
Statistics for Linguistics with R

Statistics for Linguistics with R
A Practical Introduction

2nd revised edition

by

Stefan Th. Gries

De Gruyter Mouton

ISBN 978-3-11-030728-3
e-ISBN 978-3-11-030747-4

Library of Congress Cataloging-in-Publication Data

A CIP catalog record for this book has been applied for at the Library of Congress.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available in the Internet at http://dnb.dnb.de.

” 2013 Walter de Gruyter GmbH, Berlin/Boston

Cover image: section from visual tool ” Stefan Th. Gries
Printing: Hubert & Co. GmbH & Co. KG, Göttingen
�� Printed on acid-free paper

Printed in Germany

www.degruyter.com

To Pat, the most supportive
Department Chair I could have ever wished for.

Preface

This book is a revised and extended version of Gries (2009b). There are
four main types of changes. The first and most important one is a complete
overhaul of Chapter 5. After having taught dozens of workshops and
bootcamps on statistics in linguistics with R, I realized that the most diffi-
cult aspects of regression modeling for beginners are (i) to understand the
logic of the modeling process, (ii) how to interpret the numerical results
(esp. with different contrasts), and (iii) how to visualize them revealingly.
Thus, all sections on regression modeling have been rewritten from scratch.
In addition, there is now an overview of more theoretical aspects of model-
ing that, hopefully, will make many things easier to understand.

The second set of changes is concerned with Chapter 1 and Chapter 4.
In the former, I now discuss the notions of one- and two-tailed tests in a
better way; in the latter, I discuss a set of questions and a visualization tool
that should help choosing the right statistical tests for a particular study.

Third, I have added a small section on programming aspects and on how
users can write their own functions and, now that that is explained, also
make a few very small functions that I have written for myself available to
the readers.

Then, this edition not only corrects errors that readers have reported to
me (and I am very grateful for them to take the time to do so and hope I
haven’t added too many new ones …) but it also adds a multitude of small
tweaks and changes that arose out of the statistics workshops and classes I
have taught over the last few years. Some of these tweaks are in the book,
but many are also ‘hidden’ in the code file so you will only see them if you
– as you should – work your way through this book using the code all the
time. Finally, all code from the book is now in one file, which will make
handling the code and looking up functions much convenient and means
that an index of function names is not useful anymore.

I hope you will enjoy, and benefit from, this book and the many changes
that went into this revision. As usual, I would like to thank the team at De
Gruyter Mouton who supported, in fact raised, the idea of a second edition
very early on. Also, again thanks are due to the R Development Core Team
and many contributors to bugfixes and packages for R and, also again, to R.
Harald Baayen for exposing me to R the first time; I cannot imagine what
my research would look like had he not done that …

Contents

Preface .. v

Chapter 1

Some fundamentals of empirical research ... 1
1. Introduction ... 1
2. On the relevance of quantitative methods in linguistics 3
3. The design and the logic of quantitative studies 7
3.1. Scouting .. 8
3.2. Hypotheses and operationalization ... 10
3.2.1. Scientific hypotheses in text form ... 10
3.2.2. Operationalizing your variables .. 15
3.2.3. Scientific hypotheses in statistical/mathematical form 18
3.3. Data collection and storage ... 20
3.4. The decision .. 26
3.4.1. One-tailed p-values from discrete probability distributions 29
3.4.2. Two-tailed p-values from discrete probability distributions 34
3.4.3. Extension: continuous probability distributions 41
4. The design of a factorial experiment: introduction 46
5. The design of a factorial experiment: another example 52

Chapter 2

Fundamentals of R ... 56
1. Introduction and installation ... 56
2. Functions and arguments .. 60
3. Vectors .. 64
3.1. Generating vectors .. 64
3.2. Loading and saving vectors ... 69
3.3. Editing vectors .. 72
4. Factors ... 79
4.1. Generating factors ... 79
4.2. Loading and saving factors ... 80
4.3. Editing factors ... 81
5. Data frames ... 84
5.1. Generating data frames ... 84
5.2. Loading and saving data frames .. 86

x Contents

5.3. Editing data frames ... 88
6. Some programming: conditionals and loops 94
6.1. Conditional expressions .. 94
6.2. Loops ... 95
7. Writing your own little functions .. 97

Chapter 3

Descriptive statistics .. 102
1. Univariate statistics ... 102
1.1. Frequency data .. 102
1.1.1. Scatterplots and line plots ... 104
1.1.2. Pie charts ... 108
1.1.3. Bar plots .. 109
1.1.4. Pareto-charts.. 111
1.1.5. Histograms .. 112
1.1.6 Empirical cumulative distributions ... 114
1.2. Measures of central tendency .. 115
1.2.1. The mode... 115
1.2.2. The median .. 116
1.2.3. The arithmetic mean .. 116
1.2.4. The geometric mean .. 117
1.3. Measures of dispersion .. 119
1.3.1. Relative entropy .. 120
1.3.2. The range... 121
1.3.3. Quantiles and quartiles .. 122
1.3.4. The average deviation ... 123
1.3.5. The standard deviation/variance ... 124
1.3.6. The variation coefficient ... 125
1.3.7. Summary functions ... 126
1.3.8. The standard error ... 128
1.4. Centering and standardization (z-scores) 130
1.5. Confidence intervals ... 132
1.5.1. Confidence intervals of arithmetic means 133
1.5.2. Confidence intervals of percentages 134
2. Bivariate statistics ... 136
2.1. Frequencies and crosstabulation ... 136
2.1.1. Bar plots and mosaic plots .. 137
2.1.2. Spineplots .. 138
2.1.3. Line plots... 139

Contents xi

2.2. Means .. 140
2.2.1. Boxplots .. 141
2.2.2. Interaction plots ... 143
2.3. Coefficients of correlation and linear regression 147

Chapter 4

Analytical statistics .. 157
1. Distributions and frequencies .. 162
1.1. Distribution fitting ... 162
1.1.1. One dep. variable (ratio-scaled) .. 162
1.1.2. One dep. variable (nominal/categorical) 165
1.2. Tests for differences/independence ... 172
1.2.1. One dep. variable (ordinal/interval/ratio scaled) and one
 indep. variable (nominal) (indep. samples) 172
1.2.2. One dep. variable (nom./cat.) and one indep. variable
 (nom./cat.) (indep.samples) ... 178
1.2.3. One dep. variable (nom./cat.) (dep. samples) 192
2. Dispersions .. 195
2.1. Goodness-of-fit test for one dep. variable (ratio-scaled) 197
2.2. One dep. variable (ratio-scaled) and one indep.
 variable (nom.) .. 199
3. Means .. 205
3.1. Goodness-of-fit tests ... 205
3.1.1. One dep. variable (ratio-scaled) .. 205
3.1.2. One dep. variable (ordinal) ... 209
3.2. Tests for differences/independence ... 215
3.2.1. One dep. variable (ratio-scaled) and one indep. variable
 (nom.) (indep. samples) .. 215
3.2.2. One dep. variable (ratio-scaled) and one indep. variable
 (nom.) (dep. samples) .. 221
3.2.3. One dep. variable (ordinal) and one indep. variable
 (nom.) (indep. samples) .. 227
3.2.4. One dep. variable (ordinal) and one indep. variable
 (nom.) (dep. samples) .. 234
4. Coefficients of correlation and linear regression 238
4.1. The significance of the product-moment correlation 238
4.2. The significance of Kendall’s Tau .. 243
4.3. Correlation and causality .. 245

