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Foreword

In this book the authors determine the maximal subgroups of all the finite
classical groups of dimension 12 or less. This work fills a long-standing gap in
the literature. Behind this gap there is a story which I am pleased to have the
opportunity to tell.

The completion of the classification of finite simple groups was first an-
nounced in the early 1980s. It was clear then (and before) that for many appli-
cations of the classification one would need detailed knowledge of the maximal
subgroups of the simple groups and of their automorphism groups. Around that
time, I gave a Part III course at Cambridge about the classification and its im-
pact. Full of enthusiasm, I set a fearsome exam — I remember giving it to John
Conway to check, and him saying that he couldn’t do any of the questions, but
he thought it was probably OK. The second highest mark was 18%, scored by
a rather strong student. The top mark was 97%, scored by Peter Kleidman, a
young American.

Soon afterwards, Kleidman started as my first research student. Michael As-
chbacher had just published his fundamental theorem on maximal subgroups
of the finite classical groups. The time seemed right to attempt to use this to
determine all the maximal subgroups of the classical groups of low dimensions
(up to 20, say, I thought optimistically). This was Kleidman’s initial project. As
it turned out, in his thesis he solved many other maximal subgroup problems,
and this project occupied just one chapter. Nevertheless it was rather an inter-
esting chapter, consisting of tables of all the maximal subgroups of finite simple
classical groups of dimension up to 12. No proofs were given, just an outline of
the strategy and a few examples of how the calculations were performed.

After he had graduated, Kleidman and I wrote a book on the subgroups of
the finite classical groups, which was an analysis of the structure, conjugacy
and maximality of the subgroups arising in Aschbacher’s theorem now known as
geometric subgroups. For the maximality questions we assumed that the dimen-

viii



Foreword ix

sion was more than 12, and it was the intention that Kleidman would extend
and write up his thesis work on the low dimensions as a separate book. Indeed,
this project was accepted as a volume to appear in the Longman Research
Notes series, and has been referred to as such in many articles. Unfortunately,
he did not write this book, and left mathematics at the age of about thirty to
pursue other interests such as working on Wall Street and producing Hollywood
movies.

The non-appearance of Kleidman’s book left a yawning gap in the literature
for over twenty years. We are fortunate indeed that a number of years ago the
authors of this volume took it upon themselves to fill this gap. They have done
this in marvellously complete fashion, presenting the material with great clarity
and attention to detail. Full proofs and comprehensive background material are
given, making the book easily accessible to graduate students. It should also be
said that their results go quite a way beyond Kleidman’s thesis, in that they
handle almost simple classical groups rather than just simple ones, which is
important for applications.

It is marvellous to have this volume on the bookshelf where previously there
was such an evident space, and I congratulate the authors on their achievement.

Martin Liebeck
Imperial College London



Preface

The aim of this book is to classify the maximal subgroups of the almost simple
finite classical groups of dimension at most 12. We also include tables describing
the maximal subgroups of the almost simple finite exceptional groups that have
faithful representations of degree at most 12.

A group G is simple if it has order greater than 1 and has no normal
subgroups other than the trivial subgroup and G itself, and is almost simple if
S < G < Aut S for some non-abelian simple group S. A group is perfect if it is
equal to its derived group. A group G is called quasisimple if G is perfect and
G modulo its centre is a non-abelian simple group.

The study and classification of the (maximal) subgroups of the finite sim-
ple groups and their variations has a long history, and the completion of the
classification of the finite simple groups provided further motivation.

The term ‘classical group’ is used frequently in the literature, but it is rarely,
if ever, defined precisely. We shall not attempt a formal definition here, and we
shall avoid using it in a precise sense. Our general intention is to use it very
inclusively. We shall certainly regard all of the named groups (like GL,(q),
O¢ (q), PCSp,,(q), etc.) in Table 1.2 as classical groups, but we also include
among the classical groups arbitrary subgroups between the Q-groups and the
A-groups in the table, and also quotients of the groups in the first of each of the
paired rows in the table by arbitrary subgroups of the scalars. Furthermore, we
include all almost simple extensions of the simple classical groups.

Maximal subgroups of classical groups. In [1], Aschbacher proved a funda-
mental theorem that describes the subgroups of almost all of the finite almost
simple classical groups (the only exceptions are certain extensions of S4(2°)
and O (g)). This theorem divides these subgroups into nine classes. The first
eight of these consist roughly of groups that preserve some kind of geometric
structure; for example the first class consists (roughly) of the reducible groups,
which fix a proper non-zero subspace of the vector space on which the group
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acts naturally. Subgroups of classical groups that lie in the first eight classes are
of geometric type. The ninth class, denoted by %y or ., consists (roughly) of
those subgroups that are not of geometric type and which, modulo the subgroup
of scalar matrices, are almost simple. An alternative proof of Aschbacher’s the-
orem, as a corollary to a version of the theorem for algebraic groups, can be
found in [82]. We present a detailed version of Aschbacher’s theorem, based
on the treatment in [66], in Section 2.2. An interesting version of Aschbacher’s
theorem is presented in [91], which emphasises the links between the subgroup
structure of the finite classical groups and of the algebraic groups of Lie type.

In [66], Kleidman and Liebeck provide an impressively detailed enumeration
of the maximal subgroups of geometric type of the almost simple finite classical
groups of dimension greater than 12. In this book, we shall extend the work of
Kleidman and Liebeck to handle dimensions at most 12, and also classify the
maximal subgroups of these groups that are in Class .%.

With the exception of Kleidman’s work [62] on Q4 (¢), and classifications
of Kleidman [62, 64, 63] and Cooperstein [14] of maximal subgroups of some
of the exceptional groups of Lie type, which we simply cite and reproduce in
our tables, our approach in this book has been to use these previous classifi-
cations for checking purposes only: our proofs make no use of the references
below, although we have compared our results with them and, where there are
differences, verified that our tables are correct.

The most complete previous work on low-dimensional classical groups is
undoubtedly Peter Kleidman’s PhD thesis [61], where he presents a classifica-
tion, without proof, of the maximal subgroups of the simple classical groups
in dimensions up to 12. This is a remarkable achievement. Kleidman intended
to publish a subsequent book, with the same goal as ours: the classification of
maximal subgroups of the almost simple classical groups in dimension up to 12.
Unfortunately, this has not been published, and the present work is an attempt
to carry out Kleidman’s plan.

We base the following historical summary on the surveys by King [60], and
Kleidman and Liebeck [65]. The complete description of the subgroup structure
of the groups La(q) is usually attributed to Dickson [22], but this topic was also
investigated by E. H. Moore [94] and Wiman [115]. The subgroups of L3(q) were
described by Mitchell for ¢ odd [92] and then by Hartley for ¢ even [40]. In
both cases the subgroups that lie in Us(y/q) were identified. A more modern
treatment of subgroups of Ls(g) is provided by Bloom in [3]. The maximal
subgroups of Ly(q) for even ¢ were listed independently by Mwene [95] and
Zalesskii [116]. A partial classification for odd ¢ can be found in [96] and,
independently, for p > 5 in [117]. Further results on this case can be found
in [59, Section 5]. Mitchell classified the maximal subgroups of S4(¢q) for odd
q in [93]. Flesner [26, 27] partially classified the maximal subgroups of S4(2°).
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The maximal subgroups of Ls(q) were determined by Di Martino and Wagner
for ¢ odd [23], and independently by Wagner [110] and Zalesskii [116] for ¢
even. Kondrat’ev classified the quasisimple absolutely irreducible subgroups of
GLg(q) [71]. There is a brief survey of many of these results in [72].

For higher dimensions, many people have concentrated on the case ¢ = 2.
In 1984, Darafsheh classified the maximal subgroups of GLg(2) [21], building
on Harada and Yamaki’s paper [39], which classified the insolvable irreducible
subgroups of GL,(2) with n < 6. The subgroups of GL,(2) for n < 10 were
studied extensively by Kondrat’ev: see [67, 68, 69, 70].

In the work of King and others (see [60] and the references therein) a differ-
ent approach is taken: rather than concentrating on a family of almost simple
groups, such as those with socle Lg(g), one concentrates on a family of poten-
tially maximal subgroups, such as those of type I'L,, /2 (¢%) in SLy,(q), and tries
to determine maximality. A great deal is known in this direction: see the results
cited in [60], together with [15, 16, 17, 99], amongst others. Again, we have not
used these works in our proofs, but have compared our results with them: we
mention them in the relevant sections of Chapters 2, 3 and 6 of this book.

An approach which is slightly orthogonal to our present purposes, but which
has been used as a tool in the proof of many deep theorems, is to classify
subgroups of classical groups containing elements of specified orders. We shall
not use these results, so will not provide an extensive list of papers, but the
interested reader could start by looking at [35, 36] and the references therein.

Maximal subgroups of non-classical simple groups. See [83, 114] for an
excellent survey and introduction, respectively, on the whole of this field. The
ATLAs [12] is also an essential reference in this area.

For the alternating groups, the O’Nan—Scott Theorem (see, for example,
Chapter 4 of [8]) provides a subgroup classification similar to, but much simpler
than, the Aschbacher classification of matrix groups over finite fields, and results
of Liebeck, Praeger and Saxl [78] enable us to determine maximality. As in the
case of finite matrix groups, we have a final class of almost simple primitive
permutation groups which need to be listed individually by degree, and these
lists are currently complete up to degree 4095 [18, 98].

The maximal subgroups of the almost simple exceptional Lie type groups
have not yet been fully classified, although a great deal is known about them.
A discussion of the overall strategy for their classification, and a brief summary
of the main theorems in this area, appear in [91, Chapter 29]; whilst further
references to the literature can be found in [66, Table 1.3.B]. In particular,
the maximal subgroups of all of the simple, and most of the almost simple
groups of this type with representations of degree up to 12 have been classified:
see [106, Section 15] for the Suzuki groups 2By (q), [76, 64] for the Ree groups
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2Ga(q), [2, 14, 64] for Ga(q) and [63] for 3Dy4(g). In this book we extend these
classifications to the remaining almost simple groups with representations of
degree at most 12.

The sporadic groups can be handled on a case-by-case basis. Most of the
necessary information is available, including references to the literature, in [12]
or, more usefully for computational purposes, in [111]. At the time of writing,
all of the maximal subgroups of the almost simple groups with socle a sporadic
group are known except for almost simple maximal subgroups of the Monster
whose socle is one of a small list of groups. See [111] for a description of the state
of play: note that it has recently been shown by R.A. Wilson that Ly(41) is a
maximal subgroup of the Monster, correcting an earlier error in the literature.

Computational applications. We were partly motivated to carry out this
classification by its applications to computational group theory. In [9], results
of Kovacs, Aschbacher and Scott dating from the mid 1980s are used to reduce
the computation of the maximal subgroups of a general finite group G to the
case when G is almost simple. Polynomial-time algorithms for constructing the
geometric-type maximal subgroups of the classical groups (in all dimensions)
are presented in [45] for the linear, unitary and symplectic groups, and in [46]
for the orthogonal groups, and they have been implemented in MAcGMA [5].

The Class . subgroups arising from representations of almost simple groups
in their defining characteristic are generally moderately straightforward to con-
struct using standard functionality for computing with modules over groups.
Most of the quasisimple Class . subgroups that are not in defining characteris-
tic can be constructed by restricting a representation of a quasisimple group in
characteristic 0 to the required finite field. The associated almost simple groups
can be constructed over the finite field from a knowledge of the relevant group
automorphisms and the computation of module isomorphisms.

Various databases of characteristic 0 representations are available either
directly on the web, or via computer algebra systems such as GAP [29] and
MAGMA. A facility of this type [111] has been under construction and con-
tinuous development for several years now. More recently, Steel [103] has con-
structed almost all of the characteristic 0 representations in [42] of quasisimple
groups in dimensions up to 250. We used data from these databases to carry
out some of the calculations needed to complete the classification.

Although the bulk of the arguments used in our classification theorems are
theoretical, a substantial number of them make use of computer calculations.
These calculations require only small amounts of computer time (generally
at most a few seconds) and could be easily carried out using existing func-
tionality and databases in either GAP or MAGMA. The MAGMA commands
for each of these individual calculations are given in the files on the webpage
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http://www.cambridge.org/9780521138604, to enable the user to verify them
easily. Whenever we use such a calculation in a proof in this book, we refer to
it as a “computer calculation” in the text, and direct the user to the individual
online file that contains the commands to carry it out. The files have names like
4134d8calc, which contains calculations with the 8-dimensional characteristic
0 representation of the group 4'L3(4). The matrices defining the images of these
representations are stored in data files, which are also on the website, and are
accessed by the commands that carry out the calculations.

We shall assume that the reader has a general knowledge of group theory
and of group representation theory as might be acquired from advanced un-
dergraduate courses on these topics. Some knowledge of the general theory of
classical groups over finite fields and of their associated bilinear, sesquilinear
and quadratic forms would also be helpful, because we shall only briefly sum-
marise what we need for this book. Good sources are the books by Rob Wilson
[114] (which also includes a great deal of information about maximal subgroups
of simple groups), Don Taylor [108] or Chapter 2 of [66]. We do not require any
familiarity with algebraic groups, but the interested reader should consult [91]
for an introduction which is especially well-suited to our current purposes.

Finally, in any classification project of this scale, it is inevitable that some
mistakes will have slipped into our tables. At the time of publication, we know
of no such errors, but an errata list has been created at

http://www.cambridge.org/9780521138604,

and we shall keep this up to date. We would be extremely grateful to be in-
formed of any errata.
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Introduction

1.1 Background

Given a group G, we write Soc G for the socle of G: the subgroup of G generated
by its minimal normal subgroups. A group G is almost simple if S < G < Aut S
for some non-abelian simple group S. Note that S = Soc G. A group G is perfect
if G = G'. A group G is quasisimple if G is perfect and G/Z(G) is a non-abelian
simple group.

Aschbacher [1] proves a classification theorem, which subdivides the sub-
groups of the finite classical groups into nine classes. The first eight of these
consist roughly of groups that preserve some kind of geometric structure; for
example the first class, %, consists (roughly) of the reducible groups, which
fix a proper non-zero subspace of the vector space on which the group acts
naturally. Subgroups of classical groups that lie in the first eight classes are
of geometric type. The ninth class, denoted by %y or .7, consists (roughly)
of those absolutely irreducible subgroups that are not of geometric type and
which, modulo the central subgroup of scalar matrices, are almost simple.

In [66], Kleidman and Liebeck provide an impressively detailed enumeration
of the maximal subgroups of geometric type of the finite classical groups of
dimension greater than 12. More precisely, they classify the conjugacy classes
of maximal subgroups H of those almost simple groups G for which Q :=
Soc G = Q/7Z(9) for some classical quasisimple group €2, with HNQ = K/Z(£)
for a subgroup K of 2 of geometric type.

In this book, we determine the maximal subgroups of all such almost sim-
ple groups G with dimension at most 12. For the subgroups of geometric type,
Kleidman and Liebeck proved that their lists contain all such maximal sub-
groups even in dimensions at most 12. But their determination of when these
subgroups are actually maximal applies only to dimensions greater than 12. It
turns out that they are nearly all maximal, with just a few exceptions in small
dimensions: all of the exceptions are in dimension at most 8.
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We do not, however, restrict ourselves to the subgroups of geometric type,
and include those subgroups in Aschbacher Class . in our classification. It is
a feature of the groups in this class that they are not, as far as we know, sus-
ceptible to a uniform description across all dimensions, but can only be listed
for each individual dimension and type of classical group. Fortunately, lists
are available of all irreducible representations of degree up to 250 of all finite
quasisimple groups G. These have been compiled by Liibeck [84] for represen-
tations of G in defining characteristic (when G is a group of Lie type), and by
Hifl and Malle [42] for all other representations. These lists provide us with a
complete set of candidates for the quasisimple normal subgroups S of maximal
subgroups in Class . of the finite classical groups of dimension up to 250.

We are, however, left with two major problems. Firstly, in order to find the
almost simple maximal subgroups of the almost simple classical groups G =
G/Z(Q), we need to determine which of the automorphisms of the simple groups
S/7Z(S) in the lists of candidates can be adjoined within G. Secondly, we need
to determine which of the candidates that we construct are actually maximal
subgroups of the almost simple groups. Indeed, our approach to the project as
a whole follows the same general pattern as [66]: first we find the candidates
for the maximal subgroups within each of the nine Aschbacher classes, then
we determine which are maximal within their own class, and finally we decide
maximality itself by identifying cases in which maximal groups in one class are
properly contained in a subgroup in another class.

The Of (g) case is handled in detail in [62], so we shall not repeat that work
here: we will simply reproduce the table of maximal subgroups from [62], but
in the format we are using for the remainder of our tables.

Structure of this book. In the remainder of this chapter we present basic
results on the structure and representations of simple groups; this material will
be required both for the study of geometric type groups and of groups in Class
. Topics covered include: novelty maximal subgroups; finite fields; sesquilin-
ear and quadratic forms, including the specification of our standard forms;
introduction to the classical groups, including the specification of our standard
outer automorphisms; some relevant representation theory; tensor products; ex-
ceptional properties of various small classical groups; permutation and matrix
representations of the classical groups; properties of the natural matrix repre-
sentations of the classical groups; Zsigmondy primes; quadratic reciprocity.

In Chapter 2 we first state our main theorem, Theorem 2.1.1. Then in Sec-
tion 2.2 we introduce the types of geometric subgroups: these are families of
subgroups with the property that if H is a geometric maximal subgroup of
a quasisisimple classical group, then H is a member of one of these families.
For each geometric Aschbacher class, we define the corresponding types, give
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the structure of the maximal groups of each type, and prove some elementary
properties. This detailed definition of the types enables us to state our version
of Aschbacher’s theorem in Subsection 2.2.9, which is essentially the refined
version given in [66]. In Section 2.3 we establish some results concerning maxi-
mality of the geometric subgroups that can be proved simultaneously for more
than one dimension at a time.

In Chapter 3 we consider each dimension from 2 to 12 in turn, and determine
which subgroups are maximal amongst the geometric subgroups of the almost
simple classical groups of that dimension. Thus by the end of this chapter we
have produced a list of candidate geometric maximals, which only need to be
compared with the Class . groups to determine their maximality.

Section 4.1 presents our overall strategy for classifying the maximal sub-
groups in Class ./, and a description of the subdivision between Class %
(cross characteristic) and Class .%, (defining characteristic). The remainder of
Chapter 4 is devoted to finding the maximal subgroups in Class .%1. There is
a section (4.2) on working with algebraic irrationalities. After this we present
in Section 4.3 our list of .#;-candidates (taken from [42]). The next few sec-
tions concern dimensions 2 to 6, and alternate between theory and practice.
In Sections 4.4 and 4.5, we first describe how to calculate the stabiliser of a
quasisimple group in cross characteristic in a conformal classical group (the
group of all linear mappings that multiply the form by a scalar), and hence to
determine the exact structure and conjugacy behaviour of a candidate maximal
S1-subgroup of a quasisimple group, and then carry out these calculations in
some detail in dimensions up to 6. Next, in Sections 4.6 and 4.7 we present
methods to determine the actions of the duality and field automorphisms of
a quasisimple classical group on its quasisimple subgroups, and apply these
methods in dimensions up to 6. In Section 4.8 we then determine whether any
of these .#;-subgroups contain one another, and hence are non-maximal. After
carrying out all of these calculations in detail in dimensions up to 6, in Sec-
tion 4.9 we perform the same calculations for dimensions 7 to 12. This means
that we have determined those subgroups of the almost simple classical groups
in dimension at most 12 that are maximal amongst the .#-subgroups: this list
is summarised in Section 4.10.

In Chapter 5 we move on to considering the maximal subgroups arising
from representations of groups of Lie type in defining characteristic. Note that
we in fact define a class 75" of subgroups (see Definition 5.1.15) and work only
with them. In Section 5.1 we present as much of the general theory of repre-
sentations of groups of Lie type in defining characteristic as we will need to
perform our calculations. In Section 5.2 we briefly present some information
about symmetric and anti-symmetric powers of modules. We then consider the
possible families of groups of Lie type in turn, basing our lists of candidates on
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[84]. For cach possible candidate maximal subgroup we determine the structure
of the maximal such subgroup of the quasisimple group, the module on which
it acts, the number of conjugacy classes in the quasisimple group, and the sta-
3
we consider groups with non-abelian composition factor La(g), in Section 5.4
the groups L, (¢q) and U, (¢) with n > 3, in Section 5.5 the groups S,(¢), in
Section 5.6 the groups O (¢q) and *D4(q), and finally in Section 5.7 the remain-
ing groups of Lie type. We summarise our findings to this point in Section 5.8.
Next, in Section 5.9 we determine the action of duality and field automorphisms
on .5 -subgroups. In Section 5.10 we determine all containments between the
S5 -subgroups, and then finally in Section 5.11 we summarise the results of this
chapter. Thus Chapter 5 determines all subgroups that are maximal amongst
the .5 -subgroups in dimension at most 12.

By the end of Chapter 5 we have produced a list of subgroups of the almost
simple classical groups such that all maximal subgroups lie in this list. We then
proceed in Chapter 6 to determine the containments between these subgroups,
and hence to prove the main theorem of the book, Theorem 2.1.1. In Section 6.2
we determine all containments between .”j-maximals and .;-maximals, to
produce a set of .#*-maximals (where .* = .} U.5), and then in Section 6.3
we determine all containments between geometric and .*-maximals.

Aschbacher’s theorem does not apply to certain extensions of S4(2¢) and
O (q) (that is, those that involve the exceptional graph automorphism and the
triality graph automorphism, respectively): note, however, that Aschbacher’s
paper [1] includes a variant of his theorem for the relevant extensions of S4(2°),

biliser of one such class in the conformal classical group. Then in Section 5.
5.

but we shall not deem this variant to be part of “Aschbacher’s theorem”. Since
the OF (g) case is fully handled in [62], we do not concern ourselves with that.
In Chapter 7 we calculate the maximal subgroups of those almost simple ex-
tensions of S4(2¢) to which Aschbacher’s theorem does not apply, as well as the
maximal subgroups of the finite almost simple exceptional groups that have
a faithful projective representation in defining characteristic of degree at most
12, namely those with socles 2Bz (q) = Sz(q), Ga(q), >G2(q) = R(q) and 3D4(q).
For many of these groups such classifications are already known, and we merely
provide references to the original calculations, however we occasionally include
our own proofs if we feel this may be helpful for the reader. Finally, in Chap-
ter 8, we present tables of our results.

1.2 Notation

Here we list some general notation used in the book. More specialised notation
will be introduced as it arises, and in particular our notation for the classical
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groups is presented in Subsection 1.6.3 and for the outer automorphisms of the
classical groups in Subsection 1.7.1.

By [a, b] we denote the least common multiple of two positive integers a and
b, and by (a,b) we denote their greatest common divisor. If € N and p is a
prime, we write (a), for the highest power of p that divides a. In Section 1.13
we define the notion of a Zsigmondy prime for g™ — 1, where ¢ is a prime power
and n > 3 is an integer. We shall denote such a prime by z, .

If we write ¢;; (with two subscripts), we will mean the Kronecker delta:
0;; = 1 for all ¢ and 6;; = 0 whenever i # j.

For group elements g and h, we write g for h='gh and [g, h] for g~ *h~1gh.
As usual, Z(G) is the centre of the group G, and Ng(H) and Cq(H) are the
normaliser and centraliser of H in GG. The derived subgroup of G is written as
[G,G] or G', and we define G™ = [G"~1) G"=V)] for n > 1, and use G* to
denote ﬂi>0 G, We write Aut G for the automorphism group of G, and Inn G
and Out G respectively for its inner and outer automorphism group.

Our notation for group structures is based on that in the ATLAS [12]. Note
in particular that this means that we generally use ATLAS notation for simple
groups. Thus, for example, A x B is the direct product of groups A and B, we
write A:B to denote a split extension of A by B, we write A'B to denote a
non-split extension (or possibly one in which A is trivial), and we write A.B
when we do not know or do not wish to specify whether the extension splits.
The symbol A B is defined for an arbitrary group A and a permutation group
B, and denotes the wreath product of A by B. If G is a group with a unique
index 2 subgroup H, then we sometimes write %G to denote H.

The cyclic group of order n is denoted by C,, or (particularly when as a
component of a group structure) just by n. An elementary abelian group of
order p™ is denoted by E,» or just by p™. By [n] we denote a group of order
n, of unspecified structure. For elementary abelian groups A we write A™+"
to mean a group with an elementary abelian normal subgroup A™ such that
the quotient is isomorphic to A™. The group A™*" is usually, but not always,
special. For n even, D,, denotes the dihedral group of order n, and for n a power

of 2, we write Q,, for the quaternion group of order n. For r an odd prime, we
1+2n 14+2n

write r}r'ﬂ” for an extraspecial group of order r and exponent r, and r
for an extraspecial group of the same order, but exponent 2. We write 2_1:“27”
for an extraspecial group of order 2! 2™ that is isomorphic to a central product
of m copies of Dg, and we write 217%™ for an extraspecial group of the same
order, but that is isomorphic to a central product of m — 1 copies of Dg and
one of Qg.

For L an arbitrary finite group, P(L) denotes the minimum degree of a
non-trivial permutation representation of L.

We write [F, for a finite field of order ¢ = p°, with a fixed primitive element
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w = wy, and Frobenius automorphism ¢ : z +— zP. For a field F', we write F'*
to denote the multiplicative group of F, char F' to denote the characteristic of
F, and (F,+) to denote the additive group of F.

As usual, I, is the n x n identity matrix and J, is the n x n matrix with
all entries 1. We write diag(aq, as, ..., a,) for the matrix A = (ai;)nxn with
a;; = oy for all ¢ and a;; = 0 otherwise. We write antidiag(cy,...,a,) for
the matrix A = (@i;)nxn With a; n—i+1 = «; for all ¢ and a;; = 0 otherwise.
The transpose of A is denoted by AT, and its trace by tr(A). We denote the
elementary matrix with a 1 in position (7, j) and 0 in all other positions by E; ;.

The set of all (m X n)-matrices with entries in the field F is denoted by
M, scn (F'), or by My,xn(g) when F' = F,. For a vector space V over a field
F, we write GL(V) for the general linear group of V, which is the set of all
invertible F-linear maps from V to itself. For a given basis of V', we can identify
GL(V) with GL,(F') (or GL,(¢) when F =TF,), the set of all invertible n x n
matrices over F'. Our convention is that linear maps act on the right, with
corresponding action of matrices on row vectors by right multiplication.

We write GLE(¢), and related notation such as SLE(g), to denote the linear
and unitary groups: the + sign corresponds to the linear groups, and the —
sign to the unitary groups. (We may also of course denote the unitary groups
by the more usual GU,(¢) and SU,(q).)

If U and W are subspaces of V, and G < GL(V), then we write Ng(W)
for the stabiliser in G of W, and Ng(W,U) for Ng(W) N Ng(U). If G < S,
stabilises a set W C {1,...,n}, or G < GL(V) stabilises a subspace W < V|
then by G we mean the image of the induced action of G on W.

For a vector space V', we write V* for the dual space of V. If V' is equipped
with a reflexive form [ (see Section 1.5), then we write V= A 1 B to mean
that V' decomposes as a direct sum of A and B, such that 3(a,b) = 0 for all
a€ A, be B. Forv eV, we write v for the subspace {w € V | B(v,w) =0},
and similarly W+ = {v € V | B(w,v) = 0 for all w € W }. If Q is a quadratic
form on V, and W is a non-degenerate subspace of V', then sgn(WW) denotes
the sign of the restriction of @ to W (so sgn(W) can be o, + or —).

1.3 Some basic group theory

An automorphism of a group G is a bijective homomorphism from G to itself:
the set of all automorphisms of G forms a group, Aut GG. For a fixed g € G,
we denote the automorphism z +— z9 = ¢!
G is inner if there exists a g in G such that ¢ = c,. We denote the group
of all inner automorphisms of G by InnG. Note that Inn G = G/Z(G). It is

an easy exercise to prove that Inn G < Aut G; the quotient Aut G/InnG is

xg by ¢g. An automorphism ¢ of
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Out G, the outer automorphism group of G. An outer automorphism of G is
often defined to be an element of AutG \ InnG rather than an element of
Out G. In this book, however, despite the risk of causing confusion, we find it
convenient to use “outer automorphism” to denote either a non-trivial element
a of Out G (which is consequently only defined modulo Inn G, and hence not
itself an automorphism of G), or a representative « of a non-trivial coset of
Inn G in Aut G, depending on the context.

Let a € Aut G, let C be a conjugacy class of G, and let C* = {z® : x € C}.
We say that a stabilises C' if C* = C'. The following lemma is elementary.

Lemma 1.3.1 Let o € Aut G and let C' be a conjugacy class of G. Then C¢
s also a conjugacy class of G. Furthermore, if o stabilises C' and v € C, then
there exists g € G with %% = x.

So, for a given C, the class C'* depends only on the coset of Inn G in which
« lies, and hence there is an induced action of Out G on the set of conjugacy
classes of G. So when we write C“ with « an outer automorphism of G or talk
about an outer automorphism stabilising C', then it does not matter whether
we are thinking of a as an element of Aut G or of Out G.

The following theorem is a straightforward consequence of the classification
of finite simple groups, and was known as the Schreier Conjecture before the
completion of the classification.

Theorem 1.3.2 Let S be a finite non-abelian simple group. Then Out S is
soluble.

We will occasionally need the concept of isoclinism. The commutator [z, y]
of two elements x and y of a group G is unchanged if we multiply = and y by
central elements of G. Thus we can think of the commutator map not as a map
from G x G to G, but instead as a map from G/Z(G) x G/Z(G) to G.

Definition 1.3.3 Two groups G and H are isoclinic if there are isomorphisms
p:G/Z(G) — H/Z(H) and 0 : G’ — H’ which form a commutative diagram
with the commutator maps from G/Z(G) x G/Z(G) to G" and from H/Z(H) x
H/Z(H) to H'.

G (p,p) H H
Z(G) Z(H) © Z(H)




8 Introduction

The dihedral group of order 8 and the quaternion group of order 8 are
isoclinic; see just before Subsection 1.3.1 for another example.

If G is finite, then G = N, G is the first perfect group in the de-
rived series of G. If S is non-abelian and simple, and S <G < Aut S, then
Theorem 1.3.2 implies that G = S.

Recall from Section 1.1 that a group G is quasisimple if G is perfect with
G/Z(@G) anon-abelian simple group. We shall use the following lemma implicitly
throughout much of the book, without further citation.

Lemma 1.3.4 Let G = Z'S be quasisimple, with Z central and S non-abelian
simple. Then Aut G can be naturally regarded as a subgroup of Aut S.

Proof Let a be a non-trivial element of Aut G. If a induces the identity map
on G/Z, then « acts as the identity on all commutators [g, k], and so induces
the identity on all of G. Thus Aut G acts faithfully on G/Z. O

A stem extension of a group G by a group K is a group C = K'G such
that K < Z(C) N C’. In particular, a quasisimple group is a stem extension of
a non-abelian simple group.

Definition 1.3.5 The Schur multiplier M(G) of a group G is the largest K
such that there exists a stem extension of G by K.

It is not immediately apparent that M (G) is well-defined, but it turns out
that the corresponding stem extension is determined up to isoclinism by G,
(see Definition 1.3.3 of isoclinism), and up to isomorphism if G is perfect.

As an example, the symmetric groups S,, for n > 4 have two isoclinic double
covers, 2°A,,.27 and 2°A,,.27, whilst by the above remark for n > 5 and n # 6
the groups A,, have a unique double cover (which is true also for A4.) This
notation comes from [12], and 2°'A5.2" is the group of which the character
table is printed there. The inverse images of transpositions in S5 have orders 2
and 4 in 2°A5.27 and 2°A5.27, respectively.

1.3.1 Maximal subgroups of almost simple groups

Let G be an almost simple group with socle S, and let M be a maximal subgroup
of G. The group M is a triviality if S < M. The trivialities correspond to the
maximal subgroups of the soluble group G/S and are very easy to determine.
They are consequently generally omitted from tables of maximal subgroups of
almost simple groups (for example, in the ATLAS [12]), and are excluded from
the statements of Aschbacher’s theorem and the O’Nan—Scott Theorem.

The following result is fundamental in the analysis of maximal subgroups
of almost simple groups. It was first proved by Wilson [113], though we follow
the proof of Liebeck, Praeger and Saxl [79, end of paper].
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Theorem 1.3.6 Let G be a finite almost simple group with socle S. Suppose
that M is a maximal subgroup of G. Then SN M # 1.

Proof If G = S then the result is trivial, so suppose not, and assume that
SNM = 1. Then M < (S;M) < G, whence G = SM = S:M, by the
maximality of M. Let N be a minimal normal subgroup of M. Then N is
characteristically simple. One of the following cases must arise:

(i) N =2 E,r, where p is prime, r > 1 and p | |S];
(i) N = E,-, where p is prime, r > 1 and p { |S|;
(iii) N2T x---xT=2T™ where m > 1 and T is non-abelian simple.

The quotient G/S is soluble by Theorem 1.3.2, so Case (iii) does not arise.

In all cases, M < Ng(NV). Moreover Ng(N) NS = Cg(N), and of course
Cg(N) # S, since N is a subgroup of AutS. Thus Ng(N) # G and hence the
maximality of M implies that Ng(N) = M and so Cg(N) = 1.

In Case (i), the conjugation action of N on S centralises 1g, so must cen-
tralise some non-trivial elements of S (since the orbits of N have p-power order
and p | |S]). This contradicts Cg(N) = 1.

In Case (ii), we let ¢ | |S|, with ¢ prime (so ¢ # p), and we let @ be a
Sylow g-subgroup of S normalised by N, which exists as the number of Sylow
g-subgroups of S is a divisor of |S]|, and therefore not divisible by p. Suppose
that N also normalises a Sylow ¢-subgroup @7 of S. Then @; = Qm_l for
some x € S. So now N and N? normalise () and so are Sylow p-subgroups
of Ngn(Q) = Ng(Q)N. Hence there exist y € Ng(Q) and z € N such that
N#* = N = N? and so there exists y € Ng(Q) such that N*¥ = N. Now
[g,2y) e NN S =1 for all g € N, and so zy € Cg(N) = 1. Hence = =
y~! € Ng(Q), and so Q1 = Q. Therefore M = Ng(N) < Ng(Q), because N
normalises a unique Sylow g¢-subgroup of S, and so M < QM < SM = G,
contradicting the maximality of M. O

In Chapter 7, we shall need the following immediate corollary.

Corollary 1.3.7 Let G be a finite almost simple group with socle S, and
let M be a mazimal subgroup of G such that S & M. Then there exists a
characteristically simple group N with 1 < N < S such that M = Ng(N).

Proof By the previous result, we may assume that M N.S # 1. Notice that
MNS < M, so we may choose N to be minimal subject to 1 < N < M NS and
N < M. Thus N is a minimal normal subgroup of M, and so is characteristically
simple. Clearly M < Ng(N), and from N < M NS < S we deduce that
S & Ng(N). Maximality of M then gives M = Ng(N). O

Definition 1.3.8 A maximal subgroup M of an almost simple group G is
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called an ordinary maximal subgroup if S N M is a maximal subgroup of S.
We say that M is a novel maximal subgroup (or, simply, a novelty) if SN M
is non-maximal in S.

Suppose that H < S and we are considering M = Ng(H) as a candidate
for being a novel maximal subgroup of G. This is only possible if Ng(H)S = G,
so we shall assume that to be the case. Then M fails to be maximal in G if
and only if M < Ng(K) for some K such that H < K < S. By replacing H
by Ng(H), we may assume that Ng(H) = H, and similarly we may restrict
attention to groups K with Ng(K) = K.

If Ng(K)S # G for some such K then M is not a proper subgroup of
Ng(K). This motivates the following definition.

Definition 1.3.9 Let G be almost simple with socle S. If H = Ng(H) <
K =Ng(K) < S <G, but Ng(K)S # G, then M = Ng(H) is called a type 1
novelty with respect to K.

An example is G = PGLa(7), S = Ly(7), H = Dg, M = Dj5. The only
possibility for K is S4, but Ng(K) = K in that case.

The following is essentially equivalent to [113, Proposition 2.3 (e),(f)], but
in a slightly different context.

Proposition 1.3.10 Let G be almost simple with socle S. Suppose that G has
subgroups H < K < S < G, with Ng(H) = H, Ng(K) = K, and Ng(H)S =
Ng(K)S = G. Then Ng(H) £ Ng(K) if and only if there exists Hy < K with
H and Hy conjugate in Ng(K) but not in K. In this situation H and Hy are
also conjugate in S.

Proof Let M denote Ng(H). Suppose first that M € Ng(K), and let m be an
element of M \ Ng(K). Then H = H™ < K™ # K, and Ng(K)S = G implies
that m = ns for some n € Ng(K) and s € S, and hence that K™ = K*. So
Hy := H* ' < K, and H® = H™ ' = Hy, so H and H, are conjugate in
Ng(K) and in S. But if HY = H with k € K, then s™'k € Ng(H) = H, so
s € K and hence K™ = K*® = K, a contradiction.

Suppose conversely that Hy < K, where Hj is such that H and H, are
conjugate in Ng(K) but not in K, and let n € Ng(K) with H" = Hy. Since
MS = G, we can write n = ms with m € M and s € S. If m € Ng(K), then
s € Ng(K)=K,so Hy=H" = H™® = H®, contradicting the assumption that
H and Hj are not K-conjugate. So m ¢ Ng(K) and hence M € Ng(K). O

Definition 1.3.11 Let G be almost simple with socle S. If H < K < S < G,
with Ng(H) = H, Ng(K) = K, Ng(H)S = Ng(K)S = G, and such that
M = Ng(H) € Ng(K), then M is a type 2 novelty (or Wilson novelty) with
respect to K.
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An example of this in [12] is S = He (the sporadic Held group), G = He:2,
H = (A5 x A5):2%2, M = (S5 x S5):2. The only possible K is S4(4):2. The two
conjugacy classes of groups isomorphic to H in K are fused in Ng(K) = S4(4):4.
Another example, from Table 8.13, is G = S4(7):2, H = Ly(7), M = Ly(7):2.
The only possible K is A7. The two conjugacy classes of groups isomorphic to
H in K are fused in Ng(K) = Sy7.

1.4 Finite fields and perfect fields

The reader unfamiliar with the theory of finite fields should consult [11, Chap-
ter 7], which contains all of the basic concepts that we will need, and much
more. The following dates back to E.H. Moore in 1893.

Theorem 1.4.1 For each prime p and each e > 1, there is exactly one finite
field of p¢ elements, up to isomorphism, and these are the only finite fields.

Although it is only defined up to isomorphism, and there is no satisfactory
canonical way to define it, it is customary to regard ‘the’ finite field of order ¢
as a fixed object, and to denote it by F,. The following result is also standard,
and we will use it implicitly throughout the rest of the book.

Proposition 1.4.2 Any finite subgroup of the multiplicative group of a field
s cyclic. In particular, the multiplicative group of a finite field is cyclic.

In the light of Proposition 1.4.2, the field F, always contains elements of
multiplicative order ¢ — 1, and such an element w is called a primitive element
of Fy. Clearly F, = F,(w), and so the minimal polynomial f of w over F, must
be of degree e, where ¢ = p°. An irreducible polynomial of degree e over F,, of
which the roots are primitive elements of F, is called a primitive polynomial.

Definition 1.4.3 Let f be a polynomial with coefficients in a field F. If f
can be written as a product of linear factors over an extension field K of F' and
no proper subfield of K that contains F' has this property, then K is a splitting
field for f over F.

For any field of characteristic p, the map ¢ : © — P defines an injective
endomorphism of F, of order e, called the Frobenius endomorphism.

Definition 1.4.4 A field I is perfect if either char F' = 0, or if char F = p > 0
and the Frobenius endomorphism is an automorphism, in which case it is called
the Frobenius automorphism.

In this book, we will mostly work with finite fields, but some results also
hold for arbitrary fields, and some for perfect fields. In particular, all finite
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fields are perfect, and the Frobenius automorphism of the finite field F, with
q = p° has order e, and generates the complete automorphism group of F,. So,
if f is a primitive polynomial of degree e over [, with root w € F,, then the
e elements in the set {w?" | 0 < i < e} are all roots of f in F,. Hence F, is a
splitting field of f over IF, .

The following lemma is technical, but will make several appearances in
Chapter 3 when analysing é5-subgroups (see Definition 2.2.11).

Lemma 1.4.5 Let ¢ = p®, and let v be such that e/r is prime.

(i) Ifa+a™t € Fyr for all non-zero oo € Fpe, thenp =2, e=2 and r = 1.
(ii) The prime e/r is 2 if and only if a?™' + =7 € Fpor for all a € IF;ZS.

Proof (i) For each A € F,r there are at most two solutions to the equation
a? —aX+1 =0 (that is, to a +a~t = \), so p¢ — 1 < 2p", forcing p® = 4.
(ii) For each A € Fp2- there are at most two solutions for a4~ to the quadratic
equation (a?71)?
for a?=!, there are at most ¢ — 1 values for a. Thus we account for at most
2p?" (p® — 1) non-zero field elements as solutions. Therefore, if we are to account
for all non-zero elements of F,zc as solutions, then 2p*"(p® — 1) > p** — 1, so
2p?" > p° + 1, and hence p?" ! > p¢ + 1. If r < ¢/2 then 2r + 1 < e, because
divides e, and we have a contradiction.

Conversely, a?~! + o' 4 is fixed by the automorphism z +— z? of F2. [

— a9 '\ + 1 = 0, and neither solution is 0. Given a value

1.4.1 Conway polynomials

Although F, is unique up to isomorphism, it arises as the splitting field of
®(q—1)/e different primitive polynomials, where ® is the Euler Phi-function
and ¢ = p°. For computational purposes, it is useful to agree on a standard
primitive polynomial, so that different computer algebra systems can use the
same representation of the elements of IF,. Unfortunately, there appears to be
no natural or canonical way of choosing such a standard polynomial.

The standard that has been generally agreed upon is known as the Conway
polynomial for F,. (This is an unfortunate choice of name, because there is
another meaning of Conway polynomial in knot theory!) They were originally
introduced by Richard Parker, who computed many examples. To define them,
we first define an ordering on the set of all polynomials of degree n over F' = IF),
and it is here that an apparently arbitrary choice had to be made.

We order F,, itself by 0 <1 <2 < --- < p—1. Then the polynomial

—1 —2
" — o 2" F a0 — 4 (1) g

is mapped onto the word «,_10u,_o---ajag, and the resulting words are or-
dered lexicographically using the above ordering of F,,.
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The Conway polynomial for I, is defined to be the least primitive polyno-
mial of degree 1 under this ordering. In other words, it is  — «, where « is the
smallest primitive element in IF),.

For non-prime fields, there is an extra condition. It is a standard result that
F,m is a subfield of I, if and only if m divides n. For compatibility between the
Conway polynomial f of the field F,» and its subfields, it is required that if « is
a root of the Conway polynomial f of F,» then, for all proper divisors m of n,
ot with ¢ := (p"—1)/(p™—1) should be a root of the Conway polynomial of Fm.
We can then define the Conway polynomial f of Fp» to be the least primitive
polynomial under the ordering defined above that satisfies this compatibility
condition for all divisors of n.

It is a slightly tricky exercise to show that a primitive polynomial f exists
that satisfies this property. A proof can be found in the thesis of W. Nickel [97].
One disadvantage of this definition is that Conway polynomials are extremely
difficult to calculate for large ¢, though a substantial number are known and
available on [86], and for certain values of p and e they are easily calculated.

1.5 Classical forms

In this section we present basic material on the theory of classical forms. The
reader unfamiliar with this material may wish to consult Taylor’s textbook
[108], where these topics are covered in much greater detail. We shall start
with a brief introduction to sesquilinear and quadratic forms, culminating in the
Birkhoff-von Neumann Theorem, which classifies such forms, subject to certain
additional symmetry conditions. After a short digression into representing forms
via matrices, we then present the definitions of our standard unitary, symplectic,
symmetric bilinear and quadratic forms.

Throughout this section, we let V' be a vector space of dimension n > 0
over the field F.

Definition 1.5.1 Let 0 € Aut . Amap §:V xV — F is a o-sesquilinear
form if, for all u,v,w € V and all \,u € F:

(1) ﬁ(uav + w) = ﬂ(u,v) +/8(uaw)§

(11) ﬁ(u + v,w) = ﬂ(uvw) + ﬁ(va w); and

(i) B0, o) = M”31, ).
The form (3 is bilinear if o = 1, and symmetric if G(u,v) = B(v,u) for all
u,v e V.

Definition 1.5.2 The map Q : V — F'is a quadratic form if:
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(i) Q(\v) = \2Q(v) for all A € F,v € V; and
(ii) the map S, defined by B(u,v) := Q(u+v) — Q(u) — Q(v) for all u,v € V|

is a symmetric bilinear form on V.
We call g the polar form of Q.

Definition 1.5.3 Let 3 be a o-sesquilinear form on V, let Q be a quadratic
form on V and let ¢ € GL(V). Then g is an isometry of 8 (or of Q) if
B(ug,vg) = B(u,v) (respectively, Q(vg) = Q(v)) for all u,v € V. The ele-
ment ¢ is a similarity of 8 (or of Q) if there is a A € F \ {0} such that
B(ug,vg) = A\B(u,v) (respectively, Q(vg) = AQ(v)) for all u,v € V.

Definition 1.5.4 Let x be a o-sesquilinear or quadratic form. The isometry
group of k is the group of all isometries of k, and the similarity group of k is
the group of all similarities of .

Note that the isometry group of x is normal in the similarity group of «: if
k is identically zero then both groups are equal to GL(V'), and otherwise this
follows from the fact that the map g — A, defined by k(ug,vg) = A\gk(u,v)
(or, if k is quadratic, k(vg) = Ayk(v)) is a homomorphism.

Definition 1.5.5 Two o-sesquilinear forms § and v on V (respectively, two
quadratic forms @1 and Q3 on V) are isometric or equivalent if there is a
g € GL(V) such that y(u,v) = B(ug,vg) (respectively Q1(v) = Q2(vg)) for all
u,v € V. The forms are similar if there is a g € GL(V) and A € F'\ {0} such
that v(u,v) = AB(ug,vg) (respectively, Q1(v) = AQ2(vg)) for all u,v € V.

Definition 1.5.6 The o-sesquilinear form [ is non-degenerate if 3(u,v) = 0,
for a fixed v € V and all v € V, implies that v = 0.

Let Q be a quadratic form on V' with polar form (. Then Q) is non-degenerate
if 3 is a non-degenerate bilinear form. The form @ is non-singular if Q(v) # 0
for all v € V such that S(w,v) = 0 for all w € V: so, a non-degenerate quadratic
form is non-singular.

(It will follow from Proposition 1.5.25 that a o-sesquilinear form [ is non-
degenerate if and only if B(u,v) = 0, for a fixed u € V' and all v € V, implies
that v = 0.)

Definition 1.5.7 Let  be a o-sesquilinear form on V. A subspace W of V
is mon-degenerate if the restriction of 5 to W is non-degenerate. The subspace
W is totally singular or totally isotropic if § restricted to W is identically 0.
Similarly, a vector v is singular if S(v,v) = 0, and non-singular ortherwise.
Let @ be a quadratic form on V' with polar form 5. A subspace W of V is
totally singularif Q(w) = 0 for all w € W, and is totally isotropic if B(v,w) =0
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for all v,w € W. A vector w is singular if Q(w) = 0; isotropic if f(w,w) = 0;
and non-singular if Q(w) # 0.

By considering f(w, w) = Q(2w) —2Q(w) = 2Q(w), we see that all singular
vectors are isotropic, but the converse need not be true in characteristic 2.

We are interested in certain o-sesquilinear forms that have more symmetry
than in the general case above.

Definition 1.5.8 Let 3 be a o-sesquilinear form. If there exist A € F'* and
7 € Aut F such that S(v,u) = AB(u,v)” for all u,v € V then g is quasi-
symmetric. If the form ( satisfies the property that §(u,v) = 0 if and only if
B(v,u) = 0 then [ is reflezive.

The proof of the following is left as an easy exercise.
Lemma 1.5.9 FEvery quasi-symmetric o-sesquilinear form is reflexive.

Definition 1.5.10 Let 3 be a reflexive o-sesquilinear form, and let W be a
subspace of V. The orthogonal complement of W, denoted by W, is:

Wh={veV|Bwv)=0VweW}={veV|Bv,w)=0VYweW}

So, by Lemma 1.5.9, for any quasi-symmetric o-sesquilinear form, a sub-
space W is non-degenerate if and only if W N W+ = {0}.

Definition 1.5.11 The Witt index of a o-sesquilinear or quadratic form is
the maximum dimension of a totally singular subspace of V.

Lemma 1.5.12 Let 3 be a non-zero quasi-symmetric o-sesquilinear form in
characteristic p > 0, and let X and T be as in Definition 1.5.8. Then:

(i) o?=1, =1, and 7 = 0.
(ii) If o # 1 then 8 is similar to a o-sesquilinear form (3 such that (' (u,v) =
B (v, u)?.
(iii) If o =1, A=—1, and p # 2, then B(v,v) =0 for allv € V.
Proof (i) We calculate that 3(u,v) = A3(v,u)™ = AA"B(u,v)™ . By choosing
v, w with G(v,w) # 0, and considering the non-zero scalar multiples of u, we
see that A\™ =1 and 72 = 1. Now, notice that

17 B(u,v) = B(u, po) = A3(pv,u)™ = A" Bu, v)" .

Therefore 7 = p? for all p € F,so 0 = 7.

(ii) Suppose that o # 1 and v? + A9y = 0 for all v € F. Setting v = 1, we
deduce that A = —1. Thus v? —v = 0 for all v € F, a contradiction. Thus there
exists v € F' with v7 + A\7v = p # 0. A short calculation shows that u” = pA.
Using this, and setting 5'(u,v) = pf(u,v), gives the result.

(iii) The assumptions imply that §(v,v) = —G(v,v). O
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The following is essentially the Birkhoff-von Neumann Theorem (see [108,
Theorem 7.1]), and follows straightforwardly from Lemma 1.5.12.

Theorem 1.5.13 Let (8 be a quasi-symmetric o-sesquilinear form on a vector
space V over a field F', and let \ be as in Definition 1.5.8. Then up to similarity
one of the following holds, for all u,v € V.

(i) Bu,v) =0.

(ii) o =1, A= =1 and B(v,v) =0, so f(v,u) = —B(u,v).
(iii) o2 =1+#0 and A =1, so B(v,u) = B(u,v)°.

(iv) o =1 and A =1, so B(v,u) = B(u,v).

These cases are mutually exclusive, except that Case (ii) in characteristic 2 also
satisfies Case (iv).

Definition 1.5.14 In Case (ii) we say that 3 is alternating or symplectic, in
Case (iii) g is o-Hermitian or unitary, and in Case (iv) g is symmetric bilinear,
or sometimes orthogonal when char F' is odd.

Note that for the above definitions we do not assume that the forms con-
cerned are non-degenerate or non-singular.

The Birkhoff—~von Neumann Theorem justifies restricting our study of quasi-
symmetric sesquilinear forms to the symplectic, unitary and orthogonal forms,
except when the form is symmetric bilinear and char F' = 2. The following
proposition, which follows from B(v,v) = 2Q(v), shows that this is precisely
when quadratic forms will be useful.

Proposition 1.5.15 Let V be a vector space over F, equipped with a quadratic
form @Q with polar form (B, and suppose that char F' # 2. Then @ and (8 de-
termine one another, and g € GL(V) is an isometry (or a similarity) of Q if
and only if g is an isometry (or a similarity) of 8. Furthermore, the form @Q is
non-singular if and only if Q is non-degenerate, which is true if and only if 8
is non-degenerate. In addition, the Witt index of B is the same as that of Q.

When studying quadratic forms in odd characteristic, we therefore can prove
results via either the quadratic or the symmetric bilinear form. Combining this
result with the Birkhoff-von Neumann Theorem, we see that there are essen-
tially five types of non-degenerate forms to study: the zero form, symplectic
forms, unitary forms, symmetric forms, and quadratic forms. Furthermore, it
suffices to study quadratic forms only for ¢ even, since when ¢ is odd they are
determined by their polar forms.
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1.5.1 The matrix formulation

In this subsection we study a practical way of representing and calculating with
forms. Let # = (ey, ..., e,) be a basis of V. Recall our notation for finite fields
and matrices from Section 1.2.

Definition 1.5.16 The matrix of the sesquilinear form [ with respect to %
is B = (bij)nxn where b;; = B(e;,e;) for all 4 and j.

Let @ be a quadratic form with polar form . We can calculate that

QY Nied) =Y AQ(e) + D> NidiBlei, e).
i=1 i=1 i<j

Definition 1.5.17 The matrix of the quadratic form @ with polar form g with
respect to 4 is the upper-triangular matrix A = («;;), where a;; = B(e;, €5) if
1< g, Qi = Q(el) and G = 0if 7> 7.

The matrix of the polar form of @ is then B = A 4+ AT. When & is a form
with matrix C, we shall often assume that the basis £ is present, and (abusing
language) refer to C' as being the form.

Lemma 1.5.18 Letv,w € V, let B be a o-sesquilinear form on V with matriz
B, and let Q be a quadratic form onV with matriz A. Then 3(v,w) is the single
entry of the matriz vBw®', and Q(v) is the single entry of the matriz vAvT.

Proof This is a straightforward calculation. O

Definition 1.5.19 A square matrix B is called symmetric, anti-symmetric
or o-Hermitian, if BT = B, BT = —B, or BT = B, respectively. It is called
alternating if it is anti-symmetric and all of its diagonal entries are 0.

Lemma 1.5.20 The matriz of the form [ is symmelric, alternating or o-
Hermitian if and only if B is.

Proof This is a straightforward calculation. O
Recall Definition 1.5.3 of an isometry of a form.

Lemma 1.5.21 Let B be a o-sesquilinear form on F™ with matriz B, and let
Q be a quadratic form on F™ with matriz A, whose polar form has matriz C.
A matriz M € GL, (F) is an isometry of 3 if and only if MBM°T = B. The
matriz M is an isometry of Q if and only if MCMT = C, and the diagonal
entries of A and MAMT coincide.

Proof Suppose first that M BM®T = B. Then
BloM,wM) = vMB(wM)°"T = o(MBM°"w’" = B(v,w),



18 Introduction

so the result follows from Lemma 1.5.18. The converse, and the arguments for
quadratic forms, are equally easy. O

For quadratic forms there is an alternative way of checking whether a matrix
is an isometry which is useful when doing calculations.

Definition 1.5.22 For an n x n matrix A = (a;;), define AV = (3;;), where
Bis = ay; for 1 <o <, By = ayj +ayy for 1 <@ < j <n, and F;; =0if i > j.

Note that (BAVTBT)UT = (BABT)UT for all n x n matrices A, B. Using
this notation, the following is straightforward.

Lemma 1.5.23 If Q is a quadratic form on F™ with form matriz A, and
M € GL,(F), then M is an isometry of Q if and only if (MAM )T = A.

Recall Definition 1.5.5 of an isometry between forms. The following funda-
mental lemma will be used without reference throughout much of the book.

Lemma 1.5.24 Two o-sesquilinear forms on F™ with matrices B and B’
are isometric if and only if there exists L € GL,(F) such that B' = LBL°T.
Similarly, two quadratic forms on F™ with matrices A and A’ are isometric if
and only if there exists L € GL,(F) such that A" = (LAL°T)UT.

Proof Suppose that C = LBL°T. Then S(vL,wL) = vLBL°Tw’" = y(v,w).
Conversely, if B and C' are isometric then there exists an L in GL,,(F') such
that B(vL,wL) = v(v,w). The quadratic case is similar. O

Recall Definition 1.5.6 of a non-degenerate sesquilinear form.

Proposition 1.5.25 Let 3 be a o-sesquilinear form with matrix B. Then 3
18 non-degenerate if and only if B has non-zero determinant.

Proof If u € V* then uBv°"T = 0 for all v, in particular if v is one of the
e;. Thus uB = 0. Conversely, if uB = 0 then uBv°T = 0 for all v, whence
B(u,v) = 0 for all v, and so u € VL. Therefore V4 # {0} if and only if B is
not invertible. O

We now proceed to consider the types of non-zero forms individually, and
introduce some notation for their isometry groups. When the field F' is finite,
we have preferred choices of the basis of V' that result in specific form matrices,
which we call our standard form matrices. We call their isometry groups (as
subgroups of GL,,(F')) our standard copies of these groups. We shall summarise
these definitions later in Table 1.1.
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1.5.2 Alternating forms

Recall the definition of an alternating form from Definition 1.5.14. The following
is standard; see for instance [108, p69)].

Proposition 1.5.26 If V admits a non-degenerate alternating form then V
has a basis (e1, f1,€2, fo,. .., €m, fm) such that:

6(61587):/6(f'mf]):07 ﬁ(elvf]):(sl] fO?” all iaj7

where 6;5 is the Kronecker delta. Thus dimV = n = 2m is even, and there is a
unique isometry class of such forms on V.

It follows that the isometry groups of any two non-degenerate alternating
forms on V are isomorphic.

The matrix antidiag(1,...,1,~1,...,—1), with § 1’'s and § —1’s, defines
our standard symplectic form, which is the result of ordering the above basis
as (€1, ..., emy fmy -« f1). MAGMA uses this standard form.

Definition 1.5.27 The notation Sp,,(F') denotes the isometry group of our
standard alternating form of dimension n over F. If F' = F, is finite, we usually
write Sps,, (q) instead of Spy,, (F). This is the symplectic group on F™.

1.5.3 Hermitian forms

Recall the definition of a o-Hermitian form from Definition 1.5.14. To define
such a form, we require an automorphism o of F' of order 2, and we define Fj
by Fy = Cp(o) ={x € F |2° = x }. Then F has dimension 2 over Fj.

Proposition 1.5.28 Let 0 be a non-degenerate o-Hermitian form over a
finite field F'. Then F = Fg2 for some prime power q, the automorphism o is
the map o : v — z9, and Iy =F,.

Throughout the rest of the book, we will use the previous result without
further citation to deduce that if H < GL,(¢q) for a non-square ¢ then H does
not preserve a non-degenerate unitary form on F,.

Proposition 1.5.29 IfV admits a non-degenerate o-Hermitian form 3, then
V' has a basis with respect to which B has matriz diag(ay, ..., a,), where a; €
Fy¢ for alli. When F is finite, V has a basis for which a; =1 for all i, and so
all non-degenerate o-Hermitian forms are isometric.

Proof Since [ is non-degenerate, we may choose a non-singular vector e; € V.
Then V = (e;) L (e1)*, so by induction we may choose a basis for V, as
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required. Now suppose that ' = g is finite and o : * — 29, as in Propo-
sition 1.5.28, and that ( has matrix diag(ay,...,ay). The fact that § is o-
Hermitian implies that a; = a! for all 4; that is, a; € F,. Since IFqXQ is cyclic,
there exists b; € IFqXQ with b;b7 = szq = a;l, and then B(b;e;, bie;) = 1. O

The above proposition shows that for finite F' all isometry groups of non-
degenerate o-Hermitian forms are isomorphic; this explains why for many pur-
poses one may suppress the precise description of the form when discussing
unitary groups.

Our standard o-Hermitian form over any field has matrix I,,. Its isome-
try group is the set of n x n matrices A over F such that AA°T = I,, by
Lemma 1.5.21. The MAGMA standard o-Hermitian form is different, and has
matrix antidiag(1,...,1).

