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Preface 

 
 
 
 
This book is a revised and extended version of Gries (2009b). There are 
four main types of changes. The first and most important one is a complete 
overhaul of Chapter 5. After having taught dozens of workshops and 
bootcamps on statistics in linguistics with R, I realized that the most diffi-
cult aspects of regression modeling for beginners are (i) to understand the 
logic of the modeling process, (ii) how to interpret the numerical results 
(esp. with different contrasts), and (iii) how to visualize them revealingly. 
Thus, all sections on regression modeling have been rewritten from scratch. 
In addition, there is now an overview of more theoretical aspects of model-
ing that, hopefully, will make many things easier to understand. 

The second set of changes is concerned with Chapter 1 and Chapter 4. 
In the former, I now discuss the notions of one- and two-tailed tests in a 
better way; in the latter, I discuss a set of questions and a visualization tool 
that should help choosing the right statistical tests for a particular study. 

Third, I have added a small section on programming aspects and on how 
users can write their own functions and, now that that is explained, also 
make a few very small functions that I have written for myself available to 
the readers. 

Then, this edition not only corrects errors that readers have reported to 
me (and I am very grateful for them to take the time to do so and hope I 
haven’t added too many new ones …) but it also adds a multitude of small 
tweaks and changes that arose out of the statistics workshops and classes I 
have taught over the last few years. Some of these tweaks are in the book, 
but many are also ‘hidden’ in the code file so you will only see them if you 
– as you should – work your way through this book using the code all the 
time. Finally, all code from the book is now in one file, which will make 
handling the code and looking up functions much convenient and means 
that an index of function names is not useful anymore. 

I hope you will enjoy, and benefit from, this book and the many changes 
that went into this revision. As usual, I would like to thank the team at De 
Gruyter Mouton who supported, in fact raised, the idea of a second edition 
very early on. Also, again thanks are due to the R Development Core Team 
and many contributors to bugfixes and packages for R and, also again, to R. 
Harald Baayen for exposing me to R the first time; I cannot imagine what 
my research would look like had he not done that … 
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Chapter 1 

Some fundamentals of empirical research 
 
 
 

When you can measure what you are speaking about, and express it in 
numbers, you know something about it; but when you cannot measure it, 

when you cannot express it in numbers, your knowledge is of a meager and 
unsatisfactory kind. It may be the beginning of knowledge, but you have 

scarcely, in your thoughts, advanced to the stage of science. 
William Thomson, Lord Kelvin. 

(<http://hum.uchicago.edu/~jagoldsm/Webpage/index.html>) 
 
 
1. Introduction 

 
This book is an introduction to statistics. However, there are already very 
many introductions to statistics – why do we need another one? Just like 
the first edition, this book is different from many other introductions to 
statistics in several ways: 
 

− it has been written especially for linguists: there are many introductions 
to statistics for psychologists, economists, biologists etc., but only very 
few which, like this one, explain statistical concepts and methods on the 
basis of linguistic questions and for linguists; 

− it explains how to do most of the statistical methods both ‘by hand’ as 
well as with statistical software, but it requires neither mathematical ex-
pertise nor hours of trying to understand complex equations – many in-
troductions devote much time to mathematical foundations (and, thus, 
make everything more difficult for the novice), others do not explain 
any foundations and immediately dive into some nicely designed soft-
ware, which often hides the logic of statistical tests behind a nice GUI; 

− it not only explains statistical concepts, tests, and graphs, but also the 
design of tables to store and analyze data, summarize previous litera-
ture, and some very basic aspects of experimental design; 

− it only uses open source software (mainly R): many introductions use 
SAS or in particular SPSS, which come with many disadvantages such 
that (i) users must buy expensive licenses that are restricted in how 
many functions they offer and how many data points they can handle) 
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and how long they can be used; (ii) students and professors may be able 
to use the software only on campus; (iii) they are at the mercy of the 
software company with regard to bugfixes and updates etc.; 

− it does all this in an accessible and informal way: I try to avoid jargon 
wherever possible; the use of software will be illustrated in very much 
detail, and there are think breaks, warnings, exercises (with answer keys 
on the companion website), and recommendations for further reading 
etc. to make everything more accessible. 

 
So, this book aims to help you do scientific quantitative research. It is 

structured as follows. Chapter 1 introduces the foundations of quantitative 
studies: what are variables and hypotheses, what is the structure of quanti-
tative studies and what kind of reasoning underlies it, how do you obtain 
good experimental data, and in what kind of format should you store your 
data? 

Chapter 2 provides an overview of the programming language and envi-
ronment R, which will be used in all other chapters for statistical graphs 
and analyses: how do you create, load, and manipulate data to prepare for 
your analysis? 

Chapter 3 explains fundamental methods of descriptive statistics: how 
do you describe your data, what patterns can be discerned in them, and how 
can you represent such findings graphically? Chapter 4 explains fundamen-
tal methods of analytical statistics: how do you test whether the obtained 
results actually mean something or have just arisen by chance? Chapter 5 
introduces several multifactorial procedures, i.e. procedures, in which sev-
eral potential cause-effect relations are investigated simultaneously. While 
this chapter will teach you a lot of things, Ican only deal with a few select-
ed methods and will point you to additional references quite a few times. 

Apart from the following chapters with their think breaks and exercises 
etc., the companion website for this book at <http://tinyurl.com/ 
StatForLingWithR> is an important resource. You will have to go there 
anyway to download exercise files, data files, answer keys, errata etc., but 
at <http://groups.google.com/group/statforling-with-r> you will also find a 
newsgroup “StatForLing with R”. I would like to encourage you to become 
a member of that newsgroup so that you can 
 

− ask questions about statistics for linguists (and hopefully also get an 
answer from some kind soul); 

− send suggestions for extensions and/or improvements or data for addi-
tional exercises; 
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− inform me and other readers of the book about bugs you find (and of 
course receive such information from other readers). This also means 
that if R commands, or code, provided in the book differs from that on 
the website, then the latter is most likely going to be correct. 

 
Lastly, I have to mention one important truth right at the start: you can-

not learn to do statistical analyses by reading a book about statistical anal-
yses. You must do statistical analyses. There is no way that you read this 
book (or any other serious introduction to statistics) 15 minutes in bed be-
fore turning off the light and learn to do statistical analyses, and book co-
vers or titles that tell you otherwise are, let’s say, ‘distorting’ the truth for 
marketing reasons. I strongly recommend that, as of the beginning of Chap-
ter 2, you work with this book directly at your computer with R running 
(ideally in RStudio) so that you can immediately enter the R code that you 
read and try out all relevant functions from the code files from the compan-
ion website; often (esp. in Chapter 5), the code files for this chapter will 
provide you with a lot of (!) important extra information, additional code 
snippets, further suggestions for explorations using graphs etc., and some-
times the exercise files will provide even more suggestions and graphs. 
Even if you do not understand every aspect of the code right away, this will 
still help you to learn all this book tries to offer. 
 
 
 
2. On the relevance of quantitative methods in linguistics 

 
Above I said this book introduces you to scientific quantitative research. 
But then, what are the goals of such research? Typically, one distinguishes 
three goals, which need to be described because (i) they are part of a body 
of knowledge that all researchers within an empirical discipline should be 
aware of and (ii) they are relevant for how this book is structured. 

The first goal is the description of your data on some phenomenon and 
means that your data and results must be reported as accurately and reveal-
ingly as possible. All statistical methods described below will help you 
achieve this objective, but particularly those described in Chapter 3. 

The second goal is the explanation of your data, usually on the basis of 
hypotheses about what kind(s) of relations you expected to find in the data. 
On many occasions, this will already be sufficient for your purposes. How-
ever, sometimes you may also be interested in a third goal, that of predic-

tion: what is going to happen in the future or when you look at different 
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data. Chapters 4 and 5 will introduce you to methods to pursue these goals 
of explanation and prediction. 

When you look at these goals, it may appear surprising that statistical 
methods were not in widespread use in linguistics for decades. This is all 
the more surprising because such methods are very widespread in disci-
plines with similarly complex topics such as psychology, sociology, eco-
nomics. To some degree, this situation is probably due to how linguistics 
has evolved over the past decades, but fortunately this has changed remark-
ably in the recent decade. The number of studies utilizing quantitative 
methods has been increasing (in all linguistic sub-disciplines); the field is 
experiencing a paradigm shift towards more empirical methods. Still, even 
though such methods are commonplace in other disciplines, they still often 
meet some resistance in linguistic circles: statements such as “we’ve never 
needed something like that before” or “the really interesting things are 
qualitative in nature anyway and are not in need of any quantitative evalua-
tion” or “I am a field linguist and don’t need any of this” are far from in-
frequent. 

Let me say this quite bluntly: such statements are not particularly rea-
sonable. As for the first statement, it is not obvious that such quantitative 
methods were not needed so far – to prove that point, one would have to 
show that quantitative methods could impossibly have contributed some-
thing useful to previous research, a rather ridiculous point of view – and 
even then it would not necessarily be clear that the field of linguistics is not 
now at a point where such methods are useful. As for the second statement, 
in practice quantitative and qualitative methods go hand in hand: qualita-
tive considerations precede and follow the results of quantitative methods 
anyway. To work quantitatively does not mean to just do, and report on, 
some number-crunching – of course, there must be a qualitative discussion 
of the implications – but as we will see below often a quantitative study 
allows to identify what merits a qualitative discussion in the first place. As 
for the last statement: even a descriptive (field) linguist who is working to 
document a near-extinct language can benefit from quantitative methods. If 
the chapter on tense discusses whether the choice of a tense is correlated 
with indirect speech or not, then quantitative methods can show whether 
there is such a correlation. If a study on middle voice in the Athabaskan 
language Dena’ina tries to identify how syntax and semantics are related to 
middle voice marking, quantitative methods can reveal interesting things 
(cf. Berez and Gries 2010). 

The last two points lead up to a more general argument already alluded 
to above: often only quantitative methods can separate the wheat from the 
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chaff. Let’s assume a linguist wanted to test the so-called aspect hypothesis 
according to which imperfective and perfective aspect are preferred in pre-
sent and past tense respectively (cf. Shirai and Andersen 1995). Strictly 
speaking, the linguist would have to test all verbs in all languages, the so-
called population. This is of course not possible so the linguist studies a 
sample of sentences to investigate their verbal morphology. Let’s further 
assume the linguist took and investigated a small sample of 38 sentences in 
one language and got the results in Table 1. 
 
Table 1. A fictitious distribution of tenses and aspects in a small corpus 

 Imperfective Perfective Totals 

Present tense 12 6 18 

Past tense 7 13 20 

Totals 19 19 38 

 
These data look like a very obvious confirmation of the aspect hypothe-

sis: there are more present tenses with imperfectives and more past tenses 
with perfectives. However, the so-called chi-squared test, which could per-
haps be used for these data, shows that this tense-aspect distribution can 
arise by chance with a probability p that exceeds the usual threshold of 5% 
adopted in quantitative studies. Thus, the linguist would not be allowed to 
accept the aspect hypothesis for the population on the basis of this sample. 
The point is that an intuitive eye-balling of this table is insufficient – a 
statistical test is needed to protect the linguist against invalid generaliza-
tions. 

A more eye-opening example is discussed by Crawley (2007: 314f.). 
Let’s assume a study showed that two variables x and y are correlated such 
that the larger the value of x, the larger the value of y; cf. Figure 1. 

Note, however, that the data actually also contain information about a 
third variable (with seven levels a to g) on which x and y depend. Interest-
ingly, if you now inspect what the relation between x and y looks like for 
each of the seven levels of the third variable separately, you see that the 
relation suddenly becomes “the larger x, the smaller y”; cf. Figure 2, where 
the seven levels are indicated with letters. Such patterns in data are easy to 
overlook – they can only be identified through a careful quantitative study, 
which is why knowledge of statistical methods is indispensible. 
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Figure 1. A correlation between two fictitious variables x and y 

 

 

Figure 2. A correlation between two fictitious variables x and y, controlled for a 
fictitious third variable 
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For students of linguistics – as opposed to experienced practitioners – 
there is also a very practical issue to consider. Sometime soon you will 
want to write a thesis or dissertation. Quantitative methods can be extreme-
ly useful and powerful if only to help you avoid the pitfalls posed by the 
data in Table 1 and Figure 1 or data from published studies I regularly dis-
cuss in my classes and workshops. It is therefore hopefully obvious now 
that quantitative methods have a lot to offer, and I hope this book will pro-
vide you with some good and practical background knowledge. 

This argument has an additional aspect to it. Contrary to, say, literary 
criticism, linguistics is an empirical science. Thus, it is necessary – in par-
ticular for students – to know about basic methods and assumptions of em-
pirical research and statistics to be able to understand both scientific argu-
mentation in general and linguistic argumentation in particular. This is 
especially relevant in the domains of, for example, contemporary quantita-
tive corpus linguistics or psycholinguistics, where data are often evaluated 
with such a high degree of sophistication that a basic knowledge of the 
relevant terminology is required. Without training, what do you make of 
statements such as “The interaction between the size of the object and the 
size of the reference point does not reach standard levels of significance: 
F1, 12 = 2.18; p = 0.166; partial eta

2 = 0.154.”? Who knows off the top of 
their head whether the fact that the average sentence length of ten female 
second language learners in an experiment was about two words larger than 
the average sentence length of ten male second language learners is more 
likely to mean something, or whether this is more likely a product of 
chance? Again, such data need serious statistical analysis. 
 
 
3. The design and the logic of quantitative studies 

 
In this section, we will have a very detailed look at the design of, and the 
logic underlying, quantitative studies. I will distinguish several phases of 
quantitative studies and consider their structure and discuss the reasoning 
employed in them. The piece of writing in which you then describe your 
quantitative research will often have four parts: introduction, methods, 
results, and discussion. If you discuss more than one case study in your 
writing, then typically each case study gets its own methods, results, and 
discussion sections, followed by a general discussion. 

With few exceptions, the discussion in this section will be based on a 
linguistic example, particle placement in English, i.e. the constituent order 
alternation of transitive phrasal verbs exemplified in (1). 
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(1) a. He picked up [NP the book]. 
  CONSTRUCTION: VPO (verb - particle - object) 
 b. He picked [NP the book] up. 
  CONSTRUCTION: VOP (verb - object - particle) 
 

An interesting aspect of this alternation is that, most of the time, both 
constructions appear to be quite synonymous and native speakers of Eng-
lish usually cannot explain why they produce (1a) on one occasion and (1b) 
on some other occasion. In the past few decades, linguists have tried to 
describe, explain, and predict the alternation (cf. Gries 2003a for a recent 
overview), and in this section, we will use it to illustrate the structure of a 
quantitative study. 
 
 
3.1. Scouting 
 
At the beginning of your study, you want to get an overview of previous 
work on the phenomenon you are interested in, which also gives you a 
sense of what still can or needs to be done. In this phase, you try to learn of 
existing theories that can be empirically tested or, much more infrequently, 
you enter uncharted territory in which you are the first to develop a new 
theory. This is a list of the activities that is typically performed in this 
scouting phase: 
 

− a first (maybe informal) characterization of the phenomenon; 

− studying the relevant literature; 

− observations of the phenomenon in natural settings to aid first inductive 
generalizations; 

− collecting additional information (e.g., from colleagues, students, etc.); 

− deductive reasoning on your part. 
 

If you take just a cursory look at particle placement, you will quickly 
notice that there is a large number of variables that influence the construc-
tional choice. A variable is defined as a symbol for a set of states, i.e., a 
characteristic that – contrary to a constant – can exhibit at least two differ-
ent states or levels (cf. Bortz and Döring 1995: 6 or Bortz 2005: 6) or, more 
intuitively, as “descriptive properties” (Johnson 2008: 4) or as measure-
ments of an item that can be either numeric or categorical (Evert, p.c.). 
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Variables that might influence particle placement include the following:1 
 

− COMPLEXITY: is the direct object a SIMPLE DIRECT OBJECT (e.g., the 

book), a PHRASALLY-MODIFIED DIRECT OBJECT (e.g., the brown book or 
the book on the table) or a CLAUSALLY-MODIFIED DIRECT OBJECT (e.g., 
the book I had bought in Europe) (cf., e.g., Fraser 1966); 

− LENGTH: the length of the direct object (cf., e.g., Chen 1986, Hawkins 
1994), which could be measured in syllables, words, …; 

− DIRECTIONAL OBJECT: the PRESENCE of a directional prepositional 
phrase (PP) after the transitive phrasal verb (e.g. in He picked the book 

up from the table) or its ABSENCE (cf. Chen 1986); 

− ANIMACY: whether the referent of the direct object is INANIMATE as in 
He picked up the book, or ANIMATE as in He picked his dad up (cf. Gries 
2003a: Ch. 2); 

− CONCRETENESS: whether the referent of the direct object is ABSTRACT as 
in He brought back peace to the region, or CONCRETE as in He brought 

his dad back to the station (cf. Gries 2003a: Ch. 2); 

− TYPE: is the part of speech of the head of the direct object a PRONOUN 
(e.g., He picked him up this morning), a SEMIPRONOUN (e.g., He picked 

something up from the floor), a LEXICAL NOUN (e.g., He picked people 

up this morning) or a PROPER NAME (e.g., He picked Peter up this morn-

ing) (cf. Van Dongen 1919). 
 

During this early phase, it is often useful to summarize your findings in 
tabular format. One possible table summarizes which studies (in the col-
umns) discussed which variable (in the rows). On the basis of the above 
list, this table could look like Table 2 and allows you to immediately re-
cognize (i) which variables many studies have already looked at and (ii) the 
studies that looked at most variables. Another table summarizes the varia-
ble levels and their preferences for one of the two constructions. Again, on 
the basis of the above list, this table would look like Table 3, and you can 
immediately see that, for some variables, only one level has been associat-
ed with a particular constructional preference. 

Table 3 already suggests that CONSTRUCTION: VPO is used with cogni-
tively more complex direct objects: long complex NPs with lexical nouns 
referring to abstract things. CONSTRUCTION: VOP on the other hand is used 
with the opposite preferences. For an actual study, this first impression 
would of course have to be phrased more precisely. In addition, you should 

                                                      
1. I print variables in small caps and their levels in italicized small caps. 
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also compile a list of other factors that might either influence particle 
placement directly or that might influence your sampling of sentences or 
experimental subjects or … Much of this information would be explained 
and discussed in the first section of the empirical study, the introduction. 
 
Table 2. Summary of the literature on particle placement I 

 Fraser 

(1966) 

Chen 

(1986) 

Hawkins 

(1994) 

Gries 

(2003a) 

Van Dongen 

(1919) 

COMPLEXITY ×     

LENGTH  × ×   

DIRECTIONALPP  ×    

ANIMACY    ×  

CONCRETENESS    ×  

TYPE     × 

 
Table 3. Summary of the literature on particle placement II 

 
Variable level for 

CONSTRUCTION: VPO 

Variable level for 

CONSTRUCTION: VOP 

COMPLEXITY 
PHRASALLY-MODIFIED 

CLAUSALLY MODIFIED 
 

LENGTH LONG  

DIRECTIONALPP ABSENCE PRESENCE 

ANIMACY INANIMATE ANIMATE 

CONCRETENESS ABSTRACT CONCRETE 

TYPE  PRONOMINAL 

 
 
3.2. Hypotheses and operationalization 
 
Once you have an overview of the phenomenon you are interested in and 
have decided to pursue an empirical study, you usually formulate hypothe-
ses. What does that mean and how do you proceed? To approach this issue, 
let us see what hypotheses are and what kinds of hypotheses there are. 
 
 
3.2.1. Scientific hypotheses in text form 

 
Following Bortz and Döring (1995: 7), I will consider a hypothesis to be a 
statement that meets the following three criteria: 
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− it is a general statement that is concerned with more than just a singular 
event; 

− it is a statement that at least implicitly has the structure of a conditional 
sentence (if …, then … or the …, the …) or can be paraphrased as one; 

− it is potentially falsifiable, which means it must be possible to think of 
events or situations that contradict the statement. Most of the time, this 
implies that the scenario described in the conditional sentence must also 
be testable. However, these two characteristics are not identical. There 
are statements that are falsifiable but not testable such as “If children 
grow up without any linguistic input, then they will grow up to speak 
Latin.” This statement is falsifiable, but for obvious ethical reasons not 
testable (anymore; cf. Steinberg 1993: Section 3.1). 

 
The following statement is a scientific hypothesis according to the 

above criteria: “Reducing the minimum age to obtain a driver’s license 
from 18 years to 17 years in European countries will double the number of 
traffic accidents in these countries within two years.” This statement is a 
general statement that is not restricted to just one event, just one country, 
etc. Also, this statement can be paraphrased as a conditional sentence: “If 
one reduces the minimum age …, then the number of traffic accidents will 
double …” Lastly, this statement is falsifiable because it is conceivable – 
actually, very likely – that if one reduced the minimum age, that the num-
ber of traffic accidents would not double. Accordingly, the following 
statement is not a scientific hypothesis: “Reducing the minimum age to 
obtain a driver’s license from 18 years to 17 years in European countries 
may double the number of traffic accidents in these countries within two 
years.” This statement is a general statement, it can be paraphrased into a 
conditional sentence, it is testable because the minimum age could be re-
duced, but it is not a hypothesis according to the above definition because 
the word may basically means ‘may or may not’: the statement is true if the 
number of traffic accidents doubles, but also if it does not. Put differently, 
whatever one observed after the reduction of the minimum age, it would be 
compatible with the statement. 

With regard to particle placement, the following statements are exam-
ples of scientific hypotheses: 
 

− if the direct object of a transitive phrasal verb is syntactically complex, 
then native speakers will produce the constituent order VPO more often 
than when the direct object is syntactically simple; 

− if the direct object of a transitive phrasal verb is long, then native speak-
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ers will produce the constituent order VPO more often than when the di-
rect object is short; 

− if a verb-particle construction is followed by a directional PP, then na-
tive speakers will produce the constituent order VOP more often than 
when no such directional PP follows (and analogously for all other vari-
ables mentioned in Table 3). 

 
When you formulate a hypothesis, it is also important that the notions 

that you use in the hypothesis are formulated precisely. For example, if a 
linguistic theory uses notions such as cognitive complexity or availability in 

discourse or even something as seemingly straightforward as constituent 

length, then it will be necessary that the theory can define what exactly is 
meant by this; in Section 1.3.2.2 we will deal with this in much more detail. 

We can distinguish two types of hypotheses. The first, the one we have 
been talking about so far, consists of two parts, an if part (IV) and a then 
part (DV). The IV stands for independent variable, the variable in the if part 
of the hypothesis that is often, but not necessarily, the cause of the changes/ 
effects in the then part of the hypothesis. The DV on the other hand stands 
for dependent variable, the variable in the then part of the hypothesis and 
whose values, variation, or distribution is to be explained. In addition, it is 
useful for later to also mention confounding variables and moderator vari-

ables. The former can be defined as variables that are correlated with inde-
pendent dependent variables; the latter can be defined as variables (often 
extraneous to the initial design of a study) that influence/moderate the rela-
tionship between the independent and the dependent variable(s). 
 

 confound  

independent  dependent 

 moderator  

Figure 3. Different types of variables 

 
With this terminology, we can now paraphrase the above hypotheses. In 

the first, IV is the syntactic complexity of the direct object (COMPLEXITY 
with the three levels SIMPLE, PHRASALLY-MODIFIED, and CLAUSALLY-

MODIFIED), and DV is the choice of construction (CONSTRUCTION with the 
two levels VPO and VOP). In the second hypothesis, IV is the length of the 
direct object (LENGTH with values from 1 to x), and DV is again the choice 
of construction (CONSTRUCTION with the two levels VPO and VOP), etc. 

The second type of hypothesis only contains one dependent variable, 
but no independent variable with which the dependent variable’s behavior 
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is explained. In such cases, the hypothesis is ‘only’ a statement about what 
the values, variation, or distribution of the dependent variable looks like. 
Frequent examples postulate equal distributions (e.g., frequencies) or par-
ticular shapes of distributions (e.g., bell-shaped normal curves): 
 

− The two constructions or, more technically, the two levels of 
CONSTRUCTION (VPO and VOP) are not equally frequent; note again how 
this does not mention an independent variable. 

− The lengths of direct objects are not normally distributed. 
 

In what follows, we will deal with both kinds of hypotheses (with a bias 
toward the former). 

Thus, we can also define a scientific hypothesis as a statement about ei-
ther the relation(s) between two or more variables or, for the second kind, 
as a statement about one variable in some sampling context, which is ex-
pected to also hold in similar contexts and/or for similar objects in the pop-
ulation. Thus, once potentially relevant variables to be investigated have 
been identified, you formulate a hypothesis by relating the relevant varia-
bles in the appropriate conditional sentence or some paraphrase thereof. 

After your hypothesis has been formulated in the above text form, you 
also have to define – before you collect data! – which situations or states of 
affairs would falsify your hypothesis. Thus, in addition to your own hy-
pothesis – the so-called alternative hypothesis H1 – you now also formulate 
another hypothesis – the so-called null hypothesis H0 – which is the logical 
opposite to your H1. Often, that means that you get the H0 by inserting the 
word not into the H1. For the first of the above three hypotheses involving 
both a dependent and and independent variable, this is what the text version 
of H0 would look like: 
 
H0 type 1: If the direct object of a transitive phrasal verb is syntactically com-

plex, then native speakers will not produce the constituent order 
VPO more often than when the direct object is syntactically simple. 

 
For the first of the above two hypotheses involving only a dependent 

variable, H0 would be this: 
 
H0 type 2: The two constructions or, more technically, the two levels of 

CONSTRUCTION (VPO and VOP) are not not equally frequent, i.e. are 
equally frequent. 
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It is crucial to formulate H0 as mentioned above, essentially by inserting 
not. The idea is that both hypotheses – H1 and H0 – cover the whole result 
space, i.e. every result theoretically possible. Thus, if your H1 was “Com-
plex objects lead to more CONSTRUCTION: VPO than CONSTRUCTION: VOP,” 
then your H0 should not be “Complex objects lead to fewer 
CONSTRUCTION: VPO than CONSTRUCTION: VOP” because these two hy-
potheses do not cover all results possible – they do not cover the case 
where the two constructions are equally frequent. 

In the vast majority of cases, the first type of H0 states that there is no 
difference between (two or more) groups or no relation between the inde-
pendent variable(s) and the dependent variable(s) and that whatever differ-
ence or effect you get is only due to chance or random variation. The sec-
ond type of H0 typically states that the dependent variable is distributed 
randomly or in accordance with some well-known mathematically defina-
ble distribution such as the normal distribution. However, an additional 
complication is that you must distinguish two kinds of H1s: directional H1s 
not only predict that there is some kind of effect or difference or relation 
but also the direction of the effect – note the expression “more often” in the 
above type 1 H1 relating CONSTRUCTION and COMPLEXITY. On the other 
hand, non-directional H1s only predict that there is some kind of effect or 
difference or relation without specifying the direction of the effect. A non-
directional H1 for the above type 1 example would therefore be this: 
 
H1 type 1 non-dir.: If the direct object of a transitive phrasal verb is syntacti-

cally complex, then native speakers will produce the con-
stituent order VPO differently often than when the direct ob-
ject is syntactically simple. 

 
Thus, H0 states that there is no correlation between the syntactic com-

plexity of a direct object and the constructional choice in the population, 
and that if you nevertheless find one in the sample, then this is only a 
chance effect. Both H1s state that there is a correlation – thus, you should 
also find one in your sample. Both of these hypotheses must be formulated 
before the data collection so that one cannot present whatever result one 
gets as the ‘predicted’ one. Of course, all of this has to be discussed in the 
introduction of the written version of your paper or, maybe, at the begin-
ning of the methods section. 
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3.2.2. Operationalizing your variables 

 
Formulating your hypotheses in the above text form is not the last step in 
this part of the study, because it is as yet unclear how the variables invoked 
in your hypotheses will be investigated. For example and as mentioned 
above, a notion such as cognitive complexity can be defined in many dif-
ferent and differently useful ways, and even something as straightforward 
as constituent length is not always as obvious as it may seem: do we mean 
the length of, say, a direct object in letters, phonemes, syllables, mor-
phemes, words, syntactic nodes, etc.? Therefore, you must find a way to 
operationalize the variables in your hypothesis. This means that you decide 
what will be observed, counted, measured etc. when you investigate your 
variables. 

For example, if you wanted to operationalize a person’s KNOWLEDGE 

OF A FOREIGN LANGUAGE, you could do this as follows: 
 

− COMPLEXITY OF THE SENTENCES that a person can form in the language 
in a test (only main clauses? also compound sentences? also complex 
sentences? how many of each?); 

− AMOUNT OF TIME in seconds between two errors in conversation; 

− NUMBER OF ERRORS PER 100 WORDS in a text that the person writes in 
90 minutes. 

 
What is wrong with the following two proposals for operationalization? 

 

− AMOUNT OF ACTIVE VOCABULARY; 

− AMOUNT OF PASSIVE VOCABULARY. 
 

 

THINK 

BREAK 

 
These proposals are not particularly useful because, while knowing 

these amounts would certainly be very useful to assess somebody’s 
knowledge of a foreign language, they are not directly observable: it is not 
clear what you would count or measure since it is not exactly practical to 
tell a learner to write down all the words he knows … If you in turn opera-
tionalize the amount of passive vocabulary on the basis of the number of 
words a person knows in a vocabulary test (involving, say, words from 
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different frequency bands) or in a synonym finding test, then you know 
what to count – but the above is too vague. 

From the above it follows that operationalizing involves using levels of 
numbers to represent states of variables. A number may be a measurement 
(402 ms reaction time, 12 words in a synonym finding test, the direct object 
is four syllables long), but levels, i.e. discrete non-numerical states, can 
theoretically also be coded using numbers. Thus, variables are not only 
distinguished according to their role in the hypotheses – independent vs. 
dependent – but also according to their level of measurement: 
 

− nominal or categorical variables are variables with the lowest infor-
mation value. Different values of these variables only reveal that the ob-
jects with these different values exhibit different characteristics. Such 
variables are called nominal variables (or binary variables) when they 
can take on only two different levels; such variables are called categori-

cal variables when they can take on three or more different levels. In 
our example of particle placement, the variable DIRECTIONALPP could 
be coded with 1 for the ABSENCE and 2 for PRESENCE, but note that the 
fact that the value for PRESENCE is twice as large as that for ABSENCE 
does not mean anything (other than that the values are different) – theo-
retically, you could code ABSENCE with 34.2 and PRESENCE with 7.2 
Other typical examples of nominal or categorical variables are 
ANIMACY (ANIMATE vs. INANIMATE), CONCRETENESS (CONCRETE vs. 
ABSTRACT), STRESS (STRESSED vs. UNSTRESSED), AKTIONSART (ACTIVITY 
vs. ACCOMPLISHMENT vs. ACHIEVEMENT vs. STATE) etc. 

− ordinal variables not only distinguish objects as members of different 
categories the way that nominal/categorical variables do – they also al-
low to rank-order the objects in a meaningful way. However, differ-
ences between ranks cannot be meaningfully compared. Grades are a 
typical example: a student with an A (4 grade points) scored a better re-
sult than a student with a C (2 grade points), but just because 4 is two 
times 2, that does not necessarily mean that the A-student did exactly 
twice as well as the C-student – depending on the grading system, the 

                                                      
2. Often, nominal variables are coded using 0 and 1. There are two reasons for that: (i) a 

conceptual reason: often, such nominal variables can be understood as the presence (=1) 
or the absence (=0) of something or even as a ratio variable (cf. below); i.e., in the ex-
ample of particle placement, the nominal variable CONCRETENESS could be understood 
as a ratio variable NUMBER OF CONCRETE REFERENTS; (ii) for reasons I will not discuss 
here, it is computationally useful to use 0 and 1 and, somewhat counterintuitively, some 
statistical software other than R even requires that kind of coding. 
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A-student may have given three times as many correct answers as the C-
student. In the particle placement example, the variable COMPLEXITY is 
an ordinal variable if you operationalize it as above: SIMPLE NP (1) vs. 
PHRASALLY-MODIFIED (2) vs. CLAUSALLY-MODIFIED (3). It is useful to 
make the ranks compatible with the variable: if the variable is called 
SYNTACTIC COMPLEXITY, then large rank numbers should represent 
large degrees of complexity, i.e., complex direct objects. If, on the other 
hand, the variable is called SYNTACTIC SIMPLICITY, then large rank 
numbers should represent large degrees of simplicity, i.e. simple direct 
objects. Other typical examples are SOCIO-ECONOMIC STATUS or 
DEGREE OF IDIOMATICITY or PERCEIVED VOCABULARY DIFFICULTY 
(e.g., LOW/1 vs. INTERMEDIATE/2 vs. HIGH/3). 

− ratio variables not only distinguish objects as members of different 
categories and with regard to some rank ordering – they also allow to 
meaningfully compare the differences and ratios between values. For 
example, LENGTH IN SYLLABLES is such a ratio variable: when one ob-
ject is six syllables long and another is three syllables long, then the first 
is of a different length than the second (the categorical information), the 
first is longer than the second (the ordinal information), and it is exactly 
twice as long as the second. Other typical examples are annual salaries, 
or reaction times in milliseconds.3 

 
These differences can be clearly illustrated in a table of a fictitious data 

set on lengths and degrees of complexity of subjects and objects – which 
column contains which kind of variable? 
 
Table 4. A fictitious data set of subjects and objects 

DATA POINT COMPLEXITY DATA SOURCE SYLLLENGTH GRMRELATION 

1 HIGH D8Y 6 OBJECT 

2 HIGH HHV 8 SUBJECT 

3 LOW KB0 3 SUBJECT 

4 INTERMEDIATE KB2 4 OBJECT 

 

 

THINK 

BREAK 

                                                      
3. Strictly speaking, there is also a class of so-called interval variables, which I am not 

going to discuss here separately from ratio variables. 
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DATA POINT is essentially a categorical variable: every data point gets 
its own number so that you can uniquely identify it, but the number as such 
may represent little more than the order in which the data points were en-
tered. COMPLEXITY is an ordinal variable with three levels. DATA SOURCE 

is another categorical variable: the levels of this variable are file names 
from the British National Corpus. SYLLLENGTH is a ratio variable since the 
third object can correctly be described as half as long as the first. 
GRMRELATION is a nominal/categorical variable. These distinctions are 
very important since these levels of measurement determine which statisti-
cal tests can and cannot be applied to a particular question and data set, as 
we will see below. As a rule of thumb already, it is usually best to work 
with the highest level of measurement; I will come back to this shortly. 

The issue of operationalization is one of the most important of all. If 
you do not operationalize your variables properly, then the whole study 
might be useless since you may actually end up not measuring what you 
want to measure. Without an appropriate operationalization, the validity of 
your study is at risk. If we investigated the question of whether subjects in 
English are longer than direct objects and looked through sentences in a 
corpus, we might come across the sentence in (2): 
 
(2) [SUBJECT The younger bachelors] ate [OBJECT the nice little parrot]. 
 

The result for this sentence depends on how LENGTH is operationalized. 
If LENGTH is operationalized as number of morphemes, then the subject is 
longer than the direct object: 5 (The, young, comparative -er, bachelor, 
plural s) vs. 4 (the, nice, little, parrot). However, if LENGTH is operational-
ized as number of words, the subject (3 words) is shorter than the direct 
object (4 words). And, if LENGTH is operationalized as number of charac-

ters without spaces, the subject and the direct object are equally long (19 
characters). In this contrived case, thus, the operationalization alone deter-
mines the result. 
 
 
3.2.3. Scientific hypotheses in statistical/mathematical form 

 
Once you have formulated both your own H1 and the logically complemen-
tary H0 in text form and have defined how the variables will be operational-
ized, you also formulate two statistical versions of these hypotheses. That 
is, you first formulate the two text hypotheses, and in the statistical hypoth-
eses you then express the numerical results you expect on the basis of the 
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text hypotheses. Such numerical results usually involve one of five differ-
ent mathematical forms: 
 

− frequencies; 

− means; 

− dispersions; 

− correlations; 

− distributions. 
 

We begin by looking at a simple example of an H1 regarding particle 
placement: if a verb-particle construction is followed by a directional PP, 
then native speakers will produce the constituent order VOP more often than 
when no such directional PP follows. To formulate the statistical hypothe-
sis counterpart to this text form, you have to answer the question, if I inves-
tigated, say, 200 sentences with verb-particle constructions in them, how 
would I know whether H1 is (more likely) correct or not? (As a matter of 
fact, you actually have to proceed a little differently, but we will get to that 
later.) One possibility of course is to count how often CONSTRUCTION: VPO 
and CONSTRUCTION: VOP are followed by a directional PP, and if there are 
more directional PPs after CONSTRUCTION: VOP than after CONSTRUCTION: 
VPO, then this provides support for H1. Thus, this possibility involves fre-
quencies and the statistical hypotheses are: 
 
H1 directional: n dir. PPs after CONSTRUCTION: VPO < n dir. PPs after CONSTRUCTION: VOP 
H1 non-directional: n dir. PPs after CONSTRUCTION: VPO ≠ n dir. PPs after CONSTRUCTION: VOP 
H0:  n dir. PPs after CONSTRUCTION: VPO = n dir. PPs after CONSTRUCTION: VOP

4 
 

Just in passing: what do these statistical hypotheses presuppose? 
 

 

THINK 

BREAK 

 

                                                      
4. Note: I said above that you often obtain H0 by inserting not into H1. Thus, when the 

statistical version of H1 involves a “<“, then you might expect the statistical version of 
H0 to contain a “≥”. However, we will follow the usual convention also mentioned 
above that H0 states the absence of a difference/effect/correlation etc., which is why we 
write “=“. You will see below that the cases covered by “≥” will still be invoked in the 
computations that are based on these statistical hypotheses. 
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They presuppose that you investigate equally many instances of both 
constructions because otherwise a small observed frequency of directional 
PPs after CONSTRUCTION: VOP – the frequency we expect to be large – 
could simply be due to a small overall frequency of CONSTRUCTION: VOP. 
For the variable COMPLEXITY, you could formulate similar hypotheses 
based on frequencies, if COMPLEXITY is operationalized on the basis of, for 
example, the three levels mentioned above. 

Let us now turn to an example involving statistical hypotheses based on 
means: if the direct object of a transitive phrasal verb is long, then native 
speakers will produce the constituent order VPO more often than when it is 
not. One way to proceed is to measure the average lengths of direct objects 
in CONSTRUCTION: VPO and CONSTRUCTION: VOP and then compare these 
average lengths to each other. You could therefore write: 
 
H1 directional: mean Length of the direct object in CONSTRUCTION: VPO >  

mean Length of the direct object in CONSTRUCTION: VOP 

H1 non- directional: mean Length of the direct object in CONSTRUCTION: VPO ≠  
mean Length of the direct object in CONSTRUCTION: VOP 

H0: mean Length of the direct object in CONSTRUCTION: VPO =  
mean Length of the direct object in CONSTRUCTION: VOP 

 
With similarly obvious operationalizations, the other text hypotheses 

from above can be transformed into analogous statistical hypotheses. Now, 
and only now, we finally know what needs to be observed in order for us to 
reject H0. (We will look at hypotheses involving correlations, dispersion, 
and distributions later.) 

All hypotheses discussed so far were concerned with the simple case 
where a sample of verb-particle constructions was investigated regarding 
whether the two constructions differ with regard to one independent varia-
ble (e.g., DIRECTIONALPP). The statistical methods to handle such cases 
are the subject of Chapter 4. However, things are often not that simple: 
most phenomena are multifactorial in nature, which means dependent vari-
ables are usually influenced by, or at least related to, more than one inde-
pendent variable. While the overall logic is the same as above, some com-
plications arise and we will postpone their discussion until Chapter 5. 
 
 
3.3. Data collection and storage 
 
Only after all variables have been operationalized and all hypotheses have 
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been formulated do you actually collect your data. For example, you run an 
experiment or do a corpus study or … However, you will hardly ever study 
the whole population of events but a sample so it is important that you 
choose your sample such that it is representative and balanced with respect 
to the population to which you wish to generalize. Here, I call a sample 
representative when the different parts of the population are reflected in the 
sample, and I call a sample balanced when the sizes of the parts in the pop-
ulation are reflected in the sample. Imagine, for example, you want to study 
the frequencies and the uses of the discourse marker like in the speech of 
Californian adolescents. To that end, you want to compile a corpus of Cali-
fornian adolescents’ speech by asking some Californian adolescents to 
record their conversations. In order to obtain a sample that is representative 
and balanced for the population of all the conversations of Californian ado-
lescents, the proportions of the different kinds of conversations in which 
the subjects engage would ideally be approximately reflected in the sample. 
For example, a good sample would not just include the conversations of the 
subjects with members of their peer group(s), but also conversations with 
their parents, teachers, etc., and if possible, the proportions that all these 
different kinds of conversations make up in the sample would correspond 
to their proportions in real life, i.e. the population. 

While it is important you try to stick to these rules as much as possible, 
why are they often more of a theoretical ideal? 
 

 

THINK 

BREAK 

 
This is often just a theoretical ideal because we don’t know all parts and 

their proportions in the population. Who would dare say how much of an 
average Californian adolescent’s discourse – and what is an average Cali-
fornian adolescent anyway? – takes place within his peer group, with his 
parents, with his teachers etc.? And how would we measure the proportion 
– in words? sentences? minutes? Still, even though these considerations 
will often only result in estimates, you must think about the composition of 
your sample(s) just as much as you think about the exact operationalization 
of your variables. If you do not do that, then the whole study may well fail 
because you may be unable to generalize from whatever you find in your 
sample to the population. One important rule in this connection is to choose 
the elements that enter into your sample randomly, to randomize. For ex-
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ample, if the adolescents who participate in your study receive a small re-
cording device with a lamp and are instructed to always record their con-
versations when the lamp lights up, then you could perhaps send a signal to 
the device at random time intervals (as determined by a computer). This 
would make it more likely that you get a less biased sample of many differ-
ent kinds of conversational interaction, which would then reflect the popu-
lation better. 

Let us briefly look at a similar example from the domain of first lan-
guage acquisition. It was found that the number of questions in recordings 
of caretaker-child interactions was surprisingly high. Some researchers 
suspected that the reason for that was parents’ (conscious or unconscious) 
desire to present their child as very intelligent so that they asked the child 
“And what is that?” questions all the time so that the child could show how 
many different words he knew. Some researchers then changed their sam-
pling method such that the recording device was always in the room, but 
the parents did not know exactly when it would record caretaker-child in-
teraction. The results showed that the proportion of questions decreased 
considerably … 

In corpus-based studies, you will often find a different kind of randomi-
zation. For example, you will find that a researcher first retrieved all in-
stances of the word he is interested in and then sorted all instances accord-
ing to random numbers. When the researcher then investigates the first 
20% of the list, he has a random sample. However you do it, randomization 
is one of the most important principles of data collection. 

Once you have collected your data, you have to store them in a format 
that makes them easy to annotate, manipulate, and evaluate. I often see 
people – students as well as seasoned researchers – print out long lists of 
data points, which are then annotated by hand, or people annotate concord-
ance lines from a corpus in a text processing software. This may seem rea-
sonable for small data sets, but it doesn’t work or is extremely inconvenient 
for larger ones, and the generally better way of handling the data is in a 
spreadsheet software (e.g., LibreOffice Calc) or a database, or in R. How-
ever, there is a set of ground rules that defines the desired so-called case-

by-variable format and needs to be borne in mind. 
 
i. the first row contains the names of all variables; 
ii. each of the other rows represents one and only one data point, where I 

am using data point to refer to a single observation of the dependent 
variable; 

iii. the first column just numbers all n cases from 1 to n so that every row 
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can be uniquely identified and so that you can always restore one par-
ticular ordering (e.g., the original one); 

iv. each of the remaining columns represents one and only one variable or 
feature with respect to which every data point gets annotated. In a 
spreadsheet for a corpus study, for example, one additional column may 
contain the name of the corpus file in which the word in question is 
found; another column may provide the line of the file in which the 
word was found. In a spreadsheet for an experimental study, one col-
umn should contain some unique identifier of each subject; other col-
umns may contain the age of the subject, the sex of the subject, the ex-
act stimulus or some index representing the stimulus the subject was 
presented with, the order index of a stimulus presented to a subject (so 
that you can test whether a subject’s performance changes systematical-
ly in the course of the experiment), …; 

v. missing data are entered as NA and not just with empty cells (which 
also means no other variable level should be abbreviated as NA) in or-
der to preserve the formal integrity of the data set (i.e., have all rows 
and columns contain the same number of elements) and to be able to do 
follow-up studies on the missing data to see whether, for example, there 
is a pattern in the missing data points which needs to be accounted for. 

 
Some additional very helpful suggestions especially for working with R 

are to have the column names in the first row be in all caps, to never code 
the levels of categorical levels as numbers but as words/character strings in 
small letters, and to not use ‘weird’ characters such as spaces, periods, 
commas, tabs, #, single/double quotes or others in variable names or levels. 

To make sure these points are perfectly clear, let us look at two exam-
ples. Let’s assume for your study of particle placement you had looked at a 
few sentences and counted the number of syllables of the direct objects. 
First, a question: in this design, what is the dependent variable and what is 
the independent variable? 
 

 

THINK 

BREAK 

 
The independent variable is the ratio variable LENGTH (in syllables), 

which can take on all sorts of positive integer values. The dependent varia-
ble is the nominal variable CONSTRUCTION, which can be either VPO or 
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VOP. When all hypotheses were formulated and, subsequently, data were 
collected and coded, then I sometimes see a format such as the one repre-
sented in Table 5. 
 
Table 5. A not-so-good table 1 

 LENGTH: 2 LENGTH: 3 LENGTH: 5 LENGTH: 6 

CONSTRUCTION: 

VPO 

|| || ||| || 

CONSTRUCTION: 

VOP 

|||| ||| || | 

 
As a second example, let’s look at the hypothesis that subjects and di-

rect objects are differently long (in words). Again the question: what is the 
dependent variable and what is the independent variable? 
 

 

THINK 

BREAK 

 
The independent variable is the nominal variable RELATION, which can 

be SUBJECT or OBJECT. The dependent variable is LENGTH, which can take 
on positive integer values. If you formulated all four hypotheses (H1: text 
and statistical form; H0: text and statistical form) and then looked at the 
small corpus in (3), then your spreadsheet should not look like Table 6. 
 
(3) a. The younger bachelors ate the nice little cat. 
 b. He was locking the door. 
 c. The quick brown fox hit the lazy dog. 
 
Table 6. A not-so-good table 2 

SENTENCE SUBJ ONJ 

The younger bachelors ate the nice little cat. 3 4 

He was locking the door. 1 2 

The quick brown fox hit the lazy dog. 4 3 

 
Both Table 5 and Table 6 violate all of the above rules. In Table 6, for 

example, every row represents two data points, not just one, namely one 
data point representing some subject’s length and one representing the 
length of the object from the same sentence. Also, not every variable is 
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represented by one and only column – rather, Table 6 has two columns 
with data points, each of which represents one level of an independent vari-
able, not one variable. Before you read on, how would you have to reorgan-
ize Table 6 to make it compatible with the above rules? 
 

 

THINK 

BREAK 

 
Table 7 is a much better way to store the data: every data point has its 

own row and is characterized according to the two variables in their respec-
tive columns. An even more comprehensive version may now even include 
one column containing just the subjects and objects so that particular cases 
can be found more easily. In the first row of such a column, you would find 
The younger bachelor, in the second row of the same column, you would 
find the nice little cat etc. The same logic applies to the improved version 
of Table 5, which should look like Table 8. 
 
Table 7. A much better coding of the data in Table 6 

CASE SENT# SENTENCE RELATION LENGTH 

1 1 The younger bachelors ate the 

nice little cat. 

subj 3 

2 1 The younger bachelors ate the 

nice little cat. 

obj 4 

3 2 He was locking the door. subj 1 

4 2 He was locking the door. obj 2 

5 3 The quick brown fox hit the lazy 

dog. 

subj 4 

6 3 The quick brown fox hit the lazy 

dog. 

obj 3 

 
With very few exceptions, this is the format in which you should always 

save your data.5 Ideally, you enter the data in this format into a spreadsheet 
software and save the data (i) in the native file format of that application (to 
preserve colors and other formattings you may have added) and (ii) into a 
tab-delimited text file, which is easier to import into R. 

                                                      
5. There are some more complex statistical techniques which can require different formats, 

but in the vast majority of cases, the standard format discussed above (also sometimes 
called long format) is the one that you will need and that will allow you to easily switch 
to another format. 
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Table 8. A much better coding of the data in Table 5 

CASE CONSTRUCTION LENGTH 

1 vpo 2 

2 vpo 2 

3 vop 2 

4 vop 2 

5 vop 2 

6 vop 2 

7 vpo 3 

8 vpo 3 

9 vop 3 

10 vop 3 

11 vop 3 

… … … 

 
All these steps having to do with the data collection must be described 

in the methods part of your written version: what is the population to which 
you wanted to generalize, how did you draw your (ideally) representative 
and balanced sample, which variables did you collect data for, etc. 
 
 
3.4. The decision 
 
When the data have been stored in a format that corresponds to that of Ta-
ble 7/Table 8, you can finally do what you wanted to do all along: evaluate 
the data with some statistical test. (For now I will not address how you 
decide which statistical test to choose but I will return to this topic at the 
beginning of Chapter 4.) As a result of that evaluation you will obtain fre-
quencies, means, dispersions, correlation coefficients, or distributions. 
However, one central aspect of this evaluation is that you actually do not 
simply try to show that your H1 is correct – contrary to what you might 
expect you try to show that the statistical version of H0 is wrong, and since 
H0 is the logical counterpart to H1, this supports your H1. The obvious ques-
tion now is, why this ‘detour’? The answer to this question can be ap-
proached again with reference to the example of subjects and objects: let’s 
assume you formulated these hypotheses: 
 
H1: The subjects and direct objects in transitive clauses are differently 

long. 
H0: The subjects and direct objects in transitive clauses are not differ-

ently long. 
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Now consider the following two questions: 
 

− how many subjects and direct objects do you maximally have to study 
to show that the above H1 is correct? 

− how many subjects and direct objects do you minimally have to study to 
show that the above H0 is incorrect? 

 

 

THINK 

BREAK 

 
You probably figured out quickly that the answer to the first question is 

“infinitely many.” Strictly speaking, you can only be sure that H1 is correct 
if you have studied all subjects and direct objects and found not a single 
counterexample. The answer to the second question is “one each” because 
if the first subject is longer or shorter than the first object, we know that, 
strictly speaking, H0 is not correct. However, especially in the humanities 
and social sciences you do not usually reject a hypothesis on the basis of 
just one counterexample. Rather, you use the following four-step proce-
dure, which is sometimes referred to as the Null Hypothesis Significance 
Testing (NHST) paradigm: 
 
i. you define a so-called significance level pcritical, which is usually set to 

0.05 (i.e., 5%) and represents the threshold value for rejecting or stick-
ing to H0; 

ii. you analyze your data by computing some effect e using the statistic in 
your statistical hypotheses; 

iii. you compute the so-called probability of error p how likely it is to find 
e or something that deviates from H0 even more in your sample when, in 
the population, H0 is true; 

iv. you compare pcritical and p and decide: if p < pcritical, then you can reject 
H0 and accept H1 – otherwise, you must stick to H0. 

 
For example, if in your sample the mean length difference between sub-

jects and direct objects is 1.4 syllables, then you compute the probability of 
error p to find this difference of 1.4 syllables or an even larger difference 
when you in fact don’t expect any such difference (because that is what H0 
predicts). Then, there are two possibilities: 
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− if this probability p of a 1.4-syllable difference is smaller than pcritical of 
0.05, then you can reject the H0 that there is no difference between sub-
jects and direct objects in the population. In the results section of your 
paper, you can then write that you found a significant difference be-
tween the means in your sample, and in the discussion section of your 
paper you would discuss what kinds of implications this has, etc. 

− if this probability p is equal to or larger than pcritical of 0.05, then you 
cannot reject the H0 that there is no difference between subjects and di-
rect objects in the population. In the results section of your paper, you 
would then state that you have not found a significant difference be-
tween the lengths in your sample. In the discussion part of your paper, 
you should then discuss the implications of this finding as well as 
speculate or reason about why there was no significant difference – 
there may have been outliers in the corpus data or in the experiment 
(because subjects reacted strangely to particular stimuli, coding errors, 
etc. (Outliers are values in the sample that are rather untypical given the 
rest of the sample.) 

 
Two aspects of this logic are very important: First, the fact that an effect 

is significant does not necessarily mean that it is an important effect despite 
what the everyday meaning of significant might suggest. The word signifi-

cant is used in a technical sense here, meaning the effect (here, the differ-
ence) is large enough for us to assume that, given the size of the sample(s), 
it is probably not a random difference. Second, just because you accept H1 
given a significant result, that does not mean that you have proven H1. This 
is because there is still the probability of error p that the observed result has 
come about even though H0 is correct – the probability of error p is just 
small enough to accept H1, but not to prove it. 

This line of reasoning may appear a bit confusing at first especially 
since we suddenly talk about two different probabilities. One is the proba-
bility of 5% (to which the other probability is compared), that other proba-
bility is the probability to obtain the observed result when H0 is correct. 
The former, the significance level pcritical, is defined before data are ob-

tained whereas the latter, the probability of error, is the so-called p-value 
and computed on the basis of the data. Why is this probability called prob-
ability of error? It is because – recall from above – it is the probability to 
err when you accept H1 given the observed data. Sometimes, you will find 
that people use different wordings for different p-values: 
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− p < 0.001 is sometimes referred to as highly significant and indicated 
with ***; 

− 0.001 ≤ p < 0.01 is sometimes referred to as very significant and indi-
cated with **; 

− 0.01 ≤ p < 0.05 is sometimes referred to as significant and indicated 
with *; 

− 0.05 ≤ p < 0.1 is sometimes referred to as marginally significant and 
indicated with ms or a period but since such p-values are larger than the 
usual standard of 5%, calling such results marginally significant 
amounts, polemically speaking at least, to saying “Look, I didn’t really 
get the significant results I was hoping for, but they are still pretty nice, 
don’t you think?”, which is why I typically discourage the use of this 
expression. 

 

Warning/advice 
You must never change your hypotheses after you have obtained your re-
sults and then sell your study as successful support of the ‘new’ H1. Also, 
you must never explore a data set – the nicer way to say ‘fish for something 
useable’ – and, when you then find something significant, sell this result as 
a successful test of a ‘previously formulated’ H1. You may of course ex-
plore a data set in search of patterns and hypotheses, but if a data set gener-
ates a hypothesis, you must test that hypothesis with different data. 

 
But while we have seen above how this comparison of the two probabil-

ities contributes to the decision in favor of or against H1, it is still unclear 
how this p-value is computed. 
 
 
3.4.1. One-tailed p-values from discrete probability distributions 

 
Let’s assume you and I decided to toss a coin 100 times. If we get heads, I 
get one dollar from you – if we get tails, you get one dollar from me. Be-
fore this game, you formulate the following hypotheses: 
 
Text H0: Stefan does not cheat: the probability for heads and tails is 

50% vs. 50%. 
Text H1: Stefan cheats: the probability for heads is larger than 50%. 
 

This scenario can be easily operationalized using frequencies: 
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Statistical H0: Stefan will win just as often as I will, namely 50 times. 
Statistical H1: Stefan will win more often than I will, namely more than 
  50 times. 
 

Now my question: when we play the game and toss the coin 100 times, 
after which result will you suspect that I cheated? 
 

 

THINK 

BREAK 

 

− when you lost 51 times (probably not …)? 

− when you lost 55 times? when you lost 60 times? (maybe …)? 

− when you lost 80 times or even more often? (most likely …)? 
 

Maybe without realizing it, you are currently thinking along the lines of 
significance tests. Let’s make this more concrete (by assuming you lost 60 
times) and also paraphrase it in terms of the above four steps of the null-
hypothesis significance testing paradigm: 
 
i. let’s assume you set the significance level pcritical to its usual value of 

0.05; 
ii. you observe the effect e, namely that you lose 60 times; 
iii. you (try to) compute the so-called probability of error p how likely it is 

to lose 60 times or more often in the sample (our game of 100 tosses) 
when H0 is true and you should have lost 50 times. Why “60 times or 
more often”? Well above we said 

you compute the so-called probability of error p how like-
ly it is to find e or something that deviates from H0 even 
more in your sample when, in the population, H0 is true; 

iv. if you can compute p, you compare pcritical and p and decide what to 
believe: if p < pcritical, then you can reject H0, accept your H1, and accuse 
me of cheating – otherwise, you must stick to H0 and accept your losses. 

 
Thus, you must ask yourself how and how much does the observed re-

sult deviate from the result expected from H0. Obviously, your number of 
losses is larger: 60 > 50. Thus, the results that deviate from H0 that much or 
even more in the predicted direction are those where you lose 60 times or 
more often: 60 times, 61 times, 62, times, …, 99 times, and 100 times. In a 
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more technical parlance, you set the significance level to 0.05 and ask 
yourself “how likely is it that Stefan did not cheat but still won 60 times 
although he should only have won 50 times?” This is exactly the logic of 
significance testing. 

It is possible to show that the probability p to lose 60 times or more just 
by chance – i.e., without me cheating – is 0.02844397, i.e., 2.8%. Since this 
p-value is smaller than 0.05 (or 5%), you can now accuse me of cheating. If 
we had been good friends, however, so that you would not have wanted to 
risk our friendship by accusing me of cheating prematurely and had set the 
significance level to 1%, then you would not be able to accuse me of cheat-
ing, since 0.02844397 > 0.01. 

This example has hopefully clarified the overall logic even further, but 
what is probably still unclear is how this p-value is computed. To illustrate 
that, let us reduce the example from 100 coin tosses to the more managea-
ble amount of three coin tosses. In Table 9, you find all possible results of 
three coin tosses and their probabilities provided that H0 is correct and the 
chance for heads/tails on every toss is 50%. More specifically, the three left 
columns represent all possible results, column 4 and column 5 show how 
many heads and tails are obtained in each of the eight possible results, and 
the rightmost column lists the probability of each possible result. (I will 
explain the four boxes in the right half shortly.) As you can see, these are 
all the same, 0.125. Why is that so? 

Two easy ways to explain this are conceivable, and both of them require 
you to understand the crucial concept of independence. 
 
Table 9. All possible results of three coin tosses and their probabilities (when H0 

is correct) 

Toss 1 Toss 2 Toss 3 # heads # tails presult 

heads heads heads 3 0 0.125 

heads heads tails 2 1 0.125 

heads tails heads 2 1 0.125 

heads tails tails 1 2 0.125 

tails heads heads 2  0.125 

tails heads tails 1 2 0.125 

tails tails heads 1 2 0.125 

tails tails tails 0 3 0.125 

 
The first one involves understanding that, according to H0, the probabil-

ity of heads and tails is the same on every trial and that all trials are inde-
pendent of each other. This notion of independence is important: trials are 
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independent of each other when the outcome of one trial (here, one toss) 
does not influence the outcome of any other trial (i.e., any other toss). Simi-
larly, samples are independent of each other when there is no meaningful 
way in which you can match values from one sample onto values from 
another sample. For example, if you randomly sample 100 transitive claus-
es out of a corpus and count their subjects’ lengths in syllables, and then 
you randomly sample 100 different transitive clauses from the same corpus 
and count their direct objects’ lengths in syllables, then the two samples – 
the 100 subject lengths and the 100 object lengths – are independent. If, on 
the other hand, you randomly sample 100 transitive clauses out of a corpus 
and count the lengths of the subjects and the objects in syllables, then the 
two samples – the 100 subject lengths and the 100 object lengths – are de-
pendent because you can match up the 100 subject lengths onto the 100 
object lengths perfectly by aligning each subject with the object from the 
very same clause. Similarly, if you perform an experiment twice with the 
same subjects, then the two samples made up by the first and the second 
experimental results are dependent, because you can match up each sub-
ject’s data point in the first experiment with the same subject’s data point in 
the second. This notion will become very important later on. 

Returning to the three coin tosses: since there are eight different out-
comes of three tosses that are all independent of each other – i.e. equally 
probable – the probability of each of the eight outcomes is 1/8 = 0.125. 

The second way to understand the rightmost column of Table 9 involves 
computing the probability of each of the eight events separately. For the 
first row that means the following: the probability to get head in the first 
toss, in the second, in the third toss is always 0.5. Since the tosses are inde-
pendent of each other, you obtain the probability to get heads three times in 
a row by multiplying the individual events’ probabilities: 0.5·0.5·0.5 = 
0.125 (the multiplication rule in probability theory). Analogous computa-
tions for every row show that the probability of each result is 0.125. Thus, 
we can show that H0 predicts that each of us should win 1.5 times on aver-
age (i.e., if we played the three-toss game 100 times). 

Now imagine you lost two out of three times. If you had again set the 
level of significance to 5%, could you accuse me of cheating? 
 

 

THINK 

BREAK 
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Of course not. Let me first ask again which events need to be consid-
ered. The observed result – that you lost two times – and the result(s) that 
deviate(s) even more from H0 in the predicted direction. This is easy here: 
the only such result is that you lose all three times. Let us compute the sum 
of the probabilities of these events. 

As you can see in column 4, there are three results in which you lose 
two times in three tosses: H H T (row 2), H T H (row 3), and T H H (row 
5). Thus, the probability to lose exactly two times is 0.125+0.125+0.125 = 
0.375, and that is already much much more than your level of significance 
0.05 allows. However, to that you still have to add the probability of the 
event that deviates even more from H0, which is another 0.125 (row 1); all 
these events and their probabilities are highlighted with the four boxes. If 
you add this all up, the probability p to lose two or more times in three 
tosses when H0 is true is 0.5. This is ten times as much as the level of sig-
nificance so there is no way that you can accuse me of cheating. Note that 
even if you had lost all three tosses, you could still not accuse me of cheat-
ing, because the probability of that happening when H0 is true is still 0.125 

We can also represent this logic graphically and at the same time go 
back to larger numbers of tosses. Figure 4 has six panels, one for 3 tosses, 
one for 6, one for 12, and then 25, 50, and 100. In each, the summed prob-
abilities for all possible numbers of heads given the number of tosses made 
are represented as bars, and the most extreme result (I always win ) is rep-
resented with a grey bar and an arrow pointing to it. In the cases of 3 and 6 
tosses, I also plotted the probabilities of these events on top of the bars. 

Thus, if you lost more often than you should have according to H0 and 
you want to determine the probability of losing as many times and even 
more often, you move from the expectation of H0, which is in the middle 
(along the x-axis) of the graph, away to the observed result (say, at x = 3) 
and add the length of that bar to the lengths of all other bars you encounter 
if you continue to move in the same direction, where here there is only one 
bar at x = 3 so you’re done immediately. 

Figure 4 also illustrates another very important point. First, recall that 
the basic distribution underlying this data is a discrete and non-normal 
probability distribution, namely 0.5 (heads) vs. 0.5 (tails). Second, as the 
numbers of tosses in our games increase, the probabilities of the possible 
results look more and more like the bell-shaped curve we know from nor-
mal distributions. Thus, even though the underlying distribution is not 
normal, once the sample size becomes large enough, we still get a bell-
shaped curve. This also means that, if the data under investigation are dis-
tributed in a way that is sufficiently similar to the normal distribution (or 
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another one of several widely used probability density functions, such as 
the F-, t-, or χ2-distribution), then one does not have to compute, and sum 
over, exact probabilities as we did above, but one can approximate the p-
value from parameters of equations underlying the above distributions; this 
is often called using parametric tests. Crucially, this approximation of a p-
value on the basis of a function can be only as good as the data’s distribu-
tional fit to the corresponding function. We will revisit this below. 
 

 

Figure 4. All probabilities of possible results of 3, 6, 12, 25, 50, 100 coin tosses 
and their probabilities (when H0 is correct, one-tailed) 

 
 
3.4.2. Two-tailed p-values from discrete probability distributions 

 
Now, we have to add another perspective. In the last section, we were con-
cerned with directional H1s: your H1 was “Stefan cheats: the probability for 
heads is larger than 50% [and not just different from 50%].” The kind of 
significance test we discussed is correspondingly called one-tailed tests 
because you were only interested in one direction in which the observed 
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result deviates from the expected result (say because you knew for sure you 
didn’t cheat). Thus, when you summed up the bar lengths in Figure 4 you 
only moved away from H0’s expectation in one direction. 

However, often you only have a non-directional H1. In such cases, you 
have to look at both ways in which results may deviate from the expected 
result. Let us return to the scenario where you and I toss a coin three times, 
but this time we also have an impartial observer who has no reason to sus-
pect that only I would be cheating. He therefore formulates the following 
hypotheses (with a significance level of 0.05): 
 
Statistical H0: Stefan will win just as often as the other player, namely 50 

times (or “Both players will win equally often”). 
Statistical H1: Stefan will win more or less often than the other player (or 

“The players will not win equally often”). 
 

Imagine now again you lost three times. The observer now asks himself 
whether one of us should be accused of cheating. As before, he needs to 
determine which events to consider and he also uses a table of all possible 
results to help him figure things out. Consider, therefore, Table 10. 
 
Table 10. All possible results of three coin tosses and their probabilities (when H0 

is correct) 

Toss 1 Toss 2 Toss 3 # heads # tails presult 

heads heads heads 3 0 0.125 

heads heads tails 2 1 0.125 

heads tails heads 2 1 0.125 

heads tails tails 1 2 0.125 

tails heads heads 2  0.125 

tails heads tails 1 2 0.125 

tails tails heads 1 2 0.125 

tails tails tails 0 3 0.125 

 
First, the observer considers the observed result that you lost three 

times, which is listed in row 1 and arises with a probability of 0.125. But 
then he also considers the probabilities of events deviating from H0 just as 
much or even more. With a directional H1, you moved from H0 only in one 
direction – but this time there is no directional hypothesis so the observer 
also looks for deviations just as large or even larger in the other direction of 
H0’s expectation. As you can see in Table 10, there is another deviation 
from H0 that is just as extreme, namely that I lose three times. Since the 
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observer only has a non-directional hypothesis, he includes the probability 
of that event, too, arriving at a cumulative probability of 0.25. This logic is 
graphically represented in Figure 5 in the same way as above. 
 

 

Figure 5. All probabilities of possible results of 3, 6, 12, 25, 50, 100 coin tosses 
and their probabilities (when H0 is correct, two-tailed) 

 
Note that when you tested your directional H1, you looked at the result 

‘you lost three times’, but when the impartial observer tested his non-
directional H1, he looked at the result ‘somebody lost three times.’ This has 
one very important consequence: when you have prior knowledge about a 
phenomenon that allows you to formulate a directional, and not just a non-
directional, H1, then the result you need for a significant finding can be less 
extreme than if you only have a non-directional H1. In most cases, it will be 
like here: the p-value you get for a result with a directional H1 is half of the 
p-value you get for a result with a non-directional H1. Prior knowledge is 
rewarded, which will be illustrated once more now. 

Let us now return to the example game involving 100 tosses. Again, we 
first look at the situation through your eyes (directional H1), and then, sec-
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ond, through those of an impartial observer (non-directional H1), but this 
time you and the observer try to determine before the game which results 
are so extreme that one will be allowed to adopt the H1. We begin with 
your perspective: In Figure 6, you find the by now familiar graph for 100 
tosses with the expected frequency for heads of 50. (The meaning of the 
black lines will be explained presently.) 
 

 

Figure 6. All possible results of 100 coin tosses and their probabilities (when H0 
is correct, one-tailed H1) 

 
Above, we had an empirical result whose p-value we were interested in, 

and in order to get that p-value, we moved from the expected H0 results to 
the extreme values. Now we want to determine, but not exceed, a p-value 
before we have results and have to proceed the other way round: from an 
extreme point to the expectation of H0. For example, to determine how 
many times you can lose without getting a cumulative probability exceed-
ing 0.05, you begin at the most extreme result on the right – that you lose 
100 times – and begin to add the lengths of the bars. (Of course, you would 
compute that and not literally measure lengths.) The probability that you 
lose all 100 tosses is 7.8886·10-31. To that you add the probability that you 
lose 99 out of 100 times, the probability that you lose 98 out of 100 times, 
etc. When you have added all probabilities until 59 times heads, then the 
sum of all these probabilities reaches 0.0443; all these are represented in 
black in Figure 6. Since the probability to get 58 heads out of 100 tosses is 
0.0223, you cannot add this event’s probability to the others anymore with-
out exceeding the level of significance value of 0.05. Put differently, if you 
don’t want to cut off more than 5% of the summed bar lengths, then you 
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must stop adding probabilities at x = 59. You conclude: if Stefan wins 59 
times or more often, then I will accuse him of cheating, because the proba-
bility of that happening is the largest one that is still smaller than 0.05. 

Now consider the perspective of the observer shown in Figure 7, which 
is very similar, but not completely identical to Figure 6. The observer also 
begins with the most extreme result, that I get heads every time: p100 heads ≈ 
7,8886·10-31. But since the observer only has a non-directional H1, he must 
also include the probability of the opposite, equally extreme result, that we 
get heads 0 times. For each additional number of heads – 99, 98, etc. – the 
observer must now also add the corresponding opposite results – 1, 2, etc. 
Once the observer has added the probabilities 61 times heads / 39 times 
tails and 39 times heads / 61 times tails, then the cumulative sum of the 
probabilities reaches 0.0352 (cf. the black bars in Figure 7). 
 

 

Figure 7. All possible results of 100 coin tosses and their probabilities (when H0 
is correct, two-tailed H1) 

 
Since the joint probability for the next two events – 60 heads / 40 tails 

and 40 heads / 60 tails – is 0.0217, the observer cannot add any further 
results without exceeding the level of significance of 0.05. Put differently, 
if the observer doesn’t want to cut off more than 5% of the summed bar 
lengths on both sides, then he must stop adding probabilities by going from 
right to the left at x = 61 and stop going from the left to right at x = 39. He 
concludes: if Stefan or his opponent wins 61 times or more often, then 
someone is cheating (most likely the person who wins more often). 

Again, observe that in the same situation the person with the directional 
H1 needs a less extreme result to be able to accept it than the person with a 
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non-directional H1: with the same level of significance, you can already 
accuse me of cheating when you lose 59 times (only 9 times more often 
than the expected result) – the impartial observer needs to see someone 
lose 61 times (11 times more often than the expected result) before he can 
start accusing someone. Put differently, if you lose 60 times, you can ac-
cuse me of cheating, but the observer cannot. This difference is very im-
portant and we will use it often. 

While reading the last few pages, you probably sometimes wondered 
where the probabilities of events come from: How do we know that the 
probability to get heads 100 times in 100 tosses is 7.8886·10-31? Essential-
ly, those are computed in the same way as we handled Table 9 and Table 
10, just that we do not write results up anymore because the sample space 
is too huge. These values were therefore computed with R on the basis of 
the so-called binomial distribution. You can easily compute the probability 
that one out of two possible events occurs x out of s times when the event’s 
probability is p in R with the function dbinom.6 The arguments of this func-
tion we deal with here are: 
 

− x: the frequency of the event (e.g., three times heads); 

− s: the number of trials the event could occur (e.g., three tosses); 

− p: the probability of the event in each trial (e.g., 50%). 
 

You know that the probability to get three heads in three tosses when 
the probability of head is 50% is 12.5%. In R: 
 
> dbinom(3, 3, 0.5)¶ 
[1] 0.125 

 
As a matter of fact, you can compute the probabilities of all four possi-

ble numbers of heads – 0, 1, 2, and 3 – in one line (because, as we will see 
below, sequences of integers can be defined with a colon): 
 
> dbinom(0:3, 3, 0.5)¶ 
[1] 0.125 0.375 0.375 0.125 

 
In a similar fashion, you can also compute the probability that heads 

will occur two or three times by summing up the relevant probabilities: 

                                                      
6. I will explain how to install R etc. in the next chapter. It doesn’t really matter if you 

haven’t installed R and/or can’t enter or understand the above input yet. We’ll come 
back to this … 
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> sum(dbinom(2:3, 3, 0.5))¶ 
[1] 0.5 

 
Now you do the same for the probability to get 100 heads in 100 tosses, 

 
> dbinom(100, 100, 0.5)¶ 
[1] 7.888609e-31 

 
the probability to get heads 58 or more times in 100 tosses (which is larger 
than 5% and does not allow you to accept a one-tailed/directional H1), 
 
> sum(dbinom(58:100, 100, 0.5))¶ 
[1] 0.06660531 

 
the probability to get heads 59 or more times in 100 tosses (which is small-
er than 5% and does allow you to accept a one-tailed/directional H1): 
 
> sum(dbinom(59:100, 100, 0.5))¶ 
[1] 0.04431304 

 
In fact, you would not have to do this by trial and error as the above 

may suggest. You can use the function qbinom to get the largest number of 
heads whose cumulative probability with every even more extreme result 
does not exceed 0.05, and you can see that this matches the above finding: 
 
> qbinom(0.05, 100, 0.5, lower.tail=FALSE)¶ 
[1] 58 

 
For two-tailed tests, you can do the same, e.g., compute the probability 

to get heads 40 times or less often, or 60 times and more often (which is 
larger than 0.05 and does not allow you to accept a two-tailed/non-
directional H1): 
 
> sum(dbinom(c(0:40, 60:100), 100, 0.5))¶ 
[1]  0.05688793 

 
Here’s the probability to get heads 39 times or less often, or 61 times 

and more often (which is smaller than 0.05 and allows you to accept a two-
tailed/non-directional H1): 
 
> sum(dbinom(c(0:39, 61:100), 100, 0.5))¶ 
[1] 0.0352002 
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Again, no need to do this by manual trial and error. You can again use 
qbinom to get the largest number of heads whose cumulative probability 
with every even more extreme result does not exceed 0.05 – the only com-
plication is that since you want to ‘add bar lengths’ on two sides and the 
bar lengths are identical on both sides (because the curves in Figure 6 and 
Figure 7 are symmetric), you must get the result that does not exceed 0.05 
when you add both sides, i.e. when one side does not exceed 0.025. Then, 
you again see that this matches our above manual finding: 
 
> qbinom(0.05/2, 100, 0.5, lower.tail=FALSE)¶ 
[1] 60 

 
 
3.4.3. Extension: continuous probability distributions 

 
In the above examples, we always had only one variable with two levels: 
TOSS: HEADS vs. TAILS. Unfortunately, life is usually not that easy. On the 
one hand, we have seen above that our categorical variables will often in-
volve more than two levels. On the other hand, if the variable in question is 
ratio-scaled, then the computation of the probabilities of all possible states 
or levels is not possible. For example, you cannot compute the probabilities 
of all possible reaction times to a stimulus. For this reason and as men-
tioned above, many statistical techniques do not compute an exact p-value 
as we did, but are based on the fact that, as the sample size increases, the 
probability distributions of events begin to approximate those of mathemat-
ical distributions whose functions/equations and properties are very well 
known. Four such distributions will be important for Chapters 4 and 5: 
 

− the standard normal distribution with z-scores (norm); 

− the t-distribution (t); 

− the F-distribution (f); 

− the chi-squared- / χ2-distribution (chisq). 
 

For each of these distributions, just like for binom from above, there is a 
function whose name begins with q and ends with the above function name 
(i.e. qnorm, qt, qf, qchisq) and a function whose name begins with p and 
ends with the above function name (i.e. pnorm, pt, pf, pchisq). The former 
compute the quantile functions of these (four and other) probability distri-
butions whereas the latter compute the inverses of these, the so-called cu-

mulative distribution functions. We can explain this relatively easily on the 
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basis of Figure 8, both panels of which plot the density function of the 
standard normal distribution. 
 