xii Contents

Chapter 5

Selected multifactorial and multivariate methods 247
1. The notions of interaction and model (selection) 247
1.1. Interactions .. 247
1.2. Model (selection) .. 253
1.2.1. Formulating the first model ... 253
1.2.2. Selecting a final model .. 259
2. Linear models .. 261
2.1. A linear model with a binary predictor 264
2.2. A linear model with a categorical predictor 271
2.3. A linear model with a numeric predictor 275
2.4. A linear model with two categorical predictors 276
2.5. A linear model with a categorical and a numeric predictor 280
2.6. A linear model with two numeric predictors 282
2.7. A linear model selection process with multiple
 predictors ... 285
3. Binary logistic regression models ... 293
3.1. A logistic regression with a binary predictor 296
3.2. A logistic regression with a categorical predictor 304
3.3. A logistic regression with a numeric predictor 306
3.4. A logistic regression with two categorical predictors 308
3.5. A logistic regression with a categorical and
 a numeric predictor ... 310
3.6. A logistic regression with two numeric predictors.................. 311
4. Other regression models .. 316
4.1. An ordinal logistic regression with a categorical and a
 numeric predictor .. 317
4.2. A multinomial regression with a categorical and a
 numeric predictor .. 322
4.3. A Poisson/count regression with a categorical and a
 numeric predictor .. 324
5. Repeated measurements: a primer .. 327
5.1. One independent variable nested into subjects/items 329
5.2. Two independent variables nested into subjects/items 331
5.3. Two independent variables, one between, one within
 subjects/items .. 332
5.4. Mixed-effects / multi-level models ... 333
6. Hierarchical agglomerative cluster analysis 336

Contents xiii

Chapter 6

Epilog ... 350

References .. 353

Chapter 1

Some fundamentals of empirical research

When you can measure what you are speaking about, and express it in
numbers, you know something about it; but when you cannot measure it,

when you cannot express it in numbers, your knowledge is of a meager and
unsatisfactory kind. It may be the beginning of knowledge, but you have

scarcely, in your thoughts, advanced to the stage of science.
William Thomson, Lord Kelvin.

(<http://hum.uchicago.edu/~jagoldsm/Webpage/index.html>)

1. Introduction

This book is an introduction to statistics. However, there are already very
many introductions to statistics – why do we need another one? Just like
the first edition, this book is different from many other introductions to
statistics in several ways:

− it has been written especially for linguists: there are many introductions
to statistics for psychologists, economists, biologists etc., but only very
few which, like this one, explain statistical concepts and methods on the
basis of linguistic questions and for linguists;

− it explains how to do most of the statistical methods both ‘by hand’ as
well as with statistical software, but it requires neither mathematical ex-
pertise nor hours of trying to understand complex equations – many in-
troductions devote much time to mathematical foundations (and, thus,
make everything more difficult for the novice), others do not explain
any foundations and immediately dive into some nicely designed soft-
ware, which often hides the logic of statistical tests behind a nice GUI;

− it not only explains statistical concepts, tests, and graphs, but also the
design of tables to store and analyze data, summarize previous litera-
ture, and some very basic aspects of experimental design;

− it only uses open source software (mainly R): many introductions use
SAS or in particular SPSS, which come with many disadvantages such
that (i) users must buy expensive licenses that are restricted in how
many functions they offer and how many data points they can handle)

2 Some fundamentals of empirical research

and how long they can be used; (ii) students and professors may be able
to use the software only on campus; (iii) they are at the mercy of the
software company with regard to bugfixes and updates etc.;

− it does all this in an accessible and informal way: I try to avoid jargon
wherever possible; the use of software will be illustrated in very much
detail, and there are think breaks, warnings, exercises (with answer keys
on the companion website), and recommendations for further reading
etc. to make everything more accessible.

So, this book aims to help you do scientific quantitative research. It is

structured as follows. Chapter 1 introduces the foundations of quantitative
studies: what are variables and hypotheses, what is the structure of quanti-
tative studies and what kind of reasoning underlies it, how do you obtain
good experimental data, and in what kind of format should you store your
data?

Chapter 2 provides an overview of the programming language and envi-
ronment R, which will be used in all other chapters for statistical graphs
and analyses: how do you create, load, and manipulate data to prepare for
your analysis?

Chapter 3 explains fundamental methods of descriptive statistics: how
do you describe your data, what patterns can be discerned in them, and how
can you represent such findings graphically? Chapter 4 explains fundamen-
tal methods of analytical statistics: how do you test whether the obtained
results actually mean something or have just arisen by chance? Chapter 5
introduces several multifactorial procedures, i.e. procedures, in which sev-
eral potential cause-effect relations are investigated simultaneously. While
this chapter will teach you a lot of things, Ican only deal with a few select-
ed methods and will point you to additional references quite a few times.

Apart from the following chapters with their think breaks and exercises
etc., the companion website for this book at <http://tinyurl.com/
StatForLingWithR> is an important resource. You will have to go there
anyway to download exercise files, data files, answer keys, errata etc., but
at <http://groups.google.com/group/statforling-with-r> you will also find a
newsgroup “StatForLing with R”. I would like to encourage you to become
a member of that newsgroup so that you can

− ask questions about statistics for linguists (and hopefully also get an
answer from some kind soul);

− send suggestions for extensions and/or improvements or data for addi-
tional exercises;

On the relevance of quantitative studies in linguistics 3

− inform me and other readers of the book about bugs you find (and of
course receive such information from other readers). This also means
that if R commands, or code, provided in the book differs from that on
the website, then the latter is most likely going to be correct.

Lastly, I have to mention one important truth right at the start: you can-

not learn to do statistical analyses by reading a book about statistical anal-
yses. You must do statistical analyses. There is no way that you read this
book (or any other serious introduction to statistics) 15 minutes in bed be-
fore turning off the light and learn to do statistical analyses, and book co-
vers or titles that tell you otherwise are, let’s say, ‘distorting’ the truth for
marketing reasons. I strongly recommend that, as of the beginning of Chap-
ter 2, you work with this book directly at your computer with R running
(ideally in RStudio) so that you can immediately enter the R code that you
read and try out all relevant functions from the code files from the compan-
ion website; often (esp. in Chapter 5), the code files for this chapter will
provide you with a lot of (!) important extra information, additional code
snippets, further suggestions for explorations using graphs etc., and some-
times the exercise files will provide even more suggestions and graphs.
Even if you do not understand every aspect of the code right away, this will
still help you to learn all this book tries to offer.

2. On the relevance of quantitative methods in linguistics

Above I said this book introduces you to scientific quantitative research.
But then, what are the goals of such research? Typically, one distinguishes
three goals, which need to be described because (i) they are part of a body
of knowledge that all researchers within an empirical discipline should be
aware of and (ii) they are relevant for how this book is structured.

The first goal is the description of your data on some phenomenon and
means that your data and results must be reported as accurately and reveal-
ingly as possible. All statistical methods described below will help you
achieve this objective, but particularly those described in Chapter 3.

The second goal is the explanation of your data, usually on the basis of
hypotheses about what kind(s) of relations you expected to find in the data.
On many occasions, this will already be sufficient for your purposes. How-
ever, sometimes you may also be interested in a third goal, that of predic-

tion: what is going to happen in the future or when you look at different

4 Some fundamentals of empirical research

data. Chapters 4 and 5 will introduce you to methods to pursue these goals
of explanation and prediction.

When you look at these goals, it may appear surprising that statistical
methods were not in widespread use in linguistics for decades. This is all
the more surprising because such methods are very widespread in disci-
plines with similarly complex topics such as psychology, sociology, eco-
nomics. To some degree, this situation is probably due to how linguistics
has evolved over the past decades, but fortunately this has changed remark-
ably in the recent decade. The number of studies utilizing quantitative
methods has been increasing (in all linguistic sub-disciplines); the field is
experiencing a paradigm shift towards more empirical methods. Still, even
though such methods are commonplace in other disciplines, they still often
meet some resistance in linguistic circles: statements such as “we’ve never
needed something like that before” or “the really interesting things are
qualitative in nature anyway and are not in need of any quantitative evalua-
tion” or “I am a field linguist and don’t need any of this” are far from in-
frequent.