Definition 1.5.30 We write GU,(F) to denote the isometry group of our
standard o-Hermitian form in dimension n over a field with an automorphism
of order 2. If F' = Fg2, we usually write GU,(q) rather than GU, (F'). The
groups GU,,(F) are general unitary groups.

1.5.4 Symmetric bilinear forms in characteristic not 2

Recall the definition of a symmetric bilinear form from Definition 1.5.14. Recall
also from Proposition 1.5.15 that the study of symmetric bilinear forms in
characteristic not 2 is equivalent to the study of quadratic forms.

It can be shown that over an arbitrary field F' of characteristic not 2, for
each non-degenerate symmetric bilinear form there exists a basis such that the
form matrix is diagonal. However, in the finite case we can say far more; for a
proof of the following, see [108, p138].

Theorem 1.5.31 Let F' = Fp. with p odd. Then up to isometry there are
precisely two non-degenerate forms on V', corresponding to the cases when the
determinant of the form matriz is a square or non-square of F*. If n is odd
then there is a unique similarity class, and if A is non-square then a form with
matriz B is not isometric to a form with matrix AB. If n is even then there
are two similarity classes.

By Proposition 1.5.15 the same is true for quadratic forms: over a finite field
of odd characteristic there are always two isometry classes of forms, and these
consist of two similarity classes when the dimension is even and one when the
dimension is odd.

In odd dimension, we take I,, as the matrix of our standard symmetric bi-
linear form, so that our standard quadratic form has matrix I,,/2. If p is any
non-zero non-square, then ul,, is in the other isometry class of non-degenerate
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symmetric forms. Our standard symmetric form differs from the MAGMA stan-

dard form which is antidiag(1,...,1, %, 1,...,1), with the % in position %

Definition 1.5.32 If F' =, has odd order, and n is odd, then the isometry
group of our standard symmetric (or quadratic) form is denoted by GO,,(¢), or
sometimes as GO, (¢), the general orthogonal group.

As we saw in Theorem 1.5.31, in even dimension, if F' is finite and of odd
order, then any two non-degenerate symmetric bilinear forms are similar if and
only if they are isometric. Thus there are up to two isomorphism classes of
isometry groups of such forms, and it turns out that there are precisely two.

Definition 1.5.33 Let § be a non-degenerate symmetric bilinear form in
even dimension over a finite field of odd characteristic. Then 3 has plus type if
it is isometric to the form antidiag(1,..., 1), otherwise it has minus type.

It turns out that a non-degenerate symmetric bilinear form has Witt index
n/2 or n/2 — 1 when the form has plus or minus type, respectively. We shall
state this result for the corresponding quadratic forms (which is valid also in
even characteristic) in Proposition 1.5.39.

Our standard plus type form is antidiag(l,...,1), with quadratic form
antidiag(1,...,1,0,...,0) with n/2 1’s. For minus type, we use the form ma-
trix I,, when this is not isometric to the previous form: we will see in Proposi-
tion 1.5.42 that this is the case if and only if n = 2 (mod 4) and ¢ = 3 (mod 4).
Otherwise, our standard symmetric bilinear form of minus type has matrix
diag(wg, 1,...,1), where w, is a fixed primitive element of F*, with correspond-
ing quadratic form diag(w,/2,1/2,...,1/2). Our standard form of plus type
agrees with the one in MAGMA, but our form of minus type does not.

Definition 1.5.34 The isometry group of our standard plus type form is
denoted GO, (q), and the isometry group of our standard minus type form is
denoted GO, (¢). These groups are also called the general orthogonal groups.

Definition 1.5.35 We say that a non-degenerate symmetric bilinear form
with g odd has square discriminant if the determinant of its matrix is a square
in F* and non-square discriminant otherwise. Similarly, the discriminant of a
quadratic form with ¢ odd is the discriminant of its polar form.

1.5.5 Symmetric bilinear forms in characteristic 2

Recall Definition 1.5.14 of a symmetric bilinear form and Definition 1.4.4 of a
perfect field. The following proposition shows that we need not consider isom-
etry groups of symmetric but not alternating forms in characteristic 2.
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Proposition 1.5.36 Let F' have characteristic 2, and let V' be an irreducible
FG-module of dimension at least 2. If G is a group of isometries of a symmetric
bilinear form 8 on V' then B(v,v) =0 for allv €V, so B is alternating.

Proof Pick any non-zero w € V. Then since G is irreducible, w® spans V
and, since dimV > 2, there exists ¢ € G such that w and wg are linearly
independent. Define e; := w + wg, which is non-zero. As before, e§' spans V/,
so we can choose a basis (e1,ea,...,e,) for V from the orbit e§’. Then

Bler,e1) = B(w,w) + B(wg, wg) + B(w, wg) + B(wg, w)
= 28(w, w) + 28(w, wg)
=0.

Therefore 3(e;, e;) = 0 for all i. Taking v = " a,e; to be an arbitrary element
of V, we get B(v,v) = 31 aiB(ei ei) 237, aiajf(ei,ej) = 0+0 =0, as
required. O

We may generalise this to the following result; since we will not be using it,
we omit the proof.

Proposition 1.5.37 Let 8 be a non-degenerate symmetric bilinear form on'V,
over a perfect field F' of characteristic 2. Then V' has a basis (e1, f1,. .., €m, fm,
dy,...,d;) such that 0 < r < 2 and:

Bleisej) = B(fi, f3) =0, Bles, fj) = dij
B(di,ej) = B(di, f;) =0, B(d;,dj) =0d;; forall i,j].

It follows from the above Proposition that in even dimension n = 2m+r > 2
there are always two isometry classes of non-degenerate forms, corresponding
to r = 0 and r = 2, whilst in odd dimension there is only one. It is not too hard
to see that the isometry groups of these forms for » = 0, 1,2 are respectively
SPoy, (F), Spa,, (F) and (F,+)**2™:Sp,, (F), so we get nothing new.

for all 1,7,

1.5.6 Quadratic forms in characteristic 2

Recall the definition of a quadratic form and its polar form from Definition 1.5.2.
We have seen that in characteristic not 2 a quadratic form and its polar form
determine one another, and share the same groups of isometries and similari-
ties. Thus it remains only to study quadratic forms in characteristic 2. Recall
Definition 1.4.4 of a perfect field.

We will assume throughout this section that @ is a quadratic form in char-
acteristic 2 with polar form 8. Then B(v,v) = 2Q(v) =0 for all v € V, and so
[ is a symplectic form.
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Lemma 1.5.38 Let n = 2m be even, and let F' be perfect. Then a quadratic
form @Q is non-singular if and only if Q is non-degenerate.

Proof If Q is non-degenerate then V- = {0}, so Q is non-singular.

Suppose that @ is non-singular. Assume, by way of contradiction, that there
exists a non-zero v € V4. Then Q(v) = X for some A € F*, and since F
is perfect there exists u € F with p? = X. Thus Q(u~'v) = 1, so with-
out loss of generality we may assume that Q(v) = 1. If dimV+ > 1 then
there exists w € V+ \ (v), and without loss of generality Q(w) = 1. Then
Qv+ w) = Q(v) + Q(w) = 0, a contradiction. Therefore dim V+ = 1. Now,
V/V+ is non-degenerate, so the polar form of Q on V/V* is a non-degenerate
symplectic form, and thus by Proposition 1.5.26 the dimension of V/V* is even,
a contradiction. O

The following result is standard; see for instance [108, p139]. Recall from
Definition 1.5.11 that the Witt index of a form is the maximum dimension of
a totally singular subspace.

Proposition 1.5.39 Let Q be a non-degenerate quadratic form on F*™, with
F =TFqe. Then there exists a basis (€1, ...,€m, fm,---, f1) of V such that

Qei) =Q(fi) =0 for all i with 1 <i<m—1,
Blei,e;) = B(fi, f) =0 for all i, j, Bles, f;) = dij for all i, j.

Up to both similarity and isometry, there are exactly two choices for the values
of Q(em) and Q(fm). One possibility is Q(em) = Q(fm) = 0, giving Witt index
n/2. The other is Q(en) = 1, Q(fm) = i, where the polynomial x> + x + 1 is
irreducible over F, giving Witt index n/2 — 1.

We take the forms in Proposition 1.5.39 as our standard quadratic forms in
characteristic 2.

Definition 1.5.40 Let @) be a non-degenerate quadratic form in even di-
mension over a finite field of even characteristic. Then @ has plus type if it
is isometric to the form in Proposition 1.5.39 with Q(e,,) = Q(fm) = 0, and
minus type if it is isometric to the other form in Proposition 1.5.39. The isom-
etry group is called the general orthogonal group in each case. In plus type it
is denoted by GO, (F'), and in minus type it is denoted by GO, (F).

The case when char F' =2 and n = 2m + 1 is odd is less interesting to us.

Theorem 1.5.41 Let char F' = 2, with F perfect, and let n =2m +1 > 1. If
Q is any quadratic form then the isometry group of V is reducible.

Proof 1If @ is singular then the isometry group of ) fixes the subspace of V'
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on which the form is identically zero. If @ is non-singular then reason as in the
proof of Lemma 1.5.38 to see that dim(V+) = 1, so the isometry group of Q
must fix V. O

It turns out (see [108, p139]) that all non-singular quadratic forms in odd
dimension over a perfect field of even characteristic are isometric, and there
exists a basis (e1,...,em,d, fm,- .., f1) such that:

Q(ei) = Q(fl) = 0 for all i, Q(d) =1,
6(d7 61') = ﬂ(da fz) = 6 iaej) = 6(]013.}6]) =0 for all iajv
6(ei, fj = 61’]’ for all Z,]

The isometry group is Sp,,, (F), acting naturally on V/{d) (see [108, Theorem
11.9]) and so we will assume that orthogonal groups in odd dimension are
defined over fields of characteristic not 2.

We finish this subsection with a collection of results that will enable us to
calculate the sign of a quadratic form or its polar form in various situations.

e

Proposition 1.5.42 Let V be a vector space of even dimension n over I,
equipped with a non-singular quadratic form @ with polar form B. Let A and B
be the form matrices of Q and 3 with respect to some fixed basis of V.. Then

(i) The Witt index of Q is equal either to n/2 (plus type) or to n/2—1 (minus
type), and all forms with the same Witt index are isometric.

(ii) If q is odd and n is even, then the form is of plus type if and only if
either the discriminant (det B) is square and n(q — 1)/4 is even, or the
discriminant is non-square and n(q — 1)/4 is odd.

(iil) If q is even, n = 2, and V has a basis (e1, f1) such that ((e1, f1) = 1,
Bler,er) = B(f1, f1) =0, Qer) =1 and Q(f1) = p, then Q is of minus
type if and only if the polynomial 2 + x + p is irreducible over F.

(iv) If V=W @ W+ and the restrictions of Q to W and W+ have types t1,ts
with t; = 1 or —1 for plus type or minus type, then Q has type tits.

(v) The form over Fx defined by A is of plus type when k is even.

Proof (i) In even characteristic, this is Proposition 1.5.39. In odd characteris-
tic, see [108, p138].

(ii) This is standard; see for instance [66, Proposition 2.5.10].

(iii) If p(z) = 2® + @ + p is irreducible over F,, then @ has minus type by
definition. If p(x) has a root a € F,, then Q(aer + f1) = 0, so (ae; + f1) is
totally singular, and hence ) has non-zero Witt index, and has plus type.

(iv) follows from (ii) when ¢ is odd. When ¢ is even, (iv) follows directly from
our standard forms except when t; = t; = —1 since if at least one of the forms
is of plus type, then one may re-order a basis for W; and Ws to yield either
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Table 1.1 Our standard classical forms

Case conditions form type isom. gp form
L — Z€ero GLx(q) Onxn
S — alternating Sp,(¢)  antidiag(l,...,1,—1,...,—1)
U — o-Hermitian ~ GU,(q) L,
o° qn odd symmetric GO, (q) I,
O™ godd, neven symmetric GO (q) antidiag(1,...,1)
O~ qodd,neven symmetric GO, (q) L, if n(g —1)/4 is odd
diag(wg, 1,...,1) otherwise
o* q,n even quadratic GO} (q) antidiag(1,...,1,0,...,0)
(o) q,n even quadratic GO;, (9) antidiag(1,...,1,0,...,0)

+Em,m + HEm+1,m+1

our standard plus type form (if ¢; = to = +1) or our standard minus type form
(if t1ty = —1). If t; = t5 = —1, then is sufficient to deal with the case when
dimW = dim W+ = 2 and the restrictions of @ to Wy with basis (e;, f1) and

1 1
Wit with basis (es, f2) have the same standard form matrix ( ) But
0 n

then the subspace of V' spanned by e; + es, f1 + f2 is totally singular, so the
Witt index of V' is 2, and @ is of plus type.

(v) follows from (ii) and (iii) and the fact that irreducible equations of degree
2 over F, become reducible over F. O

1.5.7 Summary of standard forms

In Table 1.1, we summarise the standard forms associated with the classical
groups in their standard representations, as described in this section. The form
is given as a matrix, which, in the final two cases only, is the matrix of the
quadratic form. A form specified in the table as antidiag(a,...,a,b,...,b) has
equal numbers of a’s and b’s, but a form specified as diag(A, 1,...,1) has just
one A. We define m by n = 2m or 2m + 1, when n is even or odd respectively.
In the last line in the table, the polynomial 2 + z + y is irreducible over F,,.

When ¢ is odd, one may recover our standard quadratic form @ from our
standard symmetric bilinear form § via (v,v) = 2Q(v).

1.6 The classical groups and their orders

In the previous section, we defined our standard classical forms, and their as-
sociated isometry groups GL,(q), GU,(q), Sp,(¢) and GO;(¢) (where ¢ €
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{o,+,—1}). In this section we define various other associated classical groups,
and explore some of their basic properties, such as their order.

1.6.1 Semilinear maps

Definition 1.6.1 Let V and W be vector spaces over a common field F|
and let 0 € Aut F'. A 0-semilinear map f : V — W is any map satisfying
(v+w)f = vf +wf and (W)f = N(vf) for all v,w € V, A € F. The 6-
semilinear map [ is non-singular if it satisfies v f = 0 if and only if v = 0. The
map f is called semilinear if f is f-semilinear for some 6.

So a linear map is just a f-semilinear map with 6 = 1. It is an easy exercise
to show that the set

{f:V = V| f non-singular #-semilinear map for some 6 € Aut F'}
forms a group under composition.

Definition 1.6.2 The group of all non-singular semilinear maps from V to
itself is denoted by I'L(V'). We may also denote this by I'L,,(F'), or by I'L,(q)
when F' = F,, where n = dim V.

One may check that the map from 'L, (F) to Aut F' which sends the 6-
semilinear map f to 6 is a homomorphism with kernel GL,,(F).

For a fixed basis (ej,...,e,) of V and § € Aut F, define § : V — V by
(> Ne)d =31 Ale;. Then {0 : 6 € Aut F'} is a complement to GL,,(F)
in 'L, (F). If A is the matrix with respect to this basis of f € GL,(F), then
the effect of the conjugation action of # on A is to replace the matrix entries
by their images under 6.

Definition 1.6.3 Let F' = F, with ¢ = p°. We denote the generating field
automorphism z — 2P by ¢. We also write ¢ rather than ¢ for the element
of 'L, (q) corresponding to ¢. Thirdly, we denote by ¢ the automorphism of
GL,(q) induced by conjugation by ¢: that is, replace all matrix entries by their
p-th powers.

So ¢ has three different meanings: it is a field automorphism, a semilinear
map, and an automorphism of GL,(q). Since these meanings are generally
compatible, we hope that this practice will not cause confusion.

Definition 1.6.4 A f-semilinear map [ is a semi-isometry of a form [ (or

a quadratic form Q), if B(vf,wf) = Blv,w)? (respectively, Q(vf) = Q(v)?)
for all v,w € V. It is a semi-similarity if there exists 0 # A\ € F such that

Buf,wf) = AB(v,w)? (respectively, Q(vf) = AQ(v)?) for all v,w € V.
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Notice that the set of all semi-isometries is a group containing the isome-
try group of the form as a normal subgroup, and that the group of all semi-
similarities contains the similarity group as a normal subgroup.

1.6.2 Definitions of the classical groups

Throughout this subsection, let F' be a finite field, and let V' = F™ be equipped
with a form (, which is one of: the zero form, our standard unitary form, our
standard symplectic form, or our standard symmetric form from Table 1.1. If
[ is non-zero symmetric, then V' may also be equipped with our standard non-
degenerate quadratic form @. For each of these possible forms we define a series
of groups, which we will denote by

Q<S<GLKCLTI <A (1.1)

Our notation for each of these groups for each form is given in Section 1.6.3.

Recall Definition 1.5.4 of the isometry group of V', and the definitions of
Sp,,(F), GU,(F) and GO;(F) from Definitions 1.5.27, 1.5.30, 1.5.32, 1.5.34
and 1.5.40. We define u := 2 if 3 is unitary, and u := 1 in all other cases. For
the remainder of this subsection we let /' = Fgu.

Definition 1.6.5 The groups GL,(F), Sp,,(F), GU,(F) and GO; (F) are
the general groups of V. The general group is denoted by G in Series 1.1.

For groups preserving non-degenerate or non-singular forms other than our
standard forms, we use similar notation. For example, a group preserving a
non-degenerate symplectic form on Fy with form matrix B would be denoted
by Sp,,(¢, B), and if W is a space carrying a non-standard form then we may
also write GU(W), for example, if the form is understood. However, if no form
or module is specified then the standard form is always assumed.

We shall always assume that ¢ is odd for GO, (q), since if n > 1 and ¢ is
even, then GOj (¢) is reducible by Theorem 1.5.41.

Definition 1.6.6 The special group of V' is the subgroup of the general group
consisting of all matrices of determinant 1. Thus we refer to the special linear
group, denoted by SL,,(q); the special unitary group, denoted by SU,,(¢); and the
special orthogonal group, denoted by SO: (¢q), with € € {o,+, —}. The special
group is denoted by S in Series 1.1.

The following can be proved by showing that Sp,,,(F') is generated by
symplectic transvections: see [108, Corollary 8.6].

Theorem 1.6.7  All elements of Spy,, (F) have determinant 1.
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We will use this result frequently without reference: rather than referring to
a general or special symplectic group we will just refer to a symplectic group.

In addition, in characteristic 2 it is a straightforward exercise using Propo-
sition 1.6.9 to show that all isometries of a quadratic form have determinant 1,
and hence the special orthogonal group coincides with the general orthogonal
group. We shall use whichever term is more convenient in this case. Note that
in characteristic 2, some authors write SOf(q) to denote a certain subgroup of
index 2 in GOZ(q): we shall define this subgroup shortly, and denote it Q2 (g).

For linear, symplectic and unitary groups, the special group is quasisimple
except for a few small dimensions and prime powers: see Proposition 1.10.3 for
the exceptions. However, if n > 2 then there is an epimorphism from the special
orthogonal group to {£1}, whose kernel is generally quasisimple.

Definition 1.6.8 Let @ be a quadratic form on V', of sign €, and let 3 be its
polar form. Let v € V' be non-singular. We define the reflection r, : V. — V by

(x)ry = 2 — B(v,z)v/Q(v).
The following result is well known; see for example [108, Corollary 11.42].

Proposition 1.6.9 The group GO: (q) is generated by the set of reflections
in non-singular vectors, provided that (n,q,c) # (4,2,+).

Definition 1.6.10 Assume that (n,q,¢) # (4,2,4). Let g = Hle
element of GO, (q).

If ¢ is odd then the spinor norm of g is +1 if Hle B(vi,v;) is a square in
Fy and —1 if it is a non-square. If ¢ is even then the quasideterminant of g is
+1if k is even and —1 if k is odd.

Ty, be an

The additive version of the quasideterminant for even ¢ is known as the
Dickson determinant [108, p160]. It can be shown that the spinor norm and
quasideterminant are well-defined homomorphisms, and the following proposi-
tion (see [108, Theorems 11.43, 11.50]) provides a way to calculate them.

Proposition 1.6.11 Let g € GO;,(q), let A :=1,, — g and suppose that A has
rank k. If q is odd then let F' be the matrix of the invariant symmetric bilinear
form of SOZ,(q), and let B be a k x n matriz over F, whose rows form a basis
of a complement of the nullspace of A. Then:

(i) If q is even and (n,q,€) # (4,2,+), then the quasideterminant of g is 1 if
k is even and —1 otherwise.
(ii) If q is odd, then the spinor norm of g is 1 if det(BAFBT) is a square in

F; and —1 otherwise.

We record some additional information about GOF (2).
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Lemma 1.6.12 ([66, Proposition 2.5.9])  The group GO} (2) has exactly three
subgroups of index two. One of these is the subgroup generated by reflections,
and a second is the subgroup of all isometries that induce even permutations
on the set W of totally singular 2-spaces. There is an equivalence relation on
W given by Uy ~ Us if and only if dim(U; NUs) is even, and this partitions W
into two equivalence classes. The third subgroup of index two is the group of all
isometries that fix each equivalence class setwise.

Definition 1.6.13 The  group in Series 1.1 is defined to be equal to the
special group if the form on V is linear, symplectic or unitary. If the form on V is
quadratic of sign ¢, and (n, ¢,€) # (4,2, +), then the  group, denoted by Q¢ (¢),
is defined to be the kernel of the spinor norm or the quasideterminant map on
SO: (g), when ¢ is odd or even, respectively. The group Q7 (2) is the third
subgroup described in Lemma 1.6.12. We will call Q2 the generally quasisimple
classical group.

Note that this definition of Q} (2) agrees with that in MAGMA, and that in
all other cases it can be shown that if n > 2 then SO, (¢) has a unique subgroup
of index 2 and so that, although there are different definitions in the literature of
the spinor norm map, Q¢ (g) is well-defined. Note however that when ¢ is even,
the kernel of the quasideterminant map, which we denote Q7 (q), is denoted by
SOE(g) by some authors.

We now consider the larger terms in Series 1.1. Recall Definition 1.5.4 of
the similarity group of a form.

Definition 1.6.14 The conformal group C' in Series 1.1 is the similarity group
of V. Thus we refer to the conformal symplectic group, CSp,,(q); the conformal
unitary group, CGU,(q); and the conformal orthogonal group, CGOS,(q).

The conformal linear group is equal to the general linear group, and we will
prefer the term general linear group. It will follow from Lemma 1.8.9 that if
n > 2, or n > 3 when the form is bilinear, then the conformal group is equal
to the normaliser in the corresponding linear group of the quasisimple group.

Definition 1.6.15 We shall call the subgroup of the outer automorphism
group of 2 that is induced by conjugation by elements of C' the group of con-
formal automorphisms of 2.

Now we consider the next group up in the series.

Definition 1.6.16 The conformal semilinear group of V is the group of
all semi-similarities of V. These groups are denoted by T'L,(q), CI'Sp, (q),
CI'U,(q), and CT'O5,(q). The conformal semilinear group is denoted by I' when-
ever the context makes the meaning of this clear, and in particular in Series 1.1.
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Let ¢ : V — V be as in Definition 1.6.3. If the general group preserves a
form with matrix B, and all entries of B are in F,, then B? = B, and so ¢
normalises the conformal group C'. In that case, one may prove that the group
I is a semidirect product of C' and (¢). This applies to all of our standard forms
except for some bilinear and quadratic forms of minus type.

It was shown in [6] that the element of Out © determined by ¢ can sometimes
depend on the choice of fixed form. We specified our standard forms in Table 1.1,
and are using them throughout this section. Recall from Subsections 1.5.2 to
1.5.6 that our standard forms are not always the same as the forms fixed by
the groups returned by the corresponding MAGMA functions. For example, the
group that we shall denote Ug(3).(¢) (which is sometimes denoted PXUg(3)) is
not isomorphic to the group returned by the MAGMA function PSigmaU(6,3).

Definition 1.6.17 The semilinear group of V is the group of all of semi-
isometries of the form. For our standard forms, these groups are denoted by
'Ly (q), I'Sp,(¢), T'Un(q), and T'O; (q).

Note that, although the names of these groups begin with I', they are not
the groups I in the Series 1.1, which are the groups defined in Definition 1.6.16.
For the linear groups, there is one further distinct group in Series 1.1.

Definition 1.6.18 If 3 is identically zero and n > 3, then the group A
in Series 1.1 is the split extension of I'L,(q) by the inverse-transpose map
~v := —T, where v commutes with the field automorphisms. For all other forms
and dimensions, A :=T.

When n = 2, the inverse-transpose map is induced by an inner automor-
phism of Ly(q) and of SLa(q).
We complete this section with a brief discussion of projective groups.

Definition 1.6.19 For each of the groups that we have defined in this section,
we also define a projective version, which is the quotient by scalar matrices.
We denote this either with a prefix P, as in PGL,,(¢), or with an overbar, as in
Q. The simple classical groups also have ATLAS-style notation: see Table 1.2.

Definition 1.6.19 yields a second chain of subgroups:

Q<S<KGLKCOLKT KA (1.2)
We will see in Section 1.7 that if the form is unitary, symplectic over Foc, or
orthogonal in odd dimension, then the conformal group is obtained by adjoining
scalars to the general group, in which case the projective versions of these two
groups are the same. We shall defer further discussion of the indices of these
groups in one another until Table 1.3.
The following notation will be used extensively throughout the book.
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Definition 1.6.20 Let x be a standard form from Table 1.1. Let H be any
group such that Q < H < A, or Q < H < A. If k is identically zero and n > 2,
then H lies in Case L. If k is unitary and n > 3, then H lies in Case U. If k
is symplectic and n > 4, then H lies in Case S. If k is symmetric bilinear or
quadratic and n > 7, then H lies in Case O°.

But note that we sometimes consider SLa(q) to lie in Case S, since SLa(q) =
Spy(g) by Lemma 1.12.1. We will always state when we are doing this.
The following is classical; for a textbook reference see [10, Chapter 12].

Theorem 1.6.21 Assume that Q is simple. Then A = AutQ, except when
Q = Sp,(2°) or Q= Q¢ (q).

As we shall see in Section 1.7, there is a graph automorphism that squares
to a generating field automorphism in Case S when n = 4 and ¢ is even (note
also that S4(2) = Sg is not simple). There is a graph automorphism of order
3 in Case Ot when n = 8. When ¢ is odd, this is an automorphism of the
projective group Of (¢), but not of QF (q).

1.6.3 Notation for the classical groups

Our notation for the classical groups is summarised in Table 1.2. (Although our
usage of ‘Case L’, ‘Case S’ normally implies the restrictions on the dimensions
described in the previous subsection, we use the notation in this table for all
n > 1.) Unfortunately there is a lack of consistency in the literature for this
notation. For example, GOS (¢q) is used with different meanings in [12] and
n [66]. Our notation is closer to that in [12], but we introduce some new
symbols such as CGO; (q).

Table 1.2 Notation for the classical groups

Case Q S G C I A
L |SLn(q) | SLa(q) | GLu(q) | GLn(q) I'Ln(q) Ln(q):(7)
Ln(q) | Ln(q) | PGLn(q) | PGLn(q) | PTLy(q) PF Ln(q):(y)
U |SUn(g) | SUn(g) | GUn(g) | CGUn(q) | CT'Uxn(q) CT'Un(q)
Un(q) | Un(q) |PGUn(q) | PGUn(q) | PTUx(q) PI'U,(q)
S | Sp,.(9) | Spn(a) | Sp.(q) | CSp,(q) | CI'Sp,(q) CT'Sp,,(q)
Sn(g) | Sn(q) Sn(q) | PCSp,(q) | PCI'Sp,(¢q) | PCTSp,(q)
O° | Q3(q) | SOn(g) | GOs(q9) | CGOs(q) | CTO5(q) CTro5(q)
0r(q) | PSOz(q) | PGOL(q) | PCGOL(g) | PCTOr(q) | PCrO5(q)

T

1 The automorphism ~ is only defined when n > 3.

Notice that each of the four cases in the table has two lines. The top line
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gives the notation for the groups in Series 1.1, and the second gives the notation
for the groups in Series 1.2. Thus the top group in Column  is the generally
quasisimple group, as in Definition 1.6.13. The top group in Column S is the
special classical group, as in Definition 1.6.6. The top group in Column G is the
general classical group, as defined in Definition 1.6.5. The top group in Column
C is the conformal classical group, as in Definition 1.6.14. The top group in
Column T is the conformal semilinear group, as in Definition 1.6.16. The top
group in Column A is as in Definition 1.6.18.

1.6.4 Orders of classical groups

The orders of the classical groups are well known; see for example [108,; p19,
pl18, p70, pl41] for derivations of the orders of the general groups, and [66,
Tables 2.1.C, 2.1.D] (reproduced here as Table 1.3) for a convenient summary
of the indices of groups in Series 1.1 and 1.2.

Theorem 1.6.22 Let ¢ = p¢, where p is a prime. The order of GL,(q) is

n
qn(nfl)/Q H(qz _ 1).
i=1
The order of GU,(q) is
qn(n—l)/2 H(qz _ (_1)1‘).
i=1

When n is even, the order of Sp,,(q) is

n/2

2 .
q" /4 H(q21 _ 1).
i=1

When nq is odd, the order of GO; (q) is

) (n—1)/2 -
2q(n71) /4 H (q21 _ 1)

i=1
When n is even, the order of GOE(q) is

n/2—1
2" w1) T (¢ - 1)

=1

For any group H in Table 1.2, the order of H can be calculated from The-
orem 1.6.22 and the information in Table 1.3.
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Table 1.3 Indices of classical groups

Case [S:Q| |G:S IC:G|  |r:C| |A:T|

L 1 qg—1 1 e 2"

U 1 g+1 q—1 2e 1

S 1 1 q—1 e 1

0° 2 f 2 (g—1)/2 e 1

ot 2 (2,q—1) g—1 e 1
Case |GNZ(GLn(¢g")| [S:Q| IG: S| IC: G| F:C| |A:T|
L qg—1 1 (¢g—1,n) 1 e 2"
U g+1 1 (¢g+1,n) 1 2e 1
S (2,g-1) 1 1 (2,g-1) e 1
0° 2 21 1 1 e 1
o+ (2,q—1) ar ¥ (2,9-1) (2,¢-1) e 1

Note the restrictions on n and ¢ in Theorem 1.6.22.

* If n € {1,2} then A=T.

T If n=1then S=AQ.

1 The entries ay and a_ are defined by: a+ € {1,2}; aya_ = 229 if ¢ is odd then
a4+ = 2 if and only if n(¢ — 1)/4 is even.

1.7 Outer automorphisms of classical groups

In this section we will introduce our standard notation for outer automorphisms
of their classical groups Q and €2, and give presentations for Out Q. See Sec-
tion 1.6 for an introduction to the classical groups.

1.7.1 Standard outer automorphisms

Let 2 be as in Definition 1.6.13, and let © be the generally simple group /7 ()
(see Proposition 1.10.3 for exactly when € is simple). Let B be the matrix of
one of the standard forms in Table 1.1.

We shall use the symbols 4, &', v, 7, ¢ and ¢ to denote generators of the
outer automorphism group of . We abuse notation and use the same symbols
to denote both their inverse images in AutQ and, when they exist, specific
matrices in GL,(q) that induce them by conjugation. Presentations of Out )
on these generators will be listed in the following subsection.

We shall refer to 6 and 0’ as diagonal automorphisms, v and 7 as graph
automorphisms, and ¢ or ¢ as a field automorphism. These names correspond
to the terminology used in the theory of algebraic groups.

We now proceed to define these automorphisms as specific elements of
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Aut Q. Recall Definition 1.6.3 of the automorphism ¢ of GL,(q). If B¢ = B,
then ¢ induces an automorphism of ) of order e, which we shall also denote by
¢. Consulting Table 1.1, we see that B® # B if and only if Q = 2, (¢), n is even,
and either ¢ is even or ¢ is odd and the form has non-square discriminant. In
these exceptional cases, the corresponding automorphism of 2 will be denoted
by ¢ rather than ¢, where ¢ is defined to be ¢ followed by conjugation by a
fixed element ¢ € GL,,(q) with cBc" = B?.

Case L. Here ¢ is the diagonal automorphism of € = SL,(¢) induced by
diag(w,1,1,...,1) € GL,(q). Its order in OutQ is (¢ — 1,n). Projectively, §
extends L, (¢q) to PGL,(gq). The field automorphism ¢ is as in Definition 1.6.3,
and projectively ¢ extends PGL,,(q) to PT'L,(q). For n > 3, «y is the duality (or
graph) automorphism g + ¢~ ' of €, as in Definition 1.6.18, and projectively 7
extends PI'L,,(¢) to Aut L, (¢). Note that ~y is undefined when n = 2, and that
the inverse-transpose map is induced by conjugation by an element of SLs(q).

Case U. Here § is the diagonal automorphism of Q = SU,(¢q) induced by
diag(w?™1,1,1,...,1) € GU,(g), where w = w,2 is a primitive element of ]quz.
Its order in Out Q is (¢ + 1,7n), and projectively § extends U, (q) to PGU,(q).
For n > 3, the duality or graph automorphism is v : g — ¢~ " of Q. The field
automorphism ¢ is as in Definition 1.6.3, of order 2e in Out Q, and projectively
¢ extends PGU,,(¢) to PT'U,(q). A consequence of our choice of standard form
L, is that ¢° = ~.
Case S. When ¢ is odd, ¢ is the diagonal automorphism of {2 = Sp,, (¢) induced
by ¢ = diag(w,...,w,1,...,1) € CSp,,(q) \ Sp,,(q), with n/2 w’s and n/2 1’s.
Its order in Out €2 is 2, and projectively it extends S,,(¢) to PCSp,,(q). Observe
that 0B6" = wB. When q is even, § is trivial. The field automorphism ¢ is as
in Definition 1.6.3, has order e in Out ), and projectively extends PCSp,,(¢) to
PCI'Sp,,(¢), which is equal to Aut S, (¢q) except when n =4 and ¢ is even.
When n = 4 and ¢ is even, there is a graph automorphism v of  with
v? = ¢ in OutQ, which projectively extends PCI'Sp,(2¢) to Aut S4(2¢). We
shall define ~ precisely in Section 7.2. Note that we exclude Sp,(2) 22 Sg, as it
is not quasisimple.
Case O°. Recall that ng is odd. Here ¢ denotes a diagonal automorphism of
Q = Q%(q), of order 2 in Out(, induced by an element of SO (q) \ 2 (q),
which projectively extends O, (q) to PSO; (¢). (We can choose § = rory using
the notation defined in [66, §2.6].) The field automorphism ¢ is as in Def-
inition 1.6.3, has order e in Out(, and projectively extends PCGOS(q) to
PCro; (q) = Aut 02(q).
Case O*. Here 7 denotes a graph automorphism of Q = Q¥ (q), of order 2 in
Out Q, induced by an element of GOZ(q) \ SOE(¢q) when ¢ is odd and by an
element of SOE(¢) \ 2 (¢) when ¢ is even. Projectively, v extends PSOE(g) to
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PGOZ(q) when ¢ is odd, and OX(q) to PSOE(¢) = PGOE(¢) when ¢ is even.
(For all ¢ we can choose v = r0, as in [66, §2.7-2.8].)

When ¢ is odd and B has square discriminant, ¢’ denotes a diagonal auto-
morphism of €, of order 2 in Out €, induced by an element of SOE(¢) \ Q= (q).
Projectively, §' extends O (q) to PSOE(g). (We can choose 8" = royrg as in [66,
§2.6].) If B has non-square discriminant or ¢ is even then ¢’ is trivial.

When ¢ is odd, 2 has a diagonal outer automorphism ¢. Projectively, §
extends PGOE(q) to PCGOZ(q). If © = Qi (q), then 4 is the automorphism
induced by § = diag(w, ...,w,1,...,1) € CGO; (q)\ GO;! (¢), with n/2 w’s and
n/2 1’s. Observe that §B§"T = wB and det § = w™/2. Therefore det w™1§2 = 1,
and by Definition 1.6.10 the matrix w142 has spinor norm 1 when 4 | n and
—1 when n = 2 (mod 4). So ¢ has order 2 in Out O;} (¢) when 4 | n, or when
B has non-square discriminant. But ¢ has order 4 when n = 2 (mod 4) and B
has square discriminant. When ¢ is even, ¢ is trivial.

When ¢ is odd and 2 = Q;,(¢), choose two elements a,b € F,* with a?+b% =
w, the primitive element of F*, and let

a b 0 w
X = and Y = .
(50 ()

Then § is the diagonal automorphism of € induced by § = diag(X,..., X),
(with n/2 X’s) when B has square discriminant, and by ¢ = diag(¥, X, ..., X)
(with one Y and n/2 — 1 X’s) when B has non-square discriminant. In both
cases, § € CGO;, (q) \ GO, (q) with 6BST = wB and det§ = w™/?, which was
also true for the ¢ defined for Q. (q).

Observe also that, if we define C' = diag(1,—1,1,—1,...,1,—1) € GO, (¢),
then (6C)? = wl,, so §C has order 2 in OutQ. If 4|n then C € Q. (¢q) by
Definition 1.6.10, so § also has order 2 in OutQ. If n = 2 (mod 4) then C' €
GO, (¢9)\ SO;, (). From the fact [66, Proposition 2.8.2] that PCGOX(q)/QE(q)
is isomorphic to Dg and Cy x Cs when the the discriminant of B is square
and non-square, respectively, it follows that § has order 4 in Out) when B
has square discriminant and order 2 when B has non-square discriminant. This
again corresponds to the order of 6 € Out 2/ (¢). Note that our definition of §
for Q. (q) is different from that of [66]; in fact our § is equal to their 6C'.

The field automorphism ¢ of € is induced by the map ¢ as in Definition 1.6.3
when Q = Q. (q), or when Q = Q.. (q), q is odd, and B has square discriminant;
it is undefined otherwise. Projectively, ¢ extends PCGOZ(¢) to PCT'OZ (q). For
the cases when the ¢ is undefined as an automorphism of 2, we proceed to define
a field automorphism ¢ of .

When Q = Q7 (¢), ¢ is odd, and B has non-square discriminant, the matrix
¢ :=diag(w®Y/21,1,...,1) satisfies cBc" = B?, and so ¢ conjugates Q? back
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to 2. We define the field automorphism ¢ of €2 to be ¢ followed by conjugation
by ¢, so ¢ can also be regarded as the ¢-semilinear map ¢c and, as such, it is a
semi-isometry of B. It can be checked that ¢° is induced by a matrix in GO,, (q)
with determinant —1, so ¢¢ = 7 in Out Q. Projectively, ¢ extends PCGO,, (¢)
to PCT'O,, (¢), but it is not always a split extension.

Similarly, when Q = Q, (¢) with ¢ even, we define ¢ to be ¢ followed by
conjugation by a certain matrix c. We shall not need to carry out calculations
with ¢ in this case, so we shall not define it precisely, and refer the reader to [66,
§2.8] for a precise definition of ¢. Again, ©° = v in Out Q, and projectively ¢
extends PCGO,, (¢) = PGO,, (¢) to PCTO,, (q).

Finally, if Q = QF (q) then 7 denotes a graph automorphism of order 3 in
Out Q that is inverted by 7, extending PCT'OZ (¢) to Aut Of (¢). Note that 7
does not lift to an automorphism of {2 when ¢ is odd, and is undefined except
for Q = Qf(q).

1.7.2 Presentations of outer automorphism groups of (2

In each of these presentations, ¢ = p° with p prime. All of the relations in
these presentations can be readily derived from the information presented in
the previous subsection, with the possible exception of the relation [§,¢] = 1
in O, (¢) when ¢ is odd and the discriminant is square. But in that case e
must be odd, so ¢ has odd order. It normalises the subgroup (v, d), which is
dihedral of order 8. Since Dg has no non-trivial odd order automorphisms, ¢
must centralise (v, d).

La(q) = S2(q):
(6,967 = ¢ =[5,¢] = 1, ).
L.(q),n > 3:
(6,7,6] 60671 =42 = ¢¢ =[y,¢] =1, 6 =61, 6% = 67).

U,(q), n > 3:

(8,7, [ 8T =2 =1, ¢¢ =, 87 =571, 8% = 5").
2, (n,p) # (4,2):

(6,961 = ¢ =[5,¢] = 1).

(7,07 =¢,9°=1).

(0,010°=0¢°=15,0] =1).
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071 (g), n > 6 even, n # 8, q even:
(7,017 =0 =[v.¢] =1).
0% (q), g even:
(17,017 =7 =(17) = ¢ = [1,¢] = [v,¢] = 1).

0,,(q), n > 4 even, g even:

(1o =1,¢°=7).
0%(q), q odd:
(6',7,79,6,6 | 62 =78 =72 = (y7)2 = 62 = 1, 6™ = §,5'" = 66,
(07)>=d",¢°=[0.¢] = [1.¢] = [, ¢] = 1).
O+(q), n > 12, 4 | n, ¢ odd:
(07,0, 0% =7"=6"=1,(07)> =6,¢°=[0,¢] = [v,0] = 1).
O, (q),n>6,n=2 (mod 4), ¢ =1 (mod 4):
(6.9,6,0 |62 =12 =1,82=6,6 =51,6°=[y,0] = 1, 6% = 67).
O, (q),n>6,n =2 (mod 4), ¢ = 3 (mod 4):
(7,0,017 =8 =[0,7] =¢°=[r, 0] = [6,0] = 1).
0,(q),n>4,4|norg=1(mod4), qgodd:

(1,6,0 72 =08 =167 =[6,90 =1, " =7).
0,(9),n >4, n=2 (mod 4), ¢ =3 (mod 4):
<6/a7a53¢ ‘ 6,2 :72 = la 62 :5/’57 :5—17¢e: [77¢] = [&qﬂ :1>

1.8 Representation theory

This section contains an assortment of results from representation theory that
we shall need. We remind the reader that our default assumption throughout
the book is that groups are finite. We are mainly interested in representations
over finite fields, but we shall at times need to consider characteristic 0 rep-
resentations. The reader unfamiliar with representation theory should consult
Isaac’s excellent textbook [56].

A representation of G over a field F' is by definition a homomorphism p :
G — GL,(F) for some n. We shall generally refer to n as the dimension of p
(although it is more usually called the degree of p).
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Definition 1.8.1 Representations p, p’ : G — GL, (F) are equivalent if there
exists © € GL,,(F) with 27 1(gp")z = gp for all g € G.

Representations have associated (right) FG-modules, where equivalent rep-
resentations correspond to isomorphic modules.

A representation p : G — GL,(F) is faithful if its kernel is trivial. It is
irreducible if p(G) stabilises no proper non-zero subspace of F™, and is re-
ducible otherwise. A representation p is absolutely irreducible if the natural
action of p(G) on K™ is irreducible for every extension K of F. The same
terms are used for the corresponding F'G-module. Schur’s Lemma states that
if p: G — GL,(F) is absolutely irreducible, then the centraliser of p(G) in
GL,,(F) consists just of the scalar matrices in GL, (F). If p is irreducible but
not absolutely irreducible and F' is finite, then the centraliser is isomorphic to
K>, for some proper extension K of F.

A projective representation is a homomorphism p : G — PGL,,(F'). A pro-
jective representation lifts to an ordinary representation p : G — GL,(F) for
some central extension G of G, and we say that p is irreducible, etc. if p is.

1.8.1 Dual modules

Let F be a field, A an associative unital F-algebra, and V a right A-module.
We make the dual vector space V* of V into a left A-module, by defining
v(af) := (va)f for v € V, a € A and f € V*. The opposite algebra A°P has
the same underlying set, addition and F-multiplication as A, but the product
aobin AP is the same as the product ba in A. We make V* into a right
A°P-module by defining fa to be af, where f € V* in both cases, a is regarded
as an element of A°P in the first case, and as an element of A in the second.

We now let V' be finite dimensional with basis (eq, ..., e,), and let V* have
dual basis (ef,...,ey,) where e; e}
if @ € A has matrix M in its action on V' with respect to the basis (e, ..., ey),
then a € A°P has matrix M with respect to the basis (e, ..., e¥).

If A= FG is a group algebra, then the map g — g~ ' extended F-linearly
gives an isomorphism between A and A°P. We use this isomorphism to make

= ;5. It is a routine exercise to show that,

V* into a right FG-module which, for the purposes this book, we take as the
definition of the dual module and its associated representation (although it
would be more standard to call it the contragredient module).

Definition 1.8.2 Let p: G — GL,(F) be a representation with associated
FG-module V. Then the dual right F'G-module V*, with associated represen-
tation p*, is defined by

o(f(gp")) = (v(g™'p))f
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forv eV, ge G and f € V*. When there is no possibility for confusion, we
shall suppress the representations and write simply

v(fg) = (vg™")f.
We shall make frequent use of the following well-known result.

Proposition 1.8.3 Let p: G — GL,(F) be a representation with associated
FG-module V. Then gp* = (gp)~ ", with respect to the dual basis of the natural
basis of V.

Proof This follows from Definition 1.8.2, and the fact that matrices are trans-
posed in their action on the dual space under the opposite algebra. O

1.8.2 Actions of group and field automorphisms on
representations

Let p : G — GL,(q) be a representation of G. For a € Aut G, we define the
representation % : G — GL,(q) by g(%) = (¢9%)p for g € G. (So p and %
have the same image.) If @ € Inn G then % is equivalent to p, so the action of
Aut G on the representations of G induces a left action of Out G on the set of
equivalence classes of representations of G.

Definition 1.8.4 Two representations p,p’ : G — GL,(F) are said to be
quasi-equivalent if there exists a € Aut G such that ®p is equivalent to p’.

Analogously, for an automorphism 6 of GL,(¢) (or, more generally, for an
automorphism 6 of a classical group containing Im(p)), we define p? : G —
GL,(q) by g(p’) = (gp)?. This induces a right action of Out GL,(q) on the
set of equivalence classes of representations of G. We are primarily concerned
with the cases when 6 is the duality (inverse-transpose) automorphism or a
field automorphism ¢ of GL,,(¢) (or of a classical group containing Im(p)).

Definition 1.8.5 Let p be a representation of G, with Im p a subgroup of
a classical group C. Let « € AutG and let § € AutC. We say that « or 0
stabilises p if *p or p? is equivalent to p.

Lemma 1.8.6 Let p,p' : G — GL,(F) be faithful and let « € Aut G. Then:

(i) p and p' are quasi-equivalent if and only if they have conjugate images in
GL,,(F).

(ii) « stabilises p if and only if there exists g € GL,(F) that normalises, and
induces v on, Im(p).
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Proof (i) Suppose that p and p’ are quasi-equivalent, and hence p’ and %
are equivalent for some 6 € AutG. Then Im(p’) is conjugate in GL,(F) to
Im(%) = Im(p).

Conversely, suppose that ! Im(p')z = Im(p) with # € GL,,(F). Since p is
faithful, it has an inverse on its image. Then the map u : G — G defined by
g" = (x71(gp")x)p~! lies in Aut G, so p’ is equivalent to “p.

(ii) The map « stabilises p if and only if there exists + € GL,(F) with
x71(gp)x = (9“)p, which says that 2 normalises and induces a on Im(p). O

We shall apply the same terminology to the associated F'G-modules of rep-
resentations. So we have induced a left action of Out G and a right action of
Out GL,,(F') on the isomorphism classes of FG-modules of dimension n over
F', and we can talk of an automorphism stabilising a module as well as a rep-
resentation.

1.8.3 Representations that preserve forms

Recall Definition 1.5.4 of the isometry and similarity groups of forms. Recall
also Definition 1.4.4 of a perfect field.

Definition 1.8.7 Let G be a subgroup of GL,(F), and let 3 be a non-
degenerate symplectic, unitary, orthogonal or quadratic form. We say that G
preserves 3 up to scalars if G is a subgroup of the similarity group of 3, and
that G preserves 3 (or preserves 3 absolutely, for emphasis) if G is a subgroup
of the isometry group of 3.

Lemma 1.8.8 Let F be a field, and let G be an absolutely irreducible subgroup
of GL,(F).

(i) If G preserves a non-degenerate quadratic, bilinear or o-Hermitian form
up to scalars, and G is perfect, then G preserves that form absolutely.

(i1) Up to multiplication of the form by a scalar, G preserves at most one
bilinear form, at most one o-Hermitian form for a given o, at most one
quadratic form when char F' is not 2, and at most one quadratic form when
F' is perfect.

(i) If F = Fy is finite, and G simultaneously preserves a o-Hermitian and
a bilinear form, then G is conjugate to a subgroup of GL,(qo) for some
proper subfield Fy, of F.

Proof (i) If g € G scales a given form by A, € F*, the multiplicative group
of F, then the map g +— A, is a homomorphism from G into F'*, so G perfect
implies that Ay =1 for all g.

(ii) Let Bi, By be the matrices of two bilinear or two o-Hermitian forms of
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which G is a group of isometries, as in Definition 1.5.16. Since G is absolutely
irreducible, each form is non-degenerate, so by Proposition 1.5.25 each B; has
non-zero determinant. Then B B, lis a matrix commuting with G, whence by
Schur’s lemma it is a scalar, as G is absolutely irreducible.

Let Q1,Q2 be two quadratic forms of which G is a group of isometries:
as before, since G is absolutely irreducible each form is non-degenerate. By
Proposition 1.5.15, quadratic forms correspond to symmetric bilinear forms
when char F' # 2, so we may assume that char F' = 2. By the preceding para-
graph, the bilinear forms associated with @)1 and Q)5 differ by a scalar multiple,
and hence, for some scalar A, the quadratic form @ := Q1 + \Q> satisfies
Q(v1+v2) = Q(v1) + Q(v2) for all vectors vy, va. Let vy, v2 be linearly indepen-
dent vectors (the result is trivially true for n = 1). If Q(v1) # 0 then, since F is
assumed perfect, all of its elements have square roots, and we can multiply v;
by a scalar to get Q(vy) = 1. Similarly, if Q(v2) # 0 we may assume Q(v2) = 1
and then Q(v; 4+ v2) = 0. So in any case there exists a non-zero vector v with
Q(v) = 0. But the set of all vectors with Q(v) = 0 is a G-invariant subspace,
so f =0, which completes the proof of (ii).

(iii) Suppose that G preserves both a non-degenerate bilinear form with ma-
trix By and a non-degenerate o-Hermitian form with matrix Bs. Then Bs is
invertible, and so the associated representation p is equivalent under B; B, L to
p?, where o is the involutory automorphism of ;. Then, by Corollary 1.8.14,
G can be written over a proper subfield of [F,. |

Lemma 1.8.9 Let G < GL,,(F) be an absolutely irreducible group consisting
of isometries of a non-degenerate quadratic, bilinear or o-Hermitian form (3. If
B is quadratic and char F' = 2, assume also that F is perfect. Then Ngr,, (7)(G)
consists of similarities of 3.

Proof Let B be the matrix of 3, as in Definition 1.5.16 or 1.5.17. If h €
Ngr, () (G) then G = G" is a group of isometries of hBhT (or (hBh")"™ for
a quadratic form), which must be a scalar multiple of B by Lemma 1.8.8 (ii),
so h is a similarity of B. O

Recall the definitions of the classical groups from Subsection 1.6.2.

Lemma 1.8.10 (i) Let G and H be two absolutely irreducible subgroups of
GU,(q) that are conjugate in GL,(q*). Then G and H are conjugate in
GU,(q).

(ii) Let G and H be two absolutely irreducible subgroups of Sp,,(q) or GOS,(q)
that are conjugate in GLy,(q). Then G and H are conjugate in CSp,,(q)
or CGO:, (q), respectively.

Proof (i) Let o : x — 27 be the involutory field automorphism of Fg . Let B
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be the matrix of the non-degenerate o-Hermitian form for which G is a group
of isometries and suppose that a“'Ga = H with a € GL,(¢?). Then H is a
group of isometries of aBa®" and thus, by Lemma 1.8.8 (ii), aBa’" = AB for
some A € F2. In fact, by Lemma 1.5.20 the matrix aBa®T is o-Hermitian, so
A € F,. Therefore a € CGU,(¢q). But CGU,(¢) = (Z,GU,(q)) where Z is the
group of scalars of GL,,(¢?), and so conjugacy in GU,,(q) follows.

(ii) Let B be a matrix of a non-degenerate symmetric or anti-symmetric bilinear
form for which G and H are groups of isometries, so that B is unique up to
multiplication by non-zero scalars. Now H = aGa~! for some a € GL,(q). So
H is a group of isometries of aBa" and thus aBa' = AB for some \ € F,,.
Therefore a € CSp,,(q) (respectively CGOS,(q)). O

1.8.4 Other results

The following result is well-known, but we could not find a convenient reference.

Lemma 1.8.11 Let V be a G-module, and suppose that V decomposes as a
direct sum'V =V1 @ --- ®V, of irreducible G-submodules. Assume further that
the V; are pairwise nonisomorphic. Then the V; are the only non-zero irreducible

G-submodules of V.

Proof 1Ift =1 then V is irreducible and the result is clear, so let U; = @£V
and let W be an irreducible G-submodule of V.

If W £ U; for some i, then since V/U; 2 V; is irreducible it follows that
(U;, W) = V. Also, W NU; is a G-submodule of W, so W NU; = {0}. Thus
W =V/U, 2V;. Thus if W 2 V; for all i then W < U; for all i, so W < N;U; =
{0}, a contradiction.

So W 2 V; for some i. If W NV, = {0}, then W is isomorphic to an
irreducible submodule of V/V; 2 U;, which is a contradiction, because by hy-
pothesis none of the summands of U; are isomorphic to V;. So W = V. O

Proposition 1.8.12 ([19, Theorem 29.7]) Let F < E be fields and p,p’ :
G — GL,(F) be representations. If p and p' are equivalent as representations
over E, then they are equivalent over F.

Proposition 1.8.13 ([20, Theorem 74.9]) Let p : G — GL,(E) be an ab-
solutely irreducible representation of G, where charE = p > 0. Let F =
(Fp,tr(gp) : g € G) < E be the field of traces. Then p is equivalent (over
E) to a representation with image in GL, (F).

Corollary 1.8.14 Let p and E be as in Proposition 1.8.15. If p is equivalent
to p® for an automorphism ¢ of F, then p is equivalent to a representation with
image in GL, (K), where K is the fized field of ¢.
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Proof Since tr(gp?) = (tr(gp))?, this follows from Proposition 1.8.13. O

1.9 Tensor products

In this section we collect some elementary properties of tensor products of linear
maps, matrices, modules and groups. Throughout the section, let V; and V5 be
vector spaces over a field F.

Let 7; : V; = V; (i = 1,2) be linear maps. Then the linear map 7 ® 7 :
V1 ® Ve — V3 ® Vs is defined by putting (v1 ® v2)(71 ® T2) = v171 ® v272 and
extending additively. If the 7; are both o-semilinear maps (Definition 1.6.1) for
the same o, then the same definition yields a well-defined o-semilinear map
T1 ® T2.

A semilinear map 71 ® 72 defined in this way preserves the tensor decom-
position V; @ Vo. If dimV; = dim Vs, and 71 : Vi — Vo, 7o @ Vo — V) are
o-semilinear maps, then we can also define a o-semilinear map on V; ® V5 by
v1 ® Vg > VaTe ® v171, and such a map interchanges the tensor factors. We can
extend this in the obvious way to define o-semilinear maps on the n-th tensor
power V" that permute the tensor factors.

Definition 1.9.1 Given two matrices A = (;)axs and B = (5;;)cxq Over a
common field, their Kronecker product A® B is an ac X bd block matrix, with
blocks of size ¢ x d, where the (k,[)th block (for 1 <k < a,1<1<b)is ayB.

For i = 1,2, let (v;1,...,v:q;) be bases of V;, and let 7; be linear maps on V;
with corresponding matrices A;. Then the matrix of 7 ® 75 with respect to the
basis (v11 ® v21,v11 ® Va2, ..., V11 ® Vad,, V12 @ V21, ..., V1d, ® Vaqd,) of V1 ® V>

is A1 ® As. The following result is standard, and is left as an exercise.

Proposition 1.9.2 Let Ay, Ay and As be matrices over a common field F,
and leto € Aut F'. Then (A1®A2)®A3 = A1®(A2®A3), (A1®A2)T = AI@A—QI—,
and (A1 ® As)? = A] ® AS.

For i = 1,2, if A; and C; are square matrices of degrees d;, then
(Al ®A2)(01®C2) = (A1C1 ®A202) and det(Al ®A2) = (det Al)d2 (det Ag)dl.

Assume in addition that V; and V; are (finite-dimensional) F'G-modules,
corresponding to representations p; and ps. The tensor product p; ® ps acting
on Vi ® V3 is defined by g(p1 ® p2) = gp1 ® gp2. The next result follows from
Proposition 1.9.2 and the fact that the identity maps on Vi and V5 induce an
FG-isomorphism Vi ® Vo — V5 ® V4 by interchanging the tensor factors, and
will be used implicitly in Chapter 5.

Lemma 1.9.3 Let Vi and Vo be FG-modules. Then, as F'G-modules,
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(i) (Vi1 @ V2)? 2 V7 @ VY for any field automorphism o of F;
(ii) (Vi @ Vo)* 2 V* @ V', where V* denotes the dual module of V;
(i) Vi@ Va2V V.

Proposition 1.9.4 Fori = 1,2, suppose that the action of G on V; preserves
a bilinear form 3; with matriz B;. Then:

(i) G preserves a bilinear form with matric By ® By on Vi & Va. Moreover
B ® By is non-singular if and only if both By and By are. Abstractly, the
form with matriz B; ® Bs is /1 ® B defined by (81 & B2)(u1 @y, us @uy) =
B1(u1,uz)Ba2(v1,v2) and extended F-bilinearly.

(ii) If By and Bg are both symmetric or both anti-symmetric then By ® Bs
18 symmetric, and if one of By and By is symmetric and the other anti-
symmetric then B1 ® Bs is anti-symmetric.

(iii) If char F' = 2 and the forms are alternating, then By ® Bg is also alter-
nating, and G preserves a quadratic form @ such that Q(u ® v) = 0 for
all w € Vi and v € Vo. If, in addition, F is finite and 1 and By are
non-degenerate, then Q is of plus type.

Proof All of these assertions except for those pertaining to @ follow directly
from Proposition 1.9.2. So assume that char ' = 2 and the 3; are alternating
forms. We define a quadratic form Q on Vi ® V5 with polar form 8 = 81 ® B
by specifying that Q(e; ® f;) = 0 for all ¢ and j, where (eq,...,e,) is a basis
for V4 and (fi,..., fm) is a basis for V. For all \;, u; € F, vectors u,u; € V3
and v,v; € Vo we have:

QUOT—1 Niug) @ v) = Q21— Ni(us @ v))
=i AQ(u; ®v) + Zl<i<j<r AP (ui, uj)Ba(v,v)
= Z::1 )‘ZQQ(UZ ® ).

Similarly,
Que (O njvy) =>_ nQ(uev;).
j=1 j=1

Combining all of the above gives Q(u ® v) = 0 for all w € V4 and v € V5. So
Qle; ® f).9) = Qeig® f;.9) = 0= Q(e; ® f;) for all g € G and for all 7, j.
Therefore G preserves the quadratic form Q.

If the (3; are non-degenerate, then V7 has a maximal totally singular sub-
space Wy of dimension (dim V;)/2 under ;. Then (7 and @ are both identically
zero on Wi x Vo, so @ is of plus type when F is finite, by Proposition 1.5.42. [

It is possible that V; ® V5 is isomorphic as F'G-module to an FyG-module,
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for a proper subfield Fy of F. In characteristic 2 we can make no assertions
about the type of the corresponding quadratic form in such cases.
The following result is a consequence of Proposition 1.9.2.

