paths has reached the required number, k. Otherwise,
the process will find the next path by reentering Step 3. If ηj is not disjoint
(link or node) with the (j−1) previously found paths, a conflict is called, and

the costs ξaux,1h , . . . , ξaux,kh of each conflicting link ah, the link shared between
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the previously found j − 1 paths and path ηj , or the link connected to the
node shared between previously found j−1 paths and path ηj , is increased by
the path cost ξaux of ηj , which is computed from auxiliary costs matrix Ξaux

(Step 6a) as shown in Eq. (5.13). After increasing each conflicting link ah, all
found paths are deleted and conflict counter, ic, is increased by one. If ic is
greater than the maximum allowable number of conflicts, imax, the process is
terminated. If ic is less than imax, the process reenters Step 2.

5.3.3.3 Example of KPA

KPA is demonstrated with an example in Figure 5.9. The example shows
how to find the k disjoint paths in a multi-cost network with k = 3 for the
demand between node 1 to 7. Figures 5.9(a1), (a2), and (a3) illustrate multi-
cost network that has three sets of link costs; one for the first path, ξ1h; the
second path: ξ2h; and the third path: ξ3h. KPA starts by setting the auxiliary
cost matrix as Ξaux,p = Ξp for p = 1, 2, 3 and ic = 1. KPA then considers at
the first path j = 1 and sets the auxiliary cost matrix Ξaux = Ξaux,j . The first
path η1 (1-4-7) is found as the shortest path, shown as Figure 5.9(b1). The
costs, ξaux,1h , for links incident to transit nodes of path η1 of the set of link

costs ξaux,2h are increased by path cost ξaux,1 of path η1, which is equal to 14
in the example, as shown in Figure 5.9(b2). Then, path η2 (1-3-5-7) is found.
To find the third path, the costs of forbidden links of paths η1 and η2 on the
network are increased by path cost ξaux,1 of path η1 and path cost ξaux,2 of
path η2. However, η3 (1-4-7), which is not disjoint with η1, is found, as shown
in Figure 5.9(b3). Costs ξaux,ph of links incident to node 4 on η3 for all paths,
p = 1, .., k, are increased by path cost ξaux, as shown in Eq. (5.13). The path
cost ξaux is defined by Eq. (5.14), which is equal to 36 in the example, as
shown in Figure 5.9(c1). Next, all found paths are deleted and ic is increased
by one. KPA starts finding k disjoint paths from the beginning again, as shown
in Figure 5.9(c1). However, KPA takes time to find the required set of k node-
disjoint paths because it avoids the paths with high cost, and this situation
leads to overlap with used paths, as shown in Figures 5.9(d3), (e3), (f3), (g3)
and (h3). Finally, KPA finds a set of k = 3 node-disjoint paths, which are η1
(1-3-6-7), η2 (1-2-5-7), and η3 (1-4-7), at ic = 8, as shown in Figure 5.9(i3).

Leepila et al. found that KPA sometimes fails with a large number of iter-
ations, even though disjoint paths actually exist [13,14]. With every iteration,
or conflict, the link costs in the auxiliary link cost matrix are increased. In
order to avoid traversing link with large costs, the algorithm may find a path
that overlaps already used paths, including forbidden links from the previous
paths. This path overlapping causes the deletion of found paths and restarts
the process. It takes time to find k disjoint paths or sometimes they cannot
be found at all. This problem must be solved to find k disjoint paths in an
efficient manner.
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Figure 5.9: Example of KPA for multi-cost network; demand dr = (1, 7) and
k = 3. ( c©2011 IEEE, Ref. [13].)
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5.3.4 KPI: k-penalty with initial link costs matrix

Leepila et al. presented the KPI algorithm to solve the problem of KPA
in [13, 14] by extending KPA. KPI uses the same penalty process as KPA,
but only the policy of updating ξaux,ph is different from KPA (Step 6a). KPI

increases the costs ξaux,1h , . . . , ξaux,kh of each conflicting link ah of ηj by path
cost ξj of ηj using initial costs matrix Ξj . Step 6a of KPI is as follows:

6a) Increase the cost ξaux,1h , . . . , ξaux,kh of each conflicting link ah of ηj by
path cost ξj of ηj on the network with cost matrix Ξj . That is,

ξaux,ph = ξaux,ph + ξj , when p = 1, . . . , k, (5.15)

where path cost ξj is defined by

ξj =
∑

ah on path ηj

ξjh (5.16)

and then delete the found paths and set ic = ic + 1.

5.3.4.1 Example of KPI

We reuse the example in demonstrating KPI; see Figure 5.10. The algorithm
starts finding the first path η1 (1-4-7) using the shortest-path-based algorithm,
Figure 5.10(b1). Before finding path η2, the cost ξauxh of links incident to
transit nodes of path η1 are increased by the total cost ξaux,1 of path η1,
which is equal to 14 in the example, Figure 5.10(b2). After that path η2 (1-3-
5-7) is found. The cost, ξauxh , of links incident to transit nodes of paths η1 and
η2 are increased by path cost ξaux,1 of path η1 and path cost ξaux,2 of path
η2, respectively. However, η3 (1-4-7), which is not disjoint with η1 and has
a common transit node, node 4, is found as shown in Figure 5.10(b3). Cost
ξaux,ph of links incident to node 4 for all paths, p = 1, ..., k, are increased by
path cost ξ3 computed from the initial link costs of η3 defined by Eq. (5.16),
which is equal to 8 in Figure 5.10(c1). Next, all the found paths are deleted and
ic is increased by one. The algorithm starts from the beginning, as shown in
Figure 5.10(c1). Finally, KPI finds a set of k = 3 node-disjoint paths, which
are η1 (1-2-5-7), η2 (1-4-7), and η3 (1-3-6-7), as shown in Figure 5.10(d3).
Because KPI is more careful in increasing the costs of conflicting links, it can
find a set of k = 3 node-disjoint paths at the conflict counter ic value of 3
in the same way as KPA. This example shows that KPI can find a set of k
node-disjoint paths faster than KPA.

5.3.5 Performance comparison of KPA and KPI

We compare the KPI performance to that of KPA using computer simulations
of the U.S. long-distance network and the Italian network; see Figure 5.11 [12].
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Figure 5.10: Example of KPI for multi-cost network; demand dr = (1, 7) and
k = 3. ( c©2011 IEEE, Ref. [13].)
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The required number of disjoint paths was set to k = 3. Therefore, additional
links, shown as dashed lines in both networks, were needed to keep the degree
of each node greater than or equal to 3. The link cost matrices of the multi-
cost networks were set to 3 for k = 3. One hundred link cost matrices for each
corresponding disjoint path were generated uniformly in a random manner
in the range of 0 < ξh ≤ 1, where ξh is the cost of link ah. For both KPI
and KPA, we examined the average probability that k disjoint paths were
successfully found within a specified maximum allowable number of conflicts,
imax, over all source and destination node pairs for all generated cost matrices.
The probability is defined as the success ratio of finding k disjoint paths.

Figures 5.12(a) and (b) show that KPI finds k disjoint paths faster than
the KPI for both Italian network and U.S. long-distance network. Regardless
of imax, KPI has a higher success ratio than KPA. In addition, KPI yields
success ratios of more than 99% with imax = 10 for both networks, while KPA
does not reach 99% when imax becomes large. In KPA, the conflict path cost
defined in Eq. (5.14) is set at too large a value, the conflicting links are always
avoided. On the other hand, as KPI defines the conflict path cost according
to Eq. (5.16), the conflicting links are appropriately utilized.

The total cost of k disjoint paths, which is defined in Eq. (5.10), is lower
with KPI than with KPA. Figure 5.13 compares the normalized total costs
of k disjoint paths, normalized by the total path cost of k disjoint paths by
Bhandari’s algorithm. We used Bhandari’s algorithm, which is an algorithm
for finding k disjoint paths in single-cost network, to find k disjoint paths
using only the link cost matrix for the first path. After k disjoint paths are
found by Bhandari’s algorithm, the total path cost in a multi-cost network
is calculated using Eq. (5.10) with three link costs matrices. The normalized
costs for Bhandari’s, KPA, and KPI are taken as average values over all source
and destination node pairs for all generated cost matrices. The results indicate
that KPI yields lower total path cost of than KPA or Bhandari’s algorithm
for both Italian and U.S. long-distance multi-cost network, as shown in Fig-
ure 5.13. Bhandari’s algorithm yields the highest path cost among the three
algorithm, as it considers only the link cost matrix for the first path to find k
disjoint paths. Because, in KPI, the conflicting path cost is suitably estimated
and the conflicting links are appropriately utilized, it returns the lowest total
path costs.

Exercise 5.1

Find two disjoint paths from node 1 to node 12 to minimize the total costs
of the paths in the network in Figure 5.14.
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work and (b) Italian network. ( c©2011 IEEE, Ref. [13].)
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rithms. ( c©2011 IEEE, Ref. [13].)

1 2 3 4 5 6 7 12

8

9 11

10
3

Cost

1

1111111

2 1

3 1 2 1

Figure 5.14: Network for disjoint path problem.
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Chapter 6

Optical wavelength-routed
network

Wavelength division multiplexing (WDM) is a technology to increase the
transmission capacity in an optical fiber, where multiple wavelengths carry
data simultaneously. In addition to the effect of increasing the transmission
capacity, WDM is also useful for wavelength-based switching, which enables
us to set an optical path, which is routed on several fibers by connecting
each wavelength per fiber through optical crossconnect(s). A network that
is formed by several optical paths is called an optical path network, where
each wavelength is related to a different optical path destination. Different
paths accommodated in each fiber must use different wavelengths. This raises
the problem of how to assign wavelengths to the paths while minimizing the
number of wavelengths required. The problem is called a wavelength assign-
ment problem. This chapter introduces wavelength assignment problems in
an optical wavelength-routed network.

6.1 Wavelength assignment problem

In an Internet Protocol (IP) network, a router receives a packet, analyzes
the destination address of the packet header electrically, and transmits it
to the next hop. In an optical path network, an optical path transits several
optical crossconnects, each of which switches the optical signal carried on each
wavelength to the intended direction. Switching in an optical crossconnect can
be performed without electrical processing.

An example of an optical network is shown in Figure 6.1. Two optical paths
are established. One is routed on A → X → y → D with wavelength λ1; the
other is routed on B → X → y → C with wavelength λ2. Crossconnect X
receives optical signals from different fibers and injects them into one fiber
with different wavelengths. Crossconnect Y receives one optical signal with
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different wavelengths in the fiber and injects them into two fibers, where each
intended direction is determined using wavelength information.

Optical fiber

Optical crossconnect X
A

B

Optic
D

C

Optical crossconnect Y

Figure 6.1: Optical path network.

If optical paths are to be established, we need to consider the problem
of how to assign a wavelength to each optical path. This problem is called
the wavelength assignment problem. Assume that the routes of these optical
paths are already determined. In this problem, different optical paths passing
through the same fiber must use different wavelengths. To deploy network
systems in an optical path network, it is desirable to minimize the number
of wavelengths used in the network. Therefore, in the wavelength assignment
problem, we consider the objective function of minimizing the number of wave-
lengths.

Let us consider a network with five optical path requests, as shown in
Figure 6.2. Figure 6.3 shows an example, where wavelengths are assigned
sequentially in increasing order of the path indices. First, λ1 is assigned to
optical path 1. Next, consider the assignment of a wavelength to optical path
2. As optical path 2 shares optical fiber with optical path 1, λ2, which is a
different wavelength from that of optical path 1, is assigned to optical path
2. Third, consider wavelength assignment for optical path 3. As optical path
3 shares optical fiber with optical paths 1 and 2, λ3, which is a different
wavelength from those of optical paths 1 and 2, is assigned to optical path 3.
Fourth, consider wavelength assignment for optical path 4. As optical path 4
shares optical fiber with optical path 3, but does not share any optical fiber
with optical paths 1 and 2, λ1, which has the smallest available label index, is
assigned to optical path 4. Fifth, consider wavelength assignment for optical
path 5. As optical 5 shares optical fiber with optical paths 2, 3, and 4, λ2,
λ3, and λ1, are not available for optical path 5. Therefore, λ4 is assigned to
optical path 5. As a result, the required number of wavelengths is 4, as shown
in Figure 6.3.

Figure 6.4 shows another example, where wavelengths are assigned sequen-
tially in decreasing order of the number of other optical paths with which the
optical path shares the same optical fiber(s). Optical path 3 shares optical
fibers with four optical paths, optical paths 2 and 5 share optical fibers with
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three optical paths, and optical paths 1 and 4 share optical fibers with two
optical paths. Therefore, wavelengths are assigned sequentially in the order of
paths 3, 2, 5, 1, and 4. First, λ1 is assigned to optical path 3. Second, consider
wavelength assignment for optical path 2. As optical path 2 shares optical
fiber as optical path 3, λ2 is assigned to optical path 2. Third, consider wave-
length assignment for optical path 5. As optical path 5 shares optical fiber
with optical paths 2 and 3, λ1 is assigned to optical path 5. Fourth, consider
wavelength assignment for optical path 1. As optical path 1 shares optical fiber
with optical paths 2 and 3, but does not share any optical fiber with optical
path 5, λ3 is assigned to optical path 5. Fifth, consider to assign a wavelength
to optical path 4. As optical path 4 shares optical fiber with optical paths 3
and 5, but not with optical paths 1 and 2, λ2 is assigned to optical path 4.
As a result, the required number of wavelengths is 3, as shown in Figure 6.4.

Thus, the required number of wavelengths depends on the order of paths
to which wavelengths are assigned. It is necessary to solve an optimization
problem to minimize the required number of wavelengths to be assigned in an
optical path network.

1 2 3 4 5

Path #3

Path #2

Path #1

Path #5

Path #4

Optical crossconnect

Optical fiber

Figure 6.2: Example of optical path requests.

1 2 3 4 5

Path 3
Path 2

Path 1

Path 5

Path 4

Optical crossconnect
Optical fiber

Figure 6.3: Wavelength assignment of optical paths (example 1).
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1 2 3 4 5

Path 3
Path 2

Path 1

Path 5

Path 4

Figure 6.4: Wavelength assignment of optical paths (example 2).

6.2 Graph coloring problem

The wavelength assignment problem can be dealt with as a graph coloring
problem [1–3]. In the wavelength assignment problem, optical path requests
and their routes are given. Each requested optical path corresponds to a ver-
tex in the graph in the graph coloring problem. If two optical paths share
an optical fiber, an edge is established between the two corresponding nodes.
Otherwise, no edge is established between them. When two vertices are con-
nected by an edge, they are adjacent. A wavelength corresponds to a color in
the graph. The graph coloring problem assigns a color to each node while sat-
isfying the constraint that the same color is not assigned to adjacent vertices.

An algorithm to construct the above graph is as follows:

Step 1: Initialize
Initialize the set of vertices V and the set of edges E.
V ← {∅}, E ← {∅}.
Step 2: Vertex generation
Generate vertex v, which corresponds to each optical path, and then
add v to V . This procedure is applied to all optical paths.

Step 3: Edge establishment—
Establish edge (v, w) between v ∈ V and w ∈ V if the two optical paths
corresponding to vertices v and w pass through the same optical fiber.

For the optical path requested in Figure 6.2, the corresponding graph for
the graph coloring problem is shown in Figure 6.5. Vertex vi corresponds to
optical path i. If optical paths i and j share the same optical fiber, edge (vi, vj)
is established between vi and vj . If (vi, vj) exists, the same color cannot be
assigned to both vertices.

6.3 Integer linear programming

To formulate the graph coloring problem as an ILP problem, the following
terminologies are defined. Let W be a set of λ, where W = {λ1, λ2, · · · , λ|W |}.
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v1

v2v3v4

v5

Figure 6.5: Graph construction.

Let xλ
v and yλ, be binary variables. If λ is assigned to a path corresponding

v, xλ
v = 1, otherwise xλ

v = 0. If λ is used at least one time, yλ = 1; otherwise
yλ = 0.

The graph coloring problem is formulated as an ILP problem as follows:

Objective min
∑
λ∈W

yλ (6.1a)

Constraints
∑
λ∈W

xλ
v = 1 ∀v ∈ V (6.1b)

xλ
v + xλ

v′ ≤ yλ ∀(v, v′) ∈ E, ∀λ ∈W (6.1c)

yλi ≥ yλi+1(i = 1, 2, · · · , |W | − 1) (6.1d)

yλ ∈ {0, 1} ∀λ ∈W (6.1e)

xλ
v ∈ {0, 1} ∀v ∈ V, ∀λ ∈ W (6.1f)

Eq. (6.1a) expresses the objective function that minimizes the required
number of wavelengths, or colors. Eq. (6.1b) indicates that each optical path
uses only one wavelength. Eq. (6.1c) ensures that two adjacent vertices must
receive different colors. In other words, this constraint prevents two optical
paths sharing the same link from being assigned the same wavelength. In
addition, Eq. (6.1c) also indicates that xλ

v must not exceed yλ for all v ∈ V .
This means that if v ∈ V such as xλ

v = 1 exists, yλ must be set to 1. Eq. (6.1d)
states that wavelengths are used in ascending order of wavelength index i ∈ W .
The last two constraints are binary constraints on variable xλ

v and yλ.
Eqs. (6.1a)–(6.1f) are separately written in the model file as shown in List-

ing 6.1 and the input file that represents the wavelength assignment problem
in Figure 6.2 as shown in Listing 6.2. Figure 6.5 show a corresponding graph
to the wavelength assignment problem.

Listing 6.1: Model file: graph-color-gen.mod

1 /* graph -color -gen.mod */
2
3 /* Given parameters */
4 param N integer , >0 ;



�

�

“K15229” — 2012/7/18 — 14:35
�

�

�

�

�

�

98 Linear Programming and Algorithms for Communication Networks

5
6 set V := 1..N ;
7 set E within {V,V} ;
8 set W := 1..N ;
9 set W1 := 1..N-1 ;
10
11 param AM{E} ;
12
13 /* Decision variables */
14 var y{W} binary ;
15 var x{V,W} binary ;
16
17 /* Objective function */
18 minimize NUM_COLOR: sum{i in W} y[i] ;
19
20
21 /* Constraints */
22 s.t. X{v in V}:
23 sum{i in W} x[v,i]= 1 ;
24 s.t. XX{v1 in V, v2 in V, i in W: AM[v1,v2]=1}:
25 x[v1,i]+x[v2,i] <= y[i] ;
26 s.t. YY{i in W1}:
27 y[i] >= y [i+1] ;
28 end ;

In Listing 6.1, line 3 defines the type of parameter N , which indicates the
number of possible wavelengths, |W |. Line 11 defines the type of parameter
AM, which indicates an adjacency matrix. Its element is set to 1 if an edge
exists in the graph, otherwise 0.

Listing 6.2: Input file: graph-color-gen1.dat

1 /* graph -color -gen1.dat */
2
3 param N := 5 ;
4
5 param : E : AM :=
6 1 1 0
7 1 2 1
8 1 3 1
9 1 4 0
10 1 5 0
11 2 1 1
12 2 2 0
13 2 3 1
14 2 4 0
15 2 5 1
16 3 1 1
17 3 2 1
18 3 3 0
19 3 4 1
20 3 5 1
21 4 1 0
22 4 2 0
23 4 3 1
24 4 4 0
25 4 5 1
26 5 1 0
27 5 2 1
28 5 3 1
29 5 4 1
30 5 5 0
31 ;
32 end;
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Lines 3–30 of the input file in Listing 6.2 define the values of parameters N
and AM . Line 3 sets N = 5. Lines 5–30 set the adjacency matrix representing
Figure 6.5.

After the program is run using ‘glpsol’, v1, v2, v3, v4, and v5 receive λ1,
λ2, λ3, λ2, and λ1, respectively. The minimum value, which is the required
number of wavelength, is 3.

6.4 Largest degree first

When the network size becomes large, the complexity of the ILP computa-
tions presented in Section 6.3 increases and it becomes difficult to solve it
in a practical time. Section 6.4 introduces a heuristic algorithm to solve the
problem. It is called the largest degree first (LDF) algorithm.

LDF [4] attempts to color in descending order of degree, where degree is
the number of edges connected to the node. LDF works in the following way:

Step 1: Select the uncolored vertex with largest degree.

Step 2: Choose the minimum indexed color from the colors that are not
used by the adjacent vertices.

Step 3: Color the selected vertex using the color chosen in Step 2.

Step 4: If all vertices are colored, LDF stops. Otherwise, LDF returns
to Step 1.

LDF is a sequential coloring heuristic that attempts to color vertices on the
basis of specified order by using the minimum indexed color that is not used
by the adjacent vertices. In sequential coloring, if a vertex receives a particular
color once, its color remains unchanged thereafter.

Figure 6.6 explains how LDF assigns colors to each vertex, as shown in
Figure 6.5, step by step. In the LDF process, vertices are ordered as v3, v2, v5,
v1, v4, in descending order of degree. Note that, in case of tie-breaking on the
degree, we order them randomly. First, LDF first selects v3 with the largest
degree. LDF colors v3 using the minimum indexed wavelength λ1 among un-
used wavelengths, as shown in Figure 6.6(a). Second, LDF selects v2 with the
second largest degree. λ1 is not available because adjacent vertex v3 uses λ1.
Therefore, LDF chooses λ2, which is the minimum indexed color from the
colors that are not used by the adjacent vertices, as shown in Figure 6.6(b).
Third, LDF selects v5 with the third largest degree. λ1 and λ2 are not avail-
able because adjacent vertices v3 and v2 use λ1 and λ2, respectively. LDF
chooses λ3, as shown in Figure 6.6(c). Fourth, LDF selects v1 with the fourth
largest degree. λ1 and λ2 are not available because adjacent vertices v3 and v2
use λ1 and λ2, respectively. LDF chooses λ3, as shown in Figure 6.6(d). Fifth,
LDF selects v4. λ1 and λ3 are not available because adjacent vertices v3 and
v5 use λ1 and λ3, respectively. LDF chooses λ2, as shown in Figure 6.6(e).
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Figure 6.6: Wavelength assignment process of LDF.