Let me say this quite bluntly: such statements are not particularly rea-
sonable. As for the first statement, it is not obvious that such quantitative
methods were not needed so far – to prove that point, one would have to
show that quantitative methods could impossibly have contributed some-
thing useful to previous research, a rather ridiculous point of view – and
even then it would not necessarily be clear that the field of linguistics is not
now at a point where such methods are useful. As for the second statement,
in practice quantitative and qualitative methods go hand in hand: qualita-
tive considerations precede and follow the results of quantitative methods
anyway. To work quantitatively does not mean to just do, and report on,
some number-crunching – of course, there must be a qualitative discussion
of the implications – but as we will see below often a quantitative study
allows to identify what merits a qualitative discussion in the first place. As
for the last statement: even a descriptive (field) linguist who is working to
document a near-extinct language can benefit from quantitative methods. If
the chapter on tense discusses whether the choice of a tense is correlated
with indirect speech or not, then quantitative methods can show whether
there is such a correlation. If a study on middle voice in the Athabaskan
language Dena’ina tries to identify how syntax and semantics are related to
middle voice marking, quantitative methods can reveal interesting things
(cf. Berez and Gries 2010).

The last two points lead up to a more general argument already alluded
to above: often only quantitative methods can separate the wheat from the

On the relevance of quantitative studies in linguistics 5

chaff. Let’s assume a linguist wanted to test the so-called aspect hypothesis
according to which imperfective and perfective aspect are preferred in pre-
sent and past tense respectively (cf. Shirai and Andersen 1995). Strictly
speaking, the linguist would have to test all verbs in all languages, the so-
called population. This is of course not possible so the linguist studies a
sample of sentences to investigate their verbal morphology. Let’s further
assume the linguist took and investigated a small sample of 38 sentences in
one language and got the results in Table 1.

Table 1. A fictitious distribution of tenses and aspects in a small corpus

 Imperfective Perfective Totals

Present tense 12 6 18

Past tense 7 13 20

Totals 19 19 38

These data look like a very obvious confirmation of the aspect hypothe-

sis: there are more present tenses with imperfectives and more past tenses
with perfectives. However, the so-called chi-squared test, which could per-
haps be used for these data, shows that this tense-aspect distribution can
arise by chance with a probability p that exceeds the usual threshold of 5%
adopted in quantitative studies. Thus, the linguist would not be allowed to
accept the aspect hypothesis for the population on the basis of this sample.
The point is that an intuitive eye-balling of this table is insufficient – a
statistical test is needed to protect the linguist against invalid generaliza-
tions.

A more eye-opening example is discussed by Crawley (2007: 314f.).
Let’s assume a study showed that two variables x and y are correlated such
that the larger the value of x, the larger the value of y; cf. Figure 1.

Note, however, that the data actually also contain information about a
third variable (with seven levels a to g) on which x and y depend. Interest-
ingly, if you now inspect what the relation between x and y looks like for
each of the seven levels of the third variable separately, you see that the
relation suddenly becomes “the larger x, the smaller y”; cf. Figure 2, where
the seven levels are indicated with letters. Such patterns in data are easy to
overlook – they can only be identified through a careful quantitative study,
which is why knowledge of statistical methods is indispensible.

6 Some fundamentals of empirical research

Figure 1. A correlation between two fictitious variables x and y

Figure 2. A correlation between two fictitious variables x and y, controlled for a
fictitious third variable

The design and the logic of quantitative studies 7

For students of linguistics – as opposed to experienced practitioners –
there is also a very practical issue to consider. Sometime soon you will
want to write a thesis or dissertation. Quantitative methods can be extreme-
ly useful and powerful if only to help you avoid the pitfalls posed by the
data in Table 1 and Figure 1 or data from published studies I regularly dis-
cuss in my classes and workshops. It is therefore hopefully obvious now
that quantitative methods have a lot to offer, and I hope this book will pro-
vide you with some good and practical background knowledge.

This argument has an additional aspect to it. Contrary to, say, literary
criticism, linguistics is an empirical science. Thus, it is necessary – in par-
ticular for students – to know about basic methods and assumptions of em-
pirical research and statistics to be able to understand both scientific argu-
mentation in general and linguistic argumentation in particular. This is
especially relevant in the domains of, for example, contemporary quantita-
tive corpus linguistics or psycholinguistics, where data are often evaluated
with such a high degree of sophistication that a basic knowledge of the
relevant terminology is required. Without training, what do you make of
statements such as “The interaction between the size of the object and the
size of the reference point does not reach standard levels of significance:
F1, 12 = 2.18; p = 0.166; partial eta

2 = 0.154.”? Who knows off the top of
their head whether the fact that the average sentence length of ten female
second language learners in an experiment was about two words larger than
the average sentence length of ten male second language learners is more
likely to mean something, or whether this is more likely a product of
chance? Again, such data need serious statistical analysis.

3. The design and the logic of quantitative studies

In this section, we will have a very detailed look at the design of, and the
logic underlying, quantitative studies. I will distinguish several phases of
quantitative studies and consider their structure and discuss the reasoning
employed in them. The piece of writing in which you then describe your
quantitative research will often have four parts: introduction, methods,
results, and discussion. If you discuss more than one case study in your
writing, then typically each case study gets its own methods, results, and
discussion sections, followed by a general discussion.

With few exceptions, the discussion in this section will be based on a
linguistic example, particle placement in English, i.e. the constituent order
alternation of transitive phrasal verbs exemplified in (1).

8 Some fundamentals of empirical research

(1) a. He picked up [NP the book].
 CONSTRUCTION: VPO (verb - particle - object)
 b. He picked [NP the book] up.
 CONSTRUCTION: VOP (verb - object - particle)

An interesting aspect of this alternation is that, most of the time, both
constructions appear to be quite synonymous and native speakers of Eng-
lish usually cannot explain why they produce (1a) on one occasion and (1b)
on some other occasion. In the past few decades, linguists have tried to
describe, explain, and predict the alternation (cf. Gries 2003a for a recent
overview), and in this section, we will use it to illustrate the structure of a
quantitative study.

3.1. Scouting

At the beginning of your study, you want to get an overview of previous
work on the phenomenon you are interested in, which also gives you a
sense of what still can or needs to be done. In this phase, you try to learn of
existing theories that can be empirically tested or, much more infrequently,
you enter uncharted territory in which you are the first to develop a new
theory. This is a list of the activities that is typically performed in this
scouting phase:

− a first (maybe informal) characterization of the phenomenon;

− studying the relevant literature;

− observations of the phenomenon in natural settings to aid first inductive
generalizations;

− collecting additional information (e.g., from colleagues, students, etc.);

− deductive reasoning on your part.

If you take just a cursory look at particle placement, you will quickly
notice that there is a large number of variables that influence the construc-
tional choice. A variable is defined as a symbol for a set of states, i.e., a
characteristic that – contrary to a constant – can exhibit at least two differ-
ent states or levels (cf. Bortz and Döring 1995: 6 or Bortz 2005: 6) or, more
intuitively, as “descriptive properties” (Johnson 2008: 4) or as measure-
ments of an item that can be either numeric or categorical (Evert, p.c.).