Proposition 1.9.5 If G is a group of isometries of sesquilinear forms on Vi
and Vo with corresponding form matrices By and By then G is also a group
of isometries of the sesquilinear form with matric By ® By on Vi ® Vo, and
B1 ® By is non-degenerate if and only if By and Bs are.

Propositions 1.9.4 and 1.9.5 extend in an obvious way to tensor products
with more than two tensor factors.

Definition 1.9.6 For ¢ = 1,... k, with k > 2, if G preserves forms ; on
modules V; which are either all bilinear or all sesquilinear, then we call the form
01 ® -+ ® By the induced form.

Definition 1.9.7 Let G < GL,,(F) and H < GL,,(F). Then we define
GoH={gh|ge G, he H} <GLyn,(F).

It follows from Proposition 1.9.2 that this operation is associative. If G =
(Xyand H=(Y),then G H=({z®1 : 2 X}U{l®y : yeY}).

For ¢ = 1,2, define representations p; : G x H — GL,,,(F) by (g,h)p1 = g
and (g,h)p2 = h. Then G ® H = Im(p; ® pa).

Proposition 1.9.8 Let G and H be matriz groups over the same field. Then

GxH

G H = .
O L A T,) : M. €G, A 1L, € H}

Proof Note that (g,h)(p1 ® p2) = g®h =1=1,,,, if and only if g = AL,
and h = A7!1,,, for some 0 # \ € F. O

1.10 Small dimensions and exceptional isomorphisms

The results in this section are all standard. We have taken them from [66,
Proposition 2.9.1], but more information is available in [108]. The given iso-
morphisms will be used without further reference.

Proposition 1.10.1 Let C be the following collection of groups: L, (q) with
n =2, Uy(q) withn > 2, S, (q) withn > 2, O%(q) withn > 3 and q odd if n is
odd. Then the following is a complete list of the isomorphisms between pairs of
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elements of C.

La(q) = S2(q) = Ua(q) = O3(q),
07 (q) = La(q) x La(q), 05 (q) = La(d?),
O5(q) = Sa(q),  Of (9) = La(q), Og (q) = Ua(q),
La(4) = La(5), La(7) = La(2), Sa(3) = Us(2).

Proposition 1.10.2  The only alternating or symmetric groups that are iso-
morphic to almost simple classical groups are As, Ag, Ag and Sg, and

Lo(4) 2 La(5) 2 As, La(9) =2 Ag, La(2) = Ag, S4(2) = Se.
Proposition 1.10.3 Let G be one of L,(q), Un(q), Sn(q) or O:(q), with
n > 2, and q odd when G is O%(q).

(i) If G is soluble, then G is isomorphic to one of the following:
La(2) = S3, Lo(3) = Ay, Us(2) = 32:Qs,
q—1)/(2,g—1), OF(2)=S3xS;, OF(3)= Ay x Ay,
05 (q) =(¢+1)/(2,¢—1).

(i) If G is not simple and not soluble, then G is isomorphic to Of (q) for
q =4, ortoS4(2).

(i) If G is simple, then the corresponding group SL,(q), SU,(q), Sp,(q) or
Q¢ (q) is quasisimple.

03 () = (

Isomorphisms between the almost simple exceptional groups will be dis-
cussed in Section 4.1 and Chapter 7.

1.11 Representations of simple groups

In this section we collect some results about representations of simple groups as
permutation and matrix groups, and about the classical groups in their natural
representation.

Definition 1.11.1 For an arbitrary finite group G, let
P(G) = min{n : G has a non-trivial permutation representation of degree n },

noting that if G is simple then this is the same as the minimum degree of a
faithful permutation representation. Let F, be the algebraic closure of F,, for a
prime p,
R,(G) = min{n : G is isomorphic to a subgroup of PGL,(F,) },
R(G) = min{ R,(G) : all primes p }.
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Table 1.4 Simple classical groups with low degree projective representations
S R,(9)
05 (»°)
Os5(p°), p odd
05 (%)
O3(p®), p odd
S4(2)

W NN

We now present a series of results giving values of these functions on various
simple groups S.

Theorem 1.11.2 Let S be a non-abelian simple group with P(S) < 12. Then
either S is an alternating group in its natural action, or S has a primitive
action on n points as given below:

nlle| 7| 8 | 9o | 10| u | 12

S| As | La(7) | La(7) | La(8) | As,Ag | La(11), My | La(11), My1, My

Proof We consult Sims’s classification [102] of primitive permutation groups
of degree at most 20 to get the result. O

Proposition 1.11.3 ([66, Proposition 5.3.3]) Let G be quasisimple. Then
R,(G) = R,(G/Z(G)) for all primes p.

Lemma 1.11.4 ([66, Lemma 5.5.3]) Let G be a finite perfect group with a
unique minimal normal subgroup N. If N = Epe with t > 2, and p’ is a prime
other than p, then R, (G) = min{P(G/N),p'/?}.

For a recent reference for the following result, see for instance [84]. It roughly
states that the lowest degree representation in defining characteristic is the
natural representation — all exceptions in Table 1.4 are due to isomorphisms.

Theorem 1.11.5 Let S be a non-abelian simple classical group in dimension
d over Fpe Then R,(S) = d except for the groups occurring in Table 1.4.

Proposition 1.11.6 ([66, Proposition 5.3.7]) If5 < n < 8 then R,(A,,) is as
given in Table 1.5. If n > 9 then R(A,) =n —2.

Theorem 1.11.7 ([75]) Let S be a simple linear, symplectic or unitary group
defined over Fpe, and let p’' be a prime other than p. Then R, (S) > e(S), where
e(S) is as in Table 1.6. In particular, if S is a simple non-orthogonal classical
group in dimension d and d > 9 then R (S) > d>.
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Table 1.5 Values of R,(A,) for 5 <n <8

n | Ra(An) | R3(An) | Rs(An) | Rp(An),p=T7

5|2 2 2 2

6|3 2 3 3

7|4 4 3 4

8 | 4 7 7 7

Table 1.6 Selected values of e(.S)

La(4), L2(9) 2,3
L2(g) otherwise (¢g—1)/(2,¢g—1)
L3(2), Ls(4) 2,4
L»(q), n > 3 otherwise -1
S4(2)", S6(2) 2,7
S2m(q), g odd, otherwise | (¢ —1)/2
S2m(q), q even, otherwise | ¢™ (g™ ' —1)(¢ —1)/2
U4(2), Us(3) 1,6
Un(q), n odd ag" " —=1)/(g+1)
Un(q), n even, otherwise | (¢" —1)/(¢+1)

The preceding results can easily be generalised to direct products of simple
classical groups using the following lemma.

Lemma 1.11.8 ([66, Proposition 5.5.7]) Let Si,...,S; be non-abelian simple
groups, let G = S x --- x S, let p be a prime, and let n; = Ry(S;). Then
Ry(G) = 22:1 .

1.12 The natural representations of the classical groups

In this section we collect some basic results concerning the natural representa-
tions of the classical groups.

Lemma 1.12.1  The group Sp,(q) is equal to SLa(q).

Proof Use Lemma 1.5.21 and Table 1.1 to see that any 2 x 2 matrix of deter-
minant 1 is an isometry of our standard symplectic form. Therefore SLa(g) <
Sps(q), and hence these two groups are equal. ]

Proposition 1.12.2 (i) The groups SL,(q), SU,(q) and Sp,,(¢) are abso-
lutely irreducible on Fy. for alln and q, where u =2 for SU,(q) and u =1
otherwise.
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(ii) The group $;,(q) is absolutely irreducible on Fy if and only if n > 2.
The group SOy, (q) is absolutely irreducible on Iy if and only if one of the
following holds:

(a) n>2;
(b) n=2, e =— and q is even;
(¢c) n=2,e=+, q is even and q > 2.

The group GOy (q) is absolutely irreducible if and only if (n,q,e) &
{(2,2,4),(2,3,4)}
(iii) The group Sp,(2)" is absolutely irreducible on F3.

Proof Part (i) in all dimensions, Part (ii) in dimension at least 5, and Part (iii)
follow from Theorem 1.11.5 since a non-absolutely irreducible representation
would give rise to a representation of degree properly dividing n in the same
characteristic. For the low-dimensional orthogonal groups see for instance [66,
Proposition 2.10.6]: this reference is incorrect regarding SOF (2). O

In the next lemma we study the 4-dimensional orthogonal groups. Recall the
definitions of the automorphisms of O (¢q) from Subsection 1.7.1: in dimension
4 the outer automorphisms ¢, § and ¢ have the same interpretation as there.
Also, recall the isomorphisms given in Proposition 1.10.1, and that w denotes
a primitive element of F.

Lemma 1.12.3 (i) The natural module for Q7 (q) is isomorphic to the ten-
sor product of two copies of the natural module for SLa(q), one for each
direct factor of the preimage group SLa(q) x SLa(q). Let the subgroup
S of PCTOS (¢)/0F (q) be (¢) if q is even, and (&',6,¢) if q is odd. If
01(q) € G < O%(q).S then G preserves the tensor product, whilst if
G < PCI'Of (q) but G & OF(g).S then G interchanges the two factors of
the tensor product.

(ii) The natural module for 2, (q) is isomorphic to the tensor product of a
copy of the natural module M for SLa(q?) and the image of M under the
automorphism o : x +— 7 of Fe.

Proof (i) Let W = F2, and consider SLy(g) acting naturally on W. Then,
by Lemma 1.12.1, the module W admits a non-degenerate symplectic form f.
The tensor product representation of SLa(g) x SLa(¢) on W ® W has image
isomorphic to SLa(¢q) ® SLa(q), as in Definition 1.9.7, which is isomorphic to a
central product of the two copies of SLa(q), by Proposition 1.9.8. By Proposi-
tion 1.9.4, SLa(g) x SLa(q) is a group of isometries of a bilinear form [ when ¢
is odd, and a quadratic form @ of plus type when ¢ is even. In fact the matrix
of @ is antidiag(l,—1,—1,1), so by Proposition 1.5.42 the form £ is also of
plus type when ¢ is odd. Hence SLa(q) ® SLa(q) < GOF(q). If ¢ > 2 then the
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smallest normal subgroup of SLa(q) with a quotient of 2-power order is SLa(q)
itself. Thus SLy(q) ® SLa(q) is a subgroup of Q7 (g), and hence by Proposi-
tion 1.10.1 is equal to Q7 (¢). The result can be checked by direct calculation
using Lemma 1.6.12 when ¢ = 2.

The permutation matrix corresponding to (2, 3) is an isometry of @ over I,
which interchanges the two tensor factors, and hence lies in GOZ(¢) \ SOF (¢)
when ¢ is odd, and in GO7 (¢)\ Q7 (¢) when ¢ is even. The field automorphism ¢
acting as a ¢-semilinear map on both copies of W induces a ¢-semilinear map on
W&@W , which preserves the tensor factors, and acts as the field automorphism ¢
on both of the SLy(q) factors. So, if ¢ is even, then there is a non-trivial action 7 :
I'O; (q) = (SO} (q), ¢) — Sz on the two tensor factors with ker 7 = (27 (q), ¢).
If ¢ is odd, then the outer automorphism ¢ = diag(w,w, 1, 1) preserves the two
tensor factors, and, since CT'Of (¢) is generated by Q7 (q) together with 6, ¢
and the automorphism induced by the permutation matrix corresponding to
(1,2), there is an action 7 : CT'OJ (q) — Sa with ker 7 = (7} (¢), ', 6, ¢).

(ii) See [108, pp199-201], where explicit isomorphisms are constructed. O

Lemma 1.12.4 Let q be odd, and let n > 4 be even. Then our standard copy
of Sp,,(q) contains no GL,(q)-conjugate of our standard copy of Q2 (q).

Proof Since, by Proposition 1.12.2, QF(q) is absolutely irreducible on Fy, it
follows from Lemma 1.8.8 (ii) that it cannot preserve both a symmetric bilinear
and an anti-symmetric bilinear form, and the result follows. ]

Lemma 1.12.5 Let q be odd, and let n > 4 be even. The no GL,(q")-
conjugate of our standard copy of Sp,(q) is contained in the standard copy
of Ut (q") for any r.

Proof The proof of this is almost identical to that of Lemma 1.12.4 O

We now prove some results on the traces of elements of classical groups in
their natural representation.

Lemma 1.12.6 (i) Let g € Sp,,(q) or GO (q). Then tr(g~t) = tr(g).
(i) Let g € GU,(q). Then tr(g~ 1) = tr(g)? where o is the automorphism
xi— 29 of Fpe.

Proof (i) Let A be the matrix of our standard alternating or symmetric bilinear
form, or the polar form of our standard quadratic form, as in Table 1.1. Then
gAg" = A by Lemmas 1.5.21 and 1.5.23, so g* = A~'gA = ¢~ 7. Transposition
and conjugation preserve traces, so the result follows.

(ii) Let A be the matrix of our standard o-Hermitian form. Then gAg®T = A,
so g =A"1gA=g77" and tr(g7 ") = tr(g~1)°. O



1.12 The natural representations of the classical groups 51

Proposition 1.12.7 (i) Let G be SL,(q) with n > 2, Sp,,(q) with n > 2,
or 5, (q) with n > 4. Then, for any o € F,, there exists g € G with
tr(g) = a.

(i) Let G' be SU,(q) with n > 3. Then, for any o € F 2, there exists g € G
with tr(g) = a.

Proof (i) By considering natural embeddings SL,,(¢) < SL,+1(q), Sp,(q) <
SPrt2(@): 5(q) < Q,,1(g) and QF(q) < Qf+2(q), it can be seen that we
only need to prove this result for the smallest value of n in each case. For

a 1
SLa2(q) = Spa(g), choose g = ( Lo )

By Lemma 1.12.3 the natural module for 27} (¢) is isomorphic to the tensor
product of the natural module for two copies of SLa(q). The trace of the Kro-
necker product of two matrices is equal to the product of their traces, so we

can choose
a 1 1 1
g = ® .
-1 0 -1 0

By Lemma 1.12.3 the natural module for Q7 (¢) = La(g?) is isomorphic over
F,2 to M ® M, where M is the natural module for SLy(¢?), and o : x — 29 is
an automorphism of Fg2. So, for an element of SLa(q?) of trace 3, the trace of
the corresponding element of 7 (¢) is 31 79. A counting argument, and the fact
that F is cyclic, shows that for all o € Fy there exists 8 € Fy2 with Bt = q.
(ii) Again we only need to prove this for the smallest value of n, that is n = 3.
We consider a matrix of the form

0
0
0

Q

|
o =2 9
o L ™

For g to have determinant 1, we require (3y — a?)d = 1, and for g to be an
isometry of the unitary form I3, we require a4t + g9+l = %! 4 3+l — 1
ay? 4+ aif = 0, and 971 = 1. Let a € Fs2 be given. If a = 0, then choose
B=~v=0=1toget g € SUs(q) with trace a.

Otherwise, 1 — 4™ € Fy, so we can find v € F2 with a4T! 4471 =1,
and then we choose 3 = —77/a?"! to get ay? + a3 = 0. Then 39 = —a9™ 1y,
so 119 = 41*9 and hence a?t! + 39+1 = 1. Therefore

(By = a®)(By — a®)? = BTy 10 4 T4 — 2F9y7 — iy =
/32+2q 4 a2t20 2a1+q51+q — (a1+q + ﬂl+q)2 =1.

Let 6 = (By —a?)~ !, then 8179 = 6179 =1,50 g € SU3(q) and tr(g) =a. O
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Lemma 1.12.8 Let q be odd. Then the set of traces of elements of Q5(q) does
not lie in any proper subfield of .

Proof The group 5(q) is the symmetric square representation of SLs(q),
acting on the basis (v; ® vy, 1/2(v] ® va + v2 ® v1), V2 ® v2) (see Proposi-
tion 5.3.6 for more details). If A € F)*, then SLy(g) contains diag(A, A~"). With
respect to the above basis this corresponds in Q5(q) to diag(A\2, 1, A=2), of trace
pi= A2 A2 41

Since the equation for y is of degree 4, each possible trace i can be produced
by at most 4 non-zero elements . Thus p can take at least [(¢ — 1)/4] values.
If ¢ # 9 then [(¢ — 1)/4] is greater than any proper factor of ¢, and we are
done. Let w be a primitive element of Fg . Then the symmetric square of

( ; (1) ) € SLy(9)

has trace w? + 2, which does not lie in F;. ]

1.13 Some results from number theory

In this section we collect some facts about Zsigmondy primes, an identity con-
cerning least common multiples, and an introduction to quadratic reciprocity.

Theorem 1.13.1 (Zsigmondy [118]) Let ¢ > 2 be a prime power and n > 3,
with (q,n) # (2,6). Then there exists at least one prime ¢, such that q,, divides
q" — 1 but does not divide ¢* — 1 for i < n.

Definition 1.13.2 We call such primes g, Zsigmondy primes, and denote a
Zsigmondy prime for ¢" — 1 by z4 .

Lemma 1.13.3 (i) Let g > 2 be a prime power and n > 3. Then ¢" + 1 is
divisible by zq 2n if and only if (¢, n) # (2,3).
(ii) If zg,n divides ¢™ — 1 then n divides m.
(i) The prime z,, =1 (mod n), so in particular, ¢, > n.

The following result is an immediate corollary of Theorem 1.6.22, and will
be used frequently when discussing groups in Aschbacher’s Class 3. Of course
p is assumed to be prime throughout.

Proposition 1.13.4 (i) Let ¢ = p® with e > 1 and (p,e) # (2,3). Then
Zp.2e divides |SLa(q)|, and if zp,; divides |SLa(q)| then i < 2e.

(ii) Let n > 3, and assume that (q,n) # (2,6). Then z,,, divides |SL,(q)l,
and if z4; divides |SL,,(q)| then i < n.
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(iii) Let n = 3 be odd, and assume that (q,n) # (2,3). Then zy2, divides
ISUL(q)|, and if z4,; divides |SU,,(q)| then i € {2n,2n —4} or i < 2n — 6.

(iv) Let n > 4 be even, and assume that (q,n) # (2,4). Then zq2n—2 and z4p
divide |SU,,(q)|, and if z4,; divides |SU,,(q)| theni € {2n—2,2n—6,n,n—2}
or i < 2n — 10.

(v) Let n > 4 be even, and assume that (q,n) # (2, 6) Then zq, divides

ISp,,(q)|, and if z,; divides |Sp,,(q)| then i € {n,n — 52} ori < n/2.
(vi) Letn =5 be odd, and let q be odd. Then Zgn—1 dwzdes |Qn( ), and if z4;
divides |22 (q)| then i € {n —1,n — L2 ori<(n—1)/2.

(vii) Let n > 6 be even, and assume that ( g,n) # (2,8). Then zy,—o divides
It (q)], and if zq,; divides |} (q)| then i € {2,4,...,n—2} ori<n/2.

(viii) Let n > 4 be even, and assume that (q,n) # (2 6) Then zq n divides
12, (q)], and if z,,; divides |, (q)| then i € {2,4,...,n} ori < n/2.

In the following lemma we derive simpler expressions for the number of
conjugacy classes of subfield and unitary groups in SL, (¢) than those given in
[66, Table 3.5.A]. Let (a), denote the highest power of the prime p dividing a.
Recall that we write (a,b) for the greatest common divisor of positive integers
a and b, and [a, b] for their least common multiple.

Lemma 1.13.5 Let ¢ = p°® be a prime power, let [ be a divisor of e, let
qo = p! and let n > 1 be a positive integer. Then

q—1 qg—1
[90—1,(¢—1)/(q¢ —1,n)] (qo—l’n>'

qg+1 q+1
[90+1,(¢+1)/(g+1,n)] (QO+1’n>.
(iii) If e is even then
q—1
[q6/2 +1, (q - 1)/((] -Ln

Proof (i) Let r be a prime dividing ¢ — 1, and let a = (¢ — 1),,, b = (qo — 1),
and ¢ = (n),. Now a > b, since (g9 — 1) | (¢ — 1). Also (¢ — 1,n), = min{a, c},
0

= (¢°/? —1,n).
7 (g 1,n)

((¢g—1)/(¢ —1,n)), = a —min{a, ¢} = max{a — ¢, 0}.
Thus

(g0 — 1,(¢ —1)/(g — 1,n)]); = max{b, max{a — ¢,0}} = max{b,a — c}.
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Hence we conclude that

((g—1) /[0 —1,(¢—1)/(¢ — 1,n)])r = a — max{b,a — ¢} = min{a — b, c}.
Conversely, (g~ 1)/(go—1))s = a—b, s0 ((a— 1)/ (g0 — 1), ), = minfa—b,c}.
The proofs of (ii) and (iii) are similar. O

When determining minimal fields of representations, we will frequently need
to determine for which finite fields certain integers are squares. To do so, we
use the law of quadratic reciprocity.

Definition 1.13.6 Let m € Z and p € N, such that p is prime. The Legendre
symbol (%) takes value 0 if p | m, value 1 if m mod p is a square in F), and
value —1 if m mod p is a non-square in F;.

Part (ii) of the following is proved in [74, p78]. The other parts are straight-
forward, and their proofs are left as an exercise.

Proposition 1.13.7 Let p € N be an odd prime.

(i) If p=1mod 4 then (%) =1, and if p= 3 mod 4 then (771) =—1.

(ii) If p = +1 mod 8 then (%) =1 and if p = £3 mod 8 then (2> =—1.

(iii) For all integers m and n and all primes p, (%) = (%) (%)

3

The following was conjectured by Legendre and proved by Gauss. For a
proof, see almost any textbook on number theory, for example [74, p78].

Proposition 1.13.8 (Law of Quadratic Reciprocity) Let p,q € N be odd

primes. Then
p q p=lg—1
— | =1 = —1) 2 P
(5)-()e

Thus, for example, to calculate in which finite fields there exists an element
V5, we find the values of ¢ for which (g) = 1. For these values of ¢, we have

1= (%) (—1)%“%1 = (%), and so ¢ is a square modulo 5. So 5 is a square in ¢

when ¢ = £1 mod 5, and 5 is a square in IFqXZ but not in F; when ¢ = +2 mod 5.
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The main theorem and the types of geometric
subgroups

2.1 The main theorem
Chapters 2 to 7 of this book are devoted to the proof of our main result:

Main Theorem 2.1.1 Let q be a prime power, let n < 12, and let Q be
quasisimple and equal to one of SL,(q), SU,(q), Sp,.(q), (q), Sz(q) = ?Ba(q),
Ga(q), R(q) = 2Ga(q) or 3Dy(q). Let G be an almost simple extension of 2 :=
Q/Z(Y). Then representatives of the conjugacy classes of mazximal subgroups of
G that do not contain Q are as specified in the appropriate table in Chapter 8.

The maximal subgroups H of G in Tables 8.1 to 8.85 are defined by describ-
ing the structure of the inverse images H in Q of H N Q. We refer the reader
to Section 8.1 for further information on how to read the tables.

In Table 2.1 we give a rough description of eight classes, 1%, of subgroups
of the classical groups, based on [66, 1.2.A]. Recall that we define u = 2 in Case
U and v = 1 otherwise. See Definitions 2.2.8 and 2.2.14 for the (differing)

Table 2.1 Rough descriptions of Aschbacher classes

| G | Rough description |
“1 stabilisers of totally singular or non-singular subspaces
6o stabilisers of decompositions V = @f_,;V;, dim(V;) = n/t
@3 | stabilisers of extension fields of Fyu of prime index dividing n
64 stabilisers of tensor product decompositions V = Vi ® Va
©s stabilisers of subfields of Fgu of prime index
b6 normalisers of symplectic-type or extraspecial groups

in absolutely irreducible representations

¢~ | stabilisers of decompositions V = ®!_,V;, dim(V;) = a, n = a'

bs groups of similarities of non-degenerate classical forms

95
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meanings of preserving these decompositions. We shall give considerably more
information about these classes of subgroups in Section 2.2.

Definition 2.1.2 Let H be a subgroup of GG, where Q < G < A as in Se-
ries 1.1, with © one of SL,,(¢), SU,(q), Sp,,(q) or Q5 (¢) and dimension restric-
tions as in Definition 1.6.20. If H is a subgroup of a member of Class %; for
some ¢ with 1 < ¢ < 8, then H is a geometric group.

Recall (Theorem 1.3.2) that, if a group S is non-abelian simple, then Out S
is soluble, and (Definition 1.8.7) what it means for a group to preserve a form.

Definition 2.1.3 Let H be a subgroup of G, where < G < A as in
Series 1.1, with © one of SL,(q), SU,(q), Sp,,(¢) or Q5(¢q). Then H lies in
Class . of G if H/(H N Z(GL,(¢"))) is almost simple and the following all
hold:

(i) H does not contain €2;
(ii) H® acts absolutely irreducibly;
(iii) there does not exist a g € GL,(¢") such that (H*)9 is defined over a
proper subfield of Fgu;
(iv) H®° preserves a non-zero unitary form if and only if = SU,,(q);
(v) H® preserves a non-zero quadratic form if and only if Q = Q2 (¢);
(vi) H® preserves a non-zero symplectic form and no non-zero quadratic form
if and only if Q = Sp,,(¢);
(vii) H® preserves no non-zero classical form if and only if Q@ = SL,(q).

Definition 2.1.4 Let H and K be subgroups of a generally quasisimple clas-
sical group 2, and suppose that H and K have been specified up to conjugacy
in Aut ). Then by a containment of H in K we mean not just that K has a
subgroup isomorphic to H, but also that there exists an Aut {-conjugate of K
that contains an Aut Q-conjugate of H.

Part (ii) of the definition ensures that an .-subgroup H is not contained in
a member of @) or €3, since (as we shall see in Section 2.2), all members of €}
are reducible and no member K of €5 has K° absolutely irreducible. Part (iii)
of the definition ensures that H is not contained in a member of 5. Parts (iv),
(v) and (vi) ensure that H is not contained in a member of és. Note that H
may be imprimitive, have a normal absolutely irreducible sympectic-type of
extraspecial subgroup, or preserve a tensor decomposition: that is, a member
of Class . may be contained in a member of 5 U %4 U % U 6~.

Theorem 2.1.5 (Aschbacher’s theorem: approximate version) Let H be a
subgroup of a group G in Column A of Table 1.2. Then H 1is either a geometric
subgroup of G, or a member of Class ..
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Chapters 2-6 are devoted to the proof of Theorem 2.1.1 for the classical
groups, and Chapter 7 to the proofs for extensions of Sp,(2¢) with e > 1 that
are not contained in A = I'Sp,(2¢), and for almost simple extensions of Sz(q),
Ga(q), R(q) and 3Dy(q). (Recall that S4(2) is not simple.) For the classical
groups, we do not prove Theorem 2.1.1 for = QF (¢), and our table in this
case is taken from [62]. For the exceptional groups, we do not include proofs
for Go(q) (q odd), R(q) = 2G2(q) or 3D4(q), and the tables in these cases are
taken respectively from [64], [64] and [63]. The maximal subgroups of Sz(q)
are determined in [106, Theorems 9 and 10], but not of their almost simple
extensions. The maximal subgroups of Ga(gq) (¢ even) are determined in [14],
whilst those of their almost simple extensions are covered by [2, (17.3)].

The geometric maximal subgroups of the classical groups of dimension
greater than 12 are described in [66, Main Theorem]|, which also states that
[66, Tables 3.5.A-F] include all of the geometric maximals in all dimensions.
So, for dimensions up to 12, we only need to determine which of the subgroups
in these tables are maximal.

Chapters 2 and 3 in this book are devoted to determining those subgroups
that are maximal among the geometric subgroups. Chapter 2 contains general
arguments concerning maximality, whereas Chapter 3 resolves the remaining
cases dimension by dimension.

Class . is divided into Classes .77 (cross characteristic) and .5 (defining
characteristic). Some .#»-subgroups are naturally contained in members of %
or 67, so we define a Class .75 which excludes these subgroups, and let Class
S =S U In Chapters 4 and 5, we determine the subgroups that are
maximal among those in Classes .1 and .75, respectively. For .#-subgroups,
we need to start by determinining the candidate subgroups of €2. The lists of
irreducible representations of quasisimple groups in [42] (cross characteristic)
and [84] (defining characteristic) are used for this, but there is additional work
to be done to determine the outer automorphisms present in the .*-maximals.

In Chapter 6, the determination of the maximal subgroups of the almost
simple classical groups is completed by finding the containments between those
subgroups that have been found to be maximal among those of geometric type,
the .1-maximal subgroups, and the .75 -maximal subgroups.

Conjugacy of geometric subgroups The conjugacy of all subgroups of the
classical groups that are maximal amongst the geometric subgroups is described
in [66, Main Theorem]|, so we will not include any conjugacy calculations for
geometric subgroups. However, the forms that their groups preserve, and the
elements chosen to generate the outer automorphism groups, sometimes differ
from ours. We therefore finish this section with a brief description of the “trans-
lation” that is necessary to produce the conjugacy information that appears in
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the tables of geometric subgroups in Chapter 8. Recall the definitions of our
standard outer automorphisms in Section 1.7. It is shown in [6] that if one form
can be transformed to another by a matrix that is centralised by the standard
Frobenius automorphism, then the standard Frobenius automorphism acts in
the same way on both groups of isometries.

For the linear groups, the form preserved is the zero form and our standard
outer automorphisms agree with those in [66], except that we write v for the
duality automorphism that [66] denotes ¢.

The standard unitary form in [66] is equal to ours. Our representatives for
the outer automorphisms are identical to those in [66], so although it is proved
in [6] that the action of the Frobenius automorphism depends on the choice of
form, our conjugacy class stabilisers are identical to those in [66].

Our standard symplectic basis is just a reordering of the symplectic basis
in [66]. We choose the same matrix for the automorphism ¢, and the change of
basis does not change its action. It is proved in [6] that when © = Sp,,(¢) the
action of the Frobenius automorphism does not depend on the choice of form.
Therefore our conjugacy class stabilisers are identical to those in [66].

For the orthogonal groups in odd dimension we use the same standard form

s [66]. Our automorphism § is equal to the automorphism rgrg in [66]. We

use the same automorphism ¢. Therefore it is straightforward to write the
stabilisers from [66] in our notation.

For the orthogonal groups of plus type, we use the same standard form
as [66] in even characteristic. In odd characteristic our standard basis is a
reordering of the basis in [66]. Thus in all cases the standard forms agree, up
to the order of basis vectors. Our automorphism = is the automorphism g in
[66]; when ¢ is odd our automorphism ¢’ is equal to rgrg in [66]; when ¢ is odd
our § is equal to the § in [66]; and for all ¢ our ¢ is equal to the ¢ in [66].

For the orthogonal groups of minus type, we use the same standard form as
[66] in odd characteristic, and in even characteristic our standard basis is just
a reordering of the standard basis in [66]. Our automorphism + is the automor-
phism 7 in [66]. If ¢ is odd and n(g — 1)/4 is odd then our automorphism ¢’
is rgry in [66], and our automorphism ¢ is equal to the ¢ in [66]. However,
if ¢ is odd and n(q — 1)/4 is even then our automorphism § is equal to the
automorphism 4 in [66] if n = 0 mod 4, and to drg if n = 2 mod 4. Finally, if ¢
is even, or if ¢ is odd and n(g — 1)/4 is even, then our automorphism ¢ is the
automorphism ¢ in [66].
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2.2 Introducing the geometric types

In this section we introduce the members of Classes %1 to %g. In each class
we define various types of geometric subgroup, and define a group to be a
member of the class only when it is of one of the types. This will enable a more
detailed statement of Aschbacher’s theorem in Theorem 2.2.19. For each type,
we give the structure of the corresponding subgroup of the generally quasisimple
group. We assume throughout this section that the dimension restrictions of
Definition 1.6.20 apply, with the addition of Qf () to our list of possibilities.
Thus although we print tables for Q (q) (for example), and include Aschbacher
Class information for these, these classes should be understood as corresponding
to the descriptions in [1]: we are not formally defining Class %) through to Class
& for these groups.

2.2.1 Class ¢

In this subsection we introduce Class %7, and describe some elementary prop-
erties of its members. Roughly speaking, these groups are the stabilisers of
subspaces.

We shall refer to the Class €7 groups by their type. Recall Definition 1.5.7.
A group of type Py is a mazimal parabolic: in Cases S, U and OF° this is the
stabiliser of a totally singular subspace of dimension k, whilst in Case L it is
the stabiliser of any k-space. A group of type Pj i is the stabiliser of two
subspaces, one of dimension k, and the other of dimenson n — k, such that the
(n — k)-space contains the k-space. A group of type A @ B is the stabiliser of
a pair of subspaces with trivial intersection which span the space. A group of
type A L B is the stabiliser of a pair of non-degenerate subspaces which are
mutually orthogonal and span the space. We write t.s. as an abbreviation for
totally singular, n.d. for non-degenerate, and n.s. for non-singular. In Case OF,
let W be a non-degenerate k-space. Then sgn(W) is the sign of the restriction
of the quadratic form to W.

Definition 2.2.1 A subgroup H of T'L,,(q) is reducible if H stabilises a proper
non-zero subspace of Fy. Let G be a group such that @ < G < A, as in
Series 1.1, and let K < G. If G < T then K lies in Class €, if K = Ng(W) or
Ng(W,U), where W (or U and W) appear in Table 2.2. Otherwise, K lies in
Class ¢, if K =N4(H) NG, where H is a €;-subgroup of T'.

In Case O, there are two conjugacy classes in ;' (g) of groups of type
P, /2, which are conjugate under . In Case O%* if k is odd (so that ¢ is odd)
then there are two classes of groups of type GOj(q) L GO; _,.(g), which are
conjugate under §, the automorphism that multiplies the form by a non-square.
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Table 2.2 Types of €1-subgroups
Case Type Description Conditions
All P Ng(W), W t.s. k-space k < nin Case L
k < n/2in Case O~
k < n/2 otherwise
L Pron—k Ng(W,U) with W < U, k<n/2
dim(W) = k and
dim(U) =n—k
L GLx(q) ® GLn—x(q) Ng(W,U) with k<mn/2
WU =0, dim(W) =k
and dim(U) =n — k
U GUk(q) L GU,—k(q) | Ng(W), W n.d. k-space k<n/2
S Spi(q) L Sp,,_(q) Ng (W), W n.d. k-space k<mn/2
O° | GO (¢) L GO2,(q) | Ng(W), W n.d. k-space, k<n/2
e1 =sgn(W) and E=+4+=¢e1=¢
go = sgn(W+) e=—=¢e1=—¢6
(k,e1) # (n—k,e2)
q even = k even
o* Sp,,—2(q) Ng(W), W n.s. 1-space g and n even

In all other cases and for all other types there is a single conjugacy class in {2
of each type of group for each k£ in Table 2.2. Note that our definition of types
Py in SL,(q) is very slightly different from that in [66]: since the groups of
type Pk are conjugate under duality to those of type P, _, these two types are
identified in [66] where we have preferred to leave them separate.

In Table 2.3 we describe the structure of the 47-subgroups in the quasisim-
ple group Q. For odd ¢, the group GL,,(¢) has a unique subgroup of index 2,
which we denote %GLn(q). With two exceptions, these results are all straight-
forward generalisations of those in [66, Propositions 4.1.3, 4.1.4, 4.1.6, 4.1.7,
4.1.17-4.1.20], where the corresponding subgroups of  are described. The first
difference is that we correct an error in the statement of [66, Proposition 4.1.18],
regarding the structure of the parabolic subgroups of Uy, (¢). The second is that
we use the matrices given in [46, Lemma 4.3] to deduce that the extension of
order 4 of Q7' (q) x Q52 , (¢) in the penultimate row of Table 2.3 is of shape 22.

We collect some facts about the stabilisers of totally singular subspaces. Let
r denote the dimension of a maximal totally singular subspace. Thus r = n in
Case L, r = [n/2] in Cases U, S. O" and O°, and r =n/2—1 in Case O~. A
mazximal flag in V' is a chain of totally singular i-spaces V;, with

0=V <Vi<- - <V,
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Table 2.3 Structures of €1 -subgroups in 2
Case Type Shape of H < 2 Notes
L P [9°):(SLk(q) % SLu—x(q)):(q — 1)
L Pin—k [¢°]:(SLi()* x SLu—2(q)): (g — 1)°
L GLk(q) ® GLn—k(q) | (SLk(q) x SLn—x(q)):(¢ — 1)
U Py [¢"]:(SLk(¢%) X SUn—2k(q)).(¢* = 1) | k <n/2
[¢°]:SL(¢%)-(g — 1) k=n/2
U | GUk(q) L GUn—k(q) | (SUr(q) X SUn—k(q))-(¢g+1)
S By [¢°]: (GLk(q) x Sp,,_21(q))
S Spi(q) L Sp,,_(q) | Spx(q) X Sp,_x(q)
o° Py [¢):(GLi(q) x Q5 _2x(a)) g even
[q7]: 3GLx(q) k=[n/2],
q odd
[q]:(3GLk(q) x Q5 _2.(q))-2 otherwise
0 | GO (g) L GO (q) | (24 () x 22 ,(g))-2 k=1or
q even
(1 (q) x 2 ,(q)).2° otherwise
o* SP,—2(q) SP,_2(q) q even
In the table, a = k(n — k), b = k(2n — 3k), ¢ = k(n 4+ 152%) and d = k(n — 143%),

The following results can all be found in [66, §4.1]; by Ng(W)" we mean the
restriction of the stabiliser in G of the subspace W to its action on W.

Lemma 2.2.2 Let P € Syl,(Q).

(i) In Cases L, U, S, O° and O~, the group P stabilises a unique maximal
flag and a unique totally singular i-space for 1 <1 < r.
(ii) In Case OT, the group P stabilises a unique totally singular i-space for
1 < i< n/2—1, precisely two totally singular n/2-spaces, and precisely
two mazximal flags. The maximal flags are interchanged by NGoi(q)<P>-
If W <V is totally singular then No(W) contains a conjugate of P.
If W <V is totally singular, then SL(W) < No(W)W.

In Cases U, S and OF, if W <V is a totally singular k-space, then there
exist spaces X and'Y such that V. = (W @Y) L X, where Y is a totally
singular k-space, W @Y is non-degenerate and X = (W @ Y)* .

In Cases S, U or O, let n = 2r be even, let Wy = (eq,...,e,.) and let
Wa = {(f1,..., fr). Let K be the stabiliser in Sp,,(q), GU,(q) or GO (q)
(respectively) of both Wy and Wy. Then K = GL,.(¢%), the restricted rep-
resentation p : K — GL(Wy) is the natural representation of GL,(¢"),
and as K-modules Wy = W[, where x is duality and vy is the power of
the Frobenius automorphism sending x — x9.
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Table 2.4 Types of €-subgroups

Case Type Description of D Conditions
L GLn(g) 1St any decomposition
U | GUn(q)1Se Vi n.d.
U | GL,2(¢%).2 Vits,t=2
S SPm (@) 1Se Vi n.d.
S GL,/2(q)-2 Vits;t=2 q odd
oO° GOy (p)1Sn Vind;t=n qg=1p>2;e=o0<%n odd;

e=—<(n=2mod4
and ¢ = 3 mod 4);
e = + otherwise
O° GO () 1S: | Vind.;er =sgn(Vi) | m > 1; meven = ¢ = &t
m odd and t even =
e = (—1)la-bn/4
0" | GLy2(q)-2 Vi tst =2
0* | GO;p(0)? Vind; ¢ =2; e = (L)@, 4 odd
V; nonisometric

2.2.2 Class %

In this subsection we introduce the members of Class %5 and define certain of
their subgroups that will be useful to us later.

We shall refer to the families of 65-groups by their type. The types of G-
group are listed in Table 2.4, taken from [66, Table 4.2.A]. In each type we
require that the group is the stabiliser of a decomposition D of V' into t sub-
spaces, each of dimension m = n/t:

D:V=Viel,e eV, (2.1)
We use the abbreviations n.d. for non-degenerate and t.s. for totally singular.

Definition 2.2.3 A subgroup H of 'L, (q) is imprimitive if H preserves a
direct sum decomposition D of V' = [y, as in Equation 2.1. Let G be a group
such that Q < G < A, as in Series 1.1, and let K < G. If G < T" then K lies in
Class 65 if K is the stabiliser in G of an imprimitive decomposition described
in Table 2.4. Otherwise, K lies in Class %5 if K = N4(H) NG, where H is a
%5-subgroup of I.

In Cases L, U and S, the %5-subgroups of G < I" are all irreducible, and so it
is common for the definition of imprimitivity to include a requirement that the
group H acts irreducibly on Fy, and hence a requirement that H permutes the
V; transitively. However, there exist %3-groups in Case O¢ where the subgroup
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Table 2.5 Shapes of €5-subgroups in )
Case Type Structure of H < Q

(9)-2 GLy,2(q)-2
GO, (p)1S, | 277 1A, if ¢ = £3 mod 8
2n~1S, if ¢=+1mod 8
0° | GO (g)1S: | Q5t(g)f.2aD-(=D g,
OF | GLu2(9)2 | SLna(9) 5%5.(n/2,2)
2

N q—1,2)'2
8) GOy, /5(q) S0;,2(9)

L GLm(q) 1S: SLm(q)".(q — 1)1,
U | GUn(g)2S: SUnm(q)' (g +1)7L.S,
U | GLyn2(¢%)2 SLn/2(¢?)-(q —1).2
S | Sp.(a)tS: SP, (@)":S:

S

o°

H of Q% (q) is in fact reducible. With our weak definition of imprimitivity, all
groups in %, are imprimitive.

In Table 2.5 we describe the structure of the %5-subgroups of €. The in-
formation about the shape of H can be deduced from [66, Propositions 4.2.4,
4.2.5,4.2.7,4.2.9-4.2.11, 4.2.14-4.2.16]. We have not attempted here to specify
the centre of H precisely, but instead to exhibit certain useful subgroups of H.

Let H be of one of the types given in Table 2.4, let 2 be the quasisimple
classical group containing H and let G be the corresponding general group, as in
Definition 1.6.5. Write Gp for the stabiliser in GG of the decomposition D. Write
Hp) for the kernel of the action of H on the decomposition D, namely those
elements of H that map V; to V; for 1 <7 < ¢, and define G(p) similarly. Let
GP .= Gp/Gpy, and let G; be the restriction of G(py to V;, so that G is the
general group on V;. If the type is not GOSL/Q(Q)2 then Gp = G(py:J = G11J,
where J = S;. Note in particular that J < G.

Our proofs of maximality of %,-subgroups will have two main structures,
depending on whether ¢t = 2 or ¢t > 3. We first make some definitions and basic
observations for ¢ > 3. If ¢ > 3, then define L := (J'}* (the normal closure of
J' under H) so that L < H since 2 = G’. Define the symbols L(p) and P
analogously to G(py and GP.

Lemma 2.2.4 Lett > 3.

(i) Ay =2 LP = J < H, and hence LP acts primitively on D.

(ii) L is perfect provided t > 5.

(iii) The restriction of Lpy to V; is equal to Gy, for 1 <i <t.

(iv) If t = 4 and Gy # GL1(2), or if m > 2, then Vi,..., Vi are pairwise
nonisomorphic as L(py-modules.
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Proof (i) This is clear from Table 2.5.

(ii) The normal closure of a perfect subgroup is perfect.

(iii) Since Gp is a wreath product, we may use wreath product notation for
elements of H. The element z, := (¢,9 ", L, ..., L) € G (p) has determinant
1 for all g € G1. If Q = QF(qg) then it is easily seen that z, has spinor norm
(¢ odd) or quasideterminant (¢ even) 1. Thus z, € H for all ¢ € G;. The
group J' is a subgroup of H, so a := (Iy,Lin,...,Ln)(1 2 3) € L. Therefore
Yy 1= (ail)””s;la = (9,97%,9,1...,1) € L for all g € Gy, so LE%) = G;. The
result for ¢ > 1 now follows from Part (i).

(iv) If G1 # GL1(2) then G is non-trivial. The element y, from the proof
of Part (iii) shows that if £ > 4 then Vi and Vj are nonisomorphic as Lp)-
modules. The same element y, shows that if £ = 3 and m > 2 then V; and V5
are nonisomorphic, since G contains involutions. The result now follows from
the primitivity of A;. O

When ¢t = 2 we will require a different style of argument, so we make some
extra definitions. Let H < §2 be an imprimitive group, of one of the types given
in Table 2.4, and assume that H preserves an imprimitive decomposition into
two subspaces, V7 and V5. Recall the dimension restrictions in Definition 1.6.20.
Let €Q; be the generally quasisimple group on V;, as in Definition 1.6.13. Then
H contains a subgroup isomorphic to Q) when the decomposition is into totally
singular subspaces in Cases U, S and O°¢, or to Q] x Q) otherwise, and this
subgroup is perfect if and only if none of the following occurs:

(i) n=2;
(ii) n=4 and ¢ < 3;

(i) Q =SUg(2) and D is a decomposition into non-degenerate subspaces;

Assume that Q) x Qf is perfect, and let N = H*, so that N is a subdirect
product of Q] x Q. Let X be a non-abelian composition factor of N. In Case
L the group N = SLn/g(q)2 and X = L, /5(q). If H is of type GU,,/2(q) 1 S2
then N = SUn/Q(q)2 and X = U, 5(q). If H is of type Sp,/»(q) 1 Sz then
N =5Sp,, (¢)* and X = Sn/2 (¢)'. In the non-degenerate types in Case O° the
group N = Qfll/z (q)2 and X = Oil/Q(q). For the totally singular decompositions
in Cases U, S and OT the group N is isomorphic to SL,/2(¢") (recall that
u =2 in Case U, and 1 otherwise) and X = L, /2(¢").

Note that it is immediate from Lemma 2.2.2 (vi) that if ¢ = 2, and either
the Case is L or the Case is S, U or OT and the decomposition is into totally
singular subspaces, then Hy, contains SL,, 5(¢") in its natural action, and as an
Hy, module Vo = V7*, where * is duality and o is the power of the Frobenius

1
automorphism mapping x +— 9.
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2.2.3 Class %3

In this subsection we introduce the members of €3, and prove some preliminary
results about their structure and actions.

Recall Definition 1.6.1 of a semilinear map. When discussing %3-subgroups,
we write I'L,, /5(¢°) for the group consisting of all semilinear maps f on IFZ/ ?
such that (M)f = A(vf) for all A € F,. (This notation is convenient but
dangerous because, for example, I'Lg/5(4%) is not the same as 'Ly /(8%).)

Let s be a divisor of n, and let m = n/s. There is an [F,-vector space iso-
morphism from Fgus to Fj., and this induces an Fgu-vector space isomorphism

a:Vy = ng{f — V = F.. In turn, this induces an embedding of Fju. in
GL,(q"), and also of T'L, ,s(¢"*) = NgL, (qv) (Fgus) in GL,(¢"). See, for exam-
ple, [45] for an explicit embedding.

Recall Definition 1.6.4 of a semi-similarity. If 3 is a o-sesquilinear or quad-
ratic form on V; then one may consider the set of all elements of T'L,,(¢%) that
act as semi-similarities on (Vs, 85)a. The type of 3¢ can be deduced from the
type of the @3-subgroup, as in Table 2.6, but see [66, Section 4.3] for information
about how to construct the form Gsa on V: the construction depends on the
type of (. Further information on the groups in this class can be found in [30].

Definition 2.2.5 A subgroup H of GL,(¢") is semilinear if there exists a
divisor s of n, and an [Fyu-vector space isomorphism from V; to V, such that
all elements of H act semilinearly on V.

Let G be a group such that Q < G < A, as in Series 1.1, and let K < G. If
G < T then K lies in Class €3 if K is the set of all semi-similarities f of the
image under o of (V, ;) such that there exists A € Fgu and 6 € Aut Fgus with

Bs(vafa™t wafa™t) = A\, (v, w)?
or, if 3 is quadratic, Bs(vafa™t) = A\Bs(v)?

for all v,w € Vi, where 5 is as in Table 2.6. Otherwise, K lies in Class €3 if
K =N4(H)NG, where H is a €3-subgroup of T'. [In the rest of our discussion,
we will omit the isomorphism «, for ease of reading.]

Note that some authors include irreducibility, or absolute irreducibility,
as a requirement for a group to be semilinear. We will prove later on (see
Lemma 2.3.14 and Proposition 3.3.4) that all €3-subgroups are irreducible,
but we do not require irreducibility as part of the definition of the class. Not
all Class %3 groups are absolutely irreducible.

We refer to the families of @3-subgroups by their type. The types of @s3-
subgroup are listed in Table 2.6, taken from [66, Table 4.3.A]. The information
about the structure of H < € is a straightforward consequence of [66, Proposi-
tions 4.3.6, 4.3.7, 4.3.10, 4.3.14, 4.3.16, 4.3.17, 4.3.18, 4.3.20], where the shape of
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Table 2.6 Types of €3-subgroups

Case Type Structure of H < Q Conditions
L GL(¢%) % oSL(q%) ((2611::)) .8 s prime
18) GUn(q%) %&qsﬂ)oSUm (¢°) ((Zi:'ll:nn)) s odd prime
S Sp.(4°) Spo(q°)-s s prime
S GU,/2(9) GU,/2(q).2 q odd, s =2
(o) GO7,.(¢%) Q5.(¢%).[cs] s prime, m > 3

e=+=c=(s,2)
e€fo,—}=c=1

0" | GO 5(q°) (qF1,4)/2 x Q3 5(¢4%)-2 qn/2 odd, s = 2
O | GU,a(q) | ((¢+1)0SUnsa(a))-[(¢,2)(@+1,%)] | n=0mod 4, s =2
O~ | GU, (g (M%NSUW@)) (g+1,2) n=2mod4,s=2

H < Qs given. In each type we require that the degree s of the field extension
is a prime divisor of n, and we set m = n/s.

The groups of type GO;, 5(¢*) and type GOE(¢?) have been studied in [15].

Let H be a €3-subgroup of . In Case L, let Q1 be the subgroup SL,,(¢*)
of H, and in Case U, let ©; be SU,,(¢®). If H is of type Sp,,(¢®) then let Oy be
the subgroup Sp,,(¢%). If H is of type GU,,/2(q) then let ; be the subgroup
SU,/2(q). If H is of type GOy, (¢°) then let ©; be the subgroup €, (¢°). If H
is of type GOy, /5(¢*) then let Q; be the subgroup Qs (¢%). Except for some
small values of m, s and ¢, the group €2 is quasisimple and equal to H>.

Lemma 2.2.6 ([66, Lemma 4.3.2]) Ifm > 2, then either Qy is an irreducible
subgroup of Q or H is of type GUa(q) in Spy(q).

Recall the dimension assumptions in Definition 1.6.20.

Lemma 2.2.7 Let H be a €3-subgroup of Q0. Then H is insoluble if and only
if one of the following holds.

(i) The Case is L or U, and s # n.

(i) The Case is S, and if H is of type GU,,/5(q) then (n,q) # (4,3).
(iii) The Case is O°.
(iv) The Case is OF and m > 4.

If H is insoluble then H>® = Q. Thus, if Q1 # Qf (¢) and H is insoluble then
H™> is quasisimple.

Proof Apply Proposition 1.10.3 to the shape of H, as given in Table 2.6. [
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Table 2.7 Types of €4-subgroups

Case Type Conditions
L GLy, (¢) ® GLp,(q) 1<n <+n
U GU,, (q) ® GUp,(q) 1<n <+n
S Sp,, (¢) ® GOg, (q) q odd, n2 > 3
O™ | Sp,,(q) ®Sp,,(2) ni1 <y/n
0% | GO}, (q) ® GOZ,(q) godd, n1 >3, ny >4
0° | GO, (¢9) ® GO, (q) 3<n <+/n
O" | GO:t (9) ® GO2(q) ni,n2 = 4, n; even,
qodd, g1 =¢e2 = n <\/ﬁ
Case Shape of H < 2

L (SLn, (q) © SLiny (9))-[(q — 1,n1,m2)%]
U | (SUn,(q) ©SUny(9))-[(g + 1,m1,n2)?]

S (Sp,, (9) © GOS,, (q)).(n2,2)
o+ (Sp,,, (9) ©Sp,,, (9)).(2,q¢ — 1,n/4)
o+ SO5, (9) x 923, (9)
0° (0, (q) X D,y ()2
0" (SO3: (9) 0 SO (9))-[d]

2.2.4 Class ¢,

In this subsection we briefly introduce the members of Class .

Definition 2.2.8 A group G < T'L(V) preserves a tensor product decompo-
sition V= V3 ® V4 if for all g € G there exist g1 € TL(V3) and g2 € TL(1%)
such that for all v € V] and vy € V5

(v1 @ v2)g = V191 ® V2g2.

Notice in particular that the group above does not interchange the two
tensor factors. Recall Definition 1.9.7, of the tensor product of two groups
defined over a common field.

We shall refer to the families of €-subgroups by their type. The first part of
Table 2.7 is taken from [66, Table 4.4.A]: in each type we require that nins = n.
In Cases U, S and O¢, the type of the induced form (as in Definition 1.9.6) can
be deduced from Propositions 1.9.4 and 1.9.5. The groups occuring below the
horizontal line only occur when n > 12, and will generally be excluded from
our discussions.

Definition 2.2.9 A subgroup H of GL,(q) is a tensor product group if H
preserves a tensor product decomposition Fy = Vi @ V. Let G be a group such
that Q < G < A, as in Series 1.1, and let K < G. If G < I" then K lies in
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Class 6 if K is the stabiliser in GG of a tensor product decomposition with V;
of dimension n; and V5 of dimension no, where Vi and V5 are equipped with
a zero or non-degenerate form, as described in Table 2.7. Otherwise, K lies in
Class €, if K =N (H) NG, where H is a €4-subgroup of T'.

The information about the shape of H in the second part of the table can
easily be deduced from [66, Propositions 4.4.10, 4.4.11, 4.4.12, 4.4.14-4.4.17].
Recall Definition 1.5.35 of the discriminant of a form. In the final type of the
second table, let d; be the discriminant of the form on V;, for i = 1,2. Then

the term c is 4 if any of the following hold: e =9 = —; &1 = g9 = + and at
at least one of dy or dy is non-square; e = 3 = + and n = 4 mod 8; ¢; = +
and €5 = — with at least one of d; or dy non-square. Otherwise, c¢ is 8.

The following lemma is standard (see [66, 4.4.3] for example), and will be
useful for both Class %, and Class %7.

Lemma 2.2.10 Suppose that G = G1 @ --- @ G preserves a decomposition
V=& -V, with G; < GL(V;) for 1 <i < t. If Gy is irreducible on V;
and G; is absolutely irreducible on V; for i > 2 then G is irreducible on V. If
each G; is absolutely irreducible on V; then G is absolutely irreducible on V.

2.2.5 Class %5

In this subsection we briefly introduce the members of €5. Let Fu/» be a
subfield of index r in Fy«, and let V. be the F . --span of an Fyu-basis B of
V =Fp.. Then as an F ./ --space, V, & Fgu/,..

If g € GL(V;) then g acts naturally on V, so there is a natural embedding
GL,(¢*/") = GL(V,) < GL(V) 2 GL,(¢"), which extends to T'L,(¢%/") <
'L, (¢"). Thinking of working with respect to the basis B, notice that we can
also characterise GL(V;) as being the centraliser in GL(V') of a representative
for the Galois group Gal(Fgu : Fyu/r).

Recall Definition 1.6.4 of a semi-similarity. If V' is equipped with a non-
degenerate o-Hermitian, symplectic or quadratic form (3, and if (3, is a non-
degenerate o-Hermitian, symplectic, or quadratic form on V., then the embed-
ding of V,. in V may induce an embedding of the semi-similarity group of V,. into
the semi-similarity group of V. See Table 2.8 and [66, §4.5] for more informa-
tion about the possible embeddings that can give rise to maximal subgroups.
Except for the embedding of Sp,,(¢) in SU,(g), in Table 2.8 the form [, on
V.. is simply the restriction of the form [ to the elements of V,., viewed as an
[Fu/--vector space: note that 3, may be of a different type from 3. As regards
Sp,,(¢) in SU,,(q), the symplectic form fo satisfies [a(v1,v2) = AB(v1,v2) for
all v1,ve € Vs, for some fixed \ € ]F;(2 such that A + A4 = 0.
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In the following definition, for G < T we write N (V) to denote the sta-
biliser in G of V. C V, that is, the elements of G that send V. to itself, and in
addition, if V,. is a space equipped with a form, act as semi-similarities of V..

Definition 2.2.11 A subgroup H of GL,(q) is subfield if H is absolutely
irreducible and there exists a proper subfield Fy, of F; and an element g €
GL,(q) such that

HY < (Z(GLy(g)), GLy(go))-

That is, up to scalars, H is conjugate to a group over a proper subfield of F,.

Let G be a group such that Q QG < A, as in Series 1.1, and let K < G. If
G < T'then K lies in Class €5 if K = Ng(V;)(Z(GL,,(¢"))NG), for some formed
space V,. as in Table 2.8. Otherwise, K lies in Class %5 if K = N4(H) NG,
where H is a %5-subgroup of T'.

All columns of Table 2.8 except for that which describes the shape of H <
Q2 are taken from [66, Table 4.5.A]. The information about the shape of H
is largely from [66, Propositions 4.5.3-4.5.6, 4.5.8, 4.5.10]. However, we use
Lemma 1.13.5 to simplify the description of the structure of the groups of type
GL,(qo) and type GU,(qo). For the groups of type GO2(q'/?), to determine
the precise structure of the %5-subgroup we consider writing an element g €
SO2 (¢*/?)\ Q2 (¢'/?) as a product of reflections g = r,, ... 7, . To calculate the
spinor norm of g in GO;, (q) (so q is odd), evaluate Hle B(vi,v;) = A. Since \ €
[F,1/2, this must be a square in F)* and so g lies in Q7 (¢), by Definition 1.6.10.
Thus the group Q2 (¢'/?).2 given in [66, Proposition 4.5.8] is in fact SO (¢"/?).

In Case OF, type GO} (qo) with ¢ = ¢2, the integer b is defined as follows:

b—{ 1 ifn=2mod4 and ¢ =1 mod 4

2 otherwise.
In Case O, type GO,, (qo), the integer b is defined as follows:

b{ 2 ifm=2mod4 and gy =1 mod 4

1 otherwise.

All members of Class €5 are subfield groups. Given our restrictions on the
dimension in Cases U and O¢, all groups in Class 65 are absolutely irreducible
by Proposition 1.12.2. The groups of type GL,(qo), GU,(qo) and Sp,,(qo) have
been studied in [17].

The following result is clear from Definition 2.2.11 and Table 2.8.