After assigning colors to all vertices, the number of colors, or wavelengths, is
3.

Exercise 6.1

Assign wavelengths for five optical path requests in the network in Fig-
ure 6.7.
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Chapter 7

Routing and
traffic-demand model

Adopting suitable routing can increase the network resource utilization rate
and network throughput. Because traffic resources are assigned efficiently,
additional traffic can be supported. It also suppresses network congestion and
increases robustness in the face of traffic demand fluctuations, most of which
are difficult to predict. A traffic demand is defined as the traffic volume that
a source node requests to send a destination node. One useful approach to
enhancing routing performance is to minimize the maximum link utilization
rate, also called the network congestion ratio, of all network links. Minimizing
the network congestion ratio leads to an increase in admissible traffic.

This chapter deals with routing problems to minimize the network conges-
tion ratio for several traffic demand models. In general, the more accurately
the traffic demand is known, the smaller the network congestion ratio becomes.

7.1 Network model

The network is represented as directed graph G(V,E), where V is the set of
vertices (nodes) and E is the set of links. Let Q ⊆ V be the set of edges nodes
through which traffic is admitted into the network. A link from node i ∈ V to
node j ∈ V is denoted as (i, j) ∈ E. cij is the capacity of (i, j) ∈ E. yij is the
link load of (i, j) ∈ E. The traffic demand from node p to node q is denoted as
tpq. The traffic matrix is denoted as T = {tpq}. xpq

ij , where 0 ≤ xpq
ij ≤ 1 is the

portion of the traffic from node p ∈ Q to node q ∈ Q routed through (i, j) ∈ E.
X is represented as a four-dimensional routing matrix whose element is xpq

ij ,
or X = {xpq

ij }, where 0 ≤ xpq
ij ≤ 1. {X} is a set of X. xpq

ij > 0 means (i, j) is
a link on one of the routes for tpq. x

pq
ij = 0 means that (i, j) is not a link on

any route for tpq. In the case of 0 < xpq
ij < 1, tpq is split over multiple routes.

The network congestion ratio r refers to the maximum value of all link

103
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utilization rates in the network [1]; r is defined by

r = max
(i,j)∈E

{yij
cij
}, (7.1)

where 0 ≤ r ≤ 1. The traffic volume of 1−r
r tpq is the greatest that can be

added to the existing traffic volume of tpq for any pair of source node p and
destination node q so that the traffic volume passing though any (i, j) does
not exceed cij under the condition that routing is not changed. After 1−r

r tpq is
added to tpq, the total traffic volume becomes 1

r tpq and the updated network
congestion becomes 1, which is the upper limit. Maximizing the additional
traffic volume of 1−r

r tpq is equivalent to minimizing r. Thus, minimizing r
with routing control is the target in this chapter.

7.2 Pipe model

The traffic model that is specified by the exact traffic matrix, T = {tpq}, is
called the pipe model [2–4].

An optimal routing formulation with the pipe model to minimize the net-
work congestion ratio was presented in [5]. The network congestion ratio is
obtained by solving an LP problem as follows:

min r (7.2a)

s.t.
∑

j:(i,j)∈E

xpq
ij −

∑
j:(j,i)∈E

xpq
ji = 1,

∀p, q ∈ Q, if i = p (7.2b)∑
j:(i,j)∈E

xpq
ij −

∑
j:(j,i)∈E

xpq
ji = 0,

∀p, q ∈ Q, i(	= p, q) ∈ V (7.2c)∑
p,q∈Q

tpqx
pq
ij ≤ cij · r, ∀(i, j) ∈ E (7.2d)

0 ≤ xpq
ij ≤ 1, ∀p, q ∈ Q, (i, j) ∈ E (7.2e)

0 ≤ r ≤ 1. (7.2f)

The decision variables are r and xpq
ij , and the given parameters are tpq and

cij . The objective function in Eq. (7.2a) minimizes the network congestion
ratio. Eqs. (7.2b) and (7.2c) are constraints for flow conservation. Eq. (7.2b)
states that the total traffic flow ratio outgoing from node i(= p), which is
a source node, is 1. Eq. (7.2c) states that the traffic flow incoming to node
i must be the traffic outgoing from node i if node i is neither a source nor
destination node for the flow. As flow conservation is satisfied at a destina-
tion if Eqs. (7.2b) and (7.2c) are satisfied, the condition does not need to be
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included as a constraint. Eq. (7.2d) indicates that the sum of the fractions
of traffic demands transmitted over (i, j) is equal to or less than the network
congestion ratio times the total capacity cij for all links.

The pipe model imposes the condition that tpq is exactly known. However,
it is difficult for network operators to know the actual traffic matrix when the
network size is large [6–9]. For example, in Internet Protocol (IP) networks,
to measure tpq at source node p, the node checks all the destination addresses
in each IP packet header and counts the number of packets destined for node
q. It makes the processing load of node p increase.

7.3 Hose model

It is easy for network operators to specify the traffic as just the total out-
going/incoming traffic from/to node p and node q, The total outgoing traffic
from node p is represented as

∑
q tpq ≤ αp, where αp is the maximum rate

of traffic that node p can send into the network. The total incoming traffic
to node q is represented as

∑
p tpq ≤ βq, where βq is the maximum rate of

traffic that node q can receive from the network. The traffic model that is
bounded by αp and βq is called the hose model [2–4]. In the hose model, the
traffic demand between each source-destination pair does not need to be spec-
ified. Therefore, it is beneficial for network operators to specify a set of traffic
conditions in the hose model, especially when the network is large.

The optimal routing problem with the hose model is also formulated by
Eq. (7.2a)–(7.2f). The decision variables are r and xpq

ij , and the given param-
eters are tpq and cij . However, tpq is bounded by the hose model as follows:

∑
q∈Q

tpq ≤ αp, p ∈ Q (7.3a)

∑
p∈Q

tpq ≤ βq, q ∈ Q. (7.3b)

Let a set of T s that satisfies the conditions specified by a certain traffic
demand model be {T }. In the hose model, {T } is specified by Eqs. (7.3a)
and (7.3b). Assuming that T is given, the network congestion ratio, which
refers to the maximum value of all link utilization rates in the network, is
denoted as r. Minimizing r with routing control means that admissible traffic
is maximized. From the network operator’s point of view, routing X should
not be changed for stable network operation, even when T is varied within
the range of {T }.

We would like to find the optimal routing that minimizes r for X ∈ {X},
and maximizes the minimal r in terms of T ∈ {T }. This routing is called
oblivious routing [8–13].

max
T∈{T }

min
X∈{X}

r (7.4)
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To find the optimal r and X, first an optimal routing problem to obtain
minX∈{X} r is considered, under the condition that T ∈ {T } is given. Then,
“maxT∈{T }” in Eq. (7.4) is incorporated into the problem. For a given T ∈
{T }, an optimal routing formulation with the hose model is also presented in
Eqs. (7.2a)–(7.2f).

Although Eqs. (7.2a)–(7.2f) can be expressed as an LP problem, they can-
not be easily solved as a regular LP problem. Constraint (7.2d) lists every
valid combination in T = {tpq} bounded by Eqs. (7.3a) and (7.3b). It is im-
possible to repeatedly solve the LP problems for all possible sets of T ∈ {T }.
This is because tpq takes a real value, and the number of valid combinations of
tpq is infinite. This problem is solved using Chu’s property, Property 1 [6,7].

Property 1. xpq
ij achieves congestion ratio ≤ r for all traffic matrices in

T = {tpq} constrained by Eqs. (7.3a) and (7.3b) if and only if there exist
non-negative parameters πij(p) and λij(p) for every (i, j) ∈ E such that
(i)

∑
p∈Q αpπij(p) +

∑
p∈Q βpλij(p) ≤ cij · r

for each (i, j) ∈ E
(ii) xpq

ij ≤ πij(p) + λij(q) for each (i, j) ∈ E and every p, q ∈ Q
πij(p) and λij(p) are produced by the dual theorem when a primal problem is
transformed into the dual problem, as described in the following proof [6, 7].
The left term of condition (i) is derived as the objective function of the dual
problem, where the objective function of the primal problem is

∑
p,q∈Q xpq

ij tpq.
Condition (ii) is obtained as a constraint of the dual problem.
Proof:

(“only if” direction): Let routing xpq
ij have congestion ratio ≤ r for all traffic

matrices constrained by the hose model. (i.e.,
∑

p,q∈Q xpq
ij tpq ≤ cij · r for all

(i, j)). The problem of finding T = {tpq} that maximizes link load on (i, j) is
formulated as the following LP problem:

max
∑

p,q∈Q

xpq
ij tpq (7.5a)

s.t.
∑
q∈Q

tpq ≤ αp, ∀p ∈ Q (7.5b)

∑
p∈Q

tpq ≤ βq, ∀q ∈ Q (7.5c)

The decision variables are tpq. The given parameters are xpq
ij , αp, and βq. The

dual of the LP problem in Eqs. (7.5a)–(7.5c) for (i, j) is

min
∑
p∈Q

αpπij(p) +
∑
p∈Q

βpλij(p) (7.6a)

s.t. xpq
ij ≤ πij(p) + λij(q), ∀p, q ∈ Q, (i, j) ∈ E (7.6b)

πij(p), λij(p) ≥ 0, ∀p, q ∈ Q, (i, j) ∈ E (7.6c)
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The derivation of Eqs. (7.6a)–(7.6c) is described in Appendix A. Because of∑
pq x

pq
ij tpq ≤ cij ·r in Eq. (7.5a), the dual,

∑
p∈Q αpπij(p)+

∑
p∈Q βpλij(p) in

Eq. (7.6a), for any (i, j), must have the same optimal value. The optimal value
in Eq. (7.6a) should be ≤ cij · r. Therefore, the objective function of the dual
satisfies (i). Requirement (ii) is satisfied by dual problem constraint (7.6b).
(“if” direction): Let xpq

ij be a routing and T = {tpq} be any valid traffic matrix.
Let πij(p) and λij(p) be the parameters satisfying requirements (i) and (ii).
Consider (i, j) ∈ E. From (ii) we have

xpq
ij ≤ πij(p) + λij(q).

Summing over all edge node pairs (p, q), we have

∑
p,q∈Q xpq

ij tpq ≤
∑

p,q∈Q

[πij(p) + λij(q)]tpq

=
∑
p∈Q

πij(p)
∑
q∈Q

tpq +
∑
q∈Q

λij(q)
∑
p∈Q

tpq

≤
∑
p∈Q

πij(p)αp +
∑
p∈Q

λij(p)βp.

(7.7)

The last equality is obtained using the constraints of the hose model. From
(i), we have

∑
p,q∈Q xpq

ij tpq ≤
∑
p∈Q

πij(p)αp +
∑
p∈Q

λij(p)βp

(7.8)

≤ cij · r.

This indicates that for any traffic matrix constrained by the hose model, the
load on any link is at most r.

Property 1 allows us to replace constraint (7.2d) in Eqs. (7.2a)–(7.2f),
where tpq is bounded by Eqs. (7.3a) and (7.3b), with requirements (i) and (ii)
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in Property 1; this transforms the formulation as follows:

min r (7.9a)

s.t.
∑

j:(i,j)∈E

xpq
ij −

∑
j:(j,i)∈E

xpq
ji = 1,

∀p, q ∈ Q, if i = p (7.9b)
∑

j:(i,j)∈E

xpq
ij −

∑
j:(j,i)∈E

xpq
ji = 0,

∀p, q ∈ Q, i(	= p, q) ∈ V (7.9c)
∑
p∈Q

αpπij(p) +
∑
p∈Q

βpλij(p) ≤ cij · r, ∀(i, j) ∈ E (7.9d)

xpq
ij ≤ πij(p) + λij(q), ∀p, q ∈ Q, (i, j) ∈ E (7.9e)

πij(p), λij(p) ≥ 0, ∀p, q ∈ Q, (i, j) ∈ E (7.9f)

0 ≤ xpq
ij ≤ 1, ∀p, q ∈ Q, (i, j) ∈ E (7.9g)

0 ≤ r ≤ 1. (7.9h)

The decision variables are r, xpq
ij , πij(p), and λij(p), and the given parameters

are cij , αp, and βq. πij(p) is the ratio of traffic on (i, j) outgoing from node p,
and λij(q) is the ratio of traffic on (i, j) incoming to node q [14]. Eq. (7.2d)
and Eqs. (7.3a) and (7.3b) are replaced by Eqs. (7.9d)–(7.9f). By introducing
the variables of πij(p) and λij(p), Eqs. (7.3a)-(7.3b) are incorporated in this
optimization problem. Eqs. (7.9a)-(7.9h) represent a regular LP problem and
can be solved optimally with a standard LP solver.

The hose model is more beneficial than the pipe model because the hose
model is easier for network operators to specify. However, the worst-case net-
work congestion ratio of the hose model is larger than that of the pipe model,
as all the possible traffic demands bounded by the hose model must be consid-
ered in routing selection. The degree of difference between both network con-
gestion ratios, using five sample networks as shown in Figure 7.1, is examined.
We obtained the average values of the normalized network congestion ratios
for 100 randomly generated conditions of link capacities and traffic demands
for the sample networks. αp =

∑
q tpq and βq =

∑
p tpq are set. Figure 7.2

compares the network congestion ratios of the pipe and hose models, which
are normalized by that of the hose model. It is observed that the pipe model
offers a 30 to 40% lower network congestion ratio than the hose model for the
sample networks, but at the cost of requiring an accurate traffic matrix.

7.4 HSDT model

Sections 7.4 and 7.5 describe traffic demand models that narrow the range to
traffic conditions specified by the hose model so that the worst-case network
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(a)  Network 1 (b) Network 2

(c) Network 3 (d) Network 4

(e) Network 5

Figure 7.1: Network models.

congestion ratio can be reduced, while the advantage of the hose model is
preserved.

The hose model has a weakness in that its routing performance is much
lower than that of the pipe model. This is because all possible sets of T = {tpq}
must be considered in the hose model, while the exact T = {tpq} is known
in the pipe model. Therefore, it is desirable for network operators to narrow
the range of traffic conditions specified by the hose model so as to enhance its
routing performance.

Network operators are able to impose additional bounds on the hose model
from their operational experience and past traffic data as described below.
First, the range of errors of the traffic matrix can be estimated. It is reported
that traffic estimations based on link traffic measurements are in error by 20%
or more [15]. There are several studies on estimating the traffic matrix [16–18].
To estimate the traffic matrix, network operators do not need to measure each
traffic demand dpq. Instead, they only have to measure the traffic loads on each
link in the network. Using the measured link loads, the traffic matrix can be
estimated with certain accuracy, but it is inevitable that the estimated traffic
matrix includes some errors. Second, traffic fluctuations from the network
operational history can be predicted. Third, the network operators know the
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Figure 7.2: Comparisons of congestion ratio between pipe and hose models for
sample networks. ( c©2009 IEEE, Ref. [19].)

trends of traffic demands. For example, traffic demands between large cities
are much larger than those of small cities. Thus, the additional bounds are
expressed by δpq ≤ tpq ≤ γpq for each pair of source node p and destination q.
γpq and δpq are the upper and lower bounds of tpq, respectively [19, 20]. We
call this model, the hose model with additional bounds, the Hose model with
bounds of Source-Destination Traffic demands (HSDT model).

Thus, tpq is bounded by the HSDT model as follows.

∑
q∈Q

tpq ≤ αp, p ∈ Q (7.10a)

∑
p∈Q

tpq ≤ βq, q ∈ Q (7.10b)

δpq ≤ tpq ≤ γpq, p, q ∈ Q (7.10c)

The HSDT model offers better routing performance than the hose model,
by narrowing the range of traffic conditions specified by the hose model. The
features of the pipe, hose, and HSDT models are schematically shown in Fig-
ure 7.3. When the range of tpq is not exactly determined, a large range of tpq
is set, that is, a conservative approach, to avoid any congestion. This may be
still effective, because αp and βq also bound the traffic demands.

To find the optimal routing that minimizes the worst-case network conges-
tion ratio in the HSDT model, we solve the optimal routing problem presented
in Eq. 7.4, where {T } is specified by Eqs. (7.10a)–(7.10c). In the same way
as the approach for the hose model, the optimization problem in Eq. 7.4 is
transformed into the LP problem that does not include tpq, using the following
property, Property 2.

Property 2. xpq
ij achieves congestion ratio ≤ r for all traffic matrices in

T = {tpq} constrained by Eqs. (7.10a)-(7.10c) if and only if there exist non-
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Pipe 
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Hose 
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Range of traffic conditions
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Routing 
performance
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HSDT
model

Figure 7.3: Features of pipe, hose, and HSDT models.

negative parameters πij(p), λij(p), ηij(p, q), and θij(p, q) for every (i, j) ∈ E
such that
(i)

∑
p∈Q αpπij(p) +

∑
p∈Q βpλij(p)

+
∑

p∈Q

∑
q∈Q[γpqηij(p, q)− δpqθij(p, q)] ≤ cij · r for each (i, j) ∈ E,

(ii) xpq
ij ≤ πij(p) + λij(q) + ηij(p, q) − θij(p, q) for each (i, j) ∈ E and every

p, q ∈ Q.

πij(p), λij(p), ηij(p, q), and θij(p, q) are produced by the dual theorem
when a primal problem is transformed into the dual problem. The left term of
condition (i) is derived as the objective function of the dual problem, where
the objective function of the primal problem is

∑
p,q∈Q xpq

ij tpq. Condition (ii)
is obtained as a constraint of the dual problem.

Property 2 is proved in the same way as the proof of Property 1 by consid-
ering the following primal and dual problems (see Exercise 7.1). The problem
of finding T = {tpq} that maximizes link load on (i, j) is formulated as the
following LP problem, which is the primal problem:

max
∑

p,q∈Q

xpq
ij tpq (7.11a)

s.t.
∑
q∈Q

tpq ≤ αp, ∀p ∈ Q (7.11b)

∑
p∈Q

tpq ≤ βq, ∀q ∈ Q (7.11c)

δpq ≤ tpq ≤ γpq, ∀p, q ∈ Q. (7.11d)

The decision variables are tpq. The given parameters are xpq
ij , αp, βq, δpq, and
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γpq. The dual of the LP problem in Eqs. (7.11a)–(7.11d) for (i, j) is

min
∑
p∈Q

αpπij(p) +
∑
p∈Q

βpλij(p)

+
∑

p,q∈Q

[γpqηij(p, q)− δpqθij(p, q)], (7.12a)

s.t. xpq
ij ≤ πij(p) + λij(q) + ηij(p, q)− θij(p, q),

∀p, q ∈ Q, (i, j) ∈ E (7.12b)

πij(p), λij(p), ηij(p, q), θij(p, q) ≥ 0,

∀p, q ∈ Q, (i, j) ∈ E. (7.12c)

The derivation of Eqs. (7.12a)–(7.12c) is described in Appendix B. Because of∑
pq x

pq
ij tpq ≤ cij ·r in Eq. (7.11a), the dual,

∑
p∈Q αpπij(p)+

∑
p∈Q βpλij(p)+∑

p,q∈Q[γpqηij(p, q)− δpqθij(p, q) in Eq. (7.12a), for any (i, j), must have the
same optimal value.

Property 2 allows us to replace constraint (7.2d) in Eqs. (7.2a)–(7.2f),
where tpq is bounded by Eqs. (7.10a)–(7.10c), with requirements (i) and (ii)
in Property 2; this transforms the formulation as follows:

min r (7.13a)

s.t.
∑

j:(i,j)∈E

xpq
ij −

∑
j:(j,i)∈E

xpq
ji = 1,

∀p, q ∈ Q, if i = p (7.13b)∑
j:(i,j)∈E

xpq
ij −

∑
j:(j,i)∈E

xpq
ji = 0,

∀p, q ∈ Q, i(	= p, q) (7.13c)∑
p∈Q

αpπij(p) +
∑
p∈Q

βpλij(p)

+
∑

p,q∈Q

[γpqηij(p, q)− δpqθij(p, q)] ≤ cij · r,

∀(i, j) ∈ E (7.13d)

xpq
ij ≤ πij(p) + λij(q) + ηij(p, q)− θij(p, q),

∀p, q ∈ Q, (i, j) ∈ E (7.13e)

πij(p), λij(p), ηij(p, q), θij(p, q) ≥ 0,

∀p, q ∈ Q, (i, j) ∈ E (7.13f)

0 ≤ xpq
ij ≤ 1, ∀p, q ∈ Q, (i, j) ∈ E (7.13g)

0 ≤ r ≤ 1. (7.13h)

The decision variables are r, xpq
ij , πij(p), λij(p), ηij(p, q), and θij(p, q), and the

given parameters are cij , αp, βq, δpq, and γpq. Eq. (7.2d) and Eqs. (7.10a)–
(7.10c) are replaced by Eqs. (7.13d)–(7.13f). By introducing the variables of
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πij(p), λij(p), ηij(p, q), and θij(p, q), Eqs. (7.10a)–(7.10c) are incorporated
in this optimization problem. Eqs. (7.13a)–(7.13h) represent a regular LP
problem and can be solved optimally with a standard LP solver.