The design and the logic of quantitative studies 9

Variables that might influence particle placement include the following:1

− COMPLEXITY: is the direct object a SIMPLE DIRECT OBJECT (e.g., the

book), a PHRASALLY-MODIFIED DIRECT OBJECT (e.g., the brown book or
the book on the table) or a CLAUSALLY-MODIFIED DIRECT OBJECT (e.g.,
the book I had bought in Europe) (cf., e.g., Fraser 1966);

− LENGTH: the length of the direct object (cf., e.g., Chen 1986, Hawkins
1994), which could be measured in syllables, words, …;

− DIRECTIONAL OBJECT: the PRESENCE of a directional prepositional
phrase (PP) after the transitive phrasal verb (e.g. in He picked the book

up from the table) or its ABSENCE (cf. Chen 1986);

− ANIMACY: whether the referent of the direct object is INANIMATE as in
He picked up the book, or ANIMATE as in He picked his dad up (cf. Gries
2003a: Ch. 2);

− CONCRETENESS: whether the referent of the direct object is ABSTRACT as
in He brought back peace to the region, or CONCRETE as in He brought

his dad back to the station (cf. Gries 2003a: Ch. 2);

− TYPE: is the part of speech of the head of the direct object a PRONOUN
(e.g., He picked him up this morning), a SEMIPRONOUN (e.g., He picked

something up from the floor), a LEXICAL NOUN (e.g., He picked people

up this morning) or a PROPER NAME (e.g., He picked Peter up this morn-

ing) (cf. Van Dongen 1919).

During this early phase, it is often useful to summarize your findings in
tabular format. One possible table summarizes which studies (in the col-
umns) discussed which variable (in the rows). On the basis of the above
list, this table could look like Table 2 and allows you to immediately re-
cognize (i) which variables many studies have already looked at and (ii) the
studies that looked at most variables. Another table summarizes the varia-
ble levels and their preferences for one of the two constructions. Again, on
the basis of the above list, this table would look like Table 3, and you can
immediately see that, for some variables, only one level has been associat-
ed with a particular constructional preference.

Table 3 already suggests that CONSTRUCTION: VPO is used with cogni-
tively more complex direct objects: long complex NPs with lexical nouns
referring to abstract things. CONSTRUCTION: VOP on the other hand is used
with the opposite preferences. For an actual study, this first impression
would of course have to be phrased more precisely. In addition, you should

1. I print variables in small caps and their levels in italicized small caps.

10 Some fundamentals of empirical research

also compile a list of other factors that might either influence particle
placement directly or that might influence your sampling of sentences or
experimental subjects or … Much of this information would be explained
and discussed in the first section of the empirical study, the introduction.

Table 2. Summary of the literature on particle placement I

 Fraser

(1966)

Chen

(1986)

Hawkins

(1994)

Gries

(2003a)

Van Dongen

(1919)

COMPLEXITY ×

LENGTH × ×

DIRECTIONALPP ×

ANIMACY ×

CONCRETENESS ×

TYPE ×

Table 3. Summary of the literature on particle placement II

Variable level for

CONSTRUCTION: VPO

Variable level for

CONSTRUCTION: VOP

COMPLEXITY
PHRASALLY-MODIFIED

CLAUSALLY MODIFIED

LENGTH LONG

DIRECTIONALPP ABSENCE PRESENCE

ANIMACY INANIMATE ANIMATE

CONCRETENESS ABSTRACT CONCRETE

TYPE PRONOMINAL

3.2. Hypotheses and operationalization

Once you have an overview of the phenomenon you are interested in and
have decided to pursue an empirical study, you usually formulate hypothe-
ses. What does that mean and how do you proceed? To approach this issue,
let us see what hypotheses are and what kinds of hypotheses there are.

3.2.1. Scientific hypotheses in text form

Following Bortz and Döring (1995: 7), I will consider a hypothesis to be a
statement that meets the following three criteria:

The design and the logic of quantitative studies 11

− it is a general statement that is concerned with more than just a singular
event;

− it is a statement that at least implicitly has the structure of a conditional
sentence (if …, then … or the …, the …) or can be paraphrased as one;

− it is potentially falsifiable, which means it must be possible to think of
events or situations that contradict the statement. Most of the time, this
implies that the scenario described in the conditional sentence must also
be testable. However, these two characteristics are not identical. There
are statements that are falsifiable but not testable such as “If children
grow up without any linguistic input, then they will grow up to speak
Latin.” This statement is falsifiable, but for obvious ethical reasons not
testable (anymore; cf. Steinberg 1993: Section 3.1).

The following statement is a scientific hypothesis according to the

above criteria: “Reducing the minimum age to obtain a driver’s license
from 18 years to 17 years in European countries will double the number of
traffic accidents in these countries within two years.” This statement is a
general statement that is not restricted to just one event, just one country,
etc. Also, this statement can be paraphrased as a conditional sentence: “If
one reduces the minimum age …, then the number of traffic accidents will
double …” Lastly, this statement is falsifiable because it is conceivable –
actually, very likely – that if one reduced the minimum age, that the num-
ber of traffic accidents would not double. Accordingly, the following
statement is not a scientific hypothesis: “Reducing the minimum age to
obtain a driver’s license from 18 years to 17 years in European countries
may double the number of traffic accidents in these countries within two
years.” This statement is a general statement, it can be paraphrased into a
conditional sentence, it is testable because the minimum age could be re-
duced, but it is not a hypothesis according to the above definition because
the word may basically means ‘may or may not’: the statement is true if the
number of traffic accidents doubles, but also if it does not. Put differently,
whatever one observed after the reduction of the minimum age, it would be
compatible with the statement.

With regard to particle placement, the following statements are exam-
ples of scientific hypotheses:

− if the direct object of a transitive phrasal verb is syntactically complex,
then native speakers will produce the constituent order VPO more often
than when the direct object is syntactically simple;

− if the direct object of a transitive phrasal verb is long, then native speak-

12 Some fundamentals of empirical research

ers will produce the constituent order VPO more often than when the di-
rect object is short;

− if a verb-particle construction is followed by a directional PP, then na-
tive speakers will produce the constituent order VOP more often than
when no such directional PP follows (and analogously for all other vari-
ables mentioned in Table 3).

When you formulate a hypothesis, it is also important that the notions

that you use in the hypothesis are formulated precisely. For example, if a
linguistic theory uses notions such as cognitive complexity or availability in

discourse or even something as seemingly straightforward as constituent

length, then it will be necessary that the theory can define what exactly is
meant by this; in Section 1.3.2.2 we will deal with this in much more detail.

We can distinguish two types of hypotheses. The first, the one we have
been talking about so far, consists of two parts, an if part (IV) and a then
part (DV). The IV stands for independent variable, the variable in the if part
of the hypothesis that is often, but not necessarily, the cause of the changes/
effects in the then part of the hypothesis. The DV on the other hand stands
for dependent variable, the variable in the then part of the hypothesis and
whose values, variation, or distribution is to be explained. In addition, it is
useful for later to also mention confounding variables and moderator vari-

ables. The former can be defined as variables that are correlated with inde-
pendent dependent variables; the latter can be defined as variables (often
extraneous to the initial design of a study) that influence/moderate the rela-
tionship between the independent and the dependent variable(s).

 confound

independent dependent

 moderator

Figure 3. Different types of variables

With this terminology, we can now paraphrase the above hypotheses. In

the first, IV is the syntactic complexity of the direct object (COMPLEXITY
with the three levels SIMPLE, PHRASALLY-MODIFIED, and CLAUSALLY-

MODIFIED), and DV is the choice of construction (CONSTRUCTION with the
two levels VPO and VOP). In the second hypothesis, IV is the length of the
direct object (LENGTH with values from 1 to x), and DV is again the choice
of construction (CONSTRUCTION with the two levels VPO and VOP), etc.