Lemma 2.2.12 Let H be a €5-subgroup of Q. Then all elements of H* have
trace in some proper subfield of Fgu.
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Table 2.8 Types of €5-subgroups

Case Type Shape of H<Q Conditions
L GLn(qo) | SLx( (qo T n) q = qp, r prime
U GUn(qo) | SUn(qo)- (q‘f)trll , n) q = ¢4, r odd prime
U | Sp.(9) | Sp.(9)-l(g+1,1/2)] n even
U | GOL(9) SOz (a)- [(q +1 n)} q odd
S Sp,(q0) | Sp,(q0)-(2, iT) q = qo,  prime
o° GO; (qo) Qﬁ(qo) q = q, v odd prime
505 (o) q=q5
O | GO} (q) Q7 (90) q = qo,  prime,
r odd or ¢ even
SO (q0)-b q= g5, q odd
0" | GO; (qo) Q5 (90) q =g, q even
SO, (q0)-b q=q5, q odd
O~ | GO, (qo) Q,, (qo) q = qp, v odd prime

2.2.6 Class %

In this subsection we present some basic information about the %s-subgroups.
For any prime r and any integer m > 1, there are two isomorphism types of
1+2m. see, for example, [31, Theorem 5.2]. If r
is odd then we are only concerned with the groups of exponent r, denoted
f‘gm since the normaliser in GL,m (¢*) of an extraspecial group of the other
isomorphism type (denoted r*2™)
an extraspecial group of exponent r. If » = 2 then the extraspecial group of
minus type is a central product of a quaternion group of order 8 with zero
or more dihedral groups of order 8, whilst the group of plus type is a central
product of dihedral groups of order 8. By taking a central product of either
type of extraspecial 2-group with a cyclic group of order 4, we obtain a 2-group
of symplectic type. The extraspecial and symplectic type groups of order r'+2m
or 22t2m — 4o Q}JQm = 4022 act on IE‘ZT whenever ¢" — 1 is divisible by r
or 4 respectively, and this action is absolutely irreducible.
We shall refer to the €s-subgroups by their type, as in Table 2.9. In Table 2.9
n = r" with r prime. If type %s-subgroups occur in Cases L and U, then when
n = 2" > 4 the power ¢* is the minimal power of p such that ¢* = 1 (mod 4),
and otherwise ¢* is the minimal power of p such that ¢* = 1 (mod ). Thus if
Q = SL,,(p°) contains s-subgroups then e is odd, and in addition if n is even
then e = 1. If Sp,,(p®) or Q;F (p°) contains €s-subgroups then e = 1. Table 2.9
is derived from [66, Propositions 4.6.5-4.6.9]. If n < 12, then recalling our

extraspecial groups of order r

is a proper subgroup of the normaliser of
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Table 2.9 Types of €s-subgroups

Case Type

Shape of H < Q

Conditions

L erm.szm(r)

L | 2°72™.Sp,,.(2)

U T1+2m’Sp2m (T)

227 8Py, (2)

31%%:Qs
((g—1,m) or'*2™).Sp,,, (1)
21232 9'Ay
21+2.95 > 9'S,
(402" Ag
((g—1,n)02'**™).Sp,,,.(2)
31+23Q8
((g+1,n) or'*>™).Sp,,, (r)
(402') A
((g+1,n) 0 2"*2™).Sp,,.(2)

n=3,¢g=4,7mod9
n odd, otherwise
n=2 qg==+3mod8
n=2,g=+1mod8
n=4,q=5mod8
n even, otherwise
n=3,¢g=2,5mod9
n odd, otherwise
n=4,q¢=3mod8
n even, otherwise

S 212 Qo (2) 21+2m 80, (2) ¢==+1mod8
21 F2m O (2) ¢ =43 mod 8

ot | 217™.3 (2) 2,7°™.807,,.(2) q¢==+1mod8
247703 (2) ¢=+3mod8

dimension restrictions in Definition 1.6.20, we see that 45 = @ in Cases OF,
and n =4 or 8 in Case S.

Definition 2.2.13 A subgroup H of GL,(q) is an extraspecial normaliser
group if n = r™ for some prime r and H has an extraspecial normal subgroup
of order r'*2™ and exponent r(2,7).

Let G be a group such that Q@ < G < A, as in Series 1.1, and let K < G.
Then K lies in Class 65 if K = Ng(R) where R is an absolutely irreducible
r-group as in Table 2.9.

2.2.7 Class ¢~

In this subsection we present some basic information about Class %7.

Definition 2.2.14 A group G < T'L(V) preserves a tensor induced decom-
position V=V, @ Vo ® --- ® V; if for all g € G there exist g; € T'L(V;) and
o € S; such that for all v; € V;

(V1@ @V)g = V16910 @+ @ Vo Jio-

If non-degenerate forms (3; have been defined on the V;, then we require in
addition that the g; are elements of the I'-group for that form, as in Series 1.1.

Notice in particular that G can permute the ¢ tensor factors.

Definition 2.2.15 A subgroup H of GL,(q) is a tensor induced group if



72 The main theorem and the types of geometric subgroups

H preserves a tensor induced decomposition Fy = V3 @ Vo @ --- @ V; with
dimV; = m for all 4 and n = m!.

Let G be a group such that Q < G < A, as in Series 1.1, and let K < G. If
G < T then K lies in Class 67 if K is the stabiliser in G of a tensor induced
decomposition, as in Table 2.10. Otherwise, K lies in Class €7 if K = N4 (H)N

G, where H is a €7-subgroup of T'.

Our dimension restrictions in Definition 1.6.20 mean that the groups de-
scribed below the horizontal line in Table 2.10 do not occur in any of our Cases
in dimension at most 12.

All members of Class @7 are tensor induced. Note that some authors require
a tensor induced group to permute the tensor factors transitively: as can be seen
from Table 2.10 all groups in Class %7 of dimension at most 12 in fact act on
the ¢ tensor factors as S¢, although this is not true for all dimensions.

The first part of Table 2.10 is taken from [66, Table 4.7.A], where we have
imposed the additional condition that the derived group of the Q-group on V3
is quasisimple from Part (b) of their definition of Class %7. The second part of
Table 2.10 can be deduced from [66, Propositions 4.7.3-4.7.8].

We briefly explain the shapes of the groups in Table 2.10. The normaliser
in GL,(q) of a @7-subgroup of type GL,,(¢) 1 S; is a tensor wreath product
of GL,,(¢) and S;. It is a quotient of the standard wreath product, where
all ¢ copies of the central subgroup of GL,,(¢) have been identified. Recall
Definition 1.9.7 of the tensor product of two groups: here, the base group of
the standard wreath product has been replaced by the tensor product of the ¢
copies of GLy,(q).

Lemma 2.2.16 Let H be a 67-subgroup of Q. Then H is insoluble and H*>
1s absolutely irreducible.

Proof Here H contains a central product T of ¢ copies of §2,,,, where €, is the
generally quasisimple group on V7, as in Definition 1.6.13. The restrictions on
m and ¢ given in Table 2.10 ensure that 2, is in fact quasisimple (or Sp,(2)),
so that T°° is perfect and H is insoluble. Proposition 1.12.2 implies that €2,,, is
absolutely irreducible, so T is absolutely irreducible by Lemma 2.2.10. O

2.2.8 Class %3

In this subsection we present some basic information about the %g-subgroups.
We refer to the families of $g-subgroups by their type, as listed in Table 2.11.
Each type arises from the fact that it may be possible to define a second form
on an already-formed space.

Definition 2.2.17 Let G be a group such that Q < G < A, as in Series 1.1,
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Table 2.10 Types of 67-subgroups
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Case Type Conditions
L GLm(q) 1St m >3
U | GUn(g) 1S m 23, (m,q) # (3,2)
S | Sp,(q)1Se qt odd, (m,q) # (2,3)
0° | GOw(g)1S: m 23, (m,q) # (3,3)
O* | Sp,.(9)1S: gt even, (m,q) ¢ {(2,2),(2,3)}
O | GO, (¢)1S: | qodd,e=+=m=>=6,e=—=m=>4
Case Shape of H < Q Conditions
L (g —1,m).Ln(q)°.[(q — 1,m)?] t=2,m=2mod 4,
q=3mod4
(g—1,m).Ln(q)" [(¢g—1, 2)(g—1,m)"""].S, otherwise
U (q+1,m).Un(q)*.[(g + 1,m)?] t=2,m=2mod 4,
= 1mod 4
(q+1,m).Un(q) . [(g+1, 2)(g+1,m)" ]S otherwise
S 2.8.(q) 2718
0° Q2. (q)' 2818
ot (g —1,2).8m(q)* t=2,m=2mod4
(g—1,2).8m(q)" (g —1,2)* 1.8, otherwise
ot 2.PSOS, ( ) .[4] t =2, m=2mod 4
2.PSO;, [8] t=2, m=0mod4
2.PSO%, (g ) [2°].3 t =3, m=2mod 4,
V1 non-square discriminant
2.PSO;5, (9)".[2*71].S, otherwise
Table 2.11 Types of 6s-subgroups
Case Type Shape of H < Q Conditions
L Sp..(q) (¢ —1,1)"Sn(q) n even, (¢ —1,n/2) = (¢—1,n)/2
(¢g—1,n)"PCSp, (q) n even, (¢ —1,n/2) = (¢—1,n)
L GUL(¢Y?) | SU.(¢Y?).(¢*? = 1,n) g square
L GO%.(q9) S0%(q)-(¢ —1,n) q odd
S GOZ(q) GO (q) q even

and let K < G. If G < T then K lies in Class 6s if K is the intersection with G
of the I'-group of a classical group given Table 2.11. Otherwise, K lies in Class
65 if K =Nu(H) NG, where H is a Gg-subgroup of T

All columns of Table 2.11 except for the one describing the shape of H < Q
are taken from [66, Table 4.8.A]. The shape of H < € can generally be deduced

from [66, Propositions 4.8.3-6], together with Lemma 1.13.

5: the one exception
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is our division of the symplectic subgroups of SL,,(¢) into two families, which is
not mentioned in [66, Proposition 4.8.3], but is immediate from the generating
matrices constructed in [45].

Note that in [66, Table 4.8.A] Class %3 is defined to be empty when n = 2.
However, we feel it is more uniform to include these groups at first: we will
prove in Lemma 3.1.1 that they are equal to other subgroups when n = 2.

In the next result, let G be the general group corresponding to €2 (see Defini-
tion 1.6.5) and let T be the conformal semilinear group, as in Definition 1.6.16:
recall the dimension restrictions in Definition 1.6.20.

Proposition 2.2.18 Let J be a subgroup of G, and assume that J is irre-
ducible but not absolutely irreducible on V = Fyp.. If G = Sp,,(q) withn > 4
and q is even then Np(J) is contained in a member of €3 U%s. If G = GOt (q)
and n > 8 then Nr(J) is contained in a member of €5 U €s. If G = GL,(q)
andn = 2, or G = GU,(q) andn > 3, or G = Sp,,(¢) with n > 4 and q odd,
or G =GO, (q) and n > 8, then Np(J) is contained in a member of €.

Proof This is essentially [66, Lemma 4.3.12], but we prove a more detailed
version. Since J is irreducible but not absolutely irreducible, F := Enquu 7(V)
is a field that properly contains F,.. Let F' be a subfield of E such that F,. has
prime index in F. Then Np(J) < Np(E) < K := Np(F). Now, since the non-
zero elements of F' are the non-zero elements of a field embedded in GL,,(¢%)
and K is irreducible, K is by definition a member of Aschbacher’s class of
semilinear groups (see [1, p472]). Thus either K is contained in a member of
¢35, or K is one of the groups that lie in Aschbacher’s Class €3 but not in ours.
Consulting [66, p112] we see that the only possibilities are: (i) K < CI'Sp,,(q)
with ¢ even, and KNSp,,(q) = GU,/2(q).2 with ' = F2; or (ii) K < Cro%.(q),
with K N Q3 (q) of shape QF (¢°).[cs] for some 1 < ¢ < 2, with F = F.. In
either case, fix an isomorphism « from FZS/ * to F} (where s = 2 in Case (i)).
First assume that K is of shape GU,,/2(q).2.(¢ —1).e in ' = CI'Sp,,(¢) with

q even. Let 8 be the unitary form on ng/ ? for which K is a group of semi-
similarities, and for v € Fy define Q(v) = B(va, va). Then it may be checked
(or see [66, pl17-118]) that @ is a non-degenerate quadratic form, so K is
contained in a @g-subgroup of ' of type GOf(q).

Next assume that K is of shape Q3 (¢°).[es].[(2,¢—1)2(g—1)].e in CT'OF,(q).
The group Qj (¢°) is reducible, stabilising an imprimitive decomposition into
two totally singular subspaces. These correspond under « in IF? to two totally
singular s-spaces (see [66, p120]) that are stabilised by the (normal) subgroup of
K isomorphic to QF (¢°), so K is contained in a %,-subgroup of type GL, /2(q)-2.

Finally assume that K is of shape €5 (¢°).[es][(2,¢ — 1)2(¢ — 1)].e in T =
Cr'O4,(q), and notice that s is odd. The group GO, (¢°) < K contains a char-
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acteristic cyclic subgroup S 2 ¢® + 1, which is SO5 (¢°) when ¢ is odd and
Q5 (¢°) when ¢ is even. By [66, Lemma 4.3.11], after identifying Fis with Fe-,
the group S preserves a unitary form; so the characteristic subgroup S of K
may be identified with GU;(¢®). Therefore, Np(J) < K < Np(GU;(¢*)). Now
GUi(¢®) embeds in a %3-subgroup of GU,(q), which is in a @3-subgroup of
GO, (¢). We claim that Np(GU;(¢%)) < Np(GU;(q)), which will complete the
proof.

To see this, observe first that the normaliser in GLos(q) of GUy(¢%) is a
©3-group of type GL1(¢g**) and shape (¢%* — 1).2s. By [52, Satz 3], the group
GU;(¢*) is self-centralising in GO, (q). Since the index of GO, (q) in CT'O5,(q)
is (¢ — 1)e (where ¢ = p°©), we deduce that |N(GU1(¢%))| < (¢° + 1)2s(q —
1)e. But there is a unique class of subgroups of Q5. (¢) of type GU;(q), and
a unique class of subgroups of SU,(q) of type GU;(¢°) (see [66, Propositions
4.3.6, 4.3.18]), so a straightforward order calculation shows that Np(GU;(¢®))
has a subgroup of order at least 2es(q —1)(¢® + 1) that lies in Np(GUg(q)). O

2.2.9 Aschbacher’s theorem, revisited

We are now in a position to state a more accurate version of Aschbacher’s
theorem. The theorem given below is essentially [66, Main Theorem, p 57], and
so is slightly different from the version in [2]: the differences are justified in [66].

Recall Table 1.2 of our notation for groups, Definition 2.1.2 of a geometric
subgroup, and Definition 2.1.3 of Class ..

Theorem 2.2.19 Let Q) be a quasisimple classical group, and let G be any
group such that Q < G < A, where A is the corresponding group in Column A
of Table 1.2.

(i) Let H be a geometric subgroup of G that is mazximal in G. Then:

(a) the group H is a member of €; for some 1 <i < 8;

(b) the shape of HNQ is as given in Tables 2.3, 2.5, 2.6, 2.7, 2.8, 2.9,
2.10 or 2.11;

(c) the number of conjugacy classes in Q of groups of the same type as
H, and their stabilisers in G, are as given in [66, Tables 3.5.A-F,
Column V], except that in SL,(q) with n > 3 our groups of type
Py, and P,_j are both conjugate to their groups of type Py (where
kE<n/2).

(ii) If K is any other mazimal subgroup of G, and K does not contain €, then
K lies in Class & .
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2.3 Preliminary arguments concerning maximality

In this section we shall work through Classes %7 to %g, and establish some
generic results concerning maximality in dimension up to 12. In particular,
if it is possible to prove that groups of one type are or are not contained in
groups of some other type, without needing to use arguments that depend on
specific dimensions, then we shall do so here. This will greatly shorten our
arguments in the next chapter, where we consider one dimension at a time.
Recall throughout our dimension restrictions in Definition 1.6.20: although the
classical groups can arise in dimensions not covered by our Cases (e.g. 5(q))
they are either isomorphic to classical groups which we are considering or, in
the case of Qg (¢) only, the maximal subgroups of all almost simple extensions
of O have already been classified (in [62]).

Recall Definition 1.6.19 of Q, and the dimension restrictions in Defini-
tion 1.6.20. We also remind the reader that the files of MAGMA calculations
that we refer to are available on the webpage

http://www.cambridge.org/9780521138604.

2.3.1 Reducible groups

Recall Definition 2.2.1 of the %;-subgroups, their types as given in Table 2.2,
and their structures in the quasisimple group €2 as in Table 2.3.

Proposition 2.3.1 Let n < 12, let H < Q2 be of type Py, where 1 < k < n/2
and § is the quasisimple group in Case L, U, S or O¢. Let G be almost simple
with socle Q, and let Hg be the €-subgroup of G of type P,. Then H is the
stabiliser in  of a totally singular k-space W and the following hold:

(i) The group H is mazimal amongst the geometric subgroups of Q unless
Q=0 (q) and k =n/2 — 1.

(i) IfQ=Qt(q) and k =n/2 —1, then Hg is non-mazimal in every G such
that G < O} (q).K, where K = (¢) if q is even, K = (8, ¢) if q is odd and
n(q—1)/4 is odd, and K = (0',0,¢) if q is odd and n(q —1)/4 is even. If
O (q) < G < PCrO; (q) but G £ O} (q).K then Hg is mazimal amongst
the geometric subgroups of G.

Proof By definition of type Py, the group H is the stabiliser of a totally sin-
gular k-space, and so contains a Sylow p-subgroup P of Q by Lemma 2.2.2 (iii).
By Theorem 2.2.19, no member of 65 U --- U %3 contains such a subgroup, as
none of them has order divisible by |P|. Thus if H < K < §) for some geometric
subgroup K, then without loss of generality K € %7.

Groups of type G @G, or Gy, L G, do not have order divisible by |P|.
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The natural module for groups of type Py, 5,—n, (which only occur in Case L)
has composition factors of dimension m,m,n — 2m, and so such groups cannot
contain H, whose natural module has composition factors of dimension & and
n —k. So K = No(Wi) for some totally singular m-space {0} # Wy < V.

Since n > 2, and n > 10 in Case O, by Lemma 2.2.2 (i),(ii) the subgroup
P of H fixes a unique 1-dimensional totally singular subspace (v), which is a
term in the unique maximal flag that P stabilises if Q # Q. (¢), and in both
such flags in Case O". Therefore (v) < W and (v) < Wi, so WiNW # {0}. The
group SL(W) is a subgroup of H" by Lemma 2.2.2 (iv), so H" is irreducible
on W, and so W < Wj. In Case L the group H acts as GL(V/W) on V/W,
and hence acts irreducibly on V/W by Proposition 1.12.2, a contradiction. This
completes Case L.

In Cases S, U and O°, the fact that W7 is totally singular and W < Wy
implies that W; < W+. Therefore H stabilises Wi /W < W /W, and hence
acts reducibly on W+ /W. By Lemma 2.2.2 (v) there exist two subspaces X and
Y of V such that Y is a totally singular k-space, W @Y is non-degenerate and
X = (WaY)*. Hence XNW = {0} and X < W, andso W+ =W L X.Then
Q(X) < HX and HW" /W is reducible so, by Proposition 1.12.2, dim(X) = 2
and Q = Q% (q).

Suppose finally that dim(X) = 2 and Q@ = Q5 (¢). Then n is even and
dim(W) = n/2 — 1. Since W < W; and W is totally singular, the only pos-
sibility is dim(W7) = n/2, and so € = +. The proper containment of H in
two copies of P, 5 in Case OT is discussed in [66, Prop 6.1.1]. Let H sta-
bilise W := (e1,...,€e,/2_1). Then H is contained in two €} (q)-classes of
groups of type P, /o, namely the stabiliser of W1 = (e1,...,e,/2) and Wy =
(€1, enja—1, fn/2>. Each class has stabiliser K, as defined in the statement,
and outer automorphisms not in K interchange W; and Ws. The space W is
stabilised by all of PCT'O;f (¢)/O: (¢), so the result follows. O

Recall Definition 1.5.35 of the discriminant of a form.

Proposition 2.3.2 Let n < 12. In Case L, let H < § be of type GLk(q) ®
GL,,—k(q). In Cases S, U and OF, let H < € be the stabiliser of a k-dimensional
non-degenerate subspace W. Assume additionally that n > 4 in Cases L and
U, and that n—k > 7 in Case OF. Let G be an almost simple group with socle
Q, and let Hg be the subgroup of G of the same type as H.

(i) In Case L, if G < PTL,(q) then Hg is non-maximal in G, but otherwise
H¢ is mazimal amongst the geometric subgroups of G.

(ii) In Cases S and U, H is mazimal amongst the geometric subgroups of 2.

(iii) In Case OF, if (k,q,sgn(W)) & {(2,2,+),(2,3,+)} then H is mazimal

amongst the geometric subgroups of Q. If (k,q,sen(W)) = (2,2,+) then
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Heg is non-maximal. If (k,q,sen(W)) = (2,3,4) then Hg is mazimal
amongst the geometric subgroups of G if and only if G £ PGO: (q) and n
15 even.

Proof Note that k < n/2 in Cases L, U, S, O° and O", and k < n/2 in Case
O . If k =3 and Q2 = Q3(q), let n; = 4 and ny = 3, otherwise let n; = k
and ny = n — k. Let V7 be the ni-dimensional space stabilised by H and let
V5 be the no-dimensional space stabilised by H, so that V =V; 1 V5. Then H
contains a subgroup L = Q1 x Qg := Q(V}) x Q(V3).

Our assumptions on n and k imply that {2 is quasisimple, with the excep-
tions of (n,ns,q, Case) € {(6,4,2,5),(4,3,2,U),(5,3,2,U),(7,3,3,0°)}. We
start by considering these four exceptions.

In Sps(2), by Theorem 2.2.19 the only possibly maximal geometric sub-
group with order divisible by |H| is SO4 (2) € %5. However, H would have
index 12 in SO (2) = Uy(2):2, whereas by Theorem 1.11.2 the two conjugacy
classes of lowest index subgroups of Uy(2):2 have indices 2 and greater than
12, respectively.

In SU4(2) the group H has order 648, which by Theorem 2.2.19 is not a
divisor of the order of any other geometric subgroup.

In SU5(2) with & = 2, the order of H is 3888, and by Theorem 2.2.19 the
only potentially maximal geometric subgroup of SU5(2) to have order a multiple
of |H| is of type GU1(2) L GU4(2). However, H acts irreducibly on V; and V;
by Proposition 1.12.2, and so does not stabilise a non-degenerate 1-space.

Now consider Q,(3) with ny = 3. By Theorem 2.2.19, all geometric sub-
groups of ;(3) lie in 4} U%,. The group H acts irreducibly on both V; and V5
by Proposition 1.12.2, and so does not stabilise any other subspace, so is not
contained in a member of €. The only %5-subgroup of Q(3) is isomorphic to
26: A7, which does not have order divisible by |H|. Thus H is maximal amongst
the geometric subgroups of Q,(3).

Having dealt with these exceptional cases, {22 is quasisimple. Suppose, by
way of contradiction, that H < K < (2, where K is maximal amongst the
geometric subgroups of  and is not of the same type as H. Note if Q # Q-(q)
or ng # 3 then ny > n/2.

First we prove that K &€ % U %4 U 7. Otherwise, K = Qp, where D is
either a direct sum decomposition V =W, ®---@ W, or a tensor decomposition
Wi ® - @ Wy Here 1 < t < n < 12, whilst dim(W;) is a proper divisor of n
for 1 < ¢ < t. By Theorem 1.11.2; since {25 is quasisimple P(£22) > n unless
Qo = Q3(q) < Qr(q) for ¢ € {5,7,9}.

Considering these three exceptions, note that €4 and %7 are void in Q- (q).
If V1 is of + type then Q1 x Qg = 2.1y (q)2 x La(gq) < H, which is not a subgroup
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of 26:S7 for ¢ € {5,7,9}. If V; is of — type then Ly(¢?) x La(q) < H, which is
not a subgroup of 26:S;.

Having dealt with these exceptions, we deduce that € and €, are not
subgroups of S;. Since €23 is quasisimple, {23 < Q(p), the pointwise stabiliser
of {Wy,...,W;}. Hence dim(W;) > R,(€2) for some ¢ with 1 < ¢ < ¢ If
Q # Q2(q) then R,(Q2) = na by Theorem 1.11.5. Therefore dim(W;) | n and
dim(W;) = ng > n/2, a contradiction. So Q@ = Q2 (q). If n = 7 or 11 then the
only imprimitive decompositions are 1-dimensional, so £(p) cannot contain {2s.
Otherwise, n =9 and R,(£2) > 4 > 3, a contradiction.

Next we show that K & @5. Otherwise, Qo < I', where I' is a €3-subgroup
of degree n/s for some prime divisor s of n. Since (s is quasisimple, Qs < K’ <
GL,/s(¢%). In Cases L, U, S and O%, since R,(Q2) = na by Theorem 1.11.5,
it follows that ny < n/s, contradicting no > n/2. In Case O° if n = 7 or 11
then €5 = @. Otherwise n = 9, and we get a contradiction as before.

Next we show that K ¢ ¢5. Otherwise 2o < 27°, where Q0¢ is a quasisimple
subfield group over Fy,, and in Q(q) if ny = 4 then Q; < QF as well. Now,
Q7 and Q9 are both subgroups of H, acting naturally on V3 < V and Vo < V.
Furthermore at least one of 1 and € has dimension at least 4 in Case O°.
Thus in all cases the traces of elements of H* are all elements of Fyu by
Proposition 1.12.7 (u = 2 in Case U, 1 otherwise), contradicting the fact that
all elements of (27° have traces in Fg,.

Suppose next that K € %s. Then n = r® € {4,5,7,8,9,11} with r a prime
divisor of ¢ — 1, the group Q # Q¢ (q), and if Q = Sp,,(¢) then n = 8 (since
n = 6 for H to be defined), all from Table 2.9. Since €25 is quasisimple and the
only non-abelian composition factor of K is a subgroup of PGLg(r), there is
a non-trivial representation p such that Qsp < PGLoy(7), and the possibilities
for n imply that 2b < 6. Given ny > 3, with na > n/2 in Cases L and U
and ny = 6 in Case S, Theorem 1.11.7 shows that the only possibilities are
0y = SL3(2), SL3(4), SU3(3), SU4(2) or SU4(3). If Q9 = SL3(2) then there are
no és-subgroups as they require ¢ = 1 mod r. If Q3 = SL3(4) then r = 3 but
n € {4,5} is not a power of 3, a contradiction. If 5 = SU3(3) or SU4(3) then
Theorem 1.11.7 states that R, (Q2) = 6, forcing b > 3, so n = ™ >8> 2, a
contradiction. Finally, if Qo = SU4(2) then r = 3, and hence n is a power of 3.
However, 5 < n < 7, a contradiction.

Next we prove that K ¢ %s. Suppose otherwise, so Q = SL,(q) or Sp,,(q).
In Case L, K consists of isometries of a non-degenerate unitary, symplectic or
quadratic form k. Since ny > 2, the only SL(V3)-invariant form on V5 is the
zero form, so Vo must be totally singular with respect to &, but dim(V2) > n/2,
a contradiction. If 45 # @ in Case S then ¢ is even and K = Nq(Q) for
some quadratic form ) whose bilinear form is equal to the symplectic form
f. The space (Va, f) is non-degenerate, so by definition the space (V3, Q) is
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also non-degenerate. Therefore Q2 = Sp,,.(¢q) < Gsz (¢), a contradiction as
ISP, (0)] > |GO$2 (q)| for ng > 4.

Finally, consider K € %). In Case L, the group K is not of type P;,_; for
any j, as then the natural module for K has composition factors of dimension
j,7,n—2j, whereas the natural module for H has composition factors of dimen-
sion k and n — k. Similarly K is not of type GL;(¢q) ® GL,,—;(q) for any j # k.
However, H is contained in the parabolic subgroup P that stabilises V7, and
is also contained in the conjugate P, that stabilises V5 in SL,,(¢). Therefore H
is indeed non-maximal in SL,(¢). We note that v interchanges the stabilisers
of V7 and V5, so the extension of H by +y is not contained in the normaliser of
Py or of P/, and hence is maximal amongst the geometric subgroups.

In Cases S and U if K € ¥} then H fixes some non-zero proper subspace
of V other than V; and V. However, by Proposition 1.12.2 the groups 2; act
irreducibly on V; for i = 1,2, a contradiction.

In Case OF the group (2, acts irreducibly on V5 by Proposition 1.12.2; so
if K € ¢, then H"* must act reducibly on V;. Now, HY* = GO(V}), so by
Proposition 1.12.2 the group H"* = GO;(q) for ¢ < 3. These two exceptions
are discussed in [66, Proposition 6.1.2], where it is shown that if ¢ = 2 then
K is the stabiliser of a non-singular vector in Vj, whilst if ¢ = 3 then K is
the stabiliser of a non-singular vector of either square or non-square norm (two
groups). In both cases, the containment of H in K is easily shown to be proper
for n > 10. In the latter case, if n is even then a novel maximal subgroup may
arise under the diagonal automorphism which multiplies the form by a non-
square, as this interchanges the two choices for K whilst normalising H. ]

Recall that the }-subgroup of type Sp,,_,(q) only occurs when = QF(q)
and ¢ is even, and that Case O requires n > 10.

Proposition 2.3.3 If H < Q is of type Sp,,_»(q) in Case OF with n < 12,
then H is maximal amongst the geometric subgroups of €2.

Proof The proof is similar to that of Proposition 2.3.2. Now, ¢ is even and

2 € {925 (a), Qo (9), A2(a)}

S0 64 U G U %7 U%bs = @, by Theorem 2.2.19. Since n — 2 > 6 the group
H = Sp,,_5(q) is simple. Assume by way of contradiction that H < K < Q,
where K is maximal amongst the geometric subgroups of 2.

We show first that K ¢ %31. The group H fixes a unique non-singular 1-
space, W, and acts as Sp,,_5(q) on WL /W. Suppose K = Nq(U) for some
{0} < U < V. If U is non-degenerate, then the largest possible non-abelian
composition factor of K is QF ,(g), which is smaller than Sp,,_,(¢). Thus U
is totally singular, of dimension k say, and as a K-module, V' has composition
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factors of dimension k (twice), and n — 2k (or possibly 1,1 if n — 2k = 2). Thus
U is a totally singular 1-space, but then again the largest composition factor
of K is O ,(q).

We show next that K ¢ %5. Note that n—2 € {6, 8,10}, so P(Sp,,_»(q)) >n
by Theorem 1.11.2. Thus, if K € %5 then Sp,,_5(g) lies in the kernel of the block
action. This contradicts Theorem 1.11.5, which states that Ra(Sp,,_5(q)) =
n — 2 > n/2. Similarly, K ¢ @3, for otherwise Ro(K') < n/2.

Finally, K ¢ 5, for otherwise K> 2 QF(qy) for some proper divisor gy of
g. A short calculation shows that the 2-part of | K| is less than that of |H|, a
contradiction. O

Proposition 2.3.4 Let 3 < n <12, let G be almost simple with socle L,,(q),
and let H < SLy,(q) and Hg < G be of type Py pn—i. If G < PT'L,,(q) then Hg
is non-mazimal in G. However, if G £ PT'L,(q) then H¢g is mazimal amongst
the geometric subgroups of G.

Proof Here H = Ngi, (¢)(V1,V2), where dim(Vy) = k for some k < n/2,
dim(V,) =n —k, and Vi < V4. Now H contains a Sylow p-subgroup of SL, (q),
and as in Proposition 2.3.1 we deduce that if there exists a geometric group
K with H < K < SL,(q) then K is of type P; for some j. Since the only
proper non-trivial subspaces stabilised by H are V; and Vs, the group K is
the stabiliser in SL, (q) of V; or V4. The group H is normalised by the duality
automorphism, whereas the two choices for K are conjugate under v, so H
extends to a group that is not contained in any geometric subgroup. O

Since the %;-subgroups occur in every dimension, we make the following
definition for the sake of brevity in the next chapter. We shall in fact prove
that in dimension up to 12 all such groups have standard reducible behaviour.

Definition 2.3.5 Let ) be a quasisimple group in Case L, U, S or O¢, and let
G be almost simple with socle Q. The group 2 has standard reducible behaviour
if the following hold:

(i) In Case L, if H < SLy,(q) is of type Py, then H is maximal amongst the
geometric subgroups of SL,(¢q). In Case L, if Hg < G is of type Py n—_k
or type GL(q) ® GL,—k(q), then Hg is maximal amongst the geometric
subgroups of G if and only if G £ PT'L,,(q).

(ii) In Cases U and S, if H < € is of one of the types listed in Table 2.2, then
H is maximal amongst the geometric subgroups of ).

(iii) In Cases O° and O, if H < Q is of type Py, then H is maximal amongst
the geometric subgroups of 2.
(iv) In Case O™, if H < Q is of type P, and k # n/2 — 1, then H is maximal
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amongst the geometric subgroups of ). Let K be as given in Proposi-
tion 2.3.1(ii). (That is, K = (¢) if ¢ is even, K = (0, ¢) if ¢ is odd and
n(g —1)/4 is odd, and K = (¢, 4, ¢) if ¢ is odd and n(q — 1)/4 is even.)
In Case O if Hg < G is of type P, /3-1, then Hg is maximal amongst
the geometric subgroups of G if and only if G £ O (q).K

(v) In Case O%, if H < Q is of type GO;'(¢) L GO:2,(q), and (k,q,e1) &
{(2,2,4),(2,3,+)}, then H is maximal amongst the geometric subgroups
of Q% (). In Case OF, if Hg < G is of type GOF (2) L GO ,(2), then Hg
is not maximal. In Case OF, if Hg < G is of type GO3 (3) L GO ,(3)
then Hg is maximal amongst the geometric subgroups of G if and only if
n is even and G € PGOS, (3) = O5(3).(0', 7).

(vi) In Case OF, if H < € is of type Sp,,_(q), then H is maximal amongst
the geometric subgroups of QX (q).

2.3.2 Imprimitive groups

In this section we prove various preliminary results about the maximality of
groups in Class %5. Recall the types of @,-subgroups, as given in Table 2.4, and
their structures as given in Table 2.5.

Proposition 2.3.6 Let H be a ¢5-subgroup of Q, of one of the following
types:

GL1(2) 1Sy, in Case L;
GL1(3)1S,, in Case L;
GL1(4)1S,, in Case L;
GL2(2)1S,,/2, in Case L;
GU2(2)1S,,/2, in Case U;

(v) GUs(

i) Spy(2)1Sy,2, in Case S;
(vii) GOF (2)1S,)2, in Case OF;
(viii) GOZ(3)2 Sny2, in Case O ;

(ix) GO3 (4)1S,,2, in Case OF;
(x) GO3(3) 18,3, in Case O%;

~—~
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GOJ (2)1S,/4, in Case OT.

The group of type GL1(2)1S3 is equal to the € -subgroup of type GL1(2)®GLo(2)
of SL3(2), and will be considered as such. The group of type GL1(3)1S3 is equal
to the 6s-subgroup SO4(3) of SL3(3), and will be considered as such. The group
of type GL1(4) 1 S2 is equal to the Cz-subgroup GUz2(2) of SLa(4), but will be
considered as a €o-subgroup. For all other choices of H from the above list, the
group H is non-mazimal in 2 and does not extend to a novel maximal subgroup
in any extension of §2.



2.8 Preliminary arguments concerning mazximality 83

Note: There is an additional equality, Sp,(2)1Ss = GO (2), but we assume
that € # Sp,(2) since Sp,(2) is not quasisimple.

Proof We consider each possible H in turn. In each part, let Hg be the sub-
group of the general group that is of the same type as H.

(i) The group GL1(2) is trivial, so H is equal to S, acting via permutation
matrices. Thus H fixes v = (1,1,...,1), and also the (n — 1)-dimensional space
consisting of all even weight vectors. Thus if n is even then H < P ,,—1 < P,
as v has even weight, and if n is odd then H < GL;(2) @ GL,,—1(2) < P;. The
order of H is n!, whilst |P; ,,—1| = 22"73.|SL,,_5(2)| and |GL1(2) ®GL,_1(2)| =
|GL,,—1(2)], so it is straightforward to check that H is contained in P; ,_1 or
GL;(2) ® GL,,—1(2), and that this containment is proper if and only if n > 3.
Here H, Py -1 and GL;(2) & GL,,_1(2) are all normalised by the inverse-
transpose automorphism, so if n > 3 then H does not extend to a novelty.

(ii) The group H is isomorphic to 21S,,, and if H¢ is constructed as a standard
wreath product then Hg consists of isometries of the bilinear form with matrix
I, and hence is contained in K := GO,,(3,1,,). A straightforward calculation
using Theorem 1.6.22 shows that this containment is proper if and only if n > 3,
so when n = 3 we shall consider H as a %s-subgroup. Since g € K if and only
if gg" = 1,,, the inverse-transpose automorphism centralises K. Thus if n > 3
then H does not extend to a novelty.

(iii) The group H¢ is isomorphic to 31 S, so if Hg is the standard wreath
product then Hg consists of isometries of the unitary form with matrix I,
(our standard form), and hence is contained in GU,(2). A straightforward
calculation using Theorem 1.6.22 shows that this containment is proper if and
only if n > 2. A short calculation shows that all elements of (¢,~) normalise
both this copy of GU,(2) and Hg, since if g € GU,,(2) then gg¢T = I,,, and
H¢ consists of the set of all monomial matrices. Thus if n > 2 then H does not
extend to a novelty.

(iv) The groups GL2(2) and Sp,(2) are equal, so the standard copy of H con-
sists of isometries of a symplectic form with matrix J, where J is a direct sum
of n/2 copies of antidiag(1l,1). One may easily check that H is properly con-
tained in Sp,, (2, J) for all n, using Theorem 1.6.22. The only non-trivial outer
automorphism of L,,(2) is the duality automorphism. One may check that the
inverse-transpose automorphism normalises Sp,, (2, J), since J = J~!, and that
this automorphism also normalises this copy of H, since H consists of all matri-
ces with one non-zero 2 x 2 block in each pair {2i — 1, 2} of rows and columns.
Thus H does not extend to a novelty.

(v) The group Hg is isomorphic to GU2(2) 1S, /2. A straightforward MAGMA
calculation (file Chap2calc) shows that the group GUsy(2, antidiag(1, 1)) (which
is MAGMA's copy of GUy(2)) fixes an imprimitive decomposition, into a sum of
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two non-degenerate 1-spaces X L Y. Our standard copy of GU3(2) has form I,
and is generated by antidiag(1,w?) and antidiag(1,1) (where w is a primitive
element of F}), so that Hg is a subgroup of the group of type GU1(2)?S,,, and
it is easy to check that this containment is proper. It is clear that GU;(2) 1S,
and GUy(2,15) are normalised by ¢, so H does not extend to a novelty.

(vi) The groups Sp,(2) and GO, (2) are equal, so H consists of isometries of a
quadratic form (whose sign, ¢, depends on whether n/2 is even or odd). It is
straightforward to check that H is properly contained in GO, (2) if and only if
n > 4 (but recall that we exclude Sp,(2) from our calculations since it is not
quasisimple). Since Sp,,(2) has trivial outer automorphism group, H does not
extend to a novelty.

(vii) The group Hg is equal to GO3 (2)1S,, /2. The standard copy of GO (2) is
generated by a reflection in e; + f1, and so is reducible. Thus H¢ is reducible,
and a relatively straightfoward calculation shows that H¢ is properly contained
in a %-subgroup of GO;" (2). Furthermore, since n > 10, Aut ;1 (2) = GO, (2),
so H does not extend to a novelty.

(viii) The group Hg is equal to GO (3)1S,,/2. A short MAGMA calculation (file
Chap2calc) shows that our standard copy of GOJ (3) is completely reducible,
and fixes non-degenerate 1-spaces E7 := (e1+ f1) and Es := (e1 — f1). It follows
that Hg is contained in a %»-subgroup K that is the stabiliser in GO;'(3) of
a decomposition V' = V; @ Va with Vi = (e1 + fi,ea + fa,...,en/2 + fn/2) and
Vo = (e1 — fi,ea = fa,...,en/2 — fny2). It is straightforward to check that the
V; are both of type — if n = 4 mod 8, both of type + if n = 0 mod 8, and are
similar but non-isometric if n = 2 mod 4, and that all of these containments are
proper, since n > 10. The automorphism § of GOJ (3) has standard representa-
tive Dy = diag(—1,1), and extends GOJ (3) to an irreducible but imprimitive
group, interchanging F; and F5. The matrix D,, := diag(—1,...,—1,1,...,1)
induces the § automorphism of GO;"(3) and acts on each 2-space (e;, fi) as Ds.
Therefore D,, preserves the imprimitive decomposition V; @ Vs, so H does not
extend to a novelty.

(ix) Let D be the decomposition preserved by H¢g. Consulting Table 2.8, we see
that our standard copy of GO;" (4) contains a €5-subgroup naturally isomorphic
to our standard copy of GO, (2), and that there exists a nonstandard copy of
GO;f(4) which contains a @5-subgroup naturally isomorphic to our standard
copy of GO, (2). Fix these two versions of GO, (4). If n/2 is odd then let
K = GO, (2), and otherwise let K = GO, (2). Now, K contains a %,-subgroup
L of type GO3 (2)18S,,/2, preserving a decomposition Fy = W = V1@ --- DV, 9,
with each V; of minus type. By Proposition 1.5.42, the form with the same
matrix on V; is of +-type when V; is extended to an F4-space, so without loss
of generality, V = ViF4 & --- & V), oF4 is the same decomposition D. Therefore
L < H. However, GO (4) = GO, (2), so in fact L = Hg, and hence Hg and
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Hg = %HG (the unique index 2 subgroup of H¢) are non-maximal. The only
remaining automorphism of ;7 (4) is ¢ (note that since the nonstandard form
of + type is written over Fy we can still use the standard copy of ¢). Now, ¢
centralises K and hence centralises H, so no extension of H is maximal.

(x) The group Hg is equal to GO3(3)2S,,/3. A straightforward MAGMA calcu-
lation (file Chap2calc) shows that our standard copy of GO4(3) consists of the
set of all monomial matrices and, since our standard form is the identity ma-
trix, the standard basis vectors span non-degenerate 1-spaces. Therefore, Hg
is (properly) contained in GO, (3)1S,,, again preserving the identity form (note
that if n is even we require the discriminant of € to be square). If n is odd then
PGO,,(3) = Aut,,(3), and if n is even then there are two GOZ (3)-classes of
groups of type H, interchanged by all elements of CGOX(3) \ GOX(3), so in
neither case does H extend to a novelty.

(xi) The group Hg is equal to GOJ(2) 1 S,/4. A MAGMA calculation (file
Chap2calc) shows that GO} (2) is imprimitive, preserving a decomposition into
two non-degenerate 2-spaces of minus type. Thus H¢ is properly contained in
GO3 (2)1S,,/2. Since Aut 2, (2) = GO} (2), no extension of H is maximal. O

Recall the definitions of T', L, N, G; and 2;, given in Subsection 2.2.2.

Lemma 2.3.7 Let 4 <n <12, and let H be a G5-subgroup of 2, preserving
a decomposition D : V = Vi & --- & V; with dim(V;) = m, with dimension
restrictions as in Definition 1.6.20.

(i) Assume that t = 2 and Qy is perfect and, if n = 4 and Q = SU,(q) or
Sp,,(q), then assume that the decomposition is into non-degenerate sub-
spaces. Then Vi and Vs are the only irreducible N -submodules of V.

(i) If t > 3 and Gy ¢ {GL1(2),GO3 (2),GO35 (3)}, then Vi,..., Vi are the
only irreducible L py-submodules of V.

(iii) Assume that t = 2 and Qy x Qo is perfect and, if Q@ = QF(q) and n =
2mod 4, then H is not of type GL,,/2(q).2. If there exists K < Q with
H < K then K € 6,. If, in addition, H 1is not of type GOZ/Q(q)Q, then H
is wrreducible.

(iv) If t = 3 and G1 ¢ {GL(2),GO5 (2),GOJ (3)}, then L, and hence H, is
absolutely irreducible.

(v) Ift > 5, Gy ¢ {GL1(2),GO3 (2),GOF (3)}, and there exists K < Q such
that H < K, then K & %5.

(vi) Ift =4 and Q & {SL4(2),SL4(3)} then H' is absolutely irreducible. If in
addition there exists K < Q with H < K then K ¢ €.

(vil) Assume that t = 2, the decomposition is into two totally singular sub-
spaces, and H is insoluble. In Cases U, S or OF, if there exists K <
with H < K, then K € €5.
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Proof (i) By assumption, ©; and € are perfect, and they are irreducible by
Proposition 1.12.2. Therefore Vi and V5 are irreducible. If N = ©Qy x Q5 then
V1 and V5 are non-isomorphic N-modules. If N = 2 then the decomposition is
into totally singular subspaces, so NV acts on V; as SL,, /2(¢"). As an N-module
Vo = V* by Lemma 2.2.2 (vi). Since n > 4, as N-modules V; 2 V7* and
hence by Lemma 1.8.11 they are the only N-submodules of V.
(ii) Lemma 2.2.4 (iv) states that the V; are pairwise non-isomorphic as L p-
submodules whenever G # GL;(2). If also G; # GOJ (2),GOF (3) then the V;
are irreducible L p)-submodules. As in Part (i) this implies the required result.
(iii) Suppose that H acts reducibly on V. Assume first that either n > 4, or
Q) = SL,,(¢), or the decomposition is into non-degenerate subspaces. Then by
Part (i), any N-invariant non-trivial proper subspace of V' is equal to V; or Vs,
so without loss of generality H is contained in the stabiliser in Q of V;. If H is
not of type GLy,/2(¢).2 in Case OF with n = 2 mod 4, or of type GOZ/Q(q)2,
then H contains an element interchanging Vi and V5, a contradiction. If H
is of type GO;, /Q(q)Q, then V; and V5 are non-degenerate and non-isometric.
Looking at the types of reducible groups in Table 2.2, we see that there is no
group K stabilising such a pair of subspaces, so if H < K < Q then K € 6.
If Q@ = Sp,(g) or SU4(g), and the decomposition is into totally singular
subspaces, we need a more detailed argument, which we present only for the
symplectic case: the unitary case is similar. Note that ¢ > 2 by assumption that
N is perfect. The group H contains subgroups T 2 SLy(q) and S 2 GLy(q).
With respect to our standard symplectic basis, the standard block decomposi-
tion may be chosen to be Vi &V, = {(e1, ea) @ (fa, f1). For all € GLy(q), the
group S contains elements which act as z on V; and as a conjugate of T on
V5. Thus V7 and V5 are non-isomorphic as S-submodules, and hence are the
only irreducible T-submodules of V. Since H contains an element interchanging
V1 and Vs, it follows that H is irreducible.
(iv) By Lemma 2.2.4 (iv), the L(p)-modules V; are pairwise nonisomorphic,
since if ¢ = 3 then m > 2. The group Lz%) is equal to G; for all i, by
Lemma 2.2.4 (iii). It follows from Part (ii) and the transitivity of A; that L
is irreducible when G; € {GL1(2), Q3 (2), Q5 (3)}. To see that L is, in addition,
absolutely irreducible in these cases, let g € Cqr,, (qu)(L). Since g centralises
the absolutely irreducible group L& for 1 < < t, the restriction of g to each V;
is a scalar from GL,,(¢%). Since LP is transitive on {Vi,...,V;}, these scalars
must all be equal and so g € Z(GL,,(¢%)). Hence L is absolutely irreducible.
(v) If K is a €5-subgroup of ©, then K’ is not absolutely irreducible. If H < K
then L' < K'. However, n >t > 5, so L is perfect and absolutely irreducible
by Part (iv).
(vi) In Case OF we deduce from Table 2.4 that m > 3. The derived group of H
acts on D as Ay, so if g € Qy, then diag(g, 97,971, 9),diag(g,9,97 1, 971) € H,
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where € is one of SL,,,(q), SU,,(q), Sp,,(q) or £%,(g). We are assuming that
(m,q) ¢ {(1,2),(1,3)} in Case L, so Q; contains elements of order greater
than 2. Thus the V; are pairwise nonisomorphic as (H')p modules, so as in
Part (iv) we conclude that H' is absolutely irreducible on V, and hence H is
not contained in a %3-subgroup.

(vii) Suppose that K is semilinear, preserving a field extension of degree s. The
group H* is isomorphic to SL, 2(q) or SL,/2(¢?), so it follows from Proposi-
tion 1.11.3 and Theorem 1.11.5 that s = 2, and in particular that Q # SU,,(q). If
Q = Sp,,(¢) then K> = SU,, 5(q) or Sp,, »(¢*), contradicting Theorem 1.6.22.
Similarly, if Q@ = QF,(q) then K> = SU,,5(q) or Q;},(¢°), and again we con-
tradict Theorem 1.6.22. OJ

The next lemma is concerned with whether one type of %5-subgroup can
contain another.

Lemma 2.3.8 Let n < 12 be as in Definition 1.6.20, and let H be a 65-
subgroup of ), preserving a decomposition D into t subspaces of dimension m.

(i) Assume that t > 5 and Gy ¢ {GL1(2),GOF (2),GOF (3)}. If there exists
K < Q with H < K, and K € G5 preserves a decomposition Dy into t1
subspaces, then t; > 5.

(ii) Assume thatt = 2, n > 6, and Q # SUg(2). If there exists K < Q with
H < K, then K is not a 65-subgroup of a different type from H.

Proof (i) Suppose that H < K, and that 2 < t; < 4. The group L is perfect
by Lemma 2.2.4 (ii), so L < K*° < K(p,). However, Kp,) is reducible, whereas
L is irreducible by Lemma 2.3.7 (ii), a contradiction.
(ii) Suppose otherwise, and let K preserve a decomposition D; into ¢, subspaces.

We deal first with SLg(2). If ¢; = 8 then K is reducible, but L is irreducible
by Lemma 2.3.7 (iii). If ¢; = 4 then K is soluble, but H is insoluble.

Now consider the general case. Let X and N be as in Subsection 2.2.2.
If N £ K(p,) then there is a non-trivial homomorphism from N into Sg,.
The group X is either L, j2(¢*) for u € {1,2} or S,,/2(q)" or U,,/2(q), all with
n/2 = 3, or O}y(q) with n/2 > 5. By Theorem 1.11.2, if P(X) < n < 12
and Q # SLg(2) then X = S4(2) = Ag in Spg(2), or X = QF (2) = Ly(2) in
0Q75(2). In Spg(2) the only other %s-subgroup is soluble. If X = QF(2) then
P(X) = 8 by Theorem 1.11.2, but in Q7,(2) there is no ¢-decomposition into
more than six blocks. Thus in all remaining cases N < K(p,), contradicting
Lemma 2.3.7 (i). O

Next we consider whether %5-subgroups can be contained in %4-subgroups.

Lemma 2.3.9 Let n < 12 be as in Definition 1.6.20, and let H be a 65-
subgroup of €1, preserving a decomposition D into t subspaces of dimension m.
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Assume that Hpy is insoluble. If there exists a subgroup K of 1 such that
H < K, where K is a €,-subgroup preserving a decomposition into spaces of
dimension my and mso, then my, mg > m.

Proof The group K is isomorphic to £2; o {5, where €2 acts on the tensor
factor of dimension m; and €25 acts on the tensor factor of dimension ms, and
we assume without loss of generality that mq > mo. We assume at least one of
my and msy are less than or equal to m and derive a contradiction.

First assume that H is not of type GLn/g(qQ)Q (Case U) or GL,,/2(q).2
(Cases S and O™). Then T := HY = Qf, where Q3 is one of SL,,(q), SU,.(q),
Sp,(q) or Q2 (q). Assume first that every direct factor of T' projects non-
trivially onto Q1. Since 23 is quasisisimple, this implies that |Q3]* divides |Q1].
Calculating the p-part of the order of Q4 and 2; shows that this is impossible.
Thus one direct factor, say S, of T has trivial image in 2,1, and so is a subgroup
of Qs. Now, Qs acts homogeneously, with V' splitting as a direct sum of m;
isomorphic irreducible Qs-submodules each of dimension msy. Thus V' must
split into a direct sum of m; > 1 isomorphic S-submodules, and so the only
possibility is that H is of type GO} (¢)1S,,/4 and K is of type Sp,(q) ®Sp,,/2(q)-
At most one copy of SLa(g) can project non-trivially onto the factor Spy(q),
which implies that a covering group of Lg(q)n/%1 must embed in Sp,, 5(q),
contradicting Proposition 1.11.3 and Lemma 1.11.8.

Assume instead that H preserves a decomposition into two totally singular
subspaces, so that H> = SL,, (¢?) or SL,,/2(q). The unique non-abelian com-
position factor of H is larger than either of the non-abelian composition factors
of K, a contradiction. O

Lemma 2.3.10 Let n < 12 be as in Definition 1.6.20, and let H be a %5-
subgroup of 2, preserving a decomposition D into t subspaces of dimension m.
Assume that there exists a subgroup K of Q with H < K, and assume also that
H is not one of the non-maximal groups listed in Proposition 2.3.6.

(i) If t = 5 then K & 65.

(ii) Suppose that one of the following holds: Q = SL,(q) and m > 2; Q =
SU,.(q), m =2, D is a decomposition into non-degenerate subspaces, and
(m,q) ¢ {(2,2),(2,3),(3,2)}; Q@ = Sp,,(¢) and D is a decomposition into
non-degenerate subspaces; Q@ = Q% (q) and m > 3. Then K & €.

(iii) Suppose that D is a decomposition into 2 totally singular subspaces. Sup-
pose also that Q@ # SL,,(q) or SU4(q). Then K & €.

Proof Note that our assumptions on ¢ and m ensure that n > 4 throughout,
that ¢ {SU4(2),SU4(3)}, and that Q # SUg(2) in Part (ii).

Recall Definition 2.2.11 of the @5-subgroups. Let K € 5. Then in Case L,
K> = SL,(qy) for some subfield F,, C Fy of prime index. In Case U, either
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K> = 8U,(qo) for F,, a subfield of F, of odd prime index, or K> = Q° (q) (¢
odd), or K> 22 Sp, (¢) or Sp,(2)’. In Case S, K> 2 Sp, (qo) or K™ = S,(2)',
for some subfield Fy, C F, of prime index. In Case O, if K € €5 then K™ =
Q%' (o) for some prime index subfield Fy, of F,,.

(1) Recall the notation y,, G7 and L from Lemma 2.2.4 (iii). For all g € Gy the
element z, := y,4(2,3,4) = (9,97%,9,1,...,1)(2,3,4) € L; we calculate that
tr(zq) = tr(g) + (n — 4m). The group L is perfect so L < K°°.

In Cases L and U there exist elements of G; = GLZ (¢) whose trace lies

in no proper subfield of Fyu (note in Case U that GU;(g) contains elements
of trace any (g + 1)-th root of unity) . In Case S, m > 2 so the result follows
from Proposition 1.12.7 (i). In Case OF¢ if m = 1 then ¢ = p, so €5 = &. Since
t > 5 and n < 12, we may assume that m = 2. If G; = GOJ (¢) then, with
respect to our standard form, Gy contains dy = diag(A\,A71) for all X € Fy,
of trace A + A~!. Thus each possible trace is produced by up to two dy, so
at least [(¢ — 1)/2] traces occur. This is larger than the order of any proper
subfield of IF, unless ¢ = 4, in which case H is listed in Proposition 2.3.6. Now
consider G; = GO; (), and let A = {\ € Fz : A@+D/(@+1.2) = 1} Then
for each such ), the group G contains elements of trace A + A7, so at least
[(¢+1)/(2(q — 1,2))] traces occur. This is larger than the order of any proper
subfield of F, unless ¢ = 9. We check that in Fg; the element A + AL, where A
is a primitive fifth root of unity, does not lie in F3.
(ii) The restrictions on m and ¢ imply that if 5 # @ then Q(V) is perfect,
so that H> contains the perfect group Q(V;)t. If Q = SU,,(q), assume for now
in addition that m > 3. Then, by Proposition 1.12.7 and Lemma 1.12.8, for a
suitable choice of basis, H> contains elements d := diag(a, I, ...,1;,) where
the set of possible traces of a € Q(V7), and hence the set of possible traces of
d, does not lie in any proper subfield of Fu.

We now consider m = 2 in Case U. The group H contains elements
diag(a, a™1) for all non-zero (g + 1)th roots of unity, «, so at least (g + 1)/2
traces arise. Hence K is of type GO (q) or type Sp,,(q). Let A; be the first
direct factor of (H(p))*°, so that A; = SUy(q). Since A; is irreducible on Vi, the
subspace V7 is either totally singular or non-degenerate under the symplectic
or quadratic form f for which K is a group of isometries. The group A; acts
non-trivially on V; whilst centralising V/Vi, so V; is non-degenerate under f. If
f is quadratic then SUs(q) < GO3(q), a contradiction since GO5(q) is soluble
whilst SUs(q) is insoluble for ¢ > 3. As for the symplectic case, note that Ky,
must act as (Spy(q), Z(GUsz(q))). If t > 3 then H contains elements that act
on V; via elements of GU3(q) \ SUz2(q), whilst centralising V3, a contradiction.
For t = 2, so that n = 4, we note that |H| = 2¢%(¢®> — 1)*(q + 1), whereas
|K| = (¢+1,2)¢*(¢*> — 1)(¢* — 1), which contradicts Lagrange’s Theorem.

(iii) First consider Cases S and O%. If ¢ < 3 then 45 = @, so assume with-
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out loss of generality that ¢ > 3. The group H is of type GL,/2(¢).2 and
N = SL,,/2(q). With respect to our standard forms, elements of N are block di-
agonal, with blocks A, FAYF, where F' = antidiag(1,1,...,1), 7 is the inverse-
transpose map, and A € SL,,/2(q). Let x4 := diag(a, a1, 1,...,1) € SLy/2(q).
Then ), := tr(diag(zq, Fr, TF)) = 2a+ 227! +n — 4. If K € %5 then there
exists a proper subfield F,, of I, such that A\, € Iy, for all .. For each A, € Fy,
there are at most two solutions for a € F,, giving at most 2qy traces in [y,
as « varies. Thus if ¢ # 4 then it is not possible for all traces of elements of
H®*> toliein Fy,. If ¢ = 4 then Q = Q;f (4), and K € {Q;}(2),9,,(2)}. However,
H = GL,,/3(4).2, which contradicts Lagrange’s theorem.

In Case U, the group H is of type GL,/2(¢*).2 and N = SL,, /5(¢*). The
group K> € {SU,(q0),Sp,,(q), 2, (q)}, where Fy, is any subfield of F 2 of odd
prime index. With an appropriate choice of form, elements of IV are block diago-
nal, with blocks A, FA" F, where F' = antidiag(1,1,...,1) and A € SL,, /2(¢*).

We deal first with K°° = Sp,,(q). Since K is a €5-subgroup, the group K> is
a GL,,(¢?)-conjugate of our standard copy of Sp,,(q). If N = H®® is a subgroup
of K*°, then Sp,,(¢q) contains a reducible subgroup J isomorphic to N. Since V'
splits as a direct sum of two non-isomorphic N-submodules of dimension n/2,
on each of which N acts faithfully, we deduce that the same must be true for the
natural Fg-module for J. However, [SL,,/2(¢%)| > |GL,,/2(¢)|, a contradiction.

Assume now that K = SU,,(qo) or 25(q), so that ¢ > 2. Let

a 0 0
Lo 1= 0 0 -1 @In/Q—B € SL’n/Q(qz)
0 a ' 0

Then tr(diag(zq, FoiF)) = a+a 7+ (n —6). If K € %5 then there exists
a proper subfield F,, of F» such that for all a € quz there exists B, € Iy,
with a + a~™% = §,. Let a be a primitive element of IE‘qXQ, then since ¢ > 2 the
sum a + a~? is not centralised by x — 9, so H* contains elements whose
trace does not lie in Fy. Thus K is not of type €25 (q). If ¢ # 4 then the set
{Ba : a €Fy} lies in no proper subfield of I, contradicting the fact that F,,
must have odd index in F,> and hence not contain F,. Thus ¢ = 4. But then
¢®> = 2% and F,2 has no proper subfields of odd index, a contradiction. O

Lemma 2.3.11 Let 5 < n < 12, with n as in Definition 1.6.20, and let H be
a Go-subgroup of 2, stabilising a decomposition into n subspaces. If there exists
a subgroup K of Q with H < K, then K & %5.