 

Figure 8. Density function of the standard normal distribution with pone-tailed = 
0.05 

 
In Figure 6, we were interested in determining how much a result can 

deviate from the expected result of, there, 50 heads and 50 tails, without 
being significant, where ‘being significant’ meant arising with a cumulative 
probability of less than 0.05 of the whole result space. In that case, we add-
ed up lengths of the bars that make up the curve of the binomial distribu-
tion (using dbinom) or directly identified the largest number of heads 
whose cumulative probability with more extreme results did not exceed 
0.05 (with qbinom). 
 
> sum(dbinom(58:100, 100, 0.5))¶ 
[1] 0.06660531 
> qbinom(0.05, 100, 0.5, lower.tail=FALSE)¶ 
[1] 58 

 
For the continuous distributions of the kind illustrated in Figure 8, there 

are no bar lengths to add up, but the corresponding notion is the area under 
the curve, which is defined as 1 and of which any value on the x-axis can 
cut something off to the left or to the right. For such computations, we can 
again use functions with q and p. For example, if we want to know which 
x-value cuts of 5%, i.e. 0.05, of the left area under the curve, we can com-
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pute it in the following ways with qnorm: 
 
> qnorm(0.05, lower.tail=TRUE)¶ 
[1] -1.644854 
> qnorm(1-0.95, lower.tail=TRUE)¶ 
[1] -1.644854 
> qnorm(0.95, lower.tail=FALSE)¶ 
[1] -1.644854 
> qnorm(1-0.05, lower.tail=FALSE)¶ 
[1] -1.644854 

 
Thus, the grey area under the curve in the left panel of Figure 8 in the 

range -∞ ≤ x ≤ -1.644854 corresponds to 5% of the area under the curve. 
Since the standard normal distribution is symmetric, the same is true of the 
grey area under the curve in the right panel in the range 1.644854 ≤ x ≤ ∞. 
 
> qnorm(0.95, lower.tail=TRUE)¶ 
[1] 1.644854 
> qnorm(1-0.05, lower.tail=TRUE)¶ 
[1] 1.644854 
> qnorm(0.05, lower.tail=FALSE)¶ 
[1] 1.644854 
> qnorm(1-0.95, lower.tail=FALSE)¶ 
[1] 1.644854 

 
These are one-tailed tests because you only look at one side of the 

curve, either the left (when lower.tail=TRUE in the left panel ) or the right 
(when lower.tail=FALSE in the right panel). For corresponding two-tailed 
tests at the same significance level of 0.05, you would have to proceed as 
with binom and consider both areas under the curve (as in Figure 9), name-
ly 2.5% on each edge to arrive at 5% altogether. Thus, to get the x-axis 
values that jointly cut off 5% under the curve, this is what you could enter 
into R: 
 
> qnorm(0.025, lower.tail=TRUE)¶ 
[1] -1.959964 
> qnorm(1-0.975, lower.tail=TRUE)¶ 
[1] -1.959964 
> qnorm(0.975, lower.tail=FALSE)¶ 
[1] -1.959964 
> qnorm(1-0.025, lower.tail=FALSE)¶ 
[1] -1.959964 
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Figure 9. Density function of the standard normal distribution with ptwo-tailed = 
0.05 

 
> qnorm(0.975, lower.tail=TRUE)¶ 
[1] 1.959964 
> qnorm(1-0.025, lower.tail=TRUE)¶ 
[1] 1.959964 
> qnorm(0.025, lower.tail=FALSE)¶ 
[1] 1.959964 
> qnorm(1-0.975, lower.tail=FALSE)¶ 
[1] 1.959964 

 
Again, you see that with non-directional two-tailed tests you need a 

more extreme result for a significant outcome: a value of -1.7 is less than  
-1.644854 and would be significant in a one-tailed test (if you had predict-
ed the negative direction), but that same value is greater than -1.959964 
and thus not small enough for a significant two-tailed test. In sum, with the 
q-functions we determine the minimum one- or two-tailed statistic we need 
to obtain a particular p-value. For one-tailed tests, you typically use p = 
0.05; for two-tailed tests p = 0.05/2 = 0.025 on each side. The functions 
whose names start with p do the opposite of those beginning with q: with 
them, you determine which p-value our statistic corresponds to. The fol-
lowing two lines get you p-values for one-tailed tests (cf. Figure 8 again): 
 
> pnorm(-1.644854, lower.tail=TRUE)¶ 
[1] 0.04999996 
> pnorm(1.644854, lower.tail=FALSE)¶ 
[1] 0.04999996 
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For the two-tailed test, you of course must multiply the probability by 
two because whatever area under the curve you get, you must consider it on 
both sides of the curve. (cf. Figure 9 again): 
 
> 2*pnorm(-1.959964, lower.tail=TRUE)¶ 
[1] 0.05 
> 2*pnorm(1.959964, lower.tail=FALSE)¶ 
[1] 0.05 

 
The other p/q-functions work in the same way, but will require some 

additional information, namely so-called degrees of freedom. I will not 
explain this notion here in any detail but instead cite Crawley’s (2002: 94) 
rule of thumb: “[d]egrees of freedom [df] is the sample size, n, minus the 
number of parameters, p [not related to the other ps above, STG], estimated 
from the data.” For example, if you compute the mean of four values, then 
df = 3 because when you want to make sure you get a particular mean out 
of four values, then you can choose three values freely, but the fourth one 
is then set. If you want to get a mean of 8, then the first three values can 
vary freely and be 1, 2, and 3, but then the last one must be 26. Degrees of 
freedom are the way in which sample sizes and the amount of information 
you squeeze out of a sample are integrated into the significance test. 

The parametric tests that are based on the above distributions are usual-
ly a little easier to compute (although this is usually not an important point 
anymore, given the computing power of current desktop computers) and 
more powerful, but they have the potential problem alluded to above. Since 
they are only estimates of the real p-value based on the equations defining 
z-/t-/F-/χ2-values, their accuracy is dependent on how well these equations 
reflect the distribution of the data. In the above example, the binomial dis-
tribution in Figure 4 and Figure 5 and the normal distribution in Figure 8 
and Figure 9 are extremely similar, but this may be very different on other 
occasions. Thus, parametric tests make distributional assumptions – the 
most common one is in fact that of a normal distribution – so you can use 
such tests only if the data you have meet these assumptions. If they don’t, 
then you must use a so-called non-parametric test or an exact test (as we 
have done for the coin tosses above) or a permutation test or other 
resampling methods. For nearly all tests introduced in Chapters 4 and 5 
below, I will list the assumptions which you have to test before you can 
apply the test, explain the test itself with the computation of a p-value, and 
illustrate how you would summarize the result in the third (results) part of 
the written version of your study. I can already tell you that you should 
always provide the sample sizes, the obtained effect (such as the mean, the 
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percentage, the difference between means, etc.), the name of the test you 
used, its statistical parameters, the p-value, and your decision (in favor of 
or against H1). The interpretation of these findings will then be discussed in 
the fourth and final section of your study. 
 

Recommendation(s) for further study 
Good and Hardin (2012: Ch. 1, 2, and 3) for many interesting and practical-
ly relevant tips as well as Good and Hardin (2012: Ch. 8) on information 
you should provide in your methods and results sections 

 

Warning/advice 
Do not give in to the temptation to use a parametric test when its assump-
tions are not met. What have you gained when you do wrong tests and ei-
ther get slammed by reviewers or, worse even, get published with wrong 
results that are cited because of your methodological mistake(s)? 

 
 
4. The design of a factorial experiment: introduction 

 
In this section, we will deal with a few fundamental rules for the design of 
experiments.7 The probably most central notion in this section is the token 
set (cf. Cowart 1997). I will distinguish two kinds of token sets, schematic 
token sets and concrete token sets. A schematic token set is typically a tab-
ular representation of all experimental conditions. To explain this more 
clearly, let us return to the above example of particle placement. 

Let us assume you want to investigate particle placement not only on 
the basis of corpus data, but also on the basis of experimental data. For 
instance, you might want to determine how native speakers of English rate 
the acceptability of sentences (the dependent variable ACCEPTABILITY) that 
differ with regard to the constructional choice (the first independent varia-
ble CONSTRUCTION: VPO vs. VOP) and the part of speech of the head of the 
direct object (the second independent variable OBJPOS: PRONOMINAL vs. 
LEXICAL).8 Since there are two independent variables for each of the two 
levels, there are 2·2 = 4 experimental conditions. This set of experimental 
conditions is the schematic token set, which is represented in two different 
forms in Table 11 and Table 12. The participants/subjects of course never 

                                                      
7. I will only consider factorial designs, where every variable level is combined with every 

other variable level, but most of the rules discussed also apply to other designs. 
8. For expository reasons, I only assume two levels of OBJPOS. 
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get to see the schematic token set. For the actual experiment, you must 
develop concrete stimuli – a concrete token set that realizes the variable 
level combinations of the schematic token set. 
 
Table 11. Schematic token set for CONSTRUCTION × OBJPOS 1 

 OBJPOS: PRONOMINAL OBJPOS: LEXICAL 

CONSTRUCTION: VPO V Part pron. NPdir. obj. V Part lexical NPdir. obj. 

CONSTRUCTION: VOP V pron. NPdir. obj. Part V lexical NPdir. obj. Part 

 
 
Table 12. Schematic token set for CONSTRUCTION × OBJPOS 2 

Experimental condition CONSTRUCTION OBJPOS 

1 VPO PRONOMINAL 

2 VPO LEXICAL 

3 VOP PRONOMINAL 

4 VOP LEXICAL 

 
However, both the construction of such concrete token sets and the ac-

tual presentations of the concrete stimuli are governed by a variety of rules 
that aim at minimizing undesired sources of noise in the data. Three such 
sources are particularly important: 
 

− knowledge of what the experiment is about: you must make sure that the 
participants in the experiment do not know what is being investigated 
before or while they participate (after the experiment you can of course 
tell them). This is important because otherwise the participants might 
make their responses socially more desirable or change the responses to 
‘help’ the experimenter. 

− undesirable experimental effects: you must make sure that the responses 
of the subjects are not influenced by, say, habituation to particular vari-
able level combinations. This is important because in the domain of, 
say, acceptability judgments, Nagata (1987, 1989) showed that such 
judgments can change because of repeated exposure to stimuli and this 
may not be what you’re interested in. 

− evaluation of the results: you must make sure that the responses of the 
subjects can be interpreted unambiguously. Even a large number of 
willing and competent subjects is useless if your design does not allow 
for an appropriate evaluation of the data. 
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In order to address all these issues, you have to take the rules in (4) to 
(12) under consideration. Here’s the first one in (4): 
 
(4) The stimuli of each individual concrete token set differ with regard 

to the variable level combinations under investigation (and ideally 
only with regard to these and nothing else). 

 
Consider Table 13 for an example. In Table 13, the stimuli differ only 

with respect to the two independent variables. If this was not the case (for 
example, because the left column contained the stimuli John picked up it 
and John brought it back) and you found a difference of acceptability be-
tween them, then you would not know what to attribute this difference to – 
the different construction (which would be what this experiment is all 
about), the different phrasal verb (that might be interesting, but is not what 
is studied here), to an interaction of the two … (4) is therefore concerned 
with the factor ‘evaluation of the results’. 
 
Table 13. A concrete token set for CONSTRUCTION × OBJPOS 1 

 OBJPOS: PRONOMINAL OBJPOS: LEXICAL 

CONSTRUCTION: VPO John picked up it. John picked up the keys. 

CONSTRUCTION: VOP John picked it up. John picked the keys up. 

 
When creating the concrete token sets, it is also important to consider 

variables which you are not interested in but which may make it difficult to 
interpret the results with regard to the variables that you are interested in. 
In the present case, for example, the choice of the verbs and the direct ob-
jects may be important. For instance, it is well known that particle place-
ment is also correlated with the concreteness of the referent of the direct 
object. There are different ways to take such variables, or sources of varia-
tion, into account. One is to make sure that 50% of the objects are abstract 
and 50% are concrete for each experimental condition in the schematic 
token set (as if you introduced an additional independent variable). Another 
one is to use only abstract or only concrete objects, which would of course 
entail that whatever you find in your experiment, you could strictly speak-
ing only generalize to that class of objects. 
 

Recommendation(s) for further study 
Good and Hardin (2012: 31ff.) and Good (2005: Ch. 5) 
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(5) You must use more than one concrete token set, ideally as many 
concrete token sets as there are variable level combinations (or a 
multiple thereof). 

 
One reason for (5) is that, if you only used the concrete token set in Ta-

ble 13, then a conservative point of view would be that you could only 
generalize to other sentences with the transitive phrasal verb pick up and 
the objects it and the book, which would probably not be the most interest-
ing study ever. Thus, the first reason for (5) is again concerned with the 
factor ‘evaluation of results’, and the remedy is to create different concrete 
token sets with different verbs and different objects such as those shown in 
Table 14 and Table 15, which also must conform to (4). 
 
Table 14. A concrete token set for CONSTRUCTION × OBJPOS 2 

 OBJPOS: PRONOMINAL OBJPOS: LEXICAL 

CONSTRUCTION: VPO Mary brought back him. Mary brought back his dad. 

CONSTRUCTION: VOP Mary brought him back. Mary brought his dad back. 

 
 
Table 15. A concrete token set for CONSTRUCTION × OBJPOS 3 

 OBJPOS: PRONOMINAL OBJPOS: LEXICAL 

CONSTRUCTION: VPO I eked out it. I eked out my living. 

CONSTRUCTION: VOP I eked it out. I eked my living out. 

 
A second reason for (5) is that if you only used the concrete token set in 

Table 13, then subjects would probably be able to guess the purpose of the 
experiment right away: since our token set had to conform to (4), the sub-
ject can identify the relevant variable level combinations quickly because 
those are the only things according to which the sentences differ. This im-
mediately brings us to the next rule: 
 
(6) Every subject sees maximally one item out of a concrete token set. 
 

As I just mentioned, if you do not follow 0, the subjects might guess 
from the minimal variations within one concrete token set what the whole 
experiment is about: the only difference between John picked up it and 
John picked it up is the choice of construction. Thus, when subject X gets 
to see the variable level combination (CONSTRUCTION: VPO × OBJPOS: 
PRONOMINAL) in the form of John picked up it, then the other experimental 
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items of Table 13 must be given to other subjects. In that regard, both (5) 
and (6) are (also) concerned with the factor ‘knowledge of what the exper-
iment is about’. 
 
(7) Every subject is presented every variable level combination. 
 

The motivation for (7) are the factors ‘undesirable experimental effects’ 
and ‘evaluation of the results’. First, if several experimental items you pre-
sent to a subject only instantiate one variable level combination, then ha-
bituation effects may distort the results; this you could of course take into 
account by adding a variable to your analysis that mentions for each 
presentation of an experimental condition how often it has been presented 
already. Second, if you present one variable level combination to a subject 
very frequently and another one only rarely, then whatever difference you 
find between these variable level combinations may theoretically be due to 
the different frequencies of exposure and not due to the effects of the varia-
ble level combinations under investigation. 
 
(8) Every subject gets to see every variable level combination more 

than once and equally frequently. 
(9) Every experimental item is presented to more than one subject and 

to equally many subjects. 
 

These rules are motivated by the factor ‘evaluation of the results’. You 
can see what their purpose is if you think about what happens when you try 
to interpret a very unusual reaction by a subject to a stimulus. On the one 
hand, that reaction could mean that the item itself is unusual in some re-
spect in the sense that every subject would react unusually to it – but you 
can’t test that if that item is not also given to other subjects, and this is the 
reason for the rule in (9). On the other hand, the unusual reaction could 
mean that only this particular subject reacts unusually to that variable level 
combination in the sense that the same subject would react more ‘normally’ 
to other items instantiating the same variable level combination – but you 
can’t test that if that subject does not see other items with the same variable 
level combination, and this is the reason for (8). 
 
(10) The experimental items are interspersed with distractors / filler 

items; there are minimally as many filler items as real experimental 
items per subject, but ideally two or three times as many filler 
items as real experimental items per subject. 
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The reason for (10) is obviously ‘knowledge of what the experiment is 
about’: you do not want the subjects to be able to guess the purpose of the 
experiment (or have them think they know the purpose of the experiment) 
so that they cannot distort the results.9 

An additional well-known factor that can distort results is the order in 
which items and distractors are presented. To minimize such effects, you 
must take into consideration the final two rules: 
 
(11) The order of experimental and filler items is pseudorandomized. 
(12) The order of experimental and filler items is pseudorandomized 

differently for every subject. 
 

The rule in (11) requires that the order of experimental items and filler 
items is randomized using a random number generator, but it is not com-
pletely random – hence pseudorandomized – because the ordering resulting 
from the randomization must usually be ‘corrected’ such that 
 

− the first stimulus (e.g., the first question on a questionnaire) is not an 
experimental item but a distractor; 

− experimental items do not follow each other directly; 

− ideally, experimental items exhibiting the same variable level combina-
tions do not follow each other, which means that, after John picked it 

up, the next experimental item must not be Mary brought him back even 
if the two are interrupted by distractors. 

 
The rule in (12) means that the order of stimuli must vary pseudoran-

domly across subjects so that whatever you find cannot be attributed to 
systematic order effects: every subject is exposed to a different order of 
experimental items and distractors. Hence, both (11) and (12) are con-
cerned with ‘undesirable experimental effects ‘ and ‘evaluation of the re-
sults’. (This re-ordering of stimuli can be quite tedious, especially when 
your experiment involves many test items and subjects, which is why, once 
you are more proficient with R, it may be useful to write a function called, 
say, stimulus.randomizer to do this for you, which is how I do this.) 

                                                      
9. In many psychological studies, not even the person actually conducting the experiment 

(in the sense of administering the treatment, handing out the questionnaires, …) knows 
the purpose of the experiment. This is to make sure that the experimenter cannot provide 
unconscious clues to desired or undesired responses. An alternative way to conduct such 
so-called double-blind experiments is to use standardized instructions in the forms of 
videotapes or have a computer program provide the instructions. 
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Only after all these steps have been completed properly can you begin 
to print out the questionnaires and have subjects participate in an experi-
ment. It probably goes without saying that you must carefully describe how 
you set up your experimental design in the methods section of your study. 
Since this is a rather complex procedure, we will go over it again in the 
following section. 

One final remark about this before we look at another example. I know 
from experience that the previous section can have a somewhat discourag-
ing effect. Especially beginners read this and think “how am I ever going to 
be able to set up an experiment for my project if I have to do all this? (I 
don’t even know my spreadsheet software well enough yet …)” And it is 
true: I myself still need a long time before a spreadsheet for an experiment 
of mine looks the way it is supposed to. But if you do not go through what 
at first sight looks like a terrible ordeal, your results might well be, well, 
let’s face it, crap! Ask yourself what is more discouraging: spending maybe 
several days on getting the spreadsheet right, or spending maybe several 
weeks on doing a simpler experiment and then having unusable results … 
 

Warning/advice 
You must be prepared for the fact that usually not all subjects answer all 
questions, give all the acceptability judgments you ask for, show up for 
both the first and the second test, etc. Thus, you should plan conservatively 
and try to get more subjects than you thought you would need in the first 
place. As mentioned above, you should still include these data in your table 
and mark them with NA. Also, it is often very useful to carefully examine 
the missing data for whether their patterning reveals something of interest 
(it would be very important if, say, one variable level combination account-
ed for 90% of the missing data or if 90% of the missing data were contrib-
uted by only two out of, say, 60 subjects). 

 
 

5. The design of a factorial experiment: another example 

 
Let us assume you want to investigate which variables determine how 
many elements a quantifier such as some refers to; consider (13): 
 
(13) a. [NP some balls [PP in front of [NP the cat]] 
 b. [NP some balls [PP in front of [NP the table]] 
 c. [NP some cars [PP in front of [NP the building]] 
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Thus, the question is: are some balls in front of the cat as many balls as 
some balls in front of the table? Or: does some balls in front of the table 
mean as many balls as some cars in front of the building means cars? What 
– or more precisely, how many – does some mean? Your study of the litera-
ture may have shown that at least the following two variables influence the 
quantities that some denotes: 
 

− OBJECT: the size of the object referred to by the first noun: SMALL (e.g. 
ball) vs. LARGE (e.g. car); 

− REFPOINT: the size of the object introduced as a reference in the PP: 
SMALL (e.g. cat) vs. LARGE (e.g. building).10 

 
Obviously, a study of some with these two variables results in a sche-

matic token set with four variable level combinations, as in Table 16. 
 
Table 16. Token sets (schematic + concrete) for OBJECT × REFPOINT 

 REFPOINT: SMALL REFPOINT: LARGE 

OBJECT: 

SMALL 

SMALL + SMALL: 

some dogs next to a cat 

SMALL + LARGE: 

some dogs next to a car 

OBJECT: 

LARGE 

LARGE + SMALL: 

some cars next to a cat 

LARGE + LARGE: 

some cars next to a fence 

 
The (non-directional) hypotheses for this study are: 

 
H0: The average estimate of how many some denotes is independent of 

the sizes of the objects (OBJECT: SMALL vs. LARGE) and the sizes of 
the reference points (REFPOINT: SMALL vs. LARGE) in the utterances 
for which subjects provide estimates: meanSMALL+SMALL = meanSMALL+ 

LARGE = meanLARGE+SMALL = meanLARGE+LARGE. 
H1: The average estimate of how many some denotes is dependent on 

the sizes of the objects (OBJECT: SMALL vs. LARGE) and/or the sizes 
of the reference points (REFPOINT: SMALL vs. LARGE) and/or some 

joint effect of the two: there is at least one ≠ in the above equation. 
 

Let us now also assume you want to test these hypotheses with a ques-
tionnaire: subjects will be shown phrases such as those in Table 16 and 

                                                      
10 I will not discuss here how to decide what is ‘small’ and what is ‘large’. In the study 

from which this example is taken, the sizes of the objects were determined on the basis 
of a pilot study prior to the real experiment. 
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then asked to provide estimates of how many elements a speaker of such a 
phrase would probably intend to convey – how many dogs were next to a 
cat etc. Since you have four variable level combinations, you need at least 
four concrete token sets (the rule in (5)), which are created according to the 
rule in (4). According to the rules in (6) and (7) this also means you need at 
least four subjects: you cannot have fewer because then some subject 
would see more than one stimulus from one concrete token set. You can 
then assign experimental stimuli to the subjects in a rotating fashion. The 
result of this is shown in the sheet <Phase 1> of the file <_input 
files/01-5_ExperimentalDesign.ods> (just like all files, this one too can be 
found on the companion website (see beginning of Chapter 2). The actual 
experimental stimuli are represented only schematically as a uniquely iden-
tifying combination of the number of the concrete token set and the varia-
ble levels of the two independent variables (in column E). 

As you can easily see in the table on the right, the rotation ensures that 
every subject sees each variable level combination just once and each of 
these from a different concrete token set. However, we know you have to 
do more than that because in <Phase 1> every subject sees every variable 
level combination just once (which violates (8)) and every experimental 
item is seen by only one subject (which violates (9)). Therefore, you first 
re-use the experimental items in <Phase 1>, but put them in a different 
order so that the experimental items do not occur together with the very 
same experimental items (you can do that by rotating the subjects different-
ly). One possible result of this is shown in the sheet <Phase 2>. 

The setup in <Phase 2> does not yet conform to (8), though. For that, 
you have to do a little more. You must present more experimental items to, 
say, subject 1, but you cannot use the existing experimental items anymore 
without violating (6). Thus, you need four more concrete token sets, which 
are created and distributed across subjects as before. The result is shown in 
<Phase 3>. As you can see in the table on the right, every experimental 
item is now seen by two subjects (cf. the row totals), and in the columns 
you can see that each subjects sees each variable level combination in two 
different stimuli. 

Now that every subjects receives eight experimental items, you must 
create enough distractors. In this example, let’s use a ratio of experimental 
items to distractors of 1:2. Of course, 16 unique distractors are enough, 
which are presented to all subjects – there is no reason to create 8·16 = 128 
distractors. Consider <Phase 4>, where the filler items have been added to 
the bottom of the table. 

Now you must order the all stimuli – experimental items and distractors 
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– for every subject. To that end, you can add a column called “RND”, 
which contains random numbers ranging between 0 and 1 (you can get 
those from R or by writing “=RAND()” (without double quotes, of course) 
into a cell in LibreOffice Calc and then double-clicking on the small black 
square on the bottom right corner you see when you click on that cell once, 
which will fill all cells below with random numbers. 

As the next step, you will want to sort the whole spreadsheet (i) accord-
ing to the column “SUBJ” and then (ii) according to the column “RAND”. 
However, there is an important detail first: highlight that whole column, 
copy the contents into the clipboard, go to Edit: Paste Special…, and 
choose to paste back only the text and the numbers. This will make sure 
that the random numbers are not re-calculated after anything you do to the 
spreadsheet. Then sort as mentioned above so that all items of one subject 
are grouped together, and within each subject the order of items is random. 
This is required by (12) and represented in <Phase 5>. 

When you look at <Phase 5>, you also see that the order of some ele-
ments must still be changed: red arrows in column H indicate problematic 
sequences of experimental items and blue arrives indicate potentially prob-
lematic sequences of identical schematic tokens. To take care of these cas-
es, you can arbitrarily move things around. One possible result is shown in 
<Phase 6>, where the green arrows point to corrections. If we had used 
actual stimuli, you could now create a cover sheet with instructions for the 
subjects and a few examples (which in the case of, say, judgments would 
ideally cover the extremes of the possible judgments!), paste the experi-
mental stimuli onto the following page(s), and hand out the questionnaires. 
Then, when you get the responses back, you enter them into <Phase 7> and 
proceed to analyze them statistically. For example, to evaluate this experi-
ment, you would then have to compute a variety of means: 
 

− the means for the two levels of OBJECT (i.e., meanOBJECT: SMALL and 
meanOBJECT: LARGE); 

− the means for the two levels of REFPOINT (i.e., meanREFPOINT: SMALL and 
meanREFPOINT: LARGE); 

− the four means for the interaction of OBJECT and REFPOINT. 
 

We will discuss the method that is used to test these means for signifi-
cant differences – a linear model – in Section 5.2. 

Now you should do the exercises for Chapter 1 (which you can find on 
the website) … 



 

Chapter 2 

Fundamentals of R 
 
 
 

When we say that a historian or a linguist is ‘innumerate’ 
we mean that he cannot even begin to understand what 

scientists and mathematicians are talking about 
Oxford English Dictionary, 2nd ed., 1989, s.v. numeracy. 

(cited from Keen 2010: 4) 
 
 

1. Introduction and installation 

 
In this chapter, you will learn about the basics of R that enable you to load, 
process, and store data as well as perform some simple data processing 
operations. Thus, this chapter prepares you for the applications in the fol-
lowing chapters. Let us begin with the first step: the installation of R. 
 
1. The main R website is <http://www.r-project.org/>. From there you 

can go to the CRAN website at <http://cran.r-project.org/ 
mirrors.html>. Click on the mirror Austria, then on the link(s) for 
your operating system; 

2. for Windows you will then click on “base”, and then on the link to 
the setup program to download the relevant setup program; for 
Mac OS X, you immediately get to a page with a link to a .pkg file; 
for Linux, you choose your distribution, maybe your distribution 
version, and then the relevant file(s) or, more conveniently, you 
may be able to install R and many frequently-used packages using 
a package manager such as Synaptic or Muon; 

3. then, you run the installer; 
4. start R by double-clicking on the icon on the desktop, the icon in 

the start menu, or the icon in the quick launch tool bar. 
 

That’s it. You can now start and use R. However, R has more to offer. 
Since R is an open-source software, there is a lively community of people 
who have written so-called packages for R. These packages are small addi-
tions to R that you can load into R to obtain commands (or functions, as we 
will later call them) that are not part of the default configuration. 
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5. In R, enter the following at the console install.packages()¶ and 
then choose a mirror; I recommend always using Austria; 

6. Choose all packages you think you will need; if you have a broad-
band connection, you could theoretically choose all of them, but 
that might be a bit of an overkill at this stage. I minimally recom-
mend amap, aod, car, cluster, effects, Hmisc, lattice, qcc, 
plotrix, rms, rpart, and vcd. (You can also enter, say, in-
stall.packages("car")¶ at the console to install said package 
and ideally do either with administrator/root rights; in Ubuntu, for 
example, start R with sudo R¶. On Linux systems, you will some-
times also need additional files such as gfortran, which you may 
need to install separately.) 

 
Next, you should download the files with example files, all the code, 

exercises, and answer keys onto your hard drive. Ideally, you create one 
folder that will contain all the files from the book, such as <_sflwr> on 
your harddrive (for statistics for linguists with R). Then download all files 
from the companion website of this edition of the book 
(<http://tinyurl.com/StatForLingWithR>) and save/unzip them into: 
 

− <_sflwr/_inputfiles>: this folder will contain all input files: text files 
with data for later statistical analysis, spreadsheets providing all files in 
a compact format, input files for exercises etc.; to unzip these files, you 
will need the password “hamste_R2”; 

− <_sflwr/_outputfiles>: this folder will contain output files from Chap-
ters 2 and 5; to unzip these files, you will need the password 
“squi_R2rel”; 

− <_sflwr/_scripts>: this folder will contain all files with code from this 
book as well as the files with exercises and their answer keys; to unzip 
these files, you will need the password “otte_R2”. 

 
(By the way, I am using regular slashes here because you can use those 

in R, too, and more easily so than backslashes.) The companion website 
will also provide a file with errata. Lastly, I would recommend that you 
also get a text editor that has syntax highlighting for R or an IDE (integrat-
ed development environment). If you use a text editor, I recommend Note-
pad++ to Windows users and geany or the use of Notepad++ with Wine to 
Linux users. The probably best option, however, might be to go with RStu-
dio (<http://www.rstudio.org/>), a truly excellent open source IDE for R, 
which offers easy editing of R code, sending code from the editor window 
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to the console with just using Ctrl+ENTER, plot histories, and many other 
things; you should definitely watch the screencast at RStudio’s website. 

After all this, you can view all scripts in <_scripts> with syntax-
highlighting, which will make it easier for you to understand them. I 
strongly recommend to write all R scripts that are longer than, say, 2-3 
lines in these editors / in the script window of the IDE and then paste them 
into R because the syntax high-lighting will help you avoid mistakes and 
you can more easily keep track of all the things you have entered into R. 

R is not just a statistics program – it is also a programming language 
and environment which has at least some superficial similarity to Perl, Py-
thon, or Julia. The range of applications is breathtakingly large as R offers 
the functionality of spreadsheet software, statistics programs, a program-
ming language, database functions etc. This introduction to statistics, how-
ever, is largely concerned with 
 

− functions to generate and process simple data structures in R, and 

− functions for probability distributions, statistical tests, and graphical 
evaluation. 

 
We will therefore unfortunately not be able to deal with more complex 

data structures and many aspects of R as a programming language however 
interesting these may be. Also, I will not always use the simplest or most 
elegant way to perform a particular task but the way that is most useful 
from a pedagogical and methodological perspective (e.g., to highlight 
commonalities between different functions and approaches). Thus, this 
book is not really a general introduction to R, and I refer you to the rec-
ommendations for further study and the reference section for introductory 
books to R. 

Now we have to address some typographical and other conventions. As 
already above, websites, folders, and files will be delimited by “<“ and “>“ 
as in, say, <_inputfiles/04-1-1-1_tense-aspect.csv>, where the numbering 
before the underscore refers to the section in which this file is used. Text 
you are supposed to enter into R is formatted like this mean(c(1, 2, 3))¶. 
This character “¶” instructs you to hit ENTER (I show these characters here 
because they can be important to show the exact structure of a line and 
because whitespace makes a big difference in character strings; the code 
files of course do not include those visibly unless you set your text editor to 
displaying them). Code will usually be given in grey blocks of several lines 
like this: 
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> a<-c(1, 2, 3)¶ 
> mean(a)¶ 
[1] 2 

 
This also means for you: do not enter the two characters > . They are 

only provided for you to easily distinguish your input from R’s output. You 
will also occasionally see lines that begin with “+”. These plus signs, which 
you are not supposed to enter either, begin lines where R is still expecting 
further input before it begins to execute the function. For example, when 
you enter 2-¶, then this is what your R interface will look like: 
 
> 2-¶ 
+ 

 
R is waiting for you to complete the subtraction. When you enter the 

number you wish to subtract and press ENTER, then the function will be 
executed properly. 
 
+ 3¶ 
[1] -1 

 
Another example: if you wish to load the package corpora into R to ac-

cess some of the functions that the computational linguists Marco Baroni 
and Stefan Evert contributed to the community, you can load this package 
by entering library(corpora)¶. (Note: this only works if you installed the 
package before as explained above.) However, if you forget the closing 
bracket, R will wait for you to complete the input: 
 
> library(corpora¶ 
+ )¶ 
> 

 
Unfortunately, R will not always be this forgiving. By the way, if you 

make a mistake in R, you often need to change only one thing in a line. 
Thus, rather than typing the whole line again, press the cursor-up key to get 
back to that line you wish to change or execute again; also, you need not 
move the cursor to the end of the line before pressing ENTER. 

Corpus files or tables / data frames will be represented as in Figure 10, 
where “→” and “¶”denote tab stops and line breaks respectively. Menus, 
submenus, and commands in submenus in applications are given in italics 
in double quotes, and hierarchical levels within application menus are indi-
cated with colons. So, if you open a document in, say, LibreOffice Writer, 
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you do that with what is given here as File: Open … 
 
PartOfSp  →   TokenFreq    →    TypeFreq   →   Class¶ 

ADJ     →     421        →      271      →     open¶ 

ADV     →     337        →      103      →     open¶ 

N      →      1411      →       735      →     open¶ 

CONJ    →     458        →      18      →      closed¶ 

PREP    →     455       →       37      →      closed¶ 

Figure 10. Representational format of corpus files and data frames 

 
 
2. Functions and arguments 

 
As you may remember from school, one often does not use numbers, but 
rather letters to represent variables that ‘contain’ numbers. In algebra class, 
for example, you had to find out from two equations such as the following 
which values a and b represent (here a = 23/7 and b = 20/7): 
 
a+2b = 9 and 
3a-b = 7 
 

In R, you can solve such problems, too, but R is much more powerful, 
so variable names such as a and b can represent huge multidimensional 
elements or, as we will call them here, data structures. In this chapter, we 
will deal with the data structures that are most important for statistical 
analyses. Such data structures can either be entered into R at the console or, 
more commonly, read from files. I will present both means of data entry, 
but most of the examples below presuppose that the data are available in 
the form of a tab-delimited text file that has the structure discussed in the 
previous chapter and was created in a text editor or a spreadsheet software 
such as LibreOffice Calc. In the following sections, I will explain 
 

− how to create data structures in R; 

− how to load data structures into R and save them from R; 

− how to edit data structures in R. 
 

One of the most central things to understand about R is how you tell it 
to do something other than the simple calculations from above. A com-
mand in R virtually always consists of two elements: a function and, in 
parentheses, arguments. A function is an instruction to do something, and 
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the arguments to a function represent (i) what the instruction is to be ap-
plied to and (ii) how the instruction is to be applied to it. (Arguments can 
be null, in which case the function name is just followed by opening and 
closing parentheses.) Let us look at two simple arithmetic functions you 
know from school. If you want to compute the square root of 5 with R – 
without simply entering the instruction 5^0.5¶, that is – you need to know 
the name of the function as well as how many and which arguments it 
takes. Well, the name of the function is sqrt, and it takes just one argu-
ment which R calls x by default, namely the figure of which you want the 
square root. Thus: 
 
> sqrt(x=5)¶ 
[1] 2.236068 

 
Note that R just outputs the result, but does not store it. If you want to 

store a result into a data structure, you must use the assignment operator <- 
(an arrow consisting of a less-than sign and a minus). The simplest way in 
the present example is to assign a name to the result of sqrt(5). Note: R’s 
handling of names, functions, and arguments is case-sensitive, and you can 
use letters, numbers, periods, and underscores in names as long as the name 
begins with a letter or a period (e.g., my.result or my_result or …): 
 
> a<-sqrt(x=5)¶ 

 
R does not return anything, but the result of sqrt(5) has now been as-

signed to a data structure that is called a vector, which is called a. You can 
test whether the assignment was successful by looking at the content of a. 
One function to do that is print, and its minimally required argument is 
the data structure whose content you want to see, but most of the time, it is 
enough to simply enter the name of the relevant data structure: 
 
> print(a)¶ 
[1] 2.236068 
> a¶ 
[1] 2.236068 

 
Three final comments before we discuss various data structures in more 

detail. First, R ignores everything in a line after a pound/number sign or 
hash, which you can use to put comments into your lines (to remind you 
what that line is doing). Second, the assignment operator can also be used 
to assign a new value to an existing data structure. For example, 
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> a<-sqrt(x=9) # assign the value of 'sqrt(9)' to a¶ 
> a # print a¶ 
[1] 3 
> a<-a+2 # assign the value of 'a+2' to a¶ 
> a # print a¶ 
[1] 5 

 
If you want to delete or clear a data structure, you can use the function 

rm (for remove). You can remove just a single data structure by using its 
name as an argument to rm, or you can remove all data structures at once. 
 
> rm(a) # remove/clear a¶ 
> rm(list=ls(all=TRUE)) # clear memory of all data¶ 

 
Third, it will be very important later on to know that functions have de-

fault orders of their arguments and that many functions have default set-
tings for their arguments. The former means that, if you provide arguments 
in their default order, you don’t have to name them. That is, instead of 
sqrt(x=9)¶ you could just write sqrt(9)¶ because the (only) argument x 
is in its ‘default position’. The latter means that if you use a function with-
out specifying all required arguments, then R will use default settings, if 
those are provided by that function. Let us explore this on the basis of the 
very useful function sample. This function generates random or pseudo-
random samples of elements and can take up to four arguments: 
 

− x: a data structure – typically a vector – containing the elements from 
which you want to sample; 

− size: a positive integer giving the size of the sample; 

− the assignment replace=FALSE (if each element of the vector can only 
be sampled once, the default setting) or replace=TRUE (if the elements 
of the vector can be sampled multiple times, sampling with replace-
ment); 

− prob: a vector with the probabilities of each element to be sampled; the 
default setting is NULL, which means that all elements are equally likely 
to be sampled. 

 
Let us look at a few examples, which will make successively more use 

of default orders and argument settings. First, you generate a vector with 
the numbers from 1 to 10 using the function c (for concatenate); the colon 
here generates a sequence of integers between the two numbers: 
 
> some.data<-c(1:10)¶ 
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If you want to sample 5 elements from this vector equiprobably and 
with replacement, you can enter the following:11 
 
> sample(x=some.data, size=5, replace=TRUE, prob=NULL)¶ 
[1] 5 9 9 9 2 

 
But if you list the arguments of a function in their standard order (as we 

do here), then you can leave out their names: 
 
> sample(some.data, 5, TRUE, NULL)¶ 
[1] 3 8 4 1 7 

 
Also, prob=NULL is the default, so you can leave that out, too: 

 
> sample(some.data, 5, TRUE)¶ 
[1]  2  1  9  9 10 

 
With this, you sample 5 elements equiprobably without replacement: 

 
> sample(some.data, 5, FALSE)¶ 
[1]  1 10  6  3  8 

 
But since replace=FALSE is the default, you can leave that out, too: 

 
> sample(some.data, 5)¶ 
[1] 10  5  9  3  6 

 
Sometimes, you can even leave out the size argument, namely when 

you just want all elements of the given vector in a random order: 
 
> some.data¶ 
[1]  1  2  3  4  5  6  7  8  9 10 
> sample(some.data)¶ 
[1]  2  4  3 10  9  8  1  6  5  7 

 
And if you only want the numbers from 1 to 10 in a random order, you 

can even do away with the vector some.data: 
 
> sample(10)¶ 
[1]  5 10  2  6  1  3  4  9  7  8 

 

                                                      
11. Your results will be different, after all this is random sampling. 
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In extreme cases, the property of default settings may result in function 
calls without any arguments. Consider the function q (for quit). This func-
tion shuts R down and usually requires three arguments: 
 

− save: a character string indicating whether the R workspace should be 
saved or not or whether the user should be prompted to make that deci-
sion (the default); 

− status: the (numerical) error status to be returned to the operating sys-
tem, where relevant; the default is 0, indicating ‘successful completion’; 

− runLast: a logical value (TRUE or FALSE), stating whether a function 
called Last should be executed before quitting R; the default is TRUE. 

 
Thus, if you want to quit R with these settings, you just enter: 

 
> q()¶ 

 
R will then ask you whether you wish to save the R workspace or not 

and, when you answered that question, executes the function Last (only if 
one is defined), shuts down R and sends “0” to your operating system. 

As you can see, defaults can be a very useful way of minimizing typing 
effort. However, especially at the beginning, it is probably wise to try to 
strike a balance between minimizing typing on the one hand and maximiz-
ing code transparency on the other. While this may ultimately boil down to 
a matter of personal preference, I recommend using more explicit code at 
the beginning in order to be maximally aware of the options your R code 
uses; you can then shorten your code as you become more proficient. 
 

Recommendation(s) for further study 
the functions ? or help, which provide the help file for a function (try 
?sample¶ or help(sample)¶), and the functions args and formals, which 
provide the arguments a function needs, their default settings, and their 
default order (try formals(sample)¶ or args(sample)¶) 

 

 

3. Vectors 

 
3.1. Generating vectors 
 
The most basic data structure in R is a vector. Vectors are one-dimensional, 
sequentially ordered sequences of elements (such as numbers or character 
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strings (such as words)). While it may not be completely obvious why vec-
tors are important here, we must deal with them in some detail since many 
other data structures in R can ultimately be understood in terms of vectors. 
As a matter of fact, we have already used vectors when we computed the 
square root of 5: 
 
> sqrt(5)¶ 
[1] 2.236068 

 
The “[1]” before the result indicates that the first (and, here, only) ele-

ment printed as the output is element number 1, namely 2.236068. You can 
test this with R: first, you assign the result of sqrt(5) to a data structure. 
 
> a<-sqrt(5)¶ 

 
The function is.vector tests whether its argument is a vector or not 

and returns the result of its test, here R’s version of “yes”: 
 
> is.vector(a)¶ 
[1] TRUE 

 
And the function length returns the number of elements of the data 

structure provided as its argument: 
 
> length(a)¶ 
[1] 1 

 
Of course, you can also create vectors that contain character strings – 

the only difference is that the character strings are put into double quotes: 
 
> a.name<-"John"; a.name¶ 
[1] "John" 

 
In this book, we only deal with logical vectors as well as vectors of 

numbers or character strings. Vectors usually only become interesting 
when they contain more than one element. You already know the function 
to create such vectors, c, and the arguments it takes are just the elements to 
be concatenated in the vector, separated by commas. For example: 
 
> numbers<-c(1, 2, 3); numbers¶ 
[1] 1 2 3 

 



66        Fundamentals of R 

 

or 
 
> some.names<-c("al", "bill", "chris"); some.names¶ 
[1] "al"    "bill"  "chris" 

 
Note that, since individual numbers or character strings are also vectors 

(just vectors of length 1), the function c can not only combine individual 
numbers or character strings but also vectors with 2+ elements: 
 
> numbers1<-c(1, 2, 3); numbers2<-c(4, 5, 6) # generate two 

vectors¶ 
> numbers1.and.numbers2<-c(numbers1, numbers2) # combine 

vectors¶ 
> numbers1.and.numbers2¶ 
[1] 1 2 3 4 5 6 

 
A similar function is append, which takes two or three arguments: 

 

− x: a vector to which something should be appended; 

− values: the vector to be appended; 

− after: the position in the first argument where the elements of the sec-
ond argument are to be appended; the default setting is at the end. 

 
Thus, with append, the above example would look like this: 

 
> numbers1.and.numbers2<-append(numbers1, numbers2)¶ 
> numbers1.and.numbers2¶ 
[1] 1 2 3 4 5 6 

 
An example of how append is more typically used is the following, 

where an existing vector is modified: 
 
> evenmore<-c(7, 8)¶ 
> numbers1.and.numbers2<-append(numbers1.and.numbers2, 

evenmore)¶ 
> numbers¶ 
[1] 1 2 3 4 5 6 7 8 

 
It is important to note that – unlike arrays in Perl – vectors can only 

store elements of one data type. For example, a vector can contain numbers 
or character strings, but not really both: if you try to force character strings 
into a vector together with numbers, R will change the data type of one 
kind of element to homogenize the kinds of vector elements, and since you 
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can interpret numbers as characters but not vice versa, R changes the num-
bers into character strings and then concatenates them into a vector of char-
acter strings: 
 
> mixture<-c("al", 2, "chris"); mixture¶ 
[1] "al"   "2"    "chris" 

 
and 
 
> numbers.num<-c(1, 2, 3); numbers.char<-c("four", "five",  

"six")¶ 
> nums.and.chars<-c(numbers.num, numbers.char)¶ 
> nums.and.chars¶ 
[1] "1"    "2"    "3"    "four" "five" "six" 

 
The double quotes around 1, 2, and 3 indicate that these are now under-

stood as character strings, which means that you cannot use them for calcu-
lations anymore (unless you change their data type back). We can identify 
the type of a vector (or the data types of other data structures) with str (for 
“structure”) which takes as an argument the name of a data structure: 
 
> str(numbers.num)¶ 
 num [1:3] 1 2 3¶ 
> str(nums.and.chars)¶ 
 chr [1:6] "1" "2" "3" "four" "five" "six" 

 
The first vector consists of three numerical elements, namely 1, 2, and 

3. The second vector consists of the six character strings (from character) 
that are printed. 

As you will see later, it is often necessary to create quite long vectors in 
which (sequences of) elements are repeated. Instead of typing those into R 
manually, you can use two very useful functions, rep and seq. In a simple 
form, the function rep (for repetition) takes two arguments: the element(s) 
to be repeated, and the number of repetitions. To create, say, a vector x in 
which the number sequence from 1 to 3 is repeated four times, you enter: 
 
> numbers<-c(1, 2, 3)¶ 
> x<-rep(numbers, 4)¶ 

 
or 
 
> x<-rep(c(1, 2, 3), 4); x¶ 
[1] 1 2 3 1 2 3 1 2 3 1 2 3 
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To create a vector in which the numbers from 1 to 3 are individually re-
peated four times – not in sequence – then you use the argument each: 
 
> x<-rep(c(1, 2, 3), each=4); x¶ 
[1] 1 1 1 1 2 2 2 2 3 3 3 3 

 
(The same would be true of vectors of character strings.) With whole 

numbers, you can also often use the : as a range operator: 
 
> x<-rep(c(1:3), 4)¶ 

 
The function seq (for sequence) is used a little differently. In one form, 

seq takes three arguments: 
 

− from: the starting point of the sequence; 

− to: the end point of the sequence; 

− by: the increment of the sequence. 
 

Thus, instead of entering numbers<-c(1:3)¶, you can also write: 
 
> numbers<-seq(1, 3, 1)¶ 

 
Since 1 is the default increment, the following would suffice: 

 
> numbers<-seq(1, 3)¶ 

 
In fact, you can even just write this: 
 

> numbers<-seq(3)¶ 

 
If the numbers in the vector to be created do not increment by 1, you 

can set the increment to whatever value you need. The following lines gen-
erate a vector x in which the even numbers between 1 and 10 are repeated 
six times in sequence. Try it out (and look at x): 
 
> numbers<-seq(2, 10, 2)¶ 
> x<-rep(numbers, 6)¶ 

 
or 
 
> x<-rep(seq(2, 10, 2), 6)¶ 
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Finally, instead of providing the increment, you can also let R figure out 
it for you, as when you know how long your sequence should be and just 
want equal increments everywhere. You can then use the argument 
length.out. The following generates a 7-element sequence from 1 to 10 
with equal increments and assigns it to numbers: 
 
> numbers<-seq(1, 10, length.out=7); numbers¶ 
[1] 1.0  2.5  4.0  5.5  7.0  8.5 10.0 

 
With c, append, rep, and seq, even long and complex vectors can often 

be created fairly easily. Another useful feature is that you can not only 
name vectors, but also elements of vectors: 
 
> numbers<-c(1, 2, 3); names(numbers)<-c("one", "two", 

"three")¶ 
> numbers¶ 
  one   two three 
    1     2     3 

 
Before we turn to loading and saving vectors, let me briefly mention an 

interactive way to enter vectors into R. If you assign to a data structure just 
scan()¶ (for numbers) or scan(what=character(0))¶ (for character 
strings), then you can enter the numbers or character strings separated by 
ENTER until you complete the data entry by pressing ENTER twice: 
 
> x<-scan()¶ 
1: 1¶ 
2: 2¶ 
3: 3¶ 
4:¶¶ 
Read 3 items 
> x¶ 
[1] 1 2 3 

 

Recommendation(s) for further study 
the functions as.numeric and as.character to change the type of vectors 

 
 
3.2. Loading and saving vectors 
 
Since data for statistical analysis will usually not be entered into R manual-
ly, we now turn to reading vectors from files. First a general remark: R can 
read data of different formats, but we only discuss data saved as text files, 
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i.e., files that often have the extension: <.txt> or <.csv>. Thus, if the data 
file has not been created with a text editor but a spreadsheet software such 
as LibreOffice Calc, then you must first export these data into a text file 
(with File: Save As … and Save as type: Text CSV (.csv)). 

A very powerful function to load vector data into R is the function scan, 
which we already used to enter data manually. This function can take many 
different arguments so you should list arguments with their names. The 
most important arguments of scan for our purposes together with their 
default settings are as follows: 
 

− file="": the path of the file you want to load as a character string, e.g. 
"_inputfiles/02-3-2_vector1.txt", but most of the time it is prob-
ably easier to just use the function file.choose(), which will prompt 
you to choose the relevant file directly; note, the file argument can al-
so be "clipboard"; 

− what="": the kind of input scan is supposed to read. The most im-
portant settings are what=double(0) (for numbers, the omissible de-
fault) and what=character(0) (for character strings); 

− sep="": the character that separates individual entries in the file. The 
default setting, sep="", means that any whitespace character will sepa-
rate entries, i.e. spaces, tabs (represented as "\t"), and newlines (repre-
sented as "\n"). Thus, if you want to read in a text file into a vector 
such that each line is one element of the vector, you write sep="\n"; 

− dec="": the decimal point character; dec="." is the default; if you want 
to use a comma instead of the default period, just enter that here as 
dec=",". 

 
To read the file <_inputfiles/02-3-2_vector1.txt>, which contains what 

is shown in Figure 11, into a vector x, you could enter this. 
 
1¶ 

2¶ 

3¶ 

4¶ 

5¶ 

Figure 11. An example file 

 
> x<-scan(file=file.choose(), sep="\n")¶ 
Read 5 items 
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Then you can print out the contents of x: 
 
> x¶ 
[1] 1 2 3 4 5 

 
Reading in a file with character strings (like the one in Figure 12) is just 

as easy; here you just have to tell R that you are reading in a file of charac-
ter strings and that the character strings are separated by spaces: 
 
alpha�bravo�charly�delta�echo¶ 

Figure 12. Another example file 

 
> x<-scan(file.choose(), what=character(0), sep=" ")¶ 

 
You get: 

 
> x¶ 
[1] "alpha"  "bravo"  "charly" "delta"  "echo" 

 
Now, how do you save vectors into files. The required function – basi-

cally the reverse of scan – is cat and it takes very similar arguments: 
 

− the vector(s) to be saved; 

− file="": the path to the file into which the vector is to be saved or 
again just file.choose()); 

− sep="": the character that separates the elements of the vector from 
each other: sep="" or sep=" " for spaces (the default), sep="\t" for 
tabs, sep="\n" for newlines; 

− append=TRUE or append=FALSE (the default): if the output file already 
exists and you set append=TRUE, then the output will be appended to the 
output file, otherwise the output will overwrite the existing file. 

 
Thus, to append two names to the vector x and then save it under some 

other name, you can enter the following: 
 
> x<-append(x, c("foxtrot", "golf"))¶ 
> cat(x, file=file.choose())¶ 

 

Recommendation(s) for further study 

the function write, save, and dput to save vectors (or other structures) 
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3.3. Editing vectors 
 
Now that you can generate, load, and save vectors, we must deal with how 
you can edit them. The functions we will be concerned with allow you to 
access particular parts of vectors to output them, to use them in other func-
tions, or to change them. First, a few functions to edit numerical vectors. 
One such function is round. Its first argument is the vector with numbers to 
be rounded, its second the desired number of decimal places. (Note, R 
rounds according to an IEEE standard: 3.55 does not become 3.6, but 3.5.) 
 
> a<-seq(3.4, 3.6, 0.05); a¶ 
[1] 3.40 3.45 3.50 3.55 3.60 
> round(a, 1)¶ 
[1] 3.4 3.4 3.5 3.5 3.6 

 
The function floor returns the largest integers not greater than the cor-

responding elements of the vector provided, ceiling returns the smallest 
integers not less than the corresponding elements of the vector provided, 
and trunc simply truncates the elements toward 0: 
 
> floor(c(-1.8, 1.8))¶ 
[1] -2  1 
> ceiling(c(-1.8, 1.8))¶ 
[1] -1  2 
> trunc(c(-1.8, 1.8))¶ 
[1] -1  1 

 
The most important way to access parts of a vector (or other data struc-

tures) in R involves subsetting with square brackets. In the simplest form, 
this is how you access an individual vector element (here, the third): 
 
> x<-c("a", "b", "c", "d", "e")¶ 
> x[3]¶ 
[1] "c" 

 
Since you already know how flexible R is with vectors, the following 

uses of square brackets should not come as big surprises: 
 
> y<-3; x[y]¶ 
[1] "c" 
> z<-c(1, 3); x[z]¶ 
[1] "a" "c" 
> z<-c(1:3); x[z]¶ 
[1] "a" "b" "c" 
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With negative numbers, you can leave out elements: 
 
> x[-2]¶ 
[1] "a" "c" "d" "e" 

 
However, there are many more powerful ways to access parts of vec-

tors. For example, you can let R determine which elements of a vector ful-
fill a certain condition. One way is to present R with a logical expression: 
 
> x=="d"¶ 
[1] FALSE FALSE FALSE  TRUE FALSE 

 
This means, R checks for each element of x whether it is “d” or not and 

returns its findings. The only thing requiring a little attention here is that 
the logical expression uses two equal signs, which distinguishes logical 
expressions from assignments such as file="". Other logical operators are: 
 
& and    | or 
> greater than   < less than 
>= greater than or equal to  <= less than or equal to 
! not    != not equal to 
 

Here are some examples: 
 
> x<-c(10:1)¶ 
> x¶ 
[1] 10  9  8  7  6  5  4  3  2  1 
> x==4¶ 
[1] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  

FALSE 
> x<=7¶ 
[1] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE   

TRUE 
> x!=8¶ 
[1]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE   

TRUE 
> (x>8 | x<3)¶ 
[1]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE   

TRUE 

 
Since TRUE and FALSE in R correspond to 1 and 0, you can easily deter-

mine how often a particular logical expression is true in a vector: 
 
> sum(x==4)¶ 
[1] 1 
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> sum(x>8 | x<3)¶ 
[1] 4 

 
The very useful function table counts how often vector elements (or 

combinations of vector elements) occur. For example, with table we can 
immediately determine how many elements of x are greater than 8 or less 
than 3. (Note: table ignores missing data – if you want to count those, too, 
you must write table(…, exclude=NULL).) 
 
> table(x>8 | x<3)¶ 
FALSE  TRUE 
    6     4 

 
It is, however, obvious that the above examples are not particularly ele-

gant ways to identify the position(s) of elements. However many elements 
of x fulfill a logical condition, you always get 10 logical values (one for 
each element of x) and must locate the TRUEs by hand – what do you do 
when a vector contains 10,000 elements? Another function can do that for 
you, though. This function is which, and it takes a logical expression of the 
type discussed above: 
 
> which(x==4) # which elements of x are 4?¶ 
[1] 7 

 
As you can see, this function looks nearly like English: you ask R 

“which element of x is 4?”, and you get the response ‘the seventh’. The 
following examples are similar to the ones above but now use which: 
 
> which(x<=7) which elements of x are <= 7?¶ 
[1]  4  5  6  7  8  9 10 
> which(x!=8) # which elements of x are not 8?¶ 
[1]  1  2  4  5  6  7  8  9 10 
> which(x>8 | x<3) which elements of x are >8 or <3?¶ 
[1]  1  2  9 10 

 
It should go without saying that you can assign such results to data 

structures, i.e. vectors: 
 
> y<-which(x>8 | x<3); y¶ 
[1]  1  2  9 10 

 
Note: do not confuse the position of an element in a vector with the ele-

ment of the vector. The function which(x==4)¶ does not return the element 
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4, but the position of the element 4 in x, which is 7; and the same is true for 
the other examples. You can probably guess how you can now get the ele-
ments themselves and not just their positions. You only need to remember 
that R uses vectors. The data structure you just called y is also a vector: 
 
> is.vector(y)¶ 
[1] TRUE 

 
Above, you saw that you can use vectors in square brackets to access 

parts of a vector. Thus, when you have a vector x and do not just want to 
know where to find numbers which are larger than 8 or smaller than 3, but 
also which numbers these are, you first use which and then square brackets, 
or you immediately combine these two steps: 
 
> y<-which(x>8 | x<3)¶ 
> x[y]¶ 
[1] 10  9  2  1 
> x[which(x>8 | x<3)]¶ 
[1] 10  9  2  1 

 
Or you use this, which uses the fact that, when you subset with a logical 

vector of TRUEs and FALSEs, R returns the elements subset by TRUEs: 
 
> x[x>8 | x<3]¶ 
[1] 10  9  2  1 

 
You use a similar approach to see how often a logical expression is true: 

 
> length(which(x>8 | x<3))¶ 
[1] 4 

 
Sometimes you may want to test for several elements at once (e.g., the 

numbers 1, 6, and 11), which which can’t do, but you can use the very use-
ful operator %in%: 
 
> c(1, 6, 11) %in% x¶ 
[1]  TRUE  TRUE FALSE 

 
The output of %in% is a logical vector which says for each element of 

the vector before %in% whether it occurs in the vector after %in%. If you 
also would like to know the exact position of the first (!) occurrence of 
each of the elements of the first vector in the second, you can use match: 
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> match(c(1, 6, 11), x)¶ 
[1] 10  5 NA 

 
That is to say, the first element of the first vector – the 1 – occurs the 

first (and only) time at the tenth position of x; the second element of the 
first vector – the 6 – occurs the first (and only) time at the fifth position of 
x; the last element of the first vector – the 11 – does not occur in x. 

I hope it becomes obvious that the fact that much of what R does in-
volves vectors is a big strength of R. Since nearly everything we have done 
so far is based on vectors (often of length 1), you can use functions flexibly 
and even embed them into each other freely. For example, now that you 
have seen how to access parts of vectors, you can also change those. Maybe 
you would like to change the values of x that are greater than 8 into 12: 
 
> x # show x again¶ 
 [1] 10  9  8  7  6  5  4  3  2  1 
> y<-which(x>8)¶ 
> x[y]<-12¶ 
> x¶ 
[1] 12 12  8  7  6  5  4  3  2  1 

 
As you can see, since you want to replace more than one element in x 

but provide only one replacement (12), R recycles the replacement as often 
as needed (cf. below for more on that feature). This is a shorter way to do 
the same thing: 
 
> x<-10:1¶ 
> x[which(x>8)]<-12¶ 
> x¶ 
 [1] 12 12  8  7  6  5  4  3  2  1 

 
And this one is even shorter: 

 
> x<-10:1¶ 
> x[x>8]<-12¶ 
> x¶ 
 [1] 12 12  8  7  6  5  4  3  2  1 

 
R also offers several set-theoretical functions – setdiff, intersect, 

and union – which take two vectors as arguments. The function setdiff 
returns the elements of the first vector that are not in the second vector. The 
function intersect returns the elements of the first vector that are also in 
the second vector. And the function union returns all elements that occur in 
at least one of the two vectors. 
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> x<-c(10:1); y<-c(2, 5, 9, 12)¶ 
> setdiff(x, y)¶ 
[1] 10  8  7  6  4  3  1 
> setdiff(y, x)¶ 
[1] 12 
> intersect(x, y)¶ 
[1] 9 5 2 
> intersect(y, x)¶ 
[1] 2 5 9 
> union(x, y)¶ 
[1] 10  9  8  7  6  5  4  3  2  1 12 
> union(y, x)¶ 
[1]  2  5  9 12 10  8  7  6  4  3  1 

 
Another useful function is unique, which can be explained particularly 

easily to linguists: unique goes through all the elements of a vector (to-
kens) and returns all elements that occur at least once (types). 
 
> x<-c(1, 2, 3, 2, 3, 4, 3, 4, 5)¶ 
> unique(x) 
[1] 1 2 3 4 5 

 
In R you can also very easily apply a mathematical function or opera-

tion to many or all elements of a numerical vector. Mathematical opera-
tions that are applied to a vector are applied to all elements of the vector: 
 
> x<-c(10:1)¶ 
> x¶ 
[1] 10  9  8  7  6  5  4  3  2  1 
> y<-x+2¶ 
> y¶ 
[1] 12 11 10  9  8  7  6  5  4  3 

 
If you add two vectors (or multiply them with each other, or …), three 

different things can happen. First, if the vectors are equally long, the opera-
tion is applied to all pairs of corresponding vector elements: 
 
> x<-c(2, 3, 4); y<-c(5, 6, 7)¶ 
> x*y¶ 
[1] 10 18 28 

 
Second, the vectors are not equally long, but the length of the longer 

vector can be divided by the length of the shorter vector without a remain-
der. Then, the shorter vector will again be recycled as often as is needed to 
perform the operation in a pairwise fashion; as you saw above, often the 
length of the shorter vector is 1. 
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> x<-c(2, 3, 4, 5, 6, 7); y<-c(8, 9)¶ 
> x*y¶ 
[1] 16 27 32 45 48 63 

 
Third, the vectors are not equally long and the length of the longer vec-

tor is not a multiple of the length of the shorter vector. In such cases, R will 
recycle the shorter vector as necessary, but will also issue a warning: 
 
> x<-c(2, 3, 4, 5, 6); y<-c(8, 9)¶ 
> x*y¶ 
[1] 16 27 32 45 48 
Warning message: 
In x * y : longer object length is not a multiple of shorter 

object length 

 
Finally, two functions to change the ordering of elements of vectors. 

The first of these functions is called sort, and its most important argument 
is of course the vector whose elements are to be sorted; another important 
argument defines the sorting style: decreasing=FALSE (the default) or 
decreasing=TRUE. 
 
> x<-c(1, 3, 5, 7, 9, 2, 4, 6, 8, 10)¶ 
> y<-sort(x)¶ 
> z<-sort(x, decreasing=TRUE)¶ 
> y; z¶ 
[1]  1  2  3  4  5  6  7  8  9 10 
[1] 10  9  8  7  6  5  4  3  2  1 

 
The second function is order. It takes one or more vectors as arguments 

as well as the argument decreasing=… – but it returns something that may 
not be immediately obvious. Can you see what order does? 
 
> z<-c("a", "c", "e", "d", "b")¶ 
> order(z, decreasing=FALSE)¶ 
[1] 1 5 2 4 3 

 

 

THINK 

BREAK 

 
The output of order when applied to a vector z is a vector which tells 

you in which order to put the elements of z to sort them as specified. Let us 
clarify this rather opaque characterization: If you want to sort the values of 
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z in increasing order, you first have to take z’s first value. Thus, the first 
value of order(z, decreasing=FALSE)¶ is 1. The next value you have to 
take is the fifth value of z. The next value you take is the second value of z, 
etc. (If you provide order with more than one vector, additional vectors are 
used to break ties.) As we will see below, this function will turn out to be 
useful when applied to data frames. 
 

Recommendations for further study 

− the functions any and all to test whether any or all elements of a 
vector fulfill a particular condition 

− the function abs to obtain the absolute values of a numerical vector 

− the functions min and max to obtain the minimum and the maxi-
mum values of numeric vectors respectively 

 
 

4. Factors 

 
At a superficial glance at least, factors are similar to vectors of character 
strings. Apart from the few brief remarks in this section, they will mainly 
be useful when we read in data frames and want R to recognize that some 
of their columns are nominal or categorical variables. 
 
 
4.1. Generating factors 
 
As I just mentioned, factors are mainly used to code nominal or categorical 
variables, i.e. in situations where a variable has two or more (but usually 
not very many) qualitatively different levels. The simplest way to create a 
factor is to generate a vector and then change it into a factor using the func-
tion factor. That function usually takes one or two arguments. The first is 
mostly the vector you wish to change into a factor. The second argument is 
levels=… and will be discussed in more detail in Section 2.4.3 below. 
 
> rm(list=ls(all=TRUE))¶ 
> x<-c(rep("male", 5), rep("female", 5))¶ 
> y<-factor(x); y¶ 
[1] male   male   male   male   male   female female female  

female female 
Levels: female male 
> is.factor(y) 
[1] TRUE 
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When you output a factor, you can see one difference between factors 
and vectors because the output includes a by default alphabetically sorted 
list of all levels of that factor. 

One other very useful way in which one sometimes generates factors is 
based on the function cut. In its simplest implementation, it takes a numer-
ic vector as its first argument (x) and a number of intervals as its second 
(breaks), and then it divides x into breaks intervals: 
 
> cut(1:9, 3)¶ 
[1] (0.992,3.66] (0.992,3.66] (0.992,3.66] (3.66,6.34]  

(3.66,6.34]  (3.66,6.34]  (6.34,9.01]  (6.34,9.01]   
(6.34,9.01] 

Levels: (0.992,3.66] (3.66,6.34] (6.34,9.01] 

 
As you can see, the vector with the numbers from 1 to 9 has now been 

recoded as a factor with three levels that provide the intervals R used for 
cutting up the numeric vector. 
 

− 0.992 < interval/level 1 ≤ 3.66; 

− 3.66 < interval/level 1 ≤ 6.34; 

− 6.34 < interval/level 1 ≤ 9.01. 
 

This function has another way of using breaks and some other useful 
arguments so you should explore those in more detail: ?cut. 
 
 
4.2. Loading and saving factors 
 
We do not really need to discuss how you load factors – you do it in the 
same way as you load vectors, and then you convert the loaded vector into 
a factor as illustrated above. Saving a factor, however, is a little different. 
Imagine you have the following factor a. 
 
> a<-factor(c("alpha", "charly", "bravo")); a¶ 
[1] alpha  charly bravo 
Levels: alpha bravo charly 

 
If you now try to save this factor into a file as you would with a vector, 

 
> cat(a, sep="\n", file=file.choose())¶ 

 
your output file will look like Figure 13. 
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1¶ 

3¶ 

2¶ 

Figure 13. Another example file 

 
This is because R represents factors internally in the form of numbers 
(which represent the factor levels), and therefore R also only outputs these 
numbers into a file. Since you want the words, however, you simply force 
R to treat the factor as a vector, which will produce the desired result. 
 
> cat(as.vector(a), sep="\n", file=file.choose())¶ 

 
 
4.3. Editing factors 
 
Editing factors is similar to editing vectors, but a bit more cumbersome 
when you want to introduce new levels. Let’s create a factor x: 
 
> x<-factor(rep(c("long", "intmed", "short"), 1:3)); x¶ 
[1] long   intmed intmed short  short  short 
Levels: intmed long short 

 
Note how the alphabetical ordering of the levels is not particularly use-

ful since it does not coincide with an ascending or descending order of the 
meaning of the levels. The easiest thing you may have to do is change the 
first level from the alphabetically first level to another one (which will be 
important in Chapters 4 and 5). For example, you may want to make short 
the first level. For that, you can use the function relevel, which requires 
the factor to be changed and the new reference level: 
 
> x<-relevel(x, "short"); x¶ 
[1] long   intmed intmed short  short  short 
Levels: short intmed long 

 
As you can see, the factor content per se has not changed, only the order 

in which the levels are listed and now we have a nice ordering of the levels. 
If you want to change the order of levels more substantively – for in-

stance reversing their order – you can use the function factor again and 
assign the levels in the desired way. Again, the content of the factor is the 
same, but the order of the levels is now reversed. 
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> x<-factor(x, levels=levels(x)[3:1]); x¶ 
[1] long   intmed intmed short  short  short 
Levels: long intmed short 

 
Now, what about changing the content of factors? You may want to just 

chang the name of a level in that factor to something else. You can do that 
by just setting a new level, e.g., changing intmed to intermed: 
 
> levels(x)[2]<-"intermed"; x¶ 
[1] long     intermed intermed short    short    short    
Levels: long intermed short 

 
Then, you may wish to change a particular element to some other level 

that is already attested in the factor. In that case, you can treat factors as 
you would vectors: 

 
> x[3]<-"short"; x¶ 
[1] long     intermed short    short    short    short 
Levels: long intermed short 

 
A difficulty arises when you want to assign a brand new level: 

 
> x[6]<-"supershort"¶ 
Warning message: 
In `[<-.factor`(`*tmp*`, 6, value = "supershort") : 
  invalid factor level, NAs generated 
> x¶ 
[1] long     intermed short    short    short    <NA> 
Levels: long intermed short 

 
Thus, if you want to assign a new level, you must proceed differently: 

Let’s re-create x and then first define the new (fourth) level with levels:  
 
x<-factor(rep(c("long", "intermed", "short"), c(1, 1, 4)),  

levels=c("long", "intermed", "short"))¶ 
> x<-factor(x, levels=c(levels(x), "supershort")); x¶ 
[1] long     intermed short    short    short    short 
Levels: long intermed short supershort 

 
Note: the factor content has not changed yet, you only have one more 

level than before. This also illustrates a factor can have levels that are not 
attested in its content. However, now that x has all the levels you need, you 
can proceed as above and assign the new value as you would with a vector: 
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> x[6]<-"supershort"; x¶ 
[1] long       intermed   short      short      short       

supershort 
Levels: long intermed short supershort 

 
Now, let’s just assume you changed your mind and changed the sixth 

data point back to short: 
 
> x[6]<-"short"; x¶ 
 [1] long     intermed short    short    short    short 
Levels: long intermed short supershort 

 
Now it is of course not nice to have this level supershort listed in the 

levels if it is not really attested especially because later we will use func-
tions that would return output for these levels even if they are unattested. 
Thus, let us get rid of this level. Thankfully, that is easy: you can just apply 
the function factor again, which will then drop unused levels: 
 
> x<-factor(x); x # also see ?droplevels¶ 
[1] long     intermed short    short    short    short 
Levels: long intermed short 

 
Sometimes one wants to conflate factor levels, e.g. to test whether all 

levels of a factor that corpus data were annotated for are actually required. 
Let’s assume, you decide that you really only want to distinguish ‘short’ 
from ‘not short’. This is how you change the levels and the factor accord-
ingly, essentially by overwriting the first two levels with the new level. 
 
> levels(x)<-c("not_short", "not_short", "short"); x¶ 
[1] not_short not_short short     short     short     short 
Levels: not_short short 

 
Finally, as I mentioned above, R stores factors as numbers and there are 

situations (esp. in the context of plotting, see Ch. 5) where it is useful to 
have access to these numbers. The function as.numeric provides these: 
 
> as.numeric(x)¶ 
[1] 1 1 2 2 2 2 

 

Recommendation(s) for further study 

− the function is.factor to test whether a data structure is a factor 

− the functions gl and reorder to create factors and reorder levels 
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5. Data frames 

 
The data structure that is most relevant to nearly all statistical methods in 
this book is the data frame. The data frame, basically what we would collo-
quially call a table, is actually only a specific type of another data structure, 
a list, but since data frames are the single most frequent input format for 
statistical analyses (within R, but also for other statistical programs and of 
course spreadsheet software), we will concentrate only on data frames per 
se and disregard lists for now. 
 
 
5.1. Generating data frames 
 
Given the centrality of vectors in R, you can generate data frames easily 
from vectors (and factors). Imagine you collected three different kinds of 
information for five parts of speech and wanted to generate the data frame 
in Figure 14: 
 

− the variable TOKENFREQUENCY, i.e. the frequency of words of a partic-
ular part of speech in a corpus X; 

− the variable TYPEFREQUENCY, i.e. the number of different words of a 
particular part of speech in the corpus X; 

− the variable CLASS, which represents whether the part of speech is from 
the group of open-class words or closed-class words. 

 
POS    →     TOKENFREQ    →    TYPEFREQ   →   CLASS¶ 

adj     →    421        →      271      →     open¶ 

adv     →    337        →      103      →     open¶ 

n      →     1411      →       735      →     open¶ 

conj    →    458        →      18      →      closed¶ 

prep    →    455       →       37      →      closed¶ 

Figure 14. An example data frame 

 
Step 1: you generate four vectors, one for each column: 

 
> rm(list=ls(all=TRUE))¶ 
> POS<-c("adj", "adv", "n", "conj", "prep")¶ 
> TOKENFREQ<-c(421, 337, 1411, 458, 455)¶ 
> TYPEFREQ<-c(271, 103, 735, 18, 37)¶ 
> CLASS<-c("open", "open", "open", "closed", "closed")¶ 
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Step 2: The first row in the desired table does not contain data points but 
the header with the column names. You must now decide whether the first 
column contains data points or also ‘just’ the names of the rows. In the first 
case, you can just create your data frame with the function data.frame, 
which takes as arguments the relevant vectors; the order of vectors deter-
mines the order of columns. Now you can look at the data frame. 
 
> x<-data.frame(POS, TOKENFREQ, TYPEFREQ, CLASS)¶ 
> x¶ 
   POS TOKENFREQ TYPEFREQ  CLASS 
1  adj       421      271   open 
2  adv       337      103   open 
3    n      1411      735   open 
4 conj       458       18 closed 
5 prep       455       37 closed 
> str(x)¶ 
'data.frame': 5 obs. of  4 variables: 
 $ POS      : Factor w/ 5 levels "adj","adv",..: 1 2 4 3 5 
 $ TOKENFREQ: num  421 337 1411 458 455 
 $ TYPEFREQ : num  271 103 735 18 37 
 $ CLASS    : Factor w/ 2 levels "closed","open": 2 2 2 1 1 

 
Within the data frame, R has changed the vectors of character strings in-

to factors and represents them with numbers internally (e.g., closed is 1 
and open is 2). It is very important in this connection that R only changes 
variables into factors when they contain character strings (and not just 
numbers). If you have a data frame in which nominal or categorical varia-
bles are coded with numbers, then R will neither know nor guess that these 
are factors and will treat the variables as numeric and thus as interval/ratio 
variables in statistical analyses. Thus, you should either use meaningful 
character strings as factor levels in the first place (as recommended in 
Chapter 1 anyway) or must characterize the relevant variable(s) as factors 
at the point of time you create the data frame: factor(vectorname). Also, 
you did not define row names, so R automatically numbers the rows. If you 
want to use the parts of speech as row names, you need to say so explicitly: 
 
> x<-data.frame(TOKENFREQ, TYPEFREQ, CLASS, row.names=POS)  
> x¶ 
     TOKENFREQ TYPEFREQ  CLASS 
adj        421      271   open 
adv        337      103   open 
n         1411      735   open 
conj       458       18 closed 
prep       455       37 closed 
> str(x)¶ 
'data.frame': 5 obs. of  3 variables: 
 $ TOKENFREQ: num  421 337 1411 458 455 
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 $ TYPEFREQ : num  271 103 735 18 37 
 $ CLASS    : Factor w/ 2 levels "closed","open": 2 2 2 1 1 

 
As you can see, there are now only three variables left because POS now 

functions as row names. Note that this is only possible when the column 
with the row names contains no element twice. 