The second type of hypothesis only contains one dependent variable,
but no independent variable with which the dependent variable’s behavior

The design and the logic of quantitative studies 13

is explained. In such cases, the hypothesis is ‘only’ a statement about what
the values, variation, or distribution of the dependent variable looks like.
Frequent examples postulate equal distributions (e.g., frequencies) or par-
ticular shapes of distributions (e.g., bell-shaped normal curves):

− The two constructions or, more technically, the two levels of
CONSTRUCTION (VPO and VOP) are not equally frequent; note again how
this does not mention an independent variable.

− The lengths of direct objects are not normally distributed.

In what follows, we will deal with both kinds of hypotheses (with a bias
toward the former).

Thus, we can also define a scientific hypothesis as a statement about ei-
ther the relation(s) between two or more variables or, for the second kind,
as a statement about one variable in some sampling context, which is ex-
pected to also hold in similar contexts and/or for similar objects in the pop-
ulation. Thus, once potentially relevant variables to be investigated have
been identified, you formulate a hypothesis by relating the relevant varia-
bles in the appropriate conditional sentence or some paraphrase thereof.

After your hypothesis has been formulated in the above text form, you
also have to define – before you collect data! – which situations or states of
affairs would falsify your hypothesis. Thus, in addition to your own hy-
pothesis – the so-called alternative hypothesis H1 – you now also formulate
another hypothesis – the so-called null hypothesis H0 – which is the logical
opposite to your H1. Often, that means that you get the H0 by inserting the
word not into the H1. For the first of the above three hypotheses involving
both a dependent and and independent variable, this is what the text version
of H0 would look like:

H0 type 1: If the direct object of a transitive phrasal verb is syntactically com-

plex, then native speakers will not produce the constituent order
VPO more often than when the direct object is syntactically simple.

For the first of the above two hypotheses involving only a dependent

variable, H0 would be this:

H0 type 2: The two constructions or, more technically, the two levels of

CONSTRUCTION (VPO and VOP) are not not equally frequent, i.e. are
equally frequent.

14 Some fundamentals of empirical research

It is crucial to formulate H0 as mentioned above, essentially by inserting
not. The idea is that both hypotheses – H1 and H0 – cover the whole result
space, i.e. every result theoretically possible. Thus, if your H1 was “Com-
plex objects lead to more CONSTRUCTION: VPO than CONSTRUCTION: VOP,”
then your H0 should not be “Complex objects lead to fewer
CONSTRUCTION: VPO than CONSTRUCTION: VOP” because these two hy-
potheses do not cover all results possible – they do not cover the case
where the two constructions are equally frequent.

In the vast majority of cases, the first type of H0 states that there is no
difference between (two or more) groups or no relation between the inde-
pendent variable(s) and the dependent variable(s) and that whatever differ-
ence or effect you get is only due to chance or random variation. The sec-
ond type of H0 typically states that the dependent variable is distributed
randomly or in accordance with some well-known mathematically defina-
ble distribution such as the normal distribution. However, an additional
complication is that you must distinguish two kinds of H1s: directional H1s
not only predict that there is some kind of effect or difference or relation
but also the direction of the effect – note the expression “more often” in the
above type 1 H1 relating CONSTRUCTION and COMPLEXITY. On the other
hand, non-directional H1s only predict that there is some kind of effect or
difference or relation without specifying the direction of the effect. A non-
directional H1 for the above type 1 example would therefore be this:

H1 type 1 non-dir.: If the direct object of a transitive phrasal verb is syntacti-

cally complex, then native speakers will produce the con-
stituent order VPO differently often than when the direct ob-
ject is syntactically simple.

Thus, H0 states that there is no correlation between the syntactic com-

plexity of a direct object and the constructional choice in the population,
and that if you nevertheless find one in the sample, then this is only a
chance effect. Both H1s state that there is a correlation – thus, you should
also find one in your sample. Both of these hypotheses must be formulated
before the data collection so that one cannot present whatever result one
gets as the ‘predicted’ one. Of course, all of this has to be discussed in the
introduction of the written version of your paper or, maybe, at the begin-
ning of the methods section.

The design and the logic of quantitative studies 15

3.2.2. Operationalizing your variables

Formulating your hypotheses in the above text form is not the last step in
this part of the study, because it is as yet unclear how the variables invoked
in your hypotheses will be investigated. For example and as mentioned
above, a notion such as cognitive complexity can be defined in many dif-
ferent and differently useful ways, and even something as straightforward
as constituent length is not always as obvious as it may seem: do we mean
the length of, say, a direct object in letters, phonemes, syllables, mor-
phemes, words, syntactic nodes, etc.? Therefore, you must find a way to
operationalize the variables in your hypothesis. This means that you decide
what will be observed, counted, measured etc. when you investigate your
variables.

For example, if you wanted to operationalize a person’s KNOWLEDGE

OF A FOREIGN LANGUAGE, you could do this as follows:

− COMPLEXITY OF THE SENTENCES that a person can form in the language
in a test (only main clauses? also compound sentences? also complex
sentences? how many of each?);

− AMOUNT OF TIME in seconds between two errors in conversation;

− NUMBER OF ERRORS PER 100 WORDS in a text that the person writes in
90 minutes.

What is wrong with the following two proposals for operationalization?

− AMOUNT OF ACTIVE VOCABULARY;

− AMOUNT OF PASSIVE VOCABULARY.

THINK

BREAK

These proposals are not particularly useful because, while knowing

these amounts would certainly be very useful to assess somebody’s
knowledge of a foreign language, they are not directly observable: it is not
clear what you would count or measure since it is not exactly practical to
tell a learner to write down all the words he knows … If you in turn opera-
tionalize the amount of passive vocabulary on the basis of the number of
words a person knows in a vocabulary test (involving, say, words from

16 Some fundamentals of empirical research

different frequency bands) or in a synonym finding test, then you know
what to count – but the above is too vague.

From the above it follows that operationalizing involves using levels of
numbers to represent states of variables. A number may be a measurement
(402 ms reaction time, 12 words in a synonym finding test, the direct object
is four syllables long), but levels, i.e. discrete non-numerical states, can
theoretically also be coded using numbers. Thus, variables are not only
distinguished according to their role in the hypotheses – independent vs.
dependent – but also according to their level of measurement:

− nominal or categorical variables are variables with the lowest infor-
mation value. Different values of these variables only reveal that the ob-
jects with these different values exhibit different characteristics. Such
variables are called nominal variables (or binary variables) when they
can take on only two different levels; such variables are called categori-

cal variables when they can take on three or more different levels. In
our example of particle placement, the variable DIRECTIONALPP could
be coded with 1 for the ABSENCE and 2 for PRESENCE, but note that the
fact that the value for PRESENCE is twice as large as that for ABSENCE
does not mean anything (other than that the values are different) – theo-
retically, you could code ABSENCE with 34.2 and PRESENCE with 7.2
Other typical examples of nominal or categorical variables are
ANIMACY (ANIMATE vs. INANIMATE), CONCRETENESS (CONCRETE vs.
ABSTRACT), STRESS (STRESSED vs. UNSTRESSED), AKTIONSART (ACTIVITY
vs. ACCOMPLISHMENT vs. ACHIEVEMENT vs. STATE) etc.

