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372 Moonshine: The first quarter century and beyond, J. LEPOWSKY, J. MCKAY & M.P. TUITE (eds)
373 Smoothness, regularity and complete intersection, J. MAJADAS & A. G. RODICIO
374 Geometric analysis of hyperbolic differential equations: An introduction, S. ALINHAC
375 Triangulated categories, T. HOLM, P. JØRGENSEN & R. ROUQUIER (eds)
376 Permutation patterns, S. LINTON, N. RUŠKUC & V. VATTER (eds)
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Foreword

In this book the authors determine the maximal subgroups of all the finite
classical groups of dimension 12 or less. This work fills a long-standing gap in
the literature. Behind this gap there is a story which I am pleased to have the
opportunity to tell.

The completion of the classification of finite simple groups was first an-
nounced in the early 1980s. It was clear then (and before) that for many appli-
cations of the classification one would need detailed knowledge of the maximal
subgroups of the simple groups and of their automorphism groups. Around that
time, I gave a Part III course at Cambridge about the classification and its im-
pact. Full of enthusiasm, I set a fearsome exam – I remember giving it to John
Conway to check, and him saying that he couldn’t do any of the questions, but
he thought it was probably OK. The second highest mark was 18%, scored by
a rather strong student. The top mark was 97%, scored by Peter Kleidman, a
young American.

Soon afterwards, Kleidman started as my first research student. Michael As-
chbacher had just published his fundamental theorem on maximal subgroups
of the finite classical groups. The time seemed right to attempt to use this to
determine all the maximal subgroups of the classical groups of low dimensions
(up to 20, say, I thought optimistically). This was Kleidman’s initial project. As
it turned out, in his thesis he solved many other maximal subgroup problems,
and this project occupied just one chapter. Nevertheless it was rather an inter-
esting chapter, consisting of tables of all the maximal subgroups of finite simple
classical groups of dimension up to 12. No proofs were given, just an outline of
the strategy and a few examples of how the calculations were performed.

After he had graduated, Kleidman and I wrote a book on the subgroups of
the finite classical groups, which was an analysis of the structure, conjugacy
and maximality of the subgroups arising in Aschbacher’s theorem now known as
geometric subgroups. For the maximality questions we assumed that the dimen-
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Foreword ix

sion was more than 12, and it was the intention that Kleidman would extend
and write up his thesis work on the low dimensions as a separate book. Indeed,
this project was accepted as a volume to appear in the Longman Research
Notes series, and has been referred to as such in many articles. Unfortunately,
he did not write this book, and left mathematics at the age of about thirty to
pursue other interests such as working on Wall Street and producing Hollywood
movies.

The non-appearance of Kleidman’s book left a yawning gap in the literature
for over twenty years. We are fortunate indeed that a number of years ago the
authors of this volume took it upon themselves to fill this gap. They have done
this in marvellously complete fashion, presenting the material with great clarity
and attention to detail. Full proofs and comprehensive background material are
given, making the book easily accessible to graduate students. It should also be
said that their results go quite a way beyond Kleidman’s thesis, in that they
handle almost simple classical groups rather than just simple ones, which is
important for applications.

It is marvellous to have this volume on the bookshelf where previously there
was such an evident space, and I congratulate the authors on their achievement.

Martin Liebeck
Imperial College London



Preface

The aim of this book is to classify the maximal subgroups of the almost simple
finite classical groups of dimension at most 12. We also include tables describing
the maximal subgroups of the almost simple finite exceptional groups that have
faithful representations of degree at most 12.

A group G is simple if it has order greater than 1 and has no normal
subgroups other than the trivial subgroup and G itself, and is almost simple if
S � G � AutS for some non-abelian simple group S. A group is perfect if it is
equal to its derived group. A group G is called quasisimple if G is perfect and
G modulo its centre is a non-abelian simple group.

The study and classification of the (maximal) subgroups of the finite sim-
ple groups and their variations has a long history, and the completion of the
classification of the finite simple groups provided further motivation.

The term ‘classical group’ is used frequently in the literature, but it is rarely,
if ever, defined precisely. We shall not attempt a formal definition here, and we
shall avoid using it in a precise sense. Our general intention is to use it very
inclusively. We shall certainly regard all of the named groups (like GLn(q),
Oε

n(q), PCSpn(q), etc.) in Table 1.2 as classical groups, but we also include
among the classical groups arbitrary subgroups between the Ω-groups and the
A-groups in the table, and also quotients of the groups in the first of each of the
paired rows in the table by arbitrary subgroups of the scalars. Furthermore, we
include all almost simple extensions of the simple classical groups.

Maximal subgroups of classical groups. In [1], Aschbacher proved a funda-
mental theorem that describes the subgroups of almost all of the finite almost
simple classical groups (the only exceptions are certain extensions of S4(2e)
and O+

8 (q)). This theorem divides these subgroups into nine classes. The first
eight of these consist roughly of groups that preserve some kind of geometric
structure; for example the first class consists (roughly) of the reducible groups,
which fix a proper non-zero subspace of the vector space on which the group

x
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acts naturally. Subgroups of classical groups that lie in the first eight classes are
of geometric type. The ninth class, denoted by C9 or S , consists (roughly) of
those subgroups that are not of geometric type and which, modulo the subgroup
of scalar matrices, are almost simple. An alternative proof of Aschbacher’s the-
orem, as a corollary to a version of the theorem for algebraic groups, can be
found in [82]. We present a detailed version of Aschbacher’s theorem, based
on the treatment in [66], in Section 2.2. An interesting version of Aschbacher’s
theorem is presented in [91], which emphasises the links between the subgroup
structure of the finite classical groups and of the algebraic groups of Lie type.

In [66], Kleidman and Liebeck provide an impressively detailed enumeration
of the maximal subgroups of geometric type of the almost simple finite classical
groups of dimension greater than 12. In this book, we shall extend the work of
Kleidman and Liebeck to handle dimensions at most 12, and also classify the
maximal subgroups of these groups that are in Class S .

With the exception of Kleidman’s work [62] on Ω+
8 (q), and classifications

of Kleidman [62, 64, 63] and Cooperstein [14] of maximal subgroups of some
of the exceptional groups of Lie type, which we simply cite and reproduce in
our tables, our approach in this book has been to use these previous classifi-
cations for checking purposes only: our proofs make no use of the references
below, although we have compared our results with them and, where there are
differences, verified that our tables are correct.

The most complete previous work on low-dimensional classical groups is
undoubtedly Peter Kleidman’s PhD thesis [61], where he presents a classifica-
tion, without proof, of the maximal subgroups of the simple classical groups
in dimensions up to 12. This is a remarkable achievement. Kleidman intended
to publish a subsequent book, with the same goal as ours: the classification of
maximal subgroups of the almost simple classical groups in dimension up to 12.
Unfortunately, this has not been published, and the present work is an attempt
to carry out Kleidman’s plan.

We base the following historical summary on the surveys by King [60], and
Kleidman and Liebeck [65]. The complete description of the subgroup structure
of the groups L2(q) is usually attributed to Dickson [22], but this topic was also
investigated by E. H. Moore [94] and Wiman [115]. The subgroups of L3(q) were
described by Mitchell for q odd [92] and then by Hartley for q even [40]. In
both cases the subgroups that lie in U3(

√
q) were identified. A more modern

treatment of subgroups of L3(q) is provided by Bloom in [3]. The maximal
subgroups of L4(q) for even q were listed independently by Mwene [95] and
Zalesskii [116]. A partial classification for odd q can be found in [96] and,
independently, for p > 5 in [117]. Further results on this case can be found
in [59, Section 5]. Mitchell classified the maximal subgroups of S4(q) for odd
q in [93]. Flesner [26, 27] partially classified the maximal subgroups of S4(2e).
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The maximal subgroups of L5(q) were determined by Di Martino and Wagner
for q odd [23], and independently by Wagner [110] and Zalesskii [116] for q
even. Kondrat’ev classified the quasisimple absolutely irreducible subgroups of
GL6(q) [71]. There is a brief survey of many of these results in [72].

For higher dimensions, many people have concentrated on the case q = 2.
In 1984, Darafsheh classified the maximal subgroups of GL6(2) [21], building
on Harada and Yamaki’s paper [39], which classified the insolvable irreducible
subgroups of GLn(2) with n � 6. The subgroups of GLn(2) for n � 10 were
studied extensively by Kondrat’ev: see [67, 68, 69, 70].

In the work of King and others (see [60] and the references therein) a differ-
ent approach is taken: rather than concentrating on a family of almost simple
groups, such as those with socle L6(q), one concentrates on a family of poten-
tially maximal subgroups, such as those of type ΓLn/2(q2) in SLn(q), and tries
to determine maximality. A great deal is known in this direction: see the results
cited in [60], together with [15, 16, 17, 99], amongst others. Again, we have not
used these works in our proofs, but have compared our results with them: we
mention them in the relevant sections of Chapters 2, 3 and 6 of this book.

An approach which is slightly orthogonal to our present purposes, but which
has been used as a tool in the proof of many deep theorems, is to classify
subgroups of classical groups containing elements of specified orders. We shall
not use these results, so will not provide an extensive list of papers, but the
interested reader could start by looking at [35, 36] and the references therein.

Maximal subgroups of non-classical simple groups. See [83, 114] for an
excellent survey and introduction, respectively, on the whole of this field. The
Atlas [12] is also an essential reference in this area.

For the alternating groups, the O’Nan–Scott Theorem (see, for example,
Chapter 4 of [8]) provides a subgroup classification similar to, but much simpler
than, the Aschbacher classification of matrix groups over finite fields, and results
of Liebeck, Praeger and Saxl [78] enable us to determine maximality. As in the
case of finite matrix groups, we have a final class of almost simple primitive
permutation groups which need to be listed individually by degree, and these
lists are currently complete up to degree 4095 [18, 98].

The maximal subgroups of the almost simple exceptional Lie type groups
have not yet been fully classified, although a great deal is known about them.
A discussion of the overall strategy for their classification, and a brief summary
of the main theorems in this area, appear in [91, Chapter 29]; whilst further
references to the literature can be found in [66, Table 1.3.B]. In particular,
the maximal subgroups of all of the simple, and most of the almost simple
groups of this type with representations of degree up to 12 have been classified:
see [106, Section 15] for the Suzuki groups 2B2(q), [76, 64] for the Ree groups



Preface xiii

2G2(q), [2, 14, 64] for G2(q) and [63] for 3D4(q). In this book we extend these
classifications to the remaining almost simple groups with representations of
degree at most 12.

The sporadic groups can be handled on a case-by-case basis. Most of the
necessary information is available, including references to the literature, in [12]
or, more usefully for computational purposes, in [111]. At the time of writing,
all of the maximal subgroups of the almost simple groups with socle a sporadic
group are known except for almost simple maximal subgroups of the Monster
whose socle is one of a small list of groups. See [111] for a description of the state
of play: note that it has recently been shown by R.A. Wilson that L2(41) is a
maximal subgroup of the Monster, correcting an earlier error in the literature.

Computational applications. We were partly motivated to carry out this
classification by its applications to computational group theory. In [9], results
of Kovács, Aschbacher and Scott dating from the mid 1980s are used to reduce
the computation of the maximal subgroups of a general finite group G to the
case when G is almost simple. Polynomial-time algorithms for constructing the
geometric-type maximal subgroups of the classical groups (in all dimensions)
are presented in [45] for the linear, unitary and symplectic groups, and in [46]
for the orthogonal groups, and they have been implemented in Magma [5].

The Class S subgroups arising from representations of almost simple groups
in their defining characteristic are generally moderately straightforward to con-
struct using standard functionality for computing with modules over groups.
Most of the quasisimple Class S subgroups that are not in defining characteris-
tic can be constructed by restricting a representation of a quasisimple group in
characteristic 0 to the required finite field. The associated almost simple groups
can be constructed over the finite field from a knowledge of the relevant group
automorphisms and the computation of module isomorphisms.

Various databases of characteristic 0 representations are available either
directly on the web, or via computer algebra systems such as GAP [29] and
Magma. A facility of this type [111] has been under construction and con-
tinuous development for several years now. More recently, Steel [103] has con-
structed almost all of the characteristic 0 representations in [42] of quasisimple
groups in dimensions up to 250. We used data from these databases to carry
out some of the calculations needed to complete the classification.

Although the bulk of the arguments used in our classification theorems are
theoretical, a substantial number of them make use of computer calculations.
These calculations require only small amounts of computer time (generally
at most a few seconds) and could be easily carried out using existing func-
tionality and databases in either GAP or Magma. The Magma commands
for each of these individual calculations are given in the files on the webpage
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http://www.cambridge.org/9780521138604, to enable the user to verify them
easily. Whenever we use such a calculation in a proof in this book, we refer to
it as a “computer calculation” in the text, and direct the user to the individual
online file that contains the commands to carry it out. The files have names like
4l34d8calc, which contains calculations with the 8-dimensional characteristic
0 representation of the group 4·L3(4). The matrices defining the images of these
representations are stored in data files, which are also on the website, and are
accessed by the commands that carry out the calculations.

We shall assume that the reader has a general knowledge of group theory
and of group representation theory as might be acquired from advanced un-
dergraduate courses on these topics. Some knowledge of the general theory of
classical groups over finite fields and of their associated bilinear, sesquilinear
and quadratic forms would also be helpful, because we shall only briefly sum-
marise what we need for this book. Good sources are the books by Rob Wilson
[114] (which also includes a great deal of information about maximal subgroups
of simple groups), Don Taylor [108] or Chapter 2 of [66]. We do not require any
familiarity with algebraic groups, but the interested reader should consult [91]
for an introduction which is especially well-suited to our current purposes.

Finally, in any classification project of this scale, it is inevitable that some
mistakes will have slipped into our tables. At the time of publication, we know
of no such errors, but an errata list has been created at

http://www.cambridge.org/9780521138604,

and we shall keep this up to date. We would be extremely grateful to be in-
formed of any errata.
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Introduction

1.1 Background

Given a group G, we write SocG for the socle of G: the subgroup of G generated
by its minimal normal subgroups. A group G is almost simple if S � G � AutS
for some non-abelian simple group S. Note that S = SocG. A group G is perfect
if G = G′. A group G is quasisimple if G is perfect and G/Z(G) is a non-abelian
simple group.

Aschbacher [1] proves a classification theorem, which subdivides the sub-
groups of the finite classical groups into nine classes. The first eight of these
consist roughly of groups that preserve some kind of geometric structure; for
example the first class, C1, consists (roughly) of the reducible groups, which
fix a proper non-zero subspace of the vector space on which the group acts
naturally. Subgroups of classical groups that lie in the first eight classes are
of geometric type. The ninth class, denoted by C9 or S , consists (roughly)
of those absolutely irreducible subgroups that are not of geometric type and
which, modulo the central subgroup of scalar matrices, are almost simple.

In [66], Kleidman and Liebeck provide an impressively detailed enumeration
of the maximal subgroups of geometric type of the finite classical groups of
dimension greater than 12. More precisely, they classify the conjugacy classes
of maximal subgroups H of those almost simple groups G for which Ω :=
SocG = Ω/Z(Ω) for some classical quasisimple group Ω, with H ∩Ω = K/Z(Ω)
for a subgroup K of Ω of geometric type.

In this book, we determine the maximal subgroups of all such almost sim-
ple groups G with dimension at most 12. For the subgroups of geometric type,
Kleidman and Liebeck proved that their lists contain all such maximal sub-
groups even in dimensions at most 12. But their determination of when these
subgroups are actually maximal applies only to dimensions greater than 12. It
turns out that they are nearly all maximal, with just a few exceptions in small
dimensions: all of the exceptions are in dimension at most 8.

1



2 Introduction

We do not, however, restrict ourselves to the subgroups of geometric type,
and include those subgroups in Aschbacher Class S in our classification. It is
a feature of the groups in this class that they are not, as far as we know, sus-
ceptible to a uniform description across all dimensions, but can only be listed
for each individual dimension and type of classical group. Fortunately, lists
are available of all irreducible representations of degree up to 250 of all finite
quasisimple groups G. These have been compiled by Lübeck [84] for represen-
tations of G in defining characteristic (when G is a group of Lie type), and by
Hiß and Malle [42] for all other representations. These lists provide us with a
complete set of candidates for the quasisimple normal subgroups S of maximal
subgroups in Class S of the finite classical groups of dimension up to 250.

We are, however, left with two major problems. Firstly, in order to find the
almost simple maximal subgroups of the almost simple classical groups G =
G/Z(Ω), we need to determine which of the automorphisms of the simple groups
S/Z(S) in the lists of candidates can be adjoined within G. Secondly, we need
to determine which of the candidates that we construct are actually maximal
subgroups of the almost simple groups. Indeed, our approach to the project as
a whole follows the same general pattern as [66]: first we find the candidates
for the maximal subgroups within each of the nine Aschbacher classes, then
we determine which are maximal within their own class, and finally we decide
maximality itself by identifying cases in which maximal groups in one class are
properly contained in a subgroup in another class.

The O+
8 (q) case is handled in detail in [62], so we shall not repeat that work

here: we will simply reproduce the table of maximal subgroups from [62], but
in the format we are using for the remainder of our tables.

Structure of this book. In the remainder of this chapter we present basic
results on the structure and representations of simple groups; this material will
be required both for the study of geometric type groups and of groups in Class
S . Topics covered include: novelty maximal subgroups; finite fields; sesquilin-
ear and quadratic forms, including the specification of our standard forms;
introduction to the classical groups, including the specification of our standard
outer automorphisms; some relevant representation theory; tensor products; ex-
ceptional properties of various small classical groups; permutation and matrix
representations of the classical groups; properties of the natural matrix repre-
sentations of the classical groups; Zsigmondy primes; quadratic reciprocity.

In Chapter 2 we first state our main theorem, Theorem 2.1.1. Then in Sec-
tion 2.2 we introduce the types of geometric subgroups: these are families of
subgroups with the property that if H is a geometric maximal subgroup of
a quasisisimple classical group, then H is a member of one of these families.
For each geometric Aschbacher class, we define the corresponding types, give
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the structure of the maximal groups of each type, and prove some elementary
properties. This detailed definition of the types enables us to state our version
of Aschbacher’s theorem in Subsection 2.2.9, which is essentially the refined
version given in [66]. In Section 2.3 we establish some results concerning maxi-
mality of the geometric subgroups that can be proved simultaneously for more
than one dimension at a time.

In Chapter 3 we consider each dimension from 2 to 12 in turn, and determine
which subgroups are maximal amongst the geometric subgroups of the almost
simple classical groups of that dimension. Thus by the end of this chapter we
have produced a list of candidate geometric maximals, which only need to be
compared with the Class S groups to determine their maximality.

Section 4.1 presents our overall strategy for classifying the maximal sub-
groups in Class S , and a description of the subdivision between Class S1

(cross characteristic) and Class S2 (defining characteristic). The remainder of
Chapter 4 is devoted to finding the maximal subgroups in Class S1. There is
a section (4.2) on working with algebraic irrationalities. After this we present
in Section 4.3 our list of S1-candidates (taken from [42]). The next few sec-
tions concern dimensions 2 to 6, and alternate between theory and practice.
In Sections 4.4 and 4.5, we first describe how to calculate the stabiliser of a
quasisimple group in cross characteristic in a conformal classical group (the
group of all linear mappings that multiply the form by a scalar), and hence to
determine the exact structure and conjugacy behaviour of a candidate maximal
S1-subgroup of a quasisimple group, and then carry out these calculations in
some detail in dimensions up to 6. Next, in Sections 4.6 and 4.7 we present
methods to determine the actions of the duality and field automorphisms of
a quasisimple classical group on its quasisimple subgroups, and apply these
methods in dimensions up to 6. In Section 4.8 we then determine whether any
of these S1-subgroups contain one another, and hence are non-maximal. After
carrying out all of these calculations in detail in dimensions up to 6, in Sec-
tion 4.9 we perform the same calculations for dimensions 7 to 12. This means
that we have determined those subgroups of the almost simple classical groups
in dimension at most 12 that are maximal amongst the S1-subgroups: this list
is summarised in Section 4.10.

In Chapter 5 we move on to considering the maximal subgroups arising
from representations of groups of Lie type in defining characteristic. Note that
we in fact define a class S ∗

2 of subgroups (see Definition 5.1.15) and work only
with them. In Section 5.1 we present as much of the general theory of repre-
sentations of groups of Lie type in defining characteristic as we will need to
perform our calculations. In Section 5.2 we briefly present some information
about symmetric and anti-symmetric powers of modules. We then consider the
possible families of groups of Lie type in turn, basing our lists of candidates on
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[84]. For each possible candidate maximal subgroup we determine the structure
of the maximal such subgroup of the quasisimple group, the module on which
it acts, the number of conjugacy classes in the quasisimple group, and the sta-
biliser of one such class in the conformal classical group. Then in Section 5.3
we consider groups with non-abelian composition factor L2(q), in Section 5.4
the groups Ln(q) and Un(q) with n � 3, in Section 5.5 the groups Sn(q), in
Section 5.6 the groups Oε

n(q) and 3D4(q), and finally in Section 5.7 the remain-
ing groups of Lie type. We summarise our findings to this point in Section 5.8.
Next, in Section 5.9 we determine the action of duality and field automorphisms
on S ∗

2 -subgroups. In Section 5.10 we determine all containments between the
S ∗

2 -subgroups, and then finally in Section 5.11 we summarise the results of this
chapter. Thus Chapter 5 determines all subgroups that are maximal amongst
the S ∗

2 -subgroups in dimension at most 12.
By the end of Chapter 5 we have produced a list of subgroups of the almost

simple classical groups such that all maximal subgroups lie in this list. We then
proceed in Chapter 6 to determine the containments between these subgroups,
and hence to prove the main theorem of the book, Theorem 2.1.1. In Section 6.2
we determine all containments between S1-maximals and S ∗

2 -maximals, to
produce a set of S ∗-maximals (where S ∗ = S1∪S ∗

2 ), and then in Section 6.3
we determine all containments between geometric and S ∗-maximals.

Aschbacher’s theorem does not apply to certain extensions of S4(2i) and
O+

8 (q) (that is, those that involve the exceptional graph automorphism and the
triality graph automorphism, respectively): note, however, that Aschbacher’s
paper [1] includes a variant of his theorem for the relevant extensions of S4(2i),
but we shall not deem this variant to be part of “Aschbacher’s theorem”. Since
the O+

8 (q) case is fully handled in [62], we do not concern ourselves with that.
In Chapter 7 we calculate the maximal subgroups of those almost simple ex-
tensions of S4(2i) to which Aschbacher’s theorem does not apply, as well as the
maximal subgroups of the finite almost simple exceptional groups that have
a faithful projective representation in defining characteristic of degree at most
12, namely those with socles 2B2(q) = Sz(q), G2(q), 2G2(q) = R(q) and 3D4(q).
For many of these groups such classifications are already known, and we merely
provide references to the original calculations, however we occasionally include
our own proofs if we feel this may be helpful for the reader. Finally, in Chap-
ter 8, we present tables of our results.

1.2 Notation

Here we list some general notation used in the book. More specialised notation
will be introduced as it arises, and in particular our notation for the classical
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groups is presented in Subsection 1.6.3 and for the outer automorphisms of the
classical groups in Subsection 1.7.1.

By [a, b] we denote the least common multiple of two positive integers a and
b, and by (a, b) we denote their greatest common divisor. If a ∈ N and p is a
prime, we write (a)p for the highest power of p that divides a. In Section 1.13
we define the notion of a Zsigmondy prime for qn−1, where q is a prime power
and n � 3 is an integer. We shall denote such a prime by zq,n.

If we write δij (with two subscripts), we will mean the Kronecker delta:
δii = 1 for all i and δij = 0 whenever i �= j.

For group elements g and h, we write gh for h−1gh and [g, h] for g−1h−1gh.
As usual, Z(G) is the centre of the group G, and NG(H) and CG(H) are the
normaliser and centraliser of H in G. The derived subgroup of G is written as
[G,G] or G′, and we define G(n) = [G(n−1), G(n−1)] for n > 1, and use G∞ to
denote

⋂
i�0G

(i). We write AutG for the automorphism group of G, and InnG
and OutG respectively for its inner and outer automorphism group.

Our notation for group structures is based on that in the Atlas [12]. Note
in particular that this means that we generally use Atlas notation for simple
groups. Thus, for example, A×B is the direct product of groups A and B, we
write A:B to denote a split extension of A by B, we write A·B to denote a
non-split extension (or possibly one in which A is trivial), and we write A.B
when we do not know or do not wish to specify whether the extension splits.
The symbol A �B is defined for an arbitrary group A and a permutation group
B, and denotes the wreath product of A by B. If G is a group with a unique
index 2 subgroup H, then we sometimes write 1

2G to denote H.
The cyclic group of order n is denoted by Cn or (particularly when as a

component of a group structure) just by n. An elementary abelian group of
order pn is denoted by Epn or just by pn. By [n] we denote a group of order
n, of unspecified structure. For elementary abelian groups A we write Am+n

to mean a group with an elementary abelian normal subgroup Am such that
the quotient is isomorphic to An. The group Am+n is usually, but not always,
special. For n even, Dn denotes the dihedral group of order n, and for n a power
of 2, we write Qn for the quaternion group of order n. For r an odd prime, we
write r1+2n

+ for an extraspecial group of order r1+2n and exponent r, and r1+2n
−

for an extraspecial group of the same order, but exponent r2. We write 21+2m
+

for an extraspecial group of order 21+2m that is isomorphic to a central product
of m copies of D8, and we write 21+2m

− for an extraspecial group of the same
order, but that is isomorphic to a central product of m − 1 copies of D8 and
one of Q8.

For L an arbitrary finite group, P (L) denotes the minimum degree of a
non-trivial permutation representation of L.

We write Fq for a finite field of order q = pe, with a fixed primitive element
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ω = ωq, and Frobenius automorphism φ : x �→ xp. For a field F , we write F×

to denote the multiplicative group of F , charF to denote the characteristic of
F , and (F,+) to denote the additive group of F .

As usual, In is the n × n identity matrix and Jn is the n × n matrix with
all entries 1. We write diag(α1, α2, . . . , αn) for the matrix A = (aij)n×n with
aii = αi for all i and aij = 0 otherwise. We write antidiag(α1, . . . , αn) for
the matrix A = (aij)n×n with ai,n−i+1 = αi for all i and aij = 0 otherwise.
The transpose of A is denoted by AT, and its trace by tr(A). We denote the
elementary matrix with a 1 in position (i, j) and 0 in all other positions by Ei,j .

The set of all (m × n)-matrices with entries in the field F is denoted by
Mm×n(F ), or by Mm×n(q) when F = Fq. For a vector space V over a field
F , we write GL(V ) for the general linear group of V , which is the set of all
invertible F -linear maps from V to itself. For a given basis of V , we can identify
GL(V ) with GLn(F ) (or GLn(q) when F = Fq), the set of all invertible n× n

matrices over F . Our convention is that linear maps act on the right, with
corresponding action of matrices on row vectors by right multiplication.

We write GL±
n (q), and related notation such as SL±

n (q), to denote the linear
and unitary groups: the + sign corresponds to the linear groups, and the −
sign to the unitary groups. (We may also of course denote the unitary groups
by the more usual GUn(q) and SUn(q).)

If U and W are subspaces of V , and G � GL(V ), then we write NG(W )
for the stabiliser in G of W , and NG(W,U) for NG(W ) ∩ NG(U). If G � Sn

stabilises a set W ⊆ {1, . . . , n}, or G � GL(V ) stabilises a subspace W � V ,
then by GW we mean the image of the induced action of G on W .

For a vector space V , we write V ∗ for the dual space of V . If V is equipped
with a reflexive form β (see Section 1.5), then we write V = A ⊥ B to mean
that V decomposes as a direct sum of A and B, such that β(a, b) = 0 for all
a ∈ A, b ∈ B. For v ∈ V , we write v⊥ for the subspace {w ∈ V | β(v, w) = 0 },
and similarly W⊥ = { v ∈ V | β(w, v) = 0 for all w ∈ W }. If Q is a quadratic
form on V , and W is a non-degenerate subspace of V , then sgn(W ) denotes
the sign of the restriction of Q to W (so sgn(W ) can be ◦, + or −).

1.3 Some basic group theory

An automorphism of a group G is a bijective homomorphism from G to itself:
the set of all automorphisms of G forms a group, AutG. For a fixed g ∈ G,
we denote the automorphism x �→ xg = g−1xg by cg. An automorphism φ of
G is inner if there exists a g in G such that φ = cg. We denote the group
of all inner automorphisms of G by InnG. Note that InnG ∼= G/Z(G). It is
an easy exercise to prove that InnG � AutG; the quotient AutG/ InnG is
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OutG, the outer automorphism group of G. An outer automorphism of G is
often defined to be an element of AutG \ InnG rather than an element of
OutG. In this book, however, despite the risk of causing confusion, we find it
convenient to use “outer automorphism” to denote either a non-trivial element
α of OutG (which is consequently only defined modulo InnG, and hence not
itself an automorphism of G), or a representative α of a non-trivial coset of
InnG in AutG, depending on the context.

Let α ∈ AutG, let C be a conjugacy class of G, and let Cα = {xα : x ∈ C}.
We say that α stabilises C if Cα = C. The following lemma is elementary.

Lemma 1.3.1 Let α ∈ AutG and let C be a conjugacy class of G. Then Cα

is also a conjugacy class of G. Furthermore, if α stabilises C and x ∈ C, then
there exists g ∈ G with xαcg = x.

So, for a given C, the class Cα depends only on the coset of InnG in which
α lies, and hence there is an induced action of OutG on the set of conjugacy
classes of G. So when we write Cα with α an outer automorphism of G or talk
about an outer automorphism stabilising C, then it does not matter whether
we are thinking of α as an element of AutG or of OutG.

The following theorem is a straightforward consequence of the classification
of finite simple groups, and was known as the Schreier Conjecture before the
completion of the classification.

Theorem 1.3.2 Let S be a finite non-abelian simple group. Then OutS is
soluble.

We will occasionally need the concept of isoclinism. The commutator [x, y]
of two elements x and y of a group G is unchanged if we multiply x and y by
central elements of G. Thus we can think of the commutator map not as a map
from G×G to G, but instead as a map from G/Z(G)×G/Z(G) to G.

Definition 1.3.3 Two groups G and H are isoclinic if there are isomorphisms
ρ : G/Z(G) → H/Z(H) and θ : G′ → H ′ which form a commutative diagram
with the commutator maps from G/Z(G)×G/Z(G) to G′ and from H/Z(H)×
H/Z(H) to H ′.

G
Z(G) × G

Z(G)
H

Z(H) × H
Z(H)

G′ H ′

�

�
� �

(ρ, ρ)

θ

[ , ] [ , ]
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The dihedral group of order 8 and the quaternion group of order 8 are
isoclinic; see just before Subsection 1.3.1 for another example.

If G is finite, then G∞ = ∩∞
i=1G

(i) is the first perfect group in the de-
rived series of G. If S is non-abelian and simple, and S � G � AutS, then
Theorem 1.3.2 implies that G∞ = S.

Recall from Section 1.1 that a group G is quasisimple if G is perfect with
G/Z(G) a non-abelian simple group. We shall use the following lemma implicitly
throughout much of the book, without further citation.

Lemma 1.3.4 Let G = Z·S be quasisimple, with Z central and S non-abelian
simple. Then AutG can be naturally regarded as a subgroup of AutS.

Proof Let α be a non-trivial element of AutG. If α induces the identity map
on G/Z, then α acts as the identity on all commutators [g, h], and so induces
the identity on all of G. Thus AutG acts faithfully on G/Z.

A stem extension of a group G by a group K is a group C = K·G such
that K � Z(C) ∩ C ′. In particular, a quasisimple group is a stem extension of
a non-abelian simple group.

Definition 1.3.5 The Schur multiplier M(G) of a group G is the largest K
such that there exists a stem extension of G by K.

It is not immediately apparent that M(G) is well-defined, but it turns out
that the corresponding stem extension is determined up to isoclinism by G,
(see Definition 1.3.3 of isoclinism), and up to isomorphism if G is perfect.

As an example, the symmetric groups Sn for n � 4 have two isoclinic double
covers, 2·An.2+ and 2·An.2−, whilst by the above remark for n � 5 and n �= 6
the groups An have a unique double cover (which is true also for A4.) This
notation comes from [12], and 2·A5.2+ is the group of which the character
table is printed there. The inverse images of transpositions in S5 have orders 2
and 4 in 2·A5.2+ and 2·A5.2−, respectively.

1.3.1 Maximal subgroups of almost simple groups

LetG be an almost simple group with socle S, and letM be a maximal subgroup
of G. The group M is a triviality if S � M . The trivialities correspond to the
maximal subgroups of the soluble group G/S and are very easy to determine.
They are consequently generally omitted from tables of maximal subgroups of
almost simple groups (for example, in the Atlas [12]), and are excluded from
the statements of Aschbacher’s theorem and the O’Nan–Scott Theorem.

The following result is fundamental in the analysis of maximal subgroups
of almost simple groups. It was first proved by Wilson [113], though we follow
the proof of Liebeck, Praeger and Saxl [79, end of paper].
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Theorem 1.3.6 Let G be a finite almost simple group with socle S. Suppose
that M is a maximal subgroup of G. Then S ∩M �= 1.

Proof If G = S then the result is trivial, so suppose not, and assume that
S ∩ M = 1. Then M < 〈S,M〉 � G, whence G = SM = S :M , by the
maximality of M . Let N be a minimal normal subgroup of M . Then N is
characteristically simple. One of the following cases must arise:

(i) N ∼= Epr , where p is prime, r � 1 and p | |S|;
(ii) N ∼= Epr , where p is prime, r � 1 and p � |S|;
(iii) N ∼= T × · · · × T ∼= Tm, where m � 1 and T is non-abelian simple.

The quotient G/S is soluble by Theorem 1.3.2, so Case (iii) does not arise.
In all cases, M � NG(N). Moreover NG(N) ∩ S = CS(N), and of course

CS(N) �= S, since N is a subgroup of AutS. Thus NG(N) �= G and hence the
maximality of M implies that NG(N) = M and so CS(N) = 1.

In Case (i), the conjugation action of N on S centralises 1S , so must cen-
tralise some non-trivial elements of S (since the orbits of N have p-power order
and p | |S|). This contradicts CS(N) = 1.

In Case (ii), we let q | |S|, with q prime (so q �= p), and we let Q be a
Sylow q-subgroup of S normalised by N , which exists as the number of Sylow
q-subgroups of S is a divisor of |S|, and therefore not divisible by p. Suppose
that N also normalises a Sylow q-subgroup Q1 of S. Then Q1 = Qx−1

for
some x ∈ S. So now N and Nx normalise Q and so are Sylow p-subgroups
of NSN (Q) = NS(Q)N . Hence there exist y ∈ NS(Q) and z ∈ N such that
Nxyz = N = Nz, and so there exists y ∈ NS(Q) such that Nxy = N . Now
[g, xy] ∈ N ∩ S = 1 for all g ∈ N , and so xy ∈ CS(N) = 1. Hence x =
y−1 ∈ NS(Q), and so Q1 = Q. Therefore M = NG(N) � NG(Q), because N
normalises a unique Sylow q-subgroup of S, and so M < QM < SM = G,
contradicting the maximality of M .

In Chapter 7, we shall need the following immediate corollary.

Corollary 1.3.7 Let G be a finite almost simple group with socle S, and
let M be a maximal subgroup of G such that S � M . Then there exists a
characteristically simple group N with 1 < N < S such that M = NG(N).

Proof By the previous result, we may assume that M ∩ S �= 1. Notice that
M ∩S � M , so we may choose N to be minimal subject to 1 < N � M ∩S and
N � M . ThusN is a minimal normal subgroup ofM , and so is characteristically
simple. Clearly M � NG(N), and from N � M ∩ S < S we deduce that
S � NG(N). Maximality of M then gives M = NG(N).

Definition 1.3.8 A maximal subgroup M of an almost simple group G is
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called an ordinary maximal subgroup if S ∩M is a maximal subgroup of S.
We say that M is a novel maximal subgroup (or, simply, a novelty) if S ∩M
is non-maximal in S.

Suppose that H < S and we are considering M = NG(H) as a candidate
for being a novel maximal subgroup of G. This is only possible if NG(H)S = G,
so we shall assume that to be the case. Then M fails to be maximal in G if
and only if M < NG(K) for some K such that H < K < S. By replacing H
by NS(H), we may assume that NS(H) = H, and similarly we may restrict
attention to groups K with NS(K) = K.

If NG(K)S �= G for some such K then M is not a proper subgroup of
NG(K). This motivates the following definition.

Definition 1.3.9 Let G be almost simple with socle S. If H = NS(H) <
K = NS(K) < S < G, but NG(K)S �= G, then M = NG(H) is called a type 1
novelty with respect to K.

An example is G = PGL2(7), S = L2(7), H = D6, M = D12. The only
possibility for K is S4, but NG(K) = K in that case.

The following is essentially equivalent to [113, Proposition 2.3 (e),(f)], but
in a slightly different context.

Proposition 1.3.10 Let G be almost simple with socle S. Suppose that G has
subgroups H < K < S < G, with NS(H) = H, NS(K) = K, and NG(H)S =
NG(K)S = G. Then NG(H) �� NG(K) if and only if there exists H0 < K with
H and H0 conjugate in NG(K) but not in K. In this situation H and H0 are
also conjugate in S.

Proof Let M denote NG(H). Suppose first that M �� NG(K), and let m be an
element of M \NG(K). Then H = Hm < Km �= K, and NG(K)S = G implies
that m = ns for some n ∈ NG(K) and s ∈ S, and hence that Km = Ks. So
H0 := Hs−1

< K, and Hn = Hms−1
= H0, so H and H0 are conjugate in

NG(K) and in S. But if Hk
0 = H with k ∈ K, then s−1k ∈ NS(H) = H, so

s ∈ K and hence Km = Ks = K, a contradiction.
Suppose conversely that H0 < K, where H0 is such that H and H0 are

conjugate in NG(K) but not in K, and let n ∈ NG(K) with Hn = H0. Since
MS = G, we can write n = ms with m ∈ M and s ∈ S. If m ∈ NG(K), then
s ∈ NS(K) = K, so H0 = Hn = Hms = Hs, contradicting the assumption that
H and H0 are not K-conjugate. So m �∈ NG(K) and hence M �� NG(K).

Definition 1.3.11 Let G be almost simple with socle S. If H < K < S < G,
with NS(H) = H, NS(K) = K, NG(H)S = NG(K)S = G, and such that
M = NG(H) �� NG(K), then M is a type 2 novelty (or Wilson novelty) with
respect to K.



1.4 Finite fields and perfect fields 11

An example of this in [12] is S = He (the sporadic Held group), G = He:2,
H = (A5 ×A5):22, M = (S5 × S5):2. The only possible K is S4(4):2. The two
conjugacy classes of groups isomorphic toH inK are fused in NG(K) = S4(4):4.
Another example, from Table 8.13, is G = S4(7):2, H = L2(7), M = L2(7):2.
The only possible K is A7. The two conjugacy classes of groups isomorphic to
H in K are fused in NG(K) = S7.

1.4 Finite fields and perfect fields

The reader unfamiliar with the theory of finite fields should consult [11, Chap-
ter 7], which contains all of the basic concepts that we will need, and much
more. The following dates back to E.H. Moore in 1893.

Theorem 1.4.1 For each prime p and each e � 1, there is exactly one finite
field of pe elements, up to isomorphism, and these are the only finite fields.

Although it is only defined up to isomorphism, and there is no satisfactory
canonical way to define it, it is customary to regard ‘the’ finite field of order q
as a fixed object, and to denote it by Fq. The following result is also standard,
and we will use it implicitly throughout the rest of the book.

Proposition 1.4.2 Any finite subgroup of the multiplicative group of a field
is cyclic. In particular, the multiplicative group of a finite field is cyclic.

In the light of Proposition 1.4.2, the field Fq always contains elements of
multiplicative order q − 1, and such an element ω is called a primitive element
of Fq. Clearly Fq = Fp(ω), and so the minimal polynomial f of ω over Fp must
be of degree e, where q = pe. An irreducible polynomial of degree e over Fp of
which the roots are primitive elements of Fq is called a primitive polynomial.

Definition 1.4.3 Let f be a polynomial with coefficients in a field F . If f
can be written as a product of linear factors over an extension field K of F and
no proper subfield of K that contains F has this property, then K is a splitting
field for f over F .

For any field of characteristic p, the map φ : x �→ xp defines an injective
endomorphism of Fq of order e, called the Frobenius endomorphism.

Definition 1.4.4 A field F is perfect if either charF = 0, or if charF = p > 0
and the Frobenius endomorphism is an automorphism, in which case it is called
the Frobenius automorphism.

In this book, we will mostly work with finite fields, but some results also
hold for arbitrary fields, and some for perfect fields. In particular, all finite
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fields are perfect, and the Frobenius automorphism of the finite field Fq with
q = pe has order e, and generates the complete automorphism group of Fq. So,
if f is a primitive polynomial of degree e over Fp with root ω ∈ Fq, then the
e elements in the set {ωpi | 0 � i < e} are all roots of f in Fq. Hence Fq is a
splitting field of f over Fp .

The following lemma is technical, but will make several appearances in
Chapter 3 when analysing C5-subgroups (see Definition 2.2.11).

Lemma 1.4.5 Let q = pe, and let r be such that e/r is prime.

(i) If α+ α−1 ∈ Fpr for all non-zero α ∈ Fpe , then p = 2, e = 2 and r = 1.
(ii) The prime e/r is 2 if and only if αq−1 + α1−q ∈ Fp2r for all α ∈ F×

p2e .

Proof (i) For each λ ∈ Fpr there are at most two solutions to the equation
α2 − αλ+ 1 = 0 (that is, to α+ α−1 = λ), so pe − 1 � 2pr, forcing pe = 4.
(ii) For each λ ∈ Fp2r there are at most two solutions for αq−1 to the quadratic
equation (αq−1)2 − αq−1λ + 1 = 0, and neither solution is 0. Given a value
for αq−1, there are at most q − 1 values for α. Thus we account for at most
2p2r(pe−1) non-zero field elements as solutions. Therefore, if we are to account
for all non-zero elements of Fp2e as solutions, then 2p2r(pe − 1) � p2e − 1, so
2p2r � pe + 1, and hence p2r+1 � pe + 1. If r < e/2 then 2r + 1 < e, because r
divides e, and we have a contradiction.

Conversely, αq−1 + α1−q is fixed by the automorphism x �→ xq of Fq2 .

1.4.1 Conway polynomials

Although Fq is unique up to isomorphism, it arises as the splitting field of
Φ(q−1)/e different primitive polynomials, where Φ is the Euler Phi-function
and q = pe. For computational purposes, it is useful to agree on a standard
primitive polynomial, so that different computer algebra systems can use the
same representation of the elements of Fq. Unfortunately, there appears to be
no natural or canonical way of choosing such a standard polynomial.

The standard that has been generally agreed upon is known as the Conway
polynomial for Fq. (This is an unfortunate choice of name, because there is
another meaning of Conway polynomial in knot theory!) They were originally
introduced by Richard Parker, who computed many examples. To define them,
we first define an ordering on the set of all polynomials of degree n over F = Fp,
and it is here that an apparently arbitrary choice had to be made.

We order Fp itself by 0 < 1 < 2 < · · · < p− 1. Then the polynomial

xn − αn−1x
n−1 + αn−2x

n−2 − · · ·+ (−1)nα0

is mapped onto the word αn−1αn−2 · · ·α1α0, and the resulting words are or-
dered lexicographically using the above ordering of Fp.
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The Conway polynomial for Fp is defined to be the least primitive polyno-
mial of degree 1 under this ordering. In other words, it is x−α, where α is the
smallest primitive element in Fp.

For non-prime fields, there is an extra condition. It is a standard result that
Fpm is a subfield of Fpn if and only if m divides n. For compatibility between the
Conway polynomial f of the field Fpn and its subfields, it is required that if α is
a root of the Conway polynomial f of Fpn then, for all proper divisors m of n,
αt with t := (pn−1)/(pm−1) should be a root of the Conway polynomial of Fpm .
We can then define the Conway polynomial f of Fpn to be the least primitive
polynomial under the ordering defined above that satisfies this compatibility
condition for all divisors of n.

It is a slightly tricky exercise to show that a primitive polynomial f exists
that satisfies this property. A proof can be found in the thesis of W. Nickel [97].
One disadvantage of this definition is that Conway polynomials are extremely
difficult to calculate for large q, though a substantial number are known and
available on [86], and for certain values of p and e they are easily calculated.

1.5 Classical forms

In this section we present basic material on the theory of classical forms. The
reader unfamiliar with this material may wish to consult Taylor’s textbook
[108], where these topics are covered in much greater detail. We shall start
with a brief introduction to sesquilinear and quadratic forms, culminating in the
Birkhoff–von Neumann Theorem, which classifies such forms, subject to certain
additional symmetry conditions. After a short digression into representing forms
via matrices, we then present the definitions of our standard unitary, symplectic,
symmetric bilinear and quadratic forms.

Throughout this section, we let V be a vector space of dimension n > 0
over the field F .

Definition 1.5.1 Let σ ∈ AutF . A map β : V × V → F is a σ-sesquilinear
form if, for all u, v, w ∈ V and all λ, μ ∈ F :

(i) β(u, v + w) = β(u, v) + β(u,w);
(ii) β(u+ v, w) = β(u,w) + β(v, w); and
(iii) β(λu, μv) = λμσβ(u, v).

The form β is bilinear if σ = 1, and symmetric if β(u, v) = β(v, u) for all
u, v ∈ V .

Definition 1.5.2 The map Q : V → F is a quadratic form if:
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(i) Q(λv) = λ2Q(v) for all λ ∈ F, v ∈ V ; and
(ii) the map β, defined by β(u, v) := Q(u+ v)−Q(u)−Q(v) for all u, v ∈ V ,

is a symmetric bilinear form on V .

We call β the polar form of Q.

Definition 1.5.3 Let β be a σ-sesquilinear form on V , let Q be a quadratic
form on V and let g ∈ GL(V ). Then g is an isometry of β (or of Q) if
β(ug, vg) = β(u, v) (respectively, Q(vg) = Q(v)) for all u, v ∈ V . The ele-
ment g is a similarity of β (or of Q) if there is a λ ∈ F \ {0} such that
β(ug, vg) = λβ(u, v) (respectively, Q(vg) = λQ(v)) for all u, v ∈ V .

Definition 1.5.4 Let κ be a σ-sesquilinear or quadratic form. The isometry
group of κ is the group of all isometries of κ, and the similarity group of κ is
the group of all similarities of κ.

Note that the isometry group of κ is normal in the similarity group of κ: if
κ is identically zero then both groups are equal to GL(V ), and otherwise this
follows from the fact that the map g �→ λg defined by κ(ug, vg) = λgκ(u, v)
(or, if κ is quadratic, κ(vg) = λgκ(v)) is a homomorphism.

Definition 1.5.5 Two σ-sesquilinear forms β and γ on V (respectively, two
quadratic forms Q1 and Q2 on V ) are isometric or equivalent if there is a
g ∈ GL(V ) such that γ(u, v) = β(ug, vg) (respectively Q1(v) = Q2(vg)) for all
u, v ∈ V . The forms are similar if there is a g ∈ GL(V ) and λ ∈ F \ {0} such
that γ(u, v) = λβ(ug, vg) (respectively, Q1(v) = λQ2(vg)) for all u, v ∈ V .

Definition 1.5.6 The σ-sesquilinear form β is non-degenerate if β(u, v) = 0,
for a fixed v ∈ V and all u ∈ V , implies that v = 0.

LetQ be a quadratic form on V with polar form β. ThenQ is non-degenerate
if β is a non-degenerate bilinear form. The form Q is non-singular if Q(v) �= 0
for all v ∈ V such that β(w, v) = 0 for all w ∈ V : so, a non-degenerate quadratic
form is non-singular.

(It will follow from Proposition 1.5.25 that a σ-sesquilinear form β is non-
degenerate if and only if β(u, v) = 0, for a fixed u ∈ V and all v ∈ V , implies
that u = 0.)

Definition 1.5.7 Let β be a σ-sesquilinear form on V . A subspace W of V
is non-degenerate if the restriction of β to W is non-degenerate. The subspace
W is totally singular or totally isotropic if β restricted to W is identically 0.
Similarly, a vector v is singular if β(v, v) = 0, and non-singular ortherwise.

Let Q be a quadratic form on V with polar form β. A subspace W of V is
totally singular if Q(w) = 0 for all w ∈W , and is totally isotropic if β(v, w) = 0
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for all v, w ∈ W . A vector w is singular if Q(w) = 0; isotropic if β(w,w) = 0;
and non-singular if Q(w) �= 0.

By considering β(w,w) = Q(2w)−2Q(w) = 2Q(w), we see that all singular
vectors are isotropic, but the converse need not be true in characteristic 2.

We are interested in certain σ-sesquilinear forms that have more symmetry
than in the general case above.

Definition 1.5.8 Let β be a σ-sesquilinear form. If there exist λ ∈ F× and
τ ∈ AutF such that β(v, u) = λβ(u, v)τ for all u, v ∈ V then β is quasi-
symmetric. If the form β satisfies the property that β(u, v) = 0 if and only if
β(v, u) = 0 then β is reflexive.

The proof of the following is left as an easy exercise.

Lemma 1.5.9 Every quasi-symmetric σ-sesquilinear form is reflexive.

Definition 1.5.10 Let β be a reflexive σ-sesquilinear form, and let W be a
subspace of V . The orthogonal complement of W , denoted by W⊥, is:

W⊥ := { v ∈ V | β(w, v) = 0 ∀w ∈W } = { v ∈ V | β(v, w) = 0 ∀w ∈W }.
So, by Lemma 1.5.9, for any quasi-symmetric σ-sesquilinear form, a sub-

space W is non-degenerate if and only if W ∩W⊥ = {0}.
Definition 1.5.11 The Witt index of a σ-sesquilinear or quadratic form is
the maximum dimension of a totally singular subspace of V .

Lemma 1.5.12 Let β be a non-zero quasi-symmetric σ-sesquilinear form in
characteristic p � 0, and let λ and τ be as in Definition 1.5.8. Then:

(i) σ2 = 1, λλσ = 1, and τ = σ.
(ii) If σ �= 1 then β is similar to a σ-sesquilinear form β′ such that β′(u, v) =

β′(v, u)σ.
(iii) If σ = 1, λ = −1, and p �= 2, then β(v, v) = 0 for all v ∈ V .

Proof (i) We calculate that β(u, v) = λβ(v, u)τ = λλτβ(u, v)τ2
. By choosing

v, w with β(v, w) �= 0, and considering the non-zero scalar multiples of u, we
see that λλτ = 1 and τ2 = 1. Now, notice that

μσβ(u, v) = β(u, μv) = λβ(μv, u)τ = λλτμτβ(u, v)τ2
.

Therefore μτ = μσ for all μ ∈ F , so σ = τ .
(ii) Suppose that σ �= 1 and νσ + λσν = 0 for all ν ∈ F . Setting ν = 1, we
deduce that λ = −1. Thus νσ−ν = 0 for all ν ∈ F , a contradiction. Thus there
exists ν ∈ F with νσ + λσν = μ �= 0. A short calculation shows that μσ = μλ.
Using this, and setting β′(u, v) = μβ(u, v), gives the result.
(iii) The assumptions imply that β(v, v) = −β(v, v).
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The following is essentially the Birkhoff–von Neumann Theorem (see [108,
Theorem 7.1]), and follows straightforwardly from Lemma 1.5.12.

Theorem 1.5.13 Let β be a quasi-symmetric σ-sesquilinear form on a vector
space V over a field F , and let λ be as in Definition 1.5.8. Then up to similarity
one of the following holds, for all u, v ∈ V .

(i) β(u, v) = 0.

(ii) σ = 1, λ = −1 and β(v, v) = 0, so β(v, u) = −β(u, v).

(iii) σ2 = 1 �= σ and λ = 1, so β(v, u) = β(u, v)σ.

(iv) σ = 1 and λ = 1, so β(v, u) = β(u, v).

These cases are mutually exclusive, except that Case (ii) in characteristic 2 also
satisfies Case (iv).

Definition 1.5.14 In Case (ii) we say that β is alternating or symplectic, in
Case (iii) β is σ-Hermitian or unitary, and in Case (iv) β is symmetric bilinear,
or sometimes orthogonal when charF is odd.

Note that for the above definitions we do not assume that the forms con-
cerned are non-degenerate or non-singular.

The Birkhoff–von Neumann Theorem justifies restricting our study of quasi-
symmetric sesquilinear forms to the symplectic, unitary and orthogonal forms,
except when the form is symmetric bilinear and charF = 2. The following
proposition, which follows from β(v, v) = 2Q(v), shows that this is precisely
when quadratic forms will be useful.

Proposition 1.5.15 Let V be a vector space over F , equipped with a quadratic
form Q with polar form β, and suppose that charF �= 2. Then Q and β de-
termine one another, and g ∈ GL(V ) is an isometry (or a similarity) of Q if
and only if g is an isometry (or a similarity) of β. Furthermore, the form Q is
non-singular if and only if Q is non-degenerate, which is true if and only if β
is non-degenerate. In addition, the Witt index of β is the same as that of Q.

When studying quadratic forms in odd characteristic, we therefore can prove
results via either the quadratic or the symmetric bilinear form. Combining this
result with the Birkhoff–von Neumann Theorem, we see that there are essen-
tially five types of non-degenerate forms to study: the zero form, symplectic
forms, unitary forms, symmetric forms, and quadratic forms. Furthermore, it
suffices to study quadratic forms only for q even, since when q is odd they are
determined by their polar forms.
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1.5.1 The matrix formulation

In this subsection we study a practical way of representing and calculating with
forms. Let B = (e1, . . . , en) be a basis of V . Recall our notation for finite fields
and matrices from Section 1.2.

Definition 1.5.16 The matrix of the sesquilinear form β with respect to B

is B = (bij)n×n where bij = β(ei, ej) for all i and j.

Let Q be a quadratic form with polar form β. We can calculate that

Q(
n∑

i=1

λiei) =
n∑

i=1

λ2
iQ(ei) +

∑
i<j

λiλjβ(ei, ej).

Definition 1.5.17 The matrix of the quadratic formQ with polar form β with
respect to B is the upper-triangular matrix A = (αij), where αij = β(ei, ej) if
i < j, αii = Q(ei) and αij = 0 if i > j.

The matrix of the polar form of Q is then B = A+ AT. When κ is a form
with matrix C, we shall often assume that the basis B is present, and (abusing
language) refer to C as being the form.

Lemma 1.5.18 Let v, w ∈ V , let β be a σ-sesquilinear form on V with matrix
B, and let Q be a quadratic form on V with matrix A. Then β(v, w) is the single
entry of the matrix vBwσT, and Q(v) is the single entry of the matrix vAvT.

Proof This is a straightforward calculation.

Definition 1.5.19 A square matrix B is called symmetric, anti-symmetric
or σ-Hermitian, if BT = B, BT = −B, or BT = Bσ, respectively. It is called
alternating if it is anti-symmetric and all of its diagonal entries are 0.

Lemma 1.5.20 The matrix of the form β is symmetric, alternating or σ-
Hermitian if and only if β is.

Proof This is a straightforward calculation.

Recall Definition 1.5.3 of an isometry of a form.

Lemma 1.5.21 Let β be a σ-sesquilinear form on Fn with matrix B, and let
Q be a quadratic form on Fn with matrix A, whose polar form has matrix C.
A matrix M ∈ GLn(F ) is an isometry of β if and only if MBMσT = B. The
matrix M is an isometry of Q if and only if MCMT = C, and the diagonal
entries of A and MAMT coincide.

Proof Suppose first that MBMσT = B. Then

β(vM,wM) = vMB(wM)σT = v(MBMσT)wσT = β(v, w),
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so the result follows from Lemma 1.5.18. The converse, and the arguments for
quadratic forms, are equally easy.

For quadratic forms there is an alternative way of checking whether a matrix
is an isometry which is useful when doing calculations.

Definition 1.5.22 For an n×n matrix A = (αij), define AUT = (βij), where
βii = αii for 1 � i � n, βij = αij + αji for 1 � i < j � n, and βij = 0 if i > j.

Note that (BAUTBT)UT = (BABT)UT for all n × n matrices A,B. Using
this notation, the following is straightforward.

Lemma 1.5.23 If Q is a quadratic form on Fn with form matrix A, and
M ∈ GLn(F ), then M is an isometry of Q if and only if (MAMT)UT = A.

Recall Definition 1.5.5 of an isometry between forms. The following funda-
mental lemma will be used without reference throughout much of the book.

Lemma 1.5.24 Two σ-sesquilinear forms on Fn with matrices B and B′

are isometric if and only if there exists L ∈ GLn(F ) such that B′ = LBLσT.
Similarly, two quadratic forms on Fn with matrices A and A′ are isometric if
and only if there exists L ∈ GLn(F ) such that A′ = (LALσT)UT.

Proof Suppose that C = LBLσT. Then β(vL,wL) = vLBLσTwσT = γ(v, w).
Conversely, if B and C are isometric then there exists an L in GLn(F ) such
that β(vL,wL) = γ(v, w). The quadratic case is similar.

Recall Definition 1.5.6 of a non-degenerate sesquilinear form.

Proposition 1.5.25 Let β be a σ-sesquilinear form with matrix B. Then β

is non-degenerate if and only if B has non-zero determinant.

Proof If u ∈ V ⊥ then uBvσT = 0 for all v, in particular if v is one of the
ei. Thus uB = 0. Conversely, if uB = 0 then uBvσT = 0 for all v, whence
β(u, v) = 0 for all v, and so u ∈ V ⊥. Therefore V ⊥ �= {0} if and only if B is
not invertible.

We now proceed to consider the types of non-zero forms individually, and
introduce some notation for their isometry groups. When the field F is finite,
we have preferred choices of the basis of V that result in specific form matrices,
which we call our standard form matrices. We call their isometry groups (as
subgroups of GLn(F )) our standard copies of these groups. We shall summarise
these definitions later in Table 1.1.



1.5 Classical forms 19

1.5.2 Alternating forms

Recall the definition of an alternating form from Definition 1.5.14. The following
is standard; see for instance [108, p69].

Proposition 1.5.26 If V admits a non-degenerate alternating form then V

has a basis (e1, f1, e2, f2, . . . , em, fm) such that:

β(ei, ej) = β(fi, fj) = 0, β(ei, fj) = δij for all i, j,

where δij is the Kronecker delta. Thus dimV = n = 2m is even, and there is a
unique isometry class of such forms on V .

It follows that the isometry groups of any two non-degenerate alternating
forms on V are isomorphic.

The matrix antidiag(1, . . . , 1,−1, . . . ,−1), with n
2 1’s and n

2 −1’s, defines
our standard symplectic form, which is the result of ordering the above basis
as (e1, . . . , em, fm, . . . , f1). Magma uses this standard form.

Definition 1.5.27 The notation Spn(F ) denotes the isometry group of our
standard alternating form of dimension n over F . If F = Fq is finite, we usually
write Sp2m(q) instead of Sp2m(F ). This is the symplectic group on Fn.

1.5.3 Hermitian forms

Recall the definition of a σ-Hermitian form from Definition 1.5.14. To define
such a form, we require an automorphism σ of F of order 2, and we define F0

by F0 = CF (σ) = {x ∈ F | xσ = x }. Then F has dimension 2 over F0.

Proposition 1.5.28 Let β be a non-degenerate σ-Hermitian form over a
finite field F . Then F = Fq2 for some prime power q, the automorphism σ is
the map σ : x �→ xq, and F0 = Fq.

Throughout the rest of the book, we will use the previous result without
further citation to deduce that if H � GLn(q) for a non-square q then H does
not preserve a non-degenerate unitary form on Fq.

Proposition 1.5.29 If V admits a non-degenerate σ-Hermitian form β, then
V has a basis with respect to which β has matrix diag(a1, . . . , an), where ai ∈
F×

0 for all i. When F is finite, V has a basis for which ai = 1 for all i, and so
all non-degenerate σ-Hermitian forms are isometric.

Proof Since β is non-degenerate, we may choose a non-singular vector e1 ∈ V .
Then V = 〈e1〉 ⊥ 〈e1〉⊥, so by induction we may choose a basis for V , as
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required. Now suppose that F = Fq2 is finite and σ : x �→ xq, as in Propo-
sition 1.5.28, and that β has matrix diag(a1, . . . , an). The fact that β is σ-
Hermitian implies that ai = aq

i for all i; that is, ai ∈ Fq. Since F×
q2 is cyclic,

there exists bi ∈ F×
q2 with bibσi = b1+q

i = a−1
i , and then β(biei, biei) = 1.

The above proposition shows that for finite F all isometry groups of non-
degenerate σ-Hermitian forms are isomorphic; this explains why for many pur-
poses one may suppress the precise description of the form when discussing
unitary groups.

Our standard σ-Hermitian form over any field has matrix In. Its isome-
try group is the set of n × n matrices A over F such that AAσT = In, by
Lemma 1.5.21. The Magma standard σ-Hermitian form is different, and has
matrix antidiag(1, . . . , 1).

Definition 1.5.30 We write GUn(F ) to denote the isometry group of our
standard σ-Hermitian form in dimension n over a field with an automorphism
of order 2. If F = Fq2 , we usually write GUn(q) rather than GUn(F ). The
groups GUn(F ) are general unitary groups.

1.5.4 Symmetric bilinear forms in characteristic not 2

Recall the definition of a symmetric bilinear form from Definition 1.5.14. Recall
also from Proposition 1.5.15 that the study of symmetric bilinear forms in
characteristic not 2 is equivalent to the study of quadratic forms.

It can be shown that over an arbitrary field F of characteristic not 2, for
each non-degenerate symmetric bilinear form there exists a basis such that the
form matrix is diagonal. However, in the finite case we can say far more; for a
proof of the following, see [108, p138].

Theorem 1.5.31 Let F = Fpe with p odd. Then up to isometry there are
precisely two non-degenerate forms on V , corresponding to the cases when the
determinant of the form matrix is a square or non-square of F×. If n is odd
then there is a unique similarity class, and if λ is non-square then a form with
matrix B is not isometric to a form with matrix λB. If n is even then there
are two similarity classes.

By Proposition 1.5.15 the same is true for quadratic forms: over a finite field
of odd characteristic there are always two isometry classes of forms, and these
consist of two similarity classes when the dimension is even and one when the
dimension is odd.

In odd dimension, we take In as the matrix of our standard symmetric bi-
linear form, so that our standard quadratic form has matrix In/2. If μ is any
non-zero non-square, then μIn is in the other isometry class of non-degenerate
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symmetric forms. Our standard symmetric form differs from the Magma stan-
dard form which is antidiag(1, . . . , 1, 1

2 , 1, . . . , 1), with the 1
2 in position n+1

2 .

Definition 1.5.32 If F = Fq has odd order, and n is odd, then the isometry
group of our standard symmetric (or quadratic) form is denoted by GOn(q), or
sometimes as GO◦

n(q), the general orthogonal group.

As we saw in Theorem 1.5.31, in even dimension, if F is finite and of odd
order, then any two non-degenerate symmetric bilinear forms are similar if and
only if they are isometric. Thus there are up to two isomorphism classes of
isometry groups of such forms, and it turns out that there are precisely two.

Definition 1.5.33 Let β be a non-degenerate symmetric bilinear form in
even dimension over a finite field of odd characteristic. Then β has plus type if
it is isometric to the form antidiag(1, . . . , 1), otherwise it has minus type.

It turns out that a non-degenerate symmetric bilinear form has Witt index
n/2 or n/2 − 1 when the form has plus or minus type, respectively. We shall
state this result for the corresponding quadratic forms (which is valid also in
even characteristic) in Proposition 1.5.39.

Our standard plus type form is antidiag(1, . . . , 1), with quadratic form
antidiag(1, . . . , 1, 0, . . . , 0) with n/2 1’s. For minus type, we use the form ma-
trix In when this is not isometric to the previous form: we will see in Proposi-
tion 1.5.42 that this is the case if and only if n ≡ 2 (mod 4) and q ≡ 3 (mod 4).
Otherwise, our standard symmetric bilinear form of minus type has matrix
diag(ωq, 1, . . . , 1), where ωq is a fixed primitive element of F×

q , with correspond-
ing quadratic form diag(ωq/2, 1/2, . . . , 1/2). Our standard form of plus type
agrees with the one in Magma, but our form of minus type does not.

Definition 1.5.34 The isometry group of our standard plus type form is
denoted GO+

n (q), and the isometry group of our standard minus type form is
denoted GO−

n (q). These groups are also called the general orthogonal groups.

Definition 1.5.35 We say that a non-degenerate symmetric bilinear form
with q odd has square discriminant if the determinant of its matrix is a square
in F×

q and non-square discriminant otherwise. Similarly, the discriminant of a
quadratic form with q odd is the discriminant of its polar form.

1.5.5 Symmetric bilinear forms in characteristic 2

Recall Definition 1.5.14 of a symmetric bilinear form and Definition 1.4.4 of a
perfect field. The following proposition shows that we need not consider isom-
etry groups of symmetric but not alternating forms in characteristic 2.
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Proposition 1.5.36 Let F have characteristic 2, and let V be an irreducible
FG-module of dimension at least 2. If G is a group of isometries of a symmetric
bilinear form β on V then β(v, v) = 0 for all v ∈ V , so β is alternating.

Proof Pick any non-zero w ∈ V . Then since G is irreducible, wG spans V
and, since dimV � 2, there exists g ∈ G such that w and wg are linearly
independent. Define e1 := w + wg, which is non-zero. As before, eG

1 spans V ,
so we can choose a basis (e1, e2, . . . , en) for V from the orbit eG

1 . Then

β(e1, e1) = β(w,w) + β(wg,wg) + β(w,wg) + β(wg,w)

= 2β(w,w) + 2β(w,wg)

= 0.

Therefore β(ei, ei) = 0 for all i. Taking v =
∑n

i=1 aiei to be an arbitrary element
of V , we get β(v, v) =

∑n
i=1 a

2
iβ(ei, ei) + 2

∑
i<j aiajβ(ei, ej) = 0 + 0 = 0, as

required.

We may generalise this to the following result; since we will not be using it,
we omit the proof.

Proposition 1.5.37 Let β be a non-degenerate symmetric bilinear form on V ,
over a perfect field F of characteristic 2. Then V has a basis (e1, f1, . . . , em, fm,
d1, . . . , dr) such that 0 � r � 2 and:

β(ei, ej) = β(fi, fj) = 0, β(ei, fj) = δij for all i, j,

β(di, ej) = β(di, fj) = 0, β(di, dj) = δij for all i, j.

It follows from the above Proposition that in even dimension n = 2m+r � 2
there are always two isometry classes of non-degenerate forms, corresponding
to r = 0 and r = 2, whilst in odd dimension there is only one. It is not too hard
to see that the isometry groups of these forms for r = 0, 1, 2 are respectively
Sp2m(F ), Sp2m(F ) and (F,+)1+2m :Sp2m(F ), so we get nothing new.

1.5.6 Quadratic forms in characteristic 2

Recall the definition of a quadratic form and its polar form from Definition 1.5.2.
We have seen that in characteristic not 2 a quadratic form and its polar form
determine one another, and share the same groups of isometries and similari-
ties. Thus it remains only to study quadratic forms in characteristic 2. Recall
Definition 1.4.4 of a perfect field.

We will assume throughout this section that Q is a quadratic form in char-
acteristic 2 with polar form β. Then β(v, v) = 2Q(v) = 0 for all v ∈ V , and so
β is a symplectic form.
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Lemma 1.5.38 Let n = 2m be even, and let F be perfect. Then a quadratic
form Q is non-singular if and only if Q is non-degenerate.

Proof If Q is non-degenerate then V ⊥ = {0}, so Q is non-singular.
Suppose that Q is non-singular. Assume, by way of contradiction, that there

exists a non-zero v ∈ V ⊥. Then Q(v) = λ for some λ ∈ F×, and since F

is perfect there exists μ ∈ F with μ2 = λ. Thus Q(μ−1v) = 1, so with-
out loss of generality we may assume that Q(v) = 1. If dimV ⊥ > 1 then
there exists w ∈ V ⊥ \ 〈v〉, and without loss of generality Q(w) = 1. Then
Q(v + w) = Q(v) + Q(w) = 0, a contradiction. Therefore dimV ⊥ = 1. Now,
V/V ⊥ is non-degenerate, so the polar form of Q on V/V ⊥ is a non-degenerate
symplectic form, and thus by Proposition 1.5.26 the dimension of V/V ⊥ is even,
a contradiction.

The following result is standard; see for instance [108, p139]. Recall from
Definition 1.5.11 that the Witt index of a form is the maximum dimension of
a totally singular subspace.

Proposition 1.5.39 Let Q be a non-degenerate quadratic form on F 2m, with
F = F2e . Then there exists a basis (e1, . . . , em, fm, . . . , f1) of V such that

Q(ei) = Q(fi) = 0 for all i with 1 � i � m− 1,

β(ei, ej) = β(fi, fj) = 0 for all i, j, β(ei, fj) = δij for all i, j.

Up to both similarity and isometry, there are exactly two choices for the values
of Q(em) and Q(fm). One possibility is Q(em) = Q(fm) = 0, giving Witt index
n/2. The other is Q(em) = 1, Q(fm) = μ, where the polynomial x2 + x+ μ is
irreducible over F , giving Witt index n/2− 1.

We take the forms in Proposition 1.5.39 as our standard quadratic forms in
characteristic 2.

Definition 1.5.40 Let Q be a non-degenerate quadratic form in even di-
mension over a finite field of even characteristic. Then Q has plus type if it
is isometric to the form in Proposition 1.5.39 with Q(em) = Q(fm) = 0, and
minus type if it is isometric to the other form in Proposition 1.5.39. The isom-
etry group is called the general orthogonal group in each case. In plus type it
is denoted by GO+

n (F ), and in minus type it is denoted by GO−
n (F ).

The case when charF = 2 and n = 2m+ 1 is odd is less interesting to us.

Theorem 1.5.41 Let charF = 2, with F perfect, and let n = 2m+ 1 > 1. If
Q is any quadratic form then the isometry group of V is reducible.

Proof If Q is singular then the isometry group of Q fixes the subspace of V
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on which the form is identically zero. If Q is non-singular then reason as in the
proof of Lemma 1.5.38 to see that dim(V ⊥) = 1, so the isometry group of Q
must fix V ⊥.

It turns out (see [108, p139]) that all non-singular quadratic forms in odd
dimension over a perfect field of even characteristic are isometric, and there
exists a basis (e1, . . . , em, d, fm, . . . , f1) such that:

Q(ei) = Q(fi) = 0 for all i, Q(d) = 1,

β(d, ei) = β(d, fi) = β(ei, ej) = β(fi, fj) = 0 for all i, j,

β(ei, fj) = δij for all i, j.

The isometry group is Sp2m(F ), acting naturally on V/〈d〉 (see [108, Theorem
11.9]) and so we will assume that orthogonal groups in odd dimension are
defined over fields of characteristic not 2.

We finish this subsection with a collection of results that will enable us to
calculate the sign of a quadratic form or its polar form in various situations.

Proposition 1.5.42 Let V be a vector space of even dimension n over Fq

equipped with a non-singular quadratic form Q with polar form β. Let A and B
be the form matrices of Q and β with respect to some fixed basis of V . Then

(i) The Witt index of Q is equal either to n/2 (plus type) or to n/2−1 (minus
type), and all forms with the same Witt index are isometric.

(ii) If q is odd and n is even, then the form is of plus type if and only if
either the discriminant (detB) is square and n(q − 1)/4 is even, or the
discriminant is non-square and n(q − 1)/4 is odd.

(iii) If q is even, n = 2, and V has a basis (e1, f1) such that β(e1, f1) = 1,
β(e1, e1) = β(f1, f1) = 0, Q(e1) = 1 and Q(f1) = μ, then Q is of minus
type if and only if the polynomial x2 + x+ μ is irreducible over F .

(iv) If V = W ⊕W⊥ and the restrictions of Q to W and W⊥ have types t1, t2
with ti = 1 or −1 for plus type or minus type, then Q has type t1t2.

(v) The form over Fqk defined by A is of plus type when k is even.

Proof (i) In even characteristic, this is Proposition 1.5.39. In odd characteris-
tic, see [108, p138].
(ii) This is standard; see for instance [66, Proposition 2.5.10].
(iii) If p(x) = x2 + x + μ is irreducible over Fq, then Q has minus type by
definition. If p(x) has a root a ∈ Fq, then Q(ae1 + f1) = 0, so 〈ae1 + f1〉 is
totally singular, and hence Q has non-zero Witt index, and has plus type.
(iv) follows from (ii) when q is odd. When q is even, (iv) follows directly from
our standard forms except when t1 = t2 = −1 since if at least one of the forms
is of plus type, then one may re-order a basis for W1 and W2 to yield either
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Table 1.1 Our standard classical forms
Case conditions form type isom. gp form

L — zero GLn(q) 0n×n

S — alternating Spn(q) antidiag(1, . . . , 1,−1, . . . ,−1)

U — σ-Hermitian GUn(q) In

O◦ qn odd symmetric GOn(q) In

O+ q odd, n even symmetric GO+
n (q) antidiag(1, . . . , 1)

O− q odd, n even symmetric GO−
n (q) In if n(q − 1)/4 is odd

diag(ωq, 1, . . . , 1) otherwise

O+ q, n even quadratic GO+
n (q) antidiag(1, . . . , 1, 0, . . . , 0)

O− q, n even quadratic GO−
n (q) antidiag(1, . . . , 1, 0, . . . , 0)

+Em,m + μEm+1,m+1

our standard plus type form (if t1 = t2 = +1) or our standard minus type form
(if t1t2 = −1). If t1 = t2 = −1, then is sufficient to deal with the case when
dimW = dimW⊥ = 2 and the restrictions of Q to W1 with basis (e1, f1) and

W⊥
1 with basis (e2, f2) have the same standard form matrix

(
1 1

0 μ

)
. But

then the subspace of V spanned by e1 + e2, f1 + f2 is totally singular, so the
Witt index of V is 2, and Q is of plus type.
(v) follows from (ii) and (iii) and the fact that irreducible equations of degree
2 over Fq become reducible over Fq2 .

1.5.7 Summary of standard forms

In Table 1.1, we summarise the standard forms associated with the classical
groups in their standard representations, as described in this section. The form
is given as a matrix, which, in the final two cases only, is the matrix of the
quadratic form. A form specified in the table as antidiag(a, . . . , a, b, . . . , b) has
equal numbers of a’s and b’s, but a form specified as diag(λ, 1, . . . , 1) has just
one λ. We define m by n = 2m or 2m+ 1, when n is even or odd respectively.
In the last line in the table, the polynomial x2 + x+ μ is irreducible over Fq.

When q is odd, one may recover our standard quadratic form Q from our
standard symmetric bilinear form β via β(v, v) = 2Q(v).

1.6 The classical groups and their orders

In the previous section, we defined our standard classical forms, and their as-
sociated isometry groups GLn(q), GUn(q), Spn(q) and GOε

n(q) (where ε ∈
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{◦,+,−}). In this section we define various other associated classical groups,
and explore some of their basic properties, such as their order.

1.6.1 Semilinear maps

Definition 1.6.1 Let V and W be vector spaces over a common field F ,
and let θ ∈ AutF . A θ-semilinear map f : V → W is any map satisfying
(v + w)f = vf + wf and (λv)f = λθ(vf) for all v, w ∈ V , λ ∈ F . The θ-
semilinear map f is non-singular if it satisfies vf = 0 if and only if v = 0. The
map f is called semilinear if f is θ-semilinear for some θ.

So a linear map is just a θ-semilinear map with θ = 1. It is an easy exercise
to show that the set

{f : V → V | f non-singular θ-semilinear map for some θ ∈ AutF}
forms a group under composition.

Definition 1.6.2 The group of all non-singular semilinear maps from V to
itself is denoted by ΓL(V ). We may also denote this by ΓLn(F ), or by ΓLn(q)
when F = Fq, where n = dimV .

One may check that the map from ΓLn(F ) to AutF which sends the θ-
semilinear map f to θ is a homomorphism with kernel GLn(F ).

For a fixed basis (e1, . . . , en) of V and θ ∈ AutF , define θ̄ : V → V by
(
∑n

i=1 λiei)θ̄ =
∑n

i=1 λ
θ
i ei. Then {θ̄ : θ ∈ AutF} is a complement to GLn(F )

in ΓLn(F ). If A is the matrix with respect to this basis of f ∈ GLn(F ), then
the effect of the conjugation action of θ̄ on A is to replace the matrix entries
by their images under θ.

Definition 1.6.3 Let F = Fq with q = pe. We denote the generating field
automorphism x �→ xp by φ. We also write φ rather than φ̄ for the element
of ΓLn(q) corresponding to φ. Thirdly, we denote by φ the automorphism of
GLn(q) induced by conjugation by φ̄: that is, replace all matrix entries by their
p-th powers.

So φ has three different meanings: it is a field automorphism, a semilinear
map, and an automorphism of GLn(q). Since these meanings are generally
compatible, we hope that this practice will not cause confusion.

Definition 1.6.4 A θ-semilinear map f is a semi-isometry of a form β (or
a quadratic form Q), if β(vf, wf) = β(v, w)θ (respectively, Q(vf) = Q(v)θ)
for all v, w ∈ V . It is a semi-similarity if there exists 0 �= λ ∈ F such that
β(vf, wf) = λβ(v, w)θ (respectively, Q(vf) = λQ(v)θ) for all v, w ∈ V .
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Notice that the set of all semi-isometries is a group containing the isome-
try group of the form as a normal subgroup, and that the group of all semi-
similarities contains the similarity group as a normal subgroup.

1.6.2 Definitions of the classical groups

Throughout this subsection, let F be a finite field, and let V = Fn be equipped
with a form β, which is one of: the zero form, our standard unitary form, our
standard symplectic form, or our standard symmetric form from Table 1.1. If
β is non-zero symmetric, then V may also be equipped with our standard non-
degenerate quadratic form Q. For each of these possible forms we define a series
of groups, which we will denote by

Ω � S � G � C � Γ � A. (1.1)

Our notation for each of these groups for each form is given in Section 1.6.3.
Recall Definition 1.5.4 of the isometry group of V , and the definitions of

Spn(F ), GUn(F ) and GOε
n(F ) from Definitions 1.5.27, 1.5.30, 1.5.32, 1.5.34

and 1.5.40. We define u := 2 if β is unitary, and u := 1 in all other cases. For
the remainder of this subsection we let F = Fqu .

Definition 1.6.5 The groups GLn(F ), Spn(F ), GUn(F ) and GOε
n(F ) are

the general groups of V . The general group is denoted by G in Series 1.1.

For groups preserving non-degenerate or non-singular forms other than our
standard forms, we use similar notation. For example, a group preserving a
non-degenerate symplectic form on Fn

q with form matrix B would be denoted
by Spn(q,B), and if W is a space carrying a non-standard form then we may
also write GU(W ), for example, if the form is understood. However, if no form
or module is specified then the standard form is always assumed.

We shall always assume that q is odd for GO◦
n(q), since if n � 1 and q is

even, then GO◦
n(q) is reducible by Theorem 1.5.41.

Definition 1.6.6 The special group of V is the subgroup of the general group
consisting of all matrices of determinant 1. Thus we refer to the special linear
group, denoted by SLn(q); the special unitary group, denoted by SUn(q); and the
special orthogonal group, denoted by SOε

n(q), with ε ∈ {◦,+,−}. The special
group is denoted by S in Series 1.1.

The following can be proved by showing that Sp2m(F ) is generated by
symplectic transvections: see [108, Corollary 8.6].

Theorem 1.6.7 All elements of Sp2m(F ) have determinant 1.



28 Introduction

We will use this result frequently without reference: rather than referring to
a general or special symplectic group we will just refer to a symplectic group.

In addition, in characteristic 2 it is a straightforward exercise using Propo-
sition 1.6.9 to show that all isometries of a quadratic form have determinant 1,
and hence the special orthogonal group coincides with the general orthogonal
group. We shall use whichever term is more convenient in this case. Note that
in characteristic 2, some authors write SO±

n (q) to denote a certain subgroup of
index 2 in GO±

n (q): we shall define this subgroup shortly, and denote it Ω±
n (q).

For linear, symplectic and unitary groups, the special group is quasisimple
except for a few small dimensions and prime powers: see Proposition 1.10.3 for
the exceptions. However, if n � 2 then there is an epimorphism from the special
orthogonal group to {±1}, whose kernel is generally quasisimple.

Definition 1.6.8 Let Q be a quadratic form on V , of sign ε, and let β be its
polar form. Let v ∈ V be non-singular. We define the reflection rv : V → V by
(x)rv = x− β(v, x)v/Q(v).

The following result is well known; see for example [108, Corollary 11.42].

Proposition 1.6.9 The group GOε
n(q) is generated by the set of reflections

in non-singular vectors, provided that (n, q, ε) �= (4, 2,+).

Definition 1.6.10 Assume that (n, q, ε) �= (4, 2,+). Let g =
∏k

i=1 rvi
be an

element of GOε
n(q).

If q is odd then the spinor norm of g is +1 if
∏k

i=1 β(vi, vi) is a square in
F×

q and −1 if it is a non-square. If q is even then the quasideterminant of g is
+1 if k is even and −1 if k is odd.

The additive version of the quasideterminant for even q is known as the
Dickson determinant [108, p160]. It can be shown that the spinor norm and
quasideterminant are well-defined homomorphisms, and the following proposi-
tion (see [108, Theorems 11.43, 11.50]) provides a way to calculate them.

Proposition 1.6.11 Let g ∈ GOε
n(q), let A := In− g and suppose that A has

rank k. If q is odd then let F be the matrix of the invariant symmetric bilinear
form of SOε

n(q), and let B be a k × n matrix over Fq whose rows form a basis
of a complement of the nullspace of A. Then:

(i) If q is even and (n, q, ε) �= (4, 2,+), then the quasideterminant of g is 1 if
k is even and −1 otherwise.

(ii) If q is odd, then the spinor norm of g is 1 if det(BAFBT) is a square in
F×

q and −1 otherwise.

We record some additional information about GO+
4 (2).
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Lemma 1.6.12 ([66, Proposition 2.5.9]) The group GO+
4 (2) has exactly three

subgroups of index two. One of these is the subgroup generated by reflections,
and a second is the subgroup of all isometries that induce even permutations
on the set W of totally singular 2-spaces. There is an equivalence relation on
W given by U1 ∼ U2 if and only if dim(U1 ∩U2) is even, and this partitions W
into two equivalence classes. The third subgroup of index two is the group of all
isometries that fix each equivalence class setwise.

Definition 1.6.13 The Ω group in Series 1.1 is defined to be equal to the
special group if the form on V is linear, symplectic or unitary. If the form on V is
quadratic of sign ε, and (n, q, ε) �= (4, 2,+), then the Ω group, denoted by Ωε

n(q),
is defined to be the kernel of the spinor norm or the quasideterminant map on
SOε

n(q), when q is odd or even, respectively. The group Ω+
4 (2) is the third

subgroup described in Lemma 1.6.12. We will call Ω the generally quasisimple
classical group.

Note that this definition of Ω+
4 (2) agrees with that in Magma, and that in

all other cases it can be shown that if n � 2 then SOε
n(q) has a unique subgroup

of index 2 and so that, although there are different definitions in the literature of
the spinor norm map, Ωε

n(q) is well-defined. Note however that when q is even,
the kernel of the quasideterminant map, which we denote Ω±

n (q), is denoted by
SO±

n (q) by some authors.
We now consider the larger terms in Series 1.1. Recall Definition 1.5.4 of

the similarity group of a form.

Definition 1.6.14 The conformal group C in Series 1.1 is the similarity group
of V . Thus we refer to the conformal symplectic group, CSpn(q); the conformal
unitary group, CGUn(q); and the conformal orthogonal group, CGOε

n(q).

The conformal linear group is equal to the general linear group, and we will
prefer the term general linear group. It will follow from Lemma 1.8.9 that if
n � 2, or n � 3 when the form is bilinear, then the conformal group is equal
to the normaliser in the corresponding linear group of the quasisimple group.

Definition 1.6.15 We shall call the subgroup of the outer automorphism
group of Ω that is induced by conjugation by elements of C the group of con-
formal automorphisms of Ω.

Now we consider the next group up in the series.

Definition 1.6.16 The conformal semilinear group of V is the group of
all semi-similarities of V . These groups are denoted by ΓLn(q), CΓSpn(q),
CΓUn(q), and CΓOε

n(q). The conformal semilinear group is denoted by Γ when-
ever the context makes the meaning of this clear, and in particular in Series 1.1.
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Let φ : V → V be as in Definition 1.6.3. If the general group preserves a
form with matrix B, and all entries of B are in Fp, then Bφ = B, and so φ

normalises the conformal group C. In that case, one may prove that the group
Γ is a semidirect product of C and 〈φ〉. This applies to all of our standard forms
except for some bilinear and quadratic forms of minus type.

It was shown in [6] that the element of Out Ω determined by φ can sometimes
depend on the choice of fixed form. We specified our standard forms in Table 1.1,
and are using them throughout this section. Recall from Subsections 1.5.2 to
1.5.6 that our standard forms are not always the same as the forms fixed by
the groups returned by the corresponding Magma functions. For example, the
group that we shall denote U6(3).〈φ〉 (which is sometimes denoted PΣU6(3)) is
not isomorphic to the group returned by the Magma function PSigmaU(6,3).

Definition 1.6.17 The semilinear group of V is the group of all of semi-
isometries of the form. For our standard forms, these groups are denoted by
ΓLn(q), ΓSpn(q), ΓUn(q), and ΓOε

n(q).

Note that, although the names of these groups begin with Γ, they are not
the groups Γ in the Series 1.1, which are the groups defined in Definition 1.6.16.
For the linear groups, there is one further distinct group in Series 1.1.

Definition 1.6.18 If β is identically zero and n � 3, then the group A

in Series 1.1 is the split extension of ΓLn(q) by the inverse-transpose map
γ := −T, where γ commutes with the field automorphisms. For all other forms
and dimensions, A := Γ.

When n = 2, the inverse-transpose map is induced by an inner automor-
phism of L2(q) and of SL2(q).

We complete this section with a brief discussion of projective groups.

Definition 1.6.19 For each of the groups that we have defined in this section,
we also define a projective version, which is the quotient by scalar matrices.
We denote this either with a prefix P, as in PGLn(q), or with an overbar, as in
Ω. The simple classical groups also have Atlas-style notation: see Table 1.2.

Definition 1.6.19 yields a second chain of subgroups:

Ω � S � G � C � Γ � A. (1.2)

We will see in Section 1.7 that if the form is unitary, symplectic over F2e , or
orthogonal in odd dimension, then the conformal group is obtained by adjoining
scalars to the general group, in which case the projective versions of these two
groups are the same. We shall defer further discussion of the indices of these
groups in one another until Table 1.3.

The following notation will be used extensively throughout the book.
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Definition 1.6.20 Let κ be a standard form from Table 1.1. Let H be any
group such that Ω � H � A, or Ω � H � A. If κ is identically zero and n � 2,
then H lies in Case L. If κ is unitary and n � 3, then H lies in Case U. If κ
is symplectic and n � 4, then H lies in Case S. If κ is symmetric bilinear or
quadratic and n � 7, then H lies in Case Oε.

But note that we sometimes consider SL2(q) to lie in Case S, since SL2(q) =
Sp2(q) by Lemma 1.12.1. We will always state when we are doing this.

The following is classical; for a textbook reference see [10, Chapter 12].

Theorem 1.6.21 Assume that Ω is simple. Then A = AutΩ, except when
Ω = Sp4(2e) or Ω = Ω+

8 (q).

As we shall see in Section 1.7, there is a graph automorphism that squares
to a generating field automorphism in Case S when n = 4 and q is even (note
also that S4(2) ∼= S6 is not simple). There is a graph automorphism of order
3 in Case O+ when n = 8. When q is odd, this is an automorphism of the
projective group O+

8 (q), but not of Ω+
8 (q).

1.6.3 Notation for the classical groups

Our notation for the classical groups is summarised in Table 1.2. (Although our
usage of ‘Case L’, ‘Case S’ normally implies the restrictions on the dimensions
described in the previous subsection, we use the notation in this table for all
n � 1.) Unfortunately there is a lack of consistency in the literature for this
notation. For example, GOε

n(q) is used with different meanings in [12] and
in [66]. Our notation is closer to that in [12], but we introduce some new
symbols such as CGOε

n(q).

Table 1.2 Notation for the classical groups
Case Ω S G C Γ A

L SLn(q) SLn(q) GLn(q) GLn(q) ΓLn(q) ΓLn(q):〈γ〉 †

Ln(q) Ln(q) PGLn(q) PGLn(q) PΓLn(q) PΓLn(q):〈γ〉 †

U SUn(q) SUn(q) GUn(q) CGUn(q) CΓUn(q) CΓUn(q)

Un(q) Un(q) PGUn(q) PGUn(q) PΓUn(q) PΓUn(q)

S Spn(q) Spn(q) Spn(q) CSpn(q) CΓSpn(q) CΓSpn(q)

Sn(q) Sn(q) Sn(q) PCSpn(q) PCΓSpn(q) PCΓSpn(q)

Oε Ωε
n(q) SOε

n(q) GOε
n(q) CGOε

n(q) CΓOε
n(q) CΓOε

n(q)

Oε
n(q) PSOε

n(q) PGOε
n(q) PCGOε

n(q) PCΓOε
n(q) PCΓOε

n(q)

† The automorphism γ is only defined when n � 3.

Notice that each of the four cases in the table has two lines. The top line
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gives the notation for the groups in Series 1.1, and the second gives the notation
for the groups in Series 1.2. Thus the top group in Column Ω is the generally
quasisimple group, as in Definition 1.6.13. The top group in Column S is the
special classical group, as in Definition 1.6.6. The top group in Column G is the
general classical group, as defined in Definition 1.6.5. The top group in Column
C is the conformal classical group, as in Definition 1.6.14. The top group in
Column Γ is the conformal semilinear group, as in Definition 1.6.16. The top
group in Column A is as in Definition 1.6.18.

1.6.4 Orders of classical groups

The orders of the classical groups are well known; see for example [108, p19,
p118, p70, p141] for derivations of the orders of the general groups, and [66,
Tables 2.1.C, 2.1.D] (reproduced here as Table 1.3) for a convenient summary
of the indices of groups in Series 1.1 and 1.2.

Theorem 1.6.22 Let q = pe, where p is a prime. The order of GLn(q) is

qn(n−1)/2
n∏

i=1

(qi − 1).

The order of GUn(q) is

qn(n−1)/2
n∏

i=1

(qi − (−1)i).

When n is even, the order of Spn(q) is

qn2/4

n/2∏
i=1

(q2i − 1).

When nq is odd, the order of GO◦
n(q) is

2q(n−1)2/4

(n−1)/2∏
i=1

(q2i − 1).

When n is even, the order of GO±
n (q) is

2qn(n−2)/4(qn/2 ∓ 1)
n/2−1∏

i=1

(q2i − 1).

For any group H in Table 1.2, the order of H can be calculated from The-
orem 1.6.22 and the information in Table 1.3.
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Table 1.3 Indices of classical groups
Case |S : Ω| |G : S| |C : G| |Γ : C| |A : Γ|
L 1 q − 1 1 e 2 ∗

U 1 q + 1 q − 1 2e 1

S 1 1 q − 1 e 1

O◦ 2 † 2 (q − 1)/2 e 1

O± 2 (2, q − 1) q − 1 e 1

Case |G ∩ Z(GLn(qu))| |S : Ω| |G : S| |C : G| |Γ : C| |A : Γ|
L q − 1 1 (q − 1, n) 1 e 2 ∗

U q + 1 1 (q + 1, n) 1 2e 1

S (2, q − 1) 1 1 (2, q − 1) e 1

O◦ 2 2 † 1 1 e 1

O± (2, q − 1) a± ‡ (2, q − 1) (2, q − 1) e 1

Note the restrictions on n and q in Theorem 1.6.22.

∗ If n ∈ {1, 2} then A = Γ.
† If n = 1 then S = Ω.
‡ The entries a+ and a− are defined by: a± ∈ {1, 2}; a+a− = 2(2,q); if q is odd then

a+ = 2 if and only if n(q − 1)/4 is even.

1.7 Outer automorphisms of classical groups

In this section we will introduce our standard notation for outer automorphisms
of their classical groups Ω and Ω, and give presentations for OutΩ. See Sec-
tion 1.6 for an introduction to the classical groups.

1.7.1 Standard outer automorphisms

Let Ω be as in Definition 1.6.13, and let Ω be the generally simple group Ω/Z(Ω)
(see Proposition 1.10.3 for exactly when Ω is simple). Let B be the matrix of
one of the standard forms in Table 1.1.

We shall use the symbols δ, δ′, γ, τ , φ and ϕ to denote generators of the
outer automorphism group of Ω. We abuse notation and use the same symbols
to denote both their inverse images in Aut Ω and, when they exist, specific
matrices in GLn(q) that induce them by conjugation. Presentations of OutΩ
on these generators will be listed in the following subsection.

We shall refer to δ and δ′ as diagonal automorphisms, γ and τ as graph
automorphisms, and φ or ϕ as a field automorphism. These names correspond
to the terminology used in the theory of algebraic groups.

We now proceed to define these automorphisms as specific elements of
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Aut Ω. Recall Definition 1.6.3 of the automorphism φ of GLn(q). If Bφ = B,
then φ induces an automorphism of Ω of order e, which we shall also denote by
φ. Consulting Table 1.1, we see that Bφ �= B if and only if Ω = Ω−

n (q), n is even,
and either q is even or q is odd and the form has non-square discriminant. In
these exceptional cases, the corresponding automorphism of Ω will be denoted
by ϕ rather than φ, where ϕ is defined to be φ followed by conjugation by a
fixed element c ∈ GLn(q) with cBcT = Bφ.

Case L. Here δ is the diagonal automorphism of Ω = SLn(q) induced by
diag(ω, 1, 1, . . . , 1) ∈ GLn(q). Its order in OutΩ is (q − 1, n). Projectively, δ
extends Ln(q) to PGLn(q). The field automorphism φ is as in Definition 1.6.3,
and projectively φ extends PGLn(q) to PΓLn(q). For n � 3, γ is the duality (or
graph) automorphism g �→ g−T of Ω, as in Definition 1.6.18, and projectively γ
extends PΓLn(q) to Aut Ln(q). Note that γ is undefined when n = 2, and that
the inverse-transpose map is induced by conjugation by an element of SL2(q).

Case U. Here δ is the diagonal automorphism of Ω = SUn(q) induced by
diag(ωq−1, 1, 1, . . . , 1) ∈ GUn(q), where ω = ωq2 is a primitive element of F×

q2 .
Its order in OutΩ is (q + 1, n), and projectively δ extends Un(q) to PGUn(q).
For n � 3, the duality or graph automorphism is γ : g �→ g−T of Ω. The field
automorphism φ is as in Definition 1.6.3, of order 2e in OutΩ, and projectively
φ extends PGUn(q) to PΓUn(q). A consequence of our choice of standard form
In is that φe = γ.

Case S. When q is odd, δ is the diagonal automorphism of Ω = Spn(q) induced
by δ = diag(ω, . . . , ω, 1, . . . , 1) ∈ CSpn(q) \ Spn(q), with n/2 ω’s and n/2 1’s.
Its order in OutΩ is 2, and projectively it extends Sn(q) to PCSpn(q). Observe
that δBδT = ωB. When q is even, δ is trivial. The field automorphism φ is as
in Definition 1.6.3, has order e in OutΩ, and projectively extends PCSpn(q) to
PCΓSpn(q), which is equal to Aut Sn(q) except when n = 4 and q is even.

When n = 4 and q is even, there is a graph automorphism γ of Ω with
γ2 = φ in OutΩ, which projectively extends PCΓSp4(2e) to Aut S4(2e). We
shall define γ precisely in Section 7.2. Note that we exclude Sp4(2) ∼= S6, as it
is not quasisimple.

Case O◦. Recall that nq is odd. Here δ denotes a diagonal automorphism of
Ω = Ω◦

n(q), of order 2 in OutΩ, induced by an element of SO◦
n(q) \ Ω◦

n(q),
which projectively extends O◦

n(q) to PSO◦
n(q). (We can choose δ = r�r� using

the notation defined in [66, §2.6].) The field automorphism φ is as in Def-
inition 1.6.3, has order e in OutΩ, and projectively extends PCGO◦

n(q) to
PCΓO◦

n(q) = Aut O◦
n(q).

Case O±. Here γ denotes a graph automorphism of Ω = Ω±
n (q), of order 2 in

OutΩ, induced by an element of GO±
n (q) \ SO±

n (q) when q is odd and by an
element of SO±

n (q) \Ω±
n (q) when q is even. Projectively, γ extends PSO±

n (q) to
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PGO±
n (q) when q is odd, and O±

n (q) to PSO±
n (q) = PGO±

n (q) when q is even.
(For all q we can choose γ = r�, as in [66, §2.7–2.8].)

When q is odd and B has square discriminant, δ′ denotes a diagonal auto-
morphism of Ω, of order 2 in OutΩ, induced by an element of SO±

n (q) \Ω±
n (q).

Projectively, δ′ extends O±
n (q) to PSO±

n (q). (We can choose δ′ = r�r� as in [66,
§2.6].) If B has non-square discriminant or q is even then δ′ is trivial.

When q is odd, Ω has a diagonal outer automorphism δ. Projectively, δ
extends PGO±

n (q) to PCGO±
n (q). If Ω = Ω+

n (q), then δ is the automorphism
induced by δ = diag(ω, . . . , ω, 1, . . . , 1) ∈ CGO+

n (q)\GO+
n (q), with n/2 ω’s and

n/2 1’s. Observe that δBδT = ωB and det δ = ωn/2. Therefore detω−1δ2 = 1,
and by Definition 1.6.10 the matrix ω−1δ2 has spinor norm 1 when 4 | n and
−1 when n ≡ 2 (mod 4). So δ has order 2 in Out O+

n (q) when 4 | n, or when
B has non-square discriminant. But δ has order 4 when n ≡ 2 (mod 4) and B
has square discriminant. When q is even, δ is trivial.

When q is odd and Ω = Ω−
n (q), choose two elements a, b ∈ F×

q with a2+b2 =
ω, the primitive element of F×

q , and let

X =

(
a b

−b a

)
and Y =

(
0 ω

−1 0

)
.

Then δ is the diagonal automorphism of Ω induced by δ = diag(X, . . . ,X),
(with n/2 X’s) when B has square discriminant, and by δ = diag(Y,X, . . . ,X)
(with one Y and n/2 − 1 X’s) when B has non-square discriminant. In both
cases, δ ∈ CGO−

n (q) \ GO−
n (q) with δBδT = ωB and det δ = ωn/2, which was

also true for the δ defined for Ω+
n (q).

Observe also that, if we define C = diag(1,−1, 1,−1, . . . , 1,−1) ∈ GO−
n (q),

then (δC)2 = ωIn, so δC has order 2 in OutΩ. If 4|n then C ∈ Ω−
n (q) by

Definition 1.6.10, so δ also has order 2 in OutΩ. If n ≡ 2 (mod 4) then C ∈
GO−

n (q)\SO−
n (q). From the fact [66, Proposition 2.8.2] that PCGO±

n (q)/Ω±
n (q)

is isomorphic to D8 and C2 × C2 when the the discriminant of B is square
and non-square, respectively, it follows that δ has order 4 in Out Ω when B

has square discriminant and order 2 when B has non-square discriminant. This
again corresponds to the order of δ ∈ Out Ω+

n (q). Note that our definition of δ
for Ω−

n (q) is different from that of [66]; in fact our δ is equal to their δC.
The field automorphism φ of Ω is induced by the map φ as in Definition 1.6.3

when Ω = Ω+
n (q), or when Ω = Ω−

n (q), q is odd, and B has square discriminant;
it is undefined otherwise. Projectively, φ extends PCGO±

n (q) to PCΓO±
n (q). For

the cases when the φ is undefined as an automorphism of Ω, we proceed to define
a field automorphism ϕ of Ω.

When Ω = Ω−
n (q), q is odd, and B has non-square discriminant, the matrix

c := diag(ω(p−1)/2, 1, 1, . . . , 1) satisfies cBcT = Bφ, and so c conjugates Ωφ back
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to Ω. We define the field automorphism ϕ of Ω to be φ followed by conjugation
by c, so ϕ can also be regarded as the φ-semilinear map φc and, as such, it is a
semi-isometry of B. It can be checked that ϕe is induced by a matrix in GO−

n (q)
with determinant −1, so ϕe = γ in OutΩ. Projectively, ϕ extends PCGO−

n (q)
to PCΓO−

n (q), but it is not always a split extension.
Similarly, when Ω = Ω−

n (q) with q even, we define ϕ to be φ followed by
conjugation by a certain matrix c. We shall not need to carry out calculations
with c in this case, so we shall not define it precisely, and refer the reader to [66,
§2.8] for a precise definition of ϕ. Again, ϕe = γ in OutΩ, and projectively ϕ
extends PCGO−

n (q) = PGO−
n (q) to PCΓO−

n (q).
Finally, if Ω = Ω+

8 (q) then τ denotes a graph automorphism of order 3 in
OutΩ that is inverted by γ, extending PCΓO+

8 (q) to Aut O+
8 (q). Note that τ

does not lift to an automorphism of Ω when q is odd, and is undefined except
for Ω = Ω+

8 (q).

1.7.2 Presentations of outer automorphism groups of Ω

In each of these presentations, q = pe with p prime. All of the relations in
these presentations can be readily derived from the information presented in
the previous subsection, with the possible exception of the relation [δ, φ] = 1
in O−

n (q) when q is odd and the discriminant is square. But in that case e
must be odd, so φ has odd order. It normalises the subgroup 〈γ, δ〉, which is
dihedral of order 8. Since D8 has no non-trivial odd order automorphisms, φ
must centralise 〈γ, δ〉.
L2(q) = S2(q):

〈 δ, φ | δ(q−1,2) = φe = [δ, φ] = 1, 〉.
Ln(q), n � 3:

〈 δ, γ, φ | δ(q−1,n) = γ2 = φe = [γ, φ] = 1, δγ = δ−1, δφ = δp 〉.
Un(q), n � 3:

〈 δ, γ, φ | δ(q+1,n) = γ2 = 1, φe = γ, δγ = δ−1, δφ = δp 〉.
Sn(q), n � 2, (n, p) �= (4, 2):

〈 δ, φ | δ(q−1,2) = φe = [δ, φ] = 1 〉.
S4(pe), p = 2:

〈 γ, φ | γ2 = φ, φe = 1 〉.
O◦

n(q), n � 3 odd:

〈 δ, φ | δ2 = φe = [δ, φ] = 1 〉.
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O+
n(q), n � 6 even, n �= 8, q even:

〈 γ, φ | γ2 = φe = [γ, φ] = 1 〉.
O+

8 (q), q even:

〈 τ, γ, φ | τ3 = γ2 = (γτ)2 = φe = [τ, φ] = [γ, φ] = 1 〉.
O−

n(q), n � 4 even, q even:

〈 γ, ϕ | γ2 = 1, ϕe = γ 〉.
O+

8 (q), q odd:

〈 δ′, τ, γ, δ, φ | δ′2 = τ3 = γ2 = (γτ)2 = δ2 = 1, δτ = δ′, δ′τ = δδ′,

(δγ)2 = δ′, φe = [δ, φ] = [τ, φ] = [γ, φ] = 1 〉.
O+

n (q), n � 12, 4 | n, q odd:

〈 δ′, γ, δ, φ | δ′2 = γ2 = δ2 = 1, (δγ)2 = δ′, φe = [δ, φ] = [γ, φ] = 1 〉.
O+

n (q), n � 6, n ≡ 2 (mod 4), q ≡ 1 (mod 4):

〈 δ′, γ, δ, φ | δ′2 = γ2 = 1, δ2 = δ′, δγ = δ−1, φe = [γ, φ] = 1, δφ = δp 〉.
O+

n (q), n � 6, n ≡ 2 (mod 4), q ≡ 3 (mod 4):

〈 γ, δ, φ | γ2 = δ2 = [δ, γ] = φe = [γ, φ] = [δ, φ] = 1 〉.
O−

n (q), n � 4, 4 | n or q ≡ 1 (mod 4), q odd:

〈 γ, δ, ϕ | γ2 = δ2 = [δ, γ] = [δ, ϕ] = 1, ϕe = γ 〉.
O−

n (q), n � 4, n ≡ 2 (mod 4), q ≡ 3 (mod 4):

〈 δ′, γ, δ, φ | δ′2 = γ2 = 1, δ2 = δ′, δγ = δ−1, φe = [γ, φ] = [δ, φ] = 1 〉.

1.8 Representation theory

This section contains an assortment of results from representation theory that
we shall need. We remind the reader that our default assumption throughout
the book is that groups are finite. We are mainly interested in representations
over finite fields, but we shall at times need to consider characteristic 0 rep-
resentations. The reader unfamiliar with representation theory should consult
Isaac’s excellent textbook [56].

A representation of G over a field F is by definition a homomorphism ρ :
G → GLn(F ) for some n. We shall generally refer to n as the dimension of ρ
(although it is more usually called the degree of ρ).
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Definition 1.8.1 Representations ρ, ρ′ : G→ GLn(F ) are equivalent if there
exists x ∈ GLn(F ) with x−1(gρ′)x = gρ for all g ∈ G.

Representations have associated (right) FG-modules, where equivalent rep-
resentations correspond to isomorphic modules.

A representation ρ : G → GLn(F ) is faithful if its kernel is trivial. It is
irreducible if ρ(G) stabilises no proper non-zero subspace of Fn, and is re-
ducible otherwise. A representation ρ is absolutely irreducible if the natural
action of ρ(G) on Kn is irreducible for every extension K of F . The same
terms are used for the corresponding FG-module. Schur’s Lemma states that
if ρ : G → GLn(F ) is absolutely irreducible, then the centraliser of ρ(G) in
GLn(F ) consists just of the scalar matrices in GLn(F ). If ρ is irreducible but
not absolutely irreducible and F is finite, then the centraliser is isomorphic to
K×, for some proper extension K of F .

A projective representation is a homomorphism ρ : G → PGLn(F ). A pro-
jective representation lifts to an ordinary representation ρ̂ : Ĝ → GLn(F ) for
some central extension Ĝ of G, and we say that ρ is irreducible, etc. if ρ̂ is.

1.8.1 Dual modules

Let F be a field, A an associative unital F -algebra, and V a right A-module.
We make the dual vector space V ∗ of V into a left A-module, by defining
v(af) := (va)f for v ∈ V , a ∈ A and f ∈ V ∗. The opposite algebra Aop has
the same underlying set, addition and F -multiplication as A, but the product
a ◦ b in Aop is the same as the product ba in A. We make V ∗ into a right
Aop-module by defining fa to be af , where f ∈ V ∗ in both cases, a is regarded
as an element of Aop in the first case, and as an element of A in the second.

We now let V be finite dimensional with basis (e1, . . . , en), and let V ∗ have
dual basis (e∗1, . . . , e

∗
n) where ei e

∗
j = δij . It is a routine exercise to show that,

if a ∈ A has matrix M in its action on V with respect to the basis (e1, . . . , en),
then a ∈ Aop has matrix MT with respect to the basis (e∗1, . . . , e

∗
n).

If A = FG is a group algebra, then the map g �→ g−1 extended F -linearly
gives an isomorphism between A and Aop. We use this isomorphism to make
V ∗ into a right FG-module which, for the purposes this book, we take as the
definition of the dual module and its associated representation (although it
would be more standard to call it the contragredient module).

Definition 1.8.2 Let ρ : G → GLn(F ) be a representation with associated
FG-module V . Then the dual right FG-module V ∗, with associated represen-
tation ρ∗, is defined by

v(f(gρ∗)) := (v(g−1ρ))f
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for v ∈ V , g ∈ G and f ∈ V ∗. When there is no possibility for confusion, we
shall suppress the representations and write simply

v(fg) = (vg−1)f.

We shall make frequent use of the following well-known result.

Proposition 1.8.3 Let ρ : G→ GLn(F ) be a representation with associated
FG-module V . Then gρ∗ = (gρ)−T, with respect to the dual basis of the natural
basis of V .

Proof This follows from Definition 1.8.2, and the fact that matrices are trans-
posed in their action on the dual space under the opposite algebra.

1.8.2 Actions of group and field automorphisms on
representations

Let ρ : G → GLn(q) be a representation of G. For α ∈ AutG, we define the
representation αρ : G → GLn(q) by g(αρ) = (gα)ρ for g ∈ G. (So ρ and αρ

have the same image.) If α ∈ InnG then αρ is equivalent to ρ, so the action of
AutG on the representations of G induces a left action of OutG on the set of
equivalence classes of representations of G.

Definition 1.8.4 Two representations ρ, ρ′ : G → GLn(F ) are said to be
quasi-equivalent if there exists α ∈ AutG such that αρ is equivalent to ρ′.

Analogously, for an automorphism θ of GLn(q) (or, more generally, for an
automorphism θ of a classical group containing Im(ρ)), we define ρθ : G →
GLn(q) by g(ρθ) = (gρ)θ. This induces a right action of Out GLn(q) on the
set of equivalence classes of representations of G. We are primarily concerned
with the cases when θ is the duality (inverse-transpose) automorphism or a
field automorphism φ of GLn(q) (or of a classical group containing Im(ρ)).

Definition 1.8.5 Let ρ be a representation of G, with Im ρ a subgroup of
a classical group C. Let α ∈ AutG and let θ ∈ AutC. We say that α or θ
stabilises ρ if αρ or ρθ is equivalent to ρ.

Lemma 1.8.6 Let ρ, ρ′ : G→ GLn(F ) be faithful and let α ∈ AutG. Then:

(i) ρ and ρ′ are quasi-equivalent if and only if they have conjugate images in
GLn(F ).

(ii) α stabilises ρ if and only if there exists g ∈ GLn(F ) that normalises, and
induces α on, Im(ρ).
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Proof (i) Suppose that ρ and ρ′ are quasi-equivalent, and hence ρ′ and θρ

are equivalent for some θ ∈ AutG. Then Im(ρ′) is conjugate in GLn(F ) to
Im(θρ) = Im(ρ).

Conversely, suppose that x−1 Im(ρ′)x = Im(ρ) with x ∈ GLn(F ). Since ρ is
faithful, it has an inverse on its image. Then the map μ : G → G defined by
gμ = (x−1(gρ′)x)ρ−1 lies in AutG, so ρ′ is equivalent to μρ.
(ii) The map α stabilises ρ if and only if there exists x ∈ GLn(F ) with
x−1(gρ)x = (gα)ρ, which says that x normalises and induces α on Im(ρ).

We shall apply the same terminology to the associated FG-modules of rep-
resentations. So we have induced a left action of OutG and a right action of
Out GLn(F ) on the isomorphism classes of FG-modules of dimension n over
F , and we can talk of an automorphism stabilising a module as well as a rep-
resentation.

1.8.3 Representations that preserve forms

Recall Definition 1.5.4 of the isometry and similarity groups of forms. Recall
also Definition 1.4.4 of a perfect field.

Definition 1.8.7 Let G be a subgroup of GLn(F ), and let β be a non-
degenerate symplectic, unitary, orthogonal or quadratic form. We say that G
preserves β up to scalars if G is a subgroup of the similarity group of β, and
that G preserves β (or preserves β absolutely, for emphasis) if G is a subgroup
of the isometry group of β.

Lemma 1.8.8 Let F be a field, and let G be an absolutely irreducible subgroup
of GLn(F ).

(i) If G preserves a non-degenerate quadratic, bilinear or σ-Hermitian form
up to scalars, and G is perfect, then G preserves that form absolutely.

(ii) Up to multiplication of the form by a scalar, G preserves at most one
bilinear form, at most one σ-Hermitian form for a given σ, at most one
quadratic form when charF is not 2, and at most one quadratic form when
F is perfect.

(iii) If F = Fq is finite, and G simultaneously preserves a σ-Hermitian and
a bilinear form, then G is conjugate to a subgroup of GLn(q0) for some
proper subfield Fq0 of Fq.

Proof (i) If g ∈ G scales a given form by λg ∈ F×, the multiplicative group
of F , then the map g �→ λg is a homomorphism from G into F×, so G perfect
implies that λg = 1 for all g.
(ii) Let B1, B2 be the matrices of two bilinear or two σ-Hermitian forms of
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which G is a group of isometries, as in Definition 1.5.16. Since G is absolutely
irreducible, each form is non-degenerate, so by Proposition 1.5.25 each Bi has
non-zero determinant. Then B1B

−1
2 is a matrix commuting with G, whence by

Schur’s lemma it is a scalar, as G is absolutely irreducible.
Let Q1, Q2 be two quadratic forms of which G is a group of isometries:

as before, since G is absolutely irreducible each form is non-degenerate. By
Proposition 1.5.15, quadratic forms correspond to symmetric bilinear forms
when charF �= 2, so we may assume that charF = 2. By the preceding para-
graph, the bilinear forms associated with Q1 and Q2 differ by a scalar multiple,
and hence, for some scalar λ, the quadratic form Q := Q1 + λQ2 satisfies
Q(v1 +v2) = Q(v1)+Q(v2) for all vectors v1, v2. Let v1, v2 be linearly indepen-
dent vectors (the result is trivially true for n = 1). If Q(v1) �= 0 then, since F is
assumed perfect, all of its elements have square roots, and we can multiply v1
by a scalar to get Q(v1) = 1. Similarly, if Q(v2) �= 0 we may assume Q(v2) = 1
and then Q(v1 + v2) = 0. So in any case there exists a non-zero vector v with
Q(v) = 0. But the set of all vectors with Q(v) = 0 is a G-invariant subspace,
so f = 0, which completes the proof of (ii).
(iii) Suppose that G preserves both a non-degenerate bilinear form with ma-
trix B1 and a non-degenerate σ-Hermitian form with matrix B2. Then B2 is
invertible, and so the associated representation ρ is equivalent under B1B

−1
2 to

ρσ, where σ is the involutory automorphism of Fq. Then, by Corollary 1.8.14,
G can be written over a proper subfield of Fq.

Lemma 1.8.9 Let G � GLn(F ) be an absolutely irreducible group consisting
of isometries of a non-degenerate quadratic, bilinear or σ-Hermitian form β. If
β is quadratic and charF = 2, assume also that F is perfect. Then NGLn(F )(G)
consists of similarities of β.

Proof Let B be the matrix of β, as in Definition 1.5.16 or 1.5.17. If h ∈
NGLn(F )(G) then G = Gh is a group of isometries of hBhσT (or (hBhT)UT for
a quadratic form), which must be a scalar multiple of B by Lemma 1.8.8 (ii),
so h is a similarity of B.

Recall the definitions of the classical groups from Subsection 1.6.2.

Lemma 1.8.10 (i) Let G and H be two absolutely irreducible subgroups of
GUn(q) that are conjugate in GLn(q2). Then G and H are conjugate in
GUn(q).

(ii) Let G and H be two absolutely irreducible subgroups of Spn(q) or GOε
n(q)

that are conjugate in GLn(q). Then G and H are conjugate in CSpn(q)
or CGOε

n(q), respectively.

Proof (i) Let σ : x �→ xq be the involutory field automorphism of Fq2 . Let B
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be the matrix of the non-degenerate σ-Hermitian form for which G is a group
of isometries and suppose that a−1Ga = H with a ∈ GLn(q2). Then H is a
group of isometries of aBaσT and thus, by Lemma 1.8.8 (ii), aBaσT = λB for
some λ ∈ Fq2 . In fact, by Lemma 1.5.20 the matrix aBaσT is σ-Hermitian, so
λ ∈ Fq. Therefore a ∈ CGUn(q). But CGUn(q) = 〈Z,GUn(q)〉 where Z is the
group of scalars of GLn(q2), and so conjugacy in GUn(q) follows.
(ii) Let B be a matrix of a non-degenerate symmetric or anti-symmetric bilinear
form for which G and H are groups of isometries, so that B is unique up to
multiplication by non-zero scalars. Now H = aGa−1 for some a ∈ GLn(q). So
H is a group of isometries of aBaT and thus aBaT = λB for some λ ∈ Fq.
Therefore a ∈ CSpn(q) (respectively CGOε

n(q)).

1.8.4 Other results

The following result is well-known, but we could not find a convenient reference.

Lemma 1.8.11 Let V be a G-module, and suppose that V decomposes as a
direct sum V = V1 ⊕ · · · ⊕ Vt of irreducible G-submodules. Assume further that
the Vi are pairwise nonisomorphic. Then the Vi are the only non-zero irreducible
G-submodules of V .

Proof If t = 1 then V is irreducible and the result is clear, so let Ui = ⊕j �=iVj

and let W be an irreducible G-submodule of V .
If W �� Ui for some i, then since V/Ui

∼= Vi is irreducible it follows that
〈Ui,W 〉 = V . Also, W ∩ Ui is a G-submodule of W , so W ∩ Ui = {0}. Thus
W ∼= V/Ui

∼= Vi. Thus if W �∼= Vi for all i then W ≤ Ui for all i, so W � ∩iUi =
{0}, a contradiction.

So W ∼= Vi for some i. If W ∩ Vi = {0}, then W is isomorphic to an
irreducible submodule of V/Vi

∼= Ui, which is a contradiction, because by hy-
pothesis none of the summands of Ui are isomorphic to Vi. So W = Vi.

Proposition 1.8.12 ([19, Theorem 29.7]) Let F � E be fields and ρ, ρ′ :
G → GLn(F ) be representations. If ρ and ρ′ are equivalent as representations
over E, then they are equivalent over F .

Proposition 1.8.13 ([20, Theorem 74.9]) Let ρ : G → GLn(E) be an ab-
solutely irreducible representation of G, where charE = p > 0. Let F =
〈Fp, tr(gρ) : g ∈ G 〉 � E be the field of traces. Then ρ is equivalent (over
E) to a representation with image in GLn(F ).

Corollary 1.8.14 Let ρ and E be as in Proposition 1.8.13. If ρ is equivalent
to ρφ for an automorphism φ of F , then ρ is equivalent to a representation with
image in GLn(K), where K is the fixed field of φ.
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Proof Since tr(gρφ) = (tr(gρ))φ, this follows from Proposition 1.8.13.

1.9 Tensor products

In this section we collect some elementary properties of tensor products of linear
maps, matrices, modules and groups. Throughout the section, let V1 and V2 be
vector spaces over a field F .

Let τi : Vi → Vi (i = 1, 2) be linear maps. Then the linear map τ1 ⊗ τ2 :
V1 ⊗ V2 → V1 ⊗ V2 is defined by putting (v1 ⊗ v2)(τ1 ⊗ τ2) = v1τ1 ⊗ v2τ2 and
extending additively. If the τi are both σ-semilinear maps (Definition 1.6.1) for
the same σ, then the same definition yields a well-defined σ-semilinear map
τ1 ⊗ τ2.

A semilinear map τ1 ⊗ τ2 defined in this way preserves the tensor decom-
position V1 ⊗ V2. If dimV1 = dimV2, and τ1 : V1 → V2, τ2 : V2 → V1 are
σ-semilinear maps, then we can also define a σ-semilinear map on V1 ⊗ V2 by
v1⊗ v2 �→ v2τ2⊗ v1τ1, and such a map interchanges the tensor factors. We can
extend this in the obvious way to define σ-semilinear maps on the n-th tensor
power V ⊗n that permute the tensor factors.

Definition 1.9.1 Given two matrices A = (αij)a×b and B = (βij)c×d over a
common field, their Kronecker product A⊗B is an ac× bd block matrix, with
blocks of size c× d, where the (k, l)th block (for 1 � k � a, 1 � l � b) is αklB.

For i = 1, 2, let (vi1, . . . , vidi
) be bases of Vi, and let τi be linear maps on Vi

with corresponding matrices Ai. Then the matrix of τ1⊗ τ2 with respect to the
basis (v11 ⊗ v21, v11 ⊗ v22, . . . , v11 ⊗ v2d2 , v12 ⊗ v21, . . . , v1d1 ⊗ v2d2) of V1 ⊗ V2

is A1 ⊗A2. The following result is standard, and is left as an exercise.

Proposition 1.9.2 Let A1, A2 and A3 be matrices over a common field F ,
and let σ ∈ AutF . Then (A1⊗A2)⊗A3 = A1⊗(A2⊗A3), (A1⊗A2)T = AT

1⊗AT
2 ,

and (A1 ⊗A2)σ = Aσ
1 ⊗Aσ

2 .
For i = 1, 2, if Ai and Ci are square matrices of degrees di, then

(A1⊗A2)(C1⊗C2) = (A1C1⊗A2C2) and det(A1⊗A2) = (detA1)d2(detA2)d1 .

Assume in addition that V1 and V2 are (finite-dimensional) FG-modules,
corresponding to representations ρ1 and ρ2. The tensor product ρ1 ⊗ ρ2 acting
on V1 ⊗ V2 is defined by g(ρ1 ⊗ ρ2) = gρ1 ⊗ gρ2. The next result follows from
Proposition 1.9.2 and the fact that the identity maps on V1 and V2 induce an
FG-isomorphism V1 ⊗ V2 → V2 ⊗ V1 by interchanging the tensor factors, and
will be used implicitly in Chapter 5.

Lemma 1.9.3 Let V1 and V2 be FG-modules. Then, as FG-modules,
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(i) (V1 ⊗ V2)σ ∼= V σ
1 ⊗ V σ

2 for any field automorphism σ of F ;
(ii) (V1 ⊗ V2)∗ ∼= V ∗

1 ⊗ V ∗
2 , where V ∗ denotes the dual module of V ;

(iii) V1 ⊗ V2
∼= V2 ⊗ V1.

Proposition 1.9.4 For i = 1, 2, suppose that the action of G on Vi preserves
a bilinear form βi with matrix Bi. Then:

(i) G preserves a bilinear form with matrix B1 ⊗ B2 on V1 ⊗ V2. Moreover
B1⊗B2 is non-singular if and only if both B1 and B2 are. Abstractly, the
form with matrix B1⊗B2 is β1⊗β2 defined by (β1⊗β2)(u1⊗v1, u2⊗v2) =
β1(u1, u2)β2(v1, v2) and extended F -bilinearly.

(ii) If B1 and B2 are both symmetric or both anti-symmetric then B1 ⊗ B2

is symmetric, and if one of B1 and B2 is symmetric and the other anti-
symmetric then B1 ⊗B2 is anti-symmetric.

(iii) If charF = 2 and the forms are alternating, then B1 ⊗ B2 is also alter-
nating, and G preserves a quadratic form Q such that Q(u ⊗ v) = 0 for
all u ∈ V1 and v ∈ V2. If, in addition, F is finite and β1 and β2 are
non-degenerate, then Q is of plus type.

Proof All of these assertions except for those pertaining to Q follow directly
from Proposition 1.9.2. So assume that charF = 2 and the βi are alternating
forms. We define a quadratic form Q on V1 ⊗ V2 with polar form β = β1 ⊗ β2

by specifying that Q(ei ⊗ fj) = 0 for all i and j, where (e1, . . . , en) is a basis
for V1 and (f1, . . . , fm) is a basis for V2. For all λi, μj ∈ F , vectors u, ui ∈ V1

and v, vj ∈ V2 we have:

Q((
∑r

i=1 λiui)⊗ v) = Q(
∑r

i=1 λi(ui ⊗ v))

=
∑r

i=1 λ
2
iQ(ui ⊗ v) +

∑
1�i<j�r λiλjβ1(ui, uj)β2(v, v)

=
∑r

i=1 λ
2
iQ(ui ⊗ v).

Similarly,

Q(u⊗ (
s∑

j=1

μjvj)) =
r∑

j=1

μ2
jQ(u⊗ vj).

Combining all of the above gives Q(u ⊗ v) = 0 for all u ∈ V1 and v ∈ V2. So
Q((ei ⊗ fj).g) = Q(ei.g ⊗ fj .g) = 0 = Q(ei ⊗ fj) for all g ∈ G and for all i, j.
Therefore G preserves the quadratic form Q.

If the βi are non-degenerate, then V1 has a maximal totally singular sub-
space W1 of dimension (dimV1)/2 under β1. Then β1 and Q are both identically
zero on W1×V2, so Q is of plus type when F is finite, by Proposition 1.5.42.

It is possible that V1 ⊗ V2 is isomorphic as FG-module to an F0G-module,
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for a proper subfield F0 of F . In characteristic 2 we can make no assertions
about the type of the corresponding quadratic form in such cases.

The following result is a consequence of Proposition 1.9.2.

Proposition 1.9.5 If G is a group of isometries of sesquilinear forms on V1

and V2 with corresponding form matrices B1 and B2 then G is also a group
of isometries of the sesquilinear form with matrix B1 ⊗ B2 on V1 ⊗ V2, and
B1 ⊗B2 is non-degenerate if and only if B1 and B2 are.

Propositions 1.9.4 and 1.9.5 extend in an obvious way to tensor products
with more than two tensor factors.

Definition 1.9.6 For i = 1, . . . , k, with k � 2, if G preserves forms βi on
modules Vi which are either all bilinear or all sesquilinear, then we call the form
β1 ⊗ · · · ⊗ βk the induced form.

Definition 1.9.7 Let G � GLn1(F ) and H � GLn2(F ). Then we define
G⊗H = {g ⊗ h | g ∈ G, h ∈ H} � GLn1n2(F ).

It follows from Proposition 1.9.2 that this operation is associative. If G =
〈X〉 and H = 〈Y 〉, then G⊗H = 〈{x⊗ 1 : x ∈ X} ∪ {1⊗ y : y ∈ Y }〉.

For i = 1, 2, define representations ρi : G ×H → GLni
(F ) by (g, h)ρ1 = g

and (g, h)ρ2 = h. Then G⊗H = Im(ρ1 ⊗ ρ2).

Proposition 1.9.8 Let G and H be matrix groups over the same field. Then

G⊗H ∼= G×H

{(λIn1 , λ
−1In2) : λIn1 ∈ G, λ−1In2 ∈ H}

.

Proof Note that (g, h)(ρ1 ⊗ ρ2) = g ⊗ h = 1 = In1n2 if and only if g = λIn1

and h = λ−1In2 for some 0 �= λ ∈ F .

1.10 Small dimensions and exceptional isomorphisms

The results in this section are all standard. We have taken them from [66,
Proposition 2.9.1], but more information is available in [108]. The given iso-
morphisms will be used without further reference.

Proposition 1.10.1 Let C be the following collection of groups: Ln(q) with
n � 2, Un(q) with n � 2, Sn(q) with n � 2, Oε

n(q) with n � 3 and q odd if n is
odd. Then the following is a complete list of the isomorphisms between pairs of
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elements of C.
L2(q) ∼= S2(q) ∼= U2(q) ∼= O3(q),

O+
4 (q) ∼= L2(q)× L2(q), O−

4 (q) ∼= L2(q2),

O5(q) ∼= S4(q), O+
6 (q) ∼= L4(q), O−

6 (q) ∼= U4(q),

L2(4) ∼= L2(5), L2(7) ∼= L3(2), S4(3) ∼= U4(2).

Proposition 1.10.2 The only alternating or symmetric groups that are iso-
morphic to almost simple classical groups are A5, A6, A8 and S6, and

L2(4) ∼= L2(5) ∼= A5, L2(9) ∼= A6, L4(2) ∼= A8, S4(2) ∼= S6.

Proposition 1.10.3 Let G be one of Ln(q), Un(q), Sn(q) or Oε
n(q), with

n � 2, and q odd when G is O◦
n(q).

(i) If G is soluble, then G is isomorphic to one of the following:

L2(2) ∼= S3, L2(3) ∼= A4, U3(2) ∼= 32 :Q8,

O+
2 (q) ∼= (q − 1)/(2, q − 1), O+

4 (2) ∼= S3 × S3, O+
4 (3) ∼= A4 ×A4,

O−
2 (q) ∼= (q + 1)/(2, q − 1).

(ii) If G is not simple and not soluble, then G is isomorphic to O+
4 (q) for

q � 4, or to S4(2).
(iii) If G is simple, then the corresponding group SLn(q), SUn(q), Spn(q) or

Ωε
n(q) is quasisimple.

Isomorphisms between the almost simple exceptional groups will be dis-
cussed in Section 4.1 and Chapter 7.

1.11 Representations of simple groups

In this section we collect some results about representations of simple groups as
permutation and matrix groups, and about the classical groups in their natural
representation.

Definition 1.11.1 For an arbitrary finite group G, let

P (G) = min{n : G has a non-trivial permutation representation of degree n },
noting that if G is simple then this is the same as the minimum degree of a
faithful permutation representation. Let Fp be the algebraic closure of Fp for a
prime p,

Rp(G) = min{n : G is isomorphic to a subgroup of PGLn(Fp) },
R(G) = min{Rp(G) : all primes p }.
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Table 1.4 Simple classical groups with low degree projective representations
S Rp(S)

O±
6 (pe) 4

O5(p
e), p odd 4

O−
4 (pe) 2

O3(p
e), p odd 2

S4(2)′ 3

We now present a series of results giving values of these functions on various
simple groups S.

Theorem 1.11.2 Let S be a non-abelian simple group with P (S) � 12. Then
either S is an alternating group in its natural action, or S has a primitive
action on n points as given below:

n 6 7 8 9 10 11 12

S A5 L2(7) L2(7) L2(8) A5,A6 L2(11),M11 L2(11),M11,M12

Proof We consult Sims’s classification [102] of primitive permutation groups
of degree at most 20 to get the result.

Proposition 1.11.3 ([66, Proposition 5.3.3]) Let G be quasisimple. Then
Rp(G) � Rp(G/Z(G)) for all primes p.

Lemma 1.11.4 ([66, Lemma 5.5.3]) Let G be a finite perfect group with a
unique minimal normal subgroup N . If N ∼= Ept with t � 2, and p′ is a prime
other than p, then Rp′(G) � min{P (G/N), pt/2}.

For a recent reference for the following result, see for instance [84]. It roughly
states that the lowest degree representation in defining characteristic is the
natural representation – all exceptions in Table 1.4 are due to isomorphisms.

Theorem 1.11.5 Let S be a non-abelian simple classical group in dimension
d over Fpe Then Rp(S) = d except for the groups occurring in Table 1.4.

Proposition 1.11.6 ([66, Proposition 5.3.7]) If 5 � n � 8 then Rp(An) is as
given in Table 1.5. If n � 9 then R(An) = n− 2.

Theorem 1.11.7 ([75]) Let S be a simple linear, symplectic or unitary group
defined over Fpe , and let p′ be a prime other than p. Then Rp′(S) � e(S), where
e(S) is as in Table 1.6. In particular, if S is a simple non-orthogonal classical
group in dimension d and d � 9 then Rp′(S) > d2.



48 Introduction

Table 1.5 Values of Rp(An) for 5 � n � 8

n R2(An) R3(An) R5(An) Rp(An), p � 7

5 2 2 2 2

6 3 2 3 3

7 4 4 3 4

8 4 7 7 7

Table 1.6 Selected values of e(S)

L2(4), L2(9) 2, 3

L2(q) otherwise (q − 1)/(2, q − 1)

L3(2), L3(4) 2, 4

Ln(q), n � 3 otherwise qn−1 − 1

S4(2)′, S6(2) 2, 7

S2m(q), q odd, otherwise (qm − 1)/2

S2m(q), q even, otherwise qm−1(qm−1 − 1)(q − 1)/2

U4(2), U4(3) 4, 6

Un(q), n odd q(qn−1 − 1)/(q + 1)

Un(q), n even, otherwise (qn − 1)/(q + 1)

The preceding results can easily be generalised to direct products of simple
classical groups using the following lemma.

Lemma 1.11.8 ([66, Proposition 5.5.7]) Let S1, . . . , St be non-abelian simple
groups, let G = S1 × · · · × St, let p be a prime, and let ni = Rp(Si). Then
Rp(G) �

∑t
i=1 ni.

1.12 The natural representations of the classical groups

In this section we collect some basic results concerning the natural representa-
tions of the classical groups.

Lemma 1.12.1 The group Sp2(q) is equal to SL2(q).

Proof Use Lemma 1.5.21 and Table 1.1 to see that any 2× 2 matrix of deter-
minant 1 is an isometry of our standard symplectic form. Therefore SL2(q) �
Sp2(q), and hence these two groups are equal.

Proposition 1.12.2 (i) The groups SLn(q), SUn(q) and Spn(q) are abso-
lutely irreducible on Fn

qu for all n and q, where u = 2 for SUn(q) and u = 1
otherwise.
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(ii) The group Ωε
n(q) is absolutely irreducible on Fn

q if and only if n > 2.
The group SOε

n(q) is absolutely irreducible on Fn
q if and only if one of the

following holds:

(a) n > 2;
(b) n = 2, ε = − and q is even;
(c) n = 2, ε = +, q is even and q > 2.

The group GOε
n(q) is absolutely irreducible if and only if (n, q, ε) �∈

{(2, 2,+), (2, 3,+)}.
(iii) The group Sp4(2)′ is absolutely irreducible on F4

2.

Proof Part (i) in all dimensions, Part (ii) in dimension at least 5, and Part (iii)
follow from Theorem 1.11.5 since a non-absolutely irreducible representation
would give rise to a representation of degree properly dividing n in the same
characteristic. For the low-dimensional orthogonal groups see for instance [66,
Proposition 2.10.6]: this reference is incorrect regarding SO+

2 (2).

In the next lemma we study the 4-dimensional orthogonal groups. Recall the
definitions of the automorphisms of O±

n (q) from Subsection 1.7.1: in dimension
4 the outer automorphisms φ, δ and δ′ have the same interpretation as there.
Also, recall the isomorphisms given in Proposition 1.10.1, and that ω denotes
a primitive element of F×

q .

Lemma 1.12.3 (i) The natural module for Ω+
4 (q) is isomorphic to the ten-

sor product of two copies of the natural module for SL2(q), one for each
direct factor of the preimage group SL2(q) × SL2(q). Let the subgroup
S of PCΓO+

4 (q)/O+
4 (q) be 〈φ〉 if q is even, and 〈δ′, δ, φ〉 if q is odd. If

O+
4 (q) � G � O+

4 (q).S then G preserves the tensor product, whilst if
G � PCΓO+

4 (q) but G � O+
4 (q).S then G interchanges the two factors of

the tensor product.
(ii) The natural module for Ω−

4 (q) is isomorphic to the tensor product of a
copy of the natural module M for SL2(q2) and the image of M under the
automorphism σ : x �→ xq of Fq2 .

Proof (i) Let W = F2
q, and consider SL2(q) acting naturally on W . Then,

by Lemma 1.12.1, the module W admits a non-degenerate symplectic form f .
The tensor product representation of SL2(q) × SL2(q) on W ⊗W has image
isomorphic to SL2(q)⊗ SL2(q), as in Definition 1.9.7, which is isomorphic to a
central product of the two copies of SL2(q), by Proposition 1.9.8. By Proposi-
tion 1.9.4, SL2(q)× SL2(q) is a group of isometries of a bilinear form β when q
is odd, and a quadratic form Q of plus type when q is even. In fact the matrix
of β is antidiag(1,−1,−1, 1), so by Proposition 1.5.42 the form β is also of
plus type when q is odd. Hence SL2(q) ⊗ SL2(q) � GO+

4 (q). If q > 2 then the
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smallest normal subgroup of SL2(q) with a quotient of 2-power order is SL2(q)
itself. Thus SL2(q) ⊗ SL2(q) is a subgroup of Ω+

4 (q), and hence by Proposi-
tion 1.10.1 is equal to Ω+

4 (q). The result can be checked by direct calculation
using Lemma 1.6.12 when q = 2.

The permutation matrix corresponding to (2, 3) is an isometry of Q over Fq

which interchanges the two tensor factors, and hence lies in GO+
4 (q) \ SO+

4 (q)
when q is odd, and in GO+

4 (q)\Ω+
4 (q) when q is even. The field automorphism φ

acting as a φ-semilinear map on both copies ofW induces a φ-semilinear map on
W⊗W , which preserves the tensor factors, and acts as the field automorphism φ

on both of the SL2(q) factors. So, if q is even, then there is a non-trivial action τ :
ΓO+

4 (q) = 〈SO+
4 (q), φ〉 → S2 on the two tensor factors with ker τ = 〈Ω+

4 (q), φ〉.
If q is odd, then the outer automorphism δ = diag(ω, ω, 1, 1) preserves the two
tensor factors, and, since CΓO+

4 (q) is generated by Ω+
4 (q) together with δ, φ

and the automorphism induced by the permutation matrix corresponding to
(1, 2), there is an action τ : CΓO+

4 (q) → S2 with ker τ = 〈Ω+
4 (q), δ′, δ, φ〉.

(ii) See [108, pp199–201], where explicit isomorphisms are constructed.

Lemma 1.12.4 Let q be odd, and let n � 4 be even. Then our standard copy
of Spn(q) contains no GLn(q)-conjugate of our standard copy of Ω±

n (q).

Proof Since, by Proposition 1.12.2, Ω±
n (q) is absolutely irreducible on Fn

q , it
follows from Lemma 1.8.8 (ii) that it cannot preserve both a symmetric bilinear
and an anti-symmetric bilinear form, and the result follows.

Lemma 1.12.5 Let q be odd, and let n � 4 be even. The no GLn(qr)-
conjugate of our standard copy of Spn(q) is contained in the standard copy
of Ω+

n (qr) for any r.

Proof The proof of this is almost identical to that of Lemma 1.12.4

We now prove some results on the traces of elements of classical groups in
their natural representation.

Lemma 1.12.6 (i) Let g ∈ Spn(q) or GOε
n(q). Then tr(g−1) = tr(g).

(ii) Let g ∈ GUn(q). Then tr(g−1) = tr(g)σ where σ is the automorphism
x �→ xq of Fq2 .

Proof (i) LetA be the matrix of our standard alternating or symmetric bilinear
form, or the polar form of our standard quadratic form, as in Table 1.1. Then
gAgT = A by Lemmas 1.5.21 and 1.5.23, so gA = A−1gA = g−T. Transposition
and conjugation preserve traces, so the result follows.
(ii) Let A be the matrix of our standard σ-Hermitian form. Then gAgσT = A,
so gA = A−1gA = g−σT and tr(g−σT) = tr(g−1)σ.
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Proposition 1.12.7 (i) Let G be SLn(q) with n � 2, Spn(q) with n � 2,
or Ωε

n(q) with n � 4. Then, for any α ∈ Fq, there exists g ∈ G with
tr(g) = α.

(ii) Let G be SUn(q) with n � 3. Then, for any α ∈ Fq2 , there exists g ∈ G

with tr(g) = α.

Proof (i) By considering natural embeddings SLn(q) < SLn+1(q), Spn(q) <
Spn+2(q), Ω+

n (q) < Ωn+1(q) and Ω±
n (q) < Ω±

n+2(q), it can be seen that we
only need to prove this result for the smallest value of n in each case. For

SL2(q) = Sp2(q), choose g =

(
α 1

−1 0

)
.

By Lemma 1.12.3 the natural module for Ω+
4 (q) is isomorphic to the tensor

product of the natural module for two copies of SL2(q). The trace of the Kro-
necker product of two matrices is equal to the product of their traces, so we
can choose

g =

(
α 1

−1 0

)
⊗
(

1 1

−1 0

)
.

By Lemma 1.12.3 the natural module for Ω−
4 (q) ∼= L2(q2) is isomorphic over

Fq2 to M ⊗Mσ, where M is the natural module for SL2(q2), and σ : x �→ xq is
an automorphism of Fq2 . So, for an element of SL2(q2) of trace β, the trace of
the corresponding element of Ω−

4 (q) is β1+q. A counting argument, and the fact
that F×

q is cyclic, shows that for all α ∈ Fq there exists β ∈ Fq2 with β1+q = α.
(ii) Again we only need to prove this for the smallest value of n, that is n = 3.
We consider a matrix of the form

g =

⎛⎜⎜⎝
α 0 β

γ 0 α

0 δ 0

⎞⎟⎟⎠ .
For g to have determinant 1, we require (βγ − α2)δ = 1, and for g to be an
isometry of the unitary form I3, we require αq+1 + βq+1 = αq+1 + γq+1 = 1,
αγq + αqβ = 0, and δq+1 = 1. Let α ∈ Fq2 be given. If α = 0, then choose
β = γ = δ = 1 to get g ∈ SU3(q) with trace α.

Otherwise, 1 − αq+1 ∈ Fq, so we can find γ ∈ Fq2 with αq+1 + γq+1 = 1,
and then we choose β = −γq/αq−1 to get αγq + αqβ = 0. Then βq = −αq−1γ,
so β1+q = γ1+q, and hence αq+1 + βq+1 = 1. Therefore

(βγ − α2)(βγ − α2)q = β1+qγ1+q + α2+2q − α2βqγq − α2qβγ =

β2+2q + α2+2q + 2α1+qβ1+q = (α1+q + β1+q)2 = 1.

Let δ = (βγ−α2)−1, then δ1+q = δ−1−q = 1, so g ∈ SU3(q) and tr(g) = α.
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Lemma 1.12.8 Let q be odd. Then the set of traces of elements of Ω3(q) does
not lie in any proper subfield of Fq.

Proof The group Ω3(q) is the symmetric square representation of SL2(q),
acting on the basis (v1 ⊗ v1, 1/2(v1 ⊗ v2 + v2 ⊗ v1), v2 ⊗ v2) (see Proposi-
tion 5.3.6 for more details). If λ ∈ F×

q , then SL2(q) contains diag(λ, λ−1). With
respect to the above basis this corresponds in Ω3(q) to diag(λ2, 1, λ−2), of trace
μ := λ2 + λ−2 + 1.

Since the equation for μ is of degree 4, each possible trace μ can be produced
by at most 4 non-zero elements λ. Thus μ can take at least �(q − 1)/4� values.
If q �= 9 then �(q − 1)/4� is greater than any proper factor of q, and we are
done. Let ω be a primitive element of F×

9 . Then the symmetric square of(
ω 1

2 0

)
∈ SL2(9)

has trace ω2 + 2, which does not lie in F3.

1.13 Some results from number theory

In this section we collect some facts about Zsigmondy primes, an identity con-
cerning least common multiples, and an introduction to quadratic reciprocity.

Theorem 1.13.1 (Zsigmondy [118]) Let q � 2 be a prime power and n � 3,
with (q, n) �= (2, 6). Then there exists at least one prime qn such that qn divides
qn − 1 but does not divide qi − 1 for i < n.

Definition 1.13.2 We call such primes qn Zsigmondy primes, and denote a
Zsigmondy prime for qn − 1 by zq,n.

Lemma 1.13.3 (i) Let q � 2 be a prime power and n � 3. Then qn + 1 is
divisible by zq,2n if and only if (q, n) �= (2, 3).

(ii) If zq,n divides qm − 1 then n divides m.
(iii) The prime zq,n ≡ 1 (mod n), so in particular, qn > n.

The following result is an immediate corollary of Theorem 1.6.22, and will
be used frequently when discussing groups in Aschbacher’s Class C3. Of course
p is assumed to be prime throughout.

Proposition 1.13.4 (i) Let q = pe with e > 1 and (p, e) �= (2, 3). Then
zp,2e divides |SL2(q)|, and if zp,i divides |SL2(q)| then i � 2e.

(ii) Let n � 3, and assume that (q, n) �= (2, 6). Then zq,n divides |SLn(q)|,
and if zq,i divides |SLn(q)| then i � n.
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(iii) Let n � 3 be odd, and assume that (q, n) �= (2, 3). Then zq,2n divides
|SUn(q)|, and if zq,i divides |SUn(q)| then i ∈ {2n, 2n− 4} or i � 2n− 6.

(iv) Let n � 4 be even, and assume that (q, n) �= (2, 4). Then zq,2n−2 and zq,n

divide |SUn(q)|, and if zq,i divides |SUn(q)| then i ∈ {2n−2, 2n−6, n, n−2}
or i � 2n− 10.

(v) Let n � 4 be even, and assume that (q, n) �= (2, 6). Then zq,n divides
|Spn(q)|, and if zq,i divides |Spn(q)| then i ∈ {n, n− 2, . . . , 2} or i � n/2.

(vi) Let n � 5 be odd, and let q be odd. Then zq,n−1 divides |Ω◦
n(q)|, and if zq,i

divides |Ω◦
n(q)| then i ∈ {n− 1, n− 3, . . . , 2} or i � (n− 1)/2.

(vii) Let n � 6 be even, and assume that (q, n) �= (2, 8). Then zq,n−2 divides
|Ω+

n (q)|, and if zq,i divides |Ω+
n (q)| then i ∈ {2, 4, . . . , n− 2} or i � n/2.

(viii) Let n � 4 be even, and assume that (q, n) �= (2, 6). Then zq,n divides
|Ω−

n (q)|, and if zq,i divides |Ω−
n (q)| then i ∈ {2, 4, . . . , n} or i � n/2.

In the following lemma we derive simpler expressions for the number of
conjugacy classes of subfield and unitary groups in SLn(q) than those given in
[66, Table 3.5.A]. Let (a)p denote the highest power of the prime p dividing a.
Recall that we write (a, b) for the greatest common divisor of positive integers
a and b, and [a, b] for their least common multiple.

Lemma 1.13.5 Let q = pe be a prime power, let f be a divisor of e, let
q0 = pf and let n > 1 be a positive integer. Then

(i)

q − 1
[q0 − 1, (q − 1)/(q − 1, n)]

=
(
q − 1
q0 − 1

, n

)
.

(ii)

q + 1
[q0 + 1, (q + 1)/(q + 1, n)]

=
(
q + 1
q0 + 1

, n

)
.

(iii) If e is even then

q − 1
[qe/2 + 1, (q − 1)/(q − 1, n)]

= (qe/2 − 1, n).

Proof (i) Let r be a prime dividing q − 1, and let a = (q − 1)r, b = (q0 − 1)r

and c = (n)r. Now a � b, since (q0 − 1) | (q − 1). Also (q − 1, n)r = min{a, c},
so

((q − 1)/(q − 1, n))r = a−min{a, c} = max{a− c, 0}.
Thus

([q0 − 1, (q − 1)/(q − 1, n)])r = max{b,max{a− c, 0}} = max{b, a− c}.
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Hence we conclude that

((q − 1)/[q0 − 1, (q − 1)/(q − 1, n)])r = a−max{b, a− c} = min{a− b, c}.
Conversely, ((q−1)/(q0−1))r = a− b, so ((q−1)/(q0−1), n)r = min{a− b, c}.
The proofs of (ii) and (iii) are similar.

When determining minimal fields of representations, we will frequently need
to determine for which finite fields certain integers are squares. To do so, we
use the law of quadratic reciprocity.

Definition 1.13.6 Let m ∈ Z and p ∈ N, such that p is prime. The Legendre
symbol

(
m
p

)
takes value 0 if p | m, value 1 if m mod p is a square in F×

p , and

value −1 if m mod p is a non-square in F×
p .

Part (ii) of the following is proved in [74, p78]. The other parts are straight-
forward, and their proofs are left as an exercise.

Proposition 1.13.7 Let p ∈ N be an odd prime.

(i) If p ≡ 1 mod 4 then
(

−1
p

)
= 1, and if p ≡ 3 mod 4 then

(
−1
p

)
= −1.

(ii) If p ≡ ±1 mod 8 then
(

2
p

)
= 1 and if p ≡ ±3 mod 8 then

(
2
p

)
= −1.

(iii) For all integers m and n and all primes p,
(

mn
p

)
=
(

m
p

)(
n
p

)
.

The following was conjectured by Legendre and proved by Gauss. For a
proof, see almost any textbook on number theory, for example [74, p78].

Proposition 1.13.8 (Law of Quadratic Reciprocity) Let p, q ∈ N be odd
primes. Then (

p

q

)
=
(
q

p

)
(−1)

p−1
2

q−1
2 .

Thus, for example, to calculate in which finite fields there exists an element√
5, we find the values of q for which

(
5
q

)
= 1. For these values of q, we have

1 =
(

q
5

)
(−1)

4
2× q−1

2 =
(

q
5

)
, and so q is a square modulo 5. So 5 is a square in F×

q

when q ≡ ±1 mod 5, and 5 is a square in F×
q2 but not in Fq when q ≡ ±2 mod 5.
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The main theorem and the types of geometric
subgroups

2.1 The main theorem

Chapters 2 to 7 of this book are devoted to the proof of our main result:

Main Theorem 2.1.1 Let q be a prime power, let n � 12, and let Ω be
quasisimple and equal to one of SLn(q), SUn(q), Spn(q), Ωε

n(q), Sz(q) = 2B2(q),
G2(q), R(q) = 2G2(q) or 3D4(q). Let G be an almost simple extension of Ω :=
Ω/Z(Ω). Then representatives of the conjugacy classes of maximal subgroups of
G that do not contain Ω are as specified in the appropriate table in Chapter 8.

The maximal subgroups H of G in Tables 8.1 to 8.85 are defined by describ-
ing the structure of the inverse images H in Ω of H ∩ Ω. We refer the reader
to Section 8.1 for further information on how to read the tables.

In Table 2.1 we give a rough description of eight classes, C1–C8, of subgroups
of the classical groups, based on [66, 1.2.A]. Recall that we define u = 2 in Case
U and u = 1 otherwise. See Definitions 2.2.8 and 2.2.14 for the (differing)

Table 2.1 Rough descriptions of Aschbacher classes
Ci Rough description

C1 stabilisers of totally singular or non-singular subspaces

C2 stabilisers of decompositions V = ⊕t
i=1Vi, dim(Vi) = n/t

C3 stabilisers of extension fields of Fqu of prime index dividing n

C4 stabilisers of tensor product decompositions V = V1 ⊗ V2

C5 stabilisers of subfields of Fqu of prime index

C6 normalisers of symplectic-type or extraspecial groups

in absolutely irreducible representations

C7 stabilisers of decompositions V = ⊗t
i=1Vi, dim(Vi) = a, n = at

C8 groups of similarities of non-degenerate classical forms

55
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meanings of preserving these decompositions. We shall give considerably more
information about these classes of subgroups in Section 2.2.

Definition 2.1.2 Let H be a subgroup of G, where Ω � G � A as in Se-
ries 1.1, with Ω one of SLn(q), SUn(q), Spn(q) or Ωε

n(q) and dimension restric-
tions as in Definition 1.6.20. If H is a subgroup of a member of Class Ci for
some i with 1 � i � 8, then H is a geometric group.

Recall (Theorem 1.3.2) that, if a group S is non-abelian simple, then OutS
is soluble, and (Definition 1.8.7) what it means for a group to preserve a form.

Definition 2.1.3 Let H be a subgroup of G, where Ω � G � A as in
Series 1.1, with Ω one of SLn(q), SUn(q), Spn(q) or Ωε

n(q). Then H lies in
Class S of G if H/(H ∩ Z(GLn(qu))) is almost simple and the following all
hold:

(i) H does not contain Ω;
(ii) H∞ acts absolutely irreducibly;
(iii) there does not exist a g ∈ GLn(qu) such that (H∞)g is defined over a

proper subfield of Fqu ;
(iv) H∞ preserves a non-zero unitary form if and only if Ω = SUn(q);
(v) H∞ preserves a non-zero quadratic form if and only if Ω = Ωε

n(q);
(vi) H∞ preserves a non-zero symplectic form and no non-zero quadratic form

if and only if Ω = Spn(q);
(vii) H∞ preserves no non-zero classical form if and only if Ω = SLn(q).

Definition 2.1.4 Let H and K be subgroups of a generally quasisimple clas-
sical group Ω, and suppose that H and K have been specified up to conjugacy
in Aut Ω. Then by a containment of H in K we mean not just that K has a
subgroup isomorphic to H, but also that there exists an AutΩ-conjugate of K
that contains an AutΩ-conjugate of H.

Part (ii) of the definition ensures that an S -subgroup H is not contained in
a member of C1 or C3, since (as we shall see in Section 2.2), all members of C1

are reducible and no member K of C3 has K∞ absolutely irreducible. Part (iii)
of the definition ensures that H is not contained in a member of C5. Parts (iv),
(v) and (vi) ensure that H is not contained in a member of C8. Note that H∞

may be imprimitive, have a normal absolutely irreducible sympectic-type of
extraspecial subgroup, or preserve a tensor decomposition: that is, a member
of Class S may be contained in a member of C2 ∪ C4 ∪ C6 ∪ C7.