Proof Suppose, by way of contradiction, that H < K for some K € %5. Then
Q = SL,(q) or SU,(q). We see from Table 2.5 that H> = (¢ — 1)""1:A,, in
Case L and that H> = (¢ + 1)""1:A,, in Case U.
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If n = 5 then K> =2 52 .Sp,(5). If 65 # @ and Q = SL5(q) then ¢ > 11. If
%6 # @ and Q = SU;(q) then ¢ > 4. Therefore |[K>°| < |[H>|, a contradiction.
If n € {7,9,11} then |K°| < |H*°| for all q.

Suppose finally that n = 8, so that K> = (4 0 2176).Sp(2). If ¢ > 7 then
|(g—1)".Asg] is larger than |K>°|, so without loss of generality ¢ < 5. If €5 # @
then Q = SLg(5) or SUg(3), so H>® =2 47.Ag, and one may check that |H|
does not divide |K°|, a contradiction. O

Lemma 2.3.12 Let n < 12 be as in Definition 1.6.20 and let H be a %5-
subgroup of Q, preserving a decompositionD : V = Vi@ - -®V; with dim V; = m.
Assume that there exists a subgroup K of Q, with H < K.

(i) Suppose that one of the following holds: Q@ = SL,(q) with m > 2 and

(m7Q) g {(272)7(213)}; Q= SUn(Q); Q= Spn(q) with (qu) 7é (272);
Q=0Q5(q). Then K ¢ %s.

(ii) Ift=n>4 and q =5, then K ¢ %5.

Proof (i) Suppose otherwise, and let f be the form for which K is a group
of similarities. If 65 # @ then Q = SL,(q) or Sp,,(2%). In Case S, the V; are
non-degenerate since ¢ is even.

Let A be the subgroup of Hp consisting of elements acting non-trivially on
V1 but as scalars on Vo @ -+ - @ V4, so that A contains SL(V;) or Sp(V1). Since
Vi is an irreducible A-module, V; is either non-degenerate or totally singular
under f.

Suppose first that V; is totally singular under f. By an easy generalisation
of Lemma 2.2.2 (vi) (with V; in place of W), the irreducibility of the action of
A on Vi implies that A is also irreducible on a totally singular subspace Wa,
such that W7 N W5 = {0}. This contradicts the fact that A acts as scalars on a
complement to V.

Suppose instead that V; is non-degenerate under f. If f is quadratic then
Sp,(q) or GL,,(q) < CGO:;,(q), so by Theorem 1.6.22 m = ¢ = 2, which we
have excluded. Thus f is unitary or symplectic, and so 2 = SL,,(¢). Dropping
down to H*® < K we get SL,,(¢) < SU,,(q) or SL,,,(¢) < Sp,,,(q), so that
m = 2. Consulting Table 2.5 we see that if ¢ > 2 then H has a subgroup which
acts as GL3(q) on one block whilst centralising at least one other. Thus H
consist of isometries of f, and so GLa(q) is a subgroup of Spy(g) or GUx(g), a
contradiction since g # 2.

If t = 2, so that n = 4, then |H| = 2¢%(¢®> — 1)?(¢ — 1). If f is symplectic
then |K| = (¢ — 1,2)¢*(¢*> — 1)(¢* — 1), forcing ¢ € {2,3}. If f is unitary then
|K| = (4,¢"% = 1)¢*(qg — 1)(¢*/? + 1)(¢*> — 1), a contradiction.
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(ii) If t = n and g # @ then Q = SL,,(q). For a € F, define

To = (1,3,2)dael@” ol 1) (1 2 3)(2,3,4)
a 0 0
0 a2
@In—47
0
1

S 0 o o

0
0
0

and note that z, € L. Now tr(z,) = a+ (n —4), and tr(z ') = a™t + (n — 4).
Thus, by Lemma 1.12.6, if there exists a € F with o # ™!, or o™ # a4
for ¢ square, then L is not a group of isometries of a symplectic, quadratic or

unitary form. The first condition only fails when ¢ < 3, and the second only
when ¢ = 4. ]

The preceding results allow us to prove a more general result concerning
the maximality of 6,-subgroups.

Proposition 2.3.13 Let n € {5,7,11} be as in Definition 1.6.20, and let H
be a Ga-subgroup of Q.Then H is mazimal amongst the geometric subgroups of
Q if and only if one of the following holds: Q = SLy,,(q) with ¢ > 5; Q = SU,(q);
Q=Q,(q). If H is non-mazximal then H does not extend to a novel maximal
subgroup.

Proof Note that H preserves a decomposition into n subspaces. The result for
q < 4 in Case L follows immediately from Proposition 2.3.6.

Assume, by way of contradiction, that there exists a geometric subgroup
K # H of Q with H < K. Without loss of generality, K € €, for some
1 < < 8. It follows from Lemma 2.3.7 (iv),(v) that K ¢ % U €5. There is a
unique type of @,-subgroup, so K ¢ %5. Since n is prime, €y = ¢ = @. It
follows from Lemma 2.3.10 (i) that K ¢ %5. It follows from Lemma 2.3.11 that
K ¢ 6s. For 65 the result follows from Lemma 2.3.12 (ii). O

2.3.3 Semilinear groups

Recall Definition 2.2.5 of Class %3. In this subsection we prove various prelimi-
nary results about the maximality of %3-subgroups. Recall Definition 1.13.2 of
a Zsigmondy prime z, . In this subsection, we let s denote the degree of the
field extension preserved by a @3-subgroup H of Q, let m = n/s, and write [,
for the form preserved on JFZq{f (note that this is only relevant to distinguish H
in Cases S and O° when s = 2). For maximality, we require s to be prime.

Lemma 2.3.14 Let 3 < n < 12 be as in Definition 1.6.20, and let H be a
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Gs-subgroup of Q. Assume that H is not of type GUa(q) in Spy(q). Then H is
irreducible.

Proof Assume first that s = n, so that n is an odd prime and Q = SLZ(qg).
In Case L, |H| = (¢" — 1)n/(q¢ — 1), so |H| is divisible by a Zsigmondy prime
zqn- If H is reducible, then H must stabilise a k-space for some k. This implies
that H is contained in a parabolic subgroup, P;. However, by Table 2.3 and
Proposition 1.13.4 the prime z,, does not divide |Py| for any k. In Case U,
|H| = (¢" +1)n/(¢ + 1) so |H| is divisible by some z, 2, (recall that SU3(2)
is soluble). Similarly to Case L, we first deduce that H is not contained in
a parabolic subgroup, and from this conclude that H must stabilise a non-
degenerate k-space for some k. Thus either H is contained in a group of type
GUk(q) L GU,,_(q), or a group of type GU,, /2(q) 1 S2. However, none of these
groups have order divisible by z4 2.

If s # n, then the result follows from Lemma 2.2.6. O

Lemma 2.3.15 Letn € {3,5,7,11} be as in Definition 1.6.20, and let H be
a €3-subgroup of Q. If there exists a subgroup K of Q0 such that H < K then
K & 6> U%s.

Proof Since €3 # @ and n is an odd prime, Q = SL,(q) or SU,(q).

Since n is prime, |H]| is divisible by some z, , in Case L, and by some z, 2,
in Case U (recall that 2 # SU3(2)). By Lemma 1.13.3 (iii) both z,,, and zg4,2,
are greater than n.

There is exactly one type of €,-subgroup, namely GL; (¢)1S,, or GU1(¢)1S,,.
If K is of one of these types, then the prime divisors of |K| are the primes
dividing ¢ 1, and primes less than or equal to n. In particular, z,, and z4 2,
do not divide |K].

There is at most one type of Gs-subgroup, namely n'*2.Spy(n). If L is of
this type, then | L| is divisible by n and the prime divisors of n? —1 and of g+1,
but by no other primes. Therefore z,, and z, 2, do not divide |L|. O

Lemma 2.3.16 Let H = Nq(Fyus, ;) be a €5-subgroup of Q, with n as in
Definition 1.6.20.

(i) Suppose that 4 < n < 12 and s = 2. Assume that if H is of type GUs(q)
in Spy(q) then q # 3. If there exists a subgroup K of Q such that H < K
then K & 5.

(i) Suppose that 6 < n < 12 with s = 3, and assume that Q # Q. (q). If there
exists a subgroup K of § such that H < K then K & %5.

Proof We prove both parts at once. By Lemma 2.2.7, our assumptions on n,
q, s and H ensure that H is insoluble and the quasisimple group H> is one
of SL,,/5(¢*), SUn/s(a°), Spy/s(q°), SU, 2(q) or Qi}/s(qs). By Theorem 1.11.2,
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P(H®) > n for each of these types. Thus if K € %, then it follows that
H* < K(p), the kernel of the action on blocks. This contradicts the fact that
H® is irreducible, by Lemma 2.2.6. U

Lemma 2.3.17 Let n < 12 be as in Definition 1.6.20 and let H be a ©3-
subgroup of Q. Assume that H is not of type GUa(q) in Spy(q). If there exists
a subgroup K of Q such that H < K, and K is not of the same type as H, then
K ¢ 5.

Proof Assume otherwise, by way of contradiction. Let H = Nq(Fgus), and let
K = Nq(Fgut) be a €3-subgroup of €.

If there is more than one type of €3-subgroup, then n is not prime. Since n
is not prime, it follows from Lemmas 2.2.6 and 2.2.7 that H° is the group 4,
as defined just before Lemma 2.2.6.

Assume first that s # ¢, so Fy¢ # Fgs, and Fge,Fye C Endp,, g (Fjpu ). This
implies that the centraliser of H*> in GL,(¢") has order greater than ¢* — 1
and hence H> is not absolutely irreducible on FZ/ *, contradicting Proposi-
tion 1.12.2.

Thus s = ¢, and so Q = Sp,,(¢q) or QF(¢) and s = t = 2. Assume first that
Q = Sp,,(g)- Then one of H and K is of shape Sp,, /5(¢*).2, the other is of shape
GU,/2(q).2, and ¢ is odd. By Proposition 1.13.4, there exists a z,, dividing
|Spn/2(q2).2| but not |GU,,2(q).2| (since n/2 is even), whereas if H is of type
GU,/2(q) then n # 4, so some 24,2 divides [H| but not [Sp,, /»(¢ 2).2].

In Case O, H and K must be of two of the following types: GOn/2( q?) (so
n/2 is even), GOy, /5(q %) (so n/2 is odd), GU,,/2(g) (so n/2 is even). Therefore,
H and K are of types GO:/2(q2) and GU,,/2(¢) (in some order), and n/2 is
even, and so n = 12. By Proposition 1.13.4, some prime z, g divides [QF (¢?)|
but not |SUg(g)|. Conversely, 2, 10 divides |SUs(g)| but not |QF (¢2)].

In Case O~, H and K must be of the following types: GOn/z( q?) (so n/2
is even), GOn/Q( %) (so n/2 is odd), GU,/2(q) (so n/2 is odd). Therefore, H
and K are of types GOZ/Z(qQ) and GU,,/5(q) (in some order), and ¢ and n/2
are odd, so n = 10. By Proposition 1.13.4, a prime 2,5 divide |25(¢g?)| but not
|GUs(q)|. Conversely, a prime 2,10 divides |GU5(g)| but not |Q5(¢?)|. O

Lemma 2.3.18 Let n € {6,8,10,12}, and let Q = SL,,(¢) or Sp,(q). Let
H = Nq(Fg2, 32) be a €3-subgroup of Q1. If there exists a subgroup K of ) with
H < K, then K & 6.

Proof Let K be a €4-subgroup of Q. The composition factors of K lie in
{Ln,(9),Lny(q),Sp,, (), 05, (q) : m1,m2 > 1, nying = n, ny is even}.

Since H has a composition factor isomorphic to one of Ln/g(q2), Spn/g(qQ) or
U, /2(q) (with g odd), it follows that H £ K. O
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Lemma 2.3.19 Let 3 < n < 12 be as in Definition 1.6.20 and let H be a
Gs-subgroup of Q. Assume that 2 # SL3(4),SUg(2). If there exists a subgroup
K of Q with H < K, then K ¢ €5.

Proof Let H preserve a field extension of degree s, let K be a %5-subgroup
over Fgu, where ¢ = ¢ for some r, and assume by way of contradiction that
H<LK.

Case L. Here K < Z(SL,,(¢))GL,(qo), and r is prime. Note that (go,rn) #
(2,6) since we are assuming that n > 3 and that Q # SL3(4). If n = s is prime
then |H| is a multiple of (¢° — 1)/(q — 1), s0 z4,,rn divides |H|. Otherwise,
SL,/s(qp°) < H, with n/s > 2 and r > 1, so by Proposition 1.13.4 a prime
Zgo.rn divides |H|. If zq, ; divides |K| then ¢ < max{r,n}, a contradiction.

Case U. Here H is of type GU,,/4(¢%), s is odd, and r = 2 if and only if K is
of type Sp,,(¢q) or GOS (q). Note that (qq, 2nr) # (2,6), that (go, nr) # (2,6) if
n is even, since n > 3 and SUj3(2) is solvable, and that (qo, 2r(n — s)) # (2, 6).
If s = n then |H| is divisible by 24, 2nr. Otherwise, SU,/s(¢°) < H, n/s > 2,
and s > 1. By Proposition 1.13.4, if n is odd then |H| is divisible by 24, 2nr,
whilst if 7 is even then [H| is divisible by both z4y nr and zgy 2r(n—s)-

If K is of type GU,,(qo) then r > 3. If z,, ; | | K| then from Proposition 1.13.4
we see that ¢ < max{2r,2n} < nr, S0 Zg.2nr, Zg0,nr do Dot divide |K|.

If K is of type Sp,,(¢) then qo = ¢, r = 2 and n > 2 is even. By Table 2.8 and
Proposition 1.13.4, if z,; divides |K| then i < n, so if n # 2s then 2y or(n—s)
does not divide |K|. So assume n = 2s. Then |H| = |SU2(¢®)| ((q;_tll)) .S, whereas
|K| = [Spys(q)]-(¢ + 1, 5), so a higher power of 2y ,,» divides |H| than |K|.

If K is of type GO, (¢), then g9 = ¢ and r = 2. If n = 3 then we get
a contradiction from |H| = 3(¢? — ¢ + 1) whilst |K| = q(¢®> — 1)(¢ + 1,3). If
n =4 then 63 = @. If n > 5 is odd and z,,; divides |K| then i < n —1 by
Proposition 1.13.4, 80 zg 2,r does not divide |K|, a contradiction, so n > 6.
Thus the group K is of type GO} (), and 2, ; divides |K|, then i < n — 2 by
Proposition 1.13.4, s0 zg, nr does not divide |K|. If K is of type GO,, (¢) and
2q,i divides |K| then i < n, so if n # 2s then zg 9,(,—s) does not divide K. If
n = 2s then a higher power of zy, ,, divides |H| than |K|.

Case S. Here H is of type Sp,, /,(¢”) or type GU,,/2(q), and K = Sp,,(g0).(2, ¢~
1,7), with ¢§ = ¢ and r prime. If z,, ; divides |K| then ¢ < n by Proposi-
tion 1.13.4. Note that (qo,nr) # (2,6), and that r(n — 2) > 2. A straightfor-
ward argument rules out the containment of type Sp,,/,(¢°) in K. If H is of
type GU,,/2(q) then g is odd and H = GU,,/5(q).2. The order of H is divisible
by zgern if n/2 is odd, and by zg, r(n—2) if /2 is even (since o is odd). No
prime zg4, -, divides |K|, whilst if 2, (,—2) divides |K| then n =4 and r = 2,
in which case Zgo,r(n—z) divides |H| but not |K].
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Case O°. Here Q7 (¢*) < H, with s prime, n/s > 3, and K = Q7(qo)-(2,7),
with r prime. Note that n/s > 3 and g is odd, so r(n — s) > n and zg, ,(n—s)
exists. Then, by Proposition 1.13.4 (and a direct calculation when n/s = 3) a
prime zg r(n—s) divides |H| and if z,, ; divides |[K| then i <n — 1.

Case O™. Here H is of type GOn/é( %), type GOy, 5(¢?), or type GU,/2(q),
whilst K is of type GOZ(qo), and r is prime. Now n/s > 4 and n > 10, so if
n/s is even then zy, ,(n—2s) exists, and r(n — 2s) > n. In addition, z4, ,(n—2)
exists, and r(n — 2) > n. We now consult Proposition 1.13.4. If H is of type
GOi/S( *) then zy r(n—2s) divides |H| (even when n = n/s = 4). If H is of
type GOn/Q(q2) then zy, ,(n—2y divides |H|. If H is of type GU,,/5(q) then n/2
is even, and zg, ,(n—2) divides [H].

We now consider the possibilites for K, again using Proposition 1.13.4. If
|K | is of type GO;! (o) and zy, ; divides |K| then i < n—2, so neither z, ,(n—2s)
noT Zg, r(n—2) divide |K, a contradiction. If |[K| is of type GO, (qo) and 24,
divides |K|, then i < n. Thus 2y ,(n—2) does not divide |K|, and if 24, ,(n—2s)
divides |K| then n/s = 4 and r = 2. If n/s = 4, r = 2 and H is of type
GO:/S(qS) then a higher power of z; ,(n—2s) divides |H| than |K]|.

Case O~. Here H is of type GO;/S( q®) with n/s 4, type GOy, ;5(q 2), or type
GU,,/2(q) with n/2 odd. Since n > 8 and r > 2, primes z4y,rn and zg4, ,(n—2)
exist, and both rn and r(n — 2) are greater than n. If H is of type GO_, (¢%),
type GOy, 5(q 2), or type GU,,/5(q) then |H]| is divisible by zgy,rn, Zgo,r(n—2) OF
Zqo,rn Tespectively, by Proposition 1.13.4. The group K is of type GO,, (qo) and
if z4y,; divides K then i < n, so neither zg rn NOT 24 1 (n—2) divide |K|. O

We show now that the semilinear groups do not, in general, preserve classical
forms.

Lemma 2.3.20 Let 3 < n < 12 be as in Definition 1.6.20 and let H be a
©3-subgroup of Q. If there exists a subgroup K of Q with H < K, then K ¢ 6s.

Proof Let H preserve a field extension of degree s, let K be a $g-subgroup of
Q, and assume by way of contradiction that H < K. If €5 # &, then Q = SL,,(q)
or Sp,,(2°), so H is not of type GU,, /5(q).

Assume first that K is of one of the following types: GU,(¢'/?) with n
even, GOJ (q), or GO, (q). If (n,q) = (6,2) then Q = Spy(2) and K is of type
GO{ (2), whilst H 22 Sp,(8).3. Thus |H| does not divide |K|, a contradiction.
We therefore assume that (n,q) # (6,2). Then z,, divides |H|, by Proposi-
tion 1.13.4 if s # n and directly from Table 2.6 if s = n. However, z,, does
not divide |K|, a contradiction.

Suppose next that Q = SL,(q), and that K is of type GU,(¢"/?) with n
odd, so that s is odd. Let ¢ = 3. Then |H| is divisible by z, » (since ¢2" — 1
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divides |H|), whilst | K|, divides
[SU(q0) (g = 1) = (a8 = 1)(a} + 1)(ad = 1)+ (a5 +1)-

Now, (¢4 + 1,95 — 1) = 2 and there is no term qg/2 + 1 in the expression for
|K|, as n is odd. Therefore, z4, ., does not divide |K|.

Suppose next that Q@ = SL,,(¢), and that K is of type Sp,,(¢) with ¢ odd,
so that | K| = |Sp,,(¢)|(¢ — 1,n/2). By Lemma 2.2.7 the group H is insoluble,
with H* = SL,,/,(¢°) being irreducible but not absolutely irreducible, and
|H| = |SLy/s(¢°)|(¢° —1)s/(q — 1). We now apply Proposition 2.2.18 to deduce
that H < Ng(H') < L, for some é3-subgroup L of K. Thus L is an extension
by scalars of some @3-subgroup L; of PCSp, (q). Arguing as in the proof of
Lemma 2.3.17, we see that H and L; preserve field extensions of the same
degree, but then |H| > |L|, a contradiction.

Suppose next that = SL,,(¢) or Sp, (¢), and that K is of type GO,, (¢).
If n = 4 then H* = K*°, but H® is not absolutely irreducible whilst K
is. If n = 6 then H is divisible by 243, whilst K is not. If n > 8 then by
Proposition 2.2.18 we deduce that H is contained in a %3-subgroup L of K,
where L is contained in a @3-subgroup of CGO,, (¢). As before we deduce that
H and L preserve field extensions of the same degree, and hence that [H| > |L],
a contradiction.

Suppose finally that Q = SL,(q), and that K is of type Sp,,(¢) with ¢ even.
By Proposition 2.2.18 we deduce that H is contained in a subgroup L of K that
lies in ¢35 U %g. If L € %3 then we get a contradiction as for ¢ odd, so L € %5.
Thus L is a subgroup of K of type GOZ(q). For type GO (¢) if n > 6 then we
get an easy contradiction using Zsigmondy primes, as in the second paragraph
of this proof (for (n,q) = (6,2) this is a direct calculation). For type GO, (q)
we argue just as in the preceding paragraph. O

We finish this subsection with a more general result about semilinear groups.

Proposition 2.3.21 Let n € {3,5,7,11} be as in Definition 1.6.20, and let
H be a €5-subgroup of Q # SLg(4). Then H is maximal amongst the geometric
subgroups of €.

Proof 1In Case O°, if n is prime then €5 = &, so 2 = SL,(¢) or SU,(q).
Suppose, by way of contradiction, that there exists K < €2 such that H < K,
where K is geometric and is not of the same type as H. By Theorem 2.2.19, we
may assume that K € %; for some 1 < i < 8. It follows from Lemma 2.3.14 that
K ¢ 6. It is immediate from Lemma 2.3.15 that K ¢ 65U%s. Since n is prime,
there is a unique type of €3-subgroup, and €, = é; = @. By Lemma 2.3.19,
if Q@ # SL3(4) and n is odd then K ¢ %5. It is immediate from Lemma 2.3.20
that K &€ %3, so we are done. |
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2.3.4 Tensor product groups

Recall the types of €-subgroup in Table 2.7: note that the conditions in that ta-
ble imply that n > 6. We first collect some information regarding %;-subgroups
which, despite their inclusion in Class %4, are never maximal.

Proposition 2.3.22 Let G be an almost simple group with socle Q. Let Hg
be a €y-subgroup of G, of one of the following types:

(1) GLQ(Q) ® GLTL/Q(Z) (Case L),
(i) GU2(2) ® GU,,/2(2) (Case U),
(iif) Sp,/3(3) ® GO4(3) (Case S),
(iv) Sp(2) © Sp,o(2) (Case OF ),
(v) GO3(3)® GO?L:/3(3) (Case OF ).

Then Hg is not mazimal in G.

Proof Let H be the corresponding subgroup of 2. First suppose that H is of
type GL2(2) ® GLy,/2(2), so H = SLy(2) x SL,,/2(2). We copy the proof of [66,
Proposition 6.3.1(1)] that H is (properly) contained in a é3-subgroup K of type
'Ly 2(4). Now SLa(2) = S3, so H' = 3 x SL,,/2(2) = L x SLy,/2(2). We may
identify L with the non-zero scalars of Fy, thus setting up an isomorphism be-
tween [} and F3. Since L acts irreducibly on F3, the group H' is irreducible but
not absolutely irreducible, by Lemma 2.2.10, and we may identify tensors v ® w
with elements Aw, where A € Fy, so that L x 1 is the subgroup corresponding to
the scalars of I'L,, /5(4). Thus H is contained in a member K of type I'L,, 5(4) of
our Class 3. The only non-trivial outer automorphism of SL,,(2) is the duality
automorphism ~, which is induced by the inverse-transpose map. The inverse-
transpose automorphism normalises the standard constructions of H, and also
normalises the subgroup L x 1 of H and hence preserves the isomorphism from
IE‘Z/ ? to FZ, so the extension of H by duality is contained in the extension of
K by duality.

Next suppose that H is of type GU2(2) ® GU,,2(2), preserving a decompo-
sition V' = W1 ® Wa, and let Hg be the subgroup of GU,,(2) of the same type as
H. The group GUy(2) is imprimitive on Wy = F?, and is equal to GU;(2) S,
preserving a decomposition of Wy := F? into Wi @ Wip = (v1) @ (vs). Thus
Hg preserves an imprimitive decomposition of V' as (W11 ® Wa) @ (Wi @ Wh),
and is therefore properly contained in a ¢5-subgroup of type GU,, /2(2)1Sz. The
final automorphism to consider is ¢, which (setwise) stabilises both W71 ® Wy
and Wis ® W, so H does not extend to a novelty.

Next suppose that H = Sp,, 5(3) x GO4(3), so @ = Sp,,(3). As shown in
the proof of Proposition 2.3.6 (x) our standard copy of GO4(3) is imprimitive
on F3, and consists of monomial matrices, with blocks being non-degenerate
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1-spaces. Forming a tensor product of monomial matrices with our standard
copy of Sp,, /3(3) will result in matrices with three (non-degenerate) blocks, so
H is (properly) contained in a €5-subgroup K of type Sp,, /3(3) 1S3 inside a copy
of the symplectic group whose form matrix B is the Kronecker product of I3
with our standard symplectic form. The only non-trivial outer automorphism
of Sp,,(3) is the diagonal automorphism 6, which can be chosen to have basis
vectors as eigenvalues, and so preserves this imprimitive decomposition as well
as H. Thus H does not extend to a novel maximal subgroup.

Next suppose that H 2 Spy(2) x Sp,, /»(2), so @ = Q. (¢). By [66, Propo-
sition 6.3.1(ii)], the group H is properly contained in a é3-subgroup of type
I'U,/2(2). The class stabiliser of H is trivial, so H cannot extend to a novelty.

Next suppose that H = SO4(3) x Qf/3(3), so Q = QF(3). As previously
noted, GO4(3) is imprimitive, so H is properly contained in a %s-subgroup K
of type GOf/3(3)283. See [66, Proposition 6.3.2] for more details. The normaliser
N of H in CGO; (3) is CGO3(3) ® CGO,, 5(3) = GO3(3) ® CGO,, 4(3). So N
is imprimitive, and hence H does not extend to a novelty. O

Let H be a %4-subgroup of 2. Then we write L = Q4 o0 Qs < H, where
is the generally quasisimple group on V; and 25 is the generally quasisimple
group on V5. Considering the restrictions on n; and ng in Table 2.7, and our
assumption that n < 12, we note that €y is quasisimple unless (n1,q) € {(2,2)
(Cases L, U and O™), (2,3) (Cases L, U and OV), (3,2) (Case U only), (3,3)
(Cases OF only)}, and is soluble for these exceptional values. In Cases L and
O~ the group 2y is quasisimple. In Case U the group 2o is quasisimple if
and only if (n2,q) # (3,2), and is soluble otherwise. In Case S the group Q5 is
quasisimple if and only if (n2,q,¢) € {(3,3,0), (4,3,+)}, and is soluble for these
exceptional values. In Case O, if Qy = Sp,,, (q) then Qs is always quasisimple
(recall that n > 10 in Case OT), whilst if Qy = Q;f (¢) then Qy is perfect if and
only if (ns2, q) # (4,3), and is soluble otherwise. Note in particular that ; ® Qs
is perfect when ¢ > 3.

Lemma 2.3.23 Let n < 12 be as in Definition 1.06.20, and let H be a %,-
subgroup of Q2. Assume that H is not one of the non-mazximal groups listed in
Proposition 2.3.22. If there exists a subgroup K of Q such that H < K, then
K &% U%s.

Proof If L is perfect then this follows from Lemma 2.2.10, so assume otherwise.
Since 1 and 2, are absolutely irreducible on Vi and V5 respectively, it is
immediate from Lemma 2.2.10 that K ¢ %;. We first consider the types where
Oy is not perfect. If (ny1,q) = (2,2) then H is listed in Proposition 2.3.22
contrary to assumption.

Assume that (n1,q) = (2,3). Then ©Q; = SLy(3), so the derived group of
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Q, is absolutely irreducible. In Cases L, U and O, the group Q5 is perfect so
the result is immediate. In Case S we note that the group €25 is quasisimple
unless Qy = Q3(q) = La(3) or Qp = O (3). The first possibility is excluded by
our assumption that H is not listed in Proposition 2.3.22, whilst for the second
we note that it is easy to check in MAcGMA (file Chap2calc) that the derived
group of Qf (3) is also absolutely irreducible.

Next assume that n; = 3 and Q = SU,(2). It is easy to check in MAGMA
(file Chap2calc) that SUs(2)" is absolutely irreducible on Vi. Also, SU,,, (2) is
both absolutely irreducible on V5 by Proposition 1.12.2 and perfect. Therefore
H' is absolutely irreducible on V', and the result follows.

The possibility that (n1,¢) = (3,3) in Cases O is excluded by our assump-
tion that H is not one of the groups listed in Proposition 2.3.22.

Thus we may assume without loss of generality that (2 is perfect and €5 is
not perfect. Thus Q = Sp,,(q) or Q! (¢), and since n < 12 the only possibility
is that H is of type Sp,(3) ® GO3(3) in Spy4(3). However, this H is listed in
Proposition 2.3.22. O

Lemma 2.3.24 Let n < 12 be as in Definition 1.6.20, and let H be a -
subgroup of Q, with q > 3. If there exists a subgroup K of Q with H < K and
K € %3, then K preserves a decomposition into at least five subspaces.

Proof Suppose otherwise, and let K preserve an imprimitive decomposition
D into two, three or four subspaces. If H < K then L = L*° < K°°. However,
our assumption that ¢ > 3 implies that L*° is irreducible by Lemma 2.2.10,
whereas K*° = K(p) is reducible. ]

Recall Definition 2.2.15 of the %7-subgroups.

Lemma 2.3.25 Let n < 12 be as in Definition 1.0.20, and let H be a €4- or
©r-subgroup of Q. Assume that H is not one of the groups listed in Proposi-
tion 2.3.22. If there exists a subgroup K of 0 such that H < K, then K & %5.

Proof Here H contains the subgroup S := Q;0---0€);. Considering Tables 2.7
and 2.10, and using the fact that n < 12, we see that one of the following
holds: Case L, with Q; = SL,,(¢) and t = 2; Case U, with Q; = SU,,,(¢) and
t = 2; Case S, with Q; = Sp,,.(¢) and t < 3; Case S, with ¢t = 2, Q; = Sp,, (¢)
and Qy = Q5 (q); Case O°, with Q; = Q5,(¢q); Case O, with Q; = Sp,, (¢);
Case OF, with Q; = Q% (¢). We will show that S°°, and hence H*, are not
contained in a member of %5, using the fact that tr(a®b) = tr(a) tr(b). Assume,
by way of contradiction, that H < K for some K € %5.

Consider first Cases L and S. If €5 # @ then ¢ > 3, and so S is perfect.
By Proposition 1.12.7, for any a € F, there exists an element a € €; of trace
«, and by the same result, together with Lemma 1.12.8, there exist elements
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b; € Q; for 2 < i < t of non-zero trace. Then elements of S have ¢ different
traces, contradicting Lemma 2.2.12.

Consider next Case U, so that ¢t = 2 and ny > 3. Proposition 2.3.22 excludes
SUs(2), so €25 is perfect, and by Proposition 1.12.7 each element of Fy. is the
trace of at least one of its elements. For all n and ¢, the group €; contains
an element of non-zero trace, so if o € Fg2 then there exists an element of
S < H® of trace «.

Consider next Case O°, so that H € 67, t = 2, m = 3 and ¢ > 3. Hence
S is perfect. By Lemma 1.12.8 the set of traces of elements of Q4(q) does
not lie in any proper subfield of F,. Recall that Q5(¢) is SL2(g) acting on the
symmetric square of its natural module (see Section 5.2). The symmetric square
of antidiag(1, —1) has trace —1, so the traces of elements of S*° < H* do not
lie in any proper subfield of F,.

Consider Cases OF, son =12 and H € %4. If €5 # @ then q > 4, so each
Q; is perfect. If the type is Spy(q) X Spg(g) then each Q; contains elements of
all traces in [Fy, so S < H is not contained in a member of ¢5. Thus H is
of type GO5(q) x GOT(g). By Lemma 1.12.8 the set of traces of elements of
Q3(q) lie in no proper subfield of F,. By Proposition 1.12.7 the group Qf (q)
contains elements of all traces in F,, a contradiction. |

Finally, we consider containments of éj-subgroups in %s-subgroups.

Lemma 2.3.26 Let n < 12 be as in Definition 1.6.20 and let H be a 6,-
subgroup of Q2. If there exists a subgroup K of Q with H < K, then K & %6s.

Proof Suppose otherwise. By Tables 2.7 and 2.11, the group 2 = SL,(q).
Let W be a non-trivial irreducible -submodule of V. Then since 25 acts
homogeneously on V', the space W has dimension ny, > 2 and 9 acts as
SL,.,(q) on W. Therefore W is totally singular with respect to the classical
form for which K is a group of similarities, and so by a slight generalisation of
Lemma 2.2.2 (vi), as an Qy-module V/W+ = W* or W*7. Since ny > 2, this
contradicts the homogeneity of the action of €2s. O

2.3.5 Subfield groups

In this section we prove various results about the maximality of €5-subgroups,
and in particular determine their maximality for 5 < n < 12.

Recall Definition 2.2.11 of the €5-subgroups, and our dimension assumptions
in Definition 1.6.20. Recall that v = 2 in Case U and u = 1 otherwise. First we
show that, with only a small number of possible exceptions, the €5-subgroups
do not preserve an imprimitive, tensor or tensor induced decomposition.



102 The main theorem and the types of geometric subgroups

Lemma 2.3.27 Let H be a ©5-subgroup of Q, with n < 12, as in Defini-
tion 1.6.20. If = SL,(q) then assume that n > 3. If Q = SU,,(q) then assume
that n > 4, and that if n = 4 then H is of type GUy(qo) or Spy(q). If there
exists a subgroup K of Q with H < K, then K & 65, U %, U 67.

Proof Suppose, by way of contradiction, that H < K < (2, where the group
K € €U, U%r. Then K = Qp, where D is either a direct sum decomposition
V=W & P W; or a €, or 6r-decomposition V = W; ® --- @ W;. Our
assumptions imply that H is insoluble and H*° is quasisimple and absolutely
irreducible.

By Theorem 1.11.2; the group H* has no non-trivial permutation repre-
sentations of degree less than or equal to n < 12, so H* is contained in the
pointwise stabiliser of {7y, ..., W;}. By Theorem 1.11.5, the quasisimple group
H*®° has no non-trivial representation in defining characteristic in dimension
properly dividing n, a contradiction. ]

Lemma 2.3.28 Let n < 12 be as in Definition 1.6.20, and let H be a ©5-
subgroup of Q. If there exists a subgroup K of Q with H < K and K of a
different type than H, then K & €.

Proof We first consider the types GL,(q0), GUx,(q0), Sp,,(¢o) in Case S and
GO; (g0) in Case O¢. Assume that H and K are of two of these types, so that
qo is not prime. It follows that H is insoluble, and H* = ), the Q-group
over Fgu where g = ¢. Furthermore, K contains the {2-group over F,« where
qi = q. Here, by assumption, r and s are distinct primes. Thus Fgu is not
contained in Fgu. By Proposition 1.12.7 and Lemma 1.12.8, the group H>
contains elements of all traces in Fgx, whilst all traces of elements of K™ lie in
Fgu, contradicting Lemma 2.2.12.

The remaining possible types for {H, K} are {GU,(qo),Sp,,(¢)} (Case U),
{GU,(q0), GO (q)} (Case U, with ¢ odd), {Sp, (¢q), GOZ(g)} (Case U, with
q odd) and {GO; (g0), GO,, (q1)} (Cases U and OF, with ¢7 = ¢). The only
soluble possibility for H is type GO4(3) (in which case there is no és-subgroup
of type GU,,(qo)) or type GOJ (3) in SU4(3), which we will consider at the end
of the proof. Otherwise, H* = Q.

Proposition 1.12.7 rules out {GUn(qo), Sp,, ()}, since Fgz is an odd degree
subfield of Fg2, and {GU,(q0),GO;(¢)} if n > 4. Lemma 1.12.8 and Propo-
sition 1.12.7 give a contradiction if {H, K} are of types {GUs(qo), GO4(q)}.
Lemmas 1.12.4 and 1.12.5 rule out types {Sp, (¢), GOZ(q)}. If the types are
{GO; (q0),GO;, (q1)} and go = ¢1 then Lagrange’s theorem gives a contradic-
tion, if go # ¢1 then we apply Proposition 1.12.7, since |F, : F,, | is odd.

Finally consider H of type GO (3) and K of type Sp,(3). Then QF (3) <
H' < K', which contradicts Lemma 1.12.4. O
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Proposition 2.3.29 Let n < 12 be as in Definition 1.6.20, and let H be a
G5-subgroup of Q. If Q = SL,,(q) then assume that n > 3. If Q@ = SU,(q) then
assume that n = 4 and that, if n = 4, then H is of type GUy(qo) or Sp4(q).
Then H is maximal amongst the geometric subgroups of §2.

Proof Suppose, by way of contradiction, that H < K < 2, where K is not of
the same type as H. By Theorem 2.2.19, without loss of generality K € €; for
some 1 < ¢ < 8. Our assumptions on the type and dimension of H imply that
H®° is quasisimple.

The group H® is absolutely irreducible by Proposition 1.12.2, so the group
K ¢ 61 U%5. 1t follows from Lemma 2.3.27 that K ¢ %5 U €y U 67, and from
Lemma 2.3.28 that K & 65.

Suppose next that K € %, then, since H* is quasisimple, there exists a
non-trivial representation p mapping H> to Sa,,(r) or O3,,(r), where n = r™
and r divides ¢ — 1. However, both of these groups are smaller than the simple
group H>, a contradiction.

Finally, suppose that K € g, so that Q = SL,(q) or Sp,,(2!). The group
SL,,(go) contains all transvections, so a straightforward calculation shows that
since n > 2 the group SL,(qo) preserves no non-zero bilinear or unitary form
on Fy. Similarly, considering the transvections in Sp,,(go) shows that Sp,(qo)
fixes no quadratic form. O

2.3.6 Extraspecial normaliser groups

Recall the definition of the %s-subgroups from Table 2.9. In this subsection we
show that %-subgroups are maximal if 4 < n < 12. If 65 # @ then Q # Q5 (q).

Let H be a 6s-subgroup of . If n = ™ > 3 then Sp,,, () is perfect unless
m =71 = 2, and Q5,,(2) is perfect when r = 2. Let R = O,(H*) be the
extraspecial group, or the 2-group of symplectic type. Recall Definition 1.11.1
of Rk (G)

Lemma 2.3.30 Let 4 < n < 12 be as in Definition 1.6.20 and let H be a
Cs-subgroup of Q2. Then the following all hold.

(i) The group H 1is insoluble.
(ii) If r is odd then R = r'*2m_ [fr =2 then R = 40 2'2™ jn Cases L and
U, and R = 2?™ in Case S.
(iii) The group H is absolutely irreducible.
(iv) If n € {4,8,9} then P(H>) > n, and if n € {5,7,11} then P(H>) > n.
(v) Letr" be a prime other than r. Then R..(H>) > n.

Proof (i) and (ii) This is clear from the structures given in Table 2.9, noting
that the quotient H/R acts irreducibly on R.
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(iii) As mentioned in the introduction to the %g-subgroups, R < H® acts
absolutely irreducibly on V.

(iv) Let L = H®° and let X < L. We need to show that |L : X| > n.If RX # L
then

IL: X|>|L: RX| > P(L/R).

The group L/R is one of Sp,(2), €, (2), Spy(p) for p € {5,7,11}, Spg(2) or
Qg (2) or Sp,(3), so the result is clear.

Suppose instead that RX = L and let S = RN X. Then S < R, since R
is elementary abelian. Also S < X since R < L. Hence S < RX = L = H>®.
Since R is a minimal normal subgroup of L, and X is a proper subgroup of L,
the group S is trivial. Therefore |L : X| = |R| = n? > n.

(v) Our assumptions on n ensure that H is a perfect group, with a unique
minimal normal subgroup R (as H> /R acts irreducibly on R). The group R is
elementary abelian, of shape 2™, where 2m > 2. Therefore by Lemma 1.11.4,

R,/(H*®) > min{P(H*/R),r™} = n. O

Proposition 2.3.31 Let 4 < n < 12, as in Definition 1.6.20, and let H be a
Cs-subgroup of Q. Then H is mazximal amongst the geometric subgroups of ).

Proof Suppose, by way of contradiction, that there exists a geometric sub-
group K < Q with H < K, where K is not of the same type as H. By Theo-
rem 2.2.19 we may assume without loss of generality that K € %; for some i.
Let R be the extraspecial or symplectic-type normal subgroup of H*°.

By Lemma 2.3.30 (iii) H* is absolutely irreducible, so K ¢ €, U %5.

Suppose K € 65 U%,U%7, and denote the decomposition of V' preserved by
K by D. By Lemma 2.3.30 (iv) if n & {5,7,11} then P(H*>) > n, so the group
H> < Qpy. Therefore, if n ¢ {5,7,11}, then K € €3 U %7, as if K € %5 then
Q(py is reducible. Therefore H> < L(Vy) x - -+ x L(V;) for t > 2. The image of
R in L(V;) must be non-trivial for some i. The group H> acts faithfully and
irreducibly on R, so the whole of H> must embed in L(V;). But dim(V;) is a
proper divisor of n, contradicting Lemma 2.3.30 (v).

We deal now with n = 5,7,11, so that Q = SL,(¢q) or SU,(¢). Since n is
prime, Classes € and %7 are empty, so K € €5. If n = 5 then H>® =2 5112 A5,
whereas K> = (q £+ 1)*:A5 by Table 2.4. The only non-abelian composition
factor of K is As, so if H> < K then R < (¢#1)*. Since R is non-abelian this
is a contradiction. If n = 7,11, then H*°/R = SLo(n), and the only non-abelian
composition factor of K is A,,. The only subgroup of A,, with composition factor
isomorphic to Lz(n) is isomorphic to La(n), so if H < K then R < (¢+1)" 1
a contradiction.

The field size g% is the minimal power of p such that p“¢ = 1 mod r or
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p»¢ = 1 mod 4. Therefore R, and hence H°°, cannot be represented over a

proper subfield of Fyu. So K & €5.

There is a unique type of és-subgroup, when one exists, so K ¢ 6.

So suppose K € 6g. Then both € and %3 are nonempty, so 2 = SL,,(¢q). The
field size ¢ is an odd power of a prime, and hence K is not of type GUn(ql/Q).
Therefore, H* < Sp,,(q) or Q¢ (q). However, H>* N Z(GL,(q)) = C4 or C,,
whereas Sp,,(¢) NZ(GL,,(¢)) and QZ (q) N Z(GL,(q)) have order at most 2. [

2.3.7 Classical groups
Recall the types of €g-subgroup from Table 2.11.

Proposition 2.3.32 Let 5 < n < 12, with n as in Definition 1.6.20, and let
H be a Gs-subgroup of . Then H is maximal amongst the geometric subgroups

of Q.

Proof Suppose, by way of contradiction, that H < K < Q, where K is maxi-
mal amongst the geometric subgroups of 2 and is not of the same type as H.
The group H*® is quasisimple because n > 5, and is absolutely irreducible by
Proposition 1.12.2, so K ¢ 6, U %5.

We show next that K ¢ %5 U 64 U 67. Otherwise, K = Qp, where D is
either a direct sum decomposition V.= W;@®-- -G W, or a tensor decomposition
Wy ® - @ W;. Here 1 < t < n, whilst dim(W;) is a proper divisor of n for
1 < i<t For all types, P(H*) > n by Theorem 1.11.2, so if K € ¥>U%7 then
H® is a subgroup of the kernel of the action on the set of W;. Theorem 1.11.5
states that R,(H>®) > n/2,so K € ¢ U %€, U%s.

By Proposition 1.12.7, each element of IF, arises as the trace of an element
of H*, so K & %5 by Lemma 2.2.12.

Assume next that K € €. Then n = r? for some prime r that divides g — 1,
and the only non-abelian composition factor of K is Sap(r) or OF; (r). However,
both of these groups are smaller than H°°, a contradiction.

Finally, let K € %5. In Case L the groups H and K are of different types
from Sp,,(¢), SU,(¢*/?) and GOS (¢) (with ¢ odd for this final type). The groups
of type Sp,,(¢) and GO, (¢) do not contain any of the groups of the other types,
by Theorem 1.6.22 and Lemmas 1.12.4, 1.12.5. The group SU,(¢*/?) does not
contain Sp,,(q) or Q5 (q), by Theorem 1.6.22 and Proposition 1.13.4. In Case
S, the groups H and K are of types GO; (¢) and GO, (¢), which contradicts
Theorem 1.6.22. OJ
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Geometric maximal subgroups

The maximal subgroups of the finite classical groups are divided into two broad
classes by Aschbacher’s theorem (see Theorem 2.1.5 for a rough statement):
the geometric subgroups and those in Class .. In this chapter we shall classify
those subgroups that are maximal amongst the geometric subgroups of the
finite classical groups in dimension up to 12.

For a more precise statement, first recall Definition 2.1.2 of the geometric
subgroups, our dimension assumptions from Definition 1.6.20, and the more
precise version of Aschbacher’s theorem given in Theorem 2.2.19. Let G be an
almost simple with socle S, where S is simple and one of:

L.(g),2<n<12; U,(g),3<n<12; S,(¢),4 <n<12; O5(g),7<n<12.

In this chapter we shall classify those subgroups of G that are maximal amongst
the set of all geometric subgroups of G. Later, in Chapter 6, we shall determine
all containments between those subgroups of G that are maximal amongst the
geometric subgroups and the .#*-maximal subgroups of G (see Definition 6.1.1
for the meaning of .#*-maximal).

The structure of this chapter is straightforward: we consider each dimension
in turn. We remind the reader that the files of MAGMA calculations that we refer
to are available on the webpage http://www.cambridge.org/9780521138604.

3.1 Dimension 2

Let ¢ = p° be a prime power. We note that by Definition 1.6.20 the group
Q = SLa(q), and that Classes €4 and €7 are empty. We assume that ¢ > 4 as
SL2(2) and SLy(3) are soluble.

We start with a result that allows us to treat Class %5 as empty in dimension
2: recall the %g-subgroups from Definition 2.2.17.

106
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Lemma 3.1.1 (i) The group Spy(q) is equal to SLa(q), and hence is not a
mazimal subgroup of SLa(q).
(ii) If q is a square, then the group SUy(¢Y/?) is conjugate to SLa(q'/?) in
SLa(q), and hence may be considered as a member of €s.
(iii) The Gg-subgroup of type GOZ (q) is equal to the Go-subgroup of SLa(q).
(iv) The Gs-subgroup of type GOy (q) is equal to the €3-subgroup of SLa(q).

Proof (i) This is Lemma 1.12.1.

(ii) Let w be a primitive element of F;*. One may check that a 2 x 2 matrix
of determinant one with entries over F 1,2 is an isometry of the antidiagonal
unitary form with entries +w(*+1/2 (in odd characteristic), or both entries 1 (in
even characteristic). Thus SLy(¢'/?) is conjugate to a subgroup of SUs(¢'/?),
and since by Theorem 1.6.22 these groups have the same order, they are equal.
(iii) Let Cy be the Gz-subgroup of Q2 of type GOJ (¢), so that by Table 2.11
Cy = S073 (q).2, of order 2(q — 1) by Theorem 1.6.22. We check that the group
K = (diag(w,w™1), antidiag(1, —1)) of all monomial matrices of determinant
1 is the %a-subgroup of SLa(g), and preserves our standard form of plus type.
Since |K| = |Cy| these groups are equal.

(iv) Let Cy be the %s-subgroup of Q of type GO; (¢), so that by Table 2.11
Cy = 805 (¢).2. The group 25 (¢) is cyclic, and if g is odd then SO; (g) is also
cyclic, of order ¢+ 1. Thus either €25 (¢) or SO; (¢) has order ¢+ 1, and hence is
a Singer cycle of SLy(q). All Singer cycles of SLy(q) are conjugate by [53, 7.3],
so either Q5 (¢) or SO5 (¢q) are conjugate to the characteristic subgroup of the
és-subgroup K of SLy(q). Now, both Cy and K have order 2(q + 1), which by
[53, 7.3] is the order of the normaliser of an element of order ¢ + 1 in SLy(q),
so C7 = K as required. O

Recall Definition 2.2.1 of the %;-subgroups.

Proposition 3.1.2 Let n = 2 and let H be a ¢1-subgroup of Q. Then H is
mazximal amongst the geometric subgroups of 2.

Proof This follows immediately from Proposition 2.3.1. O

Recall Definition 2.2.3 of the %5-subgroups. If H < SL(q) is a é>-subgroup,
then H is of type GL1(g) ¢ Sa.

Lemma 3.1.3 Let H be a €-subgroup of SLa(q). Then H is mazimal amongst
the geometric subgroups of SLa(q) if and only if ¢ & {5,7,9}. If ¢ = 4 then H is
equal to the €s-subgroup of SLo(4), but will be considered as a €a-subgroup. If
G is PGLy(7), PGL2(9), Mg or Aut Lo(9) then the Ga-subgroup of an almost
simple group G with socle Ly(q) is mazimal amongst the geometric subgroups
of G. For all other almost simple G with socle Ly(q), where g € {5,7,9}, the
©o-subgroup of G is not maximal.
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Proof The group H is of shape (¢—1)-2, and is dihedral if and only if ¢ is even.
Suppose that H < K < SLs(g), where K is maximal amongst the geometric
subgroups of SLs(g) and is not of the same type as H. The standard copy of
H is equal to (diag(w,w™!), antidiag(1, —1)), where w is a primitive element of
;. There is no 1-dimensional subspace that is fixed by both of these matrices,
so K ¢ %1.

There is a unique type of imprimitive group when n = 2, so K € %5. Since
q > 3 it follows that |H| does not divide 2(q + 1) so K & 5.

Assume next that K € %5, so that by Table 2.8 the group K = SLy(qo) or
K = SLy(¢'/?).2, and in the latter case ¢ is odd. Notice that tr(diag(c, a~1)) =
a+ a . If ¢ > 4 then not all of these traces lie in a proper subfield of F,,
by Lemma 1.4.5, so if K = SLa(qp) we are done. If ¢ = 4 then a computer
calculation (file Chap3calc) shows that H is conjugate to the @5-subgroup
SLy(2) of SLo(4). If K # SLa(qo) then K = SLa(¢'/?).2, and ¢ is both odd and
a square. Any index 2 subgroup H; of H contains elements of trace a? + o2,
for all non-zero a € IF,. This can be written as a degree 4 polynomial in «, so
the set of traces of elements of H; has size at least (¢—1)/4. This is bigger than
q'/? if and only if ¢ > 9. When ¢ = 9, a computer calculation (file Chap3calc)
shows that H is properly contained in SL(3).2. There are two classes in SLa(9)
of groups of type SLy(3).2, which are normalised by (¢) and interchanged by
6 and d¢. There is a single class of groups of type H, and the extension of
H by ¢ is contained in the extension of K by ¢. Thus H is not maximal
in Ly(9) and PXLy(9), but could give rise to a novelty in PGL2(9), Mg or
Aut Lo (9) = PI'Lo(9).

The largest cyclic subgroup of a %s-subgroup has order at most 8, so if ¢ > 9
then there is a contradiction. If ¢ = 4, 8,9 then there are no %g-subgroups, by
Definition 2.2.13. If ¢ = 5 then H = Qg, and so the @-subgroup of GL4(5) nor-
malises Qg, and hence is properly contained in a %g-subgroup. If ¢ = 7 then H
is the unique order 12 subgroup of the %s-subgroup. The group H is normalised
by the diagonal automorphism, whereas the two classes of %s-subgroups are in-
terchanged, which could give rise to a novelty in PGLs(7). Groups in Class %3
have already been considered under other classes, by Lemma 3.1.1.

When ¢ = 7,9 all groups which could be novel maximal subgroups are
maximal amongst the geometric subgroups of the corresponding overgroups of
), as we have now considered all possible geometric overgroups. O

Recall Definition 2.2.5 of the é3-subgroups, and Definition 1.13.2 of Zsig-
mondy primes 2, ,,. If H < SLa(q) is a €3-subgroup, then H is of type GL1(¢?).

Lemma 3.1.4 Let H < SLa(q) be a €3-subgroup. Then H is mazimal amongst
the geometric subgroups of SLa(q) if and only if ¢ # 7. The €3-subgroup of
PGLy(7) is maximal amongst the geometric subgroups of PGLa(7).
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Proof The group H is of shape (¢4 1).2 = (p® + 1).2, by Table 2.6. Suppose
that H < K < SLa(q), where K is maximal amongst the geometric subgroups
of SLs(g) and is not of the same type as H.

The reducible groups have order ¢(q — 1), so it follows from Lagrange’s
theorem that K ¢ 6. If K € €, then |K| =2(q— 1), by Table 2.5, so K ¢ 5.
There is a unique type of semilinear group in SLs(q), so K ¢ %3. Classes %y,
%7 and %y are empty in dimension 2.

If K € €5 then e > 1 and |K| = (2,¢ — 1,7)qo(g3 — 1), where ¢} = ¢, by
Table 2.8, so that e = r f for some f. By Theorem 1.13.1 |H| is divisible by some
Zp,2e unless p = 2 and e = 3, whilst z, 9. does not divide |K|, a contradiction.
If (p,e) = (2,3) then |K]| is smaller than |H|, a contradiction.

If K € %5 then K < 2'Sy by Table 2.9, so the largest cyclic subgroup of K
has order at most 8. Therefore, if ¢ > 7 then K ¢ %5. Class 65 = @ when ¢ = 4,
and the @s-subgroup 2°A4 < SLa(5) has no subgroups of order 12, so assume
that ¢ = 7. Then H is a Sylow 2-subgroup of SLy(7), so H < K as K has order
divisible by 16. There are two classes of és-subgroups in SLy(7), interchanged
by the diagonal automorphism, but only one class of %3-subgroups. Therefore
the @3-subgroup of PGLy(7) is not contained in the és-subgroup.

We are considering Class 63 as empty, by Lemma 3.1.1. No other geometric
subgroups contain the €3-subgroup of PGLo (7). O

Recall Definition 2.2.11 of the @5-subgroups.

Lemma 3.1.5 Let n = 2, and let H < SLa(q) be a €s-subgroup of type
GLa(qo), where gy = q for some prime r, let G be almost simple with socle
Lo(q), and let He be the corresponding €s-subgroup of G. Then H is maximal
amongst the geometric subgroups of SLa(q) if and only if qo # 2 or q = 4. If
qo = 2 and q # 4, then Hg is not mazimal in G. If g = 4, then Hg is equal to
the €5-subgroup of G, and was considered in Class €.

Proof Suppose that H < K < SLy(q), where K is maximal amongst the
geometric subgroups of SLy(¢) and is not of the same type as H. Consulting
Table 2.8, we see that H = SLy(qo).(2,q —1,7), so |H| = qo(q? —1)(2,¢— 1,7).

The group SLa(gp) is absolutely irreducible for all gy by Proposition 1.12.2,
so K € ¢6).

If K € €5, U%3 then the p-part of |K| is (2, q), so if qg # 2 then K ¢ €5 U%5.
If ¢ = 4 then H is conjugate to the imprimitive group of type GL1(4) ! So:
note that SLy(4) = As has a single class of subgroups isomorphic to Ss. If
dgo = 2 (so that » = e is an odd prime) then H = SLy(2) = S;3 is properly
contained in a €3-subgroup K 2 (¢°+1):2. To see this, we check using MAGMA
(file Chap3calc) that H is semilinear, and so preserves an Fs-vector space

isomorphism from F2 to F}, which can clearly be extended to map F3. to F%Qe.
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The outer automorphism § is trivial, since ¢ is even, and in SLs(q) there is a
single conjugacy class of groups of type H, and a single class of groups of type
K. Since ¢ normalises the standard copy of K, and up to conjugacy K has a
unique subgroup of order 6, the group H does not extend to a novelty.
Classes %, and %7 are empty for n = 2. The group K is not a %5-subgroup,
by Lemma 2.3.28. Class % is empty unless ¢ = p, so K ¢ %. The groups in
Class %3 have already been considered, by Lemma 3.1.1. O

Recall Definition 2.2.13 of the %s-subgroups.

Lemma 3.1.6 Let H < SLa(q) be a €s-subgroup. Then H is mazimal amongst
the geometric subgroups of SLa(q).

Proof Suppose, by way of contradiction, that H < K < SLs(gq), where K is
maximal amongst the geometric subgroups of SLs(g) and is not of the same
type as H.

The order of H is 24 or 48. If 65 # @ then ¢ is prime (and by assumption
is greater than 3), so (q,|H|) = 1. The group H is not cyclic, so cannot be
contained in a group of shape p:(p — 1), and hence K ¢ %;. The group H
does not have a non-absolutely-irreducible subgroup of index at most 2, so
K ¢ 65 U %5. Since q is prime, K ¢ %5. Since there is a unique type of %s-
subgroup, K ¢ %s. Classes €, and %7 are empty. We are considering Class %3
as empty by Lemma 3.1.1. O

3.2 Dimension 3

In dimension 3, by Definition 1.6.20, we assume that the group € is SL3(q)
or SU3(q). We assume that ¢ > 2 in Case U as Uj3(2) is soluble. Although
L3(2) is isomorphic to Ly(7), we do analyse L3(2), since its subgroups belong
to different Aschbacher classes in the two representations. Note that Classes 4
and €7 are empty.

Recall Definition 2.2.1 of the %;-subgroups, and Definition 2.3.5 of standard
reductble behaviour.

Proposition 3.2.1 Let n = 3. Then Q has standard reducible behaviour.

Proof Let H be a %;-subgroup of Q. If H is of type P; or F;; then the
result follows from Propositions 2.3.1 and 2.3.4. Therefore, assume that H is of
type GL1(q) ® GLa(g) or GUi(q) L GUsy(g), so that H = GL3 (¢), and hence
|H| = q(qgF 1)(¢* - 1).

Suppose that H < K < Q, where K is maximal amongst the geometric
subgroups of € and is not of the same type as H. For %, we note in Case L
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that H £ Py, since H acts irreducibly on a 2-space, and in Case U that H
stabilises no non-zero totally singular subspace, and so is not contained in Py
(the only other €)-subgroup). In Case L the group H stabilises both a 1-space
and a complementary 2-space, so the subgroup Hg of GL3(¢) of the same type
as H is a subgroup of both a parabolic subgroup P; of GL3(g) and its conjugate
under duality, P;’. However H¢ is normalised by ~y, whilst P, # P} .

If ¢ = 2 then Q = SL3(2), and Classes %5, s and %5 are all empty. The
only %5-subgroup K is reducible, coincides with H, and is considered as a %7-
subgroup, by Proposition 2.3.6 (i). If K € %3 then K has odd order, but H has
even order.

If Q = SL3(3) then 65 = 65 = 65 = (. The 65- and %5-subgroups are
smaller than H. If Q = SU3(3) then 45 = %5 = 0. The %2-subgroups are the
same size as H but are irreducible, whilst the groups in %3 U %5 are smaller
than H. We now assume ¢ > 3.