The network congestion ratios, r, of the different models, which are the
HSDT mode, the pipe model, and the hose model, are compared. The net-
work congestion ratios of the HSDT and pipe models are normalized by that
of the hose model. The normalized network congestion ratios for the HSDT,
pipe, and hose models are denoted as rHSDT , rP , and rH(= 1.0), respec-
tively. The conditions of traffic demands and link capacities are the same as
those presented in Section 7.3. By using randomly generated tpq, the follow-
ing parameters are set as follows: αp =

∑
q tpq, βq =

∑
p tpq, γpq = 1

μ tpq, and
δpq = νtpq. μ and ν are parameters to express γpq and δpq, respectively, where
0 < μ ≤ 1 and 0 ≤ ν ≤ 1. (μ, ν)→ (1, 1) and (μ, ν)→ (0, 0) indicate that the
HSDT model approaches pipe and hose model performance, respectively.

Figure 7.4 show comparisons of the network congestion ratios of the
different models, for network 3 shown in Figure 7.1(c). It indicates that
rP ≤ rHSDT ≤ rH = 1.0 is satisfied for all sets of (μ, ν), where (μ, ν) is
defined in the beginning of this section. When (μ, ν) is close to (1,1) and
(0,0), the network congestion ratio of the HSDT model is close to those of the
pipe model and the hose model, respectively. Note that the network conges-
tion ratio of the HSDT model does not depend on μ when μ is small enough.
This means that the traffic matrix T = {tpq} is bounded by only αp and βq,
not by γpq. If network operators can specify an appropriate set of (μ, ν) so
that they can narrow the possible range of T = {tpq}, the network congestion
ratio of the HSDT model is reduced compared to that of the hose model by
solving our LP problem formulation. This is a key advantage of the HSDT
model. For example, when (μ, ν)=(0.8, 0.8) is set in Figure 7.4, the network
congestion ratio of the HSDT model is 34% less than that of the hose model.
μ = 0.8 and ν = 0.8 means that 25% (1/0.8− 1) upper-bound margin of tpq
and 20% (1 − 0.8) lower-bound margin are considered, respectively.

7.5 HLT model

In the HSDT model, it may not always be easy for the network operators
to specify the additional bounds on source-destination traffic demands. The
existing approach uses the operator’s experience and past traffic data in de-
termining the bounds. Therefore, it is desirable for network operators to be
able to determine appropriate additional bounds in a more objective manner.

We can use the total traffic passing through links as an additional bound on
the hose model, instead of the source-destination traffic demands in the HSDT
model. The total traffic volume passing through each link can be measured
much more easily than source-destination traffic volume [15]. This is because
the former requires only the number of packets passing through the link to be
measured, while the latter requires the number of packets for each destination
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Figure 7.4: Comparison of congestion ratios. ( c©2009 IEEE, Ref. [19].)

to be measured, which requires that the IP destination address in the IP
packet header be extracted and read.

We represent the additional upper bound, the total traffic passing through
link (i, j), as

∑
p,q∈Q apqij tpq ≤ yij , where yij is the maximum rate of traffic

accommodated in link (i, j), and apqij is the portion of the traffic from node
p to node q routed through link (i, j). Network operators are able to know
the routing information of apqij , which is determined by them, and to specify
yij by measuring the total traffic passing through link (i, j). This model, in
which bounds derived from the measured total traffic on link (i, j) are added
to the hose model, is called the Hose model with bounds of Link Traffic volume
(HLT model) [21]. The HLT model offers better routing performance than the
hose model, by narrowing the range of traffic conditions. In the HLT model,
to perform the routing optimization, there are two phases. In the first phase,
network operators configure routing in the network as an initial condition.
For example, the shortest path routing policy may be adopted, and apqij and
yij are determined. In the second phase, using apqij and yij determined by the
first phase, routing optimization is performed.

Thus, tpq is bounded by the HSDT model as follows:

∑
q∈Q

tpq ≤ αp, p ∈ Q (7.14a)

∑
p∈Q

tpq ≤ βq, q ∈ Q (7.14b)

∑
p,q∈Q

apqij tpq ≤ yij , (i, j) ∈ E (7.14c)
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To find the optimal routing that minimizes the worst-case network conges-
tion ratio in the HLT model, we solve the optimal routing problem presented
in Eq. (7.4), where {T } is specified by Eqs. (7.14a–7.14c). In the same way
as the approach for the hose model and the HSDT model, the optimization
problem in Eq. 7.4 is transformed into the LP problem that does not include
tpq, by using the following property, Property 3.

Property 3. xpq
ij achieves congestion ratio ≤ r for all traffic matrices in

T = {tpq} constrained by Eqs. (7.14a)–(7.14c) if and only if there exist non-
negative parameters πij(p), λij(p), and θij(s, t) for every (i, j) ∈ E such that
(i)

∑
p∈Q αpπij(p) +

∑
p∈Q βpλij(p)

+
∑

(s,t)∈E ystθij(s, t) ≤ cij · r for each (i, j) ∈ E

(ii) xpq
ij ≤ πij(p) +

∑
(s,t)∈E apqst θij(s, t) for each (i, j) ∈ E and every p, q ∈ Q.

πij(p), λij(p), and θij(s, t) are produced by the dual theorem when a primal
problem is transformed into the dual problem. The left term of condition (i)
is derived as the objective function of the dual problem, where the objective
function of the primal problem is

∑
p,q∈Q xpq

ij tpq. Condition (ii) is obtained as
a constraint of the dual problem.

Property 3 is proved in the same way of the proof by Property 1 by consid-
ering the following primal and dual problems (see Exercise 7.2). The problem
of finding T = {tpq} that maximizes link load on (i, j) is formulated as the
following LP problem, which is the primal problem:

max
∑

p,q∈Q

xpq
ij tpq (7.15a)

s.t.
∑
q∈Q

tpq ≤ αp, ∀p ∈ Q (7.15b)

∑
p∈Q

tpq ≤ βq, ∀q ∈ Q (7.15c)

∑
p,q∈Q

apqij tpq ≤ yij , ∀(i, j) ∈ E. (7.15d)

The decision variables are tpq. The given parameters are xpq
ij , αp, βq, a

pq
ij , and

yij . The dual of the LP problem in Eqs. (7.15a)–(7.15d) for (i, j) is

min
∑
p∈Q

αpπij(p) +
∑
p∈Q

βpλij(p) +
∑

(s,t)∈E

θij(s, t)yst (7.16a)

s.t. πij(p) + λij(q) +
∑

(s,t)∈E

apqst θij(s, t) ≥ xpq
ij , ∀p, q ∈ Q, (i, j) ∈ E (7.16b)

πij(p), λij(p) ≥ 0, ∀p ∈ Q, (i, j) ∈ E (7.16c)

θij(s, t) ≥ 0, ∀(i, j), (s, t) ∈ E. (7.16d)



�

�

“K15229” — 2012/7/18 — 14:35
�

�

�

�

�

�

116 Linear Programming and Algorithms for Communication Networks

The derivation of Eqs. (7.16a)–(7.16d) is described in Appendix C. Because of∑
pq x

pq
ij tpq ≤ cij ·r in Eq. (7.15a), the dual,

∑
p∈Q αpπij(p)+

∑
p∈Q βpλij(p)+∑

(s,t)∈E θij(s, t)yst in Eq. (7.16a), for any (i, j), must have the same optimal
value.

Property 3 allows us to replace constraint (7.2d) in Eqs. (7.2a)–(7.2f),
where tpq is bounded by Eqs. (7.14a)–(7.14c), with requirements (i) and (ii)
in Property 3; this transforms the formulation as follows:

min r (7.17a)

s.t.
∑

j:(i,j)∈E

xpq
ij −

∑
j:(j,i)∈E

xpq
ji = 1,

∀p, q ∈ Q, if i = p (7.17b)∑
j:(i,j)∈E

xpq
ij −

∑
j:(j,i)∈E

xpq
ji = 0,

∀p, q ∈ Q, i(	= p, q) (7.17c)∑
p∈Q

πij(p)αp +
∑
p∈Q

λij(p)βp

+
∑

(s,t)∈E

θij(s, t)yst ≤ cij · r, ∀(i, j) ∈ E (7.17d)

πij(p) + λij(p) +
∑

(s,t)∈E

apqst θij(s, t) ≥ xpq
ij ,

∀(i, j) ∈ E, p, q ∈ Q (7.17e)

πij(p), λij(p) ≥ 0, ∀(i, j) ∈ E, p ∈ Q (7.17f)

θij(s, t) ≥ 0, ∀(s, t), (i, j) ∈ E (7.17g)

0 ≤ xpq
ij ≤ 1, ∀p, q ∈ Q, (i, j) ∈ E (7.17h)

0 ≤ r ≤ 1. (7.17i)

The decision variables are r, xpq
ij , πij(p), λij(p), and θij(s, t), and the given

parameters are cij , αp, βp, and yst. Eq. (7.2d) and Eqs. (7.14a)–(7.14c) are re-
placed by Eqs. (7.17d)–(7.17g). By introducing the variables of πij(p), λij(p),
and θij(s, t), Eqs. (7.14a)–(7.14c) are incorporated in this optimization prob-
lem. Eqs. (7.17a)–(7.17i) represent a regular LP problem and can be solved
optimally with a standard LP solver.

The network congestion ratios of the different models, which are the HLT
model, the pipe model, and the hose model, are compared. The network con-
gestion ratios of the HLT and pipe models are normalized by that of the hose
model. The conditions of traffic demands and link capacities are the same as
those presented in Section 7.3. Using randomly generated tpq, αp =

∑
q tpq

and βq =
∑

p tpq are set. The portion of traffic apqij is determined by assuming
that, before the optimization process, each route between source and destina-
tion nodes follows the shortest path.
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Figure 7.5: Comparison of congestion ratios for pipe, hose and HLT models.
( c©2011 IEEE, Ref. [21].)

Figure 7.5 shows that the pipe model offers 25 to 40% lower network
congestion ratio than the hose model for the sample network, and the HLT
model offers 20 to 35% lower network congestion ratio than the hose model.
In addition, the differences in the network congestion ratios between the pipe
model and the HLT model for the examined sample networks are less than
0.1.

Exercise 7.1

Consider the network in Figure 7.6. The capacity matrix,C = {cij}, where

1

2 3

4

Figure 7.6: Network model.
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cij is the capacity of link (i, j), is given by

C =

⎡
⎢⎢⎣

0 75 75 75
75 0 75 0
75 75 0 75
75 0 75 0

⎤
⎥⎥⎦ . (7.18)

1. Solve an optimal routing problem for the pipe model presented in
Eqs. (7.2a)–(7.2f) and obtain rP . The traffic matrix, T = {tpq}, where
tpq is the traffic demand from node p to node q, is given by

T =

⎡
⎢⎢⎣

0 35 35 35
35 0 35 35
35 35 0 35
35 35 35 0

⎤
⎥⎥⎦ . (7.19)

2. Solve an optimal routing problem for the hose model presented in
Eqs. (7.9a)–(7.9h), and obtain rH . Set αp =

∑
q tpq and βq =

∑
p tpq

using T defined in Eq. (7.19).

3. Solve an optimal routing problem for the HSDT model presented in
Eqs. (7.13a)–(7.13h), and obtain rHSDT1. Set αp =

∑
q tpq and βq =∑

p tpq using T in Eq. (7.19). Set δpq and γpq so that the 25% upper-
bound margin and 20% lower-bound margin of tpq in Eq. (7.19) can be
kept, respectively.

4. Solve the same optimal routing problem for the HSDT model as the
above one by changing only the margin condition to 50% upper-bound
margin and 50% lower-bound margin of tpq, and obtain rHSDT2.

5. Solve an optimal routing problem for the HLT model presented in
Eqs. (7.17a)-(7.17h), and obtain rHLT . Set αp =

∑
q tpq, βq =

∑
p tpq,

and yij =
∑

p,q∈Q apqij tpq using T defined in Eq. (7.19) and apq, which
gives the routing information in the first phase of HLT. In the first phase,
the shortest path routing is used, where the cost of link (i, j), dij , is set
to 1.

6. Compare rP , rH , rHSDT1, rHSDT2, and rHLT obtained above.

Exercise 7.2

Consider the network in Figure 7.7. The capacity matrix,C = {cij}, where
cij is the capacity of link (i, j), is given by

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 100 100 100 0 100
100 0 100 100 100 100
100 100 0 0 100 0
100 100 0 0 100 100
0 100 100 100 0 100
0 100 0 100 100 0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (7.20)
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Figure 7.7: Network model.

1. Solve an optimal routing problem for the pipe model presented in
Eqs. (7.2a)–(7.2f) and obtain rP . The traffic matrix, T = {tpq}, where
tpq is the traffic demand from node p to node q, is given by

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 35 35 35 35 35
35 0 35 35 35 35
35 35 0 35 35 35
35 35 35 0 35 35
35 35 35 35 0 35
35 35 35 35 35 0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (7.21)

2. Solve an optimal routing problem for the hose model presented in
Eqs. (7.9a)–(7.9h), and obtain rH . Set αp =

∑
q tpq and βq =

∑
p tpq

using T defined in Eq. (7.21).

3. Solve an optimal routing problem for the HSDT model presented in
Eqs. (7.13a)–(7.13h), and obtain rHSDT1. Set αp =

∑
q tpq and βq =∑

p tpq using T in Eq. (7.21). Set δpq and γpq so that a 25% upper-
bound margin and 20% lower-bound margin of tpq in Eq. (7.21) can be
kept, respectively.

4. Solve the same optimal routing problem for the HSDT model as the
above one by changing only the margin condition to a 50% upper-bound
margin and 50% lower-bound margin of tpq, and obtain rHSDT2.

5. Solve an optimal routing problem for the HLT model presented in
Eqs. (7.17a)–(7.17h), and obtain rHLT . Set αp =

∑
q tpq, βq =

∑
p tpq,

and yij =
∑

p,q∈Q apqij tpq using T defined in Eq. (7.21) and apq, which
gives the routing information in the first phase of HLT. In the first phase,
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the shortest path routing is used, where the cost of link (i, j), dij , is set
to 1.

6. Compare rP , rH , rHSDT1, rHSDT2, and rHLT obtained above.

Exercise 7.3

Prove Property 2 presented in Section 7.4.

Exercise 7.4

Prove Property 3 presented in Section 7.5.
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Chapter 8

IP routing

This chapter describes several problems raised by route selection in an Internet
Protocol (IP) network. In an IP network, an IP packet with the destination
address is transmitted by way of transit node(s) to the destination node. When
a node receives an IP packet, it determines the next hop node to which the
packet should be transmitted by referring to its routing table made by IP
routing protocols. By repeating this process, a packet reaches its destination.

8.1 Routing protocol

IP routing protocols are used to dynamically update routing tables, which
indicate the next hop node according to the destinations of incoming packets.
A routing protocol requires nodes exchange network information such as links
and nodes in the network.

The concept of the routing table is similar to that of road signs seen when
driving your car to a destination, as shown in Figure 8.1. In Figure 8.1(a),
the driver wants to go to the harbor. When the car enters the junction, it
turns to the right by referring to the road sign. The driver does not have to
know the entire route to the destination in advance. Each time the car enters
a junction, the road sign tells the driver the suitable choice. As a result, the
driver is able to reach the harbor. In Figure 8.1(b), the destination of the
incoming packet is 123.10.21.50. The node forwards the packet to output port
3, which is associated with the next hop, by referring to the routing table. In
the same way as the car, each packet reaches its destination.

IP routing protocols are categorized into several types, including a link-
state protocol [1,2], a distance-vector protocol [3,4], and a path-vector proto-
col [5]. This chapter focuses on the link-state protocol, where an optimization
problem is considered for routing. Some popular link-state protocols are the
Open Shortest Path First (OSPF) [1] and Intermediate System to Interme-
diate System (IS-IS) [2]. In a link-state protocol, each node advertises link

123
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Destination 
123.10.21.50

Figure 8.1: Road map and IP routing table.

states, including topology information about nodes, links, and their costs to
their neighbor nodes. The neighbor nodes that receive the advertised link
states advertise them to their neighbor nodes. This iterative advertisement
process, called flooding, makes all the nodes share the same topology informa-
tion, as shown in Figure 8.2. Each node is able to compute the shortest path
to each destination using costs, or weights, each of which is associated with a
different link.

8.2 Link weights and routing

Determining the link weights in the network means determining the routing
based on shortest path routing. A simple weight setting policy is to make
the link weight inversely proportional to its capacity. This policy, which is
implemented in commercial routers, makes it easy for network providers to
configure routers to avoid network congestion. Traffic tends to avoid links with
small capacity and instead use those with large capacity. However, as this
policy does not take traffic demand or network topology into consideration,
it may degrade the routing performance. Therefore, to achieve good routing
performance, the link weights should be determined by considering the traffic
demand and topology.

Let us consider the network in Figure 8.3. The weight associated with
each link is set to 1. Assume that traffic demands are sent from nodes 1, 2,
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Figure 8.2: Link-state routing protocol.

3, and 5 to node 7 in the network. Each has traffic volume of 1. Each node
has the network topology with all weights, computes the shortest paths, and
configures the routing table. As shown in Figure 8.4, the shortest-path routes
are determined as 1 → 4 → 7, 2 → 4 → 7, 3 → 4 → 7, and 5 → 6 → 7.
As a result, the traffic volume passing through link (4, 7) is 3, and the link is
congested.

To avoid the congestion, the weight of link (1, 4) is changed from 1 to 3, as
shown in Figure 8.5. As shown in Figure 8.6, the updated shortest-path routes
are determined as 1 → 5 → 6 → 7, 2 → 4 → 7, 3 → 4 → 7, and 5 → 6 → 7.
The congestion at link (4, 7) is relaxed. The traffic volume passing through
the link is changed from 3 to 2 because 1 → 4 → 7, the previous route, is
changed to 1→ 5→ 6→ 7 to avoid the link.

1
12 3

4 7

1 1

1
1 1

1

1

65
1

Figure 8.3: Network model and link weights (example 1).
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1
12 3

4 7

1

1
1 1

1

1

1 Congestion

65
1

Figure 8.4: Link weights and route selection (example 1).
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Figure 8.5: Network model and link weights (example 2).

8.2.1 Tabu search

Let us consider finding an optimal set of link weights to minimize the network
congestion ratio, which is the maximum link utilization rate of all links in the
network. A straightforward approach is to compute the network congestion ra-
tios for every possible set of link weights to find the optimal set that minimizes
the network congestion ratio. However, the computation time complexity of
this approach is O(xL), where x is the higher limit of weights and L is the
number of links in the network. To reduce the computation-time complexity,
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Figure 8.6: Link weights and route selection (example 2).

Fortz et al. presented a heuristic algorithm based on tabu search [6,7]. Buriol
et al. presented a genetic algorithm with a local improvement procedure [8].
A fast heuristic algorithm was also developed by Reichert and Magedanz [9].
These optimization algorithms yield nearly optimal sets of link weights in a
practical manner.

The tabu search (TS) methodology [10] is explained here. TS is an iterative
procedure designed to solve optimization problems. It is a based on selected
concepts that unite the fields of artificial intelligence and optimization. It
has been applied to a wide range of problems such as job scheduling, graph
coloring, and network planning. It is considered an alternative to techniques
such as simulated annealing and genetic algorithms. There are several studies
that use TS to search for an optimal OSPF link-weight set [6,7,11]. All these
studies confirmed that TS was useful.

TS conducts a guided exploration of the space of admissible solutions and
keeps a record of all solutions evaluated along the way, which is called a
tabu list. The exploration starts from an initial solution. In the evaluation
of admissible solutions, any solution existing in the tabu list is not selected
even if it has lower cost than current one. If no admissible solution has lower
cost than the current solution, TS permits selection of the admissible solution
with high cost. When a stop criterion is satisfied, the algorithm returns the
best visited solution. To move from one solution to the next, TS explores the
neighborhood of the last solution visited (referred to as the current solution).
It generates a neighbor solution by applying a transformation, called a move,
on the current solution. The set of all admissible moves uniquely defines the
neighborhood of the current solution. At each iteration of the TS algorithm,
all solutions in the neighborhood are evaluated and the best is selected as the
new current solution.
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The TS algorithm to find the optimal link-weight set is described below.
At the beginning, an empty tabu list, that is, no link-weight set, is created.

Step 1: Set initial candidate: As an initial candidate, a set of link weights
randomly generated that is not in the tabu list is considered the initial
solution at this iteration. The solution for each iteration is called Witr ,
and the final result is called the solution, Wopt. The initial candidate
is set in Witr , and Wopt = Witr is set. The network congestion ratio is
obtained based on shortest-path routing with the initial weight set.

Step 2: Find highest congested link: Find the highest congested link and
the topology for which the congestion occurs.

Step 3: Move to next candidate: At each time, the previous data of the
highest congested link is used. The next candidate is created by increas-
ing the link weight of the marked link. The link weight of the marked
link is increased by the minimum value that changes at least one route
passing through the link. The minimum value is identified by incre-
menting the weight of the marked link, until at least one route passing
through that link is changed. This, therefore, decreases the congestion
of the marked link. The updated candidate is inserted in the tabu list.
If the value exceeds the upper limit of feasible link weight, go to Step 6.