Theorem 2.1.5 (Aschbacher’s theorem: approximate version) Let H be a
subgroup of a group G in Column A of Table 1.2. Then H is either a geometric
subgroup of G, or a member of Class S .
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Chapters 2–6 are devoted to the proof of Theorem 2.1.1 for the classical
groups, and Chapter 7 to the proofs for extensions of Sp4(2e) with e > 1 that
are not contained in A = ΓSp4(2e), and for almost simple extensions of Sz(q),
G2(q), R(q) and 3D4(q). (Recall that S4(2) is not simple.) For the classical
groups, we do not prove Theorem 2.1.1 for Ω = Ω+

8 (q), and our table in this
case is taken from [62]. For the exceptional groups, we do not include proofs
for G2(q) (q odd), R(q) = 2G2(q) or 3D4(q), and the tables in these cases are
taken respectively from [64], [64] and [63]. The maximal subgroups of Sz(q)
are determined in [106, Theorems 9 and 10], but not of their almost simple
extensions. The maximal subgroups of G2(q) (q even) are determined in [14],
whilst those of their almost simple extensions are covered by [2, (17.3)].

The geometric maximal subgroups of the classical groups of dimension
greater than 12 are described in [66, Main Theorem], which also states that
[66, Tables 3.5.A–F] include all of the geometric maximals in all dimensions.
So, for dimensions up to 12, we only need to determine which of the subgroups
in these tables are maximal.

Chapters 2 and 3 in this book are devoted to determining those subgroups
that are maximal among the geometric subgroups. Chapter 2 contains general
arguments concerning maximality, whereas Chapter 3 resolves the remaining
cases dimension by dimension.

Class S is divided into Classes S1 (cross characteristic) and S2 (defining
characteristic). Some S2-subgroups are naturally contained in members of C4

or C7, so we define a Class S ∗
2 which excludes these subgroups, and let Class

S ∗ = S1 ∪ S ∗
2 . In Chapters 4 and 5, we determine the subgroups that are

maximal among those in Classes S1 and S ∗
2 , respectively. For S -subgroups,

we need to start by determinining the candidate subgroups of Ω. The lists of
irreducible representations of quasisimple groups in [42] (cross characteristic)
and [84] (defining characteristic) are used for this, but there is additional work
to be done to determine the outer automorphisms present in the S ∗-maximals.

In Chapter 6, the determination of the maximal subgroups of the almost
simple classical groups is completed by finding the containments between those
subgroups that have been found to be maximal among those of geometric type,
the S1-maximal subgroups, and the S ∗

2 -maximal subgroups.

Conjugacy of geometric subgroups The conjugacy of all subgroups of the
classical groups that are maximal amongst the geometric subgroups is described
in [66, Main Theorem], so we will not include any conjugacy calculations for
geometric subgroups. However, the forms that their groups preserve, and the
elements chosen to generate the outer automorphism groups, sometimes differ
from ours. We therefore finish this section with a brief description of the “trans-
lation” that is necessary to produce the conjugacy information that appears in
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the tables of geometric subgroups in Chapter 8. Recall the definitions of our
standard outer automorphisms in Section 1.7. It is shown in [6] that if one form
can be transformed to another by a matrix that is centralised by the standard
Frobenius automorphism, then the standard Frobenius automorphism acts in
the same way on both groups of isometries.

For the linear groups, the form preserved is the zero form and our standard
outer automorphisms agree with those in [66], except that we write γ for the
duality automorphism that [66] denotes ι.

The standard unitary form in [66] is equal to ours. Our representatives for
the outer automorphisms are identical to those in [66], so although it is proved
in [6] that the action of the Frobenius automorphism depends on the choice of
form, our conjugacy class stabilisers are identical to those in [66].

Our standard symplectic basis is just a reordering of the symplectic basis
in [66]. We choose the same matrix for the automorphism δ, and the change of
basis does not change its action. It is proved in [6] that when Ω = Spn(q) the
action of the Frobenius automorphism does not depend on the choice of form.
Therefore our conjugacy class stabilisers are identical to those in [66].

For the orthogonal groups in odd dimension we use the same standard form
as [66]. Our automorphism δ is equal to the automorphism r�r� in [66]. We
use the same automorphism φ. Therefore it is straightforward to write the
stabilisers from [66] in our notation.

For the orthogonal groups of plus type, we use the same standard form
as [66] in even characteristic. In odd characteristic our standard basis is a
reordering of the basis in [66]. Thus in all cases the standard forms agree, up
to the order of basis vectors. Our automorphism γ is the automorphism r� in
[66]; when q is odd our automorphism δ′ is equal to r�r� in [66]; when q is odd
our δ is equal to the δ in [66]; and for all q our φ is equal to the φ in [66].

For the orthogonal groups of minus type, we use the same standard form as
[66] in odd characteristic, and in even characteristic our standard basis is just
a reordering of the standard basis in [66]. Our automorphism γ is the automor-
phism r� in [66]. If q is odd and n(q − 1)/4 is odd then our automorphism δ′

is r�r� in [66], and our automorphism φ is equal to the φ in [66]. However,
if q is odd and n(q − 1)/4 is even then our automorphism δ is equal to the
automorphism δ in [66] if n ≡ 0 mod 4, and to δr� if n ≡ 2 mod 4. Finally, if q
is even, or if q is odd and n(q − 1)/4 is even, then our automorphism ϕ is the
automorphism φ in [66].
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2.2 Introducing the geometric types

In this section we introduce the members of Classes C1 to C8. In each class
we define various types of geometric subgroup, and define a group to be a
member of the class only when it is of one of the types. This will enable a more
detailed statement of Aschbacher’s theorem in Theorem 2.2.19. For each type,
we give the structure of the corresponding subgroup of the generally quasisimple
group. We assume throughout this section that the dimension restrictions of
Definition 1.6.20 apply, with the addition of Ω+

8 (q) to our list of possibilities.
Thus although we print tables for Ω+

6 (q) (for example), and include Aschbacher
Class information for these, these classes should be understood as corresponding
to the descriptions in [1]: we are not formally defining Class C1 through to Class
S for these groups.

2.2.1 Class C1

In this subsection we introduce Class C1, and describe some elementary prop-
erties of its members. Roughly speaking, these groups are the stabilisers of
subspaces.

We shall refer to the Class C1 groups by their type. Recall Definition 1.5.7.
A group of type Pk is a maximal parabolic: in Cases S, U and Oε this is the
stabiliser of a totally singular subspace of dimension k, whilst in Case L it is
the stabiliser of any k-space. A group of type Pk,n−k is the stabiliser of two
subspaces, one of dimension k, and the other of dimenson n− k, such that the
(n − k)-space contains the k-space. A group of type A ⊕ B is the stabiliser of
a pair of subspaces with trivial intersection which span the space. A group of
type A ⊥ B is the stabiliser of a pair of non-degenerate subspaces which are
mutually orthogonal and span the space. We write t.s. as an abbreviation for
totally singular, n.d. for non-degenerate, and n.s. for non-singular. In Case Oε,
let W be a non-degenerate k-space. Then sgn(W ) is the sign of the restriction
of the quadratic form to W .

Definition 2.2.1 A subgroup H of ΓLn(q) is reducible if H stabilises a proper
non-zero subspace of Fn

q . Let G be a group such that Ω � G � A, as in
Series 1.1, and let K � G. If G � Γ then K lies in Class C1 if K = NG(W ) or
NG(W,U), where W (or U and W ) appear in Table 2.2. Otherwise, K lies in
Class C1 if K = NA(H) ∩G, where H is a C1-subgroup of Γ.

In Case O+, there are two conjugacy classes in Ω+
n (q) of groups of type

Pn/2, which are conjugate under γ. In Case O± if k is odd (so that q is odd)
then there are two classes of groups of type GO◦

k(q) ⊥ GO◦
n−k(q), which are

conjugate under δ, the automorphism that multiplies the form by a non-square.
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Table 2.2 Types of C1-subgroups
Case Type Description Conditions

All Pk NG(W ), W t.s. k-space k < n in Case L

k < n/2 in Case O−

k � n/2 otherwise

L Pk,n−k NG(W, U) with W < U , k < n/2

dim(W ) = k and

dim(U) = n − k

L GLk(q) ⊕ GLn−k(q) NG(W, U) with k < n/2

W ∩ U = 0, dim(W ) = k

and dim(U) = n − k

U GUk(q) ⊥ GUn−k(q) NG(W ), W n.d. k-space k < n/2

S Spk(q) ⊥ Spn−k(q) NG(W ), W n.d. k-space k < n/2

Oε GOε1
k (q) ⊥ GOε2

n−k(q) NG(W ), W n.d. k-space, k � n/2

ε1 = sgn(W ) and ε = + ⇒ ε1 = ε2

ε2 = sgn(W⊥) ε = − ⇒ ε1 = −ε2

(k, ε1) �= (n − k, ε2)

q even ⇒ k even

O± Spn−2(q) NG(W ), W n.s. 1-space q and n even

In all other cases and for all other types there is a single conjugacy class in Ω
of each type of group for each k in Table 2.2. Note that our definition of types
Pk in SLn(q) is very slightly different from that in [66]: since the groups of
type Pk are conjugate under duality to those of type Pn−k, these two types are
identified in [66] where we have preferred to leave them separate.

In Table 2.3 we describe the structure of the C1-subgroups in the quasisim-
ple group Ω. For odd q, the group GLn(q) has a unique subgroup of index 2,
which we denote 1

2GLn(q). With two exceptions, these results are all straight-
forward generalisations of those in [66, Propositions 4.1.3, 4.1.4, 4.1.6, 4.1.7,
4.1.17–4.1.20], where the corresponding subgroups of Ω are described. The first
difference is that we correct an error in the statement of [66, Proposition 4.1.18],
regarding the structure of the parabolic subgroups of U2n(q). The second is that
we use the matrices given in [46, Lemma 4.3] to deduce that the extension of
order 4 of Ωε1

k (q)×Ωε2
n−k(q) in the penultimate row of Table 2.3 is of shape 22.

We collect some facts about the stabilisers of totally singular subspaces. Let
r denote the dimension of a maximal totally singular subspace. Thus r = n in
Case L, r = �n/2� in Cases U, S. O+ and O◦, and r = n/2− 1 in Case O−. A
maximal flag in V is a chain of totally singular i-spaces Vi, with

{0} = V0 < V1 < · · · < Vr.
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Table 2.3 Structures of C1-subgroups in Ω
Case Type Shape of H < Ω Notes

L Pk [qa]:(SLk(q) × SLn−k(q)):(q − 1)

L Pk,n−k [qb]:(SLk(q)2 × SLn−2k(q)):(q − 1)2

L GLk(q) ⊕ GLn−k(q) (SLk(q) × SLn−k(q)):(q − 1)

U Pk [qb]:(SLk(q2) × SUn−2k(q)).(q2 − 1) k < n/2

[qb]:SLk(q2).(q − 1) k = n/2

U GUk(q) ⊥ GUn−k(q) (SUk(q) × SUn−k(q)).(q + 1)

S Pk [qc]:(GLk(q) × Spn−2k(q))

S Spk(q) ⊥ Spn−k(q) Spk(q) × Spn−k(q)

Oε Pk [qd]:(GLk(q) × Ωε
n−2k(q)) q even

[qd]: 1
2
GLk(q) k = �n/2
,

q odd

[qd]:( 1
2
GLk(q) × Ωε

n−2k(q)).2 otherwise

Oε GOε1
k (q) ⊥ GOε2

n−k(q) (Ωε1
k (q) × Ωε2

n−k(q)).2 k = 1 or

q even

(Ωε1
k (q) × Ωε2

n−k(q)).22 otherwise

O± Spn−2(q) Spn−2(q) q even

In the table, a = k(n − k), b = k(2n − 3k), c = k(n + 1−3k
2

) and d = k(n − 1+3k
2

).

The following results can all be found in [66, §4.1]; by NG(W )W we mean the
restriction of the stabiliser in G of the subspace W to its action on W .

Lemma 2.2.2 Let P ∈ Sylp(Ω).

(i) In Cases L, U, S, O◦ and O−, the group P stabilises a unique maximal
flag and a unique totally singular i-space for 1 � i � r.

(ii) In Case O+, the group P stabilises a unique totally singular i-space for
1 � i � n/2 − 1, precisely two totally singular n/2-spaces, and precisely
two maximal flags. The maximal flags are interchanged by NGO+

n (q)(P ).
(iii) If W < V is totally singular then NΩ(W ) contains a conjugate of P .
(iv) If W < V is totally singular, then SL(W ) � NΩ(W )W .
(v) In Cases U, S and Oε, if W < V is a totally singular k-space, then there

exist spaces X and Y such that V = (W ⊕ Y ) ⊥ X, where Y is a totally
singular k-space, W ⊕ Y is non-degenerate and X = (W ⊕ Y )⊥.

(vi) In Cases S, U or O+, let n = 2r be even, let W1 = 〈e1, . . . , er〉 and let
W2 = 〈f1, . . . , fr〉. Let K be the stabiliser in Spn(q), GUn(q) or GO+

n (q)
(respectively) of both W1 and W2. Then K ∼= GLr(qu), the restricted rep-
resentation ρ : K → GL(W1) is the natural representation of GLr(qu),
and as K-modules W2 = W γ∗

1 , where ∗ is duality and γ is the power of
the Frobenius automorphism sending x �→ xq.
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Table 2.4 Types of C2-subgroups
Case Type Description of D Conditions

L GLm(q) � St any decomposition

U GUm(q) � St Vi n.d.

U GLn/2(q
2).2 Vi t.s., t = 2

S Spm(q) � St Vi n.d.

S GLn/2(q).2 Vi t.s.; t = 2 q odd

Oε GO1(p) � Sn Vi n.d.; t = n q = p > 2; ε = ◦ ⇔ n odd;

ε = − ⇔ (n ≡ 2 mod 4

and q ≡ 3 mod 4);

ε = + otherwise

Oε GOε1
m (q) � St Vi n.d.; ε1 = sgn(Vi) m > 1; m even ⇒ ε = εt

1;

m odd and t even ⇒
ε = (−1)(q−1)n/4

O+ GLn/2(q).2 Vi t.s.; t = 2

O± GO◦
n/2(q)

2 Vi n.d.; t = 2; ε = (−1)(q+1)/2; q odd

Vi nonisometric

2.2.2 Class C2

In this subsection we introduce the members of Class C2 and define certain of
their subgroups that will be useful to us later.

We shall refer to the families of C2-groups by their type. The types of C2-
group are listed in Table 2.4, taken from [66, Table 4.2.A]. In each type we
require that the group is the stabiliser of a decomposition D of V into t sub-
spaces, each of dimension m = n/t:

D : V = V1 ⊕ V2 ⊕ · · · ⊕ Vt. (2.1)

We use the abbreviations n.d. for non-degenerate and t.s. for totally singular.

Definition 2.2.3 A subgroup H of ΓLn(q) is imprimitive if H preserves a
direct sum decomposition D of V = Fn

q , as in Equation 2.1. Let G be a group
such that Ω � G � A, as in Series 1.1, and let K � G. If G � Γ then K lies in
Class C2 if K is the stabiliser in G of an imprimitive decomposition described
in Table 2.4. Otherwise, K lies in Class C2 if K = NA(H) ∩ G, where H is a
C2-subgroup of Γ.

In Cases L, U and S, the C2-subgroups of G � Γ are all irreducible, and so it
is common for the definition of imprimitivity to include a requirement that the
group H acts irreducibly on Fn

q , and hence a requirement that H permutes the
Vi transitively. However, there exist C2-groups in Case Oε where the subgroup
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Table 2.5 Shapes of C2-subgroups in Ω
Case Type Structure of H < Ω

L GLm(q) � St SLm(q)t.(q − 1)t−1.St

U GUm(q) � St SUm(q)t.(q + 1)t−1.St

U GLn/2(q
2).2 SLn/2(q

2).(q − 1).2

S Spm(q) � St Spm(q)t :St

S GLn/2(q).2 GLn/2(q).2

Oε GO1(p) � Sn 2n−1.An if q ≡ ±3 mod 8

2n−1.Sn if q ≡ ±1 mod 8

Oε GOε1
m (q) � St Ωε1

m (q)t.2(2,q−1).(t−1).St

O+ GLn/2(q).2 SLn/2(q).
(q−1)

(q−1,2)
.(n/2, 2)

O± GO◦
n/2(q)

2 SO◦
n/2(q)

2

H of Ωε
n(q) is in fact reducible. With our weak definition of imprimitivity, all

groups in C2 are imprimitive.
In Table 2.5 we describe the structure of the C2-subgroups of Ω. The in-

formation about the shape of H can be deduced from [66, Propositions 4.2.4,
4.2.5, 4.2.7, 4.2.9–4.2.11, 4.2.14–4.2.16]. We have not attempted here to specify
the centre of H precisely, but instead to exhibit certain useful subgroups of H.

Let H be of one of the types given in Table 2.4, let Ω be the quasisimple
classical group containingH and let G be the corresponding general group, as in
Definition 1.6.5. Write GD for the stabiliser in G of the decomposition D. Write
H(D) for the kernel of the action of H on the decomposition D, namely those
elements of H that map Vi to Vi for 1 � i � t, and define G(D) similarly. Let
GD := GD/G(D), and let Gi be the restriction of G(D) to Vi, so that Gi is the
general group on Vi. If the type is not GO◦

n/2(q)
2 then GD = G(D) :J = G1 � J ,

where J ∼= St. Note in particular that J � G.
Our proofs of maximality of C2-subgroups will have two main structures,

depending on whether t = 2 or t � 3. We first make some definitions and basic
observations for t � 3. If t � 3, then define L := 〈J ′〉H (the normal closure of
J ′ under H) so that L � H since Ω = G′. Define the symbols L(D) and LD

analogously to G(D) and GD.

Lemma 2.2.4 Let t � 3.

(i) At
∼= LD ∼= J ′ � H, and hence LD acts primitively on D.

(ii) L is perfect provided t � 5.
(iii) The restriction of L(D) to Vi is equal to Gi, for 1 � i � t.
(iv) If t � 4 and G1 �= GL1(2), or if m � 2, then V1, . . . , Vt are pairwise

nonisomorphic as L(D)-modules.
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Proof (i) This is clear from Table 2.5.
(ii) The normal closure of a perfect subgroup is perfect.
(iii) Since GD is a wreath product, we may use wreath product notation for
elements of H. The element xg := (g, g−1, Im, . . . , Im) ∈ G(D) has determinant
1 for all g ∈ G1. If Ω = Ωε

n(q) then it is easily seen that xg has spinor norm
(q odd) or quasideterminant (q even) 1. Thus xg ∈ H for all g ∈ G1. The
group J ′ is a subgroup of H, so a := (Im, Im, . . . , Im)(1 2 3) ∈ L. Therefore
yg := (a−1)x−1

g a = (g, g−2, g, 1 . . . , 1) ∈ L for all g ∈ G1, so LV1
(D) = G1. The

result for i � 1 now follows from Part (i).
(iv) If G1 �= GL1(2) then G1 is non-trivial. The element yg from the proof
of Part (iii) shows that if t � 4 then V1 and V4 are nonisomorphic as L(D)-
modules. The same element yg shows that if t = 3 and m � 2 then V1 and V2

are nonisomorphic, since G1 contains involutions. The result now follows from
the primitivity of At.

When t = 2 we will require a different style of argument, so we make some
extra definitions. Let H < Ω be an imprimitive group, of one of the types given
in Table 2.4, and assume that H preserves an imprimitive decomposition into
two subspaces, V1 and V2. Recall the dimension restrictions in Definition 1.6.20.
Let Ωi be the generally quasisimple group on Vi, as in Definition 1.6.13. Then
H contains a subgroup isomorphic to Ω′

1 when the decomposition is into totally
singular subspaces in Cases U, S and Oε, or to Ω′

1 × Ω′
2 otherwise, and this

subgroup is perfect if and only if none of the following occurs:

(i) n = 2;
(ii) n = 4 and q � 3;
(iii) Ω = SU6(2) and D is a decomposition into non-degenerate subspaces;

Assume that Ω′
1 ×Ω′

2 is perfect, and let N = H∞, so that N is a subdirect
product of Ω′

1 × Ω′
2. Let X be a non-abelian composition factor of N . In Case

L the group N ∼= SLn/2(q)
2 and X = Ln/2(q). If H is of type GUn/2(q) � S2

then N ∼= SUn/2(q)
2 and X = Un/2(q). If H is of type Spn/2(q) � S2 then

N ∼= Spn/2(q)
′2 and X = Sn/2(q)

′. In the non-degenerate types in Case Oε the
group N ∼= Ωε1

n/2(q)
2 and X = Oε1

n/2(q). For the totally singular decompositions
in Cases U, S and O+ the group N is isomorphic to SLn/2(qu) (recall that
u = 2 in Case U, and 1 otherwise) and X = Ln/2(qu).

Note that it is immediate from Lemma 2.2.2 (vi) that if t = 2, and either
the Case is L or the Case is S, U or O+ and the decomposition is into totally
singular subspaces, then HV1 contains SLn/2(qu) in its natural action, and as an
HV1 module V2 = V σ∗

1 , where ∗ is duality and σ is the power of the Frobenius
automorphism mapping x �→ xq.
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2.2.3 Class C3

In this subsection we introduce the members of C3, and prove some preliminary
results about their structure and actions.

Recall Definition 1.6.1 of a semilinear map. When discussing C3-subgroups,
we write ΓLn/s(qs) for the group consisting of all semilinear maps f on Fn/s

qs

such that (λv)f = λ(vf) for all λ ∈ Fq. (This notation is convenient but
dangerous because, for example, ΓL6/3(43) is not the same as ΓL4/2(82).)

Let s be a divisor of n, and let m = n/s. There is an Fq-vector space iso-
morphism from Fqus to Fs

qu , and this induces an Fqu -vector space isomorphism

α : Vs = Fn/s
qus → V = Fn

qu . In turn, this induces an embedding of F×
qus in

GLn(qu), and also of ΓLn/s(qus) = NGLn(qu)(Fqus) in GLn(qu). See, for exam-
ple, [45] for an explicit embedding.

Recall Definition 1.6.4 of a semi-similarity. If βs is a σ-sesquilinear or quad-
ratic form on Vs then one may consider the set of all elements of ΓLn(qu) that
act as semi-similarities on (Vs, βs)α. The type of βs can be deduced from the
type of the C3-subgroup, as in Table 2.6, but see [66, Section 4.3] for information
about how to construct the form βsα on V : the construction depends on the
type of βs. Further information on the groups in this class can be found in [30].

Definition 2.2.5 A subgroup H of GLn(qu) is semilinear if there exists a
divisor s of n, and an Fqu -vector space isomorphism from Vs to V , such that
all elements of H act semilinearly on Vs.

Let G be a group such that Ω � G � A, as in Series 1.1, and let K � G. If
G � Γ then K lies in Class C3 if K is the set of all semi-similarities f of the
image under α of (Vs, βs) such that there exists λ ∈ Fqu and θ ∈ Aut Fqus with

βs(vαfα−1, wαfα−1) = λβs(v, w)θ

or, if β is quadratic, βs(vαfα−1) = λβs(v)θ

for all v, w ∈ Vs, where βs is as in Table 2.6. Otherwise, K lies in Class C3 if
K = NA(H)∩G, where H is a C3-subgroup of Γ. [In the rest of our discussion,
we will omit the isomorphism α, for ease of reading.]

Note that some authors include irreducibility, or absolute irreducibility,
as a requirement for a group to be semilinear. We will prove later on (see
Lemma 2.3.14 and Proposition 3.3.4) that all C3-subgroups are irreducible,
but we do not require irreducibility as part of the definition of the class. Not
all Class C3 groups are absolutely irreducible.

We refer to the families of C3-subgroups by their type. The types of C3-
subgroup are listed in Table 2.6, taken from [66, Table 4.3.A]. The information
about the structure of H < Ω is a straightforward consequence of [66, Proposi-
tions 4.3.6, 4.3.7, 4.3.10, 4.3.14, 4.3.16, 4.3.17, 4.3.18, 4.3.20], where the shape of
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Table 2.6 Types of C3-subgroups
Case Type Structure of H < Ω Conditions

L GLm(qs)
(

(q−1,m)(qs−1)
q−1

◦SLm(qs)
)

. (q
s−1,m)

(q−1,m)
.s s prime

U GUm(qs)
(

(q+1,m)(qs+1)
q+1

◦SUm(qs)
)

. (q
s+1,m)

(q+1,m)
.s s odd prime

S Spm(qs) Spm(qs).s s prime

S GUn/2(q) GUn/2(q).2 q odd, s = 2

Oε GOε
m(qs) Ωε

m(qs).[cs] s prime, m � 3

ε = + ⇒ c = (s, 2)

ε ∈ {◦,−} ⇒ c = 1

O± GO◦
n/2(q

2) (q ∓ 1, 4)/2 × Ω◦
n/2(q

2).2 qn/2 odd, s = 2

O+ GUn/2(q)
(
(q + 1)◦SUn/2(q)

)
.
[
(q, 2)(q + 1, n

2
)
]

n ≡ 0 mod 4, s = 2

O− GUn/2(q)
(

q+1
(q+1,2)

◦ SUn/2(q)
)

.(q + 1, n
2
) n ≡ 2 mod 4, s = 2

H < Ω is given. In each type we require that the degree s of the field extension
is a prime divisor of n, and we set m = n/s.

The groups of type GO◦
n/2(q

2) and type GO±
n (q2) have been studied in [15].

Let H be a C3-subgroup of Ω. In Case L, let Ω1 be the subgroup SLm(qs)
of H, and in Case U, let Ω1 be SUm(qs). If H is of type Spm(qs) then let Ω1 be
the subgroup Spm(qs). If H is of type GUn/2(q) then let Ω1 be the subgroup
SUn/2(q). If H is of type GOε

m(qs) then let Ω1 be the subgroup Ωε
m(qs). If H

is of type GO◦
n/2(q

2) then let Ω1 be the subgroup Ω◦
n/2(q

2). Except for some
small values of m, s and q, the group Ω1 is quasisimple and equal to H∞.

Lemma 2.2.6 ([66, Lemma 4.3.2]) If m � 2, then either Ω1 is an irreducible
subgroup of Ω or H is of type GU2(q) in Sp4(q).

Recall the dimension assumptions in Definition 1.6.20.

Lemma 2.2.7 Let H be a C3-subgroup of Ω. Then H is insoluble if and only
if one of the following holds.

(i) The Case is L or U, and s �= n.
(ii) The Case is S, and if H is of type GUn/2(q) then (n, q) �= (4, 3).
(iii) The Case is O◦.
(iv) The Case is O± and m � 4.

If H is insoluble then H∞ ∼= Ω1. Thus, if Ω1 �= Ω+
4 (q) and H is insoluble then

H∞ is quasisimple.

Proof Apply Proposition 1.10.3 to the shape of H, as given in Table 2.6.
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Table 2.7 Types of C4-subgroups
Case Type Conditions

L GLn1(q) ⊗ GLn2(q) 1 < n1 <
√

n

U GUn1(q) ⊗ GUn2(q) 1 < n1 <
√

n

S Spn1
(q) ⊗ GOε

n2(q) q odd, n2 � 3

O+ Spn1
(q) ⊗ Spn2

(q) n1 <
√

n

O± GO◦
n1(q) ⊗ GO±

n2(q) q odd, n1 � 3, n2 � 4

O◦ GO◦
n1(q) ⊗ GO◦

n2(q) 3 � n1 <
√

n

O+ GOε1
n1(q) ⊗ GOε2

n2(q) n1, n2 � 4, ni even,

q odd, ε1 = ε2 ⇒ n1 <
√

n

Case Shape of H < Ω

L (SLn1(q) ◦ SLn2(q)).[(q − 1, n1, n2)
2]

U (SUn1(q) ◦ SUn2(q)).[(q + 1, n1, n2)
2]

S (Spn1
(q) ◦ GOε

n2(q)).(n2, 2)

O+ (Spn1
(q) ◦ Spn2

(q)).(2, q − 1, n/4)

O± SO◦
n1(q) × Ω±

n2(q)

O◦ (Ωn1(q) × Ωn2(q)).2

O+ (SOε1
n1(q) ◦ SOε2

n2(q)).[c]

2.2.4 Class C4

In this subsection we briefly introduce the members of Class C4.

Definition 2.2.8 A group G � ΓL(V ) preserves a tensor product decompo-
sition V = V1 ⊗ V2 if for all g ∈ G there exist g1 ∈ ΓL(V1) and g2 ∈ ΓL(V2)
such that for all v1 ∈ V1 and v2 ∈ V2

(v1 ⊗ v2)g = v1g1 ⊗ v2g2.

Notice in particular that the group above does not interchange the two
tensor factors. Recall Definition 1.9.7, of the tensor product of two groups
defined over a common field.

We shall refer to the families of C4-subgroups by their type. The first part of
Table 2.7 is taken from [66, Table 4.4.A]: in each type we require that n1n2 = n.
In Cases U, S and Oε, the type of the induced form (as in Definition 1.9.6) can
be deduced from Propositions 1.9.4 and 1.9.5. The groups occuring below the
horizontal line only occur when n > 12, and will generally be excluded from
our discussions.

Definition 2.2.9 A subgroup H of GLn(q) is a tensor product group if H
preserves a tensor product decomposition Fn

q = V1⊗V2. Let G be a group such
that Ω � G � A, as in Series 1.1, and let K � G. If G � Γ then K lies in
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Class C4 if K is the stabiliser in G of a tensor product decomposition with V1

of dimension n1 and V2 of dimension n2, where V1 and V2 are equipped with
a zero or non-degenerate form, as described in Table 2.7. Otherwise, K lies in
Class C4 if K = NA(H) ∩G, where H is a C4-subgroup of Γ.

The information about the shape of H in the second part of the table can
easily be deduced from [66, Propositions 4.4.10, 4.4.11, 4.4.12, 4.4.14–4.4.17].
Recall Definition 1.5.35 of the discriminant of a form. In the final type of the
second table, let di be the discriminant of the form on Vi, for i = 1, 2. Then
the term c is 4 if any of the following hold: ε1 = ε2 = −; ε1 = ε2 = + and at
at least one of d1 or d2 is non-square; ε1 = ε2 = + and n ≡ 4 mod 8; ε1 = +
and ε2 = − with at least one of d1 or d2 non-square. Otherwise, c is 8.

The following lemma is standard (see [66, 4.4.3] for example), and will be
useful for both Class C4 and Class C7.

Lemma 2.2.10 Suppose that G = G1 ⊗ · · · ⊗ Gt preserves a decomposition
V = V1 ⊗ · · · ⊗ Vt, with Gi � GL(Vi) for 1 � i � t. If G1 is irreducible on V1

and Gi is absolutely irreducible on Vi for i � 2 then G is irreducible on V . If
each Gi is absolutely irreducible on Vi then G is absolutely irreducible on V .

2.2.5 Class C5

In this subsection we briefly introduce the members of C5. Let Fqu/r be a
subfield of index r in Fqu , and let Vr be the Fqu/r -span of an Fqu -basis B of
V = Fn

qu . Then as an Fqu/r -space, Vr
∼= Fn

qu/r .
If g ∈ GL(Vr) then g acts naturally on V , so there is a natural embedding

GLn(qu/r) ∼= GL(Vr) � GL(V ) ∼= GLn(qu), which extends to ΓLn(qu/r) �
ΓLn(qu). Thinking of working with respect to the basis B, notice that we can
also characterise GL(Vr) as being the centraliser in GL(V ) of a representative
for the Galois group Gal(Fqu : Fqu/r ).

Recall Definition 1.6.4 of a semi-similarity. If V is equipped with a non-
degenerate σ-Hermitian, symplectic or quadratic form β, and if βr is a non-
degenerate σ-Hermitian, symplectic, or quadratic form on Vr, then the embed-
ding of Vr in V may induce an embedding of the semi-similarity group of Vr into
the semi-similarity group of V . See Table 2.8 and [66, §4.5] for more informa-
tion about the possible embeddings that can give rise to maximal subgroups.
Except for the embedding of Spn(q) in SUn(q), in Table 2.8 the form βr on
Vr is simply the restriction of the form β to the elements of Vr, viewed as an
Fqu/r -vector space: note that βr may be of a different type from β. As regards
Spn(q) in SUn(q), the symplectic form β2 satisfies β2(v1, v2) = λβ(v1, v2) for
all v1, v2 ∈ V2, for some fixed λ ∈ F×

q2 such that λ+ λq = 0.
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In the following definition, for G � Γ we write NG(Vr) to denote the sta-
biliser in G of Vr ⊆ V , that is, the elements of G that send Vr to itself, and in
addition, if Vr is a space equipped with a form, act as semi-similarities of Vr.

Definition 2.2.11 A subgroup H of GLn(q) is subfield if H is absolutely
irreducible and there exists a proper subfield Fq0 of Fq and an element g ∈
GLn(q) such that

Hg � 〈Z(GLn(q)),GLn(q0)〉.
That is, up to scalars, H is conjugate to a group over a proper subfield of Fq.

Let G be a group such that Ω � G � A, as in Series 1.1, and let K � G. If
G � Γ then K lies in Class C5 if K = NG(Vr)(Z(GLn(qu))∩G), for some formed
space Vr as in Table 2.8. Otherwise, K lies in Class C5 if K = NA(H) ∩ G,
where H is a C5-subgroup of Γ.

All columns of Table 2.8 except for that which describes the shape of H <

Ω are taken from [66, Table 4.5.A]. The information about the shape of H
is largely from [66, Propositions 4.5.3–4.5.6, 4.5.8, 4.5.10]. However, we use
Lemma 1.13.5 to simplify the description of the structure of the groups of type
GLn(q0) and type GUn(q0). For the groups of type GO◦

n(q1/2), to determine
the precise structure of the C5-subgroup we consider writing an element g ∈
SO◦

n(q1/2)\Ω◦
n(q1/2) as a product of reflections g = rv1 . . . rvk

. To calculate the
spinor norm of g in GO◦

n(q) (so q is odd), evaluate
∏k

i=1 β(vi, vi) = λ. Since λ ∈
Fq1/2 , this must be a square in F×

q and so g lies in Ω◦
n(q), by Definition 1.6.10.

Thus the group Ω◦
n(q1/2).2 given in [66, Proposition 4.5.8] is in fact SO◦

n(q1/2).
In Case O+, type GO+

n (q0) with q = q20 , the integer b is defined as follows:

b =

{
1 if n ≡ 2 mod 4 and q0 ≡ 1 mod 4

2 otherwise.

In Case O+, type GO−
n (q0), the integer b is defined as follows:

b =

{
2 if n ≡ 2 mod 4 and q0 ≡ 1 mod 4

1 otherwise.

All members of Class C5 are subfield groups. Given our restrictions on the
dimension in Cases U and Oε, all groups in Class C5 are absolutely irreducible
by Proposition 1.12.2. The groups of type GLn(q0), GUn(q0) and Spn(q0) have
been studied in [17].

The following result is clear from Definition 2.2.11 and Table 2.8.

Lemma 2.2.12 Let H be a C5-subgroup of Ω. Then all elements of H∞ have
trace in some proper subfield of Fqu .
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Table 2.8 Types of C5-subgroups
Case Type Shape of H < Ω Conditions

L GLn(q0) SLn(q0).
[(

q−1
q0−1

, n
)]

q = qr
0 , r prime

U GUn(q0) SUn(q0).
[(

q+1
q0+1

, n
)]

q = qr
0 , r odd prime

U Spn(q) Spn(q).[(q + 1, n/2)] n even

U GOε
n(q) SOε

n(q).[(q + 1, n)] q odd

S Spn(q0) Spn(q0).(2, q − 1, r) q = qr
0 , r prime

O◦ GO◦
n(q0) Ω◦

n(q0) q = qr
0 , r odd prime

SO◦
n(q0) q = q2

0

O+ GO+
n (q0) Ω+

n (q0) q = qr
0 , r prime,

r odd or q even

SO+
n (q0).b q = q2

0 , q odd

O+ GO−
n (q0) Ω−

n (q0) q = q2
0 , q even

SO−
n (q0).b q = q2

0 , q odd

O− GO−
n (q0) Ω−

n (q0) q = qr
0 , r odd prime

2.2.6 Class C6

In this subsection we present some basic information about the C6-subgroups.
For any prime r and any integer m � 1, there are two isomorphism types of
extraspecial groups of order r1+2m; see, for example, [31, Theorem 5.2]. If r
is odd then we are only concerned with the groups of exponent r, denoted
r1+2m
+ , since the normaliser in GLrm(qu) of an extraspecial group of the other

isomorphism type (denoted r1+2m
− ) is a proper subgroup of the normaliser of

an extraspecial group of exponent r. If r = 2 then the extraspecial group of
minus type is a central product of a quaternion group of order 8 with zero
or more dihedral groups of order 8, whilst the group of plus type is a central
product of dihedral groups of order 8. By taking a central product of either
type of extraspecial 2-group with a cyclic group of order 4, we obtain a 2-group
of symplectic type. The extraspecial and symplectic type groups of order r1+2m

or 22+2m = 4 ◦ 21+2m
+ = 4 ◦ 21+2m

− act on Frm

qu whenever qu − 1 is divisible by r
or 4 respectively, and this action is absolutely irreducible.

We shall refer to the C6-subgroups by their type, as in Table 2.9. In Table 2.9
n = rm with r prime. If type C6-subgroups occur in Cases L and U, then when
n = 2m � 4 the power qu is the minimal power of p such that qu ≡ 1 (mod 4),
and otherwise qu is the minimal power of p such that qu ≡ 1 (mod r). Thus if
Ω = SLn(pe) contains C6-subgroups then e is odd, and in addition if n is even
then e = 1. If Spn(pe) or Ω+

n (pe) contains C6-subgroups then e = 1. Table 2.9
is derived from [66, Propositions 4.6.5–4.6.9]. If n � 12, then recalling our
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Table 2.9 Types of C6-subgroups
Case Type Shape of H < Ω Conditions

L r1+2m.Sp2m(r) 31+2 :Q8 n = 3, q ≡ 4, 7 mod 9

((q − 1, n) ◦ r1+2m).Sp2m(r) n odd, otherwise

L 22+2m.Sp2m(2) 21+2
− :3 ∼= 2·A4 n = 2, q ≡ ±3 mod 8

21+2
− :S3

∼= 2·S4 n = 2, q ≡ ±1 mod 8

(4 ◦ 21+4).A6 n = 4, q ≡ 5 mod 8

((q − 1, n) ◦ 21+2m).Sp2m(2) n even, otherwise

U r1+2m.Sp2m(r) 31+2 :Q8 n = 3, q ≡ 2, 5 mod 9

((q + 1, n) ◦ r1+2m).Sp2m(r) n odd, otherwise

22+2m.Sp2m(2) (4 ◦ 21+4).A6 n = 4, q ≡ 3 mod 8

((q + 1, n) ◦ 21+2m).Sp2m(2) n even, otherwise

S 21+2m
− .Ω−

2m(2) 21+2m
− .SO−

2m(2) q ≡ ±1 mod 8

21+2m
− .Ω−

2m(2) q ≡ ±3 mod 8

O+ 21+2m
+ .Ω+

2m(2) 21+2m
+ .SO+

2m(2) q ≡ ±1 mod 8

21+2m
+ .Ω+

2m(2) q ≡ ±3 mod 8

dimension restrictions in Definition 1.6.20, we see that C6 = ∅ in Cases Oε,
and n = 4 or 8 in Case S.

Definition 2.2.13 A subgroup H of GLn(q) is an extraspecial normaliser
group if n = rm for some prime r and H has an extraspecial normal subgroup
of order r1+2m and exponent r(2, r).

Let G be a group such that Ω � G � A, as in Series 1.1, and let K � G.
Then K lies in Class C6 if K = NG(R) where R is an absolutely irreducible
r-group as in Table 2.9.

2.2.7 Class C7

In this subsection we present some basic information about Class C7.

Definition 2.2.14 A group G � ΓL(V ) preserves a tensor induced decom-
position V = V1 ⊗ V2 ⊗ · · · ⊗ Vt if for all g ∈ G there exist gi ∈ ΓL(Vi) and
σ ∈ St such that for all vi ∈ Vi

(v1 ⊗ · · · ⊗ vt)g = v1σg1σ ⊗ · · · ⊗ vtσgtσ.

If non-degenerate forms βi have been defined on the Vi, then we require in
addition that the gi are elements of the Γ-group for that form, as in Series 1.1.

Notice in particular that G can permute the t tensor factors.

Definition 2.2.15 A subgroup H of GLn(q) is a tensor induced group if
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H preserves a tensor induced decomposition Fn
q = V1 ⊗ V2 ⊗ · · · ⊗ Vt with

dimVi = m for all i and n = mt.
Let G be a group such that Ω � G � A, as in Series 1.1, and let K � G. If

G � Γ then K lies in Class C7 if K is the stabiliser in G of a tensor induced
decomposition, as in Table 2.10. Otherwise, K lies in Class C7 if K = NA(H)∩
G, where H is a C7-subgroup of Γ.

Our dimension restrictions in Definition 1.6.20 mean that the groups de-
scribed below the horizontal line in Table 2.10 do not occur in any of our Cases
in dimension at most 12.

All members of Class C7 are tensor induced. Note that some authors require
a tensor induced group to permute the tensor factors transitively: as can be seen
from Table 2.10 all groups in Class C7 of dimension at most 12 in fact act on
the t tensor factors as St, although this is not true for all dimensions.

The first part of Table 2.10 is taken from [66, Table 4.7.A], where we have
imposed the additional condition that the derived group of the Ω-group on V1

is quasisimple from Part (b) of their definition of Class C7. The second part of
Table 2.10 can be deduced from [66, Propositions 4.7.3–4.7.8].

We briefly explain the shapes of the groups in Table 2.10. The normaliser
in GLn(q) of a C7-subgroup of type GLm(q) � St is a tensor wreath product
of GLm(q) and St. It is a quotient of the standard wreath product, where
all t copies of the central subgroup of GLm(q) have been identified. Recall
Definition 1.9.7 of the tensor product of two groups: here, the base group of
the standard wreath product has been replaced by the tensor product of the t
copies of GLm(q).

Lemma 2.2.16 Let H be a C7-subgroup of Ω. Then H is insoluble and H∞

is absolutely irreducible.

Proof Here H contains a central product T of t copies of Ωm, where Ωm is the
generally quasisimple group on V1, as in Definition 1.6.13. The restrictions on
m and q given in Table 2.10 ensure that Ωm is in fact quasisimple (or Sp4(2)),
so that T∞ is perfect and H is insoluble. Proposition 1.12.2 implies that Ωm is
absolutely irreducible, so T is absolutely irreducible by Lemma 2.2.10.

2.2.8 Class C8

In this subsection we present some basic information about the C8-subgroups.
We refer to the families of C8-subgroups by their type, as listed in Table 2.11.
Each type arises from the fact that it may be possible to define a second form
on an already-formed space.

Definition 2.2.17 Let G be a group such that Ω � G � A, as in Series 1.1,
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Table 2.10 Types of C7-subgroups
Case Type Conditions

L GLm(q) � St m � 3

U GUm(q) � St m � 3, (m, q) �= (3, 2)

S Spm(q) � St qt odd, (m, q) �= (2, 3)

O◦ GOm(q) � St m � 3, (m, q) �= (3, 3)

O+ Spm(q) � St qt even, (m, q) �∈ {(2, 2), (2, 3)}
O+ GOε

m(q) � St q odd, ε = + ⇒ m � 6, ε = − ⇒ m � 4

Case Shape of H < Ω Conditions

L (q − 1, m).Lm(q)2.[(q − 1, m)2] t = 2, m ≡ 2 mod 4,

q ≡ 3 mod 4

(q − 1, m).Lm(q)t.[(q−1, n
m

)(q−1, m)t−1].St otherwise

U (q + 1, m).Um(q)2.[(q + 1, m)2] t = 2, m ≡ 2 mod 4,

q ≡ 1 mod 4

(q + 1, m).Um(q)t.[(q+1, n
m

)(q+1, m)t−1].St otherwise

S 2.Sm(q)t.2t−1.St

O◦ Ω◦
m(q)t.2t−1.St

O+ (q − 1, 2).Sm(q)2 t = 2, m ≡ 2 mod 4

(q − 1, 2).Sm(q)t.(q − 1, 2)t−1.St otherwise

O+ 2.PSOε
m(q)2.[4] t = 2, m ≡ 2 mod 4

2.PSO−
m(q)

2
.[8] t = 2, m ≡ 0 mod 4

2.PSOε
m(q)3.[25].3 t = 3, m ≡ 2 mod 4,

V1 non-square discriminant

2.PSOε
m(q)t.[22t−1].St otherwise

Table 2.11 Types of C8-subgroups
Case Type Shape of H < Ω Conditions

L Spn(q) (q − 1, n)·Sn(q) n even, (q − 1, n/2) = (q − 1, n)/2

(q − 1, n)·PCSpn(q) n even, (q − 1, n/2) = (q − 1, n)

L GUn(q1/2) SUn(q1/2).(q1/2 − 1, n) q square

L GOε
n(q) SOε

n(q).(q − 1, n) q odd

S GO±
n (q) GO±

n (q) q even

and let K � G. If G � Γ then K lies in Class C8 if K is the intersection with G
of the Γ-group of a classical group given Table 2.11. Otherwise, K lies in Class
C8 if K = NA(H) ∩G, where H is a C8-subgroup of Γ.

All columns of Table 2.11 except for the one describing the shape of H < Ω
are taken from [66, Table 4.8.A]. The shape of H < Ω can generally be deduced
from [66, Propositions 4.8.3–6], together with Lemma 1.13.5: the one exception
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is our division of the symplectic subgroups of SLn(q) into two families, which is
not mentioned in [66, Proposition 4.8.3], but is immediate from the generating
matrices constructed in [45].

Note that in [66, Table 4.8.A] Class C8 is defined to be empty when n = 2.
However, we feel it is more uniform to include these groups at first: we will
prove in Lemma 3.1.1 that they are equal to other subgroups when n = 2.

In the next result, let G be the general group corresponding to Ω (see Defini-
tion 1.6.5) and let Γ be the conformal semilinear group, as in Definition 1.6.16:
recall the dimension restrictions in Definition 1.6.20.

Proposition 2.2.18 Let J be a subgroup of G, and assume that J is irre-
ducible but not absolutely irreducible on V := Fn

qu . If G = Spn(q) with n � 4
and q is even then NΓ(J) is contained in a member of C3 ∪C8. If G = GO+

n (q)
and n � 8 then NΓ(J) is contained in a member of C2 ∪ C3. If G = GLn(q)
and n � 2, or G = GUn(q) and n � 3, or G = Spn(q) with n � 4 and q odd,
or G = GO−

n (q) and n � 8, then NΓ(J) is contained in a member of C3.

Proof This is essentially [66, Lemma 4.3.12], but we prove a more detailed
version. Since J is irreducible but not absolutely irreducible, E := EndFquJ (V )
is a field that properly contains Fqu . Let F be a subfield of E such that Fqu has
prime index in F . Then NΓ(J) � NΓ(E) � K := NΓ(F ). Now, since the non-
zero elements of F are the non-zero elements of a field embedded in GLn(qu)
and K is irreducible, K is by definition a member of Aschbacher’s class of
semilinear groups (see [1, p472]). Thus either K is contained in a member of
C3, or K is one of the groups that lie in Aschbacher’s Class C3 but not in ours.
Consulting [66, p112] we see that the only possibilities are: (i) K � CΓSpn(q)
with q even, and K∩Spn(q) ∼= GUn/2(q).2 with F = Fq2 ; or (ii) K � CΓO±

2s(q),
with K ∩ Ω±

2s(q) of shape Ω±
2 (qs).[cs] for some 1 � c � 2, with F = Fqs . In

either case, fix an isomorphism α from Fn/s
qs to Fn

q (where s = 2 in Case (i)).
First assume that K is of shape GUn/2(q).2.(q−1).e in Γ = CΓSpn(q) with

q even. Let β be the unitary form on Fn/2
q2 for which K is a group of semi-

similarities, and for v ∈ Fn
q define Q(v) = β(vα, vα). Then it may be checked

(or see [66, p117–118]) that Q is a non-degenerate quadratic form, so K is
contained in a C8-subgroup of Γ of type GO±

n (q).
Next assume that K is of shape Ω+

2 (qs).[cs].[(2, q−1)2(q−1)].e in CΓO+
2s(q).

The group Ω+
2 (qs) is reducible, stabilising an imprimitive decomposition into

two totally singular subspaces. These correspond under α in F2s
q to two totally

singular s-spaces (see [66, p120]) that are stabilised by the (normal) subgroup of
K isomorphic to Ω+

2 (qs), soK is contained in a C2-subgroup of type GLn/2(q).2.
Finally assume that K is of shape Ω−

2 (qs).[cs][(2, q − 1)2(q − 1)].e in Γ =
CΓO−

2s(q), and notice that s is odd. The group GO−
2 (qs) � K contains a char-
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acteristic cyclic subgroup S ∼= qs + 1, which is SO−
2 (qs) when q is odd and

Ω−
2 (qs) when q is even. By [66, Lemma 4.3.11], after identifying F2

qs with Fq2s ,
the group S preserves a unitary form; so the characteristic subgroup S of K
may be identified with GU1(qs). Therefore, NΓ(J) � K � NΓ(GU1(qs)). Now
GU1(qs) embeds in a C3-subgroup of GUs(q), which is in a C3-subgroup of
GO−

2s(q). We claim that NΓ(GU1(qs)) < NΓ(GUs(q)), which will complete the
proof.

To see this, observe first that the normaliser in GL2s(q) of GU1(qs) is a
C3-group of type GL1(q2s) and shape (q2s − 1).2s. By [52, Satz 3], the group
GU1(qs) is self-centralising in GO−

2s(q). Since the index of GO−
2s(q) in CΓO−

2s(q)
is (q − 1)e (where q = pe), we deduce that |NΓ(GU1(qs))| � (qs + 1)2s(q −
1)e. But there is a unique class of subgroups of Ω−

2s(q) of type GUs(q), and
a unique class of subgroups of SUs(q) of type GU1(qs) (see [66, Propositions
4.3.6, 4.3.18]), so a straightforward order calculation shows that NΓ(GU1(qs))
has a subgroup of order at least 2es(q− 1)(qs +1) that lies in NΓ(GUs(q)).

2.2.9 Aschbacher’s theorem, revisited

We are now in a position to state a more accurate version of Aschbacher’s
theorem. The theorem given below is essentially [66, Main Theorem, p 57], and
so is slightly different from the version in [2]: the differences are justified in [66].

Recall Table 1.2 of our notation for groups, Definition 2.1.2 of a geometric
subgroup, and Definition 2.1.3 of Class S .

Theorem 2.2.19 Let Ω be a quasisimple classical group, and let G be any
group such that Ω � G � A, where A is the corresponding group in Column A

of Table 1.2.

(i) Let H be a geometric subgroup of G that is maximal in G. Then:

(a) the group H is a member of Ci for some 1 � i � 8;

(b) the shape of H ∩ Ω is as given in Tables 2.3, 2.5, 2.6, 2.7, 2.8, 2.9,
2.10 or 2.11;

(c) the number of conjugacy classes in Ω of groups of the same type as
H, and their stabilisers in G, are as given in [66, Tables 3.5.A–F,
Column V], except that in SLn(q) with n � 3 our groups of type
Pk and Pn−k are both conjugate to their groups of type Pk (where
k < n/2).

(ii) If K is any other maximal subgroup of G, and K does not contain Ω, then
K lies in Class S .
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2.3 Preliminary arguments concerning maximality

In this section we shall work through Classes C1 to C8, and establish some
generic results concerning maximality in dimension up to 12. In particular,
if it is possible to prove that groups of one type are or are not contained in
groups of some other type, without needing to use arguments that depend on
specific dimensions, then we shall do so here. This will greatly shorten our
arguments in the next chapter, where we consider one dimension at a time.
Recall throughout our dimension restrictions in Definition 1.6.20: although the
classical groups can arise in dimensions not covered by our Cases (e.g. Ω5(q))
they are either isomorphic to classical groups which we are considering or, in
the case of Ω+

8 (q) only, the maximal subgroups of all almost simple extensions
of Ω have already been classified (in [62]).

Recall Definition 1.6.19 of Ω, and the dimension restrictions in Defini-
tion 1.6.20. We also remind the reader that the files of Magma calculations
that we refer to are available on the webpage

http://www.cambridge.org/9780521138604.

2.3.1 Reducible groups

Recall Definition 2.2.1 of the C1-subgroups, their types as given in Table 2.2,
and their structures in the quasisimple group Ω as in Table 2.3.

Proposition 2.3.1 Let n � 12, let H � Ω be of type Pk, where 1 � k � n/2
and Ω is the quasisimple group in Case L, U, S or Oε. Let G be almost simple
with socle Ω, and let HG be the C1-subgroup of G of type Pk. Then H is the
stabiliser in Ω of a totally singular k-space W and the following hold:

(i) The group H is maximal amongst the geometric subgroups of Ω unless
Ω = Ω+

n (q) and k = n/2− 1.
(ii) If Ω = Ω+

n (q) and k = n/2− 1, then HG is non-maximal in every G such
that G � O+

n (q).K, where K = 〈φ〉 if q is even, K = 〈δ, φ〉 if q is odd and
n(q − 1)/4 is odd, and K = 〈δ′, δ, φ〉 if q is odd and n(q − 1)/4 is even. If
O+

n (q) � G � PCΓO+
n (q) but G �� O+

n (q).K then HG is maximal amongst
the geometric subgroups of G.

Proof By definition of type Pk, the group H is the stabiliser of a totally sin-
gular k-space, and so contains a Sylow p-subgroup P of Ω by Lemma 2.2.2 (iii).
By Theorem 2.2.19, no member of C2 ∪ · · · ∪ C8 contains such a subgroup, as
none of them has order divisible by |P |. Thus if H < K < Ω for some geometric
subgroup K, then without loss of generality K ∈ C1.

Groups of type Gk⊕Gn−k or Gk ⊥ Gn−k do not have order divisible by |P |.
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The natural module for groups of type Pm,n−m (which only occur in Case L)
has composition factors of dimension m,m, n− 2m, and so such groups cannot
contain H, whose natural module has composition factors of dimension k and
n− k. So K = NΩ(W1) for some totally singular m-space {0} �= W1 < V .

Since n � 2, and n � 10 in Case O+, by Lemma 2.2.2 (i),(ii) the subgroup
P of H fixes a unique 1-dimensional totally singular subspace 〈v〉, which is a
term in the unique maximal flag that P stabilises if Ω �= Ω+

n (q), and in both
such flags in Case O+. Therefore 〈v〉 � W and 〈v〉 � W1, so W1∩W �= {0}. The
group SL(W ) is a subgroup of HW by Lemma 2.2.2 (iv), so HW is irreducible
on W , and so W < W1. In Case L the group H acts as GL(V/W ) on V/W ,
and hence acts irreducibly on V/W by Proposition 1.12.2, a contradiction. This
completes Case L.

In Cases S, U and Oε, the fact that W1 is totally singular and W < W1

implies that W1 < W⊥. Therefore H stabilises W1/W < W⊥/W , and hence
acts reducibly on W⊥/W . By Lemma 2.2.2 (v) there exist two subspaces X and
Y of V such that Y is a totally singular k-space, W ⊕Y is non-degenerate and
X = (W⊕Y )⊥. HenceX∩W = {0} andX � W⊥, and soW⊥ = W ⊥ X. Then
Ω(X) � HX and HW⊥/W is reducible so, by Proposition 1.12.2, dim(X) = 2
and Ω = Ωε

n(q).
Suppose finally that dim(X) = 2 and Ω = Ωε

n(q). Then n is even and
dim(W ) = n/2 − 1. Since W < W1 and W1 is totally singular, the only pos-
sibility is dim(W1) = n/2, and so ε = +. The proper containment of H in
two copies of Pn/2 in Case O+ is discussed in [66, Prop 6.1.1]. Let H sta-
bilise W := 〈e1, . . . , en/2−1〉. Then H is contained in two Ω+

n (q)-classes of
groups of type Pn/2, namely the stabiliser of W1 = 〈e1, . . . , en/2〉 and W2 =
〈e1, . . . , en/2−1, fn/2〉. Each class has stabiliser K, as defined in the statement,
and outer automorphisms not in K interchange W1 and W2. The space W is
stabilised by all of PCΓO+

n (q)/O+
n (q), so the result follows.

Recall Definition 1.5.35 of the discriminant of a form.

Proposition 2.3.2 Let n � 12. In Case L, let H � Ω be of type GLk(q) ⊕
GLn−k(q). In Cases S, U and Oε, let H � Ω be the stabiliser of a k-dimensional
non-degenerate subspace W . Assume additionally that n � 4 in Cases L and
U, and that n−k � 7 in Case O±. Let G be an almost simple group with socle
Ω, and let HG be the subgroup of G of the same type as H.

(i) In Case L, if G � PΓLn(q) then HG is non-maximal in G, but otherwise
HG is maximal amongst the geometric subgroups of G.

(ii) In Cases S and U, H is maximal amongst the geometric subgroups of Ω.
(iii) In Case Oε, if (k, q, sgn(W )) �∈ {(2, 2,+), (2, 3,+)} then H is maximal

amongst the geometric subgroups of Ω. If (k, q, sgn(W )) = (2, 2,+) then
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HG is non-maximal. If (k, q, sgn(W )) = (2, 3,+) then HG is maximal
amongst the geometric subgroups of G if and only if G �� PGOε

n(q) and n
is even.

Proof Note that k < n/2 in Cases L, U, S, O◦ and O+, and k � n/2 in Case
O−. If k = 3 and Ω = Ω◦

7(q), let n1 = 4 and n2 = 3, otherwise let n1 = k

and n2 = n − k. Let V1 be the n1-dimensional space stabilised by H and let
V2 be the n2-dimensional space stabilised by H, so that V = V1 ⊥ V2. Then H
contains a subgroup L = Ω1 × Ω2 := Ω(V1)× Ω(V2).

Our assumptions on n and k imply that Ω2 is quasisimple, with the excep-
tions of (n, n2, q, Case) ∈ {(6, 4, 2,S), (4, 3, 2,U), (5, 3, 2,U), (7, 3, 3,O◦)}. We
start by considering these four exceptions.

In Sp6(2), by Theorem 2.2.19 the only possibly maximal geometric sub-
group with order divisible by |H| is SO−

6 (2) ∈ C8. However, H would have
index 12 in SO−

6 (2) ∼= U4(2):2, whereas by Theorem 1.11.2 the two conjugacy
classes of lowest index subgroups of U4(2):2 have indices 2 and greater than
12, respectively.

In SU4(2) the group H has order 648, which by Theorem 2.2.19 is not a
divisor of the order of any other geometric subgroup.

In SU5(2) with k = 2, the order of H is 3888, and by Theorem 2.2.19 the
only potentially maximal geometric subgroup of SU5(2) to have order a multiple
of |H| is of type GU1(2) ⊥ GU4(2). However, H acts irreducibly on V1 and V2

by Proposition 1.12.2, and so does not stabilise a non-degenerate 1-space.
Now consider Ω7(3) with n2 = 3. By Theorem 2.2.19, all geometric sub-

groups of Ω7(3) lie in C1∪C2. The group H acts irreducibly on both V1 and V2

by Proposition 1.12.2, and so does not stabilise any other subspace, so is not
contained in a member of C1. The only C2-subgroup of Ω7(3) is isomorphic to
26 :A7, which does not have order divisible by |H|. Thus H is maximal amongst
the geometric subgroups of Ω7(3).

Having dealt with these exceptional cases, Ω2 is quasisimple. Suppose, by
way of contradiction, that H � K < Ω, where K is maximal amongst the
geometric subgroups of Ω and is not of the same type as H. Note if Ω �= Ω7(q)
or n2 �= 3 then n2 > n/2.

First we prove that K �∈ C2 ∪ C4 ∪ C7. Otherwise, K = ΩD, where D is
either a direct sum decomposition V = W1⊕· · ·⊕Wt or a tensor decomposition
W1 ⊗ · · · ⊗Wt. Here 1 < t � n � 12, whilst dim(Wi) is a proper divisor of n
for 1 � i � t. By Theorem 1.11.2, since Ω2 is quasisimple P (Ω2) > n unless
Ω2

∼= Ω3(q) � Ω7(q) for q ∈ {5, 7, 9}.
Considering these three exceptions, note that C4 and C7 are void in Ω7(q).

If V1 is of + type then Ω1×Ω2
∼= 2.L2(q)

2×L2(q) � H, which is not a subgroup
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of 26 :S7 for q ∈ {5, 7, 9}. If V1 is of − type then L2(q2)× L2(q) � H, which is
not a subgroup of 26 :S7.

Having dealt with these exceptions, we deduce that Ω2 and Ω2 are not
subgroups of St. Since Ω2 is quasisimple, Ω2 � Ω(D), the pointwise stabiliser
of {W1, . . . ,Wt}. Hence dim(Wi) � Rp(Ω2) for some i with 1 � i � t. If
Ω �= Ω◦

n(q) then Rp(Ω2) = n2 by Theorem 1.11.5. Therefore dim(Wi) | n and
dim(Wi) � n2 > n/2, a contradiction. So Ω = Ω◦

n(q). If n = 7 or 11 then the
only imprimitive decompositions are 1-dimensional, so Ω(D) cannot contain Ω2.
Otherwise, n = 9 and Rp(Ω2) � 4 > 3, a contradiction.

Next we show that K �∈ C3. Otherwise, Ω2 � Γ, where Γ is a C3-subgroup
of degree n/s for some prime divisor s of n. Since Ω2 is quasisimple, Ω2 � K ′ �
GLn/s(qs). In Cases L, U, S and O±, since Rp(Ω2) = n2 by Theorem 1.11.5,
it follows that n2 � n/s, contradicting n2 > n/2. In Case O◦ if n = 7 or 11
then C3 = ∅. Otherwise n = 9, and we get a contradiction as before.

Next we show that K �∈ C5. Otherwise Ω2 � Ω∞
q0

, where Ω∞
q0

is a quasisimple
subfield group over Fq0 , and in Ω7(q) if n1 = 4 then Ω1 � Ω∞

q0
as well. Now,

Ω1 and Ω2 are both subgroups of H, acting naturally on V1 < V and V2 < V .
Furthermore at least one of Ω1 and Ω2 has dimension at least 4 in Case Oε.
Thus in all cases the traces of elements of H∞ are all elements of Fqu by
Proposition 1.12.7 (u = 2 in Case U, 1 otherwise), contradicting the fact that
all elements of Ω∞

q0
have traces in Fq0 .

Suppose next that K ∈ C6. Then n = rb ∈ {4, 5, 7, 8, 9, 11} with r a prime
divisor of qu − 1, the group Ω �= Ωε

n(q), and if Ω = Spn(q) then n = 8 (since
n � 6 for H to be defined), all from Table 2.9. Since Ω2 is quasisimple and the
only non-abelian composition factor of K is a subgroup of PGL2b(r), there is
a non-trivial representation ρ such that Ω2ρ � PGL2b(r), and the possibilities
for n imply that 2b � 6. Given n2 � 3, with n2 > n/2 in Cases L and U
and n2 = 6 in Case S, Theorem 1.11.7 shows that the only possibilities are
Ω2 = SL3(2), SL3(4), SU3(3), SU4(2) or SU4(3). If Ω2 = SL3(2) then there are
no C6-subgroups as they require q ≡ 1 mod r. If Ω2 = SL3(4) then r = 3 but
n ∈ {4, 5} is not a power of 3, a contradiction. If Ω2 = SU3(3) or SU4(3) then
Theorem 1.11.7 states that Rp′(Ω2) = 6, forcing b � 3, so n = rb � 8 � 2n2, a
contradiction. Finally, if Ω2 = SU4(2) then r = 3, and hence n is a power of 3.
However, 5 � n � 7, a contradiction.

Next we prove that K �∈ C8. Suppose otherwise, so Ω = SLn(q) or Spn(q).
In Case L, K consists of isometries of a non-degenerate unitary, symplectic or
quadratic form κ. Since n2 > 2, the only SL(V2)-invariant form on V2 is the
zero form, so V2 must be totally singular with respect to κ, but dim(V2) > n/2,
a contradiction. If C8 �= ∅ in Case S then q is even and K = NΩ(Q) for
some quadratic form Q whose bilinear form is equal to the symplectic form
f . The space (V2, f) is non-degenerate, so by definition the space (V2, Q) is
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also non-degenerate. Therefore Ω2 = Spn2
(q) � GO±

n2
(q), a contradiction as

|Spn2
(q)| > |GO±

n2
(q)| for n2 � 4.

Finally, consider K ∈ C1. In Case L, the group K is not of type Pj,n−j for
any j, as then the natural module for K has composition factors of dimension
j, j, n−2j, whereas the natural module for H has composition factors of dimen-
sion k and n− k. Similarly K is not of type GLj(q)⊕GLn−j(q) for any j �= k.
However, H is contained in the parabolic subgroup Pk that stabilises V1, and
is also contained in the conjugate P γ

k that stabilises V2 in SLn(q). Therefore H
is indeed non-maximal in SLn(q). We note that γ interchanges the stabilisers
of V1 and V2, so the extension of H by γ is not contained in the normaliser of
Pk or of P γ

k , and hence is maximal amongst the geometric subgroups.
In Cases S and U if K ∈ C1 then H fixes some non-zero proper subspace

of V other than V1 and V2. However, by Proposition 1.12.2 the groups Ωi act
irreducibly on Vi for i = 1, 2, a contradiction.

In Case Oε the group Ω2 acts irreducibly on V2 by Proposition 1.12.2, so
if K ∈ C1 then HV1 must act reducibly on V1. Now, HV1 ∼= GO(V1), so by
Proposition 1.12.2 the group HV1 ∼= GO+

2 (q) for q � 3. These two exceptions
are discussed in [66, Proposition 6.1.2], where it is shown that if q = 2 then
K is the stabiliser of a non-singular vector in V1, whilst if q = 3 then K is
the stabiliser of a non-singular vector of either square or non-square norm (two
groups). In both cases, the containment of H in K is easily shown to be proper
for n � 10. In the latter case, if n is even then a novel maximal subgroup may
arise under the diagonal automorphism which multiplies the form by a non-
square, as this interchanges the two choices for K whilst normalising H.

Recall that the C1-subgroup of type Spn−2(q) only occurs when Ω = Ω±
n (q)

and q is even, and that Case O+ requires n � 10.

Proposition 2.3.3 If H < Ω is of type Spn−2(q) in Case O± with n � 12,
then H is maximal amongst the geometric subgroups of Ω.

Proof The proof is similar to that of Proposition 2.3.2. Now, q is even and

Ω ∈ {Ω−
8 (q),Ω±

10(q),Ω
±
12(q)},

so C4 ∪ C6 ∪ C7 ∪ C8 = ∅, by Theorem 2.2.19. Since n − 2 � 6 the group
H ∼= Spn−2(q) is simple. Assume by way of contradiction that H < K < Ω,
where K is maximal amongst the geometric subgroups of Ω.

We show first that K �∈ C1. The group H fixes a unique non-singular 1-
space, W , and acts as Spn−2(q) on W⊥/W . Suppose K = NΩ(U) for some
{0} < U < V . If U is non-degenerate, then the largest possible non-abelian
composition factor of K is Ω±

n−2(q), which is smaller than Spn−2(q). Thus U
is totally singular, of dimension k say, and as a K-module, V has composition
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factors of dimension k (twice), and n− 2k (or possibly 1, 1 if n− 2k = 2). Thus
U is a totally singular 1-space, but then again the largest composition factor
of K is Ω±

n−2(q).
We show next that K �∈ C2. Note that n−2 ∈ {6, 8, 10}, so P (Spn−2(q)) > n

by Theorem 1.11.2. Thus, if K ∈ C2 then Spn−2(q) lies in the kernel of the block
action. This contradicts Theorem 1.11.5, which states that R2(Spn−2(q)) =
n− 2 > n/2. Similarly, K �∈ C3, for otherwise R2(K ′) � n/2.

Finally, K �∈ C5, for otherwise K∞ ∼= Ω±
n (q0) for some proper divisor q0 of

q. A short calculation shows that the 2-part of |K∞| is less than that of |H|, a
contradiction.

Proposition 2.3.4 Let 3 � n � 12, let G be almost simple with socle Ln(q),
and let H < SLn(q) and HG < G be of type Pk,n−k. If G � PΓLn(q) then HG

is non-maximal in G. However, if G �� PΓLn(q) then HG is maximal amongst
the geometric subgroups of G.

Proof Here H = NSLn(q)(V1, V2), where dim(V1) = k for some k < n/2,
dim(V2) = n− k, and V1 < V2. Now H contains a Sylow p-subgroup of SLn(q),
and as in Proposition 2.3.1 we deduce that if there exists a geometric group
K with H < K < SLn(q) then K is of type Pj for some j. Since the only
proper non-trivial subspaces stabilised by H are V1 and V2, the group K is
the stabiliser in SLn(q) of V1 or V2. The group H is normalised by the duality
automorphism, whereas the two choices for K are conjugate under γ, so H

extends to a group that is not contained in any geometric subgroup.

Since the C1-subgroups occur in every dimension, we make the following
definition for the sake of brevity in the next chapter. We shall in fact prove
that in dimension up to 12 all such groups have standard reducible behaviour.

Definition 2.3.5 Let Ω be a quasisimple group in Case L, U, S or Oε, and let
G be almost simple with socle Ω. The group Ω has standard reducible behaviour
if the following hold:

(i) In Case L, if H < SLn(q) is of type Pk, then H is maximal amongst the
geometric subgroups of SLn(q). In Case L, if HG < G is of type Pk,n−k

or type GLk(q)⊕GLn−k(q), then HG is maximal amongst the geometric
subgroups of G if and only if G �� PΓLn(q).

(ii) In Cases U and S, if H < Ω is of one of the types listed in Table 2.2, then
H is maximal amongst the geometric subgroups of Ω.

(iii) In Cases O◦ and O−, if H < Ω is of type Pk, then H is maximal amongst
the geometric subgroups of Ω.

(iv) In Case O+, if H < Ω is of type Pk, and k �= n/2− 1, then H is maximal
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amongst the geometric subgroups of Ω. Let K be as given in Proposi-
tion 2.3.1 (ii). (That is, K = 〈φ〉 if q is even, K = 〈δ, φ〉 if q is odd and
n(q − 1)/4 is odd, and K = 〈δ′, δ, φ〉 if q is odd and n(q − 1)/4 is even.)
In Case O+ if HG < G is of type Pn/2−1, then HG is maximal amongst
the geometric subgroups of G if and only if G �� O+

n (q).K.
(v) In Case Oε, if H < Ω is of type GOε1

k (q) ⊥ GOε2
n−k(q), and (k, q, ε1) �∈

{(2, 2,+), (2, 3,+)}, then H is maximal amongst the geometric subgroups
of Ωε

n(q). In Case Oε, if HG < G is of type GO+
2 (2) ⊥ GOε2

n−2(2), then HG

is not maximal. In Case Oε, if HG < G is of type GO+
2 (3) ⊥ GOε2

n−2(3)
then HG is maximal amongst the geometric subgroups of G if and only if
n is even and G �� PGOε

n(3) = Oε
n(3).〈δ′, γ〉.

(vi) In Case O±, if H < Ω is of type Spn−2(q), then H is maximal amongst
the geometric subgroups of Ω±

n (q).

2.3.2 Imprimitive groups

In this section we prove various preliminary results about the maximality of
groups in Class C2. Recall the types of C2-subgroups, as given in Table 2.4, and
their structures as given in Table 2.5.

Proposition 2.3.6 Let H be a C2-subgroup of Ω, of one of the following
types:

(i) GL1(2) � Sn, in Case L;
(ii) GL1(3) � Sn, in Case L;
(iii) GL1(4) � Sn, in Case L;
(iv) GL2(2) � Sn/2, in Case L;
(v) GU2(2) � Sn/2, in Case U;
(vi) Sp2(2) � Sn/2, in Case S;
(vii) GO+

2 (2) � Sn/2, in Case O+;
(viii) GO+

2 (3) � Sn/2, in Case O+;
(ix) GO+

2 (4) � Sn/2, in Case O+;
(x) GO3(3) � Sn/3, in Case Oε;
(xi) GO+

4 (2) � Sn/4, in Case O+.

The group of type GL1(2)�S3 is equal to the C1-subgroup of type GL1(2)⊕GL2(2)
of SL3(2), and will be considered as such. The group of type GL1(3) �S3 is equal
to the C8-subgroup SO3(3) of SL3(3), and will be considered as such. The group
of type GL1(4) � S2 is equal to the C8-subgroup GU2(2) of SL2(4), but will be
considered as a C2-subgroup. For all other choices of H from the above list, the
group H is non-maximal in Ω and does not extend to a novel maximal subgroup
in any extension of Ω.
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Note: There is an additional equality, Sp2(2) �S2 = GO+
4 (2), but we assume

that Ω �= Sp4(2) since Sp4(2) is not quasisimple.

Proof We consider each possible H in turn. In each part, let HG be the sub-
group of the general group that is of the same type as H.
(i) The group GL1(2) is trivial, so H is equal to Sn acting via permutation
matrices. Thus H fixes v = (1, 1, . . . , 1), and also the (n−1)-dimensional space
consisting of all even weight vectors. Thus if n is even then H � P1,n−1 � P1,
as v has even weight, and if n is odd then H � GL1(2)⊕GLn−1(2) < P1. The
order of H is n!, whilst |P1,n−1| = 22n−3.|SLn−2(2)| and |GL1(2)⊕GLn−1(2)| =
|GLn−1(2)|, so it is straightforward to check that H is contained in P1,n−1 or
GL1(2) ⊕GLn−1(2), and that this containment is proper if and only if n > 3.
Here H, P1,n−1 and GL1(2) ⊕ GLn−1(2) are all normalised by the inverse-
transpose automorphism, so if n > 3 then H does not extend to a novelty.
(ii) The group HG is isomorphic to 2�Sn, and if HG is constructed as a standard
wreath product then HG consists of isometries of the bilinear form with matrix
In, and hence is contained in K := GOn(3, In). A straightforward calculation
using Theorem 1.6.22 shows that this containment is proper if and only if n > 3,
so when n = 3 we shall consider H as a C8-subgroup. Since g ∈ K if and only
if ggT = In, the inverse-transpose automorphism centralises K. Thus if n > 3
then H does not extend to a novelty.
(iii) The group HG is isomorphic to 3 � Sn, so if HG is the standard wreath
product then HG consists of isometries of the unitary form with matrix In
(our standard form), and hence is contained in GUn(2). A straightforward
calculation using Theorem 1.6.22 shows that this containment is proper if and
only if n > 2. A short calculation shows that all elements of 〈φ, γ〉 normalise
both this copy of GUn(2) and HG, since if g ∈ GUn(2) then ggφT = In, and
HG consists of the set of all monomial matrices. Thus if n > 2 then H does not
extend to a novelty.
(iv) The groups GL2(2) and Sp2(2) are equal, so the standard copy of H con-
sists of isometries of a symplectic form with matrix J , where J is a direct sum
of n/2 copies of antidiag(1, 1). One may easily check that H is properly con-
tained in Spn(2, J) for all n, using Theorem 1.6.22. The only non-trivial outer
automorphism of Ln(2) is the duality automorphism. One may check that the
inverse-transpose automorphism normalises Spn(2, J), since J = J−1, and that
this automorphism also normalises this copy of H, since H consists of all matri-
ces with one non-zero 2× 2 block in each pair {2i− 1, 2i} of rows and columns.
Thus H does not extend to a novelty.
(v) The group HG is isomorphic to GU2(2) � Sn/2. A straightforward Magma

calculation (file Chap2calc) shows that the group GU2(2, antidiag(1, 1)) (which
is Magma’s copy of GU2(2)) fixes an imprimitive decomposition, into a sum of
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two non-degenerate 1-spaces X ⊥ Y . Our standard copy of GU2(2) has form I2,
and is generated by antidiag(1, ω2) and antidiag(1, 1) (where ω is a primitive
element of F×

4 ), so that HG is a subgroup of the group of type GU1(2) �Sn, and
it is easy to check that this containment is proper. It is clear that GU1(2) � Sn

and GU2(2, I2) are normalised by φ, so H does not extend to a novelty.
(vi) The groups Sp2(2) and GO−

2 (2) are equal, so H consists of isometries of a
quadratic form (whose sign, ε, depends on whether n/2 is even or odd). It is
straightforward to check that H is properly contained in GOε

n(2) if and only if
n > 4 (but recall that we exclude Sp4(2) from our calculations since it is not
quasisimple). Since Spn(2) has trivial outer automorphism group, H does not
extend to a novelty.
(vii) The group HG is equal to GO+

2 (2) �Sn/2. The standard copy of GO+
2 (2) is

generated by a reflection in e1 + f1, and so is reducible. Thus HG is reducible,
and a relatively straightfoward calculation shows that HG is properly contained
in a C1-subgroup of GO+

n (2). Furthermore, since n � 10, Aut Ω+
n (2) = GO+

n (2),
so H does not extend to a novelty.
(viii) The group HG is equal to GO+

2 (3) �Sn/2. A short Magma calculation (file
Chap2calc) shows that our standard copy of GO+

2 (3) is completely reducible,
and fixes non-degenerate 1-spaces E1 := 〈e1+f1〉 and E2 := 〈e1−f1〉. It follows
that HG is contained in a C2-subgroup K that is the stabiliser in GO+

n (3) of
a decomposition V = V1 ⊕ V2 with V1 = 〈e1 + f1, e2 + f2, . . . , en/2 + fn/2〉 and
V2 = 〈e1 − f1, e2 − f2, . . . , en/2 − fn/2〉. It is straightforward to check that the
Vi are both of type − if n ≡ 4 mod 8, both of type + if n ≡ 0 mod 8, and are
similar but non-isometric if n ≡ 2 mod 4, and that all of these containments are
proper, since n � 10. The automorphism δ of GO+

2 (3) has standard representa-
tive D2 = diag(−1, 1), and extends GO+

2 (3) to an irreducible but imprimitive
group, interchanging E1 and E2. The matrix Dn := diag(−1, . . . ,−1, 1, . . . , 1)
induces the δ automorphism of GO+

n (3) and acts on each 2-space 〈ei, fi〉 as D2.
Therefore Dn preserves the imprimitive decomposition V1 ⊕ V2, so H does not
extend to a novelty.
(ix) Let D be the decomposition preserved by HG. Consulting Table 2.8, we see
that our standard copy of GO+

n (4) contains a C5-subgroup naturally isomorphic
to our standard copy of GO+

n (2), and that there exists a nonstandard copy of
GO+

n (4) which contains a C5-subgroup naturally isomorphic to our standard
copy of GO−

n (2). Fix these two versions of GO+
n (4). If n/2 is odd then let

K = GO−
n (2), and otherwise let K = GO+

n (2). Now, K contains a C2-subgroup
L of type GO−

2 (2) �Sn/2, preserving a decomposition Fn
2 = W = V1⊕· · ·⊕Vn/2,

with each Vi of minus type. By Proposition 1.5.42, the form with the same
matrix on Vi is of +-type when Vi is extended to an F4-space, so without loss
of generality, V = V1F4⊕ · · · ⊕ Vn/2F4 is the same decomposition D. Therefore
L � H. However, GO+

2 (4) ∼= GO−
2 (2), so in fact L = HG, and hence HG and
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HΩ = 1
2HG (the unique index 2 subgroup of HG) are non-maximal. The only

remaining automorphism of Ω+
n (4) is φ (note that since the nonstandard form

of + type is written over F2 we can still use the standard copy of φ). Now, φ
centralises K and hence centralises H, so no extension of H is maximal.
(x) The group HG is equal to GO3(3) � Sn/3. A straightforward Magma calcu-
lation (file Chap2calc) shows that our standard copy of GO3(3) consists of the
set of all monomial matrices and, since our standard form is the identity ma-
trix, the standard basis vectors span non-degenerate 1-spaces. Therefore, HG

is (properly) contained in GO1(3) �Sn, again preserving the identity form (note
that if n is even we require the discriminant of Ω to be square). If n is odd then
PGOn(3) = Aut Ωn(3), and if n is even then there are two GO±

n (3)-classes of
groups of type H, interchanged by all elements of CGO±

n (3) \ GO±
n (3), so in

neither case does H extend to a novelty.
(xi) The group HG is equal to GO+

4 (2) � Sn/4. A Magma calculation (file
Chap2calc) shows that GO+

4 (2) is imprimitive, preserving a decomposition into
two non-degenerate 2-spaces of minus type. Thus HG is properly contained in
GO−

2 (2) � Sn/2. Since Aut Ω+
n (2) = GO+

n (2), no extension of H is maximal.

Recall the definitions of T , L, N , Gi and Ωi, given in Subsection 2.2.2.

Lemma 2.3.7 Let 4 � n � 12, and let H be a C2-subgroup of Ω, preserving
a decomposition D : V = V1 ⊕ · · · ⊕ Vt with dim(Vi) = m, with dimension
restrictions as in Definition 1.6.20.

(i) Assume that t = 2 and Ω1 is perfect and, if n = 4 and Ω = SUn(q) or
Spn(q), then assume that the decomposition is into non-degenerate sub-
spaces. Then V1 and V2 are the only irreducible N -submodules of V .

(ii) If t � 3 and G1 �∈ {GL1(2),GO+
2 (2),GO+

2 (3)}, then V1, . . . , Vt are the
only irreducible L(D)-submodules of V .

(iii) Assume that t = 2 and Ω1 × Ω2 is perfect and, if Ω = Ω+
n (q) and n ≡

2 mod 4, then H is not of type GLn/2(q).2. If there exists K < Ω with
H � K then K �∈ C1. If, in addition, H is not of type GO◦

n/2(q)
2, then H

is irreducible.
(iv) If t � 3 and G1 �∈ {GL1(2),GO+

2 (2),GO+
2 (3)}, then L, and hence H, is

absolutely irreducible.
(v) If t � 5, G1 �∈ {GL1(2),GO+

2 (2),GO+
2 (3)}, and there exists K < Ω such

that H � K, then K �∈ C3.
(vi) If t = 4 and Ω �∈ {SL4(2),SL4(3)} then H ′ is absolutely irreducible. If in

addition there exists K < Ω with H � K then K �∈ C3.
(vii) Assume that t = 2, the decomposition is into two totally singular sub-

spaces, and H is insoluble. In Cases U, S or Oε, if there exists K < Ω
with H � K, then K �∈ C3.
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Proof (i) By assumption, Ω1 and Ω2 are perfect, and they are irreducible by
Proposition 1.12.2. Therefore V1 and V2 are irreducible. If N = Ω1 × Ω2 then
V1 and V2 are non-isomorphic N -modules. If N ∼= Ω1 then the decomposition is
into totally singular subspaces, so N acts on V1 as SLn/2(qu). As an N -module
V2

∼= V σ∗
1 by Lemma 2.2.2 (vi). Since n > 4, as N -modules V1 �∼= V σ∗

1 , and
hence by Lemma 1.8.11 they are the only N -submodules of V .
(ii) Lemma 2.2.4 (iv) states that the Vi are pairwise non-isomorphic as L(D)-
submodules whenever G1 �= GL1(2). If also G1 �= GO+

2 (2),GO+
2 (3) then the Vi

are irreducible L(D)-submodules. As in Part (i) this implies the required result.
(iii) Suppose that H acts reducibly on V . Assume first that either n > 4, or
Ω = SLn(q), or the decomposition is into non-degenerate subspaces. Then by
Part (i), any N -invariant non-trivial proper subspace of V is equal to V1 or V2,
so without loss of generality H is contained in the stabiliser in Ω of V1. If H is
not of type GLn/2(q).2 in Case O+ with n ≡ 2 mod 4, or of type GO◦

n/2(q)
2,

then H contains an element interchanging V1 and V2, a contradiction. If H
is of type GO◦

n/2(q)
2, then V1 and V2 are non-degenerate and non-isometric.

Looking at the types of reducible groups in Table 2.2, we see that there is no
group K stabilising such a pair of subspaces, so if H � K < Ω then K �∈ C1.

If Ω = Sp4(q) or SU4(q), and the decomposition is into totally singular
subspaces, we need a more detailed argument, which we present only for the
symplectic case: the unitary case is similar. Note that q > 2 by assumption that
N is perfect. The group H contains subgroups T ∼= SL2(q) and S ∼= GL2(q).
With respect to our standard symplectic basis, the standard block decomposi-
tion may be chosen to be V1 ⊕ V2 = 〈e1, e2〉 ⊕ 〈f2, f1〉. For all x ∈ GL2(q), the
group S contains elements which act as x on V1 and as a conjugate of x−T on
V2. Thus V1 and V2 are non-isomorphic as S-submodules, and hence are the
only irreducible T -submodules of V . Since H contains an element interchanging
V1 and V2, it follows that H is irreducible.
(iv) By Lemma 2.2.4 (iv), the L(D)-modules Vi are pairwise nonisomorphic,
since if t = 3 then m � 2. The group LVi

(D) is equal to Gi for all i, by
Lemma 2.2.4 (iii). It follows from Part (ii) and the transitivity of At that L
is irreducible when Gi �∈ {GL1(2),Ω+

2 (2),Ω+
2 (3)}. To see that L is, in addition,

absolutely irreducible in these cases, let g ∈ CGLn(qu)(L). Since g centralises
the absolutely irreducible group LVi

Vi
for 1 � i � t, the restriction of g to each Vi

is a scalar from GLm(qu). Since LD is transitive on {V1, . . . , Vt}, these scalars
must all be equal and so g ∈ Z(GLn(qu)). Hence L is absolutely irreducible.
(v) If K is a C3-subgroup of Ω, then K ′ is not absolutely irreducible. If H � K

then L′ � K ′. However, n � t � 5, so L is perfect and absolutely irreducible
by Part (iv).
(vi) In Case O± we deduce from Table 2.4 that m � 3. The derived group of H
acts on D as A4, so if g ∈ Ω1, then diag(g, g−1, g−1, g),diag(g, g, g−1, g−1) ∈ H ′,
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where Ω1 is one of SLm(q), SUm(q), Spm(q) or Ωε
m(q). We are assuming that

(m, q) �∈ {(1, 2), (1, 3)} in Case L, so Ω1 contains elements of order greater
than 2. Thus the Vi are pairwise nonisomorphic as (H ′)D modules, so as in
Part (iv) we conclude that H ′ is absolutely irreducible on V , and hence H is
not contained in a C3-subgroup.
(vii) Suppose that K is semilinear, preserving a field extension of degree s. The
group H∞ is isomorphic to SLn/2(q) or SLn/2(q2), so it follows from Proposi-
tion 1.11.3 and Theorem 1.11.5 that s = 2, and in particular that Ω �= SUn(q). If
Ω = Spn(q) then K∞ ∼= SUn/2(q) or Spn/2(q2), contradicting Theorem 1.6.22.
Similarly, if Ω = Ωε

n(q) then K∞ ∼= SUn/2(q) or Ωε1
n/2(q

2), and again we con-
tradict Theorem 1.6.22.

The next lemma is concerned with whether one type of C2-subgroup can
contain another.

Lemma 2.3.8 Let n � 12 be as in Definition 1.6.20, and let H be a C2-
subgroup of Ω, preserving a decomposition D into t subspaces of dimension m.

(i) Assume that t � 5 and G1 �∈ {GL1(2),GO+
2 (2),GO+

2 (3)}. If there exists
K � Ω with H � K, and K ∈ C2 preserves a decomposition D1 into t1
subspaces, then t1 � 5.

(ii) Assume that t = 2, n � 6, and Ω �= SU6(2). If there exists K � Ω with
H � K, then K is not a C2-subgroup of a different type from H.

Proof (i) Suppose that H � K, and that 2 � t1 � 4. The group L is perfect
by Lemma 2.2.4 (ii), so L � K∞ � K(D1). However, K(D1) is reducible, whereas
L is irreducible by Lemma 2.3.7 (ii), a contradiction.
(ii) Suppose otherwise, and letK preserve a decompositionD1 into t1 subspaces.

We deal first with SL8(2). If t1 = 8 then K is reducible, but L is irreducible
by Lemma 2.3.7 (iii). If t1 = 4 then K is soluble, but H is insoluble.

Now consider the general case. Let X and N be as in Subsection 2.2.2.
If N �� K(D1) then there is a non-trivial homomorphism from N into St1 .
The group X is either Ln/2(qu) for u ∈ {1, 2} or Sn/2(q)

′ or Un/2(q), all with
n/2 � 3, or Oε1

n/2(q) with n/2 � 5. By Theorem 1.11.2, if P (X) � n � 12
and Ω �= SL8(2) then X = S4(2)′ ∼= A6 in Sp8(2), or X = Ω+

6 (2) ∼= L4(2) in
Ω+

12(2). In Sp8(2) the only other C2-subgroup is soluble. If X = Ω+
6 (2) then

P (X) = 8 by Theorem 1.11.2, but in Ω+
12(2) there is no C2-decomposition into

more than six blocks. Thus in all remaining cases N � K(D1), contradicting
Lemma 2.3.7 (i).

Next we consider whether C2-subgroups can be contained in C4-subgroups.

Lemma 2.3.9 Let n � 12 be as in Definition 1.6.20, and let H be a C2-
subgroup of Ω, preserving a decomposition D into t subspaces of dimension m.
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Assume that H(D) is insoluble. If there exists a subgroup K of Ω such that
H � K, where K is a C4-subgroup preserving a decomposition into spaces of
dimension m1 and m2, then m1,m2 > m.

Proof The group K∞ is isomorphic to Ω1 ◦ Ω2, where Ω1 acts on the tensor
factor of dimension m1 and Ω2 acts on the tensor factor of dimension m2, and
we assume without loss of generality that m1 > m2. We assume at least one of
m1 and m2 are less than or equal to m and derive a contradiction.

First assume that H is not of type GLn/2(q2).2 (Case U) or GLn/2(q).2
(Cases S and O+). Then T := H∞

D ∼= Ωt
3, where Ω3 is one of SLm(q), SUm(q),

Spm(q)′ or Ωε
m(q). Assume first that every direct factor of T projects non-

trivially onto Ω1. Since Ω3 is quasisisimple, this implies that |Ω3|t divides |Ω1|.
Calculating the p-part of the order of Ωt

3 and Ω1 shows that this is impossible.
Thus one direct factor, say S, of T has trivial image in Ω1, and so is a subgroup
of Ω2. Now, Ω2 acts homogeneously, with V splitting as a direct sum of m1

isomorphic irreducible Ω2-submodules each of dimension m2. Thus V must
split into a direct sum of m1 > 1 isomorphic S-submodules, and so the only
possibility is that H is of type GO+

4 (q) �Sn/4 and K is of type Sp2(q)⊗Spn/2(q).
At most one copy of SL2(q) can project non-trivially onto the factor Sp2(q),
which implies that a covering group of L2(q)

n/2−1 must embed in Spn/2(q),
contradicting Proposition 1.11.3 and Lemma 1.11.8.

Assume instead that H preserves a decomposition into two totally singular
subspaces, so that H∞ ∼= SLn/2(q2) or SLn/2(q). The unique non-abelian com-
position factor of H is larger than either of the non-abelian composition factors
of K, a contradiction.

Lemma 2.3.10 Let n � 12 be as in Definition 1.6.20, and let H be a C2-
subgroup of Ω, preserving a decomposition D into t subspaces of dimension m.
Assume that there exists a subgroup K of Ω with H � K, and assume also that
H is not one of the non-maximal groups listed in Proposition 2.3.6.

(i) If t � 5 then K �∈ C5.
(ii) Suppose that one of the following holds: Ω = SLn(q) and m � 2; Ω =

SUn(q), m � 2, D is a decomposition into non-degenerate subspaces, and
(m, q) �∈ {(2, 2), (2, 3), (3, 2)}; Ω = Spn(q) and D is a decomposition into
non-degenerate subspaces; Ω = Ωε

n(q) and m � 3. Then K �∈ C5.
(iii) Suppose that D is a decomposition into 2 totally singular subspaces. Sup-

pose also that Ω �= SLn(q) or SU4(q). Then K �∈ C5.

Proof Note that our assumptions on t and m ensure that n � 4 throughout,
that Ω �∈ {SU4(2),SU4(3)}, and that Ω �= SU6(2) in Part (ii).

Recall Definition 2.2.11 of the C5-subgroups. Let K ∈ C5. Then in Case L,
K∞ ∼= SLn(q0) for some subfield Fq0 ⊂ Fq of prime index. In Case U, either



2.3 Preliminary arguments concerning maximality 89

K∞ ∼= SUn(q0) for Fq0 a subfield of Fq of odd prime index, or K∞ ∼= Ωε
n(q) (q

odd), or K∞ ∼= Spn(q) or Sp4(2)′. In Case S, K∞ ∼= Spn(q0) or K∞ ∼= S4(2)′,
for some subfield Fq0 ⊂ Fq of prime index. In Case Oε, if K ∈ C5 then K∞ ∼=
Ωε1

n (q0) for some prime index subfield Fq0 of Fq.
(i) Recall the notation yg, G1 and L from Lemma 2.2.4 (iii). For all g ∈ G1 the
element zg := yg(2, 3, 4) = (g, g−2, g, 1, . . . , 1)(2, 3, 4) ∈ L; we calculate that
tr(zg) = tr(g) + (n− 4m). The group L is perfect so L � K∞.

In Cases L and U there exist elements of G1 = GL±
m(q) whose trace lies

in no proper subfield of Fqu (note in Case U that GU1(q) contains elements
of trace any (q + 1)-th root of unity) . In Case S, m � 2 so the result follows
from Proposition 1.12.7 (i). In Case Oε if m = 1 then q = p, so C5 = ∅. Since
t � 5 and n � 12, we may assume that m = 2. If G1 = GO+

2 (q) then, with
respect to our standard form, G1 contains dλ = diag(λ, λ−1) for all λ ∈ F×

q ,
of trace λ + λ−1. Thus each possible trace is produced by up to two dλ, so
at least �(q − 1)/2� traces occur. This is larger than the order of any proper
subfield of Fq unless q = 4, in which case H is listed in Proposition 2.3.6. Now
consider G1 = GO−

2 (q), and let Λ = {λ ∈ Fq2 : λ(q+1)/(q+1,2) = 1}. Then
for each such λ, the group G1 contains elements of trace λ + λ−1, so at least
�(q+ 1)/(2(q− 1, 2))� traces occur. This is larger than the order of any proper
subfield of Fq unless q = 9. We check that in F81 the element λ+ λ−1, where λ
is a primitive fifth root of unity, does not lie in F3.
(ii) The restrictions on m and q imply that if C5 �= ∅ then Ω(V1) is perfect,
so that H∞ contains the perfect group Ω(V1)t. If Ω = SUn(q), assume for now
in addition that m � 3. Then, by Proposition 1.12.7 and Lemma 1.12.8, for a
suitable choice of basis, H∞ contains elements d := diag(a, Im, . . . , Im) where
the set of possible traces of a ∈ Ω(V1), and hence the set of possible traces of
d, does not lie in any proper subfield of Fqu .

We now consider m = 2 in Case U. The group H∞ contains elements
diag(α, α−1) for all non-zero (q + 1)th roots of unity, α, so at least (q + 1)/2
traces arise. Hence K is of type GOε

n(q) or type Spn(q). Let A1 be the first
direct factor of (H(D))∞, so that A1

∼= SU2(q). Since A1 is irreducible on V1, the
subspace V1 is either totally singular or non-degenerate under the symplectic
or quadratic form f for which K is a group of isometries. The group A1 acts
non-trivially on V1 whilst centralising V/V1, so V1 is non-degenerate under f . If
f is quadratic then SU2(q) � GOε

2(q), a contradiction since GOε
2(q) is soluble

whilst SU2(q) is insoluble for q > 3. As for the symplectic case, note that KV1

must act as 〈Sp2(q), Z(GU2(q))〉. If t � 3 then H contains elements that act
on V1 via elements of GU2(q) \ SU2(q), whilst centralising V3, a contradiction.
For t = 2, so that n = 4, we note that |H| = 2q2(q2 − 1)2(q + 1), whereas
|K| = (q + 1, 2)q4(q2 − 1)(q4 − 1), which contradicts Lagrange’s Theorem.
(iii) First consider Cases S and O+. If q � 3 then C5 = ∅, so assume with-
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out loss of generality that q > 3. The group H is of type GLn/2(q).2 and
N ∼= SLn/2(q). With respect to our standard forms, elements of N are block di-
agonal, with blocks A,FAγF , where F = antidiag(1, 1, . . . , 1), γ is the inverse-
transpose map, and A ∈ SLn/2(q). Let xα := diag(α, α−1, 1, . . . , 1) ∈ SLn/2(q).
Then λα := tr(diag(xα, Fx

−T
α F )) = 2α + 2α−1 + n − 4. If K ∈ C5 then there

exists a proper subfield Fq0 of Fq such that λα ∈ Fq0 for all α. For each λα ∈ Fq0

there are at most two solutions for α ∈ Fq, giving at most 2q0 traces in Fq0

as α varies. Thus if q �= 4 then it is not possible for all traces of elements of
H∞ to lie in Fq0 . If q = 4 then Ω = Ω+

n (4), and K ∈ {Ω+
n (2),Ω−

n (2)}. However,
H ∼= GLn/2(4).2, which contradicts Lagrange’s theorem.

In Case U, the group H is of type GLn/2(q2).2 and N ∼= SLn/2(q2). The
group K∞ ∈ {SUn(q0),Spn(q),Ωε

n(q)}, where Fq0 is any subfield of Fq2 of odd
prime index. With an appropriate choice of form, elements ofN are block diago-
nal, with blocks A,FAγσF , where F = antidiag(1, 1, . . . , 1) and A ∈ SLn/2(q2).

We deal first withK∞ = Spn(q). SinceK is a C5-subgroup, the groupK∞ is
a GLn(q2)-conjugate of our standard copy of Spn(q). If N = H∞ is a subgroup
of K∞, then Spn(q) contains a reducible subgroup J isomorphic to N . Since V
splits as a direct sum of two non-isomorphic N -submodules of dimension n/2,
on each of which N acts faithfully, we deduce that the same must be true for the
natural Fq-module for J . However, |SLn/2(q2)| > |GLn/2(q)|, a contradiction.

Assume now that K∞ = SUn(q0) or Ωε
n(q), so that q > 2. Let

xα :=

⎛⎜⎜⎝
α 0 0

0 0 −1

0 α−1 0

⎞⎟⎟⎠⊕ In/2−3 ∈ SLn/2(q2).

Then tr(diag(xα, Fx
∗
αF )) = α + α−q + (n − 6). If K ∈ C5 then there exists

a proper subfield Fq0 of Fq2 such that for all α ∈ F×
q2 there exists βα ∈ Fq0

with α + α−q = βα. Let α be a primitive element of F×
q2 , then since q > 2 the

sum α + α−q is not centralised by x �→ xq, so H∞ contains elements whose
trace does not lie in Fq. Thus K is not of type Ωε

n(q). If q �= 4 then the set
{βα : α ∈ F×

q } lies in no proper subfield of Fq, contradicting the fact that Fq0

must have odd index in Fq2 and hence not contain Fq. Thus q = 4. But then
q2 = 24, and Fq2 has no proper subfields of odd index, a contradiction.

Lemma 2.3.11 Let 5 � n � 12, with n as in Definition 1.6.20, and let H be
a C2-subgroup of Ω, stabilising a decomposition into n subspaces. If there exists
a subgroup K of Ω with H � K, then K �∈ C6.

Proof Suppose, by way of contradiction, that H � K for some K ∈ C6. Then
Ω = SLn(q) or SUn(q). We see from Table 2.5 that H∞ ∼= (q − 1)n−1 :An in
Case L and that H∞ ∼= (q + 1)n−1 :An in Case U.
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If n = 5 then K∞ ∼= 51+2.Sp2(5). If C6 �= ∅ and Ω = SL5(q) then q � 11. If
C6 �= ∅ and Ω = SU5(q) then q � 4. Therefore |K∞| < |H∞|, a contradiction.
If n ∈ {7, 9, 11} then |K∞| < |H∞| for all q.

Suppose finally that n = 8, so that K∞ ∼= (4 ◦ 21+6).Sp6(2). If q � 7 then
|(q− 1)7.A8| is larger than |K∞|, so without loss of generality q � 5. If C6 �= ∅
then Ω = SL8(5) or SU8(3), so H∞ ∼= 47.A8, and one may check that |H∞|
does not divide |K∞|, a contradiction.

Lemma 2.3.12 Let n � 12 be as in Definition 1.6.20 and let H be a C2-
subgroup of Ω, preserving a decomposition D : V = V1⊕· · ·⊕Vt with dimVi = m.
Assume that there exists a subgroup K of Ω, with H � K.

(i) Suppose that one of the following holds: Ω = SLn(q) with m � 2 and
(m, q) �∈ {(2, 2), (2, 3)}; Ω = SUn(q); Ω = Spn(q) with (m, q) �= (2, 2);
Ω = Ωε

n(q). Then K �∈ C8.

(ii) If t = n � 4 and q � 5, then K �∈ C8.

Proof (i) Suppose otherwise, and let f be the form for which K is a group
of similarities. If C8 �= ∅ then Ω = SLn(q) or Spn(2i). In Case S, the Vi are
non-degenerate since q is even.

Let A be the subgroup of HD consisting of elements acting non-trivially on
V1 but as scalars on V2 ⊕ · · · ⊕ Vt, so that A contains SL(V1) or Sp(V1). Since
V1 is an irreducible A-module, V1 is either non-degenerate or totally singular
under f .

Suppose first that V1 is totally singular under f . By an easy generalisation
of Lemma 2.2.2 (vi) (with V1 in place of W1), the irreducibility of the action of
A on V1 implies that A is also irreducible on a totally singular subspace W2,
such that W1 ∩W2 = {0}. This contradicts the fact that A acts as scalars on a
complement to V1.

Suppose instead that V1 is non-degenerate under f . If f is quadratic then
Spm(q) or GLm(q) � CGOε

m(q), so by Theorem 1.6.22 m = q = 2, which we
have excluded. Thus f is unitary or symplectic, and so Ω = SLn(q). Dropping
down to H∞ � K∞ we get SLm(q) � SUm(q) or SLm(q) � Spm(q), so that
m = 2. Consulting Table 2.5 we see that if t > 2 then H has a subgroup which
acts as GL2(q) on one block whilst centralising at least one other. Thus H
consist of isometries of f , and so GL2(q) is a subgroup of Sp2(q) or GU2(q), a
contradiction since q �= 2.

If t = 2, so that n = 4, then |H| = 2q2(q2 − 1)2(q − 1). If f is symplectic
then |K| = (q − 1, 2)q4(q2 − 1)(q4 − 1), forcing q ∈ {2, 3}. If f is unitary then
|K| = (4, q1/2 − 1)q3(q − 1)(q3/2 + 1)(q2 − 1), a contradiction.
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(ii) If t = n and C8 �= ∅ then Ω = SLn(q). For α ∈ F×
q , define

xα = (1, 3, 2)diag(α−1,α,1,...,1)(1, 2, 3)(2, 3, 4)

=

⎛⎜⎜⎜⎜⎝
α 0 0 0

0 0 α−2 0

0 0 0 α

0 1 0 0

⎞⎟⎟⎟⎟⎠⊕ In−4,

and note that xα ∈ L. Now tr(xα) = α+ (n− 4), and tr(x−1
α ) = α−1 + (n− 4).

Thus, by Lemma 1.12.6, if there exists α ∈ F×
q with α �= α−1, or α−1 �= α

√
q

for q square, then L is not a group of isometries of a symplectic, quadratic or
unitary form. The first condition only fails when q � 3, and the second only
when q = 4.

The preceding results allow us to prove a more general result concerning
the maximality of C2-subgroups.

Proposition 2.3.13 Let n ∈ {5, 7, 11} be as in Definition 1.6.20, and let H
be a C2-subgroup of Ω.Then H is maximal amongst the geometric subgroups of
Ω if and only if one of the following holds: Ω = SLn(q) with q � 5; Ω = SUn(q);
Ω = Ωn(q). If H is non-maximal then H does not extend to a novel maximal
subgroup.

Proof Note that H preserves a decomposition into n subspaces. The result for
q � 4 in Case L follows immediately from Proposition 2.3.6.

Assume, by way of contradiction, that there exists a geometric subgroup
K �= H of Ω with H � K. Without loss of generality, K ∈ Ci for some
1 � i � 8. It follows from Lemma 2.3.7 (iv),(v) that K �∈ C1 ∪ C3. There is a
unique type of C2-subgroup, so K �∈ C2. Since n is prime, C4 = C7 = ∅. It
follows from Lemma 2.3.10 (i) that K �∈ C5. It follows from Lemma 2.3.11 that
K �∈ C6. For C8 the result follows from Lemma 2.3.12 (ii).

2.3.3 Semilinear groups

Recall Definition 2.2.5 of Class C3. In this subsection we prove various prelimi-
nary results about the maximality of C3-subgroups. Recall Definition 1.13.2 of
a Zsigmondy prime zq,n. In this subsection, we let s denote the degree of the
field extension preserved by a C3-subgroup H of Ω, let m = n/s, and write βs

for the form preserved on Fn/s
qus (note that this is only relevant to distinguish H

in Cases S and Oε when s = 2). For maximality, we require s to be prime.

Lemma 2.3.14 Let 3 � n � 12 be as in Definition 1.6.20, and let H be a
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C3-subgroup of Ω. Assume that H is not of type GU2(q) in Sp4(q). Then H is
irreducible.

Proof Assume first that s = n, so that n is an odd prime and Ω = SL±
n (q).

In Case L, |H| = (qn − 1)n/(q − 1), so |H| is divisible by a Zsigmondy prime
zq,n. If H is reducible, then H must stabilise a k-space for some k. This implies
that H is contained in a parabolic subgroup, Pk. However, by Table 2.3 and
Proposition 1.13.4 the prime zq,n does not divide |Pk| for any k. In Case U,
|H| = (qn + 1)n/(q + 1) so |H| is divisible by some zq,2n (recall that SU3(2)
is soluble). Similarly to Case L, we first deduce that H is not contained in
a parabolic subgroup, and from this conclude that H must stabilise a non-
degenerate k-space for some k. Thus either H is contained in a group of type
GUk(q) ⊥ GUn−k(q), or a group of type GUn/2(q) � S2. However, none of these
groups have order divisible by zq,2n.

If s �= n, then the result follows from Lemma 2.2.6.

Lemma 2.3.15 Let n ∈ {3, 5, 7, 11} be as in Definition 1.6.20, and let H be
a C3-subgroup of Ω. If there exists a subgroup K of Ω such that H � K then
K �∈ C2 ∪ C6.

Proof Since C3 �= ∅ and n is an odd prime, Ω = SLn(q) or SUn(q).
Since n is prime, |H| is divisible by some zq,n in Case L, and by some zq,2n

in Case U (recall that Ω �= SU3(2)). By Lemma 1.13.3 (iii) both zq,n and zq,2n

are greater than n.
There is exactly one type of C2-subgroup, namely GL1(q)�Sn or GU1(q)�Sn.

If K is of one of these types, then the prime divisors of |K| are the primes
dividing q± 1, and primes less than or equal to n. In particular, zq,n and zq,2n

do not divide |K|.
There is at most one type of C6-subgroup, namely n1+2.Sp2(n). If L is of

this type, then |L| is divisible by n and the prime divisors of n2−1 and of q±1,
but by no other primes. Therefore zq,n and zq,2n do not divide |L|.
Lemma 2.3.16 Let H = NΩ(Fqus , βs) be a C3-subgroup of Ω, with n as in
Definition 1.6.20.

(i) Suppose that 4 � n � 12 and s = 2. Assume that if H is of type GU2(q)
in Sp4(q) then q �= 3. If there exists a subgroup K of Ω such that H � K

then K �∈ C2.
(ii) Suppose that 6 � n � 12 with s = 3, and assume that Ω �= Ω+

n (q). If there
exists a subgroup K of Ω such that H � K then K �∈ C2.

Proof We prove both parts at once. By Lemma 2.2.7, our assumptions on n,
q, s and H ensure that H is insoluble and the quasisimple group H∞ is one
of SLn/s(qs), SUn/s(qs), Spn/s(qs), SUn/2(q) or Ωε1

n/s(q
s). By Theorem 1.11.2,
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P (H∞) > n for each of these types. Thus if K ∈ C2 then it follows that
H∞ � K(D), the kernel of the action on blocks. This contradicts the fact that
H∞ is irreducible, by Lemma 2.2.6.

Lemma 2.3.17 Let n � 12 be as in Definition 1.6.20 and let H be a C3-
subgroup of Ω. Assume that H is not of type GU2(q) in Sp4(q). If there exists
a subgroup K of Ω such that H � K, and K is not of the same type as H, then
K �∈ C3.

Proof Assume otherwise, by way of contradiction. Let H = NΩ(Fqus), and let
K = NΩ(Fqut) be a C3-subgroup of Ω.

If there is more than one type of C3-subgroup, then n is not prime. Since n
is not prime, it follows from Lemmas 2.2.6 and 2.2.7 that H∞ is the group Ω1,
as defined just before Lemma 2.2.6.

Assume first that s �= t, so Fqt �= Fqs , and Fqt ,Fqs ⊂ EndFquH∞(Fn
qu). This

implies that the centraliser of H∞ in GLn(qu) has order greater than qs − 1
and hence H∞ is not absolutely irreducible on Fn/s

qs , contradicting Proposi-
tion 1.12.2.

Thus s = t, and so Ω = Spn(q) or Ω±
n (q) and s = t = 2. Assume first that

Ω = Spn(q). Then one of H and K is of shape Spn/2(q2).2, the other is of shape
GUn/2(q).2, and q is odd. By Proposition 1.13.4, there exists a zq,n dividing
|Spn/2(q2).2| but not |GUn/2(q).2| (since n/2 is even), whereas if H is of type
GUn/2(q) then n �= 4, so some zq,n−2 divides |H| but not |Spn/2(q2).2|.

In Case O+, H and K must be of two of the following types: GO+
n/2(q

2) (so
n/2 is even), GO◦

n/2(q
2) (so n/2 is odd), GUn/2(q) (so n/2 is even). Therefore,

H and K are of types GO+
n/2(q

2) and GUn/2(q) (in some order), and n/2 is
even, and so n = 12. By Proposition 1.13.4, some prime zq,8 divides |Ω+

6 (q2)|
but not |SU6(q)|. Conversely, zq,10 divides |SU6(q)| but not |Ω+

6 (q2)|.
In Case O−, H and K must be of the following types: GO−

n/2(q
2) (so n/2

is even), GO◦
n/2(q

2) (so n/2 is odd), GUn/2(q) (so n/2 is odd). Therefore, H
and K are of types GO◦

n/2(q
2) and GUn/2(q) (in some order), and q and n/2

are odd, so n = 10. By Proposition 1.13.4, a prime zq,8 divide |Ω5(q
2)| but not

|GU5(q)|. Conversely, a prime zq,10 divides |GU5(q)| but not |Ω5(q
2)|.

Lemma 2.3.18 Let n ∈ {6, 8, 10, 12}, and let Ω = SLn(q) or Spn(q). Let
H = NΩ(Fq2 , β2) be a C3-subgroup of Ω. If there exists a subgroup K of Ω with
H � K, then K �∈ C4.

Proof Let K be a C4-subgroup of Ω. The composition factors of K lie in

{Ln1(q),Ln2(q),Spn1
(q),Oε

n2
(q) : n1, n2 > 1, n1n2 = n, n1 is even}.

Since H has a composition factor isomorphic to one of Ln/2(q2), Spn/2(q2) or
Un/2(q) (with q odd), it follows that H �� K.
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Lemma 2.3.19 Let 3 � n � 12 be as in Definition 1.6.20 and let H be a
C3-subgroup of Ω. Assume that Ω �= SL3(4),SU6(2). If there exists a subgroup
K of Ω with H � K, then K �∈ C5.

Proof Let H preserve a field extension of degree s, let K be a C5-subgroup
over Fqu

0
, where qr

0 = q for some r, and assume by way of contradiction that
H � K.

Case L. Here K < Z(SLn(q))GLn(q0), and r is prime. Note that (q0, rn) �=
(2, 6) since we are assuming that n � 3 and that Ω �= SL3(4). If n = s is prime
then |H| is a multiple of (qs − 1)/(q − 1), so zq0,rn divides |H|. Otherwise,
SLn/s(qrs

0 ) � H, with n/s � 2 and r > 1, so by Proposition 1.13.4 a prime
zq0,rn divides |H|. If zq0,i divides |K| then i � max{r, n}, a contradiction.

Case U. Here H is of type GUn/s(qs), s is odd, and r = 2 if and only if K is
of type Spn(q) or GOε

n(q). Note that (q0, 2nr) �= (2, 6), that (q0, nr) �= (2, 6) if
n is even, since n � 3 and SU3(2) is solvable, and that (q0, 2r(n− s)) �= (2, 6).
If s = n then |H| is divisible by zq0,2nr. Otherwise, SUn/s(qs) � H, n/s � 2,
and s > 1. By Proposition 1.13.4, if n is odd then |H| is divisible by zq0,2nr,
whilst if n is even then |H| is divisible by both zq0,nr and zq0,2r(n−s).

IfK is of type GUn(q0) then r � 3. If zq0,i | |K| then from Proposition 1.13.4
we see that i � max{2r, 2n} < nr, so zq0,2nr, zq0,nr do not divide |K|.

If K is of type Spn(q) then q0 = q, r = 2 and n > 2 is even. By Table 2.8 and
Proposition 1.13.4, if zq,i divides |K| then i � n, so if n �= 2s then zq0,2r(n−s)

does not divide |K|. So assume n = 2s. Then |H| = |SU2(qs)| (qs+1)
(q+1) .s, whereas

|K| = |Sp2s(q)|.(q + 1, s), so a higher power of zq0,nr divides |H| than |K|.
If K is of type GOε

n(q), then q0 = q and r = 2. If n = 3 then we get
a contradiction from |H| = 3(q2 − q + 1) whilst |K| = q(q2 − 1)(q + 1, 3). If
n = 4 then C3 = ∅. If n � 5 is odd and zq,i divides |K| then i � n − 1 by
Proposition 1.13.4, so zq,2nr does not divide |K|, a contradiction, so n � 6.
Thus the group K is of type GO+

n (q), and zq,i divides |K|, then i � n − 2 by
Proposition 1.13.4, so zq0,nr does not divide |K|. If K is of type GO−

n (q) and
zq,i divides |K| then i � n, so if n �= 2s then zq,2r(n−s) does not divide K. If
n = 2s then a higher power of zq0,nr divides |H| than |K|.
Case S. Here H is of type Spn/s(qs) or type GUn/2(q), and K ∼= Spn(q0).(2, q−
1, r), with qr

0 = q and r prime. If zq0,i divides |K| then i � n by Proposi-
tion 1.13.4. Note that (q0, nr) �= (2, 6), and that r(n − 2) > 2. A straightfor-
ward argument rules out the containment of type Spn/s(qs) in K. If H is of
type GUn/2(q) then q is odd and H ∼= GUn/2(q).2. The order of H is divisible
by zq0,rn if n/2 is odd, and by zq0,r(n−2) if n/2 is even (since q0 is odd). No
prime zq0,rn divides |K|, whilst if zq0,r(n−2) divides |K| then n = 4 and r = 2,
in which case z2

q0,r(n−2) divides |H| but not |K|.
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Case O◦. Here Ω◦
n/s(q

s) � H, with s prime, n/s � 3, and K ∼= Ω◦
n(q0).(2, r),

with r prime. Note that n/s � 3 and q0 is odd, so r(n− s) > n and zq0,r(n−s)

exists. Then, by Proposition 1.13.4 (and a direct calculation when n/s = 3) a
prime zq0,r(n−s) divides |H| and if zq0,i divides |K| then i � n− 1.

Case O+. Here H is of type GO+
n/s(q

s), type GO◦
n/2(q

2), or type GUn/2(q),
whilst K is of type GO±

n (q0), and r is prime. Now n/s � 4 and n � 10, so if
n/s is even then zq0,r(n−2s) exists, and r(n − 2s) � n. In addition, zq0,r(n−2)

exists, and r(n − 2) > n. We now consult Proposition 1.13.4. If H is of type
GO+

n/s(q
s) then zq0,r(n−2s) divides |H| (even when n = n/s = 4). If H is of

type GO◦
n/2(q

2) then zq0,r(n−2) divides |H|. If H is of type GUn/2(q) then n/2
is even, and zq0,r(n−2) divides |H|.

We now consider the possibilites for K, again using Proposition 1.13.4. If
|K| is of type GO+

n (q0) and zq0,i divides |K| then i � n−2, so neither zq0,r(n−2s)

nor zq0,r(n−2) divide |K|, a contradiction. If |K| is of type GO−
n (q0) and zq0,i

divides |K|, then i � n. Thus zq0,r(n−2) does not divide |K|, and if zq0,r(n−2s)

divides |K| then n/s = 4 and r = 2. If n/s = 4, r = 2 and H is of type
GO+

n/s(q
s) then a higher power of zq0,r(n−2s) divides |H| than |K|.

Case O−. Here H is of type GO−
n/s(q

s) with n/s � 4, type GO◦
n/2(q

2), or type
GUn/2(q) with n/2 odd. Since n � 8 and r � 2, primes zq0,rn and zq0,r(n−2)

exist, and both rn and r(n− 2) are greater than n. If H is of type GO−
n/s(q

s),
type GO◦

n/2(q
2), or type GUn/2(q) then |H| is divisible by zq0,rn, zq0,r(n−2) or

zq0,rn respectively, by Proposition 1.13.4. The group K is of type GO−
n (q0) and

if zq0,i divides K then i � n, so neither zq0,rn nor zq0,r(n−2) divide |K|.
We show now that the semilinear groups do not, in general, preserve classical

forms.

Lemma 2.3.20 Let 3 � n � 12 be as in Definition 1.6.20 and let H be a
C3-subgroup of Ω. If there exists a subgroup K of Ω with H � K, then K �∈ C8.

Proof Let H preserve a field extension of degree s, let K be a C8-subgroup of
Ω, and assume by way of contradiction thatH � K. If C8 �= ∅, then Ω = SLn(q)
or Spn(2e), so H is not of type GUn/2(q).

Assume first that K is of one of the following types: GUn(q1/2) with n

even, GO◦
n(q), or GO+

n (q). If (n, q) = (6, 2) then Ω = Sp6(2) and K is of type
GO+

6 (2), whilst H ∼= Sp2(8).3. Thus |H| does not divide |K|, a contradiction.
We therefore assume that (n, q) �= (6, 2). Then zq,n divides |H|, by Proposi-
tion 1.13.4 if s �= n and directly from Table 2.6 if s = n. However, zq,n does
not divide |K|, a contradiction.

Suppose next that Ω = SLn(q), and that K is of type GUn(q1/2) with n

odd, so that s is odd. Let q = q20 . Then |H| is divisible by zq0,n (since q2n
0 − 1
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divides |H|), whilst |K|p′ divides

|SUn(q0)|p′(q − 1) = (q20 − 1)2(q30 + 1)(q40 − 1) · · · (qn
0 + 1).

Now, (qn
0 + 1, qn

0 − 1) = 2 and there is no term q
n/2
0 + 1 in the expression for

|K|, as n is odd. Therefore, zq0,n does not divide |K|.
Suppose next that Ω = SLn(q), and that K is of type Spn(q) with q odd,

so that |K| = |Spn(q)|(q − 1, n/2). By Lemma 2.2.7 the group H is insoluble,
with H∞ ∼= SLn/s(qs) being irreducible but not absolutely irreducible, and
|H| = |SLn/s(qs)|(qs− 1)s/(q− 1). We now apply Proposition 2.2.18 to deduce
that H � NK(H ′) � L, for some C3-subgroup L of K. Thus L is an extension
by scalars of some C3-subgroup L1 of PCSpn(q). Arguing as in the proof of
Lemma 2.3.17, we see that H and L1 preserve field extensions of the same
degree, but then |H| > |L|, a contradiction.

Suppose next that Ω = SLn(q) or Spn(q), and that K is of type GO−
n (q).

If n = 4 then H∞ ∼= K∞, but H∞ is not absolutely irreducible whilst K∞

is. If n = 6 then H is divisible by zq,3, whilst K is not. If n � 8 then by
Proposition 2.2.18 we deduce that H is contained in a C3-subgroup L of K,
where L is contained in a C3-subgroup of CGO−

n (q). As before we deduce that
H and L preserve field extensions of the same degree, and hence that |H| > |L|,
a contradiction.

Suppose finally that Ω = SLn(q), and that K is of type Spn(q) with q even.
By Proposition 2.2.18 we deduce that H is contained in a subgroup L of K that
lies in C3 ∪ C8. If L ∈ C3 then we get a contradiction as for q odd, so L ∈ C8.
Thus L is a subgroup of K of type GO±

n (q). For type GO+
n (q) if n � 6 then we

get an easy contradiction using Zsigmondy primes, as in the second paragraph
of this proof (for (n, q) = (6, 2) this is a direct calculation). For type GO−

n (q)
we argue just as in the preceding paragraph.

We finish this subsection with a more general result about semilinear groups.

Proposition 2.3.21 Let n ∈ {3, 5, 7, 11} be as in Definition 1.6.20, and let
H be a C3-subgroup of Ω �= SL3(4). Then H is maximal amongst the geometric
subgroups of Ω.

Proof In Case O◦, if n is prime then C3 = ∅, so Ω = SLn(q) or SUn(q).
Suppose, by way of contradiction, that there existsK < Ω such thatH � K,

where K is geometric and is not of the same type as H. By Theorem 2.2.19, we
may assume that K ∈ Ci for some 1 � i � 8. It follows from Lemma 2.3.14 that
K �∈ C1. It is immediate from Lemma 2.3.15 that K �∈ C2∪C6. Since n is prime,
there is a unique type of C3-subgroup, and C4 = C7 = ∅. By Lemma 2.3.19,
if Ω �= SL3(4) and n is odd then K �∈ C5. It is immediate from Lemma 2.3.20
that K �∈ C8, so we are done.
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2.3.4 Tensor product groups

Recall the types of C4-subgroup in Table 2.7: note that the conditions in that ta-
ble imply that n � 6. We first collect some information regarding C4-subgroups
which, despite their inclusion in Class C4, are never maximal.

Proposition 2.3.22 Let G be an almost simple group with socle Ω. Let HG

be a C4-subgroup of G, of one of the following types:

(i) GL2(2)⊗GLn/2(2) (Case L),
(ii) GU2(2)⊗GUn/2(2) (Case U),
(iii) Spn/3(3)⊗GO3(3) (Case S),
(iv) Sp2(2)⊗ Spn/2(2) (Case O+),
(v) GO3(3)⊗GO±

n/3(3) (Case O±).

Then HG is not maximal in G.

Proof Let H be the corresponding subgroup of Ω. First suppose that H is of
type GL2(2)⊗GLn/2(2), so H ∼= SL2(2)× SLn/2(2). We copy the proof of [66,
Proposition 6.3.1(i)] that H is (properly) contained in a C3-subgroup K of type
ΓLn/2(4). Now SL2(2) ∼= S3, so H ′ = 3 × SLn/2(2) = L × SLn/2(2). We may
identify L with the non-zero scalars of F4, thus setting up an isomorphism be-
tween F1

4 and F2
2. Since L acts irreducibly on F2

2, the group H ′ is irreducible but
not absolutely irreducible, by Lemma 2.2.10, and we may identify tensors v⊗w
with elements λw, where λ ∈ F4, so that L×1 is the subgroup corresponding to
the scalars of ΓLn/2(4). Thus H is contained in a member K of type ΓLn/2(4) of
our Class C3. The only non-trivial outer automorphism of SLn(2) is the duality
automorphism γ, which is induced by the inverse-transpose map. The inverse-
transpose automorphism normalises the standard constructions of H, and also
normalises the subgroup L× 1 of H and hence preserves the isomorphism from
Fn/2

4 to Fn
2 , so the extension of H by duality is contained in the extension of

K by duality.
Next suppose that H is of type GU2(2)⊗GUn/2(2), preserving a decompo-

sition V = W1⊗W2, and let HG be the subgroup of GUn(2) of the same type as
H. The group GU2(2) is imprimitive on W1 = F2

4, and is equal to GU1(2) � S2,
preserving a decomposition of W1 := F2

4 into W11 ⊕W12 = 〈v1〉 ⊕ 〈v2〉. Thus
HG preserves an imprimitive decomposition of V as (W11⊗W2)⊕ (W12⊗W2),
and is therefore properly contained in a C2-subgroup of type GUn/2(2) �S2. The
final automorphism to consider is φ, which (setwise) stabilises both W11 ⊗W2

and W12 ⊗W2, so H does not extend to a novelty.
Next suppose that H ∼= Spn/3(3) × GO3(3), so Ω = Spn(3). As shown in

the proof of Proposition 2.3.6 (x) our standard copy of GO3(3) is imprimitive
on F3

3, and consists of monomial matrices, with blocks being non-degenerate
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1-spaces. Forming a tensor product of monomial matrices with our standard
copy of Spn/3(3) will result in matrices with three (non-degenerate) blocks, so
H is (properly) contained in a C2-subgroup K of type Spn/3(3)�S3 inside a copy
of the symplectic group whose form matrix B is the Kronecker product of I3
with our standard symplectic form. The only non-trivial outer automorphism
of Spn(3) is the diagonal automorphism δ, which can be chosen to have basis
vectors as eigenvalues, and so preserves this imprimitive decomposition as well
as H. Thus H does not extend to a novel maximal subgroup.

Next suppose that H ∼= Sp2(2) × Spn/2(2), so Ω = Ω+
n (q). By [66, Propo-

sition 6.3.1(ii)], the group H is properly contained in a C3-subgroup of type
ΓUn/2(2). The class stabiliser of H is trivial, so H cannot extend to a novelty.

Next suppose that H ∼= SO3(3) × Ω±
n/3(3), so Ω = Ω±

n (3). As previously
noted, GO3(3) is imprimitive, so H is properly contained in a C2-subgroup K

of type GO±
n/3(3)�S3. See [66, Proposition 6.3.2] for more details. The normaliser

N of H in CGO±
n (3) is CGO3(3)⊗ CGO±

n/3(3) = GO3(3)⊗ CGO±
n/3(3). So N

is imprimitive, and hence H does not extend to a novelty.

Let H be a C4-subgroup of Ω. Then we write L = Ω1 ◦ Ω2 � H, where Ω1

is the generally quasisimple group on V1 and Ω2 is the generally quasisimple
group on V2. Considering the restrictions on n1 and n2 in Table 2.7, and our
assumption that n � 12, we note that Ω1 is quasisimple unless (n1, q) ∈ {(2, 2)
(Cases L, U and O+), (2, 3) (Cases L, U and O+), (3, 2) (Case U only), (3, 3)
(Cases O± only)}, and is soluble for these exceptional values. In Cases L and
O− the group Ω2 is quasisimple. In Case U the group Ω2 is quasisimple if
and only if (n2, q) �= (3, 2), and is soluble otherwise. In Case S the group Ω2 is
quasisimple if and only if (n2, q, ε) �∈ {(3, 3, ◦), (4, 3,+)}, and is soluble for these
exceptional values. In Case O+, if Ω2 = Spn2

(q) then Ω2 is always quasisimple
(recall that n � 10 in Case O+), whilst if Ω2 = Ω+

n2
(q) then Ω2 is perfect if and

only if (n2, q) �= (4, 3), and is soluble otherwise. Note in particular that Ω1⊗Ω2

is perfect when q > 3.

Lemma 2.3.23 Let n � 12 be as in Definition 1.6.20, and let H be a C4-
subgroup of Ω. Assume that H is not one of the non-maximal groups listed in
Proposition 2.3.22. If there exists a subgroup K of Ω such that H � K, then
K �∈ C1 ∪ C3.

Proof If L is perfect then this follows from Lemma 2.2.10, so assume otherwise.
Since Ω1 and Ω2 are absolutely irreducible on V1 and V2 respectively, it is
immediate from Lemma 2.2.10 that K �∈ C1. We first consider the types where
Ω1 is not perfect. If (n1, q) = (2, 2) then H is listed in Proposition 2.3.22,
contrary to assumption.

Assume that (n1, q) = (2, 3). Then Ω1 = SL2(3), so the derived group of
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Ω1 is absolutely irreducible. In Cases L, U and O+, the group Ω2 is perfect so
the result is immediate. In Case S we note that the group Ω2 is quasisimple
unless Ω2 = Ω3(q) ∼= L2(3) or Ω2 = Ω+

4 (3). The first possibility is excluded by
our assumption that H is not listed in Proposition 2.3.22, whilst for the second
we note that it is easy to check in Magma (file Chap2calc) that the derived
group of Ω+

4 (3) is also absolutely irreducible.
Next assume that n1 = 3 and Ω = SUn(2). It is easy to check in Magma

(file Chap2calc) that SU3(2)′ is absolutely irreducible on V1. Also, SUn2(2) is
both absolutely irreducible on V2 by Proposition 1.12.2 and perfect. Therefore
H ′ is absolutely irreducible on V , and the result follows.

The possibility that (n1, q) = (3, 3) in Cases O± is excluded by our assump-
tion that H is not one of the groups listed in Proposition 2.3.22.

Thus we may assume without loss of generality that Ω1 is perfect and Ω2 is
not perfect. Thus Ω = Spn(q) or Ω+

n (q), and since n � 12 the only possibility
is that H is of type Sp4(3) ⊗ GO3(3) in Sp12(3). However, this H is listed in
Proposition 2.3.22.

Lemma 2.3.24 Let n � 12 be as in Definition 1.6.20, and let H be a C4-
subgroup of Ω, with q > 3. If there exists a subgroup K of Ω with H � K and
K ∈ C2, then K preserves a decomposition into at least five subspaces.

Proof Suppose otherwise, and let K preserve an imprimitive decomposition
D into two, three or four subspaces. If H � K then L = L∞ � K∞. However,
our assumption that q > 3 implies that L∞ is irreducible by Lemma 2.2.10,
whereas K∞ = K(D) is reducible.

Recall Definition 2.2.15 of the C7-subgroups.

Lemma 2.3.25 Let n � 12 be as in Definition 1.6.20, and let H be a C4- or
C7-subgroup of Ω. Assume that H is not one of the groups listed in Proposi-
tion 2.3.22. If there exists a subgroup K of Ω such that H � K, then K �∈ C5.

Proof Here H contains the subgroup S := Ω1 ◦· · ·◦Ωt. Considering Tables 2.7
and 2.10, and using the fact that n � 12, we see that one of the following
holds: Case L, with Ωi = SLni

(q) and t = 2; Case U, with Ωi = SUni
(q) and

t = 2; Case S, with Ωi = Spni
(q) and t � 3; Case S, with t = 2, Ω1 = Spn1

(q)
and Ω2 = Ωε

n2
(q); Case O◦, with Ωi = Ω◦

m(q); Case O+, with Ωi = Spni
(q);

Case O±, with Ωi = Ωεi
ni

(q). We will show that S∞, and hence H∞, are not
contained in a member of C5, using the fact that tr(a⊗b) = tr(a) tr(b). Assume,
by way of contradiction, that H � K for some K ∈ C5.

Consider first Cases L and S. If C5 �= ∅ then q > 3, and so S is perfect.
By Proposition 1.12.7, for any α ∈ Fq there exists an element a ∈ Ω1 of trace
α, and by the same result, together with Lemma 1.12.8, there exist elements
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bi ∈ Ωi for 2 � i � t of non-zero trace. Then elements of S have q different
traces, contradicting Lemma 2.2.12.

Consider next Case U, so that t = 2 and n2 � 3. Proposition 2.3.22 excludes
SU6(2), so Ω2 is perfect, and by Proposition 1.12.7 each element of Fq2 is the
trace of at least one of its elements. For all n and q, the group Ω1 contains
an element of non-zero trace, so if α ∈ Fq2 then there exists an element of
S∞ � H∞ of trace α.

Consider next Case O◦, so that H ∈ C7, t = 2, m = 3 and q > 3. Hence
S is perfect. By Lemma 1.12.8 the set of traces of elements of Ω3(q) does
not lie in any proper subfield of Fq. Recall that Ω3(q) is SL2(q) acting on the
symmetric square of its natural module (see Section 5.2). The symmetric square
of antidiag(1,−1) has trace −1, so the traces of elements of S∞ � H∞ do not
lie in any proper subfield of Fq.

Consider Cases O±, so n = 12 and H ∈ C4. If C5 �= ∅ then q � 4, so each
Ωi is perfect. If the type is Sp2(q) × Sp6(q) then each Ωi contains elements of
all traces in Fq, so S∞ � H∞ is not contained in a member of C5. Thus H is
of type GO3(q) × GO±

4 (q). By Lemma 1.12.8 the set of traces of elements of
Ω3(q) lie in no proper subfield of Fq. By Proposition 1.12.7 the group Ω±

4 (q)
contains elements of all traces in Fq, a contradiction.

Finally, we consider containments of C4-subgroups in C8-subgroups.

Lemma 2.3.26 Let n � 12 be as in Definition 1.6.20 and let H be a C4-
subgroup of Ω. If there exists a subgroup K of Ω with H � K, then K �∈ C8.

Proof Suppose otherwise. By Tables 2.7 and 2.11, the group Ω = SLn(q).
Let W be a non-trivial irreducible Ω2-submodule of V . Then since Ω2 acts
homogeneously on V , the space W has dimension n2 > 2 and Ω2 acts as
SLn2(q) on W . Therefore W is totally singular with respect to the classical
form for which K is a group of similarities, and so by a slight generalisation of
Lemma 2.2.2 (vi), as an Ω2-module V/W⊥ ∼= W ∗ or W ∗γ . Since n2 > 2, this
contradicts the homogeneity of the action of Ω2.

2.3.5 Subfield groups

In this section we prove various results about the maximality of C5-subgroups,
and in particular determine their maximality for 5 � n � 12.

Recall Definition 2.2.11 of the C5-subgroups, and our dimension assumptions
in Definition 1.6.20. Recall that u = 2 in Case U and u = 1 otherwise. First we
show that, with only a small number of possible exceptions, the C5-subgroups
do not preserve an imprimitive, tensor or tensor induced decomposition.
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Lemma 2.3.27 Let H be a C5-subgroup of Ω, with n � 12, as in Defini-
tion 1.6.20. If Ω = SLn(q) then assume that n � 3. If Ω = SUn(q) then assume
that n � 4, and that if n = 4 then H is of type GU4(q0) or Sp4(q). If there
exists a subgroup K of Ω with H � K, then K �∈ C2 ∪ C4 ∪ C7.

Proof Suppose, by way of contradiction, that H � K < Ω, where the group
K ∈ C2∪C4∪C7. Then K = ΩD, where D is either a direct sum decomposition
V = W1 ⊕ · · · ⊕Wt or a C4- or C7-decomposition V = W1 ⊗ · · · ⊗Wt. Our
assumptions imply that H is insoluble and H∞ is quasisimple and absolutely
irreducible.

By Theorem 1.11.2, the group H∞ has no non-trivial permutation repre-
sentations of degree less than or equal to n � 12, so H∞ is contained in the
pointwise stabiliser of {W1, . . . ,Wt}. By Theorem 1.11.5, the quasisimple group
H∞ has no non-trivial representation in defining characteristic in dimension
properly dividing n, a contradiction.

Lemma 2.3.28 Let n � 12 be as in Definition 1.6.20, and let H be a C5-
subgroup of Ω. If there exists a subgroup K of Ω with H � K and K of a
different type than H, then K �∈ C5.

Proof We first consider the types GLn(q0), GUn(q0), Spn(q0) in Case S and
GOε

n(q0) in Case Oε. Assume that H and K are of two of these types, so that
q0 is not prime. It follows that H is insoluble, and H∞ = Ωq0 , the Ω-group
over Fqu

0
where qr

0 = q. Furthermore, K∞ contains the Ω-group over Fqu
1

where
qs
1 = q. Here, by assumption, r and s are distinct primes. Thus Fqu

0
is not

contained in Fqu
1
. By Proposition 1.12.7 and Lemma 1.12.8, the group H∞

contains elements of all traces in Fqu
0
, whilst all traces of elements of K∞ lie in

Fqu
1
, contradicting Lemma 2.2.12.
The remaining possible types for {H,K} are {GUn(q0),Spn(q)} (Case U),

{GUn(q0), GOε
n(q)} (Case U, with q odd), {Spn(q),GO±

n (q)} (Case U, with
q odd) and {GO+

n (q0),GO−
n (q1)} (Cases U and O±, with q21 = q). The only

soluble possibility for H is type GO3(3) (in which case there is no C5-subgroup
of type GUn(q0)) or type GO+

4 (3) in SU4(3), which we will consider at the end
of the proof. Otherwise, H∞ = Ωq0 .

Proposition 1.12.7 rules out {GUn(q0),Spn(q)}, since Fq2
0

is an odd degree
subfield of Fq2 , and {GUn(q0),GOε

n(q)} if n � 4. Lemma 1.12.8 and Propo-
sition 1.12.7 give a contradiction if {H,K} are of types {GU3(q0),GO3(q)}.
Lemmas 1.12.4 and 1.12.5 rule out types {Spn(q),GO±

n (q)}. If the types are
{GO+

n (q0),GO−
n (q1)} and q0 = q1 then Lagrange’s theorem gives a contradic-

tion, if q0 �= q1 then we apply Proposition 1.12.7, since |Fq : Fq0 | is odd.
Finally consider H of type GO+

4 (3) and K of type Sp4(3). Then Ω+
4 (3) �

H ′ � K ′, which contradicts Lemma 1.12.4.
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Proposition 2.3.29 Let n � 12 be as in Definition 1.6.20, and let H be a
C5-subgroup of Ω. If Ω = SLn(q) then assume that n � 3. If Ω = SUn(q) then
assume that n � 4 and that, if n = 4, then H is of type GU4(q0) or Sp4(q).
Then H is maximal amongst the geometric subgroups of Ω.

Proof Suppose, by way of contradiction, that H � K < Ω, where K is not of
the same type as H. By Theorem 2.2.19, without loss of generality K ∈ Ci for
some 1 � i � 8. Our assumptions on the type and dimension of H imply that
H∞ is quasisimple.

The group H∞ is absolutely irreducible by Proposition 1.12.2, so the group
K �∈ C1 ∪ C3. It follows from Lemma 2.3.27 that K �∈ C2 ∪ C4 ∪ C7, and from
Lemma 2.3.28 that K �∈ C5.

Suppose next that K ∈ C6, then, since H∞ is quasisimple, there exists a
non-trivial representation ρ mapping H∞ to S2m(r) or Oε

2m(r), where n = rm

and r divides q− 1. However, both of these groups are smaller than the simple
group H∞, a contradiction.

Finally, suppose that K ∈ C8, so that Ω = SLn(q) or Spn(2i). The group
SLn(q0) contains all transvections, so a straightforward calculation shows that
since n > 2 the group SLn(q0) preserves no non-zero bilinear or unitary form
on Fn

q . Similarly, considering the transvections in Spn(q0) shows that Spn(q0)
fixes no quadratic form.

2.3.6 Extraspecial normaliser groups

Recall the definition of the C6-subgroups from Table 2.9. In this subsection we
show that C6-subgroups are maximal if 4 � n � 12. If C6 �= ∅ then Ω �= Ωε

n(q).
Let H be a C6-subgroup of Ω. If n = rm > 3 then Sp2m(r) is perfect unless

m = r = 2, and Ω−
2m(2) is perfect when r = 2. Let R = Or(H∞) be the

extraspecial group, or the 2-group of symplectic type. Recall Definition 1.11.1
of Rk(G).

Lemma 2.3.30 Let 4 � n � 12 be as in Definition 1.6.20 and let H be a
C6-subgroup of Ω. Then the following all hold.

(i) The group H is insoluble.
(ii) If r is odd then R ∼= r1+2m. If r = 2 then R ∼= 4 ◦ 21+2m in Cases L and

U, and R ∼= 21+2m
− in Case S.

(iii) The group H∞ is absolutely irreducible.
(iv) If n ∈ {4, 8, 9} then P (H∞) > n, and if n ∈ {5, 7, 11} then P (H∞) � n.
(v) Let r′ be a prime other than r. Then Rr′(H∞) � n.

Proof (i) and (ii) This is clear from the structures given in Table 2.9, noting
that the quotient H/R acts irreducibly on R.
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(iii) As mentioned in the introduction to the C6-subgroups, R < H∞ acts
absolutely irreducibly on V .
(iv) Let L = H∞, and let X < L. We need to show that |L : X| > n. If RX �= L

then

|L : X| � |L : RX| � P (L/R).

The group L/R is one of Sp4(2), Ω−
4 (2), Sp2(p) for p ∈ {5, 7, 11}, Sp8(2) or

Ω−
8 (2) or Sp4(3), so the result is clear.

Suppose instead that RX = L and let S = R ∩ X. Then S � R, since R
is elementary abelian. Also S � X since R � L. Hence S � RX = L = H∞.
Since R is a minimal normal subgroup of L, and X is a proper subgroup of L,
the group S is trivial. Therefore |L : X| = |R| = n2 > n.
(v) Our assumptions on n ensure that H∞ is a perfect group, with a unique
minimal normal subgroup R (as H∞/R acts irreducibly on R). The group R is
elementary abelian, of shape r2m, where 2m � 2. Therefore by Lemma 1.11.4,
Rr′(H∞) � min{P (H∞/R), rm} = n.

Proposition 2.3.31 Let 4 � n � 12, as in Definition 1.6.20, and let H be a
C6-subgroup of Ω. Then H is maximal amongst the geometric subgroups of Ω.

Proof Suppose, by way of contradiction, that there exists a geometric sub-
group K < Ω with H � K, where K is not of the same type as H. By Theo-
rem 2.2.19 we may assume without loss of generality that K ∈ Ci for some i.
Let R be the extraspecial or symplectic-type normal subgroup of H∞.

By Lemma 2.3.30 (iii) H∞ is absolutely irreducible, so K �∈ C1 ∪ C3.
Suppose K ∈ C2∪C4∪C7, and denote the decomposition of V preserved by

K by D. By Lemma 2.3.30 (iv) if n �∈ {5, 7, 11} then P (H∞) > n, so the group
H∞ � Ω(D). Therefore, if n �∈ {5, 7, 11}, then K ∈ C4 ∪ C7, as if K ∈ C2 then
Ω(D) is reducible. Therefore H∞ � L(V1)× · · · × L(Vt) for t � 2. The image of
R in L(Vi) must be non-trivial for some i. The group H∞ acts faithfully and
irreducibly on R, so the whole of H∞ must embed in L(Vi). But dim(Vi) is a
proper divisor of n, contradicting Lemma 2.3.30 (v).

We deal now with n = 5, 7, 11, so that Ω = SLn(q) or SUn(q). Since n is
prime, Classes C4 and C7 are empty, so K ∈ C2. If n = 5 then H∞ ∼= 51+2.A5,
whereas K∞ ∼= (q ± 1)4 :A5 by Table 2.4. The only non-abelian composition
factor of K is A5, so if H∞ � K∞ then R � (q±1)4. Since R is non-abelian this
is a contradiction. If n = 7, 11, then H∞/R ∼= SL2(n), and the only non-abelian
composition factor ofK is An. The only subgroup of An with composition factor
isomorphic to L2(n) is isomorphic to L2(n), so if H � K then R � (q ± 1)n−1,
a contradiction.

The field size qu is the minimal power of p such that pue ≡ 1 mod r or
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pue ≡ 1 mod 4. Therefore R, and hence H∞, cannot be represented over a
proper subfield of Fqu . So K �∈ C5.

There is a unique type of C6-subgroup, when one exists, so K �∈ C6.
So supposeK ∈ C8. Then both C6 and C8 are nonempty, so Ω = SLn(q). The

field size q is an odd power of a prime, and hence K is not of type GUn(q1/2).
Therefore, H∞ � Spn(q) or Ωε

n(q). However, H∞ ∩ Z(GLn(q)) ∼= C4 or Cr,
whereas Spn(q)∩ Z(GLn(q)) and Ωε

n(q)∩ Z(GLn(q)) have order at most 2.

2.3.7 Classical groups

Recall the types of C8-subgroup from Table 2.11.

Proposition 2.3.32 Let 5 � n � 12, with n as in Definition 1.6.20, and let
H be a C8-subgroup of Ω. Then H is maximal amongst the geometric subgroups
of Ω.

Proof Suppose, by way of contradiction, that H � K < Ω, where K is maxi-
mal amongst the geometric subgroups of Ω and is not of the same type as H.
The group H∞ is quasisimple because n � 5, and is absolutely irreducible by
Proposition 1.12.2, so K �∈ C1 ∪ C3.

We show next that K �∈ C2 ∪ C4 ∪ C7. Otherwise, K = ΩD, where D is
either a direct sum decomposition V = W1⊕· · ·⊕Wt or a tensor decomposition
W1 ⊗ · · · ⊗Wt. Here 1 < t � n, whilst dim(Wi) is a proper divisor of n for
1 � i � t. For all types, P (H∞) > n by Theorem 1.11.2, so if K ∈ C2∪C7 then
H∞ is a subgroup of the kernel of the action on the set of Wi. Theorem 1.11.5
states that Rp(H∞) > n/2, so K �∈ C2 ∪ C4 ∪ C7.

By Proposition 1.12.7, each element of Fq arises as the trace of an element
of H∞, so K �∈ C5 by Lemma 2.2.12.

Assume next that K ∈ C6. Then n = rb for some prime r that divides q−1,
and the only non-abelian composition factor of K is S2b(r) or O±

2b(r). However,
both of these groups are smaller than H∞, a contradiction.

Finally, let K ∈ C8. In Case L the groups H and K are of different types
from Spn(q), SUn(q1/2) and GOε

n(q) (with q odd for this final type). The groups
of type Spn(q) and GOε

n(q) do not contain any of the groups of the other types,
by Theorem 1.6.22 and Lemmas 1.12.4, 1.12.5. The group SUn(q1/2) does not
contain Spn(q) or Ωε

n(q), by Theorem 1.6.22 and Proposition 1.13.4. In Case
S, the groups H and K are of types GO+

n (q) and GO−
n (q), which contradicts

Theorem 1.6.22.
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Geometric maximal subgroups

The maximal subgroups of the finite classical groups are divided into two broad
classes by Aschbacher’s theorem (see Theorem 2.1.5 for a rough statement):
the geometric subgroups and those in Class S . In this chapter we shall classify
those subgroups that are maximal amongst the geometric subgroups of the
finite classical groups in dimension up to 12.

For a more precise statement, first recall Definition 2.1.2 of the geometric
subgroups, our dimension assumptions from Definition 1.6.20, and the more
precise version of Aschbacher’s theorem given in Theorem 2.2.19. Let G be an
almost simple with socle S, where S is simple and one of:

Ln(q), 2 � n � 12; Un(q), 3 � n � 12; Sn(q), 4 � n � 12; Oε
n(q), 7 � n � 12.

In this chapter we shall classify those subgroups of G that are maximal amongst
the set of all geometric subgroups of G. Later, in Chapter 6, we shall determine
all containments between those subgroups of G that are maximal amongst the
geometric subgroups and the S ∗-maximal subgroups of G (see Definition 6.1.1
for the meaning of S ∗-maximal).

The structure of this chapter is straightforward: we consider each dimension
in turn. We remind the reader that the files of Magma calculations that we refer
to are available on the webpage http://www.cambridge.org/9780521138604.

3.1 Dimension 2

Let q = pe be a prime power. We note that by Definition 1.6.20 the group
Ω = SL2(q), and that Classes C4 and C7 are empty. We assume that q � 4 as
SL2(2) and SL2(3) are soluble.

We start with a result that allows us to treat Class C8 as empty in dimension
2: recall the C8-subgroups from Definition 2.2.17.

106
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Lemma 3.1.1 (i) The group Sp2(q) is equal to SL2(q), and hence is not a
maximal subgroup of SL2(q).

(ii) If q is a square, then the group SU2(q1/2) is conjugate to SL2(q1/2) in
SL2(q), and hence may be considered as a member of C5.

(iii) The C8-subgroup of type GO+
2 (q) is equal to the C2-subgroup of SL2(q).

(iv) The C8-subgroup of type GO−
2 (q) is equal to the C3-subgroup of SL2(q).

Proof (i) This is Lemma 1.12.1.
(ii) Let ω be a primitive element of F×

q . One may check that a 2 × 2 matrix
of determinant one with entries over Fq1/2 is an isometry of the antidiagonal
unitary form with entries ±ω(q+1)/2 (in odd characteristic), or both entries 1 (in
even characteristic). Thus SL2(q1/2) is conjugate to a subgroup of SU2(q1/2),
and since by Theorem 1.6.22 these groups have the same order, they are equal.
(iii) Let C1 be the C8-subgroup of Ω of type GO+

2 (q), so that by Table 2.11
C1

∼= SO+
2 (q).2, of order 2(q − 1) by Theorem 1.6.22. We check that the group

K = 〈diag(ω, ω−1), antidiag(1,−1)〉 of all monomial matrices of determinant
1 is the C2-subgroup of SL2(q), and preserves our standard form of plus type.
Since |K| = |C1| these groups are equal.
(iv) Let C2 be the C8-subgroup of Ω of type GO−

2 (q), so that by Table 2.11
C2

∼= SO−
2 (q).2. The group Ω−

2 (q) is cyclic, and if q is odd then SO−
2 (q) is also

cyclic, of order q+1. Thus either Ω−
2 (q) or SO−

2 (q) has order q+1, and hence is
a Singer cycle of SL2(q). All Singer cycles of SL2(q) are conjugate by [53, 7.3],
so either Ω−

2 (q) or SO−
2 (q) are conjugate to the characteristic subgroup of the

C3-subgroup K of SL2(q). Now, both C2 and K have order 2(q + 1), which by
[53, 7.3] is the order of the normaliser of an element of order q + 1 in SL2(q),
so C1 = K as required.

Recall Definition 2.2.1 of the C1-subgroups.

Proposition 3.1.2 Let n = 2 and let H be a C1-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω.

Proof This follows immediately from Proposition 2.3.1.

Recall Definition 2.2.3 of the C2-subgroups. If H < SL2(q) is a C2-subgroup,
then H is of type GL1(q) � S2.

Lemma 3.1.3 Let H be a C2-subgroup of SL2(q). Then H is maximal amongst
the geometric subgroups of SL2(q) if and only if q �∈ {5, 7, 9}. If q = 4 then H is
equal to the C5-subgroup of SL2(4), but will be considered as a C2-subgroup. If
G is PGL2(7), PGL2(9), M10 or Aut L2(9) then the C2-subgroup of an almost
simple group G with socle L2(q) is maximal amongst the geometric subgroups
of G. For all other almost simple G with socle L2(q), where q ∈ {5, 7, 9}, the
C2-subgroup of G is not maximal.
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Proof The group H is of shape (q−1)·2, and is dihedral if and only if q is even.
Suppose that H � K < SL2(q), where K is maximal amongst the geometric
subgroups of SL2(q) and is not of the same type as H. The standard copy of
H is equal to 〈diag(ω, ω−1), antidiag(1,−1)〉, where ω is a primitive element of
F×

q . There is no 1-dimensional subspace that is fixed by both of these matrices,
so K �∈ C1.

There is a unique type of imprimitive group when n = 2, so K �∈ C2. Since
q > 3 it follows that |H| does not divide 2(q + 1) so K �∈ C3.

Assume next that K ∈ C5, so that by Table 2.8 the group K = SL2(q0) or
K = SL2(q1/2).2, and in the latter case q is odd. Notice that tr(diag(α, α−1)) =
α + α−1. If q > 4 then not all of these traces lie in a proper subfield of Fq,
by Lemma 1.4.5, so if K = SL2(q0) we are done. If q = 4 then a computer
calculation (file Chap3calc) shows that H is conjugate to the C5-subgroup
SL2(2) of SL2(4). If K �= SL2(q0) then K = SL2(q1/2).2, and q is both odd and
a square. Any index 2 subgroup H1 of H contains elements of trace α2 + α−2,
for all non-zero α ∈ Fq. This can be written as a degree 4 polynomial in α, so
the set of traces of elements of H1 has size at least (q−1)/4. This is bigger than
q1/2 if and only if q > 9. When q = 9, a computer calculation (file Chap3calc)
shows that H is properly contained in SL2(3).2. There are two classes in SL2(9)
of groups of type SL2(3).2, which are normalised by 〈φ〉 and interchanged by
δ and δφ. There is a single class of groups of type H, and the extension of
H by φ is contained in the extension of K by φ. Thus H is not maximal
in L2(9) and PΣL2(9), but could give rise to a novelty in PGL2(9), M10 or
Aut L2(9) = PΓL2(9).

The largest cyclic subgroup of a C6-subgroup has order at most 8, so if q > 9
then there is a contradiction. If q = 4, 8, 9 then there are no C6-subgroups, by
Definition 2.2.13. If q = 5 then H ∼= Q8, and so the C2-subgroup of GL2(5) nor-
malises Q8, and hence is properly contained in a C6-subgroup. If q = 7 then H
is the unique order 12 subgroup of the C6-subgroup. The group H is normalised
by the diagonal automorphism, whereas the two classes of C6-subgroups are in-
terchanged, which could give rise to a novelty in PGL2(7). Groups in Class C8

have already been considered under other classes, by Lemma 3.1.1.
When q = 7, 9 all groups which could be novel maximal subgroups are

maximal amongst the geometric subgroups of the corresponding overgroups of
Ω, as we have now considered all possible geometric overgroups.