A second way of creating data frames that is much less flexible, but ex-
tremely important for Chapter 5 involves the function expand.grid. In its 
simplest use, the function takes several vectors or factors as arguments and 
returns a data frame the rows of which contain all possible combinations of 
vector elements and factor levels. Sounds complicated but is very easy to 
understand from this example and we will use this many times: 
 
> expand.grid(COLUMN1=c("a", "b"), COLUMN2=1:3)¶ 
  COLUMN1 COLUMN2 
1       a       1 
2       b       1 
3       a       2 
4       b       2 
5       a       3 
6       b       3 

 
 
5.2. Loading and saving data frames 
 
While you can generate data frames as shown above, this is certainly not 
the usual way in which data frames are entered into R. Typically, you will 
read in files that were created with a spreadsheet software. If you create a 
table in, say LibreOffice Calc and want to work on it within R, then you 
should first save it as a comma-separated text file. There are two ways to 
do this. Either you copy the whole file into the clipboard, paste it into a text 
editor (e.g., geany or Notepad++), and then save it as a tab-delimited text 
file, or you save it directly out of the spreadsheet software as a CSV file (as 
mentioned above with File: Save As … and Save as type: Text CSV (.csv); 
then you choose tabs as field delimiter and no text delimiter, and don’t 
forget to provide the file extension. To load this file into R, you use the 
function read.table and some of its arguments: 
 

− file="…": the path to the text file with the table (on Windows PCs you 
can use choose.files() here, too; if the file is still in the clipboard, 
you can also write file="clipboard"; 

− header=TRUE: an indicator of whether the first row of the file contains 
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column headers (which it should always have) or header=FALSE (the 
default); 

− sep="": between the double quotes you put the single character that 
delimits columns; the default sep="" means space or tab, but usually 
you should set sep="\t" so that you can use spaces in cells of the table; 

− dec="." or dec=",": the decimal separator; 

− row.names=…, where … is the number of the column containing the row 
names; 

− quote=…: the default is that quotes are marked with single or double 
quotes, but you should nearly always set quote=""; 

− comment.char=…: the default is that comments are separated by “#”, but 
we will always set comment.char="". 

 
Thus, if you want to read in the above table from the file 

<_inputfiles/02-5-2_dataframe1.csv> – once without row names and once 
with row names – then this is what you could type: 
 
> a1<-read.table(file.choose(), header=TRUE, sep="\t",  

quote="", comment.char="") # R numbers rows¶ 

 
or 
 
> a2<-read.table(file.choose(), header=TRUE, sep="\t",  

quote="", comment.char="", row.names=1) # row names¶ 

 
By entering a1¶ or str(a1)¶ (same with a2), you can check whether 

the data frames have been loaded correctly. 
While the above is the most explicit and most general way to load all 

sorts of different data frames, when you have set up your data as recom-
mended above, you can often use a shorter version with read.delim:, 
which has header=TRUE and sep="\t" as defaults and should, therefore, 
work most of the time: 
 
> a3<-read.delim(file.choose())¶ 

 
If you want to save a data frame from R, then you can use 

write.table. Its most important arguments are: 
 

− x: the data frame you want to save; 

− file: the path to the file into which you wish to save the data frame; 
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typically, using file.choose() is easiest; 

− append=FALSE (the default) or append=TRUE: the former generates or 
overwrites the defined file, the latter appends the data frame to that file; 

− quote=TRUE (the default) or quote=FALSE: the former prints factor lev-
els with double quotes; the latter prints them without quotes; 

− sep="": between the double quotes you put the single character that 
delimits columns; the default " " means a space, what you should use is 
"\t", i.e. tabs; 

− eol="\n": between the double quotes you put the single character that 
separates lines from each other (eol for end of line); the default "\n" 
means newline; 

− dec="." (the default): the decimal separator; 

− row.names=TRUE (the default) or row.names=FALSE: whether you want 
row names or not; 

− col.names=TRUE (the default) or col.names=FALSE: whether you want 
column names or not. 

 
Given these default settings and under the assumption that your operat-

ing system uses an English locale, you would save data frames as follows: 
 
> write.table(a1, file.choose(), quote=FALSE, sep="\t",  

col.names=NA)¶ 

 
 
5.3. Editing data frames 
 
In this section, we will discuss how you can access parts of data frames and 
then how you can edit and change data frames. 

Further below, we will discuss many examples in which you have to ac-
cess individual columns or variables of data frames. You can do this in 
several ways. The first of these you may have already guessed from look-
ing at how a data frame is shown in R. If you load a data frame with col-
umn names and use str to look at the structure of the data frame, then you 
see that the column names are preceded by a “$”. You can use this syntax 
to access columns of data frames, as in this example using the file 
<_inputfiles/02-5-3_dataframe.csv>. 
 
> rm(list=ls(all=TRUE))¶ 
> a<-read.delim(file.choose())¶ 
> a¶ 
   POS TOKENFREQ TYPEFREQ  CLASS 
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1  adj       421      271   open 
2  adv       337      103   open 
3    n      1411      735   open 
4 conj       458       18 closed 
5 prep       455       37 closed 
> a$TOKENFREQ¶ 
[1]  421  337 1411  458  455 
> a$CLASS¶ 
[1] open   open   open   closed closed 
Levels: closed open 

 
You can now use these just like any other vector or factor. For example, 

the following line computes token/type ratios of the parts of speech: 
 
> ratio<-a$TOKENFREQ/a$TYPEFREQ; ratio¶ 
[1]  1.553506  3.271845  1.919728 25.444444 12.297297 

 
You can also use indices in square brackets for subsetting. Vectors and 

factors as discussed above are one-dimensional structures, but R allows you 
to specify arbitrarily complex data structures. With two-dimensional data 
structures, you can also use square brackets, but now you must of course 
provide values for both dimensions to identify one or several data points – 
just like in a two-dimensional coordinate system. This is very simple and 
the only thing you need to memorize is the order of the values – rows, then 
columns – and that the two values are separated by a comma. Here are 
some examples: 
 
> a[2,3]¶ 
[1] 103 
> a[2,]¶ 
  POS TOKENFREQ TYPEFREQ CLASS 
2 adv       337      103  open 
> a[,3]¶ 
[1] 271 103 735  18  37 
> a[2:3,4]¶ 
[1] open open 
Levels: closed open 
> a[2:3,3:4]¶ 
   TYPEFREQ CLASS 
2       103  open 
3       735  open 

 
Note that row and columns names are not counted. Also note that all 

functions applied to vectors above can be used with what you extract out of 
a column of a data frame: 
 
> which(a[,2]>450)¶ 
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[1] 3 4 5 
> a[,3][which(a[,3]>100)]¶ 
[1] 271 103 735 
> a[,3][ a[,3]>100]¶ 
[1] 271 103 735 

 
The most practical way to access individual columns, however, involves 

the function attach (and gets undone with detach). I will not get into the 
ideological debate about whether one should use attach or rather with, 
etc. – if you are interested in that, go to the R-Help list or read ?with… 
You get no output, but you can now access any column with its name: 
 
> attach(a)¶ 
> Class¶ 
[1] open   open   open   closed closed 
Levels: closed open 

 
Note two things. First, if you attach a data frame that has one or more 

names that have already been defined as data structures or as columns of 
previously attached data frames, you will receive a warning; in such cases, 
make sure you are really dealing with the data structures or columns you 
want and consider using detach to un-attach the earlier data frame. Second, 
when you use attach you are strictly speaking using ‘copies’ of these vari-
ables. You can change those, but these changes do not affect the data frame 
they come from. 
 
> CLASS[4]<-NA; CLASS¶ 
[1] open   open   open   <NA>   closed 
Levels: closed open 
> a¶ 
   POS TOKENFREQ TYPEFREQ  CLASS 
1  adj       421      271   open 
2  adv       337      103   open 
3    n      1411      735   open 
4 conj       458       18 closed 
5 prep       455       37 closed 

 
Let’s change CLASS back to its original state: 

 
> CLASS[4]<-"closed"¶ 

 
If you want to change the data frame a, then you must make your 

changes in a directly, e.g. with a$CLASS[4]<-NA¶ or a$TOKENFREQ[2]<-
338¶. Given what you have seen in Section 2.4.3, however, this is only 
easy with vector or with factors where you do not add a new level – if you 
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want to add a new factor level, you must define that level first. 
Sometimes you will need to investigate only a part of a data frame – 

maybe a set of rows, or a set of columns, or a matrix within a data frame. 
Also, a data frame may be so huge that you only want to keep one part of it 
in memory. As usual, there are several ways to achieve that. One uses indi-
ces in square brackets with logical conditions or which. Either you have 
already used attach and can use the column names directly or not: 
 
> b<-a[CLASS=="open",]; b¶ 
  POS TOKENFREQ TYPEFREQ CLASS 
1 adj       421      271  open 
2 adv       337      103  open 
3   n      1411      735  open 
 
> b<-a[a[,4]=="open",]; b¶ 
  POS TOKENFREQ TYPEFREQ CLASS 
1 adj       421      271  open 
2 adv       337      103  open 
3   n      1411      735  open 

 
(Of course you can also write b<-a[a$Class=="open",]¶.) That is, you 

determine all elements of the column called CLASS / the fourth column that 
are open, and then you use that information to access the desired rows and 
all columns (hence the comma before the closing square bracket). There is 
a more elegant way to do this, though, the function subset. This function 
takes two arguments: the data structure of which you want a subset and the 
logical condition(s) describing which subset you want. Thus, the following 
line creates the same structure b as above: 
 
> b<-subset(a, CLASS=="open")¶ 

 
The formulation “condition(s)” already indicates that you can of course 

use several conditions at the same time. 
 
> b<-subset(a, CLASS=="open" & TOKENFREQ<1000); b¶ 
  POS TOKENFREQ TYPEFREQ CLASS 
1 adj       421      271  open 
2 adv       337      103  open 
> b<-subset(a, POS %in% c("adj", "adv")); b¶ 
  POS TOKENFREQ TYPEFREQ CLASS 
1 adj       421      271  open 
2 adv       337      103  open 

 
As I mentioned above, you will usually edit data frames in a spreadsheet 

software or, because the spreadsheet software does not allow for as many 
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rows as you need, in a text editor. For the sake of completeness, let me 
mention that R of course also allows you to edit data frames in a spread-
sheet-like format. The function fix takes as argument a data frame and 
opens a spreadsheet editor in which you can edit the data frame; you can 
even introduce new factor levels without having to define them first. When 
you close the editor, R will do that for you. 

Finally, let us look at ways in which you can sort data frames. Recall 
that the function order creates a vector of positions and that vectors can be 
used for sorting. Imagine you wanted to search the data frame a according 
to the column CLASS (in alphabetically ascending order), and within Class 
according to TOKENFREQ (in descending order). How can you do that? 
 

 

THINK 

BREAK 

 
The problem is both sorting styles are different: one is decreasing= 

FALSE, the other is decreasing=TRUE. What you can do is apply order not 
to TOKENFREQ, but to the negative values of TOKENFREQ. 
 
> order.index<-order(CLASS, -TOKENFREQ); order.index¶ 
[1] 4 5 3 1 2 

 
After that, you can use the vector order.index to sort the data frame: 

 
> a[order.index,]¶ 
   POS TOKENFREQ TYPEFREQ  CLASS 
4 conj       458       18 closed 
5 prep       455       37 closed 
3    n      1411      735   open 
1  adj       421      271   open 
2  adv       337      103   open 

 
Of course you can do that in just one line:12 

 
> a[order(CLASS, -TOKENFREQ),]¶ 

 
You can now also use the function sample to sort the rows of a data 

frame randomly (for example, to randomize tables with experimental items; 

                                                      
12. Note that R is superior to many other programs here because the number of sorting 

parameters is in principle unlimited. 
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cf. above). You first determine the number of rows to be randomized (e.g., 
with nrow or dim) and then combine sample with order. Your data frame 
will probably be different because we used a random sampling. 
 
> no.rows<-nrow(a)¶ 
> order.index<-sample(no.rows); order.index¶ 
[1] 3 4 1 2 5 
> a[order.index,]¶ 
   POS TOKENFREQ TYPEFREQ  CLASS 
3    n      1411      735   open 
4 conj       458       18 closed 
1  adj       421      271   open 
2  adv       337      103   open 
5 prep       455       37 closed 
 
> a[sample(nrow(a)),] # in just one line¶ 

 
But what do you do when you need to sort a data frame according to 

several factors – some in ascending and some in descending order? You 
can of course not use negative values of factor levels – what would -open 
be? Thus, you first use the function rank, which rank-orders factor levels, 
and then you can use negative values of these ranks: 
 
> order.index<-order(-rank(CLASS), -rank(POS))¶ 
> a[order.index,]¶ 
   POS TOKENFREQ TYPEFREQ  CLASS 
3    n      1411      735   open 
2  adv       337      103   open 
1  adj       421      271   open 
5 prep       455       37 closed 
4 conj       458       18 closed 

 

Recommendation(s) for further study 

− the function is.data.frame to test if a data structure is a data frame 

− the function dim for the number of rows and columns of a data frame 

− the functions read.csv and read.csv2 to read in tab-delimited files 

− the function save to save data structures in a compressed binary format 

− the function with to access columns of a data frame without attach 

− the functions cbind and rbind to combine vectors and factors in a 
columnwise or rowwise way 

− the function merge to combine different data frames 

− the function complete.cases to test which rows of a data frame contain 
missing data / NA 
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6. Some programming: conditionals and loops 
 
So far, we have focused on simple and existing functions but we have done 
little to explore the programming-language character of R. This section will 
introduce a few very powerful notions that allow you to make R decide 
which of two or more user-specified things to do and/or do something over 
and over again. In Section 2.6.1, we will explore the former, Section 2.6.2 
then discusses the latter, but the treatment here can only be very brief and I 
advise you to explore some of the reading suggestions for more details. 
 
 
6.1. Conditional expressions 
 
Later, you will often face situations where you want to pursue one of sev-
eral possible options in a statistical analysis. In a plot, for example, the data 
points for male subjects should be plotted in blue and the data points for 
female subjects should be plotted in pink. Or, you actually only want R to 
generate a plot when the result is significant but not, when it is not. In gen-
eral, you can of course always do these things stepwise yourself: you could 
decide for each analysis yourself whether it is significant and then generate 
a plot when it is. However, a more elegant way is to write R code that 
makes decisions for you, that you can apply to any data set, and that, there-
fore, allows you to recycle code from one analysis to the next. Conditional 
expressions are one way – others are available and sometimes more elegant 
– to make R decide things. This is what the syntax can look like in a nota-
tion often referred to as pseudo code (so, no need to enter this into R!): 
 
if (some logical expression testing a condition) { 
   what to do if this logical expression evaluates to TRUE 
   (this can be more than one line) 
} else if (some other logical expression) { 
   what to do if this logical expression evaluates to FALSE 
   (this can be more than one line) 
} else { 
   what to do if all logical expressions above evaluate to 

FALSE 
} 

 
That’s it, and the part after the first } is even optional. Here’s an exam-

ple with real code (recall, "\n" means ‘a new line’): 
 
> pvalue<-0.06¶ 
> if (pvalue>=0.05) {¶ 
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+    cat("Not significant, p =", pvalue, "\n")¶ 
+ } else {¶ 
+    cat("Significant, p =", pvalue, "\n")¶ 
+ }¶ 
Not significant, p = 0.06 

 
The first line defines a p-value, which you will later get from a statisti-

cal test. The next line tests whether that p-value is greater than or equal to 
0.05. It is, which is why the code after the first opening { is executed and 
why R then never gets to see the part after else. 

If you now set pvalue to 0.04 and run the if expression again, then this 
happens: Line 2 from above tests whether 0.04 is greater than or equal to 
0.05. It is not, which is why the block of code between { and } before else 
is skipped and why the second block of code is executed. Try it. 

A short version of this can be extremely useful when you have many 
tests to make but only one instruction for both when a test returns TRUE or 
FALSE. It uses the function ifelse, here represented schematically again: 
 
ifelse(logical expression, what when TRUE, what when FALSE) 

 
And here’s an application: 

 
> pvalues<-c(0.02, 0.00096, 0.092, 0.4)¶ 
> decisions<-ifelse (pvalues<0.05, "*", "ns")¶ 
> decisions¶ 
[1] "*"  "*"  "ns" "ns" 

 
As you can see, ifelse tested all four values of pvalues against the 

threshold value of 0.05, and put the correspondingly required values into 
the new vector decisions. We will use this a lot to customize graphs. 
 
 
6.2. Loops 
 
Loops are useful to have R execute one or (many) more functions multiple 
times. Like many other programming languages, R has different types of 
loops, but I will only discuss for-loops here. This is the general syntax in 
pseudo code: 
 
for (some.name in a.sequence) { 
   what to do as often often as a.sequence has elements 
   (this can be more than one line) 
} 
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Let’s go over this step by step. The data structure some.name stands for 
any name you might wish to assign to a data structure that is processed in 
the loop, and a.sequence stands for anything that can be interpreted as a 
sequence of values, most typically a vector of length 1 or more. This 
sounds more cryptic than it actually is, here’s a very easy example: 
 
> for (counter in 1:3) {¶ 
+    cat("This is iteration number", counter, "\n")¶ 
+ }¶ 
This is iteration number 1 
This is iteration number 2 
This is iteration number 3 

 
When R enters the for-loop, it assigns to counter the first value of the 

sequence 1:3, i.e. 1. Then, in the only line in the loop, R prints some sen-
tence and ends it with the current value of counter, 1, and a line break. 
Then R reaches the } and, because counter has not yet iterated over all 
values of a.sequence, re-iterates, which means it goes back to the begin-
ning of the loop, this time assigning to counter the next value of 
a.sequence, i.e., 2, and so on. Once R has printed the third line, it exits the 
loop because counter has now iterated over all elements of a.sequence. 

Here is a more advanced example, but one that is typical of what we’re 
going to use loops for later. Can you see what it does just from the code? 
 
> some.numbers<-1:100¶ 
> collector<-vector(length=10)¶ 
> for (i in 1:10) {¶ 
+    collector[i]<-mean(sample(some.numbers, 50))¶ 
+ }¶ 
> collector¶ 
[1] 50.78 51.14 45.04 48.04 55.30 45.90 53.02 48.40 50.38  

49.88 

 

 

THINK 

BREAK 

 
The first line generates a vector some.numbers with the values from 1 

to 100. The second line generates a vector called collector which has 10 
elements and which will be used to collect results from the looping. Line 3 
begins a loop of 10 iterations, using a vector called i as the counter. Line 4 
is the crucial one now: In it, R samples 50 numbers randomly without re-
placement from the vector some.numbers, computes the mean of these 50 
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numbers, and then stores that mean in the i-th slot of collector. On the first 
iteration, i is of course 1 so the first mean is stored in the first slot of col-
lector. Then R iterates, i becomes 2, R generates a second random sam-
ple, computes its mean, and stores it in the – now – 2nd slot of collector, 
and so on, until R has done the sampling, averaging, and storing process 10 
times and exits the loop. Then, the vector collector is printed on the 
screen. 

In Chapter 4, we will use an approach like this to help us explore data 
that violate some of the assumptions of common statistical tests. However, 
it is already worth mentioning that loops are often not the best way to do 
things like the above in R: in contrast to some other programming lan-
guages, R is designed such that it is often much faster and more memory-
efficient to do things not with loops but with members of the apply family 
of functions, which you will get to know a bit later. Still, being able to 
quickly write a loop and test something is often a very useful skill. 
 

Recommendation(s) for further study 

− the functions next and break to control behavior of/in loops 

 
 

7. Writing your own little functions 

 
The fact that R is not just a statistics software but a full-fledged program-
ming language is something that can hardly be overstated enough. It means 
that nearly anything is possible: the limit of what you can do with R is not 
defined by what the designers of some other software thought you may 
want to do – the limit is set pretty much only by your skills and maybe your 
RAM/processor (which is one reason why I recommend using R for cor-
pus-linguistic analyses, see Gries 2009a). One aspect making this particu-
larly obvious is how you can very easily write your own functions to facili-
tate and/or automate tedious and/or frequent tasks. In this section, I will 
give a few very small examples of the logic of how to write your own func-
tions, mainly because we haven’t dealt with any statistical functions yet. 
Don’t despair if you don’t understand these programming issues immedi-
ately – for most of this book, you will not need them, but these capabilities 
can come in very handy when you begin to tackle more complex data. Al-
so, in Chapter 3 and 4 I will return to this topic so that you get more prac-
tice in this and end up with a list of useful functions for your own work. 

The first example I want to use involves looking at a part of a data 
structure. For example, let’s assume you loaded a really long vector (let’s 
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say, 10,000 elements long) and want to check whether you imported it into 
R properly. Just printing that onto the screen is somewhat tedious since you 
can’t possibly read all 10,000 items (let alone at the speed with which they 
are displayed), nor do you usually need all 10,000 items – the first n are 
usually enough to see whether your data import was successful. The same 
holds for long data frames: you don’t need to see all 1600 rows to check 
whether loading it was successful, maybe the first 5 or 6 are sufficient. 
Let’s write a function peek that by default shows you the first 6 elements of 
each of the data structures you know about: one-dimensional vectors or 
factors and two-dimensional data frames. 

One good way to approach the writing of functions is to first consider 
how you would solve that problem just for a particular data structure, i.e. 
outside of the function-writing context, and then make whatever code you 
wrote general enough to cover not just the one data structure you just ad-
dressed, but many more. To that end, let’s first load a data frame for this 
little example (from <_inputfiles/02-7_dataframe1.csv>): 
 
> into.causatives<-read.delim(file.choose())¶ 
> str(into.causatives)¶ 
'data.frame': 1600 obs. of  5 variables: 
$ BNC       : Factor w/ 929 levels "A06","A08","A0C",..:  

1 2 3 4 ... 
$ TAG_ING   : Factor w/ 10 levels "AJ0-NN1","AJ0-VVG",..:  

10 7 10 ... 
$ ING       : Factor w/ 422 levels "abandon-

ing","abdicating",..: 354 49 382 ... 
$ VERB_LEMMA: Factor w/ 208 levels "activate","aggravate",..: 

76 126 186 ... 
$ ING_LEMMA : Factor w/ 417 levels "abandon","abdicate",..:  

349 41 377 ... 

 
Now, you want to work with one-dimensional and two-dimensional vec-

tors, factors, and data frames. How would you get the first six elements of 
each of these? That you already know. For vectors or factors you’d write: 
 
vector.or.factor[1:6] 

 
and for data frames you’d write: 
 
data.frame[1:6,] 

 
So, essentially you need to decide what the data structure is of which R 

is supposed to display the first n elements (by default 6) and then you sub-
set with either [1:6] or [1:6,]. Since, ultimately, the idea is to have R – 
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not you – decide on the right way of subsetting (depending on the data 
structure), you use a conditional expression: 
 
> if (is.data.frame(into.causatives)) {¶ 
>    into.causatives[1:6,]¶ 
> } else {¶ 
>    into.causatives[1:6]¶ 
> }¶ 
  BNC TAG_ING      ING VERB_LEMMA ING_LEMMA 
1 A06     VVG speaking      force     speak 
2 A08     VBG    being      nudge        be 
3 A0C     VVG   taking       talk       tak 
4 A0F     VVG   taking      bully      take 
5 A0H     VVG   trying  influence       try 
6 A0H     VVG thinking     delude     think 

 
To turn this into a function, you wrap a function definition (naming the 

function peek) around this piece of code. However, if you use the above 
code as is, then this function will use the name into.causatives in the 
function definition, which is not exactly very general. As you have seen, 
many R functions use x for the main obligatory variable. Following this 
tradition, you could write this: 
 
> peek<-function (x) {¶ 
>    if (is.data.frame(x)) {¶ 
>       x[1:6,]¶ 
>    } else {¶ 
>       x[1:6]¶ 
>    }¶ 
> }¶ 
> peek(into.causatives)¶ 

 
This means, R defines a function called peek that requires an argument, 

and that argument is function-internally called x. When you call peek with 
some argument – e.g., into.causatives – then R will take the content of 
that data structure and, for the duration of the function execution, assign it 
to x. Then, within the function R will carry out all of peek with x and re-
turn/output the result, which is the first 6 rows of into.causatives. 

It seems like we’re done. However, some things are missing. When you 
write a function, it is crucial you make sure it covers all sorts of possibili-
ties or data you may throw at it. After all, you’re writing a function to make 
your life easier, to allow you not to have to worry about stuff anymore after 
you have thought about it once, namely when you wrote the function. 
There are three ways in which the above code should be improved: 

− what if the data structure you use peek with is not a vector or a factor or 
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a data frame? 

− what if you want to be able to see not 6 but n elements? 

− what if the data structure you use peek with has fewer than n elements 
or rows? 

 
To address the first possibility, we just add another conditional expres-

sion. So far we only test whether whatever we use peek with is a data 
frame – now we also need to check whether, if it is not a data frame, 
whether it then is a vector or a factor, and ideally we return some warning 
if the data structure is none of the three. 

To address the second possibility, we need to be able to tell the function 
flexibly how many parts of x we want to see, and the way we tell this to a 
function is of course by its arguments. Thus, we add an argument, let’s call 
it n, that says how much we want to see of x, but we make 6 the default. 

To address the final possibility, we have to make sure that R realizes 
how many elements x has: if it has more than n, R should show n, but if it 
has fewer than n, R should show as many as it can, i.e., all of them. 

This version of peek addresses all of these issues: 
 
> peek< function (x, n=6) {¶ 
>    if (is.data.frame(x)) {¶ 
>       return(x[1:min(nrow(x), n),])¶ 
>    } else if (is.vector(x) | is.factor(x)) {¶ 
>       return(x[1:min(length(x), n)])¶ 
>    } else {¶ 
>       cat("Not defined for other data structures ...\n")¶ 
>    }¶ 
> }¶ 

 
Issue number one is addressed by adding a second conditional with the 

else if test – recall the use of | to mean ‘or’ – and outputting a message if 
x is neither a vector, factor, or a data frame. 

Issue number two is addressed by adding the argument n to the function 
definition and using n in the body of the function. The argument n is set to 
6 by default, so if the user does not specify n, 6 is used, but the user can 
also override this with another number. 

The final issue is addressed by tweaking the subsetting: instead of using 
just n, we use 1: the minimum of n or the number of elements x has. Thus, 
if x has more than n elements, then n will be the minimum and we get to 
see n elements, and if x has less than n elements, then that number of ele-
ments will be the minimum and we get to see them all. 

Finally, also note that I am now using the function return to specify 
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exactly what peek should return and output to the user when it’s done. Try 
the following lines (output not shown here and see the comments in the 
code file) to see that it works: 
 
> peek(into.causatives)¶ 
> peek(into.causatives, 3)¶ 
> peek(into.causatives, 9)¶ 
> peek(21:50, 10)¶ 
> peek(into.causatives$BNC, 12)¶ 
> peek(as.matrix(into.causatives))¶ 

 
While all this may not seem easy and worth the effort, we will later see 

that being able to write your own functions will facilitate quite a few statis-
tical analyses below. Let me also note that this was a tongue-in-cheek ex-
ample: there is actually already a function in R that does what peek does 
(and more, because it can handle more data structures) – look up head and 
also tail ;-). 

Now you should do the exercise(s) for Chapter 2 … 
 

Recommendation(s) for further study 

− the functions NA, is.na, NaN, is.nan, na.action, na.omit, and 
na.fail on how to handle missing data 

− Ligges (2005), Crawley (2007), Braun and Murdoch (2008), Spector 
(2008), Gentleman (2009), and Gries (2009a) for more information on 
R: Ligges (2005), Braun and Murdoch (2008), and Gentleman (2009) on 
R as a (statistical) programming language, Crawley as a very compre-
hensive overview, Spector (2008) on data manipulation in R, and Gries 
(2009a) on corpus-linguistic methods with R 



 

Chapter 3 

Descriptive statistics 
 
 
 

Any 21st century linguist will be required to read about and understand 
mathematical models as well as understand statistical methods of analysis. 

Whether you are interested in Shakespearean meter, the sociolinguistic 
perception of identity, Hindi verb agreement violations, or the perception 

of vowel duration, the use of math as a tool of analysis is already here and 
its prevalence will only grow over the next few decades. If you're not pre-

pared to read articles involving the term Bayesian, or (p<.01), k-means 

clustering, confidence interval, latent semantic analysis, bimodal and uni-

modal distributions, N-grams, etc, then you will be 
but a shy guest at the feast of linguistics. 

(<http://thelousylinguist.blogspot.com/2010/01/ 
why-linguists-should-study-math.html>) 

 
In this chapter, I will explain how you obtain descriptive results. In section 
3.1, I will discuss univariate statistics, i.e. statistics that summarize the 
distribution of one variable, of one vector, of one factor. Section 3.2 then is 
concerned with bivariate statistics, statistics that characterize the relation of 
two variables, two vectors, two factors to each other. Both sections also 
introduce ways of representing the data graphically; many additional 
graphs will be illustrated in Chapters 4 and 5. 
 
 

1. Univariate statistics 

 
1.1. Frequency data 
 
The probably simplest way to describe the distribution of data points are 
frequency tables, i.e. lists that state how often each individual outcome was 
observed. In R, generating a frequency table is extremely easy. Let us look 
at a psycholinguistic example. Imagine you extracted all occurrences of the 
disfluencies uh, uhm, and ‘silence’ and noted for each disfluency whether it 
was produced by a male or a female speaker, whether it was produced in a 
monolog or in a dialog, and how long in milliseconds the disfluency lasted. 
First, we load these data from the file <_inputfiles/03-1_uh(m).csv>. 
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> UHM<-read.delim(file.choose())¶ 
> str(UHM)¶ 
'data.frame':   1000 obs. of  5 variables: 
 $ CASE  : int  1 2 3 4 5 6 7 8 9 10 ... 
 $ SEX   : Factor w/ 2 levels "female","male": 2 1 1 1 2  ... 
 $ FILLER: Factor w/ 3 levels "silence","uh",..: 3 1 1 3  ... 
 $ GENRE : Factor w/ 2 levels "dialog","monolog": 2 2 1 1 ... 
 $ LENGTH: int  1014 1188 889 265 465 1278 671 1079 643 ... 
> attach(UHM)¶ 

 
To see which disfluency or filler occurs how often, you use the function 

table, which creates a frequency list of the elements of a vector or factor: 
 
> table(FILLER)¶ 
FILLER 
silence      uh     uhm 
    332     394     274 

 
If you also want to know the percentages of each disfluency, then you 

can either do this rather manually or you use the function prop.table, 
whose argument is a table generated with table and which returns the per-
centages of the frequencies in that table (cf. also below). 
 
> table(FILLER)/length(FILLER)¶ 
FILLER 
silence      uh     uhm 
  0.332   0.394   0.274 
> prop.table(table(FILLER))¶ 
FILLER 
silence      uh     uhm 
  0.332   0.394   0.274 

 
Often, it is also useful to generate a cumulative frequency table of the 

observed values or of the percentages. R has a function cumsum, which 
successively adds the values of a vector and returns all sums, which is ex-
emplified in the following two lines: 
 
> 1:5¶ 
[1] 1 2 3 4 5 
> cumsum(1:5)¶ 
[1]  1  3  6 10 15 

 
And of course you can apply cumsum to our tables: 

 
> cumsum(table(FILLER))¶ 
silence      uh     uhm 
    332     726    1000 



104        Descriptive statistics 

 

> cumsum(prop.table(table(FILLER)))¶ 
silence      uh     uhm 
  0.332   0.726   1.000 

 
Usually, it is instructive to represent the observed distribution graphical-

ly and the sections below introduce a few graphical formats. For reasons of 
space, I only discuss some ways to tweak graphs, but you can turn to the 
help pages of these functions (using ?…) and Murrell (2011) for more info. 
 
1.1.1. Scatterplots and line plots 

 
Before we begin to summarize vectors and factors graphically in groups of 
elements, we discuss how the data points of a vector are plotted individual-
ly. The simplest approach just requires the function plot. This is a very 
versatile function, which, depending on the arguments you use with it, cre-
ates many different graphs. (This may be a little confusing at first, but al-
lows for an economical style of working, as you will see later.) If you pro-
vide just one numerical vector as an argument, then R plots a scatterplot, 
i.e., a two-dimensional coordinate system in which the values of the vector 
are interpreted as coordinates of the y-axis, and the order in which they 
appear in the vector are the coordinates of the x-axis. Here’s an example: 
 
> a<-c(1, 3, 5, 2, 4); b<-1:5¶ 
> plot(a) # left panel of Figure 15¶ 

 

 

Figure 15. Simple scatterplots 
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But if you give two vectors as arguments, then the values of the first and 
the second are interpreted as coordinates on the x-axis and the y-axis re-
spectively (and the names of the vectors will be used as axis labels): 
 
> plot(a, b) # right panel of Figure 15¶ 

 
With the argument type=…, you can specify the kind of graph you want. 

The default, which was used because you did not specify anything else, is 
type="p" (for points). If you use type="b" (for both), you get points and 
lines connecting the points; if you use type="l" (for lines), you get a line 
plot; cf. Figure 16. (With type="n", nothing gets plotted into the main 
plotting area, but the coordinate system is set up.) 
 
> plot(b, a, type="b") # left panel of Figure 16¶ 
> plot(b, a, type="l") # right panel of Figure 16¶ 

 

 

Figure 16. Simple line plots 

 
Other simple but useful ways to tweak graphs involve defining labels 

for the axes (xlab="…" and ylab="…"), a bold heading for the whole graph 
(main="…"), the ranges of values of the axes (xlim=… and ylim=…), and the 
addition of a grid (grid()¶). With col="…", you can also set the color of 
the plotted element, as you will see more often below. 
 
> plot(b, a, xlab="A vector b", ylab="A vector a", xlim=c(0, 

8), ylim=c(0, 8), type="b"); grid() # Figure 17¶ 
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Figure 17. A scatterplot exemplifying a few simple plot settings 

 
An important rule of thumb is that the ranges of the axes must be chosen 

such that the distribution of the data is represented most meaningfully. It is 
often useful to include the point (0, 0) within the ranges of the axes and to 
make sure that graphs to be compared have the same and sufficient axis 
ranges. For example, if you want to compare the ranges of values of two 
vectors x and y in two graphs, then you usually may not want to let R de-
cide on the ranges of axes. Consider the upper panel of Figure 18. 

The clouds of points look very similar and you only notice the distribu-
tional difference between x and y when you specifically look at the range 
of values on the y-axis. The values in the upper left panel range from 0 to 2 
but those in the upper right panel range from 0 to 6. This difference be-
tween the two vectors is immediately obvious, however, when you use 
ylim=… to manually set the ranges of the y-axes to the same range of val-
ues, as I did for the lower panel of Figure 18. 

Note: whenever you use plot, by default a new graph is created and the 
old graph is lost (In RStudio, you can go back to previous plots, however, 
with the arrow button or the menu Plots: …) If you want to plot two lines 
into a graph, you first generate the first with plot (and type="l" or 
type="b") and then add the second one with points (or lines; sometimes 
you can also use the argument add=TRUE). That also means that you must 
define the ranges of the axes in the first plot in such a way that the values 
of the second graph can also be plotted into it. 
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Figure 18. Scatterplots and the importance of properly-defined ranges of axes 

 
An example will clarify that point. If you want to plot the points of the 

vectors m and n, and then want to add into the same plot the points of the 
vectors x and y, then this does not work, as you can see in the left panel of 
Figure 19. 
 
> m<-1:5; n<-5:1¶ 
> x<-6:10; y<-6:10¶ 
> plot(m, n, type="b"); points(x, y, type="b"); grid()¶ 

 
The left panel of Figure 19 shows the points defined by m and n, but not 

those of x and y because the ranges of the axes that R used to plot m and n 
are too small for x and y, which is why you must define those manually 
while creating the first coordinate system. One way to do this is to use the 
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function max, which returns the maximum value of a vector (and min re-
turns the minimum). The right panel of Figure 19 shows that this does the 
trick. (In this line, the minimum is set to 0 manually – of course, you could 
also use min(m, x) and min(n, y) for that, but I wanted to include (0, 0) 
in the graph.) 
 

 

Figure 19. Scatterplots and the importance of properly-defined ranges of axes 

 
> plot(m, n, type="b", xlim=c(0, max(m, x)), ylim= 

c(0, max(n, y)), xlab="Vectors m and x",  
ylab="Vectors n and y"); grid()¶ 

> points(x, y, type="b")¶ 

 

Recommendation(s) for further study 
the functions pmin and pmax to determine the minima and maxima at each 
position of different vectors (try pmin(c(1, 5, 3), c(2, 4, 6))¶) 

 
 
1.1.2. Pie charts 

 
The function to generate a pie chart is pie. Its most important argument is a 
table generated with table. You can either just leave it at that or, for ex-
ample, change category names with labels=… or use different colors with 
col=… etc.: 
 
> pie(table(FILLER), col=c("grey20", "grey50", "grey80"))¶ 
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Figure 20. A pie chart with the frequencies of disfluencies 

 
One thing that’s a bit annoying about this is that, to use different colors 

with col=… as above, you have to know how many colors there are and 
assign names to them, which becomes cumbersome with many different 
colors and/or graphs. For situations like these, the function rainbow can be 
very useful. In its simplest use, it requires only one argument, namely the 
number of different colors you want. Thus, how would you re-write the 
above line for the pie chart in such a way that you let R find out how many 
colors are needed rather than saying col=rainbow(3)? 
 

 

THINK 

BREAK 

 
Let R use as many colors as the table you are plotting has elements: 

 
> pie(table(FILLER), col=rainbow(length(table(FILLER))))¶ 

 
Note that pie charts are usually not a good way to summarize data be-

cause humans are not very good at inferring quantities from angles. Thus, 
pie is not a function you should use too often – the function rainbow, on 
the other hand, is one you should definitely bear in mind. 
 
 
1.1.3. Bar plots 

 
To create a bar plot, you can use the function barplot. Again, its most 
important argument is a table generated with table and again you can cre-
ate either a standard version or more customized ones. If you want to de-
fine your own category names, you unfortunately must use names.arg=…, 
not labels=… (cf. Figure 21 below). 
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> barplot(table(FILLER)) # left panel of Figure 21¶ 
> barplot(table(FILLER), col=c("grey20", "grey40",  

"grey60")) # right panel of Figure 21¶ 

 

 

Figure 21. Bar plots with the frequencies of disfluencies 

 
An interesting way to configure bar plots is to use space=0 to have the 

bars be immediately next to each other. That is of course not exactly mind-
blowing in itself, but it is one of two ways to make it easier to add further 
data/annotation to the plot. For example, you can then easily plot the ob-
served frequencies into the middle of each bar using the function text. The 
first argument of text is a vector with the x-axis coordinates of the text to 
be printed (with space=0, 0.5 for the middle of the first bar, 1.5 for the 
middle of the second bar, and 2.5 for the middle of the third bar), the sec-
ond argument is a vector with the y-axis coordinates of that text (half of 
each observed frequency so that the text ends up in the middle of the bars), 
and labels=… provides the text to be printed; cf. the left panel of Figure 22. 
 
> barplot(table(FILLER), col=c("grey40", "grey60", "grey80"),  

names.arg=c("Silence", "Uh", "Uhm"), space=0)¶ 
> text(c(0.5, 1.5, 2.5), table(FILLER)/2, labels= 

table(FILLER))¶ 

 
The second way to create a similar graph – cf. the right panel of Figure 

22 – involves some useful changes: 
 
> mids<-barplot(table(FILLER), col=c("grey40", "grey60", 

"grey80"))¶ 
> text(mids, table(FILLER), labels=table(FILLER), pos=1)¶ 
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Figure 22. Bar plots with the frequencies of disfluencies 

 
The first line now does not just plot the barplot, it also assigns what R 

returns to a data structure called mids, which contains the x-coordinates of 
the middles of the bars, which we can then use for texting. (Look at mids.) 
Second, the second line now uses mids for the x-coordinates of the text to 
be printed and it uses pos=1 to make R print the text a bit below the speci-
fied coordinates; pos=2, pos=3, and pos=4 would print the text a bit to the 
left, above, and to the right of the specified coordinates respectively. 

The functions plot and text allow for another powerful graph: first, 
you generate a plot that contains nothing but the axes and their labels (with 
type="n", cf. above), and then with text you plot words or numbers. Try 
this for an illustration of a kind of plot you will more often see below: 
 
> tab<-table(FILLER)¶ 
> plot(tab, type="n", xlab="Disfluencies", ylab="Observed  

frequencies", xlim=c(0, 4), ylim=c(0, 500)); grid()¶ 
> text(seq(tab), tab, labels=tab)¶ 

 

Recommendation(s) for further study 
the function dotchart for dot plot and the parameter settings cex, srt, 
col, pch, and font to tweak plots: ?par¶. 

 
 
1.1.4. Pareto-charts 

 
A related way to represent the frequencies of the disfluencies is a pareto-
chart. In pareto-charts, the frequencies of the observed categories are repre-
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sented as in a bar plot, but they are first sorted in descending order of fre-
quency and then overlaid by a line plot of cumulative percentages that indi-
cates what percent of all data one category and all other categories to the 
left of that category account for. The function pareto.chart comes with 
the library qcc that you must (install and/or) load first; cf. Figure 23. 
 
> library(qcc)¶ 
> pareto.chart(table(FILLER), main=””)¶ 
Pareto chart analysis for table(FILLER) 
          Frequency Cum.Freq. Percentage Cum.Percent. 
  uh          394.0     394.0       39.4         39.4 
  silence     332.0     726.0       33.2         72.6 
  uhm         274.0    1000.0       27.4        100.0 

 

 

Figure 23. Pareto-chart with the frequencies of disfluencies 

 
 
1.1.5. Histograms 

 
While bar plots are probably the most frequent forms of representing the 
frequencies of nominal/categorical variables, histograms are most wide-
spread for the frequencies of interval/ratio variables. In R, you can use 
hist, which just requires the relevant vector as its argument. 
 
> hist(LENGTH)¶ 

 
For some ways to make the graph nicer, cf. Figure 24, whose left panel 

contains a histogram of the variable LENGTH with axis labels and grey bars. 
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> hist(LENGTH, main="", xlab="Length in ms", ylab= 
"Frequency", xlim=c(0, 2000), ylim=c(0, 100),  
col="grey80")¶ 

 
The right panel of Figure 24 contains a histogram of the probability 

densities (generated by freq=FALSE) with a curve (generated by lines). 
 
> hist(LENGTH, main="", xlab="Length in ms", ylab="Density",  

freq=FALSE, xlim=c(0, 2000), col="grey50")¶ 
> lines(density(LENGTH))¶ 

 

 

Figure 24. Histograms for the frequencies of lengths of disfluencies 

 
With the argument breaks=… to hist, you can instruct R to try to use a 

particular number of bins (or bars). You either provide one integer – then R 
tries to create a histogram with as many bins – or you provide a vector with 
the boundaries of the bins. The latter raises the question of how many bins 
should or may be chosen? In general, you should not have more than 20 
bins, and as one rule of thumb for the number of bins to choose you can use 
the formula in (14) (cf. Keen 2010:143–160 for discussion). The most im-
portant aspect is that the bins you choose do not misrepresent the data. 
 
(14) Number of bins for a histogram of n data points = 1+3.32·log10 n 
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1.1.6. Empirical cumulatuive distributions 

 
A very useful visualization of numerical data is the empirical cumulative 
distribution (function, abbreviated ecdf) plot, an example of which you 
have already seen as part of the pareto chart in Section 3.1.1.4. On the x-
axis of an ecdf plot, you find the range of the variable that is visualized, on 
the y-axis you find a percentage scale from 0 to 1 (=100%), and the points 
in the coordinate system show how much in percent of all data one variable 
value and all other smaller values to the left of that value account for. Fig-
ure 25 shows such a plot for LENGTH and you can see that approximately 
18% of all lengths are smaller than 500 ms. 
 

 

Figure 25. Ecdf plot of lengths of disfluencies 

 
This plot is very useful because it does not lose information by binning 

data points: every data point is represented in the plot, which is why ecdf 
plots can be very revealing even for data that most other graphs cannot 
illustrate well. Let’s see whether you’ve understood this plot: what do ecdf 
plots of normally-distributed and uniformly-distributed data look like? 
 

 

THINK 

BREAK 
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You will find the answer in the code file (with graphs); make sure you 
understand why so you can use this very useful type of graph. 
 

Recommendation(s) for further study 

− the functions dotchart and stripchart (with method="jitter") to 
represent the distribution of individual data points in very efficient ways 

− the function scatterplot (from the library car) for more sophisticated 
scatterplots 

− the functions plot3d and scatterplot3d (from the library rgl and the 
library scatterplot3d) for different three-dimensional scatterplots 

 
 
1.2. Measures of central tendency 
 
Measures of central tendency are probably the most frequently used statis-
tics. They provide a value that attempts to summarize the behavior of a 
variable. Put differently, they answer the question, if I wanted to summa-
rize this variable and were allowed to use only one number to do that, 
which number would that be? Crucially, the choice of a particular measure 
of central tendency depends on the variable’s level of measurement. For 
nominal/categorical variables, you should use the mode (if you do not 
simply list frequencies of all values/bins anyway, which is often better), for 
ordinal variables you should use the median, for interval/ratio variables you 
can often use the arithmetic mean. 
 
 
1.2.1. The mode 

 
The mode of a variable or distribution is the value that is most often ob-
served. As far as I know, there is no function for the mode in R, but you 
can find it very easily. For example, the mode of FILLER is uh: 
 
> which.max(table(FILLER))¶ 
uh 
 2 
> max(table(FILLER))¶ 
[1] 394 

 
Careful when there is more than one level that exhibits the maximum 

number of observations – tabulating is usually safer. 
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1.2.2. The median 

 
The measure of central tendency for ordinal data is the median, the value 
you obtain when you sort all values of a distribution according to their size 
and then pick the middle one (e.g., the median of the numbers from 1 to 5 
is 3). If you have an even number of values, the median is the average of 
the two middle values. 
 
> median(LENGTH)¶ 
[1] 897 

 
 
1.2.3. The arithmetic mean 

 
The best-known measure of central tendency is the arithmetic mean for 
interval/ratio variables. You compute it by adding up all values of a distri-
bution or a vector and dividing that sum by the number of values, but of 
course there is also a function for this: 
 
> sum(LENGTH)/length(LENGTH)¶ 
[1] 915.043 
> mean(LENGTH)¶ 
[1] 915.043 

 
One weakness of the arithmetic mean is its sensitivity to outliers: 

 
> a<-1:10; a¶ 
[1]  1  2  3  4  5  6  7  8  9 10 
> b<-c(1:9, 1000); b¶ 
[1]    1    2    3    4    5    6    7    8    9 1000 
> mean(a)¶ 
[1] 5.5 
> mean(b)¶ 
[1] 104.5 

 
Although the vectors a and b differ with regard to only a single value, 

the mean of b is much larger than that of a because of that one outlier, in 
fact so much larger that b’s mean of 104.5 neither summarizes the values 
from 1 to 9 nor the value 1000 very well. There are two ways of handling 
such problems. First, you can add the argument trim=…, the percentage of 
elements from the top and the bottom of the distribution that are discarded 
before the mean is computed. The following lines compute the means of a 
and b after the highest and the lowest value have been discarded: 
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> mean(a, trim=0.1)¶ 
[1] 5.5 
> mean(b, trim=0.1)¶ 
[1] 5.5 

 
Second, you can just use the median, which is also a good idea if the da-

ta whose central tendency you want to report are not normally distributed. 
 
> median(a); median(b)¶ 
[1] 5.5 
[1] 5.5 

 

Warning/advice 
Just because R or your spreadsheet software can return many decimals does 
not mean you have to report them all. Use a number of decimals that makes 
sense given the statistic that you report. 

 
 
1.2.4. The geometric mean 

 
The geometric mean is used to compute averages of factors or ratios 
(whereas the arithmetic mean is computed to get the average of sums). 
Let’s assume you have six recordings of a child at the ages 2;1 (two years 
and one month), 2;2, 2;3, 2;4, 2;5, and 2;6. Let us also assume you had a 
vector lexicon that contains the cumulative numbers of different words 
(types!) that the child produced at each age: 
 
> lexicon<-c(132, 158, 169, 188, 221, 240)¶ 
> names(lexicon)<-c("2;1", "2;2", "2;3", "2;4", "2;5",  

"2;6")¶ 

 
You now want to know the average rate at which the lexicon increased. 

First, you compute the successive increases: 
 
> increases<-lexicon[2:6]/lexicon[1:5]; increases¶ 
     2;2      2;3      2;4      2;5      2;6 
1.196970 1.069620 1.112426 1.175532 1.085973 

 
That is, by age 2;2, the child produced 19.697% more types than by age 

2;1, by age 2;3, the child produced 6.962% more types than by age 2;2, etc. 
Now, you must not think that the average rate of increase of the lexicon is 
the arithmetic mean of these increases: 
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> mean(increases) # wrong!¶ 
[1] 1.128104 

 
You can easily test that this is not the correct result. If this number was 

the true average rate of increase, then the product of 132 (the first lexicon 
size) and this rate of 1.128104 to the power of 5 (the number of times the 
supposed ‘average rate’ applies) should be the final value of 240. This is 
not the case: 
 
> 132*mean(increases)^5¶ 
[1] 241.1681 

 
Instead, you must compute the geometric mean. The geometric mean of 

a vector x with n elements is computed according to formula (15), and if 
you use this as the average rate of increase, you get the right result: 
 

(15) meangeom = (x1·x2·…·xn-1·xn)
n

1

 
 
> rate.increase<-prod(increases)^(1/length(increases));  

rate.increase¶ 
[1] 1.127009 
> 132*rate.increase^5¶ 
[1] 240 

 
True, the difference between 240 – the correct value – and 241.1681 – 

the incorrect value – may seem negligible, but 241.1681 is still wrong and 
the difference is not always that small, as an example from Wikipedia (s.v. 
geometric mean) illustrates: If you do an experiment and get an increase 
rate of 10.000 and then you do a second experiment and get an increase rate 
of 0.0001 (i.e., a decrease), then the average rate of increase is not approx-
imately 5.000 – the arithmetic mean of the two rates – but 1 – their geomet-
ric mean.13 

Finally, let me again point out how useful it can be to plot words or 
numbers instead of points, triangles, … Try to generate Figure 26, in which 
the position of each word on the y-axis corresponds to the average length of 
the disfluency (e.g., 928.4 for women, 901.6 for men, etc.). (The horizontal 
line is the overall average length – you may not know yet how to plot that 
one.) Many tendencies are immediately obvious: men are below the aver-
age, women are above, silent disfluencies are of about average length, etc. 

                                                      
13. Alternatively, you can compute the geometric mean of increases as follows: 

exp(mean(log(increases)))¶. 
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Figure 26. Mean lengths of disfluencies 

 
 
1.3. Measures of dispersion 
 
Most people know what measures of central tendencies are. What many 
people do not know is that they should never – NEVER! – report a measure 
of central tendency without some corresponding measure of dispersion. 
The reason for this rule is that without such a measure of dispersion you 
never know how good the measure of central tendency actually is at sum-
marizing the data. Let us look at a non-linguistic example, the monthly 
temperatures of two towns and their averages: 
 
> town1<-c(-5, -12, 5, 12, 15, 18, 22, 23, 20, 16, 8, 1)¶ 
> town2<-c(6, 7, 8, 9, 10, 12, 16, 15, 11, 9, 8, 7)¶ 
> mean(town1); mean(town2)¶ 
[1] 10.25 
[1] 9.833333 

 
On the basis of the means alone, the towns seem to have a very similar 

climate, but even a quick glance at Figure 27 shows that that is not true – in 
spite of the similar means, I know where I would want to be in February. 
Obviously, the mean of Town 2 summarizes the central tendency of Town 
2 much better than the mean of Town 1 does for Town 1: the values of 
Town 1 vary much more widely around their mean. Thus, always provide a 
measure of dispersion for your measure of central tendency: relative entro-
py for the mode, the interquartile range or quantiles for the median and 
interval/ratio-scaled data that are non-normal or exhibit outliers, and the 
standard deviation or the variance for normal interval/ratio-scaled data. 
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Figure 27. Temperature curves of two towns 

 
 
1.3.1. Relative entropy 

 
A simple dispersion measure for categorical data is relative entropy Hrel. 
Hrel is 1 when the levels of the relevant categorical variable are all equally 
frequent, and it is 0 when all data points have only one and the same varia-
ble level. For categorical variables with n levels, Hrel is computed as shown 
in formula (16), in which pi corresponds to the frequency in percent of the 
i-th level of the variable: 
 

(16) Hrel = 

( )

n

pp

n

i

ii

ln

ln
1

∑
=

⋅
−  

 
Thus, if you count the articles of 300 noun phrases and find 164 cases 

with no determiner, 33 indefinite articles, and 103 definite articles, this is 
how you compute Hrel: 
 
> article<-c(164, 33, 103)¶ 
> perc<-article/sum(article)¶ 
> hrel<--sum(perc*log(perc))/log(length(perc)); hrel¶ 
[1] 0.8556091 

 
It is worth pointing out that the above formula does not produce the de-
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sired result of 0 when only no-determiner cases are observed because 
log(0) is not defined: 
 
> article<-c(300, 0, 0)¶ 
> perc<-article/sum(article)¶ 
> hrel<--sum(perc*log(perc))/log(length(perc)); hrel¶ 
[1] NaN 

 
Usually, this is taken care of by simply setting the result of log(0) to 

zero (or sometimes also by incrementing all values by 1 before logging). 
This is a case where writing a function to compute logarithms that can 
handle 0s can be useful. For example, this is how you could define your 
own logarithm function logw0 and then use that function instead of log to 
get the desired result: 
 
> logw0<-function(x) {¶ 
+    ifelse (x==0, 0, log(x))¶ 
+ }¶ 
> hrel<--sum(perc*logw0(perc))/logw0(length(perc)); hrel¶ 
[1] 0 

 
Distributions of categorical variables will be dealt with in much more 

detail below in Section 4.1.1.2. 
 
 
1.3.2. The range 

 
The simplest measure of dispersion for interval/ratio data is the range, the 
difference of the largest and the smallest value. You can either just use the 
function range, which requires the vector in question as its only argument, 
and then compute the difference from the two values with diff, or you just 
compute the range from the minimum and maximum yourself: 
 
> range(LENGTH)¶ 
[1]  251 1600 
> diff(range(LENGTH))¶ 
[1] 1349 
> max(LENGTH)-min(LENGTH)¶ 
[1] 1349 

 
This measure is extremely simple to compute but obviously also very 

sensitive: one outlier is enough to yield results that are not particularly 
meaningful anymore. For this reason, the range is not used very often. 
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1.3.3. Quantiles and quartiles 

 
Another simple but useful and flexible measure of dispersion involves the 
quantiles of a distribution. We have met quantiles before in the context of 
probability distributions in Section 1.3.4. Theoretically, you compute quan-
tiles by sorting the values in ascending order and then counting which val-
ues delimit the lowest x%, y%, etc. of the data; when these percentages are 
25%, 50%, and 75%, then they are called quartiles. In R you can use the 
function quantile, (see below on type=1): 
 
> a<-1:100¶ 
> quantile(a, type=1)¶ 
  0%  25%  50%  75% 100% 
   1   25   50   75  100 

 
If you write the integers from 1 to 100 next to each other, then 25 is the 

value that cuts off the lower 25%, etc. The value for 50% corresponds to 
the median, and the values for 0% and 100% are the minimum and the 
maximum. Let me briefly mention two arguments of this function. First, 
the argument probs allows you to specify other percentages. Second, the 
argument type=… allows you to choose other ways in which quantiles are 
computed. For discrete distributions, type=1 is probably best, for continu-
ous variables the default setting type=7 is best. 
 
> quantile(a, probs=c(0.05, 0.1, 0.5, 0.9, 0.95), type=1)¶ 
 5% 10% 50% 90% 95% 
  5  10  50  90  95 

 
The bottom line of using quantiles as a measure of dispersion of course 

is that the more the 25% quartile and the 75% quartile differ from each 
other, the more heterogeneous the data are, which is confirmed by looking 
at the data for the two towns: the so-called interquartile range – the differ-
ence between the 75% quartile and the 25% quartile – is much larger for 
Town 1 than for Town 2. 
 
> quantile(town1)¶ 
   0%   25%   50%   75%  100% 
-12.0   4.0  13.5  18.5  23.0 
> IQR(town1)¶ 
[1] 14.5 
> quantile(town2)¶ 
   0%   25%   50%   75%  100% 
 6.00  7.75  9.00 11.25 16.00 
> IQR(town2)¶ 
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[1] 3.5 

 
You can now apply this function to the lengths of the disfluencies: 

 
> quantile(LENGTH, probs=c(0.2, 0.4, 0.5, 0.6, 0.8, 1),  

type=1)¶ 
 20%  40%  50%  60%  80% 100% 
 519  788  897 1039 1307 1600 

 
That is, the central 20% of all the lengths of disfluencies are greater than 

788 and range up to 1039 (as you can verify with sort(LENGTH) 
[401:600]¶), 20% of the lengths are smaller than or equal to 519, 20% of 
the values are 1307 or larger, etc. 

An interesting application of quantile is to use it to split vectors of 
continuous variables up into groups. For example, if you wanted to split the 
vector LENGTH into five groups of nearly equal ranges of values, you can 
use the function cut from Section 2.4.1 again, which splits up vectors into 
groups, and the function quantile, which tells cut what the groups should 
look like. That is, there are 200 values of LENGTH between and including 
251 and 521 etc. 
 
> LENGTH.GRP<-cut(LENGTH, breaks=quantile(LENGTH, probs= 

c(0, 0.2, 0.4, 0.6, 0.8, 1)), include.lowest=TRUE)¶ 
> table(LENGTH.GRP)¶ 
LENGTH.GRP 
          [251,521]           (521,789]      (789,1.04e+03] 
                200                 200                 200 
(1.04e+03,1.31e+03]  (1.31e+03,1.6e+03] 
                203                 197 

 
 
1.3.4. The average deviation 

 
Another way to characterize the dispersion of a distribution is the average 
deviation. You compute the absolute difference of every data point from 
the mean of the distribution (cf. abs), and then you compute the mean of 
these absolute differences. For Town 1, the average deviation is 9.04: 
 
> town1¶ 
 [1]  -5 -12   5  12  15  18  22  23  20  16   8   1 
> town1-mean(town1)¶ 
 [1] -15.25 -22.25  -5.25   1.75   4.75   7.75  11.75   

12.75  9.75   5.75  -2.25  -9.25 
> abs(town1-mean(town1))¶ 
 [1] 15.25 22.25  5.25  1.75  4.75  7.75 11.75 12.75   
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9.75  5.75  2.25  9.25 
> mean(abs(town1-mean(town1)))¶ 
[1] 9.041667 
> mean(abs(town2-mean(town2)))¶ 
[1] 2.472222 

 
For the lengths of the disfluencies, we obtain: 

 
> mean(abs(LENGTH-mean(LENGTH)))¶ 
[1] 329.2946 

 
Although this is a quite intuitive measure, it is unfortunately hardly used 

anymore. For better or for worse (cf. Gorard 2004), you will more often 
find the dispersion measure discussed next, the standard deviation. 
 
 
1.3.5. The standard deviation/variance 

 
The standard deviation sd of a distribution x with n elements is defined in 
(17). This may look difficult at first, but the standard deviation is con-
ceptually similar to the average deviation. For the average deviation, you 
compute the difference of each data point to the mean and take its absolute 
value – for the standard deviation you compute the difference of each data 
point to the mean, square these differences, sum them up, and after dividing 
the sum by n-1, you take the square root (to ‘undo’ the previous squaring). 

(17) sd = 

( ) 2

1

1

2

1

















−

−

∑
=

n

xx

n

i

i

 

 
Once we ‘translate’ this into R, it probably becomes clearer: 

 
> town1¶ 
 [1]  -5 -12   5  12  15  18  22  23  20  16   8   1 
> town1-mean(town1)¶ 
 [1] -15.25 -22.25  -5.25   1.75   4.75   7.75  11.75   

12.75   9.75   5.75  -2.25  -9.25 
> (town1-mean(town1))^2¶ 
 [1] 232.5625 495.0625  27.5625   3.0625  22.5625  60.0625  

138.0625 162.5625  95.0625  33.0625   5.0625  85.5625 
> sum((town1-mean(town1))^2)¶ 
[1] 1360.25 
> sum((town1-mean(town1))^2)/(length(town1)-1)¶ 
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[1] 123.6591 
> sqrt(sum((town1-mean(town1))^2)/(length(town1)-1))¶ 
[1] 11.12021 

 
There is of course an easier way … 

 
> sd(town1); sd(town2)¶ 
[1] 11.12021 
[1] 3.157483 

 
Note in passing: the standard deviation is the square root of another 

measure, the variance, which you can also compute with the function var. 
 

Recommendation(s) for further study 
the function mad to compute another very robust measure of dispersion, the 
median absolute deviation 

 
 
1.3.6. The variation coefficient 

 
Even though the standard deviation is probably the most widespread meas-
ure of dispersion, it has a potential weakness: its size is dependent on the 
mean of the distribution, as you can see in the following example: 
 
> sd(town1)¶ 
[1] 11.12021 
> sd(town1*10)¶ 
[1] 111.2021 

 
When the values, and hence the mean, is increased by one order of 

magnitude, then so is the standard deviation. You can therefore not com-
pare standard deviations from distributions with different means if you do 
not first normalize them. If you divide the standard deviation of a distribu-
tion by its mean, you get the variation coefficient. You see that the varia-
tion coefficient is not affected by the multiplication with 10, and Town 1 
still has a larger degree of dispersion. 
 
> sd(town1)/mean(town1)¶ 
[1] 1.084899 
> sd(town1*10)/mean(town1*10)¶ 
[1] 1.084899 
> sd(town2)/mean(town2)¶ 
[1] 0.3210999 
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1.3.7. Summary functions 

 
If you want to obtain several summarizing statistics for a vector (or a fac-
tor), you can use summary, whose output is self-explanatory. 
 
> summary(town1)¶ 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 -12.00    4.00   13.50   10.25   18.50   23.00 

 
An immensely useful graph is the so-called boxplot. In its simplest 

form, the function boxplot just requires one vector as an argument, but we 
also add notch=TRUE, which I will explain shortly, as well as a line that 
adds little plus signs for the arithmetic means. Note that I am assigning the 
output of boxplot to a data structure called boxsum for later inspection. 
 
> boxsum<-boxplot(town1, town2, notch=TRUE,  

names=c("Town 1", "Town 2"))¶ 
> text(1:2, c(mean(town1), mean(town2)), c("+", "+"))¶ 

 
This plot, see Figure 28, contains a lot of valuable information: 

 

− the bold-typed horizontal lines represent the medians of the two vectors; 

− the regular horizontal lines that make up the upper and lower boundary 
of the boxes represent the hinges (approximately the 75%- and the 25% 
quartiles); 

 

 

Figure 28. Boxplot of the temperatures of the two towns 
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− the whiskers – the dashed vertical lines extending from the box until the 
upper and lower limit – represent the largest and smallest values that are 
not more than 1.5 interquartile ranges away from the box; 

− each data point that would be outside of the range of the whiskers would 
be represented as an outlier with an individual small circle; 

− the notches on the left and right sides of the boxes extend across the 
range ±1.58*IQR/sqrt(n): if the notches of two boxplots do not over-
lap, then their medians will most likely be significantly different. 

 
Figure 28 shows that the average temperatures of the two towns are very 

similar and probably not significantly different from each other. Also, the 
dispersion of Town 1 is much larger than that of Town 2. Sometimes, a 
good boxplot nearly obviates the need for further analysis; boxplots are 
extremely useful and will often be used in the chapters to follow. However, 
there are situations where the ecdf plot introduced above is better and the 
following example is modeled after what happened in a real dataset of a 
student I supervised. Run the code in the code file and consider Figure 29. 

As you could see in the code file, I created a vector x1 that actually con-
tains data from two very different distributions whereas the vector x2 con-
tains data from only one but wider distribution. 
 

 

Figure 29. Boxplots (left panel) and ecdf plots (right panel) of two vectors 

 
Crucially, the boxplots do not reveal that at all. Yes, the second darker 

boxplot is wider and has some outliers but the fact that the first lighter box-
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plot represents a vector containing data from two different distributions is 
completely absent from the graph. The ecdf plots in the right panel show 
that very clearly, however: the darker line for the second vector increases 
steadily in a way that suggests one normal distribution whereas the lighter 
line for the first vector shows that it contains two normal distributions, 
given the two s-shaped curve segments. Thus, while the ecdf plot is not as 
intuitively understandable as a boxplot, it can be much more informative. 
 

Recommendation(s) for further study 
the functions hdr.boxplot (from the library hdrcde), vioplot (from the 
library vioplot), and bpplot (from the library Hmisc) for interesting alter-
natives to, or extensions of, boxplots 

 
 
1.3.8. The standard error 

 
The standard error of an arithmetic mean is defined as the standard devia-
tion of the means of equally large samples drawn randomly from a popula-
tion with replacement. Imagine you took a sample from a population and 
computed the arithmetic mean of some variable. Unless your sample is 
perfectly representative of the population, this mean will not correspond 
exactly to the arithmetic mean of that variable in the population, and it will 
also not correspond exactly to the arithmetic mean you would get from 
another equally large sample from the same population. If you take many 
(e.g., 10,000) random and equally large samples from the population with 
replacement and computed the arithmetic mean of each of them, then the 
standard deviation of all these means is the standard error. 
 
> means<-vector(length=10000)¶ 
> for (i in 1:10000) {¶ 
+    means[i]<-mean(sample(LENGTH, size=1000, replace=TRUE))¶ 
+ }¶ 
> sd(means)¶ 
[1] 12.10577 

 
The standard error of an arithmetic mean is computed according to the 

formula in (18), and from (18) you can already see that the larger the stand-
ard error of a mean, the smaller the likelihood that that mean is a good es-
timate of the population mean, and that the larger sample size n, the smaller 
the standard error becomes: 
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(18) semean = 
n

sd

n

var
=  

 
Thus, the standard error of the mean length of disfluencies here is this, 

which is very close to our resampled result from above. 
 
> mean(LENGTH)¶ 
[1] 915.043 
> sqrt(var(LENGTH)/length(LENGTH))¶ 
[1] 12.08127 

 
You can also compute standard errors for statistics other than arithmetic 

means but the only other example we look at here is the standard error of a 
relative frequency p, which is computed according to the formula in (19): 
 

(19) sepercentage = 
( )
n

pp −⋅ 1
 

 
Thus, the standard error of the percentage of all silent disfluencies out 

of all disfluencies (33.2% of 1000 disfluencies) is: 
 
> prop.table(table(FILLER))¶ 
FILLER 
silence      uh     uhm 
  0.332   0.394   0.274 
> sqrt(0.332*(1-0.332)/1000)¶ 
[1] 0.01489215 

 
Standard errors will be much more important in Section 3.1.5 because 

they are used to compute so-called confidence intervals. Note that when 
you compare means of two roughly equally large samples and their inter-
vals means±standard errors overlap, then you know the sample means are 
not significantly different. However, if these intervals do not overlap, this 
does not show that the means are significantly different (cf. Crawley 2005: 
169f.). In Chapter 5, you will also get to see standard errors of differences 
of means, which are computed according to the formula in (20). 
 

(20) sedifference between means = 
2

2_

2

1_ groupmeangroupmean SESE +  
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Warning/advice 
Standard errors are only really useful if the data to which they are applied 
are distributed pretty normally or when the sample size n ≥ 30. 

 
 
1.4. Centering and standardization (z-scores) 
 
Very often it is useful or even necessary to compare values coming from 
different scales. An example (from Bortz 2005): if a student X scored 80% 
in a course and a student Y scored 60% in another course, can you then say 
that student X was better than student Y? On the one hand, sure you can: 
80% is better than 60%. On the other hand, the test in which student Y 
participated could have been much more difficult than the one in which 
student X participated. It can therefore be useful to relativize/normalize the 
individual grades of the two students on the basis of the overall perfor-
mance of students in their courses. (You encountered a similar situation 
above in Section 3.1.3.6 when you learned that it is not always appropriate 
to compare different standard deviations directly.) Let us assume the grades 
obtained in the two courses look as follows: 
 
> grades.course.X<-rep((seq(0, 100, 20)), 1:6);  

grades.course.X¶ 
[1]   0  20  20  40  40  40  60  60  60  60  80  80  80  80  

80 100 100 100 100 100 100 
> grades.course.Y<-rep((seq(0, 100, 20)), 6:1);  

grades.course.Y¶ 
[1]   0   0   0   0   0   0  20  20  20  20  20  40  40  40  

40  60  60  60  80  80 100 

 
One way to normalize the grades is called centering and simply in-

volves subtracting from each individual value within one course the aver-
age of that course. 
 
> a<-1:5¶ 
> centered.scores<-a-mean(a); centered.scores¶ 
[1] -2 -1  0  1  2 

 
You can see how these scores relate to the original values in a: since the 

mean of a is obviously 3, the first two centered scores are negative (i.e., 
smaller than a’s mean), the third is 0 (it does not deviate from a’s mean), 
and the last two centered scores are positive (i.e., larger than a’s mean). 

Another more sophisticated way involves standardizing, i.e. trans-
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forming the values to be compared into so-called z-scores, which indicate 
how many standard deviations each value of the vector deviates from the 
mean of the vector. The z-score of a value from a vector is the difference of 
that value from the mean of the vector, divided by the vector’s standard 
deviation. You can compute that manually as in this simple example: 
 
> z.scores<-(a-mean(a))/sd(a); z.scores¶ 
[1] -1.2649111 -0.6324555  0.0000000  0.6324555  1.2649111 

 
The relationship between the z-scores and a’s original values is very 

similar to that between the centered scores and a’s values: since the mean 
of a is obviously 3, the first two z-scores are negative (i.e., smaller than a’s 
mean), the third z-score is 0 (it does not deviate from a’s mean), and the 
last two z-scores are positive (i.e., larger than a’s mean). Note that such z-
scores have a mean of 0 and a standard deviation of 1: 
 
> mean(z.scores)¶ 
[1] 0 
> sd(z.scores)¶ 
[1] 1 

 
Both normalizations can be performed with the function scale, which 

takes three arguments: the vector to be normalized, center=… (the default 
is TRUE) and scale=… (the default is TRUE). If you do not provide any ar-
guments other than the vector to be standardized, then scale’s default set-
ting returns a matrix that contains the z-scores and whose attributes corre-
spond to the mean and the standard deviation of the vector: 
 
> scale(a)¶ 
           [,1] 
[1,] -1.2649111 
[2,] -0.6324555 
[3,]  0.0000000 
[4,]  0.6324555 
[5,]  1.2649111 
attr(,"scaled:center") 
[1] 3 
attr(,"scaled:scale") 
[1] 1.581139 

 
If you set scale to FALSE, then you get centered scores: 

 
> scale(a, scale=FALSE)¶ 
     [,1] 
[1,]   -2 
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[2,]   -1 
[3,]    0 
[4,]    1 
[5,]    2 
attr(,"scaled:center") 
[1] 3 

 
If we apply both versions to our example with the two courses, then you 

see that the 80% scored by student X is only 0.436 standard deviations (and 
13.33 percent points) better than the mean of his course whereas the 60% 
scored by student Y is actually 0.873 standard deviations (and 26.67 per-
cent points) above the mean of his course. Thus, X’s score is higher than 
Y’s, but if we take the overall results in the two courses into consideration, 
then Y’s performance is better; standardizing data is often useful. 
 
 
1.5. Confidence intervals 
 
In most cases, you are not able to investigate the whole population you are 
actually interested in because that population is not accessible and/or too 
large so investigating it is impossible, too time-consuming, or too expen-
sive. However, even though you know that different samples will yield 
different statistics, you of course hope that your sample would yield a reli-
able estimate that tells you much about the population you are interested in: 
 

− if you find in your sample of 1000 disfluencies that their average length 
is approximately 915 ms, then you hope that you can generalize from 
that to the population and future investigations; 

− if you find in your sample of 1000 disfluencies that 33.2% of these are 
silences, then you hope that you can generalize from that to the popula-
tion and future investigations. 

 
So far, we have only discussed how you can compute percentages and 

means for samples – the question of how valid these are for populations is 
the topic of this section. In Section 3.1.5.1, I explain how you can compute 
confidence intervals for arithmetic means, and Section 3.1.5.2 explains how 
to compute confidence intervals for percentages. The relevance of such 
confidence intervals must not be underestimated: without a confidence 
interval it is unclear how well you can generalize from a sample to a popu-
lation; apart from the statistics we discuss here, one can also compute con-
fidence intervals for many others. 
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1.5.1. Confidence intervals of arithmetic means 

 
If you compute a mean on the basis of a sample, you of course hope that it 
represents that of the population well. As you know, the average length of 
disfluencies in our example data is 915.043 ms (standard deviation: 
382.04). But as we said above, other samples’ means will be different so 
you would ideally want to quantify your confidence in this estimate. The 
so-called confidence interval, which is useful to provide with your mean, is 
the interval of values around the sample mean around which we will as-
sume there is no significant difference with the sample mean. From the 
expression “significant difference”, it follows that a confidence interval is 
typically defined as 1-significance level, i.e., typically as 1-0.05 = 0.95. 

In a first step, you again compute the standard error of the arithmetic 
mean according to the formula in (18). 
 
> se<-sqrt(var(LENGTH)/length(LENGTH)); se¶ 
[1] 12.08127 

 
This standard error is used in (21) to compute the confidence interval. 

The parameter t in formula (21) refers to the distribution mentioned in Sec-
tion 1.3.4.3, and its computation requires the number of degrees of free-
dom. In this case, the number of degrees of freedom df is the length of the 
vector-1, i.e. 999. Since you want to compute a t-value on the basis of a p-
value, you need the function qt, and since you want a two-tailed interval – 
95% of the values around the observed mean, i.e. values larger and smaller 
than the mean – you must compute the t-value for 2.5% (because 2.5% on 
both sides result in the desired 5%): 
 

(21) CI = x ±t·SE 

 
> t.value<-qt(0.025, df=999, lower.tail=FALSE); t.value¶ 
[1] 1.962341 

 
Now you can compute the confidence interval: 

 
> mean(LENGTH)-(se*t.value); mean(LENGTH)+(se*t.value)¶ 
[1] 891.3354 
[1] 938.7506 

 
To do this more simply, you can use the function t.test with the rele-

vant vector and use conf.level=… to define the relevant percentage. R then 
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computes a significance test the details of which are not relevant yet, which 
is why we only look at the confidence interval (with $conf.int): 
 
> t.test(LENGTH, conf.level=0.95)$conf.int¶ 
[1] 891.3354 938.7506 
attr(,"conf.level") 
[1] 0.95 

 
This confidence interval 

 
identifies a range of values a researcher can be 95% confi-
dent contains the true value of a population parameter (e.g., 
a population mean). Stated in probabilistic terms, the re-
searcher can state there is a probability/likelihood of .95 
that the confidence interval contains the true value of the 
population parameter. (Sheskin 2011:75; see also Field, 
Miles, and Field 2012:45)14 

 
Note that when you compare means of two roughly equally large sam-

ples and their 95%-confidence intervals do not overlap, then you know the 
sample means are significantly different and, therefore, you would assume 
that there is a real difference between the population means, too. However, 
if these intervals do overlap, this does not show that the means are not sig-
nificantly different from each other (cf. Crawley 2005: 169f.). 
 