Step 4: Evaluation of candidate: The updated link-weight set obtained at
Step 3 is evaluated by computing the network congestion. If the network
congestion ratio with the updated set is lower than that of Witr set, the
weight set is set as Witr and the next candidate, and Step 2 is reentered.
Otherwise, return to Step 2 to find out the highest congested link again
for the link-weight set obtained at Step 3 and iterate steps 3 and 4.
If the number of loops from Step 2 to Step 4 exceeds a predetermined
number, Cmax, go to Step 5.

Step 5: Keep optimum solution: If the congestion ratio of Witr is lower
than that of Wopt, set Wopt = Witr .

Step 6: Continue iteration with stop criteria: Go to Step 1 for the next
iteration, unless the number of iterations does not exceed a fixed pre-
determined value, Imax. Imax depends on network size, the allowable
computational time, and the quality of solution desired. Otherwise, the
search procedure stops, and Wopt is the solution.

Figures 8.7–8.11 show an example of the TS algorithm that determines
a suitable set of link weights. In Figure 8.7, a set of link weights is given as
the initial condition. Consider that traffic demands from nodes 1, 2, 3, and 7
to node 6 exist in the network. Each has a traffic volume of 1. Assume that
all link capacities are the same. Minimizing the link utilization is equivalent
to minimizing the traffic volume passing through the link in this example.
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Therefore, we consider minimizing the maximum traffic volume on the link
in the network by the TS search. The shortest-path routes are determined as
1 → 4 → 6, 2 → 4 → 6, 3 → 4 → 6, and 7 → 8 → 6. As a result, the traffic
volume passing through link (4, 6), which is the highest congested link, is 3.

3
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3
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5
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1

3

1
1

3

11

Figure 8.7: Example of tabu search (initial state).

In Figure 8.8, to decrease the traffic volume passing through link (4, 6),
the link weight is increased by the minimum value that changes at least one
route passing through the link to decrease the congestion. The link weight is
changed from 1 to 4. The highest congested link switches from (4, 6) to (8, 6).
The traffic volume on link (8, 6), which is now the highest one in the network,
becomes 2.
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Figure 8.8: Example of tabu search (after first change).

In Figure 8.9, to decrease the traffic volume passing through link (8, 6),
the link weight is changed from 1 to 3. The highest congested link is switched
from (8, 6) to (4, 6). The traffic volume on link (4, 6), which is now the highest
one in the network, becomes 2.
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Figure 8.9: Example of tabu search (after second change).

In Figure 8.10, to decrease the traffic volume passing through link (4, 6),
the link weight is changed from 4 to 5. The highest congested link is switched
from (4, 6) to (3, 5) and (5, 6). The traffic volume on links (3, 5) and (5, 6),
which is now the highest one in the network, becomes 2.
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Figure 8.10: Example of tabu search (after third change).

In Figure 8.11, as links (3, 5) and (5, 6) are the highest congested link, (5, 6)
is randomly selected. To decrease the traffic volume passing through link (5, 6),
the link weight is changed from 1 to 3. As a result, all the traffic flows are
evenly distributed and the highest traffic volume on each link becomes 1.

This example shows a case with an initial condition for a set of link weights.
In a practical case, multiple initial conditions are used, and the most suitable
set in terms of lowering the network congestion is selected.
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Figure 8.11: Example of tabu search (after fourth change).

8.3 Preventive start-time optimization (PSO)

8.3.1 Three policies to determine link weights

To determine a set of link weights, there are three optimization policies: Start-
time Optimization (SO), Runtime Optimization (RO), and Preventive Start-
time Optimization (PSO).

When the network topology and traffic matrix are given, SO can determine
the optimal set of link weights once at the beginning of network operation.
Unfortunately, SO is weak against network failure, for example, a link failure.
The most crucial point of SO is that it considers the link weight assignment
problem as a static problem and ignores network dynamic changes at run-
time. In practice, one of the main challenges for network operators is to deal
with link failures, which occur on a daily basis in large IP backbones [12].
Because a link failure will trigger the rerouting of some active paths, the SO-
generated weight set is no longer optimal. This can cause unexpected network
congestion. Nucci at el. also referred to this problem in [11] and introduced
the concept of providing robustness without changing weights during short-
lived link failure events. However, they did not present how to determine the
set of link weights at the start time so as to secure this robustness.

The weakness of SO can be overcome by computing a new optimal set
of link weights whenever the topology is changed. This approach, called RO,
obviously provides the best routing performance after each link failure. How-
ever, changing link weights during a failure may not be practical for two
reasons. First, the updated weights must be flooded to every router in the
network, and every router must then re-compute its minimum cost path to
every other router. This can lead to considerable instability in the network.
Meanwhile, IP packets may arrive in disorder, and the performance of Trans-
port Control Protocol (TCP) connections may be degraded [6, 7]. The more
often link weights are changed, the longer the network takes to achieve sta-
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bility as packets are sent back and forth between routers to achieve the very
divergent processes of updating the routing table and calculating the shortest
paths based on the new link weights. Large networks exhibit more pronounced
network instability when link failure occurs. The second reason is related to
the short-lived nature of most link failures. In [12], inter-PoP link failures
over a 4-month period were examined, and it was found that 80% of the fail-
ures lasted less than 10 minutes, and 50% of the failures lasted less than 1
minute. They thus define transient failures as those failures that last for not
more than 10 minutes. Transient failures can create rapid congestion that is
harmful to the network [13]. However, they leave the human operator with
insufficient time to reassign link weights before the failed link is restored. The
study in [12] also examined the frequency of single-link and multiple-link fail-
ures. They observed that more than 70% of transient failures are single-link
failures. Therefore, it seems reasonable to target the one-time configuration
of link weights that can handle any link failure.

PSO determines, at the start time, a suitable set of link weights that can
handle any possible link failure scenario preventively [14]. Only a single link
failure is considered in [14]. However, the concept of PSO is easily extended
to multiple link failures. The objective is to determine, at the start time, the
most appropriate set of link weights that can avoid both unexpected network
congestion and network instability, the drawbacks of SO and RO, respectively,
regardless of which link fails. PSO considers all possible link failure scenarios
at start time in order to determine a suitable set of link weights. Numerical
results showed that PSO is able to reduce the worst-case network congestion
ratio, compared to that of SO, while it also avoids the runtime changes of link
weights, which would otherwise trigger network instability.

To determine a suitable set of link weights based on the PSO policy, there
are two PSO-based algorithms: PSO-L (limited rage of candidates) [14] and
PSO-W (wide range of candidates) [15]. In the following sections, the PSO
model is defined and PSO-L and PSO-W are explained.

8.3.2 PSO model

The network is represented as directed graph G(V,E), where V is the set
of nodes and E is the set of links. v ∈ V , where v = 1, 2, · · · , N , indicates
an individual node and e, where e = 1, 2, · · · , L, indicates a bidirectional
individual link. N is the number of nodes and L is the number of links in the
network. We consider only single link failure in this work, as the probability
of concurrent multiple link failure is much less than that of single link failure.
F is the set of link failure indices l, where l = 0, 1, 2, · · · , L and F = E ∪ {0}.
The number of elements in F is |F | = L + 1. l = 0 indicates no link failure
and l (	= 0) indicates the failure of link e = l ∈ E. Gl denotes G that has no
link e = l (	= 0) because of link failure1. ce is the capacity of e ∈ E. The traffic

1G0 = G as l = 0 indicates no failure.
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volume of passing through e is denoted as ue. T = {tpq} is the traffic matrix,
where tpq is the traffic demand from source node p to destination node q.

The network congestion ratio r refers to the maximum value of all link
utilization ratios in the network. r is defined by

r = max
e∈E

ue

ce
, (8.1)

where 0 ≤ r ≤ 1. Traffic volume 1−r
r tpq is the greatest volume that can be

added to the existing traffic volume of dpq for any pair of source node p and
destination node q such that the traffic volume passing though any e does not
exceed ce under the condition that routing is not changed. After 1−r

r tpq is
added to dpq, the total traffic volume becomes 1

r tpq and the updated network
congestion becomes 1, which is the upper limit. Maximizing the additional
traffic volume of 1−r

r tpq is equivalent to minimizing r [16].
W = {we} is the L× 1 link weight matrix of network G, where we is the

weight of link e. Wcand is the set of candidate W for which we are calculating
the worst-case congestion. r(W, l) is a function that returns the congestion ra-
tio defined in Eq. (8.1) for Gl according to OSPF-based shortest path routing
using the link weights in W . R(W ) refers to the worst-case congestion ratio
in W among all link failure scenarios l ∈ F . R(W ) is defined by

R(W ) = max
l∈F

r(W, l). (8.2)

Our target is to find the most appropriate set of link weights, WPSO, for
network G that minimizes R(W ) defined in Eq. (8.2) over link failure index
l ∈ F . WPSO is defined by

WPSO = arg min
W∈Wcand

R(W ), (8.3)

whereWcand is all possible link-weight set candidates. The network congestion
ratio achieved using WPSO is R(WPSO); it represents the upper bound of
congestion for any single link failure scenario in the network.

8.3.3 PSO-L

8.3.3.1 Overview of PSO-L

PSO-L determines WPSO out of link-weight set candidates in Wcand, which is
limited by PSO-L, in Eq. 8.3. For PSO-L, we use the definitions stated below:
W ∗

l = {w1, w2, · · · , wl−1, wl+1, · · · , wL} is an (L − 1) × 1 link-weight matrix
that is optimized for network Gl. W

k
l = {w1, w2, · · · , wl−1, w

k
l , wl+1, · · · , wL}

is an L×1 link-weight matrix, where wk
l is obtained by the optimization of Gk

(k 	= l ∈ F ) and the other link weights are set using W ∗
l . W

k
l is represented

by

W k
l = W ∗

l ∪ {wk
l }. (8.4)
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Wl, which is an L × 1 link-weight matrix, refers to W k
l defined in Eq. (8.4)

that minimizes R(W k
l ) defined in Eq. (8.2) over k ∈ F . Wl is defined by

Wl = arg min
k( �=l)∈F

R(W k
l ). (8.5)

The target of PSO is to find the most appropriate set of link weights,
WPSO, for network G that minimizes R(Wl) defined in Eq. (8.2) over link
failure index l ∈ F . In PSO-L, WPSO is defined by

WPSO = arg min
l∈F

R(Wl). (8.6)

The procedure used by PSO-L to obtain WPSO, defined by Eq. (8.6), is
divided into three steps as follows:

Step 1: Get Wl for all l ∈ F .

Step 2: Compute R(Wl) for all Wl, where l ∈ F , using Eq. (8.2).

Step 3: Get WPSO using Eq. (8.6).

Step 1 is also divided into three sub-steps to obtain Wl, as follows:

Step 1a: Compute W k
l for all k ∈ F , using Eq. (8.4).

Step 1b: Compute R(W k
l ) for all k ∈ F , using Eq. (8.2).

Step 1c: Get Wl that minimizes R(W k
l ) for all k ∈ F , using Eq. (8.4).

If there is more than one equivalent value of W k
l that minimizes R(W k

l ),
one W k

l is determined based on the following policy. If W k
l with k = 0 is

included, it is selected. Otherwise, oneW k
l is randomly selected out of multiple

candidates.

8.3.3.2 Examples of PSO-L

Figure 8.12 is an example network with four nodes and five links, which are
denoted e =1, 2, 3, 4, and 5. We consider the no link failure case and all cases
of possible link failure, from l = 0 to l = 5. Consider the case of no link failure,
l = 0, as shown in Figure 8.12(a). The optimal set of link weights with l = 0
is denoted as W0.

Next, consider l = 1, where link e = 1 has failed, as shown in Fig-
ure 8.12(b). W ∗

1 = {w2, w3, w4, w5}, where w1 is not included, is obtained
by considering the network topology with l = 1. w1 must be determined
to get W1. To get w1, the topology with link failure k ∈ F (	= 1) is con-
sidered, where wk

1 is obtained. Then, five sets of link weights denoted as
W k

1 = {wk
1 , w2, w3, w4, w5} are obtained. Using W k

1 , we obtain the net-
work congestion ratios with link failure l, denoted as r(W k

1 , l), as shown
in Table 8.1. Next, we obtain the worst-case congestion ratio over l ∈ F ,
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e=1

e=2

e=4

e=5e=3

(a) No link failure (b) Link failure of e=1

e=2

e=4

e=5e=3

Figure 8.12: Network model.

Table 8.1: r(W k
1 , l) for each link failure scenario.

Link failure index l W 0
1 W 2

1 W 3
1 W 4

1 W 5
1

0 0.05 0.05 0.05 0.05 0.06
1 0.04 0.04 0.04 0.04 0.04
2 0.11 0.10 0.11 0.13 0.13
3 0.08 0.04 0.04 0.07 0.06
4 0.07 0.05 0.06 0.05 0.06
5 0.06 0.08 0.08 0.06 0.06

R(W k
1 ) 0.11 0.10 0.11 0.13 0.13

( c©2011 IEICE, Ref. [15], P. 1967.)

or R(W k
1 ) = maxl∈F r(W k

1 , l). In the last row of Table 8.1, we find that
the worst-case congestion ratio over l is minimum for W 2

1 . As a result,
W1 = W 2

1 = {w2
1 , w2, w3, w4, w5} is determined.

In the same way asW1, we obtainW2,W3,W4, and W5 for each link failure
scenario. Using Wl, where l ∈ F , we obtain the network congestion ratios with
link failure l′ ∈ F denoted as r(Wl, l

′), as shown in Table 8.2. Next, we obtain
the maximum congestion ratio over l′ ∈ F , or R(Wl) = maxl′∈F r(Wl, l

′). In
the last row of Table 8.2, we find that the maximum congestion ratio over l′

is minimum for W2.

8.3.3.3 Problem of PSO-L

Our desired goal is to determine a set to minimize the worst case congestion.
However, PSO-L is not guaranteed to obtain an optimal set that minimizes
the worst-case congestion. Numerical results presented in [14] indicate that
PSO-L is able to reduce the worst-case network congestion ratio, but it is not
verified that the obtained set minimizes the worst-case network congestion
ratio.

In PSO-L, only Wl for l = 0, . . . , L, each of which is optimized set for Gl, is
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Table 8.2: r(Wl, l
′) for each link failure scenario and R(Wl)

Link failure index l′ W0 W1 W2 W3 W4 W5

0 0.04 0.05 0.05 0.13 0.04 0.09
1 0.04 0.04 0.06 0.11 0.04 0.11
2 0.11 0.10 0.07 0.13 0.11 0.09
3 0.04 0.04 0.05 0.04 0.04 0.06
4 0.05 0.05 0.09 0.13 0.05 0.13
5 0.06 0.08 0.06 0.06 0.06 0.06

R(Wl) 0.11 0.10 0.09 0.13 0.11 0.13
( c©2011 IEICE, Ref. [15], P. 1967.)

considered a candidate weight set. However, a link weight set, Ω, which is not
optimized set for any Gl, may give a lower worst-case congestion ratio than
those of any Wl. In other words, Ω that satisfies R(Ω) ≤ R(Wl) may exist.
Table 8.3 shows a possible numerical example of congestion ratios for Wl for
l = 0, . . . , L and Ω, assuming that Ω that satisfies R(Ω) ≤ R(Wl) exists, while
Ω is not considered as a candidate in PSO-L. Note that the same network
that is employed in Section 8.3.3.2, as shown in Figure 8.12(a), is used.

Table 8.3: r(Wl, l
′) and r(Ω, l′) for each link failure scenario and their worst

congestion ratios, where R(Ω) ≤ R(Wl).

Link failure index l′ W0 W1 W2 W3 W4 W5 Ω
0 0.04 0.05 0.05 0.13 0.04 0.09 0.05
1 0.04 0.04 0.06 0.11 0.04 0.11 0.05
2 0.11 0.10 0.07 0.13 0.11 0.09 0.08
3 0.04 0.04 0.05 0.04 0.04 0.06 0.06
4 0.05 0.05 0.09 0.13 0.05 0.13 0.07
5 0.06 0.08 0.06 0.06 0.06 0.06 0.06

R(Wl) 0.11 0.10 0.09 0.13 0.11 0.13 0.08
( c©2011 IEICE, Ref. [15], P. 1968.)

In Table 8.3, W2 is the solution of PSO-L, which satisfies Eq. (8.5). Note
that at least one of r(Wl, l

′) is always equal to or lower than r(Ω, l′) for any
link failure scenario l′. However, as R(Ω) is lower than R(W2), W2 does not
give the minimum worst-case congestion ratio. It is not guaranteed that PSO-
L always gives the optimal solution to minimize the worst-case congestion
ratio.
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8.3.4 PSO-W

8.3.4.1 Overview of PSO-W

PSO-W uses all W ∈ Wcand to calculate R(W ), using Eq. (8.2) and find the
optimal W for which R(W ) is minimum [15]. That ensures minimization of
the worst-case congestion ratio. This procedure defined by Eq. (8.3) is divided
into two steps as follows:

Step 1: Compute R(W ) for all W ∈ Wcand, using Eq. (8.2).

Step 2: Get WPSO using Eq. (8.3).

The issue of immediate concern is the high number of weight matrix can-
didates in Wcand. It is obvious that the more the candidates are, the more
likely it is of getting the appropriate matrix. If the allowable upper limit of a
link weight is x, the number of possible candidates is xL. To reduce the time
complexity, PSO-L considers only the optimized link set for possible topolo-
gies brought from single link failures, that is, L + 1. This smaller number of
candidates decreases the possibility of getting the optimal worst-case perfor-
mance. However, the PSO-L candidates may not include link-weight sets that
are not optimized for any topology due to network failure, but that may give
lower worst-case congestion and thus the best performance.

8.3.5 PSO-W algorithm based on tabu search

PSO-W finds a more suitable link-weight set in a wide range of candidates
by adopting the TS-based algorithm in a hermitic manner than PSO-L. The
PSO-W algorithm is described below. At the beginning, a tabu list, where no
link-weight set exits, is set.

8.3.5.1 PSO-W algorithm

Objective function: Find weight set WPSO that meets Eq. (8.3), the set that
gives the minimum worst-case congestion.

Step 1: Set initial candidate: As an initial candidate, a set of link weights
randomly generated that is not in the tabu list is considered the initial
solution at this iteration. The solution for each iteration is called Witr ,
and the final result is called the solution, Wopt. The initial candidate
is set in Witr, and Wopt = Witr is set. The network congestion ratio is
obtained based on the shortest-path routing with the initial weight set.

Step 2: Find worst-case highest congested link: The worst-case congestion
is computed using Eq. (8.2) against all topologies created by single link
failure. Find the worst-case highest congested link and the topology for
which the congestion occurs.
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Step 3: Move to next candidate: At each time, the previous data of the
worst-case highest congested link is used. The next candidate is created
by increasing the link weight of the marked link. The link weight of the
marked link is increased by the minimum value that changes at least one
route passing through the link. The minimum value is searched by incre-
menting the weight of the marked link, until at least one route passing
through that link is changed. This, therefore, decreases the congestion
of the marked link. The updated candidate is inserted in the tabu list.
If the value exceeds the upper limit of feasible link weight, go to Step 6.

Step 4: Evaluation of candidate: The updated link-weight set obtained
at Step 3 is evaluated by computing the network congestion. It considers
all single link failure topologies to compute the worst-case congestion. If
the network congestion ratio with the updated set is lower than that of
the Witr set, the weight set is set as Witr and the next candidate, and
Step 2 is reentered. Otherwise return to Step 2 to find out the worst-case
highest congested link again for the link-weight set obtained at Step 3
and iterate Steps 3 and 4. If the number of loops from Step 2 to Step 4
exceeds the predetermined number, Cmax, go to Step 5.

Step 5: Keep optimum solution: If the congestion ratio of Witr is lower
than that of Wopt, set Wopt = Witr .

Step 6: Continue iteration with stop criteria: Go to step 1 for the next
iteration, unless the number of iterations exceeds a fixed predetermined
value, Imax. Imax depends on network size, the allowable computational
time, and the quality of solution desired. Otherwise, the search proce-
dure stops, and Wopt is the solution.

In Eq. (8.2), SO considers only the case of l = 0, no failure situation, while
PSO considers all l ∈ F . In addition, the difference of PSO-W from PSO-L is
the set of candidates,Wcand in Eq. (8.3). In PSO-L, the candidates are limited
to Wl, l ∈ F , while in PSO-W a wider range of candidates is considered.

To clarify the differences between PSO-L and PSO-W, the algorithms are
shown in Figures 8.13 and 8.14, respectively. In PSO-L, tabu search is per-
formed for each topology with a single link failure. In PSO-W, all possible
single link failures are considered in the process of tabu search.

8.4 Performance of PSO-W

The performances of the PSO-W scheme to those of the SO and RO schemes
via simulations are compared. The performance measure is the network con-
gestion ratio, r. Six sample networks are used, as shown in Figure 8.15, to
determine the basic characteristics of these schemes. For the given network
topologies, link capacities and traffic demands are randomly generated with
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START

All link failures 
examined?

Obtained W using 
tabu search

Check PSO condition

S t PSO W i ht

No

Yes

Set PSO Weight

END

Figure 8.13: Flowchart of PSO-L.

uniform distribution. Cmax and Imax are set to 30 and 1000, respectively, by
considering the convergence of the solution carefully.