Recall Definition 2.2.5 of the C3-subgroups, and Definition 1.13.2 of Zsig-
mondy primes zq,n. If H < SL2(q) is a C3-subgroup, then H is of type GL1(q2).

Lemma 3.1.4 Let H < SL2(q) be a C3-subgroup. Then H is maximal amongst
the geometric subgroups of SL2(q) if and only if q �= 7. The C3-subgroup of
PGL2(7) is maximal amongst the geometric subgroups of PGL2(7).
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Proof The group H is of shape (q + 1).2 = (pe + 1).2, by Table 2.6. Suppose
that H � K < SL2(q), where K is maximal amongst the geometric subgroups
of SL2(q) and is not of the same type as H.

The reducible groups have order q(q − 1), so it follows from Lagrange’s
theorem that K �∈ C1. If K ∈ C2 then |K| = 2(q− 1), by Table 2.5, so K �∈ C2.
There is a unique type of semilinear group in SL2(q), so K �∈ C3. Classes C4,
C7 and C8 are empty in dimension 2.

If K ∈ C5 then e > 1 and |K| = (2, q − 1, r)q0(q20 − 1), where qr
0 = q, by

Table 2.8, so that e = rf for some f . By Theorem 1.13.1 |H| is divisible by some
zp,2e unless p = 2 and e = 3, whilst zp,2e does not divide |K|, a contradiction.
If (p, e) = (2, 3) then |K| is smaller than |H|, a contradiction.

If K ∈ C6 then K � 2·S4 by Table 2.9, so the largest cyclic subgroup of K
has order at most 8. Therefore, if q > 7 then K �∈ C6. Class C6 = ∅ when q = 4,
and the C6-subgroup 2·A4 < SL2(5) has no subgroups of order 12, so assume
that q = 7. Then H is a Sylow 2-subgroup of SL2(7), so H < K as K has order
divisible by 16. There are two classes of C6-subgroups in SL2(7), interchanged
by the diagonal automorphism, but only one class of C3-subgroups. Therefore
the C3-subgroup of PGL2(7) is not contained in the C6-subgroup.

We are considering Class C8 as empty, by Lemma 3.1.1. No other geometric
subgroups contain the C3-subgroup of PGL2(7).

Recall Definition 2.2.11 of the C5-subgroups.

Lemma 3.1.5 Let n = 2, and let H < SL2(q) be a C5-subgroup of type
GL2(q0), where qr

0 = q for some prime r, let G be almost simple with socle
L2(q), and let HG be the corresponding C5-subgroup of G. Then H is maximal
amongst the geometric subgroups of SL2(q) if and only if q0 �= 2 or q = 4. If
q0 = 2 and q �= 4, then HG is not maximal in G. If q = 4, then HG is equal to
the C2-subgroup of G, and was considered in Class C2.

Proof Suppose that H � K < SL2(q), where K is maximal amongst the
geometric subgroups of SL2(q) and is not of the same type as H. Consulting
Table 2.8, we see that H ∼= SL2(q0).(2, q− 1, r), so |H| = q0(q20 − 1)(2, q− 1, r).

The group SL2(q0) is absolutely irreducible for all q0 by Proposition 1.12.2,
so K �∈ C1.

If K ∈ C2∪C3 then the p-part of |K| is (2, q), so if q0 �= 2 then K �∈ C2∪C3.
If q = 4 then H is conjugate to the imprimitive group of type GL1(4) � S2:
note that SL2(4) ∼= A5 has a single class of subgroups isomorphic to S3. If
q0 = 2 (so that r = e is an odd prime) then H ∼= SL2(2) ∼= S3 is properly
contained in a C3-subgroup K ∼= (qe +1):2. To see this, we check using Magma

(file Chap3calc) that H is semilinear, and so preserves an F2-vector space
isomorphism from F2

2 to F1
4, which can clearly be extended to map F2

2e to F1
22e .
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The outer automorphism δ is trivial, since q is even, and in SL2(q) there is a
single conjugacy class of groups of type H, and a single class of groups of type
K. Since φ normalises the standard copy of K, and up to conjugacy K has a
unique subgroup of order 6, the group H does not extend to a novelty.

Classes C4 and C7 are empty for n = 2. The group K is not a C5-subgroup,
by Lemma 2.3.28. Class C6 is empty unless q = p, so K �∈ C6. The groups in
Class C8 have already been considered, by Lemma 3.1.1.

Recall Definition 2.2.13 of the C6-subgroups.

Lemma 3.1.6 Let H < SL2(q) be a C6-subgroup. Then H is maximal amongst
the geometric subgroups of SL2(q).

Proof Suppose, by way of contradiction, that H � K < SL2(q), where K is
maximal amongst the geometric subgroups of SL2(q) and is not of the same
type as H.

The order of H is 24 or 48. If C6 �= ∅ then q is prime (and by assumption
is greater than 3), so (q, |H|) = 1. The group H is not cyclic, so cannot be
contained in a group of shape p:(p − 1), and hence K �∈ C1. The group H

does not have a non-absolutely-irreducible subgroup of index at most 2, so
K �∈ C2 ∪ C3. Since q is prime, K �∈ C5. Since there is a unique type of C6-
subgroup, K �∈ C6. Classes C4 and C7 are empty. We are considering Class C8

as empty by Lemma 3.1.1.

3.2 Dimension 3

In dimension 3, by Definition 1.6.20, we assume that the group Ω is SL3(q)
or SU3(q). We assume that q > 2 in Case U as U3(2) is soluble. Although
L3(2) is isomorphic to L2(7), we do analyse L3(2), since its subgroups belong
to different Aschbacher classes in the two representations. Note that Classes C4

and C7 are empty.
Recall Definition 2.2.1 of the C1-subgroups, and Definition 2.3.5 of standard

reducible behaviour.

Proposition 3.2.1 Let n = 3. Then Ω has standard reducible behaviour.

Proof Let H be a C1-subgroup of Ω. If H is of type Pi or Pi,j then the
result follows from Propositions 2.3.1 and 2.3.4. Therefore, assume that H is of
type GL1(q) ⊕ GL2(q) or GU1(q) ⊥ GU2(q), so that H ∼= GL±

2 (q), and hence
|H| = q(q ∓ 1)(q2 − 1).

Suppose that H � K < Ω, where K is maximal amongst the geometric
subgroups of Ω and is not of the same type as H. For C1 we note in Case L
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that H �� P1,2, since H acts irreducibly on a 2-space, and in Case U that H
stabilises no non-zero totally singular subspace, and so is not contained in P1

(the only other C1-subgroup). In Case L the group H stabilises both a 1-space
and a complementary 2-space, so the subgroup HG of GL3(q) of the same type
as H is a subgroup of both a parabolic subgroup P1 of GL3(q) and its conjugate
under duality, P γ

1 . However HG is normalised by γ, whilst P1 �= P γ
1 .

If q = 2 then Ω = SL3(2), and Classes C5, C6 and C8 are all empty. The
only C2-subgroup K is reducible, coincides with H, and is considered as a C1-
subgroup, by Proposition 2.3.6 (i). If K ∈ C3 then K has odd order, but H has
even order.

If Ω = SL3(3) then C5 = C6 = C8 = ∅. The C2- and C3-subgroups are
smaller than H. If Ω = SU3(3) then C6 = C8 = ∅. The C2-subgroups are the
same size as H but are irreducible, whilst the groups in C3 ∪ C5 are smaller
than H. We now assume q > 3.

Since H is insoluble for q > 3 we see that K �∈ C2 ∪ C3 ∪ C6. For C5 we
note from Proposition 1.12.7 that H∞ contains elements of all traces in Fq.
Therefore if K ∈ C5 then Ω = SU3(q) with q > 3 odd, and K is of type
GO3(q). Then |K| = (q+ 1, 3)q(q2 − 1), but q+ 1 > (q+ 1, 3), a contradiction.

If K ∈ C8 then Ω = SL3(q) with q odd, and K consists of similarities of
a unitary or orthogonal form κ. The group H is transitive on the non-zero
vectors of the fixed 2-dimensional subspace U . If κ is unitary then any 2-
dimensional subspace contains singular vectors (see [108, Corollary 10.3]), so U
is totally singular under κ. However, any maximal totally singular subspace has
dimension 1. For κ orthogonal, |H∞| > |CGO±

2 (q)|, but H∞ acts irreducibly
on U , a contradiction.

Recall Definition 2.2.3 of the C2-subgroups. Consulting Table 2.4 we see
that when n = 3, the types of C2-subgroup are GL1(q) � S3 and GU1(q) � S3.
Recall that SU3(2) is soluble.

Proposition 3.2.2 Let n = 3 and let H be a C2-subgroup of Ω. If q � 5
or Ω = SU3(q) then H is maximal amongst the geometric subgroups of Ω. If
Ω = SL3(2) or SL3(3) then H is equal to a C1- or C8-subgroup, respectively
(and is considered as such). If Ω = SL3(4) then H is not maximal, and does
not extend to a novel maximal subgroup.

Proof The claims for SL3(q) with q � 4 are immediate from Proposition 2.3.6,
so assume that q � 5 when Ω = SL3(q).

Suppose, by way of contradiction, that H � K, where K is maximal
amongst the geometric subgroups of Ω and is not of the same type as H. Con-
sulting Table 2.5 we see that H ∼= (q − 1)2.S3 in Case L and H ∼= (q + 1)2.S3
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in Case U. Without loss of generality, H contains the matrices

x :=

⎛⎜⎜⎝
0 1 0

0 0 1

1 0 0

⎞⎟⎟⎠ , y :=

⎛⎜⎜⎝
0 1 0

1 0 0

0 0 −1

⎞⎟⎟⎠
and zα := diag(α, 1, α−1), where α is any element of F×

q in Case L, and α is
any (q − 1)th power in F×

q2 in Case U.
Consider first Class C1. The eigenvalues of 〈x〉 show that if p �= 3 then F2

qu

is a direct sum of two Fqu〈x〉-submodules: U = 〈(1, 1, 1)〉 and a 2-dimensional
space W consisting of all vectors of coordinate sum 0. If qu ≡ 1 (mod 3) then
W contains two 1-dimensional Fqu〈x〉-submodules 〈(1, β, β2)〉 and 〈(1, β2, β)〉,
where β is a cube root of unity, whilst if qu ≡ 2 (mod 3) then W is irreducible.
None of these submodules are preserved by y, so H is irreducible. If p = 3 then
U is the only 1-space preserved by 〈x〉, and U < W . Once again, y preserves
neither U nor W so H is irreducible. Therefore K �∈ C1.

In each case there is a unique type of imprimitive group when n = 3 so
K �∈ C2. If K ∈ C3 then consulting Table 2.6 we see that K ∼= C.3, where C is
cyclic. The group H does not contain a cyclic subgroup of index dividing 3, so
K �∈ C3. Class C4 is empty, as n is prime.

Assume next that K ∈ C5. In Case L the group H ′ contains zα for all
α ∈ F×

q . There exists a subfield Fq0 of Fq of prime index such that all traces of
elements of K ′ lie in Fq0 . Therefore, α+α−1 ∈ Fq0 for all α ∈ F×

q , contradicting
Lemma 1.4.5 as we assumed that q � 5. Consider next Case U. If K is of type
GO3(q) then q is odd and |K| = (q + 1, 3)q(q2 − 1)2/(2, q − 1), contradicting
Lagrange’s theorem. The group H ′ contains zα for all α ∈ F×

q2 of order q+1, so
if K is of type GUn(q0) then λq−1 +λ1−q ∈ F×

q2
0

for all λ ∈ F×
q2 . This contradicts

Lemma 1.4.5, as Fq2
0

is of odd index in Fq2 .
Next suppose thatK ∈ C6. Then q is prime, q > 3 and, consulting Table 2.9,

we see that |K| divides 2334. If q > 11 then (q − 1)2.6 > 2334, a contradiction.
If Ω = SL3(5), SU3(7) or SL3(11) then C6 = ∅. In both SU3(5) and SL3(7) the
group H has the same order as K, but H has derived length 3 whilst K has
derived length 4, a contradiction. In SU3(11) the group H is bigger than K.

Class C7 is empty, as n is prime, so suppose that K ∈ C8. Then Ω = SL3(q)
and either K = SU3(q1/2) × (q1/2 − 1, 3) or K = SO3(q) × (q − 1, 3). We are
assuming that q � 5, so both are ruled out by Lagrange’s theorem.

Recall Definition 2.2.5 of the C3-subgroups. If n = 3 and H < Ω is a C3-
subgroup, then H is of type GL1(q3) or type GU1(q3).

Proposition 3.2.3 Let n = 3 and let H be a C3-subgroup of Ω, let G be
almost simple with socle Ω, and let HG be the corresponding C3-subgroup of
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G. Then H is maximal amongst the geometric subgroups of Ω if and only if
Ω �= SL3(4). If H is not maximal, then HG is maximal amongst the geometric
subgroups of G if and only if G is not a subgroup of a conjugate of L3(4).〈φ, γ〉.
Proof If Ω �= SL3(4) then this follows immediately from Proposition 2.3.21,
so assume that Ω = SL3(4) and hence H ∼= 3× 7:3. Note that H is the Sylow
7-normaliser of SL3(4), and there is a unique SL3(4)-class of C3-subgroups.

Assume thatH � K < SL3(4), whereK is a Ci-subgroup for some 1 � i � 8
and is not of the same type as H. It follows from Lemma 2.3.14 that K �∈ C1.
It is immediate from Lemma 2.3.15 that K �∈ C2 ∪ C6. Since n is prime, there
is a unique type of C3-subgroup, and C4 = C7 = ∅. It is immediate from
Lemma 2.3.20 that K �∈ C8.

Therefore K ∈ C5, and by Table 2.8, K ∼= SL3(2) × 3, and H is a proper
subgroup of K since H is also the Sylow 7-normaliser of K. The natural copy of
K is stabilised by T := 〈φ, γ〉, since φ centralises elements of SL3(2) and inverts
the scalars from F4, whilst γ normalises SL3(2) and inverts the scalars. Since
K contains a unique conjugacy class of subgroups of order |H|, we deduce that
H.T < K.T by Proposition 1.3.10. However, there are three SL3(4)-classes of
groups of the same type as K (permuted by δ), and only one class of groups
HG, so HG is maximal amongst the geometric subgroups of those almost simple
G with socle L3(4) that are not contained in (a conjugate of) L3(4).T .

Recall Definition 2.2.11 of the C5-subgroups.

Proposition 3.2.4 Let n = 3 and let H be a C5-subgroup of Ω. If Ω �= SU3(3)
then H is maximal amongst the geometric subgroups of Ω. Otherwise, H is not
maximal and does not extend to a novel maximal subgroup.

Proof If Ω = SL3(q) then this is Proposition 2.3.29, so assume that Ω is
SU3(q). Thus SU3(q0) � H, where qr

0 = q for some odd prime r, or Ω3(q) � H.
In SU3(3) the only C5-subgroup H is isomorphic to SO3(3) ∼= S4. Let

HG = 〈GO3(3), ζI4〉 be the corresponding subgroup of GU3(3), where ζ is
a primitive fourth root of unity in F×

9 . In dimension 3, our standard symmet-
ric bilinear form has the same matrix as our standard unitary form, namely a
basis of orthonormal vectors. It is straightforward to check that the standard
imprimitive wreath product GL1(3)�S3

∼= GO3(3), and preserves the same form
as H. The blocks of imprimitivity are spanned by the basis vectors, and so are
non-degenerate subspaces with respect to both the symmetric bilinear form on
F3

3 and the unitary form on F3
32 , so HG naturally embeds as a proper subgroup

of the C2-subgroup KG of type GU1(3) � S3 in GU3(3), and hence is not max-
imal. There is a single class of groups K in SU3(3), and it is straightforward
to check that K contains a single class of subgroups isomorphic to H, so by
Proposition 1.3.10 H does not extend to a novel maximal subgroup.
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We may assume from now that q > 3. Assume, by way of contradiction,
that H � K < SU3(q), where K is maximal amongst the geometric subgroups
of SU3(q) and is not of the same type as H. By Proposition 1.12.2, the groups
SU3(q0) and Ω3(q) are absolutely irreducible, so K �∈ C1. Furthermore, if q > 3
then SU3(q0) and Ω3(q) have no non-absolutely irreducible normal subgroups
of index 3, so K �∈ C3.

If q is not an odd prime power of 2 then H is insoluble, and H∞ ∼= SU3(q0)
or Ω3(q). For these q it follows immediately that K �∈ C2 ∪ C6. If q is a proper
power of 2 then C6 = ∅, so assume that K ∈ C2. Then K is of shape (q+1)2.S3,
and so |K| is not divisible by 4, unlike |SU3(2)|, a contradiction.

It follows from Lemma 2.3.28 that K �∈ C5, whilst C8 = ∅.

Recall Definition 2.2.13 of the C6-subgroups.

Proposition 3.2.5 Let n = 3 and let H be a C6-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω.

Proof Suppose, by way of contradiction, that H � K < Ω, where the group
K is maximal amongst the geometric subgroups of Ω and is not of the same
type as H.

If C6 �= ∅, then either q = p ≡ 1 mod 3 and Ω = SL3(p), or q = p ≡ 2 mod 3
and Ω = SU3(p). By Table 2.9, 31+2.Q8 � H � 31+2.SL2(3). Let R be the
extraspecial normal subgroup of H, so that R ∼= 31+2 and R is absolutely
irreducible.

Working in SL3(7), it is straightforward using Magma (file Chap3calc) to
check that the second derived group of 31+2.Q8 contains R, so K �∈ C1 ∪C3. If
K ∈ C2 then K preserves a decomposition into three subspaces, so the second
derived group of K is reducible, a contradiction. Recall from Definition 2.2.13
that qu is the smallest power of p for which there exist cube roots of unity, so
K �∈ C5. There is a unique type of C6-subgroup, so K �∈ C6. If C8 �= ∅ then
Ω = SL3(p), and so by Table 2.11 the only C8-subgroup K is 3× SO3(p). Now,
H ′ contains Z(SL3(p)) ∼= 3, whilst K ′ has trivial center, so K �∈ C8.

Recall Definition 2.2.17 of the C8-subgroups.

Proposition 3.2.6 Let n = 3 and let H be a C8-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω.

Proof If C8 �= ∅, then Ω = SL3(q) with q > 2. Assume, by way of contra-
diction, that H � K < SL3(q), where K is maximal amongst the geometric
subgroups of SL3(q) and is not of the same type as H.

We deal first with q ∈ {3, 4}, where H is soluble. If q = 3, then the group
H ∼= SO3(3) ∼= S4 (and recall from Proposition 2.3.6 that H is equal to the
unique C2-subgroup, but is considered under C8). If q = 4 then H ∼= SU3(2).
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Since q � 4 and n = 3, the group K ∈ C1 ∪ C3 ∪ C5. Now, H is absolutely
irreducible by Proposition 1.12.2, so K �∈ C1. Furthermore |H| does not divide
|ΓL1(q3)|, so K �∈ C3. Finally, if K ∈ C5 then q = 4, but |3 × SL3(2)| is not
divisible by |H|.

We therefore assume that q � 5, so that H∞ ∼= SU3(q1/2) or Ω3(q). The
group H∞ is absolutely irreducible by Proposition 1.12.2 so K �∈ C1 ∪ C3.
Furthermore, K �∈ C2 ∪ C6 because H is insoluble.

Consider next Class C5. If H is unitary then, by Proposition 1.12.7, all
elements of Fq occur as traces of elements of H∞, so K /∈ C5. The group Ω3(q)
contains elements whose trace lies in no proper subfield of Fq by Lemma 1.12.8,
so again K �∈ C5.

Finally, since we have |Ω3(q)| = 1
(q−1,2)q

2(q−1)(q+1), whilst |SU3(q1/2)| =
q3/2(q−1)(q3/2+1), Lagrange’s theorem shows that neither quasisimple classical
group can contain the other, so K �∈ C8.

3.3 Dimension 4

In dimension 4 we find Cases L, S and U, by Definition 1.6.20. We assume
throughout this section that the groups in Case S do not involve a graph
automorphism; that is, they are subgroups of PCΓSp4(q) or CΓSp4(q), and so
Aschbacher’s Theorem applies: we will consider the graph automorphism in
Chapter 7. In Case S we also assume that q > 2 as Sp4(2) is not quasisimple.
Classes C4 and C7 are empty.

Recall Definition 2.2.1 of the C1-subgroups, and Definition 2.3.5, of standard
reducible behaviour.

Proposition 3.3.1 Let n = 4. Then Ω has standard reducible behaviour.

Proof This is immediate from Propositions 2.3.1, 2.3.2 and 2.3.4: note that
there are no stabilisers of non-degenerate subspaces in Case S.

Recall Definition 2.2.3 of the C2-subgroups. If H is a C2-subgroup in dimen-
sion 4 then one of the following holds: Ω = SL4(q) and H is of type GL1(q) � S4

or GL2(q) � S2; Ω = SU4(q) and H is of type GU1(q) � S4 or GU2(q) � S2 or
GL2(q2).2; Ω = Sp4(q) and H is of type Sp2(q) � S2 or GL2(q).2, with q odd in
the latter case.

Proposition 3.3.2 Let n = 4, let H be a C2-subgroup of Ω, preserving a
decomposition into four subspaces, let G be almost simple with socle Ω, and
let HG be the corresponding C2-subgroup of G. Then H is maximal amongst
the geometric subgroups of Ω if and only if either Ω = SL4(q) and q � 7, or
Ω = SU4(q) and q �= 3. If Ω = SL4(q) and q � 4 then HG is not maximal in
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G. If Ω = SL4(5) then HG is maximal amongst the geometric subgroups of G
if and only if G �� L4(5).〈δ2, γ〉. If Ω = SU4(3) then HG is maximal amongst
the geometric subgroups of G if and only if G �� U4(3).〈δ2, φ〉.
Proof The exceptions in Case L when q � 4 follow immediately from Propo-
sition 2.3.6, so we will assume that q � 5 in Case L. Assume that H � K < Ω,
where initially we will assume K is maximal amongst the geometric subgroups
of Ω and is not of the same type as H.

It follows from Lemma 2.3.7 (vi) that K �∈ C1 ∪ C3 and H ′ is irreducible.
If K ∈ C2 then K is of type GL±

2 (q) � S2 or GL2(q2).2, so K ′ is reducible, a
contradiction. Class C4 is empty as n = 4.

Consider Class C5. In Case L, let α ∈ F×
q . In Case U, let α be any (q−1)th

power in F×
q2 . It is straightforward to write down a matrix in H ′ with trace α

as a product of commutators: the first commutator is a diagonal matrix with
one entry equal to α, and the second a 3-cycle which moves all other non-zero
entries off the diagonal. Thus in Case L H ′ contains elements of all traces in
F×

q , so K �∈ C5, and in Case U the traces of elements of H ′ form a set of size
at least q+ 1 (since H ′ also contains elements of trace 0), and hence do not lie
in any proper subfield of Fq2 . Thus K �∈ C5.

If K ∈ C6 then q is an odd prime, |K| = 23040 if q ≡ ±3 mod 8, and
|K| = 46080 if q ≡ ±1 mod 8. In Case L, |H| = 24(q − 1)3, so |H| > |K|
for q > 11, and if q ∈ {3, 7, 11} then C6 = ∅. If q = 5 then one may check,
using Magma (file Chap3calc) that there is a (proper) containment H < K

and that K contains a unique conjugacy class of subgroups of type H. So
the containment extends to the normaliser of the SL4(5)-class of K in ΓL4(5).
That is, H.〈δ2, γ〉 < K.〈δ2, γ〉 < L := SL4(5).〈δ2, γ〉. There are two classes of
C6-subgroups in SL4(5), interchanged by δ, so if G is almost simple with socle
L4(5), and is not a subgroup of L, then GH is not contained in GK . In Case
U, |H| = 24(q+ 1)3, so |H| > |K| for q > 7. If q = 3 then, as for q = 5 in Case
L, one may check directly (file Chap3calc) that H is properly contained in K,
and that the group LH in L := U4(3).〈δ2, φ〉 is contained in LK . There are two
classes of C6-subgroups in SU4(3), interchanged by δ, so if G is almost simple
with socle U4(3), and is not a subgroup of L, then GH �� GK . If q = 5 then
C6 = ∅, and if q = 7 then |H| does not divide |K|.

Class C7 is empty as n = 4, and K �∈ C8 by Lemma 2.3.12 (ii).
In SL4(5) and SU4(3) we have only found one type of group in Class Ci

for 1 � i � 8 that (properly) contains H, so in extensions where this contain-
ment does not extend the group of type H is maximal amongst the geometric
subgroups.

Proposition 3.3.3 Let n = 4, let H be a C2-subgroup of Ω preserving a
decomposition into two subspaces, let G be almost simple with socle Ω, and let
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HG be the subgroup of G of the same type as H. In Case S, assume that q > 2.
Then H is maximal amongst the geometric subgroups of Ω if and only if q > 3
or one of the following holds:

(i) Ω = SU4(3) and H is of type GU2(3) � S2;
(ii) Ω = Sp4(3) and H is of type Sp2(3) � S2;

If H is not maximal in Ω then HG is maximal amongst the geometric subgroups
of G if and only if one of the following holds: Ω = SL4(3) and G �� L4(3).〈γ〉;
or Ω = SU4(3), the group H is of type GL2(9).2 and G �� U4(3).〈δ2, φ〉.
Proof Assume that H � K < Ω, where we assume in the first instance that
K ∈ Ci for 1 � i � 8 and is not of the same type as H. It is immediate from
Lemma 2.3.7 (iii) that K �∈ C1.

We deal first with q � 3. The C2-subgroup of SL4(2) is shown in Proposi-
tion 2.3.6 to be non-maximal, and not to extend to a novelty.

We next consider SL4(3), so that |H| = 2304. Order considerations show
that K �∈ C2 ∪ C3. Classes C4, C5 and C6 are empty. A Magma calculation
(file Chap3calc) shows a copy of H is a proper subgroup of the standard copy
K of the group of type Sp4(3), so H is not maximal amongst the geometric
subgroups of SL4(3). Modulo an inner automorphism of Sp4(3), the automor-
phism γ centralises the standard copy of Sp4(3) (and hence H). However, there
are two classes of groups K, interchanged by δ, whilst there is a single class of
groups H. Since we have now considered all groups in Class Ci for 1 � i � 8,
we conclude that HPGL4(3) is maximal amongst the geometric subgroups of
PGL4(3).

We next consider SU4(2). The group of type GU2(2) � S2 is considered in
Proposition 2.3.6, so letH be of type GL2(4).2, so thatH ∼= A5 :2. A straightfor-
ward Magma calculation (file Chap3calc) shows that H is properly contained
in the subfield group K of type Sp4(2). Both H and K are centralised by φ so
H does not extend to a novelty.

Next consider SU4(3), so that H is of type GU2(3) � S2 and order 4608,
or type GL2(9).2 and order 2880: since the larger group is soluble and the
smaller is insoluble, neither contains the other. Order considerations show that
K is not of type GU1(4) � S4, so K �∈ C2. Classes C3 and C4 are empty. If
K ∈ C5 then, consulting Table 2.8, order considerations imply that H ∼= (4 ◦
SL2(9)).2 and K ∼= 4 ◦ Sp4(3). A Magma calculation (file Chap3calc) shows
that there is a proper containment H < K and that K has a unique conjugacy
class of subgroups of the same type as H. So the containment extends to the
normaliser of the SU4(3)-class of K in CΓU4(3). That is, H.T < K.T for
T := SU4(3).〈δ2, φ〉. There are two classes in SU4(3) of groups of type Sp4(3)
and one of groups of type GL2(9).2, so the containment does not extend beyond
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T . If K ∈ C6 and H is of type GU2(3)�S2 then H has index 5 in K, by Table 2.9,
which is impossible. Thus H is of type GL2(9).2, and has index 8 in K, with
K ∼= (4 ◦ 21+4).A6. The A6 quotient of K acts irreducibly on the 24 layer, so
K has no subgroups of index 8, a contradiction. Classes C7 and C8 are empty.

Finally, consider Sp4(3), so that H is of type Sp2(3) � S2 and order 1152,
or type GL2(3).2 and order 96. The group of type GL2(3).2 can be checked
using Magma (file Chap3calc) to be non-maximal, and its extension by δ is
also not maximal. So let H be of type Sp2(3) � S2. Order considerations imply
that K �∈ C3 ∪ C6, and Classes C4, C5, C7 and C8 are empty, so H is maximal
amongst the geometric subgroups of Sp4(3).

We therefore assume for the remainder of the proof that q > 3 so that, in
particular, H is insoluble. Recall from the beginning of the proof that K �∈ C1.

Assume that K ∈ C2. If K preserves a decomposition into four subspaces,
then K is soluble, a contradiction, so K preserves a decomposition into two
subspaces, and Ω �= SL4(q). One of H or K preserves a decomposition into non-
degenerate subspaces, and the other into totally singular subspaces. Lagrange’s
theorem applied toH∞ andK∞ eliminates both possibilities when Ω = SU4(q),
so let Ω = Sp4(q). If H is of type Sp2(q) � 2 then |H∞| > |K∞|, so assume that
H is of type GL2(q).2. Let the subspaces preserved by K be W1 and W2. By
Lagrange’s theorem, H is not contained in L � 2 with L a parabolic subgroup
of Sp2(q), so for at least one i ∈ {1, 2} the restriction of the stabiliser in H of
Wi to Wi must act irreducibly on Wi. But the irreducible H∞-submodules are
all isomorphic to V1, and hence are totally singular, a contradiction.

If K ∈ C3 then Ω = SL±
4 (q). First assume that H∞ ∼= SL2(q)×SL2(q). If K

is of type GL2(q2).2 or Sp2(q2).2, then SL2(q)
2 � SL2(q2), which contradicts

Lagrange’s theorem, soK is of type GU2(q).2. However, then SL2(q)
2 � SL2(q),

a contradiction. Thus H is of type GL2(q).2, and so q is odd. If K is of type
Sp2(q2).2, then |K| = 2q2(q4−1), whereas |H| = 2q(q−1)(q2−1), a contradic-
tion since q > 3. If K is of type GU2(q).2 then K∞ is SL2(q) acting irreducibly,
but H∞ is SL2(q) acting reducibly, a contradiction.

Class C4 is empty when n = 4. By Lemma 2.3.10, if K ∈ C5, then the
group Ω = SU4(q) and H ∼= SL2(q2).(q − 1).2. If K is of type GO±

4 (q), then q

is odd and K∞ is Ω+
4 (q) ∼= SL2(q) ◦ SL2(q) or Ω−

4 (q) ∼= L2(q2), a contradiction.
A standard argument using traces shows that K is not of type GU4(q0), so
K = Sp4(q).(q + 1, 2). Since (q4 − 1) | |H∞|, the group H∞ is not contained
in a C1-subgroup of Sp4(q). Since H∞ ∼= SL2(q2) is reducible in its action on
F4

q2 , this implies that H∞ is not absolutely irreducible in its action on the
natural module for Sp4(q), so H∞ is not an S -subgroup of Sp4(q). Examining
composition factors of H shows that if H∞ � L∞ for a geometric subgroup L
of Sp4(q) then L is contained in a member of C3, but |H|/(q + 1, 2) is larger
than the orders of the C3-subgroups of Sp4(q), a contradiction.
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If K ∈ C6 then q is an odd prime, and the only non-abelian composition
factor of K is A5 or A6, a contradiction unless |L2(q)| divides |A6|. Thus the
group Ω = SL4(5). If H is of type GL2(5) � S2 or Sp2(5) � S2 then H contains
two composition factors isomorphic to A5, but |A5|2 > |A6|. If H is of type
GL2(5).2 then |H| = 960, and hence has index 2 in K. However, K is perfect,
a contradiction.

Class C7 is empty because n = 4, and K �∈ C8 by Lemma 2.3.12.

Recall Definition 2.2.5 of the C3-subgroups. Let H be a C3-subgroup in
dimension 4. Then one of the following holds: Ω = SL4(q) and H is of type
GL2(q2); Ω = Sp4(q) and H is of type Sp2(q2) or type GU2(q), with q odd in
the latter case. Note in particular that Class C3 is void in SU4(q).

Proposition 3.3.4 Let n = 4 and let H be a C3-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω if and only if H is not of type
GU2(3) in Sp4(3). If H is not maximal in Ω then H does not extend to a novel
maximal subgroup.

Proof We consider the non-maximal example, where H ∼= GU2(3).2 � Sp4(3).
The group of type GU2(3) in CSp4(3) normalises an extraspecial subgroup of
shape 21+4, and so is properly contained in a C6-subgroup K. There are unique
classes of groups H and groups K in Sp4(3), and K contains a unique class of
groups isomorphic to H, so H does not extend to a novelty.

For the remainder of this proof, we therefore assume that if H is of type
GU2(q) then q � 5. Assume, by way of contradiction, that H � K < Ω, where
K is maximal amongst the geometric subgroups of Ω and is not of the same
type as H.

If K ∈ C1, then by Lemma 2.3.14 H is of type GU2(q) in Sp4(q), so that
|H| = 2q(q + 1)(q2 − 1) and q is odd. Consulting Tables 2.2 and 2.3, there are
two types of C1-subgroup in Sp4(q), and both have p′-order (q − 1)(q2 − 1).
Therefore, K �∈ C1.

By Lemma 2.3.16, if K ∈ C2 then H is of type GU2(3).
It follows from Lemma 2.3.17 that if K ∈ C3, then H is of type GU2(q) in

Sp4(q), so that K is of type Sp2(q2). The order of K is 2q2(q4 − 1), and the
order of H is 2q(q + 1)(q2 − 1), contradicting Lagrange’s theorem.

Class C4 is empty. It is immediate from Lemma 2.3.19 that K �∈ C5.
Suppose next that K ∈ C6. Then q is odd, and if Ω = SL4(q) then K is

of type 22+4.Sp4(2), and if Ω = Sp4(q) then K is of type 21+4
− .Ω−

4 (2). In Case
L the only non-abelian composition factor of K is A6, which is smaller than
L2(q2) for q > 3. If q = 3 then C6 is void in Case L. In Case S, the only
non-abelian composition factor of K is A5, which is smaller than L2(q2) for q
odd, and smaller than L2(q) for q > 5. We have already considered GU2(3), so
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without loss of generality H ∼= GU2(5).2. Then |H| is divisible by 9, whilst |K|
is not, a contradiction.

Class C7 is empty, and it follows from Lemma 2.3.20 that K �∈ C8.

Recall Definition 2.2.11 of the C5-subgroups.

Proposition 3.3.5 Let n = 4 and let H be a C5-subgroup of Ω. If Ω = SU4(3)
and H is of type Ω+

4 (3), then H is not maximal and does not extend to a novel
maximal subgroup. Otherwise, H is maximal amongst the geometric subgroups
of Ω.

Proof In Cases L and S this is immediate from Proposition 2.3.29, and it is
also immediate if H is of type GUn(q0) or Spn(q) in Case U. Thus, without
loss of generality, Ω = SU4(q), the group H is of type GO±

4 (q), and q is odd.
Assume first that q = 3 and H is of shape SO+

4 (3).[4], which can be written
as (4 ◦ Q8 ◦ Q8).(32.[4]), of order 2304 = 28.32. Here, H has a characteristic
symplectic-type subgroup S = O2(H) of order 22+4, so H is properly contained
in a member K of C6. There are two classes of C6-subgroups in SU4(3), and also
two classes of groups of type GO+

4 (3). In each case the classes are interchanged
by the diagonal automorphism δ, and normalised by 〈φ, δ2〉 ∼= 22. For extensions
G of Ω, the group KG is defined as the normaliser of S, so the fact that S is
characteristic in H shows that H does not extend to a novelty. We assume for
the rest of the proof that H is not of type GO+

4 (3).
Assume, by way of contradiction, that H � K < Ω, where K is maximal

amongst the geometric subgroups of Ω and is not of the same type as H. Then
H∞ is isomorphic to one of Ω+

4 (q) ∼= 2.L2(q)
2 (q > 3 odd) or Ω−

4 (q) ∼= L2(q2)
(q odd).

The group H∞ is absolutely irreducible, by Proposition 1.12.2, so the group
K �∈ C1∪C2∪C3. Classes C4, C7 and C8 are empty. It follows from Lemma 2.3.28
that K �∈ C5.

Suppose finally that K ∈ C6, so that p = q ≡ 3 (mod 4). Then by Table 2.9,
the group K ′ is isomorphic to (4 ◦ 21+4).A6. For odd q > 3 the groups 2.L2(q)

2

and L2(q2) cannot be embedded into a group whose only non-abelian composi-
tion factor is A6. This leaves only H of type GO−

4 (3), for which H ∼= 4×A6
·23.

However, a Magma calculation (file Chap3calc) shows that the only subgroups
of K of order 2|A6| are of shape SL2(9), whereas H contains A6

·2 ∼= M10.

Recall Definition 2.2.13 of the C6-subgroups.

Proposition 3.3.6 Let n = 4 and let H be a C6-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω.

Proof This is immediate from Proposition 2.3.31.
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Recall Definition 2.2.17 of the C8-subgroups, and Definition 1.13.2 of zq,n.

Proposition 3.3.7 Let n = 4 and let H be a C8-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω.

Proof If C8 �= ∅ then Ω = SL4(q) or Sp4(q), and we assume that q > 2 in
Case S as Sp4(2) is not quasisimple. Suppose, by way of contradiction, that
H � K < Ω where K is maximal amongst the geometric subgroups of Ω and
is not of the same type as H.

We deal first with H ∼= SO+
4 (3).2 ∼= 21+2+2.32.22 < SL4(3), since this is

the only occasion when H is soluble. The group H ′ ∼= Ω+
4 (3) is absolutely

irreducible by Proposition 1.12.2, so K �∈ C1 ∪ C3, and nor does K stabilise a
decomposition into two subspaces in C2. We note that C4 ∪ C5 ∪ C6 ∪ C7 = ∅.
The C2-subgroup is not maximal, by Proposition 2.3.6. This leaves only C8,
for which we note that |SO−

4 (3).2| is not divisible by |H|, whilst Lemma 1.12.4
shows that Sp4(3) = K ′ does not contain H ′.

After dealing with this exception, either Ω = SL4(q) and H∞ is one of
Sp4(q), SU4(q1/2) or Ω±

4 (q), or Ω = Sp4(2e), and H∞ is Ω±
4 (q). By Proposi-

tion 1.12.2 the group H∞ is absolutely irreducible, so K �∈ C1 ∪C2 ∪C3. Class
C4 = ∅, and K �∈ C5 as, by Proposition 1.12.7, H∞ contains elements of all
traces in Fq, contradicting Lemma 2.2.12.

Suppose that K ∈ C6. Since C6 = ∅ for q even, Ω = SL4(q), and so
q ≡ 1 mod 4 and q is prime. The only non-abelian composition factor of K is
A6, but unless q = 5 and H∞ = Ω+

4 (5) the group H∞ has larger non-abelian
composition factors than A6, a contradiction. In this exceptional case, we note
that L2(5)2 is larger than A6.

Finally, suppose that K ∈ C8. If H is of type GU4(q1/2) then |H| is divisible
by some zq,3, contradicting Lagrange’s theorem. If H is of type Sp4(q) then |H|
is divisible by some zq,4, so K is of type GO−

4 (q), contradicting Lemma 1.12.5.
Suppose next that H is of type GO+

4 (q). If K is of type GU4(q1/2) then |H|
is divisible by a higher power of zq1/2,4 than |K|. If K is of type Ω−

4 (q) then
|H| does not divide |K|. The group K is not of type Sp4(q) by Lemma 1.12.4.

If H is of type GO−
4 (q) then |H| is divisible by zq,4, so K is of type Sp4(q),

again contradicting Lemma 1.12.4.

3.4 Dimension 5

By Definition 1.6.20, when n = 5 we find Cases L and U only. Recall Def-
inition 2.2.1 of the C1-subgroups, and Definition 2.3.5 of standard reducible
behaviour.
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Proposition 3.4.1 Let n = 5. Then Ω has standard reducible behaviour.

Proof This is immediate from Propositions 2.3.1, 2.3.2 and 2.3.4.

Recall Definition 2.2.3 of the C2-subgroups.

Proposition 3.4.2 Let n = 5 and let H be a C2-subgroup of Ω. Then H

is maximal amongst the geometric subgroups of Ω if and only if one of the
following holds: Ω = SL5(q) and q � 5; Ω = SU5(q). If H is not maximal then
H does not extend to a novel maximal subgroup.

Proof This follows immediately from Proposition 2.3.13.

Recall Definitions 2.2.5, 2.2.11, 2.2.13 and 2.2.17.

Proposition 3.4.3 Let n = 5 and let H be a C3-, C5-, C6- or C8-subgroup
of Ω. Then H is maximal amongst the geometric subgroups of Ω.

Proof This follows immediately from Propositions 2.3.21, 2.3.29, 2.3.31 and
2.3.32.

Classes C4 and C7 are empty.

3.5 Dimension 6

By Definition 1.6.20, when n = 6 we find Cases L, U and S. Recall Def-
inition 2.2.1 of the C1-subgroups, and Definition 2.3.5 of standard reducible
behaviour.

Proposition 3.5.1 Let n = 6. Then Ω has standard reducible behaviour.

Proof This is immediate from Propositions 2.3.1, 2.3.2 and 2.3.4.

Recall Definition 2.2.3 of the C2-subgroups. If H is a C2-subgroup and
n = 6, then one of the following holds: Ω = SL6(q) and H is of type GL1(q) �S6,
GL2(q) �S3 or GL3(q) �S2; Ω = SU6(q) and H is of type GU1(q) �S6, GU2(q) �S3,
GU3(q) � S2 or GL3(q2).2; Ω = Sp6(q) and H is of type Sp2(q) � S3 or GL3(q).2,
with q odd in the latter case.

Proposition 3.5.2 Let n = 6 and let H be a C2-subgroup of Ω, preserving
a decomposition into six subspaces. Then H is maximal amongst the geometric
subgroups of Ω if and only if Ω = SU6(q) or q � 5. If H is not maximal then
H does not extend to a novel maximal subgroup.
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Proof The exceptions when q � 4 in Case L are shown in Proposition 2.3.6,
so assume that q � 5 in Case L

Suppose, by way of contradiction, that H � K < Ω, where K is maximal
amongst the geometric subgroups of Ω and is not of the same type as H.

It is immediate from Lemma 2.3.7 (iv),(v) that K �∈ C1 ∪ C3, and from
Lemma 2.3.8 (i) that K �∈ C2.

Assume that K ∈ C4. By Lemma 2.2.4 (ii) the subgroup L of H is perfect,
so L � K∞. In Case L, the order of K∞ is q4(q2 − 1)2(q3 − 1), whilst |L| is
divisible by (q − 1)5. Since q � 5 this contradicts Lagrange’s theorem. In Case
U, the order of K∞ is q4(q2 − 1)2(q3 + 1), whilst |L| is divisible by (q + 1)5.
This contradicts Lagrange’s theorem.

It follows from Lemma 2.3.10 (i) that K �∈ C5. Classes C6 and C7 are empty.
It follows from Lemma 2.3.12 (ii) that K �∈ C8.

Proposition 3.5.3 Let n = 6 and let H be a C2-subgroup of Ω, preserving a
decomposition into three subspaces. Then H is maximal amongst the geometric
subgroups of Ω if and only if q �= 2. If q = 2 then H does not extend to a novel
maximal subgroup.

Proof The result for q = 2 is immediate from Proposition 2.3.6. We first
assume that q = 3. By Lemma 2.3.7 (iv), the group H is irreducible. In Cases
L, U and S, a short Magma calculation (file Chap3calc) shows that the only
other subgroups of Ω that are maximal amongst the geometric groups and have
order divisible by |H| are reducible, a contradiction.

Suppose, by way of contradiction, that H � K < Ω, where K is maximal
amongst the geometric subgroups of Ω and is not of the same type as H. We
now assume that q � 4, therefore H∞ ∼= SL2(q)

3. By Lemma 2.3.7 (iv), H is
irreducible, so K �∈ C1.

We show next that K �∈ C2. Suppose first that K is of type GL±
1 (q) � S6.

The only non-abelian composition factor of K is A6, however |L2(q)
3| is greater

than |A6|, a contradiction. Next, suppose that K is of type GL±
3 (q) �S2, so that

K∞ ∼= SL±
3 (q)

2
. This contradicts Lagrange’s theorem, as q � 4. Finally, suppose

that K is of type GL3(qu).2, so that Ω = SU6(q) or Sp6(q) and K∞ ∼= SL3(qu).
This contradicts Lagrange’s theorem as q � 4.

Suppose next that K ∈ C3. The order of H∞ does not divide |SL2(q3)|,
so K is semilinear of degree 2. Therefore K has a non-absolutely irreducible
subgroup of index 2. However, the largest non-absolutely irreducible subgroup
of H has index 3, a contradiction.

We show next that K �∈ C4. Suppose otherwise, then K∞ ∼= SL2(q)×SL3(q)
in Case L, K∞ ∼= SL2(q) × SU3(q) in Case U, and K∞ ∼= Sp2(q) × Ω3(q) in
Case S. Since H � K, there are homomorphisms φ1 : H∞ → SL2(q), and
φ2 : H∞ → SL±

3 (q) or Ω3(q), and ker(φ1) ∩ ker(φ2) � F×
qu . It is clear that
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ker(φ1) contains at least two copies of SL2(q), thus at least two commuting
copies of SL2(q) do not lie in ker(φ2), which contradicts Lagrange’s theorem.

The fact that K �∈ C5 follows from Lemma 2.3.10 (ii). Classes C6 and C7

are empty. By Lemma 2.3.12 (i), K �∈ C8.

Proposition 3.5.4 Let n = 6 and let H be a C2-subgroup of Ω, preserving a
decomposition into two subspaces. Then H is maximal amongst the geometric
subgroups of Ω.

Proof Suppose, by way of contradiction, that H � K < Ω, where the group
K is maximal amongst the geometric subgroups of Ω and is not of the same
type of H.

We first deal with SU6(2) as a special case. If H is of type GU3(2) � S2 then
37 divides |H|, and does not divide the order of any other geometric group. If H
is of type GL3(4).2 then the only other members of Ci for 1 � i � 8 with order
a multiple of |H| are the C1-subgroup 29 :SL3(4) and the C5-subgroup of type
Sp6(2). The group H is irreducible by Lemma 2.3.7 (iii), and is not contained
in a subfield group by Lemma 2.3.10 (iii).

So assume in the rest of the proof that Ω �= SU6(2). Lemmas 2.3.7 (iii) and
2.3.8 (ii) show that K �∈ C1 ∪ C2.

Next we establish that K �∈ C3. Otherwise, if H is of type GL±
3 (q) � S2 then

Ω1 ×Ω2 is isomorphic to a subgroup of SL6/r(qr) for r ∈ {2, 3}, which violates
Lagrange’s theorem. Therefore H is of type GL3(q2).2 or GL3(q).2. In Case U,
H∞ ∼= SL3(q2), which is not a subgroup of K∞ = SU2(q3), by Theorem 1.11.5.
In Case S, H∞ ∼= SL3(q), and K∞ is isomorphic to SL2(q3) or SU3(q), neither
of which contains H∞.

It follows from Lemmas 2.3.9, 2.3.10 (ii),(iii) and 2.3.12 (i) that K �∈ C4,C5,
and C8, respectively. Classes C6 and C7 are empty.

Recall Definition 2.2.5 of the C3-subgroups. If n = 6 and H is a C3-subgroup
of Ω, then one of the following holds: Ω = SL6(q) and H is of type GL2(q3) or
GL3(q2); Ω = SU6(q) and H is of type GU2(q3); Ω = Sp6(q) and H is of type
Sp2(q3) or GU3(q), with q odd in the latter case.

Proposition 3.5.5 Let n = 6, let H be a C3-subgroup of Ω, let G be almost
simple with socle Ω, and let HG be the corresponding C3-subgroup of G. Then
H is maximal amongst the geometric subgroups of Ω if and only if Ω �= SU6(2).
If H is not maximal then HG is maximal amongst the geometric subgroups of
G if and only if G is not contained in a conjugate of U6(2).〈φ〉.
Proof Suppose that H � K < Ω where K is maximal amongst the geometric
subgroups of Ω and is not of the same type as H. We will prove that this implies
that Ω = SU6(2), and deduce that there is a unique type for K in this case.
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It is immediate from Lemmas 2.3.14, 2.3.16 and 2.3.17 that K �∈ C1,C2,
and C3, respectively. If K ∈ C4, then it follows from Lemma 2.3.18 and the
possible types in Case U that H∞ ∼= SL2(q3). In Cases L and U, the group
K∞ ∼= SL2(q)

∞ × SL±
3 (q), by Table 2.7. Since L2(q3) is bigger than L2(q), the

image of H∞ in SL2(q)
∞ is trivial. Therefore H∞ � 1⊗ SL±

3 (q), and so H∞ is
reducible, contradicting Lemma 2.2.6. A similar but easier argument yields a
contradiction in Case S. By Lemma 2.3.19, if K ∈ C5 then Ω = SU6(2), which
we consider in the next paragraph. Classes C6 and C7 are empty. We proved in
Lemma 2.3.20 that K �∈ C8.

So let Ω = SU6(2), so that H ∼= 3 × L2(8):3. Then H is equal to the C3-
subgroup of the C5-subgroup of type Sp6(2), and hence is not maximal. Note
that H is not properly contained in any other type of geometric subgroup, since
SU6(2) has only one type of C5-subgroup. There are three classes of groups of
type Sp6(2) in U6(2), on which Out U6(2) = 〈δ, φ〉 acts as S3. Since, modulo
scalars, H and K can be written over F2, they are both centralised modulo
scalars by φ, so if G � SU6(q).〈φ〉 then HG is not maximal. However, there is a
unique SU6(2)-conjugacy class of groups of type GU2(q3), so if G �� SU6(q).〈φ〉
then HG is maximal amongst the geometric subgroups of G.

Recall Definition 2.2.9 of the C4-subgroups. If H is a C4-subgroup in di-
mension 6 then one of the following holds: Ω = SL6(q) and H is of type
GL2(q)⊗GL3(q); Ω = SU6(q) and H is of type GU2(q)⊗GU3(q); or Ω = Sp6(q)
with q odd, and H is of type Sp2(q)⊗GO3(q).

Proposition 3.5.6 Let n = 6 and let H be a C4-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω if and only if Ω = SL±

6 (q) and
q > 2, or Ω = Sp6(q) and q > 3. If H is not maximal then H does not extend
to a novel maximal subgroup.

Proof The listed exceptions are all considered in Proposition 2.3.22, where it
is shown that their behaviour is as stated, so assume for the rest of this proof
that Ω �= SL±

6 (2) or Sp6(3).
Suppose, by way of contradiction, that H � K < Ω, where K is maximal

amongst the geometric subgroups of Ω and is not of the same type as H. It is
immediate from Lemma 2.3.23 that K �∈ C1 ∪ C3.

Suppose that K ∈ C2, preserving a decomposition into t subspaces of di-
mension m = 6/t. It follows immediately from Lemma 2.3.24 that t = 6 or
q = 3, hence Ω = SL±

6 (q). If t = 6 then the only non-abelian composition factor
of K is A6. However |L±

3 (q)| > |A6| since q > 2. Thus q = 3 and 2 � t � 3.
If t = 2 then K ′ is reducible. However, SL2(3)′ and SL±

3 (3)
′

are irreducible,
so H ′ is irreducible by Lemma 2.2.10. Therefore t = 3. The group K∞ is re-
ducible, fixing three subspaces of dimension 2. The groups SL3(3) and SU3(3)
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have no representations in defining characteristic in dimension less than 3 by
Theorem 1.11.5, a contradiction.

There is a unique type of tensor decomposition, so K �∈ C4. It follows from
Lemma 2.3.25 that K �∈ C5. Classes C6 and C7 are empty. It follows from
Lemma 2.3.26 that K �∈ C8, so we are done.

Recall Definition 2.2.11 of the C5-subgroups.

Proposition 3.5.7 Let n = 6 and let H be a C5-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω.

Proof This follows immediately from Proposition 2.3.29.

Classes C6 and C7 are empty. Recall Definition 2.2.17 of the C8-subgroups.

Proposition 3.5.8 Let n = 6 and let H be a C8-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω.

Proof This follows immediately from Proposition 2.3.32.

3.6 Dimension 7

By Definition 1.6.20, when n = 7 we find Cases L, U and O◦. Recall Def-
inition 2.2.1 of the C1-subgroups, and Definition 2.3.5 of standard reducible
behaviour.

Proposition 3.6.1 Let n = 7. Then Ω has standard reducible behaviour.

Proof This is immediate from Propositions 2.3.1, 2.3.2 and 2.3.4.

Recall Definition 2.2.3 of the C2-subgroups.

Proposition 3.6.2 Let n = 7 and let H be a C2-subgroup of Ω. Then H

is maximal amongst the geometric subgroups of Ω if and only if one of the
following holds: Ω = SL7(q) and q � 5; Ω = SU7(q); Ω = Ω7(q). If H is not
maximal in Ω then H does not extend to a novel maximal subgroup.

Proof This follows immediately from Proposition 2.3.13.

Recall Definitions 2.2.5, 2.2.11, 2.2.13 and 2.2.17.

Proposition 3.6.3 Let n = 7 and let H be a C3-, C5-, C6- or C8-subgroup
of Ω. Then H is maximal amongst the geometric subgroups of Ω.

Proof This follows immediately from Propositions 2.3.21, 2.3.29, 2.3.31 and
2.3.32.

Classes C4 and C7 are empty.
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3.7 Dimension 8

By Definition 1.6.20, when n = 8 we find Cases L, U, S and O−. The maximal
subgroups of all almost simple groups with socle Ω+

8 (q) are classified in [62].
Recall Definition 2.2.1 of the C1-subgroups, and Definition 2.3.5 of standard

reducible behaviour.

Proposition 3.7.1 Let n = 8. Then Ω has standard reducible behaviour.

Proof This is immediate from Propositions 2.3.1, 2.3.2, 2.3.3 and 2.3.4, unless
Ω = Ω−

8 (q) and H is the stabiliser of a non-degenerate k-space V1 and its
orthogonal complement V2 for 2 � k � 4. We consider these three exceptions.
By Definitions 2.2.3, 2.2.9, 2.2.13, 2.2.15 and 2.2.17, Classes C2, C4, C6, C7 and
C8 are all empty.

Assume, in the first instance, that H � K < Ω−
8 (q), where K is maximal

amongst the geometric subgroups of Ω−
8 (q) and is not of the same type as H.

We shall deduce that q � 3, and find just one possibility for K for each q.
If K ∈ C1 then H preserves a proper non-zero subspace of V other than

V1 and V2 and so, by Lemma 1.8.11, H cannot act irreducibly on both V1 and
V2. Now dim(V2) � 4 so H acts irreducibly on V2 by Proposition 1.12.2. The
matrices for H given in [46] show that H acts on V1 as GO(V1), so (again by
Proposition 1.12.2) H acts irreducibly on V1 unless k = 2, the form restricted
to V1 is of plus type, and q � 3.

For q = 2, notice that GO+
2 (2) ∼= 2 is reducible, and stabilises a non-singular

1-space. Thus PGO−
8 (2)H is contained in a subgroup of PGO−

8 (2) of type Sp6(2)
(but no other C1-group). Since Aut Ω−

8 (2) = PGO−
8 (2), no extension of H is

maximal.
For q = 3, notice that GO+

2 (3) ∼= 22 is completely reducible, and stabilises
an orthogonal pair of non-degenerate 1-spaces. Thus PGO−

8 (3)H is contained in
two distinct subgroups K of PGO−

8 (3) = Ω−
8 (3).〈ϕ〉 of type GO1(3) ⊥ GO7(3)

(but no other C1-groups). Now, δ can be chosen to interchange the two non-
degenerate 1-spaces, whilst acting trivially on the 6-space stabilised by H, so
HG � HK if and only if G � PGO−

8 (3).
Assume now that K ∈ C3. Then K is of type GO−

4 (q2) ∼= L2(q4), so unless
k = 4 then considering Ω(V2) we get a contradiction to Theorem 1.11.5. Noting
that L2(q4) does not contain (2, q − 1).L2(q)

2 × L2(q2) completes this case.
Finally assume that K ∈ C5, so that q � 8 by Definition 2.2.11. Then H∞

contains Ω(V2) as a subgroup, acting naturally on V2 < V , where dimV2 � 4.
Thus by Proposition 1.12.7 and Lemma 2.2.12, K �∈ C5.

Thus if H is not of type GO+
2 (q) ⊥ GO−

6 (q), we have shown that H is
maximal, and in these exceptional cases we have found a unique member of Ci

for 1 � i � 8 that contains H. Thus the maximality of H is as claimed.
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Recall Definition 2.2.3 of the C2-subgroups. If n = 8 andH is a C2-subgroup,
then one of the following holds:

(i) Ω = SL8(q) and H is of type GL1(q) � S8,GL2(q) � S4, or GL4(q) � S2;
(ii) Ω = SU8(q) and H is of type GU1(q) � S8,GU2(q) � S4,GU4(q) � S2, or

GL4(q2).2;
(iii) Ω = Sp8(q) and H is of type Sp2(q) � S4,Sp4(q) � S2, or GL4(q).2, with q

odd in the latter case.

In particular, there are no C2-subgroups in Ω−
8 (q).

Proposition 3.7.2 Let n = 8 and let H be a C2-subgroup of Ω, preserving a
decomposition into eight subspaces. Then H is maximal amongst the geometric
subgroups of Ω if and only if either Ω = SL8(q) and q � 5, or Ω = SU8(q). If
H is not maximal then H does not extend to a novel maximal subgroup.

Proof The exceptions in Case L are considered in Proposition 2.3.6, so we
will assume that q � 5 in Case L. Assume, by way of contradiction, that
H � K < Ω, where K is maximal amongst the geometric subgroups of Ω and
is not of the same type as H.

It is immediate from Lemma 2.3.7 (iv),(v) that K �∈ C1∪C3. It follows from
Lemma 2.3.8 (i) that K �∈ C2. Suppose that K ∈ C4, and note that H∞ has a
subgroup isomorphic to (q − 1)7 in Case L and (q + 1)7 in Case U. We check
that (q±1)7 does not divide |K∞| = q7(q2−1)2(q3±1)(q4−1)/(q+1, 2), unless
Ω = SL8(q) with q � 3, which we have excluded. We proved in Lemma 2.3.10 (i)
that K �∈ C5, and in Lemma 2.3.11 that K �∈ C6. Class C7 is empty. It follows
from Lemma 2.3.12 (ii) that K �∈ C8.

Proposition 3.7.3 Let n = 8 and let H be a C2-subgroup of Ω, preserving a
decomposition into four subspaces. Then H is maximal amongst the geometric
subgroups of Ω if and only if q > 2. If q = 2 then H does not extend to a novel
maximal subgroup.

Proof The statement for q = 2 is immediate from Proposition 2.3.6, so we
assume that q > 2. Assume, by way of contradiction, that H � K < Ω, where
K is maximal amongst the geometric subgroups of Ω and is not of the same
type as H. Note that if q > 3 then H∞ ∼= SL2(q)

4.
It is immediate from Lemma 2.3.7 (iv) that K �∈ C1. Suppose that K ∈ C2,

preserving a decomposition into t subspaces, where t ∈ {2, 8}. The derived
group of H is irreducible by Lemma 2.3.7 (vi), whereas if t = 2 then K ′ is
reducible, a contradiction. So t = 8, Ω = SL±

8 (q) and the only non-abelian
composition factor of K is A8. If q = 3 then |H| does not divide |K|. If q � 4
then |L2(q)|4 does not divide |A8|, a contradiction, so K �∈ C2.

It is immediate from Lemma 2.3.7 (vi) thatK �∈ C3, so suppose thatK ∈ C4.
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If q = 3 then |H| does not divide |K|. If Ω = SL±
8 (q) with q > 3 then the group

K∞ ∼= SL2(q)◦SL±
4 (q), contradicting Lagrange’s theorem. In Case S, q4 divides

|H| but not |K|.
We proved in Lemma 2.3.10 (ii) that K �∈ C5 unless Ω = SU8(3), and we

check that in this case |H| does not divide the order of any C5-subgroup. Assume
next that K ∈ C6, so that q is an odd prime. Consulting Table 2.9 we see that
H is bigger than K for all q. If K ∈ C7 then by Definition 2.2.15 Ω = Sp8(q)
with q > 3, and K∞ is smaller than H∞, a contradiction. If K ∈ C8 then, by
Definition 2.2.17 and Lemma 2.3.12 (i), Ω = SL8(3). It is straightforward to
check that if H is of type GL2(3) � S4 then |H| does not divide the order of any
C8-subgroup.

Proposition 3.7.4 Let n = 8 and let H be a C2-subgroup of Ω, preserving a
decomposition into two subspaces. Then H is maximal amongst the geometric
subgroups of Ω.

Proof Assume, by way of contradiction, thatH � K < Ω, whereK is maximal
amongst the geometric subgroups of Ω and is not of the same type as H.

It is immediate from Lemma 2.3.7 (iii) that if K ∈ C1 then Ω = Sp8(2) and
H is of type Sp4(2) � S2. But, as the wreath product of an irreducible group
with a transitive permutation group, H is irreducible in this case also. It follows
from Lemma 2.3.8 (ii) that K �∈ C2.

Assume that K ∈ C3, so that by Definition 2.2.5 the group Ω = SL8(q)
or Sp8(q), and by Lemma 2.3.7 (vii) the decomposition is into non-degenerate
subspaces in Case S. In Case L, |H∞| = q12(q2 − 1)2(q3 − 1)2(q4 − 1)2, whilst
|K∞| = q12(q4 − 1)(q6 − 1)(q8 − 1), which contradicts Lagrange’s theorem. In
Case S, H is of type Sp4(q)�S2, then |H∞| = q8(q2−1)2(q4−1)2. If K is of type
Sp4(q2).2 then |K∞| = q8(q4 − 1)(q8 − 1), whilst if K is of type GU4(q) then
|K∞| = q6(q2 − 1)(q3 + 1)(q4 − 1). Each choice of K∞ contradicts Lagrange’s
theorem.

Assume next that K ∈ C4, and recall the possibilities for K from Defini-
tion 2.2.9. For each choice of H and K we find that the non-abelian composition
factors of H are larger than the smaller non-abelian composition factor of K,
and that the product of their orders (or their order if there is only one) does
not divide the order of the larger composition factor of K.

It is immediate from Lemma 2.3.10 (ii),(iii) that K �∈ C5, so assume next
that K ∈ C6, so that q is odd. The only non-abelian composition factor of K
is S6(2) or O−

6 (2) ∼= S4(3). For all odd q these groups are smaller than L4(q),
U4(q), and S4(q)

2, a contradiction.
If K ∈ C7 then Ω = Sp8(q) and q is odd, by Definition 2.2.15. The largest

composition factor ofK is L2(q), a contradiction. We proved in Lemma 2.3.12 (i)
that K �∈ C8.
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Recall Definition 2.2.5 of the C3-subgroups. Let n = 8, and let H be a
C3-subgroup. Then one of the following holds: Ω = SL8(q) and H is of type
GL4(q2); Ω = Sp8(q) and H is of type Sp4(q2) or GU4(q), with q odd in the
latter case; Ω = Ω−

8 (q) and H is of type GO−
4 (q2). Note in particular that Class

C3 is empty in SU8(q).

Proposition 3.7.5 Let n = 8 and let H be a C3-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω.

Proof Suppose, by way of contradiction, that H � K < Ω, where K is maxi-
mal amongst the geometric subgroups of Ω and is not of the same type as H.
We proved in Lemma 2.3.14 that K �∈ C1. Since H preserves a degree 2 field
extension, it follows from Lemma 2.3.16 that K �∈ C2. We proved that K �∈ C3

in Lemma 2.3.17. If K ∈ C4 then Ω = Ω−
8 (q) by Lemma 2.3.18, but Class C4 is

empty in Ω−
8 (q), by Definition 2.2.9. We proved in Lemma 2.3.19 that K �∈ C5.

If K ∈ C6 then by Definition 2.2.13 q is odd and Ω �= Ω−
8 (q). It is easy

to check that H has a non-abelian composition factor that is larger than the
unique non-abelian composition factor of K.

If K ∈ C7 then Ω = Sp8(q) and q � 5, by Definition 2.2.15. All non-abelian
composition factors of K are isomorphic to L2(q), but H has a composition
factor S4(q2) or U4(q), a contradiction. By Lemma 2.3.20, K �∈ C8.

Recall Definition 2.2.9 of the C4-subgroups. If H is a C4-subgroup in di-
mension 8 then one of the following holds: Ω = SL8(q) and H is of type
GL2(q)⊗GL4(q); Ω = SU8(q) and H is of type GU2(q)⊗GU4(q); or Ω = Sp8(q)
with q odd, and H is of type Sp2(q)⊗GO+

4 (q) or Sp2(q)⊗GO−
4 (q).

We start with a lemma that shows that one of the types in Case S is non-
maximal for all q.

Lemma 3.7.6 Let H be a C4-subgroup of Sp8(q), of type Sp2(q) ⊗ GO+
4 (q).

Then H is not maximal, and does not extend to a novel maximal subgroup.

Proof By Definition 2.2.9, q is odd and H ∼= (Sp2(q) ◦GO+
4 (q)).2. The corre-

sponding C4-subgroup of PCΓSp8(q), which we denote HPCΓSp8(q)
, is of shape

(PCSp2(q)× PCGO+
4 (q)).〈φ〉.

If q = 3 then H is properly contained in a C6-subgroup L: the group
Sp2(3) ◦ GO+

4 (3) has a characteristic normal subgroup 21+6, which is equal
to the extraspecial subgroup of L. The group Sp8(3) contains a single class of
groups of each type, and the extension of H by the unique non-trivial outer
automorphism, δ, is contained in the extension of L by δ.

Assume, therefore, that q > 3. By Lemma 1.12.3 the group CGO+
4 (q) is

tensor induced, so HPCSp8(q)
is tensor induced. Each tensor factor of HPCSp8(q)

is a 2-space on which H∞ acts as Sp2(q), so the tensor factors respect the sym-
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plectic form, and hence HPCSp8(q)
is (properly) contained in the C7-subgroup

KPCSp8(q)
. The automorphism φ preserves Kronecker product decompositions

of matrices, and hence preserves the tensor factors of both H and K, so
HPCΓSp8(q)

< KPCΓSp8(q)
.

Proposition 3.7.7 Let n = 8 and let H be a C4-subgroup of Ω. If q = 2
or H is of type Sp2(q)⊗GO+

4 (q) then H is not maximal, and does not extend
to a novel maximal subgroup. Otherwise, H is maximal amongst the geometric
subgroups of Ω.

Proof The claim for q = 2 follows from Proposition 2.3.22, and the claim
for type Sp2(q)⊗GO+

4 (q) has just been proved in Lemma 3.7.6. We therefore
assume that q � 3. Assume, by way of contradiction, that H � K < Ω, where
K is maximal amongst the geometric subgroups of Ω and is not of the same
type as H.

If q = 3 then the 2-dimensional factor of H is soluble, whilst the other factor
is insoluble. If q > 3 then H∞ ∼= SL2(q) ◦ SL±

4 (q) or H∞ ∼= SL2(q)× L2(q2).
It is immediate from Lemma 2.3.23 that K �∈ C1∪C3. We assume next that

K ∈ C2, preserving a decomposition into t subspaces, where t ∈ {2, 4, 8}. It
follows from Lemma 2.3.24 that either t = 8 or q = 3. If t = 8, then Ω = SL±

8 (q).
The only non-abelian composition factor of K is A8, whilst L4(q) and U4(q)
are bigger than A8 for all q > 2. If t = 4 (so that q = 3), then K is soluble,
contradicting the insolubility of H. If t = 2 (so that q = 3) then K ′ is reducible.
The group SL2(3)′ is irreducible, and hence H ′ is irreducible, a contradiction.

By Lemma 3.7.6, Ω contains at most one type of maximal C4-subgroup. It
is immediate from Lemma 2.3.25 that K �∈ C5.

If K ∈ C6 and Ω = SL±
8 (q), then the only non-abelian composition factor

of K is Sp6(2). However, L4(q) and U4(q) are bigger than S6(2) for all odd
q, a contradiction. In Case S, K ∼= 21+6

− .Ω−
6 (2) ∼= 21+6

− .S4(3). If q = 3 then
H ∼= SL2(3)×L2(9), so if H � K, then S4(3) contains a subgroup H1 such that
L2(9) ∼= T � H1 and |H1| is divisible by 3|L2(9)|. The direct factor T of H is
centralised by the element of order 3 in the factor SL2(3), and since 3 is not a
divisor of 3i−1 for any i we deduce that T is reducible in Sp4(3). If T stabilises
a totally singular subspace, then T must be contained in a parabolic subgroup
of Sp4(3), but the parabolic subgroups of Sp4(3) are soluble, a contradiction.
If T stabilises a non-degenerate subspace W , then T also stabilises W⊥, so T
is contained in a C2-group of type Sp2(3) � S2. However, such groups are again
soluble, a contradiction. If q > 3 then |S4(3)| is not divisible by |L2(q2)|.

If Class C7 is nonempty then Ω = Sp8(q). The group H contains a subgroup
L2(q2), whereas all non-abelian composition factors of K are isomorphic to
L2(q), a contradiction. It follows from Lemma 2.3.26 that K �∈ C8.
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Recall Definition 2.2.11 of the C5-subgroups.

Proposition 3.7.8 Let n = 8 and let H be a C5-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω.

Proof This follows immediately from Proposition 2.3.29.

Recall Definition 2.2.13 of the C6-subgroups.

Proposition 3.7.9 Let n = 8 and let H be a C6-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω.

Proof This is immediate from Proposition 2.3.31.

Recall Definition 2.2.15 of the C7-subgroups.

Proposition 3.7.10 Let n = 8 and let H be a C7-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω.

Proof In dimension 8, Class C7 = ∅ in Cases L, U and O−. Thus Ω = Sp8(q),
and q > 3 is odd by Definition 2.2.15.

Suppose, by way of contradiction, that H � K < Sp8(q), where K is max-
imal amongst the geometric subgroups of Sp8(q) and is not of the same type
as H. Here H∞ ∼= SL2(q) ◦ SL2(q) ◦ SL2(q) ∼= (2, q − 1).L2(q)

3, and H∞ is
absolutely irreducible by Lemma 2.2.16, so K �∈ C1 ∪ C3.

If K ∈ C2 then K preserves a decomposition into at most four subspaces,
so K∞ is reducible, a contradiction. If K ∈ C4 then K is of type Sp2(q) ×
GO−

4 (q), by Lemma 3.7.6. Therefore K∞ ∼= SL2(q)×L2(q2), which contradicts
Lagrange’s theorem since q > 3. It is immediate from Lemma 2.3.25 that K �∈
C5. If K ∈ C6 then the only non-abelian composition factor of K is Ω−

6 (2) ∼=
S4(3), contradicting the fact that |L2(q)|3 > |S4(3)| for all q > 3. There is a
unique type of C7-subgroup, so K �∈ C7. Class C8 is empty.

Recall Definition 2.2.17 of the C8-subgroups.

Proposition 3.7.11 Let n = 8 and let H be a C8-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω.

Proof This follows immediately from Proposition 2.3.32.

3.8 Dimension 9

By Definition 1.6.20, when n = 9 we find Cases L, U and O◦. Recall Def-
inition 2.2.1 of the C1-subgroups, and Definition 2.3.5 of standard reducible
behaviour.
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Proposition 3.8.1 Let n = 9. Then Ω has standard reducible behaviour.

Proof This is immediate from Propositions 2.3.1, 2.3.2 and 2.3.4.

Recall Definition 2.2.3 of the C2-subgroups.

Proposition 3.8.2 Let n = 9 and let H be a C2-subgroup of Ω, preserving a
decomposition into t spaces of dimension m. Then H is maximal amongst the
geometric subgroups of Ω if and only if one of the following holds: Ω = SL9(q)
and q � 5 or m > 1; Ω = SU9(q); Ω = Ω9(q) and (m, q) �= (3, 3). If H is not
maximal then H does not extend to a novel maximal subgroup.

Proof The non-maximal groups are as in Proposition 2.3.6, so assume that, if
m = 1 and Ω = SL9(q) then q � 5, and that if Ω = Ω9(q) then (m, q) �= (3, 3).
Suppose, by way of contradiction, that H � K < Ω, where K is maximal
among the geometric subgroups of Ω and is not of the same type as H.

We first consider some arguments which apply to both m = 1 and m = 3. It
is immediate from Lemma 2.3.7 (iv) that H is irreducible, so K �∈ C1. Class C4

is empty as n = 9. It follows from Lemma 2.3.10 (i), (ii) that, if K ∈ C5, then
Ω = SU9(2) and m = 3, but by Definition 2.2.11 there are no C5-subgroups of
SU9(2). It follows from Lemma 2.3.12 that K �∈ C8.

The remaining arguments depend on m, so assume first that m = 1. Then
Lemma 2.3.8 (i) shows that K �∈ C2, and Lemma 2.3.7 (v) that K �∈ C3. It
follows from Lemma 2.3.11 that K �∈ C6. If K ∈ C7 then K has two non-
abelian simple composition factors, both isomorphic to L3(q), U3(q), or L2(q),
whereas A9 � H. By Proposition 1.11.6, the group A9 has no faithful projective
representations in dimension less than 7, a contradiction.

Assume from now on that m = 3. Then H contains T := Ω1 × Ω2 × Ω3,
where Ωi

∼= SL3(q) in Case L, Ωi
∼= SU3(q) in Case U, and Ωi

∼= L2(q) in
Case O. In particular, T is perfect if and only if Ωi �= SU3(2). If K ∈ C2

then the only non-abelian composition factor of K is A9. If Ω = SL9(q), then
q � 5 by assumption, so P (L3(q)) > 12 by Theorem 1.11.2, a contradiction. If
Ω = SU9(2), then |H| does not divide |K|, whilst if q > 2 then P (U3(q)) > 12
by Theorem 1.11.2. If Ω = Ω9(q) then q > 3 is prime, and hence |T | does not
divide |A9|, a contradiction.

Suppose next that K ∈ C3. If Ω = SU9(2) then |H| does not divide |K|, so
assume that Ω �= SU9(2). Then K∞ is one of SL3(q3), SU3(q3) or L2(q3). In
Cases L and U, |K∞| = q9(q6−1)(q9±1), whereas |H∞| = q3(q2−1)3(q3±1)3.
However (q3 ± 1)3 does not divide |K∞| for all q. In Case O, if |H∞| divides
|K∞| then q2 − 1 divides 3, contradicting the fact that q is odd.

If K ∈ C6 then q = p, with q ≡ 1 (mod 3) in Case L and q ≡ 2 (mod 3)
in Case U. The only non-abelian composition factor of K is S4(3). For Case
L we note that |L3(q)| > |S4(3)| for all q � 7, a contradiction. In Case U,
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it is straightforward to check that if H is of type GU3(2) � S3 and K ∈ C6,
then |H| does not divide |K|. Since |U3(q)| > |S4(3)| for all q � 5, we have a
contradiction. Finally, if K ∈ C7, then K is smaller than H.

Recall Definition 2.2.5 of the C3-subgroups.

Proposition 3.8.3 Let n = 9 and let H be a C3-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω.

Proof Suppose, by way of contradiction, that H � K < Ω, where K is maxi-
mal amongst the geometric subgroups of Ω and is not of the same type as H.
If Ω = SL±

9 (q) then H∞ ∼= SL±
3 (q3). If Ω = Ω9(q) then H∞ ∼= L2(q3). Let X

denote the non-abelian composition factor of H.
It is immediate from Lemmas 2.3.14 and 2.3.16 (ii) that K �∈ C1,C2, re-

spectively. There is a unique type of C3-subgroup in each case, so K �∈ C3.
Class C4 is empty. It follows from Lemma 2.3.19 that K �∈ C5. If K ∈ C6 then
Ω = SL±

9 (q) by Definition 2.2.13. The only non-abelian composition factor of
K is S4(3), however |S4(3)| < |X| for all q, a contradiction. If K ∈ C7, then
by Table 2.10 K has two non-abelian composition factors, both isomorphic to
L±

3 (q) or L2(q). Each non-abelian composition factor of K is smaller than X,
a contradiction. It is immediate from Lemma 2.3.20 that K �∈ C8.

Recall Definition 2.2.11 of the C5-subgroups.

Proposition 3.8.4 Let n = 9 and let H be a C5-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω.

Proof This follows immediately from Proposition 2.3.29.

Recall Definition 2.2.13 of the C6-subgroups.

Proposition 3.8.5 Let n = 9 and let H be a C6-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω.

Proof This is immediate from Proposition 2.3.31.

Recall Definition 2.2.15 of the C7-subgroups.

Proposition 3.8.6 Let n = 9 and let H be a C7-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω.

Proof If Ω = SL9(q) then H∞ ∼= SL3(q)◦SL3(q), if Ω = SU9(q) then q � 3 and
H∞ ∼= SU3(q) ◦ SU3(q), and if Ω = Ω9(q) then q � 5 and H∞ ∼= L2(q)×L2(q).
Suppose, by way of contradiction, that H � K < Ω, where K is maximal
amongst the geometric subgroups of Ω and is not of the same type as H.

It follows immediately from Lemma 2.2.16 that H∞ is absolutely irre-
ducible, so K �∈ C1 ∪ C3.
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Assume next that K ∈ C2. If K preserves a decomposition into three sub-
spaces, then K∞ is reducible, contradicting the irreducibility of H∞. If K
preserves a decomposition into nine spaces, then the only non-abelian compo-
sition factor of K is A9. In Case L, the group K is not maximal amongst the
geometric subgroups of SL9(q) when q � 4, by Proposition 2.3.6 (i),(ii),(iii),
so without loss of generality q � 5 and hence |L3(q)| > |A9|, a contradiction.
In Case U we are assuming that q � 3, so |U3(q)

2| > |A9|, which is also a
contradiction. In Case O◦, we are assuming that q � 5, so |Ω3(q)

2| does not
divide |A9|.

Class C4 is empty, so K �∈ C4. It is immediate from Lemma 2.3.25 that
K �∈ C5. There is a unique family of C7-subgroups, so K �∈ C7.

Suppose next that K ∈ C6, so that Ω = SL±
9 (q). The only non-abelian

composition factor of K is S4(3), however |S4(3)| < |L3(q)|2 for all q, and
|S4(3)| < |U3(q)|2 for all q � 3, a contradiction.

Finally, suppose that K ∈ C8, so Ω = SL9(q) and K consists of similarities
of a non-degenerate unitary or orthogonal form f . Since the first central factor,
Ω1, of H∞ acts as SL3(q) on W := V1 ⊗ v, for any fixed non-zero v ∈ V2,
the space W is totally singular under f . Therefore as an Ω1-module V/W⊥ is
isomorphic to W ∗ or W ∗σ. Since dimW > 2 these are not isomorphic to W ,
contradicting the homogeneity of the action of Ω1.

Recall Definition 2.2.17 of the C8-subgroups.

Proposition 3.8.7 Let n = 9 and let H be a C8-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω.

Proof This follows immediately from Proposition 2.3.32.

3.9 Dimension 10

By Definition 1.6.20, when n = 10 we find Cases L, U, S and O±. Recall Defini-
tion 2.2.1 of the C1-subgroups, Definition 2.3.5 of standard reducible behaviour,
and Definition 1.13.2 of zq,n.

Proposition 3.9.1 Let n = 10. Then Ω has standard reducible behaviour.

Proof This is immediate from Propositions 2.3.1, 2.3.2, 2.3.3 and 2.3.4, unless
Ω = Ω±

10(q) and H is the stabiliser of a non-degenerate 4-space V1 and a non-
degenerate 6-space V2. Thus H contains Ω1 × Ω2, where Ω1 is either Ω+

4 (q) or
Ω−

4 (q), and Ω2 is either Ω+
6 (q) = [ (q−1,4)

(q−1,2) ].L4(q) or Ω−
6 (q) = [ (q+1,4)

(q+1,2) ].U4(q).
Suppose, by way of contradiction, that H � K < Ω±

10(q), where K is maxi-
mal amongst the geometric subgroups of Ω±

10(q) and is not of the same type as
H. Note that Classes C4, C6, C7, and C8 are empty.
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If K ∈ C1, then H must stabilise a proper non-zero subspace of V other
than V1 and V2, contradicting Proposition 1.12.2.

Suppose that K ∈ C2, stabilising a decomposition D1 into t1 subspaces. By
Proposition 1.10.2 and Theorem 1.11.2, if q > 2 then P (L4(q)) > 10 (and by
Definition 2.2.3 there is no K with t1 = 10 when q = 2), and P (U4(q)) > 10.
Thus Ω2 is a subgroup of K(D1), and hence t1 = 2. We complete this case by
noting that Ω5(q) ∼= S4(q) < Ω2, so the subspaces are totally singular, and that
the subgroup of Ω+

10(q) of type GL5(q).2 stabilises a totally singular 5-space,
whilst H stabilises only V1 and V2.

Suppose now that K ∈ C3. The fact that Rp(Ω2) = 4 implies that K
preserves a field extension of degree 2, so either K∞ ∼= SU5(q) � Ω−

10(q) or
K∞ ∼= Ω5(q

2) � Ω±
10(q). Considering Theorem 1.6.22, some zq,3 or zq,6 divides

|H∞| but not |Ω5(q
2)|. The group SU5(q) does not have a section L4(q), and

whilst it does contain SU4(q), it does not contain Ω+
4 (q)× [ (q+1,4)

(q+1,2) ]
·U4(q).

The final possibility is that K ∈ C5, but since Ω±
6 (q) is acting naturally on

V2 this contradicts Proposition 1.12.7 and Lemma 2.2.12.

Recall Definition 2.2.3 of the C2-subgroups. Let n = 10, and let H be a
C2-subgroup. Then one of the following holds:

(i) Ω = SL10(q) and H is of type GL1(q) � S10, GL2(q) � S5 or GL5(q) � S2;
(ii) Ω = SU10(q) and H is of type GU1(q) � S10, GU2(q) � S5, GU5(q) � S2, or

GL5(q2).2;
(iii) Ω = Sp10(q) and H is of type Sp2(q) � S5 or GL5(q).2, with q odd in the

latter case;
(iv) Ω = Ω+

10(q) and H is of type GO1(p) � S10, GO+
2 (q) � S5, GO5(q) � S2,

GO5(q)
2 or GL5(q).2;

(v) Ω = Ω−
10(q) and H is of type GO1(p) � S10, GO−

2 (q) � S5, GO5(q) � S2 or
GO5(q)

2.

Proposition 3.9.2 Let n = 10 and let H be a C2-subgroup of Ω, preserving
a decomposition into ten subspaces. Then H is maximal amongst the geometric
subgroups of Ω if and only if one of the following holds: Ω = SL10(q) and q � 5;
Ω = SU10(q); Ω = Ω±

10(p). If H is not maximal then H does not extend to a
novel maximal subgroup.

Proof The claims for q � 4 in Case L follow from Proposition 2.3.6, so assume
that q � 5 in Case L. Note from Definition 2.2.3 that a decomposition into ten
subspaces does not define a C2-subgroup of Sp10(q), and only defines a C2-
subgroup of Ω±

10(q) when q = p is prime.
Suppose, by way of contradiction, that H � K < Ω, where K is maximal

amongst the geometric subgroups of Ω and is not of the same type as H.
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We proved in Lemma 2.3.7 (iv),(v) that the subgroup L of H∞ is absolutely
irreducible, so K �∈ C1 ∪ C3.

Suppose next that K ∈ C2, preserving a decomposition into t subspaces. We
proved in Lemma 2.3.8 (i) that t �= 2, so t = 5. The non-abelian composition
factors of K lie in the set {A5,L2(q)}. However, H contains a subgroup A10.
Now, |A10| > |A5| and R(A10) = 8 by Proposition 1.11.6, a contradiction.

If K ∈ C4, then Ω = SL±
10(q), and the highest rank composition factor of K

is L5(q) or U5(q), contradicting the fact that R(A10) = 8.
We proved in Lemma 2.3.10 (i) that K �∈ C5. Classes C6 and C7 are empty.

If K ∈ C8 then Ω = SL10(q), and Lemma 2.3.12 (ii) gives a contradiction.

Proposition 3.9.3 Let n = 10 and let H be a C2-subgroup of Ω, preserving a
decomposition into five subspaces, let G be almost simple with socle Ω, and let
HG be the corresponding C2-subgroup of G. Then H is maximal amongst the
geometric subgroups of Ω if and only if one of the following holds: Ω = SL±

10(q)
or Sp10(q) and q > 2; Ω = Ω+

10(q) and q > 5; Ω = Ω−
10(q) and q �= 3. If H is not

maximal, then HG is maximal amongst the geometric subgroups of G if and only
if either Ω = Ω+

10(5) and G �� PGO+
10(5) or Ω = Ω−

10(3) and G �� PGO−
10(3).

Proof Apart from Ω ∈ {Ω+
10(5),Ω−

10(3)} the non-maximal exceptions follow
from Proposition 2.3.6. We therefore assume that q > 2 in Cases L, U and S
and that q > 4 in Case O+. Suppose that H � K < Ω, where K is maximal
amongst the geometric subgroups of Ω and is not of the same type as H: we
shall deduce that Ω = Ω+

10(5) or Ω−
10(3), with a list of possibilities for K.

It follows from Lemma 2.3.7 (iv),(v) that H contains an absolutely irre-
ducible subgroup and is not semilinear, so K �∈ C1 ∪ C3.

Suppose that K ∈ C2, preserving a decomposition into t subspaces. From
Lemma 2.3.8 (i) we see that t = 10, so Ω �= Sp10(q). The only non-abelian
composition factor of K is A10. In Case L, q � 5 by Proposition 2.3.6 and the
assumption that K is maximal, so |H| > |K|, a contradiction. In Case U, if
q > 9 then P (SU2(q)) > 10 by Theorem 1.11.2, whilst if 3 � q � 9 then |H|
does not divide |K|, a contradiction.

In Case Oε, by Definition 2.2.3, since t = 10 we may assume that q = p > 2,
with ε = + if and only if q ≡ 1 mod 4. The group K is a subgroup of 29.S10,
so if Ω �∈ {Ω+

10(5),Ω−
10(3)} then |H| does not divide |K|. The group GO+

2 (5)
is imprimitive, preserving a decomposition into two non-degenerate subspaces.
Therefore GO+

2 (5) �S5 is properly contained in GO1(5) �S10, and the normaliser
of H is not maximal in GO+

10(5). However, there are two conjugacy classes
in Ω+

10(5) of groups of type 29.S10, and these are interchanged by δ, whilst δ
stabilises each of the standard blocks for H. Thus, if G is almost simple with
socle O+

10(5) then HG � KG if and only if G � PGO+
10(5). Similarly, GO−

2 (3) is
imprimitive, and an identical argument shows that if G is almost simple with
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socle O−
10(3), and KG denotes the subgroup of G of type GO1(3) � S10, then

HG � KG if and only if G � PGO−
10(3). This completes the arguments for C2.

Suppose that K ∈ C4, so that Ω �= Ω±
10(q) by Definition 2.2.9. Then the

group K∞ ∼= SL2(q)
∞×SL±

5 (q) in Cases L and U, and K∞ ∼= SL2(q)
∞×Ω5(q)

in Case S. IfH � K then SL2(q)
5
.A5 � K∞. This implies that |SL2(q)

4| divides
|SL±

5 (q)| or |Sp4(q)|, a contradiction since q > 2.
We proved in Lemma 2.3.10 (i) that K �∈ C5. Classes C6 and C7 are empty.

It follows from Lemma 2.3.12 (i) that if K ∈ C8 then Ω = SL10(3). Then K is
of type Sp10(3) or GO±

10(3). Denote the bilinear form for which K is a group of
isometries by f . Let H1 denote the subgroup of H that acts as SL2(3) on V1,
and centralises V2 ⊕ · · · ⊕ V5. Then H1 acts irreducibly on V1 and centralises
a complement to V1, so V1 is non-degenerate under f . However, H contains
elements that multiply f |V1 and f |V2 by −1, whilst centralising V3 ⊕ V4 ⊕ V5.
These elements are not similarities of f , a contradiction.

Thus if Ω �= Ω+
10(5) or Ω−

10(3) then H is maximal in Ω. If Ω = Ω+
10(5)

or Ω−
10(3), then we have actually shown that only a single member of Ci for

1 � i � 8 contains H. Thus when G is an almost simple group with socle Ω to
which this containment does not extend, HG is maximal amongst the geometric
subgroups of G.

Recall Definition 1.13.2 of zq,n.

Proposition 3.9.4 Let n = 10, let H be a C2-subgroup of Ω, preserving a
decomposition into two subspaces, let G be almost simple with socle Ω, and let
HG be the corresponding C2-subgroup of G. Then H is maximal amongst the
geometric subgroups of Ω if and only if H is not of type GL5(q).2 in Case O+.
If H is not maximal then HG is maximal amongst the geometric subgroups of
G if and only if G �� O+

10(q).〈φ, δ〉.
Proof Suppose that H � K < Ω, where K is maximal amongst the geometric
subgroups of Ω and is not of the same type as H.

By Lemma 2.3.7 (iii), if K ∈ C1 then H is of type GL5(q).2 in Case O+.
Let V1 and V2 be the totally singular subspaces preserved by H, so that
without loss of generality K is a parabolic subgroup P5, stabilising V1, and
since H is reducible (see, for example, the generators for H constructed in
[46]) we find that H < K. When q is odd, by choosing V1 and V2 to be the
subspaces spanned by {e1, e2, e3, e4, e5} and {f1, f2, f3, f4, f5} using our stan-
dard basis of V , as defined in Section 1.5, we see directly that the elements
δ = diag(ω, . . . , ω, 1, . . . , 1) and φ defined in Section 1.7 normalise both H and
K, and so this containment extends to O+

10(q).〈δ, φ〉. However, there are two
Ω-classes of groups of type K, which are interchanged by outer automorphisms
not lying in 〈φ, δ〉, so if G �� O+

n (q).〈φ, δ〉 then HG �� KG.
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It is immediate from Lemma 2.3.8 (ii) that K �∈ C2, so assume that K ∈ C3.
By Lemma 2.3.7 (vii), either Ω = SL10(q) or V1 and V2 are non-degenerate, so
H has composition factors L5(q), U5(q) or Ω5(q), and Ω �= Sp10(q). If the group
K∞ ∼= SL2(q5), then the non-abelian composition factors of H are larger than
those of K. So Ω �= SU10(q). In Case L, K∞ ∼= SL5(q2) and H∞ ∼= SL5(q)

2,
so (q5 − 1)2 divides |H∞|, whereas |K∞|p′ = (q4 − 1)(q6 − 1)(q8 − 1)(q10 − 1).
A higher power of each zq,5 divides |H∞| than |K∞|, a contradiction. Finally,
in Case O±, the group K is of type GO5(q

2) or type SU5(q), whilst H is of
type GO5(q) � S2 or GO5(q)

2. By Theorem 1.11.2 and Lemma 1.11.8, H∞ has
no faithful representations in dimension less than 8, a contradiction.

By Lemma 2.3.9, K �∈ C4. By Lemma 2.3.10 (ii),(iii), K �∈ C5. Classes C6

and C7 are empty. By Lemma 2.3.12 (i), the group K �∈ C8.
Thus if H is not of type GL5(q).2 in Case O+ then H is maximal in Ω. If

H is of type GL5(q).2 in Ω+
10(q), then we have actually shown that the only

other member of Class Ci for 1 � i � 8 to contain H is P5, so if G is an almost
simple group with socle Ω to which this containment does not extend, then HG

is maximal amongst the geometric subgroups of G.

Recall Definition 2.2.5 of the C3-subgroups. In Case L these are of type
GL2(q5) or GL5(q2). In Case U these are of type GU2(q5). In Case S these are
of type Sp2(q5) or GU5(q), with q odd in the latter case. In Case O+ these are
of type GO5(q

2). In Case O− these are of type GO5(q
2) or GU5(q).

Proposition 3.9.5 Let n = 10 and let H be a C3-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω.

Proof Suppose, by way of contradiction, that H � K < Ω, where K is max-
imal amongst the geometric subgroups of Ω and is not of the same type as
H.

It is immediate from Lemma 2.3.14 that K �∈ C1, and from Lemma 2.3.16 (i)
that if K ∈ C2 then H preserves a degree 5 field extension, so H∞ ∼= SL2(q5).
Suppose that K ∈ C2 preserves a decomposition D. Now, P (L2(q5)) > 12
for all q by Theorem 1.11.2, so H∞ � K(D). However, H∞ is irreducible by
Lemma 2.2.6, so K �∈ C2.

By Lemma 2.3.17, K �∈ C3, so suppose next that K ∈ C4. Then by Defini-
tion 2.2.9, Ω �= Ω±

10(q). By Lemma 2.3.18, the group H∞ ∼= SL2(q5). In Cases
L and U, K∞ ∼= SL2(q)

∞ × SL±
5 (q), and in Case S, K∞ ∼= SL2(q)

∞ × O5(q).
Then |H∞| is divisible by zq,10, by Proposition 1.13.4. If Ω = SL10(q) or Sp10(q)
then |K∞| is not divisible by zq,10, whilst if Ω = SU10(q) we conclude that H∞

has trivial projection into the direct factor SL2(q) of K∞. But this implies that
H∞ is reducible, a contradiction.
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It follows from Lemma 2.3.19 that K �∈ C5. Classes C6 and C7 are empty.
It follows from Lemma 2.3.20 that K �∈ C8.

Recall Definition 2.2.9 of the C4-subgroups.

Proposition 3.9.6 Let n = 10 and let H be a C4-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω if and only if q > 2. If q = 2
then H does not extend to a novel maximal subgroup.

Proof By Definition 2.2.9, Ω = SL±
10(q) or Sp10(q), with Ω1 × Ω2 contained

in the C4-subgroup H, where Ω2
∼= SL±

5 (q) or SO5(q). The claim for q = 2 is
immediate from Proposition 2.3.22, so assume that q � 3.

Suppose, by way of contradiction, that H � K < Ω, where K is maximal
amongst the geometric subgroups of Ω and is not of the same type as H. It is
immediate from Lemma 2.3.23 that K �∈ C1 ∪ C3.

Suppose next that K ∈ C2, preserving a decomposition into t subspaces. If
t = 10 then Ω = SL±

10(q), and the only non-abelian composition factor of K
is A10. However, both L5(q) and U5(q) are larger than A10 for all q. Similarly,
if t = 5 then the non-abelian composition factors of K are A5 and L2(q) (if
q �= 3). The simple group Ω2 is larger than both L2(q) and A5, a contradiction.
Thus t = 2. The derived group of H is irreducible for all q (note that SL2(3)′

is irreducible) whereas the derived group of K is reducible, a contradiction.
There is a unique type of C4-subgroup, so K �∈ C4. By Lemmas 2.3.25 and

2.3.26, K �∈ C5 ∪ C8. Classes C6 and C7 are empty.

Recall Definition 2.2.11 of the C5-subgroups.

Proposition 3.9.7 Let n = 10 and let H be a C5-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω.

Proof This follows immediately from Proposition 2.3.29.

Classes C6 and C7 are empty. Recall Definition 2.2.17 of the C8-subgroups.

Proposition 3.9.8 Let n = 10 and let H be a C8-subgroup of Ω. Then H is
maximal amongst the geometric subgroups of Ω.

Proof This follows immediately from Proposition 2.3.32.

3.10 Dimension 11

By Definition 1.6.20, when n = 11 we find Cases L, U and O◦. Recall Def-
inition 2.2.1 of the C1-subgroups, and Definition 2.3.5 of standard reducible
behaviour.
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Proposition 3.10.1 Let n = 11. Then Ω has standard reducible behaviour.

Proof This is immediate from Propositions 2.3.1, 2.3.2 and 2.3.4.

Recall Definition 2.2.3 of the C2-subgroups.

Proposition 3.10.2 Let n = 11 and let H be a C2-subgroup of Ω. Then
H is maximal amongst the geometric subgroups of Ω if and only if one of the
following holds: Ω = SL11(q) and q � 5; Ω = SU11(q), or Ω = Ω11(q). If H is
not maximal in Ω then H does not extend to a novel maximal subgroup.

Proof This follows immediately from Proposition 2.3.13.

Recall Definitions 2.2.5, 2.2.11, 2.2.13 and 2.2.17.

Proposition 3.10.3 Let n = 11 and let H be a C3-, C5-, C6- or C8-subgroup
of Ω. Then H is maximal amongst the geometric subgroups of Ω.

Proof This follows immediately from Propositions 2.3.21, 2.3.29, 2.3.31 and
2.3.32.

Classes C4 and C7 are empty.

3.11 Dimension 12

By Definition 1.6.20, when n = 12 we find Cases L, U S and O±. Recall
Definition 2.2.1 of the C1-subgroups, and Definition 2.3.5 of standard reducible
behaviour.

Proposition 3.11.1 Let n = 12. Then Ω has standard reducible behaviour.

Proof This is immediate from Propositions 2.3.1, 2.3.2, 2.3.3 and 2.3.4, unless
Ω = Ω−

12(q) and H is the stabiliser of a pair of orthogonal non-degenerate
non-isometric 6-spaces V1 and V2. In this case H contains

Ω+
6 (q)× Ω−

6 (q) ∼= [(q − 1, 4)/(q − 1, 2)].L4(q)× [(q + 1, 4)/(q + 1, 2)].U4(q).

Assume, by way of contradiction, that H � K < Ω−
12(q), where K is maxi-

mal amongst the geometric subgroups of Ω−
12(q) and is not of the same type as

H. Note that C6 ∪ C7 ∪ C8 = ∅.
If K ∈ C1 then Ω+

6 (q) × Ω−
6 (q) fixes some non-zero proper subspace of V

other than V1 and V2, contradicting Lemma 1.8.11 and Proposition 1.12.2. If
K ∈ C2 then, since P (U4(q)) > 12 by Theorem 1.11.2, we deduce that Ω−

6 (q) lies
in the kernel of the action of K on blocks. By Theorem 1.11.5 Rp(U4(q)) = 4, so
the blocks have dimension 4 or 6, and hence by Definition 2.2.3 have dimension
4. Thus Ω−

6 (q) � Ω−
4 (q), a contradiction. If K ∈ C3 then as for C2 we deduce
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that the only possibility is Ω+
6 (q)× Ω−

6 (q) � Ω−
6 (q2), contradicting Lagrange’s

theorem. If K ∈ C4 then the largest non-abelian composition factor of K is
Ω−

4 (q), which is too small. The result for K ∈ C5 follows from noting that
Ω+

6 (q) � H and applying Proposition 1.12.7.

Recall Definition 2.2.3 of the C2-subgroups. If n = 12 and H is a C2-
subgroup of Ω, then one of the following holds:

(i) Ω = SL12(q) and H is of type GL1(q) � S12, GL2(q) � S6, GL3(q) � S4,
GL4(q) � S3 or GL6(q) � S2;

(ii) Ω = SU12(q) and H is of type GU1(q) � S12, GU2(q) � S6, GU3(q) � S4,
GU4(q) � S3, GU6(q) � S2 or GL6(q2).2;

(iii) Ω = Sp12(q) andH is of type Sp2(q)�S6, Sp4(q)�S3, Sp6(q)�S2 or GL6(q).2,
with q odd in the latter case;

(iv) Ω = Ω+
12(q) and H is of type GO1(p) � S12, GO±

2 (q) � S6, GO3(q) � S4,
GO+

4 (q) � S3, GO±
6 (q) � S2 or GL6(q).2;

(v) Ω = Ω−
12(q) and H is of type GO−

4 (q) � S3.

In each type we denote the decomposition preserved by H by

D : V = V1 ⊕ · · · ⊕ Vt.

Proposition 3.11.2 Let n = 12 and let H be a C2-subgroup of Ω, preserving a
decomposition into twelve subspaces. Then H is maximal amongst the geometric
subgroups of Ω if and only if either Ω = SL12(q) with q � 5; or Ω = SU12(q);
or Ω = Ω+

12(p), with p prime. If H is not maximal then H does not extend to
a novel maximal subgroup.

Proof The non-maximal examples when q � 4 in Case L follow from Propo-
sition 2.3.6, so we assume that q � 5 in Case L. By Definition 2.2.3 the de-
composition into twelve subspaces only defines a C2-subgroup of Ωε

12(q) when
ε = + and q = p is prime.

Suppose, by way of contradiction, that H � K < Ω, where K is maxi-
mal amongst the geometric subgroups of Ω and is not of the same type as
H. It is immediate from Lemma 2.3.7 (iv),(v) that K �∈ C1 ∪ C3, and from
Lemma 2.3.8 (i) that, if K ∈ C2, then K preserves a decomposition into six
subspaces. By Proposition 1.11.6, R(A12) = 10, so K �∈ C2∪C4. It follows from
Lemma 2.3.10 (i) that K �∈ C5. Classes C6 and C7 are empty, and it follows
from Lemma 2.3.12 (ii) that K �∈ C8.

Proposition 3.11.3 Let n = 12 and let H be a C2-subgroup of Ω, preserving
a decomposition into six subspaces, let G be almost simple with socle Ω, and let
HG be the corresponding C2-subgroup of G. Then H is maximal amongst the
geometric subgroups of Ω if and only if the following all hold: if H is not of
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type GO−
2 (q) � S6 then q > 2; if H is of type GO+

2 (q) � S6 then q � 7; and if H
is of type GO−

2 (q) � S6 then q �= 3.
If H is not maximal in Ω then HG is maximal amongst the geometric sub-

groups of G if and only if either H is of type GO+
2 (5) � S6 and G �� PGO+

12(5)
or H is of type GO−

2 (3) � S6 and G �� PGO+
12(3).

Proof The non-maximal exceptions when q = 2, along with the claims about
groups of type GO+

2 (q) � S6 for q � 4, are from Proposition 2.3.6, so assume
that q > 2 in Cases L, U and S, and if H is of type GO+

2 (q) � S6 then q � 5.
Suppose, in the first instance, that H � K < Ω, where K is maximal

amongst the geometric subgroups of Ω and is not of the same type as H. We
will deduce that Ω = Ω+

12(q) with q ∈ {3, 5}, and that in these cases there is
only a single choice for the type of K.

It is immediate from Lemma 2.3.7 (iv),(v) that K �∈ C1 ∪ C3, and from
Lemma 2.3.8 (i) that if K ∈ C2 then either K preserves a decomposition into
twelve subspaces, or H and K are of types GO+

2 (q)�S6 and GO−
2 (q)�S6. Consid-

ering the orders of Ω+
2 (q) and Ω−

2 (q), we see that this second possibility requires
q � 3 and H to be of type GO+

2 (q) � S6, which we have already considered.
Assume therefore that K ∈ C2 preserves a decomposition into twelve sub-

spaces, so that the only non-abelian composition factor of K is A12. Note that
q � 5 in Case L, by Proposition 2.3.6, and that in SU12(3) the order of H
does not divide the order of K. If q � 4 then |L2(q)

6| > A12, a contradiction.
Thus Ω = Ω+

12(q) with q prime, and K � 211.S12. If r is an odd prime then
the highest power of r to divide |S12| is at most r5. If H is of type GO+

2 (q) � S6

and r divides q − 1, or if H is of type GO−
2 (q) � S6 and r divides q + 1, then

H contains an elementary abelian r-group of order r6. Therefore, if H is of
type GO+

2 (q) � S6 then there exists an i such that q − 1 = 2i, and if H is
of type GO−

2 (q) � S6 then there exists an i such that q + 1 = 2i. Now, the
2-part of the order of K is at most 221, and the 2-part of the order of H is
26(i−1) · 210 · 24, so i � 2. If H is of type GO+

2 (q) � S6 then q = 3 (which
we have excluded) or q = 5. The standard copy of GO+

2 (5) stabilises a de-
composition V = 〈e1 + f1〉 ⊕ 〈e1 − f1〉 into non-degenerate subspaces. Thus
HGO+

12(5)
< KGO+

12(5)
. However, there are two GO+

12(5)-classes of groups of
type 211.S12, interchanged by δ, so if G �� PGO+

12(5) then HG �� KG. If H is
of type GO−

2 (q) � S6 then q = 3. The group GO−
2 (3) also stabilises the decom-

position V = 〈e1 + f1〉 ⊕ 〈e1 − f1〉, and exactly the same arguments show that
HG � KG if and only if G � PGO+

12(3).
Assume next that K ∈ C4. The possibilities for K are listed in Table 2.7.

Consider first Cases L, U and S. The order of H∞ is divisible by (q2 − 1)6. In
Case L the order of K∞ is a divisor of q16(q2−1)2(q3−1)(q4−1)(q5−1)(q6−1)
or q9(q2−1)2(q3−1)2(q4−1), which contradicts Lagrange’s theorem for all q. In
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Case U the order of K∞ is a divisor of q16(q2−1)2(q3+1)(q4−1)(q5+1)(q6−1)
or q9(q2 − 1)2(q3 + 1)2(q4 − 1), which contradicts Lagrange’s theorem since
q > 2. In Case S the order of K∞ is a divisor of q7(q2 − 1)2(q3 ± 1)(q4 − 1),
contradicting Lagrange’s theorem. So Ω = Ω+

12(q), andK is isomorphic to either
PGL2(q) × (SL2(q) ◦ SL2(q)) or (Sp2(q) ◦ Sp6(q)).2, with the outer involution
extending L2(q) to PGL2(q). Let K preserve a decomposition W1 ⊗W2. The
group A6 is a subgroup of H, whilst S6 is a quotient. Now, the group L2(q) can
contain A6, but consulting Tables 8.1 and 8.2 we see that PGL2(q) does not
contain S6

∼= PΣL2(9). Recall the definition of L from just before Lemma 2.2.4.
Since L is the normal closure of A6, if the action of A6 on W1 is trivial, then
the action of L on W1 is reducible, and hence the action of L on V is reducible,
a contradiction.

It is immediate from Lemma 2.3.10 (i) that K �∈ C5. Classes C6 and C7 are
empty. It is immediate from Lemma 2.3.12 (i) that if K ∈ C8 then Ω = SL12(3),
but then |H| does not divide |K|, a contradiction.

In our arguments for Ω+
12(q) with q ∈ {3, 5}, we have in fact shown that the

non-maximal groups H are contained in a unique member of Ci for 1 � i � 8.
Our maximality claims for extensions of these groups therefore follow.

Proposition 3.11.4 Let n = 12 and let H be a C2-subgroup of Ω, preserving
a decomposition into four subspaces. Then H is maximal amongst the geometric
subgroups of Ω if and only if Ω �= Ω+

12(3). If H is not maximal then H does not
extend to a novel maximal subgroup.

Proof The non-maximality of H when Ω = Ω+
12(3) follows immediately from

Proposition 2.3.6, so assume that q � 5 in Case O+.
Suppose, by way of contradiction, that H � K < Ω, where K is maximal

amongst the geometric subgroups of Ω and is not of the same type as H. It is
immediate from Lemma 2.3.7 (vi) that K �∈ C1 ∪C3 and that H ′ is irreducible.

First consider U12(2) as a special case. Order considerations show that the
group K �∈ C2∪C4∪C5. Classes C6, C7 and C8 are empty. We therefore assume
for the rest of the proof that Ω �= SU12(2), so that, in particular, H is insoluble.

Assume that K ∈ C2. If K preserves a decomposition into two subspaces
then K ′ is reducible, a contradiction. If K preserves a decomposition into three
subspaces thenK contains a reducible subgroup of index 3. However, the largest
reducible subgroup of H has index 4, a contradiction, so K must preserve a
decomposition into six or twelve subspaces, and the non-abelian composition
factors of K lie in the set {L2(q),A6,A12}. In Case L, H∞ = SL3(q)

4, and
|L3(q)

4| > |A12|, a contradiction. For Case U, |U3(q)
4| > |A12| (since q > 2).

Thus Ω = Ω+
12(q), and the only non-abelian composition factor of K is A6 or

A12. Since we are assuming that q � 5, |L2(q)
4| does not divide |A6| or |A12|,

a contradiction.
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Assume next that K ∈ C4, so that K = K1 ◦K2. The possibilities for K can
be found in Table 2.7. By Lagrange’s theorem, K preserves a tensor product
decomposition into a 2-space and a 6-space. Let K2 be the 6-dimensional factor,
and suppose some direct factor C ofH∞ is contained inK2. Then, sinceK2 acts
homogeneously, the action of C must have at least two non-trivial constituents,
which is false. Thus every direct factor of H∞ projects non-trivially on K1,
contradicting the fact that H contains SL±

3 (q)
4

or L2(q)
4.

It is immediate from Lemma 2.3.10 (ii) that K �∈ C5. Classes C6 and C7 are
empty. It is immediate from Lemma 2.3.12 (i) that K �∈ C8.

Proposition 3.11.5 Let n = 12 and let H be a C2-subgroup of Ω, preserving a
decomposition into three subspaces. Then H is maximal amongst the geometric
subgroups of Ω if and only if Ω �= Ω+

12(2). If H is not maximal then H does not
extend to a novel maximal subgroup.

Proof The non-maximal group is considered in Proposition 2.3.6, so assume
that Ω �= Ω+

12(2). Suppose, by way of contradiction, that H � K < Ω, where K
is maximal amongst the geometric subgroups of Ω and is not of the same type
as H. It is immediate from Lemma 2.3.7 (iv) that K �∈ C1.

Suppose that K ∈ C2, preserving a decomposition into t1 subspaces. In
Case O− there is a unique type of C2-subgroup when n = 12, a contradiction.
The group H does not contain an index 2 reducible subgroup, so t1 �= 2. If
t1 = 4 and Ω �= Ω+

12(q), then the largest composition factor of K is L3(q)
or U3(q) which is smaller than the largest composition factor of H. If t1 = 6
and Ω �= Ω+

12(q), then the largest composition factor of K is either A6 or one
of L2(q), U2(q) or Sp2(q). These are all smaller than the largest composition
factor of H. Thus Ω �= Sp12(q), and if Ω = SL±

12(q) then t = 12. But then the
only non-abelian composition factor of K is A12, which is smaller than L4(q)

3

and U4(q)
3, a contradiction. It follows that Ω = Ω+

12(q). If q = 3, then |H| does
not divide the order of any other type of C2-subgroup. So we may assume that
q > 3, and hence that H is insoluble. If t1 = 4 then K contains four non-abelian
composition factors, all isomorphic to L2(q), whereas H contains six copies of
L2(q), a contradiction. If t1 ∈ {6, 12} then the only non-abelian composition
factor of K is A6 or A12, which is smaller than L2(q)

6.
Suppose next that K ∈ C3, and recall the definition of L from just before

Lemma 2.2.4. The group H ′ acts as A3 on D, so in particular L � H ′. The
group L is absolutely irreducible by Lemma 2.3.7 (iv), but K ′ is not absolutely
irreducible, a contradiction.

It follows from Lemma 2.3.9 that if K ∈ C4 then Ω = Ω+
12(3). By Propo-

sition 2.3.22, the C4-subgroups of type GO3(3) ⊗ GO+
4 (3) are not maximal

in Ω+
12(3), so K is of type Sp2(3) ⊗ Sp6(3). Then |H| does not divide |K|, a

contradiction.
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It is immediate from Lemma 2.3.10 (ii) that K �∈ C5. Classes C6 and C7 are
empty. It is immediate from Lemma 2.3.12 (i) that K �∈ C8.

Proposition 3.11.6 Let n = 12 and let H be a C2-subgroup of Ω, preserving
a decomposition into two subspaces. Then H is maximal amongst the geometric
subgroups of Ω.

Proof Suppose, by way of contradiction, that H � K < Ω, where K is maxi-
mal amongst the geometric subgroups of Ω and is not of the same type as H.
It follows from Lemmas 2.3.7 (iii) and 2.3.8 (ii) that K �∈ C1 or C2, respectively.

Suppose that K ∈ C3. By Lemma 2.3.7 (vii), the decomposition is into
two non-degenerate subspaces, or Ω = SL12(q). In Case L, up to isomorphism
K∞ ∈ {SL6(q2),SL4(q3)}. The order of H∞ is divisible by a higher power
of a prime zq,5 than |SL6(q2)|, and H∞ is larger than SL4(q3). In Case U,
the group K∞ ∼= SU4(q3), and H∞ is larger than K∞. In Case S, the group
H∞ ∼= Sp6(q)

2 whilst K∞ ∈ {Sp4(q3),Sp6(q2),SU6(q)}. Thus |H| does not
divide |K|, a contradiction. In Case O+, K∞ ∈ {Ω+

4 (q3),Ω+
6 (q2),SU6(q)}. The

order of H∞ ∼= Ω+
6 (q)

2
is divisible by a higher power of a prime zq,3 than

|Ω+
6 (q2)| or |SU6(q)|, and by a prime zq,4, which does not divide |Ω+

4 (q3)|.
It follows from Lemmas 2.3.9 and 2.3.10 (ii),(iii) that K �∈ C4 ∪C5. Classes

C6 and C7 are empty, and it follows from Lemma 2.3.12 (i) that K �∈ C8.

Recall Definition 2.2.5 of the C3-subgroups. If n = 12 and H < Ω is a
C3-subgroup, then one of the following holds:

(i) Ω = SL12(q) and H is of type GL6(q2) or GL4(q3);
(ii) Ω = SU12(q) and H is of type GU4(q3);
(iii) Ω = Sp12(q) and H is of type Sp6(q2) or Sp4(q3) or GU6(q), with q odd

in the latter case;
(iv) Ω = Ω+

12(q) and H is of type GO+
6 (q2) or GO+

4 (q3) or GU6(q);
(v) Ω = Ω−

12(q) and H is of type GO−
6 (q2) or GO−

4 (q3).

Proposition 3.11.7 Let n = 12 and let H be a C3-subgroup of Ω. Then H

is maximal amongst the geometric subgroups of Ω.

Proof Suppose, by way of contradiction, that H � K < Ω, where K is maxi-
mal among the geometric subgroups of Ω and is not of the same type as H.

We proved in Lemma 2.3.14 that K �∈ C1. Since H normalises a field ex-
tension of degree 2 or 3, it follows from Lemma 2.3.16 that if K ∈ C2 then H

is of type GO+
4 (q3), so that H∞ ∼= SL2(q3) ◦ SL2(q3). If |L2(q3)| divides |Ad|,

for d ∈ {2, 3, 4, 6, 12}, then q = 2 and d = 12. However by Table 2.4 there is no
such C2-subgroup when q = 2. Therefore in all cases H∞ � KD, the pointwise
stabiliser of the set of blocks. This implies that H∞ is reducible, contradicting
Lemma 2.2.6. It is immediate from Lemma 2.3.17 that K �∈ C3.
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Suppose next that K ∈ C4. We note first that by Lemma 2.3.18, and the
possibilities for H in Case U, if Ω �= Ω±

12(q) then H preserves a degree 3 field
extension. By Table 2.7, for all Ω the group K is of one of the following types:
Cases L and U, type GL±

n1
(q)⊗GL±

n2
(q), (n1, n2) ∈ {(2, 6), (3, 4)}; Case S, type

Spn1
(q) ⊗ GOε

n2
(q), (n1, n2) ∈ {(2, 6), (4, 3)}; Case O+, type Sp2(q) ⊗ Sp6(q)

or type GO3(q)⊗GO+
4 (q); Case O−, type GO3(q)⊗GO−

4 (q).
If Ω �= Ω+

12(q), then |H∞| is divisible by a prime zq,12, by Proposition 1.13.4,
whilst zq,12 does not divide |K∞|. In Case O+, if H is of type GU6(q) then
|H∞| is divisible by a prime zq,10 which does not divide |K∞|. If H is of type
GO+

6 (q2) then |H∞| is divisible by a prime zq,8, whilst |K| is not. If H is of type
GO+

4 (q3) and q �= 2, then |H∞| is divisible by a higher power of a prime zq,6

than |K|. In Ω+
12(2) the only C4-subgroup is not maximal, by Proposition 2.3.22.

We proved in Lemma 2.3.19 that K �∈ C5. Classes C6 and C7, are empty
and it follows from Lemma 2.3.20 that K �∈ C8.

Recall Definition 2.2.9 of the C4-subgroups, and in particular that in types
GL±

n1
(q) ⊗ GL±

n2
(q) and Spn1

(q) ⊗ Spn2
(q) we assume that n1 < n2. For each

type, the C4-subgroup H of Ω contains a subgroup Ω1×Ω2, acting on a tensor
decomposition V = V1 ⊗ V2 with factors of dimensions n1 and n2. In detail, H
is of one of the following types:

(i) Cases L and U: GL±
2 (q)⊗GL±

6 (q), GL±
3 (q)⊗GL±

4 (q);
(ii) Case S: Sp2(q)⊗GO±

6 (q), Sp4(q)⊗GO3(q);
(iii) Case O+: Sp2(q)⊗ Sp6(q), GO3(q)⊗GO+

4 (q);
(iv) Case O−: GO3(q)⊗GO−

4 (q).

Note that q is odd in Case S and for the groups of type GO3(q)⊗GO±
4 (q).

Proposition 3.11.8 Let n = 12, let H be a C4-subgroup of Ω, let G be almost
simple with socle Ω, and let HG be the corresponding C4-subgroup of G. Then
H is maximal amongst the geometric subgroups of Ω if and only if one of the
following holds:

(i) Ω = SL12(q) or SU12(q), and if n1 = 2 then q > 2;
(ii) Ω = Sp12(q), and if n1 = 4 then q �= 3;
(iii) Ω = Ω+

12(q), H is not of type GO3(q)⊗GO+
4 (q), and q > 2;

(iv) Ω = Ω−
12(q) and q �= 3.

If H is of type GO3(q)⊗GO+
4 (q) and q �= 3, then HG is maximal amongst the

geometric subgroups of G if and only if G �� Ω+
12(q).〈δ, δ′, φ〉. Otherwise, if H

is not maximal then H does not extend to a novel maximal subgroup.

Proof The groups of type GL±
2 (2)⊗GL±

6 (2), Sp4(3)⊗GO3(3), Sp2(2)⊗Sp6(2)
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and GO3(3)⊗GO±
4 (3) are shown in Proposition 2.3.22 to be non-maximal, so

assume that H is not one of these groups.
Suppose that H � K < Ω, where K is maximal amongst the geometric

subgroups of Ω and is not of the same type as H. We will show that H is
of type GO3(q) ⊗ GO+

4 (q) and that there is only one choice of K ∈ Ci for
1 � i � 8.

It is immediate from Lemma 2.3.23 that K �∈ C1 ∪ C3, so suppose that
K ∈ C2, preserving an imprimitive decomposition D into t subspaces. If t = 12,
then Ω = SL±

12(q) or Ω+
12(q), and K has a unique non-abelian composition

factor, namely A12. Unless H is of type GL±
3 (2)⊗GL±

4 (2) or GO3(q)⊗GO+
4 (q),

the group Ω2 is simple and |Ω2| � |A12|, a contradiction. If t = 12 and Ω =
SL12(2) thenK is not maximal by Proposition 2.3.6 (i), contrary to assumption.
Theorem 1.11.2 states that P (U4(2)) > 12. If H is of type GO3(q) ⊗ GO+

4 (q)
then by assumption q > 3, and |A12| is not divisible by |L2(q)|3.

If t = 6 then Ω �= Ω−
12(q), and the non-abelian composition factors of K

are each isomorphic to A6 or L2(q). These are smaller than Ω2 in Cases L and
U, type Sp2(q) ⊗ GO±

6 (q) in Case S, and type Sp2(q) × Sp6(q) in Case O+.
The composition factors of K are also smaller than S4(q), eliminating type
Sp4(q)⊗GO3(q). For type GO3(q)⊗GO+

4 (q), we note that |A6| is smaller than
|L2(q)|2, since q > 3.

If t ∈ {2, 3, 4} then by Lemma 2.3.24 and our assumptions on H, the group
H is of type GL±

2 (3)⊗GL±
6 (3), type GL±

3 (2)⊗GL±
4 (2), type GL±

3 (3)⊗GL±
4 (3),

type Sp2(3)⊗GO±
6 (3) or of type Sp2(3)⊗Sp6(3). In each type the derived group

of H is absolutely irreducible, so t �= 2. The second derived group of SU3(2) is
absolutely irreducible, so if Ω = SU12(2) then t = 4. But then K is soluble, and
H is insoluble. Thus H is not of type GU3(2) ⊗ GU4(2). Therefore, if n1 �= 2
then H∞ is absolutely irreducible, whereas K∞ is reducible, so assume that
n1 = 2. In Cases L, U and O+, the group Ω2 has no non-trivial representations
in defining characteristic in dimension at most 4, a contradiction. In Case S
the group Ω2 is isomorphic to SL4(3) or SU4(3), both of which are larger than
Sp4(3), a contradiction. Thus K �∈ C2.

Next assume that K ∈ C4, stabilising a tensor decomposition into spaces of
dimensions d1 and d2. There is only a single family of tensor decompositions in
Ω−

12(q). Suppose first that n2 = 6. For Ω = SL±
12(q), the dimensions Rp(SL±

6 (q))
are greater than 4 by Theorem 1.11.5, a contradiction. In Case S, the group
Ω2 is O+

6 (q) ∼= L4(q) or O−
6 (q) ∼= U4(q). The largest composition factor of K

is either the other one of L4(q), U4(q), which cannot contain Ω2 by Lagrange’s
theorem, or is S4(q), which is smaller than Ω2. In Case O+, H contains Sp6(q),
whilst the non-abelian composition factors of K are all isomorphic to L2(q), a
contradiction. So n2 �= 6.

Assume next that H is of type GL±
3 (q)⊗GL±

4 (q). Then d1 = 2 and d2 = 6.
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The groups Ωi have a non-trivial representation in SL2(q) if and only if Ωi

is soluble so H∞ � 1 ⊗ SL±
6 (q). If Ω1 �= SU3(2), these groups are reducible,

whereas H∞ is irreducible, a contradiction. If Ω1 = SU3(2) then K is not
maximal, contrary to assumption. Thus K �∈ C4 in Cases L and U.

Assume next thatH is of type Sp4(q)⊗GO3(q), so thatH∞ ∼= Sp4(q)×L2(q)
and q � 5. Here, K∞ = Ω3 ◦ Ω4, where Ω3 = SL2(q) and Ω4 = Ω±

6 (q). Since
q � 5 is odd, L2(q) is not a subgroup of SL2(q), and so L2(q) must embed
into Ω±

6 (q), and hence L2(q)× Sp4(q) or L2(q)× S4(q) is a subgroup of Ω±
6 (q),

contradicting Lagrange’s theorem.
Assume finally that H is of type GO3(q) ⊗ GO+

4 (q), so that q � 5, and
H∞ ∼= L2(q) × 2·L2(q)

2, with K∞ ∼= 2.(L2(q) × S6(q)). It is shown in [66,
Proposition 6.3.4] that H is properly contained in two classes of groups of type
K, as either of the factors of Ω+

4 (q) can be combined with Ω3(q) to produce a
C4-subgroup of S6(q). There are two conjugacy classes in Ω+

12(q) of groups of
the same type as K, with stabiliser S := 〈δ, δ′, φ〉, and a single class of groups
of the same type as H. By Lemma 1.12.3, automorphisms that lie in S are
in the kernel of the action on the two tensor factors of Ω+

4 (q), so H.S � K.S.
However, automorphisms of Ω+

12(q) that do not lie in S extend Ω+
4 (q) to a tensor

induced group, so that H is not contained in a group preserving tensor factors
of dimensions 2 and 6. This concludes the arguments for C4.

Finally,K �∈ C5 by Lemma 2.3.25, Classes C6 and C7 are empty, andK �∈ C8

by Lemma 2.3.26. So the result follows for H not of type GO3(q) ⊗ GO+
4 (q),

and for this type we note that in fact we have shown that there is a unique
other member K of Ci, for 1 � i � 8, that contains H (without requiring the
assumption that K is maximal), so the claims follow regarding the extensions
of H that are maximal.

Recall Definition 2.2.11 of the C5-subgroups.

Proposition 3.11.9 Let n = 12 and let H be a C5-subgroup of Ω. Then H

is maximal amongst the geometric subgroups of Ω.

Proof This follows immediately from Proposition 2.3.29.

Classes C6 and C7 are empty. Recall Definition 2.2.17 of the C8-subgroups.

Proposition 3.11.10 Let n = 12 and let H be a C8-subgroup of Ω. Then H

is maximal amongst the geometric subgroups of Ω.

Proof This follows immediately from Proposition 2.3.32.
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Groups in Class S : cross characteristic

4.1 Preamble

4.1.1 General strategy for determining the candidate
S -maximals

We now move on to the determination of the candidates for the almost sim-
ple groups in the Aschbacher Class S (see Definition 2.1.3) that can arise as
maximal subgroups of almost simple extensions of simple classical groups of
dimension at most 12. As we shall explain in detail in Subsection 4.1.2, these
candidates are divided into classes S1 (cross characteristic) and S2 (defin-
ing characteristic). We shall call subgroups that are maximal among the S1-
and S2-type subgroups S1-maximal and S2-maximal, respectively, and in this
and the following chapter we shall determine the S1-maximal and S2-maximal
subgroups, respectively. (This is not strictly true, because we shall save our-
selves some effort by excluding from detailed consideration certain S2-maximal
subgroups that are clearly contained in geometric subgroups of type C4 or C7.)

The descriptions of the S1-maximal subgroups, and their principal prop-
erties, are summarised in the final section of this chapter, Section 4.9. So the
reader who simply wishes to know the S1-maximals in the extensions of some
specific classical group of dimension up to 12 should look there first.

We start by summarising our methods of finding the candidate S -maximals;
more details will follow later. Recall that a group G = Z·S is quasisimple if G is
perfect, S is non-abelian simple and Z is central, and that by Lemma 1.3.4 for
such a G, the group AutG can naturally be regarded as a subgroup of AutS.
In particular, the group H∞ in the definition (Definition 2.1.3) of a class S

subgroup is quasisimple with cyclic centre Z. To find both the S1- and the S2-
maximals, the first step is to determine all the quasisimple groups that possess
a faithful absolutely irreducible representation of degree at most 12 in prime
characteristic p. (It is an elementary result in representation theory that any
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group with a faithful irreducible representation has a cyclic centre.) The lists
in [42] (cross characteristic) and [84] (defining characteristic), together with
the Atlas [12] and the Modular Atlas [57], are our principal sources of
information. The representations of such groups are classified up to represen-
tation equivalence. As a side effect, in the cross characteristic case, we obtain
a classification of the characteristic 0 representations of such groups as well.

Once we have constructed a list of all such representations of quasisimple
groups G, we determine the minimal fields Fq over which they can be realised.
By Proposition 1.8.13, this is just the field generated by the character values.

We then determine the types of the forms A for which the images of the
representations are groups of isometries when they are realised over their mini-
mal fields, which includes finding the signs of symmetric bilinear and quadratic
forms when appropriate. It is a consequence of Definition 2.1.3 of Class S and
Lemma 1.8.8 that we thereby identify (up to conjugacy) the specific quasisim-
ple classical group Ω in which an extension of Gρ might be an S -maximal
subgroup, so that almost simple extensions of Gρ/Z(Gρ) might be S -maximal
subgroups of almost simple extensions of Ω/Z(Ω). Our definitions of the outer
automorphisms of Ω were given in Subsection 1.7.1.

We also determine the action of OutG on the representations ρ, and thereby
determine their quasi-equivalence classes (Definition 1.8.4). By Lemmas 1.8.6
and 1.8.10, this determines the conjugacy between, and the normalisers of, the
images of the representations in the conformal classical group C := NGLn(q)(Ω).

So we can restrict our attention to a set of representatives of the quasi-
equivalence classes of representations. For each such representative ρ, our first
aim is to determine which of the elements of C that normalise Gρ lie in ΩF×

q ,
and thereby find the normaliser in Ω of Gρ. This normaliser then becomes a
candidate for an S -maximal subgroup of Ω. To determine which elements of
NC(Gρ) lie in Ω, we need to calculate the determinants of the normalising el-
ements, and their action on the form A. In the orthogonal cases, we may also
need to compute their spinor norms or quasideterminants. It is generally pos-
sible to perform such determinant, action, and spinor norm/quasideterminant
calculations either by using the information in [12, 57], or by direct computation
or, for spinor norm or quasideterminant calculations, using Definition 1.6.10 or
Proposition 1.6.11.

Finally, we compute the actions of any graph and field automorphisms of Ω
on the representations, and thereby determine the stabiliser of the conjugacy
class of Gρ in the full automorphism group of Ω. Let β be a field or graph
automorphism of Ω. If β has the same action on a representation ρ as some
α ∈ AutG then by definition ρβ and αρ are equivalent, and by Lemma 1.8.10
this equivalence is effected by some matrix g ∈ C. So the action of β on Gρ,
followed by conjugation cg by g, normalises and induces α on Gρ. Therefore
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the extension of G/Z(G) by α occurs in the almost simple extension of Ω by
βcg. So we need to identify cg as an element of Out Ω, which again involves
computing its determinant, its action on the form A, and possibly its spinor
norm or quasideterminant.

We remind the reader that, as we demonstrated in [6], for the unitary and
orthogonal groups in even dimensions, the definition of the field automorphism
φ or ϕ of Ω can depend on the specific form A for which Ω is a group of isome-
tries, and so it is important that the results of our calculations are presented
with respect to our chosen standard forms, which were listed in Table 1.1.

We had to carry out some of the computations described above by computer,
and, for the most part, we used Magma for this purpose. It is straightforward,
using standard Magma functionality, to do this for specific representations in a
given characteristic p. However, many of the cross characteristic representations
involved arise as reductions mod p of a characteristic 0 representation, and these
occur for all but finitely many p. To perform the calculations generically for
almost all primes p, we needed in some cases to construct the representations
explicitly over a number field, and to deduce the behaviour mod p from the
results of calculations in the characteristic 0 representation. This was necessary,
for example, for calculating the signs of the symmetric bilinear or quadratic
forms for which Gρ is a group of isometries, for spinor norm calculations, and
for identifying and studying the elements cg described above. We remind the
reader that the files of Magma calculations that we refer to are available on
the webpage http://www.cambridge.org/9780521138604.

As remarked above, for representations over finite fields, the minimal field
over which a representation ρ can be represented is generated by the character
values of ρ, and these calculations can be carried out most effectively if the same
is true for the corresponding characteristic 0 representation. This is the case
if and only if the Schur index [19, Section 41, Page 292] of the representation
is 1. Fortunately, this was the case for all of those representations that we
actually needed to construct. (The smallest-dimensional example that we know
of a quasisimple group with indicator + or ◦ and Schur index not 1 is the
336-dimensional representation of J2. It is an easy consequence of the Brauer–
Speiser Theorem [20, (74.27)] that representations with indicator − have Schur
index 2, but it turned out that there was no need for us to construct any of
these representations.)

4.1.2 Classes S1 and S2

The groups in Class S are divided into two subclasses, S1 and S2. To define
these subclasses, we need a precise definition of the characteristic of a group of
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Table 4.1 Groups of Lie type in more than one characteristic, or which are
alternating groups, plus possible cases of confusion

Group Characteristics for which it is group of Lie type

A5
∼= L2(4) ∼= L2(5) 2 and 5

L3(2) ∼= L2(7) 2 and 7

A6
∼= L2(9) ∼= S4(2)′ 3 (but not 2)

A8
∼= L4(2) 2

U4(2) ∼= S4(3) 2 and 3

L2(8) ∼= R(3)′ = 2G2(3)
′

2 (but not 3)

U3(3) ∼= G2(2)′ 3 (but not 2)
2F4(2)

′
none (not even 2)

Lie type, which we now present. This material is standard, and reader who is
unfamiliar with it could consult [91], for example.

Most (by any reasonable measure) finite simple groups are groups of Lie
type, and this includes all the classical groups. These have symbols tXn(q)
where t ∈ {1, 2, 3} (and is related to the symmetries of the associated Dynkin
diagram), n � 1 is an integer, X ∈ {A,B,C,D,E,F,G} (these symbols are
derived from the standard notation for the simple complex Lie algebras), and
q = pe > 1 is a power of the prime p, with various restrictions on the allowed
combinations of t, X, n and q. The groups with t = 1 are the Chevalley groups,
and we writeXn(q) instead of 1Xn(q) in this case. For these groups we haveXn ∈
{An,Bn,Cn,Dn,E6,E7,E8,F4,G2} where there are no further restrictions on
n and q other than those given above, except that the case D1 does not occur.

Let

tXn ∈ {An,Bn,Cn,Dn,E6,E7,E8,F4,G2,
2An,

2Dn,
3D4,

2E6,
2B2,

2F4,
2G2}.

Then we consider tXn(q) to be a group of Lie type in characteristic p if tXn(q)
is simple. Thus the sporadic groups and the groups A7, Am for m � 9, and
2F4(2)′ are not groups of Lie type in any characteristic. In Table 4.1 we present
all groups of Lie type that have more than one characteristic, and also all
alternating groups that are groups of Lie type.

The remaining simple groups are groups of Lie type in precisely one charac-
teristic. If H is a simple group of Lie type in characteristic p, then a quasisimple
group G = Z·H is also considered to be a group of Lie type in characteristic p
provided that p � |Z|.
Definition 4.1.1 Let G be a subgroup in Class S of a classical group C in
characteristic p. Then G lies in Class S2 of C if G∞ is isomorphic to a group of
Lie type in characteristic p, and G lies in Class S1 otherwise. Class S1 is the
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cross characteristic case, and Class S2 is the defining characteristic case. We
say that a subgroup G of a classical group C is Si-maximal (with i ∈ {1, 2})
if G is maximal amongst the Si-subgroups of C.

Cross characteristic representations are often (but not always) p-modular
reductions of characteristic 0 representations. Moreover, groups arising in this
class are usually defined over relatively low degree extensions of Fp. For a given
dimension the set of orders of the cross characteristic candidates is bounded
above; in dimension up to 12 we shall see in Section 4.3 that the largest qua-
sisimple cross characteristic candidate is 6·Suz, with order 2 690 072 985 600. In
contrast, the candidates in defining characteristic have unbounded order, and
require arbitrarily large extensions of Fp in order to write their representations.

The remainder of this chapter is devoted to classifying the S1-maximal
subgroups of the classical groups in dimension up to 12: we shall handle the
defining characteristic cases in Chapter 5. The chapter is structured as follows.
We start, in Section 4.2, by enumerating the algebraic irrationalities that occur
in the (Brauer) characters of the representations that will arise, and establish-
ing a few of their elementary properties. In Section 4.3 we use [42, 12, 57] to
produce a lengthy table containing a complete list of the required represen-
tations of quasisimple S1-candidates in dimensions up to 12. In Section 4.4,
we describe how to calculate the normaliser of the quasisimple S1-subgroups
in both the Ω-group and the conformal group, and the number of Ω-classes:
details of these calculations for the candidates in dimension up to six are given
in Section 4.5. Then in Section 4.6 we describe how to calculate the action on
the Ω-classes of field and graph automorphisms, and in Section 4.7 we carry
out these calculations in detail in dimension up to 6. Recall Definition 2.1.4
of a containment between two subgroups of a linear group. In Section 4.8 we
analyse containments between the S1-subgroups, ultimately determining all
S1-maximal subgroups in dimension up to 6. Having established and illus-
trated the techniques for performing all of the necessary calculations, we carry
them out in slightly less detail for candidates in dimensions 7–12 in Section 4.9.
Finally, in Section 4.10 we present a complete summary of the results of the
chapter, with references back to where they are proved.

In addition to our principal source [42], there is a huge volume of literature
on low-dimensional representations of quasisimple groups in cross character-
istic, which we is too extensive to be adequately summarised here. The lower
bounds on the degrees of representations of Chevalley groups established in [75],
which were improved in [101, 47], were of particular significance. Other such pa-
pers of specific relevance to our work include [7, 34, 35, 36, 37, 38, 43, 72, 109],
and the last of these is a useful survey paper. The methods described in Sec-
tion 4.4 that we use to compute stabilisers of S1-subgroups in GLn(q) in Case
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L, are similar to those used in [73], where representations of quasisimple groups
in coprime characteristic in dimensions 13 to 27 are considered, and GLn(q)-
conjugacy classes are determined.

4.2 Irrationalities

Our notation for algebraic irrationalities follows that in the Atlas [12]. All
such irrationalities are sums of roots of unity. Below we shall only define those
irrationalities that are needed in this book; the Atlas defines many more.

We use i to denote a fixed square root of −1. We define zn (a particular
primitive complex nth root of 1) as:

zn := exp(2πi/n) = cos(2π/n) + i.sin(2π/n).

Notice the identities z1 = 1, z2 = −1, and z4 = i; we sometimes denote z3 as ω.
For n > 1 odd, we then use zn to define the number bn:

bn :=
(n−1)/2∑

r=1

zr2

n =
1
2

n−1∑
r=1

zr2

n .

Notice that z3 = b3. Gauss considered sums of this form, and proved that if
n ≡ 1 (mod 4) then bn = (−1 +

√
n)/2, whilst if n ≡ 3 (mod 4) then bn =

(−1 + i
√
n)/2. Thus, if n ≡ 1 (mod 4) then bn has minimal polynomial X2 +

X − 1
4 (n− 1) over Q; whilst if n ≡ 3 (mod 4) then bn has minimal polynomial

X2 +X + 1
4 (n+ 1) over Q.

Next we use z4 and z8 to fix a square root of 2, namely r2 := (1+z4)/z8. For
n > 2, we may then use bn, r2 and positive integer square roots to fix square
roots rn =

√
n and in =

√−n = i.rn. Then rn := 1+2bn if n ≡ 1 (mod 4), and
in := 1 + 2bn if n ≡ 3 (mod 4).

Another useful irrationality is cn for n ≡ 1 (mod 6) and n prime, which is
defined as cn := 1

3

∑n−1
r=1 zr3

n . We also define yn := zn + z−1
n = 2 cos(2π/n). It is

a useful exercise for the reader to verify that y1 = 2, y2 = −2, y3 = −1, y4 = 0,
y5 = b5, y6 = 1, y7 = c7, y8 = r2 and y12 = r3.

If θ is a quadratic irrationality, its non-trivial algebraic conjugate is easy to
write down: if θ is a bn irrationality this conjugate (denoted b∗

n if bn is real and
irrational, or b∗∗

n if bn is not real) is −1−θ, while if θ is an in or rn irrationality
(including i) this conjugate is −θ.

We next discuss p-modular reduction, namely the interpretation of these
irrationalities as elements of finite fields. Fix a primitive multiplicative element
ωp,e of F×

pe . For all reasonably small fields we can choose ωp,e to be a root of the
Conway polynomial for that field; see Subsection 1.4.1. When n divides pe − 1



156 Groups in Class S : cross characteristic

but not pi − 1 for i < e, we define the element zn in characteristic p to be the
smallest power of ωp,e that has multiplicative order n. We define i to be z4, and
then follow the opening paragraphs of this section in defining bn, rn, in, cn and
yn in terms of i and zn. Note that zn, bn, cn and yn are undefined when p | n,
and rn and in are undefined when p | n and when p = 2.

For n odd, bn is equal to 1
2 (−1 +

√
εn), where the sign ε ∈ {1,−1} is such

that εn ≡ 1 (mod 4). Now, εn =
∏r

i=1 εiqi, where the qi are prime natural
numbers and εiqi ≡ 1 (mod 4) for all i. Recall the Legendre symbol, and the
basic facts regarding its behaviour, established in Section 1.13. For p odd, and
not dividing n, the field element corresponding to bn lies in Fp if and only if
εn is a (non-zero) square modulo p. This occurs if and only if(

εn

p

)
=

r∏
i=1

(
εiqi
p

)
=

r∏
i=1

(
p

qi

)
= 1,

by Proposition 1.13.7 (iii). For p = 2, we consider whether the minimal polyno-
mial of bn (whichever of X2 +X + ±n+1

4 is in Z[X]) factors into linear factors
when reduced modulo 2. This is the case (and hence bn is in F2) if and only if
n ≡ ±1 (mod 8), by Proposition 1.13.7 (ii) .

As an example, b15 ∈ Fp if and only if p �= 3, 5 and
(

−15
p

)
=
(

p
3

) (
p
5

)
= 1.

Now
(

p
3

)
=
(

p
5

)
= 1 if and only if p ≡ 1 (mod 3) and p ≡ 1, 4 (mod 5), that

is p ≡ 1, 4 (mod 15). And
(

p
3

)
=
(

p
5

)
= −1 if and only if p ≡ 2 (mod 3) and

p ≡ 2, 3 (mod 5), that is p ≡ 2, 8 (mod 15). So we see that b15 is in Fp if and
only if p ≡ 1, 2, 4, 8 (mod 15).

We write Fq(yn) to mean the smallest extension of Fq containing yn, and
yn ∈ Fq will mean that Fq(yn) = Fq.

Lemma 4.2.1 If the prime p does not divide n and q is a power of p, then
yn ∈ Fq if and only if q ≡ ±1 (mod n).

Proof If yn = zn + z−1
n ∈ Fq, then zn satisfies a quadratic equation over Fq

and hence zn ∈ Fq2 . So zn + z−1
n = zq

n + z−q
n and so, multiplying by zq

n,

z2q
n − zq+1

n − zq−1
n + 1 = (zq+1

n − 1)(zq−1
n − 1) = 0

and hence q ≡ ±1 (mod n).
Conversely, if q ≡ 1 (mod n) then zn ∈ Fq, so yn ∈ Fq, whereas if q ≡

−1 (mod n) then zn ∈ Fq2 \ Fq, and yn = zn + z−1
n = zn + zq

n ∈ Fq.

In Tables 4.2 and 4.3 we present information about the algebraic irrational-
ities that we shall need; i.e. those that arise in character values of the cross
characteristic candidates in Table 4.4. In column “Irrat” we give the name of
the irrationality θ, and in Column “Real” we indicate whether θ is a real or
complex number. Column “Deg” (only present in Table 4.3) gives the degree
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of the extension field Q(θ): note that in Table 4.2 this number is always 2.
Column “Cyc” gives the minimal n such that θ is a sum of n-th roots of unity.
The minimal polynomial of θ over Q follows next, and finally in Column “p-
modular reductions” we give congruences on primes p such that θ and all of its
conjugates lie in Fpα for some α (with α minimised over all conjugates). For
the irrationalities given in Tables 4.2 and 4.3, the p-modular reductions of the
irrationality and each of its conjugates generate the same field.

To calculate the p-modular reductions in Table 4.2 we have made repeated
use of Theorem 1.13.8. In Table 4.3 we include the irrationalities c13 and c19,
which we shall only need in characteristics 5 and 11, respectively, so we only give
information about their behaviour in these specific characteristics. Lemma 4.2.1
can be used to determine the entries in Column “p-modular reductions” of
Table 4.3 for the irrationalities yn.

Table 4.2: Irrationality tables: quadratic irrationalities

Irrat Real Cyc Min poly p-modular reductions

z3 no 3 X2+X+1 Deg 1: p ≡ 0, 1 (3)

Deg 2: p ≡ 2 (3)

b5 yes 5 X2+X−1 Deg 1: p ≡ 0, 1, 4 (5)

Deg 2: p ≡ 2, 3 (5)

b7 no 7 X2+X+2 Deg 1: p ≡ 0, 1, 2, 4 (7)

Deg 2: p ≡ 3, 5, 6 (7)

b11 no 11 X2+X+3 Deg 1: p ≡ 0, 1, 3, 4, 5, 9 (11)

Deg 2: p ≡ 2, 6, 7, 8, 10 (11)

b13 yes 13 X2+X−3 Deg 1: p ≡ 0, 1, 3, 4, 9, 10, 12 (13)

Deg 2: p ≡ 2, 5, 6, 7, 8, 11 (13)

b15 no 15 X2+X+4 Deg 1: p ≡ 3, 5, 1, 2, 4, 8 (15)

Deg 2: p ≡ 7, 11, 13, 14 (15)

b17 yes 17 X2+X−4 Deg 1: p ≡ 0, 1, 2, 4, 8, 9, 13, 15, 16 (17)

Deg 2: p ≡ 3, 5, 6, 7, 10, 11, 12, 14 (17)

b19 no 19 X2+X+5 Deg 1: p ≡ 0, 1, 4, 5, 6, 7, 9, 11, 16, 17 (19)

Deg 2: p ≡ 2, 3, 8, 10, 12, 13, 14,

15, 18 (19)

b21 yes 21 X2+X−5 Deg 1: p ≡ 3, 7, 1, 4, 5, 16, 17, 20 (21)

Deg 2: p ≡ 2, 8, 10, 11, 13, 19 (21)
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Table 4.2: Irrationality tables: quadratic irrationalities

Irrat Real Cyc Min poly p-modular reductions

b23 no 23 X2+X+6 Deg 1: p ≡ 0, 1, 2, 3, 4, 6, 8, 9, 12, 13,

16, 18 (23)

Deg 2: p ≡ 5, 7, 10, 11, 14, 15, 17, 19,

20, 21, 22 (23)

i no 4 X2+1 Deg 1: p ≡ 2, 1 (4)

Deg 2: p ≡ 3 (4)

i2 no 8 X2+2 Deg 1: p ≡ 2, 1, 3 (8)

Deg 2: p ≡ 5, 7 (8)

i5 no 20 X2+5 Deg 1: p ≡ 2, 5, 1, 3, 7, 9 (20)

Deg 2: p ≡ 11, 13, 17, 19 (20)

r2 yes 8 X2−2 Deg 1: p ≡ 2, 1, 7 (8)

Deg 2: p ≡ 3, 5 (8)

r3 yes 12 X2−3 Deg 1: p ≡ 2, 3, 1, 11 (12)

Deg 2: p ≡ 5, 7 (12)

r6 yes 24 X2−6 Deg 1: p ≡ 2, 3, 1, 5, 19, 23 (24)

Deg 2: p ≡ 7, 11, 13, 17 (24)

Table 4.3: Irrationality tables: non-quadratic irrationalities

Irrat Real Deg Cyc Min poly p-modular reductions

c13 yes 3 13 X3+X2−4X+1 c13 ∈ F5

c19 yes 3 19 X3+X2−6X−7 c19 ∈ F11

y7 yes 3 7 X3+X2−2X−1 Deg 1: p ≡ 0, 1, 6 (7)

Deg 3: p ≡ 2, 3, 4, 5 (7)

y9 yes 3 9 X3−3X+1 Deg 1: p ≡ 3, 1, 8 (9)

Deg 3: p ≡ 2, 4, 5, 7 (9)
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4.3 Cross characteristic candidates

In this section we calculate and tabulate the information that we shall require
concerning the cross characteristic representations of quasisimple groups in di-
mensions up to 12. Representations in defining characteristics will be considered
in Chapter 5, and are deliberately omitted from this chapter. Our main source
for the information in this section is Theorem 4.3.1, the main result of [42].

Theorem 4.3.1 Let G be a quasisimple finite group, and let V be an absolutely
irreducible faithful FG-module of dimenion d � 250. If G is a group of Lie
type, assume that the characteristic of F is not the defining characteristic of
G. Then the values of (G, d), together with the Frobenius-Schur indicator of the
representation and its character field, are contained in [42, Tables 2 and 3].

We have also used the information in the Atlas [12] and the Modular
Atlas [57]. We remind the reader that the modular character tables in [57]
contain the irreducible Brauer characters (see, for example, [19, Page 588] or
[56, Chapter 15]) of the groups G in characteristics dividing the group order.
For g ∈ G and an absolutely irreducible representation ρ in characteristic p,
tr(gρ) is a sum

∑
wi of roots of unity, and the Brauer character χ(g) is equal

to
∑
wi, where wi is a complex root of unity that maps onto wi, as described

earlier in Section 4.2. For primes p not dividing |G|, the Brauer character is
equal to an ordinary character, and can be found in [12].

Table 4.4 contains the information that we require on the absolutely irre-
ducible cross characteristic representations of quasisimple groups in dimensions
up to 12. We need to explain our convention for when we include two represen-
tations ρ1 and ρ2 of a group G on the same row of Table 4.4.

In Section 1.8 we saw how automorphisms of G and F define actions on the
representations of G over the field F .

In the case of complex representations, we recall the standard definition
from representation theory that ρ1 and ρ2 are said to be algebraically conjugate
if ρσ

1 is equivalent to ρ2 for some automorphism σ of C.
We extend this concept to characteristic p representations in the following

somewhat arbitrary and non-standard fashion. If ρ1 and ρ2 are absolutely ir-
reducible and can both be defined as reductions modulo p of the absolutely
irreducible complex representations ρ′1 and ρ′2, then ρ1 and ρ2 are algebraically
conjugate if and only if ρ′1 and ρ′2 are. (This turns out to be independent of
how exactly we define reduction modulo p, which depends on the choice of a
maximal ideal above the ideal (p) in a suitable ring.)

If ρ1 and ρ2 are absolutely irreducible representations over a finite field F of
characteristic p, and they do not arise as reductions modulo p of absolutely ir-
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reducible complex representations, then we shall say that they are algebraically
conjugate if ρσ

1 is equivalent to ρ2 for some automorphism σ of F .

Definition 4.3.2 Two representations ρ1 and ρ2 of G are said to be weakly
equivalent if one can be obtained from the other by application of group auto-
morphisms, algebraic conjugacy, and duality of modules.

Hence quasi-equivalent representations (see Definition 1.8.4) are weakly
equivalent. Our results are listed in Table 4.4, each row of which describes
a class of weakly equivalent faithful absolutely irreducible representations.

How to read Table 4.4. The column “Group” gives the name of the qua-
sisimple group G in Atlas [12] notation.

The column “PmDivs” lists the prime divisors of |G|. If G is a group of Lie
type then the defining characteristics of G are in bold.

Column “Dim” states the dimension (or degree) of the representations.
The column “Ind” refers to the Frobenius–Schur indicator (see, for example,

[20, Page 725]). This is equal to ◦ when the image of the representation preserves
a unitary form or only an identically zero form, − when the image of the
representation preserves a symplectic form but no quadratic form, and + when
it preserves a quadratic form. We shall describe in Subsection 4.4.1 how to
determine whether a representation with indicator ◦ preserves a unitary form.

The column “#ρ” counts the number of equivalence classes of representa-
tions (or characters) that are represented by that line of the table.

Column “Stab” defines the stabiliser in OutG of one of the representations
described in that line, by specifying its structure or generators.

Column “Charc” gives the characteristics over which the representation
occurs, where by 0 we mean all primes that do not divide |G|. The bracketed
[2, ] in this entry for a 10-dimensional representation of L2(11) indicates that
this representation is equivalent to the one in the line below in characteristic 2.

To determine the minimal field size for these representations on reduction
modulo p, we require the character ring (i.e. the ring generated by the character
values) of the representation, as an extension of Z. Column “Ch Ring” lists
algebraic irrationalities that generate the character ring over Z. See Table 4.2 for
the values of the irrationalities that occur, including their minimal polynomials.

The table is ordered first by degree, then by Frobenius–Schur indicator,
then by order of the simple group, and then by order of the quasisimple group.

How Table 4.4 was calculated. Rather than giving all details of the calcu-
lations, which would be lengthy and repetitive, we describe how to carry them
out and give a few examples.

Columns “Group”, “PmDivs”, “Deg” and “Ind” are in [42]. Column “#ρ”,
which is the number of inequivalent representations in the general linear group
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that are described by that row of the table. Several non-weakly-equivalent rep-
resentations of a group can be listed in a single line in [42]. This does not in
fact occur in dimensions up to 12 but, for example, if we were dealing with
dimension 14 the two rational degree 14 representations of A7 occupy one line
of [42] but would appear twice in our list.

As an example of how to calculate the “#ρ” value, we consider the 6-
dimensional representation of 6·A7, which occurs in characteristics 0, 5 and
7. First, we note that in [12] and [57] there are four characters of degree 6
for 6·A7. These are all algebraically conjugate, with character field K(z3, r2),
where K is Q, F5 or F7, so all four representations are in one row of our table.
These representations are swapped in pairs by the outer automorphism α of
6·A7, since α acts in the same way as the automorphism (z3, r2) �→ (z∗∗3 ,−r2)
of K(z3, r2) on these representations.

Similarly, for Column “Stab” of our 6·A7 example, [12] and [57] show that
6·S7 has no 6-dimensional representations in characteristic 0. Since 6·A7 has
only one non-trivial outer automorphism, the entry for “Stab” is 1.

As a second example, consider the 5-dimensional representations of A6,
which occur in characteristics 0 and 5. There are two such representations in
[12] and [57]. They are interchanged by the .22 and .23 automorphisms of A6

and are stabilised by the .21 automorphism. Thus the two representations form
a single row of our table, with “Stab” entry 21.