− ordinal variables not only distinguish objects as members of different
categories the way that nominal/categorical variables do – they also al-
low to rank-order the objects in a meaningful way. However, differ-
ences between ranks cannot be meaningfully compared. Grades are a
typical example: a student with an A (4 grade points) scored a better re-
sult than a student with a C (2 grade points), but just because 4 is two
times 2, that does not necessarily mean that the A-student did exactly
twice as well as the C-student – depending on the grading system, the

2. Often, nominal variables are coded using 0 and 1. There are two reasons for that: (i) a

conceptual reason: often, such nominal variables can be understood as the presence (=1)
or the absence (=0) of something or even as a ratio variable (cf. below); i.e., in the ex-
ample of particle placement, the nominal variable CONCRETENESS could be understood
as a ratio variable NUMBER OF CONCRETE REFERENTS; (ii) for reasons I will not discuss
here, it is computationally useful to use 0 and 1 and, somewhat counterintuitively, some
statistical software other than R even requires that kind of coding.

The design and the logic of quantitative studies 17

A-student may have given three times as many correct answers as the C-
student. In the particle placement example, the variable COMPLEXITY is
an ordinal variable if you operationalize it as above: SIMPLE NP (1) vs.
PHRASALLY-MODIFIED (2) vs. CLAUSALLY-MODIFIED (3). It is useful to
make the ranks compatible with the variable: if the variable is called
SYNTACTIC COMPLEXITY, then large rank numbers should represent
large degrees of complexity, i.e., complex direct objects. If, on the other
hand, the variable is called SYNTACTIC SIMPLICITY, then large rank
numbers should represent large degrees of simplicity, i.e. simple direct
objects. Other typical examples are SOCIO-ECONOMIC STATUS or
DEGREE OF IDIOMATICITY or PERCEIVED VOCABULARY DIFFICULTY
(e.g., LOW/1 vs. INTERMEDIATE/2 vs. HIGH/3).

− ratio variables not only distinguish objects as members of different
categories and with regard to some rank ordering – they also allow to
meaningfully compare the differences and ratios between values. For
example, LENGTH IN SYLLABLES is such a ratio variable: when one ob-
ject is six syllables long and another is three syllables long, then the first
is of a different length than the second (the categorical information), the
first is longer than the second (the ordinal information), and it is exactly
twice as long as the second. Other typical examples are annual salaries,
or reaction times in milliseconds.3

These differences can be clearly illustrated in a table of a fictitious data

set on lengths and degrees of complexity of subjects and objects – which
column contains which kind of variable?

Table 4. A fictitious data set of subjects and objects

DATA POINT COMPLEXITY DATA SOURCE SYLLLENGTH GRMRELATION

1 HIGH D8Y 6 OBJECT

2 HIGH HHV 8 SUBJECT

3 LOW KB0 3 SUBJECT

4 INTERMEDIATE KB2 4 OBJECT

THINK

BREAK

3. Strictly speaking, there is also a class of so-called interval variables, which I am not

going to discuss here separately from ratio variables.

18 Some fundamentals of empirical research

DATA POINT is essentially a categorical variable: every data point gets
its own number so that you can uniquely identify it, but the number as such
may represent little more than the order in which the data points were en-
tered. COMPLEXITY is an ordinal variable with three levels. DATA SOURCE

is another categorical variable: the levels of this variable are file names
from the British National Corpus. SYLLLENGTH is a ratio variable since the
third object can correctly be described as half as long as the first.
GRMRELATION is a nominal/categorical variable. These distinctions are
very important since these levels of measurement determine which statisti-
cal tests can and cannot be applied to a particular question and data set, as
we will see below. As a rule of thumb already, it is usually best to work
with the highest level of measurement; I will come back to this shortly.

The issue of operationalization is one of the most important of all. If
you do not operationalize your variables properly, then the whole study
might be useless since you may actually end up not measuring what you
want to measure. Without an appropriate operationalization, the validity of
your study is at risk. If we investigated the question of whether subjects in
English are longer than direct objects and looked through sentences in a
corpus, we might come across the sentence in (2):

(2) [SUBJECT The younger bachelors] ate [OBJECT the nice little parrot].

The result for this sentence depends on how LENGTH is operationalized.
If LENGTH is operationalized as number of morphemes, then the subject is
longer than the direct object: 5 (The, young, comparative -er, bachelor,
plural s) vs. 4 (the, nice, little, parrot). However, if LENGTH is operational-
ized as number of words, the subject (3 words) is shorter than the direct
object (4 words). And, if LENGTH is operationalized as number of charac-

ters without spaces, the subject and the direct object are equally long (19
characters). In this contrived case, thus, the operationalization alone deter-
mines the result.

3.2.3. Scientific hypotheses in statistical/mathematical form

Once you have formulated both your own H1 and the logically complemen-
tary H0 in text form and have defined how the variables will be operational-
ized, you also formulate two statistical versions of these hypotheses. That
is, you first formulate the two text hypotheses, and in the statistical hypoth-
eses you then express the numerical results you expect on the basis of the

The design and the logic of quantitative studies 19

text hypotheses. Such numerical results usually involve one of five differ-
ent mathematical forms:

− frequencies;

− means;

− dispersions;

− correlations;

− distributions.

We begin by looking at a simple example of an H1 regarding particle
placement: if a verb-particle construction is followed by a directional PP,
then native speakers will produce the constituent order VOP more often than
when no such directional PP follows. To formulate the statistical hypothe-
sis counterpart to this text form, you have to answer the question, if I inves-
tigated, say, 200 sentences with verb-particle constructions in them, how
would I know whether H1 is (more likely) correct or not? (As a matter of
fact, you actually have to proceed a little differently, but we will get to that
later.) One possibility of course is to count how often CONSTRUCTION: VPO
and CONSTRUCTION: VOP are followed by a directional PP, and if there are
more directional PPs after CONSTRUCTION: VOP than after CONSTRUCTION:
VPO, then this provides support for H1. Thus, this possibility involves fre-
quencies and the statistical hypotheses are:

H1 directional: n dir. PPs after CONSTRUCTION: VPO < n dir. PPs after CONSTRUCTION: VOP
H1 non-directional: n dir. PPs after CONSTRUCTION: VPO ≠ n dir. PPs after CONSTRUCTION: VOP
H0: n dir. PPs after CONSTRUCTION: VPO = n dir. PPs after CONSTRUCTION: VOP

4

Just in passing: what do these statistical hypotheses presuppose?

THINK

BREAK

4. Note: I said above that you often obtain H0 by inserting not into H1. Thus, when the

statistical version of H1 involves a “<“, then you might expect the statistical version of
H0 to contain a “≥”. However, we will follow the usual convention also mentioned
above that H0 states the absence of a difference/effect/correlation etc., which is why we
write “=“. You will see below that the cases covered by “≥” will still be invoked in the
computations that are based on these statistical hypotheses.

20 Some fundamentals of empirical research

They presuppose that you investigate equally many instances of both
constructions because otherwise a small observed frequency of directional
PPs after CONSTRUCTION: VOP – the frequency we expect to be large –
could simply be due to a small overall frequency of CONSTRUCTION: VOP.
For the variable COMPLEXITY, you could formulate similar hypotheses
based on frequencies, if COMPLEXITY is operationalized on the basis of, for
example, the three levels mentioned above.

Let us now turn to an example involving statistical hypotheses based on
means: if the direct object of a transitive phrasal verb is long, then native
speakers will produce the constituent order VPO more often than when it is
not. One way to proceed is to measure the average lengths of direct objects
in CONSTRUCTION: VPO and CONSTRUCTION: VOP and then compare these
average lengths to each other. You could therefore write:

H1 directional: mean Length of the direct object in CONSTRUCTION: VPO >

mean Length of the direct object in CONSTRUCTION: VOP

H1 non- directional: mean Length of the direct object in CONSTRUCTION: VPO ≠
mean Length of the direct object in CONSTRUCTION: VOP

H0: mean Length of the direct object in CONSTRUCTION: VPO =
mean Length of the direct object in CONSTRUCTION: VOP

With similarly obvious operationalizations, the other text hypotheses

from above can be transformed into analogous statistical hypotheses. Now,
and only now, we finally know what needs to be observed in order for us to
reject H0. (We will look at hypotheses involving correlations, dispersion,
and distributions later.)