Let r(l) be denoted as the network congestion ratio for link failure index
l ∈ F . To compare r(l) of the different schemes, the network congestion ratios
of the PSO-W, SO, and RO schemes with and without a link failure were
normalized by that of SO without any link failure. The normalized network
congestion ratios are denoted as rPSO−W (l), rSO(l), and rRO(l), respectively.

Table 8.4 compares the worst-case network congestion ratios, max
l∈F

rPSO−W (l),

max
l∈F

rSO(l), and max
l∈F

rRO(l), for the sample networks presented in Figure 8.15

for all link-failure scenarios. In terms of the worst-case network congestion ra-
tios over l, the following relationship is observed:

max
l∈F

rRO(l) ≤ max
l∈F

rPSO−W (l) ≤ max
l∈F

rSO(l). (8.7)

This indicates that PSO-W is able to reduce the worst-case network congestion
ratio, unlike SO, while also avoiding the runtime changes of link weights, which
would otherwise cause network instability. The reduction ratio of the worst-
case congestion ratio, α, is defined by

α =
max
l∈F

rSO(l)−max
l∈F

rPSO−W (l)

max
l∈F

rSO(l)
. (8.8)

α is also shown in Table 8.4. The range of α is 0.00 to 0.19 for our examined
networks.
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START

All weights using 
tabu search 
examined?

Check PSO condition

No

Yes

Check for all link 
failures?

No

Yes

Set PSO Weight

END

Figure 8.14: Flowchart of PSO-W.

Table 8.5 compares the network congestion ratios with no link failure.

rSO(0) = rRO(0) ≤ rPSO−W (0) (8.9)

is observed. When there is no link failure, for the case of l = 0, rPSO−W (0)
may be higher than rSO(0)(= rRO(0)) because the set of link weights of PSO-
W is determined so as to reduce the worst-case network congestion ratio. The
deviation between rPSO−W (0) and rSO(0), β, is defined by

β =
rPSO−W (0)− rSO(0)

rSO(0)
. (8.10)

Table 8.4: Comparison of worst-case network congestion ratios for all link-
failure scenarios.

Network type max
l∈F

rPSO−W (l) max
l∈F

rSO(l) max
l∈F

rRO(l) α

Network 1 1.58 1.83 1.58 0.14
Network 2 1.36 1.67 1.27 0.19
Network 3 1.45 1.82 1.39 0.20
Network 4 2.00 2.00 2.00 0.00
Network 5 6.95 7.04 6.59 0.06
Network 6 1.76 1.83 1.42 0.04

( c©2011 IEICE, Ref. [15], P. 1970.)
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(a) Network 1 (b) Network 2

(c) Network 3 (d) Network 4

(e) Network 5 (f) Network 6

Figure 8.15: Network models to evaluate PSO-W.

β is also shown in Table 8.5. To reduce the worst-case network congestion
ratio, PSO-W has to pay the penalty of β for the case of no link failure.

The performances of PSO-W and PSO-L with respect to the reduction
ratio of the worst-case congestion ratio, α, are compared. Table 8.6 shows the
reduction ratios of PSO-L and PSO-W, αPSO−L and αPSO−W , for the sample
networks presented in Figure 8.15 for all link-failure scenarios. Δ is defined as
the difference between αPSO−W and αPSO−L, which is the reduction ratio of
the two different algorithms:

Δ = αPSO−W − αPSO−L. (8.11)

We observe that PSO-W finds the more appropriate link weight set than
PSO-L, in terms of worst-case performance, in most cases.
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Table 8.5: Comparison of network congestion ratios with no link failure.

Network type rPSO−W (0) rSO(0)(= rRO(0)) β
Network 1 1.08 1.00 0.08
Network 2 1.05 1.00 0.05
Network 3 1.07 1.00 0.07
Network 4 1.00 1.00 0.00
Network 5 4.01 1.00 3.01
Network 6 1.04 1.00 0.04

( c©2011 IEICE, Ref. [15], P. 1970.)

Table 8.6: Comparison of network congestion ratios of PSO-W and PSO-L for
worst-case.

Network type αPSO−W αPSO−L Δ
Network 1 0.136 0.033 0.103
Network 2 0.185 0.067 0.118
Network 3 0.202 0.164 0.038
Network 4 0.000 0.000 0.000
Network 5 0.064 0.058 0.006
Network 6 0.038 0.027 0.011

( c©2011 IEICE, Ref. [15], P. 1971.)
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Chapter 9

Mathematical puzzles

This chapter presents mathematical puzzles that can be tackled by integer
linear programming (ILP). They are the Sudoku puzzle, a river crossing puz-
zle, and a lattice puzzle. The ILP formulations and solutions by GLPK are
presented. For the river crossing puzzle, the shortest path approach is also
introduced to solve the problem.

9.1 Sudoku puzzle

9.1.1 Overview

Sudoku is a logic-based, combinatorial number-placement puzzle [1]. First
published in the United States in 1979, this puzzle was designed by Howard
Garns, an architect from Indiana. In its first publication by Dell Magazines,
it was known as Number Place. The name “Sudoku” was introduced when the
puzzle was published in Japan by Nikoli, a Japanese publisher that specializes
in games and, especially, logic puzzles. The word “Sudoku” is a Japanese
abbreviation for the phrase, “suji wa dokushin ni kagiru,” which means that
the digits must be remain single. Although it has numerous variants in form,
size, and level of difficulty, the Sudoku puzzle most commonly appears in its
9× 9 matrix form.

The rule of Sudoku is simple: fill in an n× n matrix, which contains some
given entries, so that each row, column, and m×m submatrix, where n = m2,
contain each integer 1 through n exactly once. The number and location of
the given entries determine the puzzle’s level of difficulty. In a 9 × 9 puzzle,
each row, column, and 3× 3 submatrix should contain the digits 1 through 9
exactly once. An example of the Sudoku problem and the solution is shown
in Figure 9.1.
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7 8 5 2

8 6 4 5

1 9 8

4 2 8 9 7

5 7 6 1 2

7 3 6

3 1 6 4

6 4 7 8 1 5 2 3 9

8 9 3 6 2 4 7 1 5

2 1 5 3 9 7 4 8 6

4 3 1 2 8 9 6 5 7

7 2 6 4 5 3 8 9 1

5 8 9 7 6 1 3 4 2

1 7 4 9 3 2 5 6 8

3 5 8 1 7 6 9 2 4

2 5 8 1 9 6 2 5 4 8 1 7 3

(a) Problem (b) Solution

Figure 9.1: Example of 9× 9 Sudoku puzzle.

9.1.2 Integer linear programming problem

The Sudoku puzzle is formulated here as an integer linear programming (ILP)
task. The Sudoku problem is a satisfiability problem (or feasibility problem)
whose goal is to find at least one feasible solution satisfying all of the con-
straints. In this problem, we do not intend to maximize or minimize any value.
Therefore, no objective function must be defined.

For the 9× 9 puzzle, the decision variables, xijk , are defined by

xijk =

{
1 if element (i, j) contains integer k
0 otherwise,

(9.1)

where i, j, k ∈ D. D is a set of the digits 1 through 9, D = {1, · · · , 9}. Let G
be a set of (i, j, k), where digit k is given for element (i, j), or xijk = 1.
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The 9× 9 puzzle is formulated as the following ILP problem:

Constraints xijk = 1, ∀i, j, k ∈ G (9.2a)
9∑

k=1

xijk = 1, ∀i, j ∈ D (9.2b)

9∑
i=1

xijk = 1, ∀j, k ∈ D (9.2c)

9∑
j=1

xijk = 1, ∀i, j ∈ D (9.2d)

I+2∑
i=I

J+2∑
j=J

xijk = 1, ∀k ∈ D, I = 1, 4, 7, J = 1, 4, 7 (9.2e)

xijk ∈ {0, 1}, ∀i, j, k ∈ D (9.2f)

Eq. (9.2a) gives the condition that specifies the Sudoku problem. xijk = 1
for (i, j, k) ∈ G is set. Eq. (9.2b) represents that element (i, j) has only one
digit from 1 to 9. Eq. (9.2c) represents that digit k ∈ D appears once in each
column. Eq. (9.2d) represents that digit k ∈ D appears once in each row.
Eq. (9.2e) represents that digit k ∈ D appears once in each 3× 3 submatrix.

9.1.2.1 GLPK listing

Listing 9.1 shows the model file for the Sudoku problem presented in
Eqs. (9.2a)–(9.2f). The problem presented in Figure 9.1(a) is written in an
input file, as shown in Listing 9.2. After running the command ‘glpsol’,
GLPK reports the solution, as shown in Listing 9.3. Lines 36–71 in Listing 9.1
are the code that outputs the solution in matrix form on the console and the
output file.

Listing 9.1: Model file: sudoku9x9.mod

1 /* sudoku9x9.mod */
2
3 /* Decision variable */
4
5 var x{i in 1..9, j in 1..9, k in 1..9}, binary;
6 /* x[i,j,k] = 1 means cell[i,j] is assigned number k */
7
8
9 /* Initialization */

10
11 param input_problem{1..9, 1..9}, integer , >=0, <=9, default 0;
12 /* input problem */
13
14 s.t. pre_defined{i in 1..9,j in 1..9,
15 k in 1..9: input_problem[i,j]!=0}:
16 x[i,j,k] = (if input_problem[i,j] = k then 1 else 0);
17 /* assign pre-defined numbers */
18
19
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20 /* No objective function */
21
22 /* Constraints */
23
24 s.t. constr_fill{i in 1..9, j in 1..9}: sum{k in 1..9} x[i,j,k] = 1;
25 /* constrain #1 : every cell must be filled by exactly one number */
26
27 s.t. constr_row{i in 1..9, k in 1..9}: sum{j in 1..9} x[i,j,k] = 1;
28 /* constrain #2 : only one k in each row */
29
30 s.t. constr_col{j in 1..9, k in 1..9}: sum{i in 1..9} x[i,j,k] = 1;
31 /* constrain #3 : only one k in each column */
32
33 s.t. constr_sub{I in 1..9 by 3, J in 1..9 by 3, k in 1..9}:
34 sum{i in I..I+2, j in J..J+2} x[i,j,k] = 1;
35 /* constrain #4 : only one k in each submatrix */
36
37 solve;
38
39
40 printf "This is the solution of sudoku 9x9.\n";
41
42
43 for {i in 1..9}
44 { for {0..0: i = 1 or i = 4 or i = 7}
45 printf " +-------+-------+-------+ \n";
46 for {j in 1..9}
47 { for {0..0: j = 1 or j=4 or j =7}
48 printf (" |");
49 printf " %d", sum{k in 1..9} x[i,j,k] * k;
50 for {0..0: j=9} printf (" |\n");
51 }
52 for {0..0: i = 9}
53 printf " +-------+-------+-------+ \n";
54 }
55
56 param TXT , symbolic , := "sudoku9x9.txt";
57
58 printf "This is the solution of sudoku 9x9.\n" > TXT;
59
60
61 for {i in 1..9}
62 { for {0..0: i = 1 or i = 4 or i = 7}
63 printf " +-------+-------+-------+ \n" >> TXT;
64 for {j in 1..9}
65 { for {0..0: j = 1 or j=4 or j =7}
66 printf (" |") >> TXT;
67 printf " %d", sum{k in 1..9} x[i,j,k] * k >> TXT;
68 for {0..0: j=9} printf (" |\n") >> TXT;
69 }
70 for {0..0: i = 9}
71 printf " +-------+-------+-------+ \n" >> TXT;
72 }

Listing 9.2: Input file: sudoku9x9.dat

1 /* FILE NAME : sudoku9x9.dat */
2 /* This is the Sudoku 9x9 problem */
3
4 data;
5
6 param input_problem : 1 2 3 4 5 6 7 8 9 :=
7 1 . . 7 8 . 5 2 . .
8 2 8 . . 6 . 4 . . 5
9 3 . 1 . . 9 . . 8 .
10 4 4 . . 2 8 9 . . 7
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11 5 . . . . . . . . .
12 6 5 . . 7 6 1 . . 2
13 7 . 7 . . 3 . . 6 .
14 8 3 . . 1 . 6 . . 4
15 9 . . 2 5 . 8 1 . . ;
16 end;

Listing 9.3: Output file: sudoku9x9.txt

1 This is the solution of sudoku 9x9.
2 +-------+-------+-------+
3 | 6 4 7 | 8 1 5 | 2 3 9 |
4 | 8 9 3 | 6 2 4 | 7 1 5 |
5 | 2 1 5 | 3 9 7 | 4 8 6 |
6 +-------+-------+-------+
7 | 4 3 1 | 2 8 9 | 6 5 7 |
8 | 7 2 6 | 4 5 3 | 8 9 1 |
9 | 5 8 9 | 7 6 1 | 3 4 2 |

10 +-------+-------+-------+
11 | 1 7 4 | 9 3 2 | 5 6 8 |
12 | 3 5 8 | 1 7 6 | 9 2 4 |
13 | 9 6 2 | 5 4 8 | 1 7 3 |
14 +-------+-------+-------+

9.2 River crossing puzzle

9.2.1 Overview

The river crossing puzzle is a logic-based puzzle whose objective is to carry
items from one river bank to the other, subject to several constraints. This
puzzle can also be classified as a variant of the transport puzzles that include
labyrinths, mazes, and sliding puzzles. The level of difficulty of the river cross-
ing puzzle is based on the restrictions on which or how many items can be
transported at the same time, or which or how many items may be safely left
together. The well-known river crossing puzzles include the problem of the
ridge and torch, the problem with the dogs and chicks, the problem of the
jealous husbands, and the problem of the wolf, goat, and cabbage. The rules
of these problems are described as follows.

Bridge and torch problem Four people, A, B, C, and D, come to a river
at night. There is a narrow bridge, but it can only hold two people at a
time. Because it’s night, the torch must be used when people cross the
bridge. Unfortunately, the torch can only be used for 15 minutes. Person
A can cross the bridge in 1 minute, B in 2 minutes, C in 5 minutes, and
D in 8 minutes. How do they all get across the bridge in 15 minutes or
less? When two people cross the bridge together, they must move at the
slower person’s pace [2].

Dogs and chicks problem Three dogs and three chicks must cross a river
using a boat that can hold at most two items. However, for both banks,
if there are chicks present on each bank, they cannot be outnumbered
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by dogs. How do all the dogs and chicks reach the other bank of the
river?

Jealous husbands problem Three married couples must cross a river us-
ing a boat that can hold at most two people. However, no woman can
be in the presence of another man unless her husband is also present.
How do all three married couples reach the other bank of the river [3]?
This problem is similar to the dogs and the chicks problem. Under the
constraint that no woman can be in the presence of another man unless
her husband is also present, there is no way the women can outnumber
the men on the same bank because they cannot be husbandless.

Wolf, goat, and cabbage problem A farmer must transport a wolf, a
goat, and a cabbage from one bank of a river to the other using a
boat. The boat can only hold a maximum of one item in addition to the
farmer. The goat cannot be left alone with the wolf without the farmer’s
presence, and the cabbage cannot be left alone with the goat without
the farmer’s presence. How does the farmer bring all items to the other
bank of the river [4]?

The following subsections explain how to solve the wolf, goat, and cabbage
problem, which is famous as Alcuin’s transportation model. This problem is
one of the four transportation problems in the book Propositiones ad Acuan-
dos Iuvenes, which is attributed to Alcuin of York, an Anglo-Saxon monk and
an English leading scholar of his time. Written at the end of the eighth cen-
tury A.D., the Propositiones seems to be the oldest collection of mathematical
problems written in Latin [4]. Two different approaches are introduced to solve
the problem. They are the integer linear programming (ILP) approach and
the shortest path approach.

9.2.2 Integer linear programming approach

9.2.2.1 Formulation

Similar to the Sudoku puzzle in Section 9.1, the river crossing problem can
be solved with the ILP approach. The main idea is how to define the deci-
sion variables, the objective function, and the constraints from the problem
description. In this puzzle, we have to determine how the farmer can trans-
port all items to the other bank with the minimum number of trips. The ILP
approach to solve the wolf, goat, and cabbage problem was presented in [4].
We introduce the key idea of the approach below.

Three vectors, each of which has three components, are defined as the
decision variables to represent the configuration of the wolf, the goat, and the
cabbage in three different spots. The three vectors x, y, and z correspond to
the configurations of the left bank, the boat, and the right bank, respectively.
The first, second, and third components of each vector represent the existences
of the wolf, the goat, and the cabbage, respectively.
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Wolf

1
1
1

0
0
0

0
0
0

x y z

Goat
Cabbage

Left bank Boat Right bank

(a) Initial condition

0
0
0

0
0
0

1
1
1

x y z

(b) Final condition

Figure 9.2: Configurations of x, y, and z.

Figure 9.2(a) represents the initial configuration of the wolf, the goat, and
the cabbage. As the initial condition, all three items exist at the left bank,
and there is no item on the boat and at the right bank. All the components
of x are set to 1, and all the components of y and z are set to 0. Every item
that does exist is represented by 1, while every item that does not exist is
represented by 0. Figure 9.2(b) represents the final configurations of the wolf,
the goat, and the cabbage. As all three items exist at the right bank and there
is no item on the boat and at the left bank, all components of z are set to 1,
and all components of x and y are set to 0.

Let x(t, i), y(t, i), and z(t, i) be the ith components of x(t), y(t), and z(t),
respectively, at time t. They are defined in the following:

x(t, i) =

{
1 if item i exists at the left bank at time t,
0 otherwise.

(9.3a)

y(t, i) =

{
1 if item i exists on the boat at time t,
0 otherwise.

(9.3b)

z(t, i) =

{
1 if item i exists at the right bank at time t ,
0 otherwise.

(9.3c)

(9.3d)

t indicates the time, which is an integer. At the beginning, t is set to 0. If the
boat crosses the river from one bank to the other bank, t is incremented by
one. Therefore, if the boat is at the left bank, t is an even number, while, if the
boat is at the right bank, t is an odd number. Item i indicates the index for
items, where the wolf, the goat, and the cabbage are specified by i = 1, 2, 3,
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respectively. For example, x(1, 2) means that the goat exists at the right bank
at time t = 1.

The wolf, goat, and cabbage problem is formulated below as an ILP prob-
lem:

Objective min w =

T∑
t=0

3∑
i=1

f(t)x(t, i) (9.4a)

Constraints
x(0) = (1, 1, 1)
y(0) = (0, 0, 0)
z(0) = (0, 0, 0)

(9.4b)

x(t+ 1) = x(t)− y(t + 1)
z(t+ 1) = z(t) + y(t + 1)

}
∀ even t ∈ Γ− (9.4c)

x(t+ 1) = x(t) + y(t + 1)
z(t+ 1) = z(t)− y(t + 1)

}
∀ odd t ∈ Γ− (9.4d)

y(t, 1) + y(t, 2) + y(t, 3) ≤ 1 ∀ t ∈ Γ (9.4e)

x(t, 1) + x(t, 2) ≤ 1
x(t, 2) + x(t, 3) ≤ 1

}
∀ odd t ∈ Γ (9.4f)

−z(t, 1) + z(t, 2) + z(t, 3) ≤ 1
z(t, 1) + z(t, 2)− z(t, 3) ≤ 1

}
∀ even t ∈ Γ (9.4g)

z(T ) = (1, 1, 1) (9.4h)

x(t),y(t), z(t) ∈ {0, 1}3 ∀ t ∈ Γ, (9.4i)

where Γ = {0, 1, · · · , T } and Γ− = {0, 1, · · · , T − 1}. T must be large enough
that the final configuration can be obtained.

The objective of the wolf, goat, and cabbage problem is to minimize the
number of trips under the condition that the farmer gets all items transported
to the other bank without violating the rule. To achieve our goal, the objective
function of this problem is represented by Eq. (9.4a). f(t) is the given func-
tion that minimizes the number of trips by minimizing the objective function
in Eq. (9.4a). How to choose a suitable f(t) is discussed at the end of this
subsection.

Constraints in Eqs. (9.4b)–(9.4i) are explained in the following. Eq. (9.4b)
represents the initial configuration at t = 0, as shown in Figure 9.2(a).
Eqs. (9.4c) and (9.4d) represent the state transitions. x(t) and z(t) corre-
spond to the wolf-goat-cabbage configuration for the left and right banks,
respectively, after the tth shipment has been completed, while y(t) records
the boat configuration for the tth shipment. Eq. (9.4c) represents the transi-
tion when an item is transported from the right bank to the left bank, or when
t is even, while Eq. (9.4d) represents the transportation from the left bank to
the right bank, or when t is odd. Examples of the state transition are shown
in Figure 9.3 for even t and Figure 9.4 for odd t. Eq. (9.4e) is introduced
because, when the farmer is rowing the boat, he can take at most one item at
a time.
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t=0

1
1
1

0
0
0

0
0
0

x y z

1 0 0
t=1

1
0

0
1

0
1

Figure 9.3: Example of state transition for t even.