For almost all of the entries in Table 4.4, the character tables in [12] and
[57] can be used to calculate the number of representations as we have just
explained. The exceptions are:

(i) A13 in dimension 11 with p = 13;
(ii) A13 in dimension 12 with p = 2, 3, 5, 7 or 11;
(iii) A14 in dimension 12 with p = 2 or 7;
(iv) 2·Suz in dimension 12 with p = 3;
(v) 3·Suz in dimension 12 with p = 2;
(vi) 6·Suz in dimension 12 with p = 5, 7, 11 or 13.

None of these Brauer character tables are in [57], but they are all available in
the GAP library of (Brauer) character tables, and can be accessed from within
GAP. For example, for 3·Suz in dimension 12 with p = 2, the GAP commands

C:=CharacterTable("3.Suzmod2");

CharacterDegrees(C);

reveal that there are exactly two Brauer characters of this degree with p = 2.
The tables in [42] give generators for the character field of the representa-

tion, whereas we require the character ring. This can be read straightforwardly
from the character values in [12] and [57].
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In conclusion, we have illustrated how we have proved the following theorem.

Theorem 4.3.3 Let S be an S1-subgroup of a classical group C in dimension
at most 12. Then S∞ is contained in Table 4.4.

Table 4.4: Cross characteristic candidates

Group PmDivs Deg Ind #ρ Stab Charc Ch Ring

2·A5 2, 3, 5 2 − 2 1 0, 3 b5

L3(2) 2, 3, 7 3 ◦ 2 1 0, 3 b7

3·A6 2, 3, 5 3 ◦ 4 1 0, 2 z3,b5

3·A6 2, 3, 5 3 ◦ 2 23 5 z3

3·A7 2, 3, 5, 7 3 ◦ 2 1 5 z3,b7

A5 2, 3, 5 3 + 2 1 0, 3 b5

2·L3(2) 2, 3, 7 4 ◦ 2 1 0, 3 b7

A7 2, 3, 5, 7 4 ◦ 2 1 2 b7

2·A7 2, 3, 5, 7 4 ◦ 2 1 0, 3, 5 b7

42
·L3(4) 2, 3, 5, 7 4 ◦ 2 22 3 i,b7

2·U4(2) 2, 3, 5 4 ◦ 2 1 0, 5 z3

2·A5 2, 3, 5 4 − 1 2 0 —

A6 2, 3, 5 4 − 2 21 2 —

2·A6 2, 3, 5 4 − 2 21 0, 5 —

2·A7 2, 3, 5, 7 4 − 1 2 7 —

A5 2, 3, 5 4 + 1 2 0, 3 —

L2(11) 2, 3, 5, 11 5 ◦ 2 1 0, 2, 3, 5 b11

M11 2, 3, 5, 11 5 ◦ 2 1 3 i2,b11

U4(2) 2, 3, 5 5 ◦ 2 1 0, 5 z3

A5 2, 3, 5 5 + 1 2 0 —

A6 2, 3, 5 5 + 2 21 0, 5 —

A7 2, 3, 5, 7 5 + 1 2 7 —

3·A6 2, 3, 5 6 ◦ 2 23 0 z3

5 2z3

6·A6 2, 3, 5 6 ◦ 4 1 0 z3, r2
5 2z3, r2
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Table 4.4: Cross characteristic candidates

Group PmDivs Deg Ind #ρ Stab Charc Ch Ring

2·L2(11) 2, 3, 5, 11 6 ◦ 2 1 0, 3, 5 b11

3·A7 2, 3, 5, 7 6 ◦ 2 1 0, 2, 5, 7 z3

6·A7 2, 3, 5, 7 6 ◦ 4 1 0, 5, 7 z3, r2
6·L3(4) 2, 3, 5, 7 6 ◦ 2 21 0, 5, 7 z3

2·M12 2, 3, 5, 11 6 ◦ 2 1 3 i2, i5,b11

3·M22 2, 3, 5, 7, 11 6 ◦ 2 1 2 z3,b11

31
·U4(3) 2, 3, 5, 7 6 ◦ 2 22 2 z3

61
·U4(3) 2, 3, 5, 7 6 ◦ 2 22 0, 5, 7 z3

2·A5 2, 3, 5 6 − 1 2 0, 3 —

2·L3(2) 2, 3, 7 6 − 2 2 0, 3 r2
L2(13) 2, 3, 7, 13 6 − 2 1 2 b13

2·L2(13) 2, 3, 7, 13 6 − 2 1 0, 3, 7 b13

2·A7 2, 3, 5, 7 6 − 2 1 3 r2
U3(3) 2, 3, 7 6 − 1 2 0, 2, 7 —

J2 2, 3, 5, 7 6 − 2 1 2 b5

2·J2 2, 3, 5, 7 6 − 2 1 0, 3, 7 b5

2·J2 2, 3, 5, 7 6 − 1 2 5 —

L3(2) 2, 3, 7 6 + 1 2 0, 3 —

A7 2, 3, 5, 7 6 + 1 2 0, 2, 3, 5 —

2·L3(4) 2, 3, 5, 7 6 + 1 22 3 —

U4(2) 2, 3, 5 6 + 1 2 0, 5 —

U3(3) 2, 3, 7 7 ◦ 2 1 0, 7 i

L3(2) 2, 3, 7 7 + 1 2 0, 3 —

L2(8) 2, 3, 7 7 + 1 3 0, 3, 7 —

L2(8) 2, 3, 7 7 + 3 1 0, 7 y9

L2(13) 2, 3, 7, 13 7 + 2 1 0, 3, 7 b13

U3(3) 2, 3, 7 7 + 1 2 0, 7 —

A8 2, 3, 5, 7 7 + 1 2 0, 3, 5, 7 —

J1 2, 3, 5, 7 + 1 1 11 b5, c19

7, 11, 19



164 Groups in Class S : cross characteristic

Table 4.4: Cross characteristic candidates

Group PmDivs Deg Ind #ρ Stab Charc Ch Ring

A9 2, 3, 5, 7 7 + 1 2 3 —

S6(2) 2, 3, 5, 7 7 + 1 1 0, 3, 5, 7 —

41
·L3(4) 2, 3, 5, 7 8 ◦ 4 23 0, 3, 7 i,b5

41
·L3(4) 2, 3, 5, 7 8 ◦ 2 23 5 i

2·L3(2) 2, 3, 7 8 − 1 2 0 —

2·A6 2, 3, 5 8 − 2 22 0 b5

L2(17) 2, 3, 17 8 − 2 1 2 b17

2·L2(17) 2, 3, 17 8 − 2 1 0, 3 b17

A10 2, 3, 5, 7 8 − 1 2 2 —

L3(2) 2, 3, 7 8 + 1 2 0 —

A6 2, 3, 5 8 + 2 22 0, 2 b5

A6 2, 3, 5 8 + 1 22 5 —

L2(8) 2, 3, 7 8 + 1 3 0, 7 —

A7 2, 3, 5, 7 8 + 1 2 5 —

2·A8 2, 3, 5, 7 8 + 1 2 0, 3, 5, 7 —

2·Sz(8) 2, 5, 7, 13 8 + 1 1 5 c13

A9 2, 3, 5, 7 8 + 1 2 0, 2, 5, 7 —

A9 2, 3, 5, 7 8 + 2 1 2 —

2·A9 2, 3, 5, 7 8 + 2 1 0, 5, 7 —

2·A9 2, 3, 5, 7 8 + 1 2 3 —

2·S6(2) 2, 3, 5, 7 8 + 1 1 0, 3, 5, 7 —

A10 2, 3, 5, 7 8 + 1 2 5 —

2·A10 2, 3, 5, 7 8 + 2 1 5 r6,b21

2·O+
8 (2) 2, 3, 5, 7 8 + 1 2 0, 3, 5, 7 —

3·A6 2, 3, 5 9 ◦ 2 23 0, 2 z3

3·A7 2, 3, 5, 7 9 ◦ 2 1 7 z3

L2(19) 2, 3, 5, 19 9 ◦ 2 1 0, 2, 3, 5 b19

3·J3 2, 3, 5, 17, 19 9 ◦ 2 1 2 z3,b17,b19

A6 2, 3, 5 9 + 1 22 0 —

L2(8) 2, 3, 7 9 + 3 1 0, 3 y7
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Table 4.4: Cross characteristic candidates

Group PmDivs Deg Ind #ρ Stab Charc Ch Ring

L2(17) 2, 3, 17 9 + 2 1 0, 3 b17

M11 2, 3, 5, 11 9 + 1 1 11 —

A10 2, 3, 5, 7 9 + 1 2 0, 3, 7 —

A11 2, 3, 5, 7, 11 9 + 1 2 11 —

A7 2, 3, 5, 7 10 ◦ 2 1 0, 3, 5 b7

2·L2(19) 2, 3, 5, 19 10 ◦ 2 1 0, 3, 5 b19

M11 2, 3, 5, 11 10 ◦ 2 1 0, 3, 5, 11 i2
2·L3(4) 2, 3, 5, 7 10 ◦ 2 22 0, 3, 5 b7

U4(2) 2, 3, 5 10 ◦ 2 1 0, 5 z3

2·M12 2, 3, 5, 11 10 ◦ 2 2 0, 3, 5, 11 i2
M22 2, 3, 5, 7, 11 10 ◦ 2 2 2 b7

2·M22 2, 3, 5, 7, 11 10 ◦ 2 2 0, 3, 5, 11 b7

2·A6 2, 3, 5 10 − 2 22 0, 5 r2
2·L2(11) 2, 3, 5, 11 10 − 1 2 0, 3, 5 —

2·L2(11) 2, 3, 5, 11 10 − 2 2 0, 5 r3
U5(2) 2, 3, 5, 11 10 − 1 2 0, 3, 5, 11 —

A6 2, 3, 5 10 + 1 22 0, 5 —

L2(11) 2, 3, 5, 11 10 + 1 2 0, [2,] 3, 5 —

L2(11) 2, 3, 5, 11 10 + 1 2 0, 2, 5 —

A7 2, 3, 5, 7 10 + 1 2 7 —

M11 2, 3, 5, 11 10 + 1 1 0, 2, 3, 5 —

2·L3(4) 2, 3, 5, 7 10 + 1 22 7 —

M12 2, 3, 5, 11 10 + 1 2 2 —

M12 2, 3, 5, 11 10 + 2 1 3 —

2·M22 2, 3, 5, 7, 11 10 + 1 2 7 —

A11 2, 3, 5, 7, 11 10 + 1 2 0, 2, 3, 5, 7 —

A12 2, 3, 5, 7, 11 10 + 1 2 2, 3 —

L2(23) 2, 3, 11, 23 11 ◦ 2 1 0, 2, 3, 11 b23

M23 2, 3, 5, 7, 11, 23 11 ◦ 2 1 2 b7,b15,b23

U5(2) 2, 3, 5, 11 11 ◦ 2 1 0, 5, 11 z3
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Table 4.4: Cross characteristic candidates

Group PmDivs Deg Ind #ρ Stab Charc Ch Ring

M24 2, 3, 5, 7, 11, 23 11 ◦ 2 1 2 b7,b15,b23

L2(11) 2, 3, 5, 11 11 + 1 2 0, 5 —

L3(3) 2, 3, 13 11 + 1 2 13 —

M11 2, 3, 5, 11 11 + 1 1 0, 5, 11 —

M12 2, 3, 5, 11 11 + 2 1 0, 5, 11 —

A12 2, 3, 5, 7, 11 11 + 1 2 0, 5, 7, 11 —

A13 2, 3, 5, 7, 11, 13 11 + 1 2 13 —

6·A6 2, 3, 5 12 ◦ 4 1 0 z3,b5

6·A7 2, 3, 5, 7 12 ◦ 2 1 5 z3,b7

2·L2(23) 2, 3, 11, 23 12 ◦ 2 1 0, 3, 11 b23

122
·L3(4) 2, 3, 5, 7 12 ◦ 4 1 7 i, z3,b5

3·Suz 2, 3, 5, 7, 11, 13 12 ◦ 2 1 2 z3

6·Suz 2, 3, 5, 7, 11, 13 12 ◦ 2 1 0, 5, 7, 11, 13 z3

2·L2(11) 2, 3, 5, 11 12 − 2 2 0, 3 b5

2·L2(13) 2, 3, 7, 13 12 − 3 2 0, 3 y7

L2(25) 2, 3, 5, 13 12 − 2 22 2 —

2·L2(25) 2, 3, 5, 13 12 − 2 22 0, 3, 13 —

U3(4) 2, 3, 5, 13 12 − 1 4 0, 3, 5, 13 —

S4(5) 2, 3, 5, 13 12 − 2 1 2 b5

2·S4(5) 2, 3, 5, 13 12 − 2 1 0, 3, 13 b5

2·G2(4) 2, 3, 5, 7, 13 12 − 1 2 0, 3, 5, 7, 13 —

A14 2, 3, 5, 7, 11, 13 12 − 1 2 2 —

2·Suz 2, 3, 5, 7, 11, 13 12 − 1 2 3 —

L2(11) 2, 3, 5, 11 12 + 2 2 0, 2, 3 b5

L2(13) 2, 3, 7, 13 12 + 3 2 0, 2, 3 y7

L2(13) 2, 3, 7, 13 12 + 1 2 7 —

L3(3) 2, 3, 13 12 + 1 2 0, 2 —

2·M12 2, 3, 5, 11 12 + 1 2 0, 5, 11 —

A13 2, 3, 5, 7, 11, 13 12 + 1 2 0, 2, 3, 5, 7, 11 —

A14 2, 3, 5, 7, 11, 13 12 + 1 2 7 —
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4.4 The type of the form and the stabilisers in Ω and C

4.4.1 Unitary forms

In this subsection we present some general methods to determine whether a
representation over a finite field with indicator ◦ preserves a unitary form, or
only the identically zero form. Recall that an indicator of type − indicates that
the group preserves a symplectic form, and an indicator of type + indicates
that the group preserves a quadratic form: we will discuss in Subsection 4.9.3
how to determine the sign of the quadratic form in even dimension.

Since the definition of a unitary form requires a field automorphism of order
2, a representation can only preserve a unitary form when the field size is a
square. The indicator ◦ examples in Table 4.4 all have the property that they
involve only quadratic irrationalities in their character rings, so in fact in each
of these candidates the field size is p or p2 for some prime p.

Lemma 4.4.1 For a given absolutely irreducible representation of a group G
over Fq2 with indicator ◦, the image of G under the representation consists of
isometries of a unitary form if and only if the action of the field automorphism
σ : x �→ xq on the Brauer character is the same as complex conjugation.

Proof Suppose that (the image of) G consists of isometries of a unitary form
with matrix A. Then gAgσT = A for all g ∈ G. Rearranging, we see that
g−Tσ = A−1gA so, since |σ| = 2, the dual of the representation is equivalent to
its image under σ. The effect of duality on the Brauer character is the same as
complex conjugation [56, Lemma 15.3], so the result follows.

From this we can immediately deduce the following result, which suffices to
resolve this question in all examples up to dimension 12.

Corollary 4.4.2 Suppose that the character ring of an absolutely irreducible
representation with indicator ◦ of a group G over Fq2 is generated over Z by the
quadratic irrationalities a1, . . . , ar, and let āi denote a p-modular reduction of
ai to Fq2 . Then the image of G under the representation consists of isometries
of a unitary form if and only if ai ∈ R ⇐⇒ āi ∈ Fq for 1 � i � r.

Thus, for example, for the listed representation of 6·A7, the field size is p
only when z3 and r2 both lie in Fp, which is the case when p ≡ 1 or 7 (mod 24).
The group 6·A7 preserves a unitary form over Fp2 when r2 ∈ Fp but z3 �∈ Fp;
that is, when p ≡ 17 or 23 (mod 24). When p ≡ 5, 11, 13 or 19 (mod 24), the
field size is p2 and no form is preserved.

In Section 4.5 we shall use this lemma in dimensions up to 6 to determine
which of the representations in Table 4.4 are unitary, whilst in Subsection 4.9.1
we shall apply it in dimensions 7 to 12.
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4.4.2 Stabilisers in Ω and C, and quasishape

Theorem 4.3.3 is sufficient to determine the quasisimple subgroups G of the
quasisimple classical groups Ω in dimensions up t 12. However, we wish to find
the almost simple subgroups of the (projective) simple classical groups and of
their almost simple extensions, so more work is needed.

Let Ω be a quasisimple classical group, let G be the image of a represen-
tation ρ of a quasisimple group, and assume that G is an S1- subgroup of Ω.
Let C be the corresponding conformal group. In this subsection, we present
some methods that can be used to determine the number of conjugacy classes
of images of ρ in Ω and C, and of determining which of their stabilising outer
automorphisms can be realised within Ω. These methods will be used in Sec-
tion 4.5 to determine such stabilisers in dimensions up to 6, and in Section 4.9
in dimensions 7 to 12. Determining the effects of the remaining automorphisms
is more complicated, and will be discussed in Section 4.6.

Lemma 4.4.3 Let G = Sρ1 be a quasisimple group for some faithful absolutely
irreducible representation ρ1 over a finite field, let A = OutG, let {ρ1, . . . , ρr}
be a set of representatives of the equivalence classes of representations that are
weakly equivalent to ρ1, and let C be the corresponding conformal group of the
smallest classical group Ω that contains G. Then

(i) The orbits of A on {ρ1, . . . , ρr} are in natural bijection with the conjugacy
classes into which C partitions {Sρ1, Sρ2, . . . , Sρr}.

(ii) Each C-class of subgroups splits into |C : NC(G)Ω| classes in Ω.
(iii) The outer automorphisms of G that are induced by elements of NC(G) are

precisely those that stabilise ρ1.

Proof Let X be the general linear group naturally containing Ω. By Lem-
mas 1.8.6, the images of ρi and ρj are conjugate by an element g ∈ X if and
only if they are equivalent under an automorphism α ∈ A and, if i = j, then we
may choose g ∈ NX(Sρi) such that g induces α. Furthermore, by Lemmas 1.8.9
and 1.8.10, we may choose g ∈ C. Hence (i) and (iii) are true, and (ii) follows
by the Orbit–Stabiliser Theorem.

The action of outer automorphisms of G on the representations can be found
in [12, 57]. In many cases there is a single class of subgroups of C, but there are
some exceptions. For example, the four representations of 6·A7 in dimension 6
give rise to two classes of subgroups of GL±

6 (q).
We also need to determine NΩ(G). So, for g ∈ NC(G), we need to decide

whether some scalar multiple of g lies in Ω. This will depend in general on
the effect of g on the invariant form (if non-zero), the determinant of g and,
in the orthogonal cases, on the spinor norm or quasideterminant of any scalar
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multiple of g that is an isometry and has determinant 1. In dimension at most
12, the determinant of a suitable g and information on whether it is an isometry
can be calculated from the character tables in [12, 57]: these calculations will
be presented in Sections 4.5 and 4.9. Up to multiplication by scalars, we can
always choose g to be an isometry in Case U, since CGUn(q) is generated by
GUn(q) and scalar matrices.

Finally, we introduce some new notation, which we can use to denote an
extension G of a quasisimple group, without having to specify precisely which
scalars lie in G. Let M.S be a quasisimple group with centre M and S sim-
ple, and let S.A be almost simple. We say that G has quasishape [[M.S.A]],
and write G ≈ [[M.S.A]], if G has a normal subgroup H isomorphic to M.S

such that G/CG(H) ∼= S.A. We use the notation [[M.S.A]] even if there is no
group of shape M.S.A, and write [[M.S :A]] if the extension S :A is split, even
if any group M.S.A is M.S·A or if no such group exists. A notation such as
[[6·PGL2(9)]] is the same as [[6·A6 :22]]. Note that we intend to use the notation
G ≈ [[M.S.A]] when G is an S -subgroup of a classical group, so that CG(H)
should consist of the scalar matrices in G, but since G may include field and/or
graph automorphisms, CG(H) is not necessarily central in G. While the notions
of quasishape and isoclinism are similar, they are not the same. For example,
there are groups A6.22 and A6.D8 having quasishape [[Aut A6]] = [[1.A6.22]], but
A6.22 and A6.D8 are not isoclinic. (The group A6.D8 arises when one attempts
to extend the irreducible 10-dimensional representation of A6 to Aut A6.)

Definition 4.4.4 For subgroups G � H � GLn(q), we say that G is scalar-
normalising in H if NH(G) � GZ, where Z is the group of scalar matrices of
GLn(q).

4.5 Dimension up to 6: quasisimple and conformal groups

In this section, we carry out the calculations that we introduced in Section 4.4
in detail for dimensions up to 6. We deal with larger dimensions in less detail
in Section 4.9. We remind the reader that, although we are including tables
for the orthogonal groups in dimensions less than 7 in Chapter 8, we are not
presenting details of the calculations in these cases, on the grounds that they
are (projectively) isomorphic to other classical groups. This means that, in our
calculations in this section, we are ignoring representions with indicator +.
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4.5.1 Dimension 2

Since SL2(q) = Sp2(q) ∼= SU2(q) and Ω±
2 (q) is soluble, the only possible indi-

cator for a 2-dimensional representation is −, so we consider these groups as
subgroups of Sp2(q). Furthermore, the only S1-candidate is 2·A5.

Proposition 4.5.1 (i) If p ≡ ±1 (mod 5), then there are exactly two con-
jugacy classes of S1-subgroups of Sp2(p) isomorphic to 2·A5.

(ii) If p ≡ ±2 (mod 5) and p �= 2, then there are exactly two conjugacy classes
of S1-subgroups of Sp2(p2) isomorphic to 2·A5.

In both cases, these subgroups are scalar-normalising in CSp2(q) = GL2(q),
and the two classes are fused by the diagonal automorphism of Sp2(q). There
are no other classes of S1-subgroups of Sp2(q).

Proof By Theorem 4.3.3, the only S1-candidate is G = 2·A5 in characteristics
not equal to 2 or 5. Note that OutG = 2.

The character ring of the relevant representations is the p-modular reduction
of Z[b5]. By Table 4.2 the quadratic irrationality b5 lies in Fp if and only if p
is a square modulo 5, so G < Sp2(p) in that case (p ≡ ±1 (mod 5)) and
G < Sp2(p2) otherwise (p ≡ ±2 (mod 5)). Thus these are the only possibilities
for S1-subgroups of Sp2(q).

There are two such representations of G, fused by the outer automorphism
of G, and their stabilisers are trivial. So by Lemma 4.4.3, there is a single class
of such groups G < CSp2(q) = GL2(q). Since the outer automorphism of G
is not induced by an element of C := GL2(q), G is scalar-normalising. Let
Z = Z(C). Then NC(G) = GZ, so NC(G)Ω = ΩZ. Since |C : ΩZ| = 2, by
Lemma 4.4.3 the single class in C splits into two Ω-classes, which are fused by
an element of GL2(q) \ ΩZ.

4.5.2 Dimension 3

There are no representations of indicator −, since the dimension is odd, and we
are not considering subgroups of the orthogonal groups in dimension less than
7, so we consider only those representations with indicator ◦.

By Theorem 4.3.3, the quasisimple groups to consider are:

(i) L3(2) in characteristic not 2 or 7;
(ii) 3·A6 in characteristic not 3;
(iii) 3·A7 in characteristic 5.

Proposition 4.5.2 (i) If p ≡ 1, 2, 4 (mod 7) and p �= 2, then there are
exactly d := (p − 1, 3) conjugacy classes of S1-subgroups of SL3(p) iso-
morphic to L3(2). The subgroups are scalar-normalising in GL3(p), and if
d = 3 then the classes are fused by the diagonal automorphisms of SL3(p).
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(ii) If p ≡ 3, 5, 6 (mod 7), then there are exactly d := (p + 1, 3) conjugacy
classes of S1-subgroups of SU3(p) isomorphic to L3(2). The subgroups are
scalar-normalising in CGU3(p), and if d = 3 then the classes are fused by
the diagonal automorphisms of SU3(p).

For all other q, there are no S1-subgroups L3(2) of SL3(q) or SU3(q).

Proof Let G = L3(2). Then |OutG| = 2. In characteristics other than 2 or 7,
there are two 3-dimensional representations of G in Table 4.4, with character
ring the p-modular reduction of Z[b7]. By Table 4.2, the complex quadratic
irrationality b7 lies in Fp if and only if p ≡ 1, 2, 4 (mod 7). Corollary 4.4.2 gives
G < SL3(p) in that case, and G < SU3(p) when p ≡ 3, 5, 6 (mod 7). Thus
there are no other values of q for which SL3(q) or SU3(q) has an S1-subgroup
isomorphic to G.

We see from Table 4.4 that the representations have trivial stabiliser. There-
fore the subgroups are scalar-normalising, and the two representations are in-
terchanged by the outer automorphism of G. Hence, by Lemma 4.4.3 there is
a single class of subgroups G < C = GL3(q) or CGU3(q). Let Z = Z(C). Since
|C : ΩZ| = |C : NC(G)Ω| = (q − 1, 3) in Case L and (q + 1, 3) in Case U, the
claim about the number of conjugacy classes in Ω follows..

Proposition 4.5.3 (i) If p ≡ 1, 4 (mod 15), then there are exactly three
conjugacy classes of S1-subgroups of SL3(p) isomorphic to 3·A6. The sub-
groups are scalar-normalising in GL3(p), and the classes are fused by the
diagonal automorphisms of SL3(p).

(ii) If p ≡ 11, 14 (mod 15), then there are exactly three conjugacy classes of
S1-subgroups of SU3(p) isomorphic to 3·A6. The subgroups are scalar-
normalising in CGU3(p), and the classes are fused by the diagonal auto-
morphisms of SU3(p).

(iii) If p ≡ 2, 7, 8, 13 (mod 15), then there are exactly three conjugacy classes
of S1-subgroups of SL3(p2) isomorphic to 3·A6. The subgroups are scalar-
normalising in GL3(p2), and the classes are fused by the diagonal auto-
morphisms of SL3(p2).

(iv) There are exactly three conjugacy classes of S1-subgroups of SU3(5) iso-
morphic to 3·A6.23. The subgroups are scalar-normalising in CGU3(5),
and the classes are fused by the diagonal automorphisms of SU3(5).

For all other q, there are no S1-subgroups 3·A6 of SL3(q) or SU3(q).

Proof Let G = 3·A6. Then OutG ∼= 22.
By Theorem 4.3.3, in characteristics other than 3 and 5 the relevant repre-

sentations of G have character ring the p-modular reduction of Z[z3,b5]. By
Table 4.2, the real quadratic irrationality b5 lies in Fp if and only if p ≡
±1 (mod 5). If so, then Corollary 4.4.2 gives G < SL3(p) when z3 ∈ Fp,
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namely when p ≡ 1 (mod 3), and G < SU3(p) when p ≡ −1 (mod 3). If
p ≡ ±2 (mod 5) then G < SL3(p2) by Corollary 4.4.2. Thus there are no
other powers q of p for which SL3(q) or SU3(q) has an S1-subgroup isomorphic
to G.

By Theorem 4.3.3 there are four representations with trivial stabiliser. So
the representations form a single orbit under OutG, and hence, by Lemma 4.4.3,
there is a single class of subgroups G < C. Since the stabiliser of the repre-
sentations is trivial, G is scalar-normalising in C, so NC(G)Ω = ΩZ(C). Since
|C : ΩZ(C)| = (q − 1, 3) in Case L and (q + 1, 3) in Case U, the result follows
from Lemma 4.4.3.

In characteristic 5, the character ring is the 5-modular reduction of Z[z3], so
Corollary 4.4.2 gives G < SU3(5), and there are no other powers q of 5 for which
SL3(q) or SU3(q) has an S1-subgroup isomorphic to G. By Theorem 4.3.3, there
are two representations, with stabiliser generated by the 23 automorphism of G.
Hence the representations are interchanged by the 21 and 22 automorphisms.
Now |PGU3(5) : U3(5)| = |Z(SU3(5))| = 3, so 3·A6.23 < SU3(5). (This can also
be seen directly from the entry for U3(5) in [12].)

Proposition 4.5.4 There are exactly three conjugacy classes of S1-subgroups
of SU3(5) isomorphic to 3·A7. These groups are scalar-normalising in CGU3(5)
and the classes are fused by the diagonal automorphisms of SU3(5).

Proof Let G = 3·A7. Then |OutG| = 2. By Theorem 4.3.3, there are two rel-
evant representations of 3·A7. These representations have character ring the 5-
modular reduction of Z[z3,b7], so G < SU3(5) by Table 4.2 and Corollary 4.4.2,
and there are no other q for which SL3(q) or SU3(q) has an S1-subgroup isomor-
phic to G. The two representations have trivial stabiliser, so are interchanged
by the outer automorphism of G. Thus, by Lemma 4.4.3 there is one conju-
gacy class of such subgroups of CGU3(5), and G is scalar-normalising. Since
|CGU3(5) : Z(CGU3(5))SU3(5)| = 3, there are three conjugacy classes of such
subgroups of SU3(5).

4.5.3 Dimension 4

In dimension 4 we do not consider the representations with indicator +, since
we are not considering the orthogonal groups in dimension less than 7.

Indicator ◦. By Theorem 4.3.3, the quasisimple groups to consider are:

(i) 2·L3(2) in characteristics not 2 or 7;
(ii) A7 in characteristic 2;
(iii) 2·A7 in characteristics not 2 or 7;
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(iv) 42
·L3(4) in characteristic 3;

(v) 2·U4(2) in characteristics greater than 3.

We first deal with 2·L3(2), A7 and 2·A7, since their behaviour is similar.

Proposition 4.5.5 (i) If p ≡ 1, 2, 4 (mod 7), then SL4(p) has exactly d :=
(p− 1, 4) conjugacy classes of S1-subgroups isomorphic to 2·L3(2) (when
p �= 2) and exactly d such classes isomorphic to 2·A7 (or A7 when p = 2).
The subgroups are scalar-normalising in GL4(p), and if d > 1 then the
classes are fused by the diagonal automorphisms of SL4(p).

(ii) If p ≡ 3, 5, 6 (mod 7), then SU4(p) has exactly d := (p + 1, 4) conjugacy
classes of S1-subgroups isomorphic to 2·L3(2) and exactly d such classes
isomorphic to 2·A7. The subgroups are scalar-normalising in CGU4(p),
and if d > 1 then the classes are fused by the diagonal automorphisms of
SU4(p).

For all other q, there are no S1-subgroups of SL4(q) or SU4(q) isomorphic
to 2·L3(2), 2·A7 or A7.

Proof Let G be one of 2·L3(2), A7 (with p = 2) or 2·A7. Then |OutG| = 2.
By Theorem 4.3.3, the relevant representations of G have character ring the p-
modular reduction of Z[b7]. By Table 4.2, b7 is a complex quadratic irrationality
so, by Corollary 4.4.2, G < SL4(p) when p ≡ 1, 2, 4 (mod 7) and G < SU4(p)
when p ≡ 3, 5, 6 (mod 7). Thus there are no other values of q for which SL4(q)
or SU4(q) has an S1-subgroup isomorphic to G.

There are two representations of G. Each has trivial stabiliser, so they are
interchanged by a group automorphism. Now by Lemma 4.4.3 there is a single
class of subgroups G < C in each case, the group G is scalar-normalising, and
the number of classes in Ω follows from noting that d = |C : ΩZ|.
Proposition 4.5.6 There are exactly two conjugacy classes of S1-subgroups
G of SU4(3) isomorphic to 42

·L3(4). The normaliser in CGU4(3) of G is gen-
erated by G, scalars, and an element with determinant −1 in GU4(3) \SU4(3).
The two classes are fused by the diagonal automorphism δ of SU4(3).

Proof Let G = 42
·L3(4). Then OutG ∼= 22. By Theorem 4.3.3, the relevant

representations of G have character ring the 3-modular reduction of Z[i,b7].
Then Table 4.2 and Corollary 4.4.2 give G < SU4(3). Thus there are no other
values of q for which SU4(q) has an S1-subgroup isomorphic to G.

There are two such representations, with stabiliser generated by the 22

automorphism of G. Therefore the representations are interchanged by the 21

and 23 automorphisms, and by Lemma 4.4.3 there is a single class of such
subgroups of CGU4(3).

Furthermore, from [57], we find that the character values on elements ofG.22
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outside of G all lie in the same field as those of G itself, so G.22 < GU4(3),
but for g in Class 2C of G.22, the character value on g is 2, so the eigenvalues
of g are 13 and −1, and hence det g = −1. Since there is no scalar element
with determinant −1 in GU4(3), there is no class S1-subgroup of SU4(3) with
quasishape [[G.22]]. The fact that det g = −1 implies that the 22 automorphism
is induced by the diagonal automorphism δ2 of SU4(3).

Proposition 4.5.7 (i) If p ≡ 1 (mod 6), then there are exactly d := (p −
1, 4) conjugacy classes of S1-subgroups of SL4(p) isomorphic to 2·U4(2).
The subgroups are scalar-normalising in GL4(p), and if d > 1 then the
classes are fused by the diagonal automorphisms of SL4(p).

(ii) If p ≡ 5 (mod 6), then there are exactly d := (p+1, 4) conjugacy classes of
S1-subgroups of SU4(p) isomorphic to 2·U4(2). The subgroups are scalar-
normalising in CGU4(p), and if d > 1 then the classes are fused by the
diagonal automorphisms of SU4(p).

For all other q, there are no S1-subgroups 2·U4(2) of SL4(q) or SU4(q).

Proof Let G = 2·U4(2) ∼= 2·Sp4(3). Then |OutG| = 2. By Theorem 4.3.3, we
have p > 3 and the relevant representations of G have character ring the p-
modular reduction of Z[z3]. Therefore Table 4.2 and Corollary 4.4.2 imply that
G < SL4(p) when p ≡ 1 (mod 6) and G < SU4(p) when p ≡ 5 (mod 6), and
there are no other values of q for which SL4(q) or SU4(q) has an S1-subgroup
isomorphic to G.

There are two such representations, with trivial stabiliser. Hence the repre-
sentations are interchanged by the outer automorphism ofG, so by Lemma 4.4.3
there is a single class of such groups in C. The fact that the representations
have trivial stabiliser implies that G is scalar-normalising, and so the unique
class in C splits into d = |C : ΩZ| conjugacy classes in Ω.

Indicator −. By Theorem 4.3.3, the quasisimple groups to consider are:

(i) 2·A5 in characteristics greater than 5;
(ii) A6 in characteristic 2;
(iii) 2·A6 in characteristics greater than 3;
(iv) 2·A7 in characteristic 7.

Recall that Sp4(2) is not quasisimple, and is not deemed to be a group of Lie
type. We therefore shall not determine its maximal subgroups here.

Lemma 4.5.8 For e > 1, the group Sp4(2e) has no S1-subgroups.

Proof The only possibility is A6. However, Sp4(2) ∼= S6 = A6 :21.

We can therefore assume that p > 2.



4.5 Dimension up to 6: quasisimple and conformal groups 175

Proposition 4.5.9 (i) If p ≡ ±1 (mod 12), then Sp4(p) has exactly two
conjugacy classes of S1-subgroups isomorphic to 2·S−

5 . The subgroups are
scalar-normalising in CSp4(p) and the classes are fused by the diagonal
automorphism of Sp4(p).

(ii) If p ≡ ±5 (mod 12) with p > 5, then the group Sp4(p) has exactly one
conjugacy class of S1-subgroups G isomorphic to 2·A5. The normalisers of
these subgroups G in CSp4(p) are generated by G, scalars, and an element
of CSp6(p) that is a similarity but not an isometry of the symplectic form.

For all other q, there are no S1-subgroups 2·A5 of Sp4(q).

Proof Let G = 2·A5. Then |OutG| = 2. By Theorem 4.3.3, the relevant
representation of G has character ring Z. Thus G < Sp4(p) for all p > 5, and
there are no other values of q for which Sp4(q) has an S1-subgroup isomorphic
to G. There is a single such representation, so there is a single class of such
groups in C = CSp4(q).

The stabiliser of the representation in OutG has order 2, but the repre-
sentation of G.2 in [12] involves the irrationality i3 and so this version of G.2
does not preserve the symplectic form. By multiplying elements outside of G
by a scalar element of order 4, we obtain a representation of the isoclinic group
G.2− = 2·S−

5 , which consists of isometries of the form, and involves the irra-
tionality r3. By Table 4.2 the quadratic irrationality r3 lies in Fp if and only
if p ≡ ±1 (mod 12). So G.2− < Sp4(p) if and only if p ≡ ±1 (mod 12), and
otherwise the class of G is stabilised by the outer automorphism δ of Sp4(p).

Proposition 4.5.10 (i) If p ≡ ±1 (mod 12) then Sp4(p) has exactly two
conjugacy classes of S1-subgroups isomorphic to 2·A6.21. The subgroups
are scalar-normalising in CSp4(p) and the classes are fused by the diagonal
automorphism of Sp4(p).

(ii) If p ≡ ±5 (mod 12) then Sp4(p) has exactly one conjugacy class of S1-
subgroups G isomorphic to 2·A6. The normaliser in CSp4(p) of G is gen-
erated by G, scalars, and an element in CSp4(p) that is a similarity but
not an isometry of the symplectic form, and induces the 21 automorphism
of G.

For all other q, there are no S1-subgroups 2·A6 of Sp4(q).

Proof Let G = 2·A6. Then OutG ∼= 22, and by Theorem 4.3.3 the character
ring of the relevant representations of G is the p-modular reduction of Z, for
all p > 3. Thus G < Sp4(p) for all p > 3, and there are no other values of q for
which Sp4(q) has an S1-subgroup isomorphic to G.

We also find from Table 4.4 that there are two such representations, with
stabiliser generated by the 21 automorphism ofG. Therefore the representations
are interchanged by the 22 and 23 automorphisms of G, and by Lemma 4.4.3
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there is a single class of such groups in CSp4(p). We find from [12, 57], that the
extension of one of these two representations to G.21 consists of isometries of
the symplectic form, but the character values of this representation on elements
of G.21 \G involve the irrationality r3, which by Table 4.2 lies in Fp if and only
if p ≡ ±1 (mod 12). Note that G.2+

1
∼= G.2−1 , so there is no reason to consider

the isoclinic variant of G.21.
So, if p ≡ ±1 (mod 12) then G.21 < Sp4(p). Since the remaining aut-

morphisms of G interchange the representations, the group G.21 is scalar-
normalising in CSp4(p), so there are two classes of groups G.21 < Sp4(p),
fused by the diagonal automorphism δ.

Similarly p ≡ ±5 (mod 12) then r3 ∈ Fp2 \Fp, and so there exists an element
g ∈ Sp4(p2) \Sp4(p) that induces the 21 automorphism of G. By Lemmas 1.8.6
and 1.8.9 this automorphism is also induced by conjugation by an element
g′ ∈ CSp4(p). So g′g−1 is a scalar matrix, which cannot be equal to ±I4, and so
g′ is not an isometry of the symplectic form. It follows that the 21 automorphism
of G is induced by the diagonal automorphism δ of Sp4(p) in this case.

Proposition 4.5.11 There is a unique conjugacy class of S1-subgroups of
Sp4(7) isomorphic to 2·A7. The normaliser in CSp4(7) of G is generated by G,
scalars, and an element in CSp4(7) that negates the symplectic form.

Proof Let G = 2·A7, so OutG ∼= 2. By Theorem 4.3.3, the group G < Sp4(7)
and there are no other values of q for which Sp4(q) has an S1-subgroup iso-
morphic to G. There is a single representation (with stabiliser OutG), so there
is a single class in CSp4(7). From [57], we find that neither G.2+ nor G.2− is
contained in Sp4(7). Therefore, the outer automorphism of G is induced by the
outer automorphism δ of Sp4(7).

4.5.4 Dimension 5

Since the dimension is odd and less than 7, we consider only indicator ◦.
By Theorem 4.3.3, the quasisimple groups to consider are:

(i) L2(11) in characteristics not equal to 11;
(ii) M11 in characteristic 3;
(iii) U4(2) in characteristics greater than 3.

Proposition 4.5.12 (i) If p ≡ 1, 3, 4, 5, 9 (mod 11), then there are exactly
d := (p − 1, 5) conjugacy classes of S1-subgroups of SL5(p) isomorphic
to L2(11). The subgroups are scalar-normalising in GL5(p), and if d > 1
then the classes are fused by the diagonal automorphisms of SL5(p).
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(ii) If p ≡ 2, 6, 7, 8, 10 (mod 11), then there are exactly d := (p + 1, 5) con-
jugacy classes of S1-subgroups of SU5(p) isomorphic to L2(11). The sub-
groups are scalar-normalising in CGU5(p), and if d > 1 then the classes
are fused by the diagonal automorphisms of SU5(p).

(iii) If p ≡ 1 (mod 6), then there are exactly d := (p − 1, 5) conjugacy classes
of S1-subgroups of SL5(p) isomorphic to U4(2). The subgroups are scalar-
normalising in GL5(p), and if d > 1 then the classes are fused by the
diagonal automorphisms of SL5(p).

(iv) If p ≡ 5 (mod 6), then there are exactly d := (p + 1, 5) conjugacy classes
of S1-subgroups of SU5(p) isomorphic to U4(2). The subgroups are scalar-
normalising in CGU5(p), and if d > 1 then the classes are fused by the
diagonal automorphisms of SU5(p).

(v) There are exactly two conjugacy classes of subgroups of SL5(3) isomorphic
to M11. The subgroups are scalar-normalising in GL5(3), and the classes
are not fused in GL5(3).

For all q, there are no other S1-subgroups of SL5(q) or SU5(q).

Proof First, recall that |Out L2(11)| = 2, |Out U4(2)| = 2 and |Out M11| = 1.
We consider the irrationalities involved. The character ring of the relevant

representations of L2(11) is the p-modular reduction of Z[b11]. By Table 4.2
and Corollary 4.4.2, we find that L2(11) � SL5(p) if p is a square modulo 11,
and L2(11) � SU5(p) otherwise. The relevant representations of U4(2) have
character ring the p-modular reduction of Z[z3], and so U4(2) � SL5(p) when
p ≡ 1 (mod 6) and U4(2) � SU5(p) when p ≡ 5 (mod 6). The relevant rep-
resentations of M11 have character ring the 3-modular reduction of Z[i2,b11],
which is F3. Thus for no other q are there S1-subgroups of SL5(q) or SU5(q).

In each of these cases there are two representations, with trivial stabiliser.
Therefore, in all cases, by Lemma 4.4.3 the group G is scalar-normalising in
the group C ∈ {GL5(p),CGU5(p)}. In the first two cases, the representations
are interchanged by the outer automorphism of G, so there is a single class
G < C and d = (p ± 1, 5) in Ω. But G = M11 has no outer automorphisms,
so there are two classes G < C and, since SL5(3) has no non-trivial diagonal
outer automorphisms, there are two classes in SL5(3) also.

4.5.5 Dimension 6

Indicator ◦. By Theorem 4.3.3, the quasisimple groups to consider are:

(i) 3·A6 in characteristics greater than 3;
(ii) 6·A6 in characteristics greater than 3;
(iii) 2·L2(11) in characteristics not equal to 2 or 11;
(iv) 3·A7 in characteristics not equal to 3;
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(v) 6·A7 in characteristics greater than 3;
(vi) 6·L3(4) in characteristics greater than 3;
(vii) 2·M12 in characteristic 3;
(viii) 3·M22 in characteristic 2;
(ix) 31

·U4(3) in characteristic 2;
(x) 61

·U4(3) in characteristics greater than 3.

Proposition 4.5.13 (i) If p ≡ 1 or 19 (mod 24), then there are exactly
six conjugacy classes of S1-subgroups of SL6(p) isomorphic to 3·A6.23.
The subgroups are scalar-normalising in GL6(p), and the classes are fused
under the diagonal automorphisms of SL6(p).

(ii) If p ≡ 7 or 13 (mod 24), then there are exactly three conjugacy classes of
S1-subgroups G of SL6(p) isomorphic to 3·A6. The normaliser of G in
GL6(p) is generated by G, scalars, and an element of GL6(p)\SL6(p) that
induces the diagonal automorphism of order 2 of SL6(p) and the 23 auto-
morphism of G. The classes are fused under the diagonal automorphisms
of order 3.

(iii) If p ≡ 5 or 23 (mod 24), then there are exactly six conjugacy classes of
S1-subgroups of SU6(p) isomorphic to 3·A6.23. The subgroups are scalar-
normalising in CGU6(p), and the classes are fused under the diagonal
automorphisms of SU6(p).

(iv) If p ≡ 11 or 17 (mod 24), then there are exactly three conjugacy classes
of S1-subgroups G of SU6(p) isomorphic to 3·A6. The normaliser of G in
CGU6(p) is generated by G, scalars, and an element of GU6(p) \ SU6(p)
that induces the diagonal automorphism of order 2 of SU6(p) and the 23

automorphism of G. The classes are fused under the diagonal automor-
phisms of order 3.

For all other q, there are no S1-subgroups 3·A6 of SL6(q) or SU6(q).

Proof Let G = 3·A6. Then OutG ∼= 22. By Theorem 4.3.3, the relevant rep-
resentations of G have character ring the p-modular reduction of Z[z3]. So,
by Corollary 4.4.2, G � SL6(p) when p ≡ 1 (mod 6) and G � SU6(p) when
p ≡ 5 (mod 6), and for no other q are there S1-subgroups of SL6(q) or SU6(q)
isomorphic to G.

By Theorem 4.3.3 there are two such representations with stabiliser gener-
ated by the 23 automorphism of G, so these two representations are swapped by
group automorphisms, and thus by Lemma 4.4.3 there is a single class of 3·A6

in GL6(p) or CGU6(p). Furthermore, by Lemmas 1.8.6 and 1.8.9, the group
3·A6 extends to a subgroup of quasishape [[3·A6

·23]] = [[3·A6.23]] of GL±
6 (q).

The character table of the (unique) group with the structure 3·A6.23 is
listed in [12] and in the 6-dimensional representation of this group, an element
of order 4 lying outside of 3·A6 has trace 0. Since its square lies in the unique
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class of order 2 in 3·A6 and has trace 2, this element of order 4 must have
eigenvalues 1, 1,−1,−1, i,− i, and hence its determinant is 1. The set of the
values of this character on the elements lying outside of 3·A6 is {0,± i2}, up
to multiplication by the scalars lying in 3·A6 (which are {1, z3, z

∗∗
3 }), so the

representation can certainly be realised in SL6(p2).
By Table 4.2, the irrationality i2 lies in Fp if and only if p ≡ 1 or 3 (mod 8).

So 3·A6.23 < SL6(p) when p ≡ 1 or 19 (mod 24). Since no other automorphisms
of 3·A6 are induced by elements of GL6(p), this subgroup is scalar-normalising
in GL6(p), and hence by Lemma 4.4.3 there are |GL6(p) : Z(GL6(p))SL6(p)| = 6
classes of subgroups of this type in SL6(p).

When p ≡ 5 (mod 6), Corollary 4.4.2 tells us that this representation of
3·A6.23 has image in SU6(p) whenever i2 lies outside of Fp, which by Table 4.2
is the case when p ≡ 5 or 23 (mod 24). In this case, the group 3·A6.23 is
scalar-normalising, and there are six classes of such subgroups of SU6(p).

For other congruences of p modulo 24, the image H of this representation
in SL6(p2) does not lie in SL6(p) or SU6(p), but we still have to decide whether
some other group G with the same quasishape [[3·A6.23]] as 3·A6.23 could lie
in SL6(p) or SU6(p). If this is the case then, since there is a unique class of
S1-subgroups 3·A6 in GL6(p2), we can assume that 3·A6 < G∩H. Then, since
3·A6 is absolutely irreducible, it is centralised in SL6(p2) only by scalars, and so
the elements of H which induce the 23 automorphism of 3·A6 can be obtained
from those of G by multiplying by scalar matrices of SL6(p2) of determinant
1. But all such scalar matrices lie in SL6(p) (when p ≡ 1 (mod 6)) or SU6(p)
(when p ≡ 5 (mod 6)), so this would imply that H < SL6(p) or SU6(p), which
is not the case.

So when p ≡ 7 or 13 (mod 24), there is a group with quasishape [[3·A6.23]]
in GL6(p) but not in SL6(p). Similarly, when p ≡ 11 or 17 (mod 24), there is a
group with quasishape [[3·A6.23]] in GU6(p) but not in SU6(p). The quasisimple
group 3·A6 is self-normalising modulo scalars in SL6(p) or SU6(p) in these cases,
and there are three conjugacy classes of such subgroups.

In the above proof, it is not essential for us to specify the precise structure
of the minimal groups G with quasishape [[3·A6.23]], but let us do that for
SL6(p). For p ≡ 7 (mod 24), we multiply outer elements in the image of the
complex representation of 3·A6.23 by the scalar iI6 to get a group (2×3)·A6.23

that can be embedded in GL6(p). With this embedding, outer elements have
determinant −1. For p ≡ 13 (mod 24), we multiply outer elements by the scalar
z8 = 1

2 (r2 + i2) to get a group (4 × 3)·A6.23
∼= 1

2 (3·A6.23 × 8) that can be
embedded in GL6(p). With this embedding outer elements have determinant
± i. After multiplying by a scalar in 〈z3, i〉 (corresponding to central elements
of 3·A6× 4), the trace of an outer element can be taken to lie in {0,±1± i}. In
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these cases the presence of the additional scalars of order 2 and 4 is necessary
to embed a group of type [[3·A6.23]] in GL6(p).

Proposition 4.5.14 (i) If p ≡ 1 or 7 (mod 24) then SL6(p) has exactly six
conjugacy classes of S1-subgroups isomorphic to 6·A6. The subgroups are
scalar-normalising in GL6(p), and the classes are fused under diagonal
automorphisms of SL6(p).

(ii) If p ≡ 17 or 23 (mod 24) then SU6(p) has exactly six conjugacy classes of
S1-subgroups isomorphic to 6·A6. The subgroups are scalar-normalising
in CGU6(p), and the classes are fused under diagonal automorphisms of
SU6(p).

(iii) If p ≡ 5, 11, 13, 19 (mod 24) then SL6(p2) has exactly six conjugacy classes
of S1-subgroups isomorphic to 6·A6. Each subgroup is scalar-normalising
in GL6(p2), and the classes are fused under diagonal automorphisms of
SL6(p2).

For all other q, there are no S1-subgroups 6·A6 of SL6(q) or SU6(q).

Proof Let G = 6·A6. Then OutG ∼= 22. By Theorem 4.3.3, the relevant rep-
resentations of G have character ring the p-modular reduction of Z[z3, r2]. By
Table 4.2, the irrationality r2 ∈ Fp if and only if p ≡ ±1 (mod 8). If so, then
G < SL±

6 (p) when p ≡ ±1 (mod 6), respectively. If p ≡ ±3 (mod 8) then
r2 �∈ Fp, so by Corollary 4.4.2 the image of G does not preserve a unitary
form, and hence G is an S1-subgroup of SL6(p2). Thus for no other q are there
S1-subgroups of SL6(q) or SU6(q) isomorphic to G.

By Theorem 4.3.3, there are four such representations, with trivial stabiliser,
which are therefore permuted transitively by OutG. Thus by Lemma 4.4.3 there
is a single, scalar-normalising, class of subgroups G < GL±

6 (q).

Proposition 4.5.15 (i) If p ≡ 1, 3, 4, 5, 9 (mod 11), then there are exactly
d := (p− 1, 6) conjugacy classes of S1-subgroups of SL6(p) isomorphic to
2·L2(11). The subgroups are scalar-normalising in GL6(p), and if d > 1
then the classes are fused by the diagonal automorphisms of SL6(p).

(ii) If p ≡ 2, 6, 7, 8, 10 (mod 11) and p > 2, then there are exactly d := (p+1, 6)
conjugacy classes of S1-subgroups of SU6(p) isomorphic to 2·L2(11). The
subgroups are scalar-normalising in CGU6(p), and if d > 1 then the classes
are fused by the diagonal automorphisms of SU6(p).

For all other q, there are no S1-subgroups 2·L2(11) of SL6(q) or SU6(q).

Proof Let G = 2·L2(11). Then |OutG| = 2. By Theorem 4.3.3, the relevant
representations of G have character ring the p-modular reduction of Z[b11],
with p �= 2, 11. By Table 4.2 the quadratic irrationality b11 is complex and
lies in Fp if and only if p is a square mod 11. So in that case G < SL6(p)
and otherwise, by Corollary 4.4.2, G < SU6(p). Therefore for no other q are
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there S1-subgroups of SL6(q) or SU6(q) isomorphic to G. There are two such
representations, with trivial stabiliser. Therefore by Lemma 4.4.3 the represen-
tations are interchanged by a group automorphism, so there is a single class of
such groups in C ∈ {GL6(p),CGU6(p)}, and G is scalar-normalising.

Proposition 4.5.16 (i) If p ≡ 1 (mod 6), then there are exactly six con-
jugacy classes of type S1-subgroups of SL6(p) isomorphic to 3·A7. The
subgroups are scalar-normalising in GL6(p), and the classes are fused un-
der the diagonal automorphisms of SL6(p).

(ii) If p ≡ 2, 5 (mod 6), then there are exactly six (or three when p = 2)
conjugacy classes of type S1-subgroups of SU6(p) isomorphic to 3·A7.
The subgroups are scalar-normalising in CGU6(p), and the classes are
fused under the diagonal automorphisms of SU6(p).

For all other q, there are no S1-subgroups 3·A7 of SL6(q) or SU6(q).

Proof Let G = 3·A7. Then |OutG| = 2. By Theorem 4.3.3 the relevant rep-
resentations of G have character ring the p-modular reduction of Z[z3], with
p �= 3. Thus by Table 4.2 and Corollary 4.4.2, if p ≡ 1 (mod 6) thenG � SL6(p),
if p ≡ 2 (mod 3) then G � SU6(p), and for no other q are there S1-subgroups
of SL6(q) or SU6(q) isomorphic to G.

There are two such representations, with trivial stabiliser, which are there-
fore scalar-normalising, interchanged by an outer automorphism of G. Thus by
Lemma 4.4.3 there is a single class in GL6(p) or CGU6(p), and d = (p ∓ 1, 6)
classes in Ω.

Proposition 4.5.17 (i) If p ≡ 1, 7 (mod 24) then the group SL6(p) has
exactly twelve conjugacy classes of S1-subgroups G isomorphic to 6·A7.
The group G is scalar-normalising in GL6(p), and the classes form two
orbits under the diagonal automorphisms of SL6(p).

(ii) If p ≡ 17, 23 (mod 24) then SU6(p) has exactly twelve conjugacy classes
of S1-subgroups G isomorphic to 6·A7. The group G is scalar-normalising
in CGU6(p), and the classes form two orbits under the diagonal automor-
phisms of SU6(p).

(iii) If p ≡ 5, 11, 13, 19 (mod 24) then SL6(p2) has exactly twelve conjugacy
classes of S1-subgroups G isomorphic to 6·A7. The group G is scalar-
normalising in GL6(p2), and the classes form two orbits under the diagonal
automorphisms of SL6(p2).

For all other q, there are no S1-subgroups 6·A7 of SL6(q) or SU6(q).

Proof Let G = 6·A7. Then |OutG| = 2. By Theorem 4.3.3, the relevant
representations have character ring the p-modular reduction of Z[z3, r2], where
p > 3. We determine the appropriate congruences on p and q by an identical
calculation to the proof of Proposition 4.5.14.
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There are four such representations with trivial stabiliser. These represen-
tations are therefore permuted in pairs by the outer automorphism of G. Thus
G is scalar-normalising, and there are two classes of subgroups G < GL±

6 (q),
splitting into 2(q ∓ 1) classes in Ω.

Proposition 4.5.18 (i) If p ≡ 1 or 19 (mod 24), then there are exactly six
conjugacy classes of S1-subgroups of SL6(p) isomorphic to 6·L3(4).2−1 .
The subgroups are scalar-normalising in GL6(p), and the classes are fused
under the diagonal automorphisms of SL6(p).

(ii) If p ≡ 7 or 13 (mod 24), then there are exactly three conjugacy classes of
S1-subgroups of SL6(p) isomorphic to 6·L3(4). The normalisers of these
subgroups G in GL6(p) are generated by G, scalars, and an element of
GL6(p) \ SL6(p) that induces the diagonal automorphism of order 2 of
SL6(p) and the 21 automorphism of G. The classes are fused under the
diagonal automorphisms of order 3 of SL6(p).

(iii) If p ≡ 5 or 23 (mod 24), then there are exactly six conjugacy classes of S1-
subgroups of SU6(p) isomorphic to 6·L3(4).2−1 . The subgroups are scalar-
normalising in CGU6(p), and the classes are fused under the diagonal
automorphisms of SU6(p).

(iv) If p ≡ 11, 17 (mod 24), then there are exactly three conjugacy classes of
S1-subgroups of SU6(p) isomorphic to 6·L3(4). The normalisers of these
subgroups G in CGU6(p) are generated by G, scalars, and an element of
GU6(p) \ SU6(p) that induces the diagonal automorphism of order 2 of
SU6(p) and the 21 automorphism of G. The classes are fused under the
diagonal automorphisms of order 3 of SU6(p).

For all other q, there are no S1-subgroups 6·L3(4) of SL6(q) or SU6(q).

Proof Let G = 6·L3(4). Then OutG ∼= 22 � 2 × S3
∼= Out L3(4). By Theo-

rem 4.3.3 the relevant representations of G have character ring the p-modular
reduction of Z[z3], with p > 3, so G � SL6(p) when p ≡ 1 (mod 6) and
G � SU6(p) when p ≡ 5 (mod 6), and for no other q do SL6(q) or SU6(q)
have an S1-subgroup isomorphic to G. There are two representations, with
stabiliser generated by the 21 automorphism.

Consulting [12] and [57], in the representation of 6·L3(4):2+
1 the elements

outside of 6·L3(4) have determinant −1. However, in the representation of
6·L3(4)·2−1 , these determinants are 1. The set of character values of the dis-
played representation on the elements outside of 6·L3(4) is {0, r2} up to mul-
tiplication by elements of 〈−z3〉, and hence that of the isoclinic representation
is {0, i2} (up to multiplication by elements of 〈−z3〉). This is analogous to a
situtation which we encountered in the proof of Proposition 4.5.13. If p ≡ 1
or 19 (mod 24) in Case L then r2 ∈ Fp, so 6·L3(4).2−1 < SL6(p). If p ≡ 5 or
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23 (mod 24) in Case U then r2 �∈ Fp, so 6·L3(4).2−1 < SU6(p). In the other
cases, 6·L3(4) is self-normalising in Ω.

Proposition 4.5.19 (i) There are exactly two classes of S1-subgroups of
SL6(3) isomorphic to 2·M12. These subgroups are scalar-normalising in
GL6(3) and the classes are fused by the diagonal automorphism of SL6(3).

(ii) There are exactly three classes of S1-subgroups of SU6(2) isomorphic to
3·M22. These subgroups are scalar-normalising in CGU6(2) and the classes
are fused by the diagonal automorphisms of SU6(2).

Proof First, let G = 2·M12. Then |OutG| = 2. By Theorem 4.3.3 the charac-
ter ring of the representation is the 3-modular reduction of Z[i2, i5,b11], which
by Table 4.2 is just F3. Thus for no other q are there S1-subgroups of SL6(q)
or SU6(q) isomorphic to G.

There are two such representations, with trivial stabiliser and therefore
interchanged by a group automorphism. Thus by Lemma 4.4.3 there is a single
class of such subgroups in GL6(3), the group G is scalar-normalising, and there
are 2 = (3− 1, 6) classes of such subgroups in SL6(3).

The argument forG = 3·M22 is similar, except that in this case the character
ring of the representation is the 2-modular reduction of Z[z3,b11], so Table 4.2
and Corollary 4.4.2 imply that G � SU6(2).

Proposition 4.5.20 (i) There are exactly three conjugacy classes of S1-
subgroups of SU6(2) isomorphic to 31

·U4(3).22. The groups are scalar-
normalising in CGU6(3), and the classes are fused under the diagonal
automorphisms of SU6(3).

(ii) If p ≡ 1 (mod 12) then there are exactly six conjugacy classes of S1-
subgroups of SL6(p) isomorphic to 61

·U4(3)·2−2 . Each of these subgroups is
scalar-normalising in GL6(p), and the classes are fused under the diagonal
automorphisms of SL6(p).

(iii) If p ≡ 7 (mod 12) then there are exactly three conjugacy classes of S1-
subgroups of SL6(p) isomorphic to 61

·U4(3). The normalisers of these
subgroups G in GL6(p) are generated by G, scalars, and an element of
GL6(p) \ SL6(p) that induces the diagonal automorphism of order 2 of
SL6(p). The classes are fused under the diagonal automorphisms of order
3 of SL6(p).

(iv) If p ≡ 11 (mod 12) then there are exactly six conjugacy classes of S1-
subgroups of SU6(p) isomorphic to 61

·U4(3)·2−2 . Each of these subgroups
is scalar-normalising in CGU6(p), and the classes are fused under the
diagonal automorphisms of SU6(p).

(v) If p ≡ 5 (mod 12) then there are exactly three conjugacy classes of S1-
subgroups of SU6(p) isomorphic to 61

·U4(3). The normalisers of these sub-
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groups G in CGU6(p) are generated by G, scalars, and an element of
GU6(p) \ SU6(p) that induces the diagonal automorphism of order 2. The
classes are fused under the diagonal automorphisms of order 3 of SU6(p).

For no other q are there S1-subgroups 61
·U4(3) or 31

·U4(3) of SL±
6 (q).

Proof Let G = 61
·U4(3), or 31

·U4(3) when p = 2. Then OutG ∼= 22, which is
a proper subgroup of D8

∼= Out U4(3). By Theorem 4.3.3, the character ring
of the two relevant representations of G is the p-modular reduction of Z[z3],
where p �= 3. Therefore G � SL6(p) when p ≡ 1 (mod 3) and G � SU6(p) when
p ≡ 2 (mod 3): for no other q are there S1-subgroups of SL6(q) or SU6(q)
isomorphic to G.

These two representations are swapped by the 21 automorphism of U4(3)
and stabilised by the 22 automorphism. We find that the elements outside
61
·U4(3) of the representation of 61

·U4(3):2+
2 listed in [12, 57] have determi-

nant −1 and take character values in the set {0,±1,±2, 4, i3,± i3−2}, up to
multiplication by elements of 〈−z3〉. So the corresponding set of character val-
ues for the isoclinic group 61

·U4(3)·2−2 , of which all elements have determinant
1, is {0,±i,±2i, 4i,− r3,± r3−2i} (up to multiplication by elements of 〈−z3〉).
So, for p �= 2, the stated results follow as in Proposition 4.5.13. When p = 2,
SU6(2) has no diagonal automorphism of order 2 and the images of the elements
of 31

·U4(3).22 all have determinant 1, so we get 31
·U4(3).22 < SU6(2).

Indicator −. By Theorem 4.3.3, the quasisimple groups to consider are:

(i) 2·A5 in characteristics not equal to 2 or 5;
(ii) 2·L3(2) in characteristics not equal to 2 or 7;
(iii) L2(13) in characteristic 2;
(iv) 2·L2(13) in characteristics not equal to 2 or 13;
(v) 2·A7 in characteristic 3;
(vi) U3(3) in characteristics not equal to 3;
(vii) J2 in characteristic 2;
(viii) 2·J2 in characteristics not equal to 2.

Proposition 4.5.21 (i) If p ≡ ±1 (mod 8), then Sp6(p) has exactly two
conjugacy classes of S1-subgroups isomorphic to 2·S−

5 . The subgroups are
scalar-normalising in CSp6(p) and the classes are fused by the diagonal
automorphism of Sp6(p).

(ii) If p ≡ ±3 (mod 8) and p �= 5, then Sp6(p) has a unique conjugacy class of
S1-subgroups G isomorphic to 2·A5. The normalisers of these subgroups
G in CSp6(p) are generated by G, scalars, and an element of CSp6(p) that
is a similarity but not an isometry of the symplectic form.

For all other q, there are no S1-subgroups 2·A5 of Sp6(q).
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Proof Let G = 2·A5. Then |OutG| = 2. By Theorem 4.3.3, the relevant
representations of G have character ring the p-modular reduction of Z, with
p �= 2, 5. Therefore G < Sp6(p) for all p �= 2, 5, and for no other q are there
S1-subgroups of Sp6(q) isomorphic to G.

There is a single such representation, with stabiliser of order 2. The repre-
sentation of G.2+ in [12, 57] involves the irrationality i2 and does not consist
of isometries of the symplectic form. By multiplying elements outside of G by
a scalar element of order 4, we obtain a representation of G.2− = 2·S−

5 , which
consists of isometries and has character ring Z[r2]. The irrationality r2 lies in Fp

if and only if p ≡ ±1 (mod 8). So G.2− < Sp6(p) if and only if p ≡ ±1 (mod 8),
and otherwise the class of G is stabilised by the outer automorphism δ of Ω.

Proposition 4.5.22 (i) If p ≡ ±1 (mod 16), then Sp6(p) has exactly four
conjugacy classes of S1-subgroups isomorphic to 2·L3(2).2. The subgroups
are scalar-normalising in CSp6(p), and the classes form two orbits of
length 2 under the action of the diagonal automorphism of Sp6(p).

(ii) If p ≡ ±7 (mod 16) and p �= 7, then Sp6(p) has exactly two conjugacy
classes of S1-subgroups isomorphic to 2·L3(2). The normalisers of these
subgroups G in CSp6(p) are generated by G, scalars, and an element of
CSp6(p) that is a similarity but not an isometry of the symplectic form.
The two conjugacy classes remain distinct in CSp6(p).

(iii) If p ≡ ±3 (mod 8), then Sp6(p2) has exactly two conjugacy classes of
S1-subgroups isomorphic to 2·L3(2). The normalisers of these subgroups
G in CSp6(p2) are generated by G, scalars, and an element of CSp6(p2)
that is a similarity but not an isometry of the symplectic form. The two
conjugacy classes remain distinct in CSp6(p2).

For all other q, there are no S1-subgroups 2·L3(2) of Sp6(q).

Proof Let G = 2·L3(2). Then |OutG| = 2. By Theorem 4.3.3, the character
ring of the relevant representations is the p-modular reduction of Z[r2], where
p �= 2, 7. Therefore, by Table 4.2, G < Sp6(p) when p ≡ ±1 (mod 8), G <

Sp6(p2) when p ≡ ±3 (mod 8), and for no other q are there S1-subgroups of
Sp6(q) isomorphic to G.

There are two (algebraically conjugate) representations, both with sta-
biliser of order 2, and so by Lemma 4.4.3 there are two classes of subgroups
G < CSp6(q). The representations of G.2+ in [12, 57] consist of isometries
and have character ring Z[r2, y16]. By Lemma 4.2.1, y16 ∈ Fq if and only if
q ≡ ±1 (mod 16). So G.2 < Sp6(p) if and only if p ≡ ±1 (mod 16), and oth-
erwise (the Sp6(p)-class of) G is stabilised by the outer automorphism δ of Ω.
(Note that if p ≡ ±3 (mod 8) then p2 �≡ ±1 (mod 16).)

Proposition 4.5.23 (i) If p ≡ ±1,±3,±4 (mod 13), then Sp6(p) has ex-
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actly two conjugacy classes of S1-subgroups isomorphic to 2·L2(13). The
subgroups are scalar-normalising in CSp6(p) and the classes are fused by
the diagonal automorphism of Sp6(p).

(ii) If p ≡ ±2,±5,±6 (mod 13), then Sp6(p2) has exactly (p− 1, 2) conjugacy
classes of S1-subgroups isomorphic to 2·L2(13) (or L2(13) when p = 2).
The subgroups are scalar-normalising in CSp6(p2) and when p is odd the
classes are fused by the diagonal automorphism of Sp6(p2).

For all other q, there are no S1-subgroups 2·L2(13) or L2(13) of Sp6(q).

Proof Let G = 2·L2(13) or L2(13). Then |OutG| = 2. For G = L2(13) in
characteristic 2 or 2·L2(13) in characteristics not equal to 2 or 13, there are
two representations interchanged by the outer automorphism of G, and hence
there is a single class G < CSp6(q). They have character ring the p-modular
reduction of Z[b13], which lies in Fp if and only if p is a square modulo 13. So
G < Sp6(p) in those cases, while G < Sp6(p2) when p is a non-square modulo
13. For no other q are there S1-subgroups of Sp6(q) isomorphic to G.

Proposition 4.5.24 The group Sp6(9) has exactly two conjugacy classes
of S1-subgroups isomorphic to 2·A7. The subgroups are scalar-normalising in
CSp6(9) and the classes are fused by the diagonal automorphism of Sp6(9).

Proof Let G = 2·A7. Then |OutG| = 2. By Theorem 4.3.3, the relevant
representations of G have character ring the 3-modular reduction of Z[r2], which
is F9 by Table 4.2. There are two such representations, interchanged by the
outer automorphism of G, and hence there is a single class of scalar-normalising
groups G < CSp6(9), by Lemma 4.4.3.

Proposition 4.5.25 (i) The group Sp6(2) has a single conjugacy class of
S1-subgroups isomorphic to U3(3).2. These groups are scalar-normalising
in CSp6(2).

(ii) If p ≡ ±1 (mod 12), then Sp6(p) has exactly two conjugacy classes of
S1-subgroups isomorphic to (2 × U3(3)).2. Each of these subgroups is
scalar-normalising in CSp6(p), and the classes are fused by the diagonal
automorphism of Sp6(p).

(iii) If p ≡ ±5 (mod 12), then Sp6(p) has a single conjugacy class of S1-
subgroups isomorphic to U3(3). The normalisers of these subgroups G in
CSp6(p) are generated by G, scalars, and an element of CSp6(p) that is a
similarity but not an isometry of the symplectic form.

For all other q, there are no S1-subgroups U3(3) of Sp6(q).

Proof Let G = U3(3). Then |OutG| = 2. By Theorem 4.3.3, the relevant
representations of G have character ring the p-modular reduction of Z, for all
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p �= 3, so G � Sp6(p) for all p, and for no other q are there S1-subgroups of
Sp6(q) isomorphic to G.

There is a single representation, with stabiliser of order 2. In characteristic
2, we find from [57] that G.2 < Sp6(2). Otherwise, the representations of G.2
in [12, 57] involve i3, and contain similarities of the symplectic form that are
not isometries. By multiplying elements outside of G by a scalar of order 4, we
obtain a representation of a group with the structure (2×U3(3)).2, which con-
sists of isometries and involves the irrationality r3, which lies in Fp if and only
if p ≡ ±1 (mod 12). So (2×U3(3)).2 < Sp6(p) if and only if p ≡ ±1 (mod 12),
and otherwise the class of G is stabilised by the outer automorphism δ of Ω.

Proposition 4.5.26 (i) The group Sp6(5) has exactly one class of S1-
subgroups G isomorphic to 2·J2. The normalisers of these subgroups G
in CSp6(5) are generated by G, scalars, and an element of CSp6(5) that
is a similarity but not an isometry of the symplectic form.

(ii) If p ≡ ±1 (mod 5), then Sp6(p) has exactly two conjugacy classes of S1-
subgroups isomorphic to 2·J2. The subgroups are scalar-normalising in
CSp6(p) and the classes are fused by the diagonal automorphism of Sp6(p).

(iii) If p ≡ ±2 (mod 5), then Sp6(p2) has exactly (p − 1, 2) conjugacy classes
of S1-subgroups isomorphic to 2·J2 (or J2 when p = 2). The subgroups
are scalar-normalising in CSp6(p2) and, when p is odd, the two classes
are fused by the diagonal automorphism of Sp6(p2).

For all other q, there are no S1-subgroups J2 or 2·J2 of Sp6(q).

Proof Let G = 2·J2, or J2 when p = 2. Then |OutG| = 2. By Theorem 4.3.3,
in characteristic p �= 5, the character ring of the relevant representation of G is
the p-modular reduction of Z[b5]. The irrationality b5 lies in Fp if and only if
p ≡ ±1 (mod 5). So G < Sp6(p) in those cases, G < Sp6(p2) if p ≡ ±2 (mod 5),
and for no other power of p are there S1-subgroups of Sp6(q) isomorphic to
G. There are two representations interchanged by OutG, and hence there is a
single class of scalar-normalising groups G < CSp6(q), by Lemma 4.4.3.

In characteristic 5, there is a single representation of G = 2·J2, stabilised by
the outer automorphism of G. From [57] we find that G < Sp6(5) but elements
in G.2 \ G involve irrationalities that lie outside of F5, so the class of G is
stabilised by the outer automorphism of Ω.

4.6 Determining the effects of duality and field
automorphisms

At this point, we have determined the conjugacy classes of S1-subgroups of the
quasisimple and conformal classical groups in dimensions up to 6. It remains to
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consider the actions of the duality and field automorphisms, and in this section
we will present some general theory for how to do so. The calculations will
then be carried out in Section 4.7 for dimension up to 6 and in Section 4.9 for
dimensions 7 to 12.

The ordinary and modular character tables of the quasisimple groups G
that arise as S1-subgroups of a quasisimple classical group Ω enable us to
determine which automorphisms of G can be realised by conjugation by an ele-
ment of the general linear group in which Ω lies (that is, which automorphisms
can be realised inside the conformal classical group C corresponding to Ω):
see Section 1.8 and Subsection 4.4.2. The information in [12] also enables the
experienced user to determine which outer automorphisms of G are induced by
graph and field automorphisms of Ω.

Let β = γ or φ be a duality or field automorphism of the general linear
group containing Ω: note that γ acts as complex conjugation on Brauer char-
acter values, whilst φ replaces each eigenvalue by its p-th power. Recall from
Section 1.7 that, with the exception of the case Ω = Ω−

n (q) for certain values of
n and q, which we are not considering in this section, β normalises Ω. If β has
the same action on a representation ρ as some α ∈ AutG then ρβ and αρ are
equivalent, and by Lemma 1.8.10 this equivalence is effected by some element
g of the conformal classical group C containing Ω. So the action of β on Gρ,
followed by conjugation cg by g, normalises and induces α on Gρ. Therefore
the extension of G/Z(G) by α occurs in the almost simple extension of Ω by
βcg, and we need to identify cg as an element of Out Ω.

The reader might want to recall our general notation for automorphisms of Ω
from Section 1.6.3, together with our general discussion of outer automorphisms
in Section 1.3 and Lemma 1.3.1.

4.6.1 Cases L and U

In Case L, the automorphisms to consider are γ, which we will take to be the
inverse-transpose automorphism, and φ, the automorphism that replaces each
matrix entry by its p-th power.

In Case U, the rest of the outer automorphism group is generated by the
field automorphism φ; recall from just before Definition 1.6.17 that the action
of φ, and hence the stabiliser of the class of a quasisimple S -subgroup, can
depend on the choice of the unitary form, and we are using In as that form. We
write γ for the duality automorphism of Un(q), and σ for the q-th power map.
In many cases of interest, q is prime so that for the unitary form with matrix
In the automorphisms φ, σ and γ are all equal: in this instance, to achieve
uniformity with Case L, we will normally write γ for the outer automorphism.

As discussed in the preamble to this section, for many of the representations
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ρ in Cases L and U in which we are interested, there exists an automorphism
α ∈ Aut Ω such that αρ = ρβcg, where β ∈ {φ, γ} and cg is conjugation by the
element g of the corresponding conformal classical group. Therefore βδi will
stabilise the Ω-class of Gρ for some i with 0 � i < d, where d = |δ| = (q− ε, n),
(where ε = 1 and −1 in Cases L and U, respectively).

In the tables in Chapter 8 (with the exception of those for Sp4(2e) and
Ω+

8 (q), which do not concern us here), each row represents a set of c conjugacy
classes of subgroups of the classical group Ω, which together form an orbit
of the action of OutΩ on the set of its conjugacy classes of subgroups. The
class stabiliser listed in the tables is the stabiliser in Out Ω of one of these
classes. The stabilisers of the other classes are the conjugates under Out Ω of
the specified stabiliser. So we are only interested in determining the stabiliser
up to conjugacy in Out Ω, and we generally try to choose the class for which
the stabiliser has the nicest set of generators.

Lemma 4.6.1 Let ρ : G → SLε
n(q) = Ω be a representation, and let d =

(q − ε, n) be odd. If there exists α ∈ AutG such that αρ is equivalent to ργ ,
then the stabiliser of the class of Gρ in Ω contains a conjugate of γ in Out Ω.

Proof Since δγ = δ−1 and d is odd, all elements γδi are conjugate in 〈γ, δ〉.
We shall now describe how to determine the stabiliser in the case where d

is even. We first present the theory involved and then discuss how to carry out
the necessary calculations.

Theory for Case L.

Lemma 4.6.2 Let ρ : G → SLn(q) be a representation with d = (q − 1, n)
even. Let β ∈ 〈φ, γ〉, and assume that βδi and βδj are conjugate by a power of
δ when i− j is even. In particular, this assumption holds with β = γ.

Assume that there exists α ∈ OutG and L ∈ GLn(q) such that L−1(xρ)βL =
(xα)ρ for all x ∈ G. Then the class of Gρ in SLn(q) is stabilised by a conju-
gate of β in Out SLn(q) if detL is a square in F×

q , and by a conjugate of βδ
otherwise.

Proof Note that L−1(Gρ)βL = (Gα)ρ = Gρ, so βcL normalises Gρ, where cL
is conjugation by L. Thus the class of Gρ is stabilised by βδi, where δi is the
image in Out SLn(q) of cL. By assumption, βδi is conjugate in OutΩ to β when
i is even and to βδ when i is odd. The result follows from the fact that i is
even if and only if detL is a square in F×

q . The assumption holds with β = γ,
because 〈δ, γ〉 is dihedral of order 2d with d even.

Theory for Case U. This is complicated by the fact that we shall need to
carry out calculations in the images of representations that preserve unitary
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forms B other than In. Some of the results proved here will also be used in
Chapter 5 to solve corresponding problems in the defining characteristic can-
didates. Note that the maps γ = −T, σ and φ preserve GLn(q2), SLn(q2),
GUn(q, In) and SUn(q, In) and are automorphisms thereof, but they need not
normalise SUn(q,B) for other unitary forms B.

The following lemma is also proved in [6, Lemma 5].

Lemma 4.6.3 If q is odd, n is even, and d := (q + 1, n), then the sets

{φδ2i : 0 � i � d/2− 1 } and {φδ2i+1 : 0 � i � d/2− 1 }
are conjugacy classes in Out Un(q). Otherwise {φδi : 0 � i � d − 1 } is a
single class.

Proof Note that (φδi)δ = δ−1φδi+1 = φφ−1δ−1φδi+1 = φδi+1−p. Therefore
the conjugacy class of φδi contains Si := {φδi+j(1−p) : 0 � j � d − 1 }. The
number of such sets Si is (d, p − 1) = (n, q + 1, p − 1), and the size of Si is
independent of i. Since p−1 divides q−1, the greatest common divisor of p−1
and q + 1 is (p− 1, 2). Hence the number of such conjugacy classes is at most
2 if p is odd and n is even, and is 1 otherwise. If p is odd and n is even then,
since (φδi)φ = φδip, we see that Si is invariant under conjugation by δ and φ,
and hence that there are indeed two conjugacy classes, S0 and S1.

Lemma 4.6.4 Let ρ : G → GLn(q2) be an absolutely irreducible representa-
tion, with d := (q + 1, n) even, and Gρ � Ω = SUn(q,B) ∼= SUn(q) for some
non-degenerate unitary form B, and let β be one of the maps γ or φ. Assume
that there exists α ∈ AutG such that ρβ is equivalent to αρ. Then:

(i) There exists A ∈ GLn(q2) such that AAσT = B, and hence the conjugate
(Gρ)A � SUn(q, In) = SUn(q).

(ii) There exists L ∈ GLn(q2) conjugating (xρ)β to (xα)ρ for all x ∈ G, and
LBLσT = λBβ for some λ ∈ F×

q .
(iii) There exists C ∈ GUn(q) conjugating (A−1(xρ)A)β to A−1(xα)ρA, for all

x ∈ G.
(iv) For any such element C, the class of (Gρ)A in SUn(q) is stabilised by a

conjugate of β in Out SUn(q) when detC is a square in the cyclic group
X := { ξ : ξ ∈ F×

q2 | ξξσ = 1 }, and by a conjugate of βδ otherwise.

Proof As we saw in Section 1.5, all non-degenerate unitary forms of dimension
n over Fq2 are isometric, and so Part (i) holds. Then ΩA = SUn(q, In).

The fact that ρβ is equivalent to αρ immediately implies the existence of an
L inducing the equivalence, proving the first claim of Part (ii). LetD = A−βLA,
so that L = AβDA−1. Since Gρ is absolutely irreducible, the matrices D and
L are determined up to scalar multiplication.
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The sets

{(A−1(xρ)A)β | x ∈ G} = (A−1(Gρ)A)β = ((Gρ)A)β

and

{A−1(xα)ρA | x ∈ G} = A−1(Gρ)A = (Gρ)A

both form subgroups of ΩA = SUn(q, In). Since Gρ is absolutely irreducible
and D conjugates ((Gρ)A)β to (Gρ)A, it follows from Lemma 1.8.9 that the
matrix D ∈ CGUn(q). Therefore DDσT = λIn for some λ ∈ F×

q .
Since β commutes with σT and is an automorphism of GLn(q2),

LBLσT = AβDA−1AAσTA−σTDσT(Aβ)σT

= AβDDσT(AσT)β = λAβ(AσT)β = λBβ ,

as required. This completes the proof of Part (ii).
Since λ ∈ F×

q , there exists μ ∈ F×
q2 such that μμσ = μ1+q = λ. We can

define C := (1/μ)D = (1/μ)A−βLA ∈ GUn(q), proving Part (iii).
The determinants of elements of GUn(q) lie in X � F×

q2 , so Part (iv) follows
as in the proof of Lemma 4.6.2, using Lemma 4.6.3 for the case β = φ.

Finally we record the following result, which will be useful when carrying
out p-modular reduction of characteristic 0 representations.

Lemma 4.6.5 With the same notation and assumptions as in Lemma 4.6.4,
let L satisfy the conclusion of Lemma 4.6.4 (ii). Then detL is a square in F×

q2 .
Let κ ∈ F×

q2 with κ2 = detL. Define η to be equal to (1/λn/2)κ1+σ detB
when β = −T, and to (1/λn/2)κ1+σ(detB)(1−p)/2 when β = φ. Then the class
of (Gρ)A in SUn(q) is stabilised by a conjugate of β in Out SUn(q) when η = 1,
and by a conjugate of βδ when η = −1.

Proof Let the matrix C satisfy the conclusion of Lemma 4.6.4 (iii). Since
detC ∈ X (with X as defined in Lemma 4.6.4 (iv)) and (q2−1)/(q+1) = q−1
is even, detC is a square in F×

q2 .
By Lemma 4.6.4 (iv), the class of (Gρ)A is stabilised by a conjugate of β

when ϑ :=
√

detC ∈ X, and by a conjugate of βδ otherwise. But ϑ ∈ X if
and only if the norm ϑ1+σ of ϑ is 1; otherwise it is −1. (Note that ξ and −ξ
have the same norm for all ξ ∈ F×

q2 , so the choice of ϑ is unimportant.) Since
L = μAβCA−1, n is even, and ϑ ∈ F×

q2 , the element κ =
√

detL ∈ F×
q2 , and

ϑ =

{
(1/μn/2)κdetA if β = −T,

(1/μn/2)κ(detA)(1−p)/2 if β = φ,

and so η = ϑ1+σ, which proves the lemma.
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Representations in characteristic 0. We now consider the situation in
which the representation ρ arises as the p-modular reduction of a character-
istic 0 representation ρ̂. As we remarked in Subsection 4.1.1, for dimensions up
to 12, each representation ρ̂ that arises in Cases L and U can in fact be realised
over its character field F , for all ρ in which we are interested. Lemma 4.4.1 states
that in Case U the map σ corresponds to the p-modular reduction of complex
conjugation.

Note that the ring generated by the entries of xρ̂ for x ∈ G will be a subring
of R[ 1

p1
, . . . , 1

ps
] for some (finite number of) primes p1, . . . , ps, where R is the

character ring of ρ̂. We cannot reduce ρ̂ modulo these primes, and we shall call
these exceptional primes.

Let β be the duality map −T (defined now on matrices over F ), and suppose
that ρ̂β is equivalent to αρ̂, for some α ∈ OutG.

In the linear case, let L̂ ∈ GLn(F ) satisfy L̂−1(xρ̂)βL̂ = (xα)ρ̂ for all x ∈ G.
In the situations in which we are interested, L̂ reduces modulo p to the matrix
L in Lemma 4.6.2, and detL is the reduction modulo p of det L̂. This will work,
provided that detL �= 0 and both L̂ and L̂−1 lie in a ring R[ 1

p1
, . . . , 1

ps
] with

p �= pi for all i. Since L̂ is only determined modulo a scalar, we can attempt to
achieve this by multiplying it by a suitable scalar. If we do not succeed, then
we shall again refer to p as an exceptional prime.

Now suppose that we are in the unitary case. Then the image of ρ̂ consists
of isometries of a positive definite σ-Hermitian form B̂ over F , and we can take
B to be the p-modular reduction of B̂, provided that this is non-degenerate.

By the standard theory of σ-Hermitian matrices, all forms B̂ are equivalent
over C, so there exists a complex matrix Â with ÂÂσT = B̂. But, as we shall
see in Proposition 4.7.7, there may be no such Â with entries in F .

For B̂ to be reducible modulo p to the matrix of a non-degenerate unitary
form we require both B̂ and B̂−1 to lie in a ring R[ 1

p1
, . . . , 1

ps
] with p �= pi for

all i. Since B̂ is only determined modulo a scalar, we can attempt to achieve
this by multiplying it by a suitable scalar. If we do not succeed, then we shall
once again call p an exceptional prime.

The results that we need to calculate are for the unitary group that is the
isometry group of In; that is, we need to work in the subgroup GA inside ΩA,
where A is the p-modular reduction of Â. This is inconvenient in characteristic
0, mainly because of the problem just described, that we cannot necessarily
choose Â with entries in F .

We start by finding a matrix L̂ ∈ GLn(F ) satisfying L̂−1(xρ̂)βL̂ = (xα)ρ̂
for all x ∈ G and, by multiplying L̂ by a suitable scalar, we attempt to choose
L̂ such that both L̂ and L̂−1 lie in a ring R[ 1

p1
, . . . , 1

ps
] with p �= pi for all i. If

we do not succeed, then we shall yet again refer to p as an exceptional prime.
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The proposition below shows how, in the case β = −T, we can extract
the information we require without knowing Â explicitly. (We know of no such
method when β = φ, but fortunately this turned out not to be required in the
examples up to dimension 12.)

Proposition 4.6.6 Suppose that G has an absolutely irreducible represen-
tation ρ with image in SUn(q,B) that arises as the p-modular reduction of a
characteristic 0 representation ρ̂ over the character field F ⊂ C of ρ̂, whose
image preserves a form B̂. Suppose that, for some α ∈ AutG, there exists
L̂ ∈ GLn(F ) that conjugates (xρ̂)γ to (xα)ρ̂ for all x ∈ G. Assume also that B̂,
B̂−1, L̂ and L̂−1 have entries in a ring S := R[ 1

p1
, . . . , 1

ps
] with p �= pi for all i.

Suppose that det L̂ factorises in S as ν̂2ζ̂, with ζ̂ ∈ R. Let ζ be the p-
modular reduction of ζ̂, and define ε ∈ {1,−1} by ε = 1 if

√
ζ ∈ F×

q and
ε = −1 otherwise.

Then, for a suitable A ∈ GLn(q2), the group (Gρ)A � SUn(q). The class of
(Gρ)A in SUn(q) is stabilised by a conjugate of γ in Out SUn(q) when ε sgn(ζ̂) =
1, and by a conjugate of γδ otherwise.

Proof As explained above, there is a complex matrix Â with ÂÂσT = B̂. As
in the proof of Lemma 4.6.4, D̂ := Â−βL̂Â conjugates ((Gρ̂)Â)β to (Gρ̂)Â,
which are both absolutely irreducible subgroups of SUn(C, In) so, by Lemma
1.8.9, D̂ ∈ CGUn(C, In) and hence D̂D̂σT = λ̂In, where λ̂ is real and positive.
In fact B̂ = ÂÂσT is positive definite, so det B̂ is also real and positive. Then
L̂B̂L̂σT = λ̂B̂β , so (det L̂)(det L̂)σ(det B̂)2 = λ̂n.

We have assumed that we can factorise det L̂ in S as ν̂2ζ̂ with ζ̂ ∈ R. Then
(det L̂)σ = ν̂2σ ζ̂, and ν̂2ν̂2σ ζ̂2(det B̂)2 = λ̂n. Since ν̂ν̂σ, det B̂ and λ̂ are all real
and positive,

ν̂ν̂σ ζ̂ det B̂

λ̂n/2
= sgn(ζ̂).

Now let L be the reduction modulo p of L̂, and let ν and ζ be the reduction
modulo p of ν̂ and ζ̂. Then ζ̂ ∈ R implies that ζ ∈ F×

q , and we can choose
κ =

√
detL = ν

√
ζ ∈ F×

q2 . Then κ1+σ = εννσζ, where ε ∈ {1,−1} and ε = 1
if and only if

√
ζ ∈ F×

q . The result now follows from Lemma 4.6.5. (But note
that the matrix A is not necesarrily the p-modular reduction of Â.)

Computational considerations. We now discuss how we use the theory just
described to carry out the necessary calculations in practice.

Representations are defined by specifying the images of the two standard
generators of a quasisimple group G, which are generators for which it is com-
putationally easy to find corresponding elements (i.e. images under an isomor-
phism) in any permutation or matrix representation of G; see [111] for details.
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The representations over finite fields can generally be found easily using
MeatAxe techniques; see, for example [44]. There are various sources from which
representations are available over the integers and number fields. One such
source is [111], and Magma also has its own library. These are available over
the character field of the representation whenever possible, which is the case
for all required representations in Cases L and U up to dimension 12. (As we
remarked in the preface, all of the matrices required for our calculations are
stored in data files on the webpages that accompany this book.)

For a representation ρ, it is straightforward to compute ρβ when β is duality
or a field automorphism. For automorphisms α of G, words for xα and yα in
the standard generators x and y of G have been computed for all groups that
we will need to consider [111], which makes the computation of (the matrices
for) αρ straightforward.

Finding a matrix inducing a specific equivalence between representations
can be done easily over finite fields, again using MeatAxe techniques [44]. This
problem is more difficult in characteristic 0, but for the dimensions in question,
it can be done routinely using the Magma command GHom.

For computations in specific characteristics, we can compute all of the ma-
trices involved in order to apply Lemma 4.6.2 (Case L) or 4.6.4 (Case U) and
the problem reduces to deciding whether detL is a square in F×

q or detC is a
square in the subgroup X of F×

q2 defined in Lemma 4.6.4, respectively.
In cases in which we are using a characteristic 0 representation, if there are

any exceptional primes dividing the denominators in the matrix entries of the
generators, or the matrices defining module equivalences, or the form matrix
(in Case U) then there are only finitely many, so it is straightforward to carry
out any necessary calculations in these finitely many cases. However (as we
shall see in our calculations, later) it transpired that for the representations of
interest to us, there were no such primes.

Thus in the linear case we compute the matrix ĝ effecting the relevant
equivalence, and we typically need to decide whether the reduction of det ĝ is a
square in F×

q . In the unitary case, we can often use Lemma 4.6.6 to reduce the
problem to deciding whether the reduction modulo p of ζ̂ (with ζ̂ as defined
in Lemma 4.6.6) is a square in F×

q . Such problems are not difficult in most
examples although, as we shall see later, there are some challenging cases.

4.6.2 Case S

This case is easier than Cases L and U. As we shall see in Sections 4.7 and
4.9, the following proposition will be sufficient to enable us to carry out the
required calculations.
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Lemma 4.6.7 All involutions in PCΓSpn(q) lie in Sn(q)〈φ〉 ∪ PCSpn(q).

Proof Let g ∈ PCΓSpn(q) be an involution, and assume that g is the image of
Aσ, where A ∈ CSpn(q) and σ ∈ CΓSpn(q) \ CSpn(q) induces by conjugation
a field automorphism of Sn(q). Furthermore, we may assume that CSpn(q) is
a standard copy, preserving the form B = antidiag(1, 1, . . . ,−1,−1). Clearly σ
has order at most 2, while if σ = 1 then g ∈ PCSpn(q). So we may assume
that σ has order 2 (so that q is a square and σ induces the field automorphism
x �→ x

√
q). Now AAσ = (Aσ)2 = λIn for some λ ∈ F×

q . Conjugating by A and
σ respectively gives AσA = λIn and AσA = λσIn, and so λ = λσ ∈ F×√

q. Now
ABAT = μB for some μ ∈ F×

q , whence conjugating by σ gives AσBAσT = μσB.
Thus AAσ = λIn scales B by μ1+σ = λ2. Since λ ∈ F×√

q, the element μ is a
square in F×

q , and so g ∈ Sn(q)〈φ〉.

4.7 Dimension up to 6: graph and field automorphisms

In this section we calculate the actions of duality and field automorphisms on
the conjugacy classes of S1-subgroups in dimensions up to 6, using the general
methods described in the previous section.

4.7.1 Cases L and U

We will consider SL2(q) = Sp2(q) under Case S: see Subsection 4.7.2.

Dimension 3. The arguments in dimension 3 are reasonably straightforward,
but we present them in full.

Theorem 4.7.1 Let Ω be either SL3(q) or SU3(q), let G be an S1-subgroup
of Ω, and let d = (q − 1, 3) in Case L and (q + 1, 3) in Case U. Then one of
the following holds:

(i) G = d × L3(2) with q = p, and the stabiliser in Out Ω of at least one of
the d classes of G in Ω is 〈γ〉.

(ii) G = 3·A6, with q = p ≡ ±1 (mod 5), and the stabiliser in OutΩ of
at least one of the three classes of G in Ω is 〈γ〉, which induces the 22

automorphism of G.
(iii) G = 3·A6, with p ≡ ±2 (mod 5), and the stabiliser in Out L3(p2) of at

least one of the three classes of G in SL3(p2) is 〈γ, φ〉, where γ induces
the 22 automorphism of G, and φ induces the 21 automorphism of G when
p ≡ 2, 8 (mod 15) and the 23 automorphism of G otherwise.
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(iv) G = 3·A6
·23, and the stabiliser in Out U3(5) of at least one of the three

classes of G in SU3(5) is 〈γ〉.
(v) G = 3·A7, and the stabiliser in Out U3(5) of at least one of the three

classes of G in SU3(5) is 〈γ〉.

Proof By Theorem 4.3.3 the quasisimple groups that we must consider are
L3(2), 3·A6 and 3·A7.

Let G = L3(2). Then |OutG| = 2, and by Proposition 4.5.2 there are
d = (p± 1, 3) classes of G in Ω = SL3(p) or SU3(p). The automorphism δ acts
transitively on the classes and d is odd, so the result follows from Lemma 4.6.1.

Similarly, if G = 3·A7 then by Proposition 4.5.4 there are three classes of
G in SU3(5) permuted transitively by δ. Therefore by Lemma 4.6.1 we may
choose the class stabiliser of G to be 〈γ〉.

Finally, let G = 3·A6 or 3·A6.23. The number of conjugacy classes of G
in Ω = SL3(p),SU3(p),SL3(p2) is described by Proposition 4.5.3. If q is prime
then by Lemma 4.6.1 we may assume that the class stabiliser of G is 〈γ〉. If q
is not prime then OutΩ = 〈δ, γ, φ〉, of shape 3.22, so up to conjugacy the class
stabiliser of G must be 〈γ, φ〉. The outer automorphisms 21 and 22 of 3·A6 are
equivalent modulo 3·A6.23, so if G = 3·A6.23 we are done.

It remains to work out which automorphisms induce which actions when
G = 3·A6. The automorphism γ of Ω induces complex conjugation on the char-
acter ofG. Consulting [12], we see that γ therefore normalises the two conjugacy
classes of elements of order 5. Since both the 21 and the 23 automorphisms fuse
these two classes, we deduce that γ induces the 22 automorphism. This leaves
only the automorphism φ of L3(p2), with p ≡ ±2 (mod 5). The two central el-
ements of order 3 in 3·A6 are conjugate under the 21 automorphism (since the
Schur multiplier of S6 has order 2), but not under the 23 automorphism. Since
φ interchanges z3 and z∗∗3 exactly when p ≡ 2 (mod 3), the result follows.

Let us pause to explain exactly what we are asserting about the outer
automorphisms, and their actions on the conjugacy classes of 3·A6. We describe
the case when p ≡ 2, 8 (mod 15); the other cases are similar. Here the outer
automorphism group of SL3(p2) is isomorphic to 2× S3 and has presentation

〈 δ, φ, γ | δ3 = φ2 = γ2 = 1, δφ = δγ = δ−1, φγ = φ 〉.

There are three classes of 3·A6, and δ acts on them as a 3-cycle. Since γ and φ
both invert δ and γφ centralises δ it follows that the elements γδi and φδi for
i ∈ {0, 1, 2} act as involutions, whilst γφ normalises all three classes. Thus one
of the classes of 3·A6 is normalised by {1, γ, φ, γφ}; one by {1, γδ, φδ, γφ}; and
one by {1, γδ2, φδ2, γφ}. Table 8.4 contains just the first of these stabilisers (as
we consider it to be the ‘neatest’ one).
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Dimension 4. By Theorem 4.3.3, the quasisimple groups that we must con-
sider in dimension 4, Cases L and U, are 2·L3(2) with p �= 2, 7; 2·A7 with p �=
2, 7; 2·U4(2) with p �= 2, 3; along with A7 < L4(2) ∼= A8 and 42

·L3(4) < SU4(3).
Dimension 4 in Case U is unusual in that all of the required characteristic

0 representations can be written over the character field in such a manner that
the resulting matrices are isometries of the form with matrix I4. This is not
always possible to achieve, and even in cases where it is possible it may be hard
to do, and result in matrices with extremely complicated entries. Moreover, in
some cases we have been able to ensure that even the conjugating matrix L̂

from Proposition 4.6.6 is the identity.
The reader can also find details of computer calculations to check Propo-

sitions 4.7.2, 4.7.3 and 4.7.4 in files 2u42d4calc, 2a7d4calc, sl27d4calc, but
they do not involve exactly the same matrices as we present here. For expo-
sitional purposes, we analyse the groups in the order 2·U4(2), (2, q − 1)·A7,
2·L2(7), 42

·L3(4).

Proposition 4.7.2 (i) If p ≡ 1 (mod 6), then the stabiliser in OutL4(p)
of at least one of the (p− 1, 4) classes of 2·U4(2) in SL4(p) is 〈γ〉.

(ii) If p ≡ 5 (mod 6), then the stabiliser in Out U4(p) of at least one of the
(p+ 1, 4) classes of 2·U4(2) in SU4(p) is 〈γ〉.

Proof Let G = 2·U4(2), and recall from Proposition 4.5.7 that SL4(p) has
(p−1, 4) classes of S1-subgroups isomorphic to G when p ≡ 1 (mod 6) whereas
SU4(p) has (p+ 1, 4) such classes when p ≡ 5 (mod 6).

We represent G using standard generators x and y, as defined in [111], where
x is an involution. An outer automorphism α of U4(2) can be taken to map
the image of (x, y) to the image of (xα, yα) = (x, y−1), and one can check that
this induces an automorphism of G. (Normally, the words in [111] need some
adjustment by central elements for covers of groups.) We choose matrices

x =

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1

⎤⎥⎥⎥⎥⎦ and y =
1√−3

⎡⎢⎢⎢⎢⎣
−1 0 1 ω

0 −ω ω −1

1 ω 1 0

ω −1 0 ω

⎤⎥⎥⎥⎥⎦ ,

where ω = z3 and ω = ω2 are the primitive cube roots of 1. We check that these
matrices are isometries of the σ-Hermitian form I4, so the γ-automorphism of
SL±

4 (p) is the inverse-transpose map. But x and y are symmetric matrices,
and so (xγ , yγ) = (x−T, y−T) = (x−1, y−1) = (x, y−1) = (xα, yα). That is, the
element γ (without adjustment by inner elements of SL±

4 (p)) normalises this
representation of 2·U4(2), and induces its outer automorphism.
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We deal with the cases 2·L2(7) and 2·A7 together over the next two proofs,
as these embed in the same groups SL±

4 (p), and in such a way that we may
conjugate the 2·A7 inside GLε

4(p) to get 2·L2(7) < 2·A7.

Proposition 4.7.3 (i) The stabiliser in Out L4(2) of the single class of A7

in SL4(2) is 〈γ〉.
(ii) If p ≡ 1, 2, 4 (mod 7) and p �= 2, then the stabiliser in Out L4(p) of at

least one of the (p− 1, 4) classes of 2·A7 in SL4(p) is 〈γ〉.
(iii) If p ≡ 3, 5, 6 (mod 7), then the stabiliser in Out U4(p) of at least one of

the (p+ 1, 4) classes of 2·A7 in SU4(p) is 〈γ〉.
Proof These S1-subgroups of SL±

4 (p) were described in Proposition 4.5.5.
We shall use generators x, y, z of 2·A7 that correspond to elements of A7 as

follows: x ∼ (0, 1)(2, 5), y ∼ (1, 2, 4)(3, 6, 5) and z ∼ (2, 5)(3, 4). A presentation
of A7 on these generators is given below.

〈x, y, z | x2, y3, (xy)7, [x, y]4, z2, [x, z], (yz)3, (y−1xyz)3, (xyz)7 〉.
We then choose x, y, z inside 2·A7 so that xy, y and yz have orders 7, 3 and
3 respectively. Throughout this discussion we shall regard x, y, z as standard
generators for 2·A7 (although they do not correspond to the generators defined
in [111]). An outer automorphism of 2·A7 may be taken to be τ (corresponding
to (1, 6)(2, 5)(3, 4)) that maps (x, y, z) to (xy−1zyz, y, z).

Let x, y and z correspond respectively to the matrices below over Q(
√−7),

−1√−7

⎡⎢⎢⎢⎢⎣
−1 2 b 0

2 1 0 b

c 0 1 −2

0 c −2 −1

⎤⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎣

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

⎤⎥⎥⎥⎥⎦ and

⎡⎢⎢⎢⎢⎣
0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

⎤⎥⎥⎥⎥⎦ ,
where b = b7 and c = b∗∗

7 .
These matrices are isometries of the σ-Hermitian form with matrix I4, and

so the γ automorphism of SL±
4 (p) into which we shall embed 2·A7 can be taken

to be the inverse-transpose map. One may check that (xγ , yγ , zγ) = (xτ , yτ , zτ ),
so 〈γ〉 normalises this particular copy of 2·A7.

The case A7 < SL4(2) ∼= L4(2) ∼= A8 is easy to deal with. There is just one
class of subgroups of A7 in L4(2), and since OutL4(2) = 〈γ〉, we conclude that
A7 has class stabiliser 〈γ〉.

The calculations for 2·L2(7) are more complicated, and we shall use some
of the matrices defined in the previous proof.

Proposition 4.7.4 (i) If p ≡ 1, 9, 15, 23, 25, 39 (mod 56) then the stabiliser
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in Out L4(p) of at least one of the (p − 1, 4) classes of 2·L2(7) in SL4(p)
is 〈γ〉.

(ii) If p ≡ 11, 29, 37, 43, 51, 53 (mod 56) then the stabiliser in Out L4(p) of at
least one of the (p− 1, 4) classes of 2·L2(7) in SL4(p) is 〈γδ〉.

(iii) If p ≡ 17, 31, 33, 41, 47, 55 (mod 56) then the stabiliser in Out U4(p) of at
least one of the (p+ 1, 4) classes of 2·L2(7) in SU4(p) is 〈γ〉.

(iv) If p ≡ 3, 5, 13, 19, 27, 45 (mod 56) then the stabiliser in Out U4(p) of at
least one of the (p+ 1, 4) classes of 2·L2(7) in SU4(p) is 〈γδ〉.

Proof We say that x, y are standard generators for 2·L2(7) if x, y and xy have
orders 4, 3 and 7 respectively, as in [111]. If x and y are standard generators of
2·L2(7) then an outer automorphism α can be taken to map (x, y) to (x−1, y−1).

Note that the generators x and y of 2·A7 from the previous proof are stan-
dard generators of a copy of 2·L2(7) inside of 2·A7. There is also a second class
of such subgroups 2·L2(7), with generators 〈xτ , yτ 〉 = 〈xy−1zyz, y〉, where τ is
the automorphism of 2·A7 from the previous proof. The automorphism γ of
SL±

4 (p) can again be taken to be the inverse-transpose map.
Standard MeatAxe techniques find a matrix

L1 =
1√−7

⎡⎢⎢⎢⎢⎣
1 b b b

b b+ 2 0 (−b− 2)/2

b 0 (−b− 2)/2 b+ 2

b (−b− 2)/2 b+ 2 0

⎤⎥⎥⎥⎥⎦
that conjugates (xγ , yγ) to (xα, yα) = (x−1, y−1), where b = b7. We also
calculate that L2 := L−1

1 = L1 conjugates the pair of images (xτγ , yτγ) to
(xτα, yτα) = ((xτ )−1, (yτ )−1). It also happens that L2 conjugates 〈x, y〉 to
〈xτ , yτ 〉, since (xτγ , yτγ) = (x, y). The matrices L1 and L2 are both isometries
of the σ-Hermitian form with matrix I4, and have determinants (b/c)3 and
(c/b)3 respectively, where c = b∗∗

7 .
First suppose we are in Case L: that is, p ≡ 1, 2, 4 (mod 7), with p �= 2.

Since detL1 = b3c/c4 = 2b2/c4, we see that the reduction modulo p of detL1

is a square in F×
p if and only if 2 is a square in F×

p ; that is, if p ≡ 1, 7 (mod 8).
It follows from Lemma 4.6.2 applied to 〈x, y〉 with β = γ that one of the
classes of 2·L2(7) in SL4(p) is stabilised by γ if p ≡ 1, 7 (mod 8) and by γδ if
p ≡ 3, 5 (mod 8).

Next suppose that we are in Case U: that is, p ≡ 3, 5, 6 (mod 7). Then we
can apply Lemma 4.6.4 to 〈x, y〉 with β = γ, A = B = I4 and C = L = L1,
and we have to determine whether, on reduction modulo p, detL1 = (b/c)3 is a
square in the group X ∼= Cp+1 of norm 1 elements of F×

p2 . This is the case if and
only if the reduction of b/c = b2/2 is a square in X. Observe that b/c = (b/

√
2)2
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(with
√

2 ∈ F×
p2), so that b/

√
2 ∈ F×

p2 has norm 1 = 2/2 if
√

2 ∈ F×
p , and norm

−1 = 2/(−2) if
√

2 /∈ F×
p . Since −b/√2 (the other square root of b/c) has the

same norm as b/
√

2, we conclude that b/c is a square in X if and only if 2 is a
square in F×

p ; that is, if and only if p ≡ 1, 7 (mod 8). So, by Lemma 4.6.4 (iv),
one of the classes of 2·L2(7) in U4(p) is stabilised by γ if p ≡ 1, 7 (mod 8) and
by γδ if p ≡ 3, 5 (mod 8).

The following proposition can be proved by a straightforward computer
calculation (file 4l34d4calc) using Lemma 4.6.4 (iv).

Proposition 4.7.5 The stabiliser in Out U4(3) of each of the two classes of
42
·L3(4) in SU4(3) is 〈δ2, γδ〉, where δ2 induces the 22 automorphism of L3(4),

and γδ induces the 21 and 23 automorphisms in the two classes of subgroups.

We briefly expand our description of the actions of the outer automorphisms
of SU4(3) on the conjugacy classes of 42

·L3(4). Here Out SU4(3) ∼= D8 and has
presentation 〈 δ, γ | δ4 = γ2 = 1, δγ = δ−1 〉. There are two classes of 42

·L3(4),
and δ acts on them as a transposition (so that δ2 normalises both classes). The
elements γδi for i ∈ {0, 2} act as involutions, whilst γδi for i ∈ {1, 3} normalises
both classes. Thus both classes are normalised by {1, δ2, γδ, γδ3} and they are
interchanged by {δ, δ3, γ, γδ2}: see Table 8.11.

Dimension 5. The situation in dimension 5 is straightforward, and we sum-
marise it briefly.

Theorem 4.7.6 Let Ω be either SL5(q) or SU5(q), let G be an S1-subgroup
of Ω, and let d = (q− 1, 5) in Case L and (q+ 1, 5) in Case U. Then, q = p in
all cases, and one of the following holds:

(i) G = d×L2(11), and the stabiliser in Out Ω of at least one of the d classes
of G in Ω is 〈γ〉.

(ii) G = d×U4(2), and the stabiliser in Out Ω of at least one of the d classes
of G in Ω is 〈γ〉.

(iii) G = M11, and the stabiliser in Out L5(3) of each of the two classes of G
in SL5(3) is trivial.

Proof By Theorem 4.3.3, the quasisimple groups G to consider are L2(11),
U4(2) and M11. In the first two cases |OutG| = 2, whilst Out M11 is trivial.
By Proposition 4.5.12 in each case q = p, and for L2(11) and U4(2) the auto-
morphism δ permutes the d Ω-classes transitively, whilst for M11 there are two
classes in Ω and δ is trivial. For L2(11) and U4(2), the result therefore follows
from Lemma 4.6.1, whilst for G = M11 the automorphism γ must interchange
the two classes.
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Dimension 6. By Theorem 4.3.3, the quasisimple groups to consider are:

3·A6, 6·A6, 2·L2(11), 3·A7, 6·A7, 6·L3(4), 2·M12, 3·M22, 31
·U4(3), 61

·U4(3).

As in dimension four, for expositional purposes it is easier to consider 2·L2(11)
first, as it is a reasonably straightforward example and we can present it in full
detail. We shall gradually become briefer as we work through the remaining
groups.

Proposition 4.7.7 Let d = (p − 1, 6) with p ≡ 1, 3, 4, 5, 9 (mod 11) in Case
L, and d = (p+ 1, 6) with p ≡ 2, 6, 7, 8, 10 (mod 11) in Case U.

(i) If p ≡ ±1 (mod 8), then the stabiliser in OutL6(p) of at least one of the
d classes of d ◦ 2·L2(11) in SL6(p) is 〈γ〉.

(ii) If p ≡ ±3 (mod 8), then the stabiliser in OutL6(p) of at least one of the
d classes of d ◦ 2·L2(11) in SL6(p) is 〈γδ〉.

(iii) If p ≡ ±1 (mod 8), then the stabiliser in Out U6(p) of at least one of the
d classes of d ◦ 2·L2(11) in SU6(p) is 〈γ〉.

(iv) If p ≡ ±3 (mod 8), then the stabiliser in Out U6(p) of at least one of the
d classes of d ◦ 2·L2(11) in SU6(p) is 〈γδ〉.

Proof The reader should recall Proposition 4.5.15, where we previously con-
sidered G = 2·L2(11). There are two dual representations interchanged by the
outer automorphism α of G.

By [111], standard generators for G are x of order 4 and y of order 3 such
that xy has order 11. A straightforward computation shows that the map α :
(x, y) → (x−1, y−1) induces an outer automorphism of G.

The representation of G in SL6(p) is the p-modular reduction of a represen-
tation over the ring Z[b11] with b = b11, for which the images of x and y are
respectively:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0−1 0 0 0

0 0 0 0 0 1

0 0 0 0−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 −b −b−1 −1

1 0 0 0 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

−b −1 −b−1 −2 b−1 b+2

−1 b+1 b−1 b+2 2 −b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since α and the duality map γ have the same effect on the representa-
tion, there exists a matrix L ∈ GL6(C) that conjugates the images (xγ , yγ)
to (xα, yα) = (x−1, y−1). The MeatAxe techniques mentioned in Section 4.6.1
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yield

L :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −2b− 1 −b+ 3 −2b− 3 −b− 4 2b− 1

−2b− 1 −2 −2b− 3 b− 3 2b− 1 b+ 4

−b+ 3 −2b− 3 −3b+ 2 −2b− 6 −6 4b+ 2

−2b− 3 b− 3 −2b− 6 3b− 2 4b+ 2 6

−b− 4 2b− 1 −6 4b+ 2 3b+ 5 −2b+ 4

2b− 1 b+ 4 4b+ 2 6 −2b+ 4 −3b− 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We first consider Case L. The determinant of L is 2, which is a square modulo
p if and only if p ≡ ±1 (mod 8), by Table 4.2. Hence by Lemma 4.6.2, up to
conjugacy in Out SL6(p), we may take the stabiliser of the conjugacy class of
G to be 〈γ〉 when p ≡ ±1 (mod 8) and 〈γδ〉 when p ≡ ±3 (mod 8).

Now we consider Case U. To calculate a σ-Hermitian form B preserved by
G, we compute a suitable matrix that conjugates (x, y) to (x−T, y−T), where
denotes complex conjugation. We can choose

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11 −√−11
√−11

√−11
√−11 −√−11√−11 11 −√−11

√−11
√−11

√−11

−√−11
√−11 11

√−11
√−11 −√−11

−√−11 −√−11 −√−11 11
√−11

√−11

−√−11 −√−11 −√−11 −√−11 11
√−11√−11 −√−11

√−11 −√−11 −√−11 11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We apply Proposition 4.6.6 with the matrices L̂ and B̂ in the proposition re-
placed by L and B. Since detL = 2, in the notation of Proposition 4.6.6,
we can choose ν̂ = 1, ζ̂ = 2, and we conclude that some GL6(p2)-conjugate
of G in SU6(p) is stabilised by 〈γ〉 when 2 is a square in F×

p : that is, when
p ≡ ±1 (mod 8). Otherwise, when p ≡ ±3 (mod 8), some GL6(p2)-conjugate
of G in SU6(p) is stabilised by 〈γδ〉.

There are no non-unit denominators in the entries in B, but we must also
check that there is no exceptional behaviour for divisors of detB = 25 × 113.
Since p �= 2, 11, there is no exceptional behaviour for small primes.

Details of computer calculations for this example (but not using the identical
matrices as in the proof given here) can be found in file sl211d6calc.

As an aside, we note that in the previous example the equation ξξ = 25112

is not soluble in Q(
√−11), so B is not equivalent over Q(

√−11) to I6.
The proofs of the remaining results in this section have a similar structure,

and will be given with less detail.
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Proposition 4.7.8 (i) If p ≡ 1 (mod 24), then the stabiliser in OutL6(p)
of at least one of the six classes of 2× 3·A6.23 in SL6(p) is 〈γ〉.

(ii) If p ≡ 19 (mod 24), then the stabiliser in Out L6(p) of at least one of the
six classes of 2× 3·A6.23 in SL6(p) is 〈γδ〉.

(iii) If p ≡ 7, 13 (mod 24), then the stabiliser in Out L6(p) of at least one of
the three classes of 2× 3·A6 in SL6(p) is 〈δ3, γ〉, where δ3 induces the 23

automorphism of A6. The 22 and 21 automorphisms of A6 are induced by
γ when p ≡ 7, 13 (mod 24), respectively.

(iv) If p ≡ 23 (mod 24), then the stabiliser in Out U6(p) of at least one of the
six classes of 2× 3·A6.23 in SU6(p) is 〈γ〉.

(v) If p ≡ 5 (mod 24), then the stabiliser in Out U6(p) of at least one of the
six classes of 2× 3·A6.23 in SU6(p) is 〈γδ〉.

(vi) If p ≡ 11, 17 (mod 24), then the stabiliser in Out U6(p) of at least one of
the three classes of 2× 3·A6 in SU6(p) is 〈δ3, γ〉, where δ3 induces the 23

automorphism of A6. The 21 and 22 automorphisms of A6 are induced by
γ when p ≡ 11, 17 (mod 24), respectively.

Proof The reader should recall Proposition 4.5.13, where we previously con-
sidered G = 3·A6. There are two dual 6-dimensional representations, which are
stabilised by the 23 automorphism and interchanged by the 21 and 23 automor-
phisms of 3·A6; so at least one conjugacy class representative of these groups
is normalised by either the duality automorphism γ of SLε

6(p) or by γδ.
We wrote G as a group of classically unitary matrices (i.e. preserving the

form with matrix I6) with entries in Z[ω], where ω = z3. We found matrices L1

and L2, with detL1 = −ω = −1.(ω2)2 and detL2 = −216ω = 2.(6ωi3)
2, such

that the map γ = −T applied to GL6(Q(ω)) followed by conjugation by L1 or
by L2 normalises G and induces, respectively, the 21 or the 22 automorphism
of G (modulo inner automorphisms). The denominators of the entries in L±1

i

are divisible only by the primes 2 and 3, so there are no exceptional primes.
For the linear case, by Lemma 4.6.2, these outer automorphisms are effected

by γ, γδ2 or γδ4 modulo inner automorphisms if the p-modular reduction of
detLi is a square in F×

p , and otherwise by γδ, γδ3 or γδ5. Note that the reduc-
tion of detLi is in {−1, 2} modulo squares of F×

p . By Table 4.2, −1 is a square
modulo p if p ≡ 1 (mod 4), and 2 is a square modulo p if p ≡ ±1 (mod 8). Parts
(i), (ii) and (iii) now follow from Proposition 4.5.13 (i) and (ii). (In fact the
calculations involving either of L1 or L2 alone would suffice for this conclusion!)

In the unitary case, since q is prime, Proposition 4.6.6 tells us that outer
automorphisms are induced by γ when the square-free part z of detL reduces
to a square in F×

p and z is positive, or when z is a non-square in F×
p and z

is negative. Otherwise outer automorphisms are induced by γδ. Thus, up to
conjugacy, the automorphisms are induced by γ when 2 is a square or when −1
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is a non-square, respectively. Parts (iv), (v) and (vi) now follow from Proposi-
tion 4.5.13 (iii) and (iv).

Details of the computer calculations for this example can be found in file
3a6d6calc.

For clarity, let us slightly expand our description of the actions of the outer
automorphisms on the conjugacy classes of 2 × 3·A6. We concentrate on the
case when p ≡ 7, 13 (mod 24), as the other cases are similar but easier. The
outer automorphism group of SL6(p) is isomorphic to D12 and has presentation

〈 δ, φ, γ | δ6 = γ2 = 1, δγ = δ−1 〉.
There are three classes of 2× 3·A6, and δ acts (non-faithfully) as a 3-cycle on
them, with δ3 normalising all three classes. The elements γδi for i ∈ {0, . . . , 5}
all act as involutions. Thus one of the classes of 2 × 3·A6 is normalised by
{1, δ3, γ, γδ3}; one by {1, δ3, γδ, γδ4}; and one by {1, δ3, γδ2, γδ5}, but Ta-
ble 8.25 contains just the first of these stabilisers.

Proposition 4.7.9 (i) If p ≡ 1, 31 (mod 48) then the stabiliser in Out L6(p)
of at least one of the six classes of 6·A6 in SL6(p) is 〈γ〉, and γ induces
the 22 automorphism of A6.

(ii) If p ≡ 7 or 25 (mod 48) then the stabiliser in Out L6(p) of at least one of
the six classes of 6·A6 in SL6(p) is 〈γδ〉, and γδ induces the 22 automor-
phism of A6.

(iii) If p ≡ 5 or 11 (mod 24) then the stabiliser in Out L6(p2) of at least one
of the six classes of 6·A6 in SL6(p2) is 〈γδ3, φ〉, where γδ3 and φ induce
the 22 and the 21 automorphisms of A6, respectively.

(iv) If p ≡ 13 or 19 (mod 24) then the stabiliser in Out L6(p2) of at least one
of the six classes of 6·A6 in SL6(p2) is 〈γδ3, φγ〉, where γδ3 and φγ induce
the 22 and the 21 automorphisms of A6.

(v) If p ≡ 17 or 47 (mod 48) then the stabiliser in Out U6(p) of at least one of
the six classes of 6·A6 in SU6(p) is 〈γ〉, and γ induces the 22 automorphism
of A6.

(vi) If p ≡ 23 or 41 (mod 48) then the stabiliser in Out U6(p) of at least one
of the six classes of 6·A6 in SU6(p) is 〈γδ〉, and γδ induces the 22 auto-
morphism of A6.

Proof The reader should recall Proposition 4.5.14, where we previously con-
sidered G = 6·A6. We saw there that G is potentially a maximal subgroup of
Ω if p ≡ 1 or 7 (mod 24) with Ω = SL6(p), p ≡ 5, 11, 13 or 19 (mod 24) with
Ω = SL6(p2), and p ≡ 17 or 23 (mod 24) with Ω = SU6(p).

There are four representations with character ring Z[z3, r2], permuted tran-
sitively by OutG. Duality maps (z3, r2) to (z∗∗3 , r2). From the character tables



4.7 Dimension up to 6: graph and field automorphisms 205

in [12] (or [57] for p = 5), it can be seen firstly that the 22 automorphism of
G inverts the central 3-element (this is indicated by the incomplete square for
3.G.22 in the character table map) and secondly that the 22 automorphism nor-
malises the two conjugacy classes of elements of order 8 in G (because there are
elements of order 16 in G.22). Since the character values of these 6-dimensional
representations are ±z3 and ±r2 on the central 3-element and the elements of
order 8, respectively, it follows that duality has the same action on the repre-
sentations as the 22 automorphism.

We wrote G as a subgroup of GL6(R) with R = Z[z3, r2, 1/2]. We found a
matrix B for a unitary form for which G is a group of isometries, with entries of
B±1 in R[1/3]. We found a matrix L, with entries of L±1 in R, of determinant
(2 + r2)ν

2 with ν ∈ R, such that γ = −T followed by conjugation by L nor-
malises and induces the 22 automorphism of G (modulo inner automorphisms).
So neither B nor L result in exceptional primes.

Thus, in Case L, to determine whether a conjugate of γ or a conjugate of
γδ induces the 23 automorphism, by Lemma 4.6.2 we need to determine when
2 + r2 reduces to a square in F×

q . Recall from Section 4.2 that r2 = y8. Then
2 + r2 = 2 + y8 = 2 + z8 + z−1

8 = 2 + z2
16 + z−2

16 = y2
16. We can calculate

Fp(y16) for all primes p by using Lemma 4.2.1. We get Fp(y16) = Fp if p = 2
or p ≡ ±1 (mod 16), Fp(y16) = Fp2 if p ≡ ±7 (mod 16), and Fp(y16) = Fp4 if
p ≡ ±3 or ±5 (mod 16).

If p ≡ 5, 11, 13 or 19 (mod 24) then p ≡ ±3 or ±5 (mod 16), so detL is
a non-square in F×

p2 , and a conjugate of γδ induces the 22 automorphism. If
p ≡ 7 or 25 (mod 48) then p ≡ ±7 (mod 16), so detL is a non-square in F×

p ,
and once again a conjugate of γδ induces the 22 automorphism. Finally, if p ≡ 1
or 31 (mod 48) then detL is a square in F×

p , so that a conjugate of γ induces
the 22 automorphism. This completes the analysis of the action of the duality
automorphism on the conjugacy classes of 6·A6 in Ω in the linear cases.

We still have to consider the action of the field automorphism φ of Ω
when Ω = SL6(p2); that is, when p ≡ 5, 11, 13, 19 (mod 24). First let p ≡
5, 11 (mod 24). Then δφ = δ−1, so we can apply Lemma 4.6.2 with β = γ.
From character values we calculate that φ and γφ induce the 21 and 23 auto-
morphisms of G, modulo diagonal and inner automorphisms. In the 21 case,
we found a conjugating matrix M , with entries of M±1 in R, with determinant
−ν2 for some ν ∈ R, a square in F×

p2 so, by Lemma 4.6.2, a conjugate of φ
induces the 21 automorphism. Hence the class of 6·A6 is stabilised by a con-
jugate of γδ and by a conjugate of φ in 〈δ, γ, φ〉. Since its stabiliser in 〈δ, γ, φ〉
has order 4 and |〈γδ, φ〉| = |〈γδ5, φ〉| = 12, it follows that this stabiliser must
be a conjugate of 〈γδ3, φ〉.

The other linear case is p ≡ 13 or 19 (mod 24). Then δφγ = δ−1, so we can
apply Lemma 4.6.2 with β = φγ. From character values we deduce that γφ
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and φ induce the 21 and 23 automorphisms of G modulo diagonal and inner
automorphisms. In the 21 case, we found a conjugating matrix M , with entries
of M±1 in R, with determinant 1, so the 21 automorphism is induced by a
conjugate of φγ. The stabiliser of the class of 6·A6 in 〈δ, γ, φ〉 is therefore a
conjugate of 〈γδ3, φγ〉.

Turning now to the Case U, for which p ≡ 17 or 23 (mod 24), we recall
that detL = (2+r2)ν

2 with ν ∈ R. So, in the notation of Proposition 4.6.6, we
can take z = 2 + r2 which is positive. As we saw above,

√
z ∈ Fp if and only

if p ≡ ±1 (mod 16) so, by Proposition 4.6.6, some GL6(p2)-conjugate of G is
stabilised by γ when p ≡ ±1 (mod 16) and by γδ when p ≡ ±7 (mod 16), and
the 22 automorphism of 6·A6 is induced.

Details of the computer calculations for this example can be found in file
6a6d6calc.

Once again, let us expand our description of the actions of the outer au-
tomorphisms on the conjugacy classes of 6·A6. We concentrate on the case
when p ≡ 5, 11 (mod 24). Here the outer automorphism group of SL6(p2) is
isomorphic to D12 × 2 and has presentation

〈 δ, φ, γ | δ6 = φ2 = γ2 = 1, δφ = δγ = δ−1, φγ = φ 〉.
There are six classes of 6·A6, and δ acts as a 6-cycle on them. The elements
γδi for i ∈ {0, 2, 4} and φδi for i ∈ {1, 3, 5} have cycle type 23 on the six
classes of 6·A6, whereas γδi (i ∈ {1, 3, 5}) and φδi (i ∈ {0, 2, 4}) act with
cycle shape 22.12. Lastly γφδ3 normalises all six classes of 6·A6, while the
other γφδi normalise none. Thus two of the classes of 6·A6 are normalised by
{1, γδ3, φ, γφδ3}; two by {1, γδ, φδ4, γφδ3}; and two by {1, γδ−1, φδ−4, γφδ3}.
Table 8.27 contains just the first of these stabilisers (as we consider it to be the
‘neatest’ one).

Proposition 4.7.10 (i) If p ≡ 1 (mod 12) then the stabiliser in Out L6(p)
of at least one of the six classes of 3·A7 in SL6(p) is 〈γ〉.

(ii) If p ≡ 7 (mod 12) then the stabiliser in OutL6(p) of at least one of the
six classes of 3·A7 in SL6(p) is 〈γδ〉.

(iii) If p ≡ 11 (mod 12) then the stabiliser in Out U6(p) of at least one of the
six classes of 3·A7 in SU6(p) is 〈γ〉.

(iv) If p ≡ 5 (mod 12) then the stabiliser in Out U6(p) of at least one of the
six classes of 3·A7 in SU6(p) is 〈γδ〉.

(v) If p = 2 then the stabiliser in Out U6(p) of at least one of the three classes
of 3·A7 in SU6(p) is 〈γ〉.

Proof The arguments here are similar to those for 3·A6 in Proposition 4.7.8,
and will be sketched only briefly. The reader should recall Proposition 4.5.16,
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where we previously considered G = 3·A7. There are two dual representations
interchanged by the outer automorphism of G.

When p = 2 there are only three classes of subgroups in SU6(2), and by
Lemma 4.6.1 one of these must be stabilised by γ. So assume that p > 2.

We wrote G as a subgroup of GL6(R) with R = Z[ω], where ω = z3. We
found a matrix B for a unitary form for which G is a group of isometries
with entries of B±1 in R. We found a matrix L, with entries of L±1 in R, of
determinant −1 such that γ = −T followed by conjugation by L normalises
and induces the outer automorphism of G (modulo inner automorphisms). So
neither B nor L result in exceptional primes.

For the linear case, by Lemma 4.6.2, up to inner automorphisms and con-
jugacy in Out SL6(p) these outer automorphisms will be effected by γ if −1 is
a square in F×

p (that is, when p ≡ 1 (mod 4)), and otherwise one will require
γδ. In the unitary case, Proposition 4.6.6 tells us that outer automorphisms are
induced by a conjugate of γ when −1 is a non-square in F×

p , and by a conjugate
of γδ otherwise.

Details of the computer calculations for this example can be found in file
3a7d6calc.

Proposition 4.7.11 (i) If p ≡ 1, 7, 17, 23 (mod 24), then the stabilisers in
OutΩ of the twelve classes of 6·A7 in Ω = SL6(p) or SU6(p) are trivial.

(ii) When p ≡ 5, 11 (mod 24), the stabiliser in Out L6(p2) of at least one of
the twelve classes of 6·A7 in SL6(p2) is 〈φ〉.

(iii) When p ≡ 13, 19 (mod 24), the stabiliser in Out L6(p2) of at least one of
the twelve classes of 6·A7 in SL6(p2) is 〈φγ〉.

Proof Since the group 6·A7 has a single conjugacy class of subgroups isomor-
phic to 6·A6, an element of Out Ω stabilising the class of 6·A7 also stabilises
the class of 6·A6. Therefore, for each of the congruences on p, the stabiliser
of a class of subgroups of 6·A7 is a subgroup of the corresponding stabiliser
of 6·A6, as given in Proposition 4.7.9. Furthermore, there are twice as many
classes of 6·A7 in Ω as there are of 6·A6, so the stabiliser must be of index 2.
Thus the result for p ≡ 1, 7, 17, 23 (mod 24) is clear. Since 6·S7 contains 6·S6

but no other extension of 6·A6, the stabiliser of the class of 6·A7 in SL6(p2)
must be the automorphism that induces the 21 automorphism of 6·A6, so the
result holds for the remaining congruences on p.

Proposition 4.7.12 (i) If p ≡ 1, 19 (mod 24), then the stabiliser in
Out L6(p) of at least one of the six classes of 6·L3(4).2−1 in SL6(p) is
〈γ〉, extending it to 6·L3(4).22.

(ii) If p ≡ 7, 13 (mod 24), then the stabiliser in Out L6(p) of at least one of
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the three classes of 6·L3(4) in SL6(p) is 〈δ3, γ〉, where δ3 and γ induce the
21 and 22 automorphisms of L3(4), respectively.

(iii) When p ≡ 5, 23 (mod 24), the stabiliser in Out U6(p) of at least one of
the six classes of 6·L3(4).2−1 in SU6(p) is 〈γ〉, extending it to 6·L3(4).22.

(iv) When p ≡ 11, 17 (mod 24), the stabiliser in Out U6(p) of at least one of
the three classes of 6·L3(4) in SU6(p) is 〈δ3, γ〉, where δ3 and γ induce the
21 and 22 automorphisms of L3(4), respectively.

Proof The reader should recall Proposition 4.5.18, where we previously con-
sidered G = 6·L3(4). There are two dual representations, stabilised by the 21

automorphism and interchanged by the 22 and 23 automorphisms of G.
We wrote G as a subgroup of GL6(R) with R = Z[ω], where ω = z3. We

found a matrix B for a unitary form for which G is a group of isometries with
entries of B±1 in R[1/2]. We found matrices L1 and L2, with entries of L±1

i in
R[1/2], and detL1 = 1, detL2 = −8 = −2.22, such that γ = −T followed by
conjugation by L1 or by L2 normalises G and induces, respectively, the 22 or
the 23 automorphism of G (modulo inner automorphisms). So neither B nor
Li result in exceptional primes. Note that the 22 and 23 outer automorphisms
of G are equivalent modulo G.21.

First consider Case L. If p ≡ 1, 19 (mod 24), then detL1 and detL2 are
both squares, so up to conjugacy the stabiliser of the class of 6·L3(4).21 is 〈γ〉.
If p ≡ 7, 13 (mod 24) then detL1 is square but detL2 is non-square, so up to
conjugacy the 22 automorphism is induced by γ, and the 23 by δ3γ.

Now consider Case U. If p ≡ 5, 23 (mod 24), then by Proposition 4.6.6
the stabiliser of the class of 6·L3(4).21 can be assumed to be 〈γ〉. Conversely, if
p ≡ 11, 17 (mod 24), then −2 reduces to a square in F×

p , so by Proposition 4.6.6
we deduce that γ induces the 22 automorphism of G and γδ3 the 23.

Details of the computer calculations for this example can be found in file
6l34d6calc.

Proposition 4.7.13 Each of the two classes of S1-subgroups of SL6(3) iso-
morphic to 2·M12 has stabiliser 〈γδ〉 in Out L6(3).

Proof We considered this group in Proposition 4.5.19. From the character
table, we find that the subgroup 2·M12 < SL6(3) is extendible by an auto-
morphism of type γδi for some i, and 2·M12 restricts absolutely irreducibly
to a subgroup 2·L2(11) with representation as in Proposition 4.7.7. Moreover
2·L2(11) extends to a subgroup 2·L2(11).2 of 2·M12.2, and when p = 3, up to
conjugacy the stabiliser of the class of 2·L2(11) in SU6(p) is 〈γδ〉. Since 2·M12

has a unique class of subgroups isomorphic to 2·L2(11), it follows that (the
class of) 2·M12 < SL6(3) is also stabilised by a conjugate of γδ. This result can
also be checked directly by a computer calculation (file 2m12d6f3calc).
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Proposition 4.7.14 The stabiliser in Out U6(2) of at least one of the three
classes of 3·M22 in SU6(2) is 〈γ〉.
Proof We considered 3·M22 in Proposition 4.5.19. The duality automorphism
of SU6(2) has the same effect on 3·M22 as the outer automorphism. Since |δ| = 3
is odd, by Lemma 4.6.1 we can take the class stabiliser to be 〈γ〉.
Proposition 4.7.15 The stabiliser in Out U6(2) of at least one of the three
classes of 31

·U4(3).22 in SU6(2) is 〈γ〉.
Proof We considered this example in Proposition 4.5.20. The automorphism
γ of SU6(2) has the same effect on the character of 31

·U4(3).22 as the 21

automorphism. Since |δ| = 3, we can take the class stabiliser to be 〈γ〉, by
Lemma 4.6.1.

Proposition 4.7.16 (i) If p ≡ 1 (mod 12), then the stabiliser in OutL6(p)
of at least one of the six classes of 61

·U4(3).2−2 in SL6(p) is 〈γ〉, extending
it to 61

·U4(3).22
122.

(ii) If p ≡ 7 (mod 12), then the stabiliser in Out L6(p) of at least one of the
three classes of 61

·U4(3) in SL6(p) is 〈δ3, γ〉, where δ3 and γ induce the
22 and 21 automorphisms of U4(3), respectively.

(iii) If p ≡ 11 (mod 12), then the stabiliser in Out U6(p) of at least one of the
six classes of 61

·U4(3).2−2 in SU6(p) is 〈γ〉, extending it to 61
·U4(3).22

122.
(iv) If p ≡ 5 (mod 12), then the stabiliser in Out U6(p) of at least one of the

three classes of 61
·U4(3) in SU6(p) is 〈δ3, γ〉, where δ3 and γ induce the

22 and 21 automorphisms of U4(3), respectively.

Proof The reader should recall Proposition 4.5.20, where we previously con-
sidered G = 61

·U3(4). There are two dual representations, stabilised by the 22

automorphism and interchanged by the 21 and 2′2 = 2122 automorphisms of G.
(Note that 2′2 is conjugate to 22 in OutU4(3) but not in OutG.)

We wrote G as a subgroup of GL6(R) with R = Z[ω], where ω = z3. We
found a matrix B for a unitary form for which G is a group of isometries,
with entries of B±1 in R[1/2]. We found matrices L1 and L2, with entries of
L±1

i in R[1/2], and detL1 = 1, detL2 = −1, such that γ = −T followed by
conjugation by L1 or by L2 normalises G and induces, respectively, the 21 or
the 2′2 automorphism of G (modulo inner automorphisms). So neither B nor
Li result in exceptional primes.

First consider Case L. If p ≡ 1 (mod 12) then L1 has square determinant, so
by Lemma 4.6.2 we may assume that the stabiliser of the class of 61

·U4(3).22 in
Out SL6(p) is 〈γ〉, which extends the group to 61

·U4(3).22
122. If p ≡ 7 (mod 12)

then 1 is square and −1 is non-square, so γ induces the 21 automorphism of G
and γδ3 induces the 2′2 automorphism.
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Now consider Case U. If p ≡ 5 (mod 12) then 1 and −1 are both square
in F×

p , so by Proposition 4.6.6 γ induces the 21 automorphism of G, and γδ3

induces the 2′2 automorphism. Finally, if p ≡ 11 (mod 12) then the stabiliser of
the class of 61

·U4(3).21 is 〈γ〉, extending the group to 61
·U4(3).22

122.
Details of the computer calculations for this example can be found in file

6u43d6calc.

4.7.2 Case S

In dimension 4 when q > 2 is even, the outer automorphism group of Spn(q)
contains a graph automorphism. However by Lemma 4.5.8, there are no S1-
subgroups of Sp4(q) when q is even, so we can ignore that case. Recall also that
Sp4(2) is excluded, as it is not quasisimple. Therefore we need only calculate
the action of the field automorphism φ, and can clearly restrict to those cases
where φ acts non-trivially.

Theorem 4.7.17 Let G be an S1-subgroup of Spn(q) with n � 6, and assume
that q is a proper power. Then one of the following holds:

(i) G = 2·A5 in dimension 2, and the class stabiliser of G in Out Ω is 〈φ〉;
(ii) G = 2·L3(2) in dimension 6, and the class stabiliser of G in Out Ω is 〈δ〉;
(iii) G = (2·)L2(13), 2·A7 or (2·)J2 in dimension 6, and the class stabiliser of

G in OutΩ is 〈φ〉.
Proof By Theorem 4.3.3, the possibilities for G are considered in Proposi-
tions 4.5.1, 4.5.9, 4.5.10, 4.5.11 and 4.5.21–4.5.25.

Consulting these results, we see that the only examples in which q is a
proper power (so that φ is non-trivial) are 2·A5 in dimension 2, and 2·L3(2),
(2·)L2(13), 2·A7, (2·)J2 in dimension 6.

Consider first G = 2·L3(2) � Sp6(p2). The character ring of the repre-
sentation is the p-modular reduction of Z[r2], and by Proposition 4.5.22 we
require p ≡ ±3,±5 (mod 16). There are two algebraically conjugate repre-
sentations. Both of these are stabilised by the automorphism δ of Sp6(q) by
Proposition 4.5.22, and consulting [12, 57], we see that their characters are in-
terchanged by φ. The two conjugacy classes of S1-subgroups isomorphic to G
are therefore swapped by φ and by φδ.

Next consider G = L2(13) or J2, with G � Sp6(4). By Theorem 4.3.3
there are two representations, interchanged by the outer automorphism α of G.
Consulting [57], we see that the two representations are interchanged by φ, so
φ = αcg for some g ∈ CSp6(4). Since there are no diagonal automorphisms, it
follows that φ stabilises the conjugacy class of G.

For G = 2·A5 in dimension 2, or 2·L2(13), 2·A7, 2·J2 in dimension 6, there
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are two representations that are swapped by both the outer automorphism α

of G and by φ. For each of these groups, we have G = Z.S with S simple, and
we find from [12] that there is a unique almost simple group with the structure
S.2, and this extension is split; that is, there are involutions in S.2 \ S.

In each of these three cases, there are two Ω-classes of subgroups that are
swapped by δ, so we must determine whether it is φ or φδ that stabilises the Ω-
class and induces an outer automorphism of G. But we know from Lemma 4.6.7
that all elements of order 2 in PCΓSpn(q) lie in PΣSpn(q) ∪ PCSpn(q), and it
follows that the class stabiliser is 〈φ〉.

4.8 Dimension up to 6: containments

Recall Definition 2.1.4 of a containment between two subgroups of a classical
group. In this section we determine all containments between the candidate
maximal S1-subgroups in dimensions up to 6. We recall that the stabilisers of
the classes of candidates in the conformal group normalising Ω were determined
in Section 4.5, and their full stabilisers in OutΩ in Section 4.7. The reader may
need to refer back to these sections to find the structure of the candidates and
the extensions of Ω in which they lie.

To avoid specifying precise structures of extensions of quasisimple groups,
we shall often make statements about containments projectively, but we shall
include in brackets the centres of the quasisimple groups involved in the repre-
sentations.

To verify that there is a containmentH1 < H2 between two S1-subgroups of
Ω, we of course need not only to check thatH1 is a subgroup ofH2 as an abstract
group, but also that the restriction of the relevant irreducible representation
of H∞

2 to H∞
1 is the relevant irreducible representation of H∞

1 . In most cases,
this is straightforward using [12, 57], either because H∞

1 has no non-trivial
irreducible representations of lower degree, or by looking at the character values.
We shall supply details only when this might not be clear.

Our overall conclusions about which groups are maximal amongst the S1-
subgroups of Ω and its extensions are presented in Section 4.10, where we also
present results for dimensions greater than 6 and at most 12.

Proposition 4.8.1 Let SL2(q) � G � ΓL2(q), and let H be an S1-subgroup
of G such that HSL2(q) = G and H = NG(H). Then H is S1-maximal in G.

Proof By Theorem 4.3.3 there is only one S1-candidate, and hence no possible
containments.

Proposition 4.8.2 Let Ω � G � Aut Ω, with Ω = L3(q) or U3(q). Let H and
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K be distinct S1-subgroups of G such that HΩ = KΩ = G, with H = NG(H)
and K = NG(K). There is a containment H < K if and only if H = L3(2),
K = (3·)A7 and G = U3(5).

Proof By Theorem 4.3.3, the quasisimple examples are L3(2) (characteristic
not 2 or 7), 3·A6 (characteristic not 3), and 3·A7 (characteristic 5 only). The
stabilisers of these groups in OutΩ have been calculated in Propositions 4.5.2,
4.5.3 and 4.5.4 and Theorem 4.7.1, and the reader should recall these results.

The group L3(2) is not a subgroup of (3·)A6, but is a subgroup of 3·A7 in
SU3(5). Consulting [12], the group L3(2) has no non-trivial representations in
dimension less than 3, so L3(2) is irreducible in 3·A7. Similarly, since 3·A6 has
no non-trivial representations in dimension less than 3, there is a containment
3·A6 < 3·A7 in SU3(5), by Propositions 4.5.3 and 4.5.4.

We saw in Proposition 4.5.3 that 3·A6 extends to 3·A6.23 within SU3(5),
whereas A6.23 is not contained in A7.2 = S7, so 3·A6.23 and its extensions are
in fact S1-maximal.

We saw in Proposition 4.5.2 that L3(2) is scalar-normalising in CGU3(5),
so the containment L3(2) < 3·A7 prevents 3 × L3(2) from being S1-maximal
in SU3(5). But PGL2(7) = L3(2).2 is not a subgroup of A7.2 = S7, so (projec-
tively) L3(2).2 is S1-maximal in U3(5)〈γ〉.
Proposition 4.8.3 Let Ω � G � Aut Ω, with Ω = L4(q) or U4(q). Let H and
K be distinct S1-subgroups of G such that HΩ = KΩ = G, with H = NG(H)
and K = NG(K). There is a containment H < K if and only if H∞ = (2·)L2(7)
and either K∞ = (2·)A7 and G = Ω, or K∞ = (42

·)L3(4) and G � U4(3)〈γδ〉.
Proof By Theorem 4.3.3 the quasisimple examples are 2·L3(2) ∼= 2·L2(7)
(characteristic not 2 or 7), A7 (characteristic 2 only), 2·A7 (characteristic not
2 or 7), 42

·L3(4) (characteristic 3 only), and 2·U4(2) (characteristic not 2 or
3). By Lagrange’s theorem there are no containments involving U4(2).

The smallest degree of a non-trivial representation of 2·L3(2) in character-
istic not equal to 2 is 4 [12, 57], so there is a containment 2·L3(2) < 2·A7. How-
ever, there is no containment L3(2).2 �� A7.2. The stabilisers of these groups
in OutΩ are described in Propositions 4.7.4 and 4.7.3, and in each case have
order 2. From these results we deduce that (2·)L3(2) is not S1-maximal in
L4(p) (p ≡ 1, 2, 4 (mod 7)) or in U4(p) (p ≡ 3, 5, 6 (mod 7)), but (2·)L3(2).2 is
S1-maximal in L±

4 (p)〈γ〉 or L±
4 (p)〈γδ〉, depending on its stabiliser.

Also, in characteristic 3, there are containments 2·L3(2) < 42
·L3(4) and

2·L3(2).2 < 42
·L3(4).21, so (2·)L3(2).2 is not S1-maximal in U4(3)〈γδ〉. How-

ever, L3(4) has no subgroups of index less than 21, so does not contain A7.

It will follow from the results proved in Chapter 6 that the groups of shape
2·L2(7).2 are indeed maximal subgroups of the corresponding SL±

4 (p), for all
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p �= 2, 3, 7. The question of whether they are type 1 or type 2 novelties with
respect to A7, as defined in Subsection 1.3.1, is not relevant for our main ob-
jective of finding the maximal subgroups of the almost simple classical groups,
but the following result may nevertheless be of some interest.

Proposition 4.8.4 For infinitely many primes p, there is an almost simple
extension of L4(p) that contains L2(7).2 as a type 1 novel maximal subgroup
with respect to A7. Additionally, for infinitely many primes p, there is an al-
most simple extension of L4(p) that contains L2(7).2 as a type 2 novel maximal
subgroup with respect to A7. The same is true for almost simple extensions of
U4(p).

Proof Let p ≡ 1, 2, 4 (mod 7): so Ω = SL4(p) in Propositions 4.7.3 and 4.7.4.
By Dirichlet’s Theorem, there are infinitely many such primes p with p ≡ 3 or
5 (mod 8). For such primes, L2(7).2 < L4(p)〈γδ〉 by Proposition 4.7.4. But, by
Proposition 4.7.3, the stabilisers in Out L4(p) of the class of A7 are conjugates
of 〈γ〉 and, since 〈γδ〉 is not conjugate to 〈γ〉, the group A7 is self-normalising
in L4(p).〈γδ〉. Hence L2(7).2 is a type 1 novelty with respect to A7.

There are also infinitely many primes p satisfying p ≡ 1, 2, 4 (mod 7) and
p ≡ 7 (mod 8) and, for such primes, Proposition 4.7.4 gives L2(7).2 < L4(p).〈γ〉.
In this case Out L4(p) = 〈γ, δ〉 ∼= 22 is abelian, so the only conjugate of 〈γ〉
in Out L4(p) is 〈γ〉 itself. Hence L2(7) < A7 < L4(p), where both of these
subgroups L2(7) and A7 are strictly contained in their normalisers in L4(p)〈γ〉.
So L2(7).2 is a type 2 novelty with respect to A7.

Similarly, if p ≡ 2, 3, 6 (mod 7) then we get type 1 novelties when p ≡ 3
or 5 (mod 8) and of type 2 when p ≡ 1 (mod 8) inside some almost simple
extension of U4(p).

We remark that the situation is more complicated when p ≡ 1 (mod 8) in
Case L and when p ≡ 7 (mod 8) in Case U because, in those cases, we have to
consider the possibility that, in the chain of subgroups L2(7) < A7 < L±

4 (p),
L2(7) is normalised by 〈γ〉, but A7 is normalised by its conjugate subgroup
〈γδ2〉 of Out L±

4 (p). It turns out that both type 1 and type 2 novel maximal
subgroups occur for infinitely many primes, but the complete analysis is more
complicated, and will be omitted.

Proposition 4.8.5 Let Ω � G � Aut Ω, with Ω = S4(q). Let H and K be
distinct S1-subgroups of G such that HΩ = KΩ = G, with H = NG(H) and
K = NG(K). There is a containment H < K if and only if one of the following
holds:

(i) H∞ = (2·)A5, K∞ = (2·)A6 and q = p > 5;
(ii) H∞ = (2·)A5 or (2·)A6, and K∞ = (2·)A7, with q = 7.
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Proof By Lemma 4.5.8 the field size q is odd. By Theorem 4.3.3, the quasisim-
ple groups to consider are 2·A5 (characteristic not 2, 3 or 5), 2·A6 (characteristic
not 2 or 3), and 2·A7 (characteristic 7 only).

We find from [12] that there are 2 classes of 2·A5 in 2·A6, and the restriction
of the 4-dimensional representation of 2·A6 to one of them is irreducible, so
there is a containment 2·A5 < 2·A6. By Propositions 4.5.9 and 4.5.10, these
groups extend under the outer automorphism of Ω to (2·)A5.2 and (2·)A6.21

Since A5.2 ∼= S5 and A6.21
∼= S6, we have A5.2 < A6.21. So (2·)A5 and its

extension are never S1-maximal.
By [12], the smallest degree of a non-trivial representation of 2·A6 in charac-

teristic not equal to 2 is 4, so there is also a containment 2·A6 < 2·A7 in charac-
teristic 7. By Propositions 4.5.10 and 4.5.11 and the fact that S6

∼= A6.21 < S7,
this containment extends under 〈δ〉 to (2·)A6.21 < (2·)A7.2. Hence (2·)A6 and
(2·)A6.21 are not S1-maximal in S4(7) or PCSp4(7).

Proposition 4.8.6 Let Ω � G � Aut Ω, with Ω = L5(q) or U5(q). Let H and
K be distinct S1-subgroups of G such that HΩ = KΩ = G, with H = NG(H)
and K = NG(K). There is a containment H < K if and only if H = L2(11),
K = M11 and G = L5(3).

Proof By Theorem 4.3.3, the quasisimple groups are L2(11) (p �= 11), M11

(p = 3 only) and U4(2) (p �= 2, 3).
Lagrange’s theorem rules out all possibilities, except for the containment

L2(11) < M11 in SL5(3): note that by [57] the group L2(11) has no non-trivial
representations in dimension less than 5 in characteristic 3. Thus L2(11) is not
S1-maximal in this case. However, by Theorem 4.7.6 the stabiliser of (the class
of) M11 is trivial and the stabiliser of (the class of) L2(11) is 〈γ〉, so L2(11).2
is S1-maximal in L5(3)〈γ〉.

Dimension 6, Indicator ◦. This is the most complicated case. By Theo-
rem 4.3.3 the quasisimple groups to consider are 3·A6 (characteristic not 2 or
3), 6·A6 (characteristic not 2 or 3), 2·L2(11) (characteristic not 2 or 11), 3·A7

(characteristic not 3), 6·A7 (characteristic not 2 or 3), 6·L3(4) (characteristic
not 2 or 3), 2·M12 (characteristic 3 only), 3·M22 (characteristic 2 only), 31

·U4(3)
(characteristic 2 only) and 61

·U4(3) (characteristic not 2 or 3).
Because some of the containments are considerably easier to eliminate than

others, we will deal with these groups in a different order from their occurrence
in Theorem 4.3.3.

We first consider all containments where one of the groups is 2·L2(11), 2·M12

or 3·M22.

Proposition 4.8.7 Let Ω � G � Aut Ω, with Ω = L6(q) or U6(q). Let H and
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K be distinct S1-subgroups of G such that HΩ = KΩ = G, with H = NG(H)
and K = NG(K). Assume in addition that at least one of H or K is isomorphic
to (2·)L2(11), (2·)M12 or (3·)M22. There is a containment H < K if and only
if either H∞ = (2·)L2(11), K∞ = (2·)M12 and Ω = L6(3); or H = (3·)A7,
K = (3·)M22 and G = U6(2).

Proof The behaviour of these three groups has previously been analysed in
Propositions 4.5.15, 4.5.19, 4.7.7, 4.7.13 and 4.7.14, and the reader should re-
mind themself of these results. In particular, 2·M12 only occurs as a subgroup
of SL6(3) and 3·M22 only occurs as a subgroup of SU6(2).

The smallest faithful representation of 2·L2(11) in characteristic 3 has de-
gree 6 [57], so there is a containment 2·L2(11) < 2·M12, extending to a contain-
ment 2·L2(11).2 < 2·M12.2. This prevents extensions of (2·)L2(11) from being
S1-maximal when Ω = L6(3).

Similarly, the smallest faithful representation of 3·A7 in characteristic 2 has
degree 6 [57], so there is a containment 3·A7 < 3·M22. However, this does not
extend, even as an abstract inclusion, to 3·A7.2 < 3·M22.2. Using Lagrange’s
theorem and Theorem 4.3.3, we see that there are no other possible contain-
ments involving the quasisimple candidates 2·L2(11), 2·M12 and 3·M22.

Next we deal with all containments involving 6·A6 and 6·A7.

Proposition 4.8.8 Let Ω � G � Aut Ω, with Ω = L6(q) or U6(q). Let H and
K be distinct S1-subgroups of G such that HΩ = KΩ = G, with H = NG(H)
and K = NG(K). Assume in addition that at least one of H or K is isomorphic
to (6·)A6 or (6·)A7. There is a containment H < K if and only if H∞ = (6·)A6,
K∞ = (6·)A7 and one of the following holds:

(i) G = Ω;
(ii) G = L6(p2)〈φ〉 with p ≡ 5, 11 (mod 24);
(iii) G = L6(p2)〈φγ〉 with p ≡ 13, 19 (mod 24).