Since H is insoluble for ¢ > 3 we see that K & 6, U %3 U 6. For €5 we
note from Proposition 1.12.7 that H > contains elements of all traces in [Fy.
Therefore if K € %5 then Q = SUjs(q) with ¢ > 3 odd, and K is of type
GO4(q). Then |K| = (¢+1,3)q(¢*> — 1), but ¢+ 1 > (¢ +1,3), a contradiction.

If K € %5 then Q = SL3(q) with ¢ odd, and K consists of similarities of
a unitary or orthogonal form k. The group H is transitive on the non-zero
vectors of the fixed 2-dimensional subspace U. If x is unitary then any 2-
dimensional subspace contains singular vectors (see [108, Corollary 10.3]), so U
is totally singular under . However, any maximal totally singular subspace has
dimension 1. For & orthogonal, |H>| > |CGO3 (q)|, but H* acts irreducibly
on U, a contradiction. ]

Recall Definition 2.2.3 of the %%-subgroups. Consulting Table 2.4 we see
that when n = 3, the types of @2-subgroup are GLj(q) 1S3 and GU;(q) 2 Ss.
Recall that SU3(2) is soluble.

Proposition 3.2.2 Let n = 3 and let H be a €5-subgroup of Q. If ¢ > 5
or Q = SUs(q) then H is mazimal amongst the geometric subgroups of Q. If
Q = SL3(2) or SL3(3) then H is equal to a 61- or s-subgroup, respectively
(and is considered as such). If Q = SLs(4) then H is not mazimal, and does
not extend to a novel mazximal subgroup.

Proof The claims for SL3(q) with ¢ < 4 are immediate from Proposition 2.3.6,
so assume that ¢ > 5 when = SL3(q).

Suppose, by way of contradiction, that H < K, where K is maximal

3

amongst the geometric subgroups of €2 and is not of the same type as H. Con-
sulting Table 2.5 we see that H = (¢ — 1)2.S3 in Case L and H = (¢ + 1)2.S3
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in Case U. Without loss of generality, H contains the matrices

01 0 0 1
r=| 00 1|, y=|1 0 O
1 0 0 0 0 -1

and z, := diag(a,1,a™!), where « is any element of Fy in Case L, and « is
any (¢ — 1)th power in F 3 in Case U.

Consider first Class 41. The eigenvalues of (x) show that if p # 3 then F2,
is a direct sum of two Fyu (z)-submodules: U = ((1,1,1)) and a 2-dimensional
space W consisting of all vectors of coordinate sum 0. If ¢* = 1 (mod 3) then
W contains two 1-dimensional F,. (z)-submodules ((1, 3, 3%)) and ((1, 52, B)),
where (8 is a cube root of unity, whilst if ¢* = 2 (mod 3) then W is irreducible.
None of these submodules are preserved by y, so H is irreducible. If p = 3 then
U is the only 1-space preserved by (z), and U < W. Once again, y preserves
neither U nor W so H is irreducible. Therefore K ¢ %7.

In each case there is a unique type of imprimitive group when n = 3 so
K ¢ 6. If K € %3 then consulting Table 2.6 we see that K = C.3, where C is
cyclic. The group H does not contain a cyclic subgroup of index dividing 3, so
K & ¢3. Class €y is empty, as n is prime.

Assume next that K € %5. In Case L the group H' contains z, for all
a € F. There exists a subfield Fy, of F, of prime index such that all traces of
elements of K” lie in Fy,. Therefore, a+a~" € Fy, for all a € F, contradicting
Lemma 1.4.5 as we assumed that ¢ > 5. Consider next Case U. If K is of type
GO4(q) then ¢ is odd and |K| = (¢ + 1,3)q(¢*> — 1)2/(2,q — 1), contradicting
Lagrange’s theorem. The group H' contains z, for all a € ]F;2 of order ¢+1, so
if K is of type GU,,(qo) then N¥~1 +\174 ¢ IF;S for all A € IFqXQ. This contradicts
Lemma 1.4.5, as Fqg is of odd index in Fe.

Next suppose that K € 5. Then ¢ is prime, ¢ > 3 and, consulting Table 2.9,
we see that |K| divides 233%. If ¢ > 11 then (¢ — 1)%.6 > 233, a contradiction.
If Q = SL3(5), SU3(7) or SL3(11) then 45 = @. In both SU3(5) and SL3(7) the
group H has the same order as K, but H has derived length 3 whilst K has
derived length 4, a contradiction. In SU3(11) the group H is bigger than K.

Class %7 is empty, as n is prime, so suppose that K € 5. Then = SL3(q)
and either K = SU3(¢/?) x (¢"/? — 1,3) or K = SO4(q) x (¢ — 1,3). We are
assuming that ¢ > 5, so both are ruled out by Lagrange’s theorem. ]

Recall Definition 2.2.5 of the %3-subgroups. If n = 3 and H < ) is a 63-
subgroup, then H is of type GL;(¢?) or type GU;(¢%).

Proposition 3.2.3 Let n = 3 and let H be a 63-subgroup of 2, let G be
almost simple with socle Q, and let Hg be the corresponding €3-subgroup of
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G. Then H is mazximal amongst the geometric subgroups of € if and only if
0 # SL3(4). If H is not maximal, then Hg is maximal amongst the geometric
subgroups of G if and only if G is not a subgroup of a conjugate of Lg(4).(¢p,7).

Proof Tf Q # SL3(4) then this follows immediately from Proposition 2.3.21,
so assume that € = SL3(4) and hence H = 3 x 7:3. Note that H is the Sylow
7-normaliser of SL3(4), and there is a unique SL3(4)-class of @3-subgroups.

Assume that H < K < SL3(4), where K is a €;-subgroup for some 1 < i < 8
and is not of the same type as H. It follows from Lemma 2.3.14 that K ¢ %].
It is immediate from Lemma 2.3.15 that K & %5 U 6. Since n is prime, there
is a unique type of @3-subgroup, and €, = ¢7; = . It is immediate from
Lemma 2.3.20 that K & 6.

Therefore K € %5, and by Table 2.8, K = SL3(2) x 3, and H is a proper
subgroup of K since H is also the Sylow 7-normaliser of K. The natural copy of
K is stabilised by T := (¢, ), since ¢ centralises elements of SL3(2) and inverts
the scalars from Fy, whilst v normalises SL3(2) and inverts the scalars. Since
K contains a unique conjugacy class of subgroups of order |H|, we deduce that
H.T < K.T by Proposition 1.3.10. However, there are three SL3(4)-classes of
groups of the same type as K (permuted by 6), and only one class of groups
Hg, so Hg is maximal amongst the geometric subgroups of those almost simple
G with socle L3(4) that are not contained in (a conjugate of) Lg3(4).T. O

Recall Definition 2.2.11 of the %5-subgroups.

Proposition 3.2.4 Letn = 3 and let H be a €5-subgroup of Q. If Q # SU3(3)
then H is mazximal amongst the geometric subgroups of Q). Otherwise, H is not
mazimal and does not extend to a novel maximal subgroup.

Proof Tf Q@ = SL3(q) then this is Proposition 2.3.29, so assume that 2 is
SUs(q). Thus SUs(qo) < H, where ¢f = ¢ for some odd prime r, or Q4(q) < H.
In SU;5(3) the only %5s-subgroup H is isomorphic to SO5(3) = S4. Let
He = (GO4(3),¢14) be the corresponding subgroup of GUs(3), where ¢ is
a primitive fourth root of unity in Fj . In dimension 3, our standard symmet-
ric bilinear form has the same matrix as our standard unitary form, namely a
basis of orthonormal vectors. It is straightforward to check that the standard
imprimitive wreath product GL1(3)1S3 = GO4(3), and preserves the same form
as H. The blocks of imprimitivity are spanned by the basis vectors, and so are
non-degenerate subspaces with respect to both the symmetric bilinear form on
3 and the unitary form on F3,, so Hg naturally embeds as a proper subgroup
of the %5-subgroup K¢ of type GU;(3) 1S3 in GU3(3), and hence is not max-
imal. There is a single class of groups K in SU3(3), and it is straightforward
to check that K contains a single class of subgroups isomorphic to H, so by
Proposition 1.3.10 H does not extend to a novel maximal subgroup.
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We may assume from now that ¢ > 3. Assume, by way of contradiction,
that H < K < SUj3(q), where K is maximal amongst the geometric subgroups
of SU3(¢) and is not of the same type as H. By Proposition 1.12.2, the groups
SUs(qo) and Q5(q) are absolutely irreducible, so K ¢ 4. Furthermore, if ¢ > 3
then SU3(qo) and 24(¢) have no non-absolutely irreducible normal subgroups
of index 3, so K ¢ €5.

If ¢ is not an odd prime power of 2 then H is insoluble, and H> = SUjz(qo)
or Q5(q). For these q it follows immediately that K ¢ 65 U 6. If ¢ is a proper
power of 2 then 65 = @, so assume that K € %5. Then K is of shape (¢+1)2.S3,
and so | K| is not divisible by 4, unlike |SU3(2)], a contradiction.

It follows from Lemma 2.3.28 that K & %5, whilst 65 = @. ]

Recall Definition 2.2.13 of the %s-subgroups.

Proposition 3.2.5 Let n = 3 and let H be a 6g-subgroup of Q). Then H is
mazximal amongst the geometric subgroups of Q.

Proof Suppose, by way of contradiction, that H < K < €, where the group
K is maximal amongst the geometric subgroups of €2 and is not of the same
type as H.

If €5 # @, then either ¢ = p = 1 mod 3 and @ = SL3(p), or ¢ = p = 2 mod 3
and Q = SU;(p). By Table 2.9, 312.Qs < H < 3'72.SLy(3). Let R be the
extraspecial normal subgroup of H, so that R = 3'*2 and R is absolutely
irreducible.

Working in SL3(7), it is straightforward using MAGMA (file Chap3calc) to
check that the second derived group of 3'72.Qg contains R, so K & €, U%;. If
K € %5 then K preserves a decomposition into three subspaces, so the second
derived group of K is reducible, a contradiction. Recall from Definition 2.2.13
that ¢" is the smallest power of p for which there exist cube roots of unity, so
K ¢ ©5. There is a unique type of %s-subgroup, so K & 6. If 65 # @ then
Q = SL3(p), and so by Table 2.11 the only %g-subgroup K is 3 x SO4(p). Now,
H' contains Z(SL3(p)) = 3, whilst K’ has trivial center, so K ¢ 6s. O

Recall Definition 2.2.17 of the %s-subgroups.

Proposition 3.2.6 Let n = 3 and let H be a 63-subgroup of Q). Then H is
mazximal amongst the geometric subgroups of €.

Proof It s # @, then Q = SL3(q) with ¢ > 2. Assume, by way of contra-
diction, that H < K < SL3(gq), where K is maximal amongst the geometric
subgroups of SL3(¢) and is not of the same type as H.

We deal first with ¢ € {3,4}, where H is soluble. If ¢ = 3, then the group
H = S04(3) = Sy (and recall from Proposition 2.3.6 that H is equal to the
unique %s-subgroup, but is considered under %3). If ¢ = 4 then H = SU;3(2).
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Since ¢ < 4 and n = 3, the group K € %1 U %3 U %5. Now, H is absolutely
irreducible by Proposition 1.12.2, so K ¢ %). Furthermore |H| does not divide
ITL1(¢%)|, so K ¢ €. Finally, if K € %5 then ¢ = 4, but |3 x SL3(2)| is not
divisible by |H].

We therefore assume that ¢ > 5, so that H> = SU3(¢'/?) or Q4(q). The
group H® is absolutely irreducible by Proposition 1.12.2 so K & €1 U %3.
Furthermore, K ¢ %5 U %5 because H is insoluble.

Consider next Class %5. If H is unitary then, by Proposition 1.12.7, all
elements of F, occur as traces of elements of H*, so K ¢ 65. The group Q5(q)
contains elements whose trace lies in no proper subfield of I, by Lemma 1.12.8,
so again K ¢ 6.

Finally, since we have [Q;(q)| = (q_ll o) ¢*(q—1)(g+1), whilst [SUs(¢'/?)| =
g2 (q—l)(q3/ 2+1), Lagrange’s theorem shows that neither quasisimple classical
group can contain the other, so K ¢ %5. O

3.3 Dimension 4

In dimension 4 we find Cases L, S and U, by Definition 1.6.20. We assume
throughout this section that the groups in Case S do not involve a graph
automorphism; that is, they are subgroups of PCT'Sp,(q) or CI'Sp,(¢), and so
Aschbacher’s Theorem applies: we will consider the graph automorphism in
Chapter 7. In Case S we also assume that ¢ > 2 as Sp,(2) is not quasisimple.
Classes ¢4 and 67 are empty.

Recall Definition 2.2.1 of the %) -subgroups, and Definition 2.3.5, of standard
reducible behaviour.

Proposition 3.3.1 Let n =4. Then Q has standard reducible behaviour.

Proof This is immediate from Propositions 2.3.1, 2.3.2 and 2.3.4: note that
there are no stabilisers of non-degenerate subspaces in Case S. O

Recall Definition 2.2.3 of the %5-subgroups. If H is a %5-subgroup in dimen-
sion 4 then one of the following holds: Q = SL4(¢q) and H is of type GL1(q) 1S4
or GLa(q) 1 Sa; © = SUy(q) and H is of type GU;(q) 1 S4 or GUs(g) 1 Sy or
GL2(q?).2; Q = Spy(q) and H is of type Spy(q) 1 S2 or GLz(q).2, with ¢ odd in
the latter case.

Proposition 3.3.2 Let n = 4, let H be a 65-subgroup of §, preserving a
decomposition into four subspaces, let G be almost simple with socle Q, and
let Hg be the corresponding €a-subgroup of G. Then H is maximal amongst
the geometric subgroups of Q0 if and only if either Q = SL4(q) and ¢ > 7, or
Q = SU4(q) and q # 3. If Q = SL4(q) and g < 4 then Hg is not mazximal in
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G. If Q = SL4(5) then Hg is mazximal amongst the geometric subgroups of G
if and only if G € L4(5).(62,7). If Q = SU4(3) then Hg is mazimal amongst
the geometric subgroups of G if and only if G £ Uy(3).(62, ¢).

Proof The exceptions in Case L when g < 4 follow immediately from Propo-
sition 2.3.6, so we will assume that ¢ > 5 in Case L. Assume that H < K < Q,
where initially we will assume K is maximal amongst the geometric subgroups
of 2 and is not of the same type as H.

It follows from Lemma 2.3.7 (vi) that K ¢ 6, U %5 and H' is irreducible.
If K € %, then K is of type GL§IE () 1S or GLa(¢?).2, so K’ is reducible, a
contradiction. Class €, is empty as n = 4.

Consider Class 65. In Case L, let a € F¥. In Case U, let a be any (¢ —1)th
power in ]FZQ. It is straightforward to write down a matrix in H’ with trace «
as a product of commutators: the first commutator is a diagonal matrix with
one entry equal to «, and the second a 3-cycle which moves all other non-zero
entries off the diagonal. Thus in Case L H’ contains elements of all traces in
Fy, so K & €5, and in Case U the traces of elements of H' form a set of size
at least ¢ + 1 (since H' also contains elements of trace 0), and hence do not lie
in any proper subfield of Fg 2. Thus K ¢ %5.

If K € % then ¢ is an odd prime, |K| = 23040 if ¢ = +3 mod 8, and
|K| = 46080 if ¢ = +1 mod 8. In Case L, |H| = 24(q — 1)3, so |H| > |K]|
for ¢ > 11, and if ¢ € {3,7,11} then ¢ = @. If ¢ = 5 then one may check,
using MAGMA (file Chap3calc) that there is a (proper) containment H < K
and that K contains a unique conjugacy class of subgroups of type H. So
the containment extends to the normaliser of the SLy(5)-class of K in I'Ly(5).
That is, H.(62,7) < K.{(§%,7) < L := SL4(5).(6%,7). There are two classes of
%s-subgroups in SL4(5), interchanged by 4§, so if G is almost simple with socle
L4(5), and is not a subgroup of L, then Gy is not contained in Gg. In Case
U, |H| =24(q+1)3, so |H| > | K| for ¢ > 7. If ¢ = 3 then, as for ¢ = 5 in Case
L, one may check directly (file Chap3calc) that H is properly contained in K,
and that the group Ly in L := Uy(3).(6%, ¢) is contained in L. There are two
classes of €s-subgroups in SU4(3), interchanged by 0, so if G is almost simple
with socle Uy(3), and is not a subgroup of L, then Gy € Gk. If ¢ = 5 then
%s = 9, and if ¢ = 7 then |H| does not divide | K]|.

Class €7 is empty as n = 4, and K ¢ % by Lemma 2.3.12 (ii).

In SL4(5) and SU4(3) we have only found one type of group in Class €;
for 1 < ¢ < 8 that (properly) contains H, so in extensions where this contain-
ment does not extend the group of type H is maximal amongst the geometric
subgroups. O

Proposition 3.3.3 Let n = 4, let H be a Ga-subgroup of ) preserving a
decomposition into two subspaces, let G be almost simple with socle 0, and let
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H¢ be the subgroup of G of the same type as H. In Case S, assume that q > 2.
Then H is mazimal amongst the geometric subgroups of Q1 if and only if ¢ > 3
or one of the following holds:

(i) Q= SU4(3) and H is of type GUs(3) 1 Sz;
(i) Q= Sp,(3) and H is of type Spy(3) 1 Sa;

If H is not maximal in ) then Hg is maximal amongst the geometric subgroups
of G if and only if one of the following holds: Q@ = SL4(3) and G € L4(3).(7);
or Q = SU4(3), the group H is of type GL2(9).2 and G £ U4(3).(62, ).

Proof Assume that H < K < 2, where we assume in the first instance that
K € %; for 1 < i < 8 and is not of the same type as H. It is immediate from
Lemma 2.3.7 (iii) that K & %;.

We deal first with ¢ < 3. The @-subgroup of SL4(2) is shown in Proposi-
tion 2.3.6 to be non-maximal, and not to extend to a novelty.

We next consider SLy(3), so that |H| = 2304. Order considerations show
that K ¢ %5 U €5. Classes 64, 65 and % are empty. A MAGMA calculation
(file Chap3calc) shows a copy of H is a proper subgroup of the standard copy
K of the group of type Sp,(3), so H is not maximal amongst the geometric
subgroups of SL4(3). Modulo an inner automorphism of Sp,(3), the automor-
phism + centralises the standard copy of Sp,(3) (and hence H). However, there
are two classes of groups K, interchanged by §, whilst there is a single class of
groups H. Since we have now considered all groups in Class €; for 1 < i < 8,
we conclude that Hpgp,(s) is maximal amongst the geometric subgroups of
PGL4(3).

We next consider SU4(2). The group of type GU3(2) ! Sz is considered in
Proposition 2.3.6, so let H be of type GLa(4).2, so that H = A5:2. A straightfor-
ward MAGMA calculation (file Chap3calc) shows that H is properly contained
in the subfield group K of type Sp,(2). Both H and K are centralised by ¢ so
H does not extend to a novelty.

Next consider SU4(3), so that H is of type GUs2(3) 1 Se and order 4608,
or type GL2(9).2 and order 2880: since the larger group is soluble and the
smaller is insoluble, neither contains the other. Order considerations show that
K is not of type GUy(4) 1Sy, so K & %,. Classes €3 and ¢, are empty. If
K € %5 then, consulting Table 2.8, order considerations imply that H = (4 o
SL2(9)).2 and K = 4 0 Sp,(3). A MAaGMA calculation (file Chap3calc) shows
that there is a proper containment H < K and that K has a unique conjugacy
class of subgroups of the same type as H. So the containment extends to the
normaliser of the SU4(3)-class of K in CI'U4(3). That is, HT < K.T for
T := SU4(3).(62, ¢). There are two classes in SU4(3) of groups of type Sp,(3)
and one of groups of type GL3(9).2, so the containment does not extend beyond
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T.1f K € %5 and H is of type GU3(3)1S2 then H has index 5 in K, by Table 2.9,
which is impossible. Thus H is of type GL2(9).2, and has index 8 in K, with
K = (4024 Ag. The Ag quotient of K acts irreducibly on the 2% layer, so
K has no subgroups of index 8, a contradiction. Classes €7 and %3 are empty.

Finally, consider Sp,(3), so that H is of type Spy(3) 1 Se and order 1152,
or type GL2(3).2 and order 96. The group of type GL2(3).2 can be checked
using MAGMA (file Chap3calc) to be non-maximal, and its extension by 0 is
also not maximal. So let H be of type Spy(3) 1 S2. Order considerations imply
that K & %3 U %g, and Classes 6y, 65, 67 and 65 are empty, so H is maximal
amongst the geometric subgroups of Sp,(3).

We therefore assume for the remainder of the proof that ¢ > 3 so that, in
particular, H is insoluble. Recall from the beginning of the proof that K ¢ 4.

Assume that K € %5. If K preserves a decomposition into four subspaces,
then K is soluble, a contradiction, so K preserves a decomposition into two
subspaces, and €2 # SL4(q). One of H or K preserves a decomposition into non-
degenerate subspaces, and the other into totally singular subspaces. Lagrange’s
theorem applied to H> and K*° eliminates both possibilities when = SUy(q),
so let © = Sp,(q). If H is of type Spy(g) 12 then |H*| > |K°|, so assume that
H is of type GLa(g).2. Let the subspaces preserved by K be W; and Ws. By
Lagrange’s theorem, H is not contained in L2 with L a parabolic subgroup
of Spy(q), so for at least one ¢ € {1,2} the restriction of the stabiliser in H of
W; to W; must act irreducibly on W;. But the irreducible H°°-submodules are
all isomorphic to Vi, and hence are totally singular, a contradiction.

If K € €3 then Q = SLT(q). First assume that H> 2 SLy(q) x SLa(q). If K
is of type GLy(¢2).2 or Spy(g?).2, then SLa(g)® < SLa(g2), which contradicts
Lagrange’s theorem, so K is of type GUz(q).2. However, then SLa(q)* < SLa(q),
a contradiction. Thus H is of type GLa(q).2, and so ¢ is odd. If K is of type
Spy(¢?).2, then | K| = 2¢%(¢* — 1), whereas |H| = 2¢(q —1)(¢*> — 1), a contradic-
tion since g > 3. If K is of type GUs(q).2 then K is SLy(¢) acting irreducibly,
but H* is SLy(q) acting reducibly, a contradiction.

Class € is empty when n = 4. By Lemma 2.3.10, if K € %5, then the
group Q = SUy(q) and H = SLy(¢?).(q — 1).2. If K is of type GOff(q), then ¢
is odd and K is Q (q) = SLa(q) o SLa(q) or Q; (q) = La(g?), a contradiction.
A standard argument using traces shows that K is not of type GUy4(qo), so
K = Sp,(q).(g + 1,2). Since (¢* — 1) | |[H*°|, the group H> is not contained
in a %;-subgroup of Sp,(q). Since H> = SLy(q?) is reducible in its action on
Fgg, this implies that H* is not absolutely irreducible in its action on the
natural module for Sp,(q), so H* is not an .#-subgroup of Sp,(¢). Examining
composition factors of H shows that if H* < L* for a geometric subgroup L
of Sps(q) then L is contained in a member of 43, but |H|/(¢ + 1,2) is larger
than the orders of the @3-subgroups of Sp,(¢), a contradiction.
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If K € % then ¢ is an odd prime, and the only non-abelian composition
factor of K is As or Ag, a contradiction unless |La(q)| divides |Ag|. Thus the
group §2 = SLy(5). If H is of type GLa(5) 1 S2 or Spy(5) 1 S then H contains
two composition factors isomorphic to As, but |As|?> > |Ag|. If H is of type
GL3(5).2 then |H| = 960, and hence has index 2 in K. However, K is perfect,
a contradiction.

Class %7 is empty because n = 4, and K ¢ %3 by Lemma 2.3.12. O

Recall Definition 2.2.5 of the %3-subgroups. Let H be a %3-subgroup in
dimension 4. Then one of the following holds: Q = SL4(¢) and H is of type
GL2(q?); Q = Sp,(q) and H is of type Spy(q?) or type GUs(q), with ¢ odd in
the latter case. Note in particular that Class €3 is void in SU4(q).

Proposition 3.3.4 Let n = 4 and let H be a €3-subgroup of Q. Then H is
maximal amongst the geometric subgroups of Q0 if and only if H is not of type
GU,(3) in Spy(3). If H is not mazimal in ) then H does not extend to a novel
mazimal subgroup.

Proof We consider the non-maximal example, where H 22 GU(3).2 < Sp,(3).
The group of type GUz(3) in CSp,(3) normalises an extraspecial subgroup of
shape 2'4, and so is properly contained in a %s-subgroup K. There are unique
classes of groups H and groups K in Sp,(3), and K contains a unique class of
groups isomorphic to H, so H does not extend to a novelty.

For the remainder of this proof, we therefore assume that if H is of type
GUaz(q) then ¢ > 5. Assume, by way of contradiction, that H < K < €, where
K is maximal amongst the geometric subgroups of 2 and is not of the same
type as H.

If K € €, then by Lemma 2.3.14 H is of type GUsx(¢) in Sp,(q), so that
|H| =2q(q+1)(¢*> — 1) and q is odd. Consulting Tables 2.2 and 2.3, there are
two types of %;-subgroup in Sp,(q), and both have p’-order (q — 1)(¢® — 1).
Therefore, K ¢ 6.

By Lemma 2.3.16, if K € %, then H is of type GUy(3).

It follows from Lemma 2.3.17 that if K € %3, then H is of type GUs(q) in
Sp,(q), so that K is of type Spy(¢?). The order of K is 2¢%(¢* — 1), and the
order of H is 2¢(q + 1)(¢® — 1), contradicting Lagrange’s theorem.

Class %y is empty. It is immediate from Lemma 2.3.19 that K & %5.

Suppose next that K € %s. Then ¢ is odd, and if Q@ = SL4(¢q) then K is
of type 2274.Sp,(2), and if Q = Sp,(q) then K is of type 2:7*.Q; (2). In Case
L the only non-abelian composition factor of K is Ag, which is smaller than
La(q?) for ¢ > 3. If ¢ = 3 then %5 is void in Case L. In Case S, the only
non-abelian composition factor of K is Aj, which is smaller than Ly (g?) for ¢
odd, and smaller than La(q) for ¢ > 5. We have already considered GUy(3), so
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without loss of generality H = GU(5).2. Then |H| is divisible by 9, whilst | K|
is not, a contradiction.
Class %7 is empty, and it follows from Lemma 2.3.20 that K ¢ %6s. O

Recall Definition 2.2.11 of the @5-subgroups.

Proposition 3.3.5 Letn =4 and let H be a €5-subgroup of Q. If Q = SU4(3)
and H s of type Qj{(?)), then H is not mazximal and does not extend to a novel

mazximal subgroup. Otherwise, H is mazimal amongst the geometric subgroups
of Q.

Proof 1In Cases L and S this is immediate from Proposition 2.3.29, and it is
also immediate if H is of type GU,(go) or Sp,,(¢) in Case U. Thus, without
loss of generality, 2 = SU4(q), the group H is of type G;Oflt (¢), and ¢ is odd.

Assume first that ¢ = 3 and H is of shape SO} (3).[4], which can be written
as (4 0 Qg o Qg).(32.[4]), of order 2304 = 28.3%. Here, H has a characteristic
symplectic-type subgroup S = Oy (H) of order 224, so H is properly contained
in a member K of %gs. There are two classes of @s-subgroups in SU4(3), and also
two classes of groups of type GO} (3). In each case the classes are interchanged
by the diagonal automorphism &, and normalised by (¢, §2) = 22. For extensions
G of €, the group K¢ is defined as the normaliser of S, so the fact that S is
characteristic in H shows that H does not extend to a novelty. We assume for
the rest of the proof that H is not of type GOJ (3).

Assume, by way of contradiction, that H < K < , where K is maximal
amongst the geometric subgroups of 2 and is not of the same type as H. Then
H® is isomorphic to one of QF (¢) = 2.Ly(q)* (¢ > 3 odd) or Q} (¢) = La(¢?)
(¢ odd).

The group H is absolutely irreducible, by Proposition 1.12.2, so the group
K ¢ 6€1U%,U%5. Classes 6y, 67 and g are empty. It follows from Lemma 2.3.28
that K & %5.

Suppose finally that K € %5, so that p = ¢ = 3 (mod 4). Then by Table 2.9,
the group K’ is isomorphic to (4 02'*4).Ag. For odd ¢ > 3 the groups 2.Ls (q)2
and Ly (¢?) cannot be embedded into a group whose only non-abelian composi-
tion factor is Ag. This leaves only H of type GO, (3), for which H 2 4 x Ag 23.
However, a MAGMA calculation (file Chap3calc) shows that the only subgroups
of K of order 2|Ag| are of shape SL(9), whereas H contains Ag'2 2 M. O

Recall Definition 2.2.13 of the %s-subgroups.

Proposition 3.3.6 Let n = 4 and let H be a %g-subgroup of Q. Then H is
mazximal amongst the geometric subgroups of €.

Proof This is immediate from Proposition 2.3.31. O
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Recall Definition 2.2.17 of the 6g-subgroups, and Definition 1.13.2 of z; ;.

Proposition 3.3.7 Let n = 4 and let H be a 63-subgroup of Q. Then H is
maximal amongst the geometric subgroups of 2.

Proof 1f €5 # @ then Q = SL4(q) or Sp,(q), and we assume that ¢ > 2 in
Case S as Sp,(2) is not quasisimple. Suppose, by way of contradiction, that
H < K < Q where K is maximal amongst the geometric subgroups of 2 and
is not of the same type as H.

We deal first with H = SO, (3).2 = 21%2+2.32.22 < S[,4(3), since this is
the only occasion when H is soluble. The group H' = Qf(3) is absolutely
irreducible by Proposition 1.12.2, so K ¢ %1 U %3, and nor does K stabilise a
decomposition into two subspaces in %>. We note that ¢4 U 65 U 65 U 67 = @.
The %5-subgroup is not maximal, by Proposition 2.3.6. This leaves only %%,
for which we note that |[SO, (3).2] is not divisible by |H|, whilst Lemma 1.12.4
shows that Sp,(3) = K’ does not contain H'.

After dealing with this exception, either Q = SL4(¢) and H* is one of
Sp4(q), SU4(q"/?) or Qf(q), or Q = Sp,(2°), and H* is Q5 (¢). By Proposi-
tion 1.12.2 the group H> is absolutely irreducible, so K ¢ € U %> U %3. Class
¢, = @, and K ¢ 65 as, by Proposition 1.12.7, H* contains elements of all
traces in F,, contradicting Lemma 2.2.12.

Suppose that K € %. Since 45 = @ for ¢ even, Q = SL4(q), and so
¢ = 1 mod 4 and ¢ is prime. The only non-abelian composition factor of K is
Ag, but unless ¢ = 5 and H>® = Qj{ (5) the group H* has larger non-abelian
composition factors than Ag, a contradiction. In this exceptional case, we note
that Ly(5)” is larger than Ag.

Finally, suppose that K € %g. If H is of type GUy4(¢"/?) then |H| is divisible
by some z, 3, contradicting Lagrange’s theorem. If H is of type Sp,(¢) then |H|
is divisible by some z, 4, so K is of type GO} (¢q), contradicting Lemma 1.12.5.

Suppose next that H is of type GOJ (¢). If K is of type GUy(q'/?) then |H]|
is divisible by a higher power of 2,12 , than |K|. If K is of type € (¢q) then
|H| does not divide |K|. The group K is not of type Sp,(¢) by Lemma 1.12.4.

If H is of type GOy (¢) then |H| is divisible by z,.4, so K is of type Sp,(q),
again contradicting Lemma 1.12.4. O

3.4 Dimension 5

By Definition 1.6.20, when n = 5 we find Cases L and U only. Recall Def-
inition 2.2.1 of the %;-subgroups, and Definition 2.3.5 of standard reducible
behaviour.
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Proposition 3.4.1 Let n=5. Then Q has standard reducible behaviour.

Proof This is immediate from Propositions 2.3.1, 2.3.2 and 2.3.4. O
Recall Definition 2.2.3 of the %5-subgroups.

Proposition 3.4.2 Let n = 5 and let H be a 65-subgroup of Q. Then H
18 maximal amongst the geometric subgroups of Q if and only if one of the
following holds: Q@ = SLs(q) and g > 5; Q = SUs(q). If H is not maximal then
H does not extend to a novel mazximal subgroup.

Proof This follows immediately from Proposition 2.3.13. O
Recall Definitions 2.2.5, 2.2.11, 2.2.13 and 2.2.17.

Proposition 3.4.3 Let n =5 and let H be a 65-, €5-, €5~ or Es-subgroup
of Q. Then H is mazrimal amongst the geometric subgroups of §2.

Proof This follows immediately from Propositions 2.3.21, 2.3.29, 2.3.31 and
2.3.32. O

Classes €4 and 67 are empty.

3.5 Dimension 6

By Definition 1.6.20, when n = 6 we find Cases L, U and S. Recall Def-
inition 2.2.1 of the %;-subgroups, and Definition 2.3.5 of standard reducible
behaviour.

Proposition 3.5.1 Let n = 6. Then Q has standard reducible behaviour.
Proof This is immediate from Propositions 2.3.1, 2.3.2 and 2.3.4. O

Recall Definition 2.2.3 of the %%-subgroups. If H is a %-subgroup and
n = 6, then one of the following holds: Q2 = SLg(¢) and H is of type GL;(¢)?Ss,
GLQ((]) ?Sg or GLg(q)ZSQ; Q= SUﬁ(q) and H is of type GUl(q) ZSG, GUQ((]) ZSg,
GUs(q) 1Sz or GL3(¢?).2; Q = Spg(q) and H is of type Spy(q) 1S3 or GL3(q).2,
with ¢ odd in the latter case.

Proposition 3.5.2 Let n = 6 and let H be a 65-subgroup of ), preserving
a decomposition into siz subspaces. Then H is mazrimal amongst the geometric
subgroups of Q if and only if Q = SUg(q) or q = 5. If H is not mazimal then
H does not extend to a novel maximal subgroup.
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Proof The exceptions when ¢ < 4 in Case L are shown in Proposition 2.3.6,
so assume that ¢ > 5 in Case L

Suppose, by way of contradiction, that H < K < €2, where K is maximal
amongst the geometric subgroups of €2 and is not of the same type as H.

It is immediate from Lemma 2.3.7 (iv),(v) that K ¢ % U %3, and from
Lemma 2.3.8 (i) that K & %5.

Assume that K € €. By Lemma 2.2.4 (ii) the subgroup L of H is perfect,
so L < K*. In Case L, the order of K> is ¢*(¢> — 1)%(¢® — 1), whilst |L]| is
divisible by (¢ — 1)°. Since ¢ > 5 this contradicts Lagrange’s theorem. In Case
U, the order of K= is ¢*(¢*> — 1)%(¢® + 1), whilst |L| is divisible by (¢ + 1)°.
This contradicts Lagrange’s theorem.

It follows from Lemma 2.3.10 (i) that K ¢ %5. Classes 65 and €7 are empty.
It follows from Lemma 2.3.12 (ii) that K ¢ 6s. O

Proposition 3.5.3 Let n =6 and let H be a Ga-subgroup of Q, preserving a
decomposition into three subspaces. Then H is maximal amongst the geometric
subgroups of Q0 if and only if ¢ # 2. If ¢ = 2 then H does not extend to a novel
maximal subgroup.

Proof The result for ¢ = 2 is immediate from Proposition 2.3.6. We first
assume that ¢ = 3. By Lemma 2.3.7 (iv), the group H is irreducible. In Cases
L, U and S, a short MacGMA calculation (file Chap3calc) shows that the only
other subgroups of 2 that are maximal amongst the geometric groups and have
order divisible by |H| are reducible, a contradiction.

Suppose, by way of contradiction, that H < K < €2, where K is maximal
amongst the geometric subgroups of 2 and is not of the same type as H. We
now assume that ¢ > 4, therefore H> = SLg(q)?’. By Lemma 2.3.7 (iv), H is
irreducible, so K ¢ 4.

We show next that K ¢ %,. Suppose first that K is of type GLf(q) 1 S6.
The only non-abelian composition factor of K is Ag, however |L2(q)3| is greater
than |Agl, a contradiction. Next, suppose that K is of type GL3i (¢)1S2, so that
K> = SL;}IE (q)Q. This contradicts Lagrange’s theorem, as ¢ > 4. Finally, suppose
that K is of type GL3(¢").2, so that Q = SUg(q) or Spg(gq) and K = SL3(g").
This contradicts Lagrange’s theorem as q > 4.

Suppose next that K € %3. The order of H* does not divide |SLa(q%)|,
so K is semilinear of degree 2. Therefore K has a non-absolutely irreducible
subgroup of index 2. However, the largest non-absolutely irreducible subgroup
of H has index 3, a contradiction.

We show next that K ¢ €. Suppose otherwise, then K> = SLs(q) xSL3(q)
in Case L, K* = SLjy(q) x SU3(q) in Case U, and K> 2= Sp,y(q) x 23(¢) in
Case S. Since H < K, there are homomorphisms ¢; : H*® — SLa(g), and
¢y - H® — SLi(q) or Q4(q), and ker(¢;) N ker(¢s) < Fy.. It is clear that
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ker(¢1) contains at least two copies of SLa(g), thus at least two commuting

copies of SLa(q) do not lie in ker(¢2), which contradicts Lagrange’s theorem.
The fact that K ¢ % follows from Lemma 2.3.10 (ii). Classes %5 and %7

are empty. By Lemma 2.3.12 (i), K & %5. O

Proposition 3.5.4 Let n =6 and let H be a G5-subgroup of S, preserving a
decomposition into two subspaces. Then H is maximal amongst the geometric
subgroups of €.

Proof Suppose, by way of contradiction, that H < K < €2, where the group
K is maximal amongst the geometric subgroups of 2 and is not of the same
type of H.

We first deal with SUg(2) as a special case. If H is of type GU3(2) Sz then
37 divides |H|, and does not divide the order of any other geometric group. If H
is of type GL3(4).2 then the only other members of & for 1 < i < 8 with order
a multiple of |H| are the €;-subgroup 2°:SL3(4) and the ¥5-subgroup of type
Spe(2). The group H is irreducible by Lemma 2.3.7 (iii), and is not contained
in a subfield group by Lemma 2.3.10 (iii).

So assume in the rest of the proof that 2 # SUg(2). Lemmas 2.3.7 (iii) and
2.3.8 (ii) show that K ¢ & U %a.

Next we establish that K & %5. Otherwise, if H is of type GLgt(q) !Ss then
€ x Qy is isomorphic to a subgroup of SLg/,.(¢") for € {2,3}, which violates
Lagrange’s theorem. Therefore H is of type GL3(¢?).2 or GL3(g).2. In Case U,
H*> =2 SL3(q?), which is not a subgroup of K> = SU,(¢*), by Theorem 1.11.5.
In Case S, H*® = SL3(q), and K is isomorphic to SLa(¢?) or SU3(q), neither
of which contains H°.

It follows from Lemmas 2.3.9, 2.3.10 (ii),(iii) and 2.3.12 (i) that K & €4, 65,
and s, respectively. Classes 6s and %7 are empty. O

Recall Definition 2.2.5 of the @3-subgroups. If n = 6 and H is a €3-subgroup
of 2, then one of the following holds: = SLg(q) and H is of type GLa(g3) or
GL3(¢%); Q = SUg(q) and H is of type GUa(q®); Q = Spg(q) and H is of type
Spy(¢3) or GUs(q), with g odd in the latter case.

Proposition 3.5.5 Let n =06, let H be a €3-subgroup of 2, let G be almost
simple with socle Q, and let Hg be the corresponding €3-subgroup of G. Then
H is mazimal amongst the geometric subgroups of Q0 if and only if 2 # SUg(2).
If H is not maximal then Hg is maximal amongst the geometric subgroups of
G if and only if G is not contained in a conjugate of Ug(2).(9).

Proof Suppose that H < K <  where K is maximal amongst the geometric
subgroups of ) and is not of the same type as H. We will prove that this implies
that Q = SUg(2), and deduce that there is a unique type for K in this case.
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It is immediate from Lemmas 2.3.14, 2.3.16 and 2.3.17 that K ¢ %1, %>,
and %3, respectively. If K € %}, then it follows from Lemma 2.3.18 and the
possible types in Case U that H>® 22 SLy(¢%). In Cases L and U, the group
K> 2 SLy(q)™ x SLi(g), by Table 2.7. Since Ly(¢?) is bigger than Ly(q), the
image of H* in SLy(q) is trivial. Therefore H> < 1® SLi (¢), and so H™ is
reducible, contradicting Lemma 2.2.6. A similar but easier argument yields a
contradiction in Case S. By Lemma 2.3.19, if K € %5 then Q = SUg(2), which
we consider in the next paragraph. Classes %5 and %7 are empty. We proved in
Lemma 2.3.20 that K ¢ 5.

So let 2 = SUg(2), so that H = 3 x Lo(8):3. Then H is equal to the %5-
subgroup of the %5-subgroup of type Spg(2), and hence is not maximal. Note
that H is not properly contained in any other type of geometric subgroup, since
SUg(2) has only one type of €5-subgroup. There are three classes of groups of
type Spg(2) in Ug(2), on which Out Ug(2) = (4, ¢) acts as S3. Since, modulo
scalars, H and K can be written over o, they are both centralised modulo
scalars by ¢, so if G < SUg(q).(¢) then H is not maximal. However, there is a
unique SUg(2)-conjugacy class of groups of type GUz(¢?), so if G € SUg(q).(¢)
then H¢ is maximal amongst the geometric subgroups of G. O

Recall Definition 2.2.9 of the %j-subgroups. If H is a %j-subgroup in di-
mension 6 then one of the following holds: © = SLg(q) and H is of type
GL2(q)®GL3(q); 2 = SUg(q) and H is of type GUz2(q) @ GUs(q); or Q = Spg(q)
with ¢ odd, and H is of type Spy(q) ® GO5(q).

Proposition 3.5.6 Let n =6 and let H be a €4-subgroup of Q. Then H is
mazximal amongst the geometric subgroups of 1 if and only if Q = SLg.t(q) and
q>2, or Q=Sp4(q) and ¢ > 3. If H is not mazimal then H does not extend
to a novel maximal subgroup.

Proof The listed exceptions are all considered in Proposition 2.3.22, where it
is shown that their behaviour is as stated, so assume for the rest of this proof
that Q # SLZ(2) or Spg(3).

Suppose, by way of contradiction, that H < K < €, where K is maximal
amongst the geometric subgroups of €2 and is not of the same type as H. It is
immediate from Lemma 2.3.23 that K & %, U %5.

Suppose that K € %5, preserving a decomposition into ¢ subspaces of di-
mension m = 6/t. It follows immediately from Lemma 2.3.24 that t = 6 or
q = 3, hence Q = SL6i(q). If t = 6 then the only non-abelian composition factor
of K is Ag. However |Li(¢)| > |Ag| since ¢ > 2. Thus ¢ = 3 and 2 < t < 3.
If t = 2 then K’ is reducible. However, SLy(3)" and SL§(3)/ are irreducible,
so H' is irreducible by Lemma 2.2.10. Therefore t = 3. The group K is re-
ducible, fixing three subspaces of dimension 2. The groups SL3(3) and SU3(3)
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have no representations in defining characteristic in dimension less than 3 by
Theorem 1.11.5, a contradiction.

There is a unique type of tensor decomposition, so K ¢ %,. It follows from
Lemma 2.3.25 that K ¢ %5. Classes % and %~ are empty. It follows from
Lemma 2.3.26 that K ¢ %3, so we are done. O

Recall Definition 2.2.11 of the %5-subgroups.

Proposition 3.5.7 Let n = 6 and let H be a €5-subgroup of Q). Then H is
mazximal amongst the geometric subgroups of €.

Proof This follows immediately from Proposition 2.3.29. O
Classes 65 and %7 are empty. Recall Definition 2.2.17 of the @g-subgroups.

Proposition 3.5.8 Let n =6 and let H be a 63-subgroup of Q). Then H is
mazximal amongst the geometric subgroups of Q.

Proof This follows immediately from Proposition 2.3.32. O

3.6 Dimension 7

By Definition 1.6.20, when n = 7 we find Cases L, U and O°. Recall Def-
inition 2.2.1 of the %;-subgroups, and Definition 2.3.5 of standard reducible
behaviour.

Proposition 3.6.1 Let n="7. Then Q has standard reducible behaviour.
Proof This is immediate from Propositions 2.3.1, 2.3.2 and 2.3.4. O
Recall Definition 2.2.3 of the %,-subgroups.

Proposition 3.6.2 Let n = 7 and let H be a 65-subgroup of Q). Then H
18 mazimal amongst the geometric subgroups of Q if and only if one of the
following holds: Q = SLz(q) and ¢ = 5; Q@ = SU7(q); Q = Q(q). If H is not
mazximal in  then H does not extend to a novel mazimal subgroup.

Proof This follows immediately from Proposition 2.3.13. O
Recall Definitions 2.2.5, 2.2.11, 2.2.13 and 2.2.17.

Proposition 3.6.3 Letn =7 and let H be a 6€3-, €5-, €s- or Es-subgroup
of Q. Then H is mazrimal amongst the geometric subgroups of §2.

Proof This follows immediately from Propositions 2.3.21, 2.3.29, 2.3.31 and
2.3.32. O

Classes €4 and %7 are empty.
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3.7 Dimension 8

By Definition 1.6.20, when n = 8 we find Cases L, U, S and O~. The maximal
subgroups of all almost simple groups with socle QF (¢) are classified in [62].

Recall Definition 2.2.1 of the %;-subgroups, and Definition 2.3.5 of standard
reducible behaviour.

Proposition 3.7.1 Let n =38. Then Q has standard reducible behaviour.

Proof This is immediate from Propositions 2.3.1, 2.3.2, 2.3.3 and 2.3.4, unless
Q= Qg (q) and H is the stabiliser of a non-degenerate k-space Vi and its
orthogonal complement V5 for 2 < k < 4. We consider these three exceptions.
By Definitions 2.2.3, 2.2.9, 2.2.13, 2.2.15 and 2.2.17, Classes %5, ¢4, 6, 67 and
%5 are all empty.

Assume, in the first instance, that H < K < g (¢), where K is maximal
amongst the geometric subgroups of 25 (¢) and is not of the same type as H.
We shall deduce that ¢ < 3, and find just one possibility for K for each gq.

If K € ¢, then H preserves a proper non-zero subspace of V' other than
V1 and V5 and so, by Lemma 1.8.11, H cannot act irreducibly on both V; and
V. Now dim(V3) > 4 so H acts irreducibly on V5 by Proposition 1.12.2. The
matrices for H given in [46] show that H acts on V; as GO(V1), so (again by
Proposition 1.12.2) H acts irreducibly on V; unless k = 2, the form restricted
to V1 is of plus type, and ¢ < 3.

For ¢ = 2, notice that GO;(Z) 2 2 is reducible, and stabilises a non-singular
1-space. Thus PGOg (2) is contained in a subgroup of PGOg (2) of type Spg(2)
(but no other %3-group). Since Aut Qg (2) = PGOg (2), no extension of H is
maximal.

For ¢ = 3, notice that GOJ (3) = 22 is completely reducible, and stabilises
an orthogonal pair of non-degenerate 1-spaces. Thus PGOg (3); is contained in
two distinct subgroups K of PGOg (3) = Qg (3).(p) of type GO,(3) L GO,(3)
(but no other %;-groups). Now, d can be chosen to interchange the two non-
degenerate 1-spaces, whilst acting trivially on the 6-space stabilised by H, so
Hg < Hg if and only if G < PGOg (3).

Assume now that K € €3. Then K is of type GO (¢?) = La(q*), so unless
k = 4 then considering Q(V2) we get a contradiction to Theorem 1.11.5. Noting
that Ly (q?) does not contain (2,¢ — 1).La(q)® x Ly(¢2) completes this case.

Finally assume that K € %5, so that ¢ > 8 by Definition 2.2.11. Then H*°
contains (V) as a subgroup, acting naturally on Vo < V, where dim V3 > 4.
Thus by Proposition 1.12.7 and Lemma 2.2.12, K & %5.

Thus if H is not of type GO3 (¢) L GOg (q), we have shown that H is
maximal, and in these exceptional cases we have found a unique member of %;
for 1 <4 < 8 that contains H. Thus the maximality of H is as claimed. O
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Recall Definition 2.2.3 of the %5-subgroups. If n = 8 and H is a ¢»-subgroup,
then one of the following holds:

(i) © =SLg(q) and H is of type GL1(q) ¢ Ss, GL2(q) 1S4, or GL4(q) 1 Sa;
(ii) Q = SUg(q) and H is of type GU;(q) 1 Ss, GUa(q) 2 S4, GUys(q) 1 Sa, or
GL4(q?).2;
(iii) © = Spg(q) and H is of type Spy(q) 2 S4, Spy(q) 21 Se, or GL4(q).2, with ¢
odd in the latter case.

In particular, there are no %,-subgroups in g (q).

Proposition 3.7.2 Let n =8 and let H be a 6>-subgroup of 2, preserving a
decomposition into eight subspaces. Then H is mazximal amongst the geometric
subgroups of Q if and only if either Q = SLg(q) and q¢ = 5, or Q = SUg(q). If
H is not mazximal then H does not extend to a novel mazximal subgroup.

Proof The exceptions in Case L are considered in Proposition 2.3.6, so we
will assume that ¢ > 5 in Case L. Assume, by way of contradiction, that
H < K <, where K is maximal amongst the geometric subgroups of 2 and
is not of the same type as H.

It is immediate from Lemma 2.3.7 (iv),(v) that K ¢ % U%3. It follows from
Lemma 2.3.8 (i) that K ¢ %». Suppose that K € %, and note that H* has a
subgroup isomorphic to (¢ — 1)7 in Case L and (¢ + 1)7 in Case U. We check
that (¢£1)7 does not divide |[K*°| = ¢"(¢*> —1)?(¢>+1)(¢*—1)/(g+1,2), unless
Q = SLg(q) with ¢ < 3, which we have excluded. We proved in Lemma 2.3.10 (i)
that K € %5, and in Lemma 2.3.11 that K ¢ %g. Class %7 is empty. It follows
from Lemma 2.3.12 (ii) that K & %s. O

Proposition 3.7.3 Let n =8 and let H be a G5-subgroup of S, preserving a
decomposition into four subspaces. Then H is maximal amongst the geometric
subgroups of Q if and only if ¢ > 2. If g = 2 then H does not extend to a novel
mazximal subgroup.

Proof The statement for ¢ = 2 is immediate from Proposition 2.3.6, so we
assume that ¢ > 2. Assume, by way of contradiction, that H < K < €0, where
K is maximal amongst the geometric subgroups of € and is not of the same
type as H. Note that if ¢ > 3 then H> = SLy(q)".

It is immediate from Lemma 2.3.7 (iv) that K ¢ ;. Suppose that K € %3,
preserving a decomposition into ¢ subspaces, where ¢t € {2,8}. The derived
group of H is irreducible by Lemma 2.3.7 (vi), whereas if t = 2 then K’ is
reducible, a contradiction. So t = 8, 2 = SLgt(q) and the only non-abelian
composition factor of K is Ag. If ¢ = 3 then |H| does not divide |K|. If ¢ > 4
then |La(q)|* does not divide |Ag|, a contradiction, so K ¢ %a.

It is immediate from Lemma 2.3.7 (vi) that K ¢ %3, so suppose that K € €.
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If ¢ = 3 then |H| does not divide | K. If Q = SLE (¢) with ¢ > 3 then the group
Koo = SLg(q)oSleIE (q), contradicting Lagrange’s theorem. In Case S, ¢* divides
|H| but not |K|.

We proved in Lemma 2.3.10 (ii) that K ¢ %5 unless 2 = SUg(3), and we
check that in this case |H| does not divide the order of any €5-subgroup. Assume
next that K € %g, so that ¢ is an odd prime. Consulting Table 2.9 we see that
H is bigger than K for all ¢. If K € % then by Definition 2.2.15 Q = Spg(q)
with ¢ > 3, and K° is smaller than H*°, a contradiction. If K € %3 then, by
Definition 2.2.17 and Lemma 2.3.12 (i), & = SLg(3). It is straightforward to
check that if H is of type GL2(3) 1S4 then |H| does not divide the order of any
6s-subgroup. O

Proposition 3.7.4 Let n =8 and let H be a 62-subgroup of Q, preserving a
decomposition into two subspaces. Then H is mazrimal amongst the geometric
subgroups of €.

Proof Assume, by way of contradiction, that H < K < , where K is maximal
amongst the geometric subgroups of Q2 and is not of the same type as H.

It is immediate from Lemma 2.3.7 (iii) that if K € %} then ©Q = Spg(2) and
H is of type Sp,(2) 1 So. But, as the wreath product of an irreducible group
with a transitive permutation group, H is irreducible in this case also. It follows
from Lemma 2.3.8 (ii) that K & %5.

Assume that K € %3, so that by Definition 2.2.5 the group ©Q = SLg(q)
or Spg(q), and by Lemma 2.3.7 (vii) the decomposition is into non-degenerate
subspaces in Case S. In Case L, |[H*| = ¢'2(¢® — 1)*(¢* — 1)%(¢* — 1)?, whilst
|K>°| = ¢"2(¢* — 1)(¢® — 1)(¢® — 1), which contradicts Lagrange’s theorem. In
Case S, H is of type Sp,(q)1Sz, then |H®| = ¢8(¢*> —1)?(¢* —1)2. If K is of type
Sp4(q?).2 then |[K*| = ¢®(¢* — 1)(¢® — 1), whilst if K is of type GUy4(q) then
K| = ¢%(¢* — 1)(¢® + 1)(¢* — 1). Each choice of K> contradicts Lagrange’s
theorem.

Assume next that K € %), and recall the possibilities for K from Defini-
tion 2.2.9. For each choice of H and K we find that the non-abelian composition
factors of H are larger than the smaller non-abelian composition factor of K,
and that the product of their orders (or their order if there is only one) does
not divide the order of the larger composition factor of K.

It is immediate from Lemma 2.3.10 (ii),(iii) that K ¢ %5, so assume next
that K € %, so that ¢ is odd. The only non-abelian composition factor of K
is S6(2) or Og (2) = S4(3). For all odd ¢ these groups are smaller than La(q),
Us(q), and S4(¢)*, a contradiction.

If K € 67 then Q = Spg(q) and ¢ is odd, by Definition 2.2.15. The largest
composition factor of K is Ly(gq), a contradiction. We proved in Lemma 2.3.12 (i)
that K ¢ %s. O
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Recall Definition 2.2.5 of the %3-subgroups. Let n = 8, and let H be a
¢3-subgroup. Then one of the following holds: Q = SLg(q) and H is of type
GL4(q?); Q = Spg(q) and H is of type Sp,(¢?) or GUy4(q), with ¢ odd in the
latter case; Q2 = Qg (¢) and H is of type GO} (¢*). Note in particular that Class
%3 is empty in SUg(q).

Proposition 3.7.5 Let n = 8 and let H be a ¢3-subgroup of Q. Then H is
mazximal amongst the geometric subgroups of €.

Proof Suppose, by way of contradiction, that H < K < (), where K is maxi-
mal amongst the geometric subgroups of €2 and is not of the same type as H.
We proved in Lemma 2.3.14 that K ¢ %). Since H preserves a degree 2 field
extension, it follows from Lemma 2.3.16 that K € é5. We proved that K & 63
in Lemma 2.3.17. If K € %, then Q = Qg (¢) by Lemma 2.3.18, but Class ¢} is
empty in Qg (q), by Definition 2.2.9. We proved in Lemma 2.3.19 that K ¢ 6.

If K € %5 then by Definition 2.2.13 ¢ is odd and Q # Qg (¢). It is easy
to check that H has a non-abelian composition factor that is larger than the
unique non-abelian composition factor of K.

If K € %7 then Q = Spg(q) and ¢ > 5, by Definition 2.2.15. All non-abelian
composition factors of K are isomorphic to La(g), but H has a composition
factor S4(q?) or Us(q), a contradiction. By Lemma 2.3.20, K ¢ 6. O

Recall Definition 2.2.9 of the %,-subgroups. If H is a %,-subgroup in di-
mension 8 then one of the following holds: © = SLg(q) and H is of type
GL2(q)®GL4(q); 2 = SUg(q) and H is of type GUa(q) @ GUy4(q); or 2 = Spg(q)
with ¢ odd, and H is of type Spy(q) ® GOF (¢) or Sp,y(q) ® GOy (q).

We start with a lemma that shows that one of the types in Case S is non-
maximal for all q.

Lemma 3.7.6 Let H be a €y-subgroup of Spg(q), of type Spy(q) @ GOJ (q).
Then H is not maximal, and does not extend to a novel maximal subgroup.

Proof By Definition 2.2.9, ¢ is odd and H 2 (Spy(q) o GOJ (¢)).2. The corre-
sponding ¢-subgroup of PCI'Spg(q), which we denote Hpcrgp, (q), is of shape
(PCSp, (q) x PCGOS ())-(6).

If ¢ = 3 then H is properly contained in a %s-subgroup L: the group
Sp,(3) o GOJ (3) has a characteristic normal subgroup 2'+6, which is equal
to the extraspecial subgroup of L. The group Spg(3) contains a single class of
groups of each type, and the extension of H by the unique non-trivial outer
automorphism, J, is contained in the extension of L by 4.

Assume, therefore, that ¢ > 3. By Lemma 1.12.3 the group CGOJ (q) is
tensor induced, so Hpcsp,(q) is tensor induced. Each tensor factor of Hpcsp,(q)
is a 2-space on which H*® acts as Spy(q), so the tensor factors respect the sym-
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plectic form, and hence Hpcgp,(q) is (properly) contained in the ¢7-subgroup
Kpasp,(q)- The automorphism ¢ preserves Kronecker product decompositions
of matrices, and hence preserves the tensor factors of both H and K, so

HPCFSps(q) < KPCFSPS (9)- -

Proposition 3.7.7 Let n = 8 and let H be a €y-subgroup of Q. If ¢ = 2
or H is of type Spy(q) ® GOJ (q) then H is not mazximal, and does not extend
to a novel maximal subgroup. Otherwise, H is maximal amongst the geometric
subgroups of €.

Proof The claim for ¢ = 2 follows from Proposition 2.3.22, and the claim
for type Sp,(q) ® GOJ (¢) has just been proved in Lemma 3.7.6. We therefore
assume that ¢ > 3. Assume, by way of contradiction, that H < K < (), where
K is maximal amongst the geometric subgroups of 2 and is not of the same
type as H.

If ¢ = 3 then the 2-dimensional factor of H is soluble, whilst the other factor
is insoluble. If ¢ > 3 then H> 22 SLy(g) o SLT(q) or H>® = SLy(q) x La(¢?).

It is immediate from Lemma 2.3.23 that K & %) U%5. We assume next that
K € %5, preserving a decomposition into ¢ subspaces, where t € {2,4,8}. Tt
follows from Lemma 2.3.24 that either t = 8 or ¢ = 3. If t = 8, then Q = SLE (¢).
The only non-abelian composition factor of K is Ag, whilst Ly(g) and Uy(q)
are bigger than Ag for all ¢ > 2. If t = 4 (so that ¢ = 3), then K is soluble,
contradicting the insolubility of H. If t = 2 (so that ¢ = 3) then K’ is reducible.
The group SL2(3)’ is irreducible, and hence H' is irreducible, a contradiction.

By Lemma 3.7.6,  contains at most one type of maximal é4-subgroup. It
is immediate from Lemma 2.3.25 that K & %5.