According to the rule, there are several wolf-goat-cabbage configurations
that are not allowed. “Wolf-Goat” and “Goat-Cabbage” are not allowed to
be at the same bank without the farmer’s presence. Eq. (9.4f) represents the
state restriction for odd t. It is obtained from the set of possible configurations
of x(t) at the left bank, which is given by

x(t) ∈
⎧
⎨
⎩

⎛
⎝

0
0
0

⎞
⎠ ,

⎛
⎝

1
0
0

⎞
⎠ ,

⎛
⎝

0
1
0

⎞
⎠ ,

⎛
⎝

0
0
1

⎞
⎠ ,

⎛
⎝

1
0
1

⎞
⎠
⎫
⎬
⎭ ∀ odd t ≤ Γ. (9.5)

Eq. (9.4g) represents the state restriction for even t. It is obtained from the
set of possible configurations of z(t) at the right bank, which is given by

z(t) ∈
⎧⎨
⎩

⎛
⎝

0
0
0

⎞
⎠ ,

⎛
⎝

1
0
0

⎞
⎠ ,

⎛
⎝

0
1
0

⎞
⎠ ,

⎛
⎝

0
0
1

⎞
⎠ ,

⎛
⎝

1
0
1

⎞
⎠ ,

⎛
⎝

1
1
1

⎞
⎠
⎫⎬
⎭ ∀ even t ≤ Γ. (9.6)

Eq. (9.4h) represents the final configuration, where all the items must be at
the right bank, as shown in Figure 9.2(b). Eq. (9.4i) indicates that all the
components of x(t), y(t), and z(t) take either 0 or 1.

To solve the ILP problem presented in Eqs. (9.4a)-(9.4i), we must deter-
mine the finite time horizon T , and f(t) in the objective function.

First, consider how to determine T . Let the number of possible states at
the left bank be L. In the worst case, L states at the left bank are experienced.
If there is a feasible solution for the ILP problem, the last state of the left
bank should be x(t) = (0, 0, 0), where t = 2L− 1, which is the maximum odd
number to be considered. As Eq. (9.5) indicates, L = 5, T = 2 · 5 − 1 = 9 is
determined.
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t=1
1
0
1

0
1
0

0
1
0

x y z

1 0 0
t=2

1
0
1

0
0
0

0
1
0

Figure 9.4: Example of state transition for t odd.

Next, consider how to determine a suitable f(t). Intuitively, we find that
one of the suitable functions of f(t) is extremely steep with t. If t increases, w
in Eq. (9.4a) rapidly increases. This means that the farmer must remove all
the items from the left bank as soon as possible. In other words, minimizing
this objective function is equivalent to minimizing the number of trips. Let us
set f(t) as follows:

f(t) = I

t−1∑
t′=0

f(t′) + 1, where f(0) = 0

=

{
0, t = 0

(I + 1)t−1, t ≥ 1.
(9.7)

For I = 3, f(t) is f(0) = 0, f(1) = 1, f(2) = 4, f(3) = 16, · · · . We are able
to prove that f(t) in Eq. (9.7) gives the equivalence between minimizing the
objective function in Eq. (9.4a) and minimizing the number of trips using
Theorem 9.2.1 as follows.

Assume that all the items are first transported to the right bank by the
farmer at t = tvacant. This means x(t, i) = 0 for i = 1, 2, 3 and tvacant ≤ t ≤ T
as no trip is needed after t = tvacant. Therefore, the value of the objective
function is not increased with t ≥ tvacant− 1. In addition, at least one item is
left at the left bank until t = tvacant − 1. In other words, at least x(t, i) = 1
for i exists until t = tvacant−1. We would like to minimize t = tvacant to meet
our goal. Let one of feasible solutions be s and the set of feasible solutions
be S. Let the value of the objective function with solution s until time t be
denoted as w(t, s).
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Theorem 9.2.1 w(t, s1) > w(t − 1, s2) is satisfied for any feasible solution
s1, s2 ∈ S, with 0 ≤ t ≤ tvacant − 1, if Eq. (9.7) is adopted as f(t).

Proof: Consider 0 ≤ t ≤ tvacant − 1. By using this assumption and Eq. (9.7),
the lower bound of w(t, s), inf

s∈S
w(t, s), and the upper bound of w(t − 1, s),

sup
s∈S

w(t− 1, s), are obtained as follows:

w(t, s) =

t∑
t′=0

I∑
i=1

f(t′)x(t′, i)

=
t−1∑
t′=0

I∑
i=1

f(t′)x(t′, i) +
I∑

i=1

f(t)x(t, i)

≥ f(t)

= I

t∑
t′=0

f(t′) + 1

= inf
s1∈S

w(t, s1) (9.8)

The inequality in Eq. (9.8) is derived as at least x(t, i) = 1 for i exists until
t = tvacant − 1.

w(t− 1, s) =

t−1∑
t′=0

I∑
i=1

f(t′)x(t′, i)

≤ I
t−1∑
t′=0

f(t′)

= sup
s2∈S

w(t− 1, s2) (9.9)

The inequality in Eq. (9.9) is derived by assuming that all the items are left
time until t − 1, or x(t′, i) = 1. Using Eqs. (9.8) and (9.9), we obtain the
following relationship:

inf
s1∈S

w(t, s1) > sup
s2∈S

w(t−1, s2), ∀s1, s2 ∈ S, 0 ≤ t ≤ tvacant−1. (9.10)

Therefore, we get

w(t, s1) > w(t− 1, s2), ∀s1, s2 ∈ S, 0 ≤ t ≤ tvacant − 1. (9.11)

Eq. (9.11) indicates that, for any different feasible solution, s1 and s2,
w(t, s1) is larger than w(t − 1, s2) with 0 ≤ t ≤ tvacant − 1. w(t, s) keeps the
same value with tvacant − 1 ≤ t ≤ T , as there are no items at the left bank.
Therefore, minimizing w(t, s) for 0 ≤ t ≤ T is equivalent to minimizing the
number of trips.
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9.2.2.2 GLPK listing

Listing 9.4 shows the model file of the wolf, goat, and cabbage problem puzzle
presented in Eqs. (9.4a)–(9.4i), where Eq. (9.7) is adopted for f(t). Note that
the contribution of t = 0 to the objective function is omitted from Listing 9.4,
as it is a constant value. After running the command ‘glpsol’, GLPK reports
the solution, as shown in Listing 9.5, which illustrates the flow of the trips.
Lines 74–120 in Listing 9.4 are the code that outputs the illustrations on the
console and the output file.

Listing 9.4: Model file: river.mod
1 /* river.mod */
2
3 /* Decision variables */
4
5 var x{t in 0..9, i in 1..3}, binary;
6 /* x[t,1] = 1 --> the WOLF is at the left bank , at time t */
7 /* x[t,2] = 1 --> the GOAT is at the left bank , at time t */
8 /* x[t,3] = 1 --> the CABBAGE is at the left bank , at time t */
9
10 var y{t in 0..9, i in 1..3}, binary;
11 /* y[t,1] = 1 --> the WOLF is crossing , at time t */
12 /* y[t,2] = 1 --> the GOAT is crossing , at time t */
13 /* y[t,3] = 1 --> the CABBAGE is crossing , at time t */
14
15 var z{t in 0..9, i in 1..3}, binary;
16 /* z[t,1] = 1 --> the WOLF is at the right bank , at time t */
17 /* z[t,2] = 1 --> the GOAT is at the right bank , at time t */
18 /* z[t,3] = 1 --> the CABBAGE is at the right bank , at time t */
19
20 /* Objective function */
21
22 minimize F: (sum{t in 1..9, i in 1..3} 4^(t-1)*x[t,i]);
23
24 /* Constraints */
25
26 /* Initialization*/
27
28 s.t. init_left{i in 1..3}: x[0,i]=1;
29 /* at t=0, the WOLF , GOAT , and CABBAGE must exist at the left */
30 /* bank */
31
32 s.t. init_cross{i in 1..3}: y[0,i]=0;
33 /* at t=0, nothing is crosing the river */
34
35 s.t. init_right{i in 1..3}: z[0,i]=0;
36 /* at t=0, nothing exists at the right bank */
37
38 /*Transition*/
39
40 s.t. trans_x {t in 0..8, i in 1..3}:
41 x[t+1,i]=(if (t mod 2 == 0)then x[t,i]-y[t+1,i]
42 else x[t,i]+y[t+1,i]);
43
44 s.t. trans_z {t in 0..8, i in 1..3}:
45 z[t+1,i]=(if (t mod 2 == 0)then z[t,i]+y[t+1,i]
46 else z[t,i]-y[t+1,i]);
47
48 /*Crossing */
49
50 s.t. crossing {t in 0..9}: sum{i in 1..3} y[t,i] <= 1;
51 /* When crossing , the farmer brings 1 item or nothing at all */
52
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53 /* Posible configuration*/
54
55 s.t. state_odd1{t in 0..9: t mod 2 != 0}: x[t,1]+x[t,2] <= 1;
56 /* At the left bank */
57 /* The GOAT can not be left with the WOLF without the farmer */
58
59 s.t. state_odd2{t in 0..9: t mod 2 != 0}: x[t,2]+x[t,3] <= 1;
60 /* At the left bank */
61 /* The CABBAGE can not be left with the GOAT without the farmer */
62
63 s.t. state_even1{t in 0..9: t mod 2 == 0}: -z[t,1]+z[t,2]+z[t,3] <=1;
64 /* At right bank */
65 /* The CABBAGE can not be left with the GOAT without the farmer */
66
67 s.t. state_even2{t in 0..9: t mod 2 == 0}: z[t,1]+z[t,2]-z[t,3] <=1;
68 /* At right bank */
69 /* The GOAT can not be left with the WOLF without the farmer */
70
71
72 /*Final*/
73
74 s.t. final_state{i in 1..3}: z[9,i]=1;
75 /* at t =9, the WOLF , GOAT , and CABBAGE must exist at right bank */
76
77 solve;
78
79 printf "|LEFT_BANK| |CROSSING | |RIGHT_BANK| \n";
80
81 for {t in 0..9}
82 {
83 printf " \n";
84 printf " \n";
85 printf "t = %d", t;
86 printf " \n";
87
88 printf: (if x[t,1] = 1 then "wolf\t" else "----\t");
89 printf: (if y[t,1] = 1 then "wolf\t" else "----\t");
90 printf: (if z[t,1] = 1 then "wolf \n" else "---- \n");
91
92 printf: (if x[t,2] = 1 then "goat\t" else "----\t");
93 printf: (if y[t,2] = 1 then "goat\t" else "----\t");
94 printf: (if z[t,2] = 1 then "goat \n" else "---- \n");
95
96 printf: (if x[t,3] = 1 then "cabbage \t" else "----\t");
97 printf: (if y[t,3] = 1 then "cabbage \t" else "----\t");
98 printf: (if z[t,3] = 1 then "cabbage \n" else "---- \n");
99 }
100
101 param TXT , symbolic , := "river.txt";
102
103 printf "|LEFT_BANK| |CROSSING | |RIGHT_BANK| \n" > TXT;
104
105 for {t in 0..9}
106 {
107 printf " \n" >> TXT;
108 printf " \n" >> TXT;
109 printf "t = %d", t >> TXT;
110 printf " \n" >> TXT;
111
112 printf: (if x[t,1] = 1 then "wolf\t" else "----\t") >> TXT;
113 printf: (if y[t,1] = 1 then "wolf\t" else "----\t") >> TXT;
114 printf: (if z[t,1] = 1 then "wolf \n" else "---- \n") >> TXT;
115
116 printf: (if x[t,2] = 1 then "goat\t" else "----\t") >> TXT;
117 printf: (if y[t,2] = 1 then "goat\t" else "----\t") >> TXT;
118 printf: (if z[t,2] = 1 then "goat \n" else "---- \n") >> TXT;
119
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120 printf: (if x[t,3] = 1 then "cabbage \t" else "----\t") >> TXT;
121 printf: (if y[t,3] = 1 then "cabbage \t" else "----\t") >> TXT;
122 printf: (if z[t,3] = 1 then "cabbage \n" else "---- \n") >> TXT;
123 }

Listing 9.5: Output file: river.txt

1 |LEFT_BANK| |CROSSING | |RIGHT_BANK|
2
3
4 t = 0
5 wolf ---- ----
6 goat ---- ----
7 cabbage ---- ----
8
9
10 t = 1
11 wolf ---- ----
12 ---- goat goat
13 cabbage ---- ----
14
15
16 t = 2
17 wolf ---- ----
18 ---- ---- goat
19 cabbage ---- ----
20
21
22 t = 3
23 ---- wolf wolf
24 ---- ---- goat
25 cabbage ---- ----
26
27
28 t = 4
29 ---- ---- wolf
30 goat goat ----
31 cabbage ---- ----
32
33
34 t = 5
35 ---- ---- wolf
36 goat ---- ----
37 ---- cabbage cabbage
38
39
40 t = 6
41 ---- ---- wolf
42 goat ---- ----
43 ---- ---- cabbage
44
45
46 t = 7
47 ---- ---- wolf
48 ---- goat goat
49 ---- ---- cabbage
50
51
52 t = 8
53 ---- ---- wolf
54 ---- ---- goat
55 ---- ---- cabbage
56
57
58 t = 9
59 ---- ---- wolf
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60 ---- ---- goat
61 ---- ---- cabbage

As shown in Listing 9.5, at t = 1, the farmer takes the goat to the right
bank and leaves the wolf and the cabbage at the left bank. At t = 2, having put
the goat at the right bank, the farmer returns to the left bank. At t = 3, the
farmer takes the wolf to the right bank. At t = 4, having put the wolf at the
right bank, the farmer takes the goat and returns to the left bank. At t = 5,
having left the goat behind at the left bank, the farmer takes the cabbage
across to the right bank. At t = 6, having put the wolf and the cabbage
together at the right bank, the farmer returns to the left bank. At t = 7, the
farmer picks up the goat and goes across to the right bank. Therefore, at this
point, nothing exists at the left bank because all items have been transported
to the right bank. Therefore, we can conclude that the minimum number of
trips is 7.

9.2.3 Shortest path approach

9.2.3.1 Overview

The river crossing puzzle can be solved using the shortest path routing ap-
proach. This approach finds the path with minimum cost from the source
node to the destination node for the constructed network that represents the
feasible states and the transitions for the river crossing puzzle. In the network,
each feasible state is denoted as a node, and each transition from one state
to another state, or each trip from one bank to the other bank, is denoted as
a link with unit cost. Note that the network is an undirected graph, where
traffic flows in both directions on each link. After the network is constructed,
we can easily solve the problem by determining the shortest path from the
source node, which represents the initial state, to the destination node, which
represents the final state.

9.2.3.2 Network construction and shortest path

To solve the problem, three steps are considered. The first step is to list the
feasible states. The second step is to construct the network. The third step is
to find the shortest path.

First, let us list the feasible states. Each state that represents a configu-
ration at the left bank is denoted by (f, w, g, c). f , w, g, and c indicates the
existence of the farmer, the wolf, the goat, and the cabbage at the left bank,
respectively. If an item exists, the value is set to 1, and otherwise 0. If the state
of the left bank is (f, w, g, c), that of the right bank is (f̄ , w̄, ḡ, c̄). If all the
states of (f, w, g, c) are counted, there are 16(= 24) states. However, to sat-
isfy the rule, six states, which are (0, 0, 1, 1), (1, 1, 0, 0), (0, 1, 1, 0), (1, 0, 0, 1),
(0, 1, 1, 1), (1, 0, 0, 0), are not allowed and must be removed. Therefore, there
are 10 (= 16−6) feasible states, as shown in Table 9.1; (1, 1, 1, 1) and (0, 0, 0, 0)
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Table 9.1: Feasible states at left bank

Farmer Wolf Goat Cabbage

1 1 1 1 initial state

1 1 1 0

1 1 0 1

1 0 1 1

1 0 1 0

0 1 0 1

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0 final state

indicate the initial and final states, respectively. Changing a state to another
state is equivalent to moving from one bank to the other bank.

Second, let us construct the network that represents the feasible states
and the state transitions for the wolf, goat, and cabbage problem. Figure 9.5
shows the constructed network. Each node corresponds to each feasible state
presented in Table 9.1. Each link indicates a corresponding feasible state tran-
sition. Each link cost is set to 1, as the cost of every trip from one bank to
the other bank is considered the same. For example, consider the initial state
(1, 1, 1, 1). As the farmer is able to cross the river taking the goat from the
left side to the right side, (1, 1, 1, 1) is able to move to (0, 1, 0, 1), but is un-
able to move to any other state. The opposite transition from (0, 1, 0, 1) to
(1, 1, 1, 1) is also feasible. Thus, a bidirectional link is set between (1, 1, 1, 1)
and (0, 1, 0, 1).

1111 0101 1101 0001 0000

1011

1110

0010

0100

1010

Initial 
state

(source)

Final
state

(destination)

Figure 9.5: Constructed network with unit link costs.
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The third step is to find the shortest path from the source node to the
destination node. The way to find the shortest path is described in Sec-
tion 4.1. For the network in Figure 9.5, we find two shortest paths, which
are (0, 0, 0, 0) → (0, 1, 0, 1) → (1, 1, 0, 1) → (0, 0, 0, 1) → (1, 0, 1, 1) →
(0, 0, 1, 0) → (1, 0, 1, 0) → (0, 0, 0, 0) and (0, 0, 0, 0) → (0, 1, 0, 1) →
(1, 1, 0, 1) → (0, 1, 0, 0) → (1, 1, 1, 0) → (0, 0, 1, 0) → (1, 0, 1, 0) → (0, 0, 0, 0).
Both paths give the minimum number of trips, which is 7.

The interpretation of the first path is the same as the solution described in
Section 9.2.2. We describe the interpretation of the second path is as follows.
At the first trip, the farmer takes the goat to the right bank and leaves the
wolf and the cabbage at the left bank. On the second trip, having put the
goat at the right bank, the farmer returns to the left bank. On the third trip,
the farmer takes the cabbage to the right bank. On the fourth trip, having
put the cabbage at the right bank, the farmer takes the goat and returns to
the left bank. On the fifth trip, having left the goat behind at the left bank,
the farmer takes the wolf across to the right bank. On the sixth trip, having
put the wolf and the cabbage together at the right bank, the farmer returns
to the left bank. On the seventh trip, the farmer takes the goat across to the
right bank. Therefore, at this point, there is nothing at the left bank because
all items have been transported to the right bank. The first solution and the
second solution are different in what the farmer picks up—the wolf or the
cabbage on the third trip. Both solutions are acceptable.

9.2.4 Comparison of two approaches

It is presented that the wolf, goat, and cabbage problem can be solved by both
the ILP and shortest path approaches in Sections 9.2.2 and 9.2.3, respectively.
Both approaches find the solution in the minimum number of trips and also
the flow of the trips.

The two approaches have their own benefits and challenges. The ILP ap-
proach does not always need to list all feasible states and their transitions,
but it counts on being able to define a mathematical model from the rules of
the problem. In addition, it is not always possible to define the problem in
linear form. In some cases, the river crossing problem is formulated as a non-
linear integer problem, or a combinatorial problem. On the other hand, the
shortest path approach counts on being able to construct a network by listing
all possible states and their transitions. However, once the connected network
is constructed, it is guaranteed that the problem is solved by the approach.

9.3 Lattice puzzle

9.3.1 Overview

Similar to the Sudoku puzzle, the lattice puzzle is a logic-based, number-
placement puzzle. There are several types of lattice, either in two dimensions
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(2D) or three dimensions (3D). A 2D rectangular lattice is introduced here.
The lattice puzzle has a simpler rule than the Sudoku puzzle: fill in every

cell of the n×n lattice with a positive integer number (≥ 0), so that the sum
of numbers in every m× l and l×m sublattice equals k. Figure 9.6 shows an
example of the lattice puzzle with n = 6, m = 3, l = 2, and k = 7. There is
no number assigned to the lattice in the initial condition.

1 0 3 0 1 2

2 1 0 3 0 1

1 2 1 0 3 0

0 1 2 1 0 3

3 0 1 2 1 0

0 3 0 1 2 1

(a) Problem (b) Solution

Figure 9.6: n×n lattice puzzle. The sum of numbers in every m× l and l×m
sublattice must be k, where n = 6, m = 3, l = 2, and k = 7.

9.3.2 Integer linear programming

The problem of the lattice puzzle is formulated as integer linear programming
(ILP). The lattice puzzle is also a satisfiability problem (or feasibility problem)
whose goal is to find at least one feasible solution satisfying all the constraints.
Once again, no objective function must be defined, because we do not intend
to maximize or minimize any value.

Let us consider the lattice puzzle with n = 6, m = 3, l = 2, and k = 7.
The decision variables, xij ≥ 0, are denoted, where i ∈ N and j ∈ N , and
N = {1, 2, · · · , 6}. The problem of the lattice puzzle is formulated as the
following ILP problem:

Constraints

I+2∑
i=I

J+1∑
j=J

xij = 7, ∀ 1 ≤ I ≤ 4, 1 ≤ J ≤ 5 (9.12a)

I+1∑
i=I

J+2∑
j=J

xij = 7, ∀ 1 ≤ I ≤ 5, 1 ≤ J ≤ 4, (9.12b)
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where I and J are integers. Eq. (9.12a) represents that the sum of numbers
in every 3 × 2 sublattice must be 7. Eq. (9.12b) represents that the sum of
numbers in every 2× 3 sublattice must be 7.

9.3.2.1 GLPK listing

Listing 9.6 shows the model file for the lattice puzzle problem presented in
Eqs. (9.12a) and (9.12b). After running the command ‘glpsol’, GLPK re-
ports the solution, as shown in Listing 9.7. Lines 23-58 in Listing 9.1 are the
code that outputs the solution in lattice form on the console and output file.