Proof The stabilisers of 6·A6 and 6·A7 are described in Propositions 4.7.9 and
4.7.11. By [12, 57], the minimal degree of a faithful representation of 6·A6 is 6,
so there are containments 6·A6 < 6·A7 and (6·)A6.21 < (6·)S7, so extensions
of (6·)A6 contained in (6·)A6.21 are not maximal among S1-subgroups. But
extensions involving the 22 or 23 automorphisms of A6 are not contained in
extensions of 6·A7.

The potential containments of 6·A6 or 6·A7 in 6·L3(4) or 61
·U4(3) can be

ruled out by using [12] to show that involutions in A6 and A7 have inverse
images of order 4 in 6·A6 and 6·A7, whereas those in L3(4) and U4(3) have
inverse images of order 2 in 6·L3(4) and 61

·U4(3). It is clear that 3·A6 and 3·A7
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are not subgroups of 6·A6 or 6·A7, and all other containments are eliminated
by Lagrange’s theorem.

Proposition 4.8.9 No extension of the S1-subgroup (3·)A7 is S1-maximal
in any almost simple extension of L6(p) or U6(p).

Proof When p = 2, the minimal degree of a faithful representation of 3·A7 is
6 by [57], so there is a containment 3·A7 < 31

·U4(3):22. By Propositions 4.7.10
and 4.7.15 and the abstract containment A7.2 < U4(3):22, this containment
extends to 3·A7.2 < 31

·U4(3):22, so assume for the rest of the proof that p > 2.
From Proposition 4.7.3, we find that the group U4(3) has four classes of

scalar-normalising S1-subgroups isomorphic to A7. These are permuted in pairs
by the 21 (= δ2) automorphism of U4(3) and two of them are normalised by the
22 (= γ) automorphism, while the other two are normalised by the 2′2(= 2122)
automorphism. (All four classes are conjugate under the outer automorphism
of order 4, but this does not act on 61

·U4(3).) Computer calculations (file
containmentsd6) using a 6-dimensional representation of 61

·U4(3) over a finite
field, reveal that the classes normalised by 2′2 lift to 2×3·A7, where the subgroup
3·A7 acts absolutely irreducibly in the 6-dimensional representation.

Consulting Propositions 4.7.10 and 4.7.16, we now conclude that whenever
(3·)A7.2 is a subgroup of either Lε

6(p)〈γ〉 or Lε
6(p)〈γδ3〉, there are containments

(3·)A7.2 < (61
·)U4(3).2′2 < Lε

6(p)〈γ〉 or Lε
6(p)〈γδ3〉, and the result follows.

It remains to deal with containments between extensions of 3·A6, 6·L3(4),
and 61

·U4(3) (or 31
·U4(3) when p = 2), in extensions of SL6(p) and SU6(p).

Proposition 4.8.10 Let Ω � G � Aut Ω, with Ω = L6(q) or U6(q). Let
H and K be distinct S1-subgroups of G such that HΩ = KΩ = G, with
H = NG(H) and K = NG(K). If H < K then H∞ �= (61

·)U4(3) and
H∞ �= (31)·U4(3).

Proof This follows from Lagrange’s theorem.

In the course of the following two proofs, we shall make a number of asser-
tions about the structure and irreducibility of various subgroups of the groups
concerned. These assertions are straightforward to verify in Magma, work-
ing either in permutation representations of the almost simple groups involved
or, in cases involving assertions of irreducibility of subgroups, in the images
of 6-dimensional representations of the quasisimple groups over finite fields or
number fields.

Proposition 4.8.11 Let Ω � G � Aut Ω, with Ω = L6(q) or U6(q). Let
H and K be distinct S1-subgroups of G such that HΩ = KΩ = G, with
H = NG(H) and K = NG(K). Assume that H∞ = (6·)L3(4). There is a
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containment H < K if and only if K∞ = (61
·)U4(3), Ω � G � Ω〈γ〉, and

p ≡ ±7,±11 (mod 24).

Proof By Theorem 4.3.3 and Lagrange’s theorem, of the S1-subgroups under
consideration, only U4(3) can contain L3(4). The stabiliser of L3(4) in OutΩ is
calculated in Proposition 4.7.12, and of U4(3) in Proposition 4.7.16. Recall in
particular that OutΩ induces non-trivial automorphisms 21, 22 and 23 = 2122

of L3(4) and 21, 22 and 2′2 = 2122 of U4(3), and that for L3(4) we require
characteristic not 2 or 3.

From Proposition 4.7.5, we find that U4(3) has two classes of S1-subgroups
isomorphic to L3(4), which are self-normalising. As discussed just after Proposi-
tion 4.7.5, both classes are normalised by the 21 (= δ2) and 23 (= γδ) automor-
phism of U4(3) but fused by the 22 (= γ) automorphism. Since 6·L3(4) is the
only quasisimple cover of L3(4) with a faithful representation of degree at most
6 (in characteristic 0 or p � 5) [12, 57], the irreducible 6-dimensional represen-
tation of 61

·U4(3) must restrict to the irreducible 6-dimensional representation
of 6·L3(4).

By Proposition 4.7.5, there are containments L3(4):22 < U4(3):21 and from
Propositions 4.7.12 and 4.7.16 we find that whenever (6·)L3(4):22 is a subgroup
of Lε

6(p)〈γ〉, there is a containment (6·)L3(4):22 < (61
·)U4(3):21 < Lε

6(p)〈γ〉. So
L3(4) and L3(4):22 are never S1-maximal in almost simple extensions of Lε

6(p).
Since L3(4) can only occur as an S1-subgroup of U4(3), it follows from Proposi-
tion 4.7.5 that L3(4):21, L3(4):23 and L3(4):22 are not contained in U4(3):22

122,
so these subgroups are S1-maximal in the appropriate almost simple extension
of Lε

6(p) whenever they arise.

We finish with the most complicated case, which is determining the S1-
maximality of extensions of 3·A6.

Proposition 4.8.12 Let Ω � G � Aut Ω, with Ω = L6(q) or U6(q). Let H
and K be distinct S1-subgroups of G such that HΩ = KΩ = G, with H =
NG(H) and K = NG(K). Assume that H∞ = (3·)A6. There is a containment
H < K for some such K if and only if one of the following holds:

(i) G = Ω;
(ii) p = q ≡ ±7,±11 (mod 24) and G = Ω〈δ3〉;
(iii) p = q ≡ ±11 (mod 24) and G = Ω〈γ〉;
(iv) p = q ≡ ±7 (mod 24) and G = Ω〈γδ3〉.
Proof The behaviour of 3·A6 has previously been analysed in Propositions
4.5.13 and 4.7.8, and the reader should recall these results. Using [12], and
considering character values on involutions, we see that there is a containment
3·A6 < 3·A7. Using Proposition 4.7.10 we see that (3·)A6.21

∼= (3·)S6 < (3·)S7
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in all occurrences of either of these subgroups in almost simple extensions of
L6(p) and U6(p). So (3·)A6 and (3·)A6.21 are never S1-maximal in such exten-
sions. However the extension (3·)A6.22

∼= (3·)PGL2(9) is not contained in any
almost simple extension of (3·)A7.

Since A6 can only occur as an S1-subgroup of L3(4), it follows from Theo-
rem 4.7.1 that L3(4) has three classes of self-normalising subgroups isomorphic
to A6. It is explained in the discussion following the proof of Theorem 4.7.1 that
these classes are all normalised by the 21 (= γφ) automorphism of L3(4), which
induces the 23 automorphism of A6, whereas just one of them is normalised by
the 22 (= φ) automorphism of L3(4), which induces the 21 automorphism of
A6. A computer calculation (file containmentsd6) in a 6-dimensional represen-
tation of 6·L3(4) over a suitable finite field reveals that all three have inverse
image 2×3·A6 in 6·L3(4), but that one of them, namely the one normalised by
the 22 automorphism of L3(4), has reducible inverse image, whereas the other
two have absolutely irreducible inverse images. Noting the behaviour of exten-
sions in Proposition 4.7.12, with the 21 automorphism of L3(4) corresponding
to the 23 automorphism of A6, we find that (3·)A6.23

∼= (3·)M10 < (6·)L3(4).21

in all occurrences of either of these subgroups in almost simple extensions of
L6(p) and U6(p). So (3·)A6.23 is never S1-maximal in such extensions. How-
ever, once again, the extension (3·)A6.22

∼= (3·)PGL2(9) is not contained in
any almost simple extension of (6·)L3(4).

Finally, computer calculations (file containmentsd6) show that U4(3) has
11 classes of subgroups isomorphic to A6. Six of these classes have as inverse
image in 61

·U4(3) a group with the structure 2 × 3·A6 that is absolutely irre-
ducible in the 6-dimensional representation of 61

·U4(3). Of these 6 classes, four
have images that are self-normalising in Aut(61

·U4(3)), and two have normalis-
ers of image isomorphic to S6. So, using Proposition 4.7.16, we find no further
instances of extensions of 3·A6 being not S1-maximal.

So the groups H with H < K for some K, as in the proposition state-
ment, are precisely those isomorphic to A6, A6 :21 or A6 :23 which, according
to Proposition 4.7.8, correspond to those listed in its conclusion.

We remind the reader that our overall conclusions on which groups are
maximal amongst the S1-subgroups of Ω and its extensions are presented in
Section 4.10.

Dimension 6, Indicator −. By Theorem 4.3.3, the quasisimple groups to
consider are 2·A5 (characteristic not 2 or 5); 2·L3(2) (characteristic not 2 or
7); L2(13) (characteristic 2 only); 2·L2(13) (characteristic not 2 or 13); 2·A7

(characteristic 3 only); U3(3) (characteristic not 3); J2 (characteristic 2 only);
and 2·J2 (characteristic not 2).
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Proposition 4.8.13 Let Ω � G � Aut Ω, with Ω = S6(q). Let H and K be
distinct S1-subgroups of G such that HΩ = KΩ = G, with H = NG(H) and
K = NG(K). Assume that H∞ = (2·)L3(2). There is a containment H < K if
and only if K = (2·)A7 and G = S6(9).

Proof We consider the candidate groups K in turn. Lagrange’s theorem elim-
inates (2·)A5 and (2·)L2(13), and computer calculations (file containmentsd6)
show that 2·L3(2) �< U3(3) or 2·J2. Note that this calculation makes use of the
maximal subgroups of J2, which are determined in [24].

The behaviour ofH in PCSp6(q) is described in Proposition 4.5.22, of (2·)A7

in PCSp6(q) in Proposition 4.5.24, and of both in AutΩ in Theorem 4.7.17. We
see that 2·A7 only arises as a subgroup of Sp6(9). From [57] we find that the
restriction of this representation of 2·A7 to 2·L3(2) is absolutely irreducible, so
we have the containment described in the proposition but, since L3(2).2 is not
a subgroup of A7.2, it does not extend to (2·)L3(2).2.

Proposition 4.8.14 Let Ω � G � Aut Ω, with Ω = S6(q). Let H and K be
distinct S1-subgroups of G such that HΩ = KΩ = G, with H = NG(H) and
K = NG(K). Assume that H∞ = U3(3). There is a containment H < K if and
only if K∞ = 2·J2 and either p ≡ ±19,±29 (mod 60) and G = Ω; or q = 5.

Proof Lagrange’s theorem eliminates all possibilities for K except (2·)J2. The
behaviour of H is described in Proposition 4.5.25, and of 2·J2 in Proposi-
tion 4.5.26: note that 2·J2 is scalar-normalising in CSp6(p) except when p = 5.

We find in [12, 57] that in characteristic not 3 the smallest degree of a non-
trivial representation of U3(3) is 6, and that J2 has a unique class of subgroups
U3(3) [24]. Since the Schur multiplier of U3(3) is trivial, it follows that there
is a containment U3(3) < 2·J2. When p ≡ ±2 (mod 5), the group U3(3) is
a subgroup of S6(p) but (2·)J2 �� S6(p), so this containment is only relevant
when p ≡ ±1 (mod 5) or p = 5. Furthermore, when p = 2 or p ≡ ±1 (mod 12),
U3(3).2 < S6(p), but U3(3).2 is not a subgroup of 2·J2 ([12] or [24]).

If p ≡ ±19,±29 (mod 60) or p = 5, then U3(3) is not S1-maximal in S6(p).
However, U3(3).2 is S1-maximal in PCSp6(p) when p ≡ ±19,±29 (mod 60).
There is a containment U3(3).2 < (2·)J2.2 < PCSp6(5).

Proposition 4.8.15 Let Ω � G � Aut Ω, with Ω = S6(q). Let H and K be
distinct S1-subgroups of G such that HΩ = KΩ = G, with H = NG(H) and
K = NG(K). If H < K then H and K are described in Proposition 4.8.13 or
4.8.14.

Proof By Theorem 4.3.3 the remaining possibilities for the groupH are (2·)A5,
(2·)L2(13), (2·)A7 and (2·)J2.

IfH is (2·)A5 then by Lagrange’s theoremK is (2·)A7 (characteristic 3 only)



220 Groups in Class S : cross characteristic

or (2·)J2 (all characteristics). By Propositions 4.5.21 and 4.5.24 the group 2·A5

is a subgroup of Sp6(3), but 2·A7 is only a subgroup of Sp6(9). By considering
the restriction of the 6-dimensional representation of 2·J2 to the 5-elements
(see [12]), we see that 2·A5 does not occur as an irreducible subgroup of 2·J2.

By Lagrange’s theorem, H is not (2·)L2(13) or (2·)J2, and if H is (2·)A7

then K could only be (2·)J2. However, consulting [12] (or [24]), we see that
(2·)J2 does not have (2·)A7 as a subgroup.

4.9 Dimensions greater than 6

Now we determine all S1-maximal subgroups of the classical groups in dimen-
sions up to 12 and greater than 6. In Section 4.4 we described how to calculate
the normaliser of the quasisimple S1-subgroup in both the Ω-group and the
conformal group, and the number of Ω-classes: details of these calculations in
dimension up to six were given in Section 4.5. Then in Section 4.6 we described
how to calculate the action on the Ω-classes of field and graph automorphisms,
and in Section 4.7 we carried out these calculations in detail in dimension up to
6. Finally, in Section 4.8 we analysed containments between the S1-subgroups,
ultimately determining all S1-maximal subgroups in dimensions up to 6. Now
that we have acquainted ourselves with the techniques necessary to solve the
various aspects of this analysis, it becomes more efficient to carry them out
together for the candidates in each case and each dimension.

Information on candidates is from Theorem 4.3.3, [12] and [57]. Information
on containments can usually be determined relatively easily from the lists of
maximal subgroups and the character tables in [12, 57].

We saw in the discussion immediately before Lemma 4.6.1 that we are only
interested in describing the class stabilisers modulo conjugacy in Out Ω. From
now on, we shall simply describe the class stabilisers of the groups G as specific
subgroups of Out Ω. This really means that the stabiliser of the class of G is a
conjugate of the specified subgroup in Out Ω or, equivalently, that the Ω-class
of some Out Ω-conjugate of G is stabilised by the specified subgroup.

4.9.1 Cases L and U

In this subsection we determine the S1-maximal subgroups of the linear and
unitary groups in dimensions 7 to 12: recall that justifications of our method,
and detailed versions of similar calculations, can be found in Sections 4.4 to
4.8. The reader may wish to recall our notation developed in Section 1.7 for
the outer automorphism groups of the linear and unitary groups. Recall that
representations with Frobenius-Schur indicator ◦ always occur in dual pairs.
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Dimension 7. We now determine the S1-maximal subgroups of SL±
7 (q). By

Theorem 4.3.3, the only quasisimple candidate is U3(3) with p �= 2, 3.

Proposition 4.9.1 Let Ω = SL±
7 (q), and let G = U3(3) be an S1-subgroup of

Ω. Then NΩ(G)=G, with class stabiliser 〈γ〉. If p≡1 (mod 4) then Ω=SL7(p).
If p ≡ 3 (mod 4) then p > 3 and Ω = SU7(p). The group G is S1-maximal,
there is a single Aut Ω-class of such groups G, and for no other q are there
S1-subgroups of L±

7 (q) isomorphic to G.

Proof The congruences on q follow from the character ring given in The-
orem 4.3.3. Also by Theorem 4.3.3, there are two dual representations, inter-
changed by the unique outer automorphism of G, so the other claims follow.

Dimension 8. We now determine the S1-maximal subgroups of SL±
8 (q). By

Theorem 4.3.3, the only quasisimple candidate is G = 41
·L3(4) with p �= 2, but

it is a complicated one!

Proposition 4.9.2 Let Ω = SL±
8 (q), let G = (41

·)L3(4) be an S1-subgroup
of Ω, and let S = NΩ(G). If p ≡ 1, 5, 9 (mod 20) then the group Ω = SL8(p), if
p ≡ 11, 19 (mod 20) then Ω = SU8(p), and if p ≡ ±2 (mod 5) then p �= 2 and
Ω = SL8(p2).

If Ω = SL8(q) and q ≡ 1 (mod 16) then S = (41
·)L3(4).23. If Ω = SU8(q)

and q ≡ 15 (mod 16) then S = (41
·)L3(4).23. Otherwise S = G.

If q = 5 then the class stabiliser is 〈δ2, γ〉, with δ2 inducing the 23 automor-
phism of G and γ inducing the 21 automorphism on one of the two Ω-classes
and the 22 automorphism on the other.

If S = (41
·)L3(4).23 and q = p then the class stabiliser is trivial. Otherwise,

if q = p �= 5 then the class stabiliser is 〈δd/2〉, inducing 23 on G.
If q = p2 and p ≡ 1 (mod 8) then the class stabiliser is 〈φγ〉. If q = p2

and p ≡ 5 (mod 8) then the class stabiliser is 〈φγ, δ4〉, with δ4 inducing the 23

automorphism and φγ the 21 or the 22. If q = p2 and p ≡ 7 (mod 8) then the
class stabiliser is 〈φ〉. If q = p2 and p ≡ 3 (mod 8), then the class stabiliser is
〈φ, δ4〉, with δ4 inducing the 23 automorphism and φ the 21 or the 22.

The group S is S1-maximal, there is a single Aut Ω-class of such groups G,
and for no other q are there S1-subgroups L3(4) of SL±

8 (q).

Proof By Theorem 4.3.3, there are four representations except in characteristic
5, when there are just two, so let us first consider characteristic 5. Then, by
Theorem 4.3.3, the group G < L8(5), and there are two dual representations.
The 23 automorphism stabilises the representations, and they are interchanged
by the 21 and 22 automorphisms, so there is a single Aut Ω-class of groups G.
From [57] we find that the character values on elements of 41

·L3(4).23\41
·L3(4)

all lie in the same field as those of 41
·L3(4), so G.23 < PGL8(5), but the
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character value on g in Class 2D is 2, so its eigenvalues are 15,−13 and det g =
−1. Since there is no primitive 16th root of unity in F5, there is no isoclinic
extension of G contained in SL8(5), so there are two Ω-classes with NΩ(G) = G,
both stabilised by δ2. A Magma calculation (file 4l34d8calc) shows that γδ2

induces the 21 (or the 22) automorphism of G, so the class stabiliser is 〈δ2, γ〉.
For all other p, the congruences on q for Ω follow from the character ring

given in Theorem 4.3.3. There are two dual pairs of representations, all of
which are stabilised by the 23 automorphism of G, whereas the 21 and 22

automorphisms interchange the representations in pairs. As in the case p = 5,
we find from [12, 57] that 41

·L3(4).23 < GL±
8 (q) (with q = p or p2), and

that elements outside of 41
·L3(4) have determinant −1. If q ≡ 1 (mod 16) or

15 (mod 16) respectively in the linear and unitary cases, then we can use scalar
elements of order 16 to construct an isoclinic subgroup 41

·L3(4).2−3 of SL±
8 (q).

Otherwise SL±
8 (q) contains no subgroup of quasishape [[41

·L3(4).23]] and the
class of subgroups is stabilised by δd/2.

The pairs interchanged by the 21 and 22 automorphisms are not dual pairs,
so if q = p then the class stabiliser contains no other elements.

It remains to analyse the effect of φ when G < L8(p2). First suppose that
p ≡ 1 (mod 4). Then δφγ = δ−1 when p ≡ 1 (mod 8), whilst δφγ = δ3 when
p ≡ 5 (mod 8), and in either case we can apply Lemma 4.6.2 with β = φγ.
Computer calculations (file 4l34d8calc) using a representation over the field
Q(i,b5) show that φγ composed with a diagonal automorphism with square
determinant normalises G and induces the 21 automorphism. So, by Lemma
4.6.2, we may assume that the class stabiliser contains φγ. As we saw earlier,
when p ≡ 5 (mod 8) it also contains δ4.

If p ≡ 3 (mod 4), then δφ = δ−1 when p ≡ 7 (mod 8), whilst δφ = δ3

when p ≡ 3 (mod 8), and we can apply Lemma 4.6.2 with β = φ. The com-
puter calculations show that φ composed with a diagonal automorphism with
square determinant normalises G and induces the 21 automorphism. So, by
Lemma 4.6.2, we may assume that the class stabiliser contains φ and, when
p ≡ 3 (mod 8), it also contains δ4.

Dimension 9. We now determine the S1-maximal subgroups of SL±
9 (q). By

Theorem 4.3.3, the quasisimple candidates are 3·A6 (p �= 3, 5); 3·A7 (p = 7);
L2(19) (p �= 19); and 3·J3 (p = 2). We consider them in reverse order.

Proposition 4.9.3 Let Ω = SL±
9 (q), and let G = (3·)J3 be an S1-subgroup

of Ω. Then Ω = SU9(2) and NΩ(G) = G, with class stabiliser 〈γ〉. The group
G is S1-maximal and there is a single Aut Ω-class of such groups G.

Proof Theorem 4.3.3 shows that G < U9(2), and there are two (dual) repre-
sentations, interchanged by the unique outer automorphism of G.
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Proposition 4.9.4 Let Ω = SL±
9 (q), and let G = L2(19) be an S1-subgroup

of Ω. Then NΩ(G) = G, with class stabiliser 〈γ〉. If p ≡ 1, 4, 5, 6, 7, 9, 11, 16, 17
(mod 19) then Ω = SL9(p). Otherwise, if p �≡ 0 (mod 19) then Ω = SU9(p).

If p �= 2 then G is S1-maximal, but if p = 2 then G is not S1-maximal but
NΩ〈γ〉(G) is S1-maximal. There is a single Aut Ω-class of such groups G, and
for no other q are there S1-subgroups L2(19) of L±

9 (q).

Proof The congruences on q follow from Theorem 4.3.3. There are two dual
representations, interchanged by the outer automorphism of G, so the stabiliser
and conjugacy claims follow. We note that by [12] or [25], as abstract groups
L2(19) < 3·J3, but L2(19).2 �� 3·J3.2. By [57], the group L2(19) has no faithful
representations of degree less than 9 in characteristic 2, so this is a containment
of S1-subgroups.

Proposition 4.9.5 Let Ω = SL±
9 (q), and let G = (3·)A7 be an S1-subgroup

of Ω. Then Ω = SL9(7), and NΩ(G) = G, with class stabiliser 〈γ〉. The group
G is S1-maximal and there is a single Aut Ω-class of such groups G.

Proof Theorem 4.3.3 shows that G < L9(7), and there are two dual represen-
tations, interchanged by the outer automorphism of G.

Proposition 4.9.6 Let Ω = SL±
9 (q), and let G = (3·)A6 be an S1-subgroup

of Ω. Then S = NΩ(G) = G.23, with class stabiliser 〈γ〉. If p ≡ 1 (mod 3) then
Ω = SL9(p). If p ≡ 2 (mod 3) then p �= 5 and Ω = SU9(p). The group S is
S1-maximal, there is a single Aut Ω-class of such groups G, and for no other
q are there S1-subgroups of L±

9 (q) isomorphic to G.

Proof From Theorem 4.3.3 we get the congruences on q, and that there are
two dual representations, stabilised by the 23 automorphism and interchanged
by the 21 and 22 automorphisms of G. By [12, 57], the character values of the
representation of 3·A6.23 all lie in the character ring of (3·)A6, so 3·A6.23 is a
subgroup of GL±

9 (p). Considering g in Class 4C, we see that g has trace 1, and
squares to an element of trace 1. So the element g has determinant 1 and S is
as given. Also, γ induces the 21 and 22 automorphisms. Since A6.23 �� S7 (see
[12]), the containment of G in (3·)A7 when p = 7 is not relevant. Similarly, J3

has a subgroup (3×A6):22 (see [12, 25]), but none isomorphic to A6.23.

Dimension 10. We now determine the S1-maximal subgroups of SL±
10(q). By

Theorem 4.3.3, the quasisimple candidates are A7 (p �= 2, 7); 2·L2(19) (p �=
2, 19); M11 (p �= 2); 2·L3(4) (p �= 2, 7); U4(2) (p �= 2, 3); 2·M12 (p �= 2); M22

(p = 2); and 2·M22 (p �= 2, 7). We consider them in reverse order.

Proposition 4.9.7 Let Ω = SL±
10(q), let G = ((2, q − 1)·)M22 be an S1-

subgroup of Ω, and let S = NΩ(G). If p ≡ 1, 2, 4 (mod 7) then Ω = SL10(p),
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and if p ≡ 3, 5, 6 (mod 7) then Ω = SU10(p). If p ≡ 3 (mod 4) in Case L, or
p ≡ 1 (mod 4) in Case U, then S = G, with class stabiliser 〈δ5〉; otherwise,
S = G.2, with trivial class stabiliser. The group S is S1-maximal, there is a
single Aut Ω-class of such groups G, and for no other q are there S1-subgroups
of L±

10(q) isomorphic to G.

Proof From Theorem 4.3.3 we get the congruences on p for Ω, and that there
are two dual representations, both stabilised by the unique outer automorphism
of G. Thus, there are two C-classes of groups G and one AutΩ-class. If p = 2,
then the claims follow easily from [57], so suppose that p > 2.

From [12, 57] we find that that the character values of these representations
on the group 2·M22.2 lie in the same field as the character values on 2·M22

itself, so 2·M22.2 < GL±
10(p). Furthermore, the character value on an element g

in class 2B is 4, so its eigenvalues are 17,−13 and hence det g = −1.
When p ≡ 1 (mod 4) in Case L, or p ≡ 3 (mod 4) in Case U, there is a

scalar element of GL±
10(p) of order 4 and determinant −1, which can be used

to construct an isoclinic subgroup 2·M22.2− of SL±
10(p). Otherwise, 2·M22 is

scalar-normalising in SL±
10(p).

Proposition 4.9.8 Let Ω = SL±
10(q), let G = (2·)M12 be an S1-subgroup of

Ω, and let S = NΩ(G). If p ≡ 1, 3 (mod 8) then the group Ω = SL10(p), and
if p ≡ 5, 7 (mod 8) then Ω = SU10(p). If p ≡ ±1 (mod 8) then S = G.2, with
trivial class stabiliser. If p ≡ ±3 (mod 8) then S = G, with class stabiliser 〈δ5〉.
The group S is S1-maximal, there is a single Aut Ω-class of such groups G,
and for no other q are there S1-subgroups of L±

10(q) isomorphic to G.

Proof From Theorem 4.3.3 we get the congruences on p for Ω, and that there
are two dual representations, both stabilised by the unique outer automorphism
of G. Thus, there are two C-classes of groups G and one AutΩ-class. From [12,
57] we find that the character values of these representations of 2·M12.2 lie in
the same field as the character values on 2·M12 itself, so 2·M12.2 < GL±

10(p).
Furthermore, the character value on g ∈ 2·M12.2 \ 2·M12 in class 2C is 0, so its
eigenvalues are 15,−15 and hence det g = −1.

When p ≡ 1 (mod 8) in Case L, or p ≡ 7 (mod 8) in Case U, there is a
scalar element of GL±

10(p) of order 4 and determinant −1, which can be used
to construct an isoclinic subgroup 2·M12.2− of SL±

10(p). Otherwise, no such
subgroup exists.

The group (2·)M12 is not a subgroup of (2·)M22, by [12].

Proposition 4.9.9 Let Ω = SL±
10(q), and let G = U4(2) be an S1-subgroup

of Ω. Then NΩ(G) = G, with class stabiliser 〈γ〉. If p ≡ 1 (mod 3) then the
group Ω = SL10(p), and if p ≡ 2 (mod 3) then p �= 2 and Ω = SU10(p). The
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group G is S1-maximal, there is a single Aut Ω-class of such groups G, and for
no other q are there S1-subgroups of L±

10(q) isomorphic to G.

Proof From Theorem 4.3.3 we get the congruences on p, and that there are
two dual representations, interchanged by the unique outer automorphism of
G. Computer calculations (file u42d10calc) over the field Q(z3) show that γ
induces the outer automorphism of G composed with a diagonal automorphism
with determinant a square.

Proposition 4.9.10 Let Ω = SL±
10(q), let G = (2·)L3(4) be an S1-subgroup

of Ω, and let S = NΩ(G). If p ≡ 1, 2, 4 (mod 7) then p �= 2 and Ω = SL10(p),
and if p ≡ 3, 5, 6 (mod 7) then Ω = SU10(p).

If p ≡ 1 (mod 8) in Case L, or p ≡ 7 (mod 8) in Case U, then S = G.22,
with class stabiliser 〈γ〉. If p ≡ 5 (mod 8) in Case L, or p ≡ 3 (mod 8) in Case
U, then S = G.22, with class stabiliser 〈γδ〉.

Otherwise, S = G with class stabiliser 〈γ, δ5〉. The automorphism δ5 induces
the 22 automorphism of G. The automorphism γ induces the 21 automorphism
of G if p ≡ ±3 (mod 8), and the 2122 automorphism of G if p ≡ ±1 (mod 8).

If K � Ω〈δ5〉 then NΩK(G) is not S1-maximal, but otherwise NΩK(G) is
S1-maximal. There is a single Aut Ω-class of such groups G, and for no other
q are there S1-subgroups of L±

10(q) isomorphic to G.

Proof From Theorem 4.3.3, we get the congruences on p for Ω, and that there
are two dual representations, interchanged by the 21 and 23 automorphisms of
G and stabilised by the 22 automorphism.

From [12, 57] we find that the character value of an element g in class 2C
is 4, so its eigenvalues are 17,−13 and hence det g = −1. When p ≡ 1 (mod 4)
in Case L, or p ≡ 3 (mod 4) in Case U, there is a scalar element of GL±

10(p)
of order 4 and determinant −1, which can be used to construct an isoclinic
subgroup 2·L3(4).2−2 of SL±

10(p). Otherwise, L3(4) is self-normalising in Ω, and
the class stabiliser contains δ5, inducing the 22 automorphism of G.

Computer calculations (file 2l34d10calc) over Q(b7) show that γ induces
the 2122 automorphism of G composed with a diagonal automorphism with de-
terminant twice a square, which is a square in F×

p if and only if p ≡ ±1 (mod 8).
By [12], the group 2·L3(4).22 is a subgroup of 2·M22.2. By character values

in [12, 57], this is a containment of S1-subgroups. Since Out M22 = 2, there is
no containment of other extensions of G.

Proposition 4.9.11 No extension of M11 is S1-maximal in any extension
of L10(q) or U10(q).

Proof By [12] there is an abstract containment M11 < 2·M12, and character
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values on elements of order 4 show that this is a containment of S1-subgroups
in all characteristics [12, 57]. Since Out M11 is trivial, we are done.

Proposition 4.9.12 Let Ω = SL±
10(q), and let G = (2·)L2(19) be an S1-

subgroup of Ω. Then NΩ(G) = G. If p ≡ 1, 4, 5, 6, 7, 9, 11, 16, 17 (mod 19) then
Ω = SL10(p), and if p ≡ 2, 3, 8, 10, 12, 13, 14, 15, 18 (mod 19) then p �= 2 and
Ω = SU10(p). The class stabiliser is 〈γ〉 for p ≡ ±1 (mod 8), and 〈γδ〉 for
p ≡ ±3 (mod 8). The group G is S1-maximal, there is a single Aut Ω-class of
such groups G, and for no other q are there S1-subgroups L2(19) of L±

10(q).

Proof From Theorem 4.3.3 we get the congruences on p for Ω, and that
there are two dual representations, interchanged by the unique outer auto-
morphism of G. Computer calculations (file sl219d10calc) over Q(b19) show
that γ induces the outer automorphism of G composed with a diagonal auto-
morphism with determinant twice a square, which is a square in F×

p if and only
if p ≡ 1, 7 (mod 8).

Proposition 4.9.13 Let Ω = SL±
10(q), and let G = A7 be an S1-subgroup of

Ω. Then NΩ(G) = G, with class stabiliser 〈γ〉. If p ≡ 1, 2, 4 (mod 7) then p �= 2
and Ω = SL10(p), and if p ≡ 3, 5, 6 (mod 7) then Ω = SU10(p). The group G is
not S1-maximal, but NΩ〈γ〉(G) is S1-maximal. There is a single Aut Ω-class
of such groups G, and for no other q are there S1-subgroups A7 of L±

10(q).

Proof From Theorem 4.3.3 we get the congruences on q, and that there are two
dual representations, interchanged by the outer automorphism of G. Computer
calculations (file a7d10calc) over Q(b7) show that γ induces the outer auto-
morphism of G composed with a diagonal automorphism with determinant a
square. Note by [12, 57], there is a containment of S1-subgroups A7 < 2·M22 in
all characteristics, but A7.2 ��2·M22.2. Also, A7 is not a subgroup of L3(4).

Dimension 11. We now determine the S1-maximal subgroups of SL±
11(q). By

Theorem 4.3.3, the quasisimple candidates are L2(23) (p �= 23); M23 (p = 2);
U5(2) (p �= 2, 3); and M24 (p = 2). We consider them in reverse order.

Proposition 4.9.14 Let Ω = SL±
11(q), and let G = M24 be an S1-subgroup of

Ω. Then Ω = SL11(2), with NΩ(G) = G and trivial class stabiliser. The group
G is S1-maximal and there is a single Aut Ω-class of such groups G.

Proof We see from Theorem 4.3.3 that Ω = SL11(2), and there are two dual
representations. Since OutG is trivial, there are two C-classes of groups G and
one Aut Ω-class.

Proposition 4.9.15 Let Ω = SL±
11(q), and let G = U5(2) be an S1-subgroup

of Ω. Then NΩ(G) = G, with class stabiliser 〈γ〉. If p ≡ 1 (mod 3) then the
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group Ω = SL11(p), and if p ≡ 2 (mod 3) then p �= 2 and Ω = SU11(p). The
group G is S1-maximal, there is a single Aut Ω-class of such groups G, and for
no other q are there S1-subgroups of L±

11(q) isomorphic to G.

Proof From Theorem 4.3.3, we get the congruences on p, and that there are
two dual representations, interchanged by the outer automorphism of G.

Proposition 4.9.16 No extension of M23 is S1-maximal in any extension
of L11(q) or U11(q).

Proof The group M23 only arises in characteristic 2. There is a containment
M23 < M24, which is a containment of S1-subgroups by [57]. Since Out M23 is
trivial, no extension is S1-maximal.

Proposition 4.9.17 Let Ω = SL±
11(q), and let G = L2(23) be an S1-subgroup

of Ω. Then NΩ(G) = G, with class stabiliser 〈γ〉. If p ≡ 1, 2, 3, 4, 6, 8, 9, 12,
13, 16, 18 (mod 23) then Ω = SL11(p), and if p ≡ 5, 7, 10, 11, 14, 15, 17, 19, 20,
21, 22 (mod 23) then Ω = SU11(p). If p �= 2 then G is S1-maximal. If p = 2
then G is not S1-maximal in Ω but NΩ〈γ〉(G) is S1-maximal. There is a single
Aut Ω-class of such groups G, and for no other q are there S1-subgroups of
L±

11(q) isomorphic to G.

Proof From Theorem 4.3.3, we get the congruences on p, and that there are
two dual representations, interchanged by the unique outer automorphism of
G. By [12], the group M24 has a subgroup L2(23). This is a containment of
S1-subgroups by [57], but does not extend to L2(23).2.

Dimension 12. We now determine the S1-maximal subgroups of SL±
12(q). By

Theorem 4.3.3, the quasisimple candidates are 6·A6 (p �= 2, 3, 5); 6·A7 (p = 5);
2·L2(23) (p �= 2, 23); 122

·L3(4) (p = 7); 3·Suz (p = 2); and 6·Suz (p �= 2, 3). We
consider them in reverse order.

Proposition 4.9.18 Let Ω = SL±
12(q), and let G = (6·)Suz (or (3·)Suz when

p = 2) be an S1-subgroup of Ω. Then NΩ(G) = G, with class stabiliser 〈γ〉. If
p ≡ 1 (mod 3) then Ω = SL12(p), and if p ≡ 2 (mod 3) then Ω = SU12(p). The
group G is S1-maximal, there is a single Aut Ω-class of such groups G, and for
no other q are there S1-subgroups of L±

12(q) isomorphic to G.

Proof From Theorem 4.3.3, we get the congruences on p for Ω, and that there
are two dual representations interchanged by the outer automorphism of G. A
computer calculation (file 6suzd12calc) in SL12(K) with K := Q(z3) shows
that γ induces the outer automorphism of 6·Suz composed with a diagonal
automorphism with determinant a square.
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Proposition 4.9.19 Let Ω = SL±
12(q), and let G = (122

·)L3(4) be an S1-
subgroup of Ω. Then Ω = SL12(49) and NΩ(G) = G. The class stabiliser is
〈φ, γ〉, and φ induces the 21 automorphism of G, whilst γ induces the 23. The
group G is S1-maximal, and there is a single Aut Ω-class of such groups G.

Proof By Theorem 4.3.3, the group G < L12(49). By [57], there are four
representations, permuted transitively by OutG. A computer calculation (file
12l34d12calc) in SL12(49) establishes the remaining claims.

Proposition 4.9.20 Let Ω = SL±
12(q), and let G = (2·)L2(23) be an S1-

subgroup of Ω. Then NΩ(G) = G. If p is a non-zero square modulo 23 then
p �= 2 and Ω = SL12(p), and if p is a non-square modulo 23 then Ω = SU12(p).
The class stabiliser is 〈γ〉 if p ≡ ±1 (mod 8), and 〈γδ〉 if p ≡ ±3 (mod 8). The
group G is S1-maximal, there is a single Aut Ω-class of such groups G, and for
no other q are there S1-subgroups L2(23) of L±

12(q).

Proof From Theorem 4.3.3 we get the congruences on p for Ω, and that there
are two dual representations, interchanged by the unique outer automorphism
of G. Computer calculations (file sl223d12calc) in SL12(K) with K := Q(b23)
show that γ induces the outer automorphism of G composed with a diagonal
automorphism with determinant a square times 2, which is a square in F×

p if
and only if p ≡ ±1 (mod 8).

Proposition 4.9.21 Let Ω = SL±
12(q), and let G = (6·)A7 be an S1-subgroup

of Ω. Then Ω = SU12(5), and NΩ(G) = G, with class stabiliser 〈γ〉. The group
G is S1-maximal, and there is a single Aut Ω-class of such groups G.

Proof It follows from Theorem 4.3.3 that Ω = SU12(5), and that there are
two dual representations interchanged by the outer automorphism of G. A
computer calculation (file 6a7d12f5calc) in SU12(5) shows that γ induces the
outer automorphism. We see by considering character values on elements of
order 7 [12, 57] that the restriction of the 12-dimensional representation of 6·Suz
to 6·A7 in characteristic 5 is reducible, so there is no containment here.

We finish with 6·A6, which is one of the most complicated examples in the
book! As we shall see in Chapter 6, it is also difficult to determine exactly which
extensions of G are maximal in the corresponding extensions of SL±

12(q).

Proposition 4.9.22 Let Ω = SL±
12(q), and let G = (6·)A6 be an S1-subgroup

of Ω. Then NΩ(G) = G. If p ≡ 1, 4 (mod 15) then Ω = SL12(p), if p ≡ 11
or 14 (mod 15) then Ω = SU12(p), and if p ≡ ±2 (mod 5) then p > 3 and
Ω = SL12(p2).

If p ≡ ±1,±9 (mod 40) then the class stabiliser is 〈γ〉, inducing the 22 au-
tomorphism of G. If p ≡ ±11,±19 (mod 40) then the class stabiliser is 〈γδ〉,
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inducing the 22 automorphism of G. Otherwise, the prime p ≡ ±2 (mod 5), and
if p ≡ ±5 (mod 12) then the class stabiliser is 〈γ, φ〉, whilst if p ≡ ±1 (mod 12)
then the class stabiliser is 〈γ, φδ6〉. In these two cases γ induces the 22 auto-
morphism of G, whilst φ and φδ6 induce the 21 automorphism if p ≡ 2 (mod 3)
and the 23 automorphism if p ≡ 1 (mod 3).

If q = 49 and K � 〈φ〉, then NΩK(G) is not S1-maximal. Otherwise,
NΩK(G) is S1-maximal for all subgroups K of the class stabiliser of G. There
is a single Aut Ω-class of such groups G, and for no other q are there S1-
subgroups of L±

12(q) isomorphic to G.

Proof The congruences on p for Ω follow from the character ring given in
Theorem 4.3.3. By [12], there are four representations permuted transitively by
the outer automorphisms of G, and γ permutes them in the same way as the
22 automorphism of G.

Computer calculations (file 6a6d12calc) in SL12(K) with K := Q(z3,b5)
show that the 22 automorphism of 6·A6 is induced by γ composed with a
diagonal automorphism of SL12(K) with determinant a square times 2. This
determinant maps onto a square in F×

p if and only if p ≡ ±1 (mod 8) and so,
if p ≡ ±1 (mod 5), then the class stabiliser is as given.

Suppose then that p ≡ ±2 (mod 5). So 6·A6 < SL12(p2) and, since 2 is a
square in F×

p2 for all p, we may assume that the class stabiliser contains γ. We
find from [12] that φ induces the 21 automorphism of G when p ≡ 2 (mod 3)
and the 23 automorphism when p ≡ 1 (mod 3). In either case the class stabiliser
must be conjugate to either 〈φ, γ〉 or 〈φδ6, γ〉. We observe also that φ and φγ

respectively centralise δ3 when p ≡ 1 (mod 4) and p ≡ 3 (mod 4), and to
decide which is the correct class stabiliser it suffices to decide whether the
class stabiliser contains φ or φδ6 when p ≡ 1 (mod 4), and whether the class
stabiliser contains φγ or φγδ6 when p ≡ 3 (mod 4). This involves determining
whether various elements in K map onto a fourth power in F×

p2 .
Let α1 and α2 be the automorphisms of K mapping z3 �→ z3, r5 �→ −r5, and

z3 �→ z3
−1, r5 �→ −r5, respectively. We use α1 and α2 also to denote the induced

automorphisms of SL12(K), and we use γ to denote the duality automorphism
of SL12(K). So γ on SL12(K) induces γ on SL12(p2), whereas α1 and α2 on
SL12(K) induce φ on SL12(p2) when p ≡ 1, 2 (mod 3), respectively. We shall
need to consider the four possible values of p (mod 12) separately.

We find by computer calculation (file 6a6d12calc) that:

(i) 21 is induced by α2 composed with a diagonal automorphism of SL12(K)
of determinant v2, where −v is a square in K.

(ii) 21 is induced by α1γ composed with a diagonal automorphism of deter-
minant a fourth power in K.
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It follows from (i) that φ is in the class stabiliser when p ≡ 5 (mod 12), and
hence the full class stabiliser is 〈γ, φ〉 in this case. Similarly, it follows from (ii)
that the class stabiliser is 〈γ, φ〉 when p ≡ 7 (mod 12).

So it remains to consider the cases p ≡ ±1 (mod 12). When p ≡ 1 (mod 12),
φ is induced by (α1γ)γ and when p ≡ −1 (mod 12) φγ is induced by α2γ, so
in both cases we need to re-examine the automorphism of 6·A6 < SL12(K)
induced by γ. We observed in the second paragraph of this proof that 22 on
6·A6 is induced by γ composed with a diagonal automorphism of which the
determinant has the form 2w2 for a certain w ∈ K. So it follows from (ii)
(when p ≡ 1 (mod 12)) and from (i) (when p ≡ −1 (mod 12)) that the class
stabiliser is 〈γ, φ〉 if

√
2w is a square in F×

p2 , and 〈γ, φδ6〉 otherwise. Hence
we need to decide for which primes p the algebraic number

√
2w reduces to a

square in F×
p2 . (This does not depend on our choice of r2, z3 and r5 in F×

p2 .)
The element w is messy, but with a little experimenting, we found an element

z ∈ K with minimal polynomial x4 + 10x3 + 35x2 + 50x + 100 such that 2zw
is a square in K. Since 2 is a square in F×

p2 , it is sufficient to decide when
√

2z
is a square in F×

p2 . In fact z = (−√−15 + 2
√

5− 5)/2.
In general, y ∈ F×

p2 is a square in F×
p2 if and only if yy is a square in F×

p ,
where y = yp. Thus if p ≡ ±1 (mod 8) then

√
2 ∈ F×

p , and so
√

2 is a square in
F×

p2 . If p ≡ ±3 (mod 8) then t :=
√

2 ∈ F×
p2 \F×

p , so that t = −√2, and tt = −2,
which is a square when p ≡ 3 (mod 8), but not when p ≡ 5 (mod 8). So

√
2 is

a square in F×
p2 except when p ≡ 5 (mod 8). The images of z under 〈α1, α2〉 are

the p-modular reductions of the four numbers:

1
2 (±

√
5
√−3± 2

√
5− 5).

If
√

5,
√−3 ∈ F×

p , then all the values of z are in F×
p , and so z is a square

in F×
p2 . If

√
5 ∈ F×

p but
√−3 /∈ F×

p , then zz = 10(1±√
5

2 )2, which is a square
in F×

p if and only if 2 is a square in F×
p . If

√
5 /∈ Fp but

√−3 ∈ F×
p , so that

p ≡ 1 (mod 6), then zz = 101±√−3
2 is a square in F×

p if precisely one of 2 and
1±√−3

2 is a square in F×
p . Since (1±√−3

2 )3 = −1, the latter is a square if and only
if p ≡ 1 (mod 4), so that zz is a square in F×

p if and only if p ≡ 5, 7 (mod 8).
The final case is when

√
5,
√−3 /∈ Fp, from which it follows that

√
5
√−3 ∈ F×

p .

We must determine when zz = 5
2 (−1±√

5
√−3) = −(−5±√

5
√−3

2 )2 is a square
in F×

p , which is the case if and only if −1 is a square in F×
p , that is when

p ≡ 1 (mod 4).
Putting all this information together, we find that w is a square in F×

p2 if
and only if

√
2z is a square in F×

p2 , which is the case if and only if

p ≡ 1, 7, 17, 19, 29, 31, 41, 49, 71, 79, 89, 91, 101, 103, 113, 119 (mod 120).
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Since none of these values satisfy p ≡ 2, 3 (mod 5) and p ≡ 1, 11 (mod 12), we
conclude that the class stabiliser is 〈γ, φδ6〉 in these cases.

From the character tables in [12] we find that the character values of el-
ements of order 5 in the 12-dimensional representations of 6·Suz are 2 and
−3, whereas those on the 12-dimensional representation of 6·A6 involve the
irrationality b5, so there is no containment of S1-subgroups 6·A6 < 6·Suz.

By Proposition 4.5.3 (iii), there is an abstract containment of A6 in L3(4),
which by Theorem 4.3.3 is only relevant when q = 49. Using computer calcula-
tions (file 12l34d12calc), we find that the inverse images in 122

·L3(4) of the
three classes of subgroups of L3(4) isomorphic to A6 are 2 × 6·A6 twice and
4×3·A6 once. From Theorem 4.7.1, all three of these classes are normalised by
the 21 automorphism of L3(4) (that is, the γφ automorphism), which induces
23 on A6, and one of them is normalised and the other two interchanged by the
22 ( = φ) and 23 (= γ) automorphisms of L3(4), which induce the 21 and 23

automorphisms of A6, respectively. So clearly it is the two classes of 2 × 6·A6

that are interchanged by the 22 automorphism. Hence 6·A6.23 < 122
·L3(4).21,

but 6·A6.22 �� 122
·L3(4).23 and 6·A6.21 �� 122

·L3(4).22.

4.9.2 Case S

In this subsection we calculate the S1-maximal subgroups of Spn(q) for n =
8, 10, 12: recall that justifications of our method, and detailed versions of similar
calculations, can be found in Sections 4.4 to 4.8.

In Case S in dimension not 4, the only outer automorphisms are the diagonal
automorphism δ, of order (q − 1, 2), and the field automorphism φ, of order e,
where q = pe.

Dimension 8. We now determine the S1-maximal subgroups of Sp8(q). By
Theorem 4.3.3, the quasisimple candidates are 2·L3(2) (p �= 2, 3, 7); 2·A6 (p �=
2, 3, 5); L2(17) (p = 2); 2·L2(17) (p �= 2, 17); and A10 (p = 2). We consider
them in reverse order.

Proposition 4.9.23 Let Ω = Sp8(q), and let G = A10 be an S1-subgroup
of Ω. Then q = 2 and NΩ(G) = G.2, with trivial class stabiliser. The group
NΩ(G) is S1-maximal, and there is a single Aut Ω-class of such groups G.

Proof The claims are immediate from Theorem 4.3.3 and [57].

Proposition 4.9.24 Let Ω = Sp8(q), and let G = ((2, q − 1)·)L2(17) be an
S1-subgroup of Ω. Then NΩ(G) = G. If p ≡ ±1,±2,±4,±8 (mod 17) then
q = p, with trivial class stabiliser. If p ≡ ±3,±5,±6,±7 (mod 17) then q = p2,
with class stabiliser 〈φ〉. The group G is S1-maximal, there is a single Aut Ω-
class of such groups G, and for no other q are there S1-subgroups G of S8(q).
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Proof The congruences on p for q follow from Theorem 4.3.3, which also states
that there are two representations, interchanged by the outer automorphism of
G. Hence, the class stabiliser is trivial when q = p. If q = p2 then by [12] the
two representations are also interchanged by φ. Since L2(17).2\L2(17) contains
involutions, Lemma 4.6.7 implies that the class stabiliser is 〈φ〉.
Proposition 4.9.25 Let Ω = Sp8(q), let G = (2·)A6 be an S1-subgroup of Ω,
and let S = NΩ(G). If p ≡ ±1 (mod 20) then q = p, with S = G.22 and trivial
class stabiliser. If p ≡ ±9 (mod 20) then q = p, with S = G and class stabiliser
〈δ〉. If p ≡ ±2 (mod 5) then q = p2 �= 4, 9, with S = G and class stabiliser
〈δ, φ〉. If δ stabilises the class of G then δ induces the 22 automorphism of G,
whilst if q = p2 then φ induces the 21 automorphism of G. The group S is
S1-maximal, there is a single Aut Ω-class of such groups G, and for no other
q are there S1-subgroups of S8(q) isomorphic to G.

Proof The congruences on p for q follow from Theorem 4.3.3, which also states
that there are two representations, stabilised by the 22 automorphism and in-
terchanged by the 21 and 23 automorphisms of G. Thus there is a unique
Aut Ω-class, and if δ stabilises the class then δ induces the 22 automorphism.

From [12] we find that elements of 2·A6.22 \ 2·A6 are isometries, but their
character values involve y20 which lies in F×

q if and only if q ≡ ±1 (mod 20), by
Lemma 4.2.1. If q = p2 then by [12] the two representations are interchanged
by φ, and the class stabiliser is 〈δ, φ〉. Since A6.21 \ A6 contains involutions,
φ induces the 21 automorphism of G. By Theorem 4.3.3, the group A10 only
arises in characteristic 2, so S is S1-maximal.

Proposition 4.9.26 Let Ω = Sp8(q), let G = (2·)L3(2) be an S1-subgroup
of Ω, and let S = NΩ(G). Then q = p and p �= 2, 3, 7. If p ≡ ±1 (mod 12) then
S = G.2, with trivial class stabiliser. If p ≡ ±5 (mod 12) then S = G, with
class stabiliser 〈δ〉. The group S is S1-maximal, there is a single Aut Ω-class
of such groups G, and for no other q are there S1-subgroups G of S8(q).

Proof By Theorem 4.3.3, q = p �= 2, 3, 7, and there is a unique representation,
so a single Aut Ω-class. From [12] we find that elements of 2·L3(2).2 \ 2·L3(2)
are isometries of the form, but their character values involve r3, which lies in
F×

p if and only if p ≡ ±1 (mod 12). By Theorem 4.3.3, the group A10 only
arises in characteristic 2, so S is S1-maximal.

Dimension 10. We now determine the S1-maximal subgroups of Sp10(q). By
Theorem 4.3.3, the quasisimple candidates are 2·A6 (p �= 2, 3); two represen-
tations of 2·L2(11), with p �= 2, 11 in the first and p �= 2, 3, 11 in the second;
and U5(2) (p �= 2). Note that the two representations of 2·L2(11) are distinct
in the sense that neither is an algebraic conjugate or dual of the other, and
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neither can be obtained from the other by applying a group automorphism. To
distinguish between them, we shall refer to them as 2·L2(11)1 and 2·L2(11)2.

Proposition 4.9.27 Let Ω = Sp10(q), let G = U5(2) be an S1-subgroup of
Ω, and let S = NΩ(G). Then q = p. If p ≡ ±1 (mod 8) then S = G.2, with
trivial class stabiliser. If p ≡ ±3 (mod 8) then S = G, with class stabiliser 〈δ〉.
The group S is S1-maximal, there is a single Aut Ω-class of such groups G,
and for no other q are there S1-subgroups of S10(q) isomorphic to G.

Proof Theorem 4.3.3 implies that q = p �= 2, and there is a single such repre-
sentation of G. From [12, 57] we find elements of G.2\G negate the fixed form.
Hence, by multiplying the outer elements by a scalar element of order 4, which
also negates the form, we obtain a representation of a group H with structure
(2 × G)·2 with H/[H,H] cyclic of order 4, which consists of isometries. We
calculate from the character tables of G.2 in [12, 57] that the character values
of this representation on elements of H \G involve r2, which lies in F×

p if and
only if p ≡ ±1 (mod 8).

Proposition 4.9.28 Let Ω = Sp10(q), let G = (2·)L2(11)1 be an S1-subgroup
of Ω, and let S = NΩ(G). Then q = p. If p ≡ ±1 (mod 8) then S = G.2, with
trivial class stabiliser. If p ≡ ±3 (mod 8) then p �= 11, with S = G and class
stabiliser 〈δ〉. The group S is S1-maximal, there is a single Aut Ω-class of such
groups G, and the only other S1-subgroups of S10(q) isomorphic to G are as
given in Proposition 4.9.29.

Proof The congruences on p for q follow from Theorem 4.3.3, which also states
that there is a unique representation of this type. From [12, 57] we find that, in
this representation of 2·L2(11).2, elements of 2·L2(11).2 \ 2·L2(11) are isome-
tries, but their character values involve r2, which lies in F×

p if and only if
p ≡ ±1 (mod 8). Since the image of 2·L2(11) in Sp10(q) has centre of order
2, but the image of the simple group U5(2) has trivial centre, there can be no
containment of 2·L2(11) in U5(2).

Proposition 4.9.29 Let Ω = Sp10(q), let G = (2·)L2(11)2 be an S1-subgroup
of Ω, and let S = NΩ(G). If p ≡ ±1 (mod 24) then q = p, with S = G.2, trivial
class stabiliser and exactly two Aut Ω-classes of groups G. If p ≡ ±11 (mod 24)
then p �= 11 and q = p, with S = G, class stabiliser 〈δ〉 and exactly two
Aut Ω-classes. If p ≡ ±5 (mod 12) then q = p2, with S = G.2, trivial class
stabiliser and a single Aut Ω-class of groups G. The group S is S1-maximal,
and the only other S1-subgroups of S10(q) isomorphic to G are those given in
Proposition 4.9.28, above.

Proof The congruences on p for q follow from Theorem 4.3.3, which also states
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that there are two representations of this type, both stabilised by the outer auto-
morphism of G. From [12, 57] we find that, in this representation of 2·L2(11).2,
elements of 2·L2(11).2 \ 2·L2(11) are all isometries, but their character val-
ues involve the irrationalities r2 and y24, which both lie in F×

p if and only if
p ≡ ±1 (mod 24).

If p ≡ ±5 (mod 12), then p2 ≡ 1 (mod 24), so G.2 < S10(p2). The two
representations are interchanged by φ, so the class stabiliser is trivial. As in the
previous proposition, there can be no containment of 2·L2(11) in U5(2).

Proposition 4.9.30 Let Ω = Sp10(q), let G = (2·)A6 be an S1-subgroup
of Ω, and let S = NΩ(G). If p ≡ ±1 (mod 16) then q = p, with S = G.22

and trivial class stabiliser. If p ≡ ±7 (mod 16) then q = p, with S = G and
class stabiliser 〈δ〉, inducing the 22 automorphism of G. If p ≡ ±3 (mod 8)
then q = p2, with p �= 3, S = G and class stabiliser 〈δ, φ〉; here δ induces the
22 automorphism of G and φ the 21. The group S is S1-maximal, there is a
single Aut Ω-class of groups G, and for no other q are there S1-subgroups A6

of S10(q).

Proof The congruences on p for q follow from Theorem 4.3.3, which also states
that there are two representations, stabilised by the 22 automorphism and inter-
changed by the 21 and 23 automorphisms of G, so there is a unique AutΩ-class.

From [12, 57] we find that elements of 2·A6.22 \ 2·A6 are isometries, but
their character values involve the irrationality y16 which, by Lemma 4.2.1, lies
in F×

q if and only if q ≡ ±1 (mod 16). If q = p2 then the two representations are
interchanged by φ [12, 57]. Since A6.21 \A6 contains involutions but A6.23 \A6

does not, φ induces the 21 automorphism of G, by Lemma 4.6.7.
Since the image of 2·A6 in Sp10(q) has centre of order 2, but the image of

U5(2) has trivial centre, there can be no containment of 2·A6 in U5(2).

Dimension 12. We now determine the S1-maximal subgroups of Sp12(q). By
Theorem 4.3.3, the quasisimple candidates are 2·L2(11) (p �= 2, 5, 11); 2·L2(13)
(p �= 2, 7, 13); L2(25) (p = 2); 2·L2(25) (p �= 2, 5); U3(4) (p �= 2); S4(5) (p = 2);
2·S4(5) (p �= 2, 5); 2·G2(4) (p �= 2); A14 (p = 2); and 2·Suz (p = 3). We consider
them in reverse order.

Proposition 4.9.31 Let Ω = Sp12(q) and let G = (2·)Suz be an S1-subgroup
of Ω. Then q = 3 and NΩ(G) = G, with class stabiliser 〈δ〉. The group G is
S1-maximal, and there is a unique Aut Ω-class of such groups G.

Proof By Theorem 4.3.3, there is a single representation and q = 3. This group
is not in [57], but the representation of 2·Suz.2 < SL12(3) is available in [111],
and we can verify in Magma, for example, that 2·Suz consists of isometries of
a symplectic form, but 2·Suz.2 does not.
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Proposition 4.9.32 Let Ω = Sp12(q), let G = A14 be an S1-subgroup of Ω,
and let S = NΩ(G). Then q = 2 and S = G.2, with trivial class stabiliser. The
group S is S1-maximal, and there is a unique Aut Ω-class of such groups G

Proof This follows from Theorem 4.3.3: there is a single representation, which
is over F2, so S = G.2 < Sp12(2) with trivial class stabiliser.

Proposition 4.9.33 Let Ω = Sp12(q), let G = (2·)G2(4) be an S1-subgroup
of Ω, and let S = NΩ(G). Then q = p. If p ≡ ±1 (mod 8) then S = G.2, with
trivial class stabiliser. If p ≡ ±3 (mod 8) then S = G, with class stabiliser 〈δ〉.
The group S is S1-maximal if p �= 3; otherwise (p = 3) no extension of G is
S1-maximal. There is a unique Aut Ω-class of such groups G, and for no other
q are there S1-subgroups of S12(q) isomorphic to G.

Proof By Theorem 4.3.3, there is a single representation and q = p �= 2.
From [12, 57], we find that the representation of 2·G2(4).2 consists of isometries,
but the character values on elements of 2·G2(4).2 \ 2·G2(4) involve r2. By [12],
the group 2·Suz.2 has a subgroup isomorphic to 2·G2(4).2, and this is a genuine
containment of S1-subgroups, because 12 is the minimal degree of a non-trivial
representation of 2·G2(4) in odd characteristic.

Proposition 4.9.34 Let Ω = Sp12(q) and let G = ((q − 1, 2)·)S4(5) be an
S1-subgroup of Ω. Then NΩ(G) = G. If p ≡ ±1 (mod 5) then q = p, with
trivial class stabiliser. If p ≡ ±2 (mod 5) then q = p2, with class stabiliser 〈φ〉.
The group G is S1-maximal, there is a unique Aut Ω-class of such groups G,
and for no other q are there S1-subgroups of S12(q) isomorphic to G.

Proof The congruences on p for q, and the fact that there are two represen-
tations, interchanged by the outer automorphism of S4(5), follow from Theo-
rem 4.3.3. If q = p2 then by [12, 57] the representations are interchanged by φ.
From [12], the coset S4(5).2 \ S4(5) contains involutions, so the class stabiliser
is 〈φ〉 by Lemma 4.6.7.

Proposition 4.9.35 No extension of U3(4) is S1-maximal in any extension
of Sp12(q).

Proof The group 2·G2(4).2 has a subgroup isomorphic to U3(4).4 by [14] (see
our Table 8.30). We see in [12, 57] that the minimal degree of a non-trivial
representation of U3(4) in odd characteristic is 12, so this is a containment of
S1-subgroups.

Proposition 4.9.36 Let Ω = Sp12(q), let G = ((2, q − 1)·)L2(25) be an S1-
subgroup of Ω, and let S = NΩ(G). Then q = p. If p ≡ ±1 (mod 5) or p = 2
then S = G.22, with trivial class stabiliser. If p ≡ ±2 (mod 5) and p �= 2 then
S = G, with class stabiliser 〈δ〉, inducing the 22 automorphism of G. The group
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S is S1-maximal if p ≡ ±2 (mod 5) and p �= 3. Otherwise, no extension of G
is S1-maximal. There is a unique Aut Ω-class of such groups G, and for no
other q are there S1-subgroups of S12(q) isomorphic to G.

Proof Theorem 4.3.3 implies the congruences on p for q, and that there are
two representations, both stabilised by the 22 outer automorphism of G, and
interchanged by the 21 and 23. When p = 2 we find that matrices lying in
L2(25).22 \L2(25) are isometries of trace zero. When p is odd, from [12, 57] we
find that, in the extension of one of these two representations to 2·L2(25).22,
elements of 2·L2(25).22 \ 2·L2(25) are isometries, but the character involves r5,
which lies in Fp if and only if p ≡ ±1 (mod 5). (For p �= 2, there is also a
representation of an isoclinic group 2·L2(25).2−2 with the same property, which
is derived from the other representation of 2·L2(25).22.)

By [12], the group 2·Suz.2 contains a subgroup isomorphic to 2·L2(25).2.
By Theorem 4.3.3, this is relevant only when p = 3, in which case this is a
genuine containment of S1-subgroups, because by [12, 57] the minimal degree
of a non-trivial representation of 2·L2(25) in characteristic not 5 is 12.

By Table 2.6, the group 2·Sp4(5) has a subgroup isomorphic to 2·L2(25).2.
If p ≡ ±2 (mod 5), then Theorem 4.3.3 implies that 2·Sp4(5) �� Sp12(p), but
for other p this is a containment of S1-subgroups, as in the previous paragraph.

Of the remaining possibilities for containments compatible with Lagrange’s
theorem, we note that all subgroups of A14 have faithful permutation actions
on at most 14 points, and that 2·G2(4) has no elements of order 24.

Proposition 4.9.37 Let Ω = Sp12(q), let G = (2·)L2(13) be an S1-subgroup
of Ω, and let S = NΩ(G). If p ≡ ±1 (mod 28) then q = p, with S = G.2,
trivial class stabiliser and exactly three Aut Ω-classes of groups G. If the prime
p ≡ ±13 (mod 28) then q = p �= 13, with S = G, class stabiliser 〈δ〉 and exactly
three Aut Ω-classes of groups G. If p ≡ ±2,±3 (mod 7) then q = p3 �= 23, with
S = G, class stabiliser 〈δ〉 and a single Aut Ω-class of groups G. The group S
is S1-maximal, and for no other q are there S1-subgroups G of S12(q).

Proof Theorem 4.3.3 implies the congruences on p for q, and that there are
three representations, all stabilised by the unique outer automorphism of G.
Thus, if q = p then there are three AutΩ-classes. From [12, 57] we find that
elements of 2·L2(13).2 \ 2·L2(13) are isometries, but the character involves y28

which, by Lemma 4.2.1, lies in Fq if and only if q ≡ ±1 (mod 28). If q = p3

then the three representations are permuted by φ, by [12, 57].
Note that, although 2·G2(4) contains SL2(13) as a subgroup, we find from

the character values of elements of order 7 in [12] that this subgroup acts
reducibly, with two components of degree 6, in the 12-dimensional irreducible
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representation of 2·G2(4). In characteristic 3, we find from [12] that the only
containment of SL2(13) in 2·Suz is via SL2(13) < 2·G2(4) < 2·Suz.

Proposition 4.9.38 Let Ω = Sp12(q), let G = (2·)L2(11) be an S1-subgroup
of Ω, and let S = NΩ(G). If p ≡ ±1 (mod 20) then q = p, with S = G.2,
trivial class stabiliser and exactly two Aut Ω-classes. If p ≡ ±9 (mod 20) then
q = p �= 11, with S = G, class stabiliser 〈δ〉, and exactly two Aut Ω-classes.
If p ≡ ±2 (mod 5) then q = p2 �= 4, with S = G, class stabiliser 〈δ〉, and
exactly one Aut Ω-class. The group S is S1-maximal and for no other q are
there S1-subgroups of S12(q) isomorphic to G.

Proof Theorem 4.3.3 implies the congruences on p for q, and that there are
two representations, both stabilised by the outer automorphism of G. Thus, if
q = p then there are two AutΩ-classes. From [12, 57] we find that elements of
2·L2(11).2 \ 2·L2(11) are isometries, but the character involves y20 which, by
Lemma 4.2.1, lies in Fq if and only if q ≡ ±1 (mod 20). If p �≡ ±1 (mod 5), then
p2 ≡ ±1 (mod 20), so the class stabiliser is again 〈δ〉, as by [12, 57] the two
representations are interchanged by φ. In characteristic 3, the group 2·L2(11) �
Sp12(9), whilst 2·Suz � Sp12(3), so there is no containment here.

4.9.3 Cases Oε

In this section we determine the S1-maximal subgroups of the orthogonal
groups in dimension 7 to 12: recall that justifications of our methods, and
detailed versions of similar calculations, can be found in Sections 4.4 to 4.8.

Since the simple orthogonal groups in dimension less than 7 are isomorphic
to other classical groups, we shall not analyse these cases. We have, however,
included them in the tables in Chapter 8. Recall also that we exclude Ω+

8 (q)
from our considerations, since the maximal subgroups of all almost simple ex-
tensions of O+

8 (q) are determined in [62]: see Table 8.50. The reader may wish
to recall our notation, developed in Section 1.7, for the outer automorphism
groups of the orthogonal groups. In particular:

(i) δ is defined only for odd q. It denotes a diagonal automorphism induced
by an element of CGO±

n (q) \ GO±
n (q) when n is even, or an element of

SOn(q) \ Ωn(q) when n is odd. As an element of Out Ω, it has order 4
when n ≡ 2 (mod 4) and the form has square discriminant. Otherwise it
has order 2.

(ii) δ′ is the diagonal automorphism induced by an element of SO±
n (q)\Ω±

n (q)
when n is even, q is odd, and the form has square discriminant. Otherwise
it is undefined.

(iii) γ is defined only for even n. It is the graph automorphism induced by an
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element of GO±
n (q) \ SO±

n (q) when q is odd, or of SO±
n (q) \Ω±

n (q) when q
is even.

(iv) The field automorphism φ of Ω is induced by raising matrix entries to the
p-th power for forms of ◦−type and of +-type, and for forms of −-type
when p is odd and the discriminant of the form is a square in Fq. For
forms of −-type with p even or with p odd and non-square discriminant,
this operation is not a semi-similarity, and is composed with conjugation
by an element of GLn(q) to give an outer automorphism ϕ of Ω.

When n is even, the sign of the form for which ImG is a group of isometries
will generally depend on the prime p. When p is odd, we resolve this question by
computing the form preserved in the image of the representation over a suitable
number field, and determining for which primes p its determinant is square on
reduction modulo p. When p = 2, a straightforward calculation over a finite
field suffices, using Definition 1.5.40. For spinor norm and quasideterminant
calculations, we use the method presented in Proposition 1.6.11. In some ex-
amples, we first compute the matrices A,F,B and calculate det(BAFBT) over
a suitable number field, and then determine whether this determinant reduces
to a square in F×

q .
Several examples that arise are groups for which the corresponding module

is a deleted permutation module (that is, the quotient of a permutation module
by the all-1 vector), so let us analyse that case.

Lemma 4.9.39 Let G � GLn(q) be the action matrices of a deleted permuta-
tion module, with q odd and n+ 1 �≡ 0 (mod p). Then G consists of isometries
of a symmetric bilinear form. If n is even, then the discriminant of the form
is square if and only if n + 1 (mod p) is a square in F×

q . All elements of G
corresponding to even permutations have spinor norm 1. If n is odd and g ∈ G
corresponds to an odd permutation, then the spinor norm of −g is 1 if and only
if (n+ 1)/2 (mod p) is a square in F×

q .

Proof Let (ei | 1 � i � n + 1) be the basis of the permutation module, and
without loss of generality take (ei−en+1 | 1 � i � n) as the basis of the deleted
permutation module. It can then be verified that G consists of isometries of a
symmetric bilinear form with matrix F = (fij) where, for 1 � i, j � n, fii = 2
and fij = 1 for i �= j. It is easy to calculate that detF = n+ 1 (mod p).

Since G is isomorphic to a subgroup of Sn+1 within GOn(q, F ), of which
An+1 is the unique subgroup of index 2, all elements in G corresponding to
even permutations must have spinor norm 1.

Matrices g ∈ G corresponding to odd permutations have determinant −1,
but if n is odd then −g is also an isometry, and −g has determinant 1. Since the
matrices of all odd permutations have the same spinor norm, we may assume
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that g is the n × n permutation matrix for (1, 2). Then A := In + g has rank
n − 1, and we can take the matrix B of Proposition 1.6.11 to be defined by
removing the first row from the identity matrix. Let M = (mij) = BAFBT,
Then m11 = 3, mii = 4 for 1 < i � n − 1, and mij = 2 for i �= j with
1 � i, j � n− 1. It is not hard to show that detM = 2n−2(n+ 1) (mod p).

The following result, which will be useful for determining the class stabiliser
in some cases, is similar to Lemma 4.6.7, so we just sketch its proof.

Lemma 4.9.40 All involutions in PCΓO◦
n(q) lie in O◦

n(q)〈φ〉 ∪ PCSO◦
n(q).

Proof We can work in SO◦
n(q)〈φ〉 ∼= PCΓO◦

n(q). Let g ∈ PCΓO◦
n(q) be an

involution, and assume that g is the image of Aσ, where A ∈ SO◦
n(q) and σ is

a power of φ. As in Lemma 4.6.7, we may assume that σ has order 2, and so
q is a square, and AAσ = (Aσ)2 = In. Now the spinor norm of A is 1 if and
only if μ :=

∏k
i=1 β(vi, vi), as defined in Definition 1.6.10, is a square in F×

q .
Similarly, the spinor norm of Aσ is 1 if and only if μσ is a square in F×

q . Since
AAσ = In, which has spinor norm 1 in SO◦

n(
√
q), the element μ1+σ is a square

in F×√
q. Hence μ is a square in F×

q , and so A ∈ Ω◦
n(q) and g ∈ O◦

n(q)〈φ〉.

Dimension 7. We now determine the S1-maximal subgroups of Ω7(q). By
Theorem 4.3.3, the quasisimple candidates are L3(2) (p �= 2, 7); L2(8) (twice,
with p �= 2 for the first and p �= 2, 3 for the second); L2(13) (p �= 2, 13); U3(3)
(p �= 2, 3); A8 (p �= 2); J1 (p = 11); A9 (p = 3); and S6(2) (p �= 2). Note
that since Ω7(q) = O7(q), all candidates are simple. Recall that we assume
throughout that q is odd in Case O◦.

Note that the two representations of L2(8) are distinct in the sense that nei-
ther is an algebraic conjugate or dual of the other and neither can be obtained
from the other by applying a group automorphism. To distinguish between
them, we shall refer to them as L2(8)1 and L2(8)2, where L2(8)2 is the repre-
sentation with character values involving y9.

We shall first show that four of these possibilities can be eliminated, and
then consider the remaining S1-candidates in reverse order.

Proposition 4.9.41 No extension of any of L3(2), L2(8)1, U3(3) or A8 is
S1-maximal in any extension of Ω7(q).

Proof In characteristics other than 3 it follows from Theorem 4.7.1 that
L3(2) < U3(3) and L3(2).2 < U3(3).2. From [12] we see that this corresponds
to a containment of S1-subgroups. Over F3 a straightforward computer calcu-
lation (file containmentsd7) shows that L3(2).2 < S6(2) as S1-subgroups. It
follows from Proposition 4.5.25 that U3(3).2 < S6(2), and from [12, 57] that
this is a containment of S1-subgroups.



240 Groups in Class S : cross characteristic

The group Aut L2(8) = L2(8).3 < S6(2), by Theorem 3.5.5. By [12, 57],
this can only be representation L2(8)1, and the smallest non-trivial irreducible
representation of L2(8) with p �= 2 has dimension 7.

Now, Aut A8
∼= SO+

6 (2) < S6(2), by Theorem 3.5.8. By [12, 57], the smallest
non-trivial irreducible representation of A8 with p �= 2 has dimension 7.

Proposition 4.9.42 Let Ω = Ω7(q) = Ω, and let G = S6(2) be an S1-
subgroup of Ω. Then q = p �= 2, with NΩ(G) = G and trivial class stabiliser.
The group G is S1-maximal, there is a unique Aut Ω-class of groups G, and
for no other q are there S1-subgroups of Ω7(q) isomorphic to G.

Proof This follows straightforwardly from Theorem 4.3.3, since OutG = 1
and there is a single representation.

Proposition 4.9.43 Let Ω = Ω7(q) = Ω, and let G = A9 be an S1-subgroup
of Ω. Then q = 3, with NΩ(G) = G.2 and trivial class stabiliser. The group
NΩ(G) is S1-maximal, and there is a unique Aut Ω-class of groups G.

Proof By Theorem 4.3.3, there is a unique representation and q = 3. Most
claims are easy computer calculations (file a9d7f3calc). For maximality, note
that A9 would have index 4 in S6(2), violating Theorem 1.11.2.

Proposition 4.9.44 Let Ω = Ω7(q) = Ω, and let G = J1 be an S1-subgroup
of Ω. Then q = 11, with NΩ(G) = G and trivial class stabiliser. The group G
is S1-maximal, and there is a unique Aut Ω-class of groups G.

Proof This follows straightforwardly from Theorem 4.3.3, since OutG = 1
and there is a single such representation.

Proposition 4.9.45 Let Ω = Ω7(q) = Ω, and let G = L2(13) be an S1-
subgroup of Ω. Then NΩ(G) = G. If p ≡ ±1,±3,±4 (mod 13) then q = p, with
trivial class stabiliser. If p ≡ ±2,±5,±6 (mod 13) then q = p2 �= 4, with class
stabiliser 〈φ〉. The group G is S1-maximal, there is a unique Aut Ω-class of
groups G, and for no other q are there S1-subgroups of Ω7(q) isomorphic to G.

Proof From Theorem 4.3.3, we get q = p and that there are two represen-
tations, swapped by the unique outer automorphism of G. If q = p2 then the
representations are also swapped by φ [12, 57]. Since L2(13).2\L2(13) contains
involutions, Lemma 4.9.40 implies that the class stabiliser is 〈φ〉.
Proposition 4.9.46 Let Ω = Ω7(q) = Ω, and let G = L2(8)2 be an S1-
subgroup of Ω. Then NΩ(G) = G. If p ≡ ±1 (mod 9) then q = p, with trivial
class stabiliser. If p ≡ ±2,±4 (mod 9) then q = p3 �= 8, with class stabiliser
〈φ〉. The group G is S1-maximal, there is a unique Aut Ω-class of groups G,
and the only other S1-subgroups of Ω7(q) isomorphic to G are equivalent to the
image of the representation L2(8)1.
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Proof From Theorem 4.3.3, we get the congruences on p for q, and that there
are three representations, permuted by the unique outer automorphism of G.
When G < Ω7(p

3), they are also permuted by φ [12, 57]. The group L2(8) is a
subgroup of S6(2), but character values on elements of order 9 in [12, 57] show
that the restriction of this representation of S6(2) is to L2(8)1.

Dimension 8. We now determine the S1-maximal subgroups of Ω−
8 (q). By

Theorem 4.3.3, the quasisimple candidates are L3(2) (p �= 2, 3, 7); A6 (p �= 3);
L2(8) (p �= 2, 3); A7 (p = 5); 2·A8 (p �= 2); 2·Sz(8) (p = 5); A9 (p �= 3, with two
weak equivalence classes of representations when p = 2); 2·A9 (p �= 2); 2·S6(2)
(p �= 2); A10 (p = 5); 2·A10 (p = 5); and 2·Ω+

8 (2) (p �= 2).
Recall that the maximal subgroups of Ω+

8 (q) are classified in detail in [62],
so we shall not be considering that case: see Table 8.50.

Proposition 4.9.47 Let Ω = Ω±
8 (q), and let G be an S1-subgroup of Ω. If

G �= L3(2) then Ω = Ω+
8 (q).

Proof Computer calculations (file o8+calc) over appropriate fields show that
the orthogonal form preserved has square discriminant.

Proposition 4.9.48 Let Ω = Ω±
8 (q), and let G = L3(2) be an S1-subgroup

of Ω. If p ≡ ±1,±4,±5 (mod 21) then Ω = Ω+
8 (p), and if p ≡ ±2,±8,

±10 (mod 21) then p �= 2 and Ω = Ω−
8 (p). The class stabiliser is 〈γ〉, and

NΩ(G) = G. There is a unique Aut Ω-class of groups G, and for no other q
are there S1-subgroups of O±

8 (q) isomorphic to G. If Ω = Ω−
8 (q) then G is

S1-maximal.

Proof From Theorem 4.3.3, we get q = p and that there is a unique rep-
resentation, so a unique AutΩ-class. Also, there is a unique S1-candidate
for Ω−

8 (q), so any such groups are S1-maximal. A computer calculation (file
l32d8calc) shows that the discriminant of the form on which G acts via isome-
tries is 21 times a square. By [12], in the representation of G.2, elements of
G.2 \G are isometries, and have determinant −1 and entries in Q. So they lie
in GO±

8 (p) \ SO±
8 (p).

Dimension 9. We now determine the S1-maximal subgroups of Ω9(q). By
Theorem 4.3.3, the quasisimple candidates are A6 (p �= 2, 3, 5); L2(8) (p �= 2, 7);
L2(17) (p �= 2, 17); M11 (p = 11); A10 (p �= 2, 5); and A11 (p = 11). Note
that since Ω9(q) = O9(q), all candidates are simple. Recall that we assume
throughout that q is odd in Case O◦. We first eliminate two of these groups,
and then consider the rest in reverse order.

Proposition 4.9.49 No extension of A6 or M11 is S1-maximal in any ex-
tension of Ω9(q).
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Proof As abstract groups, A6.23 < A10 and A6.22 < A10.2, by [12]. By The-
orem 4.3.3, there are rational 10-dimensional irreducible representations of A6

in all characteristics other than 2, 3 and 5, and of A10 in all characteristics
other than 2 and 5. By [12], the representations of S10 and Aut A6 preserve
an orthogonal form, and considering the character values we see that this is a
containment of S1-subgroups. By Lemma 4.9.39 this containment extends to
all extensions of Ω9(q).

We note that M11 < A11: since Out M11 = 1 and by [57] the smallest
degree of a non-trivial representation of M11 in characteristic 11 is 9, this is a
containment of S1-subgroups.

Proposition 4.9.50 Let Ω = Ω9(q), and let G = A11 be an S1-subgroup of Ω.
Then q = 11, S = NΩ(G) = G.2 with trivial class stabiliser, S is S1-maximal
and there is a unique Aut Ω-class of groups G.

Proof By Theorem 4.3.3 there is a unique representation, and the claims follow
from [57] and a straightforward computer calculation (file a11d9calc) using
Proposition 1.6.11.

Proposition 4.9.51 Let Ω = Ω9(q), let G = A10 be an S1-subgroup of Ω,
and let S = NΩ(G). Then q = p �= 2, 5. If p ≡ ±1 (mod 5) then S = G.2, with
trivial class stabiliser. If p ≡ ±2 (mod 5) then S = G, with class stabiliser 〈δ〉.
If q �= 11 then S is S1-maximal, otherwise it is not S1-maximal. There is a
unique Aut Ω-class of groups G, and for no other q are there S1-subgroups of
Ω9(q) isomorphic to G.

Proof By Theorem 4.3.3 there is a unique representation, and from [12, 57],
we find that G.2 < SO9(p) for all p �= 2, 5. The representation arises from a
deleted permutation module, so Lemma 4.9.39 implies that S = G.2 if and only
if p ≡ ±1 (mod 5). For q = 11 we note that S < S11 (see Proposition 4.9.50),
and by [12] this is a containment of S1-subgroups.

Proposition 4.9.52 Let Ω = Ω9(q), and let G = L2(17) be an S1-subgroup
of Ω. Then NΩ(G) = G. If p ≡ ±1,±2,±4,±8 (mod 17) then q = p �= 2, with
trivial class stabiliser. If p ≡ ±3,±5,±6,±7 (mod 17) then q = p2, with class
stabiliser 〈φ〉. The group G is S1-maximal, there is a unique Aut Ω-class of
groups G, and for no other q are there S1-subgroups G of Ω9(q).

Proof From Theorem 4.3.3, we get the congruences on p for q and that there
are two representations, interchanged by the outer automorphism of G. Thus
NΩ(G) = G and there is a unique Aut Ω-class. If q = p2 then the representations
are also permuted by φ [12, 57]. Since L2(17).2 \ L2(17) contains involutions,
Lemma 4.9.40 implies that the class stabiliser is 〈φ〉.
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Proposition 4.9.53 Let Ω = Ω9(q), and let G = L2(8) be an S1-subgroup
of Ω. Then NΩ(G) = G. If p ≡ ±1 (mod 7) then q = p, with trivial class
stabiliser. If p ≡ ±2,±3 (mod 7) then q = p3 �= 8, with class stabiliser 〈φ〉.
The group G is S1-maximal, there is a unique Aut Ω-class of groups G, and
for no other q are there S1-subgroups of Ω9(q) isomorphic to G.

Proof By Theorem 4.3.3, there are three representations, permuted by the
outer automorphism of G, and the field is as given. By [12, 57], if q = p3

then they are also permuted by φ. Whilst L2(8) is a subgroup of A10 and A11,
character values on elements of order 7 show that this is not a containment of
S1-subgroups.

Dimension 10. We now determine the S1-maximal subgroups of Ω±
10(q). By

Theorem 4.3.3, the quasisimple candidates are A6 (p �= 2, 3); L2(11) (p �= 11,
two representations when p > 3); A7 (p = 7); M11 (p �= 11); 2·L3(4) (p = 7);
M12 (p = 2, 3); 2·M22 (p = 7); A11 (p �= 11); and A12 (p = 2, 3). We consider
them in reverse order.

When p > 3, the two representations of L2(11) are distinct, in the sense
that neither is an algebraic conjugate or dual of the other, and neither can
be obtained from the other by applying a group automorphism. To distinguish
between them we shall refer to them as L2(11)1 and L2(11)2. The second of
these is the deleted permutation module arising from its degree 11 permutation
representation L2(11). The reductions of the two modules modulo 2 are equiv-
alent, and it is more convenient to consider this module as L2(11)2 when p = 2,
so we shall do that. When p = 3, the reduction of L2(11)1 remains absolutely
irreducible, but that of L2(11)2 is the sum of two 5-dimensional modules.

Proposition 4.9.54 Let Ω = Ω±
10(q), and let G = A12 be an S1-subgroup of

Ω. Then Ω = Ω−
10(2) or Ω+

10(3), with NΩ(G) = G and class stabiliser 〈γ〉. The
group G is S1-maximal and there is a single Aut Ω-class of groups G.

Proof From Theorem 4.3.3 we get p = 2 or 3, and that there is a unique repre-
sentation in each case. The other claims follow from [57] and routine computer
calculations (file a12d10f2and3calc).

Proposition 4.9.55 Let Ω = Ω±
10(q), and let A11 be an S1-subgroup of Ω.

Then NΩ(G) = G, with class stabiliser 〈γ〉. If p ≡ 1, 3, 4, 5, 9 (mod 11) then
Ω = Ω+

10(p), and if p ≡ 2, 6, 7, 8, 10 (mod 11) then Ω = Ω−
10(p). If p �= 2, 3 then

G is S1-maximal, and if p = 2, 3 then no extension of G is S1-maximal. There
is a single Aut Ω-class of groups G, and for no other q are there S1-subgroups
of O±

10(q) isomorphic to G.

Proof From Theorem 4.3.3, we get q = p and that there is a unique represen-
tation. It follows from [12, 57] that if p is odd then elements of G.2\G stabilise
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the form, have determinant −1, and have character values in Q, so are induced
(up to conjugacy) by γ. This is a deleted permutation module, and we get the
congruences on p from Lemma 4.9.39. For p = 2 we check the class stabiliser
and form by direct calculation (file a11d10calc).

The smallest dimension of a non-trivial representation of A11 in charac-
teristic 2 or 3 is 10, by [57], so by Proposition 4.9.54 there are containments
A11 < A12 and A11.2 < A12.2 when p = 2 or 3.

Proposition 4.9.56 Let Ω = Ω±
10(q) and let G = (2·)M22 be an S1-subgroup

of Ω. Then Ω = Ω−
10(7), with NΩ(G) = G and class stabiliser 〈γ〉. The group G

is S1-maximal, and there is a single Aut Ω-class of groups G.

Proof By [57], Theorem 4.3.3, and a Magma calculation (file 2m22d10f7calc),
there is a unique representation, NΩ(G) = G < Ω−

10(7), and elements in G.2\G
are isometries, have determinant −1, and have character values in Q, so are
induced by γ. There are no containments, as M22 has no permutation repre-
sentation on fewer than 22 points.

Proposition 4.9.57 Let Ω = Ω±
10(q), and let G = M12 be an S1-subgroup

of Ω. Then Ω = Ω−
10(2) or Ω+

10(3), with NΩ(G) = G. If p = 2 then the class
stabiliser is 〈γ〉, and G is not S1-maximal, but G.2 is S1-maximal. If p = 3
then no extension of G is S1-maximal. In both cases there is a single Aut Ω-
class of groups G.

Proof It is immediate from Theorem 4.3.3 that q = 2 or 3, and that if q = 2
then there is a unique representation, whilst if q = 3 there are two, interchanged
by the outer automorphism of G.

Using [57] and routine computer calculations (file m12d10f2and3calc) we
find that G < Ω−

10(2), with class stabiliser 〈γ〉. The smallest degree of a non-
trivial representation of M12 in characteristic 2 is 10 [57], so there is a contain-
ment of S1-subgroups M12 < A12, but this does not extend to M12.2.

Similarly, G < A12 < Ω+
10(3) and G has trivial class stabiliser, so no exten-

sion of G is S1-maximal in characteristic 3.

Proposition 4.9.58 Let Ω = Ω±
10(q) and let G = (2·)L3(4) be an S1-subgroup

of Ω. Then Ω = Ω−
10(7), with NΩ(G) = G and class stabiliser 〈δ′, γ〉. Here δ′

induces the 23 automorphism of G, whilst γ induces the 21 automorphism on
one Ω-class and the 22 automorphism on the other. The group G is not S1-
maximal, and for K � 〈δ′, γ〉 the group NΩK(G) is S1-maximal if and only if
NΩK(G) �� (2·)L3(4).22. There is a single Aut Ω-class of groups G.

Proof From Theorem 4.3.3 and [57], we find that there is a unique represen-
tation, q = 7, and elements in G.22 \ G are isometries, have determinant −1,
and have character values in Q, whereas elements in G.21 \ G are isometries,
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have determinant −1 and have character values that involve the irrationality
r2, which lies in F7. Thus elements of G.23 \ G (note that 22 = 2122) have
determinant 1, and we must determine their spinor norm.

A computer calculation (file 2l34d10calc) using Proposition 1.6.11 shows
that G < Ω−

10(7), G.23 < SO−
10(7) but G.23 is not contained in Ω−

10(7). So the
class stabiliser is 〈δ′, γ〉, and there are two classes, interchanged by δ. Since
γδ = γδ′, it follows that γ induces the 21 and 22 automorphisms of G in the
two classes.

The group L3(4) is not a subgroup of A12, which also rules out containments
in A11 and M12. A further computer calculation (file containmentsd10) shows
that there are containments 2·L3(4) < 2·M22 and 2·L3(4).22 < 2·M22.2.

Proposition 4.9.59 No extension of M11 is S1-maximal in any extension
of O±

10(q).

Proof The group M11 is a subgroup of A11, and it follows from [12, 57] that
this is an inclusion of S1-subgroups. Since Out M11 = 1, we are done.

Proposition 4.9.60 Let Ω = Ω±
10(q), and let G = A7 be an S1-subgroup of

Ω. Then Ω = Ω−
10(7), with NΩ(G) = G, and class stabiliser 〈δ′〉. The group G

is not S1-maximal, but NPSO−
10(7)

(G) is S1-maximal. There is a single Aut Ω-
class of groups G.

Proof By Theorem 4.3.3 and [57], we find that there is a unique representation,
with G < Ω±

10(7) and G.2 < SO±
10(7). A computer calculation (file a7d10calc)

shows that G < Ω−
10(7) and G.2 is not contained in Ω−

10(7), so the class stabiliser
is 〈δ′〉.

Neither A12 not M12 arise in characteristic 7. The 10-dimensional module
for A11 is the deleted permutation module and, by Theorem 1.11.2, the only
subgroups of A11 isomorphic to A7 have four fixed points, so the restriction
of this module to A7 is reducible. By [12], A7 is a subgroup of 2·M22 (see
Proposition 4.9.56), and by looking at character values on elements of order
3 [57], we see that this is a containment of S1-subgroups. However, M22.2
does not contain S7. There is no subgroup of 2·L3(4) isomorphic to A7 by
Theorem 4.3.3.

Proposition 4.9.61 Let Ω = Ω±
10(q), and let G = L2(11)1 be an S1-subgroup

of Ω with p > 2. Then NΩ(G) = G, with class stabiliser 〈γ〉. If p ≡ 1, 3, 4, 5, 9
(mod 11) then Ω = Ω+

10(p). If p ≡ 2, 6, 7, 8, 10 (mod 11) then Ω = Ω−
10(p). The

group G is S1-maximal if and only if q �= 3 or 7, and if q = 3 or 7 then no
extension of G is S1-maximal in any extension of Ω. There is a single Aut Ω-
class of groups G, and the only other S1-subgroups of O±

10(q) isomorphic to G
are those in Proposition 4.9.62, below.
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Proof From Theorem 4.3.3, we get q = p for all p �= 2, 11 (for p = 2, the module
is equivalent to L2(11)2 and will be considered as such), and that there is a
unique representation. Computer calculations (file l211ad10calc) in SL10(Q)
show that G preserves a form with determinant 11 times a square. From [12, 57]
we find that G.2 consists of isometries, and that elements of G.2 \ G have
determinant −1 and character values in Q, so are induced by a conjugate of γ.

A straightforward computer calculation (file containmentsd10) shows that
if q = 3 then there are containments of S1-subgroups L2(11)1 < A12 and
L2(11)1.2 < A12.2. Alternatively, we can deduce this from the fact that the
module in question is the 10-dimensional constituent of the permutation module
arising from the embedding L2(11)1.2 < A12.2 ∼= S12. So we assume in the rest
of this proof that q > 3, and do not consider containments in M12.

The group A11 contains two classes of transitive subgroups L2(11) that are
conjugate in S11 and, since the 10-dimensional module for A11 is the deleted
permutation module, its restriction to L2(11) is also the deleted permutation
module arising from its degree 11 permutation representation, which is L2(11)2.
So there is no containment L2(11)1 < A11.

Suppose now that q = p = 7. We find from [12] that M22 has a unique
class of subgroups L2(11) which extends to L2(11).2 < M22.2. A computer
calculation (file containmentsd10) shows that the subgroup 2.M22 of Ω−

10(7)
contains (2×)L2(11) as a subgroup acting irreducibly as L2(11)1. So L2(11)1
and L2(11)1.2 are not S1-maximal when q = 7.

Proposition 4.9.62 Let Ω = Ω±
10(q), let G = L2(11)2 be an S1-subgroup of

Ω. Then NΩ(G) = G and p �= 3. If p ≡ 1, 3, 4, 5, 9 (mod 11) then Ω = Ω+
10(p),

and if p ≡ 2, 6, 7, 8, 10 (mod 11) then Ω = Ω−
10(p). If p ≡ ±1, 2 (mod 12) then

the class stabiliser is 〈γ〉, and if p ≡ ±5 (mod 12) then the class stabiliser is
〈γδ〉. The group G is never S1-maximal, and G.2 is not maximal when p = 2,
but if p �= 2 then G.2 is S1-maximal in the corresponding extension of Ω. There
is a single AutΩ-class of groups G, and the only other S1-subgroups of O±

10(q)
isomorphic to G are those in Proposition 4.9.61.

Proof From Theorem 4.3.3, we get q = p �= 3, 11 and that there is a unique
representation. Computer calculations (file l211bd10calc) show that G con-
sists of isometries of a bilinear form F with determinant 11 times a square, so
the sign of the form is as given. (The case p = 2 is done seperately.) These cal-
culations also show that there exists A ∈ GL10(Z) that normalises and induces
the outer automorphism of G, has determinant −35, and transforms F to 3F .

When p = 2, the matrix A has quasideterminant −1, so the class stabiliser is
〈γ〉. If p ≡ ±1 (mod 12), then 3 is a square in F×

p and so by multiplying A by the
scalar matrix 3−1/2I10 ∈ GL10(p), we find a matrix in GO±

10(p) \ SO±
10(p) that
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normalises and induces the outer automorphism of G. So this matrix represents
an outer automorphism that is conjugate in OutΩ to γ.

If p ≡ ±5 (mod 12) then 3 is a non-square in F×
p . Let D be the matrix that

induces the outer automorphism δ of Ω, as defined in Subsection 1.7.1. We saw
there that, irrespective of the sign of the bilinear form F , the determinant of D
is w5 and D transforms F to wF , where w is a primitive element of Fp. Since
3 is a non-square, 3 = w2k+1 in Fp for some k. So wkDA−1 fixes F and has
determinant −1. It follows that the element of OutΩ induced by A on reduction
modulo p is conjugate in OutΩ to δγ.

For all p �= 3, 11 there is a containment of S1-subgroups L2(11)2 < A11 (see
Proposition 4.9.55 and [12, 57]), but S11 does not have a subgroup L2(11).2. A
computer calculation (file containmentsd10) shows that there is a containment
L2(11).2 < M12.2 < SO−

10(2), so assume from now that p > 3. As we observed
in the proof of Proposition 4.9.61, the group M22 has a unique class of sub-
groups L2(11) and, in characteristic 7, the restriction of the 10-dimensional
representation of M22 to L2(11) is to L2(11)1, and so there is no containment
of L2(11)2 in 2·M22.

Proposition 4.9.63 Let Ω = Ω±
10(q), let G = A6 be an S1-subgroup of Ω,

and let S = NΩ(G). If p ≡ 1 (mod 4) then Ω = Ω+
10(p). If p ≡ 3 (mod 4) then

p �= 3 and Ω = Ω−
10(p). If p ≡ ±1 (mod 24) then S = G.21, with class stabiliser

〈γ〉. If p ≡ ±5 (mod 24) then S = G, with class stabiliser 〈γδ, δ′〉, where δ′

induces the 21 automorphism, and γδ induces the 22. If p ≡ ±7 (mod 24) then
S = G, with class stabiliser 〈γ, δ′〉, where δ′ induces the 21 automorphism and
γ the 22. If p ≡ ±11 (mod 24) then S = G.21, with class stabiliser 〈δγ〉.

The group S is S1-maximal if and only if q �= 7. If q = 7 then, for
any subgroup K of Out Ω, the group NΩK(G) is S1-maximal if and only if
NΩK(G) �� (2×)A6.21 and NΩK(G) �� (2×)A6.23. There is a single Aut Ω-class
of groups G, and for no other q are there S1-subgroups G of O±

10(q).

Proof It follows from Theorem 4.3.3 that q = p �= 2, 3, and there is a unique
representation.

Computer calculations (file a6d10calc) in SL10(Z) show that G preserves
a form F with square determinant. From the computer calculation or [12, 57],
we find G.21 < SO±

10(p). By a computer calculation (file a6d10calc) using
Proposition 1.6.11, the spinor norm of an element of G.21 \G is 1 if and only
if 3 is a square modulo p, which is the case if and only if p ≡ ±1 (mod 12).
So this spinor norm is −1 when p ≡ ±5 (mod 12), and hence δ′ induces the 21

automorphism of G in this case.
The computer calculations show also that there is a matrix A ∈ GL10(Z)

that normalises and induces the outer automorphism 22 of G, has determinant
−25, and transforms F to 2F .
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If p ≡ ±1 (mod 8), then 2 is a square in F×
p and so by multiplying A by

the scalar matrix 2−1/2I10 ∈ GL10(p), we find a matrix in GO±
10(p) \ SO±

10(p)
that normalises and induces the 22 outer automorphism of G. So this matrix
represents an outer automorphism that is conjugate in OutΩ to γ.

If p ≡ ±3 (mod 8), then 2 is a non-square in F×
p . By comparing the determi-

nant and action on F of the matrix A with those of the matrix that induces the
outer automorphism δ of Ω (as defined in Subsection 1.7.1), we can deduce that
the outer automorphism of Ω induced by A on reduction modulo p is conjugate
in OutΩ to δγ.

We note that A6 is a subgroup of A11, but by looking at character values
on elements of order 2 [12, 57], we see that this is not a containment of S1-
subgroups.

Suppose now that p = 7. We note that (by [12]) A6 < 2·M22, A6 < A7

and A6.21 < A7.2. A computer calculation (file containmentsd10) shows that
these are containments of S1-subgroups. However, the same calculation also
shows that, as S1-subgroups, A6.22 and A6.23 are not contained in 2·M22.2.
There are also three classes of subgroups A6 of 2·L3(4), which are fused under
the automorphism of order 3 of (2·)L3(4). The three classes of elements of
order 4 in L3(4) are also fused under this automorphism and, by considering
character values on these elements in [57], we see that the restriction of the 10-
dimensional representation of 2·L3(4) to two of the A6 classes is irreducible, but
it is reducible on the third such class. From Theorem 4.7.1 or [12], we find that
the 21 automorphism γφ of 2·L3(4) normalises all three A6 classes and induces
the 23 automorphism of A6, whereas the 22 and 23 automorphisms normalise
just one of these classes. So the two classes for which the restriction of the
representation of 2·L3(4) is irreducible are normalised by the 21 automorphism
only, and we have containments of S1-subgroups A6.23 < 2·L3(4).21, but no
such containment of A6.21 or A6.22. This completes the proof.

Dimension 11. We now determine the S1-maximal subgroups of Ω11(q). By
Theorem 4.3.3, the quasisimple candidates are L2(11) (p �= 2, 3, 11); L3(3) (p =
13); M11 (p �= 2, 3); M12 (p �= 2, 3); A12 (p �= 2, 3); and A13 (p = 13). Note
that since Ω11(q) = O11(q), all candidates are simple. Recall that we assume
throughout that q is odd in Case O◦. We first eliminate three of these groups,
then consider the remaining possibilities in reverse order.

Proposition 4.9.64 No extension of any of L2(11), M11 or M12 is S1-
maximal in any extension of Ω11(q).

Proof The 11-dimensional irreducible representations of L2(11), M11 and M12

are all deleted permutation modules arising from their degree 12 permutation
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representations, so their images are all contained in that of A12, and similarly
L2(11).2 < S12 (as S1-subgroups).

The group M11 is a subgroup of A12, which is a containment of S1-subgroups
for all fields of characteristic not 2 or 3, by character values [12, 57]. Since
Out M11 = 1, we are done.

There is an abstract containment of M12 < A12. The smallest degree of a
non-trivial representation of M12 is 11, so this is a genuine containment of M12

in A12 for all fields of characteristic not 2 or 3. By Theorem 4.3.3, the class
stabiliser of M12 is trivial, so no extension of M12 arises.

Proposition 4.9.65 Let Ω = Ω11(q), and let G = A13 be an S1-subgroup
of Ω. Then q = 13 and NΩ(G) = G, with class stabiliser 〈δ〉. The group G is
S1-maximal and there is a unique Aut Ω-class of groups G.

Proof By Theorem 4.3.3 there is a unique representation. A Magma calcula-
tion (file a13d12calc) shows that G.2 � SO11(13), with G.2 �� Ω11(13).

Proposition 4.9.66 Let Ω = Ω11(q), let G = A12 be an S1-subgroup of
Ω, and let S = NΩ(G). Then q = p. If p ≡ ±1,±5 (mod 24) then S = G.2,
with trivial class stabiliser. If p ≡ ±7,±11 (mod 24) then S = G, with class
stabiliser 〈δ〉. If q �= 13 then S is S1-maximal, otherwise all extensions of S
are not S1-maximal. There is a unique Aut Ω-class of groups G, and for no
other q are there S1-subgroups of Ω11(q) isomorphic to G.

Proof By Theorem 4.3.3, there is a unique representation and q = p. From [57]
we see that G.2 < SO11(p) for all p. This is a deleted permutation module so,
by Lemma 4.9.39, G.2 < Ω11(p) when 6 is a square modulo p, whereas G.2
is not contained in Ω11(p) otherwise. The group S12 is a subgroup of S13 so,
by [12] and Proposition 4.9.65, in characteristic 13 there are containments of
S1-subgroups A12 in A13 and S12 in S13.

Proposition 4.9.67 Let Ω = Ω11(q), and let G = L3(3) be an S1-subgroup of
Ω. Then q = 13 and S = NΩ(G) = G.2, with trivial class stabiliser. The group
G is not S1-maximal, but S is S1-maximal, and there is a unique Aut Ω-class
of groups G.

Proof There is a unique representation. A straightforward calculation (file
l211d12calc) shows that S = G.2 < Ω11(13), so the class stabiliser is trivial.
From [12, 57] we find G < A13 as S1-subgroups but G.2 �� A13. No extension
of A12 is maximal when q = 13.

Dimension 12. We now determine the S1-maximal subgroups of Ω±
12(q). By

Theorem 4.3.3, the quasisimple candidates are L2(11) (p �= 5, 11); L2(13) (p �=
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13); L3(3) (p �= 3, 13); 2·M12 (p �= 2, 3); A13 (p �= 13); and A14 (p = 7). We
consider these groups in reverse order.

Proposition 4.9.68 Let Ω = Ω±
12(q), and let G = A14 be an S1-subgroup

of Ω. Then Ω = Ω−
12(7), with NΩ(G) = G, and class stabiliser 〈γ〉. There is a

single Aut Ω-class of groups G, and G is S1-maximal.

Proof By Theorem 4.3.3, there is a unique representation and q = 7, so it is
straightforward to verify these claims in Magma.

Proposition 4.9.69 Let Ω = Ω±
12(q), and let G = A13 be an S1-subgroup

of Ω. Then NΩ(G) = G, with class stabiliser 〈γ〉. If p ≡ ±1,±3,±4 (mod 13)
then Ω = Ω+

12(p). If p ≡ ±2,±5,±6 (mod 13) then Ω = Ω−
12(p). If q �= 7 then

G is S1-maximal in Ω, otherwise (q = 7) no extension of G is S1-maximal in
any extension of Ω. There is a single Aut Ω-class of groups G and for no other
q are there S1-subgroups of O±

12(q) isomorphic to G.

Proof This is just the deleted permutation representation, so q = p and there
is a unique representation. Computer calculations (file a13d12calc) in SL12(Q)
show that the form preserved has determinant 13: for p = 2 we carry out an
additional calculation over F2.

For p > 11, we see from [12] that G.2 consists of isometries, and elements of
G.2 \ G have determinant −1. So the outer automorphism of G is induced by
a conjugate of γ. Computer calculations (file a13d12calc) show that the same
is true for p = 2, 3, 5, 7, 11.

In characteristic 7 a straightforward calculation shows that there is an S1-
containment A13.2 < A14.2, but for all other p the group G is S1-maximal.

Proposition 4.9.70 Let Ω = Ω±
12(q), let G = (2·)M12 be an S1-subgroup of

Ω, and let S = NΩ(G). Then Ω = Ω+
12(p). If p ≡ ±1 (mod 24) then the group

S = G.2, with trivial class stabiliser. If p ≡ ±11 (mod 24) then S = G, with
class stabiliser 〈δ′〉. If p ≡ ±5 (mod 12) then S = G, with class stabiliser 〈δ〉.
There is a single Aut Ω-class of groups G, the group G is S1-maximal, and for
no other q are there S1-subgroups of O±

12(q) isomorphic to G.

Proof By Theorem 4.3.3, there is a unique representation and q = p. A com-
puter calculation (file 2m12d12calc) show that the form preserved has deter-
minant 1.

From [12, 57], we find that G.2 consists of determinant 1 isometries, but
their character values involve the irrationality r3, which lies in Fp if and only
if p ≡ ±1 (mod 12). So if p ≡ ±5 (mod 12) then the class stabiliser is 〈δ〉.

If p ≡ ±1 (mod 12), then 2·M12.2 < SO+
12(p) and we have to determine the

spinor norm of elements of 2·M12.2 \ 2·M12. Using a computer calculation (file
2m12d12calc) over Q(r3) and Proposition 1.6.11 we find that the spinor norm
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of an element of 2·M12.2 \ 2·M12 is 1 if and only if 3(2− r3) is a square in F×
p .

Now 2 − r3 has a square root in the cyclotomic field Q(z24) (one such root is
z24

5 − z24
7), so whether 3(2 − r3) is a square in F×

p depends on the value of p
modulo 24. We find that it is a square, in which case 2·M12.2 < Ω+

12(p), when
p ≡ ±1 (mod 24), and a non-square when p ≡ ±11 (mod 24).

Maximality is clear, since 2·M12 is not a subgroup of A14, by [12].

Proposition 4.9.71 Let Ω = Ω±
12(q), let G = L3(3) be an S1-subgroup of

Ω, and let S = NΩ(G). Then p �= 3, 13. If p ≡ ±1,±3,±4 (mod 13) then
Ω = Ω+

12(p). If p ≡ ±2,±5,±6 (mod 13) then Ω = Ω−
12(p). If p ≡ ±5 (mod 12)

then S = G, with class stabiliser 〈δ〉. If p ≡ 1, 2, 11 (mod 12) with Ω = Ω−
12(p),

then S = G.2, with trivial class stabiliser. If p ≡ ±1 (mod 12) with Ω = Ω+
12(p),

and x4− 10x2 + 13 has four linear factors modulo p, then S = G.2, with trivial
class stabiliser. If p ≡ ±1 (mod 12) with Ω = Ω+

12(p), and x4 − 10x2 + 13 has
no linear factors modulo p, then S = G with class stabiliser 〈δ′〉. There is a
single Aut Ω-class of groups G. The group G is not S1-maximal in Ω, however
G.2 is S1-maximal wherever it occurs. For no other q are there S1-subgroups
of O±

12(q) isomorphic to G.

Proof By Theorem 4.3.3, there is a unique representation and q = p. Computer
calculations (file l33d12calc) using a representation of G in GL12(Z) show that
the determinant of the form F for which G is a group of isometries is 13. For
p = 2, we require an independent computation. They show also that there is a
matrix A ∈ GL12(Z) that normalises and induces the outer automorphism of
G, has determinant 36, and transforms F to 3F .

Suppose first that p ≡ ±5 (mod 12). Then 3 is a non-square in F×
p . By

comparing the determinant and action on F of the matrix A with those of
the matrix that induces the outer automorphism δ of Ω±

12(p), as defined in
Subsection 1.7.1, we can deduce that the outer automorphism of G induced by
A on reduction modulo p is conjugate in OutΩ to δ.

Suppose then that p ≡ 1, 2, 11 (mod 12). Then 3 is a square in F×
p and

so by multiplying A by the scalar matrix I12/
√

3 ∈ GL12(p), we can find a
matrix in SO±

12(p) that normalises and induces the outer automorphism of
G. If G < Ω−

12(p) then SO−
12(p) = Ω−

12(p) × Z(SO−
12(p)), so G.2 < Ω−

12(p). If
G < Ω+

12(p) then G.2 < SO+
12(p), and we need to determine the spinor norm

or quasideterminant of elements of G.2 \G. When p is odd, using a computer
calculation (file l33d12calc)) over Q(r3) and Proposition 1.6.11 we find that
this spinor norm is 1 if and only if 5 − 2r3 is a square in F×

p . This is the case
if and only if the minimal polynomial x4 − 10x2 + 13 of

√
5− 2r3 over Q has

four linear factors when reduced modulo p. There appears to be no alternative
method of characterising such primes. We do a separate computer calculation
of the quasideterminant for the case p = 2.
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By [12], L3(3) < A13 and by [12, 57] this is an S1-containment. However,
L3(3).2 �� S13,S14.

Proposition 4.9.72 Let Ω = Ω±
12(q), and let G = L2(13) be an S1-subgroup

of Ω. Then NΩ(G) = G and the class stabiliser is 〈γ〉. If q = 7 then Ω =
Ω−

12(7). If p ≡ ±1 (mod 7) then q = p, and there are exactly three Aut Ω-
classes of groups G. If p ≡ ±2,±3 (mod 7) then q = p3, and there is exactly
one Aut Ω-class of groups G. If p ≡ ±1,±3,±4 (mod 13) then Ω = Ω+

12(q). If
p ≡ ±2,±5,±6 (mod 13) then Ω = Ω−

12(q). If q �= 7 then G is S1-maximal,
and if q = 7 then no extension of G is S1-maximal in any extension of Ω. For
no other q are there S1-subgroups of O±

12(q) isomorphic to G.

Proof When p = 7 there is a unique representation, by Theorem 4.3.3, which
extends to G.2 by [57]. However, a Magma calculation (file l213d12calc)
shows that Ω = Ω−

12(7) and there are S1-containments G < A14 and G.2 < S14.
By Theorem 4.3.3, q = p when p ≡ ±1 (mod 7) and q = p3 when p ≡

±2,±3 (mod 7). There are three representations, all stabilised by the outer
automorphism of G, so three Aut Ω-classes when q = p.

Computer calculations (file l213d12calc) in SL12(K) with K := Q(y7)
show that the form preserved has determinant d, where 13d is a square in K.
So the sign of this form over Fq depends on whether 13 is a square in F×

q , and
hence on whether p is a square modulo 13. For p = 2 we require an additional
calculation over F8.

From [12, 57], we find that the representation of G.2 consists of isometries,
and elements of G.2 \G have determinant −1 so, when p is odd, the outer au-
tomorphism of G is induced by a conjugate of γ. A computer calculation (file
l213d12calc) shows that the same is true when p = 2. The three representa-
tions are cycled by φ when q = p3 [12, 57].

The group L2(13) is not a subgroup of A13.

Proposition 4.9.73 Let Ω = Ω±
12(q), and let G = L2(11) be an S1-subgroup

of Ω. Then NΩ(G) = G, with class stabiliser 〈γ〉. If p ≡ ±1,±16,±19,±24,
±26 (mod 55) then Ω = Ω+

12(p). If p ≡ ±4,±6,±9,±14,±21 (mod 55) then
Ω = Ω−

12(p). If p ≡ ±2 (mod 5) then Ω = Ω−
12(p

2). If q = p then there are
exactly two Aut Ω-classes of groups G, but if q = p2 then there is only one. For
no other q are there S1-subgroups L2(11) of O±

12(q), and G is S1-maximal.

Proof By Theorem 4.3.3, q = p when p ≡ ±1 (mod 5) and q = p2 when
p ≡ ±2 (mod 5). There are two representations, both stabilised by the outer
automorphism of G, so if q = p then there are two AutΩ-classes.

Computer calculations (file l211d12calc) in SL12(K) with K := Q(b5)
show that the form β for which G is a group of isometries has determinant
d, where 11(2 + b5)d is a square in K. Now 2 + b5 has a square root in the
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cyclotomic field Q(z20) (one such root is z20
7 − z20

5 + z20
3 − 2z20), so whether

2 + b5 is a square in F×
q depends on the value of q modulo 20. So the sign of

β over Fq, which is 1 and −1 when d is respectively a square and a non-square
in F×

q , depends on whether 11(2 + b5) is a square in F×
q , which is a function of

q (mod 220), and yields the stated congruences (which turn out not to depend
on q (mod 4)). Note that p = 2 requires an independent computation over F4.

From [12, 57], we find that elements of G.2 are isometries, and elements of
G.2\G have determinant −1 so, when p is odd, the outer automorphism of G is
induced by a conjugate of γ. A computer calculation (file l211d12calc) shows
that this is also the case when p = 2. The two representations are interchanged
by φ when p ≡ ±2 (mod 5) [12, 57], so there is a unique AutΩ-class.

The group L2(11) is a subgroup of A13, but character values [12] on elements
of order 5 show that this is not a containment of S1-subgroups for p > 3. Con-
versely, if p � 3, then L2(11) is a subgroup of Ω−

12(p
2) but not of Ω±

12(p), unlike
A13, so there is no containment here either. For the same reason, there is no
containment in A14 with p = 7. A computer calculation (file containmentsd12)
shows that the maximal subgroup L2(11) of M12 has inverse image 2·L2(11) in
2·M12, The only other maximal subgroup of M12 containing L2(11) is M11,
which has inverse image 2 ×M11 in 2·M12. Hence L2(11) arises as a subgroup
of 2·M12 only via L2(11) < M11 < 2·M12, but by Theorem 4.3.3 the group
M11 does not have an irreducible representation of degree 12, so this does not
correspond to a containment of S1-subgroups.

4.10 Summary of the S1-maximal subgroups

In this section we state theorems that summarise the results proved earlier
in the chapter, and refer back to those results for proofs. Our aim is for this
section to be the most convenient starting point for the reader who requires
lists of the S1-maximals of an almost simple extension of a simple classical
group of dimension up to 12.

These theorems provide similar information to the tables in Chapter 8. We
now present an explanation of how to interpret the information given in the
lists following the theorem statements. We warn the reader that the groups
denoted by ‘G’ in this section are not the same as in the rest of this chapter.

Convention 4.10.1 (i) The group Ω is a quasisimple classical group, Z =
Z(Ω), Ω = Ω/Z, and G is a group with Ω � G � Aut Ω.

(ii) The structure of a proper subgroup S of Ω with Z < S is specified, and
S := S/Z. This subgroup represents a single conjugacy class of subgroups
of Ω under the action of Aut Ω.
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(iii) The values of q = pe for which this list item may represent S1-maximal
subgroups of G are specified. Different values of q may correspond to dif-
ferent cases for Ω.

(iv) The stabiliser of the conjugacy class of S in Ω under the action of Out Ω
is specified as a subgroup of OutΩ. See Section 1.7 for a definition of the
generators of OutΩ.

(v) For the specified values of q, the list item represents S1-maximal sub-
groups of G only if G/Ω is a subgroup of the class stabiliser. The default
assumption is that this is the case if and only if G/Ω is a subgroup of the
class stabiliser. In cases where this is not true (that is, for the so-called
novel maximal subgroups), the subgroups of the class stabiliser for which
it is true are specified.

(vi) If the list item does represent S1-maximal subgroups of G, then one such
subgroup is NG(S). Representatives of the G-classes of subgroups repre-
sented by this item are obtained by conjugating NG(S) by coset represen-
tatives of NT (G) in NAut Ω(G), where T is the inverse image in Aut Ω of
the class stabiliser.

4.10.1 Cases L and U

Recall that we treat SL2(q) as Sp2(q).

Theorem 4.10.2 Let G and Ω be as in Convention 4.10.1, with Ω = SL3(q)
or SU3(q). Then representatives of the conjugacy classes of S1-maximal sub-
groups of G are described in the list below, using Convention 4.10.1.

Proof See Theorem 4.3.3 for the list of candidates. See Proposition 4.5.2 for
Item 1, Proposition 4.5.3 for Item 2, Proposition 4.5.4 for Item 3, and Theo-
rem 4.7.1 and Proposition 4.8.2 for all three items.

1. S = L3(2) × Z with p �= 2, 7. If p ≡ 1, 2, 4 (mod 7) then S < SL3(p), and
if p ≡ 3, 5, 6 (mod 7) then S < SU3(p). The class stabiliser is 〈γ〉 in all cases.
The group S is not S1-maximal in U3(5) but S.2 is S1-maximal in U3(5).2.

2. S = 3·A6 with p �= 3, 5, or S = 3·A6.23 with p = 5. If p ≡ 1, 4 (mod 15)
then S < SL3(p), if p ≡ ±2 (mod 5) then S < SL3(p2), and if p = 5 or
p ≡ 11, 14 (mod 15) then S < SU3(p). The class stabiliser is 〈γ〉 when q = p

and 〈γ, φ〉 when q = p2. If S = A6 then the automorphism γ induces the 22

automorphism of A6, and φ induces the 21 automorphism of A6 when p ≡
2, 8 (mod 15) and the 23 automorphism of A6 otherwise.

3. S = 3·A7 < SU3(5), with class stabiliser 〈γ〉.
Theorem 4.10.3 Let G and Ω be as in Convention 4.10.1, with Ω = SL4(q)
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or SU4(q). Then representatives of the conjugacy classes of S1-maximal sub-
groups of G are described in the list below, using Convention 4.10.1.

Proof See Theorem 4.3.3 for the list of candidates. See Propositions 4.5.5
and 4.7.4 for Item 1, Propositions 4.5.5 and 4.7.3 for Item 2, Propositions 4.5.6
and 4.7.5 for Item 3, Propositions 4.5.7 and 4.7.2 for Item 4, and Proposi-
tion 4.8.3 for all items.

1. S = 2·L3(2)Z with p �= 2, 3, 7. If p ≡ 1, 2, 4 (mod 7) then S < SL4(p),
and if p ≡ 3, 5, 6 (mod 7) then S < SU4(p). The class stabiliser is 〈γ〉 when
p ≡ ±1 (mod 8) and 〈γδ〉 when p ≡ ±3 (mod 8). The group S is not S1-
maximal in Ω, but S.2 is S1-maximal in Ω.2.
2. S = A7 with p = 2 or S = 2·A7Z with p �= 2, 7. If p ≡ 1, 2, 4 (mod 7) then
S < SL4(p), and if p ≡ 3, 5, 6 (mod 7) then S < SU4(p). The class stabiliser is
〈γ〉.
3. S = 42

·L3(4) < SU4(3). The class stabiliser is 〈δ2, γδ〉. The automorphism
δ2 induces the 22 automorphism of L3(4), and γδ induces the 21 automorphism.
4. S = 2·U4(2)Z with p �= 2, 3. If p ≡ 1 (mod 6) then S < SL4(p), and if
p ≡ 5 (mod 6) then S < SU4(p). The class stabiliser is 〈γ〉.
Theorem 4.10.4 Let G and Ω be as in Convention 4.10.1, with Ω = SL5(q)
or SU5(q). Then representatives of the conjugacy classes of S1-maximal sub-
groups of G are described in the list below, using Convention 4.10.1.

Proof See Theorem 4.3.3 for the list of candidates. See Propositions 4.5.12
and 4.8.6, and Theorem 4.7.6.

1. S = L2(11)× Z with p �= 11. If p ≡ 1, 3, 4, 5, 9 (mod 11) then S < SL5(p),
and if p ≡ 2, 6, 7, 8, 10 (mod 11) then S < SU5(p). The class stabiliser is 〈γ〉.
The group S is not S1-maximal in L5(3), but S.2 is S1-maximal in L5(3).2.
2. S = M11 < SL5(3), with trivial class stabiliser.
3. S = U4(2) × Z with p �= 2, 3. If p ≡ 1 (mod 6) then S < SL5(p), and if
p ≡ 5 (mod 6) then S < SU5(p). The class stabiliser is 〈γ〉.
Theorem 4.10.5 Let G and Ω be as in Convention 4.10.1, with Ω = SL6(q)
or SU6(q). Then representatives of the conjugacy classes of S1-maximal sub-
groups of G are described in the list below, using Convention 4.10.1.

Proof See Theorem 4.3.3 for the list of candidates. See Propositions 4.5.13
and 4.7.8 for Item 1, Propositions 4.5.14 and 4.7.9 for Item 2, Propositions
4.5.15 and 4.7.7 for Item 3, Propositions 4.5.17 and 4.7.11 for Item 4, Propo-
sitions 4.5.18 and 4.7.12 for Item 5, Propositions 4.5.19, 4.7.13 and 4.7.14 for
Items 6 and 7, Propositions 4.5.20, 4.7.15 and 4.7.16 for Item 8, and Proposi-
tions 4.8.7 – 4.8.12, for the analysis of containments between candidates.
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1. S = 3·A6Z with p �= 3 (p ≡ 5, 7 (mod 8) in Case L, or p ≡ 1, 3 (mod 8)
in Case U), or S = 3·A6.23Z with p �= 3 (p ≡ 1, 3 (mod 8) in Case L, or
p ≡ 5, 7 (mod 8) in Case U). If p ≡ 1 (mod 6) then S < SL6(p), and if p ≡
5 (mod 6) then S < SU6(p). The class stabiliser is 〈δ3, γ〉 when S = A6 and
either 〈γ〉 (p ≡ ±1 (mod 8)) or 〈γδ〉 (p ≡ ±3 (mod 8)) when S = A6.23. If
the class stabiliser is 〈δ3, γ〉 then δ3 induces the 23 automorphism of A6, and
γ induces the 22 automorphism of A6 when p ≡ 7, 17 (mod 24), and the 21

automorphism otherwise. The groups A6, A6.21 and A6.23 are not S1-maximal,
but all other extensions of A6 are S1-maximal in G.

2. S = 6·A6 with p �= 2, 3. If p ≡ 1, 7 (mod 24) then S < SL6(p), and
if p ≡ 17, 23 (mod 24) then S < SU6(p). In both of these cases, the class
stabiliser is 〈γ〉 for p ≡ ±1 (mod 16) and 〈γδ〉 for p ≡ ±7 (mod 16). If p ≡
±5,±11 (mod 24) then S < SL6(p2), with class stabiliser 〈γδ3, φ〉 when p ≡
5, 11 (mod 24) and 〈γδ3, φγ〉 when p ≡ 13, 19 (mod 24). If the class stabiliser
has order 2, then it induces the 22 automorphism of A6. If p ≡ 5, 11 (mod 24)
then γδ3 and φ induce the 22 and the 21 automorphisms of A6, respectively. If
p ≡ 13, 19 (mod 24) then γδ3 and γφ induce the 22 and the 21 automorphisms
of A6, respectively. The groups A6 and A6.21 are not S1-maximal, but all other
extensions of A6 are S1-maximal in G.

3. S = 2·L2(11)Z with p �= 2, 3, 11. If p ≡ 1, 3, 4, 5, 9 (mod 11) then S <

SL6(p), and if p ≡ 2, 6, 7, 8, 10 (mod 11) then S < SU6(p). The class stabiliser
is 〈γ〉 when p ≡ ±1 (mod 8), and 〈γδ〉 when p ≡ ±3 (mod 8).

4. S = 6·A7 with p �= 2, 3. If p ≡ 1, 7 (mod 24) then S < SL6(p), and if
p ≡ 17, 23 (mod 24) then S < SU6(p). In both of these cases, the class stabiliser
is trivial. If p ≡ ±5,±11 (mod 24) then S < SL6(p2), with class stabiliser 〈φ〉
when p ≡ 5, 11 (mod 24) and 〈φγ〉 when p ≡ 13, 19 (mod 24).

5. S = 6·L3(4) with p �= 3 (p ≡ 5, 7 (mod 8) in Case L, or p ≡ 1, 3 (mod 8)
in Case U), or S = 6·L3(4).21 with p �= 3 (p ≡ 1, 3 (mod 8) in Case L, or
p ≡ 5, 7 (mod 8) in Case U). If p ≡ 1 (mod 6) then S < SL6(p), and if p ≡
5 (mod 6) then S < SU6(p). The class stabiliser is 〈δ3, γ〉 when S = L3(4), and
〈γ〉 when S = L3(4).21. If the class stabiliser is 〈δ3, γ〉 then δ3 and γ induce the
21 and 22 automorphisms of L3(4), respectively. If the class stabiliser is 〈γ〉 then
γ extends S to L3(4).22. The groups L3(4) and L3(4).22 are not S1-maximal,
but all other extensions of L3(4) are S1-maximal in G.

6. S = 2·M12 < SL6(3), with class stabiliser 〈γδ〉.
7. S = 3·M22 < SU6(2), with class stabiliser 〈γ〉.
8. S = 31

·U4(3).22 with p = 2, S = 61
·U4(3) with p �= 3 (p ≡ 3 (mod 4)

in Case L, or p ≡ 1 (mod 4) in Case U), or S = 61
·U4(3).22 with p �= 3

(p ≡ 1 (mod 4) in Case L, or p ≡ 3 (mod 4) in Case U). If p ≡ 1 (mod 6)
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then S < SL6(p), and if p = 2 or p ≡ 5 (mod 6) then S < SU6(p). The class
stabiliser is 〈δ3, γ〉 when S = U4(3), and 〈γ〉 when S = U4(3).22. If the class
stabiliser is 〈δ3, γ〉 then δ3 and γ induce the 22 and 21 automorphisms of U4(3),
respectively. If S = U4(3).22, then γ extends S to U4(3).22

122.

Theorem 4.10.6 Let G and Ω be as in Convention 4.10.1, with Ω = SL7(q)
or SU7(q). Then representatives of the conjugacy classes of S1-maximal sub-
groups of G are described in the list below, using Convention 4.10.1.

Proof See Theorem 4.3.3 and Proposition 4.9.1.

1. S = U3(3) × Z with p �= 2, 3. If p ≡ 1 (mod 4) then S < SL7(p), and if
p ≡ 3 (mod 4) then S < SU7(p). The class stabiliser is 〈γ〉.
Theorem 4.10.7 Let G and Ω be as in Convention 4.10.1, with Ω = SL8(q)
or SU8(q). Then representatives of the conjugacy classes of S1-maximal sub-
groups of G are described in the list below, using Convention 4.10.1.

Proof See Theorem 4.3.3 and Proposition 4.9.2.

1. S = 41
·L3(4).23Z for p ≡ ±1,±7,±17,±23,±31,±33 (mod 80), or S =

41
·L3(4)Z for all other values of p �= 2. If p ≡ 1, 9 (mod 20) or p = 5 then

S < SL8(p), if p ≡ 11, 19 (mod 20) then S < SU8(p), and if p ≡ ±2 (mod 5)
then S < SL8(p2).

The class stabiliser OS is as follows, and if a non-trivial power of δ is in OS ,
then this induces the 23 automorphism:

(i) If p = 5 then OS = 〈δ2, γ〉, with γ inducing the 21 automorphism.
(ii) If S = L3(4) < L8(p), then OS = 〈δ(q−1,8)/2〉.
(iii) If S = L3(4) < U8(p), then OS = 〈δ(q+1,8)/2〉.
(iv) If S = L3(4) < L8(p2), then OS = 〈δ4, φ〉 when p ≡ 3 (mod 4), and OS =

〈δ4, φγ〉 when p ≡ 1 (mod 4). Here φ or φγ induces the 21 automorphism.
(v) If S = L3(4).23 < L8(p), then OS = 1.
(vi) If S = L3(4).23 < U8(p), then OS = 1.
(vii) If S = L3(4).23 < L8(p2), then OS = 〈φ〉 for p ≡ 7 (mod 8), and OS =

〈φγ〉 for p ≡ 1 (mod 8).

Theorem 4.10.8 Let G and Ω be as in Convention 4.10.1, with Ω = SL9(q)
or SU9(q). Then representatives of the conjugacy classes of S1-maximal sub-
groups of G are described in the list below, using Convention 4.10.1.

Proof See Theorem 4.3.3 for the list of candidates. See Propositions 4.9.3 to
4.9.6 for the other claims.

1. S = 3·A6.23Z with p �= 3, 5. If p ≡ 1 (mod 3) then S < SL9(p), and if
p ≡ 2 (mod 3) then S < SU9(p). The class stabiliser is 〈γ〉.
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2. S = 3·A7 < SL9(7), with class stabiliser 〈γ〉.
3. S = L2(19) × Z with p �= 19. If p ≡ 1, 4, 5, 6, 7, 9, 11, 16, 17 (mod 19) then
S < SL9(p), and if p ≡ 2, 3, 8, 10, 12, 13, 14, 15, 18 (mod 19) then S < SU9(p).
The class stabiliser is 〈γ〉. If p = 2 then S is not S1-maximal, but NU9(2)〈γ〉(S)
is S1-maximal.

4. S = 3·J3 < SU9(2), with class stabiliser 〈γ〉.
Theorem 4.10.9 Let G and Ω be as in Convention 4.10.1, with Ω = SL10(q)
or SU10(q). Then representatives of the conjugacy classes of S1-maximal sub-
groups of G are described in the list below, using Convention 4.10.1.

Proof See Theorem 4.3.3 for the list of candidates. See Propositions 4.9.7
to 4.9.13 for the other claims.

1. S = A7 × Z with p �= 2, 7. If p ≡ 1, 2, 4 (mod 7) then S < SL10(p), and if
p ≡ 3, 5, 6 (mod 7) then S < SU10(p). The class stabiliser is 〈γ〉. The group S

is not S1-maximal, but S.2 is S1-maximal in Ω〈γ〉.
2. S = 2·L2(19)Z with p �= 2, 19. If p ≡ 1, 4, 5, 6, 7, 9, 11, 16, 17 (mod 19)
then S < SL10(p), and if p ≡ 2, 3, 8, 10, 12, 13, 14, 15, 18 (mod 19) then S <

SU10(p). The class stabiliser is 〈γ〉 when p ≡ ±1 (mod 8), and 〈γδ〉 when p ≡
±3 (mod 8).

3. S = 2·L3(4).22Z with p �= 7 (p ≡ 1 (mod 4) in Case L, or p ≡ 3 (mod 4)
in Case U), or S = 2·L3(4)Z with p �= 7 (p ≡ 3 (mod 4) in Case L, or
p ≡ 1 (mod 4) in Case U). If p ≡ 1, 2, 4 (mod 7) then S < SL10(p), and if
p ≡ 3, 5, 6 (mod 7) then S < SU10(p). If S = L3(4).22, then the class stabiliser
is 〈γ〉 when p ≡ ±1 (mod 8) and 〈γδ〉 when p ≡ ±3 (mod 8). If S = L3(4),
then the class stabiliser is 〈δ5, γ〉, with δ5 inducing the 22 automorphism and
γ inducing the 21 automorphism when p ≡ ±3 (mod 8) and the 2122 automor-
phism otherwise. The groups L3(4) and L3(4).22 are not S1-maximal, but all
other extensions of S are S1-maximal in the corresponding extensions of Ω.

4. S = U4(2)Z with p �= 2, 3. If p ≡ 1 (mod 3) then S < SL10(p), and if
p ≡ 2 (mod 3) then S < SU10(p). The class stabiliser is 〈γ〉.
5. S = 2·M12.2Z with p ≡ ±1 (mod 8), or S = 2·M12Z with p ≡ ±3 (mod 8).
If p ≡ 1, 3 (mod 8) then S < SL10(p), and if p ≡ 5, 7 (mod 8) then S < SU10(p).
The class stabiliser is trivial when S = M12.2, and is 〈δ5〉 when S = M12.

6. S = M22.2 with p = 2, S = 2·M22Z with p �= 7 (p ≡ 3 (mod 4) in Case L,
or p ≡ 1 (mod 4) in Case U), or S = 2·M22.2Z with p �= 7 (p ≡ 1 (mod 4) in
Case L, or p ≡ 3 (mod 4) in Case U). If p ≡ 1, 2, 4 (mod 7) then S < SL10(p),
and if p ≡ 3, 5, 6 (mod 7) then S < SU10(p). The class stabiliser is trivial when
S = M22.2, and is 〈δ5〉 when S = M22.
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Theorem 4.10.10 Let G and Ω be as in Convention 4.10.1, with Ω = SL11(q)
or SU11(q). Then representatives of the conjugacy classes of S1-maximal sub-
groups of G are described in the list below, using Convention 4.10.1.

Proof See Theorem 4.3.3 for the list of candidates. See Propositions 4.9.14
to 4.9.17 for the other claims.

1. S = L2(23) × Z with p �= 23. If p ≡ 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18 (mod 23)
then S < SL11(p), and if p ≡ 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22 (mod 23) then
S < SU11(p). The class stabiliser is 〈γ〉. If p = 2 then S is not S1-maximal,
but S.2 is S1-maximal in L5(2)〈γ〉.
2. S = U5(2) × Z with p �= 2, 3. If p ≡ 1 (mod 3) then S < SL11(p), and if
p ≡ 2 (mod 3) then S < SU11(p). The class stabiliser is 〈γ〉.
3. S = M24 < SL11(2), with trivial class stabiliser.

Theorem 4.10.11 Let G and Ω be as in Convention 4.10.1, with Ω = SL12(q)
or SU12(q). Then representatives of the conjugacy classes of S1-maximal sub-
groups of G are described in the list below, using Convention 4.10.1.

Proof See Theorem 4.3.3 for the list of candidates. See Propositions 4.9.18
to 4.9.22 for the other claims.

1. S = 6·A6Z with p �= 2, 3, 5. If p ≡ 1, 4 (mod 15) then S < SL12(p), if p ≡
11, 14 (mod 15) then S < SU12(p), and if p ≡ ±2 (mod 5) then G < SL12(p2).
If q = p then the class stabiliser is 〈γ〉 when p ≡ ±1 (mod 8), and 〈γδ〉 when
p ≡ ±3 (mod 8), and the class stabiliser induces the 22 automorphism of A6.
If q = p2 then the class stabiliser is 〈γ, φ〉 when p ≡ ±5 (mod 12) and 〈γ, φδ6〉
when p ≡ ±1 (mod 12). Here γ induces the 22 automorphism of A6, and φ

or φδ6 induces the 21 automorphism when p ≡ 5, 11 (mod 12), and the 23

automorphism otherwise. If p = 7 then S and S.23 are not S1-maximal, but
in all other cases, S and its extensions are S1-maximal in the corresponding
extensions of Ω.

2. S = 6·A7 < SU12(5), with class stabiliser 〈γ〉.
3. S = 2·L2(23)Z with p �= 2, 23. If p ≡ 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18 (mod 23)
then S < SL12(p), and if p ≡ 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22 (mod 23) then
S < SU12(p). The class stabiliser is 〈γ〉 when p ≡ ±1 (mod 8) and 〈γδ〉 when
p ≡ ±3 (mod 8).

4. S = 122
·L3(4) < SL12(49), with class stabiliser 〈γ, φ〉, where φ induces the

21 automorphism of L3(4) and γ the 23.

5. S = 3·Suz with p = 2 or S = 6·SuzZ with p �= 2, 3. If p ≡ 1 (mod 3) then
S < SL12(p), and if p ≡ 2 (mod 3) then S < SU12(p). The class stabiliser is
〈γ〉.



260 Groups in Class S : cross characteristic

4.10.2 Case S

In this subsection, we list the S1-maximal subgroups of the symplectic groups
in dimensions 2 to 12.

Theorem 4.10.12 Let G and Ω be as in Convention 4.10.1, with Ω = Sp2(q).
Then representatives of the conjugacy classes of S1-maximal subgroups of G
are described in the list below, using Convention 4.10.1.

Proof See Theorem 4.3.3 for the list of candidates. See Proposition 4.5.1 and
Theorem 4.7.17 for the other claims.

1. S = 2·A5 with p �= 2, 5. If p ≡ ±1 (mod 5) then S < Sp2(p), and if
p ≡ ±2 (mod 5) then S < Sp2(p2). The class stabiliser is trivial in the first
case and 〈φ〉 in the second.

Theorem 4.10.13 Let G and Ω be as in Convention 4.10.1, with Ω = Sp4(q).
Then representatives of the conjugacy classes of S1-maximal subgroups of G
are described in the list below, using Convention 4.10.1.

Proof See Theorem 4.3.3 for the list of candidates. See Proposition 4.5.10 for
Item 1, Proposition 4.5.11 for Item 2, and Proposition 4.8.5 for containment
information.

1. S = 2·A6.21 with p ≡ ±1 (mod 12), or S = 2·A6 with p ≡ ±5 (mod 12)
and p �= 7. The group S < Sp4(p) for all such p. The class stabiliser is trivial
for S = A6.21, and 〈δ〉 for S = A6, and δ induces the 21 automorphism of A6.

2. S = 2·A7 < Sp4(7), with class stabiliser 〈δ〉.

Theorem 4.10.14 Let G and Ω be as in Convention 4.10.1, with Ω = Sp6(q).
Then representatives of the conjugacy classes of S1-maximal subgroups of G
are described in the list below, using Convention 4.10.1.

Proof See Theorem 4.3.3 for the list of candidates. See Proposition 4.5.21 for
Item 1, Proposition 4.5.22 for Items 2 and 3, Proposition 4.5.23 for Item 4,
Proposition 4.5.24 for Item 5, Proposition 4.5.25 for Item 6, Proposition 4.5.26
for Item 7, Theorem 4.7.17 for the class stabiliser when q is not prime, and
Propositions 4.8.13 to 4.8.15 for an analysis of the containments between the
candidates.

1. S = 2·A5.2 with p ≡ ±1 (mod 8), or S = 2·A5 with p ≡ ±3 (mod 8) and
p �= 5. The group S < Sp6(p) for all such p. The class stabiliser is trivial for
S = A5.2, and 〈δ〉 for S = A5.



4.10 Summary of the S1-maximal subgroups 261

2. S = 2·L3(2).2 with p ≡ ±1 (mod 16), or S = 2·L3(2) with p ≡ ±3,±5,±7
(mod 16) and p �= 7. If p ≡ ±1 (mod 8) then S < Sp6(p), and if p ≡
±3 (mod 8) then S < Sp6(p2). The class stabiliser is trivial for S = L3(2).2
and 〈δ〉 for S = L3(2). If p = 3 then S is not S1-maximal in Sp6(9), but S.2 is
S1-maximal in S6(9)〈δ〉.
3. S = 2·L3(2).2 with p ≡ ±1 (mod 16) or S = 2·L3(2) with p ≡ ±7 (mod 16)
and p �= 7. The group S < Sp6(p) for all such p. The class stabiliser is trivial
for S = L3(2).2 and 〈δ〉 for S = L3(2).

4. S = 2·L2(13) with p �= 2, 13, or S = L2(13) with p = 2. If p ≡ ±1,±3,±4
(mod 13) then S < Sp6(p), and if p ≡ ±2,±5,±6 (mod 13) then S < Sp6(p2).

The class stabiliser is trivial in the first case and 〈φ〉 in the second.

5. S = 2·A7 < Sp6(9), with class stabiliser 〈φ〉.
6. S = (2 × U3(3)).2 with p ≡ ±1 (mod 12), or S = 2 × U3(3) with p ≡
±5 (mod 12) and p �= 5, or S = U3(3) : 2 for p = 2. The group S < Sp6(p) for
all such p. The class stabiliser is trivial when p ≡ ±1 (mod 12) or p = 2, and 〈δ〉
when p ≡ ±5 (mod 12). If p ≡ ±19,±29 (mod 60) then S is not S1-maximal,
but S.2 is S1-maximal in S6(p).2.

7. S = J2 with p = 2, or S = 2·J2 with p �= 2. If p ≡ ±1 (mod 5) or
p = 5 then S < Sp6(p), and if p ≡ ±2 (mod 5) then S < Sp6(p2). The class
stabiliser is trivial when p ≡ ±1 (mod 5), equal to 〈δ〉 when p = 5, and 〈φ〉
when p ≡ ±2 (mod 5).

Theorem 4.10.15 Let G and Ω be as in Convention 4.10.1, with Ω = Sp8(q).
Then representatives of the conjugacy classes of S1-maximal subgroups of G
are described in the list below, using Convention 4.10.1.

Proof See Theorem 4.3.3 for the list of candidates. See Propositions 4.9.26
to 4.9.23 for the other claims.

1. S = 2·L3(2).2 for p ≡ ±1 (mod 12), or S = 2·L3(2) for p ≡ ±5 (mod 12)
and p �= 7. The group S < Sp8(p) for all such p. The class stabiliser is trivial
when S = L3(2).2, and 〈δ〉 when S = L3(2).

2. S = 2·A6.22 with p ≡ ±1 (mod 20), or S = 2·A6 for all other p �= 2, 3, 5.
If p ≡ ±1 (mod 5) then S < Sp8(p), and if p ≡ ±2 (mod 5) then S < Sp8(p2).
The class stabiliser is trivial when S = A6.22, equal to 〈δ〉 when S = A6 <

S8(p), and 〈δ, φ〉 when q = p2. If δ stabilises S then δ induces the 22 automor-
phism of A6, and similarly φ induces the 21 automorphism.

3. S = L2(17) with p = 2, or S = 2·L2(17) with p �= 2, 17. If p ≡ ±1,±2,±4,
±8 (mod 17) then S < Sp8(p), and if p ≡ ±3,±5,±6,±7 (mod 17) then S <

Sp8(p2). The class stabiliser is trivial when q = p, and 〈φ〉 when q = p2.
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4. S = A10.2 < Sp8(2), with trivial class stabiliser.

Theorem 4.10.16 Let G and Ω be as in Convention 4.10.1, with Ω =
Sp10(q). Then representatives of the conjugacy classes of S1-maximal subgroups
of G are described in the list below, using Convention 4.10.1.

Proof See Theorem 4.3.3 for the list of candidates. See Propositions 4.9.30 to
4.9.27 for the other claims.

1. S = 2·A6.22 with p ≡ ±1 (mod 16), or S = 2·A6 for all other p �= 2, 3. If
p ≡ ±1 (mod 8) then S < Sp10(p), and if p ≡ ±3 (mod 8) then S < Sp10(p2).
The class stabiliser is trivial when S = A6.22, equal to 〈δ〉 when S = A6 <

S10(p), and 〈δ, φ〉 when q = p2. If δ stabilises S then δ induces the 22 automor-
phism of A6, and similarly φ induces the 21 automorphism.

2. S = 2·L2(11).2 with p ≡ ±1 (mod 8) or S = 2·L2(11) with p ≡ ±3 (mod 8)
and p �= 11. The group S < Sp10(p) for all p �= 2, 11. The class stabiliser is
trivial when S = L2(11).2, and 〈δ〉 when S = L2(11).

3. S = 2·L2(11).2 with p ≡ ±1 (mod 24) or p ≡ ±5 (mod 12), or S =
2·L2(11) with p ≡ ±11 (mod 24) and p �= 11. If p ≡ ±1 (mod 12) then
S < Sp10(p), and if p ≡ ±5 (mod 12) then S < Sp10(p2). The class stabiliser is
trivial when S = L2(11).2, and 〈δ〉 when S = L2(11).

4. S = 2·L2(11).2 with p ≡ ±1 (mod 24), or S = 2·L2(11) with p �= 11 and
p ≡ ±11 (mod 24). The group S < Sp10(p) for all such p. The class stabiliser
is trivial when S = L2(11).2, and 〈δ〉 when S = L2(11).

5. S = (2 × U5(2)).2 with p ≡ ±1 (mod 8), or S = 2 × U5(2) with p ≡
±3 (mod 8). Here S < Sp10(p) for all p �= 2. The class stabiliser is trivial when
S = U5(2).2, and 〈δ〉 when S = U5(2).

Theorem 4.10.17 Let G and Ω be as in Convention 4.10.1, with Ω =
Sp12(q). Then representatives of the conjugacy classes of S1-maximal subgroups
of G are described in the list below, using Convention 4.10.1.

Proof See Theorem 4.3.3 for the list of candidates. See Propositions 4.9.31
to 4.9.38 for the other claims.

1. S = 2·L2(11).2 with p ≡ ±1 (mod 20), or S = 2·L2(11) for all other
p �= 2, 5, 11. If p ≡ ±1 (mod 5) then S < Sp12(p), and if p ≡ ±2 (mod 5) then
S < Sp12(p2). The class stabiliser is trivial when S = L2(11).2, and 〈δ〉 when
S = L2(11).

2. S = 2·L2(11).2 with p ≡ ±1 (mod 20), or S = 2·L2(11) with p �= 11 and
p ≡ ±9 (mod 20). The group S < Sp12(p) for all such p. The class stabiliser is
trivial when S = L2(11).2, and 〈δ〉 when S = L2(11).
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3. S = 2·L2(13).2 with p ≡ ±1 (mod 28), or S = 2·L2(13) for all other
p �= 2, 7, 13. If p ≡ ±1 (mod 7) then S < Sp12(p), and if p ≡ ±2,±3 (mod 7)
then S < Sp12(p3). The class stabiliser is trivial when S = L2(13).2, and 〈δ〉
when S = L2(13).

4. S = 2·L2(13).2 with p ≡ ±1 (mod 28), or S = 2·L2(13) with p �= 13 and
p ≡ ±13 (mod 28). The group S < Sp12(p) for all such p. The class stabiliser
is trivial when S = L2(13).2, and 〈δ〉 when S = L2(13).

5. The same description as Item 4.

6. S = L2(25).22 < Sp12(2), or S = 2·L2(25) with p ≡ ±2 (mod 5) and
p �= 2, 3. The group S < Sp12(p) for all such p. The class stabiliser is trivial
when p = 2, and 〈δ〉 otherwise, in which case δ induces the 22 automorphism
of L2(25).

7. S = S4(5) with p = 2, or S = 2·S4(5) with p �= 2, 5. If p ≡ ±1 (mod 5) then
S < Sp12(p), and if p ≡ ±2 (mod 5) then S < Sp12(p2). The class stabiliser is
trivial when q = p, and 〈φ〉 when q = p2.

8. S = 2·G2(4).2 with p ≡ ±1 (mod 8), or S = 2·G2(4) with p ≡ ±3 (mod 8)
and p �= 3. The group S < Sp12(p) for all p �= 2, 3. The class stabiliser is trivial
when S = 2·G2(4).2, and 〈δ〉 when S = 2·G2(4).

9. S = A14.2 < Sp12(2), with trivial class stabiliser.

10. S = 2·Suz < Sp12(3), with class stabiliser 〈δ〉.

4.10.3 Cases Oε

In this section we list the S1-maximal subgroups of the orthogonal groups in
dimensions 7 to 12.

Theorem 4.10.18 Let G and Ω be as in Convention 4.10.1, with Ω = Ω7(q).
Then representatives of the conjugacy classes of S1-maximal subgroups of G
are described in the list below, using Convention 4.10.1.

Proof See Theorem 4.3.3 for the list of candidates. See Propositions 4.9.41
to 4.9.46 for the other claims.

1. S = L2(8)2 with p �= 2, 3. If p ≡ ±1 (mod 9) then S < Ω7(p), and if
p ≡ ±2,±4 (mod 9) then S < Ω7(p

3). The class stabiliser is trivial when q = p,
and 〈φ〉 when q = p3.

2. S = L2(13) with p �= 2, 13. If p ≡ ±1,±3,±4 (mod 13) then S < Ω7(p),
and if p ≡ ±2,±5,±6 (mod 13) then S < Ω7(p

2). The class stabiliser is trivial
when q = p and 〈φ〉 when q = p2.

3. S = J1 < Ω7(11), with trivial class stabiliser.
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4. S = A9.2 < Ω7(3), with trivial class stabiliser.

5. S = S6(2) with p �= 2. For all such p, the group S < Ω7(p), with trivial
class stabiliser.

Theorem 4.10.19 Let G and Ω be as in Convention 4.10.1, with Ω = Ω−
8 (q).

Then representatives of the conjugacy classes of S1-maximal subgroups of G
are described in the list below, using Convention 4.10.1.

Proof See Theorem 4.3.3 for the list of candidates. See Propositions 4.9.47
and 4.9.48 for the other claims.

1. S = L3(2), with p ≡ ±2,±8,±10 (mod 21) and p �= 2. For all such p the
group S < Ω−

8 (p), with class stabiliser 〈γ〉.
Theorem 4.10.20 Let G and Ω be as in Convention 4.10.1, with Ω = Ω9(q).
Then representatives of the conjugacy classes of S1-maximal subgroups of G
are described in the list below, using Convention 4.10.1.

Proof See Theorem 4.3.3 for the list of candidates. See Propositions 4.9.49
to 4.9.53 for the other claims.

1. S = L2(8) with p �= 2, 7. If p ≡ ±1 (mod 7) then S < Ω9(p), and if p ≡ ±2,
±3 (mod 7) then S < Ω9(p

3). The class stabiliser is trivial when q = p, and
〈φ〉 when q = p3.

2. S = L2(17) with p �= 2, 17. If p ≡ ±1,±2,±4,±8 (mod 17) then S < Ω9(p),
and if p ≡ ±3,±5,±6,±7 (mod 17) then S < Ω9(p

2). The class stabiliser is
trivial when q = p, and 〈φ〉 when q = p2.

3. S = A10.2 with p ≡ ±1 (mod 5), or S = A10 with p ≡ ±2 (mod 5). If
p �= 2, 11 then S < Ω9(p). The class stabiliser is trivial when S = A10.2, and
〈δ〉 when S = A10.

4. S = A11.2 < Ω9(11), with trivial class stabiliser.

Theorem 4.10.21 Let G and Ω be as in Convention 4.10.1, with Ω = Ω+
10(q)

or Ω−
10(q). Then representatives of the conjugacy classes of S1-maximal sub-

groups of G are described in the list below, using Convention 4.10.1.

Proof See Theorem 4.3.3 for the list of candidates. See Propositions 4.9.54 to
4.9.63 for the other claims.

1. S = A6.21×Z with p ≡ ±1 (mod 12) or S = A6×Z with p ≡ ±5 (mod 12).
If p ≡ 1 (mod 4) then S < Ω+

10(p), and if p ≡ 3 (mod 4) then S < Ω−
10(p). Let

X be the class stabiliser. Then X = 〈δγ〉 if p ≡ ±11 (mod 24), X = 〈γ, δ′〉 if
p ≡ ±7 (mod 24), and X = 〈δγ, δ′〉 if p ≡ ±5 (mod 24). If |X| = 4 then δ′

induces the 21 automorphism of A6, and γ or δγ induces the 22 automorphism.
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If p �= 7, then S and all of its extensions are S1-maximal in the corresponding
extensions of Ω. If p = 7 then S, S.21 and S.23 are not S1-maximal, but all
other extensions are.

2. S = L2(11) × Z with p �= 2, 3, 7, 11. If p ≡ 1, 3, 4, 5, 9 (mod 11) then S <

Ω+
10(p), and if p ≡ 2, 6, 7, 8, 10 (mod 11) then S < Ω−

10(p). The class stabiliser
is 〈γ〉.
3. S = L2(11) × Z with p �= 2, 3, 11. If p ≡ 1, 3, 4, 5, 9 (mod 11) then S <

Ω+
10(p) and if p ≡ 2, 6, 7, 8, 10 (mod 11) then S < Ω−

10(p). The class stabiliser is
〈γ〉 when p ≡ ±1 (mod 12) and 〈δγ〉 when p ≡ ±5 (mod 12). The group S is
not S1-maximal, but S.2 is S1-maximal in the relevant extension Ω.2.

4. S = 2 × A7 < Ω−
10(7), with class stabiliser 〈δ′〉. The group S is not S1-

maximal, but S.2 is S1-maximal in Ω〈δ′〉 = SO−
10(7).

5. S = 2·L3(4) < Ω−
10(7), with class stabiliser 〈δ′, γ〉. Here, δ′ induces the 23

automorphism, and γ the 21 on one class and the 22 on the other. The groups
S and S.22 are not S1-maximal, but all other extensions of S are S1-maximal
in the corresponding extensions of Ω.

6. S = M12 < Ω−
10(2), with class stabiliser 〈γ〉. The group S is not S1-

maximal, but S.2 is S1-maximal in Ω.2 = SO−
10(2).

7. S = 2·M22 < Ω−
10(7), with class stabiliser 〈γ〉.

8. S = A11×Z with p �= 2, 3, 11. If p ≡ 1, 3, 4, 5, 9 (mod 11) then S < Ω+
10(p),

and if p ≡ 2, 6, 7, 8, 10 (mod 11) then S < Ω−
10(p). The class stabiliser is 〈γ〉.