 
1.5.2. Confidence intervals of percentages 

 
The above logic with regard to means also applies to percentages. Given a 
particular percentage from a sample, you want to know what the corre-
sponding percentage in the population is. As you already know, the per-
centage of silent disfluencies in our sample is 33.2%. Again, you would 
like to quantify your confidence in that sample percentage. As above, you 
compute the standard error for percentages according to the formula in 
(19), and then this standard error is inserted into the formula in (22). 

                                                      
14 A different way of explaining confidence intervals is this: “A common error is to misin-

terpret the confidence interval as a statement about the unknown parameter [here, the 
percentage in the population, STG]. It is not true that the probability that a parameter is 
included in a 95% confidence interval is 95%. What is true is that if we derive a large 
number of 95% confidence intervals, we can expect the true value of the parameter to be 
included in the computed intervals 95% of the time” (Good and Hardin 2012:156) 



Univariate statistics        135 

 

> se<-sqrt(0.332*(1-0.332)/1000); se¶ 
[1] 0.01489215 

 
(22) CI = a±z·SE 
 

The parameter z in (22) corresponds to the z-score mentioned above in 
Section 1.3.4.3, which defines 5% of the area under a standard normal dis-
tribution – 2.5% from the upper part and 2.5% from the lower part: 
 
> z.score<-qnorm(0.025, lower.tail=FALSE); z.score¶ 
[1] 1.959964 

 
For a 95% confidence interval for the percentage of silences, you enter: 

 
> z.score<-qnorm(0.025, lower.tail=FALSE)¶ 
> 0.332-z.score*se; 0.332+z.score*se¶ 
[1] 0.3028119 
[1] 0.3611881 

 
The simpler way requires the function prop.test, which tests whether 

a percentage obtained in a sample is significantly different from an ex-
pected percentage. Again, the functionality of that significance test is not 
relevant yet, but this function also returns the confidence interval for the 
observed percentage. R needs the observed frequency (332), the sample 
size (1000), and the probability for the confidence interval. R uses a formu-
la different from ours but returns nearly the same result. 
 
> prop.test(332, 1000, conf.level=0.95)$conf.int¶ 
[1] 0.3030166 0.3622912 
attr(,"conf.level") 
[1] 0.95 

 

Recommendation(s) for further study 
Dalgaard (2002: Ch. 7.1 and 4.1), Crawley (2005: 167ff.) 

 
 

Warning/advice 
Since confidence intervals are based on standard errors, the warning from 
above applies here, too: if data are not normally distributed or the samples 
too small, then you should probably use other methods to estimate confi-
dence intervals (e.g., bootstrapping). 
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2. Bivariate statistics 

 
We have so far dealt with statistics and graphs that describe one variable or 
vector/factor. In this section, we now turn to methods to characterize two 
variables and their relation. We will again begin with frequencies, then we 
will discuss means, and finally talk about correlations. You will see that we 
can use many functions from the previous sections. 
 
 
2.1. Frequencies and crosstabulation 
 
We begin with the case of two nominal/categorical variables. Usually, one 
wants to know which combinations of variable levels occur how often. The 
simplest way to do this is cross-tabulation. Let’s return to the disfluencies: 
 
> UHM<-read.delim(file.choose())¶ 
> attach(UHM)¶ 

 
Let’s assume you wanted to see whether men and women differ with re-

gard to the kind of disfluencies they produce. First two questions: are there 
dependent and independent variables in this design and, if so, which? 
 

 

THINK 

BREAK 

 
In this case, SEX is the independent variable and FILLER is the depend-

ent variable. Computing the frequencies of variable level combinations in R 
is easy because you can use the same function that you use to compute 
frequencies of an individual variable’s levels: table. You just give table a 
second vector or factor as an argument and R lists the levels of the first 
vector in the rows and the levels of the second in the columns: 
 
> freqs<-table(FILLER, SEX); freqs¶ 
        SEX 
FILLER    female male 
  silence    171  161 
  uh         161  233 
  uhm        170  104 

 
In fact you can provide even more vectors to table, just try it out, and 
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we will return to this below. Again, you can create tables of percentages 
with prop.table, but with two-dimensional tables there are different ways 
to compute percentages and you can specify one with margin=…. The de-
fault is margin=NULL, which computes the percentages on the basis of all 
elements in the table. In other words, all percentages in the table add up to 
1. Another possibility is to compute row percentages: set margin=1 and 
you get percentages that add up to 1 in every row. Finally, you can choose 
column percentages by setting margin=2: the percentages in each column 
add up to 1. This is probably the best way here since then the percentages 
adding up to 1 are those of the dependent variable. 
 
> percents<-prop.table(table(FILLER, SEX), margin=2)¶ 
> percents¶ 
         SEX 
FILLER       female      male 
  silence 0.3406375 0.3232932 
  uh      0.3207171 0.4678715 
  uhm     0.3386454 0.2088353 

 
You can immediately see that men appear to prefer uh and disprefer 

uhm while women appear to have no real preference for any disfluency. 
However, we of course do not know yet whether this is a significant result. 

The function addmargins outputs row and column totals (or other user-
defined margins, such as means): 
 
> addmargins(freqs) # cf. also colSums and rowSums¶ 
         SEX 
FILLER    female male  Sum 
  silence    171  161  332 
  uh         161  233  394 
  uhm        170  104  274 
  Sum        502  498 1000 

 

Recommendation(s) for further study 
the functions xtabs and especially ftable to generate more complex tables 

 
 
2.1.1. Bar plots and mosaic plots 

 
Of course you can also represent such tables graphically. The simplest way 
involves providing a formula as the main argument to plot. Such formulae 
consist of a dependent variable (here: FILLER: FILLER), a tilde (“~” mean-
ing ‘as a function of’), and an independent variable (here: GENRE: GENRE). 
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> plot(FILLER~GENRE)¶ 

 
The widths and heights of rows, columns, and the six boxes represent 

the observed frequencies. For example, the column for dialogs is a little 
wider than that for monologs because there are more dialogs in the data; the 
row for uh is widest because uh is the most frequent disfluency, etc. 

Other similar graphs can be generated with the following lines: 
 
> plot(GENRE, FILLER)¶ 
> plot(table(GENRE, FILLER))¶ 
> mosaicplot(table(GENRE, FILLER))¶ 

 
These graphs are called stacked bar plots or mosaic plots and are – to-

gether with association plots to be introduced below – often effective ways 
of representing crosstabulated data. In the code file for this chapter you will 
find R code for another kind of useful graph. 
 

 

Figure 30. Stacked bar plot / mosaic plot for FILLER~GENRE 

 
 
2.1.2. Spineplots 

 
Sometimes, the dependent variable is nominal/categorical and the inde-
pendent variable is interval/ratio-scaled. Let us assume that FILLER is the 
dependent variable, which is influenced by the independent variable 
LENGTH. (This does not make much sense here, we just do this for exposi-
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tory purposes.) You can use the function spineplot with a formula: 
 
> spineplot(FILLER~LENGTH)¶ 

 
The y-axis represents the dependent variable and its three levels. The x-

axis represents the independent ratio-scaled variable, which is split up into 
the value ranges that would also result from hist (which also means you 
can change the ranges with breaks=…; cf. Section 3.1.1.5 above). 
 
 
2.1.3. Line plots 

 
Apart from these plots, you can also generate line plots that summarize 
frequencies. If you generate a table of relative frequencies, then you can 
create a primitive line plot by entering the code shown below. 
 

 

Figure 31. Spineplot for FILLER~LENGTH 

 
> fill.table<-prop.table(table(FILLER, SEX), 2); fill.table¶ 
         SEX 
FILLER       female      male 
  silence 0.3406375 0.3232932 
  uh      0.3207171 0.4678715 
  uhm     0.3386454 0.2088353 
> plot(fil.table[,1], ylim=c(0, 0.5), xlab="Disfluency",  

ylab="Relative frequency", type="b")¶ 
> points(fil.table[,2], type="b")¶ 



140        Descriptive statistics 

 

However, somewhat more advanced code in the companion file shows 
you how you can generate the graph in Figure 32. (Again, you may not 
understand the code immediately, but it will not take you long.) 
 

Warning/advice 
Sometimes, it is recommended to not represent such frequency data with a 
line plot like this because the lines ‘suggest’ that there are frequency values 
between the levels of the categorical variable, which is of course not the 
case. Again, you should definitely explore the function dotchart for this. 

 

 

Figure 32. Line plot with the percentages of the interaction of SEX and FILLER 
 

Recommendation(s) for further study 

the function plotmeans (from the library gplots) to plot line plots with 
means and confidence intervals 

 
 
2.2. Means 
 
If the dependent variable is interval/ratio-scaled or ordinal and the inde-
pendent variable is nominal/categorical, then one is often not interested in 
the frequencies of particular values of the dependent variable, but its cen-
tral tendencies at each level of the independent variable. For example, you 
might want to determine whether men and women differ with regard to the 
average disfluency lengths. One way to get these means is the following: 
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> mean(LENGTH[SEX=="female"])¶ 
[1] 928.3984 
> mean(LENGTH[SEX=="male"])¶ 
[1] 901.5803 

 
This approach is too primitive for three reasons: 

 

− you must define the values of LENGTH that you want to include manual-
ly, which requires a lot of typing (especially when the independent vari-
able has more than two levels or, even worse, when you have more than 
one independent variable); 

− you must know all relevant levels of the independent variables – other-
wise you couldn’t use them for subsetting in the first place; 

− you only get the means of the variable levels you have explicitly asked 
for. However, if, for example, you made a coding mistake in one row – 
such as entering “malle” instead of “male” – this approach will not 
show you that. 

 
Thus, we use an extremely useful function called tapply, which mostly 

takes three arguments. The first is a vector or factor to which you want to 
apply a function – here, this is LENGTH, to which we want to apply mean. 
The second argument is a vector or factor that has as many elements as the 
first one and that specifies the groups of values from the first vector/factor 
to which the function is to be applied. The last argument is the relevant 
function, here mean. We get: 
 
> tapply(LENGTH, SEX, mean)¶ 
  female     male 
928.3984 901.5803 

 
Of course the result is the same as above, but you obtained it in a better 

way. You can of course use functions other than mean: median, IQR, sd, 
var, …, even functions you wrote yourself. For example, what do you get 
when you use length? The numbers of lengths observed for each sex. 
 
 
2.2.1. Boxplots 

 
In Section 3.1.3.7 above, we looked at boxplots, but restricted our attention 
to cases where we have one or more dependent variables (such as town1 
and town2). However, you can also use boxplots for cases where you have 
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one or more independent variables and a dependent variable. Again, the 
easiest way is to use a formula with the tilde meaning ‘as a function of’: 
 
> boxplot(LENGTH~GENRE, notch=TRUE, ylim=c(0, 1600))¶ 

 
(If you only want to plot a boxplot and not provide any further argu-

ments, it is actually enough to just enter plot(LENGTH~GENRE)¶: R ‘infers’ 
you want a boxplot because LENGTH is a numerical vector and GENRE is a 
factor.) Again, you can infer a lot from that plot: both medians are close to 
900 ms and do most likely not differ significantly from each other (since 
the notches overlap). Both genres appear to have about the same amount of 
dispersion since the notches, the boxes, and the whiskers are nearly equally 
large, and both genres have no outliers. 
 

 

Figure 33. Boxplot for LENGTH~GENRE 

 
Quick question: can you infer what this line does? 

 
> text(seq(levels(GENRE)), tapply(LENGTH, GENRE, mean), "+")¶ 

 

 

THINK 

BREAK 

 
It adds plusses into the boxplot representing the means of LENGTH for 

each GENRE: seq(levels(GENRE)) returns 1:2, which is used as the x-
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coordinates; the tapply code returns the means of LENGTH for each GENRE, 
and the "+" is what is plotted. 
 
 
2.2.2. Interaction plots 

 
So far we have looked at graphs representing one variable or one variable 
depending on another variable. However, there are also cases where you 
want to characterize the distribution of one interval/ratio-scaled variable 
depending on two, say, nominal/categorical variables. You can again obtain 
the means of the variable level combinations of the independent variables 
with tapply. You must specify the two independent variables in the form 
of a list, and the following two examples show you how you get the same 
means in two different ways (so that you see which variable goes into the 
rows and which into the columns): 
 
> tapply(LENGTH, list(SEX, FILLER), mean)¶ 
        silence       uh      uhm 
female 942.3333 940.5652 902.8588 
male   891.6894 904.9785 909.2788 
> tapply(LENGTH, list(FILLER, SEX), mean)¶ 
          female     male 
silence 942.3333 891.6894 
uh      940.5652 904.9785 
uhm     902.8588 909.2788 

 
Such results are best shown in tabular form such that you don’t just pro-

vide the above means of the interactions as they were represented in Figure 
32 above, but also the means of the individual variables. Consider Table 17 
and the formula in its caption exemplifying the relevant R syntax. 
 
Table 17. Means for LENGTH ~ FILLER * SEX 

 SEX: FEMALE SEX: MALE Total 

FILLER: SILENCE 942.33 891.69 917.77 

FILLER: UH 940.57 904.98 919.52 

FILLER: UHM 902.86 909.28 905.3 

TOTAL 928.4 901.58 915.04 

 
A plus sign between variables refers to just adding main effects of vari-

ables (i.e., effects of variables in isolation, e.g. when you only inspect the 
two means for SEX in the bottom row of totals or the three means for 
FILLER in the rightmost column of totals). A colon between variables refers 
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to only the interaction of the variables (i.e., effects of combinations of vari-
ables as when you inspect the six means in the main body of the table 
where SEX and FILLER are combined). Finally, an asterisk between varia-
bles denotes both the main effects and the interaction (here, all 12 means). 
With two variables A and B, A*B is the same as A + B + A:B. 

Now to the results. These are often easier to understand when they are 
represented graphically. You can create and configure an interaction plot 
manually, but for a quick and dirty glance at the data, you can also use the 
function interaction.plot. As you might expect, this function takes at 
least three arguments: 
 

− x.factor: a vector/factor whose values/levels are represented on the x-
axis; 

− trace.factor: the second argument is a vector/factor whose val-
ues/levels are represented with different lines; 

− response: the third argument is a vector whose means for all variable 
level combinations will be represented on the y-axis by the lines. 

 
That means, you can choose one of two formats, depending on which 

independent variable is shown on the x-axis and which is shown with dif-
ferent lines. While the represented means will of course be identical, I ad-
vise you to always generate and inspect both graphs anyway because one of 
the two graphs is usually easier to interpret. In Figure 34, you find both 
graphs for the above values and I prefer the lower panel. 
 
> interaction.plot(FILLER, SEX, LENGTH); grid()¶ 
> interaction.plot(SEX, FILLER, LENGTH); grid()¶ 

 
Obviously, uhm behaves differently from uh and silences: the average 

lengths of women’s uh and silence are larger than those of men, but the 
average length of women’s uhm is smaller than that of men. But now an 
important question: why should you now not just report the means you 
computed with tapply and the graphs in Figure 34 in your study? 
 

 

THINK 

BREAK 
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Figure 34. Interaction plot for LENGTH ~ FILLER : SEX 

 
First, you should not just report the means like this because I told you to 

never ever report means without a measure of dispersion. Thus, when you 
want to provide the means, you must also add, say, standard deviations, 
standard errors, confidence intervals: 
 
> tapply(LENGTH, list(SEX, FILLER), sd)¶ 
        silence       uh      uhm 
female 361.9081 397.4948 378.8790 
male   370.6995 397.1380 382.3137 
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How do you get the standard errors and the confidence intervals? 
 

 

THINK 

BREAK 

 
> se<-tapply(LENGTH, list(SEX, FILLER), sd)/ 

sqrt(tapply(LENGTH, list(SEX, FILLER), length)); se¶ 
        silence       uh      uhm 
female 27.67581 31.32698 29.05869 
male   29.21522 26.01738 37.48895 
 
> t.value<-qt(0.025, df=999, lower.tail=FALSE); t.value¶ 
[1] 1.962341 
> tapply(LENGTH, list(SEX, FILLER), mean)-(t.value*se)¶ 
        silence       uh      uhm 
female 888.0240 879.0910 845.8357 
male   834.3592 853.9236 835.7127 
> tapply(LENGTH, list(SEX, FILLER), mean)+(t.value*se)¶ 
        silence        uh     uhm 
female 996.6427 1002.0394 959.882 
male   949.0197  956.0335 982.845 

 
And this output immediately shows again why measures of dispersion 

are important: the standard deviations are large and the means plus/minus 
one standard error overlap (as do the confidence intervals), which shows 
that the differences are not significant. You can see this with boxplot, 
which allows formulae with more than one independent variable (boxplot( 
LENGTH~SEX*FILLER, notch=TRUE)¶, with an asterisk for the interaction). 

Second, the graphs should not be used as they are (at least not uncriti-
cally) because R has chosen the range of the y-axis such that it is as small 
as possible but still covers all necessary data points. However, this small 
range on the y-axis has visually inflated the differences in Figure 34 – a 
more realistic representation would have either included the value y = 0 (as 
in the first pair of the following four lines) or chosen the range of the y-axis 
such that the complete range of LENGTH is included (as in the second pair 
of the following four lines): 
 
> interaction.plot(SEX, FILLER, LENGTH, ylim=c(0, 1000))¶ 
> interaction.plot(FILLER, SEX, LENGTH, ylim=c(0, 1000))¶ 
> interaction.plot(SEX, FILLER, LENGTH, ylim=range(LENGTH))¶ 
> interaction.plot(FILLER, SEX, LENGTH, ylim=range(LENGTH))¶ 
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2.3. Coefficients of correlation and linear regression 
 
The last section in this chapter is devoted to cases where both the depend-
ent and the independent variable are ratio-scaled. For this scenario we turn 
to a new data set. First, we clear our memory of all data structures we have 
used so far: 
 
> rm(list=ls(all=TRUE))¶ 

 
We look at data to determine whether there is a correlation between the 

reaction times in ms of second language learners in a lexical decision task 
and the length of the stimulus words. We have 
 

− a dependent ratio-scaled variable: the reaction time in ms 
MS_LEARNER, whose correlation with the following independent varia-
ble we are interested in; 

− an independent ratio-scaled variable: the length of the stimulus words 
LENGTH (in letters). 

 
Such correlations are typically quantified using a so-called coefficient 

of correlation r. This coefficient, and many others, are defined to fall in the 
range between -1 and +1. Table 18 explains what the values mean: the sign 
of a correlation coefficient reflects the direction of the correlation, and the 
absolute size reflects the strength of the correlation. When the correlation 
coefficient is 0, then there is no correlation between the two variables in 
question, which is why H0 says r = 0 – the two-tailed H1 says r ≠ 0. 
 
Table 18. Correlation coefficients and their interpretation 

Correlation 

coefficient 

Labeling the 

correlation 

Kind of correlation 

0.7 < r ≤ 1 very high positive correlation: 

the more/higher …, the more/higher … 

the less/lower …, the less/lower … 
0.5 < r ≤ 0.7 high 

0.2 < r ≤ 0.5 intermediate 

0 < r ≤ 0.2 low 

r ≈ 0 no statistical correlation (H0) 

0 > r ≥ -0.2 low negative correlation: 

the more/higher …, the less/lower … 

the less/lower …, the more/higher … 
-0.2 > r ≥ -0.5 intermediate 

-0.5 > r ≥-0.7 high 

-0.7 > r ≥ -1 very high 
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Let us load and plot the data, using by now familiar lines of code: 
 
> ReactTime<-read.delim(file.choose())¶ 
> str(ReactTime); attach(ReactTime)¶ 
'data.frame':   20 obs. of  3 variables: 
 $ CASE      : int  1 2 3 4 5 6 7 8 9 10 ... 
 $ LENGTH    : int  14 12 11 12 5 9 8 11 9 11 ... 
 $ MS_LEARNER: int  233 213 221 206 123 176 195 207 172 ... 
> plot(MS_LEARNER~LENGTH, xlim=c(0, 15), ylim=c(0, 300),  

xlab="Word length in letters", ylab="Reaction time of  
learners in ms"); grid()¶ 

 

 

Figure 35. Scatterplot15 for MS_LEARNER~LENGTH 

 
What kind of correlation is that, a positive or a negative one? 

 

 

THINK 

BREAK 

 
This is a positive correlation, because we can describe it with a “the 

more …, the more …” statement: the longer the word, the longer the reac-
tion time: when you move from the left (short words) to the right (long 
words), the reaction times get higher. But we also want to quantify the 
correlation and compute the Pearson product-moment correlation r. 

                                                      
15 Check the code file for how to handle overlapping points. 
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First, we do this manually: We begin by computing the covariance of 
the two variables according to the formula in (23). 
 

(23) Covariancex, y = 

( ) ( )
1

1
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∑
=

−⋅−

n
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n
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ii

 

 
As you can see, the covariance involves computing the differences of 

each variable’s value from the variable’s mean. For example, when the i-th 
value of both the vector x and the vector y are above the averages of x and 
y, then this pair of i-th values will contribute a positive value to the covari-
ance. In R, we can compute the covariance manually or with the function 
cov, which requires the two relevant vectors: 
 
> covariance<-sum((LENGTH-mean(LENGTH))*(MS_LEARNER-

mean(MS_LEARNER)))/(length(MS_LEARNER)-1)¶ 
> covariance<-cov(LENGTH, MS_LEARNER); covariance¶ 
[1] 79.28947 

 
The sign of the covariance already indicates whether two variables are 

positively or negatively correlated; here it is positive. However, we cannot 
use the covariance to quantify the correlation between two vectors because 
its size depends on the scale of the two vectors: if you multiply both vec-
tors with 10, the covariance becomes 100 times as large as before although 
the correlation as such has of course not changed: 
 
> cov(MS_LEARNER*10, LENGTH*10)¶ 
[1] 7928.947 

 
Therefore, we divide the covariance by the product of the standard devi-

ations of the two vectors and obtain r. This is a very high positive correla-
tion, r is close to the theoretical maximum of 1. In R, we can do all this 
more efficiently with the function cor. Its first two arguments are the two 
vectors in question, and the third specifies the desired kind of correlation: 
 
> covariance/(sd(LENGTH)*sd(MS_LEARNER))¶ 
[1] 0.9337171 
> cor(MS_LEARNER, LENGTH, method="pearson")¶ 
[1] 0.9337171 

 
The correlation can be investigated more closely, though. We can try to 
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predict values of the dependent variable on the basis of the independent 
one. This method is called linear regression. In its simplest form, it in-
volves trying to draw a straight line in such a way that it represents the 
scattercloud best. Here, best is defined as ‘minimizing the sums of the 
squared vertical distances of the observed y-values (here: reaction times) 
and the predicted y-values reflected by the regression line.’ That is, the 
regression line is drawn fairly directly through the scattercloud because 
then these deviations are smallest. It is defined by a regression equation 
with two parameters, an intercept a and a slope b. Without discussing the 
relevant formulae here, I immediately explain how to get these values with 
R. Using the formula notation you already know, you define and inspect a 
so-called linear model using the function lm: 
 
> model<-lm(MS_LEARNER~LENGTH); model¶ 
Call: 
lm(formula = MS_LEARNER ~ LENGTH) 
Coefficients: 
(Intercept)       LENGTH 
      93.61        10.30 

 
That is, the intercept – the y-value of the regression line at x = 0 – is 

93.61, and the slope of the regression line is 10.3, which means that for 
every letter of a word the estimated reaction time increases by 10.3 ms. For 
example, our data do not contain a word with 16 letters, but since the corre-
lation between the variables is so strong, we can come up with a good pre-
diction for the reaction time such words might result in: 
 
predicted reaction time  = intercept + b · LENGTH 

258.41  ≈  93.61 + 10.3     · 16 
 
> 93.61+10.3*16¶ 
[1] 258.41 

 
(This prediction of the reaction time is of course overly simplistic as it 

neglects the large number of other factors that influence reaction times but 
within the current linear model this is how it would be computed.) Alterna-
tively, you can use the function predict, whose first argument is the (line-
ar) model and whose second argument can be a data frame called newdata 
that contains a column with values for each independent variable for which 
you want to make a prediction. With the exception of differences resulting 
from me only using two decimals, you get the same result: 
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> predict(model, newdata=expand.grid(LENGTH=16))¶ 
[1] 258.4850 

 
The use of expand.grid is overkill here for a data frame with a single 

length but I am using it here because it anticipates our uses of predict and 
expand.grid below where we can actually get predictions for a large num-
ber of values in one go (as in the following; the output is not shown here): 
 
> predict(model, newdata=expand.grid(LENGTH=1:16))¶ 

 
If you only use the model as an argument to predict, you get the values 

the model predicts for every observed word length in your data in the order 
of the data points (same with fitted). 
 
> round(predict(model), 2)¶ 
     1      2      3      4      5      6      7      8 
237.88 217.27 206.96 217.27 145.14 186.35 176.05 206.96 
     9     10     11     12     13     14     15     16 
186.35 206.96 196.66 165.75 248.18 227.57 248.18 186.35 
     17    18     19     20 
196.66 155.44 176.05 206.96 

 
The first value of LENGTH is 14, so the first of the above values is the 

reaction time we expect for a word with 14 letters, etc. Since you now have 
the needed parameters, you can also draw the regression line. You do this 
with the function abline, which either takes a linear model object as an 
argument or the intercept and the slope; cf. Figure 36: 
 
> plot(MS_LEARNER~LENGTH, xlim=c(0, 15), ylim=c(0, 300),  

xlab="Word length in letters", ylab="Reaction time of  
learners in ms"); grid()¶ 

> abline(model) # abline(93.61, 10.3)¶ 

 
It is obvious why the correlation coefficient is so high: the regression 

line is an excellent summary of the data points since all points are fairly 
close to it. (Below, we will see two ways of making this graph more in-
formative.) We can even easily check how far away every predicted value 
is from its observed value. 

This difference – the vertical distance between an observed y-value / re-
action time and the y-value on the regression line for the corresponding x-
value – is called a residual, and the function residuals requires just the 
linear model object as its argument. 
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Figure 36. Scatterplot with regressions line for MS_LEARNER~LENGTH 

 
> round(residuals(model), 2)¶ 
     1      2      3      4      5      6      7      8 
 -4.88  -4.27  14.04 -11.27 -22.14 -10.35  18.95   0.04 
      9    10     11     12     13     14     15     16 
-14.35  -6.96   8.34  11.25   7.82 -14.57   7.82   1.65 
     17    18     19     20 
  -1.66 10.56   6.95   3.04 

 
You can easily test manually that these are in fact the residuals: 

 
> round(MS_LEARNER-(predict(model)+residuals(model)), 2)¶ 
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 
 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 

 
Note two important points though: First, regression equations and lines 

are most useful for the range of values covered by the observed values. 
Here, the regression equation was computed on the basis of lengths be-
tween 5 and 15 letters, which means that it will probably be much less reli-
able for lengths of 50+ letters. Second, in this case the regression equation 
also makes some rather non-sensical predictions because theoretically/ 
mathematically it predicts reactions times of around 0 ms for word lengths 
of -9. Such considerations will become important later on. 

The correlation coefficient r also allows you to specify how much of the 
variance of one variable can be accounted for by the other variable. What 
does that mean? In our example, the values of both variables – 
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MS_LEARNER and LENGTH – are not all identical: they vary around their 
means and this variation was called dispersion and quantified with the 
standard deviation or the variance. If you square r and multiply the result 
by 100, then you obtain the amount of variance of one variable that the 
other variable accounts for. In our example, r = 0.933, which means that 
87.18% of the variance of the reaction times can be accounted for – in a 
statistical sense, not necessarily a cause-effect sense – on the basis of the 
word lengths. This value, r2, is referred to as coefficient of determination. 

Incidentally, I sometimes heard students or colleages compare two r-
values such that they say something like, “Oh, here r = 0.6, nice, that’s 
twice as much as in this other data set, where r = 0.3.” Even numerically 
speaking, this is at least misleading, if nothing worse. Yes, 0.6 is twice as 
high as 0.3, but one should not compare r-values directly like this – one has 
to apply the so-called Fisher’s Z-transformation first, which is exemplified 
in the following two lines: 
 
> r<-0.3; 0.5*log((1+r)/(1-r))¶ 
[1] 0.3095196 
> r<-0.6; 0.5*log((1+r)/(1-r))¶ 
[1] 0.6931472 
> 0.6931472/0.3095196 
[1] 2.239429 

 
Thus, an r-value of 0.6 is twice as high as one of 0.3, but it reflects a 

correlation that is in fact nearly 21/4 times as strong. How about writing a 
function fisher.z that would compute Z from r for you … 

The product-moment correlation r is probably the most frequently used 
correlation. However, there are a few occasions on which it should not be 
used. First, when the relevant variables are not interval/ratio-scaled but 
ordinal or when they are not both normally distributed (cf. below Section 
4.4), then it is better to use another correlation coefficient, for example 
Kendall’s tau τ. This correlation coefficient is based only on the ranks of 
the variable values and thus more suited for ordinal data. Second, when 
there are marked outliers in the variables, then you should also use Ken-
dall’s τ, because as a measure that is based on ordinal information only it is, 
just like the median, less sensitive to outliers. Cf. Figure 37, which shows a 
scatterplot with one noteworthy outlier in the top right corner. If you cannot 
justify excluding this data point, then it can influence r very strongly, but 
not τ. Pearson’s r and Kendall’s τ for all data points but the outlier are 0.11 
and 0.1 respectively, and the regression line with the small slope shows that 
there is clearly no correlation between the two variables. However, if we 
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include the outlier, then Pearson’s r suddenly becomes 0.75 (and the re-
gression line’s slope is changed markedly) while Kendall’s τ remains ap-
propriately small: 0.14. 
 

 

Figure 37. The effect of outliers on r 

 
But how do you compute Kendall’s τ? The computation of Kendall’s τ 

is rather complex (especially with larger samples and ties), which is why I 
only explain how to compute it with R. The function is actually the same as 
for Pearson’s r – cor – but the argument method=… is changed. For our 
experimental data we again get a high correlation, which turns out to be a 
little bit smaller than r. (Note that correlations are bidirectional – the order 
of the vectors does not matter – but linear regressions are not because you 
have a dependent and an independent variable and it matters what goes 
before the tilde – that which is predicted – and what goes after it.) 
 
> cor(LENGTH, MS_LEARNER, method="kendall")¶ 
[1] 0.8189904 

 
The previous explanations were all based on the assumption that there is 

in fact a linear correlation between the two variables or one that is best 
characterized with a straight line. This need not be the case, though, and a 
third scenario in which neither r nor τ are particularly useful involves cases 
where these assumptions do not hold. Often, this can be seen by just look-
ing at the data. Figure 38 represents a well-known example from 
Anscombe (1973) (from <_inputfiles/03-2-3_anscombe.csv>), which has 
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the intriguing characteristics that 
 

− the means and variances of the x-variable; 

− the means and variances of the y-variable; 

− the correlations and the linear regression lines of x and y; 
 
are all identical although the distributions are obviously very different. 
 

 
 

 

Figure 38. The sensitivity of linear correlations: the Anscombe data 
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In the top left of Figure 38, there is a case where r and τ are unproblem-
atic. In the top right we have a situation where x and y are related in a cur-
vilinear fashion – using a linear correlation here does not make much 
sense.16 In the two lower panels, you see distributions in which individual 
outliers have a huge influence on r and the regression line. Since all the 
summary statistics are identical, this example illustrates most beautifully 
how important, in fact indispensable, a visual inspection of your data is, 
which is why in the following chapters visual exploration nearly always 
precedes statistical computation. 

Now you should do the exercise(s) for Chapter 3 … 
 

Warning/advice 
Do not let the multitude of graphical functions and settings of R and/or 
your spreadsheet software tempt you to produce visual overkill. Just be-
cause you can use 6 different fonts, 10 colors, and cute little smiley sym-
bols does not mean you should: Visualization should help you and/or the 
reader understand something otherwise difficult to grasp, which also means 
you should make sure your graphs are fairly self-sufficient, i.e. contain all 
the information required to understand them (e.g., meaningful graph and 
axis labels, legends, etc.) – a graph may need an explanation, but if the 
explanation is three quarters of a page, chances are your graph is not help-
ful (cf. Keen 2010: Chapter 1). 

 

Recommendation(s) for further study 

− the function s.hist (from the library ade4) and scatterplot (from the 
library car) to produce more refined scatterplots with histograms or 
boxplots 

− Good and Hardin (2012: Ch. 8), Crawley (2007: Ch. 5, 27), Braun and 
Murdoch (2008: Section 3.2), and Keen (2010) for much advice to cre-
ate good graphs; cf. also <http://cran.r-project.org/src/contrib/ 
Views/Graphics.html> 

                                                      
16. I do not discuss nonlinear regressions; cf. Crawley (2007: Ch. 18, 20) for overviews. 



 

Chapter 4 

Analytical statistics 
 
 
 

The most important questions of life are, 
for the most part, really only questions of probability. 

Pierre-Simon Laplace 
(from <http://www-rohan.sdsu.edu/%7Emalouf/>) 

 
In my description of the phases of an empirical study in Chapter 1, I 
skipped over one essential step: how to decide which significance test to 
use (Section 1.3.4). In this chapter, I will now discuss this step in some 
detail as well as then discuss how to conduct a variety of significance tests 
you may want to perform on your data. More specifically, in this chapter I 
will explain how descriptive statistics from Chapter 3 are used in the do-
main of hypothesis-testing. For example, in Section 3.1 I explained how 
you compute a measure of central tendency (such as a mean) or a measure 
of dispersion (such as a standard deviation) for a particular sample. In this 
chapter, you will see how you test whether such a mean or such a standard 
deviation differs significantly from a known mean or standard deviation or 
the mean or standard deviation of a second sample. 

However, before we begin with actual tests: how do you decide which 
of the many tests out there is required for your hypotheses and data? One 
way to try to narrow down the truly bewildering array of tests is to ask 
yourself the six questions I will list in (24) to (29) and discuss presently, 
and the answers to these questions usually point you to only one or two 
tests that you can apply to your data. (A bit later, I will also provide a visu-
al aid for this process.). 

Ok, here goes. The first question is shown in (24). 
 
(24) What kind of study are you conducting? 
 

Typically, there are only two possible answers to that question: “hy-
pothesis-generating” and “hypothesis-testing.” The former means that you 
are approaching a (typically large) data set with the intentions of detecting 
structure(s) and developing hypotheses for future studies; your approach to 
the data is therefore data-driven, or bottom-up; an example for this will be 
discussed in Section 5.6. The latter is what most of the examples in this 
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book are about and means your approach to the data involves specific hy-
potheses you want to test and requires the types of tests in this chapter and 
most of the following one. 
 
(25) What kinds of variables are involved in your hypotheses, and how 

many? 
 

There are essentially two types of answers. One pertains to the infor-
mation value of the variables and we have discussed this in detail in Sec-
tion 1.3.2.2 above. The other allows for four different possible answers. 
First, you may only have one dependent variable, in which case, you nor-
mally want to compute a so-called goodness-of-fit test to test whether the 
results from your data correspond to other results (from a previous study) 
or correspond to a known distribution (such as a normal distribution). Ex-
amples include 
 

− is the ratio of no-negations (e.g., He is no stranger) and not-negations 
(e.g., He is not a stranger) in your data 1 (i.e., the two negation types 
are equally likely)? 

− does the average acceptability judgment you receive for a sentence cor-
respond to that of a previous study? 

 
Second, you may have one dependent and one independent variable or 

you may just have two sets of measurements (i.e. two dependent variables). 
In both cases you typically want to compute a monofactorial test for inde-
pendence to determine whether the values of one/the independent variable 
are correlated with those of the other/dependent variable. For example, 
 

− does the animacy of the referent of the direct object (a categorical inde-
pendent variable) correlate with the choice of one of two postverbal 
constituent orders (a categorical dependent variable)? 

− does the average acceptability judgment (a mean of a ratio/interval de-
pendent variable) vary as a function of whether the subjects doing the 
rating are native speakers or not (a categorical independent variable)? 

 
Third, you may have one dependent and two or more independent vari-

ables, in which case you want to compute a multifactorial analysis (such as 
a multiple regression) to determine whether the individual independent 
variables and their interactions correlate with, or predict, the dependent 
variable. For example, 
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− does the frequency of a negation type (a categorical dependent variable 
with the levels NO vs. NOT; cf. above) depend on the mode of communi-
cation (a binary independent variable with the levels SPOKEN vs. 
WRITTEN), the type of verb that is negated (a categorical independent 
variable with the levels COPULA, HAVE, or LEXICAL), and/or the interac-
tion of these independent variables? 

− does the reaction time to a word w in a lexical decision task (a ratio-
scaled dependent variable) depend on the word class of w (a categorical 
independent variable), the frequency of w in a reference corpus (a ra-
tio/interval independent variable), whether the subject has seen a word 
semantically related to w on the previous trial or not (a binary independ-
ent variable), whether the subject has seen a word phonologically simi-
lar to w on the previous trial or not (a binary independent variable), 
and/or the interactions of these independent variables? 

 
Fourth, you have two or more dependent variables, in which case you 

may want to perform a multivariate analysis, which can be exploratory 
(such as hierarchical cluster analysis, principal components analysis, factor 
analysis, multi-dimensional scaling, etc.) or hypothesis-testing in nature 
(MANOVA). For example, if you retrieved from corpus data ten words and 
the frequencies of all content words occurring close to them, you can per-
form a cluster analysis to see which of the words behave more (or less) 
similarly to each other, which often is correlated with semantic similarity. 
 
(26) Are data points in your data related such that you can associate 

them to each other meaningfully and in a principled way? 
 

This question is concerned with whether you have what are called inde-
pendent or dependent samples (and brings us back to the notion of inde-
pendence discussed in Section 1.3.4.1). For example, your two samples – 
e.g., the numbers of mistakes made by ten male and ten female non-native 
speakers in a grammar test – are independent of each other if you cannot 
connect each male subject’s value to that of one female subject on a mean-
ingful and principled basis. You would not be able to do so if you randomly 
sampled ten men and ten women and let them take the same test. 

There are two ways in which samples can be dependent. One is if you 
test subjects more than once, e.g., before and after a treatment. In that case, 
you could meaningfully connect each value in the before-treatment sample 
to a value in the after-treatment sample, namely connect each subject’s two 
values. The samples are dependent because, for instance, if subject #1 is 
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very intelligent and good at the language tested, then these characteristics 
will make his results better than average in both tests, esp. compared to a 
subject who is less intelligent and proficient in the language and who will 
perform worse in both tests. Recognizing that the samples are dependent 
this way will make the test of before-vs.-after treatments more precise. 

The second way in which samples may be dependent can be explained 
using the above example of ten men and ten women. If the ten men were 
the husbands of the ten women, then one would want to consider the sam-
ples dependent. Why? Because spouses are on average more similar to each 
other than randomly chosen people: they often have similar IQs, similar 
professions, they spend more time with each other than with randomly-
selected people, etc. Thus, one should associate each husband with his 
wife, making this two dependent samples. 

Independence of data points is often a very important criterion: many 
tests assume that data points are independent, and for many tests you must 
choose your test depending on what kind of samples you have. 
 
(27) What is the statistic of the dependent variable in the statistical hy-

potheses? 
 

There are essentially five different answers to this question, which were 
already mentioned in Section 1.3.2.3 above, too. Your dependent variable 
may involve frequencies/counts, central tendencies, dispersions, correla-
tions, or distributions. 
 
(28) What does the distribution of the data or your test statistic look 

like? Normal, some other way that can ultimately be described by a 
probability function (or a way that can be transformed to look like 
a probability function), or some other way? 

(29) How big are the samples you collected? n < 30 or n ≥ 30? 
 

These questions relate back to Section 1.3.4, where I explained two 
things: First, if your data / test statistics follow a particular probability dis-
tribution, you can often use a computationally simpler parametric test, and 
if your data / test statistics don’t, you must often use a non-parametric test. 
Second, given sufficient sample sizes, even data from a decidedly non-
normal distribution can begin to look normal and, thus, allow you to apply 
parametric tests. It is safer, however, to be very careful and, maybe be con-
servative and run both types of tests. 

Let us now use a graph (<sflwr_navigator.png>) that visualizes this pro-
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cess, which you should have downloaded as part of all the files from the 
companion website. Let’s exemplify the use of this graph using the above 
example scenario: you hypothesize that the average acceptability judgment 
(a mean of an ordinal dependent variable) varies as a function of whether 
the subjects providing the ratings are native or non-native speakers (a bina-
ry/categorical independent variable). 

You start at the rounded red box with approach in it. Then, the above 
scenario is a hypothesis-testing scenario so you go down to statistic. Then, 
the above scenario involves averages so you go down to the rounded blue 
box with mean in it. Then, the hypothesis involves both a dependent and an 
independent variable so you go down to the right, via 1 DV 1 IV to the 
transparent box with (tests for) independence/difference in it. You got to 
that box via the blue box with mean so you continue to the next blue box 
containing information value. Now you make two decisions: first, the de-
pendent variable is ordinal in nature. Second, the samples are independent. 
Thus, you take the arrow down to the bottom left, which leads to a blue box 
with U-test in it. Thus, the typical test for the above question would be the 
U-test (to be discussed below), and the R function for that test is already 
provided there, too: wilcox.test. 

Now, what does the dashed arrow mean that leads towards that box? It 
means that you would also do a U-test if your dependent variable was in-
terval/ratio-scaled but violated other assumptions of the t-test. That is, 
dashed arrows provide alternative tests for the first-choice test from which 
they originate. 

Obviously, this graph is a simplification and does not contain every-
thing one would want to know, but I think it can help beginners to make 
first choices for tests so I recommend that, as you continue with the book, 
you always determine for each section which test to use and how to identify 
this on the basis of the graph. 

Before we get started, let me remind you once again that in your own 
data your nominal/categorical variables should ideally always be coded 
with meaningful character strings so that R recognizes them as factors 
when reading in the data from a file. Also, I will assume that you have 
downloaded the data files from the companion website. 

 

Recommendation(s) for further study 
Good and Hardin (2012: Ch. 6) on choosing test statistics 
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1. Distributions and frequencies 

 
In this section, I will illustrate how to test whether distributions and fre-
quencies from one sample differ significantly from a known distribution 
(cf. Section 4.1.1) or from another sample (cf. Section 4.1.2). In both sec-
tions, we begin with variables from the interval/ratio level of measurement 
and then proceed to lower levels of measurement. 
 
 
1.1. Distribution fitting 
 
1.1.1. One dep. variable (ratio-scaled) 

 
In this section, I will discuss how you compare whether the distribution of 
one dependent interval-/ratio-scaled variable is significantly different from 
a known distribution. I will restrict my attention to one of the most frequent 
cases, the situation where you test whether a variable is normally distribut-
ed (because as mentioned above in Section 1.3.4, many statistical tech-
niques require a normal distribution so you must some know test like this). 

We will deal with an example from the first language acquisition of 
tense and aspect in Russian. Simplifying a bit here, one can often observe a 
relatively robust correlation between past tense and perfective aspect as 
well as non-past tenses and imperfective aspect. Such a correlation can be 
quantified with Cramer’s V values (cf. Stoll and Gries, 2009, and Section 
4.2.1 below). Let us assume you studied how this association – the 
Cramer’s V values – changes for one child over time. Let us further assume 
you had 117 recordings for this child, computed a Cramer’s V value for 
each one, and now you want to see whether these are normally distributed. 
This scenario involves 
 

− a dependent interval/ratio-scaled variable called TENSEASPECT, consist-
ing of the Cramer’s V values; 

− no independent variable because you are not testing whether the distri-
bution of the variable TENSEASPECT is influenced by, or correlated 
with, something else. 

 
You can test for normality in several ways. The test we will use is the 

Shapiro-Wilk test (remember: check <sflwr_navigator.png> to see how we 
get to this test!), which does not really have any assumptions other than 
ratio-scaled data and involves the following procedure: 



Distributions and frequencies        163 

 

Procedure 

− Formulating the hypotheses 
− Visualizing the data 
− Computing the test statistic W and p 

 
As always, we begin with the hypotheses: 

 
H0: The data points do not differ from a normal distribution; W = 1. 
H1: The data points differ from a normal distribution; W ≠ 1. 
 

First, you load the data from <_inputfiles/04-1-1-1_tense-aspect.csv> 
and create a graph; the code for the left panel is shown below but you can 
also generate the right panel using the code from the code file. 
 
> RussianTensAsp<-read.delim(file.choose())¶ 
> attach(RussianTensAsp)¶ 
> hist(TENSE_ASPECT, xlim=c(0, 1), main=””, xlab="Tense-Apect 

correlation", ylab="Frequency") # left panel¶ 

 

 

Figure 39. Histogram of the Cramer’s V values reflecting the strengths of the 
tense-aspect correlations 

 
At first glance, this looks very much like a normal distribution, but of 

course you must do a real test. The Shapiro-Wilk test is rather cumbersome 
to compute semi-manually, which is why its manual computation will not 
be discussed here (unlike nearly all other monofactorial tests). In R, how-
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ever, the computation could not be easier. The relevant function is called 
shapiro.test and it only requires one argument, the vector to be tested: 
 
> shapiro.test(TENSE_ASPECT)¶ 
        Shapiro-Wilk normality test 
data:  TENSE_ASPECT 
W = 0.9942, p-value = 0.9132 

 
What does this mean? This simple output teaches an important lesson: 

Usually, you want to obtain a significant result, i.e., a p-value that is small-
er than 0.05 because this allows you to accept H1. Here, however, you may 
actually welcome an insignificant result because normally-distributed vari-
ables are often easier to handle. The reason for this is again the logic under-
lying the falsification paradigm. When p < 0.05, you reject H0 and accept 
H1. But here you ‘want’ H0 to be true because H0 states that the data are 
normally distributed. You obtained a p-value of 0.9132, which means you 
cannot reject H0 and, thus, consider the data to be normally distributed. 
You would therefore summarize this result in the results section of your 
paper as follows: “According to a Shapiro-Wilk test, the distribution of this 
child’s Cramer’s V values measuring the tense-aspect correlation does not 
deviate significantly from normality: W = 0.9942; p = 0.9132.” (In paren-
theses or after a colon you usually mention all statistics that helped you 
decide whether or not to accept H1.) 

As an alternative to the Shapiro-Wilk test, you can also use a Kolmogo-
rov-Smirnov test for goodness of fit. This test requires the function 
ks.test and is more flexible than the Shapiro-Wilk-Test, since it can test 
for more than just normality and can also be applied to vectors with more 
than 5000 data points. To test the Cramer’s V value for normality, you pro-
vide them as the first argument, then you name the distribution you want to 
test against (for normality, "pnorm"), and then, to define the parameters of 
the normal distribution, you provide the mean and the standard deviation of 
the Cramer’s V values: 
 
> ks.test(TENSE_ASPECT, "pnorm", mean=mean(TENSE_ASPECT),  

sd=sd(TENSE_ASPECT))¶ 
 One-sample Kolmogorov-Smirnov test 
data:  TENSE_ASPECT 
D = 0.078, p-value = 0.4752 
alternative hypothesis: two-sided 

 
The result is the same as above: the data do not differ significantly from 

normality. You also get a warning because ks.test assumes that no two 
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values in the input are the same, but here some values (e.g., 0.27, 0.41, and 
others) are attested more than once; below you will see a quick and dirty 
fix for this problem. 
 

Recommendation(s) for further study 

− as alternatives to the above functions, the functions jarqueberaTest 
and dagoTest (both from the library fBasics) 

− the function mshapiro.test (from the library mvnormtest) to test for 
multivariate normality 

− the function qqnorm and its documentation (for quantile-quantile plots) 
− Crawley (2005: 100f.), Crawley (2007: 316f.), Sheskin (2011: Test 7) 

 
 
1.1.2. One dep. variable (nominal/categorical) 

 
In this section, we are going to return to an example from Section 1.3, the 
constructional alternation of particle placement in English, which is again 
represented in (30). 
 
(30) a. He picked up the book. (verb - particle - direct object) 
 b. He picked the book up. (verb - direct object - particle) 
 

As you already know, often both constructions are acceptable and native 
speakers can often not explain their preference for one of the two. One may 
therefore expect that both constructions are equally frequent, and this is 
what you are going to test. This scenario involves 
 

− a dependent nominal/categorical variable CONSTRUCTION: VERB-

PARTICLE-OBJECT vs. CONSTRUCTION: VERB-OBJECT-PARTICLE; 

− no independent variable, because you do not investigate whether the 
distribution of CONSTRUCTION is dependent on anything else. 

 
Such questions are generally investigated with tests from the family of 

chi-squared tests, which is one of the most important and widespread tests. 
Since there is no independent variable, you test the degree of fit between 
your observed and an expected distribution, which should remind you of 
Section 3.1.5.2. This test is referred to as the chi-squared goodness-of-fit 
test and involves the following steps: 
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Procedure 

− Formulating the hypotheses 
− Computing descriptive statistics and visualizing the data 
− Computing the frequencies you would expect given H0 
− Testing the assumption(s) of the test: 
 − all observations are independent of each other 
 − 80% of the expected frequencies are ≥ 517 
 − all expected frequencies are > 1 
− Computing the contributions to chi-squared for all observed frequencies 
− Computing the test statistic χ2, df, and p 

 
The first step is very easy here. As you know, H0 typically postulates 

that the data are distributed randomly/evenly, and that means that both 
constructions occur equally often, i.e., 50% of the time (just as tossing a 
fair coin many times will result in a largely equal distribution). Thus: 
 
H0: The frequencies of the two variable levels of CONSTRUCTION are 

identical – if you find a difference in your sample, this difference is 
just random variation; nV Part DO = nV DO Part. 

H1: The frequencies of the two variable levels of CONSTRUCTION are 
not identical; nV Part DO ≠ nV DO Part. 

 
Note that this is a two-tailed H1; no direction of the difference is provid-

ed. Next, you would collect some data and count the occurrences of both 
constructions, but we will abbreviate this step and use frequencies reported 
in Peters (2001). She conducted an experiment in which subjects described 
pictures and obtained the construction frequencies represented in Table 19. 

 
Table 19. Observed construction frequencies of Peters (2001) 

Verb - Particle - Direct Object Verb - Direct Object - Particle 

247 150 

 

                                                      
17. This threshold value of 5 is the one most commonly mentioned. There are a few studies 

that show that the chi-squared test is fairly robust even if this assumption is violated – 
especially when, as is here the case, H0 postulates that the expected frequencies are 
equally high (cf. Zar 1999: 470). However, to keep things simple, I stick to the most 
common conservative threshold value of 5 and refer you to the literature quoted in Zar. 
If your data violate this assumption, then you must compute a binomial test (if, as here, 
you have two groups) or a multinomial test (for three or more groups); cf. the recom-
mendations for further study. 
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Obviously, there is a strong preference for the construction in which the 
particle follows the verb directly. At first glance, it seems very unlikely that 
H0 could be correct, given these data. 

One very important side remark here: beginners often look at something 
like Table 19 and say, oh, ok, we have interval/ratio data: 247 and 150. 
Why is this wrong? 
 

 

THINK 

BREAK 

 
It’s wrong because Table 19 does not show you the raw data – what it 

shows you is already a numerical summary. You don’t have interval/ratio 
data – you have an interval/ratio summary of categorical data, because the 
numbers 247 and 150 summarize the frequencies of the two levels of the 
categorical variable CONSTRUCTION (which you probably obtained from 
applying table to a vector/factor). One strategy to not mix this up is to 
always conceptually envisage what the raw data table would look like in 
the case-by-variable format discussed in Section 1.3.3. In this case, it 
would look like this: 

 
Table 20. The case-by-variable version of the data in Table 19 

CASE CONSTRUCTION 

1 vpo 

2 vpo 

247 vpo 

248 vop 

 vop 

397 vop 

 
From this format, it is quite obvious that the variable CONSTRUCTION is 

categorical. So, don’t mix up interval/ratio summaries of categorical data 
with interval/ratio data. 

As the first step of our evaluation, you should now have a look at a 
graphical representation of the data. A first possibility would be to gener-
ate, say, a dot chart. Thus, you first enter the two frequencies – first the 
frequency data, then the names of the frequency data (for the plotting) – 
and then you create a dot chart or a bar plot as follows: 
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> VPCs<-c(247, 150) # VPCs="verb-particle constructions"¶ 
> names(VPCs)<-c("V-Part-DO", "V-DO-Part")¶ 
> dotchart(VPCs, xlim=c(0, 250))¶ 
> barplot(VPCs)¶ 

 
The question now of course is whether this preference is statistically 

significant or whether it could just as well have arisen by chance. Accord-
ing to the above procedure, you must now compute the frequencies that 
follow from H0. In this case, this is easy: since there are altogether 247+150 
= 397 constructions, which should be made up of two equally large groups, 
you divide 397 by 2: 
 
> VPCs.exp<-rep(sum(VPCs)/length(VPCs), length(VPCs))¶ 
> VPCs.exp¶ 
[1] 198.5 198.5 

 
You must now check whether you can actually do a chi-squared test 

here, but the observed frequencies are obviously larger than 5 and we as-
sume that Peters’s data points are in fact independent (because we will 
assume that each construction has been provided by a different speaker). 
We can therefore proceed with the chi-squared test, the computation of 
which is fairly straightforward and summarized in (31). 
 

(31) Pearson chi-squared = χ2 = 
( )

∑
=

−n

i expected

expectedobserved

1

2

 

 
That is to say, for every value of your frequency table you compute a 

so-called contribution to chi-squared by (i) computing the difference be-
tween the observed and the expected frequency, (ii) squaring this differ-
ence, and (iii) dividing that by the expected frequency again. The sum of 
these contributions to chi-squared is the test statistic chi-squared. Here, it is 
approximately 23.7. 
 

(32) Pearson χ2 = 
( ) ( )

5.198

5.198150

5.198

5.198247
22

−−
+  ≈ 23.7 

 
> sum(((VPCs-VPCs.exp)^2)/VPCs.exp)¶ 
[1] 23.70025 

 
Obviously, this value increases as the differences between observed and 
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expected frequencies increase (because then the numerators become larg-
er). That also means that chi-squared becomes 0 when all observed fre-
quencies correspond to all expected frequencies: then the numerators be-
come 0. Thus, we can simplify our statistical hypotheses to the following: 
 
H0: χ

2 = 0. 
H1: χ

2 > 0. 
 

But the chi-squared value alone does not show you whether the differ-
ences are large enough to be statistically significant. So, what do you do 
with this value? Before computers became more widespread, a chi-squared 
value was used to look up whether the result is significant or not in a chi-
squared table. Such tables typically have the three standard significance 
levels in the columns and different numbers of degrees of freedom (df) in 
the rows. Df here is the number of categories minus 1, i.e., df = 2-1 = 1, 
because when we have two categories, then one category frequency can 
vary freely but the other is fixed (so that we can get the observed number of 
elements, here 397). Table 21 is one such chi-squared table for the three 
significance levels and df = 1 to 3. 
 
Table 21. Critical χ2-values for ptwo-tailed = 0.05, 0.01, and 0.001 for 1 ≤ df ≤ 3 

 p = 0.05 p = 0.01 p = 0.001 

df = 1 3.841 6.635 10.828 

df = 2 5.991 9.21 13.816 

df = 3 7.815 11.345 16.266 

 
You can actually generate those values yourself with the function 

qchisq. That function requires three arguments: 
 

− p: the p-value(s) for which you need the critical chi-squared values (for 
some df); 

− df: the df-value(s) for the p-value for which you need the critical chi-
squared value; 

− lower.tail=FALSE: the argument to instruct R to only use the area 
under the chi-squared distribution curve that is to the right of / larger 
than the observed chi-squared value. 

 
> qchisq(c(0.05, 0.01, 0.001), 1, lower.tail=FALSE)¶ 
[1]  3.841459  6.634897 10.827566 
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More advanced users find code to generate all of Table 21 in the code 
file. Once you have such a table, you can test your observed chi-squared 
value for significance by determining whether it is larger than the chi-
squared value(s) tabulated at the observed number of degrees of freedom. 
You begin with the smallest tabulated chi-squared value and compare your 
observed chi-squared value with it and continue to do so as long as your 
observed value is larger than the tabulated ones. Here, you first check 
whether the observed chi-squared is significant at the level of 5%, which is 
obviously the case: 23.7 > 3.841. Thus, you can check whether it is also 
significant at the level of 1%, which again is the case: 23.7 > 6.635. Thus, 
you can finally even check if the observed chi-squared value is maybe even 
highly significant, and again this is so: 23.7 > 10.827. You can therefore 
reject H0 and the usual way this is reported in your results section is this: 
“According to a chi-squared goodness-of-fit test, the frequency distribution 
of the two verb-particle constructions deviates highly significantly from the 
expected one (χ2 = 23.7; df = 1; ptwo-tailed < 0.001): the construction where 
the particle follows the verb directly was observed 247 times although it 
was only expected 199 times, and the construction where the particle fol-
lows the direct objet was observed only 150 times although it was expected 
199 times.” 

With larger and more complex amounts of data, this semi-manual way 
of computation becomes more cumbersome (and error-prone), which is 
why we will simplify all this a bit. First, you can of course compute the p-
value directly from the chi-squared value using the mirror function of 
qchisq, viz. pchisq, which requires the above three arguments: 
 
> pchisq(23.7, 1, lower.tail=FALSE)¶ 
[1] 1.125825e-06 

 
As you can see, the level of significance we obtained from our stepwise 

comparison using Table 21 is confirmed: p is indeed much smaller than 
0.001, namely 0.00000125825. However, there is another even easier way: 
why not just do the whole test with one function? The function is called 
chisq.test, and in the present case it requires maximally three arguments: 
 

− x: a vector with the observed frequencies; 

− p: a vector with the expected percentages (not the frequencies!); 

− correct=TRUE or correct=FALSE: when the sample size n is small (15 
≤ n ≤ 60), it is sometimes recommended to apply a so-called continuity 
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correction (after Yates); correct=TRUE is the default setting.18 
 

In this case, this is easy: you already have a vector with the observed 
frequencies, the sample size n is much larger than 60, and the expected 
probabilities result from H0. Since H0 says the constructions are equally 
frequent and since there are just two constructions, the vector of the ex-
pected probabilities contains two times 1/2 = 0.5. Thus: 
 
> chisq.test(VPCs, p=c(0.5, 0.5))¶ 
 Chi-squared test for given probabilities 
data:  VPCs 
X-squared = 23.7003, df = 1, p-value = 1.126e-06 

 
You get the same result as from the manual computation but this time 

you immediately also get a p-value. What you do not also get are the ex-
pected frequencies, but these can be obtained very easily, too. The function 
chisq.test computes more than it returns. It returns a data structure (a so-
called list) so you can assign a name to this list and then inspect it for its 
contents (output not shown): 
 
> test<-chisq.test(VPCs, p=c(0.5, 0.5))¶ 
> str(test)¶ 

 
Thus, if you require the expected frequencies, you just retrieve them 

with a $ and the name of the list component you want, and of course you 
get the result you already know. 
 
> test$expected¶ 
[1] 198.5 198.5 

 
Let me finally mention that the above method computes a p-value for a 

two-tailed test. There are many tests in R where you can define whether 
you want a one-tailed or a two-tailed test. However, this does not work 
with the chi-squared test. If you require the critical chi-squared value for 
pone-tailed = 0.05 for df = 1, then you must compute the critical chi-squared 
value for ptwo-tailed = 0.1 for df = 1 (with qchisq(0.1, 1, lower.tail= 
FALSE)¶), since your prior knowledge is rewarded such that a less extreme 
result in the predicted direction will be sufficient (cf. Section 1.3.4). Also, 
this means that when you need the pone-tailed-value for a chi-square value, 
just take half of the ptwo-tailed-value of the same chi-square value. In this 

                                                      
18. For further options, cf. ?chisq.test¶, formals(chisq.test)¶ or args(chisq.test)¶. 



172        Analytical statistics 

 

case, if your H1 had been directional, this would have been your p-value. 
But again: this works only with df = 1. 
 
> pchisq(23.7, 1, lower.tail=FALSE)/2¶ 

 

Warning/advice 
Above I warned you to never change your hypotheses after you have ob-
tained your results and then sell your study as successful support of the 
‘new’ H1. The same logic does not allow you to change your hypothesis 
from a two-tailed one to a one-tailed one because your ptwo-tailed = 0.08 (i.e., 
non-significant) so that the corresponding pone-tailed = 0.04 (i.e., significant). 
Your choice of a one-tailed hypothesis must be motivated conceptually. 

Another hugely important warning: never ever compute a chi-square 
test like the above on percentages – always on ‘real’ observed frequencies! 

 

Recommendation(s) for further study 

− the functions binom.test or dbinom to compute binomial tests 
− the function prop.test (cf. Section 3.1.5.2) to test relative frequencies / 

percentages for deviations from expected frequencies / percentages 
− the function dmultinom to help compute multinomial tests 
− Baayen (2008: Section 4.1.1), Sheskin (2011: Test 8, 9) 

 
 
1.2. Tests for differences/independence 
 
In Section 4.1.1, we looked at goodness-of-fit tests for distributions and 
frequencies – now we turn to tests for differences/independence. 
 
 
1.2.1. One dep. variable (ordinal/interval/ratio scaled) and one indep.  

           variable (nominal) (indep. samples) 

 
Let us now look at an example in which two independent samples are com-
pared with regard to their overall distributions. You will test whether men 
and women differ with regard to the frequencies of hedges they use in dis-
course (i.e., expressions such as kind of or sort of). Again, note that we are 
here only concerned with the overall distributions – not just means or just 
variances. We could of course do that, too, but it is of course possible that 
the means are very similar while the variances are not and a test for differ-
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ent means might not uncover the overall distributional difference. 
Let us assume you have recorded 60 two-minute conversations between 

a confederate of an experimenter, each with one of 30 men and 30 women, 
and then counted the numbers of hedges that the male and female subjects 
produced. You now want to test whether the distributions of hedge fre-
quencies differs between men and women. This question involves 
 

− an independent nominal/categorical variable, SEX: MALE and SEX: 
FEMALE; 

− a dependent interval/ratio-scaled: the number of hedges produced: 
HEDGES. 

 
The question of whether the two sexes differ in terms of the distribu-

tions of hedge frequencies is investigated with the two-sample Kolmogo-
rov-Smirnov test (again, check <sflwr_navigator.png>): 
 

Procedure 

− Formulating the hypotheses 
− Computing descriptive statistics and visualizing the data 
− Testing the assumption(s) of the test: the data are continuous 
− Computing the cumulative frequency distributions for both samples, the 

maximal absolute difference D of both distributions, and p  

 
First the hypotheses: the text form is straightforward and the statistical 

version is based on a test statistic called D to be explained below 
 
H0: The distribution of the dependent variable HEDGES does not differ 

depending on the levels of the independent variable SEX; D = 0. 
H1: The distribution of the dependent variable HEDGES differs depend-

ing on the levels of the independent variable SEX; D > 0. 
 

Before we do the actual test, let us again inspect the data graphically. 
You first load the data from <_inputfiles/04-1-2-1_hedges.csv>, check the 
data structure (I will usually not show that output here in the book), and 
make the variable names available. 
 
> Hedges<-read.delim(file.choose())¶ 
> str(Hedges)¶ 
> attach(Hedges)¶ 
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You are interested in the general distribution, so one plot you can create 
is a stripchart. In this kind of plot, the frequencies of hedges are plotted 
separately for each sex, but to avoid that identical frequencies are plotted 
directly onto each other (and can therefore not be distinguished anymore), 
you also use the argument method="jitter" to add a tiny value to each 
data point, which decreases the chance of overplotted data points (also try 
method="stack"). Then, you include the meaningful point of x = 0 on the 
x-axis. Finally, with the function rug you add little bars to the x-axis 
(side=1) which also get jittered. The result is shown in Figure 40. 
 
> stripchart(HEDGES~SEX, method="jitter", xlim=c(0, 25),  

xlab="Number of hedges", ylab="Sex")¶ 
> rug(jitter(HEDGES), side=1)¶ 

 

 

Figure 40. Stripchart for HEDGES~SEX 

 
It is immediately obvious that the data are distributed quite differently: 

the values for women appear to be a little higher on average and more ho-
mogeneous than those of the men. The data for the men also appear to fall 
into two groups, a suspicion that also receives some prima facie support 
from the following two histograms in Figure 41. (Note that all axis limits 
are again defined identically to make the graphs easier to compare.) 
 
> par(mfrow=c(1, 2))¶ 
> hist(HEDGES[SEX=="M"], xlim=c(0, 25), ylim=c(0, 10), ylab= 

"Frequency", main="")¶ 
> hist(HEDGES[SEX=="F"], xlim=c(0, 25), ylim=c(0, 10), ylab= 

"Frequency", main="")¶ 
> par(mfrow=c(1, 1))¶ 
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Figure 41. Histograms of the number of hedges by men and women 

 
The assumption of continuous data points is not exactly met because 

frequencies are discrete – there are no frequencies 3.3, 3.4, etc. – but 
HEDGES spans quite a range of values and we could in fact jitter the values 
to avoid ties. To test these distributional differences with the Kolmogorov-
Smirnov test, which involves the empirical cumulative distribution of the 
data, you first rank-order the data: You sort the values of SEX in the order 
in which you need to sort HEDGES, and then do the same to HEDGES itself: 
 
> SEX<-SEX[order(HEDGES)]¶ 
> HEDGES<-HEDGES[order(HEDGES)]¶ 

 
The next step is a little more complex. You must now compute the max-

imum of all differences of the two cumulative distributions of the hedges. 
You can do this in three steps: First, you generate a frequency table with 
the numbers of hedges in the rows and the sexes in the columns. This table 
in turn serves as input to prop.table, which generates a table of column 
percentages (hence margin=2; cf. Section 3.2.1, output not shown): 
 
> dists<-prop.table(table(HEDGES, SEX), margin=2); dists¶ 

 
This table shows that, say, 10% of all numbers of hedges of men are 4, 

but these are of course not cumulative percentages yet. The second step is 
therefore to convert these percentages into cumulative percentages. You 
can use cumsum to generate the cumulative percentages for both columns 
and can even compute the differences in the same line: 
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> differences<-cumsum(dists[,1])-cumsum(dists[,2])¶ 

 
That is, you subtract from every cumulative percentage of the first col-

umn (the values of the women) the corresponding value of the second col-
umn (the values of the men). The third and final step is then to determine 
the maximal absolute difference, which is the test statistic D: 
 
> max(abs(differences))¶ 
[1] 0.4666667 

 
You can then look up this value in a table for Kolmogorov-Smirnov 

tests; for a significant result, the computed value must be larger than the 
tabulated one. For cases in which both samples are equally large, Table 22 
shows the critical D-values for two-tailed Kolmogorov-Smirnov tests 
(computed from Sheskin 2011: Table A23). 

 
Table 22. Critical D-values for two-sample Kolmogorov-Smirnov tests 

 p = 0.05 p = 0.01 

n1 = n2 = 29 0.3571535 0.428059 

n1 = n2 = 30 0.3511505 0.4208642 

n1 = n2 = 31 0.3454403 0.4140204 

 
Our value of D = 0.4667 is not only significant (D > 0.3511505), but 

even very significant (D > 0.4208642). You can therefore reject H0 and 
summarize the results: “According to a two-sample Kolmogorov-Smirnov 
test, there is a significant difference between the distributions of hedge 
frequencies of men and women: women seem to use more hedges and be-
have more homogeneously than the men, who use fewer hedges and whose 
data appear to fall into two groups (D = 0.4667, ptwo-tailed < 0.01).” 

The logic of this test is not always immediately clear but worth explor-
ing. To that end, we look at a graphical representation. The following lines 
plot the two empirical cumulative distribution functions (ecdf) of men (in 
black) and women (in grey) as well as a vertical line at position x = 9, 
where the largest difference (D = 0.4667) was found. This graph in Figure 
42 below shows what the Kolmogorov-Smirnov test reacts to: different 
empirical cumulative distributions. 
 
> plot(ecdf(HEDGES[SEX=="M"]), do.points=TRUE, verticals= 

TRUE, main="Hedges: men (black) vs. women (grey)", 
xlab="Numbers of hedges")¶ 

> lines(ecdf(HEDGES[SEX=="F"]), do.points=TRUE, verticals= 



Distributions and frequencies        177 

 

TRUE, col="darkgrey")¶ 
> abline(v=9, lty=2)¶ 

 

 

Figure 42. Empirical cumulative distribution functions of the numbers of hedges 
of men (black) and women (grey) 

 
For example, the fact that the values of the women are higher and more 

homogeneous is indicated especially in the left part of the graph where the 
low hedge frequencies are located and where the values of the men already 
rise but those of the women do not. More than 40% of the values of the 
men are located in a range where no hedge frequencies for women were 
obtained at all. As a result, the largest difference at position x = 9 arises 
where the curve for the men has already risen considerably while the curve 
for the women has only just begun to take off. This graph also explains 
why H0 postulates D = 0. If the curves are completely identical, there is no 
difference between them and D becomes 0. 

The above explanation simplified things a bit. First, you do not always 
have two-tailed tests and identical sample sizes. Second, identical values – 
so-called ties – can complicate the computation of this test (and others). 
Fortunately, you do not really have to worry about any of this because the 
R function ks.test does everything for you in just one line. You just need 
the following arguments:19 
 

− x and y: the two vectors whose distributions you want to compare; 

                                                      
19. Unfortunately, the function ks.test does not take a formula as input. 
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− alternative="two-sided" for two-tailed tests (the default) or alter-
native="greater" or alternative="less" for one-sided tests de-
pending on which H1 you want to test: the argument alternative="…" 
refers to the first-named vector so that alternative="greater" means 
that the cumulative distribution function of the first vector is above that 
of the second. 

 
When you test a two-tailed H1 as we do here, then the line to enter into 

R reduces to the following, and you get the same D-value and the p-value. 
(I omitted the warning about ties here but, again, you can use jitter to get 
rid of it; cf. the code file.) 
 
> ks.test(HEDGES[SEX=="M"], HEDGES[SEX=="F"])¶ 
 Two-sample Kolmogorov-Smirnov test 
data:  HEDGES[SEX == "M"] and HEDGES[SEX == "F"] 
D = 0.4667, p-value = 0.002908 
alternative hypothesis: two-sided 

 

Recommendation(s) for further study 

− apart from the function mentioned in the text (plot(ecdf(…)), you can 
create such graphs also with plot.stepfun 

− Crawley (2005: 100f.), Crawley (2007: 316f.), Baayen (2008: Section 
4.2.1), Sheskin (2011: Test 13) 

 
 
1.2.2. One dep. variable (nominal/categorical) and one indep. variable 

          (nominal/categorical) (indep. samples) 

 
In Section 4.1.1.2 above, we discussed how you test whether the distribu-
tion of a dependent nominal/categorical variable is significantly different 
from another known distribution. A probably more frequent situation is that 
you test whether the distribution of one nominal/categorical variable is 
dependent on another nominal/categorical variable. 

Above, we looked at the frequencies of the two verb-particle construc-
tions. We found that their distribution was not compatible with H0. Howev-
er, we also saw earlier that there are many variables that are correlated with 
the constructional choice. One of these is whether the referent of the direct 
object is given information, i.e., known from the previous discourse, or not. 
Specifically, previous studies found that objects referring to given referents 
prefer the position before the particle whereas objects referring to new ref-
erents prefer the position after the particle. We will look at this hypothesis 
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(for the sake of simplicity as a two-tailed hypothesis). It involves 
 

− a dependent nominal/categorical variable, namely CONSTRUCTION: 
VERB-PARTICLE-OBJECT vs. CONSTRUCTION: VERB-OBJECT-PARTICLE; 

− an independent variable nominal/categorical variable, namely the 
givenness of the referent of the direct object: GIVENNESS: GIVEN vs. 
GIVENNESS: NEW; 

− independent samples because we will assume that, in the data below, the 
fact any particular constructional choice is unrelated to any other one 
(this is often far from obvious, but too complex to be discussed here in 
more detail). 

 
As before, such questions are investigated with chi-squared tests: you 

test whether the levels of the independent variable result in different fre-
quencies of the levels of the dependent variable. The overall procedure for 
a chi-squared test for independence is very similar to that of a chi-squared 
test for goodness of fit, but you will see below that the computation of the 
expected frequencies is (only superficially) a bit different from above. 
 

Procedure 

− Formulating the hypotheses 
− Computing descriptive statistics and visualizing the data 
− Computing the frequencies you would expect given H0 
− Testing the assumption(s) of the test: 
 − all observations are independent of each other 
 − 80% of the expected frequencies are ≥ 5 (cf. n. 17) 
 − all expected frequencies are > 1 
− Computing the contributions to chi-squared for all observed frequencies 
− Computing the test statistic χ2, df, and p 

 
The hypotheses are simple, especially since we apply what we learned 

from the chi-squared test for goodness of fit from above: 
 
H0: The frequencies of the levels of the dependent variable 

CONSTRUCTION do not vary as a function of the levels of the inde-
pendent variable GIVENNESS; χ2 = 0. 

H1: The frequencies of the levels of the dependent variable 
CONSTRUCTION vary as a function of the levels of the independent 
variable GIVENNESS; χ2 > 0. 
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In order to discuss this version of the chi-squared test, we return to the 
data from Peters (2001). As a matter of fact, the above discussion did not 
utilize all of Peters’s data because I omitted an independent variable, name-
ly GIVENNESS. Peters (2001) did not just study the frequency of the two 
constructions – she studied what we are going to look at here, namely 
whether GIVENNESS is correlated with CONSTRUCTION. In the picture-
description experiment described above, she manipulated the variable 
GIVENNESS and obtained the already familiar 397 verb-particle construc-
tions, which patterned as represented in Table 23. (By the way, the cells of 
such 2-by-2 tables are often referred to with the letters a to d, a being the 
top left cell (85), b being the top right cell (65), etc.) 
 
Table 23. Observed construction frequencies of Peters (2001) 

 GIVENNESS: GIVEN GIVENNESS: NEW Row totals 

CONSTRUCTION: 

V DO PART 
85 65 150 

CONSTRUCTION: 

V PART DO 
100 147 247 

Column totals 185 212 397 

 
First, we explore the data graphically. You load the data from 

<_inputfiles/04-1-2-2_vpcs.csv>, create a table of the two factors, and get a 
first visual impression of the distribution of the data (cf. Figure 43). 
 
> VPCs<-read.delim(file.choose())¶ 
> str(VPCs); attach(VPCs)¶ 
> Peters.2001<-table(CONSTRUCTION, GIVENNESS)¶ 
> plot(CONSTRUCTION~GIVENNESS)¶ 

 
Obviously, the differently-colored areas are differently big between 

rows/columns. To test these differences for significance, we need the fre-
quencies expected from H0. But how do we compute the frequencies pre-
dicted by H0? Since this is a central question, we will discuss this in detail. 