All hypotheses discussed so far were concerned with the simple case
where a sample of verb-particle constructions was investigated regarding
whether the two constructions differ with regard to one independent varia-
ble (e.g., DIRECTIONALPP). The statistical methods to handle such cases
are the subject of Chapter 4. However, things are often not that simple:
most phenomena are multifactorial in nature, which means dependent vari-
ables are usually influenced by, or at least related to, more than one inde-
pendent variable. While the overall logic is the same as above, some com-
plications arise and we will postpone their discussion until Chapter 5.

3.3. Data collection and storage

Only after all variables have been operationalized and all hypotheses have

The design and the logic of quantitative studies 21

been formulated do you actually collect your data. For example, you run an
experiment or do a corpus study or … However, you will hardly ever study
the whole population of events but a sample so it is important that you
choose your sample such that it is representative and balanced with respect
to the population to which you wish to generalize. Here, I call a sample
representative when the different parts of the population are reflected in the
sample, and I call a sample balanced when the sizes of the parts in the pop-
ulation are reflected in the sample. Imagine, for example, you want to study
the frequencies and the uses of the discourse marker like in the speech of
Californian adolescents. To that end, you want to compile a corpus of Cali-
fornian adolescents’ speech by asking some Californian adolescents to
record their conversations. In order to obtain a sample that is representative
and balanced for the population of all the conversations of Californian ado-
lescents, the proportions of the different kinds of conversations in which
the subjects engage would ideally be approximately reflected in the sample.
For example, a good sample would not just include the conversations of the
subjects with members of their peer group(s), but also conversations with
their parents, teachers, etc., and if possible, the proportions that all these
different kinds of conversations make up in the sample would correspond
to their proportions in real life, i.e. the population.

While it is important you try to stick to these rules as much as possible,
why are they often more of a theoretical ideal?

THINK

BREAK

This is often just a theoretical ideal because we don’t know all parts and

their proportions in the population. Who would dare say how much of an
average Californian adolescent’s discourse – and what is an average Cali-
fornian adolescent anyway? – takes place within his peer group, with his
parents, with his teachers etc.? And how would we measure the proportion
– in words? sentences? minutes? Still, even though these considerations
will often only result in estimates, you must think about the composition of
your sample(s) just as much as you think about the exact operationalization
of your variables. If you do not do that, then the whole study may well fail
because you may be unable to generalize from whatever you find in your
sample to the population. One important rule in this connection is to choose
the elements that enter into your sample randomly, to randomize. For ex-

22 Some fundamentals of empirical research

ample, if the adolescents who participate in your study receive a small re-
cording device with a lamp and are instructed to always record their con-
versations when the lamp lights up, then you could perhaps send a signal to
the device at random time intervals (as determined by a computer). This
would make it more likely that you get a less biased sample of many differ-
ent kinds of conversational interaction, which would then reflect the popu-
lation better.

Let us briefly look at a similar example from the domain of first lan-
guage acquisition. It was found that the number of questions in recordings
of caretaker-child interactions was surprisingly high. Some researchers
suspected that the reason for that was parents’ (conscious or unconscious)
desire to present their child as very intelligent so that they asked the child
“And what is that?” questions all the time so that the child could show how
many different words he knew. Some researchers then changed their sam-
pling method such that the recording device was always in the room, but
the parents did not know exactly when it would record caretaker-child in-
teraction. The results showed that the proportion of questions decreased
considerably …

In corpus-based studies, you will often find a different kind of randomi-
zation. For example, you will find that a researcher first retrieved all in-
stances of the word he is interested in and then sorted all instances accord-
ing to random numbers. When the researcher then investigates the first
20% of the list, he has a random sample. However you do it, randomization
is one of the most important principles of data collection.

Once you have collected your data, you have to store them in a format
that makes them easy to annotate, manipulate, and evaluate. I often see
people – students as well as seasoned researchers – print out long lists of
data points, which are then annotated by hand, or people annotate concord-
ance lines from a corpus in a text processing software. This may seem rea-
sonable for small data sets, but it doesn’t work or is extremely inconvenient
for larger ones, and the generally better way of handling the data is in a
spreadsheet software (e.g., LibreOffice Calc) or a database, or in R. How-
ever, there is a set of ground rules that defines the desired so-called case-

by-variable format and needs to be borne in mind.

i. the first row contains the names of all variables;
ii. each of the other rows represents one and only one data point, where I

am using data point to refer to a single observation of the dependent
variable;

iii. the first column just numbers all n cases from 1 to n so that every row

The design and the logic of quantitative studies 23

can be uniquely identified and so that you can always restore one par-
ticular ordering (e.g., the original one);

iv. each of the remaining columns represents one and only one variable or
feature with respect to which every data point gets annotated. In a
spreadsheet for a corpus study, for example, one additional column may
contain the name of the corpus file in which the word in question is
found; another column may provide the line of the file in which the
word was found. In a spreadsheet for an experimental study, one col-
umn should contain some unique identifier of each subject; other col-
umns may contain the age of the subject, the sex of the subject, the ex-
act stimulus or some index representing the stimulus the subject was
presented with, the order index of a stimulus presented to a subject (so
that you can test whether a subject’s performance changes systematical-
ly in the course of the experiment), …;

v. missing data are entered as NA and not just with empty cells (which
also means no other variable level should be abbreviated as NA) in or-
der to preserve the formal integrity of the data set (i.e., have all rows
and columns contain the same number of elements) and to be able to do
follow-up studies on the missing data to see whether, for example, there
is a pattern in the missing data points which needs to be accounted for.

Some additional very helpful suggestions especially for working with R

are to have the column names in the first row be in all caps, to never code
the levels of categorical levels as numbers but as words/character strings in
small letters, and to not use ‘weird’ characters such as spaces, periods,
commas, tabs, #, single/double quotes or others in variable names or levels.

To make sure these points are perfectly clear, let us look at two exam-
ples. Let’s assume for your study of particle placement you had looked at a
few sentences and counted the number of syllables of the direct objects.
First, a question: in this design, what is the dependent variable and what is
the independent variable?

THINK

BREAK

The independent variable is the ratio variable LENGTH (in syllables),

which can take on all sorts of positive integer values. The dependent varia-
ble is the nominal variable CONSTRUCTION, which can be either VPO or

24 Some fundamentals of empirical research

VOP. When all hypotheses were formulated and, subsequently, data were
collected and coded, then I sometimes see a format such as the one repre-
sented in Table 5.

Table 5. A not-so-good table 1

 LENGTH: 2 LENGTH: 3 LENGTH: 5 LENGTH: 6

CONSTRUCTION:

VPO

|| || ||| ||

CONSTRUCTION:

VOP

|||| ||| || |

As a second example, let’s look at the hypothesis that subjects and di-

rect objects are differently long (in words). Again the question: what is the
dependent variable and what is the independent variable?

THINK

BREAK

The independent variable is the nominal variable RELATION, which can

be SUBJECT or OBJECT. The dependent variable is LENGTH, which can take
on positive integer values. If you formulated all four hypotheses (H1: text
and statistical form; H0: text and statistical form) and then looked at the
small corpus in (3), then your spreadsheet should not look like Table 6.

(3) a. The younger bachelors ate the nice little cat.
 b. He was locking the door.
 c. The quick brown fox hit the lazy dog.