9. S = A12 ×Z with p = 2 or 3. Here S < Ω−
10(2), and S < Ω+

10(3). The class
stabiliser is 〈γ〉.
Theorem 4.10.22 Let G and Ω be as in Convention 4.10.1, with Ω = Ω11(q).
Then representatives of the conjugacy classes of S1-maximal subgroups of G
are described in the list below, using Convention 4.10.1.

Proof See Theorem 4.3.3 for the list of candidates. See Propositions 4.9.64 to
4.9.67 for the other claims.

1. S = L3(3).2 < Ω11(13), with trivial class stabiliser.

2. S = A12.2 with p ≡ ±1,±5 (mod 24), or S = A12 with p �= 13 and
p ≡ ±7,±11 (mod 24). The group S < Ω11(p) for all such p. The class stabiliser
is trivial when S = A12.2, and 〈δ〉 when S = A12.

3. S = A13 < Ω11(13), with class stabiliser 〈δ〉.
Theorem 4.10.23 Let G and Ω be as in Convention 4.10.1, with Ω = Ω+

12(q)
or Ω−

12(q). Then representatives of the conjugacy classes of S1-maximal sub-
groups of G are described in the list below, using Convention 4.10.1.
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Proof See Theorem 4.3.3 for the list of candidates. See Propositions 4.9.68
to 4.9.73 for the other claims.

1. S = L2(11) × Z with p �= 5, 11. If p ≡ ±1,±16,±19,±24,±26 (mod 55)
then S < Ω+

12(p), if p ≡ ±4,±6,±9,±14,±21 (mod 55) then S < Ω−
12(p), and

if p ≡ ±2 (mod 5) then S < Ω−
12(p

2). The class stabiliser is 〈γ〉.
2. S = L2(11) × Z with p �= 5, 11. If p ≡ ±1,±16,±19,±24,±26 (mod 55)
then S < Ω+

12(p), and if p ≡ ±4,±6,±9,±14,±21 (mod 55) then S < Ω−
12(p).

The class stabiliser is 〈γ〉.
3. S = L2(13) × Z with p �= 7, 13. If p ≡ ±1 (mod 7) then q = p, and if
p ≡ ±2,±3 (mod 7) then q = p3. If p ≡ ±1,±3,±4 (mod 13) then S < Ω+

12(q),
and if p ≡ ±2,±5,±6 (mod 13) then S < Ω−

12(q). The class stabiliser is 〈γ〉.
4. S = L2(13) × Z with p ≡ ±1 (mod 7). If p ≡ ±1,±3,±4 (mod 13) then
S < Ω+

12(p), and if p ≡ ±2,±5,±6 (mod 13) then S < Ω−
12(p). The class

stabiliser is 〈γ〉.
5. The same description as Item 4.

6. S = L3(3).2× Z or L3(3)× Z, with p �= 3, 13. If p ≡ ±1,±3,±4 (mod 13)
then S < Ω+

12(p), and if p ≡ ±2,±5,±6 (mod 13) then S < Ω−
12(p). If S <

Ω+
12(p), then S = L3(3).2 if and only if p ≡ ±1 (mod 12) and x4−10x2 +13 has

four linear factors when reduced modulo p. If S < Ω−
12(p), then S = L3(3).2 if

and only if p ≡ ±1 (mod 12) or p = 2. Otherwise S = L3(3). When S = L3(3).2,
the class stabiliser is trivial. When S = L3(3), the class stabiliser is 〈δ〉 when
p ≡ ±5 (mod 12) and 〈δ′〉 when p ≡ ±1 (mod 12). If S = L3(3) then S is not
S1-maximal, but S.2 is S1-maximal in the relevant extension Ω.2.

7. S = 2·M12.2 with p ≡ ±1 (mod 24), or S = 2·M12 with p ≡ ±5,±7,±11
(mod 24). Here, S < Ω+

12(p) for all such p. The class stabiliser is trivial when
p ≡ ±1 (mod 24), equal to 〈δ〉 when p ≡ ±5 (mod 12), and 〈δ′〉 when p ≡
±11 (mod 24).

8. S = A13 × Z with p �= 7, 13. If p ≡ ±1,±3,±4 (mod 13) then S < Ω+
12(p),

and if p ≡ ±2,±5,±6 (mod 13) then S < Ω−
12(p). The class stabiliser is 〈γ〉.

9. S = A14 < Ω−
12(7), with class stabiliser 〈γ〉.
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Groups in Class S : defining characteristic

The theory of representations of finite simple groups of Lie type in defining
characteristic is somewhat advanced. The representations arise from those of
the associated algebraic groups, and so some familiarity with the theory of al-
gebraic groups is necessary in order to understand it. For an introduction to
this theory see, for example, the survey article by Humphreys [51]. The enthu-
siastic reader may wish to consult Jantzen [58] for a more detailed exposition.
Humphrey’s classic book [50] provide a general exposition of the theory of alge-
braic groups and their representations, whilst Malle and Testerman’s book [91]
gives an excellent introduction to the general theory, subgroup structure, and
representation theory of the finite and algebraic groups of Lie type, including
a fuller discussion of all of the introductory material in this chapter.

In many respects, the study of the S2-candidates is easier than that of the
S1-candidates, simply because there are far fewer of them: we just need to
know about the representations in dimensions up to 12, and to be able to de-
termine some of their properties, such as forms preserved and their behaviour
under the actions of group and field automorphisms. Fortunately it is possible
to extract this information starting from a superficial familiarity with the main
results of the theory, principally the Steinberg Tensor Product Theorems. These
theorems, together with the tables in [84], suffice to determine the representa-
tions. Most of these modules arise as symmetric or anti-symmetric powers or as
easily-defined constituents of tensor products, and in those cases for which we
need to carry out detailed calculations, we can use these descriptions to write
down explicit matrices for group generators and forms preserved. We remind
the reader that the files of Magma calculations that we refer to are available
on the webpage http://www.cambridge.org/9780521138604.

This chapter is organised in a similar way to the previous chapter. However,
rather than examine the candidates in order of case and dimension, it is more
convenient to study all defining characteristic representations of each of the
types of groups of Lie type (such as Spn(q)) together. In Section 5.1 we sum-
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marise the results from the general theory of representations of groups of Lie
type in defining characteristic that we shall need to classify the S2-subgroups,
and in Definition 5.1.15 we define a class S ∗

2 , which roughly consists of those
S2-subgroups which are not obviously contained in a member of C4∪C7. In Sec-
tion 5.2, we present a thorough study of symmetric and anti-symmetric powers
of modules, since they will occur frequently in the remainder of the chapter. The
theory of representations of SL2(q) in defining characteristic is more elementary
than the general case, so in Section 5.3 we determine the S ∗

2 -subgroups that
arise from representations of extensions of SL2(q), as well as finding their class
stabilisers in the relevant full automorphism group of the classical group. After
this, in Sections 5.4 to 5.7 we analyse each of the remaining types of groups of
Lie type in turn, determining each possible intersection with Ω, and the cor-
responding class stabiliser in the conformal group containing Ω. We thereby
compute the same information as we did in Section 4.4 for the S1-candidates.
All of this information is summarised in Section 5.8. The remaining sections
of the chapter then follow the same course as in Chapter 4: in Section 5.9 we
find the class stabilisers under graph and field automorphisms, then in Sec-
tion 5.10 we analyse containments between all of the S ∗

2 -candidates (including
the groups SL2(q)), and finally in Section 5.11 we present the complete list of
S ∗

2 -maximals.

5.1 General theory of S2-subgroups

5.1.1 The Steinberg Theorems

We start by summarising the main results that we shall need from the theory of
algebraic groups and their defining characteristic representations. Let q = pe be
a power of a prime p, and let σ : λ �→ λq and φ : λ �→ λp be field automorphisms,
applicable to any field of characteristic p. Let tX
(q) denote a group of simple
Lie type and Lie rank �, with tX̂
(q) being the covering group of tX
(q) by
the p′-part of its Schur multiplier (so tX̂
(q) is the simply connected version of
tX
(q)). The groups tX̂
(q) can all be obtained as the centraliser of a suitable
automorphism of the algebraic group X̂
(Fp), which we regard as being a matrix
group in some standard form.

If t = 1, then this is simply the field automorphism σ = φe, which is applied
to the entries of the elements of X̂
(Fp). If tX
 is one of 2A
, 2D
, 3D4 and 2E6

then X̂
(Fp) has a graph automorphism γ of order t, and tX̂
(q) is the centraliser
therein of the automorphism γ−1σ. In the case of Â
(Fp) = SL
+1(Fp), we
take the automorphism γ to be the inverse-transpose map (note that there are
other possibilities, which can yield non-isomorphic groups in the definitions that
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follow). The centraliser of γ−1σ = γσ is then the group 2Â
(q) = SU
+1(q),
where the invariant σ-Hermitian form has matrix I
+1.

If tX
 is one of 2B2, 2G2 and 2F4 then X̂
(Fp) has a graph automorphism
γ such that γ2 = φ, but only in characteristics p = 2, 3 and 2 respectively. The
group tX̂
(pe) = tX
(pe) is then the centraliser in X̂
(Fp) of γe, but only if e is
odd and p is the relevant characteristic (2, 3 or 2 respectively). The automor-
phism γ of 2B2(F2) = Sp4(F2) is described more explicitly in Section 7.2.

The following result about automorphism groups of finite groups of Lie
type is standard. See, for example, [32, Theorem 2.5.1] or [12, Section 3.3]. We
discussed diagonal, field and graph automorphisms of the classical groups in
Section 1.7.

Proposition 5.1.1 Any automorphism of a finite group tX
(pe) of Lie type
can be written as a product idfg, where i, d, f, g are respectively inner, diagonal,
field, and graph automorphisms.

By a result of Chevalley [50, p190], the finite-dimensional irreducible al-
gebraic Fp-representations of X̂
(Fp) are indexed by elements λ ∈ N
 (with
0 ∈ N), where the associated irreducible modules M(λ) and M(μ) are isomor-
phic if and only if λ = μ. We call λ the highest weight of M(λ). (We shall
say more about the definition of weights in Subsection 5.1.2 below.) The trivial
module of X̂
(Fp) is M(0).

A weight λ = (a1, . . . , a
) is m-restricted if 0 � ai � m − 1 for all i. Two
results of Steinberg relate the representations of X̂
(Fp) to the irreducible Fp-
representations of tX̂
(q).

Theorem 5.1.2 (Steinberg’s Tensor Product Theorem [104]) Let λ0, . . . , λr

be p-restricted weights associated with X̂
(Fp). Then, as X̂
(Fp)-modules,

M(λ0 + pλ1 + · · ·+ prλr) ∼= M(λ0)⊗ φM(λ1)⊗ · · · ⊗ φr

M(λr).

Note that, according to the notation introduced in Section 1.8, φM(λ1) is
defined by the application of the group automorphism φ of X̂
(Fp) to M(λ1),
and that φM(λ1) = M(pλ1). We shall see below in Proposition 5.1.9 that
φM(λ1) is isomorphic to the module M(λ1)φ defined by applying the field
automorphism to the image of the associated representation.

Theorem 5.1.3 (Steinberg [104]) Let tX
(q) be other than 2B2(q), 2G2(q)
or 2F4(q). Then any irreducible Fp-module for tX̂
(q) is isomorphic to the re-
striction of the X̂
(Fp) module M(λ) to tX̂
(q) for some q-restricted weight λ.
Moreover if λ and μ are q-restricted and not equal then the restrictions of M(λ)
and M(μ) to tX̂
(q) are not isomorphic as Fp

tX̂
(q)-modules.

The statement of the above theorem is somewhat more complicated for the
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cases 2B2(q), 2G2(q) or 2F4(q), but we shall not require this result, as a much
simpler result that is similarly useful holds in these cases.

Let us ignore the cases tX
(q) = 2B2(q), 2G2(q) and 2F4(q) for now. Then
tX̂
(q) has q
 absolutely irreducible modules over Fp (up to isomorphism) and
it follows, from Corollary 1.8.14 and Proposition 5.1.9 (ii) below, that each of
them can be written over Fqt . In light of the above two theorems (and also
Theorem 5.1.5 below), we define a set M of p
 absolutely irreducible modules
for tX̂
(q). The set M consists of the restrictions to tX̂
(q) of the M(λ), for all
p-restricted weights λ, and is called the set of p-restricted modules or p-restricted
representations for tX̂
(q).

Our main reference for classifying the (small dimensional) modules in M is
Lübeck [84]. The following remark is an explanation of how we use the tables.

Remark 5.1.4 The following information can be obtained from Lübeck [84],
using the Dynkin diagram labelling conventions of CHEVIE as detailed in Ap-
pendix A.1 of [84].

(i) The p-restricted modules for the groups tX̂
(q) and X̂
(Fp) of dimension
up to at least 300 are those listed in the table for X
 in [84] for which the
entries in the vector in the λ-column of that table are all less than p, or
in Lübeck [84, Remark 4.5] when X
 = A1. However, in the case of A


for � > 1, only one of each pair of dual p-restricted modules is listed in
the table, and the dual module is obtained by reversing the vector in the
λ-column.

(ii) The graph automorphism of order 2 of D
(q) interchanges the first two
coordinates of the vectors in the λ-column. This corresponds to module
duality when � is odd, but when � is even all modules of D
(q) are self-dual.

(iii) The graph automorphisms of D4(q) and E6(q) permute the coordinates of
the entry in the λ-column according to the numbering of the vertices in
the Dynkin diagrams defined in [84, Appendix A.1].

The low-dimensional p-restricted modules can generally be expressed in
terms of well-known modules for the group in question, like the natural module.
Thus we shall not need to delve too deeply into the technicalities of module
weights.

Let 1 denote the trivial module, and define Mi = φi

M = { φi

M : M ∈ M }
for i ∈ Z. Thus M0 = M . It is clear from Theorems 5.1.2 and 5.1.3 that
M ∩Mi = {1} for 0 < i < e, and that σM = M ; thus the set Mi only depends
on the congruence class of i modulo e.

A similar situation also pertains when tX
(q) = 2B2(q), 2G2(q) or 2F4(q),
except that there are q
/2 irreducible modules (i.e. q, q and q2 modules re-
spectively), and M contains p
/2 irreducible modules (i.e. 2, 3 and 4 modules
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respectively), each defined over Fq. We shall define M in these cases in Sec-
tion 5.7.

Theorem 5.1.5 (Steinberg’s Twisted Tensor Product Theorem [104]) Let
tX
(q), M and Mi be as above. Then any irreducible module for tX̂
(q) over
Fp has the form:

M0 ⊗M1 ⊗ · · · ⊗Me−1,

where Mi ∈ Mi for all i. Furthermore, the |M |e = q
 (or q
/2 when tX
(q) is
2B2(q), 2G2(q) or 2F4(q)) possibilities are pairwise non-isomorphic. �

The following lemma is an immediate consequence of the definitions of
tX̂
(q), and of the p-restricted modules for X̂
(q) as restrictions of the p-
restricted Fp-modules for X̂
.

Lemma 5.1.6 There are natural embeddings of X̂
(q) in X̂
(qs) for all s � 1,
and of tX̂
(q) in X̂
(qt), and the restriction of any p-restricted module for
X̂
(qs) to X̂
(q) is a p-restricted module of the same weight.

5.1.2 Weights

We remind the reader that the material in this section is standard, and a more
thorough introduction to this material can be found in, for example, [91]. A
torus of X̂
(Fp) is a subgroup that is isomorphic as an algebraic group to a
direct product of copies of Fp

×
, the multiplicative group of Fp. Every torus lies

in a maximal torus, each maximal torus T is isomorphic to (Fp
×

)
 (where �
is the Lie rank of X̂
(Fp)), and all maximal tori are conjugate in X̂
(Fp) [50,
p123]. A torus of X̂
(q) is the centraliser of σ in a torus for X̂
(Fp).

Definition 5.1.7 A weight of T is an element of the the set of algebraic group
homomorphisms from T to Fp

×
, which is the character group X = X(T ).

The character group X is isomorphic to (and identified with) the additive
group Z
, since each element of X sends (α1, . . . , αl) ∈ T to αa1

1 α
a2
2 · · ·αal

l for
some ai ∈ Z.

The characterisation of the algebraic irreducible X̂
(Fp)-modulesM by their
highest weights means that they can be identified by their restrictions to a
maximal torus T , using the decomposition into eigenspaces M = ⊕μ∈XMμ,
and Mμ = {v ∈ M | vt = μ(t)v ∀t ∈ T}. Note that Mμ is non-zero for only
finitely many μ ∈ X.

Definition 5.1.8 Let M be an algebraic irreducible X̂
(Fp)-module. The
μ for which Mμ is non-zero are the weights of M (and of its corresponding
representation).
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Weights can be given an additive partial order, and it turns out that each
algebraic irreducible Fp-module M has a highest weight μ, such that μ > μ′ for
all other weights μ′ of M . Some weights of M can occur with multiplicity > 1
but the highest weight cannot. As remarked earlier, by a result of Chevalley,
these highest weights characterise the algebraic irreducible X̂
(Fp)-modules. It
is clear from the above definition that if N is a constituent of a module M then
the weights of N are a subset of the weights of M .

Proposition 5.1.9 (i) The diagonal automorphisms of tX̂
(q) stabilise
each irreducible module of tX̂
(q).

(ii) The field automorphism φX of the group tX̂
(q) induced by λ �→ λp has
the same effect on its (isomorphism classes of) irreducible modules as
the field automorphism φGLn(qt) applied to the images of the associated
representations.

(iii) When tX
(q) �= 2B2(q), 2G2(q) or 2F4(q), duality of modules stabilises
each Mi setwise. The graph automorphism of A
(q) has the same effect
on its irreducible modules as duality of modules; that is, γM = M∗.

(iv) When X
(q) = A
(q), D
(q), D4(q) or E6(q), each graph automorphism
of X̂
(q) stabilises each Mi setwise.

(v) For twisted groups G = tX̂
(q) different from 2B2(q), 2G2(q) and 2F4(q),
the field automorphism σG of G induced by λ �→ λq has the same effect
on the irreducible modules as a graph automorphism of G of order t, and
also stabilises each Mi setwise.

Proof Part (i) follows from the fact (see [32, Theorem 2.5.1] or [105, Exercise,
page 158]) that the diagonal automorphisms of tX̂
(q) are induced by conjuga-
tion by elements of a maximal torus of tX̂
(Fp) which, since the torus is abelian,
stabilise all representations of that torus. The remaining parts are stated in [66,
Propositions 5.4.2 and 5.4.3].

In view of Proposition 5.1.9, we shall usually write Mφ rather than φM in
future, since the former is a little easier to read.

Corollary 5.1.10 Let G = tX̂
(q) have a representation ρ : G→ Ω, where Ω
is a quasisimple classical group over Fqt and dimension n � 12. Assume that
ρ is absolutely irreducible and tensor indecomposable. Let C be the conformal
group corresponding to Ω, and let S = Im ρ � Ω. Then S is C-conjugate to the
image of a representation listed in [84].

Proof By Theorem 5.1.5, the representation ρ is equivalent to a representation
ρ1 with module M0 ⊗ · · · ⊗Me−1, where Mi ∈ Mi for all i. By Lemma 1.8.10
this implies that S is C-conjugate to Im ρ1. The assumption that S is tensor
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indecomposable implies that all but one of the Mi are trivial. By Proposi-
tion 5.1.9 (ii), for any p-restricted representation τ with module M , the module
φi

M has representation φi

τ and hence, by Lemmas 1.8.6 and 1.8.10, S is C-
conjugate to Imμ for some p-restricted representation μ.

If G �= A
(q) we are done, by Remark 5.1.4, but if G = A
(q) then μ might
be the dual of one of the representations listed in [84]. However, by Proposi-
tion 5.1.9 (iii) duality of modules acts in the same way as the duality automor-
phism of G, so once again S is C-conjugate to the image of a representation
listed in [84].

Lemma 5.1.11 If M1 and M2 are (finite-dimensional algebraic) irreducible
FpX̂
(Fp)-modules, then the weights of M1 ⊗M2 are of the form μ1 + μ2 for
weights μ1 and μ2 of M1 and M2. In particular, M(λ + μ) is a constituent of
M(λ)⊗M(μ) of multiplicity 1.

Proof Let W1 and W2 be the sets of weights of M1 and M2. Then, as modules
for a maximal torus, M1 =

⊕
μ1∈W1

Mμ1 , M2 =
⊕

μ2∈W2
Mμ2 , and so (since

addition in X ≡ Z
 corresponds to multiplication of group homomorphisms),
M := M1⊗M2 =

⊕
μ1∈X1,μ2∈X2

Mμ1+μ2 . So λ+μ is a weight of M(λ)⊗M(μ),
and since λ � λ′ for all weights λ′ of M(λ) and μ � μ′ for all weights μ′ of
M(μ) we have λ+μ � λ′ +μ′ for all weights λ′ +μ′ of M(λ)⊗M(μ). Therefore
M(λ) ⊗M(μ) must have a constituent with highest weight λ + μ, that is the
module M(λ+μ), and since λ+μ occurs just once as a weight of M(λ)⊗M(μ),
M(λ+ μ) occurs just once as a constituent of M(λ)⊗M(μ).

Proposition 5.1.12 ([50, 3.1.6]) For types B
, C
, D
 (� even), G2, F4, E7

and E8, all irreducible Fp-modules are self-dual.

A consequence of the above discussion is that a module M0⊗· · ·⊗Me−1 for
a group of Lie type in defining characteristic is self-dual if and only if each Mi is
self-dual. There is no such general result regarding tensor products of arbitrary
modules, for example the Mathieu group M12 has a 176-dimensional self-dual
representation in characteristic 0 that is a tensor product of a self-dual 11-
dimensional representation and a non-self-dual 16-dimensional representation.

5.1.3 Minimal fields and fixed forms

We need to be able to determine the minimal field of the relevant representa-
tions of the irreducible tX
(q)-modules. This will be a subfield of Fqt = Fpet

(since they can all be written over that field). A similar result to the following
is proved in [66, Proposition 5.4.6]. There is a corresponding but more compli-
cated result for 3D4(q), which we shall not need.
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Theorem 5.1.13 Suppose that either t = 1, or tX
 is one of 2A
,
2D
 or

2E6. Let M be an irreducible module for tX
(q) with q = pe, and suppose that
M ∼= ⊗e−1

i=0M
φi

i with Mi ∈ M (as in Theorem 5.1.5). Let f | te. Then M can
be realised over Fpf if and only if one of the following conditions hold:

(i) t = 1 and Mi
∼= Mj whenever i ≡ j (mod f).

(ii) t = 2, and one of the following occurs:
(a) f | e, Mi

∼= Mφe

i for all i, and Mi
∼= Mj whenever i ≡ j (mod f).

(b) f � e, Mi �∼= Mφe

i for some i, Mi
∼= Mj whenever i ≡ j (mod f), and

Mi
∼= Mφe

j whenever i ≡ j (mod f/2) but i �≡ j (mod f).

(Observe that these conditions are satisfied vacuously when f = te.)

Proof By Corollary 1.8.14, the module can be written over the subfield Fpf of
Fpte if and only if it is stabilised by the power of φ that centralises that subfield.
In particular, M is stabilised by φet.

The trivial module belongs to M and is stabilised by φ. It follows imme-
diately from Theorem 5.1.5 that, for any non-trivial module Mi ∈ M , the
modules Mi,M

φ
i ,M

φ2

i , . . . ,Mφe−1

i are pairwise non-isomorphic. Part (i) now
follows immediately from Theorem 5.1.5 and Corollary 1.8.14.

So assume that t = 2. Then, by Proposition 5.1.9, for a non-trivial Mi ∈ M ,
either Mi

∼= Mφe

i (in which case Mi can be written over Fq), or else Mi and
Mφe

i are distinct modules in M , which cannot be written over Fq. So Part (ii)
also follows from Theorem 5.1.5 and Corollary 1.8.14.

Recall Propositions 1.9.4 and 1.9.5, concerning the forms on tensor products
of modules, and Definition 1.9.6 of an induced form.

Proposition 5.1.14 Let S be the image of an irreducible representation of
tX̂
(q) over Fqt , with corresponding Fqt-module M = M0 ⊗M1 ⊗ · · · ⊗Me−1,
as in Theorem 5.1.5, with k � 2 of the Mi non-trivial. Suppose that S is an
S2-subgroup of a quasisimple classical group Ω, and let G be almost simple with
socle Ω. If NG(S) is a maximal subgroup of G then one of the following holds:

(i) Ω is defined over a proper subfield of Fqt .
(ii) Ω preserves an invariant classical form other than the induced form arising

from the tensor factors Mi (if any).
(iii) (i) and (ii) do not occur, and some outer automorphism of S that is

induced by G does not permute the Mi: this can only arise if tX
(q) =
2B2(2e), B2(2e), 2G2(3e), G2(3e), 2F4(2e) or F4(2e).

Proof Let the non-trivial Mi be Mi1 , . . . ,Mik
, so that M ∼= Mi1 ⊗ · · · ⊗Mik

.
If the Mij

are each equipped with a bilinear form, or are each equipped with
a sesquilinear form, then let β be the induced form on M and let Ω1 be the
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quasisimple group of isometries of M . Otherwise, let Ω1 = SLn(qt) and β be
identically zero.

Let T be the image of the representation of tX̂
(q)k with module Mi1 ⊗
· · · ⊗Mik

. Then T consists of isometries of β, so S < T < Ω1. Furthermore, if
each outer automorphism α of S that can be realised in AutΩ1 permutes the
tensor factors Mij

, then each almost simple extension S.Y of S = S/Z(S) that
can be realised in AutΩ1 is properly contained in the corresponding extension
Sk.Y of Sk.

Assume that all automorphisms of S induced by G permute the Mij
. If

NG(S) is maximal then Ω �= Ω1, by the previous paragraph. Thus Ω is another
classical group over a subfield of Fqt , and so either Ω is defined over a smaller
field than Ω1, or Ω is a group of isometries of a classical form other than β.

Suppose now that tX
(q) �= 2B2(2e), B2(2e), 2G2(3e), G2(3e), 2F4(2e) or
F4(2e). We know from Proposition 5.1.1 that every outer automorphism α of
tX
(q) is a product of a diagonal, a field, and a graph automorphism. By Propo-
sition 5.1.9, the diagonal and graph automorphisms fix each set Mi, whereas
the field automorphisms permute the set {M0, . . . ,Me−1}. It follows now from
Theorem 5.1.5 that, if M ∼= αM , then α must permute the tensor factors Mi

of M , and so (iii) does not arise.

Note that the outer automorphisms of 2B2(2e), 2G2(3e) and 2F4(2e) do
in fact permute the as-yet-undefined set {M0, . . . ,Me−1}, and so do not give
exceptions to Part (iii) of the above Proposition. Note also that we have not
assumed in the above proof that the modules Mi are tensor indecomposable.

The possible examples satisfying the first of these conditions in small dimen-
sions can be gleaned from Theorem 5.1.13. As an example, let M be the natural
module for SL3(q2). Then M ⊗Mσ gives rise to an S2-maximal subgroup of
SL9(q), and M ⊗Mσ∗ (where ∗ denotes duality) gives rise to an S2-maximal
subgroup of SU9(q).

In the situations described by Proposition 5.1.14, although S and its ex-
tensions may still be S2-maximal subgroups of Ω and its extensions, we shall
simplify matters by not including them in our lists of candidates.

Definition 5.1.15 Let S be a quasisimple S2-subgroup of Ω, arising from
a module M ∼= ⊗e−1

i=0M
φi

i for tX̂
(q), as in Theorem 5.1.5, and suppose that
exactly k � 1 of the modules Mi are non-trivial.

Let G be almost simple with socle Ω. Then NG(S) is an S ∗
2 -subgroup of

G if either k = 1, or Ω is defined over a smaller field than Fqt , or Ω is the
isometry group of a form other than the induced form on M (if any), or there
exists an automorphism of S that is induced by an element of AutΩ that does
not permute the non-trivial tensor factors.
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An S ∗
2 -subgroup of G is called S ∗

2 -maximal if it is maximal among the
S ∗

2 -subgroups of G.

This chapter will classify the S ∗
2 -maximal subgroups, rather than the S2-

maximal subgroups, of almost simple extensions of Ω for classical groups Ω of
dimension at most 12.

5.2 Symmetric and anti-symmetric powers

Many of the modules for the groups of Lie type that we shall need to study
arise as symmetric or anti-symmetric powers of the natural module, so we start
by considering their elementary properties. The reader may wish to revisit
Section 1.9, where we introduced tensor products.

Let V be an FG-module, where F is a field and G is a group. There are
various possible definitions of the symmetric and anti-symmetric powers Sm(V )
and Λm(V ) of V . We prefer to define them as suitable quotients of the tensor
power module V ⊗m = V ⊗· · ·⊗V (withm factors). This is because it is easier to
calculate G-actions in these versions. For some applications, such as computing
invariant forms, defining Sm(V ) and Λm(V ) as submodules might be more
convenient, but the reader should be aware that the submodule and quotient
versions of Sm(V ) need not be isomorphic and, even when they are, their natural
bases need not correspond. So we must be careful to use the submodule versions
only in situations where they can be proved to be isomorphic to the quotient
versions. In what follows, V has F -basis (e1, . . . , en).

5.2.1 Symmetric and anti-symmetric squares

The module V ⊗ V has FG-submodules A := 〈u ⊗ v − v ⊗ u : u, v ∈ V 〉F ,
which has basis (ei ⊗ ej − ej ⊗ ei : 1 � i < j � n), and S := 〈 v ⊗ v : v ∈ V 〉F ,
with basis (ei ⊗ ei : 1 � i � n } ∪ { ei ⊗ ej + ej ⊗ ei : 1 � i < j � n). Hence
dimA = n(n− 1)/2 and dimS = n(n+ 1)/2.

Definition 5.2.1 We define the anti-symmetric square of V to be

Λ2(V ) := (V ⊗ V )/S.

We define the symmetric square of V to be

S2(V ) := (V ⊗ V )/A.

We denote the image of u ⊗ v in Λ2(V ) by u ∧ v, and the image of u ⊗ v in
S2(V ) by uv. We shall often write v2 instead of vv.



5.2 Symmetric and anti-symmetric powers 277

It is straightforward to check that v ∧ u = −(u ∧ v) and vu = uv for all
u, v ∈ V , and that v ∧ v = 0 for all v ∈ V (even in characteristic 2).

Definition 5.2.2 Our standard bases for Λ2(V ) and S2(V ) are respectively
(ei ∧ ej : 1 � i < j � n) and (eiej : 1 � i � j � n), which we shall order
lexicographically, giving

e1 ∧ e2, e1 ∧ e3, . . . , e1 ∧ en, e2 ∧ e3, . . . , en−1 ∧ en for Λ2(V )

and e21, e1e2, e1e3, . . . , e1en, e
2
2, e2e3, . . . , en−1en, e

2
n for S2(V ).

First we show that Λ2(V ) is isomorphic to a submodule of V ⊗V , and that
if the characteristic of F is not 2 then the same is true for S2(V ).

Lemma 5.2.3 Define maps f : A → Λ2(V ) and g : S → S2(V ) to be the
F -linear extensions (respectively) of

f : u⊗ v − v ⊗ u �→ u ∧ v
g : 1

2 (u⊗ v + v ⊗ u) �→ uv

}
for all u, v ∈ V,

where g is defined only when charF �= 2. Then both f and g induce FG-
isomorphisms.

Proof It is routine to check that these maps are FG-homomorphisms. They
are clearly surjective and, since dimS = dim S2(V ) and dimA = dim Λ2(V ),
they are isomorphisms.

In odd characteristic, S and A have trivial intersection, so as FG-modules
V ⊗V = S⊕A, and hence V ⊗V ∼= S2(V )⊕Λ2(V ). However, in characteristic 2,
A < S, with S/A ∼= V φ where φ : x �→ x2 is a field endomorphism of F , and
there are cases where S �∼= S2(V ).

If G consists of isometries of a bilinear or sesquilinear form β on V , then G
preserves an induced form β⊗2 = β⊗β on V⊗V , as described in Definition 1.9.6,
which can be restricted to the submodules A and S. Closely related to this are
the forms on Λ2(V ) and S2(V ) given in the next result.

Proposition 5.2.4 Suppose that G consists of isometries of a σ-Hermitian,
alternating or symmetric form β on V . Then G preserves forms β2− and β2+

on Λ2(V ) and S2(V ), respectively, such that

β2−(ei ∧ ej , ek ∧ el) = β(ei, ek)β(ej , el)− β(ei, el)β(ej , ek)

and

β2+(eiej , ekel) = β(ei, ek)β(ej , el) + β(ei, el)β(ej , ek).

Furthermore, if β is σ-Hermitian, then so are β2− and β2+, whereas if β is
alternating or symmetric, then β2− and β2+ are symmetric.
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Proof We can extend the given definitions of β2± on the basis elements to
sesquilinear or bilinear forms on Λ2(V ) and S2(V ), and verify that G acts via
isometries. One sees easily that these forms have the specified types.

There is no guarantee that the forms we obtain are non-degenerate, although
they will be zero or non-degenerate on any of Λ2(V ) or S2(V ) that happen to
be irreducible (otherwise Λ2(V )⊥ or S2(V )⊥ would be a submodule).

For future reference, we record the following standard result. It is proved in
all characteristics other than 2 in [87, Theorem 2.7.4].

Proposition 5.2.5 Let χ be a complex character or Brauer character in
odd characteristic of the group G. Then, for g ∈ G, the values on g of the
symmetric and anti-symmetric squares of the CG-module corresponding to χ

are respectively (χ(g)2 + χ(g2))/2 and (χ(g)2 − χ(g2))/2.

5.2.2 Symmetric and anti-symmetric cubes and higher powers

For π ∈ S3, we write (v1⊗v2⊗v3)π to denote v1π⊗v2π⊗v3π. In this subsection
we shall use ε(π) to mean the sign of the permutation π ∈ Sn.

The FG-module V ⊗3 has a submodule A with basis

(ei ⊗ ej ⊗ ek − (ei ⊗ ej ⊗ ek)π : 1 � i < j < k � n, π ∈ Sym({i, j, k}) \ {1})
∪ (ei ⊗ ei ⊗ ej − ei ⊗ ej ⊗ ei : 1 � i, j � n, i �= j)

∪ (ei ⊗ ei ⊗ ej − ej ⊗ ei ⊗ ei : 1 � i, j � n, i �= j).

The reader may check that the dimension of A is 5n3/6−n2/2−n/3, and that
A contains a submodule

B = 〈
∑
π∈S3

ε(π)(u⊗ v ⊗ w)π : u, v, w ∈ V 〉F ,

of dimension
(
n
3

)
.

The module V ⊗3 also has a submodule S with basis

(ei ⊗ ei ⊗ ei : 1 � i � n)

∪ (ei ⊗ ei ⊗ ej , ei ⊗ ej ⊗ ei, ej ⊗ ei ⊗ ei : 1 � i, j � n, i �= j)

∪ (ei ⊗ ej ⊗ ek − ε(π)(ei ⊗ ej ⊗ ek)π : 1 � i < j < k � n, π ∈ S3 \ {1}).
The dimension of S is 5n3/6 + n2/2− n/3, and S contains submodules

T1 = 〈u⊗ u⊗ u : u ∈ V 〉F and T2 = 〈
∑
π∈S3

(u⊗ v ⊗ w)π : u, v, w ∈ V 〉F .

The dimension of T1 is n+ 2
(
n
2

)
+
(
n
3

)
=
(
n+2

3

)
except for the case F = F2 (for

n � 2), and if charF �= 2 or 3 then T2 = T1. If charF = 2 or 3 then T2 < T1

(for n � 1).
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Definition 5.2.6 We define the symmetric cube of V to be

S3(V ) := V ⊗3/A.

We define the anti-symmetric cube of V to be

Λ3(V ) = V ⊗3/S.

We denote the image of u⊗ v⊗w in S3(V ) by uvw, and in Λ3(V ) by u∧ v∧w.

Thus in S3(V ) we identify u⊗v⊗w with all of its images under permutations
of the three vectors, whilst in Λ3(V ), applying an odd permutation to the entries
of u⊗v⊗w also multiplies the tensor by −1. Notice that the dimension of S3(V )
is
(
n+2

3

)
, whilst the dimension of Λ3(V ) is

(
n
3

)
.

Definition 5.2.7 Our standard bases for S3(V ) and Λ3(V ) are respectively
(eiejek : 1 � i � j � k � n) and (ei ∧ ej ∧ ek : 1 � i < j < k � n), in each case
ordered lexicographically.

The proof of the next lemma is similar to that of Lemma 5.2.3, and is left
as an exercise.

Lemma 5.2.8 Define maps f : B → Λ3(V ) and g : T2 → S3(V ) to be the
F -linear extensions (respectively) of

f :
∑

π∈S3
ε(π)(u⊗ v ⊗ w)π �→ u ∧ v ∧ w

g : 1
6 (
∑

π∈S3
(u⊗ v ⊗ w)π) �→ uvw

⎫⎬⎭ for all u, v, w ∈ V,

where g is defined only when charF �= 2 or 3. Then both f and g induce FG-
isomorphisms.

If charF �= 2 or 3 then one may show that S ∼= T1⊕M3(V )⊕M3(V ), where
M3(V ) denotes a tensor cube of dimension 1

3 (n3 − n) = n(n + 1)(n − 1)/3.
Similarly, if charF �= 2 or 3, then one may show that A ∼= B ⊕M3(V )⊕M3(V ),
and that A ∩ T1 and B ∩ S are trivial. From this it follows that the module
V ⊗3 ∼= S3(V )⊕ Λ3(V )⊕M3(V )⊕M3(V ).

We shall also need higher symmetric powers of the natural modules for
SL2(q). For more on this see [28, Appendix B.2].

Definition 5.2.9 The symmetric power Sk(V ) is the quotient of V ⊗k by the
submodule 〈 v1 ⊗ · · · ⊗ vk − (v1 ⊗ · · · ⊗ vk)σ : σ ∈ Sk \ {1} 〉. It has standard
basis (ei1ei2 · · · eik

: 1 � i1 � · · · � ik � n), ordered lexicographically.

The anti-symmetric power Λk(V ) can be defined as the quotient of V ⊗k

by the submodule generated by all v1 ⊗ · · · ⊗ vk for which vi = vj for some
i �= j, but we shall not need to consider these further for k � 3. One reason
for this is that it is straightforward to show that, for V of dimension n, Λn(V )
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is the one-dimensional module with action of g ∈ G given by multiplication
by det g. Hence, if G � SLn(F ), then Λn(V ) is the trivial module, and it can
be verified, using the FG-bilinear map Λk(V ) × Λn−k(V ) → Λn(V ) defined
by ((u1 ∧ · · · ∧ uk), (v1 ∧ · · · ∧ vn−k)) → u1 ∧ · · · ∧ uk ∧ v1 ∧ · · · ∧ vn−k, that
Λk(V ) ∼= Λn−k(V )∗ for 0 � k � n, where Λ0(V ) = F and Λ1(V ) = V .

5.3 The groups SL2(q) = Sp2(q)

In this section we study the S ∗
2 -subgroups that are isomorphic to SL2(q) and

to L2(q). We shall determine the quasisimple classical groups Ω in which they
arise, as well as their normalisers in Ω, and their class stabilisers in Out Ω. From
this we can deduce the number of conjugacy classes of such groups in Ω.

We are interested in the absolutely irreducible modules of SL2(q) = Sp2(q)
in characteristic p whenever q � 4, since the groups SL2(2) and SL2(3) are
soluble. These were first classified by Brauer and Nesbitt [4], and we shall state
this classification in Theorem 5.3.2 below.

Let F be a field. We define V to be the natural module of SL2(F ), and for
n � 1 we define Vn+1 to be the (n+1)-dimensional module Sn(V ), as described
in Definition 5.2.1. By an abuse of notation we shall also use Vn+1 and Sn(V )
to refer to the corresponding modules of GL2(F ). The module V1 is the trivial
module, for both SL2(F ) and GL2(F ). If n > 1, then Vn is a faithful module
for SL2(q) when n is even, and a faithful module for L2(q) when n is odd.

Lemma 5.3.1 Suppose that charF = 0 or n + 1 � charF . Then Vn+1 is
absolutely irreducible. Furthermore, Vn+1 is self-dual for SL2(F ).

Proof For prime characteristics, the absolute irreducibility claim is proved in
[4], by a straightforward calculation that also works in characteristic 0. The
self-duality is immediate from the fact that SL2(F ) = Sp2(F ).

It can be shown by the methods of Section 5.2 that the quotient and sub-
module versions of Sn(V ) are isomorphic for both SL2(F ) and GL2(F ). The
modules Vn+1 with n+ 1 � p are the p-restricted modules for SL2(F ).

For n ∈ N = N0, we define the module M(n) of SL2(F ) (and of GL2(F )) as
follows. If charF = 0, then M(n) := Vn+1. If charF = p > 0 then there exist
s � 0 and a0, . . . , as ∈ {0, . . . , p−1} such that n = a0 +a1p+a2p

2 + · · ·+asp
s.

Then

M(n) := Va0+1 ⊗ V φ
a1+1 ⊗ · · · ⊗ V φs

as+1,

which has dimension (a0 + 1)(a1 + 1) · · · (as + 1) � n + 1. If a higher value of
s is chosen than the smallest possible, then the only effect is that more trivial
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modules being involved in the tensor product for M(n). The module M(n) is a
self-dual module for SL2(F ), since it is a tensor product of self-dual modules.

The following is a special case of Theorems 5.1.2, 5.1.3 and 5.1.5.

Theorem 5.3.2 (Brauer and Nesbitt [4]) Let q = pe be a power of a prime p.
Then each of the modules M(n) with 0 � n � q− 1 is an absolutely irreducible
module for SL2(q), and if 0 � i < j � q − 1 then M(i) is not isomorphic to
M(j). Conversely each absolutely irreducible module for SL2(q) in characteris-
tic p is isomorphic to M(n) for some n with 0 � n � q − 1.

We can determine the minimal field of realisation of the modules M(n) of
SL2(q) from the following immediate corollary of Theorem 5.1.13.

Corollary 5.3.3 Let n = a0+a1p+a2p
2+· · ·+ae−1p

e−1, where the coefficients
satisfy 0 � ai � p− 1 for all i. With q, p, e as above, the absolutely irreducible
SL2(q)-module M(n) = M(a0)⊗M(a1)φ⊗· · ·⊗M(ae−1)φe−1

has minimal field
of realisation Fpf if and only if

(i) f | e;
(ii) f is minimal such that ai = aj whenever i ≡ j (mod f).

In view of Proposition 5.1.14, some of the work below is devoted to showing
that the majority of the non-trivial tensor product modules of SL2(q) give rise
to embeddings of L2(q) in Ω such that all almost simple extensions of L2(q)
that arise embed into C4- or C7-subgroups, and hence are not S ∗

2 -maximal
in the simple classical group Ω. Another part of the work proves that the p-
restricted modules Vn are not tensor decomposable, and so the only absolutely
irreducible defining characteristic SL2(q)-modules that are tensor products are
the ones that arise as non-trivial tensor products in Theorem 5.3.2.

Let F be a field. Then SL2(F ) is generated by matrices:

x(a) :=

[
1 0

a 1

]
, y(b) :=

[
b 0

0 b−1

]
and z :=

[
0 1

−1 0

]
,

where a ranges over the whole of F , and b ranges over F×. We extend to GL2(F )
by adding elements w(c) := diag(c, 1) where c ranges over F×. If F = Fq is
finite, then we let λ be a primitive element of F× and define x := x(1), y := y(λ)
and w := w(λ), so that 〈x, y, z〉 = SL2(q) and 〈x, y, z, w〉 = GL2(q).

If (ε0, ε1) is a basis for V then (e0, . . . , en) is a basis for Vn+1, where
ei = εn−i

0 εi
1 for all i, as in Definition 5.2.2. Form ∈ Z, we define the linear repre-

sentation detm of SL2(F ) and GL2(F ) by g.detm = [(det g)m] for g ∈ GL2(F ):
this is of course trivial for SL2(F ). The following is straightforward.
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Lemma 5.3.4 The actions of x(a), y(b), z and w(c) on Vn+1 are given by:

ei.x(a) =
∑i

j=0 a
i−j
(

i
j

)
ej , ei.z = (−1)ien−i,

ei.y(b) = bn−2iei, ei.w(c) = cn−iei,

where 0 � i � n.

We first prove that if charF � n then Vn is equipped with a non-degenerate
bilinear form, of symplectic type when n is even and orthogonal type otherwise.

Proposition 5.3.5 (i) The action SL2(F ) on Vn+1 is via isometries of a
bilinear form on Vn+1 with matrix Bn+1 := antidiag(a0, . . . , an), where

ai = (−1)ii!(n− i)! = (−1)i n!(
n
i

) .
(ii) The element w(c) scales the form by a factor of cn.
(iii) If charF > n, or charF = 0, then this form is non-degenerate and unique

up to scalar multiplication.

Proof The non-degeneracy of B := Bn+1 when charF > n is clear, and its
uniqueness follows from Lemma 5.3.1. So we just need to verify the equations
XBXT = B, Y BY T = B, ZBZT = B and WBWT = cnB, where X,Y,Z,W
are the matrices of the actions of x(a), y(b), z and w(c), respectively, on Vn+1.
This is straightforward for Y , Z and W , by Lemma 5.3.4.

It is convenient to index the rows and columns of X and B by integers
ranging from 0 to n. So Xij = ai−j

(
i
j

)
by Lemma 5.3.4 and

(BXT)ij = (−1)i i! (n− i)!
(

j

n− i

)
ai+j−n,

and hence

(XBXT)ij =
n∑

k=0

(−1)k k! (n− k)!
(
i

k

)(
j

n− k

)
ai+j−n

= ai+j−n i! j!
i∑

k=n−j

(−1)k

(i− k)! (k − (n− j))!
.

Putting l = k−(n−j) and t = i+j−n, the sum in this expression simplifies to
(−1)n−j

∑t
l=0

(−1)l

(t−l)! l! , which (by considering the binomial expansion of (1−1)t)
is (−1)n−j when t = 0 and 0 otherwise. It now follows that X BXT = B, and
so X acts via isometries as claimed.

In the following proposition, we analyse the behaviour of all of the p-
restricted representations. Recall that the images of all p-restricted represen-
tations lie in S ∗

2 : see Definition 5.1.15. Since there is more than one family
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of classical group involved, we write δΩ, for example, to denote the diagonal
automorphism of the group Ω: we shall use this notation frequently during this
chapter.

Proposition 5.3.6 (i) If n is even and p � n > 2, then there is a single
conjugacy class of self-normalising S2-subgroups of Ω = Spn(q) isomor-
phic to S = SL2(q). This is stabilised by δΩ and φΩ, which induce δS and
φS, respectively.

(ii) If n ≡ ±3 (mod 8) and p � n, then there is a single conjugacy class of
self-normalising S2-subgroups of Ω = Ωn(q) isomorphic to S = L2(q).
This is stabilised by δΩ and φΩ which induce δS and φS, respectively.

(iii) If n ≡ ±1 (mod 8) and p � n > 1, then there are exactly two conju-
gacy classes of self-normalising S2-subgroups of Ω = Ωn(q) isomorphic to
L2(q).2. They are interchanged by δΩ and stabilised by φΩ, which induces
the field automorphism of L2(q).

Proof Recall that Out L2(pe) is of order (2, p − 1)e. We shall first determine
the isomorphism type of the normaliser of the image of the representation
associated with the module Vn+1 of SL2(q) or L2(q) in Ω = Spn(q) or Ωn(q),
and the action of any diagonal automorphisms of Ω, and hence the number
of Ω-classes: recall that by Corollary 5.1.10 each p-restricted representation
yields a single C-class of subgroups. Then we shall consider the action of any
field automorphisms. Note that by Theorem 5.3.2 we are interested in the case
1 < n < charF , and so p �= 2.

Suppose first that n is odd, and hence the dimension n+ 1 of Vn+1 is even.
Then the invariant form is anti-symmetric by Proposition 5.3.5 and −I2 induces
−In+1, so we have an embedding of SL2(F ) into Ω = Spn+1(F ). If charF > 2
is finite, then w(λ) with λ a primitive multiplicative field element scales the
form by a non-square, so the diagonal automorphism of L2(q) is not induced
by an element of Ω.

Next assume that n � 2 is even, and consider Wn+1 := Vn+1 ⊗ det−n/2.
For this module w(c), which by Lemma 5.3.4 acts via ei.w(c) = cn/2−iei, is
an isometry of Bn+1 of determinant 1. The scalars of GL2(F ) all act trivially
on Wn+1, so we get an embedding of PGL2(F ) into SOn+1(F ). We must now
calculate spinor norms (recall that q is odd), as in Definition 1.6.10. Restricting
to 〈ei, en−i〉 (for 0 � i < n/2), we see that w(c) acts as:[

cn/2−i 0

0 ci−n/2

]
=

[
0 1

1 0

][
0 cn/2−i

ci−n/2 0

]
,

a product of reflections in (1,−1) and (1,−cn/2−i), of norms −ai and −aic
n/2−i.

Also w(c) acts as the identity on 〈en/2〉. Therefore w(c) has spinor norm (mod-
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ulo squares)
∏n/2−1

i=0 a2
i c

n/2−i, which is cn(n+2)/8 modulo squares. If c is a non-
square then this is a square when n ≡ 0, 6 (mod 8) and a non-square when
n ≡ 2, 4 (mod 8). So if n ≡ 0, 6 (mod 8) we get an embedding of PGL2(F ) as
an absolutely irreducible subgroup of Ωn+1(F,Bn+1) and if n ≡ 2, 4 (mod 8)
then L2(F ) is an absolutely irreducible subgroup of Ωn+1(F,Bn+1).

The above deals with the diagonal automorphisms of SL2(F ). We now let
F = Fq, and consider the effect of the field automorphism φ. In Section 1.7.1,
we defined the action of φ on matrices over Fq to be the application of φ to
all entries of the matrix. In all cases but O−, the field automorphism φ of the
classical group Ω was defined simply by applying φ to the matrices in Ω. We
therefore see from our definitions of the generators of the action SL2(q)n+1

of SL2(q) on Vn+1 that the field automorphism φ of SL2(q) induces the field
automorphism φ on the entries of the matrices in SL2(q)n+1 for all n. So, in the
conjugate of Ωn+1(q) (n even) or Spn+1(q) (n odd) that consists of isometries
of Bn+1 described above, the field automorphism φ normalises SL2(q)n+1 and
induces φ on SL2(q). This form is not our standard form for Spn+1(q) and
SOn+1(q) that we defined in Subsection 1.5.7, but [6, Theorem 4, Proposition
11] states that the field automorphisms are independent of the form for these
groups. So we conclude that the (class of the) image of SL2(q) in Spn+1(q) or
Ωn+1(q) is stabilised by φ.

The above calculations show also that the image of the group automorphism
φ of SL2(q) on the (equivalence class of the) module Vn+1 is the same as the im-
age of the field automorphism φ on the module. Assuming that F is finite with
charF > n, we know from Theorem 5.3.2 that Vn+1 is absolutely irreducible
and is not stabilised by any non-trivial field automorphisms of F . Therefore
the field automorphisms of SL2(q) are not induced within the conformal group
in which SL2(q)n+1 lies. It follows that the normaliser of SL2(q)n+1 within the
projective conformal group is PGL2(q) in all cases.

Having dealt with the p-restricted modules, we now consider the non-trivial
tensor product representations of SL2(q) that arise in Theorem 5.3.2. As we
saw in Proposition 5.1.14, there are three ways in which such candidates could
belong to S ∗

2 , the third of which does not occur for SL2(q). We shall consider
certain modules, and later prove that these are the only ones which arise.

Proposition 5.3.7 If q > 2 then there is a single conjugacy class of self-
normalising S2-subgroups of Sp8(q) isomorphic to SL2(q3).3. The class sta-
biliser is 〈δ, φ〉, where δ induces the diagonal automorphism of SL2(q3).

Proof Let q = pe, let σ = φe be the automorphism x �→ xq of Fq3 , let ρ1 be
the natural representation of SL2(q3), and let ρ := ρ1 ⊗ ρσ

1 ⊗ ρσ2

1 , with associ-
ated module M = V2 ⊗ V σ

2 ⊗ V σ2

2 . By Proposition 1.9.4, the image of ρ over
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Fq3 preserves a form of symplectic or orthogonal plus type when q is odd or
even, respectively. We are tensoring three faithful representations of SL2(q3),
so Im ρ ∼= SL2(q3). By Proposition 1.8.12, self-dual modules over Fq3 remain
self-dual when written over Fq. Since orthogonal and symplectic forms over
Fq have the same type when regarded as being over Fq3 , the forms preserved
by these subgroups remain symplectic and orthogonal plus type when the rep-
resentations are written over Fq. Since we are not dealing with Case O+ in
dimension 8, we will assume from now on that p is odd, so Ω = Sp8(q).

Let c be a non-square in F×
q , and hence also in F×

q3 . The element w(c) of
GL2(q3) is a similarity which multiplies the form in dimension 8 by a factor
c3, which is also a non-square, and so no scalar multiple of w(c) lies in S8(q).
Therefore the diagonal outer automorphism of SL2(q3) is induced by a diagonal
outer automorphism of Sp8(q).

The class of the image of ρ is also stabilised by the field automorphism σ of
SL2(q3) of order 3, since σ permutes the three copies of ρ1. By Corollary 1.8.14
we deduce that σ is therefore induced by an element of GLn(q), and then by
Lemma 1.8.9 that σ is induced by an element of CSp8(q). Since the index of
S8(q) in PCSp8(q) is 2, the automorphism σ must be induced by conjugation
by an element of Sp8(q).

By Theorem 5.3.2, the automorphisms φk for 1 � k < e do not stabilise the
module, and so these automorphisms of SL2(q3) are not induced by elements of
GL8(q). Hence SL2(q3).3 is a self-normalising subgroup of Sp8(q). Since there
is a single class of such subgroups of Sp8(q), the field automorphism φ of Sp8(q)
must lie in the class stabiliser.

Proposition 5.3.8 For odd q, there is a single scalar-normalising conjugacy
class of S2-subgroups of Ω9(q) isomorphic to L2(q2).2. The outer automor-
phism of L2(q2) of order 2 in this extension is the field automorphism when
q ≡ ±1 (mod 8), and the product of the field automorphism of order 2 and a
diagonal automorphism when q ≡ ±3 (mod 8). The class stabiliser is 〈δ, φ〉,
where δ induces the diagonal automorphism of SL2(q2).2.

Proof Let ρ1 be the 3-dimensional p-restricted representation of SL2(q2), and
let ρ := ρ1 ⊗ ρσ

1 , with module M = V3 ⊗ V σ
3 , where q = pe and σ = φe.

The form preserved by Im ρ is orthogonal, by Proposition 1.9.4, so Ω is
Ω9(q). Recall that Out Ω9(p

e) ∼= 2 × e, where the first direct factor extends
Ω9(q) to SO9(q), and the second induces field automorphisms.

The representation ρ is a tensor product of faithful representations of L2(q2),
so Im ρ ∼= L2(q2). In Im ρ, the diagonal automorphism is induced by conjugation
by elements of CGO9(q) by Proposition 5.3.5. Since σ interchanges V3 and
V σ

3 , it stabilises ρ and hence by Corollary 1.8.14 and Lemma 1.8.9 also lies in



286 Groups in Class S : defining characteristic

CGO9(q). Now, CGO9(q) ∼= SO9(q)×Cq−1 and so both of these automorphisms
are induced by elements of SO9(q).

We have to decide which automorphisms are induced by elements of Ω9(q).
For this calculation, it is slightly more convenient to take the form preserved in
V3 to be antidiag(1, 1, 1). The diagonal automorphism of the image of the action
of L2(q2) on V3 is induced by the matrix diag(λ, 1, λ−1), where λ is a primitive
element of F×

q2 . So, in the image of the action on V3 ⊗ V σ
3 , the form preserved

is antidiag(1, 1, 1, 1, 1, 1, 1, 1, 1) and the diagonal automorphism is induced by

g := diag(λq+1, λ, λ1−q, λq, 1, λ−q, λq−1, λ−1, λ−(q+1)).

We need to determine the spinor norm of g when rewritten as an element of
Ω9(q). By decomposing g as a direct sum of four matrices, one of which is the
identity, we reduce this to the following problems.

(i) Find the spinor norm of g1 := diag(λ, λq, λ−q, λ−1), with preserved form
antidiag(1, 1, 1, 1), when rewritten as an element of Ω±

4 (q).
(ii) Find the spinor norm of g2 := diag(λ1−q, λq−1), with preserved form given

by antidiag(1, 1), when rewritten as an element of Ω±
2 (q).

(iii) Find the spinor norm of g3 := diag(λq+1, λ−(1+q)) with preserved form
antidiag(1, 1) as an element of Ω+

2 (q).

As we observed in Lemma 1.12.3, Ω+
4 (q) is isomorphic to a central product

of two copies of SL2(q), whereas Ω−
4 (q) is isomorphic to L2(q2), and neither of

these have elements of order |g1| = q2 − 1 so g1 has spinor norm −1. In (ii)
|g2| = q + 1, and neither Ω+

2 (q) nor Ω−
2 (q) have elements of this order, so the

spinor norm is −1, whilst in (iii), |g3| = q − 1, and Ω+
2 (q) has no element of

this order, so the spinor norm is again −1. So when we rewrite g over Fq, its
spinor norm is −1 and hence the diagonal automorphism of SL2(q2) is induced
by conjugation by an element of SO9(q) \ Ω9(q) for all (odd) q.

The field automorphism σ of Im ρ is induced by −P ∈ SO9(q
2), where P

is the permutation matrix of (2, 4)(3, 7)(6, 8) ∈ S9. Since P is already over
Fq, it follows easily from Defintion 1.6.10 that −P has spinor norm 1 when
q ≡ ±1 (mod 8) and −1 when q ≡ ±3 (mod 8). So, if q ≡ ±1 (mod 8), then σ
is induced by an element of Ω9(q). If q ≡ ±3 (mod 8), the product of σ with
the diagonal automorphism of SL2(q2) is induced by an element of Ω9(q).

As in the previous examples, the automorphisms φk for 1 � k < e do not
stabilise ρ, and so are not induced by elements of GL9(q). However, there is a
single class of such subgroups in Ω9(q), so all outer automorphisms of Ω9(q) lie
in the class stabiliser.

The following theorem is our main description of the S2-subgroups that are
isomorphic to extensions of SL2(q) or L2(q) in dimensions up to 12.
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Theorem 5.3.9 The only candidates for S ∗
2 -maximal subgroups of the clas-

sical groups in dimensions up to 12, other than in extensions of O+
8 (q), that are

isomorphic to extensions of SL2(q) or L2(q) are as described in Propositions
5.3.6, 5.3.7, and 5.3.8.

Proof The p-restricted modules are described in Proposition 5.3.6, and all
other modules that are expressed in Theorem 5.3.2 as a tensor product with
only one non-trivial factor are algebraic conjugates of the p-restricted modules,
and hence yield conjugate subgroups by Corollary 5.1.10. Therefore we only
need to consider modules M with more than one non-trivial tensor factor.

For these modules M , at least one of the first two conditions specified in
Proposition 5.1.14 must apply to M . If the first condition applies, then M can
be written over a proper subfield so (changing notation), we consider represen-
tations of SL2(qs) with s > 1 that can be realised over Fq. By Corollary 5.3.3,
up to algebraic conjugacy M is therefore one of the following:

(i) the SL2(q2)-module V2 ⊗ V σ
2 ;

(ii) the SL2(q3)-module V2 ⊗ V σ
2 ⊗ V σ2

2 ;
(iii) the SL2(q2)-module V3 ⊗ V σ

3 for q odd.

The SL2(q2)-module V2 ⊗ V σ
2 is the natural module for Ω−

4 (q) and so does
not correspond to an S2-subgroup. The other two cases are as considered in
Propositions 5.3.7, and 5.3.8.

Thus (reverting to the original notation), we may assume thatM is a module
for SL2(q) that cannot be written over a proper subfield of Fq. For the second
condition of Proposition 5.1.14 to apply,M would have to have a preserved form
other than the induced symplectic or symmetric form. By Lemma 1.8.8 (iii),
there is no σ-Hermitian form on M . The only other possibility is that M has a
quadratic form when p = 2. By Proposition 1.9.4 (iii), this does indeed happen,
but the quadratic form is of plus-type, so the representation associated with M
is a subgroup of Ω+

4 (q) or Ω+
8 (q).

We finish with a result which, whilst it will not be used until Chapter 6, is
most convenient to prove here.

Proposition 5.3.10 Let n � m � 1. Then Vn+1 ⊗ Vm+1 has a proper sub-
module for GL2(F ) isomorphic to Vn−m+1 ⊗ detm.

Proof The basis we take for this submodule is:

hi :=
m∑

j=0

(−1)j

(
m

j

)
ei+j ⊗ fm−j , for 0 � i � n−m,

where e0, . . . , en and f0, . . . , fm are our standard bases of Vn+1 and Vm+1. It is
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quite straightforward to check the required actions of y(b), z and w(c) are as
expected. Namely that:

hi.y(b) = bn−m−2ihi, hi.z = (−1)ihn−m−i and hi.w(c) = cn−ihi.

It is considerably harder to check that the action of x(a) is as it should be. We
first need a couple of identities involving binomial coefficients. Note that some
of what we produce below involves binomial coefficients

(
N
M

)
where N and M

are integers with N � 0 and either M < 0 or M > N , and of course
(

N
M

)
= 0

for such N and M . The identities are:

(i)
(
m
j

)(
m−j




)
=
(
m



)(
m−


j

)
for all (integers) m, j, � � 0; and

(ii)
∑N

j=0(−1)j
(
N
j

)(
i+j
k

)
= (−1)N

(
i

k−N

)
for all N, i, k � 0.

For the first of these, we simply write out the formulae for both sides in terms
of factorials; they both evaluate to m!

j!
!(m−j−
)! . The second seems to be best
approached by induction on N , and is a special case of [33, Equation (5.24)].
Thus we can now calculate that:

hi.x(a) =
∑m

j=0(−1)j
(
m
j

)
ei+jx(a)⊗ fm−jx(a)

=
∑m

j=0

∑m−j

=0

∑i+j
k=0(−1)j

(
m
j

)
ai+j−k

(
i+j
k

)
am−j−


(
m−j




)
ek ⊗ f


=
∑m


=0

∑m−

j=0

∑i+j
k=0(−1)jai−(k+
−m)

(
m



)(
m−


j

)(
i+j
k

)
ek ⊗ f
,

where the last of these equalities uses the first of the above binomial identities
and expresses the summation for the range 0 � j, �, j + � � m differently. We
now focus attention to the inner two summations. Clearly 0 � k � i +m − �,
and if k > i+ j then

(
i+j
k

)
= 0, so we can extend the range for k in this manner

without affecting the sum. We then swap the inner two sums to get:

hi.x(a) =
∑m


=0

∑i+m−

k=0

∑m−

j=0 (−1)jai−(k+
−m)

(
m



)(
m−


j

)(
i+j
k

)
ek ⊗ f


=
∑m


=0

∑i+m−

k=0 ai−(k+
−m)

(
m



)
(−1)m−


(
i

k+
−m

)
ek ⊗ f


=
∑m

j=0

∑i+j
k=0(−1)jai−(k−j)

(
m
j

)(
i

k−j

)
ek ⊗ fm−j ,

where the second of the above lines uses our second binomial identity, and
the third line uses the substitution j = m − � (and of course the identity(
m



)
=
(

m
m−


)
). But

(
i

k−j

)
= 0 if k < j, so the inner summation has range

j � k � i+ j. Letting � = k − j, we get:

hi.x(a) =
∑m

j=0

∑i

=0(−1)jai−


(
m
j

)(
i



)
e
+j ⊗ fm−j

=
∑i


=0 a
i−

(

i



) (∑m
j=0(−1)j

(
m
j

)
e
+j ⊗ fm−j

)
=
∑i


=0 a
i−

(

i



)
h
,

as required.
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5.4 The groups SLn(q) and SUn(q) for n � 3

In this section we shall determine the S ∗
2 -subgroups that are isomorphic to

SLn(q), SUn(q) and their central quotients for n � 3. We shall find their
normalisers in the quasisimple groups, and their class stabilisers in the cor-
responding conformal group, and hence the number of conjugacy classes in the
quasisimple groups. The groups SLn(q) and SUn(q) correspond to the groups
of Lie type An−1(q) and 2An−1(q). Let G ∼= SLn(q) or SUn(q), and let Vn be a
natural (n-dimensional) module for G, with V ∗

n denoting the dual of Vn. Note
that V ∗

n
∼= V σ

n for SUn(q), but not for SLn(q).
It is helpful to relate Vn, V ∗

n and the constituents of some of their tensor
products and powers to the modules listed by highest weight in the tables for
Lie type An−1 in [84].

Following [84], we choose λn−1 = (0, . . . , 0, 1) and λ1 = (1, 0, . . . , 0) to
correspond to the natural module Vn and its dual V ∗

n , respectively. It is shown
in [77, Theorem 1.1] that Λ2(Vn) is (absolutely) irreducible and corresponds
to λn−2 = (0, . . . , 0, 1, 0) (although the numbering of nodes is in the reverse
order there). From Lemma 5.1.11 we see that the highest weight of V ⊗ V is
2λn−1 = (0, . . . , 0, 2). From [84, Table 2 and §§A.6–A.15] we find that, for p > 2,
the irreducible module with highest weight 2λn−1 has dimension n(n+1)/2 and,
since V ⊗V has the submodule S2(Vn) with this dimension (which is more than
half that of V ⊗ V ), it follows that S2(Vn) corresponds to 2λn−1 when p > 2.

Similarly, V ∗ ⊗ V has a constituent W with highest weight equal to the
sum λ1 + λn−1 = (1, 0, . . . 0, 1), which has dimension n2 − 2 if p | n and n2 − 1
otherwise. This is the adjoint module, which we shall study in detail in Sub-
section 5.4.1. It can also be shown that, for p > 3, S3(Vn) corresponds to the
absolutely irreducible module with highest weight (0, . . . , 0, 3), but we shall
only need to consider this module for n = 3.

Generically, the non-trivial p-restricted representations of SL±
n (q) of degree

at most O(n2) are as in Table 5.1. Moreover these modules are all distinct if
n � 5. By Lübeck [84, Table 2], Table 5.1 contains all non-trivial members of
M of dimension at most (n−1)3/8 when n � 12. Note that (n−1)3/8 � n2 for
n � 11. Inspecting Appendices A.6–A.15 of Lübeck [84] allows us to complete
the determination of members of M of dimension 12.

Proposition 5.4.1 The p-restricted modules for SLn(q) and SUn(q), with
n � 3, of dimension at most 12 are as given in Table 5.2, except that the
modules S2(Vn) and S2(V ∗

n ) require p > 2, and the modules S3(Vn) and S3(V ∗
n )

require p > 3.

We now determine which of these p-restricted modules give rise to S2-
subgroups. Note that the modules Vn and V ∗

n are the natural modules, and
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Table 5.1 Low-dimensional modules of SLn(q) and SUn(q)
module(s) dimension primes p

Vn and V ∗
n n all

Λ2(Vn) and Λ2(V ∗
n ) 1

2
n(n − 1) all

S2(Vn) and S2(V ∗
n ) 1

2
n(n + 1) p �= 2

W n2 − 2 p | n

W n2 − 1 p � n

Table 5.2 Modules of SLn(q) and SUn(q) of dimension at most 12
dimension n members of M of dimension at most 12

n � 13 1

6 � n � 12 1, Vn, V ∗
n

n = 5 1, V5, V ∗
5 , Λ2(V5), Λ2(V ∗

5 )

n = 4 1, V4, V ∗
4 , Λ2(V4) ∼= Λ2(V ∗

4 ), S2(V4), S2(V ∗
4 )

n = 3 1, V3, V ∗
3 , S2(V3), S2(V ∗

3 ), W , S3(V3), S3(V ∗
3 )

so do not give rise to S2-candidates. Recall that as discussed in the proof of
Corollary 5.1.10, we need consider p-restricted modules only up to duality.

Proposition 5.4.2 The module Λ2(V4) does not yield any S2-candidates.

Proof As we observed earlier, the highest weight of Λ2(V4) is (0, 1, 0), so Λ2(V4)
is self-dual. Therefore the image of the representation consists of isometries of
a symmetric bilinear form, and in fact Λ2(V4) for SL4(q) is isomorphic to the
natural module for Ω+

6 (q). In the case of SU4(q), the image of the representa-
tion corresponding to Λ2(V4) acts via isometries of both an σ-Hermitian and a
symmetric bilinear form, by Proposition 5.2.4. It can therefore be written over
Fq, and then becomes the natural module for Ω−

6 (q) respectively.

Proposition 5.4.3 Let M be one of S2(V3), S3(V3), S2(V4) or Λ2(V5), with
corresponding representation ρM : G → Ω. For G = SLn(q) the image of ρM

preserves no form, and for G = SUn(q) it preserves only a unitary form. Each
outer automorphism of G is induced in Aut Ω, and the diagonal automorphisms
of G are precisely the ones arising in the conformal group of Ω.

Proof By looking at the weights of S2(V3), S3(V3), S2(V4) and Λ2(V5) calcu-
lated above, we see that these modules are not self-dual, and so Im ρM does not
consist of similarities of a symplectic or orthogonal form. Furthermore, in the
case of G = SLn(q), if q = pe is square let τ = φe/2. By Proposition 5.1.9 (ii),
(iii), the automorphism τ sends p-restricted modules to non-p-restricted mod-
ules, whilst duality sends p-restricted modules to p-restricted modules. Thus in
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particular Mτ �= Mγ , and so Mτγ �= M and the module M cannot be equipped
with a unitary form.

In the case when G = SUn(q) and for the modules S2(V3), S2(V4) and
Λ2(V5), we can use Proposition 5.2.4 to conclude that Im ρM preserves a non-
degenerate σ-Hermitian form. For the module S3(V3) we restrict the induced
σ-Hermitian form on V ⊗3 to the submodule version of S3(V3) to give us the
same conclusion: we proved in all relevant circumstances that the submodule
and quotient versions of S3(V3) are isomorphic in Lemma 5.2.8.

The final claim follows from Proposition 5.1.9.

The adjoint module W for SL±
3 (q) has highest weight λ = (1, 1), and so is

self-dual by Remark 5.1.4. This module will be studied in Subsection 5.4.1.
We shall use the following result to determine which diagonal automor-

phisms can be realised in the quasisimple classical group of the image of the
representation.

Lemma 5.4.4 Let gλ = diag(λ, 1, 1, . . . , 1) be a typical outer automorphism
of diagonal type for SLn(q) or SUn(q) (so that λλq = 1 for SUn(q)). Then the
eigenvalues and determinant of gλ in its action on S2(Vn) (3 � n � 4), S3(V3)
and Λ2(V5) are as given in Table 5.3.

Proof This is a straightforward computation using the bases of Λ2(V ) and
Si(V ) described in Definitions 5.2.2 and 5.2.7.

Table 5.3 Determinants and eigenvalues of some low degree representations

module M dim M det gλ eigenvalues of gλ

S2(V3) 6 λ4 λ2, λ, λ, 1, 1, 1

S3(V3) 10 λ10 λ3, λ2, λ2, λ, λ, λ, 1, 1, 1, 1

S2(V4) 10 λ5 λ2, λ, λ, λ, 1, 1, 1, 1, 1, 1

Λ2(V5) 10 λ4 λ, λ, λ, λ, 1, 1, 1, 1, 1, 1

We now study each representation associated with the above lemma in turn,
and start by considering S2(V3).

Proposition 5.4.5 (i) For odd q, there are exactly two conjugacy classes
of S2-subgroups G of SL6(q) isomorphic to SL3(q). Their normaliser in
GL6(q) is generated by G, scalars and δ2.

(ii) For odd q, there are exactly two conjugacy classes of S2-subgroups G of
SU6(q) isomorphic to SU3(q). Their normaliser in CGU6(q) is generated
by G, scalars and δ2.
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Proof The scalar μI3 induces μ2I6 on S2(V3), and q is odd by Proposition 5.4.1,
so SL±

3 (q) acts faithfully on S2(V3).
Let gλ be as in Lemma 5.4.4. If there exists μI6 ∈ GL±

6 (q) such that
detμgλ = 1, then λ must be a cube in the cyclic group of order q ± 1. Since
the diagonal automorphisms of G have order (3, q ± 1), no non-trivial diago-
nal automorphism of G is induced by an element of SL±

6 (q). Therefore G is
scalar-normalising in SL±

6 (q), by Proposition 5.4.3.
Since det gλ in the action on S2(V3) is a square, the class stabiliser in GL±

6 (q)
is generated by elements with square determinant. There is a single class of S2-
subgroups isomorphic to G in the conformal group by Proposition 5.4.1 and
Corollary 5.1.10. Therefore, since q is odd, there are two classes in SL±

6 (q).

We now consider S3(V3).

Proposition 5.4.6 (i) For p � 5, there are exactly (q − 1, 10) conjugacy
classes of S2-subgroups G of SL10(q) isomorphic to PGL3(q), which are
scalar-normalising in GL10(q).

(ii) For p � 5, there are exactly (q + 1, 10) conjugacy classes of S2-subgroups
G of SU10(q) isomorphic to PGU3(q), which are scalar-normalising in
CGU10(q).

Proof The scalar μI3 induces μ3I10 on S3(V3), so the image of this represen-
tation is isomorphic to L±

3 (q). Note that p � 5 by Proposition 5.4.1.
Let gλ be as in Lemma 5.4.4, then in the action on S3(V3) the determinant of

gλ is a 10-th power. The diagonal automorphisms of L3(q) have order (3, q±1),
so all diagonal automorphisms of G are induced by elements of SL±

10(q). Thus
by Proposition 5.4.1 and Corollary 5.1.10, there is a single class of such groups
G in the conformal group, with trivial stabiliser.

We next consider the module S2(V4). Note that, for odd q, the quotient
SL±

4 (q)/〈−I4〉 has the structure (q±1,4)
2

·SL±
4 (q).

Proposition 5.4.7 (i) For odd q, there are exactly (q − 1, 5) conjugacy
classes of S2-subgroups G of SL10(q) isomorphic to (q−1,4)

2
·SL4(q).

(q−1,4)
2 .

Their normaliser in GL10(q) is generated by G, scalars and δ5.
(ii) For odd q, there are exactly (q + 1, 5) conjugacy classes of S2-subgroups

G of SU10(q) isomorphic to (q+1,4)
2

·SU4(q).
(q+1,4)

2 . Their normaliser in
CGU10(q) is generated by G, scalars and δ5.

Proof The scalar μI4 induces μ2I10 on S2(V4) so, since q is odd by Proposi-
tion 5.4.1, the image of this representation is isomorphic to (q±1,4)

2
·SL±

4 (q).
Let gλ be as in Lemma 5.4.4, then det g in the action on S2(V4) is a fifth

power, whilst scalars in GL10(q) have determinant a tenth power. Therefore,
squares of diagonal automorphisms of L±

4 (q) are induced by elements of SL±
10(q),
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and by Proposition 5.4.3 the class stabiliser in the projective conformal group
is 〈δ5〉. The number of conjugacy classes then follows from Proposition 5.4.1
and Corollary 5.1.10.

Finally, we consider the module Λ2(V5).

Proposition 5.4.8 (i) For all q, there are exactly (q−1, 2) conjugacy classes
of S2-subgroups G of SL10(q) isomorphic to SL5(q). Their normaliser in
GL10(q) is generated by G, scalars and δ2.

(ii) For all q, there are exactly (q− 1, 2) conjugacy classes of S2-subgroups of
SU10(q) isomorphic to SU5(q). Their normaliser in CGU10(q) is generated
by G, scalars and δ2.

Proof The scalar μI5 induces μ2I10 on Λ2(V5), and hence the image of the
representation is SL±

5 (q).
Let gλ be as in Lemma 5.4.4, then det g in the action on Λ2(V5) is a fourth

power. Since scalars in GL10(q) have determinant a tenth power, no non-trivial
diagonal automorphisms of L±

5 (q) are induced by elements of SL±
10(q). Hence

by Proposition 5.4.3 the class stabiliser in the projective conformal group is
〈δ2〉. The number of conjugacy classes then follows from Proposition 5.4.1 and
Corollary 5.1.10.

5.4.1 The adjoint module

We deal now with the adjoint modules W for SL±
n (q). Since the concept of

duality is critical here, we encourage the reader to read the discussion of duality
in Section 1.8.

Let ρ be a representation of a group G, with FG-module V with basis
(e1, . . . , en), and let ρ∗ be the corresponding dual representation with module
V ∗ and dual basis (e∗1, . . . , e

∗
n). Let π be a representation of G corresponding

to an FG-module U with basis (f1, . . . , fm). Then, for w ∈ V ∗, u ∈ U , where
w and u are regarded as row vectors with respect to the bases e∗i and fi, we
identify w ⊗ u with the n × m matrix wTu (so e∗i ⊗ fj is identified with the
elementary matrix Ei,j) and thus identify V ∗ ⊗ U with Mn×m(F ). Since, by
Proposition 1.8.3, w(g ρ∗) = w(g−T ρ), the action of G on Mn×m(F ) is given
by M.g = (gρ)−1M(gπ).

Recall that our choice of unitary form means that g ∈ GLn(q2) lies in
GUn(q) if and only if ggσT = 1, where σ is the field automorphism x �→ xq

applied to the matrix entries. The following definition introduces some notation.
The assertions therein are straightforward to verify.

Definition 5.4.9 Let V be the natural module for G := GLn(F ), or for
G := GUn(q) with F = Fq2 , and consider the module V ∗ ⊗ V , represented
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as Mn×n(F ) with the conjugation action of G. For G = GLn(F ), let M be
the FG-module Mn×n(F ) and, for G = GUn(q), let M be the FqG-module
{A ∈ Mn×n(Fq2) | AT = Aσ }. Let U be the submodule of M consisting of
all matrices of trace 0, and U ′ be the submodule of M consisting of all scalar
matrices. Define the adjoint module W by

W = U/(U ∩ U ′).

(Note that the Lie algebra for GUn(q) consists of anti-Hermitian matrices,
rather than the Hermitian ones we have chosen to use here. Technically, U is
the adjoint module, but we are interested in irreducible modules, hence our
abuse of language.)

We leave it to the reader to verify that we can extend M to a module
for 〈GLn(F ),−T〉 or 〈GUn(q),−T〉 by defining A.(−T) := AT for all A ∈ M .
Notice that the action of scalar matrices is trivial.

Lemma 5.4.10 Let U , U ′ and W be as in Definition 5.4.9 with F = Fq

in the linear case; so G = GL±
n (q). Then dimFq

M = n2, dimFq
U = n2 − 1,

dimFq
U ′ = 1; and dimFq

W = n2 − 2 when p | n and n2 − 1 otherwise. The
FqGL±

n(q)-modules M , U and U ′ are self-dual, the module W is self-dual, and
W is absolutely irreducible as an FqSL±

n(q)-module.

Proof Clearly dimM = n2 when G = GLn(q). When G = GUn(q), the entries
of a matrix (αij) in M with i < j are determined by those with i > j, and
αii ∈ Fq for all i. So again dimM = n2. In both cases, the module U has
codimension 1 in M , whereas U ′ has dimension 1. Note that U ′ < U when p | n
and U ′ ∩ U = 0 otherwise, so the dimension of W is as given.

It follows from Proposition 1.8.3 that the map A → AT defines a G-
isomorphism from M to its dual. Under this map it is clear that both U and
U ′ are self-dual, so W is also self-dual.

We then see from [84, Theorem 5.1 and Appendices A.6–A.15] that, for
n � 3, the only non-trivial irreducible p-restricted self-dual module for SL±

n(q)
of dimension at most n2 has the same dimension as W , so W must be absolutely
irreducible as an SL±

n(q)-module.

Define a quadratic form Q on M by

Q(A) =
∑

1�i<j�n

(αijαji − αiiαjj),

and let β be the associated bilinear form. By observing thatQ(A) is the negative
of the coefficient of x2 in the characteristic polynomial of A, we see that Q
is invariant under G. In odd characteristic, Q(A) = 1

2 [tr(A2) − (trA)2] and
β(A,B) = tr(AB)− (trA)(trB). Notice that U ′ = U⊥ with respect to β.
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All of the relevant assertions in the remainder of this section will be with re-
spect to the forms Q and β. It remains to determine when W is non-degenerate
and, if so, to find the sign of the form on W .

Let D be the set of diagonal matrices of M , and let E be the set of matrices
of M with all diagonal entries 0. For 1 � i < j � n, let E(i, j) be the subspace
〈Ei,j ,Ej,i〉 of E when G = GLn(q), and the subspace 〈Ei,j +Ej,i, λEi,j +λσEj,i〉
of E for some fixed λ ∈ Fq2 \ Fq when G = GUn(q).

Lemma 5.4.11 (i) E is the orthogonal direct sum of the E(i, j), which are
non-degenerate, and W ∼= E ⊥ (D ∩ U)/U ′.

(ii) If G = GLn(q) then E is a non-degenerate space of plus type.

(iii) If G = GUn(q) then E is a non-degenerate space of type (−1)(
n
2).

(iv) β is degenerate on D ∩ U if and only if p | n.
(v) If p � n and n is even then W is non-degenerate of odd dimension.
(vi) If p | n and n is odd then β induces a non-degenerate symmetric bilinear

form on U/U ′ = W .

Proof (i) The statements about E and E(i, j) are straightforward. The module
M is the orthogonal direct sum of D and E with respect to β. Furthermore,
we check that E � U , E ∩ U ′ = 0 and U ′ � D, so that U = E ⊕ (D ∩ U) and
W ∼= E ⊕ (D ∩ U)/U ′.
(ii) Observe that if i �= j then Q(Ei,j) = Q(Ej,i) = 0 and β(Ei,j ,Ej,i) = 1.
Suppose first that G = GLn(q). Then the restriction of β to E(i, j) has matrix
antidiag(1, 1), so E(i, j) is of plus-type.
(iii) Now suppose that G = GUn(q). Each E(i, j) is an orthogonal space of
minus-type. To see this, note that the matrix of the quadratic form on E(i, j)

is Q2 :=

(
1 λ+ λσ

0 λλσ

)
. In odd characteristic the determinant of the bilinear

form matrix Q2 + QT
2 is 4λλσ − (λ + λσ)2 = −(λ − λσ)2, and λ − λσ �∈ Fq,

so (λ− λσ)2 is a non-square in F×
q . In even characteristic, the only vectors on

which Q2 is 0 are multiples of (λ, 1) and (λσ, 1), none of which lie in F2
q, so the

Witt index over Fq of the form defined by Q2 is 0, and hence it is of minus
type.
(iv) Now let di = Ei,i − En,n for 1 � i � n − 1. Then D ∩ U has Fq-basis
(d1, d2, . . . , dn−1), and the matrix of β with respect this basis is:

In−1 + Jn−1 =

⎛⎜⎜⎜⎜⎜⎝
2 1 1 · · ·
1 2 1 · · ·
1 1 2 · · ·
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠ ,
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which has determinant n, while Q(di) = 1 for 1 � i � n−1. The form β is thus
degenerate on D ∩ U if and only if p | n, which is precisely when U ′ � D ∩ U .
(v) If p � n and n is even then D ∩ U is non-degenerate of odd dimension, and
hence so is W , which proves Part (v). If p|n and p is odd then U ′ is β-orthogonal
to U (in particular β is identically zero on U ′) and Q(λIn) = −(n2)λ2. Thus β
gives rise to a well-defined form β̂ on W = U/U ′. The matrix of β̂ with respect
to the images of d1, d2, . . . , dn−2 is In−2 +Jn−2 and thus has determinant n−1.
So β̂ is non-degenerate.

If p � n and n is odd then dimW is even, and we have to calculate the sign
of the restriction of Q to U ∼= W . Note that the case p | n with n even does
not occur when n � 12.

Lemma 5.4.12 Suppose that q = pe and p � n, with n odd. For G = GLn(q),
the space W is of plus-type if and only if either:

(i) p is odd and (−1)(n−1)/2n is a square in F×
q ; or

(ii) p = 2 and either e is even or n ≡ ±1 (mod 8).

The type of the quadratic form for the adjoint module of GUn(q) is (−1)(
n
2)

times the type of the form for GLn(q).

Proof We have shown that the restriction of β to E has plus-type, when G

is GLn(q), and (−1)(
n
2)-type when G is GUn(q). Thus the form-type of W is

determined by that of the restriction of Q to D ∩ U , and we saw above that
the associated bilinear form β on D ∩ U has form matrix with determinant n.
By Proposition 1.5.42 (ii), if p is odd then the form has plus-type if and only
if either the discriminant is square in F×

q and (n − 1)(q − 1)/4 is even, or the
discriminant is non-square in F×

q and (n−1)(q−1)/4 is odd. Since −1 is square
in F×

q if and only if (q−1)/2 is even, this condition is equivalent to (−1)(n−1)/2n

being a square in F×
q .

So suppose that p = 2, and let An−1 be the (n− 1)× (n− 1)-matrix of the
form Q |D∩U , as in Definition 1.5.17. Then An−1 has entries 1 on and above
the diagonal and 0 below the diagonal, and in particular has all entries in F2.
Therefore, Proposition 1.5.42 (v) implies Q has plus type if e is even.

Thus we assume for the rest of the proof that e is odd. Define Tn to be
a matrix with 1’s on the diagonal, 1 in position (i, j) for i > 4 and j � 4,
and 0 elsewhere. Then it can be checked that the quadratic form defined by
Tn−1An−1T

T
n−1 has matrix A4 ⊕ An−5 for n > 4. The form defined by A2 has

minus-type by Proposition 1.5.42 (iii), because e is odd and so X2 +X + 1 is
irreducible over Fq in that case. Define U to be the 4 × 4-matrix with 1’s on
the diagonal, 1 in position (i, j) for i > 2 and j � 2, and 0 elsewhere. Then
we find that the form defined by UA4U

T is the sum of 2-dimensional forms of
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plus- and minus-types when e is odd, so it also has minus-type. So given any
odd n, the matrix An−1 is equivalent to a direct sum of copies of A4 and at
most one copy of A2, and the result follows.

We now consider the action of Out SL±
n (q) on the adjoint module.

Lemma 5.4.13 Let g be a generator for the group of diagonal automorphisms
of SL±

n (q), and let ρ be the adjoint representation of SLn(q). Then ρ(g) is an
element of SOε

k(q), with ρ(g) ∈ Ωε
k(q) if and only if n is odd or q is even.

Proof For SLn(q), we take g = diag(ω, 1, 1, . . . , 1), where ω is a primitive
element of F×

q . Then g centralises D, and acts on the n − 1 spaces E(1, j)
as diag(ω−1, ω), but centralises E(i, j) if i, j � 2. Therefore this action of
g has determinant 1. If n is odd, then n − 1 is even, so g defines an ele-
ment of Ωε

dim W (q). If n is even, then this is the case if and only if the el-
ement diag(ω−1, ω) has spinor norm or quasideterminant 1 as an element of
Ω+

2 (Fq, antidiag(1, 1)). By Proposition 1.6.11, the quasideterminant is 1 if q is
even, but (using ω+ω−1− 2 = ω(1 +ω−1)2) the spinor norm is −1 if q is odd.

For SUn(q), we take g = diag(λ, 1, 1, . . . , 1) with λ = ωq−1, and we choose
the same value of λ for our bases 〈Ei,j+Ej,i, λEi,j+λσEj,i〉 of the spaces E(i, j),
so in fact λσ = λ−1. Again g centralises D, and the action of g on E(i, j) has

matrix A :=

(
λ+ λ−1 −1

1 0

)
, which again has determinant 1. If q is even,

then λ+λ−1 �= 0, so I2−A has rank 2, and Proposition 1.6.11 (i) tells us that A
has quasideterminant 1. If q is odd then −det(I2−A) = λ+λ−2 = (μ−μ−1)2,
where μ = ω(q−1)/2, and it is straightforward to check that (μ−μ−1)q = μ−μ−1

and hence μ−μ−1 ∈ Fq, so−det(A−I2) is a square in F×
q . We saw in the proof of

Lemma 5.4.11 (iii) that the restriction of the form to E(i, j) has matrix Q2+QT
2 ,

and that −det(Q2+QT
2 ) is a non-square in F×

q , so Proposition 1.6.11 (ii) implies
that A has spinor norm −1. We therefore get the same conclusion as we did for
SLn(q).

Recall that the map −T acts in the same way as the map σ on SUn(q).

Lemma 5.4.14 Let G = SL±
n (q), and let W be the adjoint representation of

G, of dimension k. Then −T is induced by an element t ∈ GOε
k(q), and at least

one of t or −t lies in Ωε
k(q) if and only if

(
n
2

)
is even or qk is odd. If q is even

and
(
n
2

)
is odd then t ∈ SOε

k(q) \ Ωε
n(q), whilst if q is odd, k is even and

(
n
2

)
is

odd then t ∈ GOε
k(q) \ SOε

k(q).

Proof The duality automorphism −T of G maps X to XT for X ∈ M , and
therefore centralises D but swaps Ei,j with Ej,i for all i and j. So duality acts
the same way on each of the subspaces E(i, j). The matrix A of these actions for
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G = SLn(q) and G = SUn(q) is respectively

(
0 1

1 0

)
and

(
1 0

λ+ λ−1 −1

)
,

of determinant −1 in both cases. If q is even, then A acts as as a transvection.
Let t be the element of GOε

k(q) defined by the action of −T.
If
(
n
2

)
is even then t is a product of an even number of isometric reflections,

so t ∈ Ωε
k(q). Suppose instead that

(
n
2

)
is odd. If q is even then I2−A has rank

1, so it has quasideterminant −1 by Proposition 1.6.11 (i), and hence t does as
well. Suppose therefore that q is odd. Then det t = −1, so t ∈ GOε

k(q)\SOε
k(q).

If k is odd, then using Proposition 1.6.11 (ii), we find that I2 + A (which has
rank 1) has spinor norm 1. Since k−dimE is even in this case, −t ∈ Ωε

k(q).

Proposition 5.4.15 For p = 3, there are exactly two conjugacy classes of
S2-subgroups G of Ω7(q) isomorphic to L3(q).2, which are scalar-normalising
in CGO7(q).

Proof It follows from Lemmas 5.4.10 and 5.4.11 that the adjoint representation
of SL3(q) with q = 3e is irreducible, 7-dimensional, and preserves an orthogonal
form, and the image of the representation is SL3(q) ∼= L3(q).

There are no non-trivial diagonal automorphisms of G. By Proposition 5.1.9
the field automorphisms of G are not induced by an element of CGO7(q). It
follows from Lemma 5.4.14 that the normaliser of G in Ω7(q) induces the duality
automorphism of L3(q). The number of conjugacy classes then follows from
Proposition 5.4.1 and Corollary 5.1.10.

Proposition 5.4.16 (i) If q ≡ 1 (mod 3), there are exactly (q− 1, 2)2 con-
jugacy classes of S2-subgroups G of Ω+

8 (q) isomorphic to L3(q).3. Their
normaliser in CGO+

8 (q) is generated by G, scalars and γ.
(ii) If q ≡ 2 (mod 3), there are exactly (q − 1, 2) conjugacy classes of S2-

subgroups G of Ω−
8 (q) isomorphic to L3(q). Their normaliser in CGO−

8 (q)
is generated by G, scalars and γ.

Proof It follows from Lemma 5.4.12 that, since n = 3, the form preserved is
non-degenerate and of plus-type when q ≡ 1 (mod 3) and of minus-type when
q ≡ −1 (mod 3). This is the case for both even and odd q.

It is immediate from Lemma 5.4.13 that any diagonal automorphisms of
L3(q) are induced within Ω±

8 (q). It follows from Lemma 5.4.14 that the nor-
maliser of G in Ω±

8 (q) does not induce γL3(q), but that the γ automorphism of
Ω±

8 (q) induces γL3(q). By Proposition 5.1.9 the field automorphism of G is not
induced by an element of CGO7(q).

There is a single class of such subgroups in CGO±
n (q) by Proposition 5.4.1

and Corollary 5.1.10, so the number of classes in Ω±
8 (q) is immediate.

Proposition 5.4.17 For p = 3, there are exactly two conjugacy classes of
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S2-subgroups G of Ω7(q) isomorphic to U3(q).2, which are scalar-normalising
in CGO7(q).

Proof It follows from Lemmas 5.4.10 and 5.4.11 that the adjoint representation
of the group SU3(q) with q = 3e is irreducible, 7-dimensional, and preserves an
orthogonal form, and the image of the representation is SU3(q) ∼= U3(q).

There are no non-trivial diagonal automorphisms of G. It follows from
Lemma 5.4.14 that the normaliser of G in Ω7(q) induces the σ automorphism
of G, and from Proposition 5.1.9 that no other field automorphisms of G are
induced by an element of CGO7(q). The number of conjugacy classes in Ω7(q)
then follows from Proposition 5.4.1 and Corollary 5.1.10.

Proposition 5.4.18 (i) If q ≡ 2 (mod 3), there are exactly (q− 1, 2)2 con-
jugacy classes of S2-subgroups G of Ω+

8 (q) isomorphic to U3(q).3. Their
normaliser in CGO+

8 (q) is generated by G, scalars and γ.
(ii) If q ≡ 1 (mod 3), there are exactly (q − 1, 2) conjugacy classes of S2-

subgroups G of Ω−
8 (q) isomorphic to U3(q). Their normaliser in CGO−

8 (q)
is generated by G, scalars and γ.

Proof The proof of this is left as an exercise: copy Proposition 5.4.16.

5.4.2 Irreducible tensor products

In this section, we consider the possibilities given in Proposition 5.1.14 to de-
termine the candidate S ∗

2 -maximals that are tensor products.

Lemma 5.4.19 Let ρ : G = SL±
n (q) → Ω with n � 3 be a representation

with image an S ∗
2 -maximal subgroup of Ω in dimension at most 12. Suppose

that the corresponding module M decomposes as a non-trivial tensor product
M1 ⊗M2. Then G = SL3(q) and either Ω = SL9(

√
q), with M quasi-equivalent

to V3 ⊗ V φe/2

3 , or Ω = SU9(
√
q), with M quasi-equivalent to V3 ⊗ (V ∗

3 )φe/2
.

Proof The non-trivial modules for SL±
n (q) have dimension at least n and

SL±
3 (q) has no irreducible modules of dimension 4 so, since n � 3, the only

way in which a tensor product M of modules with more than one non-trivial
factor in Theorem 5.1.5 could give rise to an S2-subgroup is with n = 3 and
a module of dimension 9. Hence dim(M1) = dim(M2) = 3. The p-restricted
modules of dimension 3 are the natural module V and its dual V ∗. Therefore,
by replacing M by a quasi-equivalent module, we may assume that M1 = V

and M2 = V φi

or (V ∗)φi

for some i with 1 � i � e.
It was shown in Proposition 5.1.14 that the third possibility listed there

cannot arise for SL3(q) or SU3(q), so we need only consider the first two.
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We show first that there are no such examples for SU3(q). If Proposi-
tion 5.1.14 (i) is satisfied, then the module is defined over a proper subfield
Fpf of Fp2e , and we can apply Theorem 5.1.13 (ii). Since M1 = V is not iso-
morphic to Mφe

1 = V ∗, Theorem 5.1.13 (ii) (b) applies. But in that case, since
f | 2e with f < 2e, but f � e, the number of non-trivial tensor factors must be
at least 3, which is not the case.

If, on the other hand, Proposition 5.1.14 (ii) is satisfied, then there must be
a form on M other than the induced unitary form, and this new form would
necessarily be bilinear. So M would be self-dual. But the dual of M1 = V is
the p-restricted module V ∗, which is a contradiction, because M2 �= V ∗ by
Theorem 5.1.5.

So we only need consider examples for SL3(q). If Proposition 5.1.14 (i) is
satisfied, then we can apply Theorem 5.1.13 (i), and we find that the only
possibility for M is V ⊗V φe/2

with e even, for which the minimal field of repre-
sentation is Fpe/2 = F√

q. By Theorem 5.1.5, the image of this representation is
not self-dual and preserves no unitary form, so it gives rise to an S ∗

2 -subgroup
of SL9(

√
q) isomorphic to a central quotient of SL3(q).

Suppose, on the other hand, that Proposition 5.1.14 (ii) applies. None of the
modules V ⊗V φi

or V ⊗(V ∗)φi

with 1 � i < e are self-dual, so any form on them
is not bilinear, and the only such module M that is isomorphic to (M∗)φe/2

(with e even) is V ⊗ (V ∗)φe/2
. This module gives rise to an S ∗

2 -subgroup of
SU9(

√
q) isomorphic to a central quotient of SL3(q).

Since e is even in both of these situations, let us change notation and replace
q by q2 (still with q = pe). So there are S ∗

2 -subgroups of SL9(q) and SU9(q)
arising from the modules ML := V ⊗ V φe

and MU := V ⊗ (V ∗)φe

of SL3(q2).

Proposition 5.4.20 (i) When q ≡ 0 (mod 3), there is a unique class of
S2-subgroups G of SL9(q) isomorphic to L3(q2).2, and these subgroups
are scalar-normalising in GL9(q).

(ii) When q ≡ 1 (mod 9), there are exactly three classes of S2-subgroups G of
SL9(q) isomorphic to 3·L3(q2).2. Their normaliser in GL9(q) is generated
by G, scalars and δ3.

(iii) When q ≡ 4 or 7 (mod 9), there are exactly three classes of S2-subgroups
G of SL9(q) isomorphic to 3·L3(q2).6, and these subgroups are scalar-
normalising in GL9(q).

(iv) When q ≡ 2 (mod 3), there is a unique class of S2-subgroups G of SL9(q)
isomorphic to L3(q2).S3, and these are scalar-normalising in GL9(q).

Proof By considering what happens to the action of the scalars in SL3(q2) on
ML we find that the image of SL3(q2) is as given.

It follows from Theorem 5.1.5 that ML is not stabilised by the automor-
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phisms φk for 1 � k < e of SL3(q2), or its duality automorphism γ; however
ML is stabilised by σ := φe.

We need to calculate what happens to the diagonal automorphisms of
L3(q2). By considering the determinants of the images in GL9(q) of elements of
GL3(q2) inducing these automorphisms, we find that if q ≡ 4, 7 (mod 9) then
they are effected by conjugation by elements of SL9(q), but if q ≡ 1 (mod 9),
then they are induced by diagonal automorphisms of order 3 of SL±

9 (q).
The field automorphism σ : x �→ xq in its action on the image of SL3(q2)

is realised by an element of GL9(q) that permutes coordinates. Since L9(q) has
no diagonal automorphisms of even order, σ must be effected by conjugation
by an element of SL9(q). The structure of the outer automorphism group of
L3(q2) is described in Subsection 1.7.2.

Proposition 5.4.21 (i) When q ≡ 0 (mod 3) there is a unique class of
S2-subgroups G of SU9(q) isomorphic to L3(q2).2, and these subgroups
are scalar-normalising in CGU9(q).

(ii) When q ≡ 8 (mod 9) there are exactly three classes of S2-subgroups G of
SU9(q) isomorphic to 3·L3(q2).2. Their normaliser in CGU9(q) is gener-
ated by G, scalars, and δ3.

(iii) When q ≡ 2, 5 (mod 9) there are exactly three classes of S2-subgroups G
of SU9(q) isomorphic to 3·L3(q2).6, which are scalar-normalising in the
group CGU9(q).

(iv) When q ≡ 1 (mod 3) there is a unique class of S2-subgroups of SU9(q)
isomorphic to L3(q2).S3, which are scalar-normalising in CGU9(q).

Proof The proof of this is similar to that of Proposition 5.4.20, so we only
sketch it briefly. By considering the scalars of SL3(q2) in their action on MU ,
we deduce that the image of SL3(q2) is as given.

As before, MU is not stabilised by φk for 1 � k < e, or by γ, but is stabilised
by σγ. By considering the determinants of the images in GL9(q2) of elements of
GL3(q2) that induce diagonal automorphisms, we find that if q ≡ 2, 5 (mod 9)
then they are effected by elements of SU9(q), but if q ≡ 8 (mod 9) then they
are induced by diagonal automorphisms SU9(q).

As before, γσ is realised by an element of GL9(q2) that permutes coordi-
nates. Since U9(q) has no diagonal elements of even order, γσ is effected by an
element of SU9(q).

We can summarise the results in this section as follows.

Theorem 5.4.22 The only candidates for maximal S ∗
2 -subgroups of the clas-

sical groups in dimensions up to 12, other than in extensions of O+
8 (q) or Ω+

8 (q),
with a composition factor L±

n (q) for n � 3 are those described in Propositions
5.4.5, 5.4.6, 5.4.7, 5.4.8, 5.4.15–5.4.18, 5.4.20 and 5.4.21.
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5.5 The groups Spn(q)

We assume here that n � 4 and that (n, q) �= (4, 2). We start by considering
G := Sp4(q) with q odd. The candidate members of M listed in [84, Appendix
A.22] of dimension up to 12 have dimensions 4, 5 and 10, and also 12 in charac-
teristic 5. In order to carry out calculations with these modules, we need to see
how to construct them explicitly using tensor products. We may assume that
the natural module V4 for G is the module with highest weight λ1 = (1, 0).

Lemma 5.5.1 (i) The 5-dimensional p-restricted module V5 with highest
weight (0, 1) is a constituent of Λ2(V4).

(ii) The 10-dimensional p-restricted module with highest weight (2, 0) is iso-
morphic to S2(V4).

(iii) In characteristic 5, the 12-dimensional p-restricted module with highest
weight (1, 1) is a constituent of V4 ⊗ V5.

There are no further non-natural p-restricted representations of G in di-
mension at most 12.

Proof As noted, the final claim is from [84, Appendix A.22]. Part (i) is proved
in [77, Theorem 1.1]. Using Lemma 5.1.11, we see that the 10-dimensional
module with highest weight (2, 0) must be the constituent S2(V4) of V4⊗V4, so
(ii) is true. Part (iii) follows from (i) and Lemma 5.1.11. (In odd characteristics
other than 5, the module with highest weight (1, 1) has dimension 16.)

The module V5 is the natural module for Ω5(q), and so does not give rise
to S2-candidates. So we first consider S2(V4) of dimension 10.

Proposition 5.5.2 (i) When q ≡ 1 (mod 4) there are exactly four classes
of S2-subgroups G of Ω+

10(q) isomorphic to S4(q). The normaliser of these
groups in CGO+

10(q) is generated by G, scalars and δ′; and δ′ induces δG.
(ii) When q ≡ 3 (mod 4) there are exactly four classes of S2-subgroups G of

Ω−
10(q) isomorphic to S4(q). Their normaliser in CGO−

10(q) is generated
by G, scalars and δ′; and δ′ induces δG.

Proof The matrix −I4 ∈ Sp4(q) acts trivially on V10 = S2(V4), so the image
of Sp4(q) in this representation is S4(q). Using our usual basis for S2(V4), we
find that PCSp4(q) consists of isometries of the orthogonal form F given by
F1 = 2(E1,10 + E5,8) + E2,9−E3,7− 1/2(E4,4 + E6,6) and F = F1 +FT

1 . Now F

has determinant 16, a square, so S4(q) < Ω+
10(q) or Ω−

10(q) when q ≡ 1, 3 mod 4,
respectively.

Let ω be a primitive element of F×
q . The action of diag(ω, ω, 1, 1) on S2(V4)

after multiplying by ω−1I10 is

diag(ω, ω, 1, 1, ω, 1, 1, ω−1, ω−1, ω−1) ∈ SO±
10(q).
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Calculating the spinor norm of this, as described in Proposition 1.6.11, we find
that BAFBT = antidiag(1− ω, 2(1− ω), 1− ω, 1− ω−1, 2(1− ω−1), 1− ω−1),
which has determinant −4(1 − w)3(1− w−1)3 = w−1(2(1− w)2(1− w−1))2, a
non-square. So the images of elements of CSp4(q)\Sp4(q) lie in SO±

10(q)\Ω±
10(q),

and hence the automorphism δ′ of Ω±
10(q) induces δ on Sp4(q). The conjugacy

classes then follow from Lemma 5.5.1 and Corollary 5.1.10.

Proposition 5.5.3 When p = 5 there is a single class of S2-subgroups G of
Sp12(q) isomorphic to Sp4(q). Their normaliser in CSp12(q) is generated by G,
scalars and δ, which induces δG.

Proof For q = 5, we can show by computer calculation (file s45d12calc)
that the module V4⊗ V5 is uniserial with constituents V4, V12, V4, where V12 is
irreducible with dimension 12. Since we know from Lemma 5.5.1 that V4⊗V5 has
a constituent with dimension 12 for all q = 5e, by considering the restriction
to F5 and using Lemma 5.1.6, we see that V4 ⊗ V5 must be uniserial with
constituents of the same degrees for all such q. Let W1 and W2 be the unique
submodules of V4 ⊗ V5 of dimensions 4 and 16. Since W1 is irreducible, it is
either non-degenerate or totally singular with respect to the induced symplectic
form on V4 ⊗ V5. If it were non-degenerate, then W1 would have an orthogonal
complement in V4 ⊗ V5, which it does not, so W1 is totally singular. Therefore
the induced symplectic form of V4 ⊗ V5 induces a non-degenerate symplectic
form on V12, and hence there is an embedding Sp4(q) < Sp12(q).

The diagonal automorphism of Sp4(q) multiplies the forms on V4 and V5 by
a non-square and a square, respectively, and hence multiplies the form on V12

by a non-square. So it is induced by the diagonal automorphism of Sp12(q). The
number of conjugacy classes follows from Lemma 5.5.1 and Corollary 5.1.10.

Theorem 5.5.4 The only candidates for maximal S ∗
2 -subgroups of the classi-

cal groups in dimensions up to 12, other than in extensions of O+
8 (q) or Ω+

8 (q),
that have a composition factor Sn(q) for n � 4 are those described in Proposi-
tions 5.5.2 and 5.5.3.

Proof If n � 6 then the lists of Lübeck [84] and Corollary 5.1.10 show that
the only relevant representations of Spn(q) are quasi-equivalent to the natural
representations of Sp6(q), Sp8(q), Sp10(q) and Sp12(q) or to the 8-dimensional
spin representations of Sp6(q) for q even. The image of the spin representation
of S6(q) for q even in dimension 8 lies in Ω+

8 (q) by [66, Proposition 5.4.9], so this
need not concern us further. For n � 4 the lowest dimension of a non-trivial
p-restricted module is 4, so there is no need to consider tensor products of more
than one non-trivial factor in Theorem 5.1.5.

For Sp4(q) with q even, the only non-zero modules of dimension up to 12
listed in [84] are two of dimension 4, which are the natural module and its image
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under the exceptional graph automorphism. (We shall study these modules in
more detail in Section 7.2.) So there are no S ∗

2 -maximal subgroups in this case.
Thus the only possibility is Sp4(q) with q odd, which is considered in

Lemma 5.5.1 and Propositions 5.5.2 and 5.5.3.

5.6 The groups Oε
n(q), 3D4(q), and their covers

For odd q and n � 7, the full covering group of Oε
n(q) is not Ωε

n(q), but is
Spinε

n(q), which is twice as large. See, for example, [114, Section 3.9] for a
brief introduction to the spin groups, which are defined using Clifford algebras.
Fortunately, we shall not need to carry out any calculations with them!

Theorem 5.6.1 There are no maximal S ∗
2 -subgroups of the classical groups

in dimensions up to 12, other than in extensions of O+
8 (q) or Ω+

8 (q), that have
composition factor Oε

n(q) or 3D4(q) for n � 7.

Proof The only non-trivial p-restricted representations of dimension at most
12 for the groups (2·)O7(q) have dimensions 7 and 8 by [84], so tensor products
have dimension at least 49. The 7-dimensional modules are natural, and hence
do not give rise to S2-subgroups. The 8-dimensional modules are spin repre-
sentations, that have image in Ω+

8 (q) ∼= 2·O+
8 (q) by [66, Proposition 5.4.9], and

hence we need not consider them.
There are three non-trivial p-restricted representations associated with the

groups O+
8 (q), O−

8 (q), 3D4(q) and their covers in dimension at most 12, and
they all have dimension 8 by [84]. Therefore all non-trivial tensor products have
dimension at least 64.

The candidate representations for O+
8 (q) are the natural and [12 ]-spin rep-

resentations, which all have dimension 8 and are equivalent under the triality
automorphism. Since these representations are quasi-equivalent, and one of
them is the natural representation of Ω+

8 (q), their images all lie in Ω+
8 (q) so

they need not concern us further.
The candidate representations of 3D4(q) have minimal field Fq3 , and pre-

serve a quadratic form of +-type, since 3D4(q) is defined as the centraliser
in O+

8 (q3) of a suitable outer automorphism of order 3: see the beginning of
Section 5.1. Therefore they are subgroups of Ω+

8 (q).
For O−

8 (q), the p-restricted representations are either natural or 1
2 -spin.

The natural representation does not give rise to an S2-subgroup. The 1
2 -spin

representations of Spin−
8 (q) require Fq2 to represent them, and can be obtained

by restricting the 1
2 -spin representations of Spin+

8 (q2). So a quadratic form of
+-type is preserved here. See [66, Proposition 5.4.9].

The natural modules of Ωε
n(q) for 9 � n � 12 are their only non-trivial
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Table 5.4 Degrees of p-restricted representations of G2(Fp)

p Degrees

2 1, 6, 14, 64.

3 1, 7, 7, 27, 27, 49, 189, 189, 729.

� 5 1, 7, >12 . . .

p-restricted modules of dimension as most 12, by [84]. Therefore no tensor
products of dimension at most 12 occur.

5.7 The remaining groups and their covers

In this section we consider the remaining groups of Lie type, namely E6(q),
E7(q), E8(q), F4(q), G2(q), 2B2(22μ+1), 2E6(q), 2F4(22μ+1) and 2G2(32μ+1). As
in previous sections, we will first analyse the S ∗

2 -subgroups that arise, before
proving that these are the only examples.

The groups G2(q) have trivial p′-multiplier, and the degrees of some of their
p-restricted representations are given in Table 5.4, as taken from [84]. Recall
that G2(2) is not simple and hence is not a group of Lie type in characteristic
2; see Table 4.1. The outer automorphism group of G2(pe) has order 2e when
p = 3, and e when p �= 3.

Proposition 5.7.1 For q even, there is a single class of S ∗
2 -subgroups G of

Sp6(q) isomorphic to G2(q), which are scalar-normalising in CSp6(q).

Proof By Table 5.4 there is a single non-trivial p-restricted representation ρ

of degree � 6, which is self-dual by Proposition 5.1.12. We must determine
whether Im ρ preserves an orthogonal form.

By Lemma 5.1.6 the group G2(2e) contains G2(2) as a subgroup. We see
from [57] that the 6-dimensional 2-modular representation of G2(2)′ ∼= U3(3)
has indicator −, so the natural representation of G2(2e) is symplectic but not
orthogonal. Now, S6(2e) ∼= PCSp6(2e), and the conjugacy claims follow from
Corollary 5.1.10.

Proposition 5.7.2 For q odd, there are exactly two classes of S ∗
2 -subgroups

G of Ω7(q) isomorphic to G2(q), interchanged by the diagonal automorphism.
They are scalar-normalising in CGO7(q).

Proof By Table 5.4 there is a single non-trivial p-restricted representation ρ

of degree � 7 if p � 5, and a pair if p = 3. The 7-dimensional representations
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Table 5.5 p-Restricted representations of Suzuki and small Ree groups

group module field size dimension description

Sz(22μ+1) 1 2 1 trivial

V 22μ+1 4 natural

R(32μ+1) 1 3 1 trivial

V 32μ+1 7 natural

W 32μ+1 27 S2(V ) ∼= W ⊕ 1

of G2(q) are orthogonal, since they are self-dual by Proposition 5.1.12 and of
odd dimension. From the λ-column in [84, Appendix A.49] we see that if p = 3
the two p-restricted modules are interchanged by the graph automorphism of
G2(q), and hence the corresponding subgroups are conjugate in CGO7(q). The
outer automorphism group of G2(q) acts regularly on the e (or 2e) images of
the p-restricted modules, so G is scalar-normalising in CGO7(q).

The Suzuki and small Ree groups, namely Sz(22μ+1) = 2B2(22μ+1) and
R(32μ+1) = 2G2(32μ+1) with μ ∈ N�0, both occur in just a single characteristic,
and all have trivial Schur multiplier apart from Sz(8), which has multiplier 22.
The p-restricted representations of these groups are described in Table 5.5,
taken from [84]. The outer automorphism groups of Sz(22μ+1) and R(32μ+1)
are generated by field automorphisms, and a non-inner automorphism does not
stabilise the natural module of the group in question.

Proposition 5.7.3 For q = 2e with e > 1 odd, there is a single class of
S ∗

2 -subgroups G of Sp4(q) isomorphic to Sz(q), which are scalar-normalising
in CSp4(q).

Proof All modules for Sz(q) are self-dual by Proposition 5.1.12, so G must
preserve a symplectic or orthogonal form. The non-abelian composition factors
of GO±

4 (q) are L2(q) or L2(q2), and hence all non-abelian composition factors
of their subgroups are of the form L2(r) where r|q2. However, Sz(q) has no
faithful 2-dimensional representations by Table 5.5, and so its 4-dimensional
representation does not preserve an orthogonal form.

There is a unique CSp4(q)-conjugacy class of groups G, by Corollary 5.1.10.
The field automorphism acts regularly on the 4-dimensional modules, so Sz(q)
is scalar-normalising in CSp4(q).

Proposition 5.7.4 For q = 3e with e odd, there are exactly two classes of
S ∗

2 -subgroups R(q) of Ω7(q), which are scalar-normalising in CGO7(q).

Proof The irreducible representations of R(32μ+1) are all self-dual by Propo-
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sition 5.1.12 and the only p-restricted representations of dimension at most 12
have odd dimension, and so are orthoognal.

There is a unique conjugacy class of groups G ∼= R(q) in CGO7(q), by
Corollary 5.1.10. The field automorphism acts regularly on the 7-dimensional
modules, so R(q) is scalar-normalising in CGO7(q).

Theorem 5.7.5 The only candidates for maximal S ∗
2 -subgroups of the clas-

sical groups in dimensions up to 12, other than in extensions of O+
8 (q) or

Ω+
8 (q), that have composition factor G2(q), F4(q), E6(q), 2E6(q), E7(q), E8(q),

Sz(22μ+1), R(32μ+1) or 2F4(22μ+1) are those described in Propositions 5.7.1,
5.7.2, 5.7.3 and 5.7.4.

Proof The minimal degree of a non-trivial representation of any of the groups
F4(q), E6(q), 2E6(q), E7(q), E8(q), 2F4(22μ+1) and their covers in characteristic
p is at least 25.

By Table 5.4, the only dimensions we need consider for G2(q) are 6 (for
p = 2) and 7 (for p odd), and these are considered in Propositions 5.7.1 and
5.7.2. By Table 5.5, the only dimension we need for Sz(22μ+1) is 4, which is dealt
with in Proposition 5.7.3. Similarly, by Table 5.5, Proposition 5.7.4 describes
the only representations of R(q) in dimension at most 12.

5.8 Summary of S ∗
2 -candidates

With the exception of Ω = Ω+
8 (q), we have now determined all candidate S ∗

2 -
maximal subgroups of Ω and its almost simple extensions, together with the
number c of Ω-classes, and the class stabilisers of these subgroups in the corre-
sponding conformal groups.

In Table 5.6, each row represents a quasi-equivalence class of representations
ρ of a simply-connected group of Lie type with non-abelian composition factor
S. Column “Group” gives the isomorphism type of NΩ(Im ρ), up to the addition
of scalars from Ω. Column “Module” describes a module corresponding to one
of the representations in the quasi-equivalence class. In Column c we state the
number of conjugacy classes in the quasisimple group Ω, whilst Column “Stab”
gives the stabiliser of a conjugacy class in the corresponding conformal group.

Theorem 5.8.1 Let S be an S ∗
2 -maximal subgroup of a classical group C in

dimension at most 12. Then S∞ is contained in Table 5.6.

Proof The entries in the table are proved correct in Propositions 5.3.6–5.3.8,
5.4.2, 5.4.5–5.4.8, 5.4.15–5.4.18, 5.4.20, 5.4.21, 5.5.2, 5.5.3, 5.7.1–5.7.4. (The
results for Ω+

8 (q) are also currently included.) The completeness of the tables
is documented in Theorems 5.3.9, 5.4.22, 5.5.4, 5.6.1 and 5.7.5.
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Table 5.6: Defining characteristic candidates

Group Module Condns on q Dim Case c Stab

SL2(q) S3(V ) p � 5 4 S 1 〈δ〉
Sz(q) V p = 2, q = pe 4 S 1 1

e > 1 odd

L2(q) S4(V ) p � 5 5 O◦ 1 〈δ〉
SL3(q) S2(V ) p � 3 6 L 2 〈δ2〉
SU3(q) S2(V ) p � 3 6 U 2 〈δ2〉
SL2(q) S5(V ) p � 7 6 S 1 〈δ〉
G2(q) V p = 2 �= q 6 S 1 1

L2(q).2 S6(V ) p � 7 7 O◦ 2 1

L3(q).2 W (adjoint) p = 3 7 O◦ 2 1

U3(q).2 W (adjoint) p = 3 7 O◦ 2 1

G2(q) V p � 3 7 O◦ 2 1

R(q) V p = 3, q = pe 7 O◦ 2 1

e > 1 odd

SL2(q) S7(V ) p � 11 8 S 1 〈δ〉
SL2(q3).3 V ⊗ V σ⊗ V σ2

p � 3 8 S 1 〈δ〉
L3(q).3 W (adjoint) q ≡ 1 (mod 3) 8 O+ (q−1, 2)2 〈γ〉
L3(q) W (adjoint) q ≡ 2 (mod 3) 8 O− (q−1, 2) 〈γ〉

U3(q).3 W (adjoint) q ≡ 2 (mod 3) 8 O+ (q−1, 2)2 〈γ〉
U3(q) W (adjoint) q ≡ 1 (mod 3) 8 O− (q−1, 2) 〈γ〉

SL2(q3).3 V ⊗ V σ⊗ V σ2
p = 2 8 O+ 2 1

Sp6(q) spin p = 2 8 O+ 2 1

2·Ω7(q) spin p � 3 8 O+ 4 〈γ〉
(q−1, 2)·Ω−

8 (
√
q) spin p = 2 8 O+ 2 1

p � 3 8 O+ 4 〈γ〉
3D4(q0) V q = q30 8 O+ 2(q−1, 2)2 1

L3(q2).2 V ⊗ V σ q ≡ 0 (mod 3) 9 L 1 1

L3(q2).S3 V ⊗ V σ q ≡ 2 (mod 3) 9 L 1 1

SL3(q2).2 V ⊗ V σ q ≡ 1 (mod 9) 9 L 3 〈δ3〉
SL3(q2).6 V ⊗ V σ q ≡ 4, 7 (mod 9) 9 L 3 1
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Table 5.6: Defining characteristic candidates

Group Module Condns on q Dim Case c Stab

L3(q2).2 V ⊗ (V ∗)σ q ≡ 0 (mod 3) 9 U 1 1

L3(q2).S3 V ⊗ (V ∗)σ q ≡ 1 (mod 3) 9 U 1 1

SL3(q2).2 V ⊗ (V ∗)σ q ≡ 8 (mod 9) 9 U 3 〈δ3〉
SL3(q2).6 V ⊗ (V ∗)σ q ≡ 2, 5 (mod 9) 9 U 3 1

L2(q).2 S8(V ) p � 11 9 O◦ 2 1

L2(q2).2 S2(V )⊗S2(V σ) p � 3 9 O◦ 1 〈δ〉
L3(q).(q−1, 3) S3(V ) p � 5 10 L (q−1, 10) 1

U3(q).(q+1, 3) S3(V ) p � 5 10 U (q+1, 10) 1
(q−1,4)

2
·SL4(q).

(q−1,4)
2 S2(V ) p � 3 10 L (q−1, 5) 〈δ5〉

(q+1,4)
2

·SU4(q).
(q+1,4)

2 S2(V ) p � 3 10 U (q+1, 5) 〈δ5〉
SL5(q) Λ2(V ) 10 L (q−1, 2) 〈δ2〉
SU5(q) Λ2(V ) 10 U (q+1, 2) 〈δ2〉
SL2(q) S9(V ) p � 11 10 S 1 〈δ〉
S4(q) S2(V ) q ≡ 1 (mod 4) 10 O+ 4 〈δ′〉
S4(q) S2(V ) q ≡ 3 (mod 4) 10 O− 4 〈δ′〉
L2(q) S10(V ) p � 11 11 O◦ 1 〈δ〉
SL2(q) S11(V ) p � 13 12 S 1 〈δ〉
Sp4(q) p = 5 12 S 1 〈δ〉

5.9 Determining the effects of duality and field
automorphisms

Here we carry out the necessary calculations concerning the action of duality
and field automorphisms. The corresponding calculations in the cross charac-
teristic case were introduced in Section 4.6, and we make use of some of the
theory developed there. Since we shall be discussing the action of the dual-
ity and field automorphisms of a quasisimple classical group Ω on subgroups
Gρ which are themselves classical groups, we shall sometimes use subscripts
for clarity. For example, φΩ denotes the field automorphism φ of Ω, whilst φG

denotes the induced action of the natural field automorphism of G on Gρ.
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5.9.1 Cases L and U

We first make some general remarks about examples of the form U = Sm(V )
for m ∈ {2, 3}, or U = Λ2(V ), where V is the natural module for SL±

d (q) for
some d and q, which will be helpful in performing the necessary calculations.

As we explained in Section 5.2, we regard U primarily as a quotient mod-
ule of the m-th tensor power V ⊗m of V . However, for all characteristics for
U = Λ2(V ), and for characteristics greater than m for U = Sm(V ), we can
identify U with a suitable submodule of V ⊗m: see Lemmas 5.2.3 and 5.2.8.
When calculating the effect of duality and field automorphisms we shall find it
more convenient to work with the submodule version.

Let (e1, e2, . . . , ed) be the natural basis for V . Order the basis elements of
V ⊗m lexicographically. For g ∈ SL±

d (q), the matrix representing g in V ⊗m is the
m-fold Kronecker product g⊗m of g. Let A denote an n×dm matrix whose rows
are the basis vectors for U as a subspace of V ⊗m, as given in Definitions 5.2.2
and 5.2.7 (using the isomorphisms from Lemmas 5.2.3 and 5.2.8).

Lemma 5.9.1 Let G := SL±
d (q), let V be the natural G-module, and let

ρ : G→ SL±
n (qu) be the representation with module U = Sm(V ) for m ∈ {2, 3},

or U = Λ2(V ), so that n = dimU . Assume that p > 3 if U is a symmetric
cube, and p is odd otherwise. Let A denote an n× dm matrix as above. Then:

(i) AATD = In, where D ∈ Mn×n(p) has determinant 2(d
2) (mod p) when

U = S2(V ), determinant 6(d
3) · 3d(d−1) (mod p) when U = S3(V ), and

determinant 2−(d
2) (mod p) when U = Λ2(V ).

(ii) For g ∈ SL±
d (q), the matrix M(g) of the action of g on U is Ag⊗mATD,

and furthermore (Ag⊗mATD)−1 = A(g−1)⊗mATD.
(iii) If G = SLd(q), then the normaliser of Gρ in Out SLn(q) contains φΩ,

which induces the outer automorphism φG of Gρ.
(iv) If G = SLd(q) and n is even, then the class stabiliser of Gρ in Out SLn(q)

contains a conjugate of γΩ if detD is a square in F×
q , and a conjugate of

γΩδΩ otherwise. In either case, the induced outer automorphism of Gρ is
a conjugate of γG.

(v) If G = SUd(q) then Im ρ consists of isometries of the unitary form with
matrix D−1. Futhermore, if n is even, then the class stabiliser of Gρ in
Out SUn(q) contains a conjugate of φΩ if detD is a square in F×

p , and a
conjugate of φΩδΩ otherwise. In either case, the induced outer automor-
phism of Gρ is a conjugate of φG.

Proof (i) In our standard bases for Sm(V ) and Λ2(V ), each tensor of the form
ei ⊗ ej or ei ⊗ ej ⊗ ek occurs in precisely one basis vector. The product AAT

has entries the dot product of each row of A with each other row. Thus the
only non-zero dot products are those of a row with itself, and D is as given.
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(ii) Let M(g) be the matrix of the action of g on U . Then Ag⊗m = M(g)A, and
hence (i) gives the first claim. The second now follows from M(g)−1 = M(g−1).
(iii) Since A and D have entries in Fp, we see by (ii) that the automorphism
φΩ of SLn(q) induces φG. So Gρ is normalised by φΩ.
(iv) By (ii), again, M(gγG) = A(g−T)⊗mATD, whereas the image of M(g)
under γΩ is

M(g)−T = (Ag⊗mATD)−T = (A(g−1)⊗mATD)T = DA(g−T)⊗mAT.

So M(gγG) = D−1M(g)−TD. In other words, γG is induced by γΩ followed by
conjugation by the diagonal automorphism of Ω induced by conjugation by D.
The result now follows from Lemma 4.6.2.
(v) For a matrix g with entries in Fq2 , let g∗ be the result of applying the map
x �→ xq to the entries of gT. The matrix Id is our standard form for GUd(q), so
g∗ = g−1 for g ∈ GUd(q). Hence M(g)∗ = (Ag⊗mATD)∗ = DA(g−1)⊗mAT =
D(Ag⊗mATD)−1D−1, and so (Ag⊗mATD)D−1(Ag⊗mATD)∗ = D−1. Thus
D−1 is the matrix of the form stabilised by G.

In the notation of Lemma 4.6.4 we may set α = φG and β = φΩ, and then
L = In and λ = 1. (The matrix of the fixed unitary form D−1 was denoted by
B in Lemma 4.6.4.) Using Lemma 4.6.5 we get κ = 1, so that the class of G is
stabilised by φΩ if and only if detD−1 is a square in F×

p , which is equivalent to
detD being a square in F×

p .

We see from Theorem 5.8.1 that S ∗
2 -maximal candidates exist only in di-

mensions 6, 9 and 10. As in Section 4.9, in our statements of the results, when
we refer to the class stabiliser of an S ∗

2 subgroup S of Ω in Out Ω, we are really
specifying the stabiliser of the Ω-class of some Aut Ω-conjugate of S.

Proposition 5.9.2 (i) The class stabiliser of the S ∗
2 -subgroup SL3(q) of

SL6(q) is 〈δ2, φ, γ〉 if q ≡ ±1 (mod 8) and 〈δ2, φ, γδ〉 if q ≡ ±3 (mod 8).
(ii) The class stabiliser of the S ∗

2 -subgroup SU3(q) of SU6(q) is 〈δ2, φ〉 if p ≡
±1 (mod 8) and 〈δ2, φδ〉 if p ≡ ±3 (mod 8).

Proof By Theorem 5.8.1, the group S ∼= SL±
3 (q) arises from the module S2(V3)

of L±
3 (q), with p � 3, and the class stabiliser of S in the group of conformal auto-

morphisms is 〈δ2〉. In the notation of Lemma 5.9.1, the determinant detD = 23.
In Case L, by Lemma 5.9.1 (iii), we may assume that S is normalised by φ.

Furthermore, by Lemma 5.9.1 (iv), the class stabiliser of S contains an Out Ω-
conjugate of γ when 2 is a square in F×

q , and an Out Ω-conjugate of γδ when
2 is non-square in F×

q . Since the class stabiliser also contains 〈δ2〉, it must be
〈δ2, φ, γ〉 or 〈δ2, φ, γδ〉 in these two cases.

In Case U, by Lemma 5.9.1 the class stabiliser contains an Out Ω-conjugate
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of φ if and only if detD is a square modulo p, which is the case if and only if
p ≡ ±1 (mod 8), by Proposition 1.13.7 (ii).

Recall that our choice of form means that γ is equal to φe in Case U.

Proposition 5.9.3 Let S be an S ∗
2 -subgroup of SL±

9 (q) with composition
factor L3(q2). Then the class stabiliser of S is 〈δ3, φ, γ〉.
Proof If q ≡ 0, 2 (mod 3) for Ω = SL9(q), or q ≡ 0, 1 (mod 3) for Ω = SU9(q),
then δΩ is trivial, and there is a single class of images (3·)L3(q2) in Ω. Thus
the class stabiliser is 〈φ, γ〉.

Otherwise, by Theorem 5.8.1 there are three Ω-classes of subgroups G, per-
muted transitively under the action of δΩ. A straightforward calculation reveals
that there is a single conjugacy class of subgroups of Out Ω of index 3 that does
not contain δ, with representative 〈δ3, φ, γ〉.
Proposition 5.9.4 (i) The class stabiliser of the S ∗

2 -subgroup S = PGL3(q)
of SL10(q) is 〈φ, γ〉 when q ≡ ±1,±5 (mod 24), and 〈φ, γδ5〉 when q ≡ ±7,
±11 (mod 24).

(ii) The class stabiliser of the S ∗
2 -subgroup S = PGU3(q) of SU10(q) is 〈φ〉

when p ≡ ±1,±5 (mod 24) and 〈φδ〉 when p ≡ ±7,±11 (mod 24).

Proof By Theorem 4.3.3, these subgroups arise from the module S3(V3) of
L±

3 (q), with p � 5, and the class stabiliser of S in the group of conformal
automorphisms is trivial. In the notation of Lemma 5.9.1, the determinant
detD = 6 · 36 (mod p).

Consider first S = PGL3(q), so that Ω = SL10(q). Let X be the stabiliser
in Out Ω of the Ω-class of S. By Lemma 5.9.1 (iii), we may assume that φ ∈ X.
Furthermore, by Lemma 5.9.1 (iv), the group X contains an Out Ω-conjugate
of γ when 6 is a square in F×

q , and (since γδ and γδ5 are conjugate in Out Ω) an
Out Ω-conjugate of γδ5 when 6 is non-square in F×

q . We need to show that X is
conjugate in Out Ω to 〈φ, γ〉 or 〈φ, γδ5〉 in the two cases. Write φ = φ1φ2, where
φ1 has odd order and φ2 has 2-power order. Then, since δ has order 2 or 10,
φ1 is central in Out Ω, so all conjugates of X contain φ1. By Sylow’s theorem,
some conjugate of a Sylow 2-subgroup of X is contained in the abelian self-
normalising Sylow 2-subgroup 〈δ5, φ2, γ〉 of Aut Ω and, since φ2 is not conjugate
to φ2δ

5 in Aut Ω, this conjugate of X must contain φ2, and the result follows.
In the unitary case, the class of SU3(q) is stabilised by φ if and only if detD

is a square modulo p, by Lemma 5.9.1 (iv), and is stabilised by φδ otherwise.
This occurs if and only if 6 is a square modulo p.

The examples arising from the 10-dimensional module S2(V4) of L±
4 (q), with

p � 3, are similar.
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Proposition 5.9.5 (i) The class stabiliser of the S ∗
2 -subgroup

(q−1,4)
2

·SL4(q).
(q−1,4)

2 of SL10(q) is 〈δ5, φ, γ〉.
(ii) The class stabiliser of the S ∗

2 -subgroup (q+1,4)
2

·SU4(q).
(q+1,4)

2 of SU10(q)
is 〈δ5, φ〉.

Proof In the notation of Lemma 5.9.1, detD = 26 is a square. Hence, the result
follows as in the previous proposition from Theorem 5.8.1 and Lemma 5.9.1.

Proposition 5.9.6 (i) The class stabiliser of the S ∗
2 -subgroup SL5(q) of

SL10(q) is 〈δ2, φ, γ〉.
(ii) The class stabiliser of the S ∗

2 -subgroup SU5(q) of SU10(q) is 〈δ2, φ〉.
Proof By Theorem 5.8.1, these groups arise from the module Λ2(V5) of L±

5 (q).
If q is odd then using Lemma 5.2.3 we get a matrix D of determinant 2−10, a
square, and the result follows as before.

Thus we need only consider the case q even. Let A be the matrix defined
just before Lemma 5.9.1, and suppose temporarily that A has entries in Z, so
that each row contains a 1 and a −1. Let C be the matrix formed from A by
replacing the −1 in each row by 0, considered now as a matrix over Fq. Then
ACT = In, so the matrix of g ∈ SL±

d (q) in its action on U is Ag⊗2CT. It is
straightforward to verify that this is equal to Cg⊗2AT for all g, from which it
follows that (Ag⊗2CT)−T = A(g−T)⊗2CT.

So, in the linear case, γG is induced by γΩ, and a corresponding argument
in the unitary case shows that the image of SUd(q) in GLn(q2) consists of
isometries of the unitary form with matrix In.

5.9.2 Case S

In this subsection we calculate the class stabiliser in Out Spn(q) of all Spn(q)-
conjugacy classes of S ∗

2 -subgroups. Recall from Subsection 1.7.2 that if (n, p) �=
(4, 2), then Out Sn(q) = 〈δ, φ〉 (with δ trivial if p = 2), whilst the group
Out S4(2e) = 〈γ, φ〉 = 〈γ〉 ∼= 2e for e > 1, and Sp4(2) is not quasisimple.

Proposition 5.9.7 (i) The class stabiliser of the S ∗
2 -subgroup Sz(q) of

Sp4(q), with q = 22μ+1 and μ � 1, is 〈γ〉.
(ii) The class stabiliser of all other S ∗

2 -subgroups of Sn(q) for n � 12 is 〈δ, φ〉.
Proof Suppose first that n = 4 and q is even. By Theorem 5.8.1 there is a
unique Ω-class of S2-subgroups, namely Sz(q) with q = 22μ+1 and μ � 1. So
this class is stabilised by the full outer automorphism group 〈φ, γ〉 of Sp4(q).

In all other cases, we need only resolve the action of φ when q �= p. By
Theorem 5.8.1, in all such cases there is a single class of subgroups of Ω, which
must therefore be stabilised by φ.



314 Groups in Class S : defining characteristic

5.9.3 Cases Oε

In this subsection we calculate the class stabiliser in Out Oε
n(q) of all Ωε

n(q)-
conjugacy classes of S ∗

2 -subgroups.
We start with a group that occurs in several dimensions.

Proposition 5.9.8 The class stabiliser of all S ∗
2 -subgroups S of Ω = Ωn(q)

with composition factor L2(q), for n = 7, 9, 11, contains 〈φ〉.
Proof We have seen already in Section 5.3 that, for the image of the represen-
tation corresponding to the module Sn(V ) of odd dimension n+ 1 for SL2(q),
the automorphism φS is induced by φΩ.

Recall from Subsection 1.7.2 that Out Ω7(q) = 〈δ, φ〉.
Proposition 5.9.9 The class stabiliser of each S ∗

2 -subgroup of Ω7(q) is 〈φ〉.
Proof By Theorem 4.3.3, the groups to consider are L2(q).2 (with p � 7),
L3(q).2 (with p = 3), U3(q).2 (with p = 3), G2(q) (with p � 3) and R(q) (with
p = 3 and e � 1 odd). In each case there are two classes, with trivial stabiliser
in the conformal group.

Two generators of the image S of the 7-dimensional representation of G2(q)
with q odd are defined in [49, Section 3.6], one of which is stabilised by φ while
the other is mapped to a power of itself. So the class of S is stabilised by 〈φ〉,
and φΩ induces φS .

It is shown in [64] that, for the appropriate q, the groups L2(q).2, L3(q).2,
U3(q).2 and R(q) are all maximal subgroups of G2(q) that are irreducible in
the 7-dimensional representation, and that 〈φ〉 stabilises them.

We are not calculating the maximal subgroups of Ω+
8 (q) in this book. Recall

from Subsection 1.7.2 that Out Ω−
8 (q) = 〈δ, γ, ϕ〉, with δ trivial if q = pe is even.

Proposition 5.9.10 The class stabiliser of each S ∗
2 -subgroup of Ω−

8 (q) is
〈γ, ϕ〉.
Proof By Theorem 4.3.3, the S ∗

2 -subgroups are L3(q) (with q ≡ 2 (mod 3))
and U3(q) (with q ≡ 1 (mod 3)), each acting on their adjoint module. There are
(q−1, 2) classes of these subgroups in Ω−

8 (q), stabilised by γ, and interchanged
by δ when q is odd. So either ϕ or ϕδ lies in the class stabiliser. The result is
immediate for even q, so assume from now on that q is odd.

If e is odd, then since both ϕ2 and γ = ϕe are in the class stabiliser, so is ϕ.
This is always the case for L3(q). It therefore remains to consider U3(q) with q
an even power of an odd prime p > 3.

Let α1 : U3(q) → Ω−
8 (q) and α2 : L3(q2) → Ω+

8 (q2) be the adjoint repre-
sentations under consideration. Since SU3(q) � GL3(q2), the group U3(q) is
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a subgroup of L3(q2); let β1 : U3(q) → L3(q2) be the natural inclusion map.
From Table 2.8 we see that Ω−

8 (q) is an irreducible subgroup of Ω+
8 (q2), such

that Ω−
8 (q) can be written over Fq; let β2 : Ω−

8 (q) → Ω+
8 (q2) be the natural

inclusion map.
As we saw in Subsection 5.4.1, α1 is defined by first applying β1, which

embeds U3(q) into L3(q2), then applying the adjoint representation α2 to the
image, and then conjugating within GL8(q2) (and hence by Lemma 1.8.10 (ii),
within CGO+

8 (q2)) to write the result over Fq. So, by taking suitable conjugacy
class representatives, we may assume that β1α2 = α1β2.

Our aim is to prove that ϕ stabilises the class of Im(α1). We shall deduce
this by considering the class stabilisers of Im(β1), Im(β2) and Im(α2). For β1, it
follows directly from our definition of φ and choice of form In that φ on L3(q2)
stabilises and induce φ on U3(q) = Im(β1). For α2, we know from Table 8.50
(which comes from [62]) that the automorphism φ of Ω+

8 (q2), with our standard
form, stabilises the class of L3(q2) = Im(α2). Notice that these automorphisms
φ all correspond to the x �→ xp map on matrices. In this final case, the following
lemma therefore completes the proof.

Lemma 5.9.11 The automorphism φ of Ω+
8 (q2) stabilises and induces ϕ on

the class of Im(β2) ∼= Ω−
8 (q).

Proof Let z and ω be primitive elements of F×
q2 and F×

q , respectively, with
zq+1 = ω. Let A be the matrix of our standard form for Ω−

8 (q), and note that
our standard copy of Ω−

8 (q) is a subgroup of Ω+
8 (q2, A). Let λ = z(q+1)/2 =

√
ω

and define g := diag(λ, 1, 1, 1, 1, 1, 1, 1). Then Ω+
8 (q2, A)

g
= Ω+

8 (q2, I8).
Let φI be the automorphism of Ω+

8 (q2, I8) that acts on matrix entries as
x �→ xp, and let cg denote conjugation by g. Then cgφIc

−1
g is an automorphism

of Ω+
8 (q2, A) that induces φI . Let d = diag(w(p−1)/2, 1, 1, 1, 1, 1, 1, 1). Then

cgφIc
−1
g = φIc

φI
g c−1

g = φIcd. But φIcd stabilises the class of Ω−
8 (q,A), and

induces the automorphism ϕ of Ω−
8 (q) that we defined in Subsection 1.7.1.

It is shown in [6] that, if we define the field automorphism φB of Ω+
8 (q2, B)

for a form with matrix B over Fp by raising matrix entries to the p-th power,
then φB can depend, as an element of Out Ω+

8 (q2), on the form B. However,
our standard form for Ω+

8 (q2) is antidiag (1, 1, 1, 1, 1, 1, 1, 1), so both it and I8
have square determinants over Fp. Thus it follows from [6, Proof of Proposition
12] that φI is the same outer automorphism as our standard φ. So φ induces ϕ
as claimed.

Recall from Subsection 1.7.2 that Out Ω9(q) = 〈δ, φ〉.

Proposition 5.9.12 The class stabiliser of the S ∗
2 -subgroup L2(q2).2 of Ω9(q)

is 〈δ, φ〉.
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Proof By Theorem 5.8.1 there is a single class of these groups in Ω9(q).

Recall from Subsection 1.7.2 that Out Ω+
10(q) = 〈δ, γ, δ′, φ〉 if q ≡ 1 (mod 4),

whilst if q ≡ 3 (mod 4) then Out Ω−
10(q) = 〈δ, γ, δ′, φ〉.

Proposition 5.9.13 The class stabiliser of the S ∗
2 -subgroup S4(q) of Ω±

10(q)
is 〈δ′, φ〉.

Proof By Theorem 5.8.1, the group G = S4(q) is a subgroup of Ω±
10(q) when

q ≡ ±1 (mod 4), respectively, and in both cases there are four classes in Ω,
with stabiliser 〈δ′〉 in the group of conformal automorphisms.

If q ≡ −1 (mod 4), then q = pe must be an odd power of p, and so the class
stabiliser contains φ.

Otherwise, q ≡ 1 (mod 4) and G � Ω+
10(q). As noted in the proof of Proposi-

tion 5.5.2, the natural symmetric square representation lies in Ω+
10(q, F ), where

F is a form matrix with entries in Fp and detF = 16. With that embedding, the
field automorphism φF (i.e raising matrix entries to the p-th power) of Ω+

10(q, F )
induces φG on G. Since detF is a square in F×

p , it follows from [6, Proposition
9] that φF is equal to our standard outer automorphism φ of Ω+

10(q).

5.10 Containments

To complete the determination of the S ∗
2 -maximal subgroups, it remains to

consider containments between them: recall Definition 2.1.4. We only need con-
sider the relatively small number of cases in Table 5.6 where there is more than
one candidate in the same case and dimension.

Lemma 5.10.1 Let Ω = Ω7(q). Then G2(q) and its extensions are the only
S ∗

2 -maximal subgroups of almost simple extensions of Ω.

Proof Recall from Subsection 1.7.2 that Out Ω7(q) = 〈δ, φ〉. By Theorem 5.8.1,
the S ∗

2 -subgroups are G2(q), L2(q).2 (p � 7), L3(q).2 (p = 3), U3(q).2 (p = 3),
and R(q) (q = 3e, e odd). In each case, there are two Ω-classes and a single
class in SO7(q).

We find from [63] (see our Table 8.41) that G2(q) has unique classes of
irreducible maximal subgroups isomorphic to each of the other S ∗

2 -subgroups
except for L2(7).2, and that G2(7) has a single class of subgroups L2(7).2,
which are non-maximal. From [84], each of the S ∗

2 -subgroups has a unique
class of irreducible representations in degree 7, up to quasi-equivalence, so the
remaining S ∗

2 -subgroups of Ω7(q) are all subgroups of G2(q).
Furthermore, Propositions 5.9.8 and 5.9.9 tell us that the full class stabiliser
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of each of the S2-candidates is 〈φ〉, and it follows that all almost simple exten-
sions of L2(q).2, L3(q).2, U3(q).2 and R(q) are contained in the corresponding
almost simple extensions of G2(q).

Lemma 5.10.2 Let Ω=Sp8(q). Then all S ∗
2 -subgroups of Ω are S ∗

2 -maximal.

Proof From Theorem 5.8.1, the S ∗
2 -subgroups are 2·L2(q) for p � 11 and

2·L2(q3).3 for q odd. The representation of 2·L2(q3).3 arises from the tensor
product of three 2-dimensional modules for 2·L2(q3) twisted by different powers
of the field automorphism, with the result rewritten over Fq. By Corollary 5.3.3,
the irreducible representations of SL2(q) in dimension 2 have minimal field Fq,
so 2·L2(q) can arise only as a C5-subgroup of 2·L2(q3). But the restriction of
the 8-dimensional module to this subgroup is isomorphic to a tensor product
of three copies of the natural module for 2·L2(q) which, by Proposition 5.3.10,
is reducible. So there is no containment between the two S ∗

2 -subgroups.

Lemma 5.10.3 Let Ω = Ω9(q). Then all S ∗
2 -subgroups of Ω are S ∗

2 -maximal.

Proof By Theorem 5.8.1, the S ∗
2 -subgroups are L2(q).2 for p � 11, and

L2(q2).2 for p � 3. The representation of L2(q2).2 arises from the tensor product
of two 3-dimensional modules for L2(q2), and as in the proof of Lemma 5.10.2,
the restriction of the 9-dimensional module to its unique subgroup (up to con-
jugacy) isomorphic to L2(q) is reducible.

Lemma 5.10.4 Let Ω = SL±
10(q). Then all S ∗

2 -subgroups of Ω are S ∗
2 -

maximal.

Proof In Case L, by Theorem 5.8.1 there are three S ∗
2 -subgroups, of which

the non-abelian composition factors are L3(q), L4(q) and L5(q). From [84] we
find that L3(q) has no irreducible defining characteristic representations in di-
mensions 4 and 5, and L4(q) has no such representations in dimension 5. So
L3(q) arises as a composition factor only of reducible subgroups of SL4(q) in its
natural representation, and L3(q) and L4(q) arise as composition factors only
of reducible subgroups of SL5(q) in its natural representation.

The S ∗
2 -subgroup SL4(q) is acting via the symmetric square of the natu-

ral representation, so that reducible subgroups of SL4(q) also act reducibly in
the 10-dimensional representation. Similarly, reducible subgroups of SL5(q) act
reducibly in the 10-dimensional representation. So there are no containments
between the S ∗

2 -subgroups in this case.
Similarly, there are no containments between the S ∗

2 -candidates in Case U,
as these have non-abelian composition factors U3(q), U4(q) and U5(q).

Proposition 5.10.5 The only containments between S ∗
2 -candidate maximals

of Ω are in Ω7(q). In this case, all almost simple extensions of L2(q).2, L3(q).2
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(p = 3), U3(q).2 (p = 3) and R(q) (q = 3e, e odd) are contained in correspond-
ing extensions of G2(q).

Proof By Theorem 4.3.3, the only groups Ω which have more than one isomor-
phism type of S ∗

2 -maximal subgroup for any fixed q are Ω7(q), Sp8(q), Ω+
8 (q),

Ω9(q), and SL±
10(q). We are not classifying the maximal subgroups of Ω+

8 (q),
and the other possibilities have been considered in Lemmas 5.10.1–5.10.4.

5.11 Summary of the S ∗
2 -maximals

As we did for the S1-maximals in Section 4.9, we conclude the chapter with a
summary of the S ∗

2 -maximals. We use the same conventions as in Section 4.9.

5.11.1 Cases L and U

We remind the reader that in this chapter we treat SL2(q) as Sp2(q).

Theorem 5.11.1 Let G and Ω be as in Convention 4.10.1, with Ω = SLn(q)
or SUn(q) for n = 3, 4, 5, 7, 8, 11 or 12. Then there are no S ∗

2 -maximal sub-
groups of G.

Proof Follows from Theorem 5.8.1.

Theorem 5.11.2 Let G and Ω be as in Convention 4.10.1, with Ω = SL6(q)
or SU6(q). Then representatives of the conjugacy classes of S ∗

2 -maximal sub-
groups of G are described in the list below.

Proof Follows from Theorem 5.8.1 and Propositions 5.9.2 and 5.10.5.

1. S = SL3(q)Z < SL6(q) for p �= 2. The class stabiliser is 〈δ2, φ, γ〉 for
q ≡ ±1 (mod 8) and 〈δ2, φ, γδ〉 for q ≡ ±3 (mod 8).

2. S = SU3(q)Z < SU6(q) for p �= 2. The class stabiliser is 〈δ2, φ〉 for p ≡
±1 (mod 8) and 〈δ2, φδ〉 for p ≡ ±3 (mod 8). (Note that the congruences are
on p and not on q.)

Theorem 5.11.3 Let G and Ω be as in Convention 4.10.1, with Ω = SL9(q)
or SU9(q). Then representatives of the conjugacy classes of S ∗

2 -maximal sub-
groups of G are described in the list below.

Proof Follows from Theorem 5.8.1 and Proposition 5.9.3.
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1. S has non-abelian composition factor L3(q2). We list the possibilities.

(i) S = L3(q2).2 < SL9(q), with q ≡ 0 (mod 3) and class stabiliser 〈φ, γ〉.
(ii) S = L3(q2).S3 < SL9(q), with q ≡ 2 (mod 3) and class stabiliser 〈φ, γ〉.
(iii) S = SL3(q2).2Z<SL9(q), with q≡1 (mod 9) and class stabiliser 〈δ3, φ, γ〉.
(iv) S = SL3(q2).6 < SL9(q), with q ≡ 4, 7 (mod 9) and class stabiliser 〈φ, γ〉.
(v) S = L3(q2).2 < SU9(q), with q ≡ 0 (mod 3) and class stabiliser 〈φ〉.
(vi) S = L3(q2).S3 < SU9(q), with q ≡ 1 (mod 3) and class stabiliser 〈φ〉.
(vii) S = SL3(q2).2Z < SU9(q), with q ≡ 8 (mod 9) and class stabiliser 〈δ3, φ〉.
(viii) S = SL3(q2).6 < SU9(q), with q ≡ 2, 5 (mod 9) and class stabiliser 〈φ〉.
Theorem 5.11.4 Let G and Ω be as in Convention 4.10.1, with Ω = SL10(q)
or SU10(q). Then representatives of the conjugacy classes of S ∗

2 -maximal sub-
groups of G are described in the list below.

Proof This follows from Theorem 5.8.1 and Propositions 5.9.4, 5.9.5, 5.9.6
and 5.10.5.

1. S = L3(q).(q−1, 3)×Z < SL10(q), with p � 5. The class stabiliser is 〈φ, γ〉
for q ≡ ±1,±5 (mod 24) and 〈φ, γδ5〉 for q ≡ ±7,±11 (mod 24).

2. S = U3(q).(q + 1, 3)× Z < SU10(q), with p � 5. The class stabiliser is 〈φ〉
for p ≡ ±1,±5 (mod 24) and 〈φδ〉 for p ≡ ±7,±11 (mod 24).

3. S = (q−1,4)
2

·SL4(q).
(q−1,4)

2 Z < SL10(q), with p � 3 and class stabiliser
〈δ5, φ, γ〉.
4. S = (q+1,4)

2
·SU4(q).

(q+1,4)
2 Z < SU10(q), with p � 3 and class stabiliser

〈δ5, φ〉.
5. S = SL5(q)Z < SL10(q), with class stabiliser 〈δ2, φ, γ〉.
6. S = SU5(q)Z < SU10(q), with class stabiliser 〈δ2, φ〉.

5.11.2 Case S

Theorem 5.11.5 Let G and Ω be as in Convention 4.10.1, with Ω = Sp2(q).
Then there are no S ∗

2 -maximal subgroups of G.

Proof Follows from Theorem 5.8.1.

Theorem 5.11.6 Let G and Ω be as in Convention 4.10.1, with Ω = Sp4(q).
Then representatives of the conjugacy classes of S ∗

2 -maximal subgroups of G
are described in the list below.

Proof Follows from Theorem 5.8.1 and Propositions 5.9.7 and 5.10.5.

1. S = SL2(q), with p � 5 and class stabiliser 〈δ, φ〉.
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2. S = Sz(2e), with e > 1 odd and class stabiliser 〈φ, γ〉 = 〈γ〉, where γ is the
graph automorphism.

Theorem 5.11.7 Let G and Ω be as in Convention 4.10.1, with Ω = Sp6(q).
Then representatives of the conjugacy classes of S ∗

2 -maximal subgroups of G
are described in the list below.

Proof Follows from Theorem 5.8.1 and Propositions 5.9.7 and 5.10.5.

1. S = SL2(q), with p � 7 and class stabiliser 〈δ, φ〉.
2. S = G2(q) with p = 2, q > 2, and class stabiliser 〈φ〉.
Theorem 5.11.8 Let G and Ω be as in Convention 4.10.1, with Ω = Sp8(q).
Then representatives of the conjugacy classes of S ∗

2 -maximal subgroups of G
are described in the list below.

Proof Follows from Theorem 5.8.1 and Propositions 5.9.7 and 5.10.5.

1. S = SL2(q), with p � 11 and class stabiliser 〈δ, φ〉.
2. S = SL2(q3).3, with q odd and class stabiliser 〈δ, φ〉.
Theorem 5.11.9 Let G and Ω be as in Convention 4.10.1, with Ω = Sp10(q).
Then representatives of the conjugacy classes of S ∗

2 -maximal subgroups of G
are described in the list below.

Proof Follows from Theorem 5.8.1 and Proposition 5.9.7.

1. S = SL2(q), with p � 11 and class stabiliser 〈δ, φ〉.
Theorem 5.11.10 Let G and Ω be as in Convention 4.10.1, with Ω =
Sp12(q). Then representatives of the conjugacy classes of S ∗

2 -maximal sub-
groups of G are described in the list below.

Proof Follows from Theorem 5.8.1 and Propositions 5.9.7 and 5.10.5.