Let us assume Peters had obtained the totals in Table 24. What would 
the distribution following from H0 look like? Above in Section 4.1.1.2, we 
said that H0 typically postulates equal frequencies. Thus, you might assume 
– correctly – that the expected frequencies are those represented in Table 
24. All marginal totals are 100 and every variable has two equally frequent 
levels so we have 50 in each cell. 
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Figure 43. Mosaic plot for CONSTRUCTION~GIVENNESS 

 
Table 24. Fictitious observed construction frequencies of Peters (2001) 

 GIVENNESS: GIVEN GIVENNESS: NEW Row totals 

CONSTRUCTION: 

V DO PART 
  100 

CONSTRUCTION: 

V PART DO 
  100 

Column totals 100 100 200 

 
Table 25. Fictitious expected construction frequencies of Peters (2001) 

 GIVENNESS: GIVEN GIVENNESS: NEW Row totals 

CONSTRUCTION: 

V DO PART 
50 50 100 

CONSTRUCTION: 

V PART DO 
50 50 100 

Column totals 100 100 200 

 
The statistical hypotheses that go beyond just stating whether or not χ2 = 

0 would then be: 
 
H0: nV DO Part & Ref DO = given = nV DO Part & Ref DO ≠ given = nV Part DO & Ref DO = given 

 = nV Part DO & Ref DO ≠ given 
H1: as H0, but there is at least one “≠” instead of an “=“. 
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However, life is usually not that simple, for example when (a) as in Pe-
ters (2001) not all subjects answer all questions or (b) naturally-observed 
data are counted that are not as nicely balanced. Thus, in Peters’s real data, 
it does not make sense to simply assume equal frequencies. Put differently, 
H0 cannot look like Table 24 because the row totals of Table 23 show that 
the different levels of GIVENNESS are not equally frequent. If GIVENNESS 
had no influence on CONSTRUCTION, you would expect that the frequencies 
of the two constructions for each level of GIVENNESS would exactly reflect 
the frequencies of the two constructions in the whole sample. That means 
(i) all marginal totals (row/column totals) must remain constant (as they 
reflect the numbers of the investigated elements), and (ii) the proportions of 
the marginal totals determine the cell frequencies in each row and column. 
From this, a rather complex set of hypotheses follows: 
 

H0: nV DO Part & Ref DO = given : nV DO Part & Ref DO ≠ given ∝ 

 nV Part DO & Ref DO = given : nV Part DO & Ref DO ≠ given ∝ 
 nRef DO = given : nRef DO ≠ given    and 

 nV DO Part & Ref DO = given : nV Part DO & Ref DO = given ∝ 

 nV DO Part & Ref DO ≠ given : nV Part DO & Ref DO ≠ given ∝ 
 n V DO Part : n V Part DO 
H1: as H0, but there is at least one “≠” instead of an “=“. 
 

In other words, you cannot simply say, “there are 2·2 = 4 cells and I as-
sume each expected frequency is 397 divided by 4, i.e., approximately 
100.” If you did that, the upper row total would amount to nearly 200 – but 
that can’t be right since there are only 150 cases of CONSTRUCTION: VERB-

OBJECT-PARTICLE. Thus, you must include this information, that there are 
only 150 cases of CONSTRUCTION: VERB-OBJECT-PARTICLE, into the com-
putation of the expected frequencies. The easiest way to do this is using 
percentages: there are 150/397 cases of CONSTRUCTION: VERB-OBJECT-

PARTICLE (i.e. 0.3778 = 37.78%). Then, there are 185/397 cases of 
GIVENNESS: GIVEN (i.e., 0.466 = 46.6%). If the two variables are independ-
ent of each other, then the probability of their joint occurrence is 
0.3778·0.466 = 0.1761. Since there are altogether 397 cases to which this 
probability applies, the expected frequency for this combination of variable 
levels is 397·0.1761 = 69.91. This logic can be reduced to (33). 
 

(33) nexpected cell frequency = 
n

 sumcolumn sumrow ⋅
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If you apply this logic to every cell, you get Table 26. 
 
Table 26. Expected construction frequencies of Peters (2001) 

 GIVENNESS: GIVEN GIVENNESS: NEW Row totals 

CONSTRUCTION: 

V DO PART 
69.9 80.1 150 

CONSTRUCTION: 

V PART DO 
115.1 131.9 247 

Column totals 185 212 397 

 
You can immediately see that this table corresponds to the above H0: the 

ratios of the values in each row and column are exactly those of the row 
totals and column totals respectively. For example, the ratio of 69.9 to 80.1 
to 150 is the same as that of 115.1 to 131.9 to 247 and as that of 185 to 212 
to 397, and the same is true in the other dimension. Thus, H0 is not “all cell 
frequencies are identical” – it is “the ratios of the cell frequencies are equal 
(to each other and the respective marginal totals).” 

This method to compute expected frequencies can be extended to arbi-
trarily complex frequency tables (see Gries 2009b: Section 5.1). But how 
do we test whether these deviate strongly enough from the observed fre-
quencies? Thankfully, we do not need such complicated hypotheses but can 

use the simpler versions of χ2 = 0 and χ2 > 0 used above, and the chi-
squared test for independence is identical to the chi-squared goodness-of-fit 
test you already know: for each cell, you compute a contribution to chi-
squared and sum those up to get the chi-squared test statistic. 

As before, the chi-squared test can only be used when its assumptions 
are met. The expected frequencies are large enough and for simplicity’s 
sake we assume here that every subject only gave just one sentence so that 
the observations are independent of each other: for example, the fact that 
some subject produced a particular sentence on one occasion does then not 
affect any other subject’s formulation. We can therefore proceed as above 
and compute (the sum of) the contributions to chi-squared on the basis of 
the same formula, here repeated as (34): 
 

(34) Pearson χ2 = 
( )

∑
=

−n

i expected

expectedobserved

1

2

 

 
The results are shown in Table 27 and the sum of all contributions to 

chi-squared, chi-squared itself, is 9.82. However, we again need the num-
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ber of degrees of freedom. For two-dimensional tables and when the ex-
pected frequencies are computed on the basis of the observed frequencies 
as here, the number of degrees of freedom is computed as shown in (35).20 
 
Table 27. Contributions to chi-squared for the data of Peters (2001) 

 GIVENNESS: GIVEN GIVENNESS: NEW Row totals 

CONSTRUCTION: 

V DO PART 
3.26 2.85  

CONSTRUCTION: 

V PART DO 
1.98 1.73  

Column totals   9.82 

 

(35) df = (no. of rows-1) ⋅ (no. of columns-1) = (2-1)⋅(2-1) = 1 
 

With both the chi-squared and the df-value, you can look up the result in 
a chi-squared table (e.g., Table 28 below, which is the same as Table 21). 
As above, if the observed chi-squared value is larger than the one tabulated 
for p = 0.05 at the required df-value, then you can reject H0. Here, chi-
squared is not only larger than the critical value for p = 0.05 and df = 1, but 
also larger than the critical value for p = 0.01 and df = 1. But, since the chi-
squared value is not also larger than 10.827, the actual p-value is some-
where between 0.01 and 0.001: the result is very, but not highly significant. 
 
Table 28. Critical χ2-values for ptwo-tailed = 0.05, 0.01, and 0.001 for 1 ≤ df ≤ 3 

 p = 0.05 p = 0.01 p = 0.001 

df = 1 3.841 6.635 10.828 

df = 2 5.991 9.21 13.816 

df = 3 7.815 11.345 16.266 

 
Fortunately, all this is much easier when you use R’s built-in function. 

Either you compute just the p-value as before, 
 
> pchisq(9.82, 1, lower.tail=FALSE)¶ 
[1] 0.001726243 

 

                                                      
20. In our example, the expected frequencies were computed from the observed frequencies 

in the marginal totals. If you compute the expected frequencies not from your observed 
data but from some other distribution, the computation of df changes to: df = (number of 

rows ⋅ number of columns)-1. 
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or you use the function chisq.test and do everything in a single step. The 
most important arguments for our purposes are: 
 

− x: the two-dimensional table for which you do a chi-squared test; 

− correct=TRUE or correct=FALSE; cf. above for the correction.21 
 
> test.Peters<-chisq.test(Peters.2001, correct=FALSE)¶ 
> test.Peters¶ 
 Pearson's Chi-squared test 
data:  Peters.2001 
X-squared = 9.8191, df = 1, p-value = 0.001727 

 
This is how you obtain expected frequencies or the chi-squared value: 

 
> test.Peters$expected¶ 
            GIVENNESS 
CONSTRUCTION     given       new 
   V_DO_Part  69.89924  80.10076 
   V_Part_DO 115.10076 131.89924 
> test.Peters$statistic¶ 
X-squared 
 9.819132 

 
You now know that GIVENNESS is correlated with CONSTRUCTION, but 

you neither know yet how strong that effect is nor which variable level 
combinations are responsible for this result. As for the effect size, even 
though you might be tempted to use the size of the chi-squared value or the 
p-value to quantify the effect, you must not do that. This is because the chi-
squared value is dependent on the sample size, as we can easily see: 
 
> chisq.test(Peters.2001*10, correct=FALSE)¶ 
 Pearson's Chi-squared test 
data:  Peters.2001 * 10 
X-squared = 98.1913, df = 1, p-value < 2.2e-16 

 
For effect sizes, this is of course a disadvantage since just because the 

sample size is larger, this does not mean that the relation of the values to 
each other has changed, too. You can easily verify this by noticing that the 
ratios of percentages, for example, have stayed the same. For that reason, 

the effect size is often quantified with a coefficient of correlation (called φ 
in the case of k×2/m×2 tables or Cramer’s V for k×m tables with k or m > 

                                                      
21. For further options, cf. again ?chisq.test¶. Note also what happens when you enter 

summary(Peters.2001)¶. 
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2), which falls into the range between 0 and 1 (0 = no correlation; 1 = per-

fect correlation) and is unaffected by the sample size. φ / Cramer’s V is 
computed according to the formula in (36): 
 

(36) φ / Cramer’s V / Cramer’s index I =  
 

 
)( 1],min[

2

−⋅
columns

n
rows

nn

χ
 

 
In R, you can of course do this in one line of code: 

 
> sqrt(test.Peters$statistic/ 

sum(Peters.2001)*(min(dim(Peters.2001))-1))¶ 
X-squared 
0.1572683 

 
Given the theoretical range of values, this is a rather small effect size.22 

The correlation is probably not random, but also not strong. 
Another measure of effect size, which can however only be applied to 

2×2 tables, is the so-called odds ratio. An odds ratio tells you how the like-
lihood of one variable level changes in response to a change of the other 
variable’s level. The odds of an event E correspond to the fraction in (37). 
 

(37) odds = 
E

E

p

p

−1
 (you get probabilities from odds with 

odds

odds

+1
) 

 
The odds ratio for a 2×2 table such as Table 23 is the ratio of the two 

odds (or 1 divided by that ratio, depending on whether you look at the 
event E or the event ¬E (not E)), as in (38): 
 

(38) odds ratio for Table 23 = 
147

65

100

85
 = 1.9223 

 
In words, the odds of CONSTRUCTION: V DO PART are (85/185) / (1-85/185) = 

85/100 = 0.85 when the referent of the direct object is given and (65/212) / (1-
65/212) = 65/147 = 0.4422 when the referent of the direct object is new. This in 

                                                      
22. The theoretical range from 0 to 1 is really only possible in particular situations, but still 

a good heuristic to interpret this value. 
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turn means that CONSTRUCTION: V DO PART is 0.85/0.4422 ≈ 1.9223 times more 
likely when the referent of the direct object is given than when it is not. 
From this, it also follows that the odds ratio in the absence of an interaction 
is ≈ 1.23 

Table 27 also shows which variable level combinations contribute most 
to the significant correlation: the larger the contribution to chi-squared of a 
cell, the more that cell contributes to the overall chi-squared value; in our 
example, these values are all rather small – none exceeds the chi-squared 
value for p = 0.05 and df = 1, i.e., 3.841. In R, you can get the contributions 
to chi-squared as follows: 
 
> test.Peters$residuals^2¶ 
            GIVENNESS 
CONSTRUCTION    given      new 
   V_DO_Part 3.262307 2.846825 
   V_Part_DO 1.981158 1.728841 

 
That is, you square the Pearson residuals. The Pearson residuals, which 

you obtain as follows, reveal the direction of effect for each cell: negative 
and positive values mean that observed values are smaller and larger than 
the expected values respectively. 
 
> test.Peterst$residuals¶ 
            GIVENNESS 
CONSTRUCTION     given       new 
   V_DO_Part  1.806186 -1.687254 
   V_Part_DO -1.407536  1.314854 

 
Thus, if, given the small contributions to chi-square, one wanted to draw 

any further conclusions at all, then one could only say that the variable 
level combination contributing most to the significant result is the combi-
nation of CONSTRUCTION: V DO PART and GIVENNESS: GIVEN, which is 
more often observed than expected, but the individual cells’ effects here are 
really rather small. 

An interesting and revealing graphical representation is available with 
the function assocplot, whose most relevant argument is the two-

                                                      
23. Often, you may find the logarithm of the odds ratio (see especially Section 5.3). When 

the two variables are not correlated, this log of the odds ratio is log 1 = 0, and posi-
tive/negative correlations result in positive/negative log odds ratios, which is often a lit-
tle easier to interpret. For example, if you have two odds ratios such as odds ratio1 = 0.5 
and odds ratio2 = 1.5, then you cannot immediately and intuitively see, which effect is 
larger. The logs of the odds ratios – log odds ratio1 = -0.693 and log odds ratio2 = 0.405 
– tell you immediately the former is larger because it is further away from 0. 
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dimensional table under investigation: In this plot (Figure 44), “the area of 
the box is proportional to the difference in observed and expected frequen-
cies.” The black rectangles above the dashed lines indicate observed fre-
quencies exceeding expected frequencies; grey rectangles below the dashed 
lines indicate observed frequencies smaller than expected frequencies; the 
heights of the boxes are proportional to the above Pearson residuals and the 
widths are proportional to the square roots of the expected frequencies. 
Note I do not just plot the table, but the transposed table – that’s what the 
t() does. This is so that the row/column organization of the plot corre-
sponds to that of the original table: 
 
> assocplot(t(Peters.2001), col=c("black", "darkgrey"))¶ 

 

 

Figure 44. Association plot for CONSTRUCTION~GIVENNESS 

 
Another interesting way to look at the data is a mixture between a plot 

and a table. The table/graph in Figure 45 has the same structure as Table 
23, but (i) the sizes in which the numbers are plotted directly reflects the 
size of the residuals (i.e., bigger numbers deviate more from the expected 
frequencies than smaller numbers, where bigger and smaller are to be un-
derstood in terms of plotting size), and (ii) the coloring and the signs indi-
cates how the observed frequencies deviate from the expected ones: black 
indicates positive residuals and grey indicates negative residuals. (For lack 
of a better term, I refer to this as a cross-tabulation plot.) 
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Figure 45. Cross-tabulation plot for CONSTRUCTION~GIVENNESS 

 
This is how you would summarize all the results: “New objects are 

strongly preferred in the construction Verb-Particle-Direct Object and are 
dispreferred in Verb-Direct Object-Particle. The opposite kind of construc-
tional preference is found for given objects. According to a chi-squared test 
for independence, this correlation is very significant (χ2 = 9.82; df = 1; ptwo-

tailed < 0.002), but the effect is not particularly strong (φ = 0.157, odds ratio 
= 1.9223). 

Let me finally emphasize that the above procedure is again the one 
providing you with a p-value for a two-tailed test. In the case of 2×2 tables, 
you can perform a one-tailed test as discussed in Section 4.1.1.2 above, but 
you cannot do one-tailed tests for tables with df > 1. 
 

Recommendation(s) for further study 

− the function dotchart as well as mosaic (from the library vcd) and 
table.cont (from the library ade4) for other kinds of plots 

− the function assocstats (from the library vcd) for a different way to 
compute chi-square tests and effect sizes at the same time 

− the function CrossTable (from the library gmodels) for more compre-
hensive tables 

− the argument simulate.p.value=TRUE of the function chisq.test and 
the function fisher.test, which you can use when the expected fre-
quencies are too small for a regular chi-squared test 
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− the Marascuilo procedure to test which observed row or column fre-
quencies are different from each other in pairwise tests (cf. Gries to ap-
pear, who also discusses how to test a subtable out of a larger table) 

− Crawley (2005: 85ff.), Crawley (2007: 301ff.), Sheskin (2011: Test 16) 

 

Warning/advice 
Again: never ever compute a chi-squared test on percentages – always on 
‘real’ observed frequencies! (Trust me, there is a reason I repeat this …) 

 
Let me mention one additional useful application of the chi-squared test 

(from Zar 1999: Section 23.4 and Sheskin 2011: 691ff.). Sometimes, you 

may have several isomorphic 2×2 tables on the same phenomenon, maybe 
because you found another source that discusses the same kind of data. You 
may then want to know whether or not the data are so similar that you can 
actually merge or amalgamate the data into one single data set. Here are the 
text hypotheses for that kind of question: 
 
H0: The trends in the different data sets do not differ from each other: 
 χ

2
 heterogeneity = 0. 

H1: The trends in the different data sets differ from each other: 
 χ

2 heterogeneity ≠ 0. 
 

To explore this approach, let us compare Peters’s data to those of Gries 
(2003a). You can enter the latter into R directly using the function matrix, 
which needs the vector of observed frequencies (columnwise), the number 
of columns, and the names of the dimensions (first rows, then columns): 
 
> Gries.2003<-matrix(c(143, 53, 66, 141), ncol=2,  

dimnames=list(CONSTRUCTION=c("V_DO_Part",  "V_Part_DO"), 
GIVENNESS=c("given", "new")))¶ 

> Gries.2003¶ 
          given new 
V_DO_Part   143  66 
V_Part_DO    53 141 

 
On the one hand, these data look very different from those of Peters 

(2001) because, here, when GIVENNESS is GIVEN, then CONSTRUCTION: 
V_DO_PART is nearly three times as frequent as CONSTRUCTION: 
V_PART_DO (and not in fact less frequent, as in Peters’s data). On the other 
hand, the data are also similar because in both cases given direct objects 
increase the likelihood of CONSTRUCTION: V_DO_PART. A direct compari-
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son of the association plots (not shown here, but you can use the following 
code to generate them) makes the data seem very much alike – how much 
more similar could two association plots be? 
 
> par(mfrow=c(1, 2))¶ 
> assocplot(t(Peters.2001))¶ 
> assocplot(t(Gries.2003))¶ 
> par(mfrow=c(1, 1))¶ 

 
However, you should not really compare the sizes of the boxes in asso-

ciation plots – only the overall tendencies – so we turn to the heterogeneity 
chi-squared test. The heterogeneity chi-squared value is computed as the 
difference between the sum of chi-squared values of the original tables and 
the chi-squared value for the merged tables (that’s why they have to be 
isomorphic), and it is evaluated with a number of degrees of freedom that is 
the difference between the sum of the degrees of freedom of all merged 
tables and the degrees of freedom of the merged table. Sounds pretty com-
plex, but in fact it is not. The following code should make everything clear. 
First, you compute the chi-squared test for the data from Gries (2003a): 
 
> test.Gries<-chisq.test(Gries.2003, correct=FALSE)¶ 
> test.Gries¶ 
 Pearson's Chi-squared test 
data:  Gries.2003 
X-squared = 68.0364, df = 1, p-value < 2.2e-16 

 
Then you compute the sum of chi-squared values of the original tables: 

 
> test.Peters$statistic+test.Gries$statistic¶ 
X-squared 
[1] 77.85552 

 
After that, you compute the chi-squared value of the combined table … 

 
> chisq.test(Peters.2001+Gries.2003,  

correct=FALSE)$statistic¶ 
X-squared 
[1] 65.87908 

 
… and then the heterogeneity chi-squared and its degrees of freedom (you 
get the df-values with $parameter): 
 
> het.chisq<-77.85552-65.87908 # 11.97644¶ 
> het.df<-1+1-1 # 1¶ 
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How do you now get the p-value for these results? 
 

 

THINK 

BREAK 

 
> pchisq(het.chisq, het.df, lower.tail=FALSE)¶ 
[1] 0.0005387742 

 
The data from the two studies exhibit the same overall trend (given ob-

jects increase the likelihood of CONSTRUCTION: V_DO_PART) but they still 
differ highly significantly from each other (χ2

heterogeneity = 11.98; df = 1; ptwo-

tailed < 0.001). How can that be? Because of the different effect sizes: the 
odds ratio for Peters’s data was 1.92, but in Gries’s data it is nearly exactly 
three times as large, which is also what you would write in your results 
section; we will return to this example in Chapter 5. 
 
> (143/66)/(53/141)¶ 
[1] 5.764151 

 
 
1.2.3. One dep. variable (nominal/categorical) (dep. samples) 

 
One central requirement of the chi-squared test for independence is that the 
tabulated data points are independent of each other. There are situations, 
however, where this is not the case, and in this section I discuss one meth-
od you can use on such occasions. 

Let us assume you want to test whether metalinguistic knowledge can 
influence acceptability judgments. This is relevant because many accepta-
bility judgments used in linguistic research were produced by the investi-
gating linguists themselves, and one may well ask oneself whether it is 
really sensible to rely on judgments by linguists with all their metalinguis-
tic knowledge instead of on judgments by linguistically naïve subjects. This 
is especially relevant since studies have shown that judgments by linguists, 
who after all think a lot about linguistic expressions, can deviate a lot from 
judgments by laymen, who usually don’t (cf. Spencer 1973, Labov 1975, or 
Greenbaum 1976). In an admittedly oversimplistic case, you could ask 100 
linguistically naïve native speakers to rate a sentence as ‘acceptable’ or 
‘unacceptable’. After the ratings have been made, you could tell the sub-
jects which phenomenon the study investigated and which variable you 
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thought influenced the sentences’ acceptability. Then, you would give the 
sentences back to the subjects to have them rate them once more. The ques-
tion would be whether the subjects’ newly acquired metalinguistic 
knowledge would make them change their ratings and, if so, how. This 
question involves 
 

− a dependent nominal/categorical variable, namely BEFORE: ACCEPTABLE 
vs. BEFORE: UNACCEPTABLE; 

− a dependent nominal/categorical variable, namely AFTER: ACCEPTABLE 
vs. AFTER: UNACCEPTABLE; 

− dependent samples since every subject produced two judgments. 
 

For such scenarios, you use the McNemar test (or Bowker test, cf. be-
low). This test is related to the chi-squared tests discussed above in Sec-
tions 4.1.1.2 and 4.1.2.2 and involves the following procedure: 
 

Procedure 

− Formulating the hypotheses 
− Computing the frequencies you would expect given H0 
− Testing the assumption(s) of the test: 
 − the observed variable levels are related in a pairwise manner 
 − the expected frequencies are ≥ 5 
− Computing the test statistic χ2, df, and p 

 
First, the hypotheses: 

 
H0: The frequencies of the two possible ways in which subjects pro-

duce a judgment in the second rating task that differs from that in 

the first rating task are equal; χ2 = 0. 
H1: The frequencies of the two possible ways in which subjects pro-

duce a judgment in the second rating task that differs from that in 

the first rating task are not equal; χ2 ≠ 0. 
 

To get to know this test, we use the fictitious data summarized in Table 
29, which you read in from the file <_inputfiles/04-1-2-3_accjudg.csv>. 
Table 29 suggests there has been a major change of judgments: Of the 100 
rated sentences, only 31+17 = 48 sentences – not even half! – were judged 
identically in both ratings. But now you want to know whether the way in 
which the 52 judgments changed is significantly different from chance. 
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> AccBeforeAfter<-read.delim(file.choose())¶ 
> str(AccBeforeAfter); attach(AccBeforeAfter)¶ 

 
Table 29. Observed frequencies in a fictitious study on acceptability judgments 

 AFTER 

ACCEPTABLE INACCEPTABLE Row totals 

BEFORE ACCEPTABLE 31 39 70 

INACCEPTABLE 13 17 30 

Column totals 44 56 100 

 
The McNemar test only involves those cases where the subjects 

changed their opinion, .i.e. cells b and c of the input table. If these are dis-
tributed equally, then the expected distribution of the 52 cases in which 
subjects change their opinion is that in Table 30. 
 
Table 30. Expected frequencies in a fictitious study on acceptability judgments 

 AFTER 

ACCEPTABLE INACCEPTABLE Row totals 

BEFORE ACCEPTABLE  26  

INACCEPTABLE 26   

Column totals    

 
From this, you can see that both expected frequencies are larger than 5 

so you can indeed do the McNemar test. As before, you compute a chi-
squared value (using the by now familiar formula in (39)) and a df-value 
according to the formula in (40) (where k is the number of rows/columns): 
 

(39) χ
2 = 

( )
∑
=

−n

i expected

expectedobserved

1

2

 = 13 

(40) df = 
( )
2

1−⋅ kk
 = 1 

 
As before, you can look up this chi-squared value in the familiar kind of 

chi-square table and, again as before, if the computed chi-squared value is 
larger than the tabulated one for the relevant df-value for p = 0.05, you may 
reject H0. As you can see, the chi-squared value is too large for H0 and we 
accept H1. 
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Table 31. Critical χ2-values for ptwo-tailed = 0.05, 0.01, and 0.001 for 1 ≤ df ≤ 3 

 p = 0.05 p = 0.01 p = 0.001 

df = 1 3.841 6.635 10.828 

df = 2 5.991 9.21 13.816 

df = 3 7.815 11.345 16.266 

 
This is how you summarize this finding in the results section: “Accord-

ing to a McNemar test, the way 52 out of 100 subjects changed their judg-
ments after they were informed of the purpose of the experiment is signifi-
cantly different from chance: in the second rating task, the number of ‘ac-
ceptable’ judgments is much smaller (χ2 = 13; df = 1; ptwo-tailed < 0.001).” 

In R, this is again much easier. You need the function mcnemar.test 
and it typically requires two arguments: 
 

− x: a two-dimensional table which you want to test; 

− correct=FALSE or correct=TRUE (the default): when the number of 
changes < 30, then som recommend the continuity correction. 

 
> mcnemar.test(table(BEFORE, AFTER), correct=FALSE)¶ 
 McNemar's Chi-squared test 
data:  table(BEFORE, AFTER) 
McNemar's chi-squared = 13, df = 1, p-value = 0.0003115 

 
The summary and conclusions are of course the same. When you do this 

test for k×k tables (with k > 2), this test is sometimes called Bowker test. 
 

Recommendation(s) for further study 

− Sheskin (2011: Test 20) on the McNemar test, its exact alternative, 
which you can compute with dbinom 

− Sheskin (2011: Test 26) for Cochran’s extension of the McNemar test to 
test three or more measurements of a dichotomous variable, which takes 
only a few lines of code to compute in R – why don’t you try to write 
such a function? 

− the function runs.test (from the library tseries) to test the random-
ness of a binary sequence 

 
 

2. Dispersions 

 
Sometimes, it is necessary and/or interesting to not just look at the general 
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characteristics of a distribution but also at more narrowly defined distribu-
tional characteristics. The two most obvious characteristics are the disper-
sion and the central tendency of a distribution. This section is concerned 
with the dispersion – more specifically, the variance or standard deviation – 
of a variable; Section 4.3 discusses measures of central tendency. 

For some research questions, it is useful to know, for example, whether 
two distributions have the same or a similar dispersion. Put differently, do 
two distributions spread around their means in a similar or in a different 
way? We touched upon this topic a little earlier in Section 3.1.3.6, but to 
illustrate the point once more, consider Figure 46. 
 

 

Figure 46. Two fictitious distributions 

 
Figure 46 shows two distributions, one group of 10 values (represented 

by unfilled circles) and another group of 10 values (represented by cross-
es). The means of these groups are shown with the two horizontal lines 
(dashed for the first group), and the deviations of each point from its group 
mean are shown with the vertical lines. As you can easily see, the groups 
do not just differ in terms of their means (meangroup 2 = 1.99; meangroup 1 = 
5.94), but also in terms of their dispersion: the deviations of the points of 
group 1 from their mean are much larger than their counterparts in group 2. 
While this difference is obvious in Figure 46, it can be much harder to dis-
cern in other cases, which is why we need a statistical test. In Section 4.2.1, 
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we discuss how you test whether the dispersion of one dependent inter-
val/ratio-scaled variable is significantly different from a known dispersion 
value. In Section 4.2.2, we discuss how you test whether the dispersion of 
one dependent ratio-scaled variable differs significantly in two groups. 
 
 
2.1. Goodness-of-fit test for one dep. variable (ratio-scaled) 
 
As an example for this test, we return to the above data on first language 
acquisition of Russian tense-aspect patterning. In Section 4.1.1.1 above, we 
looked at how the correlation between the use of tense and aspect of one 
child developed over time. Let us assume, you now want to test whether the 
overall variability of the values for this child is significantly different from 
that of another child for whom you already have data. Let us also assume 
that for this other child you found a variance of 0.025. 

This question involves the following variables and is investigated with a 
chi-squared test as described below: 
 

− a dependent ratio-scaled variable, namely the variable TENSEASPECT, 
consisting of the Cramer’s V values; 

− no independent variable because you are not testing whether the distri-
bution of the variable TENSEASPECT is influenced by, or correlated 
with, something else. 

 

Procedure 

− Formulating the hypotheses 
− Computing descriptive statistics 
− Testing the assumption(s) of the test: the population from which the 

sample whose variance is tested has been drawn or at least the sample 
itself from which the variance is computed is normally distributed 

− Computing the test statistic χ2, df, and p 

 
As usual, you begin with the hypotheses: 

 
H0: The variance of the data for the newly investigated child does not 

differ from the variance of the child investigated earlier; sd
2 

TENSEASPECT of the new child = sd
2 TENSEASPECT of the already 

investigated child, or sd
2 of the new child = 0.025, or the ratio of 

the two variances is 1. 
H1: The variance of the data for the newly investigated child differs 
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from the variance of the child investigated earlier; sd
2 

TENSEASPECT of the new child ≠ sd
2 TENSEASPECT of the already 

investigated child, or sd
2 of the new child ≠ 0.025, or the ratio of 

the two variances is not 1. 
 

You load the data from <_inputfiles/04-2-1_tense-aspect.csv>. 
 
> RussianTensAsp<-read.delim(file.choose())¶ 
> str(RussianTensAsp); attach(RussianTensAsp)¶ 

 
As a next step, you must test whether the assumption of this chi-squared 

test is met and whether the data are in fact normally distributed. We have 
discussed this in detail above so we run the test here without further ado. 
 
> shapiro.test(TENSE_ASPECT)¶ 
 Shapiro-Wilk normality test 
data:   TENSE_ASPECT 
W = 0.9942, p-value = 0.9132 

 
Just like in Section 4.1.1.1 above, you get a p-value of 0.9132, which 

means you must not reject H0, you can consider the data to be normally 
distributed, and you can compute this chi-squared test. You first compute 
the sample variance that you want to compare to the previous results: 
 
> var(TENSE_ASPECT)¶ 
[1] 0.01687119 

 
To test whether this value is significantly different from the known var-

iance of 0.025, you compute a chi-squared statistic as in formula (41). 
 

(41) χ
2 = 

( )
variance  population

variance  samplen ⋅−1
 

 
This chi-squared value has n-1 = 116 degrees of freedom. In R: 

 
> chi.squared<-((length(TENSE_ASPECT)-1)*var(TENSE_ASPECT))/ 

0.025¶ 
> chi.squared¶ 
[1] 78.28232 

 
As usual, you can create those critical values yourself or you look up 

this chi-squared value in the familiar kind of table. 
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> qchisq(c(0.05, 0.01, 0.001), 116, lower.tail=FALSE)¶ 

 
Table 32. Critical χ2-values for ptwo-tailed = 0.05, 0.01, and 0.001 for 115 ≤ df ≤ 

117 

 p = 0.05 p = 0.01 p = 0.001 

df = 115 141.03 153.191 167.61 

df = 116 142.138 154.344 168.813 

df = 117 143.246 155.496 170.016 

 
Since the obtained value of 78.28 is much smaller than the relevant crit-

ical value of 142.138, the difference between the two variances is not sig-
nificant. You can compute the exact p-value as follows: 
 
> pchisq(chi.squared, (length(TENSE_ASPECT)-1), lower.tail= 

FALSE)¶ 
[1] 0.9971612¶ 

 
This is how you would summarize the result: “According to a chi-

squared test, the variance of the newly investigated child (0.017) does not 
differ significantly from the variance of the child investigated earlier 
(0.025): χ2 = 78.28; df = 116; ptwo-tailed > 0.05.” 
 
 
2.2. One dep. variable (ratio-scaled) and one indep. variable (nominal) 
 
The probably more frequent scenario in the domain ‘testing dispersions’ is 
the case where you test whether two samples or two variables exhibit the 
same dispersion (or at least two dispersions that do not differ significantly). 
Since the difference of dispersions or variances is probably not a concept 
you spent much time thinking about so far, let us look at one illustrative 
example from the domain of sociophonetics. Gaudio (1994) studied the 
pitch range of heterosexual and homosexual men. At issue was therefore 
not the average pitch, but its variability, a good example for how variability 
as such can be interesting. In that study, four heterosexual and four homo-
sexual men were asked to read aloud two text passages and the resulting 
recordings were played to 14 subjects who were asked to guess which 
speakers were heterosexual and which were homosexual. Interestingly, the 
subjects were able to distinguish the sexual orientation nearly perfectly. 
The only (insignificant) correlation which suggested itself as a possible 
explanation was that the homosexual men exhibited a wider pitch range in 
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one of the text types, i.e., a result that has to do with variability/dispersion. 
We will now look at an example from second language acquisition. Let 

us assume you want to study how native speakers of a language and very 
advanced learners of that language differed in a synonym-finding task in 
which both native speakers and learners are presented with words for which 
they are asked to name synonyms. You may now not be interested in the 
exact numbers of synonyms – maybe, the learners are so advanced that 
these are actually fairly similar in both groups – but in whether the learners 
exhibit more diversity in the amounts of time they needed to come up with 
all the synonyms they can name. This question involves 
 

− a dependent ratio-scaled variable, namely SYNTIMES, the time subjects 
needed to name the synonyms; 

− a nominal/categorical independent variable, namely SPEAKER: LEARNER 
and SPEAKER: NATIVE. 

 
This kind of question is investigated with the so-called F-test for homo-

geneity of variances, which involves the following steps: 
 

Procedure 

− Formulating the hypotheses 
− Computing descriptive statistics and visualizing the data 
− Testing the assumption(s) of the test: 
 − the population from which the sample whose variance is tested has 

been drawn or at least the sample itself from which the variance is 
computed is normally distributed 

 − the samples are independent of each other 
− Computing the test statistic F, df1 and df2, and p 

 
First, you formulate the hypotheses. Note that H1 is non-directional / 

two-tailed. 
 
H0: The times the learners need to name the synonyms they can think 

of are not differently variable from the times the native speakers 
need to name the synonyms they can think of; the ratio of the vari-
ances F = 1. 

H1: The times the learners need to name the synonyms they can think 
of are differently variable from the times the native speakers need 
to name the synonyms they can think of; the ratio of the variances 
F ≠ 1. 



Dispersions        201 

 

As an example, we use the (fictitious) data in <_inputfiles/04-2-
2_synonymtimes.csv>: 
 
> SynonymTimes<-read.delim(file.choose())¶ 
> str(SynonymTimes); attach(SynonymTimes)¶ 

 
You compute the variances for both subject groups and plot the data in-

to Figure 47. The variability of the two groups seem very similar: the boxes 
have quite similar sizes, but the ranges of the whiskers differ a bit; cf. the 
code file for some additional exploration with more precise ecdf plots. 
 
> tapply(SYNTIMES, SPEAKER, var)¶ 
 Learner   Native 
10.31731 14.15385 
> boxplot(SYNTIMES~SPEAKER, notch=TRUE)¶ 
> rug(jitter(SYNTIMES), side=2)¶ 

 

 

Figure 47. Boxplot for SYNTIMES~SPEAKER 

 
The F-test requires a normal distribution of the population or at least the 

sample. We again use the Shapiro-Wilk test, this time with tapply. Noth-
ing to worry about: both samples do not deviate significantly from normali-
ty and you can do an F-test. This test requires you to compute the quotient 
of the two variances (traditionally, but not necessarily – see below – the 
larger variance is used as the numerator). Now we compute the ratio of the 
two variances, which turns out to be not 1, but somewhat close to it. 
 
>tapply(SYNTIMES, SPEAKER, shapiro.test)¶ 
$Learner 
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        Shapiro-Wilk normality test 
data:  X[[1L]] 
W = 0.9666, p-value = 0.2791 
$Native 
        Shapiro-Wilk normality test 
data:  X[[2L]] 
W = 0.9751, p-value = 0.5119 
 
> F.value<-var(SYNTIMES[SPEAKER=="Native"])/ 

var(SYNTIMES[SPEAKER=="Learner"]); F.value¶ 
[1] 1.371855 

 
To see whether this value is significantly different from 1, you again 

need to consider degrees of freedom, this time even two: one for the nu-
merator, one for the denominator. Both can be computed very easily by just 
subtracting 1 from the sample sizes (of the samples for the variances); cf. 
the formula in (42). 
 
(42) dfnumerator = nnumerator sample-1; dfdenominator = ndenominator sample-1 
 

You get 39 in both cases and can look up the result in an F-table. 
 
Table 33. Critical F-values for ptwo-tailed = 0.05 and 38 ≤ df1, 2 ≤ 40 

 df2 = 38 df2 = 39 df2 = 40 

df1 = 38 1.907 1.8963 1.8862 

df1 = 39 1.9014 1.8907 1.8806 

df1 = 40 1.8961 1.8854 1.8752 

 
Obviously, the result is not significant: the computed F-value is smaller 

than the tabulated one for p = 0.05 (which is 1.8907). As usual, you can 
compute the critical F-values yourself, and you would have to use the func-
tion qf for that. We need four arguments: 
 

− p: the p-value for which you want to determine the critical F-value (for 
some df-values); 

− df1 and df2: the two df-values for the p-value for which you want to 
determine the critical F-value; 

− the argument lower.tail=FALSE, to instruct R to only consider the area 
under the curve above / to the right of the relevant F-value. 

 
There is one last thing, though. When we discussed one- and two-tailed 

tests in Section 1.3.4 above, I mentioned that in the graphical representa-
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tion of one-tailed tests (cf. Figure 6 and Figure 8) you add the probabilities 
of the events you see when you move away from the expectation of H0 in 
one direction while in the graphical representation of two-tailed tests (cf. 
Figure 7 and Figure 9) you add the probabilities of the events you see when 
you move away from the expectation of H0 in both directions. The conse-
quence of that was that the prior knowledge that allowed you to formulate a 
directional H1 was rewarded such that you needed a less extreme finding to 
get a significant result. This also means, however, that when you want to 
compute a two-tailed p-value using lower.tail=FALSE, then you need the 
p-value for 0.05/2 = 0.025. This value tells you which F-value cuts off 0.025 
on only one side of the graph (say, the right one), but since a two-tailed test 
requires that you cut off the same area on the other/left side as well, this 
means that this is also the desired critical F-value for ptwo-tailed = 0.05. Fig-
ure 48 illustrates this logic: 
 

 

Figure 48. Density function for an F-distribution with df1 = df2 = 39, two-tailed 
test 

 
As mentioned above, the expectation from H0 is that F = 1. The right 

vertical line indicates the F-value you need to obtain for a significant two-
tailed test with df1, 2 = 39; this F-value is the one you already know from 
Table 33 – 1.8907 – which means you get a significant two-tailed result if 
either one of the variances is 1.8907 times larger than the other. The left 
vertical line indicates the F-value you need to obtain for a significant one-
tailed test with df1, 2 = 39; this F-value is 1.7045, which means you get a 
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significant one-tailed result if the variance you predict to be larger (!) is 
1.7045 times larger than the one you predict to be smaller. To compute the 
F-values for the two-tailed tests yourself, as a beginner you may want to 
enter just these lines and proceed in a similar way for all other cells in Ta-
ble 33, and the code file contains code to generate all of Table 33. 
 
> qf(0.025, 39, 39, lower.tail=TRUE)¶ 
[1] 0.5288993 
> qf(0.025, 39, 39, lower.tail=FALSE)¶ 
[1] 1.890719 

 
The observed F-value is obviously too small for either a directional or a 

non-directional significant result: 1.53 < 1.89. It is more useful, however, 
to immediately compute the p-value for your F-value. Since you now use 
the reverse of qf, pf, you must now not divide but multiply by 2: 
 
> 2*pf(F.value, 39, 39, lower.tail=FALSE)¶ 
[1] 0.3276319 

 
As we’ve seen, with a p-value of p = 0.3276, the F-value of about 1.37 

for df1, 2 = 39 is obviously not significant. The function for the F-test in R 
that easily takes care of all of the above is called var.test and it requires 
at least two arguments, the two samples. Just like many other functions, 
you can approach this in two ways: you can provide R with a formula, 
 
> var.test(SYNTIMES~SPEAKER)¶ 
 F test to compare two variances 
data:  SYNTIMES by SPEAKER 
F = 0.7289, num df = 39, denom df = 39, p-value = 0.3276 
alternative hypothesis: true ratio of variances is not  

equal to 1 
95 percent confidence interval: 
 0.385536 1.378221 
sample estimates: 
ratio of variances 
         0.7289402 

 
or you can use a vector-based alternative: 
 
> var.test(SYNTIMES[SPEAKER=="Learner"],  

SYNTIMES[SPEAKER=="Native"])¶ 

 
Don’t be confused if the F-value you get from R is not the same as the 

one you computed yourself. Barring mistakes, the value outputted by R is 
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then 1/F-value – R does not automatically put the larger variance into the 
numerator, but the variance whose name comes first in the alphabet, which 
here is “Learner” (before “Native”). The p-value then shows you that R’s 
result is the same as yours. You can now sum this up as follows: “The na-
tive’s synonym-finding times exhibit a variance that is approximately 40% 
larger than that of the learners (14.15 vs. 10.32), but according to an F-test, 
this difference is not significant: F = 0.73; dflearner = 39; dfnative = 39; ptwo-tailed 
= 0.3276.” 
 

Recommendation(s) for further study 

− Dalgaard (2002: 89), Crawley (2007: 289ff.), Baayen (2008: Section 
4.2.3), Sheskin (2011: Tests 3, 11a) 

− the function fligner.test to test the homogeneity of variance when 
the data violate the assumption of normality 

− Good and Hardin (2012: 100ff.) for other (advanced!) possibilities to 
compare variances 

− see the code file for a function exact.f.test.indep that I wrote to 
compute an exact version of this F-test, which you can use when your 
sample sizes are very small (maybe <15); careful, this test may take 
quite some time 

 
 

3. Means 

 
The probably most frequent use of simple significance tests apart from chi-
squared tests are tests of differences between means. In Section 4.3.1, we 
will be concerned with goodness-of-fit tests, i.e., scenarios where you test 
whether an observed measure of central tendency is significantly different 
from another already known mean (recall this kind of question from Sec-
tion 3.1.5.1); in Section 4.3.2, we then turn to tests where measures of cen-
tral tendencies from two samples are compared to each other. 
 
 
3.1. Goodness-of-fit tests 
 
3.1.1. One dep. variable (ratio-scaled) 

 
Let us assume you are again interested in the use of hedges. Early studies 
suggested that men and women exhibit different communicative styles with 
regard to the frequency of hedges (and otherwise). Let us also assume you 
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knew from the literature that female subjects in experiments used on aver-
age 12 hedges in a two-minute conversation with a female confederate of 
the experimenter. You also knew that the frequencies of hedges are normal-
ly distributed. You now did an experiment in which you recorded 30 two-
minute conversations of female subjects with a male confederate and 
counted the same kinds of hedges as were counted in the previous studies 
(and of course we assume that with regard to all other parameters, your 
experiment was an exact replication of the earlier one). You now want to 
test whether the average number of hedges in your experiment is signifi-
cantly different from the value of 12 reported in the literature. This ques-
tion involves 
 

− a dependent ratio-scaled variable, namely HEDGES, which will be com-
pared to the value from the literature; 

− no independent variable since you do not test whether HEDGES is influ-
enced by something else. 

 
For such cases, you use a one-sample t-test, which involves these steps: 

 

Procedure 

− Formulating the hypotheses 
− Computing descriptive statistics 
− Testing the assumption(s) of the test: the population from which the 

sample whose mean is tested has been drawn or at least the sample itself 
from which the mean is computed is normally distributed 

− Computing the test statistic t, df, and p 

 
As always, you begin with the hypotheses: 

 
H0: The average of HEDGES in the conversations of the subjects with 

the male confederate does not differ significantly from the already 
known average; hedges in your experiment = 12, or hedges in your 
experiment-12 = 0, or t = 0; 

H1: The average ofHEDGES in the conversations of the subjects with 
the male confederate differs from the previously reported average; 
hedges in your experiment ≠ 12, or hedges in your experiment-12 ≠ 
0, t ≠ 0. 

 
Then you load the data from <_inputfiles/04-3-1-1_hedges.csv>: 
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> Hedges<-read.delim(file.choose())¶ 
> str(Hedges); attach(Hedges)¶ 

 
Next, you compute the mean frequency of hedges you found in your ex-

periment as well as a measure of dispersion (cf. the code file for a graph): 
 
> mean(HEDGES); sd(HEDGES)¶ 
[1] 14.83333 
[1] 2.506314 

 
While the literature mentioned that the numbers of hedges are normally 

distributed, you test whether this holds for your data, too: 
 
> shapiro.test(HEDGES)¶ 
 Shapiro-Wilk normality test 
data:  HEDGES 
W = 0.946, p-value = 0.1319 

 
It does. You can therefore immediately proceed to the formula in (43). 

 

(43) t = 

samplesample

populationsample

nsd

xx −
 

 
> (mean(HEDGES)-12) / (sd(HEDGES)/sqrt(length(HEDGES)))¶ 
[1] 6.191884 

 
To see what this value means, we need degrees of freedom again. 

Again, this is easy here since df = n-1, i.e., df = 29. When you look up the t-
value for df = 29 in the usual kind of table, the t-value you computed must 
again be larger than the one tabulated for your df at p = 0.05. To compute 
the critical p-value, you use qt with the p-value and the required df-value. 
Since you do a two-tailed test, you must cut off 0.05/2 = 2.5% on both sides 
of the distribution, which is illustrated in Figure 49. 
 
Table 34. Critical t-values for ptwo-tailed = 0.05, 0.01, and 0.001 for 28 ≤ df ≤ 30 

 p = 0.05 p = 0.01 p = 0.001 

df = 28 2.0484 2.7633 3.6739 

df = 29 2.0452 2.7564 3.6594 

df = 30 2.0423 2.75 3.646 
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Figure 49. Density function for a t-distribution for df = 29, two-tailed test 

 
The critical t-value for p = 0.025 and df = 29 is therefore: 

 
> qt(c(0.025, 0.975), 29, lower.tail=FALSE)¶ 
[1]  2.045230 -2.045230 

 
The exact p-value can be computed with pt and the obtained t-value is 

highly significant: 6.1919 is not just larger than 2.0452, but even larger 
than the t-value for p = 0.001 and df = 29. You could also have guessed that 
because the t-value of 6.19 is far in the right grey margin in Figure 49. 
 
> 2*pt(6.191884, 29, lower.tail=FALSE)¶ 
[1] 9.42153e-07 

 
To sum up: “On average, female subjects that spoke to a male confeder-

ate of the experimenter for two minutes used 14.83 hedges (standard devia-
tion: 2.51). According to a one-sample t-test, this average is highly signifi-
cantly larger than the value previously noted in the literature (for female 
subjects speaking to a female confederate of the experimenter): t = 6.1919; 
df = 29; ptwo-tailed < 0.001.” 

With the right function in R, you need just one line. The relevant func-
tion is called t.test and requires the following arguments: 
 

− x: a vector with the sample data; 

− mu=…, the population mean to which the sample mean of x is compared; 
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− alternative="two-sided" for two-tailed tests (the default) or one of 
alternative="greater" or alternative="less", depending on 
which H1 you want to test: the value you assign to alternative states 
the relation of the sample mean to the population mean. 

 
> t.test(HEDGES, mu=12)¶ 
 One Sample t-test 
data:  HEDGES 
t = 6.1919, df = 29, p-value = 9.422e-07 
alternative hypothesis: true mean is not equal to 12 
95 percent confidence interval: 
 13.89746 15.76921 
sample estimates: 
mean of x 
 14.83333 

 
You get the already known mean of 14.83 as well as the df- and t-value 

we computed semi-manually. In addition, we get the exact p-value and the 
confidence interval of the mean which does not include the value of 12. 
 

Recommendation(s) for further study 

Baayen (2008: Section 4.1.2), Sheskin (2011: Test 2) 

 
 
3.1.2. One dep. variable (ordinal) 

 
In the previous section, we discussed a test that allows you to test whether 
the mean of a sample from a normally-distributed population is different 
from an already known population mean. This section deals with a test you 
can use when the data violate the assumption of normality or when they are 
not interval-/ratio-scaled to begin with. We will explore this test by looking 
at an interesting little morphological phenomenon, namely subtractive 
word-formation processes in which parts of usually two source words are 
merged into a new word. Two such processes are blends and complex clip-
pings; some well-known examples of the former are shown in (44a), while 
(44b) provides a few examples of the latter; in all examples, the letters of 
the source words that enter into the new word are underlined. 
 
(44) a. brunch (breakfast × lunch), motel (motor × hotel), smog  

  (smoke × fog), foolosopher (fool × philosopher) 
 b. scifi (science × fiction), fedex (federal × express), sysadmin 
   (system × administrator) 
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One question that may arise upon looking at these coinages is to what 
degree the formation of such words is supported by some degree of similar-
ity of the source words. There are many different ways to measure the simi-
larity of words, and the one we are going to use here is the so-called Dice 
coefficient (cf. Brew and McKelvie 1996). You can compute a Dice coeffi-
cient for two words in two simple steps. First, you split the words up into 
letter (or phoneme or …) bigrams. For motel (motor × hotel) you get: 
 

− motor: mo, ot, to, or; 

− hotel: ho, ot, te, el. 
 

Then you count how many of the bigrams of each word occur in the 
other word, too. In this case, these are two: the ot of motor also occurs in 
hotel, and thus the ot of hotel also occurs in motor.24 This number, 2, is 
divided by the number of bigrams to yield the Dice coefficient: 
 
(45) Dicemotor & hotel = 2/8 = 0.25 
 

In other words, the Dice coefficient is the percentage of shared bigrams 
out of all bigrams (and hence ratio-scaled). We will now investigate the 
question of whether source words that entered into subtractive word-
formation processes are more similar to each other than words in general 
are similar to each other. Let us assume, you know that the average Dice 
coefficient of randomly chosen words is 0.225 (with a standard deviation of 
0.0809; the median is 0.151 with an interquartile range of 0.125). These 
figures already suggest that the data may not be normally distributed.25 

This study involves 
 

− a dependent ratio-scaled variable, namely the SIMILARITY of the source 
words, which will be compared with the already known mean/median; 

− no independent variable since you do not test whether SIMILARITY is 
influenced by something else. 

 
The hypotheses should be straightforward: 

                                                      
24. In R, such computations can be easily automated and done for hundreds of thousands of 

words. For example, if the vector a contains a word, this line returns all its bigrams: 
substr(rep(a, nchar(a)-1), 1:(nchar(a)-1), 2:(nchar(a)))¶; for many such ap-
plications, cf. Gries (2009a). 

25. For authentic data, cf. Gries (2006), where I computed Dice coefficients for all 499,500 
possible pairs of 1,000 randomly chosen words. 
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H0: The average of SIMILARITY for the source words that entered into 
subtractive word-formation processes is not significantly different 
from the known average of randomly chosen word pairs; Dice co-
efficients of source words = 0.225, or Dice coefficients of source 
words-0.225 = 0. 

H1: The average of SIMILARITY for the source words that entered into 
subtractive word-formation processes is different from the known 
average of randomly chosen word pairs; Dice coefficients of source 
words ≠ 0.225, or Dice coefficients of source words-0.225 ≠ 0. 

 
The data to be investigated here are in <_inputfiles/04-3-1-

2_dices.csv>; they are data of the kind studied in Gries (2006). 
 
> Dices<-read.delim(file.choose()¶ 
> str(Dices); attach(Dices)¶ 

 
From the summary statistics, you could already infer that the similarities 

of randomly chosen words are not normally distributed. We can therefore 
assume that this is also true of the sample of source words, but of course 
you also test this assumption (cf. the code file for a plot): 
 
> shapiro.test(DICE)¶ 
 Shapiro-Wilk normality test 
data:  DICE 
W = 0.9615, p-value = 0.005117 

 
The Dice coefficients are not normally, but symmetrically distributed 

(as you can also clearly see in the ecdf plot). Thus, even though Dice coef-
ficients are ratio-scaled and although the sample size is >30, you may want 
to be careful and not use the one-sample t-test but, for example, the so-
called one-sample sign test for the median, which involves these steps: 
 

Procedure 

Formulating the hypotheses 
Computing the frequencies of the signs of the differences between the 
 observed values and the expected average 
Computing the probability of error p 

 
You first rephrase the hypotheses; I only provide new statistical ones: 

 
H0: medianDice coefficients of your source words = 0.151. 
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H1: medianDice coefficients of your source words ≠ 0.151. 
 

Then, you compute descriptive statistics: the median and its interquartile 
range. Obviously, the observed median Dice coefficient is a bit higher than 
0.151, the median Dice coefficient of the randomly chosen word pairs, but 
it is impossible to guess whether the difference is going to be significant. 
 
> median(DICE); IQR(DICE)¶ 
[1] 0.1775 
[1] 0.10875 

 
For the one-sample sign test, you first determine how many observa-

tions are above and below the expected median, because if the expected 
median was a good characterization of the observed data, then 50% of the 
observed data should be above the expected median and 50% should be 
below it. (NB: you must realize that this means that the exact sizes of the 
deviations from the expected median are not considered here – you only 
look at whether the observed values are larger or smaller than the expected 
median, but not how much larger or smaller.) 
 
> sum(DICE>0.151); sum(DICE<0.151)¶ 
[1] 63 
[1] 37 

 
63 of the 100 observed values are larger than the expected median (the 

rest is smaller than the expected median) – since you expected 50, it seems 
as if the Dice coefficients observed in your source words are significantly 
larger than those of randomly chosen words. As before, this issue can also 
be approached graphically, using the logic and the function dbinom from 
Section 1.3.4.1, Figure 7. Figure 50 shows the probabilities of all possible 
results you can get in 100 trials – because you look at the Dice coefficients 
of 100 subtractive formations. First, consider the left panel of Figure 50. 

According to H0, you would expect 50 Dice coefficients to be larger 
than the expected median, but you found 63. Thus, you add the probability 
of the observed result (the black bar for 63 out of 100) to the probabilities 
of all those that deviate from H0 even more extremely, i.e., the chances to 
find 64, 65, …, 99, 100 Dice coefficients out of 100 that are larger than the 
expected median. These probabilities from the left panel sum up to approx-
imately 0.006. 
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Figure 50. Probability distributions for 100 binomial trials test 

 
> sum(dbinom(63:100, 100, 0.5))¶ 
[1] 0.006016488 

 
But you are not finished yet … As you can see in the left panel of Fig-

ure 50, so far you only include the deviations from H0 in one direction – but 
your H1 is non-directional, i.e., two-tailed. You must therefore also include 
the probabilities of the events that deviate just as much and more from H0 
in the other direction: 37, 36, …, 1, 0 Dice coefficients out of 100 that are 
smaller than the expected median, as represented in the right panel of Fig-
ure 50. The probabilities sum up to the same value (because the distribution 
of binomial probabilities around p = 0.5 is symmetric). 
 
> sum(dbinom(37:0, 100, 0.5))¶ 
[1] 0.006016488 

 
Again: if you expect 50 out of 100, but observe 63 out of 100, and want 

to do a two-tailed test, you must add the summed probability of finding 63 
to 100 larger Dice coefficients (the upper/right 38 probabilities) to the 
summed probability of finding 0 to 37 smaller Dice coefficients (the low-
er/left 38 probabilities). The ptwo-tailed-value of 0.01203298 you then get is 
significant. You can sum up: “The investigation of 100 subtractive word 
formations resulted in an average source-word similarity of 0.1775 (medi-
an, IQR = 0.10875). 63 of the 100 source words were more similar to each 
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other than expected from random word pairs, which, according to a two-
tailed sign test is a significant deviation from the average similarity of ran-
dom word pairs (median =0.151, IQR range = 0.125): pbinomial = 0.012.” 

Recall that this one-sample sign test only uses nominal information, 
whether each data point is larger or smaller than the expected reference 
median. If the distribution of the data is rather symmetrical – as it is here – 
then there is an alternative test that also takes the sizes of the deviations 
into account, i.e. uses at least ordinal information. This so-called one-
sample signed-rank test can be computed using the function wilcox.test. 
Apart from the vector to be tested, the following arguments are relevant: 
 

− alternative: a character string saying which H1 you want to test: the 
default is "two.sided", other possible values for one-tailed tests are 
"less" or "greater", which specify how the first-named vector relates 
to the specified reference median; 

− mu=…: the reference median expected according to H0; 

− exact=TRUE, if you want to compute an exact test (only when your 
sample size is smaller than 50 and there are no ties) or exact=FALSE, if 
an asymptotic test is sufficient; the default amounts to the latter; 

− correct=TRUE (the default) for a continuity correction or cor-

rect=FALSE for none; 

− conf.level: a value between 0 and 1 specifying the size of the confi-
dence interval; the default is 0.95. 

 
Since you have a non-directional H1, you do a two-tailed test by simply 

adopting the default setting for alternative: 
 
> wilcox.test(DICE, mu=0.151, correct=FALSE)¶ 
 Wilcoxon signed rank test 
data:  DICE 
V = 3454.5, p-value = 0.001393 
alternative hypothesis: true location is not equal to 0.151 

 
The test confirms the previous result: both the one-sample sign test, 

which is only concerned with the directions of deviations, and the one-
sample signed rank test, which also considers the sizes of these deviations, 
indicate that the source words of the subtractive word-formations are more 
similar to each other than expected from random source words. This should 
however, encourage you to make sure you formulate exactly the hypothesis 
you are interested in (and then use the required test). 
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Recommendation(s) for further study 

− Baayen (2008: Section 4.1.2), Sheskin (2011: Test 9b, 6) 

 
 
3.2. Tests for differences/independence 
 
A particularly frequent scenario requires you to test two groups of elements 
with regard to whether they differ in their central tendency. As discussed 
above, there are several factors that determine which test to choose: 
 

− the kind of samples: dependent or independent (cf. Section 1.3.4.1 and 
the beginning of Chapter 4); 

− the level of measurement of the dependent variable: interval/ratio-scaled 
vs. ordinal; 

− the distribution of (interval/ratio-scaled) dependent variable: normal vs. 
non-normal; 

− the sample sizes. 
 

To reiterate the discussion at the beginning of this chapter: is the de-
pendent variable ratio-scaled as well as normally-distributed or both sample 
sizes are larger than 30 or are the differences between variables normally 
distributed, then you can usually do a t-test (for independent or dependent 
samples, as required) – otherwise you should do a U-test (for independent 
samples) or a Wilcoxon test (for dependent samples) (or, maybe, computa-
tionally intense exact tests). The reason for this decision procedure is that 
while the t-test for independent samples requires, among other things, nor-
mally distributed samples, we have seen that samples of 30+ elements can 
be normally distributed even if the underlying distribution is not. There-
fore, it is sometimes sufficient, though not conservative, if the data meet 
one of the two conditions. Strictly speaking, the t-test for independent sam-
ples also requires homogenous variances, which we will also test for, but 
we will discuss a version of the t-test that can handle heterogeneous vari-
ances, the t-test after Welch. 
 
 
3.2.1. One dep. variable (ratio-scaled) and one indep. variable (nominal) 

           (indep. samples) 

 
The t-test for independent samples is one of the most widely used tests. To 
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explore it, we use an example from the domain of phonetics. Let us assume 
you wanted to study the (rather trivial) non-directional H1 that the first 
formants’ frequencies of men and women differed. You plan an experiment 
in which you record men’s and women’s pronunciation of a relevant set of 
words and/or syllables, which you then analyze. This study involves 
 

− one dependent ratio-scaled variable, namely F1-FREQUENCIES, whose 
averages you are interested in; 

− one independent nominal variable, namely SEX: MALE vs. SEX: FEMALE; 

− independent samples since, if every subject provides just one data point, 
the data points are not related to each other. 

 
The test to be used for such scenarios is the t-test for independent sam-

ples and it involves the following steps: 
 

Procedure 

− Formulating the hypotheses 
− Computing descriptive statistics and visualizing the data 
− Testing the assumption(s) of the test: 
 − the population from which the samples whose means are tested have 

been drawn or at least the samples itself from which the means are 
computed are normally distributed (esp. with samples of n < 30) 

 − the variances of the populations from which the samples have been 
drawn or at least the variances of the samples are homogeneous 

 − the samples are independent of each other 
− Computing the test statistic t, df, and p 

 
You begin with the hypotheses. 

 
H0: The average F1 frequency of men is the same as the average F1 

frequency of women: meanF1 frequency of men = meanF1 frequency of women, or 
meanF1 frequency of men-meanF1 frequency of men = 0, or t = 0; 

H1: The average F1 frequency of men is not the same as the average F1 
frequency of women: meanF1 frequency of men ≠ meanF1 frequency of women, or 
meanF1 frequency of men-meanF1 frequency of men ≠ 0, or t ≠ 0. 

 
The data you will investigate here are part of the data borrowed from a 

similar experiment on vowels in Apache. First, you load the data from 
<_inputfiles/04-3-2-1_f1-freq.csv> into R: 
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> Vowels<-read.delim(file.choose()¶ 
> str(Vowels); attach(Vowels)¶ 

 
Then, you compute the relevant means and the standard deviations of 

the frequencies. As usual, we use the more elegant variant with tapply. 
 
> tapply(HZ_F1, SEX, mean)¶ 
       F         M 
528.8548  484.2740 
> tapply(HZ_F1, SEX, sd)¶ 
        F         M 
110.80099  87.90112 

 
To get a better impression of the data, you also immediately generate a 

boxplot. You set the limits of the y-axis such that it ranges from 0 to 1,000 
so that all values are nicely represented; in addition, you use rug to plot the 
values of the women and the men onto the left and right y-axis respectively; 
cf. Figure 51 and the code file for an alternative that includes a stripchart. 
 
> boxplot(HZ_F1~SEX, notch=TRUE, ylim=(c(0, 1000)), 

xlab="Sex", ylab="F1 frequency"); grid()¶ 
> rug(HZ_F1[SEX=="F"], side=2); rug(HZ_F1[SEX=="M"], side=4)¶ 

 

 

Figure 51. Boxplot for HZ_F1~SEX 

 
The next step consists of testing the assumptions of the t-test. Figure 51 

suggests that these data meet the assumptions. First, the boxplots for the 
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men and the women appear as if the data are normally distributed: the me-
dians are in the middle of the boxes and the whiskers extend nearly equally 
long in both directions. Second, the variances seem to be very similar since 
the sizes of the boxes and notches are very similar. However, of course you 
need to test this and you use the familiar Shapiro-Wilk test: 
 
> tapply(HZ_F1, SEX, shapiro.test)¶ 
$F 
 Shapiro-Wilk normality test 
data:  X[[1L]] 
W = 0.987, p-value = 0.7723 
$M 
 Shapiro-Wilk normality test 
data:  X[[2L]] 
W = 0.9724, p-value = 0.1907 

 
The data do not differ significantly from normality. Now you test for 

variance homogeneity with the F-test from Section 4.2.2 (whose assump-
tion of normality we now already tested). This test’s hypotheses are: 
 
H0: The variance of the first sample equals that of the second; F = 1. 
H1: The variance of one sample is larger than that of the second; F ≠ 1. 
 

The F-test with R yields the following result: 
 
> var.test(HZ_F1~SEX) # with a formula¶ 
 F test to compare two variances 
data:  HZ_F1 by SEX 
F = 1.5889, num df = 59, denom df = 59, p-value = 0.07789 
alternative hypothesis: true ratio of variances is not  

equal to 1 
95 percent confidence interval: 
 0.949093 2.660040 
sample estimates: 
ratio of variances 
         1.588907 

 
The second assumption is also met: since the confidence interval in-

cludes 1 and p > 0.05 so the variances are not significantly different from 
each other and you can compute the t-test for independent samples. This 
test involves three different statistics: the test statistic t, the number of de-
grees of freedom df, and of course the p-value. In the case of the t-test we 
discuss here, the t-test after Welch, the t-value is computed according to the 
formula in (46), where sd

2 is the variance, n is the sample size, and the 
subscripts 1 and 2 refer to the two samples of men and women. 
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> t.numerator<-mean(HZ_F1[SEX=="M"])-mean(HZ_F1[SEX=="F"])¶ 
> t.denominator<-sqrt((var(HZ_F1[SEX=="M"])/ 

length((HZ_F1[SEX=="M"])))+(var(HZ_F1[SEX=="F"])/ 
length((HZ_F1[SEX=="F"]))))¶ 

> t.value<-abs(t.numerator/t.denominator)¶ 

 
You get t = 2.441581. The formula for the degrees of freedom is some-

what more complex. First, you need to compute a value called c, and with 
c, you can then compute df. The formula to compute c is shown in (47), and 
the result of (47) gets inserted into (48). 
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> c.numerator<-var(HZ_F1[SEX=="M"])/length(HZ_F1[SEX=="M"])¶ 
> c.denominator<-t.denominator^2¶ 
> c.value<-c.numerator/c.denominator¶ 
> df.summand1<-c.value^2/(length(HZ_F1[SEX=="M"])-1)¶ 
> df.summand2<-((1-c.value)^2)/(length(HZ_F1[SEX=="F"])-1)¶ 
> df<-(df.summand1+df.summand2)^-1¶ 

 
You get c = 0.3862634 and df ≈ 112.195. You then look up the t-value 

in the usual kind of t-table (cf. Table 34) or you compute the critical t-value 
(with qt(c(0.025, 0.975), 112, lower.tail=FALSE)¶; as before, for a 
two-tailed test you compute the t-value for p = 0.025). 
 
Table 34. Critical t-values for ptwo-tailed = 0.05, 0.01, and 0.001 for 111 ≤ df ≤ 113 

 p = 0.05 p = 0.01 p = 0.001 

df = 111 1.9816 2.6208 3.3803 

df = 112 1.9814 2.6204 3.3795 

df = 113 1.9812 2.62 3.3787 
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As you can see, the observed t-value is larger than the one tabulated for 
p = 0.05, but smaller than the one tabulated for p = 0.01: the difference 
between the means is significant. The exact p-value can be computed with 
pt and for the present two-tailed case you simply enter this: 
 
> 2*pt(t.value, 112.195, lower.tail=FALSE)¶ 
[1] 0.01618534 

 
In R, you can use the function t.test, which takes several arguments, 

the first two of which – the relevant samples – can be given by means of a 
formula or with two vectors. These are the other relevant arguments: 
 

− alternative: a character string that specifies which H1 is tested: the 
default value, which can therefore be omitted, is "two.sided", other 
values for one-tailed hypotheses are again "less" or "greater"; as be-
fore, R considers the alphabetically first variable level (i.e., here “F”) as 
the reference category so that the one-tailed hypothesis that the values 
of the men are smaller than those of the women would be tested with 
alternative="greater"; 

− paired=FALSE for the t-test for independent samples (the default) or 
paired=TRUE for the t-test for dependent samples (cf. the next section); 

− var.equal=TRUE, when the variances of the two samples are equal, or 
var.equal=FALSE if they are not; the latter is the useful default, which 
should hardly be changed; 

− conf.level: a value between 0 and 1, which specifies the confidence 
interval of the difference between the means; the default is 0.95. 

 
Thus, to do the t-test for independent samples, you can enter either vari-

ant listed below. You get the following result: 
 
> t.test(HZ_F1~SEX, paired=FALSE)¶ 
 Welch Two Sample t-test 
data:  HZ_F1 by SEX 
t = 2.4416, df = 112.195, p-value = 0.01619 
alternative hypothesis: true difference in means is  

not equal to 0 
95 percent confidence interval: 
 8.403651 80.758016 
sample estimates: 
mean in group F mean in group M 
       528.8548        484.2740 
> t.test(HZ_F1[SEX=="F"], HZ_F1[SEX=="M"], paired=FALSE)¶ 
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The first two lines of the output provide the name of the test and the da-
ta to which the test was applied. Line 3 lists the test statistic t (the sign is 
irrelevant and depends on which mean is subtracted from which, but it must 
of course be considered for the manual computation), the df-value, and the 
p-value. Line 4 states the H1 tested. Then, you get the confidence interval 
for the differences between means (and our test is significant because this 
confidence interval does not include 0). Finally, you get the means again. 

You can sum up your results as follows: “In the experiment, the average 
F1 frequency of the vowels produced by men was 484.3 Hz (sd = 87.9), the 
average F1 frequency of the vowels produced by the women was 528.9 Hz 
(sd = 110.8). According to a t-test for independent samples, the difference 
of 44.6 Hz between the means is statistically significant, but not particular-
ly strong: tWelch = 2.4416; df = 112.2; ptwo-tailed = 0.0162.” 

In Section 5.2.2, we will discuss the extension of this test to cases where 
you have more than one independent variable and/or where the independent 
variable has more than two levels. 
 

Recommendation(s) for further study 

− Crawley (2007: 289ff.), Baayen (2008: Section 4.2.2), Sheskin (2011: 
Test 11) 

− see the code file for a function exact.t.test.indep that I wrote to 
compute an exact version of this F-test, which you can use when your 
sample sizes are very small (maybe <15); careful, this test may take 
quite some time (and it requires the library combinat) 

 
 
3.2.2. One dep. variable (ratio-scaled) and one indep. variable (nominal) 

          (dep. samples) 

 
The previous section illustrated a test for means from two independent 
samples. The name of that test suggests that there is a similar test for de-
pendent samples, which we will discuss in this section on the basis of an 
example from translation studies. Let us assume you want to compare the 
lengths of English and Portuguese texts and their respective translations 
into Portuguese and English. Let us also assume you suspect that the trans-
lations are on average longer than the originals. This question involves 
 

− one dependent ratio-scaled variable, namely the LENGTH of the texts; 

− one independent nominal/categorical variable, namely TEXTSOURCE: 
ORIGINAL vs. TEXTSOURCE: TRANSLATION; 
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− dependent samples since the LENGTH values for each translation are 
connected to those of each original text. 

 
Performing a t-test for dependent samples requires the following steps: 

 

Procedure 

− Formulating the hypotheses 
− Computing descriptive statistics and visualizing the data 
− Testing the assumption(s) of the test: the differences of the paired val-

ues of the dependent samples are normally distributed 
− Computing the test statistic t, df, and p 

 
As usual, you formulate the hypotheses, but note that this time the H1 is 

directional: you suspect that the average length of the originals is shorter 

than those of their translations, not just different (i.e., shorter or longer). 
Therefore, the statistical form of H1 does not just contain a “≠”, but some-
thing more specific, “<“: 
 
H0: The average of the pairwise differences between the lengths of the 

originals and the lengths of the translations is 0; meanpairwise dif-

fererences = 0; t = 0. 
H1: The average of the pairwise differences between the lengths of the 

originals and the lengths of the translations is smaller than 0; 
meanpairwise differerences < 0; t < 0. 

 
Note in particular (i) that the hypotheses do not involve the values of the 

two samples but the pairwise differences between them and (ii) how these 
differences are computed: original minus translation, not the other way 
round (and hence we use “< 0”). To illustrate this test, we will look at data 
from Frankenberg-Garcia (2004). She compared the lengths of eight Eng-
lish and eight Portuguese texts, which were chosen and edited such that 
their lengths were approximately 1,500 words, and then she determined the 
lengths of their translations. You can load the data from <_inputfiles/04-3-
2-2_textlengths.csv>: 
 
> Texts<-read.delim(file.choose()¶ 
> str(Texts); attach(Texts)¶ 

 
Note that the data are organized so that the order of the texts and their 

translations is identical: case 1 is an English original (hence, TEXT is 1, 
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TEXTSOURCE is ORIGINAL, LANGUAGE is ENGLISH), and case 17 is its trans-
lation (hence, TEXT is again 1, but TEXTSOURCE is now TRANSLATION, and 
LANGUAGE is PORTUGUESE), etc. First, you compute the means and gener-
ate a plot. 
 
> tapply(LENGTH, TEXTSOURCE, mean)¶ 
    Original  Translation 
    1500.062     1579.938 
> boxplot(LENGTH~TEXTSOURCE, notch=TRUE, ylim=c(0, 2000))¶ 
> rug(LENGTH, side=2)¶ 

 
The median translation length is a little higher than that of the originals 

and the two samples have very different dispersions (only because the 
lengths of the originals were ‘set’ to approximately 1,500 words and thus 
exhibit very little variation while the lengths of the translations were not 
controlled like that). 
 

 

Figure 52. Boxplot for LENGTH~TEXTSOURCE 

 
Now, this is actually a bad plot to represent the data – why? 

 

 

THINK 

BREAK 

 
This plot does not portray the information that the data points from the 

left part – the lengths of the originals – are related to those from the right 
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part – the lengths of their translations! Thus, see the code file for three bet-
ter plots (esp. the third). Given the controlled original lengths, the differ-
ence here is not that huge, but in other applications, a boxplot for depend-
ent samples like the above can be very misleading. 

Unlike the t-test for independent samples, the t-test for dependent sam-
ples does not presuppose a normal distribution or variance homogeneity of 
the sample values, but a normal distribution of the differences between the 
pairs of sample values. You can create a vector with these differences and 
then apply the Shapiro-Wilk test to it in one line with this shortcut. 
 
> shapiro.test(differences<-LENGTH[1:16]-LENGTH[17:32])¶ 
 Shapiro-Wilk normality test 
data:  differences 
W = 0.9569, p-value = 0.6057 

 
The differences do not differ significantly from normality so you can in 

fact do the t-test for dependent samples. First, you compute the t-value 
according to the formula in (49), where n is the number of value pairs. 
 

(49) t = 
sdifference

sdifference

sd

nx ⋅
 

 
> t.value<-(abs(mean(differences))* 

sqrt(length(differences)))/sd(differences)¶ 
> t,value 
[1] 1.927869 

 
Second, you compute the degrees of freedom df, which is the number of 

differences n minus 1: 
 
> df<-length(differences)-1; df¶ 
[1] 15 

 
First, you can now compute the critical values for p = 0.05 – this time 

not for 0.05/2 = 0.025 because you have a directional H1 – at df = 15 or, in a 
more sophisticated way, create the whole t-table. 
 
> qt(c(0.05, 0.95), 15, lower.tail=FALSE)¶ 
[1]  1.753050 -1.753050 

 
Second, you can look up the t-value in such a t-table, repeated here as 

Table 35. Since such tables usually only list the positive values, you use the 



Means        225 

 

absolute value of your t-value. As you can see, the differences between the 
originals and their translations is significant, but not very or highly signifi-
cant: 1.927869 > 1.7531, but 1.927869 < 2.6025. 
 
Table 35. Critical t-values for pone-tailed = 0.05, 0.01, and 0.001 (for 14 ≤ df ≤ 16) 

 p = 0.05 p = 0.01 p = 0.001 

df = 14 1.7613 2.6245 3.7874 

df = 15 1.7531 2.6025 3.7328 

df = 16 1.7459 2.5835 3.6862 

 
Alternatively, you can compute the exact p-value. Since you have a di-

rectional H1, you only need to cut off 5% of the area under the curve on one 
side of the distribution. The t-value following from H0 is 0 and the t-value 
you computed is approximately 1.93 so you must compute the area under 
the curve from 1.93 to +∞; cf. Figure 53. Since you are doing a one-tailed 
test, you need not multiply the p-value with 2. 
 
> pt(t.value, 15, lower.tail=FALSE)¶ 
[1] 0.03651146 

 

 

Figure 53. Density function for a t-distribution for df = 15, one-tailed test 

 
Note that this also means that the difference is only significant because 

you did a one-tailed test –a two-tailed test with its multiplication with 2 
would not have yielded a significant result but p = 0.07302292. 
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Now the same test with R. Since you already know the arguments of the 
function t.test, we can focus on the only major differences to before, the 
facts that you now have a directional H1 and need to do a one-tailed test 
and that you now do a paired test. To do that properly, you must first un-
derstand how R computes the difference. As mentioned above, R proceeds 
alphabetically and computes the difference ‘alphabetically first level minus 
alphabetically second level’ (which is why H1 was formulated this way 
above). Since “Original” comes before “Translation” and we hypothesized 
that the mean of the former would be smaller than that of the latter, the 
difference is smaller than 0. You therefore tell R that the difference is 
“less” than zero. 