Listing 9.6: Model file: lattice6x6.mod

1 /* lattice6x6.mod */
2
3 /* Decision variable */
4
5 var x{i in 1..6, j in 1..6}, integer , >= 0;
6 /* x[i,j] = 1 means cell[i,j] is assigned by number 1 */
7 /* x[i,j] = 7 means cell[i,j] is assigned by number 7 */
8
9

10 /* No objective function */
11
12
13 /* Constraints */
14
15 s.t. constr_3x2{I in 1..4, J in 1..5}:
16 sum{i in I..I+2, j in J..J+1} x[i,j] = 7;
17 /* constrain #1: The sum of the numbers in any 3x2 sublattice is 7

*/
18
19 s.t. constr_2x3{I in 1..5, J in 1..4}:
20 sum{i in I..I+1, j in J..J+2} x[i,j] = 7;
21 /* constrain #2: The sum of the numbers in any 2x3 sublattice is 7

*/
22
23 solve;
24
25
26 printf "This is the solution of lattice 6x6. \n";
27
28
29 for {i in 1..6}
30 {
31 printf " +----+----+----+----+----+----+\n";
32 for {j in 1..6}
33 { printf (" |");
34 printf " %d ", x[i,j];
35 for {0..0: j=6} printf (" |\n");
36 }
37 for {0..0: i=6}
38 { printf " +----+----+----+----+----+----+\n";
39 }
40 }
41
42 param TXT , symbolic , := "lattice6x6.txt";
43
44 printf "This is the solution of lattice 6x6. \n" > TXT;
45
46
47 for {i in 1..6}
48 {
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49 printf " +----+----+----+----+----+----+\n" >> TXT;
50 for {j in 1..6}
51 { printf (" |") >> TXT;
52 printf " %d ", x[i,j] >> TXT;
53 for {0..0: j=6} printf (" |\n") >> TXT;
54 }
55 for {0..0: i=6}
56 { printf " +----+----+----+----+----+----+\n" >> TXT;
57 }
58 }

Listing 9.7: Output file: lattice6x6.txt

1 This is the solution of lattice 6x6.
2 +----+----+----+----+----+----+
3 | 1 | 0 | 3 | 0 | 1 | 2 |
4 +----+----+----+----+----+----+
5 | 2 | 1 | 0 | 3 | 0 | 1 |
6 +----+----+----+----+----+----+
7 | 1 | 2 | 1 | 0 | 3 | 0 |
8 +----+----+----+----+----+----+
9 | 0 | 1 | 2 | 1 | 0 | 3 |
10 +----+----+----+----+----+----+
11 | 3 | 0 | 1 | 2 | 1 | 0 |
12 +----+----+----+----+----+----+
13 | 0 | 3 | 0 | 1 | 2 | 1 |
14 +----+----+----+----+----+----+
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Exercise 9.1

Solve the Sudoku puzzles, as shown in Figure 9.7.

Exercise 9.2

Determine the mathematical model for the 16× 16 Sudoku puzzle, as shown
in Figure 9.8, and solve it.
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7 1

7 2 3 5 1 9

1 9 7

2 8 3

3 9 7 8 1 6

6 4 7

8 7

8 9 2

9 4 3 2

4 2 8

9 4

9 8 3

1 5 8

4 8 7

5 9 3

3 1 5 6

9 6 1 3 5 8

(a) Problem 1 (b) Problem 2

6 3 2

Figure 9.7: 9× 9 Sudoku puzzles.

Exercise 9.3

Solve the dogs and chicks problem. Three dogs and three chicks must cross a
river using a boat that can hold at most two items. However, for both banks,
if there are chicks present on each bank, they cannot be outnumbered by dogs.
How do all the dogs and chicks reach the other bank of the river? Check if
each approach presented in Sections 9.2.2 and 9.2.3 is applicable to solve the
problem. If not, explain the reason.

Exercise 9.4

Solve the jealous husbands problem. Three married couples must cross a river
using a boat that can hold at most two people. However, no woman can be
in the presence of another man unless her husband is also present. How do
all three married couples reach the other bank of the river? Check if each ap-
proach presented in Sections 9.2.2 and 9.2.3 is applicable to solve the problem.
If not, explain the reason.

Exercise 9.5

Solve the lattice puzzle with n = 6, m = 3, l = 2, and k = 13. Fill in every
cell of n× n lattice with a positive integer number (≥ 0), so that the sum of
numbers in every m× l and l ×m sublattice can be equal to k.
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15 13 12 10 8 7 6 3 1

12 9 15 13 3 2 1 8 7 6 5

8 5 4 3 1 15 13 11 9

2 1 6 5 11 9 15 13

15 14 9 8 6 4 2

9 15 16 13 3 4 1 7 6

8 5 3 2 13 11 12 9 10

3 7 8 6 12 10 16

16 15 9 12 6 8 2 1 3

9 14 16 2 4 3 8

6 7 1 3 13 10 12

4 6 8 10 12 14 16 15

14 16 10 11 12 7 8

9 10 11 13 15 16 3 4 6 8

5 6 7 8 4 14 16 11 12

4 6 7 8 9 11 12 13 15 16

Figure 9.8: 16× 16 Sudoku puzzle.
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Appendix A

Derivation of
Eqs. (7.6a)–(7.6c) for hose
model

Eqs. (7.5a)–(7.5c), which is the LP problem of finding TH = {tpq} that max-
imizes link load on (i, j), is represented with a matrix expression by

maxXT
ijt (A.1a)

s.t. At ≤ C (A.1b)

t ≥ 0, (A.1c)

where

tT = [t11t12 · · · t1N | · · · |tN1tN2 · · · tNN ] (A.2a)

XT
ij = [x11

ij x
12
ij · · ·x1N

ij | · · · |xN1
ij xN2

ij · · ·xNN
ij ] (A.2b)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1 0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 · · · 0 0 · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 · · · 1 1 · · · 1
1 0 · · · 0 1 0 · · · 0 1 0 · · · 0 · · · 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0 0 1 · · · 0 · · · 0 1 · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · 1 0 0 · · · 1 0 0 · · · 1 · · · 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.2c)

CT = [α1α2 · · ·αN |β1β2 · · ·βN ] (A.2d)

N is the number of nodes. t is an NN × 1 matrix. Xij is an NN × 1 matrix.
A is a 2N ×NN matrix. C is a 2N × 1 matrix.

167
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The dual of the LP problem represented by Eqs. (A.1a)–(A.2d) for (i, j)
is,

minCTzij (A.3a)

s.t. AT z ≥Xij (A.3b)

zij ≥ 0, (A.3c)

where

zT
ij = [πij(1)πij(2) · · ·πij(N)|λij(1)λij(2) · · ·λij(N)]. (A.4a)

zij is a 2N × 1 matrix. Eqs. (A.3a) and (A.4a) and Eqs. (A.2b)–(A.2d) is a
matrix expression of Eqs. (7.6a)–(7.6c).
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Appendix B

Derivation of
Eqs. (7.12a)–(7.12c) for
HSDT model

Eqs. (7.11a)–(7.11d), which is the LP problem of finding T = {tpq} that
maximizes link load on (i, j), is represented with a matrix expression by

maxXT
ijt (B.1a)

s.t. At ≤ C (B.1b)

t ≥ 0, (B.1c)
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170 Linear Programming and Algorithms for Communication Networks

where

tT = [t11t12 · · · t1N | · · · |tN1tN2 · · · tNN ] (B.2a)

XT
ij = [x11

ij x
12
ij · · ·x1N

ij | · · · |xN1
ij xN2

ij · · ·xNN
ij ] (B.2b)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1 0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0 1 1 · · · 1 · · · 0 0 · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 · · · 1 1 · · · 1
1 0 · · · 0 1 0 · · · 0 1 0 · · · 0 · · · 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0 0 1 · · · 0 · · · 0 1 · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · 1 0 0 · · · 1 0 0 · · · 1 · · · 0 0 · · · 1
1 0 · · · 0 0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · 1 0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 · · · 1 0 · · · 0
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 · · · 0 1 · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 1
−1 0 · · · 0 0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0
0 −1 · · · 0 0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · −1 0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 · · · −1 0 · · · 0
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 · · · 0 −1 · · · 0

· · · · · · · · · · · · · · ·
0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 · · · 0 0 · · · −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.2c)

C = [α1α2 · · ·αN |β1β2 · · ·βN |
γ11γ12 · · · γ1N | · · · |γN1γN2 · · · γNN |
−δ11 − δ12 · · · − δ1N | · · · | − δN1 − δN2 · · · − δNN ]. (B.2d)

N is the number of nodes. t is an NN × 1 matrix. Xij is an NN × 1 matrix.
A is a (2N + 2NN)×NN matrix. C is a (2N + 2NN)× 1 matrix.

The dual of the LP problem represented by Eqs. (B.1a)–(B.2d) for (i, j) is

minCTzij (B.3a)

s.t. AT z ≥Xij (B.3b)

zij ≥ 0, (B.3c)
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where

zT
ij = [πij(1)πij(2) · · ·πij(N)|λij(1)λij(2) · · ·λij(N)|

ηij(1, 1)ηij(1, 2) · · · ηij(1, N)| · · · |ηij(N, 1)ηij(N, 2) · · · ηij(N,N)|
θij(1, 1)θij(1, 2) · · · θij(1, N)| · · · |θij(N, 1)θij(N, 2) · · · θij(N,N)].

. (B.4a)

zij is a (2N + 2NN) × 1 matrix. Eqs. (B.3a) and (B.4a) and Eqs. (B.2b)–
(B.2d) is a matrix expression of Eqs. (7.12a)–(7.12c).

In the HSDT model, for A and C, while the first 2N rows, which corre-
spond to Eqs. (7.11b) and (7.11c), are the same as those of the hose model, the
next 2NN rows, which correspond to Eq. (7.11d), are newly introduced. For
zij , while the first 2N rows are the same as those of the hose model, the next
2NN rows are also newly introduced. As a result, the introduced 2NN rows
in zij produce the term of

∑
p,q∈Q[γpqηij(p, q) − δpqθij(p, q)] in Eq. (7.13d)

and that of ηij(p, q)− θij(p, q) in Eq. (7.13e).
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Appendix C

Derivation of
Eqs. (7.16a)–(7.16d) for
HLT model

Eqs. (7.15a)–(7.15d), which is the LP problem of finding T = {tpq} that
maximizes link load on (i, j), is represented with a matrix expression by

maxXT
ijt (C.1a)

s.t. At ≤ C (C.1b)

t ≥ 0, (C.1c)
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174 Linear Programming and Algorithms for Communication Networks

where

tT = [t11t12 · · · t1N | · · · |tN1tN2 · · · tNN ] (C.2a)

XT
ij = [x11

ij x
12
ij · · ·x1N

ij | · · · |xN1
ij xN2

ij · · ·xNN
ij ] (C.2b)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1 · · · 0 0 · · · 0

· · · · · · · · · · · ·
0 0 · · · 0 0 0 · · · 0 · · · 1 1 · · · 1
1 0 · · · 0 1 0 · · · 0 · · · 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0 · · · 0 1 · · · 0

· · · · · · · · · · · ·
0 0 · · · 1 0 0 · · · 1 · · · 0 0 · · · 1
a1111 a1112 · · · a111N a1121 a1122 · · · a112N · · · a1131 a1132 · · · a113N
a1211 a1212 · · · a121N a1221 a1222 · · · a122N · · · a1231 a1232 · · · a123N

· · · · · · · · · · · ·
a1N11 a1N12 · · · a1N1N a1N21 a1N22 · · · a1N2N · · · a1N31 a1N32 · · · a1N3N

· · · · · · · · · · · ·
aN1
11 aN1

12 · · · aN1
1N aN1

21 aN1
22 · · · aN1

2N · · · aN1
31 aN1

32 · · · aN1
3N

aN2
11 aN2

12 · · · aN2
1N aN2

21 aN2
22 · · · aN2

2N · · · aN2
31 aN2

32 · · · aN2
3N

· · · · · · · · · · · ·
aNN
11 aNN

12 · · · aNN
1N aNN

21 aNN
22 · · · aNN

2N · · · aNN
31 aNN

32 · · · aNN
3N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C.2c)

C = [α1α2 · · ·αN |β1β2 · · ·βN |y11 · · · y1N | · · · |yN1 · · · yNN ] (C.2d)

N is the number of nodes. t is an NN × 1 matrix. Xij is an NN × 1 matrix.
A is a (2N +NN)×NN matrix. C is a (2N +NN)× 1 matrix.

The dual of the LP problem represented by Eqs. (C.1a)–(C.2d) for (i, j) is

minCTzij (C.3a)

s.t. AT z ≥Xij (C.3b)

zij ≥ 0, (C.3c)

where

zT
ij = [πij(1)πij(2) · · ·πij(N)|λij(1)λij(2) · · ·λij(N)|

θij(1, 1)θij(1, 2) · · · θij(1, N)].

(C.4a)

zij is a (2N+NN)×1 matrix. Eqs. (C.3a) and (C.4a) and Eqs. (C.2b)–(C.2d)
is a matrix expression of Eqs. (7.16a)–(7.16c).

In the HLT model, for A and C, while the first 2N rows, which correspond
to Eqs. (7.15b) and (7.15c), are the same as those of the hose model, the next
NN rows, which correspond to Eq. (7.15d), are newly introduced. For zij ,
while the first 2N rows are the same as those of the hose, the next NN rows
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are also newly introduced. As a result, the introduced NN rows in zij produce
the term of

∑
(s,t)∈E ystθij(s, t) in Eq. (7.17d) and that of

∑
(s,t)∈E apqst θij(s, t)

in Eq. (7.17e).
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Answers to exercises

Answer 2.1

Figure D.1 shows the feasible region and the optimum solution. Let z be the
objective function z = 8x1 + 6x2. We want to maximize objective function z.
We rewrite this function as x2 = − 4

3 + z
6 . The slope of this function is − 4

3 ,
and it intersects the x2-axis at (0, z). If we move this function up along the
x2-axis while keeping its slope, z increases. On the other hand, if we move it
down along the x2-axis, z decreases. As shown in Figure D.1, the maximum
value of z is determined by moving the objective function up along the x2-axis
while retaining the slope, − 4

3 , under the condition that the function passes
through the feasible region. We obtain the maximum value of z = 132, when
x2 = − 4

3 + z
6 passes through (x1, x2) = (12, 6). We can obtain the same

solution by the simplex method.

20

302 21 ≤+ xx

2x
30

13268 21 =+ xx

0 10 20
0

10

Feasible 
region

1x
242 21 ≤+ xx

( )6,12

Figure D.1: Feasible region and optimum solution.
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178 Linear Programming and Algorithms for Communication Networks

Answer 2.2

We show the optimum solution by checking every corner point. Figure D.2
shows the feasible region and every corner point. Table D.1 shows all values
of the objective function for every corner point. At the corner of ( 125 ,

42
5 ),

10x1 + 12x2 = 624
5 = 124.8 is the maximum value along the values of the

objective function associated with every corner point.

0 10 20
0

10

Feasible 
region

1x

2x

3032 21 ≤+ xx

⎟
⎠
⎞

⎜
⎝
⎛

5
42,

5
12

2423 21 ≤+ xx

( )0,8( )0,8

Figure D.2: Feasible region and corner points.

Table D.1: Values of 10x1 + 12x2 in corner points
Corner point (x1, x2) 10x1 + 12x2

(0, 0) 0
(0, 10) 120(
12
5 ,

42
5

)
624
5 (=124.8)

(8, 0) 80

Answer 2.3

We show the optimum solution using the simplex method in Figure D.3. There
are three corner points, which are (0, 3

10 ), (2, 1
10 ), and (5, 0). Let us start

at the corner point of (0, 3
10 ). The value of the objective function at (0, 3

10 )
is 360. We move to (2, 1

10 ). The value of the objective function at (2, 1
10 )

is 280, which is decreased compared with the value of 360 associated with
(0, 3

10 ). If we continue to move from (2, 1
10 ) to (5, 0), the value of the objective

function, which is 400, increases. Therefore, the corner point of (2, 1
10 ) gives

the minimum solution, where the value of the objective function is 280.
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0

Feasible region

1x

2x

530 21 ≥+ xx

⎟
⎠
⎞

⎜
⎝
⎛

10
3,0

( )0,5

⎟
⎠
⎞

⎜
⎝
⎛

10
1,2

21 310 21 ≥+ xx

Corner point 80x +1200y

(0,3/10) 360
(2,1/10) 280

(5,0) 400

Minimum

Decrease

Increase

Figure D.3: Solution by simplex method.

Answer 2.4

Figure D.4 shows the feasible region and the optimum solution as found by
ILP. We find that the optimum solution is (x1, x2) = (0, 10), and the maximum
value of the objective function is 120.

Answer 2.5

Figure D.5 shows the feasible region and the optimum solution in ILP. We
find that the optimum solution is (x1, x2) = (4, 6), and the maximum value
of the objective function is 108.

Answer 3.1

1. Let x1, x2, x3, and x4 be the raw materials A, B, C, and D (kg), respec-
tively. Let z be the nutrient cost. The optimization problem of minimiz-
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10

2x

2423 21 =+ xx

Optimum solution (0, 10)

0 105 15

5

1x

3032 21 =+ xx

1201210 21 =+ xx

Figure D.4: Feasible region and optimum solution in ILP.

ing z is formulated as an LP problem as follows:

Objective min z = 5.00x1 + 7.50x2 + 3.75x3 + 2.50x4 (D.5a)

Constraints 0.18x1 + 0.31x2 + 0.12x3 + 0.18x4 ≥ 18 (D.5b)

0.43x1 + 0.25x2 + 0.12x3 + 0.50x4 ≥ 31 (D.5c)

0.31x1 + 0.37x2 + 0.37x3 + 0.12x4 ≥ 25 (D.5d)

x1 ≥ 0 (D.5e)

x2 ≥ 0 (D.5f)

x3 ≥ 0 (D.5g)

x4 ≥ 0 (D.5h)

2. By solving the LP problem in Eqs. (D.5a)–(D.5h), we find that the opti-
mum solution is (x1, x2, x3, x4) = (0, 0, 44.83, 70.12), and the minimum
value of the objective function is zmin ≈ 343.39.

3. The dual problem of the primal problem in Eqs. (D.5a)–(D.5h) is for-
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10

2x

2423 21 =+ xx

Optimum solution (4, 6)

0 105 15

5

1x

3032 21 =+ xx

1081012 21 =+ xx

Figure D.5: Feasible region and optimum solution in ILP.

mulated as follows:

Objective max w = 18y1 + 31y2 + 25y3 (D.6a)

Constraints 0.18y1 + 0.43y2 + 0.31y3 ≤ 5.00 (D.6b)

0.31y1 + 0.25y2 + 0.37y3 ≤ 7.50 (D.6c)

0.12y1 + 0.12y2 + 0.37y3 ≤ 3.75 (D.6d)

0.18y1 + 0.50y2 + 0.12y3 ≤ 2.50 (D.6e)

y1 ≥ 0 (D.6f)

y2 ≥ 0 (D.6g)

y3 ≥ 0 (D.6h)

4. By solving the dual problem in Eqs. (D.6a)–(D.6h), we find that the
optimum solution is (y1, y2, y3) = (9.10, 0, 7.18), and the maximum value
of the objective function is wmax ≈ 343.39. We confirm zmin = wmax.

Answer 3.2

1. Let x1, x2, and x3 be quantities of regular shampoo, exclusive shampoo,
and conditioner (liters), respectively. Let z be the profit. The optimiza-
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tion problem of maximizing z is formulated as an LP problem as follows:

Objective max z = 1.5x1 + 2.0x2 + 2.5x3 (D.7a)

Constraints 0.3x1 + 0.5x2 + 0.2x3 ≤ 100 (D.7b)

0.6x1 + 0.3x2 + 0.1x3 ≤ 150 (D.7c)

0.1x1 + 0.2x2 + 0.7x3 ≤ 200 (D.7d)

x1 ≥ 0 (D.7e)

x2 ≥ 30 (D.7f)

x3 ≥ 0 (D.7g)

2. By solving the LP problem in Eqs. (D.7a)–(D.7g), we find that the op-
timum solution is (x1, x2, x3) = (108.85, 30, 261.579), and the maximum
value of the objective function is zmax ≈ 877.37.

3. The dual problem of the primal problem in Eqs. (D.7a)–(D.7g) is for-
mulated as follows:

Objective min w = 100y1 + 150y2 + 200y3 − 30y4 (D.8a)

Constraints 0.3y1 + 0.6y2 + 0.1y3 ≥ 1.5 (D.8b)

0.5y1 + 0.3y2 + 0.2y3 − y4 ≥ 2.0 (D.8c)

0.2y1 + 0.1y2 + 0.7y3 ≥ 2.5 (D.8d)

y1 ≥ 0 (D.8e)

y2 ≥ 0 (D.8f)

y3 ≥ 0 (D.8g)

y4 ≥ 0 (D.8h)

4. By solving the dual problem in Eqs. (D.8a)–(D.8h), we find that the
optimum solution is (y1, y2, y3, y4) = (4.21, 0, 2.37, 0.58), and the min-
imum value of the objective function is wmin ≈ 877.37. We confirm
zmax = wmin.

Answer 4.1
We can use the model file as shown in Listing 4.4 and make an input file to
express the network in Figure 4.14. We can also use Dijkstra’s algorithm. The
shortest path from node 1 to node 6 is 1 → 4 → 5 → 6, and the cost of the
path is 4. The shortest path from node 2 to node 6 is 2 → 4 → 5 → 6, and
the cost of the path is 5.