1. S = SL2(q), with p � 13 and class stabiliser 〈δ, φ〉.
2. S = Sp4(q), with p = 5 and class stabiliser 〈δ, φ〉.

5.11.3 Cases Oε

Theorem 5.11.11 Let G and Ω be as in Convention 4.10.1, with Ω = Ω7(q).
Then representatives of the conjugacy classes of S ∗

2 -maximal subgroups of G
are described in the list below.

Proof Follows from Theorem 5.8.1 and Propositions 5.9.9 and 5.10.5.
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1. S = G2(q), with q odd and class stabiliser 〈φ〉.
Theorem 5.11.12 Let G and Ω be as in Convention 4.10.1, with Ω = Ω−

8 (q).
Then representatives of the conjugacy classes of S ∗

2 -maximal subgroups of G
are described in the list below.

Proof Follows from Theorem 5.8.1 and Propositions 5.9.10 and 5.10.5.

1. S = L3(q), with q ≡ 2 (mod 3) and class stabiliser 〈γ, ϕ〉.
2. S = U3(q), with q ≡ 1 (mod 3) and class stabiliser 〈γ, ϕ〉.
Theorem 5.11.13 Let G and Ω be as in Convention 4.10.1, with Ω = Ω9(q).
Then representatives of the conjugacy classes of S ∗

2 -maximal subgroups of G
are described in the list below.

Proof See Theorem 5.8.1 and Propositions 5.9.8, 5.9.12 and 5.10.5.

1. S = L2(q).2, with p � 11 and class stabiliser 〈φ〉.
2. S = L2(q2).2, with q odd and class stabiliser 〈δ, φ〉.
Theorem 5.11.14 Let G and Ω be as in Convention 4.10.1, with Ω = Ω+

10(q)
or Ω−

10(q). Then representatives of the conjugacy classes of S ∗
2 -maximal sub-

groups of G are described in the list below.

Proof Follows from Theorem 5.8.1 and Proposition 5.9.13.

1. S = 2 × S4(q), with p odd. The group S < Ω+
10(q) when q ≡ 1 (mod 4),

and S < Ω−
10(q) when q ≡ 3 (mod 4). The class stabiliser is 〈δ′, φ〉.

Theorem 5.11.15 Let G and Ω be as in Convention 4.10.1, with Ω = Ω11(q).
Then representatives of the conjugacy classes of S ∗

2 -maximal subgroups of G
are described in the list below.

Proof Follows from Theorem 5.8.1 and Proposition 5.9.8.

1. S = L2(q), with p � 11 and class stabiliser 〈δ, φ〉.
Theorem 5.11.16 Let G and Ω be as in Convention 4.10.1, with Ω = Ω+

12(q)
or Ω = Ω−

12(q). Then there are no S ∗
2 -maximal subgroups of G.

Proof Follows from Theorem 5.8.1.
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Containments involving S -subgroups

6.1 Introduction

Recall Definitions 2.1.2 and 4.1.1 of the geometric, S1, and S2-subgroups,
and that Aschbacher’s theorem (see Theorem 2.1.5) divides the maximal sub-
groups of most finite classical groups into these three families. In Chapter 3,
we determined which groups are maximal among the geometric groups, and in
Chapters 4 and 5 we found which groups are S1-maximal and S ∗

2 -maximal
(see Definition 5.1.15), respectively.

In this chapter we determine all remaining containments between these
subgroups, and hence complete the proof of Theorem 2.1.1 for those groups to
which Aschbacher’s theorem applies.

Definition 6.1.1 A subgroup is S ∗-maximal if it is maximal among the
union of the S1-maximal and S ∗

2 -maximal subgroups.

First we shall determine the S ∗-maximal subgroups, and then determine
the containments between geometric and S ∗-maximal subgroups.

Recall the notation introduced in Series 1.1 and 1.2. It is often more con-
venient to state the containments that arise projectively, that is, as subgroups
of Ω. As in Chapters 4 and 5, when doing this, if we wish to draw attention to
the centre that arises when we lift to Ω, then we put that centre in brackets.

For the convenience of the reader, we state the following standard result:
see for example [31, p491].

Lemma 6.1.2 The order of G2(q) is q6(q6 − 1)(q2 − 1).

We remind the reader that, in the case of Ω = Sp4(2e), we have only de-
termined the subgroups that are maximal amongst the geometric subgroups of
those almost simple extensions of Ω that are contained in ΣSp4(2e). We shall
deal with maximal subgroups of other almost simple extensions (i.e. those that
involve the graph automorphism γ of Ω) in Section 7.2. We saw in Chapters 4
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and 5 that the only S ∗-subgroup of Sp4(2e) is the S ∗
2 -maximal Sz(2e). So,

in this chapter, we shall only determine containments between the candidate
maximals of subgroups of ΣSp4(2e) (and in fact there are none).

Although we present proofs of all of our claimed containments, for com-
pleteness and self-containedness, we note that there is a wealth of literature on
this matter. Amongst other sources, we have checked our results against the
following papers when relevant. In [81] the containment of (in our language)
S2-subgroups of Ω in S1-subgroups is investigated, and explicit lists of contain-
ments are given (excluding the possibility that the S1-subgroup is sporadic).
The recent preprint [88] is also concerned with containments of S2-subgroups
in S1-subgroups. The general theory of containments of S2-subgroups in other
S2-subgroups is considered in Seitz’s monograph [100]. There is an extensive
treatment of the problem of which cross characteristic representations of qua-
sisimple group have imprimitive images in the recent preprint [41], which also
includes an extensive bibliography on results of this type. In [54] Husen inves-
tigates containments of S1-subgroups Ak or 2·Ak in certain S2-subgroups, for
k � 10: some related work (for k � 15 and certain S2-overgroups) was pub-
lished in [55]. The paper [89] is also relevant to containments of S1-subgroups
in S2-subgroups. There are papers by Schaffer [99] and by Cossidente and King
[16] on maximality of S2-subgroups of twisted tensor product type, which means
that their non-abelian composition factors are of the form Xn(qr) in Ynr (q),
where X and Y denote classical groups.

We remind the reader that the files of Magma calculations that we refer to
are available on the webpage http://www.cambridge.org/9780521138604.

6.2 Containments between S1- and S ∗
2 -maximal

subgroups

Recall Definition 2.1.4 of a containment between two subgroups of a classical
group. In this section we determine all containments between the S1-maximal
subgroups, and the S ∗

2 -maximal subgroups, in dimension up to 12.

6.2.1 Cases L and U

It is convenient to consider dimension 2 under Case S. By Theorem 5.11.1,
S ∗

2 -maximals arise only in dimensions 6, 9, and 10. We consider each in turn.

Proposition 6.2.1 (i) The group (3·)A6.22 is S ∗-maximal in L6(p).〈γ〉
when p ≡ 1 (mod 24), in L6(p).〈γδ〉 when p ≡ 19 (mod 24), and in
L6(p).〈γ, δ3〉 when p ≡ 7 or 13 (mod 24).
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(ii) The group (3·)A6.22
∼= (3·)PGL2(9) is S ∗-maximal in L6(p).〈γ〉 when

p ≡ 7 (mod 24) and p ≡ ±2 (mod 5), and in L6(p).〈γδ3〉 when p ≡ 13
(mod 24) and p ≡ ±2 (mod 5).

(iii) The group (3·)A6.22 is S ∗-maximal in U6(p).〈γ〉 when p ≡ 23 (mod 24)
and in U6(p).〈γδ〉 when p ≡ 5 (mod 24) with p > 5, and in U6(p).〈γ, δ3〉
when p ≡ 11 or 17 (mod 24).

(iv) The group (3·)A6.22
∼= (3·)PGL2(9) is S ∗-maximal in U6(p).〈γ〉 when

p ≡ 17 (mod 24) and p ≡ ±2 (mod 5), and in U6(p).〈γδ3〉 when both
p ≡ 11 (mod 24) and p ≡ ±2 (mod 5).

There are no other instances in which extensions of the S1-subgroup (3·)A6

are S ∗-maximal in almost simple extensions of L6(q) or U6(q).
All other S1-maximal and S ∗

2 -maximal subgroups of all almost simple ex-
tensions of L6(q) and U6(q) are S ∗-maximal.

Proof We first consider the S ∗-maximality of the S1-maximals, and then of
the S ∗

2 -maximals. By Theorem 4.10.5, when q is odd, the S1-maximal sub-
groups are extensions of: 3·A6 with q = p �= 3; 6·A6 with q = p or p2 and q �= 3;
2·L2(11) with q = p �= 3, 11; 6·A7 with q = p or p2 and p �= 3; 2·M12 < SL6(3);
6·L3(4) with q = p �= 3; and 61

·U4(3) with q = p �= 3. By Theorem 5.11.2, the
S ∗

2 -maximal subgroups are extensions of SL3(q) (Case L) and SU3(q) (Case
U), with q odd.

We deal first with the behaviour of 3·A6, as decribed in Theorem 4.10.5. The
S1-maximal subgroups of this type are the extensions of the form (3·)A6.22 and
(3·)A6.22. Suppose first that p �= 5. By Theorem 4.10.2, if p ≡ 1, 4 (mod 15)
then 3·A6 < SL3(p), whilst 3·A6 < SU3(p) when p ≡ 11 or 14 (mod 15). From
the character table of 3·A6 in [12] and Proposition 5.2.5 we calculate that the
6-dimensional irreducible representation of 3·A6 is the symmetric square of
the 3-dimensional representations. By Theorem 5.8.1, the same is true for the
corresponding representations of SL3(p) and SU3(p). So there is a containment
of 3·A6 in SL3(p) or SU3(p) for these values of p; that is, when p ≡ ±1 (mod 5).
But when p ≡ ±2 (mod 5), there is no such containment, so for these p the
S1-maximal subgroups are S ∗-maximal. We therefore assume from now that
p ≡ ±1 (mod 5).

In Case L with p ≡ 1 or 4 (mod 15), we saw in Lemma 5.9.1 (iv) and
Proposition 5.9.2 that the duality automorphism of SL3(q) is induced by duality
(= γ) of SL6(q) when q ≡ ±1 (mod 8) and by γδ when q ≡ ±3 (mod 8). From
Proposition 4.7.8, we find that the same conditions apply to the induction of
the 22 automorphism of 3·A6. Furthermore, by Theorem 4.7.1 (ii), the duality
automorphism of SL3(q) induces the 22 automorphism of 3·A6. So (3·)A6.22

is not S ∗-maximal in L6(p).〈γ〉 or in L6(p).〈γδ〉 when p ≡ 1 or 4 (mod 15).
(Recall that 〈γδ〉 and 〈γδ3〉 are conjugate in Out SL6(p).) Similar reasoning
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shows that (3·)A6.22 is not S ∗-maximal in U6(p).〈γ〉 or in U6(p).〈γδ〉 when
p ≡ 11 or 14 (mod 15). So, when p ≡ ±1 (mod 5), extensions of the form
(3·)A6.22 are not S ∗-maximal.

Continuing our assumption that p > 5, we saw in Theorem 4.10.2 that
3·A6 is scalar-normalising in SL3(p) or SU3(p). Furthermore, the 6-dimensional
representations of SL3(p) and SU3(p) are not stabilised by the diagonal auto-
morphism of SL6(p) or SU6(p) of order 2, and so (3·)A6.22 cannot be contained
in any almost simple extension of L3(p) or U3(p), and hence is S ∗-maximal.

However, by Theorem 4.10.2 the containment of 3·A6 in SU3(5) extends to a
containment 3·M10 < SU3(5). In that case (3·)A6.22 < U3(5):2 < U6(5):〈γδ〉,
so (3·)A6.22 is not S ∗-maximal.

Since the image of a faithful 3-dimensional representation of a quasisimple
group must have centre of order 1 or 3, and none of the other S1-groups in the
above list of quasisimple groups has centre of order 1 or 3, all other S1-maximal
subgroups are S ∗-maximal.

Finally, we consider the S ∗-maximality of the S ∗
2 -maximal subgroups. As

noted at the beginning of the proof, there are no S ∗
2 -maximal subgroups when

p = 2. When p = 3, the only S1-maximals are extensions of 2·M12. Since, by
Theorem 1.11.2, the minimum permutation degree of L3(3) is greater than 12,
the group 2·M12 has no subgroup isomorphic to SL3(3). For p � 5, none of
the S1-maximals have order divisible by p3, whereas |L3(q)| and |U3(q)| are
divisible by q3, so the result follows.

Proposition 6.2.2 When p ≡ 1 (mod 3) and p ≡ ±2 (mod 5), the S1-
maximal subgroup 3·A6.23 of SL9(p) is contained in the S ∗

2 -maximal subgroup
SL3(p2).6. When p ≡ 2 (mod 3) and p ≡ ±2 (mod 5), the S1-maximal sub-
group 3·A6.23 of SU9(p) is contained in the S ∗

2 -maximal subgroup SL3(p2).6.
These containments extend to 3·A6.22 < SL3(p2).[12] < SL±

9 (p).2.
All other S1-maximal and S ∗

2 -maximal subgroups of all almost simple ex-
tensions of L9(q) or U9(q) are S ∗-maximal.

Proof By Theorem 4.10.8, the S1-maximals of SL±
9 (q) are extensions of:

3·A6.23 with q = p �= 3, 5; L2(19) with q = p �= 19; 3·A7 in SL9(7); and 3·J3 in
SU9(2). By Theorem 5.11.3, the S ∗

2 -maximals are extensions of (3·)L3(q2).
We first consider the possible containments of 3·A6.23 in the S ∗

2 -maximals.
When p ≡ ±1 (mod 5), we find from Theorem 4.10.2 that the only extension
of (3·)A6 that is contained in an almost simple extension of L±

3 (q) is (3·)A6.22,
so there are no such containments in that case.

So suppose that p ≡ ±2 (mod 5) and recall from Theorem 4.10.8 that
3·A6.23 < SL9(p) and SU9(p) when p ≡ 1 and −1 (mod 3), respectively. We
saw in the proofs of Propositions 5.4.20 and 5.4.21 that the outer automor-
phisms of order 2 of SL3(p2) that are induced by elements of SL±

9 (p) are



326 Containments involving S -subgroups

(conjugates of) φ and γφ, respectively, in these two cases, and we find from
Theorem 4.10.2 that these automorphisms do indeed induce the 23 automor-
phism of the S1-subgroup 3·A6 of SL3(p2). Furthermore, we find from [12] (or
[57] when p = 2) that the 23 automorphism of 3·A6 interchanges the two de-
gree 3 characters χ14 and χ15 of 3·A6 that are displayed in [12, 57], and that
χ14⊗χ15 = χ17, which is irreducible of degree 9. So we do have a containment
3·A6.23 < SL3(p2).2 < SL±

9 (p) in this case which, since there are is an odd
number (3) of classes of 3·A6 in SL3(p2), must extend under the action of the
γ automorphism of SL±

9 (p) to 3·A6.22 < SL3(p2).22 < SL±
9 (p).2.

We find from Theorem 4.3.3 that none of the S1-maximals other than
3·A6.23 have 3-dimensional irreducible projective representations in the rele-
vant characteristics, so they cannot be subgroups of the S2-groups. On the
other hand, the S ∗

2 -maximals have order divisible by q6, and the only S1-
maximal with this property is 3·J3 < SU9(2). But by [25], no subgroup of J3

involves L3(4), so the S ∗
2 -maximals are all S ∗-maximal.

Proposition 6.2.3 If 2 < p ≡ 1, 2, 4 (mod 7), then there are containments
A7 < L4(q).

(q−1,4)
2 < L10(p) and A7.〈γ〉 < L4(q).

(q−1,4)
2 .〈γ〉 < L10(p).〈γ〉. If

p ≡ 3, 5, 6 (mod 7), then there are containments A7 < U4(q).
(q+1,4)

2 < U10(p)
and A7.〈γ〉 < U4(q).

(q+1,4)
2 .〈γ〉 < U10(p).〈γ〉.

There is also a containment L3(4).22 < U4(3).2 < U10(3), extending to
L3(4).22.〈γδ〉 < U4(3).2.〈γδ〉 < U10(3).〈γδ〉.

If p ≡ 1 (mod 3), then there are containments U4(2) < L5(p) < L10(p) and
U4(2).〈γ〉 < L5(p).〈γ〉 < L10(p).〈γ〉. If 2 �= p ≡ 2 (mod 3), then there are con-
tainments U4(2) < U5(p) < U10(p), and U4(2).〈γ〉 < U5(p).〈γ〉 < U10(p).〈γ〉.

There are no other containments between S1-maximal and S ∗
2 -maximal

subgroups of almost simple extensions of L10(q) or U10(q).

Proof By Theorem 4.10.9, the S1-maximals of SL±
10(q) are extensions of:

2·L2(19) with q = p �= 2, 19; A7 with q = p �= 2, 7; 2·M12 with q = p �= 2;
(2, q − 1)·M22 with q = p �= 7; U4(2) with q = p �= 2, 3; and 2·L3(4) with
q = p �= 2, 7. By Theorem 5.11.4, the S ∗

2 -maximals are extensions of: L±
3 (q)

with p �= 2, 3; (q∓1,4)
2

·L±
4 (q) with p �= 2; and SL±

5 (q).
For possible containments of S1-maximals in S ∗

2 -maximals, we first use
Theorem 4.3.3 to ascertain which of the S1-maximals have irreducible projec-
tive representations of degree 3, 4 or 5 in the relevant characteristic p. We find
that: 2·A7 has two representations of degree 4 for all p; the group 3·A7 has
one of degree 3 in characteristic 5; the group 42

·L3(4) has two of degree 4 for
p = 3; the group U4(2) has one or two of degree 5 for all p; the group 2·U4(2)
has two of degree 4 for all p (faithful for p odd); and there are no other such
representations.
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By Theorem 5.8.1, the the S ∗
2 -maximals involving L±

4 (q) arise from the
symmetric square of the natural representations of SL±

4 (q). We find, using
Proposition 5.2.5 and the character tables of 2·A7 (in characteristics other than
2 and 7) and 42

·L3(4) (in characteristic 3), that their 10-dimensional represen-
tations also arise as symmetric squares of 4-dimensional representations. This
proves the claimed containments of the quasisimple groups 2·A7 and 42

·L3(4).
By Theorem 5.8.1, in characteristics greater than 3, the S ∗

2 -maximals in-
volving L±

5 (q) arise from the anti-symmetric square of the natural representa-
tions of SL±

5 (q). By Proposition 5.2.5 and the character table of U4(2) we find
that, in characteristics greater than 3, the two 10-dimensional irreducible rep-
resentations of U4(2) are the anti-symmetric squares of the two 5-dimensional
representations. The proves the claimed containments of 2·U4(2).

We turn now to the containments of the extensions. By Theorem 5.11.4,
the conjugacy classes of subgroups L±

4 (q) and L±
5 (q) of L±

10(q) are stabilised
by the γ automorphism of L±

10(q) which, by Lemma 5.9.1 (iv) and (v), induces
the γ automorphism of L±

4 (q) or L±
5 (q). By Theorems 4.10.3 and 4.10.4 the S1

subgroups A7 < L±
4 (q) and U4(2) < L±

5 (q) are stabilised by the γ automor-
phisms of L±

4 (q) and L±
5 (q). This proves the claimed containments of A7.〈γ〉

and U4(2).〈γ〉. By Theorem 5.11.4, the full stabiliser of the class of U4(3).2 in
U10(3) is 〈δ5, φ〉 = 〈δ, φ〉 (since |δ| = (4, 10) = 2), which contains φδ = γδ,
which induces the outer automorphism γδ of U4(3). By Theorem 4.10.3, the
automorphism γδ of U4(3) stabilises the class of L4(3).2 < U4(3), so this proves
the claimed containment of A7.〈γδ〉.

The quasisimple S ∗
2 -maximal subgroups all have order divisible by q3, by

q6 if p � 3, and by q10 if p = 2. None of the quasisimple S1-subgroups have
this property, so the S ∗

2 -maximals are all S ∗-maximal.

6.2.2 Case S

Proposition 6.2.4 There are no containments between S1-maximal and S ∗
2 -

maximal subgroups of almost simple extensions of S2(q).

Proof By Theorem 5.11.5 there are no S ∗
2 -maximal subgroups.

We again remind the reader that, in the case of Ω = Sp4(2e), we shall deal
with maximal subgroups of almost simple extensions that involve the graph
automorphism γ of Ω in Section 7.2, and that Sp4(2) is not quasisimple and so
is excluded from our classification.

Proposition 6.2.5 There are containments (2·)L2(5) < (2·)A6 < S4(5),
(2·)L2(5).2 < (2·)A6.21 < S4(5).2, and (2·)L2(7) < (2·)A7 < S4(7). There
are no other containments between S1-maximal and S ∗

2 -maximal subgroups of
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almost simple extensions of S4(q) that do not involve the exceptional graph auto-
morphism of S4(2e). (So, in particular, (2·)L2(7).2 is S ∗

2 -maximal in S4(7).2.)

Proof By Theorem 5.11.6, the S ∗
2 -maximals of Sp4(q) are extensions of SL2(q)

with p � 5, and Sz(pe) with p = 2 and e odd. By Theorem 4.10.13, the S1-
maximals are extensions of: 2·A6 with q = p > 3 and p �= 7; and 2·A7 < Sp4(7).

By Theorem 4.3.3, none of the S1-groups have irreducible representations
of degree 2 with p > 3, and all occur for odd p, so the S1-maximals are all
S ∗-maximal.

There are no S1-maximals with p = 2, so Sz(2e) is S ∗-maximal. Since p
divides |L2(p)|, the only possible containments of S ∗

2 -maximal subgroups of Ω
in S1-subgroups are SL2(5) < 2·A6 < Sp4(5) and SL2(7) < 2·A7 < Sp4(7).
We find from the character tables for p = 5 in [57] of 2·A6 and SL2(5) ∼= 2·A5

that one of the degree 4 faithful irreducible representations of 2·A6 reduces to
an irreducible representation of 2·A5, whereas the other reduces to the sum
of two degree 2 representations. The two degree 4 representations of 2·A6 are
interchanged by the 22 (and 23) automorphism of 2·A6, which also interchanges
the two classes of maximal subgroups isomorphic to 2·A5, so this containment
comes from the restriction to one of these two classes. The other containment is
similar. Furthermore, by Proposition 4.5.10 (ii) the outer automorphism of S4(5)
induces the 21 automorphism of A6, and A6.21

∼= S6, so the first containment
extends to SL2(5).2 < 2·A6.21 < Sp4(5).2. Conversely, S7 does not contain
L2(7).2.

Proposition 6.2.6 There is a containment (2·)L2(5) < (2·)L2(q) < S6(q)
for q ≡ ±11,±19 (mod 40). There are containments L2(13) < G2(4) < S6(4),
L2(13).2<G2(4).2<S6(4).2, J2<G2(4).2<S6(4), and J2.2<G2(4).2<S6(4).2.
There are no other containments between S1-maximal and S ∗

2 -maximal sub-
groups of almost simple extensions of S6(q).

Proof By Theorem 5.11.7, the S ∗
2 -maximals of Sp6(q) are extensions of SL2(q)

with p � 7 and G2(q) with q > p = 2. By Theorem 4.10.14, the S1-maximals
are extensions of: 2·A5 with q = p �= 2, 5; 2·L3(2) with q = p or p2 and p �= 2, 7;
(2, p− 1)·L2(13) with q = p or p2 and p �= 13; 2·A7 < Sp6(9); (2, p− 1)·J2 with
q = p or p2; and (2, p− 1)×U3(3) with q = p �= 3, 5.

For possible containments of S1-maximals in SL2(q), we first observe from
Theorem 4.3.3 that the only S1-maximal with a faithful representation of
degree 2 in characteristic p is 2·A5. Since 2·A5.2 has no such representa-
tion, it is S ∗-maximal whenever it is S1-maximal. By Theorem 4.10.12, when
p ≡ ±3,±13 (mod 40), the group 2·A5 requires q = p2. So the only possible
containments are 2·A5 < SL2(p) < Sp6(p) when p ≡ ±11,±19 (mod 40), so
assume that p satifies this condition.
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In the notation of Section 5.3, we know from Proposition 5.3.10 that, for all
k � 2, the module V2 ⊗ Vk for SL2(p) has Vk−1 as a constituent. By definition,
Vk = Sk−1(V2), which is a quotient of V ⊗k−1

2 , and by Lemma 5.3.1 the module
Vk is irreducible for k � p. By induction on k, we see that Vk+1 is also a
constituent of V2 ⊗ Vk for k < p. Hence V2 ⊗ Vk has precisely two irreducible
constituents, namely Vk−1 and Vk+1, for 2 � k < p. Let V ′

2 be the restriction of
V2 to the subgroup SL2(5) of SL2(p). This is a 2-dimensional irreducible module
in coprime characteristic, which we may assume corresponds to the first row of
the character table for 2·A5 in [12]. Denote the module corresponding to the
first 3-dimensional character of 2·A5 in [12] by V ′

3 , the faithful 4-dimensional
module by V ′

4 , and the 1-, 5- and 6-dimensional modules by V ′
1 , V ′

5 and V ′
6 ,

respectively. Then straightforward character calculations (using b5
2 = 1− b5)

show that V ′
2 ⊗ V ′

k
∼= V ′

k−1 ⊕ V ′
k+1, for 2 � k � 5. Since p > 5, the module

V ′
2⊗V ′

k therefore has irreducible constituents of the same dimensions as V2⊗Vk

for 2 � k � 5, and it follows by induction on k that the restriction of Vk to
SL2(5) must be isomorphic to V ′

k for 2 � k � 6. So the restriction of the 6-
dimensional irreducible representation of SL2(p) to SL2(5) is irreducible, and
hence the containments in question are genuine.

The only S1-maximals with p = 2 and q � 4 are L2(13) < Sp6(4) and
J2 < Sp6(4). We find from [14] (or [12]) that there are unique classes of sub-
groups L2(13) and J2 in G2(4). Since neither L2(13) nor J2 has irreducible repre-
sentations of degree less than 6 in characteristic 2, these subgroups must be irre-
ducible subgroups of S6(4), so there are containments L2(13) < G2(4) < Sp6(4)
and J2 < G2(4) < Sp6(4). Since the class stabiliser in each case is 〈φ〉, by [12]
these extend to L2(13).2 < G2(4).2 < Sp6(4).2, J2.2 < G2(4).2 < Sp6(4).2.

By Lemma 6.1.2, the group G2(q) is larger than any of the S1-maximals, so
is S ∗-maximal. The only S1-maximal with order divisible by q with p � 7 is
U3(3) with q = 7, but U3(3) has no subgroup isomorphic to SL2(7), so SL2(q)
and its extensions are also S ∗-maximal.

Proposition 6.2.7 There are no containments between S1-maximal and S ∗
2 -

maximal subgroups of almost simple extensions of S8(q).

Proof By Theorem 5.11.8, the S ∗
2 -maximals of Sp8(q) are extensions of SL2(q)

with p � 11 and SL2(q3).3 with q odd. By Theorem 4.10.15, the S1-maximals
are extensions of: 2·L3(2) with q = p �= 2, 3, 7; 2·A6 with q = p or p2 and
p �= 2, 3, 5; (2, p− 1)·L2(17) with q = p or p2 and p �= 17; and A10.2 < Sp8(2).

By Theorem 4.3.3 none of the S1-maximals have faithful representations of
degree 2 in characteristic p. On the other hand, none of the S1-maximals have
order divisible by p when p � 11 or by p3 when p is odd. The result follows.
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Proposition 6.2.8 There are no containments between S1-maximal and S ∗
2 -

maximal subgroups of almost simple extensions of S10(q).

Proof By Theorem 5.11.9, the S ∗
2 -maximals of Sp10(q) are extensions of

SL2(q) with p � 13. By Theorem 4.10.16, the S1-maximals are extensions
of: 2·A6 with q = p or p2 and p �= 2, 3; 2·L2(11) with q = p or p2 and p �= 2, 11;
and 2×U5(2) with q = p �= 2.

By Theorem 4.3.3, none of the S1-maximals have faithful representations
of degree 2 in characteristic p. Conversely, none of the S1-maximals has order
divisible by p when p � 13. The result follows.

Proposition 6.2.9 There are no containments between S1-maximal and S ∗
2 -

maximal subgroups of almost simple extensions of S12(q).

Proof By Theorem 5.11.10, the S ∗
2 -maximals of Sp12(q) are extensions of

SL2(q) with p � 13, and Sp4(q) with p = 5. By Theorem 4.10.17, the S1-
maximals are extensions of: 2·L2(11) with q = p or p2 and p �= 2, 5, 11; 2·L2(13)
with q = p or p3 and p �= 2, 7, 13; (2, p − 1)·L2(25) with q = p �= 3, 5;
(2, p − 1)·S4(5) with q = p or p2 and p �= 5; 2·G2(4) with q = p �= 2, 3;
A14.2 < Sp12(2); and 2·Suz < Sp12(3)

First suppose p = 5. The only S1-maximals are 2·L2(13) < Sp12(53) and
2·G2(4) < Sp12(5). The S1-subgroups have no faithful representations of degree
4, so are S ∗-maximal, whilst the S1-subgroups do not have order divisible by
54, so Sp4(q) is S ∗-maximal.

We therefore assume that p � 13. By Theorem 4.3.3, the S1-maximals
have no representations of degree 2 in characteristic p, so the S1-maximals are
S ∗-maximal. Conversely, the only S1-maximals with order divisible by q when
p � 13 are 2·L2(25) < Sp12(13) and 2·G2(4) < Sp12(13). Since 2·L2(13) has no
2-dimensional representation when p = 5, the first possibility does not lead to
a containment. The group 2·G2(4) has a subgroup isomorphic to SL2(13), but
we find from the character values on elements of order 7 of the 12-dimensional
representations of 2·G2(4) and SL2(13) as given in [12] that, in dimension 12,
this subgroup acts reducibly with two components of degree 6, so it is not a
containment of S -subgroups. Thus the S ∗

2 -maximals are S ∗-maximal.

6.2.3 Cases Oε

Proposition 6.2.10 The S1-maximal subgroups of O7(q) that are exten-
sions of L2(8), L2(13) and J1 (q = 11) are contained in the corresponding ex-
tensions of the S ∗

2 -subgroup G2(q). There are no other containments between
S1-maximal and S ∗

2 -maximal subgroups of almost simple extensions of O7(q).

Proof By Theorem 5.11.11, the only S ∗
2 -maximals of Ω7(q) are extensions of
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G2(q), with q odd. By Theorem 4.10.18, the S1-maximals are extensions of:
L2(8) with q = p or p3 and p �= 2, 3; L2(13) with q = p or p2 and p �= 2, 13;
S6(2) with q = p �= 2; A9.2 < Ω7(3); and J1 < Ω7(11).

By [63] (see Tables 8.41 and 8.42), the groups L2(8), L2(13), and J1 are
all subgroups of G2(q), but S6(2) and A9 are not. Furthermore, these three
subgroups of G2(q) are irreducible as subgroups of Ω7(q), and correspond to
the same representation as the corresponding S1-maximal subgroup. (We have
to be careful with L2(8) since there are two such S1-candidates, which we
denote L2(8)1 and L2(8)2. The S1-maximal is L2(8)2, which corresponds to the
representation involving the irrationality y9, and it is clear from the statement
of [63, Theorem A] that this is the subgroup of G2(q) in question.) Since G2(q)
has unique classes of subgroups isomorphic to each of these S1-maximals, there
are also containments L2(8).3 < G2(q).3 when q = p3 and L2(13).2 < G2(q).2
when q = p2, so no extension of L2(8), L2(13) or J1 is S ∗-maximal.

By Lemma 6.1.2, |G2(q)| is divisible by q6, and so is S ∗-maximal.

We remind the reader that the maximal subgroups of all almost simple
extensions of O+

8 (q) were classified by Kleidman in [62].

Proposition 6.2.11 The S ∗-maximal subgroups of extensions of O−
8 (q) are

precisely the S ∗
2 -maximal subgroups.

Proof By Theorem 5.11.12, the S ∗
2 -maximals of Ω−

8 (q) are extensions of L3(q)
with q ≡ 2 (mod 3) and U3(q) with q ≡ 1 (mod 3). By Theorem 4.10.20, the
only S1-maximals are extensions of L3(2) with q = p ≡ ±2,±8,±10 (mod 21)
and p �= 2.

By Theorem 4.10.2, these are the values of p for which L±
3 (p) has a subgroup

L3(2). The 8-dimensional module in question for L±
3 (q) is the adjoint module

by Theorem 5.8.1. We see from Definition 5.4.9 that, in characteristic 0, the
tensor product M ⊗M∗, where M is the natural module of a general linear
group, decomposes as the sum of the adjoint module and the trivial module.
Now let V be one of the 3-dimensional irreducible modules for L3(2). We find,
from the character table of L3(2) in [12], that V ⊗ V ∗ decomposes as the sum
of the 8-dimensional and the trivial irreducible modules of L3(2). So there are
containments L3(2) < L±

3 (p) < O−
8 (p) and L3(2).2 < L±

3 (p).2 < O−
8 (p).〈γ〉.

Proposition 6.2.12 There are containments L2(9).2 < A10 < O9(3) and
L2(9).22 < A10.2 < O9(3).2. There are no other containments between S1-
maximal and S ∗

2 -maximal subgroups of almost simple extensions of O9(q).

Proof By Theorem 5.11.13, the S ∗
2 -maximal subgroups of Ω9(q) are exten-

sions of L2(q).2 with p � 11, and L2(q2).2 for all odd q. By Theorem 4.10.20,
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the S1-maximals are extensions of: L2(8) with q = p or p3 and p �= 2, 7; L2(17)
with q = p or p2 and p �= 2, 17; A10 with q = p �= 2, 5, 11; and A11.2 < O9(11).

None of the S1-maximals have 2-dimensional irreducible projective repre-
sentations in characteristic p, so the S1-maximals are S ∗-maximal. Conversely,
the only S1-maximals with order divisible by q2, or by p when p � 11, are
A10 < O9(3) and A11.2 < O9(11). The group S11 does not contain a subgroup
PGL2(11). An easy computer calculation (file containmentsd9) demonstrates
the claimed containments.

Proposition 6.2.13 There is a containment A6.21 < S4(p) < O±
10(p) when

p ≡ ±1 (mod 12). There is a containment A6 < S4(p) < O±
10(p), extending to

A6.21 < S4(p).2 < O±
10(p).2 when p ≡ ±5 (mod 12). There is also a contain-

ment A7.2 < S4(7).2 < O−
10(7).2.

There are no other containments between S1-maximal and S ∗
2 -maximal

subgroups of almost simple extensions of O±
10(q). (In particular, when p �= 7,

an extension of A6 is S ∗-maximal in O±
10(p) if and only if it is not contained

in A6.21 and, when p = 7, an extension of A6 is S ∗-maximal in O−
10(p) if and

only if it is not contained in A6.21 or A6.23.)

Proof By Theorem 5.11.14, the S ∗
2 -maximals of Ω±

10(q) are all extensions of
2 × S4(q) for p �= 2. By Theorem 4.10.21, the S1-maximals are extensions of:
A6 with q = p �= 2, 3; L2(11) with q = p �= 3, 11; A7 < Ω−

10(7); A11 with
q = p �= 2, 3, 11; A12 < Ω−

10(2); A12 < Ω+
10(3); M12 < Ω−

10(2); 2·M22 < Ω−
10(7);

2·L3(4) < Ω−
10(7).

By Theorem 4.10.13 the extensions of A6 and A7 are subgroups of the cor-
responding extensions of S4(p) as claimed, and extensions of A6 not contained
in A6.21 are not subgroups of any extension of S4(p). By Theorem 5.8.1, the
10-dimensional module of Sp4(q) in question is the symmetric square of the ir-
reducible 4-dimensional representation. By Proposition 5.2.5 and the character
tables of 2.A6 and 2.A7 in characteristic 7, the 10-dimensional representations
of A6 and A7 are also the symmetric squares of the 4-dimensional representa-
tions of 2.A6 and 2.A7, so these are containments of S -subgroups.

By Theorem 4.3.3, all other S1-maximals have no irreducible 4-dimensional
projective representations in characteristic p, so they are S ∗-maximal.

The order of S4(p) is divisible by p4, but the only S1-maximal with this
property with p odd is 2 × A12 < Ω+

10(3). The group S4(3) has no faithful
permutation representation of degree at most 12, by Theorem 1.11.2, so we are
done.

Proposition 6.2.14 There are containments L2(11) < A12 < O11(11) and
L2(11).2 < A12.2 < O11(11).2. There are no other containments between S1-
maximal and S ∗

2 -maximal subgroups of almost simple extensions of O11(q).
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Proof By Theorem 5.11.15, the only S ∗
2 -maximals of Ω11(q) are extensions

of L2(q) with p � 11. By Theorem 4.10.22, the S1-maximals are extensions of:
A12 with q = p �= 2, 3, 13; A13 < Ω11(13); and L3(3).2 < Ω11(13).

By Theorem 4.3.3, none of the S1-maximals have irreducible projective
representations of degree 2, so the S1-maximals are S ∗-maximal.

The S1-maximals with order divisible by p � 11 are A12 with p = 11, A13

with p = 13, and L3(3).2 with p = 13. Now L2(13) has no faithful permu-
tation representation of degree at most 13, so it cannot be contained in A13

or in L3(3). However, we can check from [57] that A12 and L2(11) both have
unique irreducible representations of dimension 11 and, since both groups act
double-transitively on 12 points, these modules must be the associated deleted
permutation modules. Hence the 11-dimensional representation of L2(11) is
the restriction of that of A12, and similarly for L2(11).2 < S12, so the claimed
containments exist.

Proposition 6.2.15 There are no containments between S1-maximal and
S ∗

2 -maximal subgroups of almost simple extensions of O±
12(q).

Proof By Theorem 5.11.16, there are no S ∗
2 -maximal subgroups of Ω±

12(q).

6.3 Containments between geometric and S ∗-maximal
subgroups

Recall Definition 2.1.4 of a containment. In this section we determine all con-
tainments between the S ∗-maximal subgroups and those subgroups that are
maximal amongst the geometric subgroups.

Throughout this section we let Ω be a quasisimple classical group of dimen-
sion at most 12, with dimension as in Definition 1.6.20, with A the correspond-
ing group in Column A of Table 1.2. We let G be a group with Ω � G � A.
As usual, bars denote images modulo Z(Ω). So A = Aut Ω except when Ω =
Sp4(2e) with e > 1, in which case Ω has an additional graph automorphism:
see Section 7.2 and recall that Sp4(2) is not quasisimple. We let H be maximal
amongst the geometric subgroups of G, and let S < G be an S ∗-maximal
subgroup of G. We define HΩ := H ∩Ω and SΩ := S ∩Ω. In the following two
subsections, we determine all containments S < H and H < S, respectively.

6.3.1 S < H

In this subsection, we determine all containments of S ∗-maximal subgroups in
those subgroups that are maximal amongst the geometric groups. In particular,
this subsection completes our classification of the S ∗-maximal subgroups of
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the almost simple classical groups in dimension up to 12, with the exception of
extensions of S4(2e) that contain a graph automorphism.

Theorem 6.3.1 With the above notation, the containments S < H are as
follows.

(i) Dimension 9, Cases L and U, Ω = SL±
9 (p), SΩ = (p ∓ 1, 9)·A6.23, and

HΩ = (SL±
3 (p) ◦ SL±

3 (p)).(p ∓ 1, 3)2.2, with p ≡ ±1 (mod 5). These con-
tainments extend to SΩ.〈γ〉 < HΩ.〈γ〉 < Ω.〈γ〉.

(ii) Dimension 12, Cases L and U. There are some containments with the
group SΩ = (q ∓ 1, 12) ◦ 6·A6. When q = p ≡ 1, 4 (mod 15) in Case L
or q = p ≡ 11, 14 (mod 15) in Case U, there are containments SΩ < HΩ

with HΩ = SL2(q)
6
.(q ∓ 1)5.S6, and also with HΩ = SL±

3 (q)× SL±
4 (q).

In Case L with q = p2 and 3 < p ≡ 2, 3 (mod 5), there are the same
containments with G = Ω, and also with S = (q − 1, 12) ◦ 6·S6, where
H = HΩ.2 and G = Ω.2. (See Table 8.77 for a precise description of the
extension G = Ω.2, which depends on p (mod 12).)

(iii) Dimension 12, Case U, Ω = SU12(5), SΩ = 6·A7, HΩ = SU3(q)×SU4(q).
This containment extends to SΩ.〈γ〉 < HΩ.〈γ〉 < Ω.〈γ〉.

(iv) Dimension 12, Case O+, G = Ω = Ω+
12(p), S = 2·M12, H = 211.A12 or

211.S12, q = p ≡ ±5,±7,±11 (mod 24).

Hence the tables of maximal S -subgroups in Chapter 8 are correct.

Proof By definition of Class S , H does not lie in any of the classes C1, C3,
C5 or C8, so we do not consider these as candidate classes for H.

We prove in Lemma 6.3.2 that if there is a containment S < H with H ∈ C2

then the Case is L, U or Oε. In Proposition 6.3.4 we show that the only
containment in Cases L or U with H ∈ C2 is as described in Part (ii) above.
We prove in Proposition 6.3.5 that the only containment in Case Oε with
H ∈ C2 is as described in Part (iv) above.

We prove in Proposition 6.3.7 that the only containments in Cases L and
U with H ∈ C4 ∪ C7 are as described in Parts (i), (ii) and (iii) above, and in
Proposition 6.3.8 that in Cases S and Oε there are no such containments.

Finally, we prove in Proposition 6.3.9 that if there is a containment S < H

then H �∈ C6.
The correctness of the tables in Chapter 8 for groups in Class S can

now be deduced as follows. Start by taking the lists of candidate maximals
in Sections 4.10 and 5.11. In Cases L and U, by Theorem 5.11.1, Class S ∗

2

is nonempty only for n = 6, 9, 10, so now eliminate those groups shown to be
non-maximal in Propositions 6.2.1, 6.2.2, and 6.2.3, and then eliminate the
groups in Parts (i), (ii), and (iii) above. In Case S, it suffices to remove from
the lists of candidate maximals those groups described in Propositions 6.2.4 to
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6.2.9, as there are no containments S < H. Finally, in Case Oε, first remove
the non-maximal groups described in Propositions 6.2.10 to 6.2.15, and finally
the groups in Part (iv) above.

H in Class C2. Some of the calculations in this section will involve induced
characters [56, Chapter 5]. For a representation ρ with character χ of a subgroup
Y of a finite group X, the character χX of the induced representation ρX of X
satisfies

χX(g) =
1
|Y |
∑
x∈X

χ◦(xgx−1)

for g ∈ X, where χ◦(y) is defined to be χ(y) for y ∈ Y and 0 for y �∈ Y . So
degχX = |X : Y |degχ. In particular, if ρ is the trivial representation, then ρX

is the permutation representation of X acting on the cosets of Y .
In general, if X is an irreducible imprimitive matrix group acting on V , the

subspace W is one of the subspaces in an imprimitive decomposition of V , the
group Y is the stabiliser in X of W , and ρ is the representation of Y defined
by its action on W , then [56, (5.8)] X acting on V is the image of the induced
representation ρX . Conversely [56, (5.9)], for any representation ρ of Y acting
on W , the image of ρX is an imprimitive matrix group with an imprimitive
decomposition into |X : Y | subspaces that are isomorphic to W , where Y is the
stabiliser of one of those subspaces and ρ is equivalent to the representation
defined by the action of Y on that subspace.

We first produce a candidate list of possible groups S.

Lemma 6.3.2 Let S and H be as above, with H ∈ C2, preserving a decom-
position into t subspaces. Then Ω, S and t are one of the following.

(i) Ω = SL±
6 (q), S′

Ω = 3·A6, t = 6.
(ii) Ω = SL±

6 (q), SΩ = 6·A6, t = 6.
(iii) Ω = SL±

12(q), S
′
Ω = 6·A6, t = 6.

(iv) Ω = Ω9(q), SΩ = L2(8), t = 9.
(v) Ω = Ω±

10(q), S
′
Ω = A6, t = 10.

(vi) Ω = Ω+
12(q), S

′
Ω = L2(11) or 2·M12, t = 12.

Proof Since S∞ acts irreducibly, it must act transitively on the block system.
So we only need to consider cases in which the simple composition factor X of
S has a subgroup of index t, with t|n. Theorem 1.11.2 identifies the possibilities
for S. The possibilities for (X, t) with t � 12, other than (At, t), are:

(A5, 6), (L2(7), 7), (L2(7), 8), (L2(8), 9), (A5, 10), (A6, 10),

(L2(11), 11), (M11, 11), (A5, 12), (L2(11), 12), (M11, 12), (M12, 12).



336 Containments involving S -subgroups

We go through the S ∗-maximals using Sections 4.10, 5.11 and 6.2 to locate
the possible pairs (X, t) with t|n. Note, in particular, that t �= n in Case S
or in Ω−

8 (q) or Ω−
12(q) by Table 2.4, and that SΩ = L2(11) with t = 11 and

Ω = Ω11(11) is ruled out by Propositions 6.2.14.

The following lemma will be used shortly.

Lemma 6.3.3 Let N be a group, let G � Sn be transitive, and let W = N �G.
Then any complement of the base group of W is conjugate in W to a subgroup
of M � G, where M is the image of a homomomorphism G1 → N (and G1 is
the stabiliser of 1 with Sn acting on {1, . . . , n}).
Note: It is shown in [48, Corollary 6] that there is a bijection between the set
of conjugacy classes of complements of the base group in W and Hom(G1, N),
and this lemma could probably also be extracted from the proof of that result.

Proof We identify the base group of W with the set NΩ of functions from
Ω = {1, . . . , n} to N , where W is the semidirect product of NΩ and G, with
the action fg(i) = f(ig

−1
) for f ∈ NΩ, g ∈ G and i ∈ Ω. Let H = G1, and let

{ti | i ∈ Ω} be a right transversal of H in G with t1 = 1 and 1ti = i for i ∈ Ω.
The complements of NΩ in W have the form {gφ(g) | g ∈ G}, where the

map φ : G → NΩ satisfies φ(g1g2) = φ(g1)g2φ(g2) for g1, g2 ∈ G. For any
homomorphism τ : H → N , we can define a map φ : G → NΩ satisfying
φ(g1g2) = φ(g1)g2φ(g2), and hence a complement C of NΩ in W , by letting
φ(g)(i) = τ(h), where tkg = hti with h ∈ H and i = kg. Note that C � Im(τ)�G.

On the other hand, if D is a complement of NΩ in W , with associated map
ψ : G → NΩ, then ψ(g1g2)(1) = ψ(g1)(1) ψ(g2)(1) for all g1, g2 ∈ H. That is,
the projection onto the first component of NΩ of the restriction of ψ to H is
a homomorphism τ : H → N . Let C be the complement of NΩ in W defined
from τ , and having associated map φ, as described in the preceding paragraph.
We shall show that C and D are conjugate in W , thereby proving the lemma.

Define f ∈ NΩ by f(i) = ψ(t−1
i )(1) for i ∈ Ω. Then we calculate that

fgφ(g)f−1 = gfgφ(g)f−1 for all g ∈ G. We shall show that fgφ(g)f−1 = ψ(g),
and hence fCf−1 = D. For i ∈ Ω, let tkg = hti with h ∈ H and i = kg. Then

(fgφ(g)f−1)(i) = f(k)τ(h)f(i)−1 = ψ(t−1
k )(1) τ(h) ψ(t−1

i )(1)−1.

Now

ψ(t−1
k )(1) = ψ(gt−1

i h−1)(1) = ψ(gt−1
i )h−1

(1) ψ(h−1)(1)

= ψ(gt−1
i )(1) ψ(h−1)(1),

since h ∈ H. Then ψ(h−1)(1) = τ(h−1), by definition of τ , so

(fgφ(g)f−1)(i) = ψ(gt−1
i )(1) ψ(t−1

i )(1)−1 = ψ(g)t−1
i (1) = ψ(g)(1ti) = ψ(g)(i),
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so fgφ(g)f−1 = ψ(g) as claimed.

We continue with the notation defined at the beginning of this section.

Proposition 6.3.4 Let Ω = SL±
n (q) with n � 12, let H ∈ C2 be maximal

amongst the geometric subgroups of G, and let S be an S ∗-maximal subgroup
of G. If S � H then n = 12, as described in Theorem 6.3.1 (ii).

Proof We consider the three possibilities from Lemma 6.3.2 in turn.
Suppose first that n = t = 6, with S′

Ω = 3·A6. By Proposition 6.2.1, the
only subgroups S with S′

Ω = 3·A6 that are S ∗-maximal are novelties with the
property that S/Z(S) contains PGL2(9). In the C2-subgroups of type GL±

1 (q)�S6

in GL±
6 (q), the subgroup S6 is centralised by the automorphisms γ and φ, and

so no such C2-subgroup of any almost simple extension of L6(p) or U6(p) can
involve PGL2(9) as a section. Hence there are no containments.

Suppose next that n = t = 6 again, but with SΩ = 6·A6. As before, the
group H ′

Ω = (q ± 1)5.A6. By using the facts that SL2(5) < SL2(9) and 3 does
not divide the order of the Schur multiplier of A5, we find that the subgroups
of index 6 in 6·A6 have the structure 3 × SL2(5). So, if SΩ = 6·A6 preserved
such an imprimitive decomposition, then the stabiliser of a block would be
isomorphic to 3× SL2(5). Since SL2(5) is perfect, it would have to act trivially
on the 1-dimensional subspace that it fixes. But this is impossible, because the
central element of order 2 in SL2(5) is central in 6·A6 and acts as −I6. So there
is no such containment.

Finally, suppose that S′
Ω = 6·A6, with n = 12 and t = 6. So the group

HΩ = SL2(q)
6
.(q ± 1)5.S6, by Table 2.5. It can be checked by a routine com-

puter calculation or from the character tables in [12] that the 12-dimensional
irreducible representations of 6·A6 are induced from 2-dimensional faithful irre-
ducible representations of 3×SL2(5). (To see this observe, from the formula for
induced characters given above applied to central elements of 3× SL2(5), that
these induced representations are faithful with central elements represented by
scalar matrices, so they must be either irreducible or the sum of two faithful
irreducibles of degree 6. Since an element of order 5 lies in a unique conjugate
of 3 × SL2(5) in 6·A6, it follows from the character formula that the induced
characters in question take the same values as the characters of 3× SL2(5) on
elements of order 5, which is b5 or b5

∗, and so the induced characters must be
irreducible.) So there is a containment SΩ < HΩ, whenever S is an S ∗-maximal
subgroup of G.

The automorphisms γ and φ of SL±
12(q) centralise the permutation subgroup

S6 of HΩ, and hence no group H for which HΩ = SL2(q)
6
.(q ± 1)5.S6 has a

subgroup mapping onto A6.22 or A6.23, so there are no such containments
S < H in which S maps onto A6.22, A6.23 or A6.22.
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It remains to consider cases in which S maps onto A6.21 = S6, which by
Theorem 4.10.11 occur in Case L with q = p2 and p ≡ ±2 (mod 5). We shall
show that there is a containment 6·S6 < H = HΩ.2 < G = Ω.2 in this situation.

The subgroups of HΩ = SL2(q)
6
.(q ± 1)5.S6 that are isomorphic to the

group SΩ = 6·A6 map onto complements of the base group in PGL2(q) � A6.
So they have conjugates that map into subgroups A5 � A6 < PGL2(q) � A6,
by Lemma 6.3.3. So we may assume that SΩ lies in a subgroup K of HΩ

with structure (3 × SL2(5))6 :A6. Let K be a fixed subgroup of HΩ with this
structure. To establish the containment 6·A6.21 < HΩ.2 < Ω.2, we shall find
an outer automorphism of Ω that normalises HΩ, K, and SΩ, and extends
SΩ = 6·A6 to 6·S6.

We may assume that HΩ is embedded naturally as a wreath product in the
matrix group Ω = SL12(p2), and we assume that the complement of the base
group in K isomorphic to A6 is just the natural complement consisting of the
permutation matrices that permute the six 2-dimensional spaces. As we noted
earlier, γ and φ both centralise the subgroup S6 ofHΩ consisting of permutation
matrices. Furthermore, they both normalise each of the factors SL2(p2) in the
base group of HΩ.

Some conjugate of γ normalises and induces inner automorphisms of each
of the six factors SL2(5) of the base group of K, whereas γ inverts O3(K), the
largest normal 3-subgroup ofK. So, by multiplying γ by an inner automorphism
of K, we may assume that it centralises the subgroup SL2(5)6 :A6 and inverts
O3(K). By Theorem 4.10.12, the map φ can be chosen to induce an outer
automorphism of the subgroup SL2(5) of SL2(q), so we may assume that φ
normalises and induces an outer automorphism of each of the six factors SL2(5)
of K. Furthermore, φ centralises O3(K) when p ≡ 1 (mod 3) and inverts O3(K)
when p ≡ 2 (mod 3).

An element of 6·S6 \ 6·A6 inverts the central element of order 3 of 6·A6. If
the outer automorphism of Ω that we are trying to construct, which normalises
HΩ, K, and SΩ, and extends SΩ to 6·S6, exists, then its action on K can be
obtained by multiplying the actions of φ (when p ≡ 2 (mod 3)) or φγ (when
p ≡ 1 (mod 3)) by an automorphism induced by conjugation by an element of
(3× SL2(5))6 :S6 \K.

Since we know the induced actions on K of γ and φ precisely, it suffices to
prove that there exists such an automorphism of K that extends the subgroup
6·A6 to 6·S6. This can be done theoretically, but it is perhaps easier to do it
by computer calculation (file containmentsd12). It turns out that K has two
classes of subgroups with the structure 6·A6, both of which are normalised by
the appropriate automorphisms of K that extend them to 6·S6.

Proposition 6.3.5 Let Ω = Ωε
n(q) with n � 12, let H ∈ C2 be maximal
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amongst the geometric subgroups of G, and let S be an S ∗-maximal subgroup
of G. If S � H then Ω = Ω+

12(p), as described in Theorem 6.3.1 (iv).

Proof We work through the possibilities from Lemma 6.3.2, and show that
the only containment is when n = 12 and SΩ = 2·M12.

Let n = t = 9, with SΩ = L2(8). It can be checked (see file charcalc)
that the three quasi-equivalent 9-dimensional irreducible representations of
L2(8) are imprimitive (as subgroups of SL9(q)) and induced from non-trivial
1-dimensional representations of its subgroup K with structure 23 :7. So, in the
9-dimensional representations of S, the group K stabilises and has an element
of order 7 acting non-trivially on a 1-dimensional subspace. Hence K does not
preserve an orthogonal form on that subspace, and so SΩ does not preserve the
orthogonal decomposition of HΩ. So there are no such containments.

Let n = t = 10, with S′
Ω = A6. It can be checked (see file charcalc)

that this representation of A6 is imprimitive and induced from a 1-dimensional
representation of its subgroup K with structure 9:4, with image cyclic of order
4. So, as in the previous case, there are no such containments.

Finally, let n = t = 12. If S′
Ω = L2(11), then the block stabiliser S′

B is
isomorphic to 11:5. If S′

B acted trivially on B, then the module for S′
Ω would

be a permutation module, and would not be irreducible. Hence S′
B acts non-

trivially on the block, so this action is not orthogonal, and S′
Ω is not contained

in HΩ. For S′
Ω = 2·M12, it can be checked by character table calculations (file

charcalc), that the 12-dimensional representation of S′
Ω is induced by a 1-

dimensional orthogonal representation of its subgroup with structure 2×M11,
and so there is a containment S′

Ω < HΩ. Note, however, that M12.2 is not
contained in A12.2, so 2·M12.2 is maximal wherever it occurs.

H in Class C4 or C7. Recall the notation from the beginning of this section,
and recall Definition 5.1.15 of the S ∗

2 -subgroups.

Lemma 6.3.6 Let n � 12, let S be an S ∗-maximal subgroup that is not
contained in a member of Class C2, and let H ∈ C4 ∪C7. If S < H then Ω and
S are one of the following.

(i) Ω = SL±
9 (q), S′

Ω = 3·A6.23, with p �= 3, 5.
(ii) Ω = SL±

12(q), S
′
Ω = 6·A6 with p �= 2, 3, 5.

(iii) Ω = SU12(5), SΩ = 6·A7.
(iv) Ω = Sp6(q), S′

Ω = 2·A5 with p �= 2, 5, and SΩ = SL2(q).
(v) Ω = Sp8(q), SΩ = SL2(q).
(vi) Ω = Sp10(q), SΩ = SL2(q).
(vii) Ω = Sp12(q), SΩ = SL2(q).
(viii) Ω = Ω9(q), SΩ = L2(q).



340 Containments involving S -subgroups

Proof If there is a containment SΩ < HΩ, then SΩ must have irreducible
projective representations in the dimensions of the tensor factors, and at least
one of these factors must have dimension 2 or 3. So we can immediately reduce
the number of potential containments by recalling that:

(i) the only simple groups with irreducible projective representations of de-
gree 2 over Fq are A5 in cross characteristic and L2(q0), where q is a power
of q0;

(ii) the only simple groups with irreducible projective representations of de-
gree 3 over Fq are A5, A6 and L3(2) in cross characteristic, A7 when p = 5,
and L2(q0), L3(q0) and U3(q1), where q is a power of q0 or q21 .

Going through the S ∗-maximals (using the results stated in Sections 4.10,
5.11 and 6.2), yields the above list.

Again, we consider these in turn, and start by identifying corresponding
subgroups in Classes C4 or C7, if any.

Proposition 6.3.7 Let Ω = SL±
n (q) with n � 12, let H ∈ C4∪C7 be maximal

amongst the geometric subgroups of G, and let S be an S ∗-maximal subgroup
of G. If S � H then either Ω = SL±

9 (p), as described in Theorem 6.3.1 (i); or
Ω = SL±

12(q) with q = p or p2, as described in Theorem 6.3.1 (ii) or (iii).

Proof Let n = 9, with SΩ = 3·A6.23, so that q = p �= 3, 5 by Theorem 4.10.8,
and p ≡ ±1 (mod 5) by Proposition 6.2.2. By Tables 2.7 and 2.10 the group
HΩ = (SL±

3 (p) ◦ SL±
3 (p)).(q ∓ 1, 3)2.2 ∈ C7.

To analyse this case, we need to consider the character table of 3·A6 in [12].
We also need to know the action of outer automorphisms of 3·A6 on its conju-
gacy classes, which can easily be computed directly, but can also be deduced
from careful study of the character tables. Specifically, the central 3-element
of 3·A6 is centralised by the 23 automorphism and inverted by the 21 and 22

automorphisms, whereas the two conjugacy classes of 5-elements are fixed by
the 22 automorphism and interchanged by the 21 and 23 automorphisms.

There are four faithful irreducible characters of degree 3, two of which are
represented by each of the printed characters χ14 and χ15. The two represented
by the same printed characters are dual to each other and take different val-
ues on the central 3-elements. Using the actions on conjugacy classes described
above, we see that the 22 automorphism interchanges the two characters repre-
sented by χ14 and the two represented by χ15, whereas the 21 and 23 automor-
phism interchange the pairs χ14 and χ15, where 23 interchanges two characters
with the same value on the central 3-element. (We used this fact earlier, in the
proof of Proposition 6.2.2.) On the other hand, the two characters of degree 9
represented by χ17 are dual, and are fixed by 23 and interchanged by 21 and
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by 22. Using the fact that the character of a tensor product is the product of
the characters of the tensor factors, we see that each of the two 9-dimensional
irreducible representations is a tensor product of two of the four 3-dimensional
representations that are interchanged by 23.

Since p ≡ ±1 (mod 5), the group 3·A6 is contained in SL±
3 (p) by Theorem

4.10.2. The tensor decomposition of S′
Ω is preserved by the 23 automorphism

so SΩ = 3·A6.23 is not maximal. The duality automorphism of Ω fixes HΩ and
induces the duality automorphism of the two tensor factors, which fixes (the
class of) SΩ. So there is a containment SΩ.〈γ〉 < HΩ.〈γ〉 < Ω.〈γ〉.

Let n = 12, with SΩ = 6·A6, and p �= 2, 3, 5 by Theorem 4.10.11. Class
C7 is empty, so by Table 2.7 the group HΩ = SL±

3 (q) × SL±
4 (q). As can be

checked from the character table of 6·A6 [12], the four 12-dimensional irre-
ducible representations of 6·A6, which are equivalent under its automorphism
group, are each a tensor product of a (faithful) 3-dimensional representation of
3·A6 and a 4-dimensional representation of 2·A6. This results in containments
6·A6 < SL±

3 (q)× SL±
4 (q) in all characteristics p > 5.

By Proposition 4.5.10, the image of the 4-dimensional irreducible represen-
tation of 2·A6 lies in Sp4(p) for all primes p �= 2, 3, and no automorphism of
Sp4(p) normalises and induces the 22 or the 23 automorphism of 2·A6. Any
automorphism of SL±

4 (p) or SL4(p2) that normalises the image of 2·A6 must
lie in CSp4(p) by Lemma 1.8.9, and so no such automorphism can induce the
22 or the 23 automorphism of 2·A6. It follows that no extensions of SΩ of the
form 6·A6.22, 6·A6.23 and 3·A6.22 can be contained in Class C4 groups H, and
so all such extensions are maximal in G.

By Theorem 6.3.1 (ii), extensions 6·A6.21 of SΩ are contained in extensions
of SL±

3 (q) × SL±
4 (q) that are C4-subgroups, and we believe this to be true!

However, since we saw in Proposition 6.3.4 that extensions of SΩ of the form
6·A6.21 are contained in C2-subgroups, we do not need this containment to
prove that such extensions are not maximal, and so we omit the proof.

Finally, let Ω = SU12(5), with SΩ = 6·A7, as in Theorem 4.10.11. As for
SΩ = 6·A6, the group HΩ equals SU3(5)×SU4(5), and from the character table
of 6·A7 in characteristic 5 [57], the two 12-dimensional irreducible representa-
tions of 6·A7, which are equivalent under Out A7, are each a tensor product of
a (faithful) 3-dimensional representation of 3·A7 and a 4-dimensional represen-
tation of 2·A7. This results in the containment 6·A7 < SU3(5)× SU4(5). Since
the conjugacy classes of the S1-subgroups 3·A7 < SU3(5) and 2·A7 < SU4(5)
are both normalised by the respective automorphism γ, and the duality auto-
morphism γ of Ω fixes the conjugacy class of HΩ and induces γ on the two
tensor factors, this containment extends to SΩ.〈γ〉 < HΩ.〈γ〉 < Ω.〈γ〉.

Proposition 6.3.8 Let Ω = Spn(q) or Ω±
n (q) with n � 12, let H ∈ C4∪C7 be
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maximal amongst the geometric subgroups of G, and let S be an S ∗-maximal
subgroup of G. Then S �� H.

Proof We continue working through the possibilities given by Lemma 6.3.6.
First, let Ω = Sp6(q), with S′

Ω = 2·A5 and q = p �= 2, 5 by Theorem 4.10.14.
The full covering group of A5 is 2·A5, which has two 2-dimensional symplec-
tic representations over Fp(

√
5) (p �= 2, 5), and two 3-dimensional orthogonal

representations over Fp(
√

5) (p �= 2, 5). It can be observed directly from the
character table of 2·A5 that the required 6-dimensional representation of 2·A5

is obtained as 3a⊗ 2b or 3b⊗ 2a (using the Atlas ordering).
By Theorem 4.10.14, the group SΩ = 2·A5 is S1-maximal in Sp6(p) when

p ≡ ±3 (mod 8) (and p �= 5). The group SΩ is a tensor product over Fp if and
only if 5 is a square in F×

p , which is the case if and only if p ≡ ±1 (mod 5). Thus
if p ≡ ±11,±19 (mod 40) then there is a containment 2·A5 < Sp2(p)×SO3(p).
(However, SΩ is non-maximal for these values of q, by Proposition 6.2.6.) If
p ≡ 3 (mod 8) then 2·A5 extends to 2·S+

5 < CSp6(p), whilst if p ≡ 5 (mod 8)
then 2·A5 extends to 4.S5 = 4 ◦ 2·S5 < CSp6(p). Any central extension Z.2·S+

5

or Z.4.S5 will contain a normal subgroup 2·A5 together with elements that fuse
both 2-dimensional and both 3-dimensional representations of this subgroup,
and so the representations of 2·S+

5 and 4.S5 are not tensor products. Thus if
p ≡ ±11,±19 (mod 40) then the S ∗-maximal subgroup S5 of PCSp6(p) is not
contained in any C4-subgroup. If p ≡ ±1 (mod 8) then SΩ = 2·A5.2, which as
noted above is not a tensor product, so S is not contained in any C4-subgroup.

Next, let Ω = Spn(q) with n = 6, 8, 10, 12, and SΩ = SL2(q): we shall treat
these cases simultaneously. By Theorem 5.8.1 these groups SΩ are acting on
modules Sn−1(V ): see Section 5.2 for basic properties of Sk(V ). Here, V is the
natural module for SL2(q), and p � 7 throughout. If n = 6 then the group
H∞

Ω = Sp2(q) ◦ Ω3(q). If n = 8 then H∞
Ω = Sp2(q) ◦ Sp2(q) ◦ Sp2(q) ∈ C7 or

Sp2(q) ◦ Ω−
4 (q) ∈ C4, by Tables 2.7 and 2.10 and Lemma 3.7.6. Similarly, if

n = 10 then H∞
Ω = Sp2(q)×Ω5(q), and if n = 12 then H∞

Ω = Sp2(q)◦Ω±
6 (q) or

Ω3(q)×Sp4(q). These six containments would respectively imply isomorphisms
S5(V ) ∼= V ⊗S2(V ), S7(V ) ∼= V ⊗V ⊗V , S7(V ) ∼= V ⊗S3(V ), S9(V ) ∼= V ⊗S4(V ),
and S11(V ) ∼= V ⊗ S5(V ) or S2(V ) ⊗ S3(V ), each of which is ruled out by
Proposition 5.3.10.

Finally, let Ω = Ω9(q), with SΩ = L2(q).2. Then H∞
Ω = Ω3(q)

2 ∈ C7 by
Table 2.10. This containment is ruled out by Proposition 5.3.10, since S2(V )⊗
S2(V ) is reducible and hence not isomorphic to S8(V ).

H in Class C6. It is straightforward to show that there are no containments of
S ∗-maximals in C6-subgroups, completing the proof of Theorem 6.3.1. Recall
the notation from the beginning of this section.
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Proposition 6.3.9 Let Ω be a quasisimple classical group with n � 12, let
H ∈ C6 be maximal amongst the geometric subgroups of G, and let S be an
S ∗-maximal subgroup of G. Then S �� H.

Proof By Definition 2.2.13, the only non-abelian simple composition factors
X arising in subgroups in Class C6 are:

(i) Ω = SL±
4 (q), X = A6.

(ii) Ω = Sp4(q), X = A5.
(iii) Ω = SL±

5 (q), X = L2(5).
(iv) Ω = SL±

7 (q), X = L2(7).
(v) Ω = SL±

8 (q), X = S6(2).
(vi) Ω = Sp8(q), X = Ω−

6 (2).
(vii) Ω = SL±

9 (q), X = S4(3).
(viii) Ω = SL±

11(q), X = L2(11).

By Theorems 4.10.3, 4.10.13, 4.10.4, 4.10.6, 4.10.10, 5.11.1, and 5.11.6 together
with Proposition 6.2.5 for Sp4(q), in Cases (i), (ii), (iii), (iv) and (viii) above
there are no S ∗-maximals with simple composition factor contained in X.

In Case (v), it follows from Theorems 4.10.7 and 5.11.1 that all S ∗-maximal
subgroups have simple composition factor L3(4). From our analysis of Case S
in dimension 6 (see Tables 8.28 and 8.29, which we may assume at this point
to be correct) we find that no subgroup of S6(2) involves L3(4).

In Case (vi), since Ω−
6 (2) ∼= U4(2) ∼= S4(3), we need only consider the S ∗-

maximal S′
Ω = 2·A6, by Theorem 4.10.15, with H ′

Ω = 21+6.Ω−
6 (2), by Table 2.9.

A computer calculation (file charcalc) shows that the restriction of the unique
8-dimensional character of H ′

Ω to the unique subgroup isomorphic to 2·A6 is
rational and reducible, which rules out this containment. (We carried out this
calculation using H < Sp8(3). We found that the 8-dimensional character of H
is rational with Frobenius-Schur indicator −1, and so its reduction modulo p is
an irreducible subgroup of Sp8(p) for all p not dividing |H|, and we can check
it directly for p = 5. So our conclusion is valid for all odd p.)

For Case (vii), there is an S ∗-maximal subgroup with composition factor
A6, and S4(3) has a subgroup isomorphic to A6. By Theorem 4.10.8, the group
SΩ = (9, q ∓ 1)·A6.23. Tables 8.12 and 8.13, which may be assumed correct at
this point, show that S4(3) has a unique subgroup of shape A6.2, and a computer
calculation (file containmentsd9) shows that it is isomorphic to S6 = A6.21

rather than to A6.23, so there is no containment in this case.

6.3.2 H < S

In this subsection, we determine which of the groups that are maximal amongst
the geometric subgroups are in fact maximal. Since we determined the maximal
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S -subgroups in Theorem 6.3.1, this subsection completes the proof of correct-
ness of the tables of maximal subgroups of classical groups in Chapter 8, with
the exception of the groups with socle Sp4(2e) for e > 1 that are not contained
in ΣSp4(2e). In particular (again with the possible exception of Sp4(2e)), the
tables of maximal S -subgroups in Chapter 8 have now been proved correct, so
we can use those tables. We continue with the notation from the beginning of
this section. Recall Definition 2.1.4 of a containment.

In the case of Ω = Sp4(2e), in this section we shall only investigate contain-
mentsH < S for subgroups of ΣSp4(2e). In fact there are no such containments.
We shall complete the correctness proofs for Table 8.14 in Section 7.2.

Theorem 6.3.10 Let H be maximal amongst the geometric subgroups of G,
and let S be a maximal S -subgroup of G such that H � S. Then H, G and S
are as given below:

(i) Ω = SL2(11), S ∼= 2·A5, H ∼= Q2(q−1) ∈ C2, G = Ω.
(ii) Ω = SL2(9), SΩ

∼= 2·A5, HΩ
∼= Q2(q+1) ∈ C3, Ω � G � Ω.〈φ〉.

(iii) Ω = SL2(p), S ∼= 2·A5, q = p ≡ ±11,±19 (mod 40), H ∼= 21+2
− :3 ∼=

2·A4 ∈ C6, G = Ω.
(iv) Ω = SU3(3), SΩ

∼= L2(7), HΩ
∼= 7:3 ∈ C3, Ω � G � Ω.〈γ〉.

(v) Ω = SU3(5), SΩ
∼= 3·A7, HΩ

∼= (q + 1)2 :S3 ∈ C2, Ω � G � Ω.〈γ〉.
(vi) Ω = SU3(5), SΩ

∼= 3× L2(7), HΩ
∼= (q2 − q + 1):3 ∈ C3, Ω � G � Ω.〈γ〉.

(vii) Ω = SU3(5), SΩ
∼= 3·A7, HΩ

∼= 3× SO3(5) ∈ C5, Ω � G � Ω.〈γ〉.
(viii) Ω = SU3(5), SΩ

∼= 3·A6
·23, HΩ

∼= 31+2 :Q8 ∈ C6, Ω � G � Ω.〈γ〉.
(ix) Ω = SU5(2), SΩ

∼= L2(11), HΩ
∼= q5+1

q+1 :5 ∈ C3, Ω � G � Ω.〈γ〉.
(x) Ω = SU6(2), SΩ

∼= 3·U4(3).22, HΩ
∼= 35.S6 ∈ C2, Ω � G � Ω.〈γ〉.

Thus, if H is a geometric subgroup of G that is maximal in G, then H is as
listed in the tables in Chapter 8.

In almost all cases, if S is an S1-subgroup, then we can rule out contain-
ments of the form H < S using Lagrange’s theorem. In many cases this is
because |H| is divisible by a higher power of the defining characteristic p than
|S|: recall, for example, that by Lemma 2.2.2 (iii) the parabolic subgroups of Ω
contain a Sylow p-subgroup of Ω. We shall not go into details, and the “possible
containments” of this form considered below are exactly those that do not con-
tradict Lagrange’s theorem. Apart from the genuine containments, these can
usually be easily eliminated either by direct calculation or by using [12].

Lagrange’s theorem can also be used to eliminate many such containments
when S is an S2-subgroup, but this is not generally possible when H ∈ C5,
or when the order of H does not increase with q, which occurs when H ∈ C6

and when H ∈ C2 in the orthogonal cases and H has the structure 2n−2.An

or 2n−2.Sn. If H contains a classical group, then such containments can be
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ruled out by using Theorem 1.11.5 (for C5) or Theorem 1.11.7 (for C8). If H
contains an alternating group, then these containments can be ruled out by
Proposition 1.11.6 and Lemma 2.2.4 (i).

Proposition 6.3.11 Let n = 2 and let H < G be maximal amongst the
geometric subgroups of G. If H is not maximal in G then either q ∈ {9, 11} or
q = p ≡ ±11,±19 mod 40.

If q = 9, then there is a containment H � S < G if and only if H is of type
GL1(q2), with G = SL2(9) or SL2(9).〈φ〉, and SΩ

∼= 2·A5.
If q = 11, then there is a containment H � S < G if and only if H is of

type GL1(q) � S2 or type 21+2.Sp2(2), with G = SL2(11) and S ∼= 2·A5.
If q = p ≡ ±11,±19 mod 40, with q > 11, and H � S < G, then H is of

type 21+2.Sp2(2), with G = SL2(p) and S ∼= 2·A5.
Hence M < G is a non-trivial maximal subgroup of G if and only if M is

listed in Table 8.1 or 8.2.

Proof Assume that H � S < G, where S ∈ S . By Table 8.2, the only possible
SΩ is isomorphic to 2·A5, so that |SΩ| = 23 ·3 ·5. The group S only occurs when
q = p ≡ ±1 mod 10 or q = p2 with p ≡ ±3 mod 10. p = 2 or 5 or Therefore
H �∈ C1 by Lagrange’s theorem.

If H ∈ C2 with q odd, then HΩ
∼= Q2(q−1) by Table 2.4. If q � 7 then Class

S is empty. If q = 11 then Q2(q−1) < 2·A5, however there are two classes of
groups 2·A5 that are interchanged by δ, whilst HΩ is normalised by δ. For all
other values of q for which S arises, this containment is impossible because
2·A5 has no element of order q − 1.

If H ∈ C3 with q odd, then by Table 2.6 the group HΩ
∼= Q2(q+1). If

q = 9 then Q2(q+1) < 2·A5, which extends to S = SΩ.2 < H = HΩ.2 in
G = SL2(9).〈φ〉 ∼= 2.S6, but not within any other almost simple extensions of
SL2(9). All other values of q for which S occurs yield impossible containments,
because 2·A5 has no element of order q + 1.

If H ∈ C5 with q odd, then HΩ is of shape SL2(q0).(2, r) by Table 2.8, where
q = qr

0. Thus H � S is ruled out by Lagrange’s theorem for all q.
Finally, consider H ∈ C6. By Table 2.9 and Lagrange’s theorem, the group

HΩ
∼= 21+2

− :3 ∼= 2·A4 and q = p ≡ ±11,±19 (mod 40). There is a genuine con-
tainmentHΩ < SΩ, but there are two classes of groups SΩ that are interchanged
by δ, whilst HΩ is normalised by δ.

Proposition 6.3.12 Let n = 3 and let H be maximal amongst the geometric
subgroups of G. If H is not maximal in G then Ω = SU3(q) and q ∈ {3, 5}.

If q = 3 then there is a containment H � S < G if and only if H is of type
GU1(q3) (C3), with SU3(3) � G � ΓU3(3) and SΩ

∼= L2(7).
If q = 5 and H � S < G then HΩ � SΩ is one of: (q + 1)2 :S3 < 3·A7
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(C2), (q2 − q + 1):3 < 3 × L2(7) < 3·A7 (C3), 3 × SO3(5) < 3·A7 (C5),
31+2 :Q8 < 3·A6

·23 (C6). These containments with H in Classes C2, C3 and
C6 occur if and only if G is contained in a conjugate of SU3(5).〈γ〉. Those in
Class C5 occur for all G with SU3(5) � G � ΓU3(5).

Hence M < G is a non-trivial maximal subgroup of G if and only if M is
listed in Table 8.3, 8.4, 8.5 or 8.6.

Proof The Magma calculations referred to in this proof can all be found in
file containmentsHinS. Assume that H � S < G, where S ∈ S . Here, by
Tables 8.4 and 8.6, the possibilities for SΩ are :

• (q±1, 3)×L2(7), of order (q±1, 3)·23 ·3·7. This requires 2 �= q = p �≡ 0 mod 7.
If p ≡ 1, 2, 4 mod 7 then Ω = SL3(q), otherwise Ω = SU3(q).

• 3·A6, of order 23 ·33 ·5. In SL3(q) this requires q = p ≡ 1, 4 mod 15 or q = p2,
p ≡ 2, 3 mod 5, q �= 9. In SU3(q) this requires q = p ≡ 11, 14 mod 15.

• 3·A6
·23 (order 24 · 33 · 5) and 3·A7 (order 23 · 33 · 5 · 7) in SU3(5).

Suppose that H ∈ C1: the structure of H is given in Table 2.3. Then SΩ
∼=

(q ± 1, 3) × L2(7) is ruled out by Lagrange’s theorem for all q. In SL3(4) with
HΩ

∼= GL2(4), the only possible SΩ is 3·A6. Although GL2(4) is isomorphic
to a subgroup of 3·A6, it can be checked by direct computation in Magma or
from [12] that this containment does not arise when extensions of GL2(4) are
candidates for maximality in extensions of SL3(4). The only other possibilities
not ruled out by Lagrange’s theorem are in SU3(5), with HΩ

∼= GU2(5), and
SΩ

∼= 3·A6
·23. But note that GU2(5)′ is isomorphic to the perfect group SL2(5),

which does not embed into 3·A6, so this case does not occur either.
Next suppose that H ∈ C2. In Case L, HΩ

∼= (q − 1)2 :S3 by Table 2.4, and
q � 5 by Proposition 2.3.6, which is ruled out by Lagrange’s theorem for all S.
In Case U, HΩ

∼= (q + 1)2 :S3 by Table 2.4, which is ruled out by Lagrange’s
theorem except when q = 5 and SΩ

∼= 3·A6
·23 or 3·A7. It can be checked

in Magma that 62 :S3 occurs as an imprimitive subgroup of 3·A7 but not of
3·A6

·23, and that 3·A7 has a unique class of subgroups of this order. Now the
automorphism γ of SU3(5) fixes the class of 3·A7, so the containment extends
to HΩ.〈γ〉 < SΩ.〈γ〉 < SU3(5).〈γ〉. But the class of HΩ in SU3(5) is stabilised
by the diagonal automorphism δ of SU3(5) of order 3, whereas that of SΩ is
not, so if G ∈ {GU3(5),ΓU3(5)} then H is a novel maximal subgroup of G.

Next suppose that H ∈ C3. In Case L, the group HΩ
∼= (q2 + q + 1):3 by

Table 2.6, which is ruled out by Lagrange’s theorem in all cases. In Case U,
the group HΩ

∼= (q2 − q + 1):3 by Table 2.6, which is ruled out by Lagrange’s
theorem except when SΩ

∼= (q + 1, 3) × L2(7) with q = 3 or 5, or SΩ
∼= 3·A7

when q = 5. As in the previous case, it can be checked in Magma that these are
genuine containments that extend to containments under the action of 〈γ〉. But,
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again as in the preceding paragraph, in the case q = 5 if G ∈ {GU3(5),ΓU3(5)}
then H is a novel maximal subgroup of G.

If H ∈ C5, then the structure of H is given in Table 2.8. The examples in
whichH is an extension of SL3(q0) or SU3(q0), where q is a power of q0, are ruled
out by Lagrange’s theorem. There remains the possibility (q + 1, 3) × SO3(q)
in Case U, where q is odd and q �= 3 by Proposition 3.2.4. This is ruled out by
Lagrange’s theorem except when q = 5 and SΩ

∼= 3·A6
·23 or 3·A7. As in earlier

cases, it can be checked in Magma that (q+ 1, 3)× SO3(q) occurs when q = 5
as a C5-subgroup of 3·A7 but not of 3·A6

·23, and that the containments extend
under the action of 〈γ〉. But in this case the class of HΩ is not stabilised by δ,
and no extensions of HΩ are novelties of extensions of G.

Next suppose that H ∈ C6. Then by Table 2.9 HΩ
∼= 31+2 :Q8 or 31+2 :Q8.3,

and SΩ
∼= (q±1, 3)×L2(7) is ruled out by Lagrange’s theorem. For SΩ

∼= 3·A6,
|SΩ| is divisible by |31+2 :Q8|, but the index would be 5, and 3·A6 has no
subgroups of index 5. Once again there remains SU3(5), and SΩ

∼= 3·A6
·23

or 3·A7, which again we investigate in Magma. This time it turns out that
31+2 :Q8 is a subgroup of 3·A6

·23 but not of 3·A7. This containment extends
to HΩ.〈γ〉 < SΩ.〈γ〉 ∼= 3·A6

·22 in SU3(5).〈γ〉 but, since SΩ is not normalised
by the diagonal automorphism δ of SU3(5), if G ∈ {GU3(5),ΓU3(5)} then H

is a novel maximal subgroup of G.
Finally, suppose that H ∈ C8. Then by Table 2.11 the group HΩ is of shape

SU3(q1/2).(q1/2−1, 3) or shape SO3(q).(q−1, 3) (with q odd). This is ruled out
by Lagrange’s theorem except when q = 4, HΩ

∼= SU3(2) and SΩ
∼= 3·A6. But

SU3(2) ∼= 31+2 :Q8 which is not isomorphic to a subgroup of 3·A6.

Proposition 6.3.13 Let n = 4 and let H be maximal amongst the geometric
subgroups of G. If Sp4(2e) � G, then assume that G < ΣSp4(2e). Then H is a
maximal subgroup of G. Hence, except for when Sp4(2e) � G �� ΣSp4(2e), the
subgroup M of G is a non-trivial maximal subgroup of G if and only if M is
listed in Tables 8.8, 8.9, 8.10, 8.11, 8.12 or 8.13.

Proof Assume that H � S < G, where S ∈ S . We first deal with SL±
4 (q).

Here, by Tables 8.9 and 8.11, SΩ is a central extension by a subgroup of order
dividing 4 of one of the following: L2(7), of order 23 · 3 · 7, with q = p �= 2, 3, 7;
A7, of order 23 · 32 · 5 · 7, with q = p �= 7; U4(2), of order 26 · 34 · 5, with
q = p �= 2, 3; L3(4), of order 26 · 32 · 5 · 7 in SU4(3).

For H ∈ C1, the only containment allowed by Lagrange’s theorem is when
Ω = SL4(2), with HΩ

∼= GL3(q) and SΩ
∼= A7. This is a genuine containment,

but GL3(2).2 is not a subgroup of A7.2 = A8, so GL3(2).2 remains a novel
maximal subgroup of SL4(2).2.

For H ∈ C2, the possible structures for H are given in Table 2.5, and
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the situations where H exists are given in Propositions 3.3.2 and 3.3.3. The
containments consistent with Lagrange’s theorem are:

(i) HΩ
∼= (q−1)3.S4 � SL4(7) or HΩ

∼= (q+1)3.S4 � SU4(5), and the group
SΩ

∼= 2·U4(2); and
(ii) HΩ

∼= SL2(q2).(q − 1).2 in SU4(3), and SΩ
∼= 42

·L3(4).

In Case (i), HΩ would have index 10 in SΩ but by Theorem 1.11.2 the group
2·U4(2) has no such subgroup. In Case (ii), HΩ would have index 28 in SΩ but
by Proposition 6.3.12 the group 42

·L3(4) has no such subgroup.
By Table 2.6 there are no groups H in Class C3 in SU4(q) and, in SL4(q),

the only potential containment is with q = 2, HΩ
∼= SL2(q2).(q + 1).2 and

SΩ
∼= A7. But A7 has no subgroup isomorphic to SL2(4).3.2.
Class C4 is empty and, for all candidates for H ∈ C5, by Table 2.8 the only

possible Ω allowed by Lagrange’s theorem is SU4(3), where HΩ
∼= SO−

4 (3).4 and
SΩ

∼= 42
·L3(4). In that case the index would be 28, and by Proposition 6.3.12

42
·L3(4) has no such subgroup.
Using Tables 2.9 and 2.11, Lagrange’s theorem eliminates all options with

H ∈ C6∪C8, and Class C7 is empty. This completes the arguments for SL±
4 (q).

In Sp4(q) with q odd, by Table 8.13 the possibilities for SΩ are: SΩ
∼= 2·A6

of order 24 · 32 · 5, with q = p ≡ ±5 mod 12; 2·S6 of order 25 · 32 · 5, with
q = p ≡ ±1 mod 12; 2·A7 of order 24 · 32 · 5 · 7 when q = 7; or SL2(q) of
order q(q2 − 1) with p � 5. All containments are eliminated immediately by
Lagrange’s theorem except when H is in Class C5 or C6 and SΩ

∼= SL2(q). But
SL2(q) has no subgroups of the form Sp4(q) or 21+4.A5 by Proposition 6.3.11.

In Sp4(2e), as we saw in Chapters 4 and 5, the only S ∗-maximal is Sz(2e)
in Sp4(2e) with e odd and e > 1. All possible H have order divisible by 3, but
Sz(2e) does not, so there are no containments in this case.

Proposition 6.3.14 Let n = 5 and let H < G be maximal amongst the
geometric subgroups of G. Then H is a non-maximal subgroup of G if and only
if Ω = SU5(2) and HΩ

∼= q5+1
q+1 :5 < L2(11) (Class C3).

Hence M < G is a non-trivial maximal subgroup of G if and only if M is
listed in Table 8.18, 8.19, 8.20, or 8.21.

Proof Here by Tables 8.19 and 8.21, the group SΩ is a central extension by a
group of order 1 or 5 of one of: L2(11) (order 22·3·5·11, with q = p); U4(2) (order
26 ·34 ·5, with q = p odd); or M11 (order 24 ·32 ·5·11, with q = 3). Since there are
no S ∗

2 -maximals, it is straightforward to use Tables 2.3 to 2.11 to check that
the only containment consistent with Lagrange’s theorem is q5+1

q+1 :5 < L2(11),
in SU5(2). As can easily be checked in Magma (file containmentsHinS) or by
Proposition 6.3.11, this is a genuine containment that extends to SΩ.2 < HΩ.2
in SU5(2).2.
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Dimension 6 is more laborious to check, on account of the large number
of candidates for SΩ. To assist with the checking, we start by recording the
S ∗-maximal subgroups, and making a few general observations.

By Tables 8.25, 8.27 and 8.29, if S is a maximal S1-subgroup then, for some
d dividing 6, SΩ is one of:

(i) 2× 3·A6, of order 24 · 33 · 5, with q = p � 7, in SL±
6 (q);

(ii) 2× 3·A6.23, of order 25 · 33 · 5, with q = p � 5, in SL±
6 (q);

(iii) 6·A6, of order 24 · 33 · 5, with q = p or q = p2, p � 5, in SL±
6 (q);

(iv) 6·A7, of order 24 · 33 · 5 · 7, with q = p or q = p2, p � 5, in SL±
6 (q);

(v) d ◦ 2·L2(11), of order dividing 23 · 32 · 5 · 11, with q = p � 5, in SL±
6 (q);

(vi) 6·L3(4), of order 27 · 33 · 5 · 7, with q = p � 7, in SL±
6 (q);

(vii) 6·L3(4)·21, of order 28 · 33 · 5 · 7, with q = p � 5, in SL±
6 (q);

(viii) 3·U4(3).22, of order 28 · 37 · 5 · 7 in SU6(2);
(ix) 6·U4(3), of order 28 · 37 · 5 · 7, with q = p � 5, in SL±

6 (q);
(x) 6·U4(3).22, of order 29 · 37 · 5 · 7, with q = p � 11, in SL±

6 (q);
(xi) 2·M12, of order 27 · 33 · 5 · 11 in SL6(3);
(xii) 3·M22, of order 27 · 33 · 5 · 7 · 11 in SU6(2);
(xiii) 2·A5, of order 23 · 3 · 5, with q = p odd, in Sp6(q);
(xiv) 2·S5, of order 24 · 3 · 5, with q = p � 7, in Sp6(q);
(xv) 2·L2(7), of order 24 · 3 · 7, with q = p or q = p2 odd, in Sp6(q);
(xvi) 2·L2(7)·2, of order 25 · 3 · 7, with q = p � 17, in Sp6(q);
(xvii) 2·L2(13), of order 23 · 3 · 7 · 13, with q = p or q = p2, p odd, in Sp6(q);
(xviii) U3(3).2, of order 26 · 33 · 7 in Sp6(2);
(xix) 2×U3(3), of order 26 · 33 · 7, with q = p � 7, in Sp6(q);
(xx) (2×U3(3)).2, of order 27 · 33 · 7, with q = p � 11, in Sp6(q);
(xxi) 2·J2, of order 28 · 33 · 52 · 7, with q = p � 5 or q = p2 � 9, in Sp6(q);
(xxii) 2·A7, of order 24 · 32 · 5 · 7 in Sp6(9);

By Tables 8.25, 8.27 and 8.29, for some d dividing 6, the maximal S2-
subgroups have SΩ one of: d ◦ SL3(q) (Case L, q odd), d ◦ SU3(q) (Case U, q
odd), SL2(q) (Case S, p � 7), G2(q) (Case S, p = 2 < q). The following lemma
is now immediate (using Lemma 6.1.2).

Lemma 6.3.15 Let n = 6 and let S ∈ S ∗. If a higher power of the defining
characteristic p divides |SΩ| than p itself, then the highest such power of p is:

(i) q3 divides |SL3(q)| in SL6(q);
(ii) q3 divides |SU3(q)| in SU6(q);
(iii) q divides |SL2(q)| in Sp6(q);
(iv) q6 divides |G2(q)| in Sp6(q) (q > 2 even);
(v) 28 divides |3·U4(3).22| in SU6(2);
(vi) 27 divides |3·M22| in SU6(2);
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(vii) 33 divides |2·M12| in SL6(3);
(viii) 26 divides |U3(3):2| in Sp6(2);
(ix) 52 divides |2·J2| in Sp6(5);
(x) 33 divides |2·J2| in Sp6(9);
(xi) 32 divides |2·A7| in Sp6(9).

Proposition 6.3.16 Let Ω = SL±
6 (q), and let H < G be maximal amongst the

geometric subgroups of G. Then H is a non-maximal subgroup of G if and only
if Ω = SU6(2), with HΩ

∼= 35.S6 < SΩ
∼= 3·U4(3).22 (C2), and Ω � G � Ω.〈γ〉.

Hence M < G is a non-trivial maximal subgroup of G if and only if M is
listed in Table 8.24, 8.25, 8.26, or 8.27.

Proof We shall now run through the possibilities for the class of the geometric
subgroup H. In most cases, |H| is divisible by p2, and then the candidates for
SΩ can be found from Lemma 6.3.15.

For H ∈ C1, the prime-power q7 always divides |H| by Table 2.3 (even for
the novelties in SL6(q)), which eliminates all possible SΩ except 3·M22 and
3·U4(3).22 in SU6(2). The only possibility allowed by Lagrange’s theorem is
then HΩ

∼= (SU4(2) × SU2(2)).3, and SΩ
∼= 3·U4(3).22. But then the index

would be 42, and 3·U4(3).22 has no such subgroup by Proposition 6.3.13.
The possible types for H ∈ C2 are given in Table 2.4. First suppose that

HΩ
∼= (q−1)5.S6 (with q � 5 by Proposition 2.3.6) in SL6(q) orHΩ

∼= (q+1)5.S6

in SU6(q). Then |HΩ| does not divide |SL3(q)| or |SU3(q)|. For SU6(2), the only
possibility allowed by Lagrange’s theorem is SΩ

∼= 3·U4(3).22 and it can be
checked by direct computation in SU6(2) in Magma (file containmentsHinS)
that this is a genuine containment. Also, SΩ has a unique class of maximal
subgroups isomorphic to HΩ, and so this containment extends to HΩ.2 < SΩ.2.
But the stabilisers of the classes of SΩ and HΩ in this case are respectively 〈γ〉
and 〈γ, δ〉, so SΩ.3 and SΩ.[6] are novel maximal subgroups in Ω.3 and Ω.[6].

For q ± 1 = 4 or q ± 1 = 6, the power of 2 dividing |HΩ| is higher than
that dividing any other possible |SΩ|. For q + 1 = 5, there is no possible |SΩ|
divisible by 55. For all higher values of q, |H| is larger than any possible |S|.

Next suppose that H ∈ C2 with HΩ
∼= SL2(q)

3
.(q − 1)2.S3 in SL6(q) or

HΩ
∼= SU2(q)

3
.(q + 1)2 :S3 in SU6(q). Recall that by Proposition 2.3.6 the

group H is not maximal when q = 2. Since q3 divides |H|, the only examples
to be considered are SΩ

∼= 2·M12 in SL6(3), and SΩ
∼= SL3(q) or SU3(q). But

|HΩ| > |SΩ| in all of these instances.
For the remaining types in Class C2, the order of H is divisible by q6, and

if Ω �= SU6(2) then there is no suitable S by Lemma 6.3.15. If SΩ
∼= 2·M12,

then H of shape SU3(2)2.3.2 is ruled out by Lagrange’s theorem, and H of
shape SL3(4).2 would have index 11, a contradiction [12]. It can be checked
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by computation in Magma (file containmentsHinS) that 3·U4(3).22 has no
subgroups with the same order as SU3(2)2.3.2 or SL3(4).2.

The possible types for H ∈ C3 are given in Table 2.6, and in each case q3

divides |HΩ|. We can rule out Ω ∼= SU6(2) by first noting that 34 divides the
order of HΩ, but not the order of 3·M22, and then by observing from Tables 8.10
and 8.11 (which have now been proved correct, by Proposition 6.3.13) that
U4(3) has no subgroup involving SU2(8). For Ω �= SU6(2), the groups 2·M12 in
SL6(3) and SL±

3 (q) are the only possibilities for SΩ by Lemma 6.3.15, but the
first possibility violates Lagrange’s theorem, and for the second |HΩ| > |SΩ|.

The possible types for H ∈ C4 are given in Table 2.7. By Proposition 2.3.22
this type is not maximal amongst the geometric subgroups when q = 2. For
each type, q4 divides |H|, and there is no possible S.

The possible types for H ∈ C5 are given in Table 2.8. Lagrange’s theorem
eliminates all possibilities when Ω = SU6(2). Otherwise, since p6 divides |H| in
all cases, the only possible SΩ are SL±

3 (q). This is ruled out by Theorem 1.11.5.
Theorem 1.11.5 similarly rules out all possible H ∈ C8 in SL6(q).

Proposition 6.3.17 Let Ω = Sp6(q), and let H < G be maximal amongst
the geometric subgroups of G. Then H is a maximal subgroup of G.

Hence M < G is a non-trivial maximal subgroup of G if and only if M is
listed in Table 8.28 or 8.29.

Proof For H ∈ C1, the prime-power q9 divides |H| in all types except for H
of type Sp2(q)× Sp4(q), when |H| is divisible by q5 only. So we must consider
this H with S∞ ∼= G2(q) (q even) and with q = 2 and SΩ

∼= U3(3).2. But q4−1
divides |Sp4(q)|, so this is ruled out by Lemma 1.13.3 (ii) and 6.1.2. As for the
latter case, 5 divides |HΩ| but not |U3(3).2|.

The possible types for H ∈ C2 are given in Table 2.4. First suppose that
HΩ

∼= Sp2(q)
3
.S3 (with q � 3 by Proposition 2.3.6), so q3 divides |H|. The only

possibility is SΩ
∼= G2(q) with q even. If |H| divides |S|, then (q2 − 1)3 divides

(q6 − 1)(q2 − 1), which is not possible when q � 3. The other possible H ∈ C2

is HΩ
∼= GL3(q).2 with q odd. Again q3 divides |H| so there is no possible S.

The possible types for H ∈ C3 are given in Table 2.6. First suppose that
HΩ

∼= Sp2(q3).3, so q3 divides |H|. Suppose that SΩ
∼= G2(q) with q > 2 even. It

is proved in [80, Theorem 5.2 (i)] that a proper subgroup L of G2(q) with q �= 2
has order at most q6(q2 − 1)(q − 1) unless q = 3 and L ∼= G2(2) or q = 4 and
L ∼= J2. Thus if q � 4 then |HΩ| = 3q3(q6 − 1) > q6(q2 − 1)(q− 1), so there are
no containments with SΩ

∼= G2(q). For the case q = 2, note that Sp2(8).3 would
be an index 8 subgroup of G2(2) ∼= U3(3):2, contradicting Proposition 6.3.12.
The other possibility with H ∈ C3 is HΩ

∼= GU3(q).2 with q odd, but then q3

divides |H| and there is no possible S.
The possible types for H ∈ C4 are given in Table 2.7, where we see that
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HΩ
∼= SO3(q) × Sp2(q), so q2 divides |H|, with q odd. The only possibility is

SΩ
∼= 2·J2 with q = 5, but we can check in [12] that 2·J2 has no subgroup with

this structure.
The possible types for H ∈ C5 are given in Table 2.8. Here, H∞ ∼= Sp6(q0),

where q = qr
0 for some prime r, so that p9 divides H. It follows from Theo-

rem 1.11.5 that SΩ is not SL2(q), so the only candidate for SΩ is G2(q) with q
even. This is impossible by [66, Proposition 5.2.12 (ii)].

Finally, for H ∈ C8, the group HΩ
∼= SO±

6 (q) with q even, by Table 2.11, so
that q6 divides |H|. The only possibility is SΩ

∼= G2(q), and this is again ruled
out by [66, Proposition 5.2.12 (ii)].

Proposition 6.3.18 Let n = 7 and let H < G be maximal amongst the
geometric subgroups of G. Then H is a maximal subgroup of G.

Hence M < G is a non-trivial maximal subgroup of G if and only if M is
listed in Table 8.35, 8.36, 8.37, 8.38, 8.39 or 8.40.

Proof Assume that H � S < G, where S ∈ S .
We first deal with SL±

7 (q). Here, by Tables 8.36 and 8.38, the group SΩ is a
central extension by a subgroup of order 1 or 7 of U3(3), and q = p > 3. Thus
|SΩ| divides 25 · 33 · 72, and it is straightforward to use Tables 2.3 to 2.11 and
Lagrange’s theorem to show that there are no possible containments.

In the remainder of the proof we consider Ω7(q) (so q is odd). By Table 8.40,
the group SΩ is one of: S6(2), of order 29 · 34 · 5 · 7, with q = p; S9, of order
27 · 34 · 5 · 7, when q = 3; G2(q), of order q6(q2− 1)(q6− 1) by Lemma 6.1.2, for
all q.

Consider first the S1-subgroups. By Proposition 2.3.2 the C1-subgroup
(Ω+

2 (3) × Ω5(3)).[4] is not maximal amongst the geometric groups. Consult-
ing Tables 2.3 to 2.11, the only containments not ruled out by Lagrange’s
theorem are when q = 3, namely (Ω−

2 (q) × Ω5(q)).[4] < S6(2) with index 7,
(Ω3(q)× Ω±

4 (q)).[4] < S6(2) with index 105 or 84, or (Ω3(q)× Ω−
4 (q)).[4] < S9

with index 21, or 26.A7 < S6(2) with index 9. Containments are ruled out
in S6(2) by Proposition 6.3.17, and in S9 by considering its maximal sub-
groups [12].

Next consider SΩ
∼= G2(q). It is a straightforward calculation, using Ta-

ble 2.3, to show that H �∈ C1, so only Classes C2 and C5 need be considered.
For some values of q there are potential containments with HΩ

∼= 26.A7 or 26.S7

(Class C2) or Ω7(q0).(r, 2) (Class C5), but these are ruled out by the maximal
subgroups of G2(q) and 2G2(q) given in [64], reproduced here as Tables 8.41
and 8.42. From these tables, the only non-abelian composition factors of maxi-
mal subgroups of these groups are G2(q0) and 2G2(q0) for a subfield Fq0 of Fq,
L±

3 (q0), L2(t) for various t, U3(3) and J1. By applying Proposition 6.3.12 to
L3(q), L3(2), U3(q) and U3(3), and then considering the maximal subgroups of
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J1 [12], we see that none of these can involve Ω7(q0), and only U3(5e) (which
contains 3·A7) involves A7 (note that A7 is a subgroup of the C2-subgroup
27.A7, by Lemma 2.2.4 (i)). But U3(5e) has no subgroup 26.A7.

Proposition 6.3.19 Let n = 8 and let H < G be maximal amongst the
geometric subgroups of G. Then H is a maximal subgroup of G.

Hence M < G is a non-trivial maximal subgroup of G if and only if M is
listed in Table 8.44, 8.45, 8.46, 8.47, 8.48, 8.49, 8.52 or 8.53.

Proof Assume that H � S < G, where S ∈ S .
We first deal with SL±

8 (q). Here, by Tables 8.45 and 8.47, the group SΩ is a
central extension by a group of order dividing 8 of L3(4) or L3(4).23, and q > 3
is odd. Thus |SΩ| divides 210 ·32 ·5 ·7, and it is straightforward to use Tables 2.3
to 2.11 and Lagrange’s theorem to eliminate all possible containments.

In Sp8(q), by Table 8.49, the group SΩ is a central extension by a subgroup
of order 1 or 2 of one of: L2(7) (order 23 ·3·7); L2(7).2; A6 (order 23 ·32 ·5); A6.22;
L2(17) (order 24 ·32 ·17, with q = 2 or q odd); S10 (order 28 ·34 ·52 ·7, with q = 2);
L2(q); L2(q3).3; with p odd unless otherwise indicated. For q = 2 the result
follows easily from Lagrange’s theorem, so assume from now on that q is odd.
Then no |SΩ| is divisible by a higher power of q than q3, soH �∈ C1∪C2∪C3∪C8.
For C4 we note from Table 2.7 that q3 divides |HΩ|, so SΩ

∼= SL2(q3). By
Proposition 3.7.7 the groupH is of type Sp2(q)⊗GO−

4 (q), so |HΩ| is divisible by
a Zsigmondy prime for q4−1, which does not divide |SΩ| by Lemma 1.13.3 (ii).
For C5 we use Theorem 1.11.5. For C6 we first note that 213 divides |HΩ|, so
S ∈ S2. However, by Proposition 6.3.11, for no prime power t does SL2(t)
contain 21+6.Ω−

6 (2) ∼= 21+6.S4(3). Finally, for C7 we note from Table 2.10 that
q3 divides |HΩ| and q is odd, so that SΩ

∼= SL2(q3).3. But then (q2−1)3 divides
|HΩ| but not |SΩ|.

In Ω−
8 (q), by Table 8.53 the group SΩ is L±

3 (q). Classes C2, C4, C6, C7 and
C8 are all empty. For Classes C1 and C3, we use Lagrange’s theorem, whilst for
Class C5 we use Theorem 1.11.5.

Proposition 6.3.20 Let n = 9 and let H < G be maximal amongst the
geometric subgroups of G. Then H is a maximal subgroup of G.

Hence M < G is a non-trivial maximal subgroup of G if and only if M is
listed in Table 8.54, 8.55, 8.56, 8.57, 8.58, or 8.59.

Proof Assume that H � S < G, where S ∈ S .
We first deal with SL±

9 (q). Here, by Tables 8.55 and 8.57, the group SΩ

is a central extension by a group of order dividing 9 of one of: L2(19) (order
22·32·5·19), A6.23 (order 24·32·5), A7 (order 23·32·5·7), J3 (order 27·35·5·17·19),
L3(q2).2 or L3(q2).[6]. The case q = 2 is easy, so assume q > 2. Then no S -group
has order divisible by a higher power of q than q6. This immediately eliminates
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C1, the decomposition into 3 subspaces in C2, C3 and C8. For the other type of
C2-subgroup, we note that A9 � H by Lemma 2.2.4 (i), but is not a subgroup
of any of the S ∗-subgroups by Lagrange’s Theorem and Proposition 1.11.6.
Class C4 is empty. For Classes C5 and C7 we use Theorem 1.11.5, whilst for
Class C6 we use Proposition 6.3.12 to see that L3(q2) has no subgroups of shape
31+4.Sp4(3).

In Ω9(q), by Table 8.59 the group SΩ is one of L2(8) (order 23 ·32 ·7), L2(17)
(order 24·32·17), A10 (order 27·34·52·7), S10, S11 (order 28·34·52·7·11), L2(q).2 or
L2(q2).2. The case q = 3 is straightforward, so assume that q � 5. Then no S -
group is divisible by a higher power of q than q2. Lagrange’s theorem eliminates
Class C1, the C2-subgroup of type GO3(q) � S3, and Class C3. For H∞ of shape
28.A9 we argue as in the previous paragraph. Classes C4, C6 and C8 are empty.
For Classes C5 and C7 we use Lagrange’s theorem and Theorem 1.11.5.

Proposition 6.3.21 Let n = 10 and let H < G be maximal amongst the
geometric subgroups of G. Then H is a maximal subgroup of G.

Hence M < G is a non-trivial maximal subgroup of G if and only if M is
listed in Table 8.60, 8.61, 8.62, 8.63, 8.64, 8.65, 8.66, 8.67, 8.68 or 8.69.

Proof Assume that H � S < G, where S ∈ S .
We first deal with SL±

10(q). Here, by Tables 8.61 and 8.63, for some d dividing
10, the group SΩ is a central extension by a group of order d of one of: L2(19)
(order dividing 23·32·52·19); M12 (order dividing 27·33·52·11); M12.2; M22 (order
dividing 28 · 32 · 52 · 7 · 11); M22.2; L3(4) (order dividing 27 · 32 · 52 · 7); L3(4).22;
L3(q).(q−1, 3); L4(q).

(q−1,4)
2 ; L5(q); U3(q).(q+1, 3); U4(q).

(q+1,4)
2 ; U5(q). Thus

the highest power of q to divide |SΩ| is q10, which immediately eliminates C1,
all decompositions into two blocks in C2, the C3-subgroup preserving a field
extension of degree two in SL10(q), and Class C8. For the C2 decomposition
into ten blocks, we use Proposition 1.11.6 and Lagrange’s theorem. For the C2

decomposition into five blocks, Lagrange’s theorem yields that S ∈ S2, and
with a bit more work gives a contradiction. The C3 groups preserving a field
extension of degree 5 are divisible both by q5 and by (in Case U the square of)
a Zsigmondy prime for q10−1, which is false for all possible SΩ. Classes C4, C6

and C7 are empty. For Class C5 we use Lagrange’s theorem and Theorem 1.11.5.
In Sp10(q), by Table 8.65 the prime power q is odd and SΩ is one of 2·A6

(order 24 · 32 · 5), 2·A6.22, SL2(11) (order 23 · 3 · 5 · 11), SL2(11).2, 2 × U5(2)
(order 211 · 35 · 5 · 11), (2 × U5(2)).2, or SL2(q). When q = 3, by Lagrange’s
theorem the only possible containment is SO5(3)× Sp2(3) < 2×U5(2), but by
Proposition 6.3.14 the group U5(2) has no such subgroup, so assume that q � 5.
Then the highest power of q to divide |SΩ| is q, which is sufficient to eliminate
Classes C1, C2, C3, C4 and C8. For Class C5 we use Lagrange’s theorem and
Theorem 1.11.5. Classes C6 and C7 are empty.
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In Ω±
10(q), by Tables 8.67 and 8.69, the group SΩ is a central extension by

a group of order 1 or 2 of one of: A6 (order 23 · 32 · 5), A6.21, L2(11) (order
22 ·3 ·5 ·11), A7 (order 23 ·32 ·5 ·7), A11 (order 27 ·34 ·52 ·7 ·11, with q odd), A12

(order 29 ·35 ·52 ·7·11, in Ω+
10(3) and Ω−

10(2)), M12 (order 26 ·33 ·5·11, with q = 2
and Case O−), M22 (order 27 ·32 ·5 ·7 ·11, with q = 7), L3(4) (order 26 ·32 ·5 ·7,
with q = 7), or S4(q) (q odd). In Ω−

10(2) the only possibility given by Lagrange’s
theorem is a containment of (Ω−

4 (q)× Ω+
6 (q)).2 in A12 < Ω−

10(2), which would
be of index 99. However, investigations using Magma (file containmentsHinS)
reveal that A12 has no such subgroup. So assume that Ω �= Ω−

10(2). Then the
highest power of q to divide |SΩ| is q5, which eliminates Class C1. For Class
C2, Lagrange’s theorem implies that H preserves a decomposition into 5 or
10 subspaces. For H∞ ∼= 29.A10, Lagrange’s theorem implies that the group
S ∼= S4(q) (with q odd), but by Lemma 2.2.4 (i), the group H∞ contains A10,
which has no four-dimensional representations by Proposition 1.11.6. For H of
type GO+

2 (q) � S5 we note from Proposition 3.9.3 we require q � 5 for H to be
maximal amongst the geometric subgroups. Lagrange’s theorem then eliminates
both groups preserving a decomposition into 5 subspaces, and Class C3, whilst
Theorem 1.11.5 deals with C5. Classes C4, C6, C7 and C8 are empty.

Proposition 6.3.22 Let n = 11 and let H < G be maximal amongst the
geometric subgroups of G. Then H is a maximal subgroup of G.

Hence M < G is a non-trivial maximal subgroup of G if and only if M is
listed in Table 8.70, 8.71, 8.72, 8.73, 8.74 or 8.75.

Proof Assume that H � S < G, where S ∈ S .
We first deal with SL±

11(q). Here, by Tables 8.71 and 8.73, the group SΩ

is a central extension by a subgroup of order 1 or 11 of one of: U5(2) (order
210 ·35 ·5·11), L2(23) (order 23 ·3·11·23) or M24 (order 210 ·33 ·5·7·11·23). Since
there are no S2-groups, it is straightforward to use Tables 2.3 to 2.11, together
with Lagrange’s theorem, to see that there are no possible containments.

In Ω11(q), by Table 8.75 the prime power q � 5 and SΩ is one of: L3(3).2
(order 25 ·33 ·13), A12 (order 29 ·35 ·52 ·7·11), S12, A13 (order 29 ·35 ·52 ·7·11·13)
or L2(q). Lagrange’s theorem shows that H �∈ C1. For Class C2, Lagrange’s
theorem implies that SΩ = L2(q), but by Proposition 1.11.6 the group A11

has no 2-dimensional representation. Classes C3, C4, C6, C7 and C8 are empty,
whilst Theorem 1.11.5 eliminates Class C5.

Proposition 6.3.23 Let n = 12 and let H < G be maximal amongst the
geometric subgroups of G. Then H is a maximal subgroup of G.

Hence M < G is a non-trivial maximal subgroup of G if and only if M is
listed in Table 8.76, 8.77, 8.78, 8.79, 8.80, 8.81, 8.82, 8.83, 8.84, or 8.85.

Proof Assume that H � S < G, where S ∈ S .
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We first deal with SL±
12(q). Here, by Tables 8.77 and 8.79, the group SΩ

is a central extension by a group of order dividing 12 of one of: A6 (order
dividing 25 · 33 · 5); L2(23) (order dividing 25 · 32 · 11 · 23); Suz (order dividing
215 · 38 · 52 · 7 · 11 · 13); L3(4) (order dividing 28 · 33 · 5 · 7) with q = 49.
Thus if q > 2 then the highest power of q to divide |SΩ| is q2. We note that by
Proposition 3.11.2 the groups of type GL1(q) �S12 are non-maximal when q < 5,
and that by Proposition 3.11.3 the groups of type GL2(q) � S6 and GU2(q) � S6

are non-maximal when q = 2. Using this, Lagrange’s theorem easily eliminates
all possibilities for H except H preserving a tensor decomposition into a 3-
space and a 4-space, inside SU12(2). Here there is a potential containment
SU3(2) × SU4(2) � 3·Suz with index 240240, but by [112] (or [12]) the group
Suz has no maximal subgroup with index dividing 240240.

In Sp12(q), by Table 8.81 the group SΩ is one of: SL2(11) (order 23 ·3 ·5 ·11),
SL2(11).2, SL2(13) (order 23 ·3 ·7 ·13), SL2(13).2, SL2(25) (order 24 ·3 ·52 ·13),
L2(25).22 (with q = 2), Sp4(5) (order 27 · 32 · 54 · 13), S4(5), 2·G2(4) (order
213 · 33 · 52 · 7 · 13), 2·G2(4).2, 2·Suz (order 214 · 37 · 52 · 7 · 11 · 13), S14 (order
211 · 35 · 52 · 72 · 11 · 13), SL2(q) or Sp4(q). By Lagrange’s theorem, Proposi-
tion 3.11.3 and Proposition 3.11.8, q �= 2 and if q = 3 then the only potential
containments are HΩ

∼= (Sp2(3) ◦ GO±
6 (3)).2 and SΩ

∼= 2·Suz. However, the
indices would be smaller than that of any maximal subgroup of Suz. So we
assume that q > 3, so the highest power of q dividing |SΩ| is q4. Using this,
Lagrange’s theorem eliminates all possibilities for H in Classes C1, C2, C3, C4

and C8. Class C5 is eliminated by Lagrange’s theorem and Theorem 1.11.5.
In Ω±

12(q), by Tables 8.83 and 8.85 the group SΩ is a central extension by
a group of order at most 2 of one of: L2(11) (order 22 · 3 · 5 · 11), L2(13) (order
22 · 3 · 7 · 13), L3(3) (order 24 · 33 · 13), L3(3).2, M12 (order 26 · 33 · 5 · 11), M12.2,
A13 (order 29 ·35 ·52 ·7 ·11 ·13), A14 (order 210 ·35 ·52 ·72 ·11 ·13). Thus if q � 3
then p5 is the maximum power of p to divide |SΩ|. By Proposition 3.11.3 the
groups of type GO+

2 (q) � S6 are non-maximal for q � 3, by Proposition 3.11.8
the groups of type GO+

4 (q)⊗GO3(q) are never maximal, and the groups of type
GO−

4 (q) ⊗ GO3(q) are non-maximal when q = 3. It is now straightforward to
use Lagrange’s theorem to eliminate all possible containments except for HΩ of
shape Ω−

4 (8).3 = L2(64).3 in SΩ = A13 in Ω−
12(2). Since L2(64) has no faithful

permutation representation on 13 points, we are done.
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Maximal subgroups of exceptional groups

7.1 Introduction

Aschbacher’s theorem does not apply to certain extensions of S4(2i) and O+
8 (q);

that is, those that involve the exceptional graph automorphism and the triality
graph automorphism, respectively. Since the O+

8 (q) case is fully handled in [62],
we need not concern ourselves with that. Although Aschbacher’s paper [1] does
include some results about the extensions of the maximal subgroups of S4(2i)
in question, we prefer to determine these independently, and we do that in this
chapter. We also describe the maximal subgroups of the finite almost simple
exceptional groups that have a faithful projective representation in defining
characteristic of degree at most 12, namely those with socles 2B2(q) = Sz(q),
G2(q), 2G2(q) = R(q) and 3D4(q). Our principal motivation for doing this
is that, if the maximal subgroups of a group G are known, then for many
applications it is useful to know also the maximal subgroups of all composition
factors of subgroups of G.

Most of the results we need are in the literature, though we have chosen to
provide our own proofs in some cases. In general we do so either because only
the simple, but not almost simple, groups were treated originally; or because
we believe that our proof may be clearer than one already in the literature.

The groups that we shall consider are almost simple extensions of

S4(2e), O+
8 (q), Sz(2e) = 2B2(2e), G2(q), R(3e) = 2G2(3e), 3D4(q),

as it is easy to check that these are the only simple groups of Lie type with
faithful projective representations in defining characteristic of degree at most 12
to which Aschbacher’s theorem does not apply. Other groups occur in dimension
at least 25, and apart from Malle’s work [90] on 2F4(2e), maximal subgroup
classifications are incomplete, although significant information is available.

The maximal subgroups of Sz(2e), G2(q), R(3e), 3D4(q) are listed in Ta-
bles 8.16; 8.30 and 8.41; 8.42; 8.43 and 8.51, respectively. The Aschbacher classes
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Ci for these groups have not been formally defined, so the classes listed in the
tables should be regarded as being for informal guidance only. Our notation
for their outer automorphisms requires some explanation. We shall show in
Lemma 7.3.2 that Out Sz(q) is generated by the field automorphism φ. From
[10, Chapter 12], Out G2(q) is generated by the field automorphism φ when
p �= 3, whereas Out G2(3e) ∼= C2e is generated by the graph automorphism γ

with γ2 = φ. The group Out R(3e) is generated by the field automorphism φ

[64]. Finally, Out 3D4(q) ∼= C3e is generated by the field automorphism φ, with
φe = τ , the graph automorphism of order 3 [63].

The maximal subgroups of O+
8 (q) for all q, G2(q) for q odd, R(3e), and

3D4(q) for all q, are determined by Kleidman [62, 64, 63], as are the maximal
subgroups of all almost simple extensions of these groups. Thus, we consider
first S4(2e), then Sz(2e), and finally G2(2e).

We recall Definitions 1.3.9 and 1.3.11 of type 1 and type 2 novel maximal
subgroup. When working with almost simple extensions of Sz(2e) and G2(2e)
we need to show that there are no type 2 novelties, and will use the following.

Lemma 7.1.1 Let M = NG(H) be a type 2 novelty of an almost simple group
G with socle S, such that H = NS(H) < K < S, where K is maximal in S.
Then:

(i) NS(N) = H for any non-trivial characteristic subgroup N of H.
(ii) There exists H0 < K such that H and H0 are conjugate in S but not K.
(iii) H has no non-trivial normal Sylow p-subgroups.

Proof The first part follows from maximality ofM and the second from Propo-
sition 1.3.10. If P ∈ Sylp(H) with P � H then since, by (i), H = NS(P ), we
must have P ∈ Sylp(S). But then Sylow’s Theorem in K contradicts (ii).

7.2 The maximal subgroups of Sp4(2
e) and extensions

Let q = 2e > 2 be even. In the earlier chapters of this book, we have determined
the maximal subgroups of those almost simple extensions of Sp4(q) (∼= S4(q))
that are subgroups of ΣSp4(q), and have determined their stabilisers in ΣSp4(q).
Recall that Sp4(2) is not quasisimple, so is excluded from our classification.

The group Sp4(q) has an additional graph automorphism γ with γ2 = φ, and
it remains to determine the maximal subgroups of almost simple extensions of
Sp4(q) that are not contained in ΣSp4(q): to do so we first need to describe the
action of γ on elements of Sp4(q). The group Out Sp4(q) = 〈γ〉 ∼= C2e, where
γ2 is the field automorphism φ, which maps matrix entries x to x2.
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Proposition 7.2.1 The classes of maximal subgroups of ΣSp4(2e) (with
e > 1) are as described in Table 8.14. Each class C of maximal subgroups
of ΣSp4(2e) is stabilised by the field automorphism φ, and the action of the
outer automorphism γ of Sp4(2e) on C is as stated in the table.

Proof The claims regarding the maximal subgroups of ΣSp4(2e) in class S

follow from Theorem 6.3.1 for subgroups containing Sz(2e), and from Proposi-
tion 6.3.13 for the other subgroups. The fusion of the classes under γ can be
found in [1, Section 14].

The aim of this section is to find the remaining (novel) maximals of almost
simple groups with socle Sp4(2e) that are not contained in ΣSp4(2e), and hence
to prove the correctness of all rows of Table 8.14. Although we could shorten
some of our arguments by making use of [1, Theorem 14], it seems worthwhile
to present a complete and independent analysis.

For now, let F be any field of characteristic 2, and let the symplectic form
for Sp4(F ) be antidiag(1, 1, 1, 1). Label the basis for the underlying vector space
V = F 4 as (e1, e2, e3, e4). We choose a rather generous generating set for Sp4(F )
consisting of the following elements:

(i) the permutation matrices corresponding to 〈(1, 2)(3, 4), (2, 3)〉 ∼= D8;
(ii) the diagonal matrices D(κ, λ) := diag(κ, λ, λ−1, κ−1) for κ, λ ∈ F×;
(iii) the unipotent matrices T (a, b, c, d) given below, for a, b, c, d ∈ F .

The matrix T (a, b, c, d) is defined by

T (a, b, c, d) :=

⎡⎢⎢⎢⎢⎣
1 0 0 0

a 1 0 0

ac+ b c 1 0

d b a 1

⎤⎥⎥⎥⎥⎦ .

The Borel subgroup B of Sp4(F ) is the subgroup generated by all the T -
elements and D-elements. We note that the only submodules for B are

0 < 〈e1〉 < 〈e1, e2〉 < 〈e1, e2, e3〉 < V.

7.2.1 The outer automorphisms of Sp4(2e)

We start by exploring the action of the graph automorphism γ on some ge-
ometries associated with Sp4(2e). Recall Definition 1.4.4 of a perfect field, and
that all algebraically closed fields and all finite fields are perfect. There is an
analogue of the map γ for Sp4(F ), where F is any field of characteristic 2.
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Consider the action of Sp4(F ) on Λ2(V ) with the basis

(e1 ∧ e4+e2 ∧ e3, e1 ∧ e2, e1 ∧ e3, e2 ∧ e4, e3 ∧ e4, e1 ∧ e4).
Be warned that this is not the basis given in Definition 5.2.2. By Proposi-
tion 5.2.4, Sp4(F ) is a group of isometries of the bilinear form on Λ2(V ) with
matrix A = antidiag(1, 1, 1, 1, 1, 1) + E6,6.

We claim that Λ2(V ) has submodules

W := 〈e1 ∧ e4 + e2 ∧ e3〉 and U := 〈W, e1 ∧ e2, e1 ∧ e3, e2 ∧ e4, e3 ∧ e4〉.
This is easily verified for W (by considering the generators specified above),
and for U we note that U = W⊥ with respect to the form A.

Thus, g ∈ Sp4(F ) also has a natural action on U/W , and we denote by g∗

the matrix of g in this action, with respect to the following basis of U/W :

(e1 ∧ e2 +W, e1 ∧ e3 +W, e2 ∧ e4 +W, e3 ∧ e4 +W ).

Lemma 7.2.2 Let F be any field of characteristic 2. Then the map γ : g �→ g∗

induces an endomorphism on Sp4(F ), and acts as follows:

T (a, b, c, d) �→ T (c, a2c+ ab+ d, a2, abc+ b2 + cd), D(κ, λ) �→ D(κλ, κλ−1),

(1, 4) ↔ (1, 3)(2, 4), (2, 3) ↔ (1, 2)(3, 4), (1, 2, 4, 3) ↔ (1, 3, 4, 2),

with (1, 4)(2, 3)γ = (1, 4)(2, 3). Furthermore, γ �∈ ΣSp4(F ), and γ2 = φ.

Proof We see from the form matrix A that g∗ lies in Sp4(F ), and so γ induces
an endomorphism on Sp4(F ). The action of γ on the generators is straightfor-
ward to calculate, and the action of γ on the traces of the generators shows
that γ �∈ ΣSp4(F ). We find that γ2 fixes all the permutations, takes D(κ, λ) to
D(κ2, λ2), and maps T (a, b, c, d) to T (a2, b2, c2, d2), and hence γ2 = φ.

From the uniserial action of B on V , we see that the stabiliser 〈B, (2, 3)〉 of
the point 〈e1〉 in Sp4(F ) acts on V with structure 1·2·1, whereas the stabiliser
〈B, (1, 2)(3, 4)〉 of the totally singular line 〈e1, e2〉 acts on V with structure 2·2.

Assume for the remainder of this section that F is perfect. Then Bγ = B,
so 〈B, (2, 3)〉 is mapped under γ to 〈B, (1, 2)(3, 4)〉. Hence γ acts on the union
of the sets of totally singular points and lines, and γ swaps these two subsets.
Of course, elements of ΣSp4(q) stabilise both of these sets.

The generalised quadrangle GQ(F ) consists of the (singular) points and
totally singular lines of V , with two such objects being incident if and only if
one is contained in the other. The associated incidence graph Γ(F ) is bipartite,
with vertex set the union of the sets of (singular) points and totally singular
lines of V , and two vertices are joined by an edge if and only if one is contained
in the other.

The following result is known, but we include the proof.
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Proposition 7.2.3 Let F be a perfect field of characteristic 2. Then two
vertices in Γ(F ) are at distance at most 4 from each other, and Aut Sp4(F ) acts
distance-transitively on vertices. Furthermore, any pair of vertices at distance
3 from each other are connected by a unique path of length 3.

Proof Certainly Sp4(F ) acts transitively on points and on totally singular
lines, and these sets are interchanged by γ, so the action is vertex transitive. We
see from its generators that the stabiliser in Sp4(F ) of 〈e1〉, namely 〈B, (2, 3)〉,
acts on the totally singular lines containing the point 〈e1〉 via the natural 2-
transitive action of Sp2(F ) = SL2(F ) on lines, so Aut Sp4(F ) is transitive on
ordered pairs of vertices at distance 1. Considering the pair (〈e1〉, 〈e1, e2〉), the
stabiliser 〈B, (1, 2)(3, 4)〉 of 〈e1, e2〉 is again Sp2(F ), so Aut Sp4(F ) is transitive
on ordered pairs of vertices at distance 2.

Now consider a non-incident point 〈f1〉 and totally singular line 〈f2, f3〉.
Then clearly dim〈f1, f2, f3〉 = 3, hence dim〈f1, f2, f3〉⊥ = 1, and therefore
〈f1, f2, f3〉⊥ < 〈f2, f3〉⊥ = 〈f2, f3〉. So if, say, 〈f1, f2, f3〉⊥ = 〈f2〉, then 〈f1〉,
〈f1, f2〉, 〈f2〉, 〈f2, f3〉 is the unique path of length 3 connecting the pair, which
proves the final statement of the proposition. By choosing (without loss of
generality) f1 = e2, f2 = e1, we see that the subgroup 〈T (0, 0, c, 0) | c ∈ F 〉
of Sp4(F ) stabilises 〈f1〉 and 〈f2〉, and acts transitively on the totally singular
lines incident to 〈f2〉 other than 〈f1, f2〉. It follows that Sp4(F ) is transitive on
such non-incident pairs (〈f1〉, 〈f2, f3〉) and hence Aut Sp4(F ) is transitive on
ordered pairs of vertices at distance 3.

Finally, for a pair of points 〈f1〉 and 〈f2〉 for which 〈f1, f2〉 is non-degenerate,
there exists f3 ∈ 〈f1, f2〉⊥ \ 〈f1, f2〉, and so the distance from 〈f1〉 to 〈f2〉 is 4.
A similar argument applies to a non-intersecting pair of totally singular lines,
so we have now established that any two vertices in Γ(F ) are at distance at
most 4. Let f1 = e1, then 〈f2〉 = 〈e4 + ae3 + be2 + ce1〉 for some a, b, c ∈ F , and
we see directly that the subgroup B of Sp4(F ) generated by the T -elements
stabilises 〈f1〉 and acts transitively on the set of possible 〈f2〉. So Aut Sp4(F )
is distance transitive, as claimed.

7.2.2 The maximal subgroups

Theorem 7.2.4 Let Sp4(q) � G � Aut Sp4(q) where q = 2e > 2, and sup-
pose that G � ΣSp4(q). Then the maximal subgroups of G are as described in
Table 8.14.

Proof Let M be maximal in G with M � Sp4(q). Then, by Corollary 1.3.7,
M = NG(N) for some non-trivial characteristically simple subgroup N of
Sp4(q). Then MSp4(q) = G, so M contains elements swapping totally sin-
gular points and lines, and thus N has the same orbit sizes on totally singular
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points and lines. In Proposition 7.2.5 we classify those M for which N is an
elementary abelian 2-group, in Proposition 7.2.7 those for which N is an ele-
mentary abelian p-group for p odd, and in Proposition 7.2.6 those for which N
is insoluble.

We use the notation of the above proof throughout the following three
propositions, and make use of the fact that N has the same orbit sizes on
totally singular points and lines.

Proposition 7.2.5 There is a single class of novel maximal subgroups M
of G with minimal normal subgroup N an elementary abelian 2-group. This
consists of the stabilisers in G of unordered pairs {U, V }, where U and V are
incident totally singular points and lines of GQ(Fq).

Proof Let the subgroup N of Sp4(q) be an elementary abelian 2-group, such
that M = NG(N) is a novelty and let H = NΣSp4(q)

(N) = ΣSp4(q) ∩M .
Since N is a 2-group, we have W := CV (N) �= 0, and W �= V . The subspace

W is H-invariant, and so W⊥ is also H-invariant. So U := W ∩ W⊥ is H-
invariant and totally singular.

If U = 0 then, as an N -module, V = W ⊕W⊥ and, since W⊥ is N -invariant
and N consists of elements of order 2, the subspace CW⊥(N) �= 0, contradicting
the definition of W as CV (N). Therefore U �= 0, and so U is a point or line of
the generalised quadrangle GQ(Fq).

Now H ∩G has index 2 in M , so there exists a g ∈ G \ ΣSp4(q) such that
M = (H ∩G) ∪̇ (H ∩G)g. So U and Ug are different sorts of object in GQ(Fq),
and thus U �= Ug. However, H ∩G stabilises U , and so UM = {U,Ug}, and the
pair is stabilised by M . By distance-transitivity of Γ(Fq), there are only two
cases to consider: namely when U and Ug are incident, and when they are not.

In the incident case we can assume that {U,Ug} = {〈e1〉, 〈e1, e2〉}, by Propo-
sition 7.2.3. The stabiliser in Sp4(q) of this is the group B (defined earlier), with
structure q4 :(q − 1)2. This subgroup is normalised by γ by Lemma 7.2.2. Now
by Proposition 7.2.1, the group B is contained in two maximal C1-subgroups
P1 and P2 (the stabilisers of totally singular points and lines) of Sp4(q) and,
by Lagrange’s theorem and the fact that B is uniserial, these are the only such
maximals containing B. But NG(P1),NG(P2) < ΣSp4(q), so NG(N) = NG(B)
is a novel maximal subgroup of G.

In the non-incident case, by Proposition 7.2.3 we can pick {U,Ug} to be
{〈e2〉, 〈e1, e3〉}. The stabiliser K of this pair in Sp4(q) is generated by the di-
agonal D-elements and the elements T (0, b, 0, d), and hence by Lemma 7.2.2 is
normalised by γ. No subgroup of K extends to a novel maximal subgroup since,
by Proposition 7.2.3, there is a unique path of length 3 from U to Ug, and this
consists of the vertices 〈e2, e1〉 and 〈e1〉. So any element of Aut Sp4(q) stabil-
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ising {U,Ug} also stabilises {〈e2, e1〉, 〈e1〉}. above. (Note that the containment
in each other of these full stabilisers in Sp4(q):〈γ〉 is proper.)

Proposition 7.2.6 There are no novel maximal subgroups of G in which a
minimal normal subgroup N is insoluble.

Proof As in the introduction to this section, let V be the natural module of
Sp4(q). Since N is perfect, at least one composition factor of N in its action on
V is at least 2-dimensional.

If N stabilises a 3-dimensional subspace, W say, then N also stabilises the
1-dimensional subspace W⊥. Similarly, if N stabilises a 1-dimensional space W ,
then N also stabilises the 3-dimensional space W⊥, and W < W⊥. So by self-
duality the shape of V as an N -module is either 1·2·1 or 2⊕1⊕1. Both of these
are impossible, because N fixes different numbers of totally singular points and
lines. So N fixes no singular points, and hence fixes no totally singular lines.
Thus either N stabilises a 2-dimensional space, or N acts irreducibly.

If N stabilises a 2-dimensional space, W say, then the space W must be
non-degenerate, and V = W ⊕W⊥, with N acting irreducibly on both factors.
By Proposition 7.2.1, N is a subgroup either of the imprimitive group Sp2(q)�S2

or of SO+
4 (q), and by applying γ to N in the latter case, we may assume that

N < Sp2(q) �S2. Hence, since N is a direct product of isomorphic simple groups
and the only non-abelian composition factors of the subgroups of Sp2(q) are
Sp2(q0) with q | q0, we see that N is equal either to Sp2(q0) × Sp2(q0) or to a
diagonal subgroup Sp2(q0) where (in either case) q0 | q.

By Proposition 7.2.1, in the first of these cases Nγ = Ω+
4 (q0), which acts

irreducibly on V , so γ cannot normalise N . So suppose that N ∼= Sp2(q0). As a
diagonal subgroup of Sp2(q0)× Sp2(q0), N has the form {(g, gα) | g ∈ Sp2(q0)}
for some α ∈ Aut(Sp2(q0)). Recall that, as an SO+

4 (q0)-module, V decomposes
as a tensor product X ⊗ X of two copies of the natural module for Sp2(q).
If α ∈ Inn Sp2(q0) then, as an Nγ-module, we have V ∼= X ⊗ X and, since
X is self-dual, V has a 1-dimensional invariant subspace (the module U ′ in
Definition 5.4.9). On the other hand, if α ∈ Out(Sp2(q0)), then α is a field
automorphism, and by Theorem 5.1.2 the group Nγ acts irreducibly on V . So
again γ cannot normalise N .

The remaining case is when N acts irreducibly on V . If N ∼= Sp4(q0) for
some q0 | q then NG(N) is not a novel maximal subgroup of G. Similarly, if
N ∼= Sz(q0) for some q0 | q then NG(N) � NG(Sz(q)) and so NG(N) is not
a novel maximal subgroup of G. As we shall see in Theorem 7.3.3, the other
(local) maximal subgroups of Sz(q) are all contained in maximal subgroups of
Sp4(q) other than Sz(q) itself. So, using Proposition 7.2.1, we can reduce to the
case when N is a subgroup of Sp2(q2):2, SO+

4 (q), or SO−
4 (q). If N < SO+

4 (q),
then Nγ < Sp2(q) � S2, which we have already ruled out. Since γ interchanges
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Sp2(q2):S2 and SO−
4 (q), we may assume that N < Sp2(q2):2, and hence by

Tables 8.1 and 8.2 that N ∼= Sp2(q0) where q0|q2. If the index [Fq2 : Fq0 ]
is even, then N < Sp2(q), which acts reducibly (and homogeneously) on V ,
contrary to assumption. On the other hand, if [Fq2 : Fq0 ] is odd, then N acts
irreducibly but not absolutely irreducibly on V , whereas Nγ ∼= SO−

4 (
√
q0) acts

absolutely irreducibly. So γ does not normalise N .

Proposition 7.2.7 If q �= 4, then there are three classes of novel maximal
subgroups of G in which a minimal normal subgroup N is an elementary abelian
r-group for an odd prime r. If q = 4 then there are two such classes. These are
the normalisers in G of subgroups of Sp4(q) with the structures Cq2+1, Cq−1

2

with q �= 4, and Cq+1
2.

Proof By Theorem 1.6.22, the order |Sp4(q)| = q4(q−1)2(q+1)2(q2+1). Since
q = 2e the factors q4, (q − 1)2, (q + 1)2 and q2 + 1 are mutually coprime.

We can identify copies of Cq−1
2 and Cq+1

2 within Sp2(q) �S2, and a copy of
Cq2+1 within Sp2(q2):S2. Thus if r is an odd prime then a Sylow r-subgroup,
P say, of Sp4(q) is a subgroup of one of Cq−1

2, Cq+1
2 or Cq2+1. We consider

each of these possibilities.
Suppose first that r | q2 + 1. Then N � P with P cyclic. From the action

of the field automorphism of SL2(q2), we see that the cyclic subgroups of order
q2 + 1 in ΣL2(q2) are self-centralising and have normalisers with structure
Cq2+1 :4. So the centraliser and normaliser of N and P in Sp2(q2):2 ∼= ΣL2(q2)
are C := Cq2+1 and K := Cq2+1 :4 (where the conjugation action is raising to
the power q) respectively. As we shall see in Theorem 7.3.3, the group Sz(q)
has no subgroups of order q2 + 1, so K �< Sz(q). By Theorem 1.13.1, there
is a prime t dividing |K| that does not divide 2i − 1 for any i < 4e. Then
by Proposition 7.2.1 and Lagrange’s theorem, the only maximal subgroups of
Sp4(q) that could contain K are L1 = Sp2(q2):2 and L2 = SO−

4 (q). But NG(L1)
and NG(L2) are subgroups of ΣSp4(q), whereas NG(N) is not, because it is the
normaliser of a Sylow subgroup of Sp4(q)). Therefore NG(N) is a novel maximal
subgroup of G.

Suppose next that r | q − 1. Then we can take N to consist of diagonal
elements in Sp2(q) � S2, and note that N � Cr

2. Let C be the full diagonal
subgroup Cq−1

2. The Sylow r-subgroup P of C satisfies P ∼= Crk
2 for some

k � 1, with CSp2(q)�S2(P ) = C and K := NSp2(q)�S2(P ) ∼= Cq−1
2 :D8. We now

divide into two cases, depending on whether CSp4(q)
(N) = C.

If CSp4(q)
(N) = C, then M = NG(N) ≤ NG(C). Now P � NG(C), so

P � M and therefore K � M . By Proposition 7.2.1 and Lagrange’s theorem,
the only maximal subgroups of Sp4(q) that could contain K are L1 = Sp2(q)�S2

and L2 = SO+
4 (q), and (if e is even) Sp4(q0) with q = q20 . Now NG(L1) and

NG(L2) are subgroups of ΣSp4(q), whereas NG(N) is not, so the first two of
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these containments do not extend to NG(N). Furthermore, by Proposition 7.2.1
the group Sp4(q0) has subgroups with structure Cq2

0−1
2 only when q0 = 2,

so the containment K < Sp4(q0) is only possible when q = 4. Now, since
Sp4(2) ∼= S6 and S6 contains a unique conjugacy class of subgroups S3 � S2

with the structure (q−1)2 :D8, this is a genuine containment, and it extends to
NG(N) < NG(Sp4(2)). We conclude that NG(N) is a novel maximal subgroup
of G if and only if q �= 4.

We now assume that CSp4(q)
(N) properly contains C, which implies that

N ∼= Cr. As in the previous paragraph, the only maximal subgroups of Sp4(q)
that could contain C are Sp2(q) �S2, SO+

4 (q), and possibly Sp4(q0) with q = q20 ,
and then the only possibility for CSp4(q)

(N) is a group having SL2(q) as minimal
normal subgroup, which is ruled out by Proposition 7.2.6.

Lastly, consider the case where r | q + 1. Fix a subgroup C ∼= Cq+1
2

of Sp2(〈e1, e4〉) × Sp2(〈e2, e3〉), and let P be a Sylow r-subgroup of C (and
Sp4(q)). As in the previous case, if CSp4(q)

(N) = C, then NG(N) � NG(C),
which normalises P , so M = NG(P ). The normaliser K of C in Sp2(q) � S2

satisfies K := NSp4(q)
(C) ∼= Cq+1

2 :D8. Once again, by Proposition 7.2.1 and
Lagrange’s theorem, the only maximal subgroups of Sp4(q) that could contain
K are L1 = Sp2(q) � S2 and L2 = SO+

4 (q), but NG(L1),NG(L2) < ΣSp4(q),
whereas NG(N) �< ΣSp4(q), so NG(N) is a novel maximal subgroup of G.

The remaining case is CSp4(q)
(N) > C, in which case N ∼= Cr. We can see

from Lemma 7.2.2 that, in Aut(Sp4(q2)), the graph automorphism fixes the
naturally embedded subgroup Sp4(q) and induces the graph automorphism on
that subgroup, so it follows by embedding N into Sp4(q2) and using the above
argument for the case when r | q− 1, that N is not normalised by γ. So we get
no further maximals in this case.

7.3 The maximal subgroups of Sz(q) and extensions

We start with a brief summary of the definition and properties of the Suzuki
groups Sz(F ) in fields F of characteristic 2. We refer the reader to [107] for a
more detailed treatment of this material in perfect fields (see Definition 1.4.4).
We then move on to the analysis of the maximal subgroups of the almost simple
extensions of the groups Sz(q) over finite fields of characteristic 2, for which we
require only properties proved in Suzuki’s paper [106].

Let F be a field of characteristic 2, and suppose that there exists a field
endomorphism θ of F such that θ2 = φ, where φ(x) = x2. If F is a subfield of
F2 then θ, and hence also Sz(F ), exists if and only if F does not contain F4; in
these cases θ is unique. When F is perfect the maps φ and θ are automorphisms,
and we define the field homomorphism ρ by ρ : x �→

√
xθ; thus ρ = θ−1.
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Definition 7.3.1 Let F be a field with endomorphism θ as above, and let
the endomorphism γ of Sp4(F ) be as in Lemma 7.2.2. We define the Suzuki
group Sz(F ), or Sz(F, θ) if θ is not unique, to be the set of g ∈ Sp4(F ) such
that gγ = gθ.

If ρ exists, then an equivalent definition of Sz(F ) is as the centraliser in
Sp4(F ) of the involution γρ. Note that γ, φ, θ and ρ all commute, and that
when F = F2e is finite, Sz(F ) = Sz(2e) exists if and only if e is odd.

Among the generators we wrote down for Sp4(F ) at the beginning of Sec-
tion 7.2, the following are in Sz(F ): the permutations 1 and z := (1, 4)(2, 3);
the T -elements

T̂ (a, b) := T (a, b, aθ, a2+θ + ab+ bθ),

and the D-elements D̃(κ) := D(κ, κθ−1).
We now restrict to the case of F a finite field of order 2e, with e > 1 odd.

Lemma 7.3.2 The group Out Sz(q) is generated by the automorphism φ. The
group Sz(q) acts 2-transitively on a set O of size q2 + 1, with point stabiliser a
Sylow 2-normaliser of order q2(q−1), where the Sylow 2-subgroup acts regularly
on the remaining points. This action on O extends to Aut Sz(q) = ΣSz(q).

Proof The structure of Out Sz(q), and the action of Sz(q) on O are established
in [106, Theorem 11, Theorem 7]. The final claim follows from the fact that the
Sylow 2-normaliser must be preserved by all outer automorphisms.

The set of size q2 + 1 is the Suzuki-Tits ovoid. In the following proposition,
by A:qB, where A and B are cyclic groups, we mean that the conjugation
action of some generator of B raises elements of A to their qth powers.

Theorem 7.3.3 Let q > 2 be an odd power of 2, and let s :=
√

2q. Then
the group Sz(q) is simple, of order q2(q − 1)(q + s + 1)(q − s + 1), and up to
conjugacy the maximal subgroups of Sz(q) are:

(i) A Sylow 2-normaliser of order q2(q − 1), which is also the stabiliser of a
point in O.

(ii) Normalisers of cyclic groups of orders q− 1, q+ s+ 1 and q− s+ 1, with
structures D2(q−1), (q + s+ 1):q4, (q − s+ 1):q4, respectively.

(iii) Groups Sz(q0) with q = qr
0, where q0 �= 2 and r is prime.

Proof The (conjugacy classes of) maximal subgroups of the groups Sz(q) are
described in [106, Theorems 9 and 10]. It follows from the analysis of these that
the Suzuki groups are simple for q > 2.

Remark 7.3.4 We observe that in [106, Theorem 10], Suzuki appears to
assume that the only non-local maximal subgroups have a smaller Suzuki group
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as minimal normal subgroup N . The odd prime Sylow subgroups of Sz(q) are
cyclic by Theorem 7.3.3, so N cannot be a proper power of a non-abelian simple
group. Hence we can justify this assumption now by using the result, proved
originally by John Thompson but now an easy consequence of the Classification
of Finite Simple Groups, that the Suzuki groups are the only finite non-abelian
simple groups whose orders are not divisible by 3.

Suzuki does not deal with the maximal subgroups of almost simple exten-
sions of Sz(q), so we do that in the following theorem.

Theorem 7.3.5 Let Sz(q) � G � ΣSz(q) with q = 2e and e > 1 odd.
Then representatives of the classes of maximal subgroups of G are just the
normalisers in G of representatives of the classes of maximal subgroups of Sz(q).
In particular, Table 8.16 is correct.

Proof By Theorem 7.3.3, the classes of maximal subgroups of Sz(q) have dis-
tinct structures and orders, so they are all normalised by φ, and so their nor-
malisers in G are maximal in G. It therefore follows that there are no type
1 novelties. It remains to prove that there are no type 2 novelties in G. Sup-
pose, by way of contradiction, that M is such a maximal subgroup of G. By
Corollary 1.3.7, the group M = NG(N), where N is a characteristically simple
subgroup of M contained in Sz(q).

If N is a 2-group then, since all non-trivial 2-elements of Sz(q) fix a unique
point of O by Lemma 7.3.2, so does N . Therefore M = NG(N) is contained in,
and hence equal to, a point stabiliser in G, a contradiction.

Suppose next that N is a p-group with p odd. Recall from Theorem 7.3.3
that |Sz(q)| = q2(q−1)(q+s+1)(q−s−1) with s =

√
2q, and observe that these

factors are mutually coprime. Moreover, by Theorem 7.3.3, the group Sz(q) has
cyclic subgroups of orders q − 1, q + s+ 1, q − s+ 1, of which the normalisers
in Sz(q) are maximal in Sz(q). So |N | = p and its normaliser is equal to the
normaliser in G of one of these cyclic subgroups, a contradiction.

Finally, suppose that N is insoluble. Then by Remark 7.3.4 and Theo-
rem 7.3.3, we have N = Sz(q1) with q = qt

1 and q1 �= 2, and there is a unique
conjugacy class of Sz(q1) for each such q1, so this class is normalised by φ. If t
is prime, then N is maximal in Sz(q) and so again M is the normaliser in G of
a maximal subgroup of Sz(q). Otherwise, the only maximal subgroups of Sz(q)
containing N are Sz(q0) with q0 a power of q1 and q = qr

0 with r prime. It fol-
lows (by a straightforward inductive argument on q) that N is self-normalising
in Sz(q) and, since Sz(q0) has a unique class of subgroups isomorphic to Sz(q1),
Lemma 7.1.1 (ii) implies that M cannot be a novel maximal subgroup of G.
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7.4 The maximal subgroups of G2(2
e) and extensions

Finally, we consider the exceptional group G2(q) for q even. The outer auto-
morphism group of G2(q) with q = 2e is generated by the field automorphism
φ. Cooperstein [14] finds the maximal subgroups of G2(q), but not of its almost
simple extensions. These are all handled in [2, (17.3)] but the proof there is
only sketched, and so we shall include a detailed treatment here. Note that
G2(2) ∼= U3(3).2 is not quasisimple, so we are concerned only with the case
e � 2. Note also that for q even, G2(q) � Sp6(q) [14, Section 2].

Theorem 7.4.1 For q = 2e with e > 1, the maximal subgroups of G2(q) are
as described in Table 8.30.

Proof The maximal subgroups of S := G2(q) are described in [14, Theorems
2.3 and 2.4].

In the proofs in this section, we assume that the reader is familiar with the
subgroup structure of SL2(q): see, for example [53, Satz II.8.27] or our Tables 8.1
and 8.2. Note in particular that (since q is even) the insoluble subgroups of
SL2(q) are all isomorphic to SL2(2f ) with f |e, whereas the soluble subgroups
are subgroups of dihedral groups of order 2(q± 1) or groups with the structure
2e :(q−1). So all soluble subgroups have non-trivial normal Sylow p-subgroups.

Theorem 7.4.2 Let G2(q) � G � Aut G2(q) with q = 2e and e � 2. Then
representatives of the classes of maximal subgroups of G are just the normalis-
ers in G of representatives of the classes of maximal subgroups of G2(q). In
particular, Table 8.30 is correct.

Proof Let S = G2(q), let V be the natural module for Sp6(q), which is also
the natural module for S, and let X be the set of 1-dimensional subspaces
of V . By Theorem 7.4.1, there are two classes of maximal subgroups of S of
shape [q5]:GL2(q), which are the stabilisers of totally singular points and lines
of X. Since the subspaces of V of a given dimension are stabilised by φ in its
semilinear action on V , these two classes are not fused in AutS (and can be
shown to be non-isomorphic). The other classes of maximal subgroups of S all
have distinct isomorphism types, by Theorem 7.4.1. So all classes of maximal
subgroups of S are stabilised by φ.

It follows immediately from Definition 1.3.9 that there can be no type 1
novelties in any almost simple extension of S. Hence any novelty would neces-
sarily be of type 2, as described in Definition 1.3.11 and Lemma 7.1.1. So let
M := NG(H) be a type 2 novelty, where H < K < S < G, and K is maximal in
S. We proceed in Lemmas 7.4.3 to 7.4.6 to consider each of the possibilities for
K, as given by Theorem 7.4.1, and in each case show that no novelty arises.
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Lemma 7.4.3 Let S := G2(q) � G � Aut G2(q). Then there are no type 2
novel maximal subgroups M of G with H := M ∩ S � K ∼= [q5]:GL2(q).

Proof Let N := O2(H), the largest normal 2-subgroup of H. Suppose that
N �= 1. Then H must contain O2(K) = [q5], since otherwise the normaliser of
N in NO2(K) would properly contain N , contradicting Lemma 7.1.1 (i) applied
to the characteristic subgroup N of H. If N = O2(K), then Lemma 7.1.1 (i)
gives H = K, contrary to assumption. So N has non-trivial intersection with
a complement GL2(q) of O2(K) in K and hence N has the form [q5]:R, where
R is a non-trivial subgroup of a Sylow 2-subgroup of GL2(q). But R is abelian,
so R � H = NS(N) and, since R is normal in all proper subgroups of GL2(q)
that contain it, we have R � H, contradicting Lemma 7.1.1 (iii).

So N = 1, and hence H is isomorphic to a subgroup of GL2(q), which is a
direct product of its cyclic centre of order q − 1 and the simple group SL2(q).
Suppose that H is perfect, and hence that H ∼= SL2(2f ) with f |e. As mentioned
earlier, K is the stabiliser of either a point or a singular line in its action on X.

In the first case, K = Pb in the notation of [14]. We claim that H fixes a
unique point of X. Suppose not. It is shown in [13, Proof of Lemma 3.1, Method
2] that the orbit lengths of K on X are 1, q(q+1), q3(q+1), and q5, where the
orbits of O2(K) within them have lengths 1, q, q3 and q5, respectively. So the
orbits of K of lengths q(q+1) and q3(q+1) both consist of q+1 orbits of O2(K),
and hence the action of K/O2(K) ∼= GL2(q) on each of these sets of q+1 orbits
of O2(K) is 2-transitive and has soluble stabiliser. So, since H is insoluble, it
cannot fix a point in either of these two orbits of K. The stabiliser of a point
in the orbit of K of length q5 must be a complement of O2(K) in K and is
therefore isomorphic to GL2(q). So, if H fixed a point in that orbit, then it
would be normalised by the scalars in GL2(q), so could not be self-normalising
in K. So H fixes a unique point of X, and K is the stabiliser in S of that point.
But then any two conjugates of H in S that are contained in K are conjugate
in K, contradicting Lemma 7.1.1 (ii).

If, on the other hand, K is the stabiliser in S of a singular line, then K = Pa

in the notation of [14, Section 2], which is the normaliser of a long root subgroup
Q of K, with |Q| = q. It is shown also in [14, Section 2] that Q is central in
a Sylow 2-subgroup of K, so Q must be central in the subgroup [q5]:SL2(q) of
K. Hence, since H is perfect, H < CK(Q), and so NK(H) �= H.

So H is not perfect. The subgroup structure of GL2(q) and the fact that
N = 1 implies that there is an odd prime r with R := Or(H) �= 1. Then,
by Sylow’s Theorem, R is conjugate in K to a subgroup of a complement
C ∼= GL2(q) of O2(K) in K, and so we may assume that R � C and hence
(since H ∩O2(K) = 1) that H = NK(R) � C. Since H is self-normalising in S,
and hence in C, it must contain Z(C), which is cyclic of order q−1 and, from the
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subgroup structure of L2(q), H/Z(C) is either isomorphic to SL2(2f ) for some
f |e or it is dihedral of order 2(q − 1) or 2(q + 1). In either case, Z(C) = Z(H)
is characteristic in H, and so Lemma 7.1.1 (i) implies that H = C. But each
complement of O2(K) in K is a normaliser of a complement in O2(K) : Z(C),
so the complements are all conjugate in K, and hence Lemma 7.1.1 (ii) cannot
be fulfilled.

Lemma 7.4.4 Let S := G2(q) � G � Aut G2(q). Then there are no type 2
novel maximal subgroups M of G with H := M ∩ S � K ∼= SL2(q)× SL2(q).

Proof Here K is the stabiliser of a non-degenerate 2-dimensional subspace V2

of V [14, 5.4], and also stabilises the orthogonal complement V4 of V2 in V , of
dimension 4. Consider the projections of H onto the two direct factors.