Of course you can use the formula or the vector-based notation. I show 
the output of the formula notation but both ways result in the same output. 
You get the t-value (ours was positive only because we used abs), the df-
value, a p-value, and a confidence interval which, since it does not include 
0, also reflects the significant result. 
 
> t.test(LENGTH~TEXTSOURCE, paired=TRUE, alternative="less")¶ 
 Paired t-test 
data:  LENGTH by TEXTSOURCE 
t = -1.9279, df = 15, p-value = 0.03651 
alternative hypothesis: true difference in means is less  

than 0 
95 percent confidence interval: 
      -Inf -7.243041 
sample estimates: 
mean of the differences 
                -79.875 
> t.test(LENGTH[TEXTSOURCE=="Original"], LENGTH[TEXTSOURCE== 

"Translation"], paired=TRUE, alternative="less")¶ 

 
To sum up: “On average, the originals are approximately 80 words 

shorter than their translations (the 95% confidence interval of this differ-
ence is -Inf, -7.24). According to a one-tailed t-test for dependent samples, 
this difference is significant: t = -1.93; df = 15; pone-tailed = 0.0365. However, 
the effect is relatively small: the difference of 80 words corresponds to only 
about 5% of the length of the texts.” 
 

Recommendation(s) for further study 

− Crawley (2007: 298ff.), Baayen (2008: Section 4.3.1), Sheskin (2011: 
Test 17) 

− see the code file for a function exact.t.test.dep that I wrote to com-
pute an exact version of this F-test, which you can use when your sam-
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ple sizes are very small (maybe <15); careful, this test may take quite 
some time (for this example, it returns nearly the exact same p-value) 

 
 
3.2.3. One dep. variable (ordinal) and one indep. variable (nominal) 

           (indep. samples) 

 
In this section, we discuss a non-parametric test for two independent sam-
ples of ordinal data, the U-test. Since I mentioned at the beginning of Sec-
tion 4.3.2 that the U-test is not only used when the samples to be compared 
consist of ordinal data, but also when they violate distributional assump-
tions, this section will again involve an example where only a test of these 
distributional assumptions allows you to decide which test to use. 

In Section 4.3.1.2 above, you looked at the similarities of source words 
entering into subtractive word formations and you tested whether these 
similarities were on average different from the known average similarity of 
random words to each other. The data you used were of the kind studied in 
Gries (2006) but in the above example no distinction was made between 
source words entering into different kinds of subtractive word formations. 
This is what we will do here by comparing similarities of source words 
entering into blends to similarities of source words entering into complex 
clippings. If both kinds of word-formation processes differed according to 
this parameter, this would provide empirical motivation for distinguishing 
them in the first place. This example, thus, involves 
 

− one dependent ratio-scaled variable, namely the SIMILARITY of the 
source words whose averages you are interested in; 

− one independent nominal variable, namely PROCESS: BLEND vs. 
PROCESS: COMPLCLIP; 

− independent samples since the Dice coefficient of any one pair of source 
words has nothing to do with any one other pair of source words. 

 
This kind of question would typically be investigated with the t-test for 

independent samples we discussed above. According to the above proce-
dure, you first formulate the hypotheses (non-directionally, since we may 
have no a priori reason to assume a particular difference): 
 
H0: The mean of the Dice coefficients of the source words of blends is 

the same as the mean of the Dice coefficients of the source words 
of complex clippings; meanDice coefficients of blends = meanDice coefficients of 
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complex clippings, or meanDice coefficients of blends - meanDice coefficients of complex clip-

pings = 0. 
H1: The mean of the Dice coefficients of the source words of blends is 

not the same as the mean of the Dice coefficients of the source 
words of complex clippings; meanDice coefficients of blends ≠ meanDice coeffi-

cients of complex clippings, or meanDice coefficients of blends - meanDice coefficients of 

complex clippings ≠ 0. 
 

You can load the data from the file <_inputfiles/04-3-2-3_dices.csv>. 
As before, this file contains the Dice coefficients, but now also in an addi-
tional column the word formation process for each Dice coefficient. 
 
> Dices<-read.delim(file.choose())¶ 
> str(Dices); attach(Dices)¶ 

 
As usual, you should begin by exploring the data graphically: 

 
> boxplot(DICE~PROCESS, notch=TRUE, ylim=c(0, 1), 

ylab="Dice")¶ 
> rug(jitter(DICE[PROCESS=="Blend"]), side=2)¶ 
> rug(jitter(DICE[PROCESS=="ComplClip"]), side=4)¶ 
> text(1:2, tapply(DICE, PROCESS, mean), "x")¶ 

 

 

Figure 54. Boxplot for SIMILARITY~PROCESS 

 
As usual, this graph already gives away enough information to nearly 

obviate the need for statistical analysis. The probably most obvious aspect 
is the difference between the two medians, but since the data are ratio-
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scaled you also need to explore the means. These are already plotted into 
the graph and here is the usual line of code to compute them; note how 
large the difference is between the two. 
 
> tapply(DICE, PROCESS, mean)¶ 
    Blend ComplClip 
  0.22996   0.12152 
> tapply(DICE, PROCESS, sd)¶ 
      Blend  ComplClip 
  0.4274985 0.04296569 

 
In order to test whether the t-test for independent samples can be used 

here, we need to test both of its assumptions, normality in the groups and 
variance homogeneity. Since the F-test for homogeneity of variances pre-
supposes normality, you begin by testing whether the data are normally 
distributed. The rugs in Figure 54 suggest they are not, which is supported 
by the Shapiro-Wilk test. 
 
> tapply(DICE, PROCESS, shapiro.test)¶ 
$Blend 
 Shapiro-Wilk normality test 
data:  X[[1L]] 
W = 0.9455, p-value = 0.02231 
$ComplClip 
 Shapiro-Wilk normality test 
data:  X[[2L]] 
W = 0.943, p-value = 0.01771 

 
Given these violations of normality, you can actually not do the regular 

F-test to test the second assumption of the t-test for independent samples. 
You therefore do the Fligner-Killeen test of homogeneity of variances, 
which does not require the data to be normally distributed and which I 
mentioned in Section 4.2.2 above. 
 
> fligner.test(DICE~PROCESS)¶ 
 Fligner-Killeen test of homogeneity of variances 
data:  DICE by PROCESS 
Fligner-Killeen:med chi-squared=3e-04, df=1, p-value=0.9863 

 
The variances are homogeneous, but normality is still violated. It fol-

lows that even though the data are ratio-scaled and even though the sample 
sizes are larger than 30, it may safer to compute a test that does not make 
these assumptions, the U-test. 
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Procedure 

− Formulating the hypotheses 
− Computing descriptive statistics and visualizing the data 
− Testing the assumption(s) of the test: 
 − the samples are independent of each other 
 − the populations from which the samples whose central tendencies are 

tested have been drawn are identically distributed  2266 
− Computing the test statistic U, z, and p 

 
The two boxplots look relatively similar and the variances of the two 

groups are not significantly different, and the U-test is robust (see above) 
so we use it here. Since the U-test assumes only ordinal data, you now 
compute medians, not just means. You therefore adjust your hypotheses 
and compute medians and interquartile ranges: 
 
H0: The median of the Dice coefficients of the source words of blends 

is as large as the median of the Dice coefficients of the source 
words of complex clippings; medianDice coefficients of blends = medianDice 

coefficients of complex clippings, or medianDice coefficients of blends - medianDice coeffi-

cients of complex clippings = 0. 
H1: The median of the Dice coefficients of the source words of blends 

is not as large as the median of the Dice coefficients of the source 
words of complex clippings; medianDice coefficients of blends ≠ medianDice 

coefficients of complex clippings, or medianDice coefficients of blends - medianDice coeffi-

cients of complex clippings ≠ 0. 
 
> tapply(DICE, PROCESS, median)¶ 
    Blend ComplClip 
    0.2300     0.1195 
> tapply(DICE, PROCESS, IQR)¶ 
    Blend ComplClip 
   0.0675    0.0675 

 
Here, the assumptions can be tested fairly unproblematically: The val-

ues are independent of each other since no word-formation influences an-
other one, the distributions of the data in Figure 54 appear to be rather simi-
lar, and a Kolmogorov-Smirnov test of the z-standardized Dice values for 
both word-formation processes is completely insignificant (p = 0.9972). 

Unfortunately, computing the U-test is more cumbersome than many 

                                                      
26. According to Bortz, Lienert, and Boehnke (1990:211), the U-test can discover differ-

ences of measures of central tendency well even if this assumption is violated. 
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other tests. First, you transform all Dice coefficients into ranks, and then 
you compute the sum of all ranks for each word-formation process. Then, 
both of these T-values and the two sample sizes are inserted into the formu-
lae in (50) and (51) to compute two U-values, the smaller one of which is 
the required test statistic. 
 
> Ts<-tapply(rank(DICE), PROCESS, sum)¶ 

 

(50) U1 = 
( )

1
11

21
2

1
T

nn
nn −

+⋅
⋅ +  

(51) U2 = 
( )

2
22

21
2

1
T

nn
nn −

+⋅
⋅ +  

 
> n1<-length(DICE[PROCESS=="Blend"])¶ 
> n2<-length(DICE[PROCESS=="ComplClip"])¶ 
> U1<-n1*n2+((n1*(n1+1))/2)-Ts[1]¶ 
> U2<-n1*n2+((n2*(n2+1))/2)-Ts[2]¶ 
> U.value<-min(U1, U2)¶ 

 
The U-value, 84, can be looked up in a U-table or, because there are few 

U-tables for large samples,27 converted into a normally-distributed z-score. 
This z-score is computed as follows. First, you use the formulae in (52) and 
(53) to compute an expected U-value and its dispersion. 
 
(52) Uexpected = 0.5·n1·n2 

(53) Dispersion Uexpected = 
( )
12

12121 ++⋅⋅ nnnn
 

 
Second, you insert these values together with the observed U into (54). 

 

(54) z = 
expected

expected

U  Dispersion

UU −
 

 
> expU<-n1*n2/2¶ 
> dispersion.expU<-sqrt(n1*n2*(n1+n2+1)/12)¶ 
> z<-abs((U.value-expU)/dispersion.expU)¶ 

                                                      
27. Bortz, Lienert and Boehnke (1990:202 and Table 6) provide critical U-values for n ≤ 20 

and mention references for tables with critical values for n ≤ 40 – I at least know of no 
U-tables for larger samples. 
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To decide whether H0 can be rejected, you look up this value, 8.038194, 
in a z-table such as Table 36 or you compute a critical z-score for ptwo-tailed = 
0.05 with qnorm (as mentioned in Section 1.3.4.2 above). Since you have a 
non-directional H1, you apply the same logic as above and compute z-
scores for half of the ptwo-tailed-values you are interested in: 
 
Table 36. Critical z-scores for ptwo-tailed = 0.05, 0.01, and 0.001 

z-score p-value 

1.96 0.05 

2.575 0.01 

3.291 0.001 

 
> qnorm(c(0.9995, 0.995, 0.975, 0.025, 0.005, 0.0005),  

lower.tail=FALSE)¶ 
[1] -3.290527 -2.575829 -1.959964  1.959964  2.575829   

3.290527 

 
It is obvious that the observed z-score is not only much larger than the 

one tabulated for ptwo-tailed = 0.001 but also very distinctly in the grey-
shaded area in Figure 55: the difference between the medians is highly 
significant, as the non-overlapping notches already anticipated. Plus, you 
can compute the exact p-value with the usual ‘mirror function’ of qnorm. 
 

 

Figure 55. Density function of the standard normal distribution; two-tailed test 
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> 2*pnorm(z, lower.tail=FALSE)¶ 
[1] 9.117223e-16 

 
In R, you compute the U-test with the same function as the Wilcoxon 

test, wilcox.test, and again you can either use a formula or two vectors. 
Apart from these arguments, the following ones are useful, too: 
 

− alternative: a character string specifying which H1 you want to test: 
the default is "two.sided", other possible values for one-tailed tests are 
again "less" or "greater", which specify how the first-named vector 
or factor level relates to the second; 

− paired=FALSE for the U-Test for independent samples or paired=TRUE 
for the Wilcoxon test for dependent samples (cf. the following section); 

− exact=TRUE, if you want to compute an exact test, or exact=FALSE if 
you don’t (if you don’t change exact’s default setting of NULL and your 
data set has fewer than 50 data points and no ties, an exact p-value is 
computed automatically); 

− correct=TRUE for a continuity correction (the default) and cor-
rect=FALSE for none; 

− conf.level: a value between 0 and 1 specifying the size of the confi-
dence interval; the default is 0.95. 

 
The standard version to be used here is this: 

 
> wilcox.test(DICE~PROCESS, paired=FALSE, correct=FALSE)¶ 
 Wilcoxon rank sum test 
data:  DICE by PROCESS 
W = 2416, p-value = 9.072e-16 
alternative hypothesis: true location shift is not equal to 0 

 
You get a U-value (here referred to as W) and a p-value; W is not the 

minimum of U1 and U2, but the maximum here, which value you get de-
pends on which vector or factor level comes first in the alphabet. The p-
value here is a bit different from yours since R uses a slightly different 
algorithm. You can now sum up: “According to a U-test, the median Dice 
coefficient of the source words of blends (0.23, IQR = 0.0675) and the me-
dian of the Dice coefficients for complex clippings (0.12, IQR = 0.0675) 
are very significantly different: U = 84 (or W = 2416), ptwo-tailed < 0.0001. 
The creators of blends appear to be more concerned with selecting source 
words that are similar to each other than the creators of complex clippings.” 
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Recommendation(s) for further study: 
Dalgaard (2002: 89f.), Crawley (2007: 297f.), Baayen (2008: Section 
4.3.1), Sheskin (2011: Test 12) 

 
 
3.2.4. One dep. variable (ordinal) and one indep. variable (nominal) 

          (dep. samples) 

 
Just like the U-test, the test in this section has two major applications. First, 
you really may have two dependent samples of ordinal data such as when 
you have a group of subjects perform two rating tasks to test whether each 
subject’s first rating differs from the second. Second, the probably more 
frequent application arises when you have two dependent samples of ratio-
scaled data but cannot do the t-test for dependent samples because its dis-
tributional assumptions are not met. We will discuss an example of the 
latter kind in this section. 

In a replication of Bencini and Goldberg (2000), Gries and Wulff (2005) 
studied the question which verbs or sentence structures are more relevant 
for how German foreign language learners of English categorize sentences. 
They crossed four syntactic constructions and four verbs to get 16 sentenc-
es, each verb in each construction. Each sentence was printed onto a card 
and 20 advanced German learners of English were given the cards and 
asked to sort them into four piles of four cards each. The question was 
whether the subjects’ sortings would be based on the verbs or the construc-
tions. To determine the sorting preferences, each subject’s four stacks were 
inspected with regard to how many cards one would minimally have to 
move to create either four completely verb-based or four completely con-
struction-based sortings. The investigation of this question involves 
 

− one dependent ratio-scaled variable, namely SHIFTS, the number of 
times a card had to be shifted from one stack to another to create the 
perfectly clean sortings, and we are interested in the average of these 
numbers; 

− one independent nominal variable, namely CRITERION: CONSTRUCTION 
vs. CRITERION: VERB; 

− dependent samples since each subject ‘generated’ two numbers of shifts, 
one to create the verb-based sorting, one to create the construction-
based sorting. 
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To test some such result for significance, you should first consider a t-
test for dependent samples since you have two samples of ratio-scaled val-
ues. As usual, you begin by formulating the relevant hypotheses: 
 
H0: The average of the pairwise differences between the numbers of 

rearrangements towards perfectly verb-based stacks and the num-
bers of rearrangements towards perfectly construction-based stacks 
is 0; meanpairwise differerences = 0. 

H1: The average of the pairwise differences between the numbers of 
rearrangements towards perfectly verb-based stacks and the num-
bers of rearrangements towards perfectly construction-based stacks 
is not 0; meanpairwise differerences ≠ 0. 

 
Then, you load the data that Gries and Wulff (2005) obtained in their 

experiment from <_inputfiles/04-3-2-4_sortingstyles.csv>: 
 
> SortingStyles<-read.delim(file.choose())¶ 
> head(SortingStyles, 3); attach(SortingStyles)¶ 

 
As usual, you compute means and standard deviations and generate a 

graph of the results. 
 
> tapply(SHIFTS, CRITERION, mean)¶ 
Construction          Verb 
        3.45          8.85 
> tapply(SHIFTS, CRITERION, sd)¶ 
Construction          Verb 
    4.346505      4.107439 
> differences<-SHIFTS[CRITERION=="Construction"]-

SHIFTS[CRITERION!="Construction"]¶ 
> stripchart(differences, method="stack", xlim=c(-12, 12),  

xlab="Differences: ->construction minus ->verb"); 
abline(v=0, lty=2, col="grey")¶ 

 
Note: since the two samples are dependent, we are plotting the differ-

ences, just as in Section 4.3.2.2 above. You then test the assumption of the 
t-test for dependent samples, the normality of the pairwise differences. 
Given Figure 56, those are obviously not normal: 
 
> shapiro.test(differences)¶ 
 Shapiro-Wilk normality test 
data:  differences 
W = 0.7825, p-value = 0.0004797 
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Figure 56. Strip chart of the differences of shifts 

 
You cannot use the t-test. Instead, you compute a test for two dependent 

samples of ordinal variables, the Wilcoxon test. 
 

Procedure 

− Formulating the hypotheses 
− Computing descriptive statistics and visualizing the data 
− Testing the assumption(s) of the test: 
 − the pairs of values are independent of each other 
 − the populations from which the samples whose central tendencies are 

tested have been drawn are identically distributed 
− Computing the test statistic T and p 

 
As a first step, you adjust your hypotheses to the ordinal level of meas-

urement, you then compute the medians and their interquartile ranges: 
 
H0: medianpairwise differerences = 0 
H1: medianpairwise differerences ≠ 0 
 
> tapply(SHIFTS, CRITERION, median)¶ 
Construction         Verb 
           1           11 
> tapply(SHIFTS, CRITERION, IQR)¶ 
Construction         Verb 
        6.25         6.25 
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The assumptions appear to be met because the pairs of values are inde-
pendent of each other (since the sorting of any one subject does not affect 
any other subject’s sorting) and, somewhat informally, there is little reason 
to assume that the populations are distributed differently especially since 
most of the values to achieve a perfect verb-based sorting are the exact 
reverse of the values to get a perfect construction-based sorting. Thus, you 
compute the Wilcoxon test; for reasons of space we only consider the 
standard variant. First, you transform the vector of pairwise differences, 
which you already computed for the Shapiro-Wilk test, into ranks: 
 
> ranks<-rank(abs(differences))¶ 

 
Second, all ranks whose difference was negative are summed to a value 

T-, and all ranks whose difference was positive are summed to T+; the 
smaller of the two values is the required test statistic T:28 
 
> T.minus<-sum(ranks[differences<0])¶ 
> T.plus<-sum(ranks[differences>0])¶ 
> T.value<-min(T.minus, T.plus)¶ 

 
This T-value of 41.5 can be looked up in a T-table (Table 37), but note 

that here, for a significant result, the observed test statistic must be smaller 
than the tabulated one. 
 
Table 37. Critical T-values for ptwo-tailed = 0.05, 0.01, and 0.001 for 14 ≤ df ≤ 16 

 p = 0.05 p = 0.01 p = 0.001 

n = 19 46 32 18 

n = 20 52 37 21 

n = 21 58 42 25 

 
The observed T-value of 41.5 is smaller than the one tabulated for n = 

20 and p = 0.05 (but larger than the one tabulated for n= 20 and p = 0.01): 
the result is significant. 

Let us now do this test with R: You already know the function for the 
Wilcoxon test so we need not discuss it again in detail. The relevant differ-
ence is that you now instruct R to treat the samples as dependent/paired. As 
nearly always, you can use the formula or the vector-based function call. 
 

                                                      
28. The way of computation discussed here is the one described in Bortz (2005). It disre-

gards ties and cases where the differences are zero; cf. also Sheskin (2011:812). 
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> wilcox.test(SHIFTS~CRITERION, paired=TRUE, exact=FALSE,  
correct=FALSE)¶ 

 Wilcoxon signed rank test 
data:  SHIFTS by CRITERION 
V = 36.5, p-value = 0.01527 
alternative hypothesis: true location shift is not equal to 0 

 
R computes the test statistic differently but arrives at the same kind of 

decision: the result is significant, but not very significant. To sum up: “On 
the whole, the 20 subjects exhibited a strong preference for a construction-
based sorting style: the median number of card rearrangements to arrive at 
a perfectly construction-based sorting was 1 while the median number of 
card rearrangements to arrive at a perfectly verb-based sorting was 11 (both 
IQRs = 6.25). According to a Wilcoxon test, this difference is significant: V 
= 36.5, ptwo-tailed = 0.0153. In this experiment, the syntactic patterns were a 
more salient characteristic than the verbs (when it comes to what triggered 
the sorting preferences).” 
 

Recommendation(s) for further study: 
− Dalgaard (2002:92), Sheskin (2011: Test 18) 

 
 

4. Coefficients of correlation and linear regression 

 
In this section, we discuss the significance tests for the coefficients of cor-
relation discussed in Section 3.2.3. 
 
 
4.1. The significance of the product-moment correlation 
 
While the manual computation of the product-moment correlation above 
was a bit complex, its significance test is not. It involves these steps: 
 

Procedure 

− Formulating the hypotheses 
− Computing descriptive statistics and visualizing the data 
− Testing the assumption(s) of the test: the population from which the 

sample was drawn is bivariately normally distributed. Since this criteri-
on can be hard to test (cf. Bortz 2005: 213f.), we simply require both 
samples to be distributed normally 

− Computing the test statistic t, df, and p 
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Let us return to the example in Section 3.2.3, where you computed a 
correlation coefficient of 0.9337 for the correlation of the lengths of 20 
words and their reaction times. You formulate the hypotheses and we as-
sume for now your H1 is non-directional. 
 
H0: The length of a word in letters does not correlate with the word’s 

reaction time in a lexical decision task; r = 0. 
H1: The length of a word in letters correlates with the word’s reaction 

time in a lexical decision task; r ≠ 0. 
 

You load the data from <_inputfiles/04-4_reactiontimes.csv>: 
 
> ReactTime<-read.delim (file.choose())¶ 
> str(ReactTime); attach(ReactTime)¶ 

 
Since we already generated a scatterplot above (cf. Figure 35 and Figure 

36), we will skip plotting for now. We do, however, have to test the as-
sumption of normality of both vectors. You can either proceed in a step-
wise fashion and enter shapiro.test(LENGTH)¶ and shapiro.test( 
MS_LEARNER)¶ or use a shorter variant: 
 
> apply(ReactTime[,2:3], 2, shapiro.test)¶ 
$LENGTH 
 Shapiro-Wilk normality test 
data:  newX[, i] 
W = 0.9748, p-value = 0.8502 
$MS_LEARNER 
 Shapiro-Wilk normality test 
data:  newX[, i] 
W = 0.9577, p-value = 0.4991 

 
This line of code means ‘take the data mentioned in the first argument 

of apply (the second and third column of the data frame ReactTime), look 
at them column by column (the 2 in the second argument slot – a 1 would 
look at them row-wise; recall this notation from prop.table in Section 
3.2.1), and apply the function shapiro.test to each of these columns. 
Clearly, both variables do not differ significantly from a normality. 

To compute the test statistic t, you insert the correlation coefficient r 
and the number of correlated value pairs n into the formula in (55): 
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(55) t = 
21

2

r

nr

−

−⋅
 

 
> r<-cor(LENGTH, MS_LEARNER, method="pearson")¶ 
> numerator<-r*sqrt(length(LENGTH)-2)¶ 
> denominator<-sqrt(1-r^2)¶ 
> t.value<-abs(numerator/denominator)¶ 

 
This t-value, 11.06507, has df = n-2 = 18 degrees of freedom. 

 
> df<-length(LENGTH)-2¶ 

 
Just as with the t-tests before, you can now look this t-value up in a t-

table, or you can compute a critical value: if the observed t-value is higher 
than the tabulated/critical one, then r is significantly different from 0. Since 
your t-value is much larger than even the one for p = 0.001, the correlation 
is highly significant. 
 
> qt(c(0.025, 0.975), 18, lower.tail=FALSE)¶ 
[1]  2.100922 -2.100922 

 
Table 38. Critical t-values for ptwo-tailed = 0.05, 0.01, and 0.001 for 

17 ≤ df ≤ 19 

 p = 0.05 p = 0.01 p = 0.001 

df = 17 2.1098 2.8982 3.9561 

df = 18 2.1009 2.8784 3.9216 

df = 19 2.093 2.8609 3.8834 

 
The exact p-value can be computed as follows, and do not forget to 

again double the p-value. 
 
> 2*pt(t.value, 18, lower.tail=FALSE)¶ 
[1] 1.841060e-09 

 
This p-value is obviously much smaller than 0.001. However, you will 

already suspect that there is an easier way to get all this done. Instead of the 
function cor, which we used in Section 3.2.3 above, you simply use 
cor.test with the two vectors whose correlation you are interested in 
(and, if you have a directional H1, you specify whether you expect the cor-
relation to be less than 0 (i.e., negative) or greater than 0 (i.e., positive) 



Coefficients of correlation and linear regression        241 

 

using alternative=…): 
 
> cor.test(LENGTH, MS_LEARNER, method="pearson")¶ 
 Pearson's product-moment correlation 
data:  LENGTH and MS_LEARNER 
t = 11.0651, df = 18, p-value = 1.841e-09 
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval: 
 0.8370608 0.9738525 
sample estimates: 
      cor 
0.9337171 

 
Here are the (edited) results of the corresponding linear regression: 

 
> model<-lm(MS_LEARNER~LENGTH)¶ 
> summary(model)¶ 
Call: 
lm(formula = MS_LEARNER ~ LENGTH) 
 
Residuals: 
     Min       1Q   Median       3Q      Max 
-22.1368  -7.8109   0.8413   7.9499  18.9501 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept)  93.6149     9.9169    9.44 2.15e-08 *** 
LENGTH       10.3044     0.9313   11.06 1.84e-09 *** 
---                                                       […] 
Multiple R-Squared: 0.8718,     Adjusted R-squared: 0.8647 
F-statistic: 122.4 on 1 and 18 DF,  p-value: 1.841e-09 

 
We begin at the bottom: the last row contains information we already 

know. The F-value is our t-value squared; we find the 18 degrees of free-
dom and the p-value we computed. In the line above that, you find the co-
efficient of determination you know plus an adjusted version we will only 
talk about later (cf. Section 5.2). We ignore the edited-out line about the 
residual standard error for now and the legend for the p-values. The table 
above that shows the intercept and the slope we computed in Section 3.2.3 
(in the column labeled “Estimate”), their standard errors, t-values – do you 
recognize the t-value from above? – and p-values. The p-value for LENGTH 
says whether the slope of the regression line is significantly different from 
0; the p-value for the intercept says whether the intercept of 93.6149 is 
significantly different from 0. We skip the info on the residuals because we 
discussed above how you can investigate those yourself (with residu-
als(model)¶). 

There is one final but immensely useful thing to be discussed. Recall 
that above we used the function predict to get the predicted reaction times 
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for every observed word length, but also predicted reaction times for non-
observed word lengths. The function predict can return more than this, 
however: it can also return confidence intervals for the predictions, which 
also allows to plot the regression line with its confidence interval. Since we 
will use this frequently in Chapter 5, we will go over one example here, 
which will involve three steps. 

The first step repeats what we did above: we generate a data frame 
preds.hyp that contains a range of values covering the observed word 
lengths and that we will pass on to predict, and we do that as in Section 
3.2.3 with expand.grid(). I call it preds.hyp to indicate that these are 
predictions from the model not for the actually observed lengths but for a 
range of hypothetical values. Note again that the column in preds.hyp has 
the same name as the independent variable in model. 
 
> preds.hyp<-expand.grid(LENGTH=min(LENGTH):max(LENGTH))¶ 

 
The second step is also similar to Section 3.2.3 above, but with two 

small changes. We not only use predict to generate the predictions from 
model for this data frame, but (i) we also let R compute the confidence 
intervals for all predictions and (ii) we make the predictions and the confi-
dence intervals columns 2 to 4 in preds.hyp: 
 
> preds.hyp[c("PREDICTIONS", "LOWER", "UPPER")]<-predict( 

model, newdata=preds.hyp, interval="confidence")¶ 

 
If you look at the data frame preds.hyp now, you will see we now have 

a very nice result: the independent variable is in the column 
preds.hyp$LENGTH, the predicted dependent variable is in the column 
preds.hyp$PREDICTIONS, and the lower and upper confidence intervals for 
each prediction are in the columns preds.hyp$LOWER and 
preds.hyp$UPPER respectively. 

The third step now involves generating a nice plot. The following code 
pulls many things together and introduces the function matlines: 
 
> plot(MS_LEARNER~LENGTH, xlab="Word length in letters",  

ylab="Reaction time of learners in ms", pch=16,  
col=rgb(0, 0, 0, 70, maxColorValue=255)); grid()¶ 

> matlines(preds.hyp[,1], preds.hyp[,2:4], lwd=c(2, 1,  
1), lty=c(1, 2, 2), col=c("black", "blue", "blue"))¶ 

 
The first line just generates a regular scatterplot – the only new thing is 

the use of the function rgb to use a semi-transparent greyshade to avoid 
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information loss through overplotting. The second line uses matlines: the 
first argument is the first column of preds.hyp and provides the x-values 
for the lines to be plotted. The second argument is columns 2 to 4 of 
preds.hyp and provides three different sets of y-values to plot with sepa-
rate lines: first the predicted values (= the regression line), second and third 
the lower and upper limits of the confidence intervals. The arguments lwd 
(line width), lty (line type), and col (color) describe what the lines should 
look like, in the order in which they appear in preds.hyp. The result you 
see when you run the code: a scatterplot with a regression line and its con-
fidence band, and we can see again why the correlation is so high: not only 
is the regression line a good summary of the data, the confidence band is 
quite narrow around it and many points are right in it or very close to it. 

This was a very detailed description, but since we will use this many 
times in Chapter 5, this is time well spent. To sum up: “The lengths of the 
words in letters and the reaction times in the experiment correlate highly 
positively with each other: r = 0.9337; adjusted R2 = 0.8647. This correla-
tion is highly significant: t = 11.07; df = 18; p < 0.001. The linear regres-
sion shows that every additional letter increases the reaction time by ap-
proximately 10.3 ms.” 

In Section 5.2, we deal with the extensions of linear regression to cases 
where we include more than one independent variable, and we will also 
discuss more comprehensive tests of the regression’s assumptions (using 
plot(model)¶). 
 
 
4.2. The significance of Kendall’s Tau 
 
If you need a p-value for Kendall’s tau τ, you follow this procedure: 
 

Procedure 

− Formulating the hypotheses 
− Computing descriptive statistics and visualizing the data 
− Testing the assumption(s) of the test: the data from both samples are at 

least ordinal 
− Computing the test statistic z and p 

 
Again, we simply use the example from Section 3.2.3 above (even 

though we know we can actually use the product-moment correlation; we 
use this example again just for simplicity’s sake). How to formulate the 
hypotheses should be obvious by now: 
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H0: The length of a word in letters does not correlate with the word’s 
reaction time in a lexical decision task; τ = 0. 

H1: The length of a word in letters correlates with the word’s reaction 
time in a lexical decision task; τ ≠ 0. 

 
As for the assumption: we already know the data are ordinal – after all, 

we know they are even interval/ratio-scaled. You load the data again from 
<_inputfiles/03-2-3_reactiontimes.csv> and compute Kendall’s τ: 
 
> ReactTime<-read.delim (file.choose())¶ 
> str(ReactTime); attach(ReactTime)¶ 
> tau<-cor(LENGTH, MS_LEARNER, method="kendall")¶ 

 
To test Kendall’s tau τ for significance, you compute a z-score of the 

kind that is by now familiar. You insert τ and the number of value pairs n 
into the formula in (56). 
 

(56) z = 
( )
( )19

522

−⋅⋅

+⋅⋅
÷

nn

n
τ  

 
In R: 

 
> numerator.root<-2*(2*length(LENGTH)+5)¶ 
> denominator.root<-9*length(LENGTH)*(length(LENGTH)-1)¶ 
> z.score<-abs(tau)/sqrt(numerator.root/denominator.root)¶ 
> z.score¶ 
[1] 5.048596 

 
This value can be looked up in a z-table (cf. Table 36) or you generate 

these values yourself. The z-score for a significant two-tailed test must cut 
off at least 2.5% of the area under the standard normal distribution: 
 
> qnorm(c(0.9995, 0.995, 0.975, 0.025, 0.005, 0.0005),  

lower.tail=FALSE)¶ 
[1] -3.290527 -2.575829 -1.959964  1.959964  2.575829   

3.290527 

 
For a result to be significant, the z-score must be larger than 1.96. Since 

the observed z-score is even larger than 5, this result is highly significant: 
 
> 2*pnorm(z.score, lower.tail=FALSE)¶ 
[1] 4.450685e-07 
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The function to get this result much faster is again cor.test. Since R 
uses a slightly different method of calculation, you get a slightly different 
z-score and p-value, but for all practical purposes the results are identical. 
 
> cor.test(LENGTH, MS_LEARNER, method="kendall")¶ 
 Kendall's rank correlation tau 
data:  LENGTH and MS_LEARNER 
z = 4.8836, p-value = 1.042e-06 
alternative hypothesis: true tau is not equal to 0 
sample estimates: 
      tau 
0.8189904 

 
(The warning refers to ties such as that the length value 11 occurs more 

than once). To sum up: “The lengths of the words in letters and the reaction 
times in the experiment correlate highly positively with each other: τ = 
0.819, z = 5.05; p < 0.001.” 
 
 
4.3. Correlation and causality 
 
Especially in the area of correlations, but also more generally, you need to 
bear in mind a few things even if H0 is rejected: First, one can often hear a 
person A making a statement about a correlation (maybe even a significant 
one) by saying “The more X, the more Y” and then hear a person B object-
ing to that correlation on the grounds that B knows of an exception. This 
argument is flawed. The exception quoted by B would only invalidate A’s 
statement if A considered the correlation to be perfect (r = 1 or r = -1) – but 
if A did not mean that (and A never does!), then there may be a strong and 
significant correlation although there is one exception (or more). The ex-
ception or exceptions are the reason why the correlation is not 1 or -1 but 
‘only’, say, 0.9337. Second, a correlation as such does not necessarily im-
ply causality. As is sometimes said, a correlation between X and Y is a 
necessary condition for a causal relation between X and Y, but not a suffi-

cient one, as you can see from many examples: 
 

− There is a positive correlation between the number of firefighters trying 
to extinguish a fire and the amount of damage that is caused at the site 
where the fire was fought. This does of course not mean that the fire-
fighters arrive at the site and destroy as much as they can – the correla-
tion results from a third, confounding variable, the size of the fire: the 
larger the fire, the more firefighters are called to help extinguish it and 
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the more damage the fire causes. 

− There is a negative correlation between the amount of hair men have 
and their income which is unfortunately only due to the effect of a third 
variable: the men’s age. 

− There is a positive correlation such that the more likely a drug addict 
was to go to therapy to get off of his addiction, the more likely he was 
to die. This is not because the therapy leads to death – the confounding 
variable in the background correlated with both is the severity of the ad-
diction: the more severely addicted addicts were, the more likely they 
were to go to therapy, but also the more likely they already were to die. 

 
Thus, beware of jumping to conclusions … 
Now you should do the exercise(s) for Chapter 4 … 

 

Recommendation(s) for further study 

− the functions ckappa and lkappa (from the library psy) to compute the 
kappa coefficient and test how well two or more raters conform in their 
judgments of stimuli 

− the function cronbach (from the library psy) to compute Cronbach’s 
alpha and test how consistently several variables measure a construct 
the variables are supposed to reflect 

− Crawley (2007: Ch. 10), Baayen (2008: Section 4.3.2), Johnson (2008: 
Section 2.4), Sheskin (2011: Test 28, 30, 31, 32) 

− the function hints (from the library hints) to get ideas about what to 
do next with a particular object 



 

Chapter 5 

Selected multifactorial and multivariate methods 
 
 
 

All models are wrong, but some are useful. 
George E.P. Box 

 
So far we have only been concerned with monofactorial methods, i.e., 
methods in which we investigated how maximally one independent varia-
ble is correlated with the behavior of one dependent variable. In many cas-
es, proceeding like this is the beginning of the empirical quantitative study 
of a phenomenon. Nevertheless, such a view on phenomena is usually a 
simplification: we live in a multifactorial world in which probably no phe-
nomenon is really monofactorial – probably just about everything is corre-
lated with several things at the same time. This is especially true for lan-
guage, one of the most complex phenomena resulting from human evolu-
tion. In this section, we will therefore discuss several multifactorial 
techniques, which can handle this kind of complexity better than the mono-
factorial methods discussed so far. You should know, however, each sec-
tion’s method below could easily fill courses for several quarters or semes-
ters, which is why I can unfortunately not discuss every aspect or technical-
ity of the methods and why I will have to give you a lot of references and 
recommendations for further study. Also, given the complexity of these 
methods, there will be no discussion of how to compute them manually. 

Before we can begin to discuss multifactorial methods, however, there 
is a lot to discuss. On a very abstract level, this discussion involves the 
notions of interaction and model (selection) and will be the subject of Se-
tion 5.1. However, as you will see soon, these notions will quickly lead to a 
variety of interrelated concepts and, ultimately, important analytical strate-
gies for the subsequent, more hands-on sections. 
 
 

1. The notions of interaction and model (selection) 

 
1.1. Interactions 
 
As was mentioned at the beginning of the previous chapter, multifactorial 
methods involve a dependent variable and two or more independent varia-
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bles, not just one as in all of Chapter 4. This presence of more than one 
independent variable brings about potentially interesting findings, but also 
raises the question of how the two or more independent variables jointly 
relate to the dependent variable. 

There are basically two different ways in which several independent and 
dependent variables may be related, which we will explore on the basis of 
the example involving constituent lengths from Chapter 1. Let us again 
assume you wished to study whether the lengths of constituents – captured 
in the dependent variable LENGTH – are correlated with two independent 
variables, the variable GRMRELATION (with the two levels SUBJECT and 
OBJECT) and the variable CLAUSETYPE (with the two levels MAIN and 
SUBORDINATE). Let us further assume you did a small a pilot study in which 
you investigated 120 constituents that are distributed as shown in Table 39. 
 
Table 39. A fictitious data set of subjects and objects 

 GRMRELATION: SUBJ GRMRELATION: OBJ Totals 

CLAUSETYPE: MAIN 30 30 60 

CLAUSETYPE: SUBORD 30 30 60 

Totals 60 60 120 

 
Let us finally assume you determined the syllabic lengths of all 120 

constituents to compute the means for the variable level combinations – 
subjects in main clauses, subjects in subordinate clauses, objects in main 
clauses, objects in subordinate clauses – and obtained the following results: 
 

− the average length of all subjects (i.e., across main and subordinate 
clauses) is less than that of all direct objects; 

− the average length of all constituents (i.e., across subjects and objects) 
in main clauses is less than that of constituents in subordinate clauses. 

 
The interesting thing is that these monofactorial results – recall from 

Section 3.2.2.2 that these are often referred to as main effects – can come in 
different forms. On the one hand, the effects of the two independent varia-
bles can be additive. That means the combination of the two variables has 
the effect you would expect from each main effect. Since subjects are 
short(er), as are constituents in main clauses, additivity predicts that main 
clause subjects should be the shortest constituents, and subordinate clause 
objects should be longest. This result, which is what H0 would predict, is 
represented in Figure 57: black and grey dots indicate mean lengths of ob-
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jects and subjects respectively in the two grammatical relations, but also 
averaged across both, and the “m” and the “s” represent the means of main 
and subordinate clause constituents across the two grammatical relations. 
 

 

Figure 57. Interaction plot for LENGTH ~ GRMRELATION * CLAUSETYPE 1 

 
This result is in fact perfectly additive because the two lines are perfect-

ly parallel. That means, if I tell you that 
 

− the difference main clause subject length minus main clause object 
length is -2.5 syllables; 

− the difference main clause subject length minus subordinate clause sub-
ject length is -2 syllables; 

− the average main clause subject length is 2 syllables, 
 
then you can perfectly predict the average subordinate clause object length: 
2 + 2.5 + 2 = 6.5. 

However, with the exact same kinds of main effects, it is also possible 
that the two independent variables interact. Two or more variables interact 
if their joint effect on the dependent variable is not predictable from their 
individual effects on the same dependent variable. One such scenario is 
represented in Figure 58. Consider first the left panel. You can see that 
there are still the same kinds of main effect of GRMRELATION (subjects are 
again shorter than objects) and CLAUSETYPE (main clause constituents are 
again shorter than subordinate clause constituents), but now the lines are 
not parallel anymore but intersect. 
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Figure 58. Interaction plot for LENGTH ~ GRMRELATION * CLAUSETYPE 2 

 
What does that mean? It means, if I tell you that 

 

− the difference main clause subject length minus main clause object 
length is -3 syllables; 

− the difference main clause subject length minus subordinate clause sub-
ject length is -4 syllables; 

− the average main clause subject length is 2 syllables, 
 
then you can absolutely not predict the average subordinate clause object 
length: you would predict 2 + 3 + 4 = 9 syllables (as indicated in the right 
panel with the dashed line ending in a circle, which is parallel to the grey 
one), whereas the real average subordinate clause object length in the data 
is 4 syllables. That is an interaction: you cannot predict the average subor-
dinate clause object length using the two main effects but need an addition-
al interaction term that ‘corrects down’ the prediction from your predicted 
9 to the real 4; a test of that interaction term would test whether that term is 
significantly different from zero or not. 

Yet another kind of interaction is shown in Figure 59. Again, we have 
the by now familiar main effects but even though the lines do not intersect, 
this is still an interaction for the same reason as above. If I tell you that 
 

− the difference main clause subject length minus main clause object 
length is -2 syllables; 

− the difference main clause subject length minus subordinate clause sub-
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ject length is -2 syllables; 

− the average main clause subject length is 2 syllables, 
 
then you can again not predict the average subordinate clause object length: 
you would predict 2 + 2 + 2 = 6 syllables (as again indicated in the right 
panel with the dashed line, which is parallel to the grey one), whereas the 
real average subordinate clause object length in the data is 8 syllables. 
 

 

Figure 59. Interaction plot for LENGTH ~ GRMRELATION * CLAUSETYPE 3 

 
Again an interaction: you cannot predict the average subordinate clause 

object length using the two main effects but need an additional interaction 
term that corrects up the prediction from your predicted 6 to the real 8, 
which again may be a significant interaction effect. 

Before we move on, let me very briefly give a second example of an in-
teraction, one that you are actually already familiar with, even if you may 
not have thought about it like this. The above example involved means, this 
one involves frequencies. Imagine you do a corpus study of 60 of-. vs. 80 s-
genitives in which you try to determine whether the genitive choice is cor-
related with the animacy of the possessor NP (e.g., John in John’s car). 
Imagine now you presented your results to a colleague in an overview ta-
ble, but you leave out the main body of the table, as in Table 40. If you 
now asked your colleague to complete Table 40 without assuming anything 
particular going on in the data, that colleague should – maybe implicity – 
assume H0 and adopt the logic of the chi-squared test and compute frequen-
cies expected from H0, as in Table 41. 
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Table 40. A fictitious data set of genitive choices (totals only) 

 Animate possessor Inanimate possessor Totals 

of-genitive   60 

s-genitive   80 

Totals 70 70 140 

 
Table 41. A fictitious data set of genitive choices 1 

 Animate possessor Inanimate possessor Totals 

of-genitive 30 30 60 

s-genitive 40 40 80 

Totals 70 70 140 

 
That’s because if your colleague is explicitly told to not assume any-

thing special, any deviation from Table 41 is really hard to motivate. Yes, 
your colleague could create something like Table 42 and say, “there’s al-
ways a bit of chance variation”, but … how could he possibly motivate 
Table 43 without assuming something special? That “something special” 
would be an interaction. 
 
Table 42. A fictitious data set of genitive choices 2 

 Animate possessor Inanimate possessor Totals 

of-genitive 33 27 60 

s-genitive 37 43 80 

Totals 70 70 140 

 
Table 43. A fictitious data set of genitive choices 3 

 Animate possessor Inanimate possessor Totals 

of-genitive 10 50 60 

s-genitive 60 20 80 

Totals 70 70 140 

 
Thus, what in the chi-squared test scenario corresponds to the frequen-

cies expected from H0 are in fact the frequencies that result from assuming 
additive behavior of the two variables. And what a chi-squared test does is 
assess whether the data deviate from the distribution assuming no interac-
tion so much that the p-value from the chi-squared test becomes < 0.05, 
which in turn means you will reject H0 and assume there is an interaction. 

This was probably a painstakingly detailed characterization but the no-
tion of interaction is a very important one (and often misunderstood and/or 
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underutilized) so it is absolutely crucial you understand it. This is because 
the presence of a significant interaction means you cannot take the main 
effects of the independent variables in the interaction at face value! In Fig-
ure 58, while there is a main effect of objects being longer than subjects, 
the interaction shows that this is really only true in main clauses, but not in 
subordinate clauses. This property of significant interactions – that they 
qualify main effects – is one of the most important reasons for why their 
inclusion in a model is often essential, a topic to which we will turn now. 
 
 
1.2. Model (selection) 
 
The last section ended with a sentence using the word model, a word you 
also encountered when we discussed linear models and regression. I have 
used this word without a formal definition so far but you probably still had 
an intuitive understanding of what I meant. Now, more formally, I want to 
define a model as a formal characterization of the relationship between 
predictors – independent variables and their interactions – and one or more 
dependent variables. This ‘characterization’ typically comes in the form of 
a (regression) equation of the type you saw in Sections 3.2.3 and 4.4, and 
also schematically in the captions of Figure 57, Figure 58, and Figure 59, 
where the purpose of the regression equation is to quantify the relationship 
between predictors and dependent variable(s) and to generate predictions of 
the dependent variable(s). The development of an appropriate model, or 
regression equation, is called modeling or model selection, and different 
types of modeling are what’s at the heart of most of this chapter. 

One word of caution already: this chapter, as short as it is, will hopeful-
ly show that with multifactorial data, the cookbook-recipe type of approach 
used in Chapter 4 will not work: analyzing multifactorial data often re-
quires leaving well-trodden paths and cherished distinctions (e.g., between 
exploratory and hypothesis-testing approaches). The analysis of a complex 
data set is much like detective work or peeling an onion, where at every 
step multiple avenues are possible, and I only wish I could claim I had all 
the solutions for all the data sets I ever explored … Ok, let’s get to it! 
 
 
1.2.1. Formulating the first model 

 
The first step in model selection would seem to be the formulation of a first 
model, an equation that tries to model the relationship between predictors 
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and, for now, one dependent variable. However, there are a variety of 
threats to modeling that need to be taken into consideration. One of these 
has to do with something as mundane as recognizing the nature of the de-
pendent variable: is it binary? categorical? numeric? numeric but only cov-
ering a particular range of discrete values (e.g., 0 and positive integers as 
with frequencies)? or just positive but with a floor as with reaction times? 

We have only talked about modeling in a linear-modeling context (with 
the function lm), which is typically used when the dependent variable is 
numeric and spans a large range of values. However, since a linear regres-
sion will virtually always predict continuous values, it is not really well-
suited to be applied to binary dependent variables (although this is still 
common) or categorical ones. Also, since a linear regression will virtually 
always predict negative values, it may not be well-suited to predict fre-
quencies. Below, I will discuss different models for different dependent 
variables; thankfully, much of the logic of linear models, which you al-
ready know, can be applied to most of these cases. 

A second threat is concerned with whether predictors are used on the 
most useful information value and scale. As for the former, there is still a 
lot of work out there in which continuous predictors are factorized. That 
means, instead of using the continuous predictor as is, researchers break it 
down into a categorical variable with only a few number of levels (maybe 
by using cut). This can not only lose a lot of information especially if the 
cutting is not done after a very careful analysis, but it also increases the df 
for the analysis, potentially making it harder to get significant results. If 
possible, keeping numeric variables numeric is probably a good idea. 

As for the latter, the scale, it is important to realize, say, that not all nu-
meric predictors should be entered into model as is. For example, frequen-
cy effects often operate on a logarithmic scale such that, even if word1 is 
ten times as frequent as word2, the effect of word1 on the dependent varia-
ble, e.g. reaction time, may only be log (10) times as strong. Thus, what 
one should maybe put into the regression equation is log (frequency) (and 
to interpret results more easily, it may be good to use logs to the base of 2! 

A third threat is concerned with the fact that probably most statistical 
modeling in linguistics is some sort of (generalized) linear modeling in 
which the effect of a predictor can be summarized with a straight regres-
sion line (in some numerical space). However, relations between predictors 
may differ with regard to how they are best characterized, as the two panels 
in Figure 60 exemplify. It’s not a good idea to just force a straight regres-
sion line through the data in the right panel … 
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Figure 60. Models involing a regression line and a regression curve 

 
Sometimes, data also exhibit interrupted trends that are best character-

ized with two or more regression lines/curves, etc. Again, just fitting one 
straight line through such data is risky, to say the least. The good part about 
the above three threats is that, if you proceed along the lines of Chapter 4, 
you won’t usually make such mistakes. One reason why nearly every sec-
tion in Chapter 4 involved some visualization was to hammer into your 
brain the fact that exploratory visualization should be an integral part and at 
the beginning of any statistical analysis, and proper visualization will re-
veal logarithmic relations, curvilinear trends, interrupted trends, and so on. 

In addtition to these three risks I want to mention two others. One is ra-
ther trivial, one less so. The former is that your model is going to do a 
worse job at accounting for the data (the predictive aspect of the modeling 
process) and at allowing you to explain the data (the explanatory aspect of 
the modeling process) if you leave out important predictors. The latter is 
less trivial and brings us back to the notion of interaction, more specifical-
ly, to the question of whether or not to include interactions in your models. 
One can probably distinguish three different positions on this matter. 

One is that interactions between independent variables should be in-
cluded right from the start. This is because (i) if you do not include interac-
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tions in the model equation, they do not get tested and you don’t know 
whether the interactions(s) would in fact help account for the data much 
better, and (ii) if you included only interactions for which there was a clear 
theoretical motivation, it would become harder to find unexpected things; 
this would be a (not uncontroversial) way in which exploratory work seeps 
into what is usually a hypothesis-testing approach. 

A second position is that you only include interactions you can motivate 
theoretically a priori. This has the above disadvantage, but the advanatage 
that this makes it hard to fish for something in the data. 

The third position may still be the most frequent one: interactions are 
not included because the importance of the concept is not clear to the user 
or, just as bad, because the software that is being used makes including 
interactions hard (Varbrul is a case in point). 

This issue of whether or not to include interactions is important enough 
to merit a short example (which you may recognize as a previous exercise). 
Let’s assume 80 students (L1 speakers of German from two school classes 
A and B of 40 students each, a predictor called CLASS) had participated in 
one dictation in their L1 German and one in an L2 they are learning, Eng-
lish. Then, the numbers of mistakes in English (ENGLISH) and German 
(GERMAN) were counted to determine whether one can predict the numbers 
of mistakes made in the L2 on the basis of the numbers of mistakes in the 
L1 and the class the students attended. Two multifactorial models might be 
fitted to the data, one with the interaction between GERMAN and CLASS, 
one without (recall from Section 3.2.2 the two models in (58) are mere 
notational variants):29 
 
(57) ENGLISH ~ GERMAN + CLASS 
(58) a. ENGLISH ~ GERMAN + CLASS + GERMAN:CLASS 
 b. ENGLISH ~ GERMAN * CLASS 
 

The results of the models in (57) and (58) are shown in Table 44 and 
Table 45 respectively. Both models are highly significant and explain the 
data really well: look at the huge and significant R2-values. However, there 
are several important and interrelated problems with the model without the 
interaction (in (57)). First, this model does a worse job at accounting for the 
data than the model with it (in (58)): the bold figures in the rows called 
“Residual var(iance)” show how much variability in the data the models 

                                                      
29. I do not provide the data here but you will see this example again in one of the exercises 

for Chapter 5. 
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leave unaccounted for and you can see that that value is much higher in 
Table 44; a significance test would show that it is in fact significantly high-
er, which is another way of saying that the model in (57) is significantly 
worse than the one in (58). 
 
Table 44. The results of the linear model in (57) 

 SumSq Estimate Std. error t p 

Intercept 23.61 2.75 1.52 1.8 0.08 

GERMAN 2931.69 1.75 0.09 20.1 <0.001 

CLASS 3010.30 -8.72 0.43 -20.37 <0.001 

Residual var. 558.68     

overall R2 / p mult. R2= 

0.974 

adj. R2= 

0.973 

 F2. 77= 

1416 

p<0.001 

 
Table 45. The results of the linear model in (58) 

 SumSq Estimate Std. error t p 

Intercept 24.9 2.82 1.15 2.44 0.017 

GERMAN 2461.42 1.64 0.07 24.29 <0.001 

CLASS 0.25 -0.28 1.15 -0.25 0.807 

GERMAN:CLASS 241.73 -0.515 0.07 -7.61 <0.001 

Residual var. 316.95     

overall R2 / p mult. R2= 

0.985 

adj. R2= 

0.984 

 F3. 76= 

1661 

p<0.001 

 
Second, the p-values for the regression coefficients, or estimates, are 

very different. The main and crucial difference is that the model that ex-
plains the data better ((58)) says CLASS is not significant on its own but 
only in the interaction whereas the one that explains the data worse (in 
(57)) says CLASS is a significant main effect. This is not an unimportant 
technicality: CLASS is a binary variable, which means that, if it is a signifi-
cant, its coefficient is a difference in means between the two classes, and 
GERMAN is a numeric variable, which means that, if it is significant, its 
coefficient is a slope of a regression line. Thus, what the model in (57) 
leads you to believe is this: students from the two classes are differently 
good on average (differing by 8.72 mistakes), but you can use one and the 
same slope for both classes to predict ENGLISH from GERMAN. This is rep-
resented in the left panel of Figure 61, with GERMAN and ENGLISH on the x 
and y-axis respectively, and CLASS is indicated by the letters. 

However, the model in (58) says something very different, namely that 
there is no difference in means between the two classes (the p-value of 
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CLASS is huge). However, GERMAN:CLASS is significant – but what does 
that mean? It means that the slope between GERMAN and ENGLISH differs 
significantly across classes, which is represented in the right panel of Fig-
ure 61, and even if we did not already know from the first comment above 
that this model is better, the fit of the two regression lines with their sepa-
rate slopes certainly seems better. Thus, the two models say very different 
things about what CLASS does … 
 

 

Figure 61. ENGLISH ~ GERMAN + CLASS (+ GERMAN:CLASS) 
 

Finally and related to the previous point, the coefficients in the two 
models, and thus their predictions, differ a lot. The residuals of the worse 
model are on average more than 36% higher than those of the better one. 

In sum, in this case, leaving out the interaction would leave you with a 
model that looks great on the surface (large R2 and highly significant) but 
that is significantly worse than the model with the interaction, which tells a 
very different explanatory story about the data, and which is much worse at 
‘predicting’ the data points. Against this background, it is amazing how 
often interactions are still not explored (properly). 

One thing I have seen is that researchers seem aware of such issues but 
that their tools are not equipped to handle interactions (or continuous data) 
well; again, Varbrul is a case in point. So how might they then try to ad-
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dress interactions? By fitting a separate model for each class: 
 
(59) ENGLISHCLASS A ~ GERMANCLASS A 
(60) ENGLISHCLASS B ~ GERMANCLASS B 
 

If one does that, one does indeed get two significant simple regressions 
and the correct slopes of 1.13 for class A and 2.16 for class B. But why is 
this still a bad idea? 
 

 

THINK 

BREAK 

 
Well, with this approach how do you know whether the difference be-

tween these two slopes is significant or not? The interaction does not show 
up in either model in (59) and (60) so the slopes never get compared to 
each other so you don’t get a p-value so you don’t know whether that is a 
significant difference or not. I have seen plenaries and papers and more 
where Varbrul weights for different time periods were compared to each 
other without any test of whether the difference between the Varbrul 
weights of different time periods were significant and thus indicative of 
change over time or not … You either have to include the interaction and 
get a p-value for it, or you have to at least check the confidence intervals of 
the slopes for whether they do not overlap (which, here, they do not). 

In sum, I advise you to consider carefully the nature of the variables in-
volved,to spend a considerable amount of time exploring your data (espe-
cially visually) before you start doing anything else, and to be very aware 
of the potential importance of interactions. 
 
 
1.2.2. Selecting a final model 

 
Once the above issues have been considered, a first model is formulated, 
and often this model is what is called a maximal model, i.e. a model includ-
ing all independent variables, all of their interactions (often only up until 
interactions of three independent variables, because interactions of an even 
higher order are extremely difficult to understand). However, this is usually 
only the starting point since the maximal model usually contains predictors 
that do not contribute enough to the model, and since the famous dictum 
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called Occam’s razor (entia non sunt multiplicanda praeter necessitatem) 
essentially requires you to discard predictors that don’t pull their own 
weight or, more formally, do not contribute enough to the model’s success. 

Model selection is then influenced by two parameters: the direction of 
model selection and the criterion determining whether or not a predictor 
gets to be in the model. As for the former, there are three approaches: 
 

− backward selection: here, you start with the maximal model as outlined 
above and successively test whether you have to discard predictors 
which do not contribute enough to the model. The selection process 
ends when no predictor can be discarded anymore with making the 
model too much worse or when no predictors are left in the model. The 
elimination of predictors begins with the highest level of interactivity 
and proceeds downwards in the direction of main effects, and you can-
not discard a predictor that participates in a required higher-order inter-
action. That means, you cannot delete even an insignificant predictor B 
if the interaction A:B is significant. 

− forward selection: here, you start with a very small model (maybe even 
just one that consists of the overall mean) and successively test whether 
you can add predictors. The selection process ends when no addition of 
a predictor improves the model enough anymore or when all available 
predictors are already in the model. The addition of predictors begins 
with main effects and moves up to higher-order interactions (if their 
main effects have already been included, as above). 

− bidirectional: here, you start with some model and allow a usually au-
tomatic algorithm to add and subtract predictors as warranted. 

 
I think the first approach is most widely used in linguistics but there are 

also good arguments not to do model selection at all (cf. Harrell 2001: Sec-
tion 4.3 or Faraway 2005: Section 8.2). 

As for the latter, I have been intentionally vague above when it came to 
describing when predictors are added or discarded: I always just said “good 
enough.” This is because there are again at least two possible ways (who 
would want life to be easy …): 
 

− a significance-based approach, according to which a predictor can be 
added to a model if it makes the model significantly better, and accord-
ing to which a predictor should be discarded if its deletion does not 
make the model significantly worse. 

− a criterion-based approach: the AIC (Akaike Information Criterion), for 
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instance, is one measure that relates the quality of a model to the num-
ber of predictors it contains (and thus operationalizes Occam’s razor). If 
two models explain data equally well, then the model with fewer predic-
tors will have a smaller AIC. Thus, in this approach, a predictor can be 
added to, or deleted from, a model if that lower AIC. 

 
Once the model selection process has been completed, you have what is 

sometimes called the minimal adequate model, which can then be explored 
in terms of (i) whether the model as a whole is significant or not and how 
well it accounts for the data and (ii) what each predictor in that model con-
tributes to the model: is it significant, what is the direction of its effect(s), 
and what is the strength of its effect(s). After this lengthy, but necessary 
theoretical introduction, the following sections will discuss all these mat-
ters – (different types of) regression models, main effects, interactions, 
model selection. prediction accuracy etc. – on the basis of many practical 
examples. Section 5.2 discusses linear models for (multiple) linear regres-
sion, ANOVAs, and ANCOVAs. 
 

Recommendation(s) for further study 

− Good and Hardin (2012: Part III) and Crawley (2007: Ch. 9) 

 
 

2. Linear models 

 
In Sections 3.2.3 and 4.4.1, we looked at how to compute and evaluate the 
correlation between an independent ratio-scaled variable and a dependent 
ratio-scaled variable using the Pearson product-moment correlation coeffi-
cient r and linear regression. In this section, we will extend this to the case 
of multiple independent variables. The data we will explore involve the 
question of how to predict speakers’ reaction times to nouns in a lexical 
decision task and involves the following variables:30 
 

− a dependent variable, namely the reaction time (RT) to words in a lexi-
cal decision task REACTTIME, whose correlation with the following in-

                                                      
30. The words (but not the reaction times) are borrowed from a data set from Baayen’s 

comprehensive (2008) book; the other characteristics of these words were taken from, or 
made up / modified based on, the MRC Psycholinguistic Database; cf. 
<http://www.psy.uwa.edu.au/ mrcdatabase/mrc2.html> for more detailed explanations 
regarding the variables in general. 
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dependent variables you are interested in (in this case, the dependent 
variable is an average of reaction times, which would not normally be 
the case; this is for expository reasons only and doesn’t matter here); 

− an independent numeric variable FREQUENCY, which corresponds to 
their logged frequency (according to Kučera and Francis 1967); 

− an independent categorical variable FAMILIARITY, which is an index 
summarizing subjects’ rated familiarity with the referent of the word; 

− an independent binary variable IMAGEABILITY, which is an index sum-
marizing subjects’ rated imageability of the referent of the word; 

− an independent numeric variable MEANINGFULNESS, which indicates 
subjects’ average meaningfulness rating of the stimulus word. 

 
This is the overall procedure of the linear modeling process we will use: 

 

Procedure 
− Formulating the hypotheses 
− Loading the data, preparing them for modeling, and exploring them 
− Computing, selecting, and interpreting a linear model 
 − obtaining p-values for all predictors and for the model as a whole 
 − interpreting the regression coefficients/estimates on the basis of (i) 

predicted values and (ii) plots of observed and/or predicted values 
− Testing the main assumption(s) of the test:31 
 − the variances of the residuals are homogeneous and normally distrib-

uted in the populations from which the samples were taken or, at 
least, in the samples themselves 

 − the residuals are normally distributed (with a mean of 0) in the popu-
lations the samples come from or, at least, in the samples themselves 

 
As you can see, in this section, we will test some assumptions of the lin-

ear modeling only after we have fit a model, which is because you can only 
check residuals when you have a model from which they can be computed. 
Also, this section is quite different from those in Chapter 4. It has been my 
experience – both in teaching and in my own research – that one of the 
greatest difficulties in linear modeling is not to get a significant result, but 
to understand what the regression coefficients (or estimates, I will use these 
terms interchangeably) in the results mean, a problem aggravated by the 

                                                      
31. There are other requirements – e.g., independence of residuals and absence of collineari-

ty (!) – but for reasons of space I cannot discuss them all. See Fox and Weisberg (2011: 
Ch. 6) and Field, Miles, and Field (2012: Section 7.7) for exhaustive discussion. 
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fact that few books (i) say very explicitly in a language that beginners un-
derstand what the output means and (ii) discuss what the output means for 
two different ways to do linear modeling. In order to address both of these 
issues, this section will walk you through six fairly simple linear models 
that differ in terms of the predictors they involve to show you exactly – 
both numerically and visually – what regression coefficients mean. In addi-
tion, each of these linear models will be computed in two ways. One is a 
frequently-used standard in some commercial software applications that are 
unfortunately still in wide use, the other is the standard way in R. 

Before we begin with the modeling, it is important to you to realize that, 
if this was a real study, you would not run many different models on the 
data to test different but overlapping hypotheses as I will do here. I will 
walk you through these models only so that you see how these are fit, in-
terpreted, and visualized – what you would do if this was a real study is a 
model selection process of the type discussed in Section 5.2.7. 

Let’s begin by formulating the hypotheses, which will be applicable to 
all linear models in this section. We use an extension of the coefficient of 
determination r2, namely its multiple regression equivalent multiple R2: 
 
H0: There is no correlation between REACTTIME on the one hand and 

the predictors (independent variables and their interactions) on the 
other hand: multiple R2 = 0. 

H1: There is a correlation between REACTTIME on the one hand and the 
predictors (independent variables and their interactions) on the oth-
er hand: multiple R2 > 0. 

 
Let us now load the data (from <_inputfiles/05-2_reactiontimes.csv>) 

such that the words for which have data become the row names, which is 
useful for some plots (output not shown): 
 
> RTs<-read.delim(file.choose(), row.names=1)¶ 
> summary(RTs)¶ 

 
The summary shows you that this is a very small data set – a real study 

would better be based on more data. In addition, we find something that is 
only too realistic, namely that some variables have missing data, marked as 
NA, as they should be. For now, we will adopt a quick and dirty solution 
and make use of the fact that R’s linear modeling function lm will automat-
ically discard those cases of variables in the model that have missing data. 

Before we begin with the modeling, there are two ways in which data 



264        Selected multifactorial methods 

 

can often be prepared for better analysis. One of these is that it is some-
times useful to z-standardize numeric variables (with scale, recall Section 
3.1.4), which may help with the problem of collinearity (the undesirable 
phenomenon that several of your predictors are highly correlated) and 
which may help with interpreting the results because the mean of standard-
ized predictors is zero, which.e.g., makes intercepts and regression coeffi-
cients easy to understand. (On the other hand, it can also make results hard-
er to understand because we lose the original units of the scale.) We will 
therefore not use this here, but it’s a good thing to keep in mind for later. 

The second thing we are going to do has to do with factors (and now 
you will see why I talked about them so much above). If you look at the 
summary output, you will see that the factor FAMILIARITY has levels that 
are ordered alphabetically but that that order is not compatible with the 
ordinal information that the levels communicate. We would want either lo, 
med, and hi, or hi, med, and lo, but not hi, lo, med. Thus, for both 
FAMILIARITY and IMAGEABILITY, we reorder their levels in an ordinally 
reasonable and homogeneous way: 
 
> RTs$FAMILIARITY< factor(RTs$FAMILIARITY, levels= 

levels(RTs$FAMILIARITY)[c(2, 3, 1)])¶ 
> RTs$IMAGEABILITY<-factor(RTs$IMAGEABILITY, levels= 

levels(RTs$IMAGEABILITY)[c(2, 1)])¶ 
> summary(RTs)¶ 

 
Since graphical or tabular exploration (e.g., with boxplots or ecdf plots). 

which I strongly recommend you always do on data, does not really yield 
anything else in need of correction/preparation, we can now attach RTs and 
load a few packages we will use. Finally, the code file defines a few func-
tions we will use a few times – se.mean, ci.mean, and error.bar – so just 
copy and paste that code into R so that you can use these functions below. 
 
> attach(RTs)¶ 
> library(aod); library(car); library(effects); library(gvlma); 

library(multcomp); library(rgl)¶ 

 
 
2.1. A linear model with a binary predictor 
 
Although this first linear model is the simplest of all, this section will be a 
bit longer because all the things having to do with linear models will show 
up for the first time. So, don’t despair, everything else later will be shorter. 
To test whether IMAGEABILITY is correlated with REACTTIME, we fit what 
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is about the simplest possible linear model. However, to get results that are 
comparable with what some commercial software outputs, we first set the 
way R computes contrasts as shown here (more on that in a while), then we 
fit a linear model (where we also tell R which data frame the variables are 
from with the data argument), and then we inspect the output: 
 
> options(contrasts=c("contr.sum", "contr.poly"))¶ 
> model.01<-lm(RT~IMAGEABILITY, data=RTs)¶ 
> summary(model.01)¶ 
                                                          […] 
Residuals: 
    Min      1Q  Median      3Q     Max 
-84.629 -40.016   2.145  26.975 160.799 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|) 
(Intercept)    620.666      6.998  88.693   <2e-16 *** 
IMAGEABILITY1   12.987      6.998   1.856   0.0693 . 
---                                                       […] 
Residual standard error: 50.5 on 51 degrees of freedom 
  (24 observations deleted due to missingness) 
Multiple R-squared: 0.06326,     Adjusted R-squared:  0.0449 
F-statistic: 3.444 on 1 and 51 DF,  p-value: 0.06925 

 
Let’s start at the bottom: the model as a whole is not significant, as the 

p-value shows, which in turn is computed from the F-value at df=1, 51 
(here it is: pf(3.444, 1, 51, lower.tail=FALSE)¶). The multiple corre-
lation between IMAGEABILITY and REACTTIME, multiple R2, ranges theo-
retically from 0 to 1 and quantifies the variability accounted for, so a value 
of 0.06326 is really small. In addition, the value usually reported is the 
adjusted R2. This R2-value is adjusted such that you incur a slight penalty 
for every predictor included in your model. Thus, if, in a desperate attempt 
to explain more variability, you were to add a useless variable into the 
model, then it is very likely that whatever little bit of random variation that 
useless variable accounts for will be eaten up by the penalty. Thus, this 
adjustment brings Occam’s razor into modeling. Obviously, adjusted R2 is 
also really small. Then, there is a warning that R deleted 24 observations 
because these cases had NA in the variables in the model. 

We ignore the residual standard error and briefly skip to the top of the 
output,32 where we get a summary output regarding the residuals and we 
can already see that these are hardly normally distributed – whatever we 
learn here must be interpreted cautiously (We’ll get back to this.) 

                                                      
32. The residual standard error is the root of the quotient of the residual sums of squares 

divided by the residual df (in R: sqrt(sum(residuals(model.01)^2)/51). 



266        Selected multifactorial methods 

 

While we have not talked about what the coefficients mean, let me al-
ready point out the obvious: they are just estimates, which is how R labels 
them, which means you can get confidence intervals for them, and the fact 
that the confidence interval for IMAGEABILITY includes 0 already suggests 
that, whatever it is – to be discussed in a moment – it’s not significant: 
 
> confint(model.01)¶ 
                   2.5 %    97.5 % 
(Intercept)   606.617138 634.71498 
IMAGEABILITY1  -1.061602  27.03624 

 
Before we turn to the coefficients and their p-values, let us run two 

more lines of code, which are very useful for predictors with more than one 
df, i.e. predictors that are neither binary nor numeric (i.e., this does not 
apply here, I mention it here anyway for the sake of consistency). 
 
> drop1(model.01, test="F")¶ 
Single term deletions 
Model: 
RT ~ IMAGEABILITY 
             Df Sum of Sq    RSS    AIC F value  Pr(>F)   
<none>                    130059 417.69 
IMAGEABILITY  1    8783.6 138843 419.15  3.4443 0.06925 . 
---                                                       […] 
> Anova(model.01, type="III")¶ 
Anova Table (Type III tests) 
Response: RT 
               Sum Sq Df   F value  Pr(>F) 
(Intercept)  20060844  1 7866.4268 < 2e-16 *** 
IMAGEABILITY     8784  1    3.4443 0.06925 . 
Residuals      130059 51                                  […] 

 
These functions are important ways to get p-values for predictors. The 

first, drop1, looks at all the predictors in the model and checks which pre-
dictor could theoretically be deleted from the model at this stage in the 
model selection process, and for the predictors that could be deleted at this 
point, it returns a p-value for the test of the original model, model.01, 
against the model that you would get without that predictor. The second, 
Anova, is available from the library car. It computes a p-value for predic-
tors that is the same as commercial software returns by default.33 As you 

                                                      
33. The issue of sums of squares (the type="III" argument) is hotly debated. I will not 

engage in the discussion here which approach is better but use type="III" for reasons 
of comparability with other software even if type="II" may often be more useful; see 
Crawley (2002: Ch. 18, 2007: 368ff.), Larson-Hall (2010: 311-313), Fox and Weisberg 
(2011: Sections 4.4, 4.6), Field, Miles, and Field (2012: 475f.) and the R-help list. 
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can see, both return the already known p-value for the only predictor. 
With this output, let us now turn to the coefficients. First the simpler 

part, the p-values, then, second, the coefficients. The p-value for the inter-
cept is usually disregarded: it tests the H0 that the intercept is 0, but there 
are few applications where that is relevant. More interesting is the p-value 
for the predictor IMAGEABILITY. (In fact, R writes IMAGEABILITY1, I will 
explain that in a moment.) In this simplest of cases, where our model only 
has one binary predictor, the p-value there is the same as the p-value of the 
whole model, and the same of that predictor in the drop1 and in the Anova 
output: 0.06925. So, the predictor does not have a significant effect and, in 
a sense, the output of drop1 says that most intuitively because what drop1 
is essentially saying is “if you drop IMAGEABILITY from model.01, then 
the resulting model is not significantly worse (p=0.06925).” A different 
way to view this is as showing that the regression coefficient is not signifi-
cantly different from 0. All this is identical to what you get from a t-test. 

While this model/predictor is not significant, we will proceed with the 
discussion and plotting as if it were, because at this point I want to show 
you how such a model output is interpreted and plotted; a more realistic 
model selection process follows in Section 5.2.7. 

So – finally – what do the estimates mean, the 620.666 of (Intercept) 
and the 12.987 for IMAGEABILITY1? I recommend to approach this question 
on the basis of the values that the model predicts as in Section 4.4.1: 
 
> preds.hyp<-expand.grid(IMAGEABILITY=levels(IMAGEABILITY));  

preds.hyp[c("PREDICTIONS", "LOWER", "UPPER")]<-predict( 
model.01, newdata= preds.hyp, interval="confidence");  
preds.hyp¶ 

  IMAGEABILITY PREDICTIONS    LOWER    UPPER 
1           lo    633.6534 612.5138 654.7929 
2           hi    607.6787 589.1691 626.1884 

 
Thus, model.01 predicts that, when the word is of low imageability, 

then people’s reaction times will be about 26 ms slower than when the 
word is of high imageability. Just to make this clear: this means the model 
makes only two different predictions: when IMAGEABILITY is low, it al-
ways predicts an RT of 633.6534, and when IMAGEABILITY is high, it al-
ways predicts an RT of 607.6787, and these two predicted values are also 
the observed means: try tapply(RT, IMAGEABILITY, mean)¶. Note also 
how much the confidence intervals of the two predictions overlap. 

If we look at preds.hyp, you may already suspect what the regression 
estimates mean. When you compute the linear model as we did here, i.e. 
with sum contrasts!, then these two values mean the following: 
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− the intercept, 620.666, is the unweighted (!) mean of the means of the 
dependent variable, when it is grouped by the independent variable. 
That is, 620.666 is the mean of of 633.6534 and 607.6787, and that is an 
unweighted mean because it does not take into consideration that the 
two levels of IMAGEABILITY are not equally frequent. 

− the coefficient for IMAGEABILITY1, 12.987, is what you have to add to 
the intercept to get the predicted RT for the first level of IMAGEABILITY 
(hence the 1): 620.666 + 12.987 = 633.653. (And since the intercept is 
the mean of means, if you subtract the coefficient from the intercept, 
you get the predicted RT for the second level of IMAGEABILITY: 
620.666 - 12.987 = 607.679.) 

 
This is visually represented in Figure 62. 

 

 

Figure 62. The regression estimates of model.01 with sum contrasts 

 
Now, you may wonder why it says “slope” in Figure 62. This is because 

you can conceptualize the intercept as an x-axis value of 0 and 
IMAGEABILITY:1 as an x-axis value of 1, which is pretty much what linear 
modeling does under the hood: For numeric variables, effects are given as 
slopes which represent how much the predicted y-value changes for every 
unit change on the x-axis anyway, but with the above perspective you can 
also understand coefficients for factor levels (e.g., 12.987) as slopes. 