Answer 4.2
We delete link (4, 5) of the network in Figure 4.14, or set the cost of the link
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to infinity (∞). The shortest path from node 1 to node 6 is 1 → 3→ 5→ 6,
and the cost of the path is 7. The shortest path from node 2 to node 6 is
2→ 3→ 5→ 6, and the cost of the path is 6.

Answer 4.3
We can use the model file as shown in Listing 4.16 and make an input file
to express the network in Figure 4.14. We can also use the cycle-canceling
algorithm. Figure D.6 shows a solution of the minimum-cost flow problem.
The traffic of the volume of v = 80 is divided into five paths, from v1 to v5.
v1 = 30 is sent on the first path, 1 → 3 → 6. v2 = 10 is sent on the second
path, 1→ 3→ 5→ 6. v3 = 10 is sent on the third path, 1→ 2→ 3→ 5→ 6.
v4 = 10 is sent on the fourth path, 1 → 2 → 4 → 5 → 6. v5 = 10 is sent on
the fifth path, 1→ 4→ 5→ 6. The total cost is 610.

v=80 v=80
1

2 3

4 5

6

v1=30
v2=10

v3=10

v4=10

DestinationSource

v5=20
4

Figure D.6: Solution of minimum-cost flow problem.

Answer 4.4
We can use the model file as shown in Listing 4.12, and make an input file to
express the network in Figure 4.15. We can also use the Ford-Fulkerson algo-
rithm. Figure D.7 shown a solution of the max flow problem. The maximum
traffic volume from node 1 to node 6 is v = 103 and consists of five paths with
their corresponding traffic volumes of v1 to v5. v1 = 13 is sent on the first
path, 1 → 2 → 5 → 6. v2 = 10 is sent on the second path, 1 → 2 → 3 → 6.
v3 = 32 is sent on the third path, 1 → 3 → 6. v4 = 35 is sent on the fourth
path, 1→ 4→ 3→ 6. v5 = 13 is sent on the fifth path, 1→ 4→ 6.

Answer 4.5
We can use the model file as shown in Listing 4.16 and make an input file
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23

15

32 200

48 35
30

1330

1

2

3

4

6

5

Capacity

v3=32

v1=13

v2=10

v4=35
v=103

v=103
Destination

Source

4

v5=13

Figure D.7: Solution of max flow problem.

to express the network in Figure 4.16. We can also use the cycle-canceling
algorithm. Figure D.8 shows a solution of the minimum-cost flow problem.
The traffic of the volume of v = 20 is divided into three paths, from v1 to v3.
v1 = 10 is sent on the first path, 1 → 2 → 4. v2 = 20 is sent on the second
path, 1 → 2 → 3 → 4. v3 = 10 is sent on the third path, 1 → 3 → 4. The
total cost is 202.

1

2

3

4
v=20 v=20

v1=10

v3=6

v2=4
DestinationSource

Figure D.8: Solution of minimum-cost flow problem.

Answer 5.1
We can use the model file as shown in Listing 5.3 and make an input file
to express the wavelength assignment problem in Figure 5.14. We can also
use the disjoint shortest pair algorithm or Suurballe’s algorithm. We find two
disjoint routes of 1 → 8 → 3 → 4 → 10 → 7 → 12 and 1 → 2 → 9 → 5 →
6→ 11→ 12. The minimum value, which is the total costs of the two paths,
is 18.
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Answer 6.1
We can use the model file as shown in Listing 6.1 and make an input file to
express the wavelength assignment problem in Figure 6.7. Figure D.9 shows
a solution of the wavelength assignment. λ2 is is assigned to path 1. λ3 is
assigned to path 2. λ1 is assigned to path 3. λ1 is assigned to path 4. λ2 is
assigned to path 5. The minimum required number of wavelengths is 3.

1 2 3 4 5

Path 3
Path  2

Path 1

Path 5

Path 4

Optical cross-connect
Optical fiber

λ1

λ2

λ3

λ1

λ2
Path 5

Figure D.9: Solution of wavelength assignment problem.

Answer 7.1
rP = 0.700, rH = 0.933, rHSDT1 = 0.800, rHSDT2 = 0.875, and rHLT = 0.700
are obtained. The relationship of rP = rHLT < rHSDT1 < rHSDT2 < rH is
obtained.

Answer 7.2
rP = 0.583, rH = 0.875, rHSDT1 = 0.658, rHSDT2 = 0.760, and rHLT = 0.621
are obtained. The relationship of rP < rHLT < rHSDT1 < rHSDT2 < rH is
obtained.

Answer 7.3

Proof of Property 2:
We extend Proof 1 that was applied to the hose model to prove Property 2.
(“only if” direction): Let routing xpq

ij have congestion ratio ≤ r for all traffic
matrices constrained by the intermediate model. (i.e.,

∑
p,q∈Q xpq

ij tpq ≤ cij · r
for all (i, j)). The problem of finding T = {tpq} that maximizes link load on
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(i, j) is formulated as the following LP problem:

max
∑

p,q∈Q

xpq
ij tpq (D.9a)

s.t.
∑
q∈Q

tpq ≤ αp, p ∈ Q (D.9b)

∑
p∈Q

tpq ≤ βq, q ∈ Q (D.9c)

δpq ≤ tpq ≤ γpq, p, q ∈ Q, (D.9d)

The decision variables are tpq. The given parameters are xpq
ij , αp, βq, δpq, and

γpq. The dual of the LP problem in Eqs. (D.9a)–(D.9d) for (i, j) is:

min
∑
p∈Q

αpπij(p) +
∑
p∈Q

βpλij(p)

+
∑

p,q∈Q

[γpqηij(p, q)− δpqθij(p, q)] (D.10a)

s.t. xpq
ij ≤ πij(p) + λij(q) + ηij(p, q)− θij(p, q),

∀p, q ∈ Q, (i, j) ∈ E (D.10b)

πij(p), λij(p), ηij(p, q), θij(p, q) ≥ 0, ∀p, q ∈ Q, (i, j) ∈ E. (D.10c)

The derivation of Eqs. (D.10a)–(D.10c) is described in Appendix B. Because of∑
pq x

pq
ij tpq ≤ cij ·r in Eq. (D.9a), the dual,

∑
p∈Q αpπij(p)+

∑
p∈Q βpλij(p)+∑

p,q∈Q[γpqηij(p, q)− δpqθij(p, q)] in Eq. (D.10a), for any (i, j), must have the
same optimal value. The optimal value in Eq. (D.10a) should be ≤ cij · r.
Therefore, the objective function of the dual satisfies (i). Requirement (ii) is
satisfied by dual problem constraint (D.10b).
(“if” direction): Let xpq

ij be a routing, and T = {tpq} be any valid traffic
matrix. Let πij(p), λij(p), δpq, and θij(p, q) be the parameters satisfying re-
quirements (i) and (ii). Consider (i, j) ∈ E. From (ii) we have

xpq
ij ≤ πij(p) + λij(q) + ηij(p, q)− θij(p, q).

Summing over all edge node pairs (p, q), we have
∑

p,q∈Q xpq
ij tpq ≤

∑
p,q∈Q

[πij(p) + λij(q) + ηij(p, q)− θij(p, q)]tpq

=
∑
p∈Q

πij(p)
∑
q∈Q

tpq +
∑
q∈Q

λij(q)
∑
p∈Q

tpq

+
∑

p,q∈Q

[ηij(p, q)− θij(p, q)]tpq

≤
∑
p∈Q

πij(p)αp +
∑
p∈Q

λij(p)βp

+
∑

p,q∈Q

[γpqηij(p, q)− δpqθij(p, q)].
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The last equality is obtained using the constraints of the intermediate model.
From (i), we have

∑
p,q∈Q xpq

ij tpq ≤
∑
p∈Q

πij(p)αp +
∑
p∈Q

λij(p)βp

+
∑

p,q∈Q

[γpqηij(p, q)− δpqθij(p, q)]

≤ cij · r.
This indicates that for any traffic matrix constrained by the intermediate
model, the load on any link is at most r.

Answer 7.4
Proof of Property 3:
We extend Proof 1 that was applied to the hose model to prove Property 3.

(“only if” direction): Let routing xpq
ij have congestion ratio ≤ r for all

traffic matrices constrained by the HLT model. (i.e.,
∑

p,q∈Q xpq ≤ cij · r for
all (i, j)) The problem of finding T = {tpq} that maximizes link load on (i, j)
is formulated as the following LP problem:

max
∑

p,q∈Q

xpq
ij tpq (D.11a)

s.t.
∑
q∈Q

dpq ≤ αp, ∀p ∈ Q (D.11b)

∑
p∈Q

tpq ≤ βq, ∀q ∈ Q (D.11c)

∑
p,q∈Q

apqij tpq ≤ yij , ∀, (i, j) ∈ E (D.11d)

The decision variables are tpq. The given parameters are xpq
ij , αp, βq, a

pq
ij , and

yij . The dual of the LP problem in Eqs. (D.11a)–(D.11d) for (i, j) is

min
∑
p∈Q

αpπij(p) +
∑
p∈Q

βpλij(p) +
∑

(s,t)∈E

θij(s, t)yst (D.12a)

s.t. πij(p) + λij(q) +
∑

(s,t)∈E

apqst θij(s, t) ≥ xpq
ij ,

∀p, q ∈ Q, (i, j) ∈ E (D.12b)

πij(p), λij(p) ≥ 0, ∀p ∈ Q, (i, j) ∈ E (D.12c)

θij(s, t) ≥ 0, ∀(i, j), (s, t) ∈ E. (D.12d)

The derivation of Eqs. (D.12a)–(D.12d) is described in Appendix C. Because of∑
pq x

pq
ij tpq ≤ cij ·r in Eq. (D.11a), the dual,

∑
p∈Q αpπij(p)+

∑
p∈Q βpλij(p)+
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∑
(s,t)∈E θij(s, t)yst in Eq. (D.12a), for any (i, j), must have the same optimal

value. The optimal value in Eq. (D.12a) should be ≤ cij · r. Therefore, the
objective function of the equivalent satisfies (i). Requirement (ii) is satisfied
by equivalent problem constraint (D.12b).

(“if” direction): Let xpq
ij be a routing, and T = {tpq} be any valid traffic

matrix. Let πij(p), λij(p), and θij(s, t) be the parameters satisfying require-
ments (i) and (ii). Consider (i, j) ∈ E. From (ii) we have

xpq
ij ≤ πij(p) + λij(q) +

∑
(s,t)∈E

apqst θij(s, t).

Summing over all edge node pairs (p, q), we have

∑
p,q∈Q

xpq
ij tpq ≤

∑
p,q∈Q

(
πij(p) + λij(q) +

∑
(s,t)∈E

apqst θij(s, t)
)
tpq

=
∑

(s,t)∈E

θij(s, t)
( ∑
p,q∈Q

apqst tpq

)

+
∑
p∈Q

πij(p)
∑
q∈Q

tpq +
∑
q∈Q

λij(q)
∑
p∈Q

tpq

≤
∑

(s,t)∈E

θij(s, t)yst

+
∑
p∈Q

πij(p)αp +
∑
p∈Q

λij(p)βp.

The last equality is obtained using the constraints of the HLT model. From
(i), we have

∑
p,q∈Q

xpq
ij tpq≤

∑
(s,t)∈E

θij(s, t)yst +
∑
p∈Q

αpπij(p) +
∑
p∈Q

βpλij(p)

≤ cij · r.
This indicates that for any traffic matrix constrained by the HLT model, the
load on any link is at most r.

Answer 9.1
Solution for problem (a):

+-------+-------+-------+

| 9 6 5 | 7 1 2 | 4 8 3 |

| 8 7 2 | 3 5 4 | 6 1 9 |

| 4 3 1 | 6 8 9 | 2 7 5 |

+-------+-------+-------+
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| 1 2 7 | 9 6 5 | 8 3 4 |

| 3 5 9 | 4 7 8 | 1 6 2 |

| 6 8 4 | 2 3 1 | 5 9 7 |

+-------+-------+-------+

| 5 1 3 | 8 2 7 | 9 4 6 |

| 7 4 8 | 5 9 6 | 3 2 1 |

| 2 9 6 | 1 4 3 | 7 5 8 |

+-------+-------+-------+

Solution for problem (b):

+-------+-------+-------+

| 7 9 5 | 4 3 8 | 6 1 2 |

| 3 6 4 | 2 7 1 | 8 9 5 |

| 8 2 1 | 5 6 9 | 7 4 3 |

+-------+-------+-------+

| 2 5 9 | 1 8 7 | 3 6 4 |

| 1 7 3 | 6 9 4 | 5 2 8 |

| 6 4 8 | 3 5 2 | 1 7 9 |

+-------+-------+-------+

| 5 8 7 | 9 2 6 | 4 3 1 |

| 4 3 2 | 7 1 5 | 9 8 6 |

| 9 1 6 | 8 4 3 | 2 5 7 |

+-------+-------+-------+

Answer 9.2

Listing D.1: Model file: sudoku16x16-q2.mod

1 /* sudoku16x16 -q2.mod */
2
3
4 /* Decision Variable */
5
6 var x{i in 1..16, j in 1..16, k in 1..16} , binary;
7 /* x[i,j,k] = 1 means cell[i,j] is assigned number k */
8
9 /* Initialization */

10
11 param input_problem{1..16 , 1..16} , integer , >=0, <=16, default 0;
12 /* input problem */
13
14 s.t. pre_defined{i in 1..16, j in 1..16, k in 1..16: input_problem[i,j]!=0}:
15 x[i,j,k] = (if input_problem[i,j]= k then 1 else 0);
16 /* assign pre-defined number */
17
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18 /* No Objective Function */
19
20
21 /* Constrains */
22
23 s.t. constr_fill{i in 1..16, j in 1..16}: sum{k in 1..16} x[i,j,k]=1;
24 /* constrain #1 : every position in matrix must be filled */
25
26 s.t. constr_row{i in 1..16, k in 1..16}: sum{j in 1..16} x[i,j,k]=1;
27 /* constrain #2 : only one k in each row */
28
29 s.t. constr_col{j in 1..16, k in 1..16}: sum{i in 1..16} x[i,j,k]=1;
30 /* constrain #3 : only one k in each column */
31
32 s.t. constr_sub{I in 1..16 by 4, J in 1..16 by 4, k in 1..16}:
33 sum{i in I..I+3, j in J..J+3} x[i,j,k] = 1;
34 /* constrain #4 : only one k in each submatrix */
35
36 solve;
37
38 printf "This is the solution of sudoku 16x16. \n";
39
40
41 for {i in 1..16}
42 { for {0..0: i = 1 or i = 5 or i = 9 or i = 13}
43 printf " +-------------+-------------+-------------+------------+ \n";
44 for {j in 1..16}
45 { for {0..0: j = 1 or j = 5 or j = 9 or j = 13}
46 printf (" |");
47 printf " %2d", sum{k in 1..16} x[i,j,k] * k;
48 for {0..0: j=16} printf (" |\n");
49 }
50 for {0..0: i = 16}
51 printf " +-------------+-------------+-------------+------------+ \n";
52 }
53
54 param TXT , symbolic , := "sudoku16x16.txt";
55
56 printf "This is the solution of sudoku 16x16. \n" > TXT;
57
58
59 for {i in 1..16}
60 { for {0..0: i = 1 or i = 5 or i = 9 or i = 13}
61 printf " +-------------+-------------+-------------+------------+ \n">> TXT;
62 for {j in 1..16}
63 { for {0..0: j = 1 or j = 5 or j = 9 or j = 13}
64 printf (" |") >> TXT;
65 printf " %2d", sum{k in 1..16} x[i,j,k] * k >> TXT;
66 for {0..0: j=16} printf (" |\n") >> TXT;
67 }
68 for {0..0: i = 16}
69 printf " +-------------+-------------+-------------+------------+ \n">> TXT;
70 }

Listing D.2: Input file: sudoku16x16-q2.dat

1 /* sudoku16x16 -q2.dat */
2
3 data;
4
5 param input_problem : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16:=
6 1 . 15 . 13 12 . 10 . 8 7 6 . . 3 . 1
7 2 12 . . 9 . 15 . 13 . 3 2 1 8 7 6 5
8 3 8 . . 5 4 3 . 1 . 15 . 13 . 11 . 9
9 4 . . 2 1 . . 6 5 . 11 . 9 . 15 . 13
10 5 15 . . 14 . . 9 . . 8 . 6 . 4 . 2
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11 6 . . 9 . 15 16 13 . 3 4 1 . 7 . . 6
12 7 . 8 5 . 3 . . 2 . . 13 . 11 12 9 10
13 8 3 . . . 7 8 . 6 . 12 . 10 . 16 . .
14 9 . . 16 15 . 9 12 . 6 . 8 . 2 1 . 3
15 10 . 9 . . 14 . 16 . 2 . 4 3 . . 8 .
16 11 6 . . 7 . 1 . 3 . 13 . . 10 . 12 .
17 12 . . 4 . 6 . 8 . 10 . 12 . 14 . 16 15
18 13 . 14 . 16 . 10 11 12 . . 7 8 . . . .
19 14 9 10 11 . 13 . 15 16 . . 3 4 . 6 . 8
20 15 5 6 7 8 . . . 4 . 14 . 16 . . 11 12
21 16 . . . 4 . 6 7 8 9 . 11 12 13 . 15 16;
22 end;

Solution for problem

+-------------+-------------+-------------+-------------+

| 16 15 14 13 | 12 11 10 9 | 8 7 6 5 | 4 3 2 1 |

| 12 11 10 9 | 16 15 14 13 | 4 3 2 1 | 8 7 6 5 |

| 8 7 6 5 | 4 3 2 1 | 16 15 14 13 | 12 11 10 9 |

| 4 3 2 1 | 8 7 6 5 | 12 11 10 9 | 16 15 14 13 |

+-------------+-------------+-------------+-------------+

| 15 16 13 14 | 11 12 9 10 | 7 8 5 6 | 3 4 1 2 |

| 11 12 9 10 | 15 16 13 14 | 3 4 1 2 | 7 8 5 6 |

| 7 8 5 6 | 3 4 1 2 | 15 16 13 14 | 11 12 9 10 |

| 3 4 1 2 | 7 8 5 6 | 11 12 9 10 | 15 16 13 14 |

+-------------+-------------+-------------+-------------+

| 14 13 16 15 | 10 9 12 11 | 6 5 8 7 | 2 1 4 3 |

| 10 9 12 11 | 14 13 16 15 | 2 1 4 3 | 6 5 8 7 |

| 6 5 8 7 | 2 1 4 3 | 14 13 16 15 | 10 9 12 11 |

| 2 1 4 3 | 6 5 8 7 | 10 9 12 11 | 14 13 16 15 |

+-------------+-------------+-------------+-------------+

| 13 14 15 16 | 9 10 11 12 | 5 6 7 8 | 1 2 3 4 |

| 9 10 11 12 | 13 14 15 16 | 1 2 3 4 | 5 6 7 8 |

| 5 6 7 8 | 1 2 3 4 | 13 14 15 16 | 9 10 11 12 |

| 1 2 3 4 | 5 6 7 8 | 9 10 11 12 | 13 14 15 16 |

+-------------+-------------+-------------+-------------+

Answer 9.3
One solution to minimize the number of trips is as follows. Let t be time, or
the number of trips. At t = 0, there are three dogs and chicks on the left bank.
At t = 1, a dog and a chick cross the river to the right bank. At t = 2, the
chick returns to the left bank. At t = 3, two dogs cross the river to the right
bank. At t = 4, a dog returns to the left bank. At t = 5, two chicks cross the
river to the right bank. At t = 6, a dog and a chick return to the left bank. At
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t = 7, two chicks cross the river to the right bank. At t = 8, a dog returns to
the left bank. At t = 9, two dogs cross the river to the right bank. At t = 10,
a dog returns to the left bank. At t = 11, the two dogs cross the river to the
right bank, and all the dogs and chicks are on the right bank.

Answer 9.4
One solution to minimize the number of trips is as follows. Let t be time, or the
number of trips. Let the three couples be (Ah, Aw), (Bh, Bw), and (Ch, Cw).
Subscripts h and w indicate a husband and a wife, respectively. At t = 0,
there are three couples on the left bank. At t = 1, Ah and Aw cross the river
to the right bank. At t = 2, leaving Aw at the right bank, Ah returns to the
left bank. At t = 3, Bw and Cw cross the river to the right bank. At t = 4,
Cw returns to the left bank. At t = 5, Ah and Bh cross the river to the right
bank. At t = 6, Ah and Aw return to the left bank. At t = 7, Ah and Ch cross
the river to the right bank. At t = 8, Bw returns to the left bank. At t = 9,
Aw and Cw cross the river to the right bank. At t = 10, Bh returns to the
left bank. At t = 11, Bh and Bw cross the river to the right bank, and all the
three couples are on the right bank.

Answer 9.5

+----+----+----+----+----+----+

| 3 | 2 | 3 | 0 | 5 | 0 |

+----+----+----+----+----+----+

| 2 | 3 | 0 | 5 | 0 | 3 |

+----+----+----+----+----+----+

| 3 | 0 | 5 | 0 | 3 | 2 |

+----+----+----+----+----+----+

| 0 | 5 | 0 | 3 | 2 | 3 |

+----+----+----+----+----+----+

| 5 | 0 | 3 | 2 | 3 | 0 |

+----+----+----+----+----+----+

| 0 | 3 | 2 | 3 | 0 | 5 |

+----+----+----+----+----+----+
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