If K € s and Q = SLSi (¢), then the only non-abelian composition factor
of K is Spg(2). However, Ly(q) and Uy(q) are bigger than Se(2) for all odd
q, a contradiction. In Case S, K = 2'70.Q-(2) = 2176.9,(3). If ¢ = 3 then
H = SLy(3) x L2(9), so if H < K, then S4(3) contains a subgroup H; such that
Ly(9) 2 T < Hy and |Hy| is divisible by 3|L2(9)|. The direct factor T of H is
centralised by the element of order 3 in the factor SLa(3), and since 3 is not a
divisor of 3° — 1 for any i we deduce that 7T is reducible in Sp,(3). If T’ stabilises
a totally singular subspace, then 7" must be contained in a parabolic subgroup
of Sp,(3), but the parabolic subgroups of Sp,(3) are soluble, a contradiction.
If T stabilises a non-degenerate subspace W, then T also stabilises W+, so T'
is contained in a @a-group of type Spy(3) 1 S2. However, such groups are again
soluble, a contradiction. If ¢ > 3 then |S4(3)| is not divisible by |La(g?)|.

If Class €7 is nonempty then € = Spg(q). The group H contains a subgroup
L2(q?), whereas all non-abelian composition factors of K are isomorphic to
L2(q), a contradiction. It follows from Lemma 2.3.26 that K ¢ 6s. O
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Recall Definition 2.2.11 of the é5-subgroups.

Proposition 3.7.8 Let n = 8 and let H be a €5-subgroup of Q2. Then H is
mazximal amongst the geometric subgroups of Q.

Proof This follows immediately from Proposition 2.3.29. O
Recall Definition 2.2.13 of the %5-subgroups.

Proposition 3.7.9 Let n = 8 and let H be a 6s-subgroup of Q). Then H is
mazximal amongst the geometric subgroups of €.

Proof This is immediate from Proposition 2.3.31. U
Recall Definition 2.2.15 of the €7-subgroups.

Proposition 3.7.10 Letn =38 and let H be a 67-subgroup of Q. Then H is
mazximal amongst the geometric subgroups of €.

Proof In dimension 8, Class 47 = @ in Cases L, U and O~. Thus © = Spg(q),
and ¢ > 3 is odd by Definition 2.2.15.

Suppose, by way of contradiction, that H < K < Spg(q), where K is max-
imal amongst the geometric subgroups of Spg(¢) and is not of the same type
as H. Here H® = SLy(q) o SLa(q) o SLa(q) = (2,q — 1).La(g)®, and H*™ is
absolutely irreducible by Lemma 2.2.16, so K & %1 U 65.

If K € % then K preserves a decomposition into at most four subspaces,
so K is reducible, a contradiction. If K € %, then K is of type Spy(q) X
GOy (¢), by Lemma 3.7.6. Therefore K> 22 SLy(q) x La(g?), which contradicts
Lagrange’s theorem since ¢ > 3. It is immediate from Lemma 2.3.25 that K ¢
5. If K € 65 then the only non-abelian composition factor of K is {15 (2) =
S4(3), contradicting the fact that |La(q)|®> > |S4(3)| for all ¢ > 3. There is a
unique type of 67-subgroup, so K ¢ %%. Class %3 is empty. O

Recall Definition 2.2.17 of the %s-subgroups.

Proposition 3.7.11 Let n =8 and let H be a 6g-subgroup of Q. Then H is
mazimal amongst the geometric subgroups of Q.

Proof This follows immediately from Proposition 2.3.32. O

3.8 Dimension 9

By Definition 1.6.20, when n = 9 we find Cases L, U and O°. Recall Def-
inition 2.2.1 of the %;-subgroups, and Definition 2.3.5 of standard reducible
behaviour.
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Proposition 3.8.1 Let n=19. Then Q has standard reducible behaviour.
Proof This is immediate from Propositions 2.3.1, 2.3.2 and 2.3.4. O
Recall Definition 2.2.3 of the %,-subgroups.

Proposition 3.8.2 Let n =9 and let H be a Ga-subgroup of Q, preserving a
decomposition into t spaces of dimension m. Then H is maximal amongst the
geometric subgroups of Q if and only if one of the following holds: Q@ = SLg(q)
and ¢ =5 orm > 1; = SUg(q); Q = Qy(q) and (m,q) # (3,3). If H is not

maximal then H does not extend to a novel mazimal subgroup.

Proof The non-maximal groups are as in Proposition 2.3.6, so assume that, if
m =1 and ©Q = SLg(q) then g > 5, and that if 2 = Qg4(q) then (m,q) # (3,3).
Suppose, by way of contradiction, that H < K < ), where K is maximal
among the geometric subgroups of €2 and is not of the same type as H.

We first consider some arguments which apply to both m = 1 and m = 3. It
is immediate from Lemma 2.3.7 (iv) that H is irreducible, so K ¢ %. Class €,
is empty as n = 9. It follows from Lemma 2.3.10 (i), (ii) that, if K € %5, then
Q = SUg(2) and m = 3, but by Definition 2.2.11 there are no %5-subgroups of
SUg(2). It follows from Lemma 2.3.12 that K & 6s.

The remaining arguments depend on m, so assume first that m = 1. Then
Lemma 2.3.8 (i) shows that K ¢ %5, and Lemma 2.3.7 (v) that K & %3. It
follows from Lemma 2.3.11 that K ¢ %. If K € %; then K has two non-
abelian simple composition factors, both isomorphic to L3(q), Us(q), or La(q),
whereas Ag < H. By Proposition 1.11.6, the group Ag has no faithful projective
representations in dimension less than 7, a contradiction.

Assume from now on that m = 3. Then H contains T := Q; X Q9 x Q3,
where Q; = SL3(q) in Case L, Q; = SUj3(q) in Case U, and §; = Ly(q) in
Case O. In particular, T is perfect if and only if Q; # SU3(2). If K € %,
then the only non-abelian composition factor of K is Ag. If Q = SLg(q), then
g = 5 by assumption, so P(L3(¢q)) > 12 by Theorem 1.11.2, a contradiction. If
2 = SUy(2), then |H| does not divide | K|, whilst if ¢ > 2 then P(Us(q)) > 12
by Theorem 1.11.2. If Q@ = Qq(q) then ¢ > 3 is prime, and hence |T'| does not
divide |Ag|, a contradiction.

Suppose next that K € 5. If Q = SUg(2) then |H| does not divide |K|, so
assume that € # SUg(2). Then K is one of SL3(¢%), SU3z(¢®) or La(¢?). In
Cases L and U, |[K*®| = ¢°(¢° —1)(¢° £ 1), whereas |H*| = ¢3(¢* —1)3(¢* £1)3.
However (¢® £ 1)3 does not divide |[K*°| for all q. In Case O, if |H*°| divides
|K*°| then ¢ — 1 divides 3, contradicting the fact that ¢ is odd.

If K € 65 then ¢ = p, with ¢ = 1 (mod 3) in Case L and ¢ = 2 (mod 3)
in Case U. The only non-abelian composition factor of K is S4(3). For Case
L we note that |Ls(g)| > [S4(3)| for all ¢ > 7, a contradiction. In Case U,
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it is straightforward to check that if H is of type GU3(2) 1S3 and K € %,
then |H| does not divide |K|. Since |Us(q)| > [S4(3)| for all ¢ > 5, we have a
contradiction. Finally, if K € %7, then K is smaller than H. O

Recall Definition 2.2.5 of the @3-subgroups.

Proposition 3.8.3 Let n =9 and let H be a €3-subgroup of Q). Then H is
mazximal amongst the geometric subgroups of €.

Proof Suppose, by way of contradiction, that H < K < €2, where K is maxi-
mal amongst the geometric subgroups of €2 and is not of the same type as H.
If Q = SLE(q) then H>™ = SLE(¢?). If © = Qg(q) then H>® = Ly(¢?). Let X
denote the non-abelian composition factor of H.

It is immediate from Lemmas 2.3.14 and 2.3.16 (ii) that K & @, %>, re-
spectively. There is a unique type of %3-subgroup in each case, so K & %3.
Class ¢y is empty. It follows from Lemma 2.3.19 that K ¢ 65. If K € %5 then
Q= SLg,E (¢) by Definition 2.2.13. The only non-abelian composition factor of
K is S4(3), however [S4(3)| < |X]| for all ¢, a contradiction. If K € %7, then
by Table 2.10 K has two non-abelian composition factors, both isomorphic to
LZ(q) or La(q). Bach non-abelian composition factor of K is smaller than X,
a contradiction. It is immediate from Lemma 2.3.20 that K ¢ %5. O

Recall Definition 2.2.11 of the %5-subgroups.

Proposition 3.8.4 Let n =9 and let H be a ©5-subgroup of Q. Then H is
mazimal amongst the geometric subgroups of Q.

Proof This follows immediately from Proposition 2.3.29. O
Recall Definition 2.2.13 of the és-subgroups.

Proposition 3.8.5 Let n =9 and let H be a 6s-subgroup of Q2. Then H is
mazximal amongst the geometric subgroups of Q.

Proof This is immediate from Proposition 2.3.31. O
Recall Definition 2.2.15 of the é7-subgroups.

Proposition 3.8.6 Let n =9 and let H be a €7-subgroup of Q). Then H is
mazximal amongst the geometric subgroups of €.

Proof T1fQ = SLg(q) then H* = SL3(q)oSL3(q), if 2 = SUg(q) then ¢ > 3 and
H® >~ SUs(q) o SUs(q), and if = Qg(g) then ¢ > 5 and H>® = La(q) x La(q).
Suppose, by way of contradiction, that H < K < 2, where K is maximal
amongst the geometric subgroups of €2 and is not of the same type as H.

It follows immediately from Lemma 2.2.16 that H® is absolutely irre-
ducible, so K & 61 U %5.
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Assume next that K € %5. If K preserves a decomposition into three sub-
spaces, then K is reducible, contradicting the irreducibility of H>. If K
preserves a decomposition into nine spaces, then the only non-abelian compo-
sition factor of K is Ag. In Case L, the group K is not maximal amongst the
geometric subgroups of SLg(g) when ¢ < 4, by Proposition 2.3.6 (i),(ii), (iii),
so without loss of generality ¢ > 5 and hence |L3(q)| > |Ag|, a contradiction.
In Case U we are assuming that ¢ > 3, so [Us(q)’| > |Ag|, which is also a
contradiction. In Case O°, we are assuming that ¢ > 5, so |Q3(q)’| does not
divide |A9‘

Class 6, is empty, so K ¢ %,. It is immediate from Lemma 2.3.25 that
K & %5. There is a unique family of é7-subgroups, so K ¢ %7.

Suppose next that K € %g, so that Q = SL;,IE (¢). The only non-abelian
composition factor of K is S4(3), however [S4(3)| < |Lsz(g)|? for all ¢, and
1S4(3)| < |Usz(q)|? for all ¢ > 3, a contradiction.

Finally, suppose that K € %3, so Q = SLg(¢) and K consists of similarities
of a non-degenerate unitary or orthogonal form f. Since the first central factor,
Qq, of H*® acts as SL3(¢) on W := V; ® v, for any fixed non-zero v € Vs,
the space W is totally singular under f. Therefore as an ;-module V/W+ is
isomorphic to W* or W*?. Since dim W > 2 these are not isomorphic to W,
contradicting the homogeneity of the action of ;. O

Recall Definition 2.2.17 of the %g-subgroups.

Proposition 3.8.7 Let n =9 and let H be a 6s-subgroup of Q. Then H 1is
mazximal amongst the geometric subgroups of §2.

Proof This follows immediately from Proposition 2.3.32. O

3.9 Dimension 10

By Definition 1.6.20, when n = 10 we find Cases L, U, S and O . Recall Defini-
tion 2.2.1 of the %;-subgroups, Definition 2.3.5 of standard reducible behaviour,
and Definition 1.13.2 of zg .

Proposition 3.9.1 Let n = 10. Then Q has standard reducible behaviour.

Proof This is immediate from Propositions 2.3.1, 2.3.2, 2.3.3 and 2.3.4, unless
Q= Qlio(q) and H is the stabiliser of a non-degenerate 4-space Vi and a non-
degenerate 6-space V5. Thus H contains 1 X Qs, where 27 is either QZ (q) or
Q5 (), and Qs is either QF (¢) = [ggj:g;].h;(q) or Q5 (q) = [EZE:;%].UZL(q).
Suppose, by way of contradiction, that H < K < Qlio(q), where K is maxi-
mal amongst the geometric subgroups of Qlio(q) and is not of the same type as

H. Note that Classes €y, %5, €7, and %5 are empty.
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If K € %), then H must stabilise a proper non-zero subspace of V' other
than V7 and V5, contradicting Proposition 1.12.2.

Suppose that K € %5, stabilising a decomposition D; into ¢; subspaces. By
Proposition 1.10.2 and Theorem 1.11.2, if ¢ > 2 then P(L4(q)) > 10 (and by
Definition 2.2.3 there is no K with ¢; = 10 when ¢ = 2), and P(U4(q)) > 10.
Thus € is a subgroup of K(p,), and hence t; = 2. We complete this case by
noting that Q5(q) = S4(q) < Q2, so the subspaces are totally singular, and that
the subgroup of Q7,(q) of type GL5(g).2 stabilises a totally singular 5-space,
whilst H stabilises only V7 and V5.

Suppose now that K € %3. The fact that R,(Q2) = 4 implies that K
preserves a field extension of degree 2, so either K = SUs(q) < Qj,(g) or
K> 2 Q.(¢?) < Q% (q). Considering Theorem 1.6.22, some z, 3 or 2,6 divides
|H®°| but not |Q5(¢?)|. The group SUs(g) does not have a section L4(q), and

whilst it does contain SU4(q), it does not contain Q2 (q) x [(211’23] Uy(q).

The final possibility is that K € %5, but since Q6i(q) is acting naturally on
V5 this contradicts Proposition 1.12.7 and Lemma 2.2.12. O

Recall Definition 2.2.3 of the %5-subgroups. Let n = 10, and let H be a
%5-subgroup. Then one of the following holds:

(i) € =SLio(g) and H is of type GL1(q) ¢ S10, GL2(g) 1 S5 or GL5(g) 1 Sa;

(i) @ =SUio(g) and H is of type GUi(g) 1 S10, GU2(g) 1S5, GUs(q) 1 Sa, or
GL5((]2).2;

iii = Spqp(q) an is of type Sp,(q) 1S5 or 5(q).2, with ¢ odd in the
Q = Spy, d H is of Sp S GL h ¢ odd in th
latter case;

(iv) @ = Qfy(¢) and H is of type GO;(p) ¢ S10, GOZ (¢) 1 S5, GO5(q) 1 Sa,
GO, (q)* or GL5(q).2;

(v) Q = Ql_g(‘I) and H is of type GO;(p) ! S10, GO5 (¢) 1S5, GO5(q) 2 Sg or
GO5(q)"

Proposition 3.9.2 Let n = 10 and let H be a 65-subgroup of €, preserving
a decomposition into ten subspaces. Then H is mazimal amongst the geometric
subgroups of Q if and only if one of the following holds: Q = SLio(q) and ¢ > 5
Q = SUso(q); @ = QL (p). If H is not mazimal then H does not extend to a
novel mazimal subgroup.

Proof The claims for ¢ < 4 in Case L follow from Proposition 2.3.6, so assume
that ¢ > 5 in Case L. Note from Definition 2.2.3 that a decomposition into ten
subspaces does not define a %,-subgroup of Spy,(¢), and only defines a é»-
subgroup of Q% (¢) when ¢ = p is prime.

Suppose, by way of contradiction, that H < K < (), where K is maximal
amongst the geometric subgroups of {2 and is not of the same type as H.
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We proved in Lemma 2.3.7 (iv),(v) that the subgroup L of H* is absolutely
irreducible, so K ¢ 61 U 65.

Suppose next that K € %, preserving a decomposition into ¢ subspaces. We
proved in Lemma 2.3.8 (i) that ¢ # 2, so t = 5. The non-abelian composition
factors of K lie in the set {As,La(q)}. However, H contains a subgroup Ajg.
Now, |Aig| > |As| and R(A1p) = 8 by Proposition 1.11.6, a contradiction.

If K € €4, then Q = SLfO(q), and the highest rank composition factor of K
is L5(q) or Us(q), contradicting the fact that R(A1o) = 8.

We proved in Lemma 2.3.10 (i) that K ¢ %5. Classes 65 and %7 are empty.
If K € %5 then Q = SLjo(q), and Lemma 2.3.12 (ii) gives a contradiction. [

Proposition 3.9.3 Let n = 10 and let H be a €5-subgroup of 2, preserving a
decomposition into five subspaces, let G be almost simple with socle Q, and let
Hg be the corresponding €a-subgroup of G. Then H is maximal amongst the
geometric subgroups of Q if and only if one of the following holds: Q) = SLlio(q)
or Spy0(q) and ¢ > 2; Q = Qfy(q) and ¢ > 5; Q= Q7,(q) and q # 3. If H is not
mazximal, then Hg is maximal amongst the geometric subgroups of G if and only

if either Q = Qfy(5) and G £ PGOY,(5) or Q = Q1,(3) and G £ PGO,(3).

Proof Apart from Q € {Qf(5),92,(3)} the non-maximal exceptions follow
from Proposition 2.3.6. We therefore assume that ¢ > 2 in Cases L, U and S
and that ¢ > 4 in Case O". Suppose that H < K < Q, where K is maximal
amongst the geometric subgroups of 2 and is not of the same type as H: we
shall deduce that Q = Qf(5) or Q7,(3), with a list of possibilities for K.

It follows from Lemma 2.3.7 (iv),(v) that H contains an absolutely irre-
ducible subgroup and is not semilinear, so K ¢ %1 U %3.

Suppose that K € %, preserving a decomposition into ¢ subspaces. From
Lemma 2.3.8 (i) we see that ¢t = 10, so Q # Spyo(g). The only non-abelian
composition factor of K is Ajg. In Case L, ¢ > 5 by Proposition 2.3.6 and the
assumption that K is maximal, so |[H| > |K]|, a contradiction. In Case U, if
g > 9 then P(SUs(q)) > 10 by Theorem 1.11.2, whilst if 3 < ¢ < 9 then |H|
does not divide |K|, a contradiction.

In Case O¢, by Definition 2.2.3, since t = 10 we may assume that ¢ = p > 2,
with € = + if and only if ¢ = 1 mod 4. The group K is a subgroup of 2°.Sg,
so if Q ¢ {Qf,(5),Q7,(3)} then |H| does not divide |K|. The group GO3 (5)
is imprimitive, preserving a decomposition into two non-degenerate subspaces.
Therefore GO3 (5)1S5 is properly contained in GO, (5)1S10, and the normaliser
of H is not maximal in GOY,(5). However, there are two conjugacy classes
in Qf,(5) of groups of type 2°.S19, and these are interchanged by &, whilst §
stabilises each of the standard blocks for H. Thus, if G is almost simple with
socle Of(5) then Hg < K if and only if G < PGO{(5). Similarly, GO; (3) is
imprimitive, and an identical argument shows that if G is almost simple with
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socle O74(3), and K¢ denotes the subgroup of G of type GO;(3) ¢ S19, then
Hg < K¢ if and only if G < PGO7(3). This completes the arguments for %.

Suppose that K € %4, so that Q # Qlio(q) by Definition 2.2.9. Then the
group K> 22 SLy(¢)™ x SLE(¢) in Cases L and U, and K> 22 SLy(¢)™ x Q5(q)
in Case S. If H < K then SLy(q)°.As < K. This implies that |SLa(g)*| divides
ISLZ(q)| or |Sp4(q)|, a contradiction since g > 2.

We proved in Lemma 2.3.10 (i) that K ¢ %5. Classes %5 and %7 are empty.
It follows from Lemma 2.3.12 (i) that if K € %5 then Q = SLjo(3). Then K is
of type Sp;o(3) or GOT;(3). Denote the bilinear form for which K is a group of
isometries by f. Let H; denote the subgroup of H that acts as SLo(3) on Vi,
and centralises Vo @ --- @ V5. Then H; acts irreducibly on V; and centralises
a complement to V7, so Vi is non-degenerate under f. However, H contains
elements that multiply f|y, and f|y, by —1, whilst centralising V3 @ V3 @ V5.
These elements are not similarities of f, a contradiction.

Thus if Q # Qf;(5) or Q7(3) then H is maximal in Q. If Q = Qf;(5)
or Q7,(3), then we have actually shown that only a single member of %; for
1 < i < 8 contains H. Thus when G is an almost simple group with socle  to
which this containment does not extend, Hg is maximal amongst the geometric
subgroups of G. O

Recall Definition 1.13.2 of 2z 4.

Proposition 3.9.4 Let n = 10, let H be a G-subgroup of 2, preserving a
decomposition into two subspaces, let G be almost simple with socle Q, and let
Hg be the corresponding 6s-subgroup of G. Then H is maximal amongst the
geometric subgroups of Q if and only if H is not of type GL5(q).2 in Case O™ .
If H is not maximal then Hg is maximal amongst the geometric subgroups of

G if and only if G £ Oy(q)-(¢,6).

Proof Suppose that H < K < Q, where K is maximal amongst the geometric
subgroups of 2 and is not of the same type as H.

By Lemma 2.3.7 (iii), if K € %) then H is of type GL5(g).2 in Case O™ .
Let V4 and V5 be the totally singular subspaces preserved by H, so that
without loss of generality K is a parabolic subgroup Ps, stabilising Vi, and
since H is reducible (see, for example, the generators for H constructed in
[46]) we find that H < K. When ¢ is odd, by choosing V; and V5 to be the
subspaces spanned by {e1, ea,e3,¢e4,e5} and {f1, f2, f3, f4, [5} using our stan-
dard basis of V, as defined in Section 1.5, we see directly that the elements
0 = diag(w,...,w,1,...,1) and ¢ defined in Section 1.7 normalise both H and
K, and so this containment extends to Of;(q).(5, ¢). However, there are two
-classes of groups of type K, which are interchanged by outer automorphisms
not lying in (¢, d), so if G £ O} (q).{¢,d) then Hg € Kg.
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Tt is immediate from Lemma 2.3.8 (ii) that K ¢ %5, so assume that K € %5.
By Lemma 2.3.7 (vii), either = SL1(q) or V5 and V5 are non-degenerate, so
H has composition factors Ls(q), Us(q) or Q5(q), and 2 # Spyy(q). If the group
K> 22 SLy(q”), then the non-abelian composition factors of H are larger than
those of K. So Q # SUig(q). In Case L, K> = SL5(¢2) and H>® = SLs(q)”,
so (¢° — 1)% divides |H>°|, whereas |K>|,, = (¢* — 1)(¢® — 1)(¢® — 1)(¢'° — 1).
A higher power of each z, 5 divides |[H*°| than |K*°|, a contradiction. Finally,
in Case OF, the group K is of type GO5(¢?) or type SUs(q), whilst H is of
type GO5(q) 1S or GO4(¢)*. By Theorem 1.11.2 and Lemma 1.11.8, H> has
no faithful representations in dimension less than 8, a contradiction.

By Lemma 2.3.9, K ¢ %,. By Lemma 2.3.10 (ii),(iii), K ¢ %5. Classes %5
and %7 are empty. By Lemma 2.3.12 (i), the group K ¢ %s.

Thus if H is not of type GL5(q).2 in Case OT then H is maximal in . If
H is of type GLs(q).2 in Q7,(q), then we have actually shown that the only
other member of Class @; for 1 < i < 8 to contain H is Ps, so if G is an almost
simple group with socle Q to which this containment does not extend, then Hg
is maximal amongst the geometric subgroups of G. O

Recall Definition 2.2.5 of the %3-subgroups. In Case L these are of type
GL2(¢%) or GL5(g?). In Case U these are of type GUs(¢®). In Case S these are
of type Spy(q°) or GUs(q), with ¢ odd in the latter case. In Case O these are
of type GO5(¢?). In Case O~ these are of type GO5(¢?) or GUs(q).

Proposition 3.9.5 Let n =10 and let H be a €5-subgroup of Q. Then H is
maximal amongst the geometric subgroups of 2.

Proof Suppose, by way of contradiction, that H < K < ), where K is max-
imal amongst the geometric subgroups of Q and is not of the same type as
H.

It is immediate from Lemma 2.3.14 that K ¢ ¢}, and from Lemma 2.3.16 (i)
that if K € 6> then H preserves a degree 5 field extension, so H> 22 SLy(¢%).
Suppose that K € %5 preserves a decomposition D. Now, P(L2(¢%)) > 12
for all ¢ by Theorem 1.11.2, so H* < K(py. However, H> is irreducible by
Lemma 2.2.6, so K & 5.

By Lemma 2.3.17, K ¢ %3, so suppose next that K € %;. Then by Defini-
tion 2.2.9, Q # Q5 (¢). By Lemma 2.3.18, the group H> 22 SLy(¢%). In Cases
L and U, K 2 SLy(q)> x SLZ(q), and in Case S, K 2 SLy(q)™ x Os(q).
Then |H°| is divisible by 2,10, by Proposition 1.13.4. If = SL1¢(g¢) or Spy((¢)
then |K*°| is not divisible by 24,10, whilst if Q = SU10(¢) we conclude that H>
has trivial projection into the direct factor SLa(g) of K°°. But this implies that
H*®® is reducible, a contradiction.
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It follows from Lemma 2.3.19 that K ¢ %5. Classes 65 and %7 are empty.
It follows from Lemma 2.3.20 that K ¢ %3. O

Recall Definition 2.2.9 of the %;-subgroups.

Proposition 3.9.6 Let n =10 and let H be a €y-subgroup of Q). Then H is
maximal amongst the geometric subgroups of Q if and only if ¢ > 2. If ¢ = 2
then H does not extend to a novel maximal subgroup.

Proof By Definition 2.2.9, Q = SLlio(q) or Spyo(q), with € x Q3 contained
in the %j-subgroup H, where Q5 2 SLE(g) or SO;(q). The claim for ¢ = 2 is
immediate from Proposition 2.3.22, so assume that ¢ > 3.

Suppose, by way of contradiction, that H < K < €0, where K is maximal
amongst the geometric subgroups of {2 and is not of the same type as H. It is
immediate from Lemma 2.3.23 that K ¢ €, U €3.

Suppose next that K € %5, preserving a decomposition into ¢ subspaces. If
t = 10 then Q = SLle0 (¢), and the only non-abelian composition factor of K
is A1g. However, both L5(¢) and Us(q) are larger than A for all ¢. Similarly,
if ¢ = 5 then the non-abelian composition factors of K are As and La(q) (if
q # 3). The simple group €2, is larger than both Ly(g) and Aj, a contradiction.
Thus ¢t = 2. The derived group of H is irreducible for all ¢ (note that SL(3)’
is irreducible) whereas the derived group of K is reducible, a contradiction.

There is a unique type of ¢4-subgroup, so K ¢ ;. By Lemmas 2.3.25 and
2.3.26, K € 65 U %3. Classes 65 and €7 are empty. O

Recall Definition 2.2.11 of the é5-subgroups.

Proposition 3.9.7 Let n =10 and let H be a €5-subgroup of Q). Then H is
mazximal amongst the geometric subgroups of Q.

Proof This follows immediately from Proposition 2.3.29. O
Classes s and ¢7 are empty. Recall Definition 2.2.17 of the %g-subgroups.

Proposition 3.9.8 Let n =10 and let H be a 6g-subgroup of Q). Then H is
mazximal amongst the geometric subgroups of Q.

Proof This follows immediately from Proposition 2.3.32. O

3.10 Dimension 11

By Definition 1.6.20, when n = 11 we find Cases L, U and O°. Recall Def-
inition 2.2.1 of the %;-subgroups, and Definition 2.3.5 of standard reducible
behaviour.
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Proposition 3.10.1 Let n = 11. Then Q has standard reducible behaviour.
Proof This is immediate from Propositions 2.3.1, 2.3.2 and 2.3.4. O
Recall Definition 2.2.3 of the %,-subgroups.

Proposition 3.10.2 Let n = 11 and let H be a Ga-subgroup of 2. Then
H is mazximal amongst the geometric subgroups of 0 if and only if one of the
following holds: 2 = SLi11(q) and g > 5; Q@ = SUy1(q), or Q = Q4,(q). If H is

not mazximal in § then H does not extend to a novel mazimal subgroup.
Proof This follows immediately from Proposition 2.3.13. OJ
Recall Definitions 2.2.5, 2.2.11, 2.2.13 and 2.2.17.

Proposition 3.10.3 Let n =11 and let H be a €3-, €5-, G6- or Cs-subgroup
of Q. Then H is mazximal amongst the geometric subgroups of §2.

Proof This follows immediately from Propositions 2.3.21, 2.3.29, 2.3.31 and
2.3.32. O

Classes ¢4 and %7 are empty.

3.11 Dimension 12

By Definition 1.6.20, when n = 12 we find Cases L, U S and O*. Recall
Definition 2.2.1 of the %7-subgroups, and Definition 2.3.5 of standard reducible
behaviour.

Proposition 3.11.1 Let n = 12. Then Q has standard reducible behaviour.

Proof This is immediate from Propositions 2.3.1, 2.3.2, 2.3.3 and 2.3.4, unless
Q2 = Q,(¢) and H is the stabiliser of a pair of orthogonal non-degenerate
non-isometric 6-spaces Vi and V5. In this case H contains

Q4 (q) x Q5 (0) = [(a — 1,4)/(¢ = 1,2)1 La(q) x [(q¢+1,4)/(q +1,2)].Ua(q).

Assume, by way of contradiction, that H < K < Q,(q), where K is maxi-
mal amongst the geometric subgroups of ©7,(¢) and is not of the same type as
H. Note that 65 U %67 U %3 = &.

If K € € then QF (q) x Q5 (g) fixes some non-zero proper subspace of V/
other than V; and V5, contradicting Lemma 1.8.11 and Proposition 1.12.2. If
K € % then, since P(U4(g)) > 12 by Theorem 1.11.2, we deduce that Qg (¢) lies
in the kernel of the action of K on blocks. By Theorem 1.11.5 R,,(U4(q)) = 4, so
the blocks have dimension 4 or 6, and hence by Definition 2.2.3 have dimension
4. Thus Qg (¢) < Q4 (¢), a contradiction. If K € @3 then as for > we deduce
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that the only possibility is Qg (¢) x Qg (¢) < Qg (¢?), contradicting Lagrange’s
theorem. If K € %) then the largest non-abelian composition factor of K is
Q, (q), which is too small. The result for K € %5 follows from noting that
Qf (q) < H and applying Proposition 1.12.7. O

Recall Definition 2.2.3 of the %5-subgroups. If n = 12 and H is a %5-
subgroup of €2, then one of the following holds:

(l) QO = Sng(q) and H is of type GLl(q) ! S12, GLQ(Q) ! Se, GLg(q) 1S4,

GL4(q) 1S3 or GLg(q) 2 So;

(ii) © = SUja(q) and H is of type GUy(q) ¢ S12, GUsa(q) ¢ S¢, GUjs(q) 1 Sy,
GU4(Q) 1S3, GUG((]) 1Sy or GLg(q2).2;

(i) ©Q = Spy5(q) and H is of type Sp,(q)1Ss, Sp4(q)1S3, Spe(q)1Se or GLg(q).2,
with ¢ odd in the latter case;

(iv) © = Qf,(q) and H is of type GO,(p) 2 Si2, GOF(q) 1 Sg, GO4(q) 1S4,
GO (q) 1S3, GOZ(g) 1S, or GLg(q).2;

(v) Q=Q55(q) and H is of type GO, (q) 1 Ss.

In each type we denote the decomposition preserved by H by
D:V=Vi&g---aV,.

Proposition 3.11.2 Letn = 12 and let H be a 6>-subgroup of 2, preserving a
decomposition into twelve subspaces. Then H is maximal amongst the geometric
subgroups of Q if and only if either Q = SLia(q) with ¢ > 5; or © = SUj2(q);
or Q) = QB(p), with p prime. If H is not mazximal then H does not extend to
a novel maximal subgroup.

Proof The non-maximal examples when ¢ < 4 in Case L follow from Propo-
sition 2.3.6, so we assume that ¢ > 5 in Case L. By Definition 2.2.3 the de-
composition into twelve subspaces only defines a %5-subgroup of Q5,(¢) when
€ =+ and ¢ = p is prime.

Suppose, by way of contradiction, that H < K < €, where K is maxi-
mal amongst the geometric subgroups of 2 and is not of the same type as
H. It is immediate from Lemma 2.3.7 (iv),(v) that K ¢ %1 U %3, and from
Lemma 2.3.8 (i) that, if K € %>, then K preserves a decomposition into six
subspaces. By Proposition 1.11.6, R(A13) = 10, so K & €5 U%4. It follows from
Lemma 2.3.10 (i) that K ¢ %5. Classes 65 and 47 are empty, and it follows
from Lemma 2.3.12 (ii) that K ¢ %s. O

Proposition 3.11.3 Letn =12 and let H be a €a-subgroup of ), preserving
a decomposition into siz subspaces, let G be almost simple with socle Q, and let
Hg be the corresponding €»-subgroup of G. Then H is maximal amongst the
geometric subgroups of  if and only if the following all hold: if H is not of
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type GO (q) 1S¢ then q > 2; if H is of type GOZ (q) 1 S¢ then q = 7; and if H
is of type GO3 (¢) 1 S¢ then g # 3.

If H is not mazximal in Q then Hg is mazimal amongst the geometric sub-
groups of G if and only if either H is of type GOZ (5)1Ss and G £ PGOT,(5)
or H is of type GO; (3)1S¢ and G £ PGO7,(3).

Proof The non-maximal exceptions when ¢ = 2, along with the claims about
groups of type GO (¢) 1 Sg for ¢ < 4, are from Proposition 2.3.6, so assume
that ¢ > 2 in Cases L, U and S, and if H is of type GOJ () ! S¢ then ¢ > 5.

Suppose, in the first instance, that H < K < 2, where K is maximal
amongst the geometric subgroups of 2 and is not of the same type as H. We
will deduce that Q = Qf,(q) with ¢ € {3,5}, and that in these cases there is
only a single choice for the type of K.

It is immediate from Lemma 2.3.7 (iv),(v) that K ¢ % U %3, and from
Lemma 2.3.8 (i) that if K € %5 then either K preserves a decomposition into
twelve subspaces, or H and K are of types GOZ (¢)1Sg and GO; (¢)1Ss. Consid-
ering the orders of Q2 (¢) and Q; (¢), we see that this second possibility requires
q <3 and H to be of type GO (¢) ! Sg, which we have already considered.

Assume therefore that K € %5 preserves a decomposition into twelve sub-
spaces, so that the only non-abelian composition factor of K is Aj5. Note that
g = 5 in Case L, by Proposition 2.3.6, and that in SU13(3) the order of H
does not divide the order of K. If ¢ > 4 then |Ls (q)6| > A5, a contradiction.
Thus Q = Qf,(q) with ¢ prime, and K < 2''.S;5. If 7 is an odd prime then
the highest power of 7 to divide [S1»| is at most 7°. If H is of type GOJ (¢) 1 Sg
and r divides ¢ — 1, or if H is of type GO, (q) 1 Se and r divides g + 1, then
H contains an elementary abelian 7-group of order r%. Therefore, if H is of
type GOZ (q) 1 S¢ then there exists an i such that ¢ — 1 = 2°, and if H is
of type GO (q) 1 S¢ then there exists an i such that ¢ + 1 = 2. Now, the
2-part of the order of K is at most 22!, and the 2-part of the order of H is
26(i=1) . 910 . 94 5o § < 2. If H is of type GO3 (q) 1 S¢ then ¢ = 3 (which
we have excluded) or ¢ = 5. The standard copy of GO3 (5) stabilises a de-
composition V' = (e; + f1) ® (e1 — f1) into non-degenerate subspaces. Thus
HG01+2(5) < KGOB(5)' However, there are two GO, (5)-classes of groups of
type 2'1.S15, interchanged by §, so if G £ PGOY,(5) then Hg £ Kg. If H is
of type GO5 (¢) 1 Se then ¢ = 3. The group GO, (3) also stabilises the decom-
position V = (e1 + f1) ® (e1 — f1), and exactly the same arguments show that
Hg < K¢ if and only if G < PGOY,(3).

Assume next that K € €. The possibilities for K are listed in Table 2.7.
Consider first Cases L, U and S. The order of H* is divisible by (¢ — 1)%. In
Case L the order of K is a divisor of ¢'(¢?—1)2(¢®> —1)(¢* —1)(¢° —1)(¢® — 1)
or ¢°(¢>—1)%(¢®>—1)%(¢* — 1), which contradicts Lagrange’s theorem for all ¢. In
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Case U the order of K is a divisor of ¢'(¢®> —1)%(¢*+1)(¢* —1)(¢° +1)(¢° - 1)
or ¢°(¢*> — 1)%(¢® + 1)%(¢* — 1), which contradicts Lagrange’s theorem since
q > 2. In Case S the order of K* is a divisor of ¢"(¢® — 1)%(¢®> £ 1)(¢* — 1),
contradicting Lagrange’s theorem. So Q = Q7,(q), and K is isomorphic to either
PGL2(q) x (SLa(q) o SLa(q)) or (Spy(q) © Spg(q)).2, with the outer involution
extending La(q) to PGLy(¢). Let K preserve a decomposition Wi ® Ws. The
group Ag is a subgroup of H, whilst Sg is a quotient. Now, the group Ly (g) can
contain Ag, but consulting Tables 8.1 and 8.2 we see that PGLy(¢) does not
contain Sg = PX12(9). Recall the definition of L from just before Lemma 2.2.4.
Since L is the normal closure of Ag, if the action of Ag on Wi is trivial, then
the action of L on Wj is reducible, and hence the action of L on V' is reducible,
a contradiction.

It is immediate from Lemma 2.3.10 (i) that K ¢ %5. Classes %5 and %7 are
empty. It is immediate from Lemma 2.3.12 (i) that if K € %5 then = SL;12(3),
but then |H| does not divide | K|, a contradiction.

In our arguments for Q7,(¢) with ¢ € {3,5}, we have in fact shown that the
non-maximal groups H are contained in a unique member of %; for 1 < i < 8.
Our maximality claims for extensions of these groups therefore follow. O

Proposition 3.11.4 Let n = 12 and let H be a G5-subgroup of 2, preserving
a decomposition into four subspaces. Then H is mazximal amongst the geometric
subgroups of Q if and only if Q # Qf,(3). If H is not mazimal then H does not
extend to a novel maximal subgroup.

Proof The non-maximality of H when Q = Q7,(3) follows immediately from
Proposition 2.3.6, so assume that ¢ > 5 in Case O .

Suppose, by way of contradiction, that H < K < €0, where K is maximal
amongst the geometric subgroups of €2 and is not of the same type as H. It is
immediate from Lemma 2.3.7 (vi) that K ¢ %1 U %3 and that H' is irreducible.

First consider Ujo(2) as a special case. Order considerations show that the
group K € 65 U%,U%5. Classes g, 67 and 6y are empty. We therefore assume
for the rest of the proof that Q # SU15(2), so that, in particular, H is insoluble.

Assume that K € %5. If K preserves a decomposition into two subspaces
then K’ is reducible, a contradiction. If K preserves a decomposition into three
subspaces then K contains a reducible subgroup of index 3. However, the largest
reducible subgroup of H has index 4, a contradiction, so K must preserve a
decomposition into six or twelve subspaces, and the non-abelian composition
factors of K lie in the set {Ly(q),As, A1o}. In Case L, H* = SLs(¢)*, and
ILs(¢)*| > |A1z], a contradiction. For Case U, [Us(q)*| > |A1a| (since ¢ > 2).
Thus Q = Q7,(¢), and the only non-abelian composition factor of K is Ag or
Ay. Since we are assuming that ¢ > 5, [La(¢)*| does not divide [Ag| or [A1a],
a contradiction.
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Assume next that K € 4}, so that K = K; o K. The possibilities for K can
be found in Table 2.7. By Lagrange’s theorem, K preserves a tensor product
decomposition into a 2-space and a 6-space. Let K5 be the 6-dimensional factor,
and suppose some direct factor C' of H*® is contained in Ks. Then, since K5 acts
homogeneously, the action of C' must have at least two non-trivial constituents,
which is false. Thus every direct factor of H* projects non-trivially on Ki,
contradicting the fact that H contains SL;)t(q)4 or Ly(g)*.

It is immediate from Lemma 2.3.10 (ii) that K ¢ 5. Classes s and ¢ are
empty. It is immediate from Lemma 2.3.12 (i) that K ¢ %s. O

Proposition 3.11.5 Letn = 12 and let H be a 6>-subgroup of Q, preserving a
decomposition into three subspaces. Then H is mazrimal amongst the geometric
subgroups of Q0 if and only if Q # QE (2). If H is not mazximal then H does not
extend to a novel maximal subgroup.

Proof The non-maximal group is considered in Proposition 2.3.6, so assume
that Q # Qf,(2). Suppose, by way of contradiction, that H < K < €, where K
is maximal amongst the geometric subgroups of €2 and is not of the same type
as H. It is immediate from Lemma 2.3.7 (iv) that K ¢ %.

Suppose that K € %, preserving a decomposition into t; subspaces. In
Case O~ there is a unique type of $2-subgroup when n = 12, a contradiction.
The group H does not contain an index 2 reducible subgroup, so t; # 2. If
t; = 4 and Q # Qf,(g), then the largest composition factor of K is Lsz(q)
or Us(q) which is smaller than the largest composition factor of H. If t; = 6
and Q # Qf,(q), then the largest composition factor of K is either Ag or one
of La(g), Ua(g) or Spy(g). These are all smaller than the largest composition
factor of H. Thus Q # Spy5(q), and if Q = SLE,(¢) then t = 12. But then the
only non-abelian composition factor of K is Ao, which is smaller than L4(q)3
and Uy(q)®, a contradiction. It follows that Q = QF,(¢). If ¢ = 3, then |H| does
not divide the order of any other type of %5-subgroup. So we may assume that
q > 3, and hence that H is insoluble. If ¢; = 4 then K contains four non-abelian
composition factors, all isomorphic to Lo(q), whereas H contains six copies of
La(q), a contradiction. If ¢; € {6,12} then the only non-abelian composition
factor of K is Ag or Ayo, which is smaller than Lg(q)G.

Suppose next that K € %3, and recall the definition of L from just before
Lemma 2.2.4. The group H' acts as Az on D, so in particular L < H’. The
group L is absolutely irreducible by Lemma 2.3.7 (iv), but K’ is not absolutely
irreducible, a contradiction.

It follows from Lemma 2.3.9 that if K € € then Q = Q,(3). By Propo-
sition 2.3.22, the %j-subgroups of type GO5(3) ® GOJ (3) are not maximal
in Qf,(3), so K is of type Spy(3) ® Spg(3). Then |H| does not divide |K]|, a
contradiction.
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It is immediate from Lemma 2.3.10 (ii) that K ¢ %5. Classes %5 and 67 are
empty. It is immediate from Lemma 2.3.12 (i) that K ¢ %s. O

Proposition 3.11.6 Let n = 12 and let H be a €5-subgroup of ), preserving
a decomposition into two subspaces. Then H is maximal amongst the geometric
subgroups of €.

Proof Suppose, by way of contradiction, that H < K < (), where K is maxi-
mal amongst the geometric subgroups of €2 and is not of the same type as H.
It follows from Lemmas 2.3.7 (iii) and 2.3.8 (ii) that K & € or %, respectively.

Suppose that K € %3. By Lemma 2.3.7 (vii), the decomposition is into
two non-degenerate subspaces, or 0 = SLis(¢). In Case L, up to isomorphism
K> € {SLg(q?),SL4(q®)}. The order of H> is divisible by a higher power
of a prime z,5 than [SLg(¢?)|, and H* is larger than SL4(¢?). In Case U,
the group K = SU4(¢%), and H is larger than K°°. In Case S, the group
H> 2 Spe(q)® whilst K> € {Sp,(¢*),Sps(¢?),SUs(q)}. Thus |H| does not
divide | K|, a contradiction. In Case OF, K € {Qf (¢*), 2 (¢%),SUe(q)}. The
order of H>® = Qér(q)2 is divisible by a higher power of a prime z;3 than
|94 (¢?)| or |[SUg(g)|, and by a prime z, 4, which does not divide |2 (¢?)].

It follows from Lemmas 2.3.9 and 2.3.10 (ii),(iii) that K ¢ €4 U%s. Classes
%s and €7 are empty, and it follows from Lemma 2.3.12 (i) that K ¢ 5. O

Recall Definition 2.2.5 of the %3-subgroups. If n = 12 and H <  is a
©3-subgroup, then one of the following holds:

(i) © =SLi2(q) and H is of type GLg(¢?) or GL4(¢?);
(ii) Q = SUi2(q) and H is of type GUy(q%);
(iii) ©Q = Spy5(q) and H is of type Spg(q?) or Spy(¢?) or GUg(q), with ¢ odd
in the latter case;
(iv) Q= Qf,(¢) and H is of type GOZ (¢2) or GOJ (¢*) or GUs(q);
(v) Q= Q5,(q) and H is of type GOg (¢?) or GO (¢?).

Proposition 3.11.7 Let n = 12 and let H be a €3-subgroup of Q. Then H
is maximal amongst the geometric subgroups of 2.

Proof Suppose, by way of contradiction, that H < K < (), where K is maxi-
mal among the geometric subgroups of {2 and is not of the same type as H.

We proved in Lemma 2.3.14 that K ¢ %). Since H normalises a field ex-
tension of degree 2 or 3, it follows from Lemma 2.3.16 that if K € %5 then H
is of type GOJ (¢°), so that H> = SLy(¢%) o SLa(¢%). If |La(¢®)| divides |A4],
for d € {2,3,4,6,12}, then ¢ = 2 and d = 12. However by Table 2.4 there is no
such %5-subgroup when g = 2. Therefore in all cases H*>® < Kp, the pointwise
stabiliser of the set of blocks. This implies that H° is reducible, contradicting
Lemma 2.2.6. It is immediate from Lemma 2.3.17 that K & %5.
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Suppose next that K € %;. We note first that by Lemma 2.3.18, and the
possibilities for H in Case U, if Q # Q% (¢) then H preserves a degree 3 field
extension. By Table 2.7, for all 2 the group K is of one of the following types:
Cases L and U, type GrL,jf1 (q)@GLff2 (@), (n1,n2) € {(2,6),(3,4)}; Case S, type
Sp,, (¢) @ GOS,, (), (n1,m2) € {(2,6),(4,3)}; Case O, type Sp,(q) @ Spg(q)
or type GO3(q) ® GOF (q); Case O™, type GO4(q) ® GO (q).

If Q # Q7,(q), then |H>| is divisible by a prime 2, 12, by Proposition 1.13.4,
whilst z, 12 does not divide |K>°|. In Case O™, if H is of type GUg(q) then
|H°| is divisible by a prime z, 10 which does not divide |K°|. If H is of type
GO (¢?) then |[H®°| is divisible by a prime z, g, whilst |K| is not. If H is of type
GOj (¢*) and ¢ # 2, then |H°| is divisible by a higher power of a prime z, ¢
than |K|. In Qf,(2) the only ¢}-subgroup is not maximal, by Proposition 2.3.22.

We proved in Lemma 2.3.19 that K ¢ %5. Classes % and %7, are empty
and it follows from Lemma 2.3.20 that K & %5. O

Recall Definition 2.2.9 of the %4-subgroups, and in particular that in types
GLf1 (¢) ® GLi‘ (¢) and Sp,,, (¢) ® Sp,,,(q) we assume that n; < no. For each
type, the €4-subgroup H of € contains a subgroup 3 x s, acting on a tensor
decomposition V = V; ® V5 with factors of dimensions ny and ns. In detail, H
is of one of the following types:

(i) Cases L and U: GL2i (9 ® GLGi( ), GL;;t(q) ® GLf(q);
(i) Case S: Spy(q) ® GOg (q), Spa(q) © GO4(q);
(iii) Case OF: Sp,(q) ® Spg(q), GO3(q) ® GOF (q);
(iv) Case O~: GO3(q) ® GOy ().

Note that ¢ is odd in Case S and for the groups of type GO4(q) ® GOT(q).

Proposition 3.11.8 Letn =12, let H be a €4-subgroup of 2, let G be almost
simple with socle Q, and let Hg be the corresponding €y-subgroup of G. Then
H is mazximal amongst the geometric subgroups of € if and only if one of the
following holds:

(i
(ii

(iii

Q = SLi2(q) or SU12(q), and if ny = 2 then q¢ > 2;

Q = Spy,(q), and if ny =4 then q # 3;

Q = Qf,(q), H is not of type GO;(q) ® GOJ (q), and q¢ > 2;
Q=Q,(q) and ¢ # 3.

NN NS N

(iv

If H is of type GO4(q) ® GOJ (¢) and q # 3, then Hg is mazimal amongst the
geometric subgroups of G if and only if G £ Qf,(¢).(6,0", ¢). Otherwise, if H
s not maximal then H does not extend to a novel maximal subgroup.

Proof The groups of type GL3 (2) @ GLE (2), Sp,(3) @ GO4(3), Spy(2) @Spg(2)
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and GO4(3) ® GOF (3) are shown in Proposition 2.3.22 to be non-maximal, so
assume that H is not one of these groups.

Suppose that H < K < Q, where K is maximal amongst the geometric
subgroups of €2 and is not of the same type as H. We will show that H is
of type GO5(¢) ® GOF (¢) and that there is only one choice of K € % for
1< <8

It is immediate from Lemma 2.3.23 that K ¢ %1 U %3, so suppose that
K € %3, preserving an imprimitive decomposition D into t subspaces. If t = 12,
then Q = SLliz(q) or Qf5(q), and K has a unique non-abelian composition
factor, namely Ajo. Unless H is of type GL3 (2) @ GLE(2) or GO5(q) © GOJ (q),
the group Qs is simple and |Qs| { |A12], a contradiction. If t = 12 and Q =
SL12(2) then K is not maximal by Proposition 2.3.6 (i), contrary to assumption.
Theorem 1.11.2 states that P(U4(2)) > 12. If H is of type GO5(q) ® GOJ (q)
then by assumption ¢ > 3, and |A;2| is not divisible by [La(gq)|?.

If t = 6 then Q # Q,(q), and the non-abelian composition factors of K
are each isomorphic to Ag or La(g). These are smaller than Q5 in Cases L and
U, type Spy(q) ® GOZ(q) in Case S, and type Sp,(g) x Spg(g) in Case OF.
The composition factors of K are also smaller than S4(¢), eliminating type
Sp,(q) ® GO4(q). For type GO5(q) ® GOJ (), we note that |Ag| is smaller than
|La(q)|?, since ¢ > 3.

If t € {2,3,4} then by Lemma 2.3.24 and our assumptions on H, the group
H is of type GLE (3) @ GLE(3), type GLE (2) @ GLE(2), type GLE (3) ® GLT (3),
type Sp,(3)@CGOZ (3) or of type Spy(3)@Spg(3). In each type the derived group
of H is absolutely irreducible, so t # 2. The second derived group of SU3(2) is
absolutely irreducible, so if Q = SU;2(2) then ¢ = 4. But then K is soluble, and
H is insoluble. Thus H is not of type GU3(2) ® GUy4(2). Therefore, if ny # 2
then H®° is absolutely irreducible, whereas K is reducible, so assume that
ny = 2. In Cases L, U and O™, the group €2, has no non-trivial representations
in defining characteristic in dimension at most 4, a contradiction. In Case S
the group s is isomorphic to SL4(3) or SU4(3), both of which are larger than
Sp4(3), a contradiction. Thus K & 65.

Next assume that K € %}, stabilising a tensor decomposition into spaces of
dimensions d; and dy. There is only a single family of tensor decompositions in
Q15 (q). Suppose first that ny = 6. For Q = SL(g), the dimensions R, (SLE(¢))
are greater than 4 by Theorem 1.11.5, a contradiction. In Case S, the group
Qs is Of (q) = La(q) or Og (g) = Uy(q). The largest composition factor of K
is either the other one of Ls(q), Us(g), which cannot contain Q) by Lagrange’s
theorem, or is S4(g), which is smaller than Q5. In Case O, H contains Spg(q),
whilst the non-abelian composition factors of K are all isomorphic to La(g), a
contradiction. So ny # 6.

Assume next that H is of type GLT (¢) ® GLE (). Then dy = 2 and dy = 6.
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The groups ; have a non-trivial representation in SLo(g) if and only if Q;
is soluble so H>® < 1® SLE(q). If Q; # SU3(2), these groups are reducible,
whereas H* is irreducible, a contradiction. If ; = SUj3(2) then K is not
maximal, contrary to assumption. Thus K ¢ %, in Cases L and U.

Assume next that H is of type Sp,(¢)®GO3(q), so that H>* = Sp,(q) xLa(q)
and ¢ > 5. Here, K> = Q3 0 Q, where Q3 = SLo(g) and Q4 = QF(g). Since
g = 5 is odd, La(q) is not a subgroup of SLy(¢), and so Ls(g) must embed
into QF (¢), and hence Ly(q) x Sp,(q) or La(q) x S4(g) is a subgroup of QF (¢),
contradicting Lagrange’s theorem.

Assume finally that H is of type GO5(q) ® GOJ (q), so that ¢ > 5, and
H™ = Ly(q) x 2'La(q)?, with K= 2 2.(Lay(q) x Se(g)). It is shown in [66,
Proposition 6.3.4] that H is properly contained in two classes of groups of type
K, as either of the factors of  (q) can be combined with 5(g) to produce a
%a-subgroup of Sg(q). There are two conjugacy classes in Q,(g) of groups of
the same type as K, with stabiliser S := (§, ', ¢), and a single class of groups
of the same type as H. By Lemma 1.12.3, automorphisms that lie in S are
in the kernel of the action on the two tensor factors of QF (¢), so H.S < K.S.
However, automorphisms of Q7 (¢) that do not lie in S extend € (¢) to a tensor
induced group, so that H is not contained in a group preserving tensor factors
of dimensions 2 and 6. This concludes the arguments for ¢4.

Finally, K ¢ %5 by Lemma 2.3.25, Classes %5 and %7 are empty, and K & %5
by Lemma 2.3.26. So the result follows for H not of type GO5(q) ® GOJ (q),
and for this type we note that in fact we have shown that there is a unique
other member K of &, for 1 < i < 8, that contains H (without requiring the
assumption that K is maximal), so the claims follow regarding the extensions
of H that are maximal. O

Recall Definition 2.2.11 of the €5-subgroups.

Proposition 3.11.9 Let n = 12 and let H be a €5-subgroup of 2. Then H
is maximal amongst the geometric subgroups of §2.

Proof This follows immediately from Proposition 2.3.29. 0
Classes 65 and 67 are empty. Recall Definition 2.2.17 of the €g-subgroups.

Proposition 3.11.10 Let n =12 and let H be a 6s-subgroup of Q. Then H
is maximal amongst the geometric subgroups of §2.

Proof This follows immediately from Proposition 2.3.32. O
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Groups in Class .¥: cross characteristic

4.1 Preamble

4.1.1 General strategy for determining the candidate
<-maximals

We now move on to the determination of the candidates for the almost sim-
ple groups in the Aschbacher Class . (see Definition 2.1.3) that can arise as
maximal subgroups of almost simple extensions of simple classical groups of
dimension at most 12. As we shall explain in detail in Subsection 4.1.2, these
candidates are divided into classes .7 (cross characteristic) and .5 (defin-
ing characteristic). We shall call subgroups that are maximal among the .#3-
and .%-type subgroups .#1-maximal and .%-maximal, respectively, and in this
and the following chapter we shall determine the .#;-maximal and .%5-maximal
subgroups, respectively. (This is not strictly true, because we shall save our-
selves some effort by excluding from detailed consideration certain .#-maximal
subgroups that are clearly contained in geometric subgroups of type %4 or %7.)

The descriptions of the .#7-maximal subgroups, and their principal prop-
erties, are summarised in the final section of this chapter, Section 4.9. So the
reader who simply wishes to know the .#7-maximals in the extensions of some
specific classical group of dimension up to 12 should look there first.

We start by summarising our methods of finding the candidate .’-maximals;
more details will follow later. Recall that a group G = Z'S is quasisimple if G is
perfect, S is non-abelian simple and Z is central, and that by Lemma 1.3.4 for
such a G, the group Aut G can naturally be regarded as a subgroup of AutS.
In particular, the group H in the definition (Definition 2.1.3) of a class %
subgroup is quasisimple with cyclic centre Z. To find both the .#;- and the .#5-
maximals, the first step is to determine all the quasisimple groups that possess
a faithful absolutely irreducible representation of degree at most 12 in prime
characteristic p. (It is an elementary result in representation theory that any
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group with a faithful irreducible representation has a cyclic centre.) The lists
in [42] (cross characteristic) and [84] (defining characteristic), together with
the ATrLAs [12] and the Modular ATLAS [57], are our principal sources of
information. The representations of such groups are classified up to represen-
tation equivalence. As a side effect, in the cross characteristic case, we obtain
a classification of the characteristic 0 representations of such groups as well.

Once we have constructed a list of all such representations of quasisimple
groups G, we determine the minimal fields IF, over which they can be realised.
By Proposition 1.8.13, this is just the field generated by the character values.

We then determine the types of the forms A for which the images of the
representations are groups of isometries when they are realised over their mini-
mal fields, which includes finding the signs of symmetric bilinear and quadratic
forms when appropriate. It is a consequence of Definition 2.1.3 of Class . and
Lemma 1.8.8 that we thereby identify (up to conjugacy) the specific quasisim-
ple classical group 2 in which an extension of Gp might be an ./-maximal
subgroup, so that almost simple extensions of Gp/Z(Gp) might be .#-maximal
subgroups of almost simple extensions of /Z(2). Our definitions of the outer
automorphisms of €2 were given in Subsection 1.7.1.

We also determine the action of Out G on the representations p, and thereby
determine their quasi-equivalence classes (Definition 1.8.4). By Lemmas 1.8.6
and 1.8.10, this determines the conjugacy between, and the normalisers of, the
images of the representations in the conformal classical group C := Nqr,, (4)(€2).

So we can restrict our attention to a set of representatives of the quasi-
equivalence classes of representations. For each such representative p, our first
aim is to determine which of the elements of C' that normalise Gp lie in QF,
and thereby find the normaliser in ) of Gp. This normaliser then becomes a
candidate for an .¥-maximal subgroup of Q2. To determine which elements of
Nc(Gp) lie in 2, we need to calculate the determinants of the normalising el-
ements, and their action on the form A. In the orthogonal cases, we may also
need to compute their spinor norms or quasideterminants. It is generally pos-
sible to perform such determinant, action, and spinor norm/quasideterminant
calculations either by using the information in [12, 57], or by direct computation
or, for spinor norm or quasideterminant calculations, using Definition 1.6.10 or
Proposition 1.6.11.

Finally, we compute the actions of any graph and field automorphisms of €2
on the representations, and thereby determine the stabiliser of the conjugacy
class of Gp in the full automorphism group of Q2. Let § be a field or graph
automorphism of . If 8 has the same action on a representation p as some
a € Aut G then by definition p? and % are equivalent, and by Lemma 1.8.10
this equivalence is effected by some matrix g € C. So the action of g on Gp,
followed by conjugation ¢, by g, normalises and induces o on Gp. Therefore
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the extension of G/Z(G) by « occurs in the almost simple extension of Q by
Bcy. So we need to identify ¢, as an element of Out 2, which again involves
computing its determinant, its action on the form A, and possibly its spinor
norm or quasideterminant.