Finally, while this particular model is so simple that the coefficients etc. 
can be understood without any visualization, this can quickly change so I 
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will even here present two ways in which the data can be visualized. The 
code to generate the plots in Figure 63 is in the code file. The left is an 
ordinary barplot of means, the only thing I added are the confidence inter-
vals for the means; the right plot is a very easy-to-generate effect plot. 
 

  

Figure 63. The effects of model.01: barplot with observed/predicted means and 
their 95% confidence-interval bars (left panel); effects plot from the li-
brary effects (right panel) 

 
All the above was how much commercial software would report the re-

sults. However, the standard way in R is actually a bit different, thankfully 
it is really only a bit … Since I want you to know R’s standard approach 
and since that approach will help you understand logistic regression later, I 
will now discuss it very briefly. The only real difference in execution for 
this second, R’s standard approach, is that you now use R’s default con-
trasts, treatment contrasts. If you then generate the model again, the R

2-
values, the overall p-value, most is the same but not the coefficients: 
 
> options(contrasts=c("contr.treatment", "contr.poly"))¶ 
> model.01<-lm(RT~IMAGEABILITY, data=RTs)¶ 
> summary(model.01)¶ 
                                                          […] 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)      633.65      10.53  60.177   <2e-16 *** 
IMAGEABILITYhi   -25.97      14.00  -1.856   0.0693 . 
---                                                       […] 
> confint(model.01)¶ 

 
After what we have done above, you probably immediately see what the 
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intercept and the coefficient for IMAGEABILITYhi represent: 
 

− the intercept, 633.65, is the observed/predicted mean of the dependent 
variable, when the independent variable IMAGEABILITY is its first level, 
LO. 

−  the coefficient for IMAGEABILITYhi, -25.97 is what you add to the in-
tercept to get the predicted RT for the second level of IMAGEABILITY 
(hence the HI): 633.65 + -25.97 = 607.68; the p-value shows that the dif-
ference between the intercept (representing IMAGEABILITY: LO) and this 
predicted RT for IMAGEABILITY:HI is not significant. 

 
This is also represented in Figure 64, where, as discussed above, the an-

notation of x = 0 and x = 1 motivate the use of the word slope in the plot. 
 

 

Figure 64. The regression estimates of model.01 with treatment contrasts 

 
As you can see, in this simple case both approaches yield different coef-

ficients, but they amount to the same significance tests (with drop1 again, 
see the code file) and the same predictions (in the new preds.hyp; see the 
code file). Also, note that I provide some extra code to get p-values for 
coefficients using wald.test and glht in the code file. You should always 
run that, too, since it will be very useful later; much later you may want to 
explore Bretz, Hothorn, and Westfall (2011). 

You can summarize the results as follows: “A linear model was fit with 
REACTTIME as the dependent variable and IMAGEABILITY (low vs. high) as 
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the independent variable. The model was not significant (F = 3.444, df1 = 1, 
df2 = 51, p=0.069). There was only a marginally significant tendency such 
that low and high imageability correlated with slower and faster reaction 
times respectively. [Show graph(s)].” 
 
 
2.2. A linear model with a categorical predictor 
 
In this section, we still cover only one predictor – so actually, we are still 
not doing multifactorial analysis – but we make the model a bit more com-
plex by studying a predictor with three levels (FAMILIARITY), which means 
you could not do a t-test anymore.34 First again the approach using sum 
contrasts (from now on, I will not show all the output anymore): 
 
> options(contrasts=c("contr.sum", "contr.poly"))¶ 
> model.01<-lm(RT~FAMILIARITY, data=RTs)¶ 
> summary(model.01)¶ 
> confint(model.01)¶ 

 
This model is significant: the overall p-value is < 0.001. Since this is al-

so a model with only one predictor, you know that this is now also the p-
value for that one predictor. However, if you look at the table of coeffi-
cients, you don’t find it there. Instead you have an intercept and then two 
quite different p-values. How do you get a p-value for FAMILIARITY other 
than by looking at the overall p-value (e.g., when you have more than one 
predictor)? This is a case where drop1 and Anova are needed because – 
remember from above – here the (only) predictor has more than 1 df be-
cause it is neither binary nor numeric. Thus you use drop1 and Anova: 
 
> drop1(model.01, test="F")¶ 
> Anova(model.01, type="III")¶ 

 
There’s the p-value for FAMILIARITY, and this time you can see how the 

significance-based and the criterion-based approach agree: FAMILIARITY is 
significant and taking it out increases AIC considerably. 

                                                      
34. Incidentally, this section as well as the previous cover linear models that some would 

refer to as ANOVAs, analyses of variance. However, since the underlying approach be-
tween linear regressions with only numerical independent variables, ANOVAs with only 
categorical independent variables, and ANCOVAs with both categorical and numeric 
independent variables is the same – in R they are all fit with lm – I will not topicalize the 
differences between these methods but rather focus on their commonalities. 
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So, what do the estimates mean? Again, we approach this via the pre-
dicted values. It turns out that there is a nice ordinal effect: as FAMILIARITY 
increases, RTs go down, which makes sense. 
 
> preds.hyp<-expand.grid(FAMILIARITY=levels(FAMILIARITY));  

preds.hyp[c("PREDICTIONS", "LOWER", "UPPER")]<- 
predict(model.01, newdata=preds.hyp, 
interval="confidence"); preds.hyp¶ 

 
From preds.hyp, you can again guess what the estimates mean, and 

this is also visualized again in Figure 65: 
 

 

Figure 65. The regression estimates of model.01 with sum contrasts 

 

− the intercept, 622.774, is the unweighted (!) mean of the means of the 
dependent variable, when it is grouped by the independent variable. 
That is, 622.774 is the mean of 663.2880, 613.6471, and 591.3879, and 
that is an unweighted mean because it does not take into consideration 
that the levels of FAMILIARITY are not all equally frequent; 

− the coefficient for FAMILIARITY1, 40.514, is what you add to the inter-
cept to predict the RT for the first level of FAMILIARITY (hence the 1); 

− the coefficient for FAMILIARITY2, -9.127, is what you add to the inter-
cept to predict the RT for the second level of FAMILIARITY; 

− and if you subtract both coefficients for FAMILIARITY from the inter-
cept, you get the predicted RT for the third level of FAMILIARITY. 

 
Note that you do not get p-values for all differences between the inter-

cept and the levels, and sometimes you may want to run a variety of tests 
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on differences between means. One (rather conservative) way to approach 
this question involves the function TukeyHSD. 
 
> TukeyHSD(aov(model.01), ordered=TRUE)¶ 

 
The main argument of this function is an object created by the function 

aov (an alternative to anova), which in turn requires the relevant linear 
model as an argument. As a result, you get a table for all three comparisons 
you can make between three means. You get the differences between the 
means, the lower and the upper confidence intervals for the differences, and 
p-values that have been adjusted for the fact that you are suddenly perform-
ing three significance tests on the same data set. Why would p-values have 
to be adjusted for that? 
 

 

THINK 

BREAK 

 
The point of a significance level was to make sure that, if you accept an 

H1, your probability to do that incorrectly was < 0.05. Now, if you reject 
two independent H0 at each p = 0.05, what is the probability that you do so 
correctly both times? It’s 0.9025, i.e. 90.25% Why? Well, the probability 
you are right in rejecting the first H0 is 0.95. But the probability that you 
are always right when you reject H0 on two independent trials is 0.952 = 
0.9025. This is the same logic as if you were asked for the probability to 
get two sixes when you simultaneously roll two dice: 1/6

2 = 1/36. The proba-
bility that you are always right when you reject H0 on three independent 
trials is 0.952 = 0.857375. In fact if you look at 13 H0s, then the probability 
that you do not err once if you reject all of them is in fact dangerously close 
to 0.5: 0.9513 ≈ 0.5133, a.k.a. pretty far away from 0.95. Thus, the probabil-
ity of error you use to evaluate each of n H0s should not be 0.05 – it should 
be smaller so that when you perform all n tests, your overall probability to 
be always right is 0.95. Thus, if you want to test n H0s, you must use p = 
1-0.95(1/n). For 13, that means p ≈ 0.00394. Then, the probability that you 
are right on any one rejection is 1-0.00394 = 0.99606, and the probability 
that you are right with all 13 rejections is 0.9960613 ≈ 0.95. A shorter heu-
ristic that is just as conservative (actually, too conservative) is the Bonfer-
roni correction. It consists of just dividing the desired significance level – 
i.e., usually 0.05 – by the number of tests – here 13. You get 0.05/13 ≈ 
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0.003846154, which is close (enough) to the exact probability of 0.00394 
computed above. Thus, if you do multiple post hoc tests on a dataset, you 
usually adjust the significance level, which makes it harder for you to get 
significant results just by fishing around in your data, which should moti-
vate you to formulate reasonable H1s beforehand rather than excessive post 

hoc testing. 
Back to the data at hand: we can see that the difference between medi-

um and high levels of FAMILIARITY is not significant, but the other two 
differences are. What does that mean? 
 

 

THINK 

BREAK 

 
It means that Occams razor would require that you now test whether 

you need to uphold the difference between medium and high familiarity or 
whether you must conflate the two, and we will do this in Section 5.2.7. 

As a last step for this model, you can generate some plots again, and the 
code file will show you how to generate plots like Figure 63 for this model. 

Now, let us very briefly explore this same model, but now with R’s de-
fault of treatment contrasts again: 

 
> options(contrasts=c("contr.treatment", "contr.poly"))¶ 
> model.01<-lm(RT~FAMILIARITY, data=RTs)¶ 
> summary(model.01)¶ 
                                                          […] 
Coefficients: 
               Estimate Std. Error t value Pr(>|t|) 
(Intercept)      663.29      13.23  50.118  < 2e-16 *** 
FAMILIARITYmed   -49.64      15.59  -3.185 0.002449 ** 
FAMILIARITYhi    -71.90      18.72  -3.842 0.000334 *** 
---                                                       […] 
> confint(model.01)¶ 

 
After what we have done above, the estimates are probably clear: 

 

− the intercept, 663.29, is the observed/predicted mean when the inde-
pendent variable FAMILIARITY is its first level, lo. 

− the coefficient for FAMILIARITYmed, -49.64 is what you add to the inter-
cept to predict the RT for the second level of FAMILIARITY. 

− the coefficient for FAMILIARITYhi, -71.90 is what you add to the inter-
cept to predict the RT for the third level of FAMILIARITY. 
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This is also represented in Figure 66, where, as discussed above, the an-
notation of x = 0 and x = 1 (two times, one for each estimate) help motivate 
the use of the word slope in the plot. Thus, in some sense, it’s all the same 
as before in Section 5.2.1 and you can summarize this section’s model 
along the lines of the one above. 
 

 

Figure 66. The regression estimates of model.01 with treatment contrasts 

 
 
2.3. A linear model with a numeric predictor 
 
We are still only preparing for multifactorial models. In the last two mono-
factorial ones, the only predictor was a (binary or categorical) factor and, 
correspondingly, its effects were differences between means. However, we 
also began to approach that as a slope, by conceptualizing differences be-
tween means as slopes from the y-value at a reference level (at x = 0) to a y-
value at a level defined as x = 1. In this section, we will very briefly revisit 
the case of a numeric predictor, i.e., what we discussed in Section 4.4.1. 
One nice thing is that, with just an interval-scaled predictor, we do not have 
to cover two types of contrasts. We are going to look at the correlation 
between FREQUENCY and REACTTIME. 
 
> options(contrasts=c("contr.sum", "contr.poly"))¶ 
> model.01<-lm(RT~FREQUENCY, data=RTs)¶ 
> summary(model.01)¶ 
> confint(model.01)¶ 

 
By now we have studied such cases both with cor.test and lm already 

so I won’t go over all the results in detail again. Suffice it to say, that the 
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model is significant because its only predictor is, etc. Since the predictor is 
numeric, we do not really need the following two lines, but just to entrench 
them in your mind, here they are again, and they return the same p-value. 
 
> drop1(model.01, test="F")¶ 
> Anova(model.01, type="III")¶ 

 
To determine what the estimates mean, we follow the same strategy as 

before and compute predictions for values from the attested range: 
 
> preds.hyp<-expand.grid(FREQUENCY=floor(min(FREQUENCY)): 

ceiling(max(FREQUENCY))); preds.hyp[c("PREDICTIONS",  
"LOWER", "UPPER")]<-predict(model.01, newdata= 
preds.hyp, interval="confidence"); preds.hyp¶ 

 
You can recognize what you hopefully already guessed from above: 

 

− the intercept, 667.03, is the predicted RT when the independent variable 
FREQUENCY is 0. 

− the coefficient for FREQUENCY, -24.266 the increase in the predicted RT 
(i.e., given the minus, a decrease) for each unit increase of FREQUENCY. 

 
As usual, you should plot the data to get an impression of the fit, and the 

code file provides a few examples of how you could do that. 
Now that we have covered the basics, we can finally move on to multi-

factorial linear models. While this introductory part may have seemed long, 
having covered everything in that much detail will make things easier now. 
 
 
2.4. A linear model with a two categorical predictors 
 
We begin with a model in which we try to predict REACTTIME on the basis 
of two independent categorical variables, IMAGEABILITY and FAMILIARITY, 
and their interaction, IMAGEABILITY:FAMILIARITY. As before, we begin 
with a model based on sum contrasts. Recall the notation using the asterisk 
to say ‘all these main effects and their interactions’: 
 
> options(contrasts=c("contr.sum", "contr.poly"))¶ 
> model.01<-lm(RT~IMAGEABILITY*FAMILIARITY, data=RTs)¶ 
> summary(model.01)¶ 
> confint(model.01)¶ 
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The output becomes more complex … The model as a whole is signifi-
cant (p = 0.01138), we can see that IMAGEABILITY is not significant, but we 
don’t have individual p-values for FAMILIARITY and the interaction 
IMAGEABILITY:FAMILIARITY. Thus, before we try to understand the coeffi-
cients/estimates, a quick look at drop1 and Anova: 
 
> drop1(model.01, test="F")¶ 
> Anova(model.01, type="III")¶ 

 
This time, the output of the two is differently comprehensive. The out-

put of drop1 follows the above logic of backwards model selection and 
only returns p-values for those predictors that could be dropped at this time. 
Since there is an interaction of two variables and nothing more complex 
than that in the model, you can drop that interaction, but you cannot at this 
stage drop any of the variables from the interaction as long as the interac-
tion is still in the model. Thus, drop1 only returns the p-value for the model 
with vs. without the interaction and since the interaction is not significant, 
one should drop it (following Occam’s razor). 

The output of Anova is more comprehensive and returns p-values for all 
predictors in the model; you can recognize the p-values for IMAGEABILITY 
from the summary(lm()) output, and the one for the interaction from the 
drop1 output. We will not drop the interaction now because at this point I 
want to show you how such a model output is interpreted and plotted; 
again, the more realistic model selection process follows in Section 5.2.7. 

Now to the predictors and their estimates: 
 
> preds.hyp<-expand.grid(IMAGEABILITY=levels(IMAGEABILITY),  

FAMILIARITY=levels(FAMILIARITY)); preds.hyp[ 
c("PREDICTIONS", "LOWER", "UPPER")]<-predict(model.01,  
newdata=preds.hyp, interval="confidence"); preds.hyp¶ 

 
I will not explain every coefficient in detail here –see the code file for 

painfully detailed definitions of each estimate – for two reasons. First, to 
save space: you will see how long and convoluted the definition of the 
estimates in the code file can become. Second, the whole point of generat-
ing preds.hyp is that we don’t have to look at the coefficients that much. 
Of course you should still understand the explanation in the code file but in 
actual practice understanding the coefficients of a model with, say, five 
significant 3-way interactions and 10 other predictors on the basis of the 
coefficients is pretty much impossible. Thus, read the explanation of the 
coefficients in the code file carefully, run the code there to verify my ex-
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planations, and try to recognize their effects in the data, but for now we 
will explore the model on the basis of its predictions, which show that 
 

− the observed/predicted means don’t do much as IMAGEABILITY changes 
(averaging across FAMILIARITY); 

− the observed/predicted means decrease as FAMILIARITY increases (aver-
aging across IMAGEABILITY)’ 

− there is a hint of an interaction (but we know from above it is not signif-
icant) because, when FAMILIARITY is LO or MED, then a change from 
IMAGEABILITY LO to HI speeds up reaction times, but has the opposite 
effect when FAMILIARITY is HI. 

 
The Tukey test shows that, with a very conservative post-hoc testing 

approach, there is hardly anything significant in the data. But let us visual-
ize the data. The code file shows you different kinds of plots, interaction 
plots using lines, a bar plot of means and confidence intervals, dot charts of 
means, and a (too?) colorful boxplot of the observed medians and their 
notches as well as means and their confidence intervals. Finally, the last 
one is an effect plot, which again shows clearly that this interaction is not 
significant: the lines for the means are nearly parallel. 

Now, what about the same analysis with treatment contrasts? 
 
> options(contrasts=c("contr.treatment", "contr.poly"))¶ 
> model.01<-lm(RT~IMAGEABILITY*FAMILIARITY, data=RTs)¶ 
> summary(model.01)¶ 
> confint(model.01)¶ 
> drop1(model.01, test="F")¶ 

 
Again, everything is the same as above except for the estimates and I 

explain what they mean in detail in the code file. However, since under-
standing treatment contrasts will be very important for logistic regressions, 
I want to comment on them here as well. There are two central rules that, 
once internalized, help you understand all treatment contrast results easily: 
 
(61) Each coefficient/estimate for a predictor X (main effect, interaction, 

or factor level) is the value you must add to the intercept to, 
a. in the case of categorical variables, predict the value for 

the level of X you are looking at; 
b. in the case of numeric variables, predict the value that re-

sults from a one-unit change of X; 
while, and this is the crucial point, all categorical predictors not 
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mentioned in X are set to their first level (usually the alphabetically 
first level, but it can also be the one you set first, as in this case), 
and all numeric predictors not mentioned in X are 0. 

 
The second rule is just a special case of (61), namely the intercept: 

 
(62) Therefore, the intercept, where no predictor is mentioned, is the 

predicted value when 
a. all categorical variables in the model equation are set to 

their first level; 
and/or (!) 

b. all numerical variables are set to zero (which, if you cen-
tered or z-standardized them, corresponds to their mean) 

 
Thus, 

 

− the intercept is the predicted RT when both predictors are set to their 
first level (LO); 

− the second coefficient is what you add to the intercept to predict the RT 
for when the predictor mentioned changes to the level mentioned here 
(i.e., IMAGEABILITY changes from LO to HI) and when the predictor not 
mentioned here stays at the level from the intercept (i.e., FAMILIARITY 

remains LO); 

− the third coefficient is what you add to the intercept to predict the RT 
for when the predictor mentioned changes to the level mentioned here 
(i.e., FAMILIARITY changes from LO to MED) and when the predictor not 
mentioned here stays at the level from the intercept (i.e., IMAGEABILITY 
remains LO), similarly for the fourth coefficient; 

− the fifth coefficient is for a predictor that is an interaction. Thus, to use 
it for a prediction, you do not just add this estimate to the intercept, but 
also the estimates for the main effects that are part of it. Thus, to predict 
the RT for when IMAGEABILITY is HI and FAMILIARITY is MED, you add 
to the intercept the second coefficient (for when IMAGEABILITY is HI), 
the third coefficient (for when FAMILIARITY is MED), and this fifth one 
(for the interaction): 

 
> 676.30 + -26.11 + -58.94 + 18.91¶ 
[1] 610.16 
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Compare that to preds.hyp[4,]: the result is the same, and the same 
logic applies to the sixth coefficient. It is probably obvious by now why 
inspecting preds.hyp and plotting predicted values is easier than plough-
ing through the table of coefficients, especially since preds.hyp is the 
basis for the plotting, which you have done above. 

You could now summarize model.01 as before: overall model statistics, 
predictors and their p-values, and a plot. 
 
 
2.5. A linear model with a categorical and a numeric predictor 
 
In the last section, both variables were categorical so all effects were (ad-
justments to) means. Now we turn to mixed variables: one variable is cate-
gorical (FAMILIARITY), one is numeric (FREQUENCY). First, sum contrasts: 
 
> options(contrasts=c("contr.sum", "contr.poly"))¶ 
> model.01<-lm(RT~FAMILIARITY*FREQUENCY, data=RTs)¶ 
> summary(model.01)¶ 
> confint(model.01)¶ 

 
The model is very significant (p = 0.001728), but as before you do not 

get all p-values for all predictors: you can see FREQUENCY is significant, 
but you do not get one p-value for FAMILIARITY and the interaction. Thus: 
 
> drop1(model.01, test="F")¶ 
> Anova(model.01, type="III")¶ 

 
Both show that the interaction is not significant. On to the estimates: 

 
> preds.hyp<-expand.grid(FAMILIARITY=levels(FAMILIARITY),  

FREQUENCY=floor(min(FREQUENCY)):ceiling(max(FREQUENCY)));  
preds.hyp[c("PREDICTIONS", "LOWER", "UPPER")]<-
predict(model.01, newdata=preds.hyp, interval= 
"confidence"); preds.hyp¶ 

 
This data frame is not easy to process. (Given the length of this table, I 

show how to create a version that is easier to process in the code file.) One 
can see generally that, as FREQUENCY goes up, predicted RTs go down, but 
really what is needed is a graph. But a question first: What does the interac-
tion represent and, therefore, how does this have to be plotted? 
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THINK 

BREAK 

 
As in Section 5.1.2, the interaction of a categorical and a numeric varia-

ble means that the there is not one slope for the effect of the numeric varia-
ble in the model but as many slopes as there are levels of that categorical 
variable. That is, the interaction reflects adjustments to slopes. Hence, we 
plot a graph that has different regression lines for FREQUENCY for each 
level of FAMILIARITY; the levels of FAMILIARITY are represented by their 
first letters. The plot here is quite minimalist (e.g., by not including the 
original data points), but the code file provides a variety of alternatives; the 
simplest one to do is, as usual, the effect plot. 
 

 

Figure 67. The interaction FAMILIARITY:FREQUENCY in model.01 

 
The plot shows the results more efficiently than anything else (esp. 

when confidence intervals are added to show that interaction is not signifi-
cant). The model shows that, on the whole, FREQUENCY speeds subjects up 
but especially when FAMILIARITY is LO compared to when it is not. This, 
together with the p-values etc., should be in your summary of the model. 

Now again a quick glance at treatment contrasts: 
 
> options(contrasts=c("contr.treatment", "contr.poly"))¶ 
> model.01<-lm(RT~FAMILIARITY*FREQUENCY, data=RTs)¶ 
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> summary(model.01)¶ 
> confint(model.01)¶ 
> drop1(model.01, test="F")¶ 

 
As usual, it’s the coefficients that change, and they change in accord-

ance with the rules in (61) and (62): 
 

− the intercept is the predicted RT when all predictors are set to their first 
level or 0, i.e. when FAMILIARITY is LO and FREQUENCY is 0; 

− the second coefficient is what you add to the intercept to predict the RT 
for when the predictor mentioned changes to the level mentioned here 
(i.e., FAMILIARITY changes from LO to MED) and when the predictor not 
mentioned here stays at the level from the intercept (i..e. FREQUENCY 
remains 0), similarly for the third coefficient; 

− the fourth coefficient is what you add to the intercept to predict the RT 
for when the predictor mentioned increases by one unit (since 
FREQUENCY is numeric, it changes from 0 to 1) and when the predictor 
not mentioned here stays at the level from the intercept (i.e., 
FAMILIARITY remains LO); 

− the fifth coefficient is for a predictor that is an interaction. Thus, to use 
it for a prediction, you do not just add this estimate to the intercept, but 
also the estimates for the main effects that are part of it. Thus, to predict 
the RT for when FAMILIARITY is MED, and FAMILIARITY increases by 1, 
you add to the intercept the second coefficient (for when FAMILIARITY 
is MED), the fourth coefficient (for when FAMILIARITY increases by 1), 
and this one (for the interaction): 

 
> 697.96 + -66.40 + -32.73 + 21.65¶ 
[1] 620.48 

 
Compare that to preds.hyp[5,]; same for the sixth coefficient. 

 
 
2.6. A linear model with two numeric predictors 
 
Now we are getting serious, enough fun and games. We are going to model 
REACTTIME as a function of two numeric variables, FREQUENCY and 
MEANINGFULNESS, and their interaction. This is somewhat tricky because 
of the interaction. An interaction between two categorical variables reflects 
adjustments to means, an interaction between a categorical variable and a 
numeric variable reflects adjustments to slopes – but what is an interaction 
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between two numeric variables? As you will see, it is that one numeric 
variable’s slope effect changes across the range of the other numeric varia-
ble, which also means we will sometimes have to consider three-
dimensional plots: one predictor on the x-axis, the other predictor on the y-
axis, the prediction on the z-axis. 

With only two numeric predictors, we need not distinguish between sum 
and treatment contrasts so let’s get started. (You may also paste the drop1 
and Anova lines, but they are unnecessary: every predictor has 1 df.) 
 
> options(contrasts=c("contr.sum", "contr.poly"))¶ 
> model.01<-lm(RT~MEANINGFULNESS*FREQUENCY, data=RTs)¶ 
> summary(model.01)¶ 
> confint(model.01)¶ 

 
A just about significant model – although no predictor is significant, 

which is somewhat rare. We generate preds.hyp, which this time is a bit 
more cumbersome. Since we have two numeric variables, we generate 
ranges of values for both of them. For FREQUENCY we do this as before, for 
MEANINGFULNESS I do not just use eight values (an arbitrary choice, it 
could also be 20) from the attested range, but also 0 and 1 (so I can explain 
the coefficients). 
 
> preds.hyp<-expand.grid(MEANINGFULNESS=c(0:1, 

seq(floor(min(MEANINGFULNESS, na.rm=TRUE)), 
ceiling(max(MEANINGFULNESS, na.rm=TRUE)), length.out=8)),  
FREQUENCY=floor(min(FREQUENCY)):ceiling(max(FREQUENCY)))¶ 

> preds.hyp[c("PREDICTIONS", "LOWER", "UPPER")]<-predict( 
model.01, newdata=preds.hyp, interval="confidence")¶ 

> preds.hyp¶ 

 
In fact, the coefficients mean what they always mean; cf. (61) and (62): 

 

− the intercept is the predicted RT when both MEANINGFULNESS and 
FREQUENCY is 0; 

− the second coefficient is what you add to the intercept to predict the RT 
for when the predictor mentioned increases by one unit (i.e., when 
MEANINGFULNESS increases from 0 to 1) and when the predictor not 
mentioned here stays at the level from the intercept (i.e., FREQUENCY 
remains 0); 

− the third coefficient is what you add to the intercept to predict the RT 
for when FREQUENCY increases from 0 to 1 and when 
MEANINGFULNESS stays at the level from the intercept (i.e., remains 0); 
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− the fourth coefficient is for a predictor that is an interaction. Thus, to 
use it for a prediction, you do not just add this estimate to the intercept, 
but also the estimates for the main effects that are part of it. Thus, to 
predict the RT for when MEANINGFULNESS is 1 and FREQUENCY is 1, 
you add to the intercept all coefficients. 

 
Now, in actual work you would not have added to the predictions values 

that are based on MEANINGFULNESS values as far away from the real val-
ues, which also affects the plotting. We therefore generate a data frame 
preds.hyp.for.plot with a huge number of predictions, namely all pre-
dictions based on all combinations of 100 MEANINGFULNESS and 100 
FREQUENCY values, as shown in the code file (note the use of seq(…, 
length.out=…). and the use of na.rm=TRUE to make sure that min and 
max don’t have problems with the missing data. 

Now you have several possibilities. The first two shown in the code in-
volve something I cannot really demonstrate well in a book: The function 
plot3d generates rotatable 3-dimensional plots – you can click onto the 
plot and move the mouse to turn the coordinate system – and the col argu-
ment uses the function grey (see ?grey) to make the darkness of the points 
dependent on the height of the predicted value. Usually, you have quite 
some turning of the plot to do before you can see what’s happening in the 
data – I do recommend, however, to let the predicted values be on the ver-
tical axis most of the time. (An alternative plot shows that you can use any 
color scaling you want.) 

While this is very useful to interpret the data, you cannot usually pub-
lish such graphs. Thus, sometimes you can represent the predicted values 
not in a third dimension but using color or plotting symbols. The following 
plot is a scatterplot with MEANINGFULNESS and FREQUENCY on the x- and 
y-axis respectively, and the size of the predicted value is represented by the 
lightness: the lighter the grey, the slower subjects are predicted to be. 

On the whole, but especially when MEANINGFULNESS is low, as 
FREQUENCY increases, predicted RT decreases – see how in the left half of 
the plot, the grey gets darker as you go up. Also on the whole, but especial-
ly when FREQUENCY is low, as MEANINGFULNESS increases, predicted RT 
decreases – see how in the lower half of the plot, the grey gets darker as 
you go to the right. However, and this is the slight hint at an interaction 
(and indicated by the slight bow upwards in the 3-dimensional plot), when 
both MEANINGFULNESS and FREQUENCY become very high, we do not get 
the fastest RTs: 
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Figure 68. The interaction MEANINGFULNESS:FREQUENCY in model.01 

 
In the upper right corner, the points are not the darkest. But, model.01 

showed that this bit of an interaction is in fact not significant, which you 
would also have to say in your results/discussion section. 

Other graphical possibilities to play around with are exemplified in the 
code file including an effects plot. One of these uses numbers as plotting 
symbols and shows nicely how predictions change in the space spanned by 
MEANINGFULNESS and FREQUENCY. 
 
 
2.7. A linear model selection process with multiple predictors 
 
So far, we have ignored two things. First, for expository reasons we have 
ignored Occam’s razor: when a predictor – a main effect or an interaction – 
was not significant, we left it in the model and plotted it anyway. In this 
section, we will look at how to do a backwards model selection process. 
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Second, we have ignored tests of the regression assumptions so we will 
also talk about this a bit at the end. The maximal model we will explore 
here involves all the independent variables you have seen so far and includ-
ing all their interactions up till (and including) 3-way interactions; let me 
note in passing that this can only be a didactic example since the number of 
predictors is too high compared to the small number of data points: 
 
> options(contrasts=c("contr.sum", "contr.poly"))¶ 
> model.01<-lm(RT~(FREQUENCY+FAMILIARITY+IMAGEABILITY+ 

MEANINGFULNESS)^3, data=RTs[complete.cases(RTs),])¶ 
> summary(model.01)¶ 

 
Note how we define the data argument to make sure only complete 

cases are entered into the process. Also note the syntax to say that we want 
to include main effects, 2-way, and 3-way interactions: variables are paren-
thesized and then we say ^3. 

The results show an overall insignicant model with some significant but 
many insignificant predictors in it. Part of the reason why the overall model 
is significant is because the large number of (insignificant predictors) in-
creases the degrees of freedom, which makes it harder to get a significant 
result; note in this connection the huge difference between multiple R2 and 
adjusted R2. Also, we have a problem that is quite common especially with 
naturalistic data: one cell in our design has only one observation – the 
combination of FAMILIARITY:HI and IMAGEABILITY:LO – which leads to 
NAs in the coefficients, which in turn makes the Anova function not work. 
 
> Anova(model.01, type="III")¶ 

 
There are three ways to handle this. The probably best one is to use 

drop1, which, as usual, will test for all predictors that could be omitted at 
this stage whether their deletion would make the model significantly worse: 
 
> drop1(model.01, test="F")¶ 

 
As you can see, just as discussed in Section 5.1.2.2, drop1 tests only the 

highest-order interactions and the one with the highest p-value would be 
the best one to be deleted first: FREQUENCY:FAMILIARITY:IMAGEABILITY. 

A second possibility is to add an argument to Anova, which provides the 
same result and conclusion regarding which interaction to delete first: 
 
> Anova(model.01, type="III", singular.ok=TRUE)¶ 
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The final possibility would be the most laborious one. It involves identi-
fying the four interactions that could be deleted, computing four models 
each of which differs from model.01 only by missing one of these interac-
tions – that is, the smaller model is a sub-model of the larger! – and then 
doing a model comparison to see how much worse the smaller model is. 
After this is done for all four candidate interactions to be deleted, you de-
lete the one for which the largest non-significant p-value was obtained. 

The first of these steps, generating a sub-model, is best done with the 
function update. The first argument is the model which you want to 
change, followed by ~., followed by what you want to do, e.g. here sub-
tract a predictor: (I only show the first two updates; you should also explore 
the help for update, which can be used in other useful ways.) 
 
> model.02a<-update(model.01, ~. -  

FREQUENCY:FAMILIARITY:IMAGEABILITY)¶ 
> model.02b<-update(model.01, ~. -  

FREQUENCY:FAMILIARITY:MEANINGFULNESS)¶ 

 
Then you compare the first model with everything to these sub-models 

using the function anova (small a!): (Again I only show the first two.) 
 
> anova(model.01, model.02a)¶ 
> anova(model.01, model.02b)¶ 

 
You end up with the interaction to be deleted first. To now delete that 

interaction you again use update and now define model.02 as model.01 
without FREQUENCY:FAMILIARITY:IMAGEABILITY: 
 
> model.02<-update(model.01, ~. -  

FREQUENCY:FAMILIARITY:IMAGEABILITY)¶ 

 
This process is now repeated as often as needed and as shown in the 

code file. You of course only need to run one of the alternatives shown 
there. One comment: drop1 will sometimes already return p-values for the 
deletion of predictors of a lower degree of interactivity than the one you are 
currently checking. We will stick to the above and only go to a lower level 
of interactivity, or to lower-order interactions, if no higher-order interac-
tions is left to delete; cf. the sequence in the code file. 

After quite some testing, you arrive at model.14, which, following Oc-
cam’s razor, contains only FAMILIARITY as a predictor – everything else 
had to be thrown out. 
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> summary(model.14)¶ 
                                                          […] 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|) 
(Intercept)   619.049      7.145  86.636  < 2e-16 *** 
FAMILIARITY1   33.201     11.619   2.858  0.00644 ** 
FAMILIARITY2   -5.541      8.445  -0.656  0.51512 
---                                                       […] 
Multiple R-squared: 0.1711, Adjusted R-squared: 0.1343 
F-statistic: 4.645 on 2 and 45 DF,  p-value: 0.01465 

 
But we are not done. FAMILIARITY has three levels, but maybe we don’t 

need all of them, something which was above suggested already by Tuk-
eyHSD(aov(…)). We therefore continue with model comparison – not any-
more by testing to discard variables, but now variable levels. Following the 
logic of Crawley (2007: 563), we create two new factors, each of which 
conflates two adjacent levels and add them to our data frame (to make sure 
we test the same number of cases), and then we compute two new models, 
one with each conflated version of FAMILIARITY, and then we do anova 
model comparisons: 
 
> FAMILIARITY.conflat1<-FAMILIARITY.conflat2<-FAMILIARITY¶ 
> levels(FAMILIARITY.conflat1)<-c("lo", "med-hi", "med-hi")¶ 
> levels(FAMILIARITY.conflat2)<-c("lo-med", "lo-med", "hi")¶ 
> RTs<-cbind(RTs, FAMILIARITY.conflat1=FAMILIARITY.conflat1,  

FAMILIARITY.conflat2=FAMILIARITY.conflat2)¶ 

 
 
> model.15a<-lm(RT~FAMILIARITY.conflat1, data= 

RTs[complete.cases(RTs),])¶ 
> model.15b<-lm(RT~FAMILIARITY.conflat2, data= 

RTs[complete.cases(RTs),])¶ 
> anova(model.14, model.15a)¶ 
> anova(model.14, model.15b)¶ 

 
The results show that the first conflation – the one that also had the 

higher p-value in the TukeyHSD test – does not make the model signifi-
cantly worse whereas the second one does. So, now Figure 69 is how the 
final model can be summarized (see the code and ?plotmath for how the 
main heading can feature italics, superscripts, etc.): 

Let me at this point briefly interrupt the discussion of this model and re-
turn to a more general point. In this case, we only have a significant main 
effect, and in the sections above we discussed how to plot interactions be-
tween two variables. Sometimes, users then raise the question, “ok, but I 
have a significant interaction of three variables – how do I plot that one?” 
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Figure 69. The final only significant effect from model.15 

 
The usual answer is that you should plot these on the basis of the above 

plots. For example, if you have an interaction of three categorical variables 
X, Y and Z, then you do plots for X:Y as discussed in Section 5.2.4 for 
each level of Z (and ideally you try out different configurations to see 
which graph is easiest to interpret). For example, imagine an interaction of 
two categorical variables X and Y and one numeric variable Z. In that case, 
you might plot X:Z as discussed in Section 5.2.5 for every level of Y (or 
Y:Z for every level of X), etc. That is, you just take the plots discussed 
above and use them as building blocks for higher-order interactions. 

A related and very important question is how to get something like 
preds.hyp for a predictor X in a model when X is not the only predictor 
left in the model. In such scenarios, the approach with preds.hyp from 
above is not ideal when another predictor in the model, say Y, has levels 
whose frequencies differ wildly, which often happens with observational 
data. For example, model.10 in the model selection process involves the 
following formula: 
 
> formula(model.10)¶ 
RT ~ FREQUENCY + FAMILIARITY + IMAGEABILITY + MEANINGFULNESS 

+ IMAGEABILITY:MEANINGFULNESS 

 
If you want to extract the predicted values for FAMILIARITY, then you 
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can use the function effect to create a list called, say, fam: 
 
> fam<-effect("FAMILIARITY", model.10); fam¶ 
 FAMILIARITY effect 
FAMILIARITY 
      lo      med       hi 
653.7191 613.6080 606.0162 

 
While this output is exactly what you would need, getting these num-

bers out of there (maybe even with confidence intervals) is not as easy as it 
seems. You have to know that 
 

− the predictor variables we created with expand.grid are in fam$x; 

− the predicted values are now in fam$fit; 

− the lower bounds of the confidence interval are in fam$lower; 

− the upper bounds of the confidence interval are in fam$upper. 
 

How do you then use this to create something like preds.hyp for the in-
teraction? Check out the code file to see how it’s done. 

Back to model.15. The final thing to be done before you explain the 
model selection process you have done and summarize the results is to 
check the model assumptions. This can be done in many ways but two 
practical ones are the following. First, you can inspect some model-
diagnostic graphs; second, you can use the function gvlma from the pack-
age with the same name to get a quick overview. 
 
> par(mfrow=c(2, 2))¶ 
> plot(model.15)¶ 
> par(mfrow=c(1, 1))¶ 

 
The two left graphs test the assumptions that the variances of the residu-

als are constant. Both show the ratio of the fitted/predicted values on the x-
axis to kinds of residuals on the y-axis. Ideally, both graphs would show a 
scattercloud without much structure; here we have only two fitted values 
(one for each level of FAMILIARITY.conflat1), but no structure such that 
the dispersion of the values increases or decreases from left to right: here, 
these graphs look ok.35 Several words are marked as potential outliers. Al-
so, the plot on the top left shows that the residuals are distributed well 
around the desired mean of 0. 

                                                      
35. You can also use ncvTest from the library car: ncvTest(model.15)¶, which returns the 

desired non-significant result. 
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Figure 70. Model diagnostics for model.15 

 
The assumption that the residuals are distributed normally also seems 

met: The points in the top right graph should be rather close to the dashed 
line, which they are; again, three words are marked as potential outliers. 
But you can of course also do a Shapiro-Wilk test on the residuals, which 
also yields the result hoped for. 

Finally, the bottom right plot plots the standardized residuals against the 
so-called leverage. Leverage is a measure of how much a data point may 
influence a model (because it is far away from the center of the relevant 
independent variable). As you can see, there are a few words with a larger 
leverage, and these are all cases of FAMILIARITY:LO, which in this toy data 
set is a much smaller number of data points. Let me briefly also show one 
example of model-diagnostic plots pointing to violations of the model as-
sumptions. Figure 71 below shows the upper two model plots I once found 
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when exploring the data of a student who had been advised (by a stats con-
sultant!) to apply an ANOVA-like linear model to her data. In the left pan-
el, you can clearly see how the range of residuals increases from left to 
right. In the right panel, you can see how strongly the points deviate from 
the dashed line especially in the upper right part of the coordinate system. 
Such plots are a clear warning (and the function gvlma mentioned above 
showed that four out of five tested assumptions were violated!). One possi-
ble follow-up would be to see whether one can justifiably ignore the outli-
ers indicated; see Fox and Weisberg (2011: Chapter 6) for discussion. 
 

 

Figure 71. Problematic model diagnostics 

 

Recommendation(s) for further study 

− for model selection: 
 − the function step, to have R perform model selection automatically 

based on AIC (by default) and the function stepAIC (from the library 
MASS). Warning: automatic model selection processes can be danger-
ous: different algorithms can result in very different results 

− on model diagnostics: 
 − the functions residualPlots and marginalModelPlots and vif 

from the library car, the former two as alternatives to plot(model), 
the latter to test for collinearity, which is very important to explore; 
it is the threat posed by highly intercorrelated predictor variables; cf. 
Faraway (2005: Sections 5.3 and 9.3, Fox and Weisberg 2011: Chap-
ter 6) 

 − the functions influence.measures and other functions mentioned 
in this help file (esp. dfbeta) to identify leverage points and outliers 

− the functions oneway.test and kruskal.test as alternatives to mono-
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factorial ANOVAs 
− the libraries robust, MASS, and nls for robust as well as nonlinear re-

gressions; cf. esp. Crawley (2002, 2005) and Faraway (2005, 2006) 
− the function rpart from the library rpart, and the function ctree from 

the library party, to compute classification and regression trees as al-
ternatives to (generalized) linear models 

− Harrell (2001), Crawley (2002: Ch. 13-15, 17), Faraway (2005: Ch. 14), 
Crawley (2007: Ch. 10-12, 14, 16), Gelman and Hill (2007: Ch. 3-4), 
Baayen (2008: 4.4, Ch. 6-7), Johnson (2008: Section 2.4, 3.2, Ch. 4), 
Zuur et al. (2009: Ch. 2-4, 6-7), Fox and Weisberg (2011), Baguley 
(2012: Ch. 5, 12-15) 

 
 

3. Binary logistic regression models 

 
In the last section, we dealt with linear methods, in which the dependent 
variable is interval-/ratio-scaled and covers a wide range of values. Howev-
er, in many situations the dependent variable is binary, categorical, or nu-
meric but maybe only ≥ 0 and/or discrete (as for frequencies) or … Since 
the ‘normal’ linear model discussed above predicts values between -∞ and 
+∞, it will predict values that do not make much sense for such dependent 
variables – what would a predicted value of -3.65 mean when you try to 
predict frequencies of something? For situations like these, other models 
are used, some falling under the heading of generalized linear models, 
leading to types of regression such as: 
 

− binary logistic regression for binary dependent variables; 

− ordinal logistic regression and multinomial regression for ordinal and 
categorical dependent variables respectively; 

− Poisson/count regression for frequencies as dependent variables. 
 

To be able to apply a linear modeling approach to such data, the de-
pendent variable is transformed with a so-called link function, which trans-
forms the predicted range of values of a linear model (-∞ to +∞) to a range 
more appropriate for the dependent variable. For binary logistic regression, 
for example, the inverse logit transformation in (63a) transforms values 
from the range of -∞ to +∞ to into values ranging from 0 to 1, which can 
then be interpreted as probabilities of a predicted event. For Poisson regres-
sion, the exponential transformation in (64a) transforms values from the 
range of -∞ to +∞ to into values ranging from 0 to +∞.; the functions in 
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(63b) and (64b) transform in the opposite direction: 
 

(63) a. inverse logit of x:  
xe+1

1
 

 b logit of x:   
x

x

−1
log  

(64) a. exponential function of x: 
xe  

 b. logarithmic function of x: xnaturallog  

 
Thus, there is good news and bad news … The bad news is that binary 

logistic regression is not easy to understand, because of how the link func-
tion transforms the dependent variable and because, as you will see, there 
are three different ways in which one can report results of such a regres-
sion, which makes it difficult to understand how textbooks or papers ex-
plain methods/results. The good news is that, once you have abstracted 
away from the link function, everything else is pretty much the same as 
above, and in this section we can work with R’s default treatment contrasts 
all the time – no need for two types of contrasts. 

The data set we will explore involves the question how a main and a 
subordinate clause in a sentence are ordered. It involves these variables: 
 

− a dependent binary variable, namely ORDER: MC-SC vs. SC-MC indicat-
ing whether or not the main clause precedes the subordinate clause; 

− an independent binary variable SUBORDTYPE: CAUS vs. TEMP indicating 
whether the subordinate clause is a causal or a temporal one; 

− two independent numeric variables LENGTHMC and LENTHSC, repre-
senting the number of words of the main and the subordinate clause; 

− an independent numeric variable LENGTHDIFF, which represents the 
difference main clause length minus subordinate clause length; that is, 
negative values indicate the main clause is shorter; 

− a categorical independent variable CONJ, which represents the conjunc-
tion used in the subordinate clause. Since these data are from the study 
involving parallel corpus data, these are the levels: ALS/WHEN, 
BEVOR/BEFORE, NACHDEM/AFTER, and WEIL/BECAUSE; 

− an independent binary variable MORETHAN2CL: NO vs. YES indicating 
whether or not there is more than just this main and subordinate clause 
in the sentence. This can be understood as a question of whether the 
sentence involves more complexity than just these two clauses. 
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A binary logistic regression involves the following procedure: 
 

Procedure 

− Formulating the hypotheses 
− Loading the data, preparing them for modeling, and exploring them 
− Computing, selecting, and interpreting a logistic regression model 
 − obtaining p-values for all predictors and for the model as a whole 
 − interpreting the regression coefficients/estimates on the basis of (i) 

predicted values and (ii) plots of predicted probabilities 
− Testing the main assumption(s) of the test: 
 − independence of data points and residuals, no overly influential data 

points, no multicollinearity, and no overdispersion 
 − fewer than 95% of the model’2 absolute standardized residuals > 2 
 − few if any of the absolute dfbetas of any case and predictor > 1 

 
First, the hypotheses: 

 
H0: There is no correlation between ORDER and the predictors (inde-

pendent variables and their interactions): Nagelkerke’s R2 = 0. 
H1: There is a correlation between ORDER and the predictors (inde-

pendent variables and their interactions): Nagelkerke’s R2 > 0. 
 

Then you load the data from <_inputfiles/05-3_clauseorders.csv>: 
 
> CLAUSE.ORDERS<-read.delim(file=file.choose())¶ 
> summary(CLAUSE.ORDERS); attach(CLAUSE.ORDERS)¶ 

 
In this case, no further preparation of the data will be undertaken, which 

is why the data frame has already been attached. However, we do want to 
write two helper functions (and define error.bar again as above), load a 
few packages, and make sure we’re using treatment contrasts: 
 
> logit<-function(x) { log(x/(1-x)) }¶ 
> ilogit<-function(x) { 1/(1+exp(-x)) }¶ 
> options(contrasts=c("contr.treatment", "contr.poly"))¶ 

 
Exploration of the data with cross-tabulations and spineplots of varia-

bles against ORDER does not raise any red flags so let’s go ahead. In this 
section, I will show relatively little code/plots in the book so do follow 
along with the code file! 
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3.1. A logistic regression with a binary predictor 
 
In this section, we will consider whether ORDER is correlated with 
SUBORDTYPE. As before, this first section will be longer than the ones that 
follow to lay the groundwork for the more complex things later. 

Just like a linear model with one binary predictor reduces to a simpler 
test we already know – the t-test – so does a logistic regression with a bina-
ry predictor relate to a simpler test: the chi-squared test, since we really just 
have two binary variables (as in Section 4.1.2.2): 
 
> orders<-table(SUBORDTYPE, ORDER); orders¶ 
          ORDER 
SUBORDTYPE mc-sc sc-mc 
      caus   184    15 
      temp    91   113 
> chi.orders<-chisq.test(orders, correct=FALSE); chi.orders¶ 
 Pearson's Chi-squared test 
data:  orders 
X-squared = 106.4365, df = 1, p-value < 2.2e-16 

 
Two brief comments: First, remember the notions of odds and odds rati-

os from Section 4.1.2.2. Here’s how from this table you would compute the 
odds of MC-SC first with causal, then with temporal subordinate clauses: 
Plus, we also said that you can compute an odds ratio from that and that 
sometimes you will see a logged odds ratio 
 
> (184/199) / (15/199)¶ 
[1] 12.26667 
> (91/204) / (113/204)¶ 
[1] 0.8053097 
> 12.26667/0.8053097¶ 
[1] 15.23224 
> log(15.23224)¶ 
[1] 2.723414 

 
Finally, you can of course express the fact that, obviously, causal subor-

dinate clauses prefer to follow the main clause whereas temporal subordi-
nate clauses prefer to precede the main clause with percentages: 92.46% of 
all causal subordinate clauses, but only 44.61% of the temporal subordinate 
clauses, follow the main clause. In other words, we have three different but 
of course related ways to talk about this result – odds, log odds, and per-
centages/probabilities – something I will come back to in a moment. 

The second comment has to do with an alternative to χ2. Logistic regres-
sion does not use a χ2-value as computed in a χ2-test but a so-called likeli-
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hood ratio test that results in a G-value. G is also χ2-distributed and, in a 
logistic regression involving only one binary/categorical variable, can be 
computed in a way that is similar to χ2; cf. (65) and also the code file for a 
little demonstration showing how similar χ2 and G are. 
 

(65) G = ∑
=

⋅⋅
n

i expected

observed
observed

1

log2  

 
> 2*sum(orders*log(orders/chi.orders$expected))¶ 
[1] 116.9747 

 
With all this in mind, let us now run a logistic regression. The main 

function is glm, for generalized linear model, and it takes a formula and a 
data argument as before, but now also an argument that allows R to infer 
you want to use a link function for binary logistic regression (I am simpli-
fying a bit). Also as before, the coefficients the regression will return are 
estimates so we immediately request confidence intervals with confint: 
 
> model.01<-glm(ORDER~SUBORDTYPE, data=CLAUSE.ORDERS,  

family=binomial)¶ 
> summary(model.01)¶ 
                                                          […] 
Deviance Residuals: 
    Min       1Q   Median       3Q      Max 
-1.2706  -0.3959  -0.3959   1.0870   2.2739 
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|) 
(Intercept)     -2.5069     0.2685  -9.336   <2e-16 *** 
SUBORDTYPEtemp   2.7234     0.3032   8.982   <2e-16 *** 
                                                          […] 
    Null deviance: 503.80  on 402  degrees of freedom 
Residual deviance: 386.82  on 401  degrees of freedom 
AIC: 390.82 
                                                          […] 
> confint(model.01)¶ 
                   2.5 %    97.5 % 
(Intercept)    -3.076455 -2.016328 
SUBORDTYPEtemp  2.156967  3.352559 

 
Similar to lm output, but also different. For example, you do not get an 

overall p-value. However, you can infer that the model is significant from 
the fact that the only predictor is significant (and that its confidence inter-
val does not include 0). Also, at the bottom you find the so-called null de-
viance – informally speaking, the amount of overall variability in the data – 
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and the residual deviance – informally speaking, the amount of variability 
left in the data after the predictor has taken care of some of the variability – 
and the difference between the two is G. As mentioned above, G is χ

2-
distributed with df as the difference between the dfs of the deviances, i.e. 1. 
Thus, the model’s overall p-value can be computed as follows: 
 
> pchisq(503.80-386.82, 402-401, lower.tail=FALSE)¶ 
[1] 2.899771e-27 

 
Again, we find summary statistics regarding the residuals at the top, and 

again, before we discuss the estimates, we run code that would help us to 
get p-values for predictors with more than one df: 
 
> drop1(model.01, test="LR")¶ 
Single term deletions 
Model: 
ORDER ~ SUBORDTYPE 
           Df Deviance    AIC    LRT  Pr(>Chi) 
<none>          386.82 390.82 
SUBORDTYPE  1   503.80 505.80 116.97 < 2.2e-16 *** 
---                                                       […] 
> anova(model.01, glm(ORDER~1, family=binomial), test="LR")¶ 
Analysis of Deviance Table 
Model 1: ORDER ~ SUBORDTYPE 
Model 2: ORDER ~ 1 
  Resid. Df Resid. Dev Df Deviance  Pr(>Chi)  
1       401     386.82 
2       402     503.80 -1  -116.97 < 2.2e-16 ***          […] 

 
The only change for drop1 is that we now don’t do an F-test but the 

likelihood ratio test (with LR). The line with anova does the same kind of 
model comparison: it compares model.01 against a minimal model where 
ORDER is only regressed onto an overall intercept (1) and returns the same 
likelihood ratio test. We can also use Anova again, we just need to switch to 
sum contrasts just for this one test, and again we get the familiar result: 
 
> options(contrasts=c("contr.sum", "contr.poly"))¶ 
> Anova(model.01, type="III", test.statistic="LR")¶ 
Analysis of Deviance Table (Type III tests) 
Response: ORDER 
           LR Chisq Df Pr(>Chisq) 
SUBORDTYPE   116.97  1  < 2.2e-16 ***                     […] 
> options(contrasts=c("contr.treatment", "contr.poly"))¶ 

 
As before, in the code file I provide some extra code to get p-values for 

predictors/coefficients using wald.test and glht. 



Binary logistic regression models        299 

 

Now, finally, on to the coefficients and one last time we generate 
preds.hyp in the same way as with linear models. However, for general-
ized linear models, predict does unfortunately not return confidence in-
tervals for the predicted values. 
 
> preds.hyp<-expand.grid(SUBORDTYPE=levels(SUBORDTYPE));  

preds.hyp["PREDICTIONS"]<-predict(model.01, newdata= 
preds.hyp); preds.hyp¶ 

  SUBORDTYPE PREDICTIONS 
1       caus  -2.5068856 
2       temp   0.2165283 

 
Now what does that mean? Obviously, this is neither an ordering choice 

nor 0 vs. 1 choice … To understand what these values mean, you have to 
(i) recollect the three different ways we talked about the data above: odds 
and odds ratios, log odds, and probabilities, and (ii) you have to realize that 
these predicted values are log odds for the predicted ordering, and by de-
fault R predicts the second level of the dependent variable, i.e. here SC-MC. 
Once you know that, you can use the above to also realize how the three 
ways to consider these data are related, which is represented in Figure 72. 

This graph represents the three perspectives on the results next to each 
other and it represents the possible numerical ranges of the three ways on 
the y-axes: odds range from 0 to +∞, log odds from -∞ to +∞, and probabil-
ities from 0 to 1. Each of these perspectives expresses preference, dispref-
erence, and lack of effect in different ranges. In numerical odds space, no 
preference is 1, in log odds space it’s 0, and for predicted probabilities it’s 
of course 0.5 (since we have two options). For odds, preferences are re-
flected by odds greater than 1, by positive log odds, and by predicted prob-
abilies of > 0.5, and the opposites reflect dispreferences. 

Now, if the predictions above are log odds, we can transform them to 
help us recognize what they mean. Let me show orders again first. 
 
> orders¶ 
          ORDER 
SUBORDTYPE mc-sc sc-mc 
      caus   184    15 
      temp    91   113 

 
If preds.hyp contains log odds, anti-logging/exponentiating them 

should give us odds (cf. again Figure 72 and the code file), and it does. 
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Figure 72. Three ways to look at results from a binary logistic regression 

 
> exp(-2.5068856) # odds for SC-MC when SUBORDTYPE=="caus"¶ 
[1] 0.08152174 
> exp(0.2165283) # odds for SC-MC when SUBORDTYPE=="temp"¶ 
[1] 1.241758 

 
This also means, dividing the two gets us an odds ratio, which you also 

get from anti-logging the coefficient: 
 
> exp(-2.5068856)/exp(0.2165283) # 1/odds ratio from above¶ 
[1] 0.06565025 
> exp(0.2165283)/exp(-2.5068856) # odds ratio from above¶ 
[1] 15.23223 
> exp(2.7234)¶ 
[1] 15.23202 
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Similarly, if preds.hyp contains log odds, applying ilogit should give 
us probabilities (cf. again Figure 72 and the code file), and it does: 
 
> ilogit(-2.5068856) # prob. of sc-mc when SUBORDTYPE="caus"¶ 
[1] 0.07537688 
> ilogit(0.2165283) # prob. of sc-mc when SUBORDTYPE="temp"¶ 
[1] 0.5539216 

 
Finally, you can also get to these probabilities from the odds using the 

equation shown in Figure 72 and in (37) on p. 186: 
 
> 0.08152174/(1+0.08152174)¶ 
[1] 0.07537689 
> 1.241758/(1+1.241758)¶ 
[1] 0.5539215 

 
A great part of what can be so confusing about logistic regression for 

beginners is that authors of papers or textbooks can and do use any one of 
these three perspectives: they are all right, but without something like Fig-
ure 72 it’s hard to see how these map onto each other. The natural question 
now is, which of the three scales is best. As usual, people disagree, but I 
will tell you which one I am using in my own work and also here. 

I myself don’t like the odds scale on the left. The fact that the numerical 
space to express preference (of, say SC-MC) is from 1 to +∞, but that the 
corresponding dispreferences are ‘squeezed’ into the range from 0 to 1 and 
the multiplicative nature of this scale make me disprefer it strongly. The 
log odds scale has attractive properties: it is additive and the numerical 
spaces for preference and dispreference are equally large and symmetric 
around 0. What I still do not like about the scale is that it is a scale of some-
thing as utterly unintuitive as log odds. Thus, I prefer the probability scale. 
I can think in terms of probabilities, and the numerical spaces for prefer-
ence and dispreference are equally large and symmetric around 0.5. It may 
now seem that probabilities do not come with a disadvantage – but they do, 
which you will learn about in Section 5.3.3 (see p. 306f.), but I still prefer 
them. Thus, it is the rightmost scale that we will work with and plot here. 

Let us get back to the predictions and re-work this example in a simpler 
way with probabilities and add confidence intervals, too. First, we generate 
a version of preds.hyp as above, but this time we immediately use the 
more powerful approach of the effects package: we generate an object 
with all the results for the relevant effect (sot) and extract all relevant info 
from it – the levels of the only predictor, the predicted values, and the con-
fidence limits – and apply ilogit to the numeric results: 
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> sot<-effect("SUBORDTYPE", model.01)¶ 
> preds.hyp<-data.frame(sot$x, PREDICTIONS=ilogit(sot$fit), 

LOWER=ilogit(sot$lower), UPPER=ilogit(sot$upper))¶ 
> preds.hyp¶ 
  SUBORDTYPE PREDICTIONS     LOWER     UPPER 
1       caus  0.07537688 0.0459497 0.1212547 
2       temp  0.55392157 0.4851215 0.6207159 

 
Again, these are the predicted probabilities of the second level of the 

dependent variable. Thus, the model predicts a low probability of SC-MC 
when the subordinate clause is causal and a much higher one when it is 
temporal. Since we have two options, it is only natural to make 0.5 the 
cutoff-point (as in Figure 72) and say when the predicted probability of SC-

MC is < 0.5, then the model predicts MC-SC – otherwise the model predicts 
SC-MC. We can use this to determine how well the model is at predicting 
the ordering choices. We first generate a vector that contains a predicted 
probability of SC-MC for every data point in our data using fitted. Then 
we use ifelse to let R decide for each predicted probability which order-
ing it predicts. And then we tabulate the choices predicted by the model 
with the actual choices and compute how often the two were the same:36 
 
> predictions.num<-fitted(model.01)¶ 
> predictions.cat<-ifelse(predictions.num>=0.5,  

"sc-mc", "mc-sc")¶ 
> table(ORDER, predictions.cat)¶ 
       predictions.cat 
ORDER   mc-sc sc-mc 
  mc-sc   184    91 
  sc-mc    15   113 
> (184+113)/length(predictions.cat)¶ 
[1] 0.7369727 

 
Is that good? What do you compare that to? 

 

THINK 

BREAK 

 
Unlike what you might think, you should not compare it to a chance ac-

curacy of 0.5 (because you have two orderings). Why? Because the two 
orderings are not equally frequent. The more frequent ordering, MC-SC, 
accounts for 68.24% of all data, so just by always guessing that, you al-

                                                      
36. Harrell (2001:248) cautions against using classification accuracy as a way to measure 

how good a model is. We will use a better measure in a moment. 
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ready get much more than 50% right. From that perspective (see the code 
file for another one), the present result is not great: SUBORDTYPE only 
improves our accuracy by about 5%. 

Let us now also visualize the results. I present two graphs here, nicer 
versions of which you will see when you run the code in the code file. The 
left panel of Figure 73 shows a bar plot of the predicted probabilities of SC-

MC; the right panel shows a line plot of those probabilities. 
 
> barplot(preds.hyp$PREDICTIONS, ylim=c(0, 1),  

names.arg=preds.hyp$SUBORDTYPE)¶ 
> plot(sot, ylim=c(0, 1), rescale.axis=FALSE)¶ 

 

  

Figure 73. The effects of model.01: barplot with observed/predicted probabilities 
and their 95% confidence-interval bars (left panel); effects plot from 

the library effects (right panel) 

 
Finally, I want to introduce a very useful tool for all sorts of regression 

modeling, the package rms and its function lrm (for logistic regression 
modeling). To use all that lrm has to offer, it is useful to first run the first 
line of code below so that functions from rms can access basic information 
about the ranges of variables etc. The second line uses the function lrm to 
fit the model with the formula from model.01. You do not have to specify 
family, but for many follow-up applications (later, when you become more 
proficient) several other arguments may be provided as shown: 
 
> dd<-datadist(CLAUSE.ORDERS); options(datadist="dd")¶ 
> model.01.lrm<-lrm(formula(model.01), data=CLAUSE.ORDERS,  

x=TRUE, y=TRUE, linear.predictors=TRUE, se.fit=TRUE);  
model.01.lrm¶ 
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                                                          […] 
                      Model Likelihood     Discrimination 
                         Ratio Test            Indexes  
Obs           403    LR chi2     116.97    R2       0.353 
 mc-sc        275    d.f.             1    g        1.365 
 sc-mc        128    Pr(> chi2) <0.0001    gr       3.915 
max |deriv| 2e-09                          gp       0.240 
                                           Brier    0.159 
 
Rank Discrim. 
   Indexes 
C       0.776 
Dxy     0.552 
gamma   0.877 
tau-a   0.240 
Brier   0.159                                             […] 

 
I am not showing all the output but some advantages of lrm should be 

clear: You get the significance test of the model (see the likelihood ratio 
test), you get an R

2-value (often given as Nagelkerke’s R
2 and, as usual, 

ranging from 0 to 1), and you get a C-value, which can be used as an indi-
cator of the classification quality of the model. This value ranges from 0.5 
to 1 and values above 0.8 are considered good, which we don’t quite 
achieve here. (Note in passing, C = 0.5+(Dxy/2). 

To sum up: “A binary logistic regression shows there is a highly signifi-
cant but weak correlation betwween the type of subordinate clause and the 
order of main and subordinate clause (G = 116.97; df = 1; p < 0.001; 
Nagelkerke’s R2 = 0.353, C = 0.776); 73.7% of the orderings are classified 
correctly (against a chance accuracy of 68.24%). The model predicts that 
causal subordinate clauses prefer to follow main clauses whereas temporal 
ones prefer to preceed main clauses. [add a graph and maybe coefficients]” 
 
 
3.2. A logistic regression with a categorical predictor 
 
As before, we will build up the complexity of the regression models in a 
stepwise fashion. We therefore now turn to a categorical predictor, CONJ. 
Again, I will show much less output from now on. The model is significant, 
with a likelihood ratio value of 123.32 at df =3 (see above). Since 
FAMILIARITY has more than 1 df, you use drop1 (or other functions, see the 
code file) to get one p-value, and FAMILIARITY is highly significant. 
 
> model.01<-glm(ORDER~CONJ, data=CLAUSE.ORDERS,  

family=binomial)¶ 
> summary(model.01)¶ 
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> confint(model.01)¶ 
> drop1(model.01, test="LR")¶ 

 
To explore what the coefficients reveal, you turn to the predictions. 

These show that als/when and nachdem/after prefer SC-MC, whereas 
bevor/before and weil/because prefer MC-SC. I will not explain the meaning 
of the intercept and all coefficients in detail here but you will find all these 
explanations in the code file and should read them carefully! The logic and 
everything else is the same as explained above with (61) and (62), just that 
the coefficients now represent differences between the intercept – the first 
level of FAMILIARITY – and the other levels on the log odds scale. 
 
> conj<-effect("CONJ", model.01)¶ 
> preds.hyp<-data.frame(conj$x, PREDICTIONS=ilogit(conj$fit), 

LOWER=ilogit(conj$lower), UPPER=ilogit(conj$upper))¶ 
> preds.hyp¶ 
           CONJ PREDICTIONS     LOWER     UPPER 
1      als/when  0.60215054 0.4997995 0.6962850 
2  bevor/before  0.39130435 0.2623180 0.5375019 
3 nachdem/after  0.60000000 0.4773236 0.7112984 
4  weil/because  0.07537688 0.0459497 0.1212547 

 
Then we see how well the model classifies the orderings. We get an im-

provement over chance, but 76.18% does not seem like a huge step ahead. 
 
> predictions.num<-fitted(model.01)¶ 
> predictions.cat<-ifelse(predictions.num>=0.5,  

"sc-mc", "mc-sc")¶ 
> table(ORDER, predictions.cat)¶ 
> (212+95)/length(predictions.cat)¶ 

 
Finally, we represent the data visually as before and generate a model 

with lrm to get R
2 and C, which are 0.369 and 0.798 respectively. With 

these plots and summary statistics, we can now summarize the result of our 
regression model in the same way as above on p. 304. Note that, given the 
overlap of the temporal conjunctions, one should strictly speaking also test 
whether the fine resolution of three temporal conjunctions is warranted … 
 
> barplot(preds.hyp$PREDICTIONS, ylim=c(0, 1),  

names.arg=preds.hyp$CONJ)¶ 
> plot(allEffects(model.01), ask=FALSE, ylim=c(0, 1),  

rescale.axis=FALSE)¶ 
> dd<-datadist(CLAUSE.ORDERS); options(datadist="dd")¶ 
> model.01.lrm<-lrm(formula(model.01), data=CLAUSE.ORDERS);  

model.01.lrm¶ 
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3.3. A logistic regression with a numeric predictor 
 
As the final monofactorial logistic regression, we will now turn to a numer-
ic predictor, LENGTH_DIFF. 
 
> model.01<-glm(ORDER~LENGTH_DIFF, data=CLAUSE.ORDERS,  

family=binomial)¶ 
> summary(model.01)¶ 
> confint(model.01)¶ 

 
For the sake of consistency you also run drop1 (and maybe Anova/ 

anova) although LENGTH_DIFF has 1 df so it’s not really necessary. 
 
> drop1(model.01, test="LR")¶ 

 
Note there is a slight difference between the p-values from the summary 

output on the one hand and drop1, anova, and Anova on ther other hand; 
according to Fox and Weisberg (2011:239), the likelihood ratio test you get 
with drop1 etc. may be more reliable. 

The model is significant but the effect really seems quite weak. To un-
derstand the coefficients, we create the predictions, but this time around we 
have to discuss this in more detail, since it is here that a slight disadvantage 
of the probability perspective on logistic regression results manifests itself. 
In one sense at least, things are as before: the intercept still represents the 
probability of the predicted ordering when the independent variable is at its 
first level or, as here, 0, which you can see in preds.hyp and compare that 
to ilogit(-0.77673)¶: 
 
> lendiff<-effect("LENGTH_DIFF", model.01, 

xlevels=list(LENGTH_DIFF=-max(abs(range(LENGTH_DIFF))): 
max(abs(range(LENGTH_DIFF))))); lendiff¶ 

> preds.hyp<-data.frame(lendiff$x, PREDICTIONS= 
ilogit(lendiff$fit), LOWER=ilogit(lendiff$lower), 
UPPER=ilogit(lendiff$upper)); preds.hyp¶ 

 
Similarly, the coefficient of LENGTH_DIFF still represents the change of 

the probability of the predicted order, SC-MC, for a unit change of 
LENGTH_DIFF. However, this change is linear/constant only on the log 
odds scale – once we check it on the probability scale, you can see that a 
change of 1 of LENGTH_DIFF does not bring about the same difference in 
probabilities: when you increase LENGTH_DIFF by 1 
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− from -20 to -19, this results in the predicted probability of SC-MC grow-
ing by 0.006019; 

− from -10 to -9, this results in the predicted probability of SC-MC growing 
by 0.0078747; 

− from 0 to 1, this results in the predicted probability of SC-MC growing 
by 0.0096109. 

 
This is because the inverse logit transformation is not linear (in proba-

bility space). But let us now see how well this model predicts the orderings: 
 
> predictions.num<-fitted(model.01)¶ 
> predictions.cat<-ifelse(predictions.num>=0.5,  

"sc-mc", "mc-sc")¶ 
> table(ORDER, predictions.cat)¶ 
> (272+2)/length(predictions.cat)¶ 

 
In some sense, the performance is abysmal: it is worse than chance even 

though the direction of the effect makes sense – you should make sure you 
recognize that it amounts to ‘short before long’? Also, you can see from the 
table that the model hardly ever predicts SC-MC – only five times. To visu-
alize the effect of LENGTH_DIFF and explore this bad performance, let us 
plot the predicted probabilities against length differences from preds.hyp 
(cf. Figure 74). 
 
> plot(preds.hyp$LENGTH_DIFF, preds.hyp$PREDICTIONS,  

xlim=c(-35, 35), ylim=c(0, 1))¶ 

 
As you can see, in probability space you do not get a straight regression 

line but a curve. Thus, the change of LENGTH_DIFF by one word has differ-
ent effects depending on where it happens and this is the disadvantage of 
the probability scale I alluded to earlier. However, given how we can nicely 
plot such curves in R, this is a disadvantage I am happy to live with (com-
pared to those of the odds or log odds scales). 

Figure 74 also helps understand the bad classification accuracy. The 
horizontal line at the cut-off point of y = 0.5 only applied to very few points 
(see the rugs). One way to try to force the regression to make somewhat 
more diverse predictions is to choose a cut-off point other than 0.5, and one 
possibility is to use the median of all predicted probabilities (0.3150244; cf. 
Hilbe 2009: Section 7.2.2 for discussion). 
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Figure 74. The effects of model.01: scatterplot with predicted probabilities and 
their 95% confidence-interval band 

 
If you do that here, you do get more balanced frequencies of categorical 

predictions, but the accuracy decreases even further. The code file shows 
how, when you choose 0.42 as a cut-off point, you get a slightly more bal-
anced frequency of predictions and still about 68% right; for now, we will 
use this value and I leave the topic of ROC curves and how they help iden-
tifying cut-off points for your future exploration Note, however, that if you 
do not choose the ‘default’ cut-off point of 0.5 for the categorical predic-
tions, you should mention which one you chose and why. Finally, we do 
the regression again with lrm to get the really small R

2 (0.026) and C 
(0.603), and then we can summarize our results as above. 
 
> dd<-datadist(CLAUSE.ORDERS); options(datadist="dd")¶ 
> model.01.lrm<-lrm(formula(model.01), data=CLAUSE.ORDERS);  

model.01.lrm¶ 

 
 
3.4. A logistic regression with two categorical predictors 
 
We now move on to the first logistic regression with more than one predic-
tor: we will explore whether CONJ and MORETHAN2CL and their interac-
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tion affect the clause orders. Since one of the predictors has more than 1 df, 
we fit the model and immediately add drop1 and Anova: 
 
> model.01<-glm(ORDER~CONJ*MORETHAN2CL, data=CLAUSE.ORDERS,  

family=binomial)¶ 
> summary(model.01)¶ 
> confint(model.01)¶ 
> drop1(model.01, test="LR")¶ 
> options(contrasts=c("contr.sum", "contr.poly"))¶ 
> Anova(model.01, type="III", test.statistic="LR")¶ 
> options(contrasts=c("contr.treatment", "contr.poly"))¶ 

 
You can see that drop1 now only returns the p-value for the non-

significant interaction, which, in a normal model selection process, we 
would now omit. We leave it in here to explore how to understand and 
visualize the interaction – with Anova, however, we also get all other p-
values; only CONJ seems significant. 

On to the predictions using code I only show in the code file because 
there I have more space to explain both the code and the meanings of the 
coefficients, which as usual follow the rules in (61) and (62)). If you look 
at preds.hyp, weil/because sticks out, but the output also shows why the 
interaction is not significant: the confidence intervals are huge and, on the 
whole, the conjunctions seem to pattern alike across both levels of 
MORETHAN2CL. How good are these predictions? 
 
> predictions.num<-fitted(model.01)¶ 
> predictions.cat<-ifelse(predictions.num>=0.5,  

"sc-mc", "mc-sc")¶ 
> table(ORDER, predictions.cat)¶ 
> (216+93)/length(predictions.cat)¶ 

 
We get nearly 77.7% right, which is at least above chance again. Final-

ly, we represent the data visually as before and generate a model with lrm 
for the overall model test (likelihood ratio χ2=132.06, df=7, p < 0.001), R2 
(0.392), and C (0.82). 
 
> dd<-datadist(CLAUSE.ORDERS); options(datadist="dd")¶ 
> model.01.lrm<-lrm(formula(model.01), data=CLAUSE.ORDERS);  

model.01.lrm¶ 

 
Since the data now involve an interaction, the code can become a bit 

more involved (at least when you do not use the functions from the effects 
package) and I show it only in the code file. The non-significant interaction 
is reflected by the large overlap of the confidence intervals and the similar 



310        Selected multifactorial methods 

 

(differences of) values of the predicted probabilities, which is, with every-
thing else, what you would discuss in your results section. 
 
 
3.5. A logistic regression with a categorical and a numeric predictor 
 
As in Section 5.2.5, we now turn to a case with an interaction between a 
categorical and a numeric predictor, which means again that the interaction 
coefficients will reflect adjustments to the slope of the numeric predictor. 
 
> model.01<-glm(ORDER~CONJ*LENGTH_DIFF, data=CLAUSE.ORDERS,  

family=binomial)¶ 
> summary(model.01)¶ 
> confint(model.01)¶ 
> drop1(model.01, test="LR")¶ 
> options(contrasts=c("contr.sum", "contr.poly"))¶ 
> Anova(model.01, type="III", test.statistic="LR")¶ 
> options(contrasts=c("contr.treatment", "contr.poly"))¶ 

 
This time, both main effects are significant, and the interaction is only 

just about not significant. Therefore, it would be warranted to at least look 
at the interaction (as we will for didactic purposes anyway). 

We generate the predictions the usual way and it is again prudent to 
maybe also generate a slightly flatter table that can be inspected before we 
turn to plots, as shown in the code file: 
 
> intact<-effect("CONJ:LENGTH_DIFF", model.01, 

xlevels=list(LENGTH_DIFF=seq(-32, 32, length.out=9)))¶ 
> preds.hyp<-data.frame(intact$x, PREDICTIONS= 

ilogit(intact$fit), LOWER=ilogit(intact$lower), 
UPPER=ilogit(intact$upper)); preds.hyp¶ 

 
Especially the flatter representation of preds.hyp.2 is now easier to 

read. You can see for each conjunction how the predicted probability of SC-

MC changes as LENGTH_DIFF changes. A plot will make this even more 
obvious in a moment. Again, read the code file in detail to understand how 
the coefficients result in these predictions! How good are the predictions? 
 