Suppose first that both of these projections are soluble (or equivalently
that H is soluble). We observed at the beginning of this section that all soluble
subgroups of SL2(q) have non-trivial normal Sylow subgroups. By considering
the possible projections onto the two factors, we see that either H has a non-
trivial normal Sylow subgroup, contradicting Lemma 7.1.1 (iii), or that H has
a characteristic subgroup contained in one of the two direct factors of K, but in
that case, by Lemma 7.1.1 (i), H would contain the other factor and so would
not be soluble.

If just one of the projections is insoluble, then H has a unique non-abelian
normal subgroup isomorphic to SL2(2f ) with f |e, and its centraliser in S con-
tains the other direct factor, again contradicting Lemma 7.1.1 (i). So both pro-
jections are insoluble, and either H ∼= SL2(2f1)× SL2(2f2), or H is a diagonal
subgroup of K isomorphic to SL2(2f ), where f1, f2 and f all divide e.

It can be verified by computer calculation (file g22calc) that the group
I := G2(2) ∩K ∼= SL2(2)× SL2(2) acts absolutely irreducibly on both V2 and
V4, and I acts faithfully on V4. If H ∼= SL2(2f1)× SL2(2f2), then H contains a
conjugate of I, and hence H is absolutely irreducible on V2 and V4, and faithful
on V4. So if Hg = H0 < K with g ∈ S, then g must fix V2 and V4, and hence
g ∈ K, contradicting Lemma 7.1.1 (ii).

So suppose that H ∼= SL2(2f ) is a diagonal subgroup of K. From the list of
maximal subgroups of Sp4(2e) (Table 8.14), we see that the action of K on V4

(which we know to be absolutely irreducible) must arise as the tensor product
of two 2-dimensional representations of K (which is the same as the action of
Ω+

4 (q)). The restrictions of this representation to the diagonal subgroups of K
have corresponding SL2(2f )-modules W ⊗W σ, where W is the natural module
for SL2(2f ) and σ ∈ Out SL2(2f ). If σ �= 1, then σ is a field automorphism,
the action is irreducible by Theorem 5.3.2, and we get the same contradiction
as in the case when H is a direct product. If, on the other hand, σ = 1 then
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W ⊗W σ has a 1-dimensional submodule 〈v ⊗ v〉, so H also lies in a maximal
subgroup [q5]:GL2(q), contradicting Lemma 7.4.3.

Lemma 7.4.5 Let S := G2(q) � G � Aut G2(q). Then there are no type
2 novel maximal subgroups M of G with H := M ∩ S � K ∼= SL±

3 (q).2.
Furthermore, if M is a type 2 novel maximal subgroup of G then M ∩ S is
irreducible.

Proof First suppose K ∼= SL3(q).2, which is the imprimitive stabiliser of
a complementary pair of 3-dimensional totally singular subspaces of V [14,
5.3]. It is immediate from Table 2.4 that V = V3 ⊕ V ∗

3 , where V3 and V ∗
3

are dual irreducible SL3(q)-modules (so they are nonisomorphic, and hence by
Lemma 1.8.11 the only SL3(q)-submodules of V ) and K is the extension of
SL3(q) by the graph (= inverse-transpose) automorphism. The subgroup H

is contained in one of the maximal subgroups of K, which can be found in
Tables 8.3 and 8.4.

If H ∩ K∞ is reducible (as subgroup of SL3(q)), then it stabilises a 1-
dimensional subspace of at least one of V3 and V ∗

3 , and hence H stabilises a 1-
or 2-dimensional subspace of V . Hence by [14, Section 5] H is also contained
in one of the reducible maximal subgroups of S, and so H has already been
eliminated.

If H ∩ K∞ is an imprimitive subgroup of SL3(q) then it must stabilise a
decomposition into three blocks of dimension 1, and if it is semilinear then its
centralising field must have order q3. So in these cases H ∩ K∞ is contained
in a C2- or C3-subgroup L of SL3(q). From Table 8.3 we see that L is soluble,
and has the structure (q − 1)2 :S3 or (q2 + q + 1):C3, and the extension L.2 of
L in SL3(q).2 has structure ((q− 1)2 :S3).2 or ((q2 + q+1):C3).2. It is not hard
to see that all subgroups of L.2 have a non-trivial normal Sylow subgroup,
so H ∩ K∞ cannot be imprimitive or semilinear (as subgroup of SL3(q)) by
Lemma 7.1.1 (iii).

We can see now from Tables 8.3, 8.4, 8.5 and 8.6 (recalling that q is
even) that the remaining possibilities for H ∩K∞ are SL3(2f )(.3) with f | e,
SU3(2f )(.3) with 2f | e and f > 1, 3·A6 with q = 4, and a subgroup of the
soluble group SU3(2). We can check by direct computation (file g22calc) that
all subgroups of SU3(2) have non-trivial normal Sylow p-subgroups, and so this
case is ruled out by Lemma 7.1.1 (iii). In all other cases, V3 and V ∗

3 remain ir-
reducible nonisomorphic modules on restriction to H∞. It follows that if g ∈ S
with Hg = H0 < K, then g must preserve the same system of imprimitivity as
K, so g ∈ K, contradicting Lemma 7.1.1 (ii). This completes the elimination of
the case K ∼= SL3(q).2.

Since the stabiliser in S of a singular 3-space is contained in SL3(q).2, this
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result together with Lemmas 7.4.3 and 7.4.4 eliminate all cases in which H acts
reducibly on V , so we can assume from now on that this action is irreducible.

Now consider K ∼= SU3(q).2. From the subgroup structure of Sp6(q) (Ta-
bles 8.28 and 8.29), we see that K is semilinear, with SU3(q) acting absolutely
reducibly with centralising field Fq2 , and K is the extension of SU3(q) by the
graph (= inverse-transpose) automorphism. The subgroup H is contained in
one of the maximal subgroups of K, which can be found in Tables 8.5 and
8.6. If H ∩ K∞ is reducible (as subgroup of SU3(q)), then it stabilises a 1-
dimensional subspace of the natural module for SU3(q) and hence H stabilises
a 2-dimensional subspace of V , so H has already been eliminated. The cases
when H ∩K∞ is imprimitive or semilinear (as subgroup of SU3(q)) are elimi-
nated as in the case K ∼= SL3(q).2 Otherwise H ∩K∞ is isomorphic to either
SU3(2f )(.3) with f |e and f > 1, or to a subgroup of SU3(2). The second of
these possibilities is ruled out by Lemma 7.1.1 (ii) as in the case K ∼= SL3(q).2.
Otherwise H ∩K∞ is itself absolutely reducible with centralising field Fq2 . So
if g ∈ S with Hg = H0 < K, then g must normalise the centralising field of
K∞, and hence g ∈ K, contradicting Lemma 7.1.1 (ii).

Lemma 7.4.6 Let S := G2(q) � G � Aut G2(q). Then there are no type 2
novel maximal subgroups M of G with H := M ∩ S � K and K ∼= G2(q0),
L2(13), or J2.

Proof Suppose first thatK ∼= G2(q0) with q0 = 2f for some f |e. By considering
the maximal subgroups of K, we see that the only possibilities for H that have
not already been eliminated by Lemmas 7.4.3, 7.4.4, and 7.4.5 are H ∼= G2(2g)
with g|f , or H � L2(13), or H � J2. Since K has unique conjugacy classes of
primitive absolutely irreducible subgroups isomorphic to G2(2g) and (when f is
even) to L2(13) and J2, the groupH cannot be isomorphic to any of these groups
by Lemma 7.1.1 (ii). We can check by direct computation (file g22calc) that all
maximal subgroups of L2(13) and J2 are reducible, contradicting Lemma 7.4.5.

Finally, suppose that K ∼= L2(13) or K = J2 with q = 4. Then, as we
just observed, all maximal subgroups of K are reducible, so H is reducible.
contradicting Lemma 7.4.5.



8

Tables

8.1 Description of the tables

The tables in this chapter list the maximal subgroups of the quasisimple clas-
sical groups Ω in dimensions 2–12, as described in Theorem 2.1.1. The tables
provide sufficient information to determine the maximal subgroups of all al-
most simple extensions of Ω := Ω/Z(Ω). In addition, there are tables listing
the maximal subgroups of those almost simple exceptional groups that arise as
subgroups of these classical groups, namely Sz(q), G2(q) (taken from [64] for
odd q), R(q) and 3D4(q) (the last two taken from [63]).

The tables are ordered by the dimension of the natural representation, and
within that we list first the maximal subgroups of SLn(q), then SUn(q), then
Spn(q) and finally either Ω◦

n(q) or Ω+
n (q) and Ω−

n (q) (when these groups are
quasisimple). Tables for exceptional groups occur immediately after the smallest
classical group that contains that family, so for example the groups Sz(q) are
described just after Sp4(q), whilst G2(q) occurs in dimension 6 for q even and
dimension 7 for q odd. Please see Subsection 1.6.3 for a complete description
of our notation for the classical groups.

For each family of classical groups (such as SL4(q)), there are usually two
tables, the first listing the subgroups of geometric type and the second listing
those in Class S . The two tables have similar but not identical formats.

Let A = AutΩ. At the top of each table, we provide brief information on
|Z(Ω)| and on the orders of the generators of OutΩ. The precise definitions
of the outer automorphisms and of their inverse images in A can be found in
Subsection 1.7.1, whilst presentations of OutΩ are listed in Subsection 1.7.2.
For the exceptional groups, automorphisms are defined in Chapter 7.

The definitions of some of the outer automorphisms can depend on the
choice of invariant form in some of the unitary and orthogonal groups [6]. The
invariant forms used in this book are defined in Section 1.5.

Each row in the tables describes a representative H of an A-conjugacy class
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of subgroups of Ω. (We have not kept strictly to this rule in the cases of Sp4(q)
(q even), and Ω+

8 (q), as will be explained at the beginning of Tables 8.14 and
8.50, respectively.) Usually, H is maximal in Ω, but some of the rows define
‘novelties’, which means that H is not maximal in Ω but, for certain subgroups
T of OutΩ, the group Ω.T has a maximal subgroup K with the structure
H.T and K ∩ Ω = H. See Definition 1.3.8 and the discussion after it for more
information.

Column ‘Ci’. This is only in the geometric type tables, and specifies the
Aschbacher class of H. See Section 2.2 for the Aschbacher classes.

Column ‘Subgp’. This describes the structure of H, using the Atlas conven-
tions [12], which we described in Section 1.2. Note that the ‘−’ superscript in
examples such as 6·L3(4)·2−1 indicates that this is not the group whose character
table is displayed in [12], but is the isoclinic variant thereof: see Definition 1.3.3.

Columns ‘Notes’, ‘Nov’, ‘Conditions on q’ . Column ‘Notes’ occurs only in
the geometric type tables, and provides further information, such as restrictions
on q, and whether H defines novelties. In the Class S tables there are two
corresponding columns, headed ‘Nov’ and ‘Conditions on q’. We omit the ‘Nov’
column if it has no entries. See Section 1.3 for a general discussion of novel
maximal subgroups. For more information about how to interpret this novelty
information see Column ‘Stab’, below.

Column ‘c’. This specifies the number of Ω-conjugacy classes represented by
the row of the table: each row represents on A-conjugacy class of subgroups.

Column ‘Stab’. This describes the stabiliser S of one Ω-conjugacy class of
groups H under the action of OutΩ. (So the product of c and the order of the
stabiliser should be |Out Ω|.) Of course, S is defined only up to conjugacy in
OutΩ. If the table row is not marked as a novelty then, for any subgroup T of
S, the group H extends to a maximal subgroup H.T of Ω.T . If the table row is
a novelty, then this is true for some but not all subgroups of S, and we specify
those T for which H.T is maximal under a ‘novelty’ entry in the auxiliary table.

Column ‘Acts’. In the Class S tables, this specifies the automorphisms of H
induced by the automorphisms of Ω in Column ’Stab’. It is included only when
there could be some uncertainty.

The auxiliary table. Some entries are too long to be conveniently included
in the main table. When this happens, a symbol such as ‘N1’ is inserted into
the main table, and the auxiliary table then specifies exactly what ‘N1’ means.

At the time of publication, we know of no errors in these tables, but an errata
list has been created at http://www.cambridge.org/9780521138604, and we
shall keep this up to date. We would be extremely grateful to be informed of
any errata.
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8.1.1 Examples of use of the tables

Geometric subgroups. Let us first determine the geometric maximal sub-
groups of GU6(2), using Table 8.26. We first calculate that the centre of SU6(2)
is Z(SU6(3)) = (3, 6) = 3 = Z(GU6(2)), that |δ| = 3, with φ = γ of order
two. From Subsection 1.7.2, δφ = δ−1, so that Out U6(2) ∼= S3. Note that
GU6(2) = SU6(2).〈δ〉.

Consider first the reducible groups (Class C1). In Row 1 we find a class
of group of shape 21+8 :(3 × SU4(2)). There is a unique class of such groups
(c = 1) so their stabiliser is Out U6(q) = 〈δ, γ〉. Therefore, the groups in this
row extend to maximal subgroups of GU6(2), of shape 21+8 :(32 × SU4(2)).
Similarly, Row 2 describes a single class of maximal subgroups of GU6(2),
of shape 24+8 :(GL2(4) × GU2(2)), and Row 3 lists a class of groups of shape
29 :GL3(4). These are the three classes of parabolic maximal subgroups. Finally,
there are two classes of stabilisers of non-degenerate subspaces, namely the
groups 3×GU5(2) (Row 4) and GU4(2)×GU2(2) (Row 5).

The first listed imprimitive group (Class C2) occurs as a novel maximal
subgroup (N1) when q = 2. By the auxiliary table, the group is maximal under
subgroups of its stabiliser that are not contained in a conjugate of 〈γ〉. Now,
〈δ〉 is not contained in any conjugate of 〈γ〉 so this group does extend to a
maximal subgroup of GU6(2), of shape 36.S6. The second listed imprimitive
group is non-maximal in all extensions of SU6(2). The final two rows labelled
C2 give rise to classes of imprimitive maximal subgroups of shape GU3(2) � S2

and GL3(4).2.
Moving on to the semilinear groups (Class C3), once again we see a novelty.

It is also labelled N1, so there is no need to repeat our calculation from the
imprimitive case: we know immediately that it will give rise to a maximal
subgroup of GU6(2), of shape GU2(8).3.

There are no maximal tensor product groups (Class C4), because q = 2,
and no maximal subfield groups of type SU6(q0) (Class C5), because q is prime.
Thus the next class to consider is the subfield groups of type 3× Sp6(2). Here,
there are three classes of such groups in SU6(2), and their stabiliser in the outer
automorphism group is 〈δ3, φ〉 = 〈φ〉. Since GU6(2) contains the automorphism
δ, which is not contained in 〈φ〉, these groups do not extend to maximal sub-
groups of GU6(2), instead δ permutes the three classes in SU6(2).

As a second example, we consider six of the conjugacy classes of subgroups
of PΩ+

8 (3), as described in Table 8.50. The reader should first consult the
additional description at the beginning of the table of conjugacy under the
triality automorphism. First, we use the information given at the beginning
of the table, and the presentation given in Section 1.7.2, to calculate that
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Out PΩ+
8 (3) = 〈δ, δ′, γ, τ〉 ∼= S4. There are six classes in PΩ+

8 (3) of groups
of shape 26.A8, two in class C2 and four in class C6, and these groups are all
non-maximal in PΩ+

8 (3). The stabiliser of a class is S3, which we see in the aux-
iliary table is equal to 〈γ, δ′〉 ∼= 22. Note that with this action, S3 stabilises two
of the classes (which can be taken to be H and Hδ, both in C2), and permutes
the remaining four in pairs (which can be taken to be the four groups in C6).
We see in entry N5 of the auxiliary table that the normaliser of H is maximal
under subgroups of S3 that are not contained in 〈γδ′〉, so the normalisers of H
and of Hδ are maximal subgroups of PΩ+

8 (3).〈γ〉 (the elements of PGO+
8 (3) of

spinor norm 1), of PΩ+
8 (3).〈δ′〉 = PSO+

8 (3) and of PΩ+
8 (3).〈γ, δ′〉 = PGO+

8 (3),
but are otherwise non-maximal.

Examples from Class S . As an example, let us consider the subgroups
H = 6·L3(4)·2−1 and H = 6·L3(4) of Ω = SL6(q) and of Ω = SU6(q) that are
described in Tables 8.25 (for SL6(q)) and 8.27 (for SU6(q)).

From the ‘Conditions on q’ column, we see that these arise only when q = p.
The precise values of q for which the two variants of H occur depend on the
value of q modulo 24, but observe that they occur only when p = q ≡ 1 mod 6
in SL6(q) and q ≡ 5 mod 6 in SU6(q). This implies that A := OutΩ is dihedral
of order 12 whenever H occurs.

We are considering two related but non-isomorphic groups H in each of the
linear and unitary cases, corresponding to two rows in the tables.

Consider first H = 6·L3(4)·2−1 , an extension of the quasisimple group
6·L3(4) by its 21 automorphism. Each row of the table describes a single A-class
of subgroups H of Ω, and we see from Column ‘c’, that this class splits into
six Ω-classes. So the stabiliser in A of each of these Ω-classes of subgroups has
order 12/6 = 2. In the ‘Stab’ column we find that the stabiliser of one such
class is generated by the graph automorphism γ of Ω. So the stabilisers of the
other five Ω-classes are conjugates of γ in Out Ω. There is no entry in the ‘Nov’
column, so these subgroups H are maximal in Ω and the extension H.〈γ〉 is
maximal in Ω.〈γ〉. Finally, the ‘Acts’ column tells us that H.〈γ〉 ∼= 6·L3(4)·22.

The second of the two rows that we are considering describes subgroups
H = 6·L3(4). By the ‘c’ and ‘Stab’ columns, there are only three Ω-classes of
such subgroups, and the stabiliser S of one such class in Out Ω is the subgroup
〈δ3, γ〉 with structure 22. The automorphisms of H induced by the generators
of S are specified in the ‘Acts’ column; or rather in entry A3 of the auxiliary
table. The entry N5 in the ‘Nov’ column indicates that H is not maximal in Ω,
but that certain extensions H.T are maximal in the corresponding extensions
Ω.T . The entry N5 in the auxiliary table then specifies those subgroups T of
the class stabiliser S. We see that H.T is maximal when T = 〈δ3〉, 〈γδ3〉, and
〈δ3, γ〉, but not when T = 1 or 〈γ〉.



8.2 The tables 377

8.2 The tables

Table 8.1 The maximal subgroups of SL2(q) (= Sp2(q) ∼= SU2(q)) of
geometric type

d := |Z(SL2(q))| = (q − 1, 2), |δ| = d, |φ| = e, q = pe � 4.

Ci Subgp Notes c Stab

C1 Eq :(q − 1) 1 〈δ, φ〉
C2 Q2(q−1) q �= 5, 7, 9, 11; q odd 1 〈δ, φ〉

N1 if q = 7, 11 1 〈δ〉
N2 if q = 9 1 〈δ, φ〉

C2 D2(q−1) q even 1 〈φ〉
C3 Q2(q+1) q �= 7, 9; q odd 1 〈δ, φ〉

N1 if q = 7 1 〈δ〉
N2 if q = 9 1 〈δ, φ〉

C3 D2(q+1) q even 1 〈φ〉
C5 SL2(q0).2 q = q2

0 , q odd 2 〈φ〉
C5 SL2(q0) q = qr

0 , q odd, r odd prime 1 〈δ, φ〉
C5 L2(q0) q = qr

0 , q even, q0 �= 2, r prime 1 〈φ〉
C6 21+2

− .S3
∼= 2·S−

4 q = p ≡ ±1 (mod 8) 2 1

21+2
− :3 ∼= 2·A4 q = p ≡ ±3, 5,±13 (mod 40) 1 〈δ〉

N1 if q = p ≡ ±11,±19 (mod 40) 1 〈δ〉
N1 Maximal under 〈δ〉 N2 Maximal under subgps not contained in 〈φ〉

Note: The groups in Classes C2 and C3 also lie in C8, as do the groups in Class C5

with r = 2. The group in Class C5 with q = 4 is maximal, but lies in and is listed
under C2. The Aschbacher classes are a little different when SL2(q) is regarded as

SU2(q) or Sp2(q).

Table 8.2 The maximal subgroups of SL2(q)(= Sp2(q) ∼= SU2(q)) in Class S
d := |Z(SL2(q))| = (q − 1, 2), |δ| = d, |φ| = e, q = pe � 4.

Subgp Conditions on q c Stab

2·A5 q = p ≡ ±1 (mod 10) 2 1

q = p2, p ≡ ±3 (mod 10) 2 〈φ〉
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Table 8.3 The maximal subgroups of SL3(q) of geometric type
d := |Z(SL3(q))| = (q − 1, 3), |δ| = d, |φ| = e, |γ| = 2, q = pe.

Ci Subgp Notes c Stab

C1 Eq
3 :GL2(q) 2 〈δ, φ〉

C1 Eq
1+2 :(q − 1)2 N1 1 〈δ, φ, γ〉

C1 GL2(q) N1 1 〈δ, φ, γ〉
C2 (q − 1)2 :S3 q � 5 1 〈δ, φ, γ〉
C3 (q2 + q + 1):3 q �= 4 1 〈δ, φ, γ〉

N2 if q = 4 1 〈δ, φ, γ〉
C5 SL3(q0).

(
q−1
q0−1

, 3
)

q = qr
0 , r prime ( q−1

q0−1
, 3) 〈δc, φ, γ〉

C6 31+2
+ :Q8.

(q−1,9)
3

p = q ≡ 1 mod 3 (q−1,9)
3

〈δc, γ〉
C8 d × SO3(q) q odd d 〈φ, γ〉
C8 (q0 − 1, 3) × SU3(q0) q = q2

0 (q0 − 1, 3) 〈δc, φ, γ〉
N1 Maximal under subgroups not contained in 〈δ, φ〉
N2 Maximal under subgroups not contained in 〈φ, γ〉

Note: The group in Class C2 with q = 2 is non-maximal in SL3(2), but extends to a
novel maximal subgroup under γ. However, it lies in and is listed under C1 (type
GL2(2)). The group in Class C2 with q = 3 is maximal, but lies in and is listed

under C8. The group SU3(2) in Class C8 with q = 4 is soluble, and is the normaliser
of an extraspecial 3-group.

Table 8.4 The maximal subgroups of SL3(q) in Class S
d := |Z(SL3(q))| = (q − 1, 3), |δ| = d, |φ| = e, |γ| = 2, q = pe.

Subgp Conditions on q c Stab Acts

d × L2(7) q = p ≡ 1, 2, 4 mod 7, q �= 2 d 〈γ〉
3·A6 q = p ≡ 1, 4 mod 15 3 〈γ〉 γ → 22

q = p2, p ≡ 2, 3 mod 5, p �= 3 3 〈φ, γ〉 A1

A1 γ → 22, φ → 21 (p ≡ 2, 8 (mod 15)) or 23 (p ≡ 7, 13 (mod 15))
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Table 8.5 The maximal subgroups of SU3(q) of geometric type
d := |Z(SU3(q))| = (q + 1, 3), |δ| = d, |φ| = 2e, q = pe � 3.

Ci Subgp Notes c Stab

C1 Eq
1+2 :(q2 − 1) 1 〈δ, φ〉

C1 GU2(q) 1 〈δ, φ〉
C2 (q + 1)2 :S3 q �= 5 1 〈δ, φ〉

N1 if q = 5 1 〈δ, φ〉
C3 (q2 − q + 1):3 q �= 3, 5 1 〈δ, φ〉

N1 if q = 5 1 〈δ, φ〉
C5 SU3(q0).

(
q+1
q0+1

, 3
)

q = qr
0 , r odd prime ( q+1

q0+1
, 3) 〈δc, φ〉

C5 d × SO3(q) q odd, q � 7 d 〈φ〉
C6 31+2

+ :Q8.
(q+1,9)

3
p = q ≡ 2 mod 3, q � 11 (q+1,9)

3
〈δc, φ〉

N1 if q = 5 1 〈δ, φ〉
N1 Maximal under subgroups not contained in 〈φ〉

Note: The group SU3(2) in Class C5 with q = 2r is soluble, and is the normaliser of
an extraspecial 3-group.

Table 8.6 The maximal subgroups of SU3(q) in Class S
In all examples, q = p � 3. So d := |Z(SU3(q))| = (q + 1, 3), |δ| = d, |φ| = 2, φ = γ.

Subgp Nov Conditions on q c Stab Acts

d × L2(7) q = p ≡ 3, 5, 6 mod 7, q �= 5 d 〈γ〉
N1 q = 5 3 〈γ〉

3·A6 q = p ≡ 11, 14 mod 15 3 〈γ〉 γ → 22

3·A6
·23 q = 5 3 〈γ〉

3·A7 q = 5 3 〈γ〉
N1 Maximal under 〈γ〉
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Table 8.7 The maximal subgroups of Ω3(q) (∼= L2(q))
|Z(Ω3(q))| = 1, |δ| = 2, |φ| = e, q = pe � 5 odd.

Ci Subgp Nov Conditions on q c Stab

C1 Eq : q−1
2

1 〈δ, φ〉
C1 Dq−1 q �= 5, 7, 9, 11 1 〈δ, φ〉

N1 q = 7, 11 1 〈δ〉
N2 q = 9 1 〈δ, φ〉

C1 Dq+1 q �= 7, 9 1 〈δ, φ〉
N1 q = 7 1 〈δ〉
N2 q = 9 1 〈δ, φ〉

C2 22 :S3
∼= S4 q = p ≡ ±1 (mod 8) 2 1

22 :3 ∼= A4 q = p ≡ ±3, 5,±13 (mod 40) 1 〈δ〉
N1 q = p ≡ ±11,±19 (mod 40) 1 〈δ〉

C5 Ω3(q0) q = qr
0 , r odd prime 1 〈δ, φ〉

C5 SO3(q0) q = q2
0 2 〈φ〉

S1 A5 q = p ≡ ±1 (mod 10) 2 1

q = p2, p ≡ ±3 (mod 10) 2 〈φ〉
N1 Maximal under 〈δ〉
N2 Maximal under subgroups not contained in 〈φ〉

Note: The group in Class C5 with q = 3r is also imprimitive.
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Table 8.8 The maximal subgroups of SL4(q) of geometric type
d := |Z(SL4(q))| = (q − 1, 4), |δ| = d, |φ| = e, |γ| = 2, q = pe.

Ci Subgp Notes c Stab

C1 Eq
3 :GL3(q) 2 〈δ, φ〉

C1 Eq
4 :SL2(q)

2 :(q − 1) 1 〈δ, φ, γ〉
C1 Eq

1+4 :(GL2(q) × (q − 1)) N1 1 〈δ, φ, γ〉
C1 GL3(q) N1 1 〈δ, φ, γ〉
C2 (q − 1)3.S4 q � 7 1 〈δ, φ, γ〉

N2 if q = 5 1 〈δ, γ〉
C2 SL2(q)

2 :(q − 1).2 q � 4 1 〈δ, φ, γ〉
N3 if q = 3 1 〈δ, γ〉

C3 SL2(q
2).(q + 1).2 1 〈δ, φ, γ〉

C5 SL4(q0).
[(

q−1
q0−1

, 4
)]

q = qr
0 , r prime ( q−1

q0−1
, 4) 〈δc, φ, γ〉

C6 (4 ◦ 21+4)·S6 p = q ≡ 1 mod 8 4 〈γ〉
(4 ◦ 21+4).A6 p = q ≡ 5 mod 8 2 〈δ2, γ〉

C8 SO+
4 (q).[d] q odd d/2 〈δc, φ, γ〉

C8 SO−
4 (q).[d] q odd d/2 S1

C8 Sp4(q).(q − 1, 2) (q − 1, 2) 〈δc, φ, γ〉
C8 SU4(q0).(q0 − 1, 4) q = q2

0 (q0 − 1, 4) 〈δc, φ, γ〉
S1 〈δc, φδ(p−1)/2, γδ〉
N1 Maximal under subgroups not contained in 〈δ, φ〉
N2 Maximal under subgroups not contained in 〈δ2, γ〉
N3 Maximal under subgroups not contained in 〈γ〉

Note: The group SO+
4 (q).[d] in Class C8 is also tensor induced.

Table 8.9 The maximal subgroups of SL4(q) in Class S
In all examples, q = p. So d := |Z(SL4(q))| = (q − 1, 4), |δ| = d, |φ| = 1, |γ| = 2.

Subgp Nov Conditions on q c Stab

d ◦ 2·L2(7) N1 q = p ≡ 1, 2, 4 mod 7, q �= 2 d S1

A7 q = 2 1 〈γ〉
d ◦ 2·A7 q = p ≡ 1, 2, 4 mod 7, q �= 2 d 〈γ〉
d ◦ 2·U4(2) q = p ≡ 1 mod 6 d 〈γ〉

S1 〈γ〉 (p ≡ ±1 mod 8) or 〈δγ〉 (p ≡ ±3 mod 8) N1 Maximal under S1
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Table 8.10 The maximal subgroups of SU4(q) of geometric type
d := |Z(SU4(q))| = (q + 1, 4), |δ| = d, |φ| = 2e, q = pe.

Ci Subgp Notes c Stab

C1 Eq
1+4 :SU2(q):(q

2 − 1) 1 〈δ, φ〉
C1 Eq

4 :SL2(q
2):(q − 1) 1 〈δ, φ〉

C1 GU3(q) 1 〈δ, φ〉
C2 (q + 1)3.S4 q �= 3 1 〈δ, φ〉

N1 if q = 3 1 〈δ, φ〉
C2 SU2(q)

2 :(q + 1).2 q � 3 1 〈δ, φ〉
C2 SL2(q

2).(q − 1).2 q � 4 1 〈δ, φ〉
N1 if q = 3 1 〈δ, φ〉

C5 SU4(q0) q = qr
0 , 1 〈δ, φ〉

r odd prime

C5 Sp4(q).(q + 1, 2) (q + 1, 2) 〈δc, φ〉
C5 SO+

4 (q).[d] q � 5 odd d/2 〈δc, φ〉
C5 SO−

4 (q).[d] q odd d/2 〈δc, φδ(p−1)/2〉
C6 (4 ◦ 21+4)·S6 p = q ≡ 7 mod 8 4 〈φ〉

(4 ◦ 21+4).A6 p = q ≡ 3 mod 8 2 〈δ2, φ〉
N1 Maximal under subgroups not contained in 〈δ2, φ〉

Note: The group SO+
4 (q).[d] in Class C5 is also tensor induced.

Table 8.11 The maximal subgroups of SU4(q) in Class S
In all examples, q = p. So d := |Z(SU4(q))| = (q + 1, 4), |δ| = d, |φ| = 2, φ = γ.

Subgp Nov Conditions on q c Stab Acts

d ◦ 2·L2(7) N1 q = p ≡ 3, 5, 6 mod 7, q �= 3 d S1

d ◦ 2·A7 q = p ≡ 3, 5, 6 mod 7 d 〈γ〉
42
·L3(4) q = 3 2 〈δ2, γδ〉 A1

d ◦ 2·U4(2) q = p ≡ 5 mod 6 d 〈γ〉

S1 〈γ〉 (p ≡ ±1 mod 8) or 〈γδ〉 (p ≡ ±3 mod 8)

N1 Maximal under S1

A1 δ2 → 22, γδ → 21 and 23 in the two classes
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Table 8.12 The maximal subgroups of Sp4(q) of geometric type, q odd
|Z(Sp4(q))| = 2, |δ| = 2, |φ| = e, q = pe odd.

Ci Subgp Notes c Stab

C1 Eq
1+2 :((q − 1) × Sp2(q)) 1 〈δ, φ〉

C1 Eq
3 :GL2(q) 1 〈δ, φ〉

C2 Sp2(q)
2 :2 1 〈δ, φ〉

C2 GL2(q).2 q � 5 1 〈δ, φ〉
C3 Sp2(q

2):2 1 〈δ, φ〉
C3 GU2(q).2 q � 5 1 〈δ, φ〉
C5 Sp4(q0).(2, r) q = qr

0 , r prime (2, r) 〈δc, φ〉
C6 21+4

− .S5 q = p ≡ ±1 mod 8 2 1

C6 21+4
− .A5 q = p ≡ ±3 mod 8 1 〈δ〉

Table 8.13 The maximal subgroups of Sp4(q) in Class S , q odd.
|Z(Sp4(q))| = 2, |δ| = 2, |φ| = e, q = pe odd.

Subgp Nov Conditions on q c Stab Acts

2·A6 q = p ≡ 5, 7 mod 12, q �= 7 1 〈δ〉 δ → 21

2·S6 q = p ≡ 1, 11 mod 12 2 1

2·A7 q = 7 1 〈δ〉
SL2(q) p � 5, q > 7 1 〈δ, φ〉

N1 q = 7 1 〈δ〉
N1 Maximal under 〈δ〉

When p = 2, the group S4(q) has an additional automorphism, the graph
automorphism γ, which squares to the field automorphism φ. The rows in the
following two tables represent the classes of subgroups under Γ, and the fusion
under A is given in the final column: note that this departs from our usual
convention of each row representing one A-conjugacy class of groups.

Alternative notation for the classes for maximal subgroups of subgroups of
Aut S4(2e) not contained in PΣSp4(2e) is introduced in [1, Section 14]. In the
“Classes” column of Table 8.14, the first class is the standard class name from
Chapter 2, and the second is the number of the (Aut S4(2e))-class as given in
[1] but, to avoid a clash with our notation, we have replaced Ci in [1] by Ai.
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Table 8.14 The maximal subgroups of Sp4(q) ∼= S4(q), q � 4 even
|Z(Sp4(q))| = 1, |δ| = 1, |φ| = e, |γ| = 2e, γ2 = φ, q = 2e � 4.

Classes Subgp Nov Notes c Stab Fus of γ

C1 — Eq
3 :GL2(q) point stabiliser 1 〈φ〉 line stab

C1 — Eq
3 :GL2(q) line stabiliser 1 〈φ〉 point stab

— A1 [q4]:Cq−1
2 N1 1 〈γ〉 self

C2 — Sp2(q) � 2 1 〈φ〉 SO+
4 (q)

C3 — Sp2(q
2):2 1 〈φ〉 SO−

4 (q)

— A2 Cq−1
2 :D8 N1 q �= 4 1 〈γ〉 self

— A2 Cq+1
2 :D8 N1 1 〈γ〉 self

— A3 Cq2+1 :4 N1 1 〈γ〉 self

C5 A4 Sp4(q0) q = qr
0 , r prime 1 〈γ〉 self

C8 — SO+
4 (q) 1 〈φ〉 Sp2(q) � 2

C8 — SO−
4 (q) 1 〈φ〉 Sp2(q

2):2

S2 A5 Sz(q) e � 3 odd 1 〈γ〉 self

N1 Maximal under subgroups not contained in 〈φ〉
Note: The C8-subgroup SO+

4 (q) is also tensor induced.

Table 8.15 The maximal subgroups of Sp4(2) ∼= S4(2) ∼= S6

|Z(Sp4(2))| = 1, |δ| = 1, |φ| = 1, |γ| = 2.

Classes Subgp Nov c Stab Fusion of γ

C1 — S4 × 2 (point stabiliser) 1 1 line stab

C1 — S4 × 2 (line stabiliser) 1 1 point stab

— A1 D8 × 2 N1 1 〈γ〉 self

C3 — Sp2(4):2 ∼= S5 1 1 SO−
4 (2)

C2/8 A2 32 :D8 1 〈γ〉 self

— A3/5 5:4 ∼= Sz(2) N1 1 〈γ〉 self

C8 — SO−
4 (2) ∼= S5 1 1 Sp2(4):2

T T A6 1 〈γ〉 self

N1 Maximal under 〈γ〉
Note: The A6-subgroup of S4(2) contains the socle of S4(2). It is therefore a

triviality (denoted as class T ), and gives rise to two (rather than one) maximal
subgroups of S4(2):2 intersecting S4(2) in A6, namely PGL2(9) and M10.



8.2 The tables 385

Table 8.16 The maximal subgroups of Sz(q) < Sp4(q), q = 2e, e > 1 odd.
|Z(Sz(q))| = 1, |φ| = e. Note that Sz(2) ∼= F20

∼= 5:4 is soluble.

Ci Suzuki Subgp Notes c Stab

C1 H(q) Eq
1+1 : Cq−1 1 〈φ〉

C2/C1 B0 D2(q−1) 1 〈φ〉
C3/C8 B1 or B2 (q −√

2q + 1):4 1 〈φ〉
C3/C8 B2 or B1 (q +

√
2q + 1):4 1 〈φ〉

C5 G(q0) Sz(q0) q = qr
0 , r prime, q0 �= 2 1 〈φ〉

Table 8.17 The maximal subgroups of Ω−
4 (q) (∼= L2(q2))

|Z(Ω−
4 (q))| = 1, |δ| = (q − 1, 2), |γ| = 2, |ϕ| = 2e, ϕe = γ, q = pe.

Ci Subgp Nov Conditions on q c Stab

C1 Eq2 : q2−1
(q−1,2)

1 〈δ, ϕ〉
C1 L2(q).(q − 1, 2) q �= 2 (q − 1, 2) 〈ϕ〉
C1 D2(q2−1)/(q−1,2) q �= 3 1 〈δ, ϕ〉

N1 q = 3 1 〈δ, γ〉
C3 D2(q2+1)/(q−1,2) q �= 3 1 〈δ, ϕ〉

N1 q = 3 1 〈δ, γ〉
C5 Ω−

4 (q0) ∼= L2(q
2
0) q = qr

0 , r odd prime 1 〈δ, ϕ〉
S1 A5 q = p ≡ ±3 (mod 10) 2 〈γ〉

N1 Maximal under subgroups not contained in 〈γ〉
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Table 8.18 The maximal subgroups of SL5(q) of geometric type
d := |Z(SL5(q))| = (q − 1, 5), |δ| = d, |φ| = e, |γ| = 2, q = pe.

Ci Subgp Notes c Stab

C1 Eq
4 :GL4(q) 2 〈δ, φ〉

C1 Eq
6 :(SL2(q) × SL3(q)):(q − 1) 2 〈δ, φ〉

C1 Eq
1+6 :(GL3(q) × (q − 1)) N1 1 〈δ, φ, γ〉

C1 Eq
4+4 :GL2(q)

2 N1 1 〈δ, φ, γ〉
C1 GL4(q) N1 1 〈δ, φ, γ〉
C1 (SL2(q) × SL3(q)):(q − 1) N1 1 〈δ, φ, γ〉
C2 (q − 1)4 :S5 q � 5 1 〈δ, φ, γ〉
C3

q5−1
q−1

:5 1 〈δ, φ, γ〉
C5 SL5(q0).

(
q−1
q0−1

, 5
)

q = qr
0 , r prime ( q−1

q0−1
, 5) 〈δc, φ, γ〉

C6 51+2
+ :Sp2(5) p = q ≡ 1 mod 5 5 〈γ〉

C8 d × SO5(q) q odd d 〈φ, γ〉
C8 (q0 − 1, 5) × SU5(q0) q = q2

0 (q0 − 1, 5) 〈δc, φ, γ〉
N1 Maximal under subgroups not contained in 〈δ, φ〉

Table 8.19 The maximal subgroups of SL5(q) in Class S .
In all examples, q = p. So d := |Z(SL5(q))| = (q − 1, 5), |δ| = d, |φ| = 1, |γ| = 2.

Subgp Nov Conditions on q c Stab

d × L2(11) q = p ≡ 1, 3, 4, 5, 9 mod 11, q �= 3 d 〈γ〉
N1 q = 3 1 〈γ〉

M11 q = 3 2 1

d × U4(2) q = p ≡ 1 mod 6 d 〈γ〉
N1 Maximal under 〈γ〉
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Table 8.20 The maximal subgroups of SU5(q) of geometric type
d := |Z(SU5(q))| = (q + 1, 5), |δ| = d, |φ| = 2e, q = pe.

Ci Subgp Notes c Stab

C1 Eq
1+6 :SU3(q):(q

2 − 1) 1 〈δ, φ〉
C1 Eq

4+4 :GL2(q
2) 1 〈δ, φ〉

C1 GU4(q) 1 〈δ, φ〉
C1 (SU3(q) × SU2(q)):(q+1) 1 〈δ, φ〉
C2 (q + 1)4 :S5 1 〈δ, φ〉
C3

q5+1
q+1

:5 q � 3 1 〈δ, φ〉
C5 SU5(q0).

(
q+1
q0+1

, 5
)

q = qr
0 , r odd prime

(
q+1
q0+1

, 5
)

〈δc, φ〉
C5 d × SO5(q) q odd d 〈φ〉
C6 51+2

+ :Sp2(5) q = p ≡ 4 mod 5, or 5 〈φ〉
(q = p2 & p ≡ 2, 3 mod 5)

Table 8.21 The maximal subgroups of SU5(q) in Class S
In all examples, q = p. So d := |Z(SU5(q))| = (q + 1, 5), |δ| = d, |φ| = 2, φ = γ.

Subgp Conditions on q c Stab

d × L2(11) q = p ≡ 2, 6, 7, 8, 10 mod 11 d 〈γ〉
d × U4(2) q = p ≡ 5 mod 6 d 〈γ〉

Table 8.22 The maximal subgroups of Ω5(q) (∼= S4(q)) of geometric type
|Z(Ω5(q))| = 1, |δ| = 2, |φ| = e, q = pe odd.

Ci Subgp Notes c Stab

C1 Eq
3 :( q−1

2
× Ω3(q)).2 1 〈δ, φ〉

C1 Eq
1+2 : 1

2
GL2(q) 1 〈δ, φ〉

C1 Ω+
4 (q).2 1 〈δ, φ〉

C1 Ω−
4 (q).2 1 〈δ, φ〉

C1 ( q−1
2

× Ω3(q)).2
2 q � 5 1 〈δ, φ〉

C1 ( q+1
2

× Ω3(q)).2
2 q � 5 1 〈δ, φ〉

C2 24 :A5 q = p ≡ 3, 5 mod 8 1 〈δ〉
24 :S5 q = p ≡ 1, 7 mod 8 2 1

C5 Ω5(q0) q = qr
0 , r odd prime 1 〈δ, φ〉

C5 SO5(q0) q = q2
0 2 〈φ〉
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Table 8.23 The maximal subgroups of Ω5(q) (∼= S4(q)) in Class S
|Z(Ω5(q))| = 1, |δ| = 2, |φ| = e, q = pe odd.

Subgp Nov Conditions on q c Stab Acts

A6 q = p ≡ 5, 7 mod 12, q �= 7 1 〈δ〉 δ → 21

S6 q = p ≡ 1, 11 mod 12 2 1

A7 q = 7 1 〈δ〉
L2(q) p � 5, q > 7 1 〈δ, φ〉

N1 q = 7 1 〈δ〉
N1 Maximal under 〈δ〉

Table 8.24 The maximal subgroups of SL6(q) of geometric type
d := |Z(SL6(q))| = (q − 1, 6), |δ| = d, |φ| = e, |γ| = 2, q = pe.

Ci Subgp Notes c Stab

C1 Eq
5 :GL5(q) 2 〈δ, φ〉

C1 Eq
8 :(SL4(q) × SL2(q)):(q − 1) 2 〈δ, φ〉

C1 Eq
9 :(SL3(q) × SL3(q)):(q − 1) 1 〈δ, φ, γ〉

C1 Eq
1+8 :(GL4(q) × (q − 1)) N1 1 〈δ, φ, γ〉

C1 Eq
4+8 :SL2(q)

3 :(q − 1)2 N1 1 〈δ, φ, γ〉
C1 GL5(q) N1 1 〈δ, φ, γ〉
C1 (SL4(q) × SL2(q)):(q − 1) N1 1 〈δ, φ, γ〉
C2 (q − 1)5.S6 q � 5 1 〈δ, φ, γ〉
C2 SL2(q)

3 :(q − 1)2.S3 q � 3 1 〈δ, φ, γ〉
C2 SL3(q)

2 :(q − 1).S2 1 〈δ, φ, γ〉
C3 SL3(q

2).(q + 1).2 1 〈δ, φ, γ〉
C3 SL2(q

3).(q2 + q + 1).3 1 〈δ, φ, γ〉
C4 SL2(q) × SL3(q) q � 3 1 〈δ, φ, γ〉
C5 SL6(q0).

[(
q−1
q0−1

, 6
)]

q = qr
0 ( q−1

q0−1
, 6) 〈δc, φ, γ〉

r prime

C8 (q − 1, 3) × SO+
6 (q).2 q odd d/2 〈δc, φ, γ〉

C8 (q − 1, 3) × SO−
6 (q).2 q odd d/2 S1

C8 (q − 1, 3) × Sp6(q) (q − 1, 3) 〈δc, φ, γ〉
C8 SU6(q0).(q0 − 1, 6) q = q2

0 (q0 − 1, 6) 〈δc, φ, γ〉

S1 〈δc, φ, γ〉 (q ≡ 3 mod 4) or 〈δc, φδ(p−1)/2, γδ−1〉 (q ≡ 1 mod 4)

N1 Maximal under subgroups not contained in 〈δ, φ〉
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Table 8.25 The maximal subgroups of SL6(q) in Class S
d := |Z(SL6(q))| = (q − 1, 6), |δ| = d, |φ| = e, |γ| = 2, q = pe.

Subgp Nov Conditions on q c Stab Acts

2 × 3·A6.23 N1 q = p ≡ 1 mod 24 6 〈γ〉
N2 q = p ≡ 19 mod 24 6 〈γδ〉

2 × 3·A6 N3 q = p ≡ 7 mod 24 3 〈δ3, γ〉 A1

N4 q = p ≡ 13 mod 24 3 〈δ3, γ〉 A2

6·A6 N1 q = p ≡ 1, 31 mod 48 6 〈γ〉 γ → 22

N2 q = p ≡ 7, 25 mod 48 6 〈γδ〉 γδ → 22

6·A6 N5 q = p2, p ≡ 5, 11 mod 24 6 〈φ, γδ3〉 A3

6·A6 N6 q = p2, p ≡ 13, 19 mod 24 6 〈φγ, γδ3〉 A4

d ◦ 2·L2(11) q = p ≡ 1, 3, 4, 5, 9 mod 11, q �= 3 d

p ≡ ±1 mod 8 〈γ〉
p ≡ ±3 mod 8 〈γδ〉

6·A7 q = p ≡ 1, 7 mod 24 12 1

6·A7 q = p2, p ≡ 5, 11 mod 24 12 〈φ〉
6·A7 q = p2, p ≡ 13, 19 mod 24 12 〈φγ〉
6·L3(4)·2−

1 q = p ≡ 1, 19 mod 24 6 〈γ〉 γ → 22

6·L3(4) N7 q = p ≡ 7, 13 mod 24 3 〈δ3, γ〉 A5

2·M12 q = 3 2 〈γδ〉
61
·U4(3)·2−

2 q = p ≡ 1 mod 12 6 〈γ〉 A6

61
·U4(3) q = p ≡ 7 mod 12 3 〈δ3, γ〉 A7

d ◦ SL3(q) q ≡ ±1 mod 8 2 〈δ2, φ, γ〉
q ≡ ±3 mod 8 2 〈δ2, φ, γδ〉

N1 Maximal under 〈γ〉 A1 δ3 → 23, γ → 22

N2 Maximal under 〈γδ〉 A2 δ3 → 23, γ → 21

N3 Maximal under 〈γ〉 if p ≡ ±2 mod 5, 〈δ3, γ〉 A3 φ → 21, γδ3 → 22

N4 Maximal under 〈γδ3〉 if p ≡ ±2 mod 5, 〈δ3, γ〉 A4 φγ → 21, γδ3 → 22

N5 Maximal under subgroups not contained in 〈φ〉 A5 δ3 → 21, γ → 22

N6 Maximal under subgroups not contained in 〈φγ〉 A6 γ → (22)122

N7 Maximal under subgroups not contained in 〈γ〉 A7 δ3 → 22, γ → 21
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Table 8.26 The maximal subgroups of SU6(q) of geometric type
d := |Z(SU6(q))| = (q + 1, 6), |δ| = d, |φ| = 2e, φe = γ, q = pe.

Ci Subgp Notes c Stab

C1 Eq
1+8 :SU4(q):(q

2 − 1) 1 〈δ, φ〉
C1 Eq

4+8 :(SL2(q
2) × SU2(q)):(q

2 − 1) 1 〈δ, φ〉
C1 Eq

9 :SL3(q
2):(q − 1) 1 〈δ, φ〉

C1 GU5(q) 1 〈δ, φ〉
C1 (SU4(q) × SU2(q)):(q + 1) 1 〈δ, φ〉
C2 (q + 1)5.S6 q � 3 1 〈δ, φ〉

N1 if q = 2 1 〈δ, γ〉
C2 SU2(q)

3 :(q + 1)2.S3 q � 3 1 〈δ, φ〉
C2 SU3(q)

2 :(q + 1).S2 1 〈δ, φ〉
C2 SL3(q

2).(q − 1).2 1 〈δ, φ〉
C3 SU2(q

3).(q2 − q + 1).3 q � 3 1 〈δ, φ〉
N1 if q = 2 1 〈δ, γ〉

C4 SU2(q) × SU3(q) q � 3 1 〈δ, φ〉
C5 SU6(q0).

[(
q+1
q0+1

, 6
)]

q = qr
0 ,

(
q+1
q0+1

, 6
)

〈δc, φ〉
r odd prime

C5 (q + 1, 3) × Sp6(q) (q + 1, 3) 〈δc, φ〉
C5 (q + 1, 3) × SO+

6 (q).2 q odd (q + 1, 3) S1

C5 (q + 1, 3) × SO−
6 (q).2 q odd (q + 1, 3) S2

S1 〈δc, φ〉 (q ≡ 1 mod 4) or 〈δc, φδ(p−1)/2)〉 (q ≡ 3 mod 4)

S2 〈δc, φδ(p−1)/2)〉 (q ≡ 1 mod 4) or 〈δc, φ〉 (q ≡ 3 mod 4)

N1 Maximal under subgroups not contained in 〈γ〉
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Table 8.27 The maximal subgroups of SU6(q) in Class S
d := |Z(SU6(q))| = (q + 1, 6), |δ| = d, |φ| = 2e, φe = γ, q = pe.

Subgp Nov Conditions on q c Stab Acts

2 × 3·A6 N1 q = p ≡ 11 mod 24 3 〈δ3, γ〉 A1

N2 q = p ≡ 17 mod 24 3 〈δ3, γ〉 A2

2 × 3·A6.23 N3 q = p ≡ 5 mod 24, q �= 5 6 〈γδ〉
N4 q = p ≡ 23 mod 24 6 〈γ〉

6·A6 N4 q = p ≡ 17, 47 mod 48 6 〈γ〉 γ → 22

N3 q = p ≡ 23, 41 mod 48 6 〈γδ〉 γδ → 22

d ◦ 2·L2(11) q = p ≡ 2, 6, 7, 8, 10 mod 11, q �= 2 d

p ≡ ±1 mod 8 〈γ〉
p ≡ ±3 mod 8 〈γδ〉

6·A7 q = p ≡ 17, 23 mod 24 12 1

6·L3(4) N5 q = p ≡ 11, 17 mod 24 3 〈δ3, γ〉 A3

6·L3(4)·2−
1 q = p ≡ 5, 23 mod 24 6 〈γ〉 γ → 22

3·M22 q = 2 3 〈γ〉
31
·U4(3):22 q = 2 3 〈γ〉 A4

61
·U4(3) q = p ≡ 5 mod 12 3 〈δ3, γ〉 A5

61
·U4(3)·2−

2 q = p ≡ 11 mod 12 6 〈γ〉 A4

d ◦ SU3(q) p ≡ ±1 mod 8 2 〈δ2, φ〉
p ≡ ±3 mod 8 2 〈δ2, φδ〉

N1 Maximal under 〈γδ3〉 if p ≡ ±2 mod 5, 〈δ3, γ〉 A1 δ3 → 23, γ → 21

N2 Maximal under 〈γ〉 if p ≡ ±2 mod 5, 〈δ3, γ〉 A2 δ3 → 23, γ → 22

N3 Maximal under 〈γδ〉 A3 δ3 → 21, γ → 22

N4 Maximal under 〈γ〉 A4 γ → (22)122

N5 Maximal under subgroups not contained in 〈γ〉 A5 δ3 → 22, γ → 21

Table 8.28 The maximal subgroups of Sp6(q) of geometric type
d := |Z(Sp6(q))| = (q − 1, 2), |δ| = d, |φ| = e, q = pe.

Ci Subgp Notes c Stab

C1 Eq
1+4 :((q − 1) × Sp4(q)) q odd 1 〈δ, φ〉

C1 Eq
5 :((q − 1) × Sp4(q)) q even 1 〈φ〉

C1 Eq
3+4 :(GL2(q) × Sp2(q)) 1 〈δ, φ〉

C1 Eq
6 :GL3(q) 1 〈δ, φ〉

C1 Sp2(q) × Sp4(q) 1 〈δ, φ〉
C2 Sp2(q)

3 :S3 q � 3 1 〈δ, φ〉
C2 GL3(q).2 q odd 1 〈δ, φ〉
C3 Sp2(q

3):3 1 〈δ, φ〉
C3 GU3(q).2 q odd 1 〈δ, φ〉
C4 Sp2(q) ◦ GO3(q) q � 5 odd 1 〈δ, φ〉
C5 Sp6(q0).(d, r) q = qr

0 , r prime (d, r) 〈δc, φ〉
C8 SO+

6 (q) q even 1 〈φ〉
C8 SO−

6 (q) q even 1 〈φ〉
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Table 8.29 The maximal subgroups of Sp6(q) in Class S
d := |Z(Sp6(q))| = (q − 1, 2), |δ| = d, |φ| = e, q = pe.

Subgp Nov Conditions on q c Stab

2·A5 q = p ≡ ±3,±13 mod 40 1 〈δ〉
N1 q = p ≡ ±11,±19 mod 40 1 〈δ〉

2·S−
5 q = p ≡ ±1 mod 8 2 1

2·L2(7)·2+ q = p ≡ ±1 mod 16 2 1

2·L2(7)·2+ q = p ≡ ±1 mod 16 2 1

2·L2(7) q = p ≡ ±7 mod 16, q �= 7 1 〈δ〉
2·L2(7) q = p ≡ ±7 mod 16, q �= 7 1 〈δ〉
2·L2(7) q = p2, p ≡ ±3,±5 mod 16, p �= 3 2 〈δ〉

N1 q = 9 2 〈δ〉
2·L2(13) q = p ≡ ±1,±3,±4 mod 13 2 1

2·L2(13) q = p2, p ≡ ±2,±5,±6 mod 13, p �= 2 2 〈φ〉
2·A7 q = 9 2 〈φ〉
U3(3):2 q = 2 1 1

2 × U3(3) q = p ≡ ±7,±17 mod 60 1 〈δ〉
N1 q = p ≡ ±19,±29 mod 60 1 〈δ〉

(2 × U3(3)).2 q = p ≡ ±1 mod 12 2 1

2·J2 q = p ≡ ±1 mod 5 2 1

2·J2 q = 5 1 〈δ〉
2·J2 q = p2, p ≡ ±2 mod 5, p �= 2 2 〈φ〉
2·L2(q) p � 7 1 〈δ, φ〉
G2(q) p = 2 �= q 1 〈φ〉

N1 Maximal under 〈δ〉

Table 8.30 The maximal subgroups of G2(q) < Sp6(q), q = 2e, e > 1.
|Z(G2(q))| = 1, |φ| = e. Note that G2(2) ∼= U3(3).2.

This table is taken from [14]. It is proved in [2] that there are no novel maximal
subgroups, but see also Section 7.4. The Aschbacher classes specified have no formal
definitions, and are just intended to give a rough idea of the nature of the subgroups.

Ci Subgp Notes c Stab

C1 [q5]:GL2(q) 1 〈φ〉
C1 [q5]:GL2(q) 1 〈φ〉
C1 SL2(q) × SL2(q) 1 〈φ〉
C2 SL3(q).2 1 〈φ〉
C3 SU3(q).2 1 〈φ〉
C5 G2(q0) q = qr

0 , r prime 1 〈φ〉
S1 L2(13) q = 4 1 〈φ〉
S1 J2 q = 4 1 〈φ〉
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Table 8.31 The maximal subgroups of Ω+
6 (q) (∼= SL4(q)/〈−I4〉) of geometric

type.

q = 2e: |Z(Ω+
6 (q))| = 1, |δ| = 1, |γ| = 2, |δ′| = 1, |φ| = e.

q = pe ≡ 1 mod 4: |Z(Ω+
6 (q))| = 2, |δ| = 4, |γ| = 2, δ2 = δ′, |φ| = e.

q = pe ≡ 3 mod 4: |Z(Ω+
6 (q))| = 1, |δ| = 2, |γ| = 2, |δ′| = 1, |φ| = e.

Ci Subgp Notes c Stab

C1 Eq
4 :( q−1

(q−1,2)
× Ω+

4 (q)).(q − 1, 2) 1 〈δ, γ, φ〉
C1 Eq

1+4 : 1
(q−1,2)

(GL2(q) × (q − 1)) N1 1 〈δ, γ, φ〉
C1 Eq

3 : 1
(q−1,2)

GL3(q) 2 〈δ, φ〉
C1 Ω5(q).2 q odd 2 S1

C1 Ω+
4 (q):(q − 1):2 q � 4 1 〈δ, γ, φ〉

N2 if q = 3 1 〈δ, γ〉
C1 Ω−

4 (q).(q + 1).2 1 〈δ, γ, φ〉
C1 Sp4(q) q even 1 〈γ, φ〉
C2 25·S6 p = q ≡ 1 mod 8 4 〈γ〉
C2 25 :A6 p = q ≡ 5 mod 8 2 〈δ′, γ〉
C2

1
2(q−1,2)

GO+
2 (q)

3
.S3 q � 7 1 〈δ, γ, φ〉

N3 if q = 5 1 〈δ, γ〉
C2

1
4
GO3(q)

2.S2 q ≡ 1 mod 4 2 〈γ, δ′, φ〉
C2 SO3(q)

2 q ≡ 3 mod 4 1 〈δ, γ, φ〉
C2

1
(q−1,2)

GL3(q) N1 1 〈δ, γ, φ〉
C3

(q−1,4)
2

× Ω3(q
2).2 q ≡ 1 mod 4 2 S2

q ≡ 3 mod 4 1 〈δ, γ, φ〉
C5 Ω+

6 (q0) q = qr
0 , r prime, 1 〈δ, γ, φ〉

r odd or q even

C5 SO+
6 (q0) q = q2

0 , q0 ≡ 1 mod 4 2 〈γ, δ′, φ〉
C5 SO+

6 (q0).2 q = q2
0 , q0 ≡ 3 mod 4 4 〈γ, φ〉

C5 Ω−
6 (q0) q = q2

0 , q even 1 〈γ, φ〉
C5 SO−

6 (q0).2 q = q2
0 , q0 ≡ 1 mod 4 4 〈γ, φ〉

C5 SO−
6 (q0) q = q2

0 , q0 ≡ 3 mod 4 2 〈γ, δ′, φ〉
S1 〈γ, δ′, φ〉 (q ≡ 1 mod 4) or 〈γ, φ〉 (q ≡ 3 mod 4)

S2 〈γδ, δ′, φ〉 (p ≡ 1 mod 4) or 〈γδ, δ′, γφ〉 (p ≡ 3 mod 4)

N1 Maximal under subgps not contained in 〈δ, φ〉
N2 Maximal under subgps not contained in 〈γ〉
N3 Maximal under subgps not contained in 〈γ, δ′〉
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Table 8.32 The maximal subgroups of Ω+
6 (q) (∼= SL4(q)/〈−I4〉) in Class S

Note that q = p in all examples, so |φ| = 1.
q = 2: |Z(Ω+

6 (q))| = 1, |γ| = 2.

q = p odd: d := |Z(Ω+
6 (q))| = (q−1,4)

2
, |δ| = 2d, |γ| = 2, δ2 = δ′.

Subgp Nov Conditions on q c Stab

d × L2(7) N1 q = p ≡ 1, 2, 4 mod 7, q �= 2 (q − 1, 4) S1

A7 q = 2 1 〈γ〉
d × A7 q = p ≡ 1, 2, 4 mod 7, q �= 2 (q − 1, 4) 〈γ〉
d × U4(2) q = p ≡ 1 mod 6 (q − 1, 4) 〈γ〉

S1 〈γ〉 (p ≡ ±1 mod 8) or 〈δγ〉 (p ≡ ±3 mod 8) N1 Maximal under S1

Table 8.33 The maximal subgroups of Ω−
6 (q) (∼= SU4(q)/〈−I4〉) of geometric

type

q = 2e: |Z(Ω−
6 (q))| = 1, |δ| = 1, |γ| = 2, |δ′| = 1, |ϕ| = 2e, ϕe = γ.

q = pe ≡ 1 mod 4: |Z(Ω−
6 (q))| = 1, |δ| = 2, |γ| = 2, |δ′| = 1, |ϕ| = 2e, ϕe = γ.

q = pe ≡ 3 mod 4: |Z(Ω−
6 (q))| = 2, |δ| = 4, |γ| = 2, δ2 = δ′, |φ| = e.

Ci Subgp Notes c Stab

C1 Eq
4 :( q−1

(q−1,2)
× Ω−

4 (q)).(q − 1, 2) 1 S1

C1 Eq
1+4 : 1

(q−1,2)
(GL2(q) × (q + 1)) 1 S1

C1 Ω5(q).2 q odd 2 S2

C1 Ω+
4 (q).(q + 1).2 q � 3 1 S1

C1 Ω−
4 (q).(q − 1).2 q � 4 1 S1

N1 if q = 3 1 〈δ, γ〉
C1 Sp4(q) q even 1 〈ϕ〉
C2 25·S6 p = q ≡ 7 mod 8 4 〈γ〉
C2 25 :A6 p = q ≡ 3 mod 8 2 〈γ, δ′〉
C2

1
2(q−1,2)

GO−
2 (q)

3
.S3 q �= 3 1 S1

N1 if q = 3 1 〈δ, γ〉
C2

1
4
GO3(q)

2.S2 q ≡ 3 mod 4, q �= 3 2 〈γ, δ′, φ〉
C2 SO3(q)

2 q ≡ 1 mod 4 1 〈δ, ϕ〉
C3 Ω3(q

2).2 q ≡ 1 mod 4 1 〈δ, ϕ〉
C3 2 × Ω3(q

2).2 q ≡ 3 mod 4 2 〈δγ, δ′, φ〉
C3

1
(q−1,2)

GU3(q) 1 S1

C5 Ω−
6 (q0) q = qr

0 , r odd prime 1 S1

S1 〈δ, ϕ〉 (q ≡ 1 mod 4) or S2 〈ϕ〉 (q ≡ 1 mod 4) or

〈δ, γ, φ〉 (q ≡ 3 mod 4) 〈γ, δ′, φ〉 (q ≡ 3 mod 4)

or 〈ϕ〉 (q even) N1 Maximal under subgps not contained in S2
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Table 8.34 The maximal subgroups of Ω−
6 (q) (∼= SU4(q)/〈−I4〉) in Class S .

Note that q = p is odd in all examples, so |φ| = 1 and ϕ = γ.

q = p odd: d := |Z(Ω−
6 (q))| = (q+1,4)

2
, |δ| = 2d, |γ| = 2, δ2 = δ′.

Subgp Nov Conditions on q c Stab Acts

d × L2(7) N1 q = p ≡ 3, 5, 6 mod 7, q �= 3 (q + 1, 4) S1

d × A7 q = p ≡ 3, 5, 6 mod 7 (q + 1, 4) 〈γ〉
2·L3(4) q = 3 2 〈δγ, δ′〉 A1

d × U4(2) q = p ≡ 5 mod 6 (q + 1, 4) 〈γ〉
S1 〈γ〉 (p ≡ ±1 mod 8) or 〈δγ〉 (p ≡ ±3 mod 8) N1 Maximal under S1

A1 δ′ → 22, δγ → 21 and 23 in the two classes

Table 8.35 The maximal subgroups of SL7(q) of geometric type
d := |Z(SL7(q))| = (q − 1, 7), |δ| = d, |φ| = e, |γ| = 2, q = pe.

Ci Subgp Notes c Stab

C1 Eq
6 :GL6(q) 2 〈δ, φ〉

C1 Eq
10 :(SL5(q) × SL2(q)):(q−1) 2 〈δ, φ〉

C1 Eq
12 :(SL4(q) × SL3(q)):(q − 1) 2 〈δ, φ〉

C1 Eq
1+10 :(GL5(q) × (q − 1)) N1 1 〈δ, φ, γ〉

C1 Eq
4+12 :(SL2(q)

2×SL3(q)):(q−1)2 N1 1 〈δ, φ, γ〉
C1 Eq

9+6 :GL3(q)
2 N1 1 〈δ, φ, γ〉

C1 GL6(q) N1 1 〈δ, φ, γ〉
C1 (SL5(q) × SL2(q)):(q − 1) N1 1 〈δ, φ, γ〉
C1 (SL4(q) × SL3(q)):(q − 1) N1 1 〈δ, φ, γ〉
C2 (q − 1)6 :S7 q � 5 1 〈δ, φ, γ〉
C3

q7−1
q−1

:7 1 〈δ, φ, γ〉
C5 SL7(q0).

(
q−1
q0−1

, 7
)

q = qr
0 , r prime

(
q−1
q0−1

, 7
)

〈δc, φ, γ〉
C6 71+2

+ :Sp2(7) q=p ≡ 1 mod 7 7 〈φ, γ〉
or (q = p3 &

p ≡ 2, 4 mod 7)

C8 d × SO7(q) q odd d 〈φ, γ〉
C8 (q0 − 1, 7) × SU7(q0) q = q2

0 (q0−1, 7) 〈δc, φ, γ〉
N1 Maximal under subgroups not contained in 〈δ, φ〉

Table 8.36 The maximal subgroups of SL7(q) in Class S
In all examples, q = p. So d := |Z(SL7(q))| = (q − 1, 7), |δ| = d, |φ| = 1, |γ| = 2.

Subgp Conditions on q c Stab

d × U3(3) q = p ≡ 1 mod 4 d 〈γ〉
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Table 8.37 The maximal subgroups of SU7(q) of geometric type
d := |Z(SU7(q))| = (q + 1, 7), |δ| = d, |φ| = 2e, q = pe.

Ci Subgp Notes c Stab

C1 Eq
1+10 :SU5(q):(q

2 − 1) 1 〈δ, φ〉
C1 Eq

4+12 :(SL2(q
2) × SU3(q)):(q

2−1) 1 〈δ, φ〉
C1 Eq

9+6 :GL3(q
2) 1 〈δ, φ〉

C1 GU6(q) 1 〈δ, φ〉
C1 (SU5(q) × SU2(q)):(q + 1) 1 〈δ, φ〉
C1 (SU4(q) × SU3(q)):(q + 1) 1 〈δ, φ〉
C2 (q + 1)6 :S7 1 〈δ, φ〉
C3

q7+1
q+1

:7 1 〈δ, φ〉
C5 SU7(q0).

(
q+1
q0+1

, 7
)

qr
0 = q,

(
q+1
q0+1

, 7
)

〈δc, φ〉
r odd prime

C5 d × SO7(q) q odd d 〈φ〉
C6 71+2

+ :Sp2(7) q = p ≡ 6 mod 7, 7 〈φ〉
or (q = p3 &

p ≡ 3, 5 mod 7)

Table 8.38 The maximal subgroups of SU7(q) in Class S

In all examples, q = p. So d := |Z(SU7(q))| = (q + 1, 7), |δ| = d, |φ| = 2, φ = γ.

Subgp Conditions on q c Stab

d × U3(3) q = p ≡ 3 mod 4, q �= 3 d 〈γ〉

Table 8.39 The maximal subgroups of Ω7(q) of geometric type
|Z(Ω7(q))| = 1, |δ| = 2, |φ| = e, q = pe odd.

Ci Subgp Notes c Stab

C1 Eq
5 :( q−1

2
× Ω5(q)).2 1 〈δ, φ〉

C1 Eq
1+6 :( 1

2
GL2(q) × Ω3(q)).2 1 〈δ, φ〉

C1 Eq
3+3 : 1

2
GL3(q) 1 〈δ, φ〉

C1 Ω+
6 (q).2 1 〈δ, φ〉

C1 Ω−
6 (q).2 1 〈δ, φ〉

C1 (Ω+
2 (q) × Ω5(q)).2

2 q � 5 1 〈δ, φ〉
C1 (Ω−

2 (q) × Ω5(q)).2
2 1 〈δ, φ〉

C1 (Ω3(q) × Ω+
4 (q)).22 1 〈δ, φ〉

C1 (Ω3(q) × Ω−
4 (q)).22 1 〈δ, φ〉

C2 26 :A7 p = q ≡ ±3 mod 8 1 〈δ〉
C2 26 :S7 p = q ≡ ±1 mod 8 2 1

C5 Ω7(q0) q = qr
0 , r odd prime 1 〈δ, φ〉

C5 SO7(q0) q = q2
0 2 〈φ〉
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Table 8.40 The maximal subgroups of Ω7(q) in Class S
|Z(Ω7(q))| = 1, |δ| = 2, |φ| = e, q = pe odd.

Subgp Conditions on q c Stab

S9 q = 3 2 1

S6(2) q = p 2 1

G2(q) 2 〈φ〉

Table 8.41 The maximal subgroups of G2(q) < Ω7(q), q = pe, p � 5.
|Z(G2(q))| = 1, |φ| = e.

This and the following two tables are taken from [64]. The specified Aschbacher
classes have no formal definitions, and are just intended to give a rough idea of the

nature of the subgroups.

Ci Subgp Notes c Stab

C1 Eq
2+1+2 :GL2(q) 1 〈φ〉

C1 Eq
1+4 :GL2(q) 1 〈φ〉

C1 (SL2(q) ◦ SL2(q)).2 1 〈φ〉
C1 SL3(q):2 1 〈φ〉
C1 SU3(q):2 1 〈φ〉
C2 23·L3(2) q = p 1 〈φ〉
C5 G2(q0) q = qr

0 , r prime 1 〈φ〉
S1 L2(13) q = p ≡ 1, 3, 4, 9, 10, 12 (mod 13) 1 1

q = p2, p ≡ 2, 5, 6, 7, 8, 11 (mod 13) 1 〈φ〉
S1 L2(8) q = p ≡ 1, 8 (mod 9) 1 1

q = p3, p ≡ 2, 4, 5, 7 (mod 9) 1 〈φ〉
S1 U3(3):2 q = p � 5 1 1

S1 J1 q = 11 1 1

S2 PGL2(q) p � 7, q � 11 1 〈φ〉
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Table 8.42 The maximal subgroups of G2(q) < Ω7(q), q = 3e.
|Z(G2(q))| = 1, |γ| = 2e, γ2 = φ.

For some of the groups in this table, a single A-class (A = Aut Ω) splits into two
Ω-classes, which are interchanged by γ. As in Table 8.50 below, we have split these
A-classes over two table rows. The value of c for these classes is obtained by adding

the values of c specified in the two rows representing this A-class.

Ci Ci Subgp Notes c Stab

C1 [q5]:GL2(q) 1 〈φ〉
C1 [q5]:GL2(q) 1 〈φ〉

C1 [q6]:(q − 1)2 N1 1 〈γ〉
C1 (SL2(q) ◦ SL2(q)).2 1 〈γ〉
C1 SL3(q):2 1 〈φ〉

S2 SL3(q):2 1 〈φ〉
C1 SU3(q):2 1 〈φ〉

S2 SU3(q):2 1 〈φ〉
C1 (q − 1)2.D12 q � 9, N1 1 〈γ〉
C1 (q + 1)2.D12 q � 9, N1 1 〈γ〉
C1 (q2 + q + 1).6 q � 9, N1 1 〈γ〉
C1 (q2 − q + 1).6 q � 9, N1 1 〈γ〉
C2 23·L3(2) q = 3 1 〈γ〉
C5 G2(q0) q = qr

0 , r prime 1 〈γ〉
S1 L2(13) q = 3 1 〈γ〉
S2 R(q) = 2G2(q) e odd 1 〈γ〉

N1 Maximal under subgroups not contained in 〈φ〉

Table 8.43 The maximal subgroups of R(q) = 2G2(q) < G2(q)
|Z(R(q))| = 1, |φ| = e, q = 3e, e > 1 odd. Note: R(3) ∼= L2(8):3.

Class Subgp Notes c Stab

C1 Eq
1+1+1 :(q − 1) 1 〈φ〉

C1 2 × L2(q) 1 〈φ〉
C1 (22 × D q+1

2
):3 1 〈φ〉

C3 (q −√
3q + 1):6 1 〈φ〉

C3 (q +
√

3q + 1):6 1 〈φ〉
C5 R(q0) q = qr

0 , r prime 1 〈φ〉
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Table 8.44 The maximal subgroups of SL8(q) of geometric type
d := |Z(SL8(q))| = (q − 1, 8), |δ| = d, |φ| = e, |γ| = 2, q = pe.

Ci Subgp Notes c Stab

C1 Eq
7 :GL7(q) 2 〈δ, φ〉

C1 Eq
12 :(SL6(q) × SL2(q)):(q − 1) 2 〈δ, φ〉

C1 Eq
15 :(SL5(q) × SL3(q)):(q − 1) 2 〈δ, φ〉

C1 Eq
16 :(SL4(q) × SL4(q)):(q − 1) 1 〈δ, φ, γ〉

C1 Eq
1+12 :(GL6(q) × (q − 1)) N1 1 〈δ, φ, γ〉

C1 Eq
4+16 :(SL2(q)

2 × SL4(q)):(q − 1)2 N1 1 〈δ, φ, γ〉
C1 Eq

9+12 :(SL3(q)
2 × SL2(q)):(q − 1)2 N1 1 〈δ, φ, γ〉

C1 GL7(q) N1 1 〈δ, φ, γ〉
C1 (SL6(q) × SL2(q)):(q − 1) N1 1 〈δ, φ, γ〉
C1 (SL5(q) × SL3(q)):(q − 1) N1 1 〈δ, φ, γ〉
C2 (q − 1)7.S8 q � 5 1 〈δ, φ, γ〉
C2 SL2(q)

4 :(q − 1)3.S4 q � 3 1 〈δ, φ, γ〉
C2 SL4(q)

2 :(q − 1).S2 1 〈δ, φ, γ〉
C3 (((q−1, 4)(q+1))◦SL4(q

2)). (q
2−1,4)

(q−1,4)
.2 1 〈δ, φ, γ〉

C4 (SL2(q) ◦ SL4(q)).(q − 1, 2)2 q � 3 (q − 1, 2) 〈δc, φ, γ〉
C5 SL8(q0).

[(
q−1
q0−1

, 8
)]

q = qr
0 ,

(
q−1
q0−1

, 8
)

〈δc, φ, γ〉
r prime

C6 (d ◦ 21+6)·Sp6(2) q = p, d 〈γ〉
q ≡ 1 mod 4

C8 SO+
8 (q).[d] q odd d/2 〈δc, φ, γ〉

C8 SO−
8 (q).[d] q odd d/2 S1

C8 Sp8(q).[(q − 1, 4)] (q − 1, 4) 〈δc, φ, γ〉
C8 SU8(q0).(q0 − 1, 8) q = q2

0 (q0−1, 8) 〈δc, φ, γ〉
S1 〈δc, φδ(p−1)/2, γδ−1〉 N1 Maximal under subgroups not contained in 〈δ, φ〉

Table 8.45 The maximal subgroups of SL8(q) in Class S

d := |Z(SL8(q))| = (q − 1, 8), |δ| = d, |φ| = e, |γ| = 2, q = pe.

Subgp Conditions on q c Stab Acts

41
·L3(4) q = 5 2 〈δ2, γ〉 A1

d ◦ 41
·L3(4) q = p ≡ 9, 21, 29, 41, 61, 69 mod 80 d 〈δc/2〉 A2

8 ◦ 41
·L3(4).23 q = p ≡ 1, 49 mod 80 16 1

8 ◦ 41
·L3(4) q = p2, p ≡ ±3,±13,±27,±37 mod 80 8 S1 A3

8 ◦ 41
·L3(4).23 q = p2, p ≡ ±7,±17,±23,±33 mod 80 16 S2

S1 〈δ4, φ〉 (p ≡ 3 mod 4) or A1 δ2 → 23, γ → 21 and 22 in the two classes

〈δ4, φγ〉 (p ≡ 1 mod 4) A2 δc/2 → 23

S2 〈φ〉 (p ≡ 7 mod 8) or A3 δ4 → 23, φ or φγ → 21 or 22

〈φγ〉 (p ≡ 1 mod 8)
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Table 8.46 The maximal subgroups of SU8(q) of geometric type
d := |Z(SU8(q))| = (q + 1, 8), |δ| = d, |φ| = 2e, q = pe.

Ci Subgp Notes c Stab

C1 Eq
1+12 :SU6(q):(q

2 − 1) 1 〈δ, φ〉
C1 Eq

4+16 :(SL2(q
2) × SU4(q)):(q

2 − 1) 1 〈δ, φ〉
C1 Eq

9+12 :(SL3(q
2) × SU2(q)):(q

2 − 1) 1 〈δ, φ〉
C1 Eq

16 :SL4(q
2):(q − 1) 1 〈δ, φ〉

C1 GU7(q) 1 〈δ, φ〉
C1 (SU6(q) × SU2(q)):(q + 1) 1 〈δ, φ〉
C1 (SU5(q) × SU3(q)):(q + 1) 1 〈δ, φ〉
C2 (q + 1)7.S8 1 〈δ, φ〉
C2 SU2(q)

4 :(q + 1)3.S4 q � 3 1 〈δ, φ〉
C2 SU4(q)

2 :(q + 1).S2 1 〈δ, φ〉
C2 SL4(q

2).(q − 1).2 1 〈δ, φ〉
C4 (SU2(q) ◦ SU4(q)).(q + 1, 2)2 q � 3 (q + 1, 2) 〈δc, φ〉
C5 SU8(q0) qr

0 = q, 1 〈δ, φ〉
r odd prime

C5 Sp8(q).[(q + 1, 4)] (q + 1, 4) 〈δc, φ〉
C5 SO+

8 (q).[d] q odd d/2 〈δc, φ〉
C5 SO−

8 (q).[d] q odd d/2 S1

C6 (d ◦ 21+6)·Sp6(2) q = p ≡ 3 mod 4 d 〈φ〉
S1 〈δc, φδ(p−1)/2〉

Table 8.47 The maximal subgroups of SU8(q) in Class S
In all examples, q = p. So d := |Z(SU8(q))| = (q + 1, 8), |δ| = d, |φ| = 2, φ = γ.

Subgp Conditions on q c Stab Acts

d ◦ 41
·L3(4) q = p ≡ 11, 19, 39, 51, 59, 71 mod 80 d 〈δc/2〉 δc/2 → 23

8 ◦ 41
·L3(4).23 q = p ≡ 31, 79 mod 80 16 1
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Table 8.48 The maximal subgroups of Sp8(q) of geometric type
d := |Z(Sp8(q))| = (q − 1, 2), |δ| = d, |φ| = e, q = pe.

Ci Subgp Notes c Stab

C1 Eq
1+6 :((q − 1) × Sp6(q)) q odd 1 〈δ, φ〉

C1 Eq
7 :((q − 1) × Sp6(q)) q even 1 〈φ〉

C1 Eq
3+8 :(GL2(q) × Sp4(q)) 1 〈δ, φ〉

C1 Eq
6+6 :(GL3(q) × Sp2(q)) 1 〈δ, φ〉

C1 Eq
10 :GL4(q) 1 〈δ, φ〉

C1 Sp6(q) × Sp2(q) 1 〈δ, φ〉
C2 Sp2(q)

4 :S4 q � 3 1 〈δ, φ〉
C2 Sp4(q)

2 :S2 1 〈δ, φ〉
C2 GL4(q).2 q odd 1 〈δ, φ〉
C3 Sp4(q

2):2 1 〈δ, φ〉
C3 GU4(q).2 q odd 1 〈δ, φ〉
C4 (Sp2(q) ◦ GO−

4 (q)).2 q odd 1 〈δ, φ〉
C5 Sp8(q0).(d, r) q = qr

0 , r prime (d, r) 〈δc, φ〉
C6 21+6

−
·SO−

6 (2) q = p ≡ ±1 mod 8 2 1

C6 21+6
−

·Ω−
6 (2) q = p ≡ ±3 mod 8 1 〈δ〉

C7 (Sp2(q) ◦ Sp2(q) ◦ Sp2(q)).2
2.S3 q � 5 odd 1 〈δ, φ〉

C8 SO+
8 (q) q even 1 〈φ〉

C8 SO−
8 (q) q even 1 〈φ〉

Table 8.49 The maximal subgroups of Sp8(q) in Class S
d := |Z(Sp8(q))| = (q − 1, 2), |δ| = d, |φ| = e, q = pe.

Subgp Conditions on q c Stab Acts

2·L2(7) q = p ≡ ±5 mod 12, q �= 7 1 〈δ〉
2·L2(7).2 q = p ≡ ±1 mod 12 2 1

2·A6 q = p ≡ ±9 mod 20 1 〈δ〉 δ → 22

2·A6.22 q = p ≡ ±1 mod 20 2 1

2·A6 q = p2, p ≡ ±2 mod 5, p �= 2, 3 1 〈δ, φ〉 δ → 22, φ → 21

L2(17) q = 2 1 1

2·L2(17) q = p ≡ ±1,±2,±4,±8 mod 17, q �= 2 2 1

2·L2(17) q = p2, p ≡ ±3,±5,±6,±7 mod 17 2 〈φ〉
S10 q = 2 1 1

2·L2(q) p � 11 1 〈δ, φ〉
2·L2(q

3).3 q odd 1 〈δ, φ〉
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Table 8.50 The maximal subgroups of Ω+
8 (q)

d := |Z(Ω+
8 (q))| = (q − 1, 2), |δ| = d, |γ| = 2, |δ′| = d, |τ | = 3, |φ| = e, q = pe.

This table is taken from [62]. The entries occur in the same order as in [62],
but we have usually compressed several lines there to a single line here. In
this table, we have departed from our rule that each A-class (A = Aut Ω) of
subgroups is described by a single row of the table. There are are some cases in
which representatives of a single A-class lie in two different Aschbacher classes
(or in two different types within the same class). We have then split the entry
for the A-class over two rows, and specified the second Aschbacher class in the
second column of the second row. The number c for the complete A-class is the
sum of the entries for c in the two rows. We have not repeated restrictions on
q in the second of the two rows, since these are the same as in the first row,
and the stabiliser of a representative in the second row (column Stab) can be
taken to be the conjugate under the triality automorphism τ of the stabiliser
in the first row: only half of this stabiliser lies in CΓO+

8 (q).
For convenience, we note the following identifications between our notation

for outer automorphisms and the notation in [62]:

γ = (1 2), τ = (1 2 3), δ′ = (1 2)(3 4), δ = (1 3)(2 4), 〈δ, δ′〉 = V4.

Ci Ci Subgp Notes c Stab

C1 Eq
6 :( q−1

d × Ω+
6 (q)).d 1 S1

C1 Eq
6 : 1

dGL4(q) 2

C1 [q11]:[ q−1
d ]2. 1dGL2(q).d2 N1 1 S2

C1 Eq
1+8 :( 1

dGL2(q)×Ω+
4 (q)).d 1 S2

C1 Eq
3+6 :( 1

dGL3(q)× q−1
d ).d N2 1 S1

C1 Eq
3+6 :( 1

dGL3(q)× q−1
d ).d 2

C1 2× Ω7(q) q odd 2 S3

S 2·Ω7(q) 4

C1 Sp6(q) q even 1 S3

S Sp6(q) 2

C1 d×G2(q) N1 d2 〈γ, τ, φ〉
C1 (Ω+

2 (q)× Ω+
6 (q)).[2d] q � 4; N3 if q = 3 1 S1

C2 SL4(q). q−1
d .2 2

C1 (Ω+
2 (q)× 1

dGL3(q)).[2d] q � 3, N4 1 S2
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Ci Ci Subgp Notes c Stab

C1 (Ω−
2 (q)× Ω−

6 (q)).[2d] 1 S1

C3 SU4(q). q+1
d .2 2

C1 (Ω−
2 (q)× 1

dGU3(q)).[2d] N1 1 S2

C1 (Ω3(q)× Ω5(q)).[4] q odd 2 S3

C4 (Sp2(q) ◦ Sp4(q)).2 4

C2 27 :A8 q=p≡ ±3 mod 8, N5 2 S3

C6 21+6
+ .A8 4

C2 27·S8 q = p ≡ ±1 mod 8 4 〈γ〉
C6 21+6

+
·S8 8

C2 24.26.L3(2) q = p odd, N1 4 〈γ, τ〉
C2 Ω+

2 (q)
4
.(2d)3.S4 q � 7; N6 if q = 5 1 S2

C2 Ω−
2 (q)

4
.(2d)3.S4 q �= 3; N6 if q = 3 1 S2

C2 Ω+
4 (q)

2
.[2d].S2 q � 3 1 S2

C2 Ω−
4 (q)

2
.[2d].S2 1 S1

C3 Ω+
4 (q2).[4] 2

C2 (D2(q2+1)/d)2.[2d].S2 N4 1 S2

C5 Ω+
8 (q0) q = qr

0, r prime 1 S2

r odd or q even

C5 SO+
8 (q0).2 q = q20 , q odd 4 〈γ, τ, φ〉

C5 d× Ω−
8 (q0) q = q20 d S3

S d·Ω−
8 (q0) 2d

S d× L3(q).3 q ≡ 1 (mod 3) d2 〈γ, τ, φ〉
S d×U3(q).3 q ≡ 2 (mod 3), q �= 2 d2 〈γ, τ, φ〉
S d× 3D4(q0) q = q30 2d2 〈τ, φ〉
S 2·Ω+

8 (2) q = p odd 4 〈γ, τ〉
S 2·Sz(8) q = 5 8 〈τ〉
S A9 q = 2 3 〈γ〉
S 2×A10 q = 5 4 〈γ〉

S 2·A10 q = 5 8
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S1 〈δ, γ, δ′, φ〉 (q odd), 〈γ, φ〉 (q even)

S2 〈δ, γ, δ′, τ, φ〉 (q odd) 〈γ, τ, φ〉 (q even)

S3 〈γ, δ′, φ〉 (q odd) 〈γ, φ〉 (q even)

N1 Maximal under subgroups whose order mod 〈φ〉 is a multiple of 3

N2 Maximal under subgroups not contained in 〈δ, δ′, φ〉 (q odd), 〈φ〉 (q even)

N3 Maximal under subgroups not contained in 〈γ, δ′〉
N4 Maximal under subgroups whose order mod 〈φ〉 is a multiple of 3 if q �= 3,

or under subgroups containing 〈δ, δ′, τ〉 if q = 3

N5 Maximal under subgroups not contained in 〈γδ′〉
N6 Maximal under subgroups not contained in a conj of S3 or of 〈γ, τ〉

Table 8.51 The maximal subgroups of 3D4(q) < Ω+
8 (q3).

|Z(3D4(q))| = 1, |φ| = 3e, φe = τ , q = pe.

This table is taken from [63]. The specified Aschbacher classes have no formal
definitions, and are just intended to give a rough idea of the nature of the subgroups.

Ci Subgp Notes c Stab

C1 Eq
1+8 :((q − 1) ◦ SL2(q

3)).(q−1, 2) 1 〈φ〉
C1 [q11]:((q3 − 1) ◦ SL2(q)).(q−1, 2) 1 〈φ〉
C1 G2(q) 1 〈φ〉
C1 (SL2(q

3) ◦ SL2(q))).(q−1, 2) 1 〈φ〉
C1 ((q2 + q + 1) ◦ SL3(q)).(q

2 + q + 1, 3).2 1 〈φ〉
C1 ((q2 − q + 1) ◦ SU3(q)).(q

2 − q + 1, 3).2 1 〈φ〉
C1 (q4 − q2 + 1).4 1 〈φ〉
C2 (q2 + q + 1)2.SL2(3) 1 〈φ〉
C2 (q2 − q + 1)2.SL2(3) 1 〈φ〉
C5

3D4(q0) q = qr
0 , 3 �= r prime 1 〈φ〉

S2 PGL3(q) q ≡ 1 (mod 3) 1 〈φ〉
S2 PGU3(q) q ≡ 2 (mod 3), q �= 2 1 〈φ〉
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Table 8.52 The maximal subgroups of Ω−
8 (q) of geometric type

|Z(Ω−
8 (q))| = 1, |δ| = (q − 1, 2), |γ| = 2, |ϕ| = 2e, ϕe = γ, q = pe.

Ci Subgp Notes c Stab

C1 Eq
6 :( q−1

(q−1,2)
× Ω−

6 (q)).(q − 1, 2) 1 〈δ, ϕ〉
C1 Eq

1+8 :( 1
(q−1,2)

GL2(q) × Ω−
4 (q)).(q − 1, 2) 1 〈δ, ϕ〉

C1 Eq
3+6 :( 1

(q−1,2)
GL3(q) × Ω−

2 (q)).(q − 1, 2) 1 〈δ, ϕ〉
C1 Ω7(q).2 q odd 2 〈ϕ〉
C1 (Ω+

2 (q) × Ω−
6 (q)).2(q−1,2) q � 4 1 〈δ, ϕ〉

N1 if q = 3 1 〈δ, γ〉
C1 (Ω−

2 (q) × Ω+
6 (q)).2(q−1,2) 1 〈δ, ϕ〉

C1 (Ω3(q) × Ω5(q)).2
2 q odd 2 〈ϕ〉

C1 (Ω+
4 (q) × Ω−

4 (q)).2(q−1,2) 1 〈δ, ϕ〉
C1 Sp6(q) q even 1 〈ϕ〉
C3 Ω−

4 (q2).2 1 〈δ, ϕ〉
C5 Ω−

8 (q0) q = qr
0 , r odd prime 1 〈δ, ϕ〉

N1 Maximal under subgroups not contained in 〈γ〉

Table 8.53 The maximal subgroups of Ω−
8 (q) in Class S

|Z(Ω−
8 (q))| = 1, |δ| = (q − 1, 2), |γ| = 2, |ϕ| = 2e, ϕe = γ, q = pe.

Subgp Conditions on q c Stab

L3(q) q ≡ 2 mod 3 (q − 1, 2) 〈γ, ϕ〉
U3(q) q ≡ 1 mod 3 (q − 1, 2) 〈γ, ϕ〉
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Table 8.54 The maximal subgroups of SL9(q) of geometric type
d := |Z(SL9(q))| = (q − 1, 9), |δ| = d, |φ| = e, |γ| = 2, q = pe.

Ci Subgp Notes c Stab

C1 Eq
8 :GL8(q) 2 〈δ, φ〉

C1 Eq
14 :(SL7(q) × SL2(q)):(q − 1) 2 〈δ, φ〉

C1 Eq
18 :(SL6(q) × SL3(q)):(q − 1) 2 〈δ, φ〉

C1 Eq
20 :(SL5(q) × SL4(q)):(q − 1) 2 〈δ, φ〉

C1 Eq
1+14 :(GL7(q) × (q − 1)) N1 1 〈δ, φ, γ〉

C1 Eq
4+20 :(SL2(q)

2×SL5(q)):(q−1)2 N1 1 〈δ, φ, γ〉
C1 Eq

9+18 :SL3(q)
3 :(q − 1)2 N1 1 〈δ, φ, γ〉

C1 Eq
16+8 :GL4(q)

2 N1 1 〈δ, φ, γ〉
C1 GL8(q) N1 1 〈δ, φ, γ〉
C1 (SL7(q) × SL2(q)):(q − 1) N1 1 〈δ, φ, γ〉
C1 (SL6(q) × SL3(q)):(q − 1) N1 1 〈δ, φ, γ〉
C1 (SL5(q) × SL4(q)):(q − 1) N1 1 〈δ, φ, γ〉
C2 (q − 1)8 :S9 q � 5 1 〈δ, φ, γ〉
C2 SL3(q)

3 :(q − 1)2.S3 1 〈δ, φ, γ〉
C3 (((q−1, 3)(q2+q+1))◦SL3(q

3)).3 1 〈δ, φ, γ〉
C5 SL9(q0).

[(
q−1
q0−1

, 9
)]

q = qr
0 , r prime

(
q−1
q0−1

, 9
)

〈δc, φ, γ〉
C6 (d ◦ 31+4

+ ):Sp4(3) q=p≡1 mod 3 d 〈γ〉
C7 (SL3(q) ◦ SL3(q)).(q − 1, 3)2.2 (q−1, 3) 〈δc, φ, γ〉
C8 d × SO9(q) q odd d 〈φ, γ〉
C8 (q0 − 1, 9) × SU9(q0) q = q2

0 (q0−1, 9) 〈δc, φ, γ〉
N1 Maximal under subgroups not contained in 〈δ, φ〉

Table 8.55 The maximal subgroups of SL9(q) in Class S
d := |Z(SL9(q))| = (q − 1, 9), |δ| = d, |φ| = e, |γ| = 2, q = pe.

Subgp Conditions on q c Stab

3·A7 q = 7 3 〈γ〉
d × L2(19) q = p ≡ 1, 4, 5, 6, 7, 9, 11, 16, 17 mod 19 d 〈γ〉
L3(q

2).2 q ≡ 0 mod 3 1 〈φ, γ〉
L3(q

2).S3 q ≡ 2 mod 3 1 〈φ, γ〉
9 ◦ SL3(q

2).2 q ≡ 1 mod 9 3 〈δ3, φ, γ〉
SL3(q

2).6 q ≡ 4, 7 mod 9 3 〈φ, γ〉

Notes: The extension of L3(q
2) of degree 2 is from the automorphism x �→ xq of Fq2 .

The duality automorphism of L3(q
2) is induced by γ.
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Table 8.56 The maximal subgroups of SU9(q) of geometric type
d := |Z(SU9(q))| = (q + 1, 9), |δ| = d, |φ| = 2e, q = pe.

Ci Subgp Notes c Stab

C1 Eq
1+14 :SU7(q):(q

2 − 1) 1 〈δ, φ〉
C1 Eq

4+20 :(SL2(q
2) × SU5(q)):(q

2−1) 1 〈δ, φ〉
C1 Eq

9+18 :(SL3(q
2) × SU3(q)):(q

2−1) 1 〈δ, φ〉
C1 Eq

16+8 :GL4(q
2) 1 〈δ, φ〉

C1 GU8(q) 1 〈δ, φ〉
C1 (SU7(q) × SU2(q)):(q + 1) 1 〈δ, φ〉
C1 (SU6(q) × SU3(q)):(q + 1) 1 〈δ, φ〉
C1 (SU5(q) × SU4(q)):(q + 1) 1 〈δ, φ〉
C2 (q + 1)8 :S9 1 〈δ, φ〉
C2 SU3(q)

3 :(q + 1)2.S3 1 〈δ, φ〉
C3 (((q+1, 3)(q2−q+1)) ◦ SU3(q

3)).3 1 〈δ, φ〉
C5 SU9(q0).

[(
q+1
q0+1

, 9
)]

qr
0 = q,

(
q+1
q0+1

, 9
)

〈δc, φ〉
r odd prime

C5 d × SO9(q) q odd d 〈φ〉
C6 (d ◦ 31+4

+ ):Sp4(3) q = p ≡ 2 mod 3 d 〈φ〉
C7 (SU3(q) ◦ SU3(q)).(q + 1, 3)2.2 q � 3 (q + 1, 3) 〈δc, φ〉

Table 8.57 The maximal subgroups of SU9(q) in Class S
d := |Z(SU9(q))| = (q + 1, 9), |δ| = d, |φ| = 2e, φe = γ, q = pe.

Subgp Nov Conditions on q c Stab

d × L2(19) q = p ≡ 2, 3, 8, 10, 12, 13, 14, 15, 18 mod 19 d 〈γ〉
q �= 2

3 × L2(19) N1 q = 2 3 〈γ〉
3·J3 q = 2 3 〈γ〉
L3(q

2).2 q ≡ 0 mod 3 1 〈φ〉
L3(q

2).S3 q ≡ 1 mod 3 1 〈φ〉
9 ◦ SL3(q

2).2 q ≡ 8 mod 9 3 〈δ3, φ〉
SL3(q

2).6 q ≡ 2, 5 mod 9 3 〈φ〉
N1 Maximal under 〈γ〉

Notes: The extension of L3(q
2) of degree 2 is from the product of the duality

automorphism and the automorphism x �→ xq of Fq2 . The field automorphism of

L3(q
2) is induced by φ.
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Table 8.58 The maximal subgroups of Ω9(q) of geometric type
|Z(Ω9(q))| = 1, |δ| = 2, |φ| = e, q = pe odd.

Ci Subgp Notes c Stab

C1 Eq
7 :( q−1

2
× Ω7(q)).2 1 〈δ, φ〉

C1 Eq
1+10 :( 1

2
GL2(q) × Ω5(q)).2 1 〈δ, φ〉

C1 Eq
3+9 :( 1

2
GL3(q) × Ω3(q)).2 1 〈δ, φ〉

C1 Eq
6+4 : 1

2
GL4(q) 1 〈δ, φ〉

C1 Ω+
8 (q).2 1 〈δ, φ〉

C1 Ω−
8 (q).2 1 〈δ, φ〉

C1 (Ω+
2 (q) × Ω7(q)).2

2 q � 5 1 〈δ, φ〉
C1 (Ω−

2 (q) × Ω7(q)).2
2 1 〈δ, φ〉

C1 (Ω3(q) × Ω+
6 (q)).22 1 〈δ, φ〉

C1 (Ω3(q) × Ω−
6 (q)).22 1 〈δ, φ〉

C1 (Ω+
4 (q) × Ω5(q)).2

2 1 〈δ, φ〉
C1 (Ω−

4 (q) × Ω5(q)).2
2 1 〈δ, φ〉

C2 28 :A9 p = q ≡ ±3 mod 8 1 〈δ〉
C2 28 :S9 p = q ≡ ±1 mod 8 2 1

C2 Ω3(q)
3.24.S3 q � 5 1 〈δ, φ〉

C3 Ω3(q
3).3 1 〈δ, φ〉

C5 Ω9(q0) q = qr
0 , r odd prime 1 〈δ, φ〉

C5 SO9(q0) q = q2
0 2 〈φ〉

C7 Ω3(q)
2.[4] q � 5 1 〈δ, φ〉

Table 8.59 The maximal subgroups of Ω9(q) in Class S
|Z(Ω9(q))| = 1, |δ| = 2, |φ| = e, q = pe odd.

Subgp Conditions on q c Stab

L2(8) q = p ≡ ±1 mod 7 2 1

L2(8) q = p3, p ≡ ±2,±3 mod 7 2 〈φ〉
L2(17) q = p ≡ ±1,±2,±4,±8 mod 17 2 1

L2(17) q = p2, p ≡ ±3,±5,±6,±7 mod 17 2 〈φ〉
A10 q = p ≡ ±2 mod 5 1 〈δ〉
S10 q = p ≡ ±1 mod 5, q �= 11 2 1

S11 q = 11 2 1

L2(q).2 p � 11 2 〈φ〉
L2(q

2).2 q �= 3 1 〈δ, φ〉

Note: The extension of L2(q
2) of degree 2 is from the automorphism x �→ xq of Fq2

when q ≡ ±1 (mod 8) and from the product of the diagonal automorphism and the
field automorphism when q ≡ ±3 (mod 8).
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Table 8.60 The maximal subgroups of SL10(q) of geometric type
d := |Z(SL10(q))| = (q − 1, 10), |δ| = d, |φ| = e, |γ| = 2, q = pe.

Ci Subgp Notes c Stab

C1 Eq
9 :GL9(q) 2 〈δ, φ〉

C1 Eq
16 :(SL8(q) × SL2(q)):(q − 1) 2 〈δ, φ〉

C1 Eq
21 :(SL7(q) × SL3(q)):(q − 1) 2 〈δ, φ〉

C1 Eq
24 :(SL6(q) × SL4(q)):(q − 1) 2 〈δ, φ〉

C1 Eq
25 :(SL5(q) × SL5(q)):(q − 1) 1 〈δ, φ, γ〉

C1 Eq
1+16 :(GL8(q) × (q − 1)) N1 1 〈δ, φ, γ〉

C1 Eq
4+24 :(SL2(q)

2 × SL6(q)):(q − 1)2 N1 1 〈δ, φ, γ〉
C1 Eq

9+24 :(SL3(q)
2 × SL4(q)):(q − 1)2 N1 1 〈δ, φ, γ〉

C1 Eq
16+16 :(SL4(q)

2 × SL2(q)):(q − 1)2 N1 1 〈δ, φ, γ〉
C1 GL9(q) N1 1 〈δ, φ, γ〉
C1 (SL8(q) × SL2(q)):(q − 1) N1 1 〈δ, φ, γ〉
C1 (SL7(q) × SL3(q)):(q − 1) N1 1 〈δ, φ, γ〉
C1 (SL6(q) × SL4(q)):(q − 1) N1 1 〈δ, φ, γ〉
C2 (q − 1)9.S10 q � 5 1 〈δ, φ, γ〉
C2 SL2(q)

5 :(q − 1)4.S5 q � 3 1 〈δ, φ, γ〉
C2 SL5(q)

2 :(q − 1).S2 1 〈δ, φ, γ〉
C3 ( q5−1

q−1
× SL2(q

5)).5 1 〈δ, φ, γ〉
C3 (((q−1, 5)(q+1))◦SL5(q

2)).(q+1, 5).2 1 〈δ, φ, γ〉
C4 SL2(q) × SL5(q) q � 3 1 〈δ, φ, γ〉
C5 SL10(q0).

[(
q−1
q0−1

, 10
)]

q = qr
0 ,

(
q−1
q0−1

, 10
)

〈δc, φ, γ〉
r prime

C8 (q − 1, 5) × SO+
10(q).2 q odd d/2 〈δc, φ, γ〉

C8 (q − 1, 5) × SO−
10(q).2 q odd d/2 S1

C8 (q − 1, 5) × Sp10(q) (q−1, 5) 〈δc, φ, γ〉
C8 SU10(q0).(q0 − 1, 10) q = q2

0 (q0−1, 10) 〈δc, φ, γ〉
S1 〈δc, φ, γ〉 (q ≡ 3 mod 4) or 〈δc, φδ(p−1)/2, γδ−1〉 (q ≡ 1 mod 4)

N1 Maximal under subgroups not contained in 〈δ, φ〉
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Table 8.61 The maximal subgroups of SL10(q) in Class S
d := |Z(SL10(q))| = (q − 1, 10), |δ| = d, |φ| = e, |γ| = 2, q = pe.

Subgp Nov Conditions on q c Stab Acts

d ◦ 2·L2(19) q=p≡1, 4, 5, 6, 7, 9, d S1

11, 16, 17 mod 19

d ◦ 2·L3(4) N1 q=p≡11, 15, 23 mod 28 d/2 〈δ5, γ〉 A1

d ◦ 2·L3(4).22 N2 q=p≡1, 9, 25 mod 28 d S2

d ◦ 2·M12 q=p≡3 mod 8 d 〈δ5〉
d ◦ 2·M12.2 q=p≡1 mod 8 2d 1

M22.2 q = 2 2 1

d ◦ 2·M22 q=p≡ 11, 15, 23 mod 28 d 〈δ5〉
d ◦ 2·M22.2 q=p≡1, 9, 25 mod 28 2d 1

d × L3(q).(q − 1, 3) p � 5 d S3 A2

d◦ (q−1,4)
2

·L4(q).
(q−1,4)

2
p � 3 d/2 〈δ5, φ, γ〉 A3

d ◦ SL5(q) (q−1, 2) 〈δ2, φ, γ〉 A4

S1 〈γ〉 (p ≡ ±1 mod 8) or 〈γδ〉 (p ≡ ±3 mod 8)

S2 〈γ〉 (p ≡ 1 mod 8) or 〈γδ〉 (p ≡ 5 mod 8)

S3 〈φ, γ〉 (q ≡ ±1,±5 mod 24) or 〈φ, γδ5〉 (q ≡ ±7,±11 mod 24)

N1 Maximal under subgroups not contained in 〈δ5〉
N2 Maximal under S2

A1 δ5 → 22, γ → 21 (p ≡ 3 mod 8) or 2122 (p ≡ 1 mod 8)

A2 γΩ or γΩδ5
Ω → γS , φΩ → φS

A3 δ5
Ω → δS , γΩ → γS , φΩ → φS

A4 δ2
Ω → δS , γΩ → γS , φΩ → φS
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Table 8.62 The maximal subgroups of SU10(q) of geometric type
d := |Z(SU10(q))| = (q + 1, 10), |δ| = d, |φ| = 2e, q = pe.

Ci Subgp Notes c Stab

C1 Eq
1+16 :SU8(q):(q

2 − 1) 1 〈δ, φ〉
C1 Eq

4+24 :(SL2(q
2) × SU6(q)):(q

2 − 1) 1 〈δ, φ〉
C1 Eq

9+24 :(SL3(q
2) × SU4(q)):(q

2 − 1) 1 〈δ, φ〉
C1 Eq

16+16 :(SL4(q
2) × SU2(q)):(q

2 − 1) 1 〈δ, φ〉
C1 Eq

25 :SL5(q
2):(q − 1) 1 〈δ, φ〉

C1 GU9(q) 1 〈δ, φ〉
C1 (SU8(q) × SU2(q)):(q + 1) 1 〈δ, φ〉
C1 (SU7(q) × SU3(q)):(q + 1) 1 〈δ, φ〉
C1 (SU6(q) × SU4(q)):(q + 1) 1 〈δ, φ〉
C2 (q + 1)9.S10 1 〈δ, φ〉
C2 SU2(q)

5 :(q + 1)4.S5 q � 3 1 〈δ, φ〉
C2 SU5(q)

2 :(q + 1).S2 1 〈δ, φ〉
C2 SL5(q

2).(q − 1).2 1 〈δ, φ〉
C3 ( q5+1

q+1
× SU2(q

5)).5 1 〈δ, φ〉
C4 SU2(q) × SU5(q) q � 3 1 〈δ, φ〉
C5 SU10(q0).

[(
q+1
q0+1

, 10
)]

qr
0 = q,

(
q+1
q0+1

, 10
)

〈δc, φ〉
r odd prime

C5 (q + 1, 5) × Sp10(q) (q + 1, 5) 〈δc, φ〉
C5 (q + 1, 5) × SO+

10(q).2 q odd (q + 1, 5) S1

C5 (q + 1, 5) × SO−
10(q).2 q odd (q + 1, 5) S2

S1 〈δc, φ〉 (q ≡ 1 mod 4) or 〈δc, φδ(p−1)/2〉 (q ≡ 3 mod 4)

S2 〈δc, φδ(p−1)/2〉 (q ≡ 1 mod 4) or 〈δc, φ〉 (q ≡ 3 mod 4)
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Table 8.63 The maximal subgroups of SU10(q) in Class S
d := |Z(SU10(q))| = (q + 1, 10), |δ| = d, |φ| = 2e, φe = γ, q = pe.

Subgp Nov Conditions on q c Stab Acts

d ◦ 2·L2(19) q=p≡2, 3, 8, 10, 12, 13, d S1

14, 15, 18mod19, q �=2

d ◦ 2·L3(4) N1 q=p ≡ 5, 13, 17 mod 28 d/2 〈δ5,γ〉 A1

d ◦ 2·L3(4).22 N2 q=p ≡ 3, 19, 27 mod 28, d S2

q �= 3

d ◦ 2·M12 q = p ≡ 5 mod 8 d 〈δ5〉
d ◦ 2·M12.2 q = p ≡ 7 mod 8 2d 1

d ◦ 2·M22 q=p ≡ 5, 13, 17 mod 28 d 〈δ5〉
d ◦ 2·M22.2 q=p ≡ 3, 19, 27 mod 28 2d 1

d × U3(q).(q + 1, 3) p � 5 d S3 A2

d◦ (q+1,4)
2

·U4(q).
(q+1,4)

2
p � 3 d/2 〈δ5,φ〉 A3

d ◦ SU5(q) (q+1,2) 〈δ2,φ〉 A4

S1 〈γ〉 (p ≡ ±1 mod 8) or 〈γδ〉 (p ≡ ±3 mod 8)

S2 〈γ〉 (p ≡ 7 mod 8) or 〈γδ〉 (p ≡ 3 mod 8)

S3 〈φ〉 (p ≡ ±1,±5 mod 24) or 〈φδ〉 (p ≡ ±7,±11 mod 24)

N1 Maximal under subgroups not contained in 〈δ5〉
N2 Maximal under S2

A1 δ5 → 22, γ → 21 (p ≡ 5 mod 8) or 2122 (p ≡ 7 mod 8)

A2 φΩ or φΩδΩ → φS

A3 δ5
Ω → δS , φΩ → φS

A4 δ2
Ω → δS , φΩ → φS
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Table 8.64 The maximal subgroups of Sp10(q) of geometric type
d := |Z(Sp10(q))| = (q − 1, 2), |δ| = d, |φ| = e, q = pe.

Ci Subgp Notes c Stab

C1 Eq
1+8 :((q − 1) × Sp8(q)) q odd 1 〈δ, φ〉

C1 Eq
9 :((q − 1) × Sp8(q)) q even 1 〈φ〉

C1 Eq
3+12 :(GL2(q) × Sp6(q)) 1 〈δ, φ〉

C1 Eq
6+12 :(GL3(q) × Sp4(q)) 1 〈δ, φ〉

C1 Eq
10+8 :(GL4(q) × Sp2(q)) 1 〈δ, φ〉

C1 Eq
15 :GL5(q) 1 〈δ, φ〉

C1 Sp8(q) × Sp2(q) 1 〈δ, φ〉
C1 Sp6(q) × Sp4(q) 1 〈δ, φ〉
C2 Sp2(q)

5 :S5 q � 3 1 〈δ, φ〉
C2 GL5(q).2 q odd 1 〈δ, φ〉
C3 Sp2(q

5):5 1 〈δ, φ〉
C3 GU5(q).2 q odd 1 〈δ, φ〉
C4 Sp2(q) ◦ GO5(q) q odd 1 〈δ, φ〉
C5 Sp10(q0).(d, r) q = qr

0 , r prime (d, r) 〈δc, φ〉
C8 SO+

10(q) q even 1 〈φ〉
C8 SO−

10(q) q even 1 〈φ〉

Table 8.65 The maximal subgroups of Sp10(q) in Class S
d := |Z(Sp10(q))| = (q − 1, 2), |δ| = d, |φ| = e, q = pe.

Subgp Conditions on q c Stab Acts

2·A6 q = p ≡ ±7 mod 16 1 〈δ〉
2·A6.22 q = p ≡ ±1 mod 16 2 1

2·A6 q = p2, p ≡ ±3 mod 8, p �= 3 1 〈δ, φ〉 δ → 22, φ → 21

2·L2(11) q = p ≡ ±3 mod 8, q �= 11 1 〈δ〉
2·L2(11).2 q = p ≡ ±1 mod 8 2 1

2·L2(11) q = p ≡ ±11 mod 24, q �= 11 1 〈δ〉
2·L2(11) q = p ≡ ±11 mod 24, q �= 11 1 〈δ〉
2·L2(11).2 q = p ≡ ±1 mod 24 2 1

2·L2(11).2 q = p ≡ ±1 mod 24 2 1

2·L2(11).2 q = p2, p ≡ ±5 mod 12 4 1

2 × U5(2) q = p ≡ ±3 mod 8 1 〈δ〉
(2 × U5(2)).2 q = p ≡ ±1 mod 8 2 1

2·L2(q) p � 11 1 〈δ, φ〉
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Table 8.66 The maximal subgroups of Ω+
10(q) of geometric type

q = 2e: |Z(Ω+
10(q))| = 1, |δ| = 1, |γ| = 2, |δ′| = 1, |φ| = e.

q = pe ≡ 1 mod 4 : |Z(Ω+
10(q))| = 2, |δ| = 4, |γ| = 2, δ2 = δ′, |φ| = e.

q = pe ≡ 3 mod 4 : |Z(Ω+
10(q))| = 1, |δ| = 2, |γ| = 2, |δ′| = 1, |φ| = e.

Ci Subgp Notes c Stab

C1 Eq
8 :( q−1

(q−1,2)
×Ω+

8 (q)).(q−1, 2) 1 〈δ, γ, φ〉
C1 Eq

1+12 :( 1
(q−1,2)

GL2(q)×Ω+
6 (q)).(q−1, 2) 1 〈δ, γ, φ〉

C1 Eq
3+12 :( 1

(q−1,2)
GL3(q)×Ω+

4 (q)).(q−1, 2) 1 〈δ, γ, φ〉
C1 Eq

6+8 :( 1
(q−1,2)

GL4(q)×Ω+
2 (q)).(q−1, 2) N1 1 〈δ, γ, φ〉

C1 Eq
10 : 1

(q−1,2)
GL5(q) 2 〈δ, φ〉

C1 Ω9(q).2 q odd 2 S1

C1 (Ω+
2 (q) × Ω+

8 (q)).2(q−1,2) q � 4; N2 if q = 3 1 〈δ, γ, φ〉
C1 (Ω−

2 (q) × Ω−
8 (q)).2(q−1,2) 1 〈δ, γ, φ〉

C1 (Ω3(q) × Ω7(q)).2
2 q odd 2 S1

C1 (Ω+
4 (q) × Ω+

6 (q)).2(q−1,2) 1 〈δ, γ, φ〉
C1 (Ω−

4 (q) × Ω−
6 (q)).2(q−1,2) 1 〈δ, γ, φ〉

C1 Sp8(q) q even 1 〈γ, φ〉
C2 29 :A10 p = q ≡ 5 mod 8 2 〈γ, δ′〉
C2 29·S10 p = q ≡ 1 mod 8 4 〈γ〉
C2 Ω+

2 (q)
5
.24(2,q−1).S5 q � 7 1 〈δ, γ, φ〉

N3 if q = 5 1 〈δ, γ〉
C2 Ω5(q)

2.22.S2 q ≡ 1 mod 4 2 〈γ, δ′, φ〉
C2 SL5(q).

q−1
(q−1,2)

N1 1 〈δ, γ, φ〉
C2 SO5(q)

2 q ≡ 3 mod 4 1 〈δ, γ, φ〉
C3 Ω5(q

2).2 q ≡ 3 mod 4 1 〈δ, γ, φ〉
C3 2 × Ω5(q

2).2 q ≡ 1 mod 4 2 S2

C5 Ω+
10(q0) q = qr

0 , r prime, 1 〈δ, γ, φ〉
r odd or q even

C5 SO+
10(q0) q = q2

0 , q0 ≡ 1 mod 4 2 〈γ, δ′, φ〉
C5 SO+

10(q0).2 q = q2
0 , q0 ≡ 3 mod 4 4 〈γ, φ〉

C5 Ω−
10(q0) q = q2

0 , q even 1 〈γ, φ〉
C5 SO−

10(q0).2 q = q2
0 , q0 ≡ 1 mod 4 4 〈γ, φ〉

C5 SO−
10(q0) q = q2

0 , q0 ≡ 3 mod 4 2 〈γ, δ′, φ〉
S1 〈γ, δ′, φ〉 (q ≡ 1 mod 4) or 〈γ, φ〉 (q ≡ 3 mod 4)

S2 〈γδ, δ′, φ〉 (p ≡ 1 mod 4) or 〈γδ, δ′, γφ〉 (p ≡ 3 mod 4)

N1 Maximal under subgroups not contained in 〈δ, φ〉
N2 Maximal under subgroups not contained in 〈γ〉
N3 Maximal under subgroups not contained in 〈γ, δ′〉
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Table 8.67 The maximal subgroups of Ω+
10(q) in Class S

q = 2e: |Z(Ω+
10(q))| = 1, |δ| = 1, |γ| = 2, |φ| = e.

q = pe ≡ 1 mod 4 : d := |Z(Ω+
10(q))| = 2, |δ| = 4, |γ| = 2, δ2 = δ′, |φ| = e.

q = pe ≡ 3 mod 4 : d := |Z(Ω+
10(q))| = 1, |δ| = 2, |γ| = 2, |δ′| = 1, |φ| = e.

Subgp Nov Conditions on q c Stab Acts

2 × A6 N1 q = p ≡ 5 mod 12 2 S1 A1

2 × A6.21 N2 q = p ≡ 1 mod 12 4 S2

d × L2(11) q = p ≡ 1, 3, 4, 5, 9 mod 11, q �= 3 (q−1, 4) 〈γ〉
d × L2(11) N3 q = p ≡ 1, 3, 4, 5, 9 mod 11, q �= 3 (q−1, 4) S3

d × A11 q = p ≡ 1, 3, 4, 5, 9 mod 11, q �= 3 (q−1, 4) 〈γ〉
A12 q = 3 2 〈γ〉
2 × S4(q) q ≡ 1 mod 4 4 〈δ′, φ〉

S1 〈δ′, γ〉 (p ≡ 17 mod 24) or 〈δ′, δγ〉 (p ≡ 5 mod 24)

S2 〈γ〉 (p ≡ 1 mod 24) or 〈δγ〉 (p ≡ 13 mod 24)

S3 〈γ〉 (p ≡ ±1 mod 12) or 〈δγ〉 (p ≡ ±5 mod 12)

N1 Maximal under subgroups not contained in 〈δ′〉
N2 Maximal under S2

N3 Maximal under S3

A1 δ′ → 21, γ or δγ → 22 in one of the two classes and 23 in the other
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Table 8.68 The maximal subgroups of Ω−
10(q) of geometric type

q = 2e: |Z(Ω−
10(q))| = 1, |δ| = 1, |γ| = 2, |δ′| = 1, |ϕ| = 2e, ϕe = γ.

q = pe ≡ 1 mod 4: |Z(Ω−
10(q))| = 1, |δ| = 2, |γ| = 2, |δ′| = 1, |ϕ| = 2e, ϕe = γ.

q = pe ≡ 3 mod 4: |Z(Ω−
10(q))| = 2, |δ| = 4, |γ| = 2, δ2 = δ′, |φ| = e.

Ci Subgp Notes c Stab

C1 Eq
8 :( q−1

(q−1,2)
×Ω−

8 (q)).(q−1, 2) 1 S1

C1 Eq
1+12 :( 1

(q−1,2)
GL2(q)×Ω−

6 (q)).(q−1, 2) 1 S1

C1 Eq
3+12 :( 1

(q−1,2)
GL3(q)×Ω−

4 (q)).(q−1, 2) 1 S1

C1 Eq
6+8 :( 1

(q−1,2)
GL4(q)×Ω−

2 (q)).(q−1, 2) 1 S1

C1 Ω9(q).2 q odd 2 S2

C1 (Ω+
2 (q) × Ω−

8 (q)).2(q−1,2) q � 4 1 S1

N1 if q = 3 1 〈δ, γ〉
C1 (Ω−

2 (q) × Ω+
8 (q)).2(q−1,2) 1 S1

C1 (Ω3(q) × Ω7(q)).2
2 q odd 2 S2

C1 (Ω+
4 (q) × Ω−

6 (q)).2(q−1,2) 1 S1

C1 (Ω−
4 (q) × Ω+

6 (q)).2(q−1,2) 1 S1

C1 Sp8(q) q even 1 〈ϕ〉
C2 29 :A10 p = q ≡ 3 mod 8 2 〈γ, δ′〉
C2 29·S10 p = q ≡ 7 mod 8 4 〈γ〉
C2 Ω−

2 (q)
5
.24(2,q−1).S5 q �= 3 1 S1

N1 if q = 3 1 S1

C2 Ω5(q)
2.22.S2 q ≡ 3 mod 4 2 〈γ, δ′, φ〉

C2 SO5(q)
2 q ≡ 1 mod 4 1 〈δ, ϕ〉

C3 Ω5(q
2).2 q ≡ 1 mod 4 1 〈δ, ϕ〉

C3 2 × Ω5(q
2).2 q ≡ 3 mod 4 2 〈δγ, δ′, φ〉

C3 ( q+1
(q+1,2)

◦ SU5(q)).(q + 1, 5) 1 S1

C5 Ω−
10(q0) q = qr

0 , 1 S1

r odd prime

S1 〈δ, ϕ〉 (q ≡ 1 mod 4) or 〈δ, γ, φ〉 (q ≡ 3 mod 4) or 〈ϕ〉 (q even)

S2 〈ϕ〉 (q ≡ 1 mod 4) or 〈γ, δ′, φ〉 (q ≡ 3 mod 4)

N1 Maximal under subgroups not contained in S2
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Table 8.69 The maximal subgroups of Ω−
10(q) in Class S

q = 2e: d := |Z(Ω−
10(q))| = 1, |δ| = 1, |γ| = 2, |δ′| = 1, |ϕ| = 2e, ϕe = γ.

q = pe ≡ 1 mod 4: d := |Z(Ω−
10(q))| = 1, |δ| = 2, |γ| = 2, |δ′| = 1, |ϕ| = 2e, ϕe = γ.

q = pe ≡ 3 mod 4: d := |Z(Ω−
10(q))| = 2, |δ| = 4, |γ| = 2, δ2 = δ′, |φ| = e.

Subgp Nov Conditions on q c Stab Acts

2 × A6 N1 q = p ≡ 7 mod 12, q �= 7 2 S1 A1

N2 q = 7 2 S1 A1

2 × A6.21 N3 q = p ≡ 11 mod 12 4 S2

d × L2(11) q = p ≡ 2, 6, 7, 8, 10 mod 11, q �= 2, 7 (q+1, 4) 〈γ〉
d × L2(11) N4 q = p ≡ 2, 6, 7, 8, 10 mod 11, q �= 2 (q+1, 4) S3

2·L3(4) N5 q = 7 2 〈γ, δ′〉 A2

M12 N6 q = 2 1 〈γ〉
2·M22 q = 7 4 〈γ〉
d × A11 q = p ≡ 2, 6, 7, 8, 10 mod 11, q �= 2 (q+1, 4) 〈γ〉
A12 q = 2 1 〈γ〉
2 × S4(q) q ≡ 3 mod 4 4 〈δ′, φ〉

S1 〈γ, δ′〉 (p ≡ 7 mod 24) or 〈δγ, δ′〉 (p ≡ 19 mod 24)

S2 〈γ〉 (p ≡ 23 mod 24) or 〈δγ〉 (p ≡ 11 mod 24)

S3 〈γ〉 (p ≡ ±1, 2 mod 12) or 〈δγ〉 (p ≡ ±5 mod 12)

N1 Maximal under subgroups not contained in 〈δ′〉
N2 Extensions of 2 × A6 that are not contained in 2 × A6.21 or 2 × A6.23

are maximal

N3 Maximal under S2

N4 Maximal under S3

N5 Extensions of 2·L3(4) that are not contained in 2·L3(4).22 are maximal

N6 Maximal under 〈γ〉
A1 δ′ → 21, γ or δγ → 22 in one of the two classes and 23 in the other

A2 δ′ → 23, γ → 21 and 22 in the two classes
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Table 8.70 The maximal subgroups of SL11(q) of geometric type
d := |Z(SL11(q))| = (q − 1, 11), |δ| = d, |φ| = e, |γ| = 2, q = pe.

Ci Subgp Notes c Stab

C1 Eq
10 :GL10(q) 2 〈δ, φ〉

C1 Eq
18 :(SL9(q) × SL2(q)):(q − 1) 2 〈δ, φ〉

C1 Eq
24 :(SL8(q) × SL3(q)):(q − 1) 2 〈δ, φ〉

C1 Eq
28 :(SL7(q) × SL4(q)):(q − 1) 2 〈δ, φ〉

C1 Eq
30 :(SL6(q) × SL5(q)):(q − 1) 2 〈δ, φ〉

C1 Eq
1+18 :(GL9(q) × (q − 1)) N1 1 〈δ, φ, γ〉

C1 Eq
4+28 :(SL2(q)

2×SL7(q)):(q−1)2 N1 1 〈δ, φ, γ〉
C1 Eq

9+30 :(SL3(q)
2×SL5(q)):(q−1)2 N1 1 〈δ, φ, γ〉

C1 Eq
16+24 :(SL4(q)

2×SL3(q)):(q−1)2 N1 1 〈δ, φ, γ〉
C1 Eq

25+10 :GL5(q)
2 N1 1 〈δ, φ, γ〉

C1 GL10(q) N1 1 〈δ, φ, γ〉
C1 (SL9(q) × SL2(q)):(q − 1) N1 1 〈δ, φ, γ〉
C1 (SL8(q) × SL3(q)):(q − 1) N1 1 〈δ, φ, γ〉
C1 (SL7(q) × SL4(q)):(q − 1) N1 1 〈δ, φ, γ〉
C1 (SL6(q) × SL5(q)):(q − 1) N1 1 〈δ, φ, γ〉
C2 (q − 1)10 :S11 q � 5 1 〈δ, φ, γ〉
C3

q11−1
q−1

:11 1 〈δ, φ, γ〉
C5 SL11(q0).

(
q−1
q0−1

, 11
)

q = qr
0 ,

(
q−1
q0−1

,11
)

〈δc,φ,γ〉
r prime

C6 111+2
+ :Sp2(11) q = p ≡ 1 mod 11 11 〈γ〉

or (q = p5 &

p≡3, 4, 5, 9 mod 11)

C8 d × SO11(q) q odd d 〈φ, γ〉
C8 (q0 − 1, 11) × SU11(q0) q = q2

0 (q0−1,11) 〈δc,φ,γ〉
N1 Maximal under subgroups not contained in 〈δ, φ〉

Table 8.71 The maximal subgroups of SL11(q) in Class S
In all examples, q = p. So d := |Z(SL11(q))| = (q − 1, 11), |δ| = d, |φ| = 1, |γ| = 2.

Subgp Nov Conditions on q c Stab

L2(23) N1 q = 2 1 〈γ〉
d × L2(23) q = p ≡ 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18 mod 23, q �= 2 d 〈γ〉
d × U5(2) q = p ≡ 1 mod 3 d 〈γ〉
M24 q = 2 2 1

N1 Maximal under 〈γ〉
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Table 8.72 The maximal subgroups of SU11(q) of geometric type
d := |Z(SU11(q))| = (q + 1, 11), |δ| = d, |φ| = 2e, q = pe.

Ci Subgp Notes c Stab

C1 Eq
1+18 :SU9(q):(q

2 − 1) 1 〈δ, φ〉
C1 Eq

4+28 :(SL2(q
2)×SU7(q)):(q

2−1) 1 〈δ, φ〉
C1 Eq

9+30 :(SL3(q
2)×SU5(q)):(q

2−1) 1 〈δ, φ〉
C1 Eq

16+24 :(SL4(q
2)×SU3(q)):(q

2−1) 1 〈δ, φ〉
C1 Eq

25+10 :GL5(q
2) 1 〈δ, φ〉

C1 GU10(q) 1 〈δ, φ〉
C1 (SU9(q) × SU2(q)):(q + 1) 1 〈δ, φ〉
C1 (SU8(q) × SU3(q)):(q + 1) 1 〈δ, φ〉
C1 (SU7(q) × SU4(q)):(q + 1) 1 〈δ, φ〉
C1 (SU6(q) × SU5(q)):(q + 1) 1 〈δ, φ〉
C2 (q + 1)10 :S11 1 〈δ, φ〉
C3

q11+1
q+1

:11 1 〈δ, φ〉
C5 SU11(q0).

(
q+1
q0+1

, 11
)

qr
0 = q, ( q+1

q0+1
, 11) 〈δc, φ〉

r odd prime

C5 d × SO11(q) q odd d 〈φ〉
C6 111+2

+ :Sp2(11) q = p ≡ 10 mod 11, 11 〈φ〉
or (q = p5 &

p ≡ 2, 6, 7, 8 mod 11)

Table 8.73 The maximal subgroups of SU11(q) in Class S
In all examples, q = p. So d := |Z(SU11(q))| = (q + 1, 11), |δ| = d, |φ| = 2, φ = γ.

Subgp Conditions on q c Stab

d × L2(23) q = p ≡ 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22 mod 23 d 〈γ〉
d × U5(2) q = p ≡ 2 mod 3, q �= 2 d 〈γ〉
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Table 8.74 The maximal subgroups of Ω11(q) of geometric type
|Z(Ω11(q))| = 1, |δ| = 2, |φ| = e, q = pe odd.

Ci Subgp Notes c Stab

C1 Eq
9 :( q−1

2
× Ω9(q)).2 1 〈δ, φ〉

C1 Eq
1+14 :( 1

2
GL2(q) × Ω7(q)).2 1 〈δ, φ〉

C1 Eq
3+15 :( 1

2
GL3(q) × Ω5(q)).2 1 〈δ, φ〉

C1 Eq
6+12 :( 1

2
GL4(q) × Ω3(q)).2 1 〈δ, φ〉

C1 Eq
10+5 : 1

2
GL5(q) 1 〈δ, φ〉

C1 Ω+
10(q).2 1 〈δ, φ〉

C1 Ω−
10(q).2 1 〈δ, φ〉

C1 (Ω+
2 (q) × Ω9(q)).2

2 q � 5 1 〈δ, φ〉
C1 (Ω−

2 (q) × Ω9(q)).2
2 1 〈δ, φ〉

C1 (Ω3(q) × Ω+
8 (q)).22 1 〈δ, φ〉

C1 (Ω3(q) × Ω−
8 (q)).22 1 〈δ, φ〉

C1 (Ω+
4 (q) × Ω7(q)).2

2 1 〈δ, φ〉
C1 (Ω−

4 (q) × Ω7(q)).2
2 1 〈δ, φ〉

C1 (Ω5(q) × Ω+
6 (q)).22 1 〈δ, φ〉

C1 (Ω5(q) × Ω−
6 (q)).22 1 〈δ, φ〉

C2 210 :A11 p = q ≡ ±3 mod 8 1 〈δ〉
C2 210 :S11 p = q ≡ ±1 mod 8 2 1

C5 Ω11(q0) q = qr
0 , r odd prime 1 〈δ, φ〉

C5 SO11(q0) q = q2
0 2 〈φ〉

Table 8.75 The maximal subgroups of Ω11(q) in Class S
|Z(Ω11(q))| = 1, |δ| = 2, |φ| = e, q = pe odd.

Subgp Conditions on q c Stab

L3(3).2 q = 13 2 1

A12 q = p ≡ ±7,±11 mod 24, q �= 13 1 〈δ〉
S12 q = p ≡ ±1,±5 mod 24 2 1

A13 q = 13 1 〈δ〉
L2(q) p � 11, q �= 11 1 〈δ, φ〉
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Table 8.76 The maximal subgroups of SL12(q) of geometric type
d := |Z(SL12(q))| = (q − 1, 12), |δ| = d, |φ| = e, |γ| = 2, q = pe.

Ci Subgp Notes c Stab

C1 Eq
11 :GL11(q) 2 〈δ, φ〉

C1 Eq
20 :(SL10(q) × SL2(q)):(q − 1) 2 〈δ, φ〉

C1 Eq
27 :(SL9(q) × SL3(q)):(q − 1) 2 〈δ, φ〉

C1 Eq
32 :(SL8(q) × SL4(q)):(q − 1) 2 〈δ, φ〉

C1 Eq
35 :(SL7(q) × SL5(q)):(q − 1) 2 〈δ, φ〉

C1 Eq
36 :(SL6(q) × SL6(q)):(q − 1) 1 〈δ, φ, γ〉

C1 Eq
1+20 :(GL10(q) × (q − 1)) N1 1 〈δ, φ, γ〉

C1 Eq
4+32 :(SL2(q)

2 × SL8(q)):(q − 1)2 N1 1 〈δ, φ, γ〉
C1 Eq

9+36 :(SL3(q)
2 × SL6(q)):(q − 1)2 N1 1 〈δ, φ, γ〉

C1 Eq
16+32 :SL4(q)

3 :(q − 1)2 N1 1 〈δ, φ, γ〉
C1 Eq

25+20 :(SL5(q)
2 × SL2(q)):(q − 1)2 N1 1 〈δ, φ, γ〉

C1 GL11(q) N1 1 〈δ, φ, γ〉
C1 (SL10(q) × SL2(q)):(q − 1) N1 1 〈δ, φ, γ〉
C1 (SL9(q) × SL3(q)):(q − 1) N1 1 〈δ, φ, γ〉
C1 (SL8(q) × SL4(q)):(q − 1) N1 1 〈δ, φ, γ〉
C1 (SL7(q) × SL5(q)):(q − 1) N1 1 〈δ, φ, γ〉
C2 (q − 1)11.S12 q � 5 1 〈δ, φ, γ〉
C2 SL2(q)

6 :(q − 1)5.S6 q � 3 1 〈δ, φ, γ〉
C2 SL3(q)

4 :(q − 1)3.S4 1 〈δ, φ, γ〉
C2 SL4(q)

3 :(q − 1)2.S3 1 〈δ, φ, γ〉
C2 SL6(q)

2 :(q − 1).S2 1 〈δ, φ, γ〉
C3 (((q − 1, 6)(q + 1)) ◦ SL6(q

2)).(q+1, 3).2 1 〈δ, φ, γ〉
C3 (((q − 1, 4)(q2 + q + 1)) ◦ SL4(q

3)).3 1 〈δ, φ, γ〉
C4 (SL2(q) ◦ SL6(q)).(q − 1, 2)2 q � 3 (q − 1, 2) 〈δc, φ, γ〉
C4 SL3(q) × SL4(q) 1 〈δ, φ, γ〉
C5 SL12(q0).

[(
q−1
q0−1

, 12
)]

q = qr
0 ,

(
q−1
q0−1

, 12
)

〈δc, φ, γ〉
r prime

C8 SO+
12(q).[d] q odd d/2 〈δc, φ, γ〉

C8 SO−
12(q).[d] q odd d/2 S1

C8 Sp12(q).[(q − 1, 6)] (q − 1, 6) 〈δc, φ, γ〉
C8 SU12(q0).[(q0 − 1, 12)] q = q2

0 (q0 − 1, 12) 〈δc, φ, γ〉
S1 〈δc, φδ(p−1)/2, γδ−1〉
N1 Maximal under subgroups not contained in 〈δ, φ〉
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Table 8.77 The maximal subgroups of SL12(q) in Class S
d := |Z(SL12(q))| = (q − 1, 12), |δ| = d, |φ| = e, |γ| = 2, q = pe.

Subgp Nov Conditions on q c Stab Acts

d ◦ 6·A6 N1 q = p ≡ 1, 4 mod 15 d S1 A1

12 ◦ 6·A6 N2 q = p2, p ≡ 2, 3 mod 5, p �= 2, 3 d S2 A2

d ◦ 2·L2(23) q = p ≡ 1, 2, 3, 4, 6, 8, 9, 12, 13, d S1

16, 18 mod 23, p �= 2

122
·L3(4) q = 49 12 〈φ, γ〉 A3

d ◦ 6·Suz q = p ≡ 1 mod 3 d 〈γ〉
S1 〈γ〉 (p ≡ ±1 mod 8) or 〈γδ〉 (p ≡ ±3 mod 8)

S2 〈φ, γ〉 (p ≡ ±5 mod 12) or 〈φδ6, γ〉 (p ≡ ±1 mod 12)

N1 Maximal under S1

N2 Maximal under subgroups of S2 that do not lie in 〈γφδ6〉 (p ≡ 1 mod 12),

〈φ〉 (p ≡ 5 mod 12), 〈γφ〉 (p ≡ 7 mod 12), 〈φδ6〉 (p ≡ 11 mod 12).

Equivalently, extensions of 6·A6 not contained in 6·A6.21 are maximal.

Also, when p = 7, q = 49, the extension of 6·A6 by 〈φ〉 with structure

6·A6.23 is not maximal.

A1 γ or γδ → 22

A2 γ → 22, φ or φδ6 → 21 (p ≡ 5, 11 mod 12) or 23 (p ≡ 1, 7 mod 12)

A3 γ → 23, φ → 21
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Table 8.78 The maximal subgroups of SU12(q) of geometric type
d := |Z(SU12(q))| = (q + 1, 12), |δ| = d, |φ| = 2e, q = pe.

Ci Subgp Notes c Stab

C1 Eq
1+20 :SU10(q):(q

2 − 1) 1 〈δ, φ〉
C1 Eq

4+32 :(SL2(q
2) × SU8(q)):(q

2 − 1) 1 〈δ, φ〉
C1 Eq

9+36 :(SL3(q
2) × SU6(q)):(q

2 − 1) 1 〈δ, φ〉
C1 Eq

16+32 :(SL4(q
2) × SU4(q)):(q

2 − 1) 1 〈δ, φ〉
C1 Eq

25+20 :(SL5(q
2) × SU2(q)):(q

2 − 1) 1 〈δ, φ〉
C1 Eq

36 :SL6(q
2):(q − 1) 1 〈δ, φ〉

C1 GU11(q) 1 〈δ, φ〉
C1 (SU10(q) × SU2(q)):(q + 1) 1 〈δ, φ〉
C1 (SU9(q) × SU3(q)):(q + 1) 1 〈δ, φ〉
C1 (SU8(q) × SU4(q)):(q + 1) 1 〈δ, φ〉
C1 (SU7(q) × SU5(q)):(q + 1) 1 〈δ, φ〉
C2 (q + 1)11.S12 1 〈δ, φ〉
C2 SU2(q)

6 :(q + 1)5.S6 q � 3 1 〈δ, φ〉
C2 SU3(q)

4 :(q + 1)3.S4 1 〈δ, φ〉
C2 SU4(q)

3 :(q + 1)2.S3 1 〈δ, φ〉
C2 SU6(q)

2 :(q + 1).S2 1 〈δ, φ〉
C2 SL6(q

2).(q − 1).2 1 〈δ, φ〉
C3 (((q + 1, 4)(q2 − q + 1)) ◦ SU4(q

3)).3 1 〈δ, φ〉
C4 (SU2(q) ◦ SU6(q)).(q + 1, 2)2 q � 3 (q + 1, 2) 〈δc, φ〉
C4 SU3(q) × SU4(q) 1 〈δ, φ〉
C5 SU12(q0).

[(
q+1
q0+1

, 12
)]

qr
0 = q,

(
q+1
q0+1

, 12
)

〈δc, φ〉
r odd prime

C5 Sp12(q).[(q + 1, 6)] (q + 1, 6) 〈δc, φ〉
C5 SO+

12(q).[d] q odd d/2 〈δc, φ〉
C5 SO−

12(q).[d] q odd d/2 S1

S1 〈δc, φδ(p−1)/2〉

Table 8.79 The maximal subgroups of SU12(q) in Class S
In all examples, q = p. So d := |Z(SU12(q))| = (q + 1, 12), |δ| = d, |φ| = 2, φ = γ.

Subgp Nov Conditions on q c Stab Acts

d ◦ 6·A6 N1 q = p ≡ 11, 14 mod 15 d S1 γ or γδ → 22

d ◦ 2·L2(23) q = p ≡ 5, 7, 10, 11, 14, 15, 17, d S1

19, 20, 21, 22 mod 23

3·Suz q = 2 d 〈γ〉
d ◦ 6·Suz q = p ≡ 2 mod 3, q �= 2 d 〈γ〉
S1 〈γ〉 (p ≡ ±1 mod 8) or 〈γδ〉 (p ≡ ±3 mod 8) N1 Maximal under S1
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Table 8.80 The maximal subgroups of Sp12(q) of geometric type
d := |Z(Sp12(q))| = (q − 1, 2), |δ| = d, |φ| = e, q = pe.

Ci Subgp Notes c Stab

C1 Eq
1+10 :((q − 1) × Sp10(q)) q odd 1 〈δ, φ〉

C1 Eq
11 :((q − 1) × Sp10(q)) q even 1 〈φ〉

C1 Eq
3+16 :(GL2(q) × Sp8(q)) 1 〈δ, φ〉

C1 Eq
6+18 :(GL3(q) × Sp6(q)) 1 〈δ, φ〉

C1 Eq
10+16 :(GL4(q) × Sp4(q)) 1 〈δ, φ〉

C1 Eq
15+10 :(GL5(q) × Sp2(q)) 1 〈δ, φ〉

C1 Eq
21 :GL6(q) 1 〈δ, φ〉

C1 Sp10(q) × Sp2(q) 1 〈δ, φ〉
C1 Sp8(q) × Sp4(q) 1 〈δ, φ〉
C2 Sp2(q)

6 :S6 q � 3 1 〈δ, φ〉
C2 Sp4(q)

3 :S3 1 〈δ, φ〉
C2 Sp6(q)

2 :S2 1 〈δ, φ〉
C2 GL6(q).2 q odd 1 〈δ, φ〉
C3 Sp6(q

2):2 1 〈δ, φ〉
C3 Sp4(q

3):3 1 〈δ, φ〉
C3 GU6(q).2 q odd 1 〈δ, φ〉
C4 (Sp2(q) ◦ GO+

6 (q)).2 q odd 1 〈δ, φ〉
C4 (Sp2(q) ◦ GO−

6 (q)).2 q odd 1 〈δ, φ〉
C4 Sp4(q) ◦ GO3(q) q � 5 odd 1 〈δ, φ〉
C5 Sp12(q0).(d, r) q = qr

0 , r prime (d, r) 〈δc, φ〉
C8 SO+

12(q) q even 1 〈φ〉
C8 SO−

12(q) q even 1 〈φ〉
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Table 8.81 The maximal subgroups of Sp12(q) in Class S
d := |Z(Sp12(q))| = (q − 1, 2), |δ| = d, |φ| = e, q = pe.

Subgp Conditions on q c Stab Acts

2·L2(11) q = p ≡ ±9 mod 20, q �= 11 1 〈δ〉
2·L2(11) q = p ≡ ±9 mod 20, q �= 11 1 〈δ〉
2·L2(11).2 q = p ≡ ±1 mod 20 2 1

2·L2(11).2 q = p ≡ ±1 mod 20 2 1

2·L2(11) q = p2, p ≡ ±2 mod 5, p �= 2 2 〈δ〉
2·L2(13) q = p ≡ ±13 mod 28, q �= 13 1 〈δ〉
2·L2(13) q = p ≡ ±13 mod 28, q �= 13 1 〈δ〉
2·L2(13) q = p ≡ ±13 mod 28, q �= 13 1 〈δ〉
2·L2(13).2 q = p ≡ ±1 mod 28 2 1

2·L2(13).2 q = p ≡ ±1 mod 28 2 1

2·L2(13).2 q = p ≡ ±1 mod 28 2 1

2·L2(13) q = p3, p ≡ ±2,±3 mod 7, p �= 2 3 〈δ〉
2·L2(25) q = p ≡ ±2 mod 5, q �= 2, 3 1 〈δ〉 δ → 22

L2(25).22 q = 2 1 1

2·S4(5) q = p ≡ ±1 mod 5 2 1

2·S4(5) q = p2, p ≡ ±2 mod 5, p �= 2 2 〈φ〉
S4(5) q = 4 1 〈φ〉
2·G2(4) q = p ≡ ±3 mod 8, q �= 3 1 〈δ〉
2·G2(4).2 q = p ≡ ±1 mod 8 2 1

S14 q = 2 1 1

2·Suz q = 3 1 〈δ〉
2·L2(q) p � 13 1 〈δ, φ〉
2·S4(q) p = 5 1 〈δ, φ〉
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Table 8.82 The maximal subgroups of Ω+
12(q) of geometric type

d := |Z(Ω+
12(q))| = (q − 1, 2), |δ| = d, |γ| = 2, |δ′| = d, |φ| = e, q = pe.

Ci Subgp Notes c Stab

C1 Eq
10 :( q−1

(q−1,2)
× Ω+

10(q)).d 1 〈δ, γ, δ′, φ〉
C1 Eq

1+16 :( 1
(q−1,2)

GL2(q) × Ω+
8 (q)).d 1 〈δ, γ, δ′, φ〉

C1 Eq
3+18 :( 1

(q−1,2)
GL3(q) × Ω+

6 (q)).d 1 〈δ, γ, δ′, φ〉
C1 Eq

6+16 :( 1
(q−1,2)

GL4(q) × Ω+
4 (q)).d 1 〈δ, γ, δ′, φ〉

C1 Eq
10+10 :( 1

(q−1,2)
GL5(q) × Ω+

2 (q)).d N1 1 〈δ, γ, δ′, φ〉
C1 Eq

15 : 1
(q−1,2)

GL6(q) 2 〈δ, δ′, φ〉
C1 Ω11(q).2 q odd 2 〈γ, δ′, φ〉
C1 (Ω+

2 (q) × Ω+
10(q)).2

d q � 4; N2 if q = 3 1 〈δ, γ, δ′, φ〉
C1 (Ω−

2 (q) × Ω−
10(q)).2

d 1 〈δ, γ, δ′, φ〉
C1 (Ω3(q) × Ω9(q)).2

2 q odd 2 〈γ, δ′, φ〉
C1 (Ω+

4 (q) × Ω+
8 (q)).2d 1 〈δ, γ, δ′, φ〉

C1 (Ω−
4 (q) × Ω−

8 (q)).2d 1 〈δ, γ, δ′, φ〉
C1 (Ω5(q) × Ω7(q)).2

2 q odd 2 〈γ, δ′, φ〉
C1 Sp10(q) q even 1 〈γ, φ〉
C2 211·S12 p = q ≡ ±1 mod 8 4 〈γ〉
C2 211 :A12 p = q ≡ ±3 mod 8 2 〈γ, δ′〉
C2 Ω+

2 (q)
6
.25d.S6 q � 7; N2 if q = 5 1 〈δ, γ, δ′, φ〉

C2 Ω−
2 (q)

6
.25d.S6 q �= 3; N2 if q = 3 1 〈δ, γ, δ′, φ〉

C2 Ω3(q)
4.26.S4 q � 5 odd 2 〈γ, δ′, φ〉

C2 Ω+
4 (q)

3
.22d.S3 q � 3 1 〈δ, γ, δ′, φ〉

C2 Ω+
6 (q)

2
.2d.S2 1 〈δ, γ, δ′, φ〉

C2 Ω−
6 (q)

2
.2d.S2 1 〈δ, γ, δ′, φ〉

C2 SL6(q).
(q−1)

d
.2 2 〈δ, δ′, φ〉

C3 Ω+
6 (q2).[4] 2 〈δ, δ′, φ〉

C3 Ω+
4 (q3).3 1 〈δ, γ, δ′, φ〉

C3 ((q + 1) ◦ SU6(q)).[2(q + 1, 3)] 2 〈δ, δ′, φ〉
C4 Sp2(q) ◦ Sp6(q) q � 3 2 〈δ, δ′, φ〉
C4 Ω+

4 (q) × SO3(q) q � 5, q odd, N1 1 〈δ, γ, δ′, φ〉
C5 Ω+

12(q0) q = qr
0 , r prime, 1 〈δ, γ, δ′, φ〉

r odd or q even

C5 SO+
12(q0).2 q = q2

0 , q odd 4 〈γ, φ〉
C5 Ω−

12(q0) q = q2
0 , q even 1 〈γ, φ〉

C5 SO−
12(q0) q = q2

0 , q odd 2 〈γ, δ′, φ〉
N1 Maximal under subgroups not contained in 〈δ, δ′, φ〉
N2 Maximal under subgroups not contained in 〈γ, δ′〉
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Table 8.83 The maximal subgroups of Ω+
12(q) in Class S

d := |Z(Ω+
12(q))| = (q − 1, 2), |δ| = d, |γ| = 2, |δ′| = d, |φ| = e, q = pe.

Subgp Nov Conditions on q c Stab

2 × L2(11) q = p ≡ ±1,±16,±19,±24,±26 mod 55 4 〈γ〉
2 × L2(11) q = p ≡ ±1,±16,±19,±24,±26 mod 55 4 〈γ〉
2 × L2(13) q = p ≡ ±1 mod 7, p ≡ ±1,±3,±4 mod 13 4 〈γ〉
2 × L2(13) q = p ≡ ±1 mod 7, p ≡ ±1,±3,±4 mod 13 4 〈γ〉
2 × L2(13) q = p ≡ ±1 mod 7, p ≡ ±1,±3,±4 mod 13 4 〈γ〉
2 × L2(13) q = p3, p ≡ ±3,±4,±9,±10,±12,±16,±17, 12 〈γ〉

±23,±25,±30,±38,±40 mod 91

2 × L3(3) N1 q = p ≡ ±1,±3,±4 mod 13, q �= 3, C1 4 S1

2 × L3(3).2 q = p ≡ ±1,±3,±4 mod 13, q �= 3, C2 8 1

2·M12 N2 q = p ≡ ±5,±7,±11 mod 24 4 S2

2·M12.2 q = p ≡ ±1 mod 24 8 1

2 × A13 q = p ≡ ±1,±3,±4 mod 13 4 〈γ〉
S1 〈δ′〉 (p ≡ ±1 mod 12) or 〈δ〉 (p ≡ ±5 mod 12)

S2 〈δ′〉 (p ≡ ±11 mod 24) or 〈δ〉 (p ≡ ±5 mod 12)

N1 Maximal under S1

N2 Maximal under S2

C1 p ≡ ±5 mod 12 or x4 − 10x2 + 13 has no roots in Fp

C2 p ≡ ±1 mod 12 and x4 − 10x2 + 13 has four roots in Fp
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Table 8.84 The maximal subgroups of Ω−
12(q) of geometric type

|Z(Ω−
12(q))| = 1, |δ| = (q − 1, 2), |γ| = 2, |ϕ| = 2e, ϕe = γ, q = pe.

Ci Subgp Notes c Stab

C1 Eq
10 :( q−1

(q−1,2)
× Ω−

10(q)).(q − 1, 2) 1 〈δ, ϕ〉
C1 Eq

1+16 :( 1
(q−1,2)

GL2(q) × Ω−
8 (q)).(q − 1, 2) 1 〈δ, ϕ〉

C1 Eq
3+18 :( 1

(q−1,2)
GL3(q) × Ω−

6 (q)).(q − 1, 2) 1 〈δ, ϕ〉
C1 Eq

6+16 :( 1
(q−1,2)

GL4(q) × Ω−
4 (q)).(q − 1, 2) 1 〈δ, ϕ〉

C1 Eq
10+10 :( 1

(q−1,2)
GL5(q) × Ω−

2 (q)).(q − 1, 2) 1 〈δ, ϕ〉
C1 Ω11(q).2 q odd 2 〈ϕ〉
C1 (Ω+

2 (q) × Ω−
10(q)).2

(q−1,2) q � 4; N1 if q = 3 1 〈δ, ϕ〉
C1 (Ω−

2 (q) × Ω+
10(q)).2

(q−1,2) 1 〈δ, ϕ〉
C1 (Ω3(q) × Ω9(q)).2

2 q odd 2 〈ϕ〉
C1 (Ω+

4 (q) × Ω−
8 (q)).2(q−1,2) 1 〈δ, ϕ〉

C1 (Ω−
4 (q) × Ω+

8 (q)).2(q−1,2) 1 〈δ, ϕ〉
C1 (Ω5(q) × Ω7(q)).2

2 q odd 2 〈ϕ〉
C1 (Ω+

6 (q) × Ω−
6 (q)).2(q−1,2) 1 〈δ, ϕ〉

C1 Sp10(q) q even 1 〈δ, ϕ〉
C2 Ω−

4 (q)
3
.22(q−1,2).S3 1 〈δ, ϕ〉

C3 Ω−
6 (q2).2 1 〈δ, ϕ〉

C3 Ω−
4 (q3).3 1 〈δ, ϕ〉

C4 Ω−
4 (q) × SO3(q) q � 5 odd 1 〈δ, ϕ〉

C5 Ω−
12(q0) q = qr

0 , r odd prime 1 〈δ, ϕ〉
N1 Maximal under subgroups not contained in 〈ϕ〉

Table 8.85 The maximal subgroups of Ω−
12(q) in Class S

|Z(Ω−
12(q))| = 1, |δ| = (q − 1, 2), |γ| = 2, |ϕ| = 2e, ϕe = γ, q = pe.

Subgp Nov Conditions on q c Stab

L2(11) q = p ≡ ±4,±6,±9,±14,±21 mod 55 2 〈γ〉
L2(11) q = p ≡ ±4,±6,±9,±14,±21 mod 55 2 〈γ〉
L2(11) q = p2, p ≡ ±2 mod 5 2(q+1, 2) 〈γ〉
L2(13) q = p ≡ ±1 mod 7, p ≡ ±2,±5,±6 mod 13 2 〈γ〉
L2(13) q = p ≡ ±1 mod 7, p ≡ ±2,±5,±6 mod 13 2 〈γ〉
L2(13) q = p ≡ ±1 mod 7, p ≡ ±2,±5,±6 mod 13 2 〈γ〉
L2(13) q = p3, p ≡ ±2,±5,±11,±18,±19,±24,±31 3(q+1, 2) 〈γ〉

±32,±33,±37,±44,±45 mod 91

L3(3) N1 q = p ≡ ±2,±5,±6 mod 13, p≡±5 mod 12 2 〈δ〉
L3(3).2 q = p ≡ ±2,±5,±6 mod 13, p≡±1, 2 mod12 2(q+1, 2) 1

A13 q = p ≡ ±2,±5,±6 mod 13, q �= 7 (q+1, 2) 〈γ〉
A14 q = 7 2 〈γ〉

N1 Maximal under 〈δ〉
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