We remind the reader that, as we demonstrated in [6], for the unitary and
orthogonal groups in even dimensions, the definition of the field automorphism
¢ or p of Q can depend on the specific form A for which €2 is a group of isome-
tries, and so it is important that the results of our calculations are presented
with respect to our chosen standard forms, which were listed in Table 1.1.

We had to carry out some of the computations described above by computer,
and, for the most part, we used MAGMA for this purpose. It is straightforward,
using standard MAGMA functionality, to do this for specific representations in a
given characteristic p. However, many of the cross characteristic representations
involved arise as reductions mod p of a characteristic 0 representation, and these
occur for all but finitely many p. To perform the calculations generically for
almost all primes p, we needed in some cases to construct the representations
explicitly over a number field, and to deduce the behaviour mod p from the
results of calculations in the characteristic 0 representation. This was necessary,
for example, for calculating the signs of the symmetric bilinear or quadratic
forms for which Gp is a group of isometries, for spinor norm calculations, and
for identifying and studying the elements ¢, described above. We remind the
reader that the files of MAGMA calculations that we refer to are available on
the webpage http://www.cambridge.org/9780521138604.

As remarked above, for representations over finite fields, the minimal field
over which a representation p can be represented is generated by the character
values of p, and these calculations can be carried out most effectively if the same
is true for the corresponding characteristic 0 representation. This is the case
if and only if the Schur index [19, Section 41, Page 292] of the representation
is 1. Fortunately, this was the case for all of those representations that we
actually needed to construct. (The smallest-dimensional example that we know
of a quasisimple group with indicator + or o and Schur index not 1 is the
336-dimensional representation of Jo. It is an easy consequence of the Brauer—
Speiser Theorem [20, (74.27)] that representations with indicator — have Schur
index 2, but it turned out that there was no need for us to construct any of
these representations.)

4.1.2 Classes .1 and .%

The groups in Class . are divided into two subclasses, .7 and .%5. To define
these subclasses, we need a precise definition of the characteristic of a group of
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Table 4.1 Groups of Lie type in more than one characteristic, or which are
alternating groups, plus possible cases of confusion

Group Characteristics for which it is group of Lie type
As 2 15(4) 2 La(5) 2 and 5
L3(2) = L2 (7) 2 and 7
Ag 2 1a(9) =2 S4(2) 3 (but not 2)
As = La(2) 2
U4(2) = S4(3) 2 and 3
Lo(8) 2 R(3) = 2Ga(3) 2 (but not 3)
Us(3) = G2(2)' 3 (but not 2)
2F,(2) none (not even 2)

Lie type, which we now present. This material is standard, and reader who is
unfamiliar with it could consult [91], for example.

Most (by any reasonable measure) finite simple groups are groups of Lie
type, and this includes all the classical groups. These have symbols ‘X, (q)
where ¢t € {1,2,3} (and is related to the symmetries of the associated Dynkin
diagram), n > 1 is an integer, X € {A,B,C,D,E,F,G} (these symbols are
derived from the standard notation for the simple complex Lie algebras), and
q = p° > 1 is a power of the prime p, with various restrictions on the allowed
combinations of £, X, n and ¢q. The groups with ¢ = 1 are the Chevalley groups,
and we write X, (q) instead of XX, (q) in this case. For these groups we have X,, €
{A,,B,,C,,,D,,Eg, E7, Eg, Fy, Go} where there are no further restrictions on
n and ¢ other than those given above, except that the case D; does not occur.

Let

tX’rL 6 {ATHB?’M C?’M DnvEGa E77E87F43 G27 2A7L72DTL73D47 QEGa 2B27 2F4a QGQ}'

Then we consider 'X,,(¢) to be a group of Lie type in characteristic p if * X,,(q)
is simple. Thus the sporadic groups and the groups A7, A,, for m > 9, and
2F4(2)" are not groups of Lie type in any characteristic. In Table 4.1 we present
all groups of Lie type that have more than one characteristic, and also all
alternating groups that are groups of Lie type.

The remaining simple groups are groups of Lie type in precisely one charac-
teristic. If H is a simple group of Lie type in characteristic p, then a quasisimple
group G = Z H is also considered to be a group of Lie type in characteristic p
provided that pt|Z|.

Definition 4.1.1 Let G be a subgroup in Class . of a classical group C' in
characteristic p. Then G lies in Class %5 of C' if G* is isomorphic to a group of
Lie type in characteristic p, and G lies in Class %1 otherwise. Class .77 is the
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cross characteristic case, and Class .% is the defining characteristic case. We
say that a subgroup G of a classical group C is .%;-mazimal (with i € {1,2})
if G is maximal amongst the .#;-subgroups of C'.

Cross characteristic representations are often (but not always) p-modular
reductions of characteristic 0 representations. Moreover, groups arising in this
class are usually defined over relatively low degree extensions of F,,. For a given
dimension the set of orders of the cross characteristic candidates is bounded
above; in dimension up to 12 we shall see in Section 4.3 that the largest qua-
sisimple cross characteristic candidate is 6" Suz, with order 2690 072 985 600. In
contrast, the candidates in defining characteristic have unbounded order, and
require arbitrarily large extensions of I, in order to write their representations.

The remainder of this chapter is devoted to classifying the .#}-maximal
subgroups of the classical groups in dimension up to 12: we shall handle the
defining characteristic cases in Chapter 5. The chapter is structured as follows.
We start, in Section 4.2, by enumerating the algebraic irrationalities that occur
in the (Brauer) characters of the representations that will arise, and establish-
ing a few of their elementary properties. In Section 4.3 we use [42, 12, 57| to
produce a lengthy table containing a complete list of the required represen-
tations of quasisimple .#}-candidates in dimensions up to 12. In Section 4.4,
we describe how to calculate the normaliser of the quasisimple .#-subgroups
in both the Q-group and the conformal group, and the number of (2-classes:
details of these calculations for the candidates in dimension up to six are given
in Section 4.5. Then in Section 4.6 we describe how to calculate the action on
the Q-classes of field and graph automorphisms, and in Section 4.7 we carry
out these calculations in detail in dimension up to 6. Recall Definition 2.1.4
of a containment between two subgroups of a linear group. In Section 4.8 we
analyse containments between the .#j-subgroups, ultimately determining all
Y-maximal subgroups in dimension up to 6. Having established and illus-
trated the techniques for performing all of the necessary calculations, we carry
them out in slightly less detail for candidates in dimensions 7—12 in Section 4.9.
Finally, in Section 4.10 we present a complete summary of the results of the
chapter, with references back to where they are proved.

In addition to our principal source [42], there is a huge volume of literature
on low-dimensional representations of quasisimple groups in cross character-
istic, which we is too extensive to be adequately summarised here. The lower
bounds on the degrees of representations of Chevalley groups established in [75],
which were improved in [101, 47], were of particular significance. Other such pa-
pers of specific relevance to our work include [7, 34, 35, 36, 37, 38, 43, 72, 109],
and the last of these is a useful survey paper. The methods described in Sec-
tion 4.4 that we use to compute stabilisers of .#}-subgroups in GL, (¢) in Case
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L, are similar to those used in [73], where representations of quasisimple groups
in coprime characteristic in dimensions 13 to 27 are considered, and GL,(q)-
conjugacy classes are determined.

4.2 Irrationalities

Our notation for algebraic irrationalities follows that in the ATrLAs [12]. All
such irrationalities are sums of roots of unity. Below we shall only define those
irrationalities that are needed in this book; the ATLAS defines many more.

We use i to denote a fixed square root of —1. We define z, (a particular
primitive complex nth root of 1) as:

7, = exp(2mi/n) = cos(2mw/n) + i.sin(27/n).

Notice the identities z; =1, z, = —1, and z, = i; we sometimes denote z; as w.
For n > 1 odd, we then use z,, to define the number b,:

(nL)/2 2 1 «— 2
b, = ; 7, = igzz

Notice that z; = bs. Gauss considered sums of this form, and proved that if
n =1 (mod 4) then b, = (-1 + /n)/2, whilst if n = 3 (mod 4) then b,, =
(=1 +iy/n)/2. Thus, if n = 1 (mod 4) then b, has minimal polynomial X?2 +
X — (n—1) over Q; whilst if n = 3 (mod 4) then b,, has minimal polynomial
X2+ X+ L(n+1) over Q.

Next we use z, and zg to fix a square root of 2, namely ry := (1+42,)/z5. For
n > 2, we may then use b,,, ry and positive integer square roots to fix square
roots r,, = y/n and i, = v/—n =ir,. Thenr, :=1+2b, if n =1 (mod 4), and
i, :==1+2b,, if n =3 (mod 4).

Another useful irrationality is ¢,, for n =1 (mod 6) and n prime, which is
defined as c,, := 3 ZT 1 27" . We also define y,, := 1z, +z, ' = 2cos(2r/n). It is
a useful exercise for the reader to verify that y;, =2, y, = -2, y3,=-1,y, =0,

¥s = b5, ¥6 = 1, y7 = ¢7, yg =13 and y;p =13.

If 6 is a quadratic irrationality, its non-trivial algebraic conjugate is easy to
write down: if € is a b,, irrationality this conjugate (denoted b} if b,, is real and
irrational, or b’* if b, is not real) is —1 — @, while if 0 is an i,, or r,, irrationality
(including 1) this conjugate is —6.

We next discuss p-modular reduction, namely the interpretation of these
irrationalities as elements of finite fields. Fix a primitive multiplicative element
Wp,e Of IF;,. For all reasonably small fields we can choose wy, . to be a root of the
Conway polynomial for that field; see Subsection 1.4.1. When n divides p® — 1
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but not p’ — 1 for i < e, we define the element z, in characteristic p to be the
smallest power of w), . that has multiplicative order n. We define i to be 24, and
then follow the opening paragraphs of this section in defining b,,, r,,, i,,, ¢,, and
¥, in terms of i and z,,. Note that z,, b,,, ¢,, and y,, are undefined when p | n
and r,, and i,, are undefined when p | n and when p = 2.

For n odd, b, is equal to (—1+ \/zn), where the sign ¢ € {1, —1} is such
that en = 1 (mod 4). Now, en = []/_, ;¢;, where the ¢; are prime natural
numbers and €;q; = 1 (mod 4) for all i. Recall the Legendre symbol, and the
basic facts regarding its behaviour, established in Section 1.13. For p odd, and
not dividing n, the field element corresponding to b,, lies in IF,, if and only if
en is a (non-zero) square modulo p. This occurs if and only if

()1 () -1 (3) -

by Proposition 1.13.7 (iii). For p = 2, we consider whether the minimal polyno-
mial of b,, (whichever of X2 + X + % is in Z[X]) factors into linear factors
when reduced modulo 2. This is the case (and hence b,, is in Fy) if and only if
n = +1 (mod 8), by Proposition 1.13.7 (ii) .

As an example, by; € F,, if and only if p # 3,5 and (#) = (g) (%) =1.

Now (£) = () = 1 if and only if p = 1 (mod 3) and p = 1,4 (mod 5), that

is p=1,4 (mod 15). And (§) = (%) = —1 if and only if p = 2 (mod 3) and
p = 2,3 (mod 5), that is p = 2,8 (mod 15). So we see that b5 is in F, if and
only if p=1,2,4,8 (mod 15).

We write Fy(y,,) to mean the smallest extension of F, containing y,,, and
v, € Fy will mean that Fy(y,,) = F,.

Lemma 4.2.1 If the prime p does not divide n and q is a power of p, then
vn € Fy if and only if ¢ = £1 (mod n).

Proof Ify, =z, +z,' € F,, then z, satisfies a quadratic equation over F,
and hence z, € Fp2. So z,, + 7,1 =23 + 7.9 and so, multiplying by z2,

729 — 701 07t ] = (24T D287 1) =0

n

and hence ¢ = +1 (mod n).
Conversely, if ¢ = 1 (mod n) then z, € F,, so y, € F,, whereas if ¢ =
—1 (mod n) then z, € F2 \F,, and y,, =z, + 2, =z, + 24 € F,. O

In Tables 4.2 and 4.3 we present information about the algebraic irrational-
ities that we shall need; i.e. those that arise in character values of the cross
characteristic candidates in Table 4.4. In column “Irrat” we give the name of
the irrationality 6, and in Column “Real” we indicate whether 6 is a real or
complex number. Column “Deg” (only present in Table 4.3) gives the degree
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of the extension field Q(#): note that in Table 4.2 this number is always 2.
Column “Cyc” gives the minimal n such that 6 is a sum of n-th roots of unity.
The minimal polynomial of # over Q follows next, and finally in Column “p-
modular reductions” we give congruences on primes p such that 6 and all of its
conjugates lie in Fpe for some o (with o minimised over all conjugates). For
the irrationalities given in Tables 4.2 and 4.3, the p-modular reductions of the
irrationality and each of its conjugates generate the same field.

To calculate the p-modular reductions in Table 4.2 we have made repeated
use of Theorem 1.13.8. In Table 4.3 we include the irrationalities ¢;5 and c;g,
which we shall only need in characteristics 5 and 11, respectively, so we only give
information about their behaviour in these specific characteristics. Lemma 4.2.1
can be used to determine the entries in Column “p-modular reductions” of
Table 4.3 for the irrationalities y,,.

Table 4.2: Irrationality tables: quadratic irrationalities

Irrat Real Cyc Min poly  p-modular reductions
Zs no 3 X?24+X+1 Degl:p=0,1(3)
Deg 2: p=2 (3)
b; yes 5 X?4+X-1 Degl:p=0,1,4(5)
Deg 2: p=2,3 (5)
b, no 7 X?4X42 Degl:p=0,1,2,4(7)
Deg 2: p=3,5,6 (7)
b;; mno 11  X?4X+3 Degl:p=0,1,3,4,59 (11)
Deg 2: p=2,6,7,8,10 (11)
b3 yes 13  X2+X-3 Degl:p=0,1,3,4,9,10,12 (13)
Deg 2: p=2,5,6,7,8,11 (13)
by no 15  X2+X+4 Degl:p=3,51,2,4,8 (15)
Deg 2: p=17,11,13,14 (15)
by, yes 17 X2+X-4 Degl:p=0,1,2,4,8,9,13,15,16 (17)
Deg 2: p =3,5,6,7,10,11,12,14 (17)
byg no 19 X24+X+5 Degl:p=0,1,4,5,6,7,9,11,16,17 (19)
Deg 2: p=2,3,8,10,12,13, 14,
15,18 (19)
by yes 21 X?24X-5 Degl:p=3,7,1,4,516,17,20 (21)
Deg 2: p=2,8,10,11,13,19 (21)
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Table 4.2: Irrationality tables: quadratic irrationalities
Irrat  Real Cyc Min poly p-modular reductions
bys  no 23 X2+ X+46 Degl:p=0,1,2,3,4,6,8,9,12,13,
16,18 (23)
Deg 2: p=5,7,10,11,14,15,17,19,
20,21,22 (23)
i no 4 X241 Degl:p=2,1(4)
Deg 2: p=3 (4)
iy no 8 X242 Degl:p=2,1,3(8)
Deg 2: p=5,7 (8)
iy no 20 X245 Degl:p=2,51,3,7,9 (20)
Deg 2: p = 11,13,17,19 (20)
ro yes 8 X?2-2 Degl:p=21,7(8)
Deg 2: p= 3,5 (8)
Iy yes 12 X2-3 Degl:p=2,3,1,11 (12)
Deg 2: p=5,7 (12)
Iy yes 24 X2-6 Degl:p=2,3,1,5,19,23 (24)
Deg 2: p=7,11,13,17 (24)
Table 4.3: Irrationality tables: non-quadratic irrationalities
Irrat Real Deg Cyc Min poly p-modular reductions
Ci3 yes 3 13 X3+X2-4X+1 c¢3€F;
Cig yes 3 19 X3+X2-6X-7 c9€lFyy
yr  yes 3 7 X3+X?-2X-1 Degl:p=0,1,6(7)
Deg 3: p=2,3,4,5 (7)
Yo yes 3 9 X3-3X+1 Degl:p=3,1,8(9)
(
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4.3 Cross characteristic candidates

In this section we calculate and tabulate the information that we shall require
concerning the cross characteristic representations of quasisimple groups in di-
mensions up to 12. Representations in defining characteristics will be considered
in Chapter 5, and are deliberately omitted from this chapter. Our main source
for the information in this section is Theorem 4.3.1, the main result of [42].

Theorem 4.3.1 Let G be a quasisimple finite group, and let V' be an absolutely
wrreducible faithful FG-module of dimenion d < 250. If G is a group of Lie
type, assume that the characteristic of F is not the defining characteristic of
G. Then the values of (G, d), together with the Frobenius-Schur indicator of the
representation and its character field, are contained in [42, Tables 2 and 3].

We have also used the information in the ATLAS [12] and the Modular
ATLAS [57]. We remind the reader that the modular character tables in [57]
contain the irreducible Brauer characters (see, for example, [19, Page 588] or
[56, Chapter 15]) of the groups G in characteristics dividing the group order.
For g € G and an absolutely irreducible representation p in characteristic p,
tr(gp) is a sum Y w; of roots of unity, and the Brauer character x(g) is equal
to > w;, where w; is a complex root of unity that maps onto w;, as described
earlier in Section 4.2. For primes p not dividing |G|, the Brauer character is
equal to an ordinary character, and can be found in [12].

Table 4.4 contains the information that we require on the absolutely irre-
ducible cross characteristic representations of quasisimple groups in dimensions
up to 12. We need to explain our convention for when we include two represen-
tations p; and ps of a group G on the same row of Table 4.4.

In Section 1.8 we saw how automorphisms of G and F' define actions on the
representations of G over the field F'.

In the case of complex representations, we recall the standard definition
from representation theory that p; and ps are said to be algebraically conjugate
if p7 is equivalent to py for some automorphism o of C.

We extend this concept to characteristic p representations in the following
somewhat arbitrary and non-standard fashion. If p; and p, are absolutely ir-
reducible and can both be defined as reductions modulo p of the absolutely
irreducible complex representations p| and pj, then p; and py are algebraically
conjugate if and only if p} and p), are. (This turns out to be independent of
how exactly we define reduction modulo p, which depends on the choice of a
maximal ideal above the ideal (p) in a suitable ring.)

If p1 and ps are absolutely irreducible representations over a finite field F' of
characteristic p, and they do not arise as reductions modulo p of absolutely ir-
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reducible complex representations, then we shall say that they are algebraically
conjugate if p{ is equivalent to ps for some automorphism o of F.

Definition 4.3.2 Two representations p; and py of G are said to be weakly
equivalent if one can be obtained from the other by application of group auto-
morphisms, algebraic conjugacy, and duality of modules.

Hence quasi-equivalent representations (see Definition 1.8.4) are weakly
equivalent. Our results are listed in Table 4.4, each row of which describes
a class of weakly equivalent faithful absolutely irreducible representations.

How to read Table 4.4. The column “Group” gives the name of the qua-
sisimple group G in ATLAS [12] notation.

The column “PmDivs” lists the prime divisors of |G|. If G is a group of Lie
type then the defining characteristics of G are in bold.

Column “Dim” states the dimension (or degree) of the representations.

The column “Ind” refers to the Frobenius—Schur indicator (see, for example,
[20, Page 725]). This is equal to o when the image of the representation preserves
a unitary form or only an identically zero form, — when the image of the
representation preserves a symplectic form but no quadratic form, and + when
it preserves a quadratic form. We shall describe in Subsection 4.4.1 how to
determine whether a representation with indicator o preserves a unitary form.

The column “#p” counts the number of equivalence classes of representa-
tions (or characters) that are represented by that line of the table.

Column “Stab” defines the stabiliser in Out G of one of the representations
described in that line, by specifying its structure or generators.

Column “Charc” gives the characteristics over which the representation
occurs, where by 0 we mean all primes that do not divide |G|. The bracketed
[2,] in this entry for a 10-dimensional representation of Lo(11) indicates that
this representation is equivalent to the one in the line below in characteristic 2.

To determine the minimal field size for these representations on reduction
modulo p, we require the character ring (i.e. the ring generated by the character
values) of the representation, as an extension of Z. Column “Ch Ring” lists
algebraic irrationalities that generate the character ring over Z. See Table 4.2 for
the values of the irrationalities that occur, including their minimal polynomials.

The table is ordered first by degree, then by Frobenius—Schur indicator,
then by order of the simple group, and then by order of the quasisimple group.

How Table 4.4 was calculated. Rather than giving all details of the calcu-
lations, which would be lengthy and repetitive, we describe how to carry them
out and give a few examples.

Columns “Group”, “PmDivs”, “Deg” and “Ind” are in [42]. Column “#p”,
which is the number of inequivalent representations in the general linear group
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that are described by that row of the table. Several non-weakly-equivalent rep-
resentations of a group can be listed in a single line in [42]. This does not in
fact occur in dimensions up to 12 but, for example, if we were dealing with
dimension 14 the two rational degree 14 representations of A7 occupy one line
of [42] but would appear twice in our list.

As an example of how to calculate the “#p” value, we consider the 6-
dimensional representation of 6°A7, which occurs in characteristics 0, 5 and
7. First, we note that in [12] and [57] there are four characters of degree 6
for 6°A7. These are all algebraically conjugate, with character field K(zs,15),
where K is Q, F5 or 7, so all four representations are in one row of our table.
These representations are swapped in pairs by the outer automorphism a of
6°A7, since o acts in the same way as the automorphism (z5,15) — (25*, —15)
of K(z3,15) on these representations.

Similarly, for Column “Stab” of our 6°A7 example, [12] and [57] show that
6°S; has no 6-dimensional representations in characteristic 0. Since 6°A; has
only one non-trivial outer automorphism, the entry for “Stab” is 1.

As a second example, consider the 5-dimensional representations of Ag,
which occur in characteristics 0 and 5. There are two such representations in
[12] and [57]. They are interchanged by the .25 and .23 automorphisms of Ag
and are stabilised by the .2; automorphism. Thus the two representations form
a single row of our table, with “Stab” entry 2;.

For almost all of the entries in Table 4.4, the character tables in [12] and
[57] can be used to calculate the number of representations as we have just
explained. The exceptions are:

(i) Ay3 in dimension 11 with p = 13;
(ii) Az in dimension 12 with p =2,3,5,7 or 11;
(iii) A4 in dimension 12 with p = 2 or T7;
(iv) 2'Suz in dimension 12 with p = 3;
(v) 3'Suz in dimension 12 with p = 2;
(vi) 6'Suz in dimension 12 with p =5,7,11 or 13.

None of these Brauer character tables are in [57], but they are all available in
the GAP library of (Brauer) character tables, and can be accessed from within
GAP. For example, for 3'Suz in dimension 12 with p = 2, the GAP commands

C:=CharacterTable ("3.Suzmod2") ;
CharacterDegrees (C) ;

reveal that there are exactly two Brauer characters of this degree with p = 2.

The tables in [42] give generators for the character field of the representa-
tion, whereas we require the character ring. This can be read straightforwardly
from the character values in [12] and [57].
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In conclusion, we have illustrated how we have proved the following theorem.

Theorem 4.3.3 Let S be an % -subgroup of a classical group C' in dimension
at most 12. Then S is contained in Table 4./.

Table 4.4: Cross characteristic candidates

Group PmDivs Deg Ind #p Stab Charc Ch Ring
2'As 23,5 2 - 2 1 0,3 by
Ls(2) 23,7 3 o 2 1 0,3 b,
3" Ag 2,3,5 3 o 4 1 0,2 zs, by
3 Ag 2,3,5 3 o 2 2 5 Zg
3Ay 2,3,5,7 3 o 2 1 5 Zg, by
Aj 23,5 3+ 2 1 0,3 by
2'L3(2) 23,7 4 o 2 1 0,3 b,
A, 2,3,5,7 4 o 2 1 2 b~
2°Ar 2,3,5,7 4 o 2 1 0,3,5 b,
45 L3(4) 2,3,5,7 4 o 2 2 3 i,bs
2°U4(2) 23,5 4 o 2 1 0,5 Zg
2'As 23,5 4 - 1 2 0 —
Ag 2,3,5 4 - 2 2 2 —
2" Ag 2,3,5 4 - 2 2 0,5 —
2'A; 2,3,5,7 4 - 1 2 7 —
Aj 2,3,5 4 + 1 2 0,3 —
Ly(11) 2,3,5,11 5 o 2 1 0,2,3,5 by,
My, 2,3,5,11 5 o 2 1 3 iy, by
U4(2) 2,3,5 5 o 2 1 0,5 Zg
Aj 2,3,5 5 + 1 2 0 —
Ag 2,3,5 5 4+ 2 2 0,5 —
A7 2,3,5,7 5 + 1 2 7 —
3" Ag 2,3,5 6 o 2 2 0 Zg
5 274
6"Ag 2,3,5 6 o 4 1 0 Zg,To
5 223,14
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Table 4.4: Cross characteristic candidates
Group PmDivs Deg Ind #p Stab Charc Ch Ring
2'Lo(11) 2,3,5,11 6 o 2 1 0,3,5 by
3A; 2,3,5,7 6 o 2 1 0,2,5,7 Zg
6"Ay; 2,3,5,7 6 o 4 1 0,5,7 Zg, Ty
6'L3(4) 2,3,5,7 6 o 2 2 0,5,7 Zg
2'Mys 2,3,5,11 6 o 2 1 3 iy, 15, by
3" Mao 2,3,5,7,11 6 o 2 1 2 Z5,bqq
317 U4(3) 2,3,5,7 6 o 2 2 2 Zg
61 U4(3) 2,3,5,7 6 o 2 2 0,5,7 Zg
2'As 2,3,5 6 - 1 2 0,3 —
2'L3(2) 23,7 6 - 2 2 0,3 Ty
Ly(13) 23,713 6 — 2 1 2 bys
2'12(13) 2,3,7,13 6 - 2 1 0,3,7 bis
2°A; 2,3,5,7 6 — 2 1 3 r
Us(3) 2,3,7 6 - 1 2 0,2,7 —
Ja 2,3,5,7 6 - 2 1 2 by
2'Jo 2,3,5,7 6 - 2 1 0,3,7 by
29 2,3,5,7 6 - 1 2 5 —
Ls(2) 2,37 6 + 1 2 0,3 —
A 2,3,5,7 6 + 1 2 0,2,3,5 —
2'L3(4) 2,3,5,7 6 + 1 22 3 —
U4(2) 2,35 6 + 1 2 0,5 —
Us(3) 2,3,7 7 o 2 1 0,7 i
Ls(2) 23,7 T o+ 1 2 0,3 —
Lo (8) 2,3,7 7T+ 1 3 0,3,7 —
L2 (8) 2,3,7 T+ 3 1 0,7 Yo
Lo(13) 2,3,7,13 T+ 2 1 0,3,7 big
Us(3) 2,3,7 T 4+ 1 2 0,7 —
Ag 2,3,5,7 T o+ 1 2 0,3,5,7 —
J1 2,3,5, T 4+ 1 1 11 bs, Cqg

7,11,19
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Table 4.4: Cross characteristic candidates
Group PmDivs Deg Ind #p Stab Charc Ch Ring
Ag 2,3,5,7 T+ 1 2 3 —
S6(2) 2,3,5,7 T+ 1 1 0,3,5,7 —
41°Ls(4) 2,3,5,7 8 o 4 24 0,3,7 i, by
4, L3(4) 2,3,5,7 8 o 2 2 5 i
2'L3(2) 2,3,7 8 — 1 2 0 —
2'Ag 2,3,5 8 — 2 2, 0 by
Ly(17) 2,3,17 8 — 2 1 2 b7
2'Lo(17) 2,3,17 8 — 2 1 0,3 by,
Ay 2,3,5,7 8 — 1 2 —
L3(2) 23,7 8§ + 1 0 —
Ag 2,3,5 8 + 2 2 0,2 bg
Ag 2,3,5 8 + 1 22 5 —
Lo (8) 23,7 8 + 1 3 0,7 —
Ay 2,3,5,7 8§ + 1 2 5 —
2'Ag 2,3,5,7 8§ + 1 2 0,3,5,7 —
2'Sz(8) 2,5,7,13 8§ + 1 1 5 C13
Agy 2,3,5,7 8 + 1 2 0,2,5,7 —
Ay 2,3,5,7 8 4+ 2 1 2 —
2'Ag 2,3,5,7 8 + 2 1 0,5,7 —
2'Ag 2,3,5,7 8 + 1 2 3 —
2'S6(2) 2,3,5,7 8§ + 1 1 0,3,5,7 —
Ay 2,3,5,7 8 + 1 2 5 —
2"Aqg 2,3,5,7 8 4+ 2 1 5 Tg, boy
2°0%(2) 2.3,5,7 8 + 1 2 0,3,5,7 —
3 Ag 2,3,5 9 o 2 2 0,2 Zs
3A; 2,3,5,7 9 o 2 1 7 Zg
Ly(19) 2,3,5,19 9 o 2 1 0,2,3,5 by
3J3 2,3,5,17,19 9 o 2 1 2 Z3, b7, b1g
Ag 2,3,5 9 + 1 22 0 —
Lo (8) 2,3,7 9 + 3 1 0,3 V7
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Table 4.4: Cross characteristic candidates
Group PmDivs Deg Ind #p Stab Charc Ch Ring
Lo(17) 2,3,17 9 + 2 1 0,3 b,
M 2,3,5,11 9 + 1 1 11 —
A 2,3,5,7 9 + 1 2 0,3,7 —
Ay 2,3,5,7,11 9 + 1 2 11 —
Ar 2,3,5,7 10 o 2 1 0,3,5 b,
2'12(19) 2,3,5,19 10 o 2 1 0,3,5 big
My, 2,3,5,11 0 o 2 1 0,3,5,11 i,
2'L3(4) 2,3,5,7 10 o 2 2 0,3,5 b,
U4(2) 2,3,5 10 o 2 1 0,5 Zg
2'Mi2 2,3,5,11 10 o 2 2 0,3,5,11 iy
Moo 2,3,57,11 10 o 2 2 2 b
2" Moo 2,3,5,7,11 10 o 2 2 0,3,5,11 b,
2" Ag 2,3,5 0 - 2 2 0,5 r
2'Lo(11) 2,3,5,11 10 - 1 2 0,3,5 —
2 Lo(11) 2,3,5,11 0 - 2 2 0,5 Iy
Us(2) 2,3,5,11 0 - 1 2 0,3,5,11 —
Ag 2,3,5 0w + 1 22 0,5 —
Lo(11) 2,3,5,11 10 + 1 2 0,[2,)3,5 —
Lo(11) 2,3,5,11 10 + 1 2 0,2,5 —
Ar 2,3,5,7 0 + 1 2 7 —
My, 2,3,5,11 10 + 1 1 0,2,3,5 —
2'L3(4) 2,3,5,7 0 + 1 22 7 —
M, 2,3,5,11 10 + 1 2 2 —
Mo 2,3,5,11 10 + 2 1 3 —
2" Moo 2,3,5,7,11 10 + 1 2 7 —
Aqq 2,3,5,7,11 0 + 1 2 0,2,3,5,7 —
Ao 2,3,5,7,11 10 + 1 2 2,3 —
Lo (23) 2,3,11,23 11 o 2 1 0,2,3,11 bog
Mag 2,3,5,7,11,23 11 o 2 1 2 b, b5, bog
Us(2) 2,3,5,11 11 o 2 1 0,5,11 Zgy
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Table 4.4: Cross characteristic candidates
Group PmDivs Deg Ind #p Stab Charc Ch Ring
Moy 2,3,5,7,11,23 11 o 2 1 2 bz, bys, by
Lo(11) 2,3,5,11 1 4+ 1 2 0,5 —
Ls(3) 2,3,13 1+ 1 2 13 —
My, 2,3,5,11 1 + 1 1 0,5,11 —
Mo 2,3,5,11 1+ 2 1 0,5,11 —
Ayq 2,3,5,7,11 1 + 1 2 0,5,7,11 —
Aig 2,3,5,7,11,13 11 + 1 2 13 —
6"Ag 2,3,5 12 o 4 1 0 zs, by
6 A; 2,3,5,7 12 o 2 1 5 %3, b~
2'L9(23) 2,3,11,23 12 o 2 1 0,3,11 boys
125°Ls(4) 2,3,5,7 12 o 4 1 7 1,24, by
3'Suz  2,3,5,7,11,13 12 o 2 1 2 Zg
6'Suz  2,3,5,7,11,13 12 o 2 1 0,57,11,13 Zg
2'Lo(11) 2,3,5,11 12 - 2 2 0,3 by
2'15(13) 2,3,7,13 12 - 3 2 0,3 NCd
Ly (25) 2,3,5,13 12 - 2 2 2 —
2'1Lo(25) 2,3,5,13 12 - 2 2 0,3,13 —
Us(4) 2,3,5,13 12 - 1 4 0,3,5,13 —
S4(5) 2,3,5,13 12 - 2 1 2 by
2'54(5) 2,3,5,13 12 - 2 1 0,3,13 bg
2'Go(4) 2,3,5,7,13 12 — 1 2 0,3,5,7,13 —
Ay 2,3,5,7,11,13 12 — 1 2 2 —
2'Suz  2,3,5,7,11,13 12 — 1 2 3 —
Lo(11) 2,3,5,11 12 + 2 2 0,2,3 by
L2(13) 2,3,7,13 12 4+ 3 2 0,2,3 Vo
L2(13) 2,3,7,13 12+ 1 2 7 —
Ls(3) 2,3,13 12+ 1 2 0,2 —
2'My2 2,3,5,11 12 + 1 2 0,5,11 —
Aqs 2,3,5,7,11,13 12 + 1 2 0,2,3,5,7,11 —
Ay 2,3,5,7,11,13 12 + 1 2 7 —



4.4 The type of the form and the stabilisers in 2 and C 167

4.4 The type of the form and the stabilisers in 2 and C

4.4.1 Unitary forms

In this subsection we present some general methods to determine whether a
representation over a finite field with indicator o preserves a unitary form, or
only the identically zero form. Recall that an indicator of type — indicates that
the group preserves a symplectic form, and an indicator of type + indicates
that the group preserves a quadratic form: we will discuss in Subsection 4.9.3
how to determine the sign of the quadratic form in even dimension.

Since the definition of a unitary form requires a field automorphism of order
2, a representation can only preserve a unitary form when the field size is a
square. The indicator o examples in Table 4.4 all have the property that they
involve only quadratic irrationalities in their character rings, so in fact in each
of these candidates the field size is p or p? for some prime p.

Lemma 4.4.1 For a given absolutely irreducible representation of a group G
over Fg2 with indicator o, the image of G under the representation consists of
isometries of a unitary form if and only if the action of the field automorphism
o :x +— x? on the Brauer character is the same as complex conjugation.

Proof Suppose that (the image of) G consists of isometries of a unitary form
with matrix A. Then gAg°" = A for all ¢ € G. Rearranging, we see that
g~ 77 = A71gA so, since || = 2, the dual of the representation is equivalent to
its image under o. The effect of duality on the Brauer character is the same as

complex conjugation [56, Lemma 15.3], so the result follows. O

From this we can immediately deduce the following result, which suffices to
resolve this question in all examples up to dimension 12.

Corollary 4.4.2 Suppose that the character ring of an absolutely irreducible
representation with indicator o of a group G over Fy2 is generated over Z by the
quadratic irrationalities aq, . .., a,, and let a; denote a p-modular reduction of
a; to Fg2. Then the image of G under the representation consists of isometries
of a unitary form if and only if a; € R <= a; € F, for 1 <i < r.

Thus, for example, for the listed representation of 6 A7, the field size is p
only when z; and ry, both lie in F,,, which is the case when p = 1 or 7 (mod 24).
The group 6°A7 preserves a unitary form over F,» when r, € F,, but z; ¢ F,;
that is, when p = 17 or 23 (mod 24). When p = 5,11,13 or 19 (mod 24), the
field size is p? and no form is preserved.

In Section 4.5 we shall use this lemma in dimensions up to 6 to determine
which of the representations in Table 4.4 are unitary, whilst in Subsection 4.9.1
we shall apply it in dimensions 7 to 12.
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4.4.2 Stabilisers in 2 and C, and quasishape

Theorem 4.3.3 is sufficient to determine the quasisimple subgroups G of the
quasisimple classical groups €2 in dimensions up t 12. However, we wish to find
the almost simple subgroups of the (projective) simple classical groups and of
their almost simple extensions, so more work is needed.

Let © be a quasisimple classical group, let G be the image of a represen-
tation p of a quasisimple group, and assume that G is an .#;- subgroup of €.
Let C be the corresponding conformal group. In this subsection, we present
some methods that can be used to determine the number of conjugacy classes
of images of p in Q and C, and of determining which of their stabilising outer
automorphisms can be realised within 2. These methods will be used in Sec-
tion 4.5 to determine such stabilisers in dimensions up to 6, and in Section 4.9
in dimensions 7 to 12. Determining the effects of the remaining automorphisms
is more complicated, and will be discussed in Section 4.6.

Lemma 4.4.3 Let G = Sp; be a quasisimple group for some faithful absolutely
irreducible representation py over a finite field, let A= Out G, let {p1,...,pr}
be a set of representatives of the equivalence classes of representations that are
weakly equivalent to p1, and let C be the corresponding conformal group of the
smallest classical group Q that contains G. Then

(i) The orbits of A on{p1,...,pr} are in natural bijection with the conjugacy
classes into which C partitions {Sp1,Spa,...,Spr}.
(ii) Each C-class of subgroups splits into |C' : No(G)SY| classes in Q.
(iil) The outer automorphisms of G that are induced by elements of No(G) are
precisely those that stabilise py.

Proof Let X be the general linear group naturally containing 2. By Lem-
mas 1.8.6, the images of p; and p; are conjugate by an element g € X if and
only if they are equivalent under an automorphism « € A and, if i = j, then we
may choose g € Nx(Sp;) such that g induces .. Furthermore, by Lemmas 1.8.9
and 1.8.10, we may choose g € C. Hence (i) and (iii) are true, and (ii) follows
by the Orbit—Stabiliser Theorem. O

The action of outer automorphisms of G on the representations can be found
in [12, 57]. In many cases there is a single class of subgroups of C, but there are
some exceptions. For example, the four representations of 6"A7 in dimension 6
give rise to two classes of subgroups of GL(‘;E (q)-

We also need to determine Nq(G). So, for g € N (G), we need to decide
whether some scalar multiple of ¢ lies in 2. This will depend in general on
the effect of g on the invariant form (if non-zero), the determinant of ¢g and,
in the orthogonal cases, on the spinor norm or quasideterminant of any scalar
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multiple of g that is an isometry and has determinant 1. In dimension at most
12, the determinant of a suitable g and information on whether it is an isometry
can be calculated from the character tables in [12, 57]: these calculations will
be presented in Sections 4.5 and 4.9. Up to multiplication by scalars, we can
always choose g to be an isometry in Case U, since CGU,(q) is generated by
GU,(q) and scalar matrices.

Finally, we introduce some new notation, which we can use to denote an
extension G of a quasisimple group, without having to specify precisely which
scalars lie in G. Let M.S be a quasisimple group with centre M and S sim-
ple, and let S.A be almost simple. We say that G has quasishape [M.S.A],
and write G &~ [M.S.A], if G has a normal subgroup H isomorphic to M.S
such that G/Cq(H) = S.A. We use the notation [M.S.A] even if there is no
group of shape M.S.A, and write [M.S:A] if the extension S:A is split, even
if any group M.S.A is M.S" A or if no such group exists. A notation such as
[6° PGL2(9)] is the same as [6"Ag:22]. Note that we intend to use the notation
G = [M.S.A] when G is an .-subgroup of a classical group, so that Cg(H)
should consist of the scalar matrices in G, but since G may include field and/or
graph automorphisms, Cq(H) is not necessarily central in G. While the notions
of quasishape and isoclinism are similar, they are not the same. For example,
there are groups Ag.22 and Ag.Dg having quasishape [Aut Ag]] = [1.A4.22], but
Ag.22 and Ag.Dg are not isoclinic. (The group Ag.Dg arises when one attempts
to extend the irreducible 10-dimensional representation of Ag to Aut Ag.)

Definition 4.4.4 For subgroups G < H < GL,(q), we say that G is scalar-
normalising in H if Ny (G) < GZ, where Z is the group of scalar matrices of
GL,(q).

4.5 Dimension up to 6: quasisimple and conformal groups

In this section, we carry out the calculations that we introduced in Section 4.4
in detail for dimensions up to 6. We deal with larger dimensions in less detail
in Section 4.9. We remind the reader that, although we are including tables
for the orthogonal groups in dimensions less than 7 in Chapter 8, we are not
presenting details of the calculations in these cases, on the grounds that they
are (projectively) isomorphic to other classical groups. This means that, in our
calculations in this section, we are ignoring representions with indicator +.
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4.5.1 Dimension 2

Since SLa(q) = Spy(q) = SUs(q) and Q3 (q) is soluble, the only possible indi-
cator for a 2-dimensional representation is —, so we consider these groups as
subgroups of Spy(¢). Furthermore, the only .#;-candidate is 2" As.

Proposition 4.5.1 (i) If p = £1 (mod 5), then there are exactly two con-
Jugacy classes of 1 -subgroups of Sp(p) isomorphic to 2" As.
(ii) If p = £2 (mod 5) and p # 2, then there are exactly two conjugacy classes
of /1 -subgroups of Sp(p?) isomorphic to 2 As.
In both cases, these subgroups are scalar-normalising in CSpy(q) = GLa(q),
and the two classes are fused by the diagonal automorphism of Spy(q). There
are no other classes of #1-subgroups of Spy(q).

Proof By Theorem 4.3.3, the only .#;-candidate is G = 2"Aj in characteristics
not equal to 2 or 5. Note that Out G = 2.

The character ring of the relevant representations is the p-modular reduction
of Z[bs]. By Table 4.2 the quadratic irrationality by lies in I, if and only if p
is a square modulo 5, so G < Spy(p) in that case (p = £1 (mod 5)) and
G < Sp,(p?) otherwise (p = £2 (mod 5)). Thus these are the only possibilities
for #1-subgroups of Spy(q).

There are two such representations of G, fused by the outer automorphism
of G, and their stabilisers are trivial. So by Lemma 4.4.3, there is a single class
of such groups G < CSpy(q) = GL2(g). Since the outer automorphism of G
is not induced by an element of C' := GLa(q), G is scalar-normalising. Let
Z = 7Z(C). Then N¢(G) = GZ, so No(G)Q2 = QZ. Since |C : QZ| = 2, by
Lemma 4.4.3 the single class in C' splits into two (2-classes, which are fused by
an element of GLy(q) \ QZ. O

4.5.2 Dimension 3

There are no representations of indicator —, since the dimension is odd, and we
are not considering subgroups of the orthogonal groups in dimension less than
7, so we consider only those representations with indicator o.

By Theorem 4.3.3, the quasisimple groups to consider are:

(i) L3(2) in characteristic not 2 or 7;
(ii) 3"Ag in characteristic not 3;
(iii) 3"A7 in characteristic 5.

Proposition 4.5.2 (i) If p = 1,2,4 (mod 7) and p # 2, then there are
exactly d := (p — 1,3) conjugacy classes of #1-subgroups of SLz(p) iso-
morphic to L3(2). The subgroups are scalar-normalising in GLs(p), and if
d = 3 then the classes are fused by the diagonal automorphisms of SLs(p).
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(ii) If p = 3,5,6 (mod 7), then there are exactly d := (p + 1,3) conjugacy
classes of 71 -subgroups of SUs(p) isomorphic to L(2). The subgroups are
scalar-normalising in CGUs(p), and if d = 3 then the classes are fused by
the diagonal automorphisms of SUs(p).

For all other q, there are no 1 -subgroups Li3(2) of SLs(q) or SU3(q).

Proof Let G = L3(2). Then | Out G| = 2. In characteristics other than 2 or 7,
there are two 3-dimensional representations of G in Table 4.4, with character
ring the p-modular reduction of Z[b;]. By Table 4.2, the complex quadratic
irrationality b, lies in F, if and only if p = 1, 2,4 (mod 7). Corollary 4.4.2 gives
G < SLs(p) in that case, and G < SUs(p) when p = 3,5,6 (mod 7). Thus
there are no other values of ¢ for which SL3(q) or SUs(¢) has an .%;-subgroup
isomorphic to G.

We see from Table 4.4 that the representations have trivial stabiliser. There-
fore the subgroups are scalar-normalising, and the two representations are in-
terchanged by the outer automorphism of G. Hence, by Lemma 4.4.3 there is
a single class of subgroups G < C' = GL3(q) or CGUjz(q). Let Z = Z(C). Since
|C:QZ] = |C :Ne(G)| = (¢ —1,3) in Case L and (¢ + 1,3) in Case U, the
claim about the number of conjugacy classes in €2 follows.. O

Proposition 4.5.3 (i) If p = 1,4 (mod 15), then there are exactly three
conjugacy classes of /1 -subgroups of SLs(p) isomorphic to 3" Ag. The sub-
groups are scalar-normalising in GL3(p), and the classes are fused by the
diagonal automorphisms of SLs(p).

(ii) If p = 11,14 (mod 15), then there are exactly three conjugacy classes of
S -subgroups of SUs(p) isomorphic to 3'Ag. The subgroups are scalar-
normalising in CGUs(p), and the classes are fused by the diagonal auto-
morphisms of SUs(p).

(iii) If p = 2,7,8,13 (mod 15), then there are exactly three conjugacy classes
of 1 -subgroups of SL3(p?) isomorphic to 3'Ag. The subgroups are scalar-
normalising in GL3(p?), and the classes are fused by the diagonal auto-
morphisms of SLz(p?).

(iv) There are exactly three conjugacy classes of 1 -subgroups of SU3(5) iso-
morphic to 3'Ag.23. The subgroups are scalar-normalising in CGUj3(5),
and the classes are fused by the diagonal automorphisms of SU3(5).

For all other q, there are no .#1-subgroups 3"Ag of SLs(q) or SU3(q).

Proof Let G =3 Ag. Then Out G = 22

By Theorem 4.3.3, in characteristics other than 3 and 5 the relevant repre-
sentations of G have character ring the p-modular reduction of Z[zs, bs]. By
Table 4.2, the real quadratic irrationality by lies in IF,, if and only if p =
+1 (mod 5). If so, then Corollary 4.4.2 gives G < SL3(p) when z; € Fp,
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namely when p = 1 (mod 3), and G < SUs(p) when p = —1 (mod 3). If
p = 42 (mod 5) then G < SL3(p?) by Corollary 4.4.2. Thus there are no
other powers ¢ of p for which SL3(¢) or SU3(¢) has an .%;-subgroup isomorphic
to G.

By Theorem 4.3.3 there are four representations with trivial stabiliser. So
the representations form a single orbit under Out G, and hence, by Lemma 4.4.3,
there is a single class of subgroups G < C. Since the stabiliser of the repre-
sentations is trivial, G is scalar-normalising in C, so No(G)2 = QZ(C). Since
|C: QZ(C)] = (¢ —1,3) in Case L and (g + 1, 3) in Case U, the result follows
from Lemma 4.4.3.

In characteristic 5, the character ring is the 5-modular reduction of Z[zs], so
Corollary 4.4.2 gives G < SUj3(5), and there are no other powers ¢ of 5 for which
SL3(g) or SU3(gq) has an .#}-subgroup isomorphic to G. By Theorem 4.3.3, there
are two representations, with stabiliser generated by the 23 automorphism of G.
Hence the representations are interchanged by the 2; and 25 automorphisms.
Now |[PGU3(5) : Us(5)| = |Z(SU3(5))| = 3, so 3'Ag.235 < SU3(5). (This can also
be seen directly from the entry for Us(5) in [12].) O

Proposition 4.5.4  There are exactly three conjugacy classes of 71 -subgroups
of SU3(5) isomorphic to 3" Ay. These groups are scalar-normalising in CGUjz(5)
and the classes are fused by the diagonal automorphisms of SU3(5).

Proof Let G =3 A;. Then | Out G| = 2. By Theorem 4.3.3, there are two rel-
evant representations of 3"A7. These representations have character ring the 5-
modular reduction of Z[z3, b;], so G < SU3(5) by Table 4.2 and Corollary 4.4.2,
and there are no other ¢ for which SL3(g) or SU3(g) has an .#;-subgroup isomor-
phic to G. The two representations have trivial stabiliser, so are interchanged
by the outer automorphism of G. Thus, by Lemma 4.4.3 there is one conju-
gacy class of such subgroups of CGUj3(5), and G is scalar-normalising. Since
|CGU;3(5) : Z(CGU3(5))SU5(5)| = 3, there are three conjugacy classes of such
subgroups of SU3(5). O

4.5.3 Dimension 4

In dimension 4 we do not consider the representations with indicator +, since
we are not considering the orthogonal groups in dimension less than 7.

Indicator o. By Theorem 4.3.3, the quasisimple groups to consider are:

(i) 2'L3(2) in characteristics not 2 or 7;
(ii) A7 in characteristic 2;
(iii) 2'A7 in characteristics not 2 or 7;
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(iv) 45'L3(4) in characteristic 3;
(v) 2°U4(2) in characteristics greater than 3.

We first deal with 2'L3(2), A7 and 2"Ay, since their behaviour is similar.

Proposition 4.5.5 (i) If p=1,2,4 (mod 7), then SLy(p) has exactly d :=
(p—1,4) conjugacy classes of S -subgroups isomorphic to 2'L3(2) (when
p # 2) and exactly d such classes isomorphic to 2° A7 (or A7 when p =2).
The subgroups are scalar-normalising in GL4(p), and if d > 1 then the
classes are fused by the diagonal automorphisms of SLa(p).

(ii) If p = 3,5,6 (mod 7), then SU4(p) has exactly d := (p + 1,4) conjugacy
classes of S -subgroups isomorphic to 2'L3(2) and exactly d such classes
isomorphic to 2°Ay. The subgroups are scalar-normalising in CGUy(p),
and if d > 1 then the classes are fused by the diagonal automorphisms of
SUa(p).

For all other q, there are no 1 -subgroups of SL4(q) or SU4(q) isomorphic
to 2.L3(2), 2'A7 or A7.

Proof Let G be one of 2'L3(2), A7 (with p = 2) or 2°A7. Then |Out G| = 2.
By Theorem 4.3.3, the relevant representations of G have character ring the p-
modular reduction of Z[b,]. By Table 4.2, b, is a complex quadratic irrationality
so, by Corollary 4.4.2, G < SLy(p) when p = 1,2,4 (mod 7) and G < SUy(p)
when p = 3,5,6 (mod 7). Thus there are no other values of ¢ for which SL4(q)
or SU4(q) has an .#1-subgroup isomorphic to G.

There are two representations of GG. Each has trivial stabiliser, so they are
interchanged by a group automorphism. Now by Lemma 4.4.3 there is a single
class of subgroups G < C'in each case, the group G is scalar-normalising, and
the number of classes in Q follows from noting that d = |C': QZ|. O

Proposition 4.5.6 There are exactly two conjugacy classes of .71 -subgroups
G of SU4(3) isomorphic to 45 L3(4). The normaliser in CGU4(3) of G is gen-
erated by G, scalars, and an element with determinant —1 in GU4(3) \ SU4(3).
The two classes are fused by the diagonal automorphism & of SU4(3).

Proof Let G = 45'L3(4). Then Out G = 22, By Theorem 4.3.3, the relevant
representations of G have character ring the 3-modular reduction of Z[i, b,].
Then Table 4.2 and Corollary 4.4.2 give G < SU4(3). Thus there are no other
values of ¢ for which SU4(¢) has an .#;-subgroup isomorphic to G.

There are two such representations, with stabiliser generated by the 25
automorphism of GG. Therefore the representations are interchanged by the 24
and 23 automorphisms, and by Lemma 4.4.3 there is a single class of such
subgroups of CGU4(3).

Furthermore, from [57], we find that the character values on elements of G.25
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outside of G all lie in the same field as those of G itself, so G.29 < GUy4(3),
but for g in Class 2C of G.25, the character value on g is 2, so the eigenvalues
of g are 12 and —1, and hence detg = —1. Since there is no scalar element
with determinant —1 in GUy4(3), there is no class .#;-subgroup of SU4(3) with
quasishape [G.25]. The fact that det g = —1 implies that the 25 automorphism
is induced by the diagonal automorphism §2 of SU4(3). O

Proposition 4.5.7 (i) If p =1 (mod 6), then there are exactly d := (p —
1,4) conjugacy classes of %1 -subgroups of SL4(p) isomorphic to 2" Uy(2).
The subgroups are scalar-normalising in GL4(p), and if d > 1 then the
classes are fused by the diagonal automorphisms of SL4(p).

(ii) If p =5 (mod 6), then there are exactly d := (p+1,4) conjugacy classes of
A1 -subgroups of SU4(p) isomorphic to 2°Uy(2). The subgroups are scalar-
normalising in CGUy(p), and if d > 1 then the classes are fused by the
diagonal automorphisms of SU4(p).

For all other q, there are no #1-subgroups 2°Uy(2) of SLs(q) or SU4(q).

Proof Let G =2Uy(2) = 2'Sp,(3). Then | Out G| = 2. By Theorem 4.3.3, we
have p > 3 and the relevant representations of G have character ring the p-
modular reduction of Z[zs]. Therefore Table 4.2 and Corollary 4.4.2 imply that
G < SLy4(p) when p = 1 (mod 6) and G < SUy(p) when p = 5 (mod 6), and
there are no other values of ¢ for which SL4(q) or SU4(gq) has an .#;-subgroup
isomorphic to G.

There are two such representations, with trivial stabiliser. Hence the repre-
sentations are interchanged by the outer automorphism of G, so by Lemma 4.4.3
there is a single class of such groups in C. The fact that the representations
have trivial stabiliser implies that G is scalar-normalising, and so the unique
class in C' splits into d = |C : 2Z] conjugacy classes in €. O

Indicator —. By Theorem 4.3.3, the quasisimple groups to consider are:

(i) 2'Aj; in characteristics greater than 5;

(iii) 2"Ag in characteristics greater than 3;

(i

Recall that Sp,(2) is not quasisimple, and is not deemed to be a group of Lie
type. We therefore shall not determine its maximal subgroups here.

)

(ii) Ag in characteristic 2;
)
)

v) 2'A7 in characteristic 7.

Lemma 4.5.8 For e > 1, the group Sp,(2¢) has no 1 -subgroups.
Proof The only possibility is Ag. However, Sp,(2) = Sg = Ag:2;. O

We can therefore assume that p > 2.
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Proposition 4.5.9 (i) If p = +1 (mod 12), then Sp,(p) has exactly two
conjugacy classes of .71 -subgroups isomorphic to 2'Sy . The subgroups are
scalar-normalising in CSpy(p) and the classes are fused by the diagonal
automorphism of Sp,(p).

(ii) If p = 45 (mod 12) with p > 5, then the group Sp,(p) has exactly one
conjugacy class of S -subgroups G isomorphic to 2" As. The normalisers of
these subgroups G in CSp,(p) are generated by G, scalars, and an element
of CSpg(p) that is a similarity but not an isometry of the symplectic form.

For all other q, there are no 1 -subgroups 2°As of Sp,(q)-

Proof Let G = 2'As. Then |OutG| = 2. By Theorem 4.3.3, the relevant
representation of G has character ring Z. Thus G < Sp,(p) for all p > 5, and
there are no other values of ¢ for which Sp,(¢) has an .#;-subgroup isomorphic
to G. There is a single such representation, so there is a single class of such
groups in C'= CSp,(q).

The stabiliser of the representation in Out G has order 2, but the repre-
sentation of G.2 in [12] involves the irrationality i and so this version of G.2
does not preserve the symplectic form. By multiplying elements outside of G
by a scalar element of order 4, we obtain a representation of the isoclinic group
G.27 = 2'S5, which consists of isometries of the form, and involves the irra-
tionality rs. By Table 4.2 the quadratic irrationality rs lies in I, if and only
if p = 41 (mod 12). So G.2~ < Sp,(p) if and only if p = £1 (mod 12), and
otherwise the class of G is stabilised by the outer automorphism 6 of Sp,(p). O

Proposition 4.5.10 (i) If p = £1 (mod 12) then Spy(p) has ezxactly two
conjugacy classes of /1-subgroups isomorphic to 2°Ag.21. The subgroups
are scalar-normalising in CSp,(p) and the classes are fused by the diagonal
automorphism of Sp,(p).

(ii) If p = £5 (mod 12) then Sp,(p) has exactly one conjugacy class of .7 -
subgroups G isomorphic to 2°Ag. The normaliser in CSp,(p) of G is gen-
erated by G, scalars, and an element in CSp,(p) that is a similarity but
not an isometry of the symplectic form, and induces the 21 automorphism
of G.

For all other q, there are no %1 -subgroups 2" Ag of Spy(q).

Proof Let G = 2'Ag. Then Out G = 22, and by Theorem 4.3.3 the character
ring of the relevant representations of G is the p-modular reduction of Z, for
all p > 3. Thus G' < Sp,(p) for all p > 3, and there are no other values of ¢ for
which Sp,(¢q) has an .#;-subgroup isomorphic to G.

We also find from Table 4.4 that there are two such representations, with
stabiliser generated by the 2; automorphism of G. Therefore the representations
are interchanged by the 25 and 23 automorphisms of G, and by Lemma 4.4.3
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there is a single class of such groups in CSp,(p). We find from [12, 57], that the
extension of one of these two representations to (G.21 consists of isometries of
the symplectic form, but the character values of this representation on elements
of G.21 \ G involve the irrationality rs, which by Table 4.2 lies in F), if and only
if p= 41 (mod 12). Note that G.2] = G.2], so there is no reason to consider
the isoclinic variant of G.21.

So, if p = #£1 (mod 12) then G.2; < Sp,(p). Since the remaining aut-
morphisms of G interchange the representations, the group G.2; is scalar-
normalising in CSp,(p), so there are two classes of groups G.2; < Sp,(p),
fused by the diagonal automorphism 4.

Similarly p = 5 (mod 12) then rs € F)2\F, and so there exists an element
g € Sp,s(p?) \ Sp4(p) that induces the 2; automorphism of G. By Lemmas 1.8.6
and 1.8.9 this automorphism is also induced by conjugation by an element
g' € CSpy(p). So g’g~ ! is a scalar matrix, which cannot be equal to £14, and so
¢’ is not an isometry of the symplectic form. It follows that the 2; automorphism
of G is induced by the diagonal automorphism ¢ of Sp,(p) in this case. O

Proposition 4.5.11  There is a unique conjugacy class of %-subgroups of
Sp4(7) isomorphic to 2°Az. The normaliser in CSp,(7) of G is generated by G,
scalars, and an element in CSp,(7) that negates the symplectic form.

Proof Let G =2 Az, so Out G = 2. By Theorem 4.3.3, the group G < Sp,(7)
and there are no other values of ¢ for which Sp,(¢) has an .#;-subgroup iso-
morphic to G. There is a single representation (with stabiliser Out G), so there
is a single class in CSp4(7). From [57], we find that neither G.27 nor G.27 is
contained in Sp,(7). Therefore, the outer automorphism of G is induced by the
outer automorphism 6 of Sp, (7). O

4.5.4 Dimension 5

Since the dimension is odd and less than 7, we consider only indicator o.
By Theorem 4.3.3, the quasisimple groups to consider are:

(i) Lo(11) in characteristics not equal to 11;
(ii) My in characteristic 3;

(iii) U4(2) in characteristics greater than 3.

Proposition 4.5.12 (i) If p=1,3,4,5,9 (mod 11), the