> predictions.num<-predict(model.01, type="response")¶ 
> predictions.cat<-ifelse(predictions.num>=0.5, 

"sc-mc", "mc-sc")¶ 
> table(predictions.cat, ORDER)¶ 
> (228+83)/length(predictions.cat)¶ 
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Approximately 77.2% are classified correctly, and a cut-off point of 
0.57 results in a slightly better value (of about 78.2%). But now, what do 
the results amount to? In this case, where the p-values of all effects are at 
least < 0.07, we will do some nice plotting, which will be partly based on 
preds.hyp.2, as it has separate columns for the conjunctions. Figure 75 is 
what we want to create (in the lower panel, the letters are the first letters of 
the German conjunctions). Remember, though: the interaction is significant 
so that is what you should focus on – not the main effects! The code file 
shows how exactly this is done; I know it’s a lot of lines, but you should 
invest the time to see what every line is doing because, once you get it, you 
will be able to use this logic for many examples in your own work. 

The first main effect is somewhat familiar from above. The three tem-
poral conjunctions prefer SC-MC whereas weil/because strongly prefers MC-

SC. The second main effect is also familiar: short-before-long. Now the 
interaction is interesting. Three observations can be made: 
 

− als/when and nachdem/after exhibit similar average preferences for SC-

MC and both react to LENGTH_DIFF in a way that is (more) compatible 
with short-before-long than the average; 

− bevor/before not only has less of a preference for SC-MC but also the 
opposite tendency compared to the other two temporal conjunctions: 
when the main clause becomes longer, it want to precede the subordi-
nate clause; 

− weil/because subordinate clauses are pretty much completely immune to 
considerations of length: the want to come second no matter what. 

 
(The code file also contains code for the interaction with confidence in-

tervals, but those make the plot harder to read, defeating its purpose; the 
effects plot is more useful in that regard.) All the above, together with the 
p-values for the predictors, the p-value for the overall model (likelihood 
ratio χ2=135.21, df=7, p < 0.001), R2 (0.399) and C (0.818) from the corre-
sponding model with lrm (see below) would be part of your results section. 
 
 
3.6. A logistic regression with two numeric predictors 
 
The final logistic regression, as before with two numeric predictors. We are 
going to check whether the lengths of the two clauses affect the ordering 
choice. First a question: how is this different from checking whether 
LENGTH_DIFF is significant? 
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Figure 75. All effects in model.01 (remember, however: if the interaction is sig-
nificant, your discussion should focus on it, not the main effects) 
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THINK 

BREAK 

 
It is different because it takes into account where a particular length dif-

ference may be observed: If LENGTH_DIFF is 1, that value does not reveal 
whether it arises from the main and the subordinate clause containing 10 
and 9 or 20 and 19 words respectively. As usual, we fit the model; since 
both variables are numeric, drop1 and Anova are not really necessary: 
 
> model.01<-glm(ORDER~LEN_MC*LEN_SC, data=CLAUSE.ORDERS,  

family=binomial)¶ 
> summary(model.01)¶ 
> confint(model.01)¶ 

 
This is all as non-significant as it gets; it is only for didactic reasons that 

we proceed with the predictions, and with two numeric predictors spanning 
a wide range of values, both preds.hyp and the flatter preds.hyp.2 (see 
the code file) are not easy to process. (Don’t forget to read the code file’s 
explanation of the coefficients.) Next, we check the cross-classification 
table, immediately using the median of the predicted probabilities as the 
cut-off point: 
 
> predictions.num<-predict(model.01, type="response")¶ 
> predictions.cat<-ifelse(predictions.num>= 

median(predictions.num), "sc-mc", "mc-sc")¶ 
> table(predictions.cat, ORDER)¶ 
> (151+82)/length(predictions.cat)¶ 

 
The accuracy is quite low, even beyond chance, which is not surprising 

given the p-values of the predictors. But what do the effects look like? As 
before, you have basically two possibilities. First, you can again generate a 
3-dimensional rotatable plot (with plot3d), and the code file shows an, I 
think, nice version where different colors and different letters (the first 
letter of the first clause) represent which ordering is predicted for which 
combination of lengths. The fact that the interaction is insignificant is re-
flected by the fact that the letters nearly form a straight plane in 3-
dimensional space. The more publication-ready version is shown in Figure 
76. 
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Figure 76. The interaction LENGTHMC:LENTHSC in model.01 

 
LENGTHMC and LENGTHSC are on the x- and y-axis respectively. When 

the categorical prediction is MC-SC, I plot an m otherwise an s. The larger 
and the darker the letter, the more ‘certain’ is the model about the predic-
tion in the sense that the prediction is based on a probability further away 
from the cut-off point. The straight grey line is the main diagonal where 
both clauses are equally long, and the curved black line indicates for every 
main clause length where the prediction flips to the other clause order, 
which is why there the letters are so light. While the interaction is not sig-
nificant, we see short-before-long again: when the main clause is short (the 
left of the plot), then as the subordinate clause becomes longer, it wants to 
go in the hind position, and the same the other way round for subordinate 
clauses. The effects plots show the same kind of result, but by splitting up 
the subordinate clause lengths into ten different ranges and then plotting 
regression lines and their confidence intervals. While easier to generate in 
terms of code, I find that graph less easy to interpret than Figure 76. 
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Finally, you would generate the model with lrm and sum it all up; here 
of course, all predictors are weak and non-significant and R2 as well as C 
are really low (0.028 and 0.606 respectively). 

We have now completed the overview of the different logistic regres-
sion models. Again, as mentioned above on p. 263, you would of course 
not have done all these models separately, but a model selection process 
like the one in Section 5.2.7. One of the exercises for this chapter will have 
you do this for the present data, and you will find that the results shed some 
more light on the unexpected behavior of bevor/before in Section 5.3.5. 

What remains do be covered, however, is again how to test whether the 
assumptions of the regression model are met. Above I mentioned three 
different criteria (but see Fox and Weisberg (2011: Ch. 6)). You already 
know about inspecting residuals but overdispersion is new. It requires that 
you look at the ratio of your model’s residual deviance and its residual dfs, 
which should not be much larger than 1. In this case, it is 495.58/399=1.242. 
Several references just say that, if you get a value that is much larger than 
1, e.g. > 2, then you would run the glm analysis again with the argument 
family=quasibinomial and take it from there. Baayen (2008: 199) uses as 
an  approximation a chi-square test of the residual deviance at the residual 
df: 
 
> pchisq(495.58, 399, lower.tail=FALSE)¶ 
[1] 0.0006880771 

 
Thus, if this was a real analysis with a significant result, one might want 

to follow that advice. The other criteria I mentioned were concerned with 
the absolute values of the standardized residuals of the model and of the 
dfbetas. The former are a type of corrected residuals (see Fox and Weisberg 
2011: 286f.) and Field, Miles, and Field (2012: Section 8.6.7.3) suggest 
that no more than 5% should be > 2 or < -2. This is easy to test: 
 
> prop.table(table(abs(rstandard(model.01))>2))¶ 
     FALSE       TRUE 
0.99751861 0.00248139 

 
In this case not even 1% is > 2 or < -2. Similarly straightforward is the 

test of the dfbetas, which reflect how much a regression coefficient changes 
when each case is removed from the data. Again, testing this in R is simple: 
 
> summary(dfbetas<-abs(dfbeta(model.01)))¶ 
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The output (not shown here) indicates that in fact no absolute dfbeta is 
greater than 0.1 so this criterion also poses no problems to our model. 
Checking diagnostics carefully is an important component of model check-
ing and R in general, and the library car in particular, has many useful 
functions for this purpose. 
 

Recommendation(s) for further study 

− just like in Section 5.2, it can also help interpreting the regression coef-
ficients when the input variables are centered 

− the function hoslem.test from the library ResourceSelection for the 
Hosmer-Lemeshow test (see Hilbe 2009: Section 7.2) (you want to see a 
non-significant result) 

− Field, Miles, and Field (2012: Section 8.8.2) on the assumption of the 
linearity of the logit 

− Pampel (2000), Jaccard (2001), Crawley 2005: Ch. 16), Crawley (2007: 
Ch. 17), Faraway (2006: Ch. 2, 6) , Zuur, Ieno, and Smith (2007: Sec-
tion 6.1), Gelman and Hill (2007: Ch. 5), Baayen (2008: Section 6.3), 
Baguley (2012: Ch. 17) 

 
 

4. Other regression models 

 
The above two types of regression models have been the most widely-used 
ones in linguistics. In this section, I will introduce a variety of other regres-
sion models that are not that widespread yet, but which are bound to be-
come used more in the near future: ordinal logistic regression (where the 
dependent variable is ordinal), multinomial regression (where the depend-
ent variable is categorical with 3+ levels), and Poisson regression (where 
the dependent variable consists of frequencies). The logic of the exposition 
will be as above, but – for reasons of space – much abbreviated. Specifical-
ly, after a short introduction to each section and its data, I will only discuss 
one example for each regression in the book, namely the case of two inde-
pendent variables, one categorical and one numeric. However, the code file 
will discuss six regression models for each, just like before, so that you get 
a nice homogeneous treatment of all models. I therefore recommend that 
you load the data, read the chapter in the book, and follow along with the 
fifth of the six examples in the code file, and then explore the other exam-
ples based on the code file as well. 
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4.1. An ordinal logistic regression with a categorical and a numeric 
 predictor 
 
The example we will explore to approach ordinal logistic regression is con-
cerned with which of a set of independent variables allows us to predict 
which of three different end-of-term exams or assignments foreign-
language learners of English will choose. It involves these variables: 
 

− a dependent ordinal variable, namely ASSIGNMENT: ORALEXAM vs. 
LABREPORT vs. THESIS; crucially, these are ordered in ascending order of 
difficulty (based on a previous study); 

− an independent binary variable SEX: FEMALE vs. MALE indicating the sex 
of the student whose choice has been recorded; 

− a categorical independent variable REGION, which represents the geo-
graphic region where the student comes from: CENTRAL-EUROPEAN, 
HISPANIC, and MIDDLE-EASTERN; 

− an independent numeric variable WORKHOURS, representing the num-
bers of hours/month the students claimed to have invested into the class; 

− an independent numeric variable MISTAKES, which represents the num-
bers of mistakes the students made in their last assignment for this class. 

 
Here are the steps of an ordinal logistic regression that we will follow: 

 

Procedure 

− Formulating the hypotheses 
− Loading the data, preparing them for modeling, and exploring them 
− Computing, selecting, and interpreting a logistic regression model 
 − obtaining p-values for all predictors and for the model as a whole 
 − interpreting the regression coefficients/estimates on the basis of (i) 

predicted values and (ii) plots of predicted probabilities 
− Testing the main assumption(s) of the test: 
 − the usual suspects: independence of data points and residuals, no 

overly influential data points, no multicollinearity 
 − the dependent variable “behaves in an ordinal fashion with respect to 

each predictor” (Harrell 2001:332) 

 
First, the hypotheses: 

 
H0: There is no correlation between ASSIGNMENT and the predictors 
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(independent variables and their interactions): R2 = 0. 
H1: There is a correlation between ASSIGNMENT and the predictors 

(independent variables and their interactions): R2 > 0. 
 

Then you load the data from <_inputfiles/05-4-1_assignments.csv> as 
well as the library rms, whose function lrm we will use here: 
 
> rm(list=ls(all=TRUE)); library(rms)¶ 
> ASSIGNS<-read.delim(file=file.choose()); str(ASSIGNS)¶ 

 
If you inspect the summary provided by str, you will see that the levels 

of the factor ASSIGNMENT are not in the right order, and that that factor is 
not even an ordered factor, which means R treats it as a categorical variable 
(as all factors in this book so far), not as the desired ordinal variable. Thus, 
we change this (check str again), and then we can attach and, since we 
will use the lrm function again, create the required datadist object: 
 
> ASSIGNS$ASSIGNMENT<-factor(ASSIGNS$ASSIGNMENT, ordered= 

TRUE, levels=levels(ASSIGNS$ASSIGNMENT)[c(2,1,3)])¶ 
> str(ASSIGNS); attach(ASSIGNS)¶ 
> ddist<-datadist(ASSIGNS); options(datadist="ddist")¶ 

 
As mentioned before, I will now skip the first four models discussed in 

the code file and go directly to the fifth one, where we explore the joint 
influence of REGION and WORKHOURS on ASSIGNMENT: 
 
> model.01<-lrm(ASSIGNMENT ~ REGION*WORKHOURS, data=ASSIGNS, 

x=TRUE, y=TRUE, linear.predictors=TRUE, se.fit=TRUE)¶ 
> model.01¶ 
> anova.rms(model.01)¶ 

 
The model is highly significant (Likelihood ratio χ2=493.09, df=5, p < 

0.001) and shows there is a very strong correlation: R
2=0.908, C=0.938. 

The anova.rms output is a bit different. Rather than giving you a p-value 
for each main effect and each interaction (as Anova from the libray car 
did), you get two p-values for what each main effect does alone together 
with what it does in the interaction, and you get a p-value for the interac-
tion. Since the interaction is nearly significant, we will focus on that. But 
what is its nature? The coefficients are now quite different from what we 
have seen before: there is more than one intercept. I explain the meanings 
of each coefficient in detail in the code file, but the easiest way to under-
stand the results is again via predicted probabilities, which we will generate 
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using the same logic but slightly different code (the effect function does 
not work with lrm objects but you can sometimes use polr from the pack-
age MASS). Here are the first two lines: 
 
> preds.hyp<-expand.grid(REGION=levels(REGION), 

WORKHOURS=c(0, 1, floor(min(WORKHOURS)): 
ceiling(max(WORKHOURS))))¶ 

> preds.hyp<-data.frame(preds.hyp, predict(model.01,  
newdata=preds.hyp, type="fitted.ind"))¶ 

 
This generates a data frame preds.hyp again, which contains for each 

combination of REGION and a large number of values of WORKHOURS the 
predicted probability of each kind of assignment. For example, when the 
student is from the Hispanic region and puts in 26 workhours, he is strong-
ly predicted to choose the lab report: 
 
> preds.hyp[preds.hyp$REGION=="hispanic" & preds.hyp$ 

WORKHOURS==26,]¶ 

 
But we want it even nicer: we do not just want the predicted probabili-

ties, but immediately also for each row what the categorical prediction is. 
As you can see, the predict function combined the name of the dependent 
variable, ASSIGNMENT, with the predicted levels by inserting a period be-
tween them. We do not want to see that so we use the following: 
 
> preds.hyp<-data.frame(preds.hyp, ASSIGNMENT.pred= 

sub("^.*?\\.", "", names(preds.hyp)[-(1:2)][ 
max.col(preds.hyp[,-(1:2)])]))¶ 

> preds.hyp[38:42,]¶ 

 
The function sub takes three arguments: what to look for (and the ar-

gument ".*\\." means ‘characters up to and including a period’), what to 
replace it with (and "" means ‘nothing’, i.e., ‘delete’), and where to do all 
this (in the three column names of preds.hyp that are not the first two). 
And then, these levels are subset with the vector of numbers that results 
from R checking for each row where the maximal predicted probability is 
(always excluding the first two columns of preds.hyp, which contain the 
independent variables!). Verify this by looking at these five lines of output. 

We now first remove the first rows of preds.hyp because these were 
only included to explain the coefficients but were unrepresentative of the 
real values of WORKHOURS. Then, we check the classification accuracy: 
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> preds.hyp<-preds.hyp[-(1:6),]¶ 
> predictions.num<-predict(model.01, type="fitted.ind")¶ 
> predictions.cat<-sub("^.*?[\\.=]", "", colnames( 

predictions.num)[max.col(predictions.num)])¶ 
> table(predictions.cat, ASSIGNMENT)¶ 

 
As you can see, we achieve a good accuracy, nearly 85%, which is high-

ly significantly better than the chance level of 33% (since the three assign-
ments are equally frequent). Then we plot the predicted probabilities, 
which, given the multitude of results these types of regressions yield, be-
comes a bit more involved. One way to represent these results is shown in 
Figure 77. There is one panel for each region, the workhours are on each x-
axis, the predicted probabilities on each y-axis, and the three assignments 
are represented by lines and their first letters. On the whole, there is a very 
strong effect of WORKHOURS: students who self-reported lower workhours 
are strongly predicted to choose the easiest exam/assignment, the oral ex-
am. Those who report an intermediate number of workhours are strongly 
predicted to use the intermediately difficult exam/assignment, the lab re-
port, and those who report the largest numbers of workhours are predicted 
to go with the thesis. The nearly significant interaction, however, indicates 
that this behavior is not completely uniform across the three regions: For 
example, the Hispanic students choose the more difficult exams/ 
assignments with smaller numbers of workhours than the Middle Eastern-
ers. The Central Europeans stick more to the oral exams even if they work 
a number of hours where the other students have already begun to prefer 
the lab report, and only the most industrious Middle Easterners choose the 
thesis. (See the code file for other graphs.) 

Let us finally check some assumptions of this type of regression: The 
first five plots represent the residuals and those are mostly quite close to 0, 
as required. The ordinality assumption looks a bit more problematic, 
though so this requires some more attention, which is beyond the scope of 
this book; see the recommendations for further study. 
 
> par(mfrow=c(2, 4))¶ 
> residuals(model.01, type="score.binary", pl=TRUE)¶ 
> plot.xmean.ordinaly(ASSIGNMENT ~ REGION*WORKHOURS)¶ 
> par(mfrow=c(1, 1))¶ 

 
Leaving this issue aside for now, you would now be able to summarize 

the regression results numerically (Likelihood ratio χ
2, df, p, R

2, C) and 
discuss the graph and its implications along the lines discussed above. 
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Figure 77. The interaction REGION:WORKHOURS in model.01 

 

Recommendation(s) for further study 

− the function polr from the library MASS, for ordinal logistic regressions 
− Harrell (2001: Ch. 13-14), Baayen (2008: Section 6.3.2), Hilbe (2009: 

Ch. 10), Agresti (2010), Fox and Weisberg (2011: Section 5.9) 
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4.2. A multinomial regression with a categorical and a numeric  
       predictor 
 
After having discussed ordinal logistic regression, we now turn to multi-
nomial regression. For the sake of simplicity, we will use the same data set 
and just not consider ASSIGNMENT an ordinal variable (and hence an or-
dered factor) but a categorical variable and hence a ‘regular’ unordered 
factor. This is the procedure we will follow: 
 

Procedure 

− Formulating the hypotheses 
− Loading the data, preparing them for modeling, and exploring them 
− Computing, selecting, and interpreting a multinomial regression model 
 − obtaining p-values for all predictors and for the model as a whole 
 − interpreting the regression coefficients/estimates on the basis of (i) 

predicted values and (ii) plots of predicted probabilities 
− Testing the main assumption(s) of the test: 
 − the usual suspects: independence of data points and residuals, no 

overly influential data points, no multicollinearity 
 − independence of irrelevant alternatives, a non-significant Hasuman-

McFadden test (which I will not discuss, see the references below) 

 
Given that we’re using the same data set, the hypotheses stay the same, 

too, plus you can load the file, change the levels of ASSIGNMENT as above, 
(without changing it to an ordered factor though), and we load a number of 
libraries. Then we fit a multinomial regression model as follows: 
 
> model.01<-multinom(ASSIGNMENT ~ REGION*WORKHOURS,  

data=ASSIGNS)¶ 
> summary(model.01, Wald=TRUE)¶ 
> mlogit.display(model.01)¶ 
> confint(model.01)¶ 

 
The output of summary is a bit overwhelming because we get again get 

multiple intercepts and coefficients for all but the first level of the depend-
ent variable. These represent in a somewhat complicated way the differ-
ences between the first level of the dependent variable and each of the oth-
ers; in a way, multinomial regressions are series of binary logistic regres-
sions. We also get Wald statistics, which are, as usual, the coefficients 
divided by their standard errors. 

Let us check the significance of the predictors. We can unfortunately 
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not use drop1, but we can do something that is pretty much equivalent to it: 
an anova comparison of model.01 to a model without the interaction, plus 
we can use Anova in the by now familiar way. Both reveal that the interac-
tion is not significant at all: p > 0.9. 
 
> anova(model.01, multinom(ASSIGNMENT ~ REGION+WORKHOURS))¶ 
> options(contrasts=c("contr.sum", "contr.poly"))¶ 
>    Anova(model.01, type="III")¶ 
> options(contrasts=c("contr.treatment", "contr.poly"))¶ 

 
Now what do the coefficients mean? I am nearly tempted to say, “you 

don’t want to know …” The explanations of the coefficients are even more 
evidence why trying to understand the results in terms of coefficients is 
often not the best/most intuitive strategy. You will find detailed explana-
tions of them in the code file; suffice it to say here that, when you exponen-
tiate them, you get ratios between different predicted probabilities. One 
visual representation we might use is the type exemplified by Figure 77 
above and the code file shows you how you can generate that graph as well 
as two others. On the whole, the results are comparable to those of Figure 
77: low numbers of work hours lead to oral exams, intermediate ones lead 
to lab reports, and high ones are more associated with theses, and these 
preferences are, with some small differences, obtained for all regions. 

To determine the classification accuracy, we could proceed the usual 
way, or we can take take things to the next level. Again we use function 
model.statistics from Antti Arppe’s nice package polytomous: 
 
> model.statistics(ASSIGNMENT, predictions.cat,  

predictions.num)¶ 

 
This provides an immensely useful set of summary statistics: Log-

likelihood statistics and deviances for our model.01 (-329.5837 and 
143.4688) and for a model consisting of just the intercept (-71.73441 and 
143.4688), the classification accuracy (0.8733), and, as in the excurses 
before, Nagelkerke R2 (0.9233), everything one would want to know … 
 

Recommendation(s) for further study 

− Gries (2009: Section 5.1) on (hierarchical) configural frequency analy-
sis (and the script hcfa with which it can be computed interactively) 
and Field, Miles, and Field (2012: Sections 18.7-18.12) on loglinear 
analysis; also see the functions loglin and the function loglm (from the 
library MASS) to compute loglinear analyses 
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− the function hmftest from the library mlogit to compute the Hausman-
McFadden test 

− Agresti (2002: Ch. 7), Faraway (2006: Ch. 5), Fox and Weisberg (2011: 
Section 5.7), Field, Miles, and Field (2012: Section 8.9) 

 
 
4.3. A Poisson regression with a categorical and a numeric  
       predictor 
 
In this section, I will discuss another type of generalized linear model, 
namely Poisson regression, which is used to model counts/frequencies. As 
discussed above on p. 294, just like binary logistic regression this approach 
also requires a link function – this time the exponential function – to make 
sure that a linear-model type of approach can be applied to a dependent 
variable that is never negative. As in the last two sections, I will only dis-
cuss one regression with a categorical and a numeric predictor here in the 
book and encourage you to then explore the other five examples in the code 
file. The example I will use to explain Poisson regression is concerned with 
factors that lead to in-/decreased numbers of disfluencies in conversations 
of bilingual and/or highly advanced non-native speakers and involves the 
following variables: 
 

− a dependent variable DISFLUENCY, which represents the numbers of 
disfluencies 300 speakers each produced in 20 minutes of conversation; 

− an independent binary variable SEX: FEMALE vs. SEX: MALE, the speak-
er’s sex; 

− a categorical independent variable MOVEDWHEN, which indicates when 
the speaker moved to the U.S.A.: as an ADULT, during HIGH SCHOOL, or 
during PRIMARY SCHOOL; 

− an independent numeric variable REALITYTV, representing the numbers 
of hours/month the speakers self-reports to watch reality TV shows; 

− an independent numeric variable SOCIALNETWORK, which represents 
the numbers of hours/week the speakers self-reports to spend time on 
social networks. 

 
Here are the steps of a Poisson regression that we will follow: 

 

Procedure 

− Formulating the hypotheses 
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− Loading the data, preparing them for modeling, and exploring them 
− Computing, selecting, and interpreting a Poisson regression model 
 − obtaining p-values for all predictors and for the model as a whole 
 − interpreting the regression coefficients/estimates on the basis of (i) 

predicted values and (ii) plots of predicted probabilities 
− Testing the main assumption(s) of the test: 
 − the usual suspects: independence of data points and residuals, no 

overly influential data points, no multicollinearity 
 − the model does not suffer from overdispersion 

 
First, the hypotheses, then we load some libraries (see the code file) and 

also the data (from <_inputfiles/05-4-3_disfluencies.csv>). 
 
H0: There is no correlation between DISFLUENCY and the predictors 

(independent variables and their interactions): R2 = 0. 
H1: There is a correlation between DISFLUENCY and the predictors 

(independent variables and their interactions): R2 > 0. 
 
> DISFL<-read.delim(file=file.choose())¶ 
> str(DISFL); attach(DISFL)¶ 

 
The model we will discuss here tests the hypothesis that the frequency 

of disfluencies is correlated with the point of time when the speaker moved 
to the U.S. and the amount of time spent on social networks: 
 
> summary(model.01<-glm(FREQDISFL ~ MOVEDWHEN*SOCNETWORK, 

data=DISFL, family=poisson))¶ 

 
The output of this model already indicates a first problem: overdisper-

sion. The ratio of the residual deviance (3532.6) and the residual degrees of 
freedom (294) is much much larger than one and significant 
(pchisq(3532.6, 294, lower.tail=FALSE)¶), which is why we fit the 
model again with family=quasipoisson, which corrects the predictors’ 
standard errors and, thus, the p-values, and we compute what has been pro-
posed as an R2: 
 
> summary(model.01<-glm(FREQDISFL ~ MOVEDWHEN*SOCNETWORK, 

data=DISFL, family=quasipoisson))¶ 
> 1-(model.01$deviance/model.01$null.deviance)¶ 
[1] 0.2558909 
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Since we’re using glm, much of the code for logistic regressions also 
applies here. For example, drop1 and Anova get us p-values for predictors. 
Obviously, the interaction is not significant at all, so we would normally 
update the model by deleting it, and obviously MOVEDWHEN does not 
seem to play a role whereas SOCIALNETWORK does. 
 
> drop1(model.01, test="LR")¶ 
Single term deletions 
Model: 
FREQDISFL ~ MOVEDWHEN * SOCNETWORK 
                     Df Deviance scaled dev. Pr(>Chi) 
<none>                    3532.6 
MOVEDWHEN:SOCNETWORK  2   3538.0     0.46628    0.792 
 
> options(contrasts=c("contr.sum", "contr.poly"))¶ 
>    Anova(model.01, type="III", test="LR")¶ 
Analysis of Deviance Table (Type III tests) 
Response: FREQDISFL 
                     LR Chisq Df Pr(>Chisq) 
MOVEDWHEN              2.7684  2     0.2505 
SOCNETWORK            19.3469  1   1.09e-05 *** 
MOVEDWHEN:SOCNETWORK   0.4663  2     0.7920 
                                                          […] 
> options(contrasts=c("contr.treatment", "contr.poly"))¶ 

 
For expository purposes only, we continue with the interaction. Above, 

we used the function effect to obtain predicted probabilities – here, we’re 
using it to obtain predicted frequencies and we can really re-use a lot of 
what we know about using effect from before. The only real difference is 
that, above we applied ilogit to effect’s output, because the binary lo-
gistic regression uses logit as a link function – since the Poisson regres-
sion uses log as a link function, we now apply exp. In the code file, I again 
explain the meanings of the coefficients and how they give rise to the pre-
dicted frequencies in much detail. We therefore proceed to the plot. Figure 
78 plots DISFLUENCY against the SOCIALNETWORK and then adds three 
regression lines, one for each level of MOVEDWHEN. (I omitted the confi-
dence bands here, which clutter up the graph unless one can use colors.) 

It is plain to see why the interaction is not significant. The positive cor-
relation between DISFLUENCY and SOCIALNETWORK is the same for each 
level of MOVEDWHEN. That positive correlation as a main effect is signifi-
cant, but then the differences between the different levels of MOVEDWHEN 
– the intercepts – also do not reach standard levels of significance. Thus, 
since here we do not remove the interaction (again, just for expository rea-
sons), we could wrap up the results: “On the whole, there is a highly signif-
icant (L.R. χ2=1214.8; df = 5; p < 0.001) [see page 298 on how to compute 
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this] but not particularly strong correlation (R2= 0.26). This correlation is 
due to the fact that the number of hours spent on social networks is signifi-
cantly positively correlated with the numbers of disfluencies produced 
(L.R. χ2=19.35; df = 1; p < 0.001) whereas the age of moving to the U.S.A. 
is not (p > 0.25), and neither is their interaction (p > 0.79).” 
 

 

Figure 78. The interaction MOVEDWHEN:SOCIALNETWORK in model.01 

 

Recommendation(s) for further study 

− Gries (2009: Section 5.1) on (hierarchical) configural frequency analy-
sis (and a script to compute this interactively) and Field, Miles, and 
Field (2012: Sections 18.7-18.12) on loglinear analysis; also see loglin 
and loglm (from the package MASS) for loglinear analyses 

− Agresti (2002: Ch. 4, 8-9), Faraway (2006: Ch. 3-4), Zuur, Ieno, and 
Smith (2007: Section 6.1), Zuur et al. (2009: Ch. 8-9, 11), Hilbe (2009: 
Ch. 11), Fox and Weisberg (2011: Section 5.5-5.6) 

 
 

5. Repeated measurements: a primer 

 
The final section in this part on regression modeling is devoted to a type of 
scenario that differs from all previous ones. All models discussed so far 
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shared one and the same assumption, that the data points (and their residu-
als) are independent of each other. For instance, in the section on linear 
regressions, the average reaction time to each word was considered inde-
pendent of the average reaction time of any of the other words. This scenar-
io, while frequent, is not the only possible one – as you know from page 
159 above, groups/samples can be dependent, which means that data points 
are related to each other. The most common ways in which data points are 
related to each other involve the following scenarios: 
 

− in experimental settings, you obtain more than one response per subject 
(i.e., you do repeated measurements on each subject), which means that 
the characteristics of any one subject affect more than one data point; 

− in experimental settings, you obtain more than one response per, say, a 
lexical item which you test in some stimulus, which means that the 
characteristics of any one lexical item affect more than one data point; 

− in corpus data, you obtain more than one data point per speaker (often 
approximated by corpus file), which means …, you get the picture. 

 
If your data involve such related data points but you ignore that in your 

statistical analysis, you run several risks. First, you run the risk of what is 
called “losing power”, which means you may stick to H0 although H1 is 
true in the population (what is called a type II error, a type I error is to 
accept H1 although H0 is true in the popluation). Second, you risk obtaining 
inaccurate results because your statistical analysis doesn’t take all the 
known structure in the data into consideration and will return – in the con-
text of regression modeling – coefficients that are not as precise as they 
should be. 

In this section, I will talk about methods that are used in such cases. 
However, this section will only be very brief because, while the methods 
that are used in such cases are quite important and powerful, they also in-
volve considerable complexity and require much more space than I can 
devote to them here. (See below for some excellent references for follow-
up study, in particular Girden (1992), which inspired some of the discus-
sion here, and Field, Miles, and Field (2012).) Also, while the overall logic 
of repeated measurements applies to many different kinds and configura-
tions of independent and dependent variables, I will only discuss cases that 
could be considered repeated-measures ANOVAs, i.e. cases in which the 
dependent variable is interval-/ratio-scaled (i.e., not categorical) and in 
which the independent variables involved are treated as categorical. 
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5.1. One independent variable nested into subjects/items 
 
By way of introduction, I will begin my discussion here with a brief exam-
ple of three different ways in which the simplest possible dependent-
samples type of data can be analyzed. In Section 4.3.2.2, we dealt with 
such a case when we explored the question whether translations of 16 texts 
were longer than the originals. That scenario involved dependent samples 
because one could connect every original to its translation and we, there-
fore, computed a t-test for dependent samples. Let us clear memory, load 
the package ez, reload those data (now from <_inputfiles/05-5-
1_textlengths.csv>) and then revisit this scenario, here for expository rea-
sons as a two-tailed hypothesis (that the mean lengths from originals and 
translations differ). Also, before we attach the data frame, we convert the 
column TEXT, which simply numbers the texts, to a factor: this variable is 
really only categorical since the numbers do not do anything but identify 
which text a length belongs to – the sizes of the numbers do not matter. 
 
> Texts<-read.delim(file.choose()¶ 
> Texts$TEXT<-factor(Texts$TEXT)¶ 
> str(Texts); attach(Texts)¶ 

 
We already know from above that the differences between the originals’ 

and the translations’ lengths are normally distributed so we immediately 
compute the t-test for dependent samples (again, here a two-tailed one) and 
obtain the familiar t- and df-values as well as a now only marginally signif-
icant p-value. 
 
> t.test(LENGTH~TEXTSOURCE, paired=TRUE)¶ 

 
Above, we saw that a linear model with one binary predictor is essen-

tially equivalent to a t-test for independent samples (recall p. 266f.). It may 
therefore not be a big surprise that a repeated-measures ANOVA with one 
binary predictor is essentially equivalent to a t-test for dependent samples. 
The two ANOVAs differ, however, in how the variability in the data is 
divvied up in the analysis. An independent-measures linear model with one 
binary or categorical predictor divides the variability in the data up into 
variability that is attributed to the levels of the independent variable and 
variability that is attributed to random variation (random noise, residual 
variability, or error). The effect of the independent variable is then assessed 
by comparing the two amounts of variability, and the more variability the 
independent variable accounts for compared to the residual variability, the 
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more likely it is the independent variable’s effect will be significant. 
In a repeated-measures ANOVA, the variability is divided up different-

ly. First, there is variability between typically different subjects or here, 
different texts. But then there is also variability within different subjects (or 
here, different texts), and a part of that variability is due to the independent 
variable (here, TEXTSOURCE: ORIGINAL vs. TEXTSOURCE: TRANSLATION) 
and the remainder is random error / residual variation. Since in repeated-
measures ANOVAs the effect of the independent variable is nested within 
subjects or, here, texts, we therefore compare the amount of within-
subject/text variability that is attributed to the independent variable not to 
the overall remaining variability, but to the remaining amount of within-
subject/text variability, and again the more within-subject variability is 
accounted for by the independent variable compared to residual within-
subject variability, the more likely it is the result will be significant. And 
this is why dependent-samples / repeated-measurements studies can be 
more precise: the effects of independent variables are compared to a small-
er amount of residual (within-subject/text) variability. 

How do we do this in R? We use the function aov (for analysis of vari-
ance) and tell it (i) that we want a model in which LENGTH is modeled as a 
function of TEXTSOURCE (LENGTH ~ TEXTSOURCE, no surprises here) and (ii) 
what the relevant source of error/residual variability (ERROR(…)) is by stat-
ing that the independent variable TEXTSOURCE is nested into, i.e. repeated 
within, each element of TEXT (TEXT/TEXTSOURCE): 
 
> model.01.aov<-aov(LENGTH ~ TEXTSOURCE + 

Error(TEXT/TEXTSOURCE))¶ 
> summary(model.01.aov)¶ 
 
Error: TEXT 
          Df Sum Sq Mean Sq F value Pr(>F) 
Residuals 15 210479   14032 
 
Error: TEXT:TEXTSOURCE 
           Df Sum Sq Mean Sq F value Pr(>F) 
TEXTSOURCE  1  51040   51040   3.717  0.073 . 
Residuals  15 205991   13733 

 
As discussed above, the output divides the overall variability into that 

between subjects/texts (i.e., the upper part labeled Errror: TEXT) and the 
one within the subjects/texts, which in turn is either due to the independent 
variable TEXTSOURCE (mean square: 51,040) or random/residual noise 
(mean square: 13733). The F-value is then the ratio of the two mean 
squares at levels of the independent variable minus 1 and subjects/texts 
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minus 1 degrees of freedom. As you can see, this result is then identical to 
the t-test: The F-value is t2, the F-value’s residual df are the t-tests df, the p-
values are identical, and, obviously, so is the conclusion you would write 
up: With a two-tailed hypothesis, the means (model.tables( 
model.01.aov, "means")¶) do not differ from each other significantly. 

A very attractive alternative way to conduct a repeated-measures 
ANOVA involves the very useful function ezANOVA from the library ez. 
The first argument (data) is the data frame containing the data, the second 
(dv) specifies the dependent variable, the third (wid) specifies the sub-
jects/text identifier, and the fourth (within) defines the independent varia-
ble nested within the identifier. You get an ANOVA table with the same F-
value, its two dfs, the same p-value, and a measure of effect size in the 
column labeled ges. (Plus, explore the code with ezPlot and look at ?ez-
Stats¶.) 
 
> ezANOVA(data=Texts, dv=.(LENGTH), wid=.(TEXT), 

within=.(TEXTSOURCE))¶ 

 
 
5.2. Two independent variables nested into subjects/items 
 
How do we extend the above approach to more complex data such as cases 
where two variables are nested into a subject or an item? Consider a hypo-
thetical case where five subjects are asked to provide as many synonyms as 
they can to eight stimuli (different for each subject, so there is no repetition 
of items), which result from crossing words with positive or negative con-
notations (a variable called MEANING) and words from four different parts 
of speech (a variable called POS). Let’s assume we wanted to know wheth-
er the numbers of synonyms subjects named in 30 seconds differed as a 
function of these independent variables (and for the sake of simplicity we 
are treating these frequencies as interval-/ratio-scaled data). We load the 
data from <_inputfiles/05-5-2_synonyms.csv>: 
 
> Syns<-read.delim(file.choose())¶ 
> str(Syns); attach(Syns)¶ 

 
In this case, no monofactorial test is available for comparison so we 

immediately do the repeated-measures ANOVA. The logic is actually not 
different from above: we want to study the effects of both independent 
variables and their interaction but both these variables are nested into 
SUBJECT. Thus, we either use aov … 
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> model.01.aov<-aov(SYNONYMS ~ MEANING*POS + 
Error(SUBJECT/(MEANING*POS))) 

> summary(model.01.aov)¶ 

 
… or ezANOVA: 
 
> ezANOVA(data=Syns, dv=.(SYNONYMS), wid=.(SUBJECT), 

within=.(MEANING, POS))¶ 

 
As before, both return the same results: The only effect reaching stand-

ard levels of significance is POS, and the output of model.tables shows 
that nouns and verbs resulted in high numbers of synonyms, whereas adjec-
tives and adverbs only yielded medium and lower numbers respectively. 
The output of ezANOVA also returns a test for sphericity, a very important 
assumption of repeated-measures ANOVAs (see the recommendations for 
further study). In this case, all the p-values are > 0.05 so sphericity is not 
violated and we can rely on the results of our F-tests. 
 
 
5.3. Two independent variables, one between, one within subjects/items 
 
One final example, in which I show how to handle cases where you have 
two independent variables, but only one of them is nested into subjects – 
the other varies between subjects. Imagine you had 10 non-native speaker 
subjects, each of whom participated in four proficiency tests, or tasks: an 
oral exam, an in-class grammar test, an essay written in class, and an essay 
written at home. This is the variable nested into the subjects. However, you 
also suspect that the sexes of the speakers play a role and, guess what, 
those are not nested into subjects … This is the between-subjects variable. 
Let’s load the data from <_inputfiles/05-5-3_mistakes.csv>. 
 
> Mistakes<-read.delim(file.choose())¶ 
> str(Mistakes); attach(Mistakes)¶ 

 
It should be clear what to do: for aov, you specify the formula with all 

independent variables and tell it that only TASK is nested into SUBJECTS. 
 
> model.01.aov<-aov(MISTAKES ~ SEX*TASK + 

Error(SUBJECT/TASK))¶ 
> summary(model.01.aov)¶ 

 
For ezANOVA, you use the argument between to tell the function that the 
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independent variables SEX does not vary within, but between subjects: 
 
> ezANOVA(data=Mistakes, dv=.(MISTAKES), wid=.(SUBJECT), 

within=.(TASK), between=.(SEX))¶ 

 
Unfortunately, while we get significant results for both TASK and its in-

teraction with SEX – explore the means with model.tables again – this 
time around the sphericity tests are cause for alarm. ezANOVA suggests two 
corrections for violations of sphericity, both of which still return significant 
values for TASK and TASK:SEX, but this is beyond the scope of this book, 
see the recommendations for further study below and the next section. 
 
 
5.4. Mixed-effects / multi-level models 
 
The above has already indicated that repeated-measures ANOVAs are not 
always as straightforward to use as the above may have made you expect. 
First, repeated-measures ANOVAs as discussed above only involve cate-
gorical independent variables, but you may often have interval-/ratio-scaled 
variables and may not want to factorize them (given the loss of information 
and power that may come with that, see Baayen 2010). Second, many vari-
ables you may wish to include are not fixed effects (i.e., variables whose 
levels in the study cover all possible levels in the population) but are ran-

dom effects (i.e., variables whose levels in the study do not cover all possi-
ble levels in the population, such as SUBJECT, ITEM, …, see Gelman and 
Hill 2007: 245f.). Third, repeated-measures ANOVA requires a balanced 
design and may therefore be problematic with missing data in experiments 
and unbalanced observational data. Finally, violations of sphericity are not 
always easy and uncontroversial to address; (see Baguley 2012: Section 
18.2.2 for more discussion). 

A strategy to handle data with dependent/related data points and random 
effects that is currently very hot in linguistics is the use of mixed-effects 
models, or multi-level models. With much simplification, these are regres-
sion models that can handle fixed and random effects as well as repeated 
measurements, unbalanced data, and hierarchical/nested data. They do this 
by simultaneously modeling different sources of variability by, for exam-
ple, instead of simply fitting one regression line over many subjects 
through a point cloud in a coordinate system, they allow the analyst to 
model the dependent variable with a different regression line for each sub-
ject or item, where the different regression lines may have, say, subject-
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specific or item-specific different intercepts (called random intercepts, 
because they are modeled as a normally-distributed random variable) 
and/or slopes (called random slopes). For reasons of space and others to be 
discussed below, I will not discuss these highly complex models here in 
detail, but I want to give one or two brief examples. For the first of these, I 
will return to the t-test for dependent samples again: 
 
> rm(list=ls(all=TRUE)); library(effects); library(nlme)¶ 
> Texts<-read.delim(file.choose()¶ 
> Texts$TEXT<-factor(Texts$TEXT)¶ 
> str(Texts); attach(Texts)¶ 

 
The package nlme (as well as the newer package lme4) allows you to fit 

a large variety of mixed-effects models. This is one way of applying these 
to the t-test data. The function for linear mixed effects is lme, and here it 
takes two arguments: First, the argument fixed, which defines the fixed-
effects structure of the model, and our only fixed-effect independent varia-
ble is TEXTSOURCE. Second, the argument random describes the random-
effects structure of the model, and the notation means we want the intercept 
(1) to be able to vary by TEXT (|TEXT), which is just another way of captur-
ing text-specific variability as we did in the repeated-measures ANOVA. 
 
> model.01.lme<-lme(fixed = LENGTH~TEXTSOURCE, random= ~ 

1|TEXT)¶ 
> summary(model.01.lme)¶ 

 
The output we get contains a lot of information but we will only focus 

on the random-effects and the fixed-effects output. The former (in the sec-
tion “Random effects”) contains an estimate of the variability of the 16 
random intercepts for the 16 texts, namely a standard deviation of 
12.23172. The latter (in the section “Fixed effects: …”) contains the famil-
iar kind of table of coefficients, standard errors, t-values, and p-values. The 
t-value (1.92787), its df (15), and the p-value (0.073) should look very fa-
miliar, since they correspond to the above results for the same data. And 
you can even create the familiar kind of effects plot for this result because 
the function effect does accept lme models as input: 
 
> plot(effect("TEXTSOURCE", model.01.lme))¶ 

 
Some other applications of repeated-measures ANOVAs can be ex-

plored similarly. For example, the above data on the mistakes can be stud-
ied with this function call: 
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> summary(model.01.lme<-lme(fixed = MISTAKES ~ SEX*TASK, 
random= ~ 1|SUBJECT))¶ 

 
You can allow intercepts to vary across subjects in the same ways as 

above (you can also allow slopes to vary, but I will not discuss that here), 
you can plot the main effects or the interactions of such models with 
effect, and you can even apply Anova(model) to lme models to get p-
values for the fixed-effect predictors. 

Seems simple, doesn’t it? Why isn’t there a whole section on this, ex-
plaining and exemplifying it all in detail as for the other models in this 
chapter. Well, unfortunately, things are very far from being that simple. In 
fact, mixed-effects modeling is one of the most fascinating but also among 
the most complex statistical techniques I have seen. Right now, it actually 
seems to be seen as the best thing since sliced bread, and indeed the poten-
tial of this approach is immense and far-reaching. Having said that, I must 
admit that I sometimes think that some of the hype about this method is a 
bit premature simply because so many things are still unclear. Ask any two 
or three experts on how to do X with multi-level models, and you often get 
very different responses. Pick any two to three references on mixed-effects 
modeling and you will see that not only is there very little agreement on 
some seemingly central questions, but also that some types of problems are 
not even mentioned very widely. For example, 
 

− it seems we’re not even close to a somewhat widely accepted view on 
what a model selection process or even just a maximal model would 
look like. Some sources recommend a model selection process where 
we begin with no fixed effects but first explore random effects; others 
recommend starting with a full-fledged fixed-effects maximal model; 
some recommend beginning with a simple random-effects structure (just 
intercepts), others recommend beginning with a maximal random-effect 
structure with random intercepts and slopes for everything (and then 
simulations suggest that these models do no converge even if they are 
given the right model structure) …; 

− it is not clear yet how predictors should be selected for retention in, or 
deletion from a model: some use p-values (based on t- or F-values, but 
then it’s debated how to choose the residual dfs), some use MCMC 
sampling (which is not easily available for some types of dependent var-
iables); some use information criteria (such as AIC or BIC or even DIC) 
for the whole process; some use likelihood ratio tests, which require at-
tention to whether the models have been fit with ML or REML, …; 
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− many references do not discuss how to handle the intercorrelations of 

random intercepts and slopes; 

− many references say practically nothing about how to decide on a co-

variance structure of the data; I think I have seen only one reference 
discussing this in a somewhat accessible fashion; 

− you have seen that centering variables can be useful in regression mod-
eling but how to do this best in mixed-effects models is again often not 
discussed well – when do we center around an overall mean, when 
around group means? And the list goes on, boundary effects, how to 
compute R2s, … 

 
None of the above is to deny that mixed-effects modeling is very power-

ful and has the potential to help us very much in analyzing our data … once 
the field has developed a bit more of some common thoughts on how they 
should be applied to the various kinds of data out there. The fact that now 
some journals already require mixed-effects modeling for particular data 
sets seems a bit overeager, given how many open questions remain. How-
ever, once some standards regarding the many open questions begin to 
emerge and once some libraries and functions are developed that make 
tackling some of these questions more easily (Baayen’s pvals.fnc is one 
case in point), then the discipline will benefit from mixed-effects models in 
innumerable ways. Till that happens, here are some, I think, very good 
references (of varying degrees of technicality) that will hopefully get you 
started beyond this little primer … 
 

Recommendation(s) for further study 

− for repeated-measures ANOVAs: Girden (1992), Johnson (2008: Sec-
tions 4.3-4.4), and especially Miles, Field, and Miles (2012: Ch. 13-14) 

− for mixed-effects/multi-level models: Twisk (2006), Gelman and Hill 
(2007: Ch. 11-15), Zuur, Ieno, and Smith (2007: Ch. 8), Baayen (2008: 
Ch. 7), Baayen, Davidson, and Bates (2008), Johnson (2008: Sections 
7.3, 7.4), Zuur et al. (2009, in particular Ch. 5), Miles, Field, and Miles 
(2012: Ch. 19), Baguley (2012: Ch. 18); also see Baayen (2011) 

 
 

6. Hierarchical agglomerative cluster analysis 

 
We have so far only concerned ourselves with methods in which independ-
ent and dependent variables were clearly separated and where we already 
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had at least an expectation and a hypothesis prior to the data collection. 
Such methods are sometimes referred to as hypothesis-testing statistics, and 
we used statistics and p-values to decide whether or not to reject a H0. The 
method called hierarchical agglomerative cluster analysis that we deal with 
in this section is a so-called exploratory, or hypothesis-generating, method 
or, more precisely, a family of methods. It is normally used to divide a set 
of elements into clusters, or groups, such that the members of one group are 
very similar to each other and at the same time very dissimilar to members 
of other groups. An obvious reason to use cluster analyses to this end is that 
this method can handle larger amounts of data and be at the same time 
more objective than humans eyeballing huge tables. 

To get a first understanding of what cluster analyses do, let us look at a 
fictitious example of a cluster analysis based on similarity judgments of 
English consonant phonemes. Let’s assume you wanted to determine how 
English native speakers distinguish the following consonant phonemes: /b/, 
/d/, /f/, /g/, /l/, /m/, /n/, /p/, /s/, /t/, and /v/. You asked 20 subjects to rate the 
similarities of all (11·10)/2 = 55 pairs of consonants on a scale from 0 (‘com-
pletely different’) to 1 (‘completely identical’). As a result, you obtained 20 
similarity ratings for each pair and could compute an average rating for 
each pair. It would now be possible to compute a cluster analysis on the 
basis of these average similarity judgments to determine (i) which conso-
nants and consonant groups the subjects appear to distinguish and (ii) how 
these groups can perhaps be explained. Figure 79 shows the result that such 
a cluster analysis might produce – how would you interpret it? 
 

 

Figure 79. Fictitious results of a cluster analysis of English consonants 
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THINK 

BREAK 

 
The ‘result’ suggests that the subjects’ judgments were probably strong-

ly influenced by the consonants’ manner of articulation: on a very general 
level, there are two clusters, one with /b/, /p/, /t/, /d/, and /g/, and one with 
/l/, /n/, /m/, /v/, /f/, and /s/. It is immediately obvious that the first cluster 
contains all and only all plosives (i.e., consonants whose production in-
volves a momentary complete obstruction of the airflow) that were includ-
ed whereas the second cluster contains all and only all nasals, liquids, and 
fricatives (i.e., consonants whose production involves only a momentary 
partial obstruction of the airflow). 

There is more to the results, however. The first of these two clusters has 
a noteworthy internal structure of two ‘subclusters’. The first subcluster, as 
it were, contains all and only all bilabial phonemes whereas the second 
subcluster groups both alveolars together followed by a velar sound. 

The second of the two big clusters also has some internal structure with 
two subclusters. The first of these contains all and only all nasals and liq-
uids (i.e., phonemes that are sometimes classified as between clearcut vow-
els and clearcut consonants), and again the phonemes with the same place 
of articulation are grouped together first (the two alveolar sounds). The 
same is true of the second subcluster, which contains all and only all frica-
tives and has the labiodental fricatives merged first. 

The above comments were only concerned with which elements are 
members of which clusters. Further attempts at interpretation may focus on 
how many of the clusters in Figure 79 differ from each other strongly 
enough to be considered clusters in their own right. Such discussion is ide-
ally based on follow-up tests which are too complex to be discussed here, 
but as a quick and dirty heuristic you can look at the lengths of the vertical 
lines in such a tree diagram, or dendrogram. Long vertical lines indicate 
more autonomous subclusters. For example, the subcluster {/b/ /p/} is ra-
ther different from the remaining plosives since the vertical line leading 
upwards from it to the merging with {{/t/ /d/} /g/} is rather long.37 

Unfortunately, cluster analyses do not usually yield such a perfectly in-
terpretable output but such dendrograms are often surprisingly interesting 

                                                      
37. For a similar but authentic example (based on data on vowel formants), cf. Kornai 

(1998). 
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and revealing. Cluster analyses are often used in semantic, cognitive-
linguistic, psycholinguistic, and computational-linguistic studies (cf. Miller 
1971, Sandra and Rice 1995, Rice 1996, and Manning and Schütze 1999: 
Ch. 14 for some examples) and are often an ideal means to detect patterns 
in large and seemingly noisy/chaotic data sets. You must realize, however, 
that even if cluster analyses as such allow for an objective identification of 
groups, the analyst must still make at least three potentially subjective deci-
sions. The first two of these influence how exactly the dendrogram will 
look like; the third you have already seen: one must decide what it is the 
dendrogram reflects. In what follows, I will show you how to do such an 
analysis with R yourself. Hierarchical agglomerative cluster analyses typi-
cally involve the following steps: 
 

Procedure 

Tabulating the data 
− Computing a similarity/dissimilarity matrix on the basis of a user-

defined similarity/dissimilarity metric 
− Computing a cluster structure on the basis of a user-defined amalgama-

tion rule 
− Representing the cluster structure in a dendrogram and interpreting it 
− (Post-hoc exploration (such as average silhouette widths) 

 
The example we are going to discuss is from the domain of cor-

pus/computational linguistics. In both disciplines, the degree of semantic 
similarity of two words is often approximated on the basis of the number 
and frequency of shared collocates. A very loose definition of a ‘collocates 
of a word w’ are the words that occur frequently in w’s environment, where 
environment in turn is often defined as ‘in the same sentence’ or within a 4- 
or 5-word window around w. For example: if you find the word car in a 
text, then very often words such as driver, motor, gas, and/or accident are 
relatively nearby whereas words such as flour, peace treaty, dictatorial, 
and cactus collection are probably not particularly frequent. In other words, 
the more collocates two words x and y share, the more likely there is a se-
mantic relationship between the two (cf. Oakes 1998: Ch. 3, Manning and 
Schütze 2000: Section 14.1 and 15.2 as well as Gries 2009a for how to 
obtain collocates in the first place). 

In the present example, we look at the seven English words bronze, 
gold, silver, bar, cafe, menu, and restaurant. Of course, I did not choose 
these words at random – I chose them because they intuitively fall into two 
clusters with bar (and thus constitute a good test case). One cluster consists 
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of three co-hyponyms of the metal, the other consists of three co-hyponyms 
of gastronomical establishment as well as a word from the same semantic 
field. Let us assume you extracted from the British National Corpus (BNC) 
all occurrences of these words and their content word collocates (i.e., 
nouns, verbs, adjectives, and adverbs). For each collocate that occurred 
with at least one of the seven words, you determined how often it occurred 
with each of the seven words. Table 46 is a schematic representation of the 
first six rows of such a table. The first collocate, here referred to as X, co-
occurred only with bar (three times); the second collocate, Y, co-occurred 
11 times with gold and once with restaurant, etc. 
 
Table 46. Schematic co-occurrence frequencies of seven English words in the 

BNC 

Collocate bronze gold silver bar cafe menu restaurant 

X 0 0 0 3 0 0 0 

Y 0 11 0 0 0 0 1 

Z 0 1 1 0 0 0 1 

A 0 0 0 1 0 2 0 

B 1 0 0 1 0 0 0 

C 0 0 0 1 0 0 1 

… … … … … … … … 

 
We are now asking the question which words are more similar to each 

other than to others. That is, just like in the example above, you want to 
group elements – above, phonemes, here, words – on the basis of properties 
– above, average similarity judgments, here, co-occurrence frequencies. 
First you need a data set such as Table 46, which you can load from the file 
<_inputfiles/05-6_collocates.RData>, which contains a large table of co-
occurrence data – seven columns and approximately 31,000 rows. 
 
> load(file.choose ()) # load the data frame¶ 
> ls() # check what was loaded¶ 
[1] "collocates" 
> str(collocates)¶ 
'data.frame':   30936 obs. of  7 variables: 
 $ bronze    : num  0 0 0 0 1 0 0 0 0 0 ... 
 $ gold      : num  0 11 1 0 0 0 0 1 0 0 ... 
 $ silver    : num  0 0 1 0 0 0 0 0 0 0 ... 
 $ bar       : num  3 0 0 1 1 1 1 0 1 0 ... 
 $ cafe      : num  0 0 0 0 0 0 0 0 0 1 ... 
 $ menu      : num  0 0 0 2 0 0 0 0 0 0 ... 
> attach(collocates)¶ 
 $ restaurant: num  0 1 0 0 0 0 0 0 0 0 ... 
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Alternatively, you could load those data with read.table(…) from the 
file <_inputfiles/05-6_collocates.csv>. If your data contain missing data, 
you should disregard those. There are no missing data, but the function is 
still useful to know (cf. the recommendation at the end of Chapter 2): 
 
> collocates<-na.omit(collocates)¶ 

 
Next, you must generate a similarity/dissimilarity matrix for the seven 

words. Here, you have to make the first possibly subjective decision, decid-
ing on a similarity/dissimilarity measure. You need to consider two aspects: 
the level of measurement of the variables in point and the definition of 
similarity to be used. With regard to the former, we will only distinguish 
between binary/nominal and ratio-scaled variables. I will discuss similari-
ty/dissimilarity measures for both kinds of variables, but will then focus on 
ratio-scaled variables. 

In the case of nominal variables, there are four possibilities how two el-
ements can be similar or dissimilar to each other, which are represented in 
Table 47. On the basis of Table 47, the similarity of two elements is typi-
cally quantified using formula (66), in which w1 and w2 are defined by the 
analyst: 
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Table 47. Feature combinations of two binary elements 

 Element 2 exhibits 
characteristic x 

Element 2 does not 
exhibit characteristic x 

Element 1 exhibits 
characteristic x 

a b 

Element 1 does not 
exhibit characteristic x 

c d 

 
Three similarity measures are worth mentioning here: 

 

− the Jaccard coefficient: w1 = 0 and w2 = 1; 

− the Simple Matching coefficient: w1 = 1 and w2 = 1; 

− the Dice coefficient: w1 = 0 and w2 = 0.5. 
 

What are their pairwise similarity coefficients of these three vectors? 
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> aa<-c(1, 1, 1, 1, 0, 0, 1, 0, 0, 0)¶ 
> bb<-c(1, 1, 0, 1, 0, 1, 0, 1, 0, 1)¶ 
> cc<-c(1, 0, 1, 1, 1, 1, 1, 1, 1, 0)¶ 

 

 

THINK 

BREAK 

 

− Jaccard coefficient: for aa and bb: 0.375, for aa and cc 0.444, for bb 
and cc 0.4; 

− Simple Matching coefficient: for aa and bb: 0.5, for aa and cc 0.5, for 
bb and cc 0.4; 

− Dice coefficient: for aa and bb: 0.545, for aa and cc 0.615, for bb and 
cc 0.571 (see the code file for a function that computes these). 

 
But when do you use which of the three? One rule of thumb is that 

when the presence of a characteristic is as informative as its absence, then 
you should use the Simple Matching coefficient, otherwise choose the Jac-
card coefficient or the Dice coefficient. The reason for that is that, as you 
can see in formula (66) and the measures’ definitions above, only the Sim-
ple Matching coefficient fully includes the cases where both elements ex-
hibit or do not exhibit the characteristic in questions. 

For ratio-scaled variables, there are (many) other measures, not all of 
which I can discuss here. I will focus on (i) a set of distance or dissimilarity 
measures (i.e., measures where large values represent large degrees of dis-
similarity) and (ii) a set of similarity measures (i.e., measures where large 
values represent large degrees of similarity). Many distance measures are 
again based on one formula and then differ in terms of parameter settings. 
This basic formula is the so-called Minkowski metric represented in (67). 
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When y is set to 2, you get the so-called Euclidean distance.38 If you in-

                                                      
38. The Euclidean distance of two vectors of length n is the direct spatial distance between 

two points within an n-dimensional space. This may sound complex, but for the simplest 
case of a two-dimensional coordinate system this is merely the distance you would 
measure with a ruler. 
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sert y = 2 into (67) to compute the Euclidean distance of the vectors aa and 
bb, you obtain: 
 
> sqrt(sum((aa-bb)^2))¶ 
[1] 2.236068 

 
When y is set to 1, you get the so-called Manhattan- or City-Block dis-

tance of the above vectors. For aa and bb, you obtain: 
 
> sum(abs(aa-bb))¶ 
[1] 5 

 
The similarity measures are correlational measures. One of these you 

know already: the Pearson product-moment correlation coefficient r. A 
similar measure often used in computational linguistics is the cosine (cf. 
Manning and Schütze 1999: 299–303). The cosine and all other measures 
for ratio-scaled are available from the function Dist from the library 
amap.39 This function requires that (i) the data are available in the form of a 
matrix or a data frame and that (ii) the elements whose similarities you 
want are in the rows, not in the columns as usual. If the latter is not the 
case, you can often just transpose a data structure (with t): 
 
> library(amap)¶ 
> collocates.t<-t(collocates)¶ 

 
You can then apply the function Dist to the transposed data structure. 

This function takes the following arguments: 
 

− x: the matrix or the data frame for which you want your measures; 

− method="euclidean" for the Euclidean distance; method="manhattan" 
for the City-Block metric; method="correlation" for the product-
moment correlation r (but see below!); method="pearson" for the co-
sine (but see below!) (there are some more measures available which I 
won’t discuss here); 

− diag=FALSE (the default) or diag=TRUE, depending on whether the dis-
tance matrix should contain its main diagonal or not; 

− upper=FALSE (the default) or upper=TRUE, depending on whether the 
distance matrix should contain only the lower left half or both halves. 

                                                      
39. The function dist from the standard installation of R also allows you to compute sever-

al similarity/dissimilarity measures, but fewer than Dist from the library amap. 
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Thus, if you want to generate a distance matrix based on Euclidean dis-
tances for our collocate dataset you simply enter this: 
 
> Dist(collocates.t, method="euclidean", diag=TRUE, 

upper=TRUE)¶ 

 
As you can see, you get a (symmetric) distance matrix in which the dis-

tance of each word to itself is of course 0. This matrix now tells you which 
word is most similar to which other word. For example, the word silver is 
most similar to is cafe because the distance of silver to cafe (2385.566) is 
the smallest distance that silver has to any word other than itself. 

The following computes a distance matrix using the City-Block metric: 
 
> Dist(collocates.t, method="manhattan", diag=TRUE, 

upper=TRUE)¶ 

 
To get a similarity matrix with product-moment correlations or cosines, 

you must compute the difference 1 minus the values in the matrix. To get a 
similarity matrix with correlation coefficients, you therefore enter this: 
 
> 1-Dist(collocates.t, method="correlation", diag=TRUE,  

upper=TRUE)¶ 
           bronze   gold silver    bar   cafe   menu restaurant 
bronze     0.0000 0.1342 0.1706 0.0537 0.0570 0.0462     0.0531 
gold       0.1342 0.0000 0.3103 0.0565 0.0542 0.0458     0.0522 
silver     0.1706 0.3103 0.0000 0.0642 0.0599 0.0511     0.0578 
bar        0.0537 0.0565 0.0642 0.0000 0.1474 0.1197     0.2254 
cafe       0.0570 0.0542 0.0599 0.1474 0.0000 0.0811     0.1751 
menu       0.0462 0.0458 0.0511 0.1197 0.0811 0.0000     0.1733 
restaurant 0.0531 0.0522 0.0578 0.2254 0.1751 0.1733     0.0000 

 
You can check the results by comparing this output with the one you get 

from cor(collocates)¶. For a similarity matrix with cosines, you enter: 
 
> 1-Dist(collocates.t, method="pearson", diag=TRUE, 

upper=TRUE)¶ 

 
There are also statistics programs that use 1-r as a distance measure. 

They change the similarity measure r (values close to zero mean low simi-
larity) into a distance measure (values close to zero mean high similarity). 

If you compare the matrix with Euclidean distances with the matrix with 
r, you might notice something that strikes you as strange … 
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THINK 

BREAK 

 
In the distance matrix, small values indicate high similarity and the 

smallest value in the column bronze is in the row for cafe (1734.509). In 
the similarity matrix, large values indicate high similarity and the largest 
value in the column bronze is in the row for silver (ca. 0.1706). How can 
that be? This difference shows that even a cluster algorithmic approach is 
influenced by subjective though hopefully motivated decisions. The choice 
for a particular metric influences the results because there are different 
ways in which vectors can be similar to each other. Consider as an example 
the following data set, which is also represented graphically in Figure 80. 
 
> y1<-1:10; y2<-11:20; y3<-c(6, 6, 6, 5, 5, 5, 4, 4, 4, 3)¶ 
> y<-t(data.frame(y1, y2, y3))¶ 

 

 

Figure 80. Three fictitious vectors 

 
The question is, how similar is y1 to y2 and to y3? There are two obvi-

ous ways of considering similarity. On the one hand, y1 and y2 are perfect-
ly parallel, but they are far away from each other (as much as one can say 
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that about a diagram whose dimensions are not defined). On the other hand, 
y1 and y3 are not parallel to each other at all, but they are close to each 
other. The two approaches I discussed above are based on these different 
perspectives. The distance measures I mentioned (such as the Euclidean 
distance) are based on the spatial distance between vectors, which is small 
between y1 and y3 but large between y1 and y2. The similarity measures I 
discussed (such as the cosine) are based on the similarity of the curvature 
of the vectors, which is small between y1 and y3, but large between y1 and 
y2. You can see this quickly from the actual numerical values: 
 
> Dist(y, method="euclidean", diag=TRUE, upper=TRUE)¶ 
         y1       y2       y3 
y1  0.00000 31.62278 12.28821 
y2 31.62278  0.00000 35.93049 
y3 12.28821 35.93049  0.00000 
> 1-Dist(y, method="pearson", diag=TRUE, upper=TRUE)¶ 
          y1        y2        y3 
y1 0.0000000 0.9559123 0.7796728 
y2 0.9559123 0.0000000 0.9284325 
y3 0.7796728 0.9284325 0.0000000 

 
According to the Euclidean distance, y1 is more similar to y3 than to y2 

– 12.288 < 31.623 – but the reverse is true for the cosine: y1 is more simi-
lar to y2 – 0.956 > 0.78. The two measures are based on different concepts 
of similarity. The analyst must decide what is more relevant: low spatial 
distances or similar curvatures. For now, we assume you want to adopt a 
curvature-based approach and use 1-r as a measure; in your own studies, 
you of course must state which similarity/distance measure you used, too.40 
 
> dist.matrix<-Dist(collocates.t, method="correlation",  

diag=TRUE, upper=TRUE)¶ 
> round(dist.matrix, 4)¶ 
           bronze   gold silver    bar   cafe   menu restaurant 
bronze     0.0000 0.8658 0.8294 0.9463 0.9430 0.9538     0.9469 
gold       0.8658 0.0000 0.6897 0.9435 0.9458 0.9542     0.9478 
silver     0.8294 0.6897 0.0000 0.9358 0.9401 0.9489     0.9422 
bar        0.9463 0.9435 0.9358 0.0000 0.8526 0.8803     0.7746 
cafe       0.9430 0.9458 0.9401 0.8526 0.0000 0.9189     0.8249 
menu       0.9538 0.9542 0.9489 0.8803 0.9189 0.0000     0.8267 
restaurant 0.9469 0.9478 0.9422 0.7746 0.8249 0.8267     0.0000 

 
The next step is to compute a cluster structure from this similarity ma-

                                                      
40. I am simplifying a lot here: the frequencies are neither normalized nor logged/dampened 

etc. (cf. above, Manning and Schütze 1999: Section 15.2.2, or Jurafsky and Martin 
2008: Ch. 20). 
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trix. You do this with the function hclust, which can take up to three ar-
guments of which I will discuss two. The first is a similarity/distance ma-
trix, the second chooses an amalgamation rule that defines how the ele-
ments in that matrix get merged into clusters. This choice is the second 
potentially subjective decision and there are again several possibilities. 

The choice method="single" uses the so-called single-linkage- or 
nearest-neighbor method. In this method, the similarity of elements x and y 
– where x and y may be elements such as individual consonants or subclus-
ters such as {/b/, /p/} in Figure 79 – is defined as the minimal distance be-
tween any one element of x and any one element of y. In the present exam-
ple this means that in the first amalgamation step gold and silver would be 
merged since their distance is the smallest in the whole matrix (1-r = 
0.6897). Then, bar gets joined with restaurant (1-r = 0.7746). Then, and 
now comes the interesting part, {bar restaurant} gets joined with cafe be-
cause the smallest remaining distance is that which restaurant exhibits to 
cafe: 1-r = 0.8249. And so on. This amalgamation method is good at identi-
fying outliers in data, but tends to produce long chains of clusters and is, 
therefore, often not particularly discriminatory. 

The choice method="complete" uses the so-called complete-linkage- or 
furthest-neighbor method. Contrary to the single-linkage method, here the 
similarity of x and y is defined as the maximal distance between any one 
element of x and any one element of y. First, gold and silver are joined as 
before, then bar and restaurant. In the third step, {bar restaurant} gets 
joined with cafe, but the difference to the single linkage method is that the 
distance between the two is now 0.8526, not 0.8249, because this time the 
algorithm considers the maximal distances, of which the smallest is chosen 
for joining. This approach tends to form smaller homogeneous groups and 
is a good method if you suspect there are many smaller groups in your data. 

Finally, the choice method="ward" uses a method whose logic is similar 
to that of ANOVAs because it joins those elements whose joining increases 
the error sum of squares least. For every possible amalgamation, the meth-
od computes the sums of squared differences/deviations from the mean of 
the potential cluster, and then the clustering with the smallest sum of 
squared deviations is chosen. This method is known to generate smaller 
clusters that are often similar in size and has proven to be quite useful in 
many applications. We will use it here, too, and again in your own studies, 
you must explicitly state which amalgamation rule you used. Now you can 
compute the cluster structure and plot it. 
 
> clust.ana<-hclust(dist.matrix, method="ward")¶ 
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> plot(clust.ana)¶ 
> rect.hclust(clust.ana, 2) # red boxes around clusters¶ 

 

 

Figure 81. Dendrogram of seven English words 

 
This is an uncharacteristically clearly interpretable result. As one would 

have hoped for, the seven words fall exactly into the two main expected 
clusters: one with the ‘metals’ and one with the gastronomy-related words. 
The former has a substructure in which bronze is somewhat less similar to 
the other two metals, and the latter very little substructure but groups the 
three co-hyponyms together before menu is added. With the following line 
you can have R show you for each element which cluster it belongs to 
when you assume two clusters. 
 
> cutree(clust.ana, 2)¶ 
bronze     gold     silver     bar    cafe    menu restaurant 
     1        1          1       2       2       2          2 

 
While I can’t discuss the method in detail, I want to briefly give you at 

least a glimpse of how more difficult cluster structures can be explored. As 
you will remember, Figure 79 was a much less clear-cut case in terms of 
how many clusters should be distinguished: any number between 2 and 5 
seems defensible. The function cluster.stats from the library fpc offers a 
variety of validation statistics, which can help to narrow down the number 
of clusters best distinguished. One of these involves the notion of average 
silhouette widths, which quantifies how similar elements are to the clusters 
which they are in relative to how similar elements are to other clusters. It is 
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then possible to compute average silhouette widths for all possible cluster 
solutions and pick the one with the highest average silhouette widths. If we 
apply this logic to Figure 79, we get Figure 82. It shows why the decision 
for any one number of clusters is so difficult – many solutions fare nearly 
equally well – but why, if anything, four clusters sould be distinguished: 
with four clusters, the average silhouette width is highest: 0.14. 
 

 

Figure 82. Average silhouette widths for all cluster solutions of Figure 79 

 
Now you should do the exercises for Chapter 5 … 

 

Recommendation(s) for further study 

− the function daisy (from the library cluster) to compute distance ma-
trices for dataset with variables from different levels of measurement 

− the function kmeans to do cluster analyses where you provide the num-
ber of clusters beforehand 

− the function pvclust (from the library pvclust) to obtain p-values for 
clusters based on resampling methods; cf. also pvrect and pvpick 
(from the same library) 

− the function varclus (from the library Hmisc) to do variable clustering 
− the function nj (from the library ape) to perform neighbor clustering 

and phylogenetic cluster analyses 
− Crawley (2007: Ch. 23), Baayen (2008: Ch. 5), Johnson (2008: Ch. 6) 



 

Chapter 6 

Epilog 
 
 
 
Now that you have nearly made it through the whole book, let me give you 
a little food for further thought and some additional ideas on the way. Iron-
ically, some of these will probably shake up a bit what you have learnt so 
far, but I hope they will also stimulate some curiosity for what else is out 
there to discover and explore. 

Let me first mention a few areas that you should begin to explore as you 
become more familiar with regression modeling. One issue I have only 
alluded to in passing in the code file is that of (cross) validation. Regres-
sions often run the risk of what is called overfitting: they fit a particular 
data set rather well, but generalize badly to others, which of course jeop-
ardizes the generalizability of the findings to the population as a whole. 
Very often, results can be validated by splitting up the existing sample into, 
often, 10 parts and then do 10 analyses, in each of which you obtain a re-
gression equation from 90% of the data and apply it to the unseen 10%. 
Such methods can reveal a lot about the internal structure of a data set and 
there are several functions available in R for these methods. A related point 
is that, given the ever increasing power of computers, resampling and per-
mutation approaches become more and more popular; examples include the 
bootstrap, the jackknife procedure, or exhaustive permutation procedures. 
These procedures are non-parametric methods you can use to estimate 
means, variances, but also correlations or regression parameters without 
major distributional assumptions. Such methods are not the solution to all 
statistical problems, but can still be interesting and powerful tools (cf. the 
libraries boot as well as bootstrap). 
 

Recommendation(s) for further study 
Good (2005), Rizzo (2008: Ch. 7, 8) 

 
Also, the analysis of special data points in your sample(s) is very im-

portant, given the impact that outliers and points with high leverage can 
have on the data. In addition, learning more about what to do with missing 
data should be high on your list of things. On the one hand, it may be use-
ful, for instance, to run a regression on missing data to see whether there is 
something in the data that allows you to predict well when, say, subjects do 
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respond to a stimulus. On the other hand, small proportions of missing data 
may be imputed, that is predicted from other data points (see Torgo: Sec-
tion 2.5). 

Then, there is a range of additional techniques you may wish to explore. 
This book focused on hypothesis-testing approaches, in particular regres-
sions, but there are many interesting exploratory tools that, for reasons of 
space, I could not discuss: principal components analysis and correspond-

ence analysis are two well-known cases in point, association rules or naïve 

Bayes classifiers are others. 
It is also worth pointing out that R has many many more possibilities of 

graphical representation than I could mention here. I only used the tradi-
tional graphics system, but there are other more powerful tools, which are 
available from the libraries lattice and ggplot2 (you should explore 
<http://www.yeroon.net/ggplot2/>). The website <http://gallery.r-
enthusiasts.com/> provides many very interesting and impressive examples 
for R plots, and several good books illustrate many of the exciting possi-
bilities for exploration (cf. Unwin, Theus, and Hofmann 2006, Cook and 
Swayne 2007, Sarkar 2008, Keen 2010, and of course Murrell 2011). 

Finally, note that the null hypothesis significance testing (NHST) para-

digm that is underlying most of the methods discussed here is not as uncon-
troversial as this textbook (and most others) may make you believe. While 
the computation of p-values is certainly still the standard approach, there 
are researchers who argue for a different perspective. Some of these argue 
that p-values are problematic because they do in fact not represent the con-
ditional probability that one is really interested in. Recall, the above p-
values answer the question “How likely is it to get the observed data when 
H0 is true?” but what one actually wants to know “How likely is H1 given 
the data I have?” Suggestions for improvement include: 
 

− one should focus not on p-values but on effect sizes and/or confidence 
intervals (which is why I mentioned these above again and again); 

− one should report so-called prep-values, which according to Killeen 
(2005) provide the probability to replicate an observed effect (but are 
not uncontroversial themselves); 

− one should test reasonable H0s rather than hypotheses that could never 
be true in the first place (there will always be some effect or difference). 

 
Another interesting approach is the so-called Bayesian approach to sta-

tistics, which allows to include subjective prior knowledge or previous 
results with one’s own data. All of these things are worth exploring. 
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Recommendation(s) for further study 

− Cohen (1994), Loftus (1996), Denis (2003) for discussion of the NHST 
− Killeen (2005) on prep-values 
− Iversen (1984) on Bayes statistics 

 
I hope you can use the techniques covered in this book for many differ-

ent questions, and when this little epilog also makes you try and extend 
your knowledge and familiarize yourself with additional tools and methods 
– for example, there are many great web resources, <http://www. 
statmethods.net/index.html> and <http://www.r-bloggers.com/> are among 
my favorites – then this book has achieved one of his main objectives. 
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