Table 6. A not-so-good table 2

SENTENCE SUBJ ONJ

The younger bachelors ate the nice little cat. 3 4

He was locking the door. 1 2

The quick brown fox hit the lazy dog. 4 3

Both Table 5 and Table 6 violate all of the above rules. In Table 6, for

example, every row represents two data points, not just one, namely one
data point representing some subject’s length and one representing the
length of the object from the same sentence. Also, not every variable is

The design and the logic of quantitative studies 25

represented by one and only column – rather, Table 6 has two columns
with data points, each of which represents one level of an independent vari-
able, not one variable. Before you read on, how would you have to reorgan-
ize Table 6 to make it compatible with the above rules?

THINK

BREAK

Table 7 is a much better way to store the data: every data point has its

own row and is characterized according to the two variables in their respec-
tive columns. An even more comprehensive version may now even include
one column containing just the subjects and objects so that particular cases
can be found more easily. In the first row of such a column, you would find
The younger bachelor, in the second row of the same column, you would
find the nice little cat etc. The same logic applies to the improved version
of Table 5, which should look like Table 8.

Table 7. A much better coding of the data in Table 6

CASE SENT# SENTENCE RELATION LENGTH

1 1 The younger bachelors ate the

nice little cat.

subj 3

2 1 The younger bachelors ate the

nice little cat.

obj 4

3 2 He was locking the door. subj 1

4 2 He was locking the door. obj 2

5 3 The quick brown fox hit the lazy

dog.

subj 4

6 3 The quick brown fox hit the lazy

dog.

obj 3

With very few exceptions, this is the format in which you should always

save your data.5 Ideally, you enter the data in this format into a spreadsheet
software and save the data (i) in the native file format of that application (to
preserve colors and other formattings you may have added) and (ii) into a
tab-delimited text file, which is easier to import into R.

5. There are some more complex statistical techniques which can require different formats,

but in the vast majority of cases, the standard format discussed above (also sometimes
called long format) is the one that you will need and that will allow you to easily switch
to another format.

26 Some fundamentals of empirical research

Table 8. A much better coding of the data in Table 5

CASE CONSTRUCTION LENGTH

1 vpo 2

2 vpo 2

3 vop 2

4 vop 2

5 vop 2

6 vop 2

7 vpo 3

8 vpo 3

9 vop 3

10 vop 3

11 vop 3

… … …

All these steps having to do with the data collection must be described

in the methods part of your written version: what is the population to which
you wanted to generalize, how did you draw your (ideally) representative
and balanced sample, which variables did you collect data for, etc.

3.4. The decision

When the data have been stored in a format that corresponds to that of Ta-
ble 7/Table 8, you can finally do what you wanted to do all along: evaluate
the data with some statistical test. (For now I will not address how you
decide which statistical test to choose but I will return to this topic at the
beginning of Chapter 4.) As a result of that evaluation you will obtain fre-
quencies, means, dispersions, correlation coefficients, or distributions.
However, one central aspect of this evaluation is that you actually do not
simply try to show that your H1 is correct – contrary to what you might
expect you try to show that the statistical version of H0 is wrong, and since
H0 is the logical counterpart to H1, this supports your H1. The obvious ques-
tion now is, why this ‘detour’? The answer to this question can be ap-
proached again with reference to the example of subjects and objects: let’s
assume you formulated these hypotheses:

H1: The subjects and direct objects in transitive clauses are differently

long.
H0: The subjects and direct objects in transitive clauses are not differ-

ently long.

The design and the logic of quantitative studies 27

Now consider the following two questions:

− how many subjects and direct objects do you maximally have to study
to show that the above H1 is correct?

− how many subjects and direct objects do you minimally have to study to
show that the above H0 is incorrect?

THINK

BREAK

You probably figured out quickly that the answer to the first question is

“infinitely many.” Strictly speaking, you can only be sure that H1 is correct
if you have studied all subjects and direct objects and found not a single
counterexample. The answer to the second question is “one each” because
if the first subject is longer or shorter than the first object, we know that,
strictly speaking, H0 is not correct. However, especially in the humanities
and social sciences you do not usually reject a hypothesis on the basis of
just one counterexample. Rather, you use the following four-step proce-
dure, which is sometimes referred to as the Null Hypothesis Significance
Testing (NHST) paradigm:

i. you define a so-called significance level pcritical, which is usually set to

0.05 (i.e., 5%) and represents the threshold value for rejecting or stick-
ing to H0;

ii. you analyze your data by computing some effect e using the statistic in
your statistical hypotheses;

iii. you compute the so-called probability of error p how likely it is to find
e or something that deviates from H0 even more in your sample when, in
the population, H0 is true;

iv. you compare pcritical and p and decide: if p < pcritical, then you can reject
H0 and accept H1 – otherwise, you must stick to H0.

For example, if in your sample the mean length difference between sub-

jects and direct objects is 1.4 syllables, then you compute the probability of
error p to find this difference of 1.4 syllables or an even larger difference
when you in fact don’t expect any such difference (because that is what H0
predicts). Then, there are two possibilities:

28 Some fundamentals of empirical research

− if this probability p of a 1.4-syllable difference is smaller than pcritical of
0.05, then you can reject the H0 that there is no difference between sub-
jects and direct objects in the population. In the results section of your
paper, you can then write that you found a significant difference be-
tween the means in your sample, and in the discussion section of your
paper you would discuss what kinds of implications this has, etc.

− if this probability p is equal to or larger than pcritical of 0.05, then you
cannot reject the H0 that there is no difference between subjects and di-
rect objects in the population. In the results section of your paper, you
would then state that you have not found a significant difference be-
tween the lengths in your sample. In the discussion part of your paper,
you should then discuss the implications of this finding as well as
speculate or reason about why there was no significant difference –
there may have been outliers in the corpus data or in the experiment
(because subjects reacted strangely to particular stimuli, coding errors,
etc. (Outliers are values in the sample that are rather untypical given the
rest of the sample.)

Two aspects of this logic are very important: First, the fact that an effect

is significant does not necessarily mean that it is an important effect despite
what the everyday meaning of significant might suggest. The word signifi-

cant is used in a technical sense here, meaning the effect (here, the differ-
ence) is large enough for us to assume that, given the size of the sample(s),
it is probably not a random difference. Second, just because you accept H1
given a significant result, that does not mean that you have proven H1. This
is because there is still the probability of error p that the observed result has
come about even though H0 is correct – the probability of error p is just
small enough to accept H1, but not to prove it.

This line of reasoning may appear a bit confusing at first especially
since we suddenly talk about two different probabilities. One is the proba-
bility of 5% (to which the other probability is compared), that other proba-
bility is the probability to obtain the observed result when H0 is correct.
The former, the significance level pcritical, is defined before data are ob-

tained whereas the latter, the probability of error, is the so-called p-value
and computed on the basis of the data. Why is this probability called prob-
ability of error? It is because – recall from above – it is the probability to
err when you accept H1 given the observed data. Sometimes, you will find
that people use different wordings for different p-values:

The design and the logic of quantitative studies 29

− p < 0.001 is sometimes referred to as highly significant and indicated
with ***;

− 0.001 ≤ p < 0.01 is sometimes referred to as very significant and indi-
cated with **;

− 0.01 ≤ p < 0.05 is sometimes referred to as significant and indicated
with *;

− 0.05 ≤ p < 0.1 is sometimes referred to as marginally significant and
indicated with ms or a period but since such p-values are larger than the
usual standard of 5%, calling such results marginally significant
amounts, polemically speaking at least, to saying “Look, I didn’t really
get the significant results I was hoping for, but they are still pretty nice,
don’t you think?”, which is why I typically discourage the use of this
expression.

Warning/advice
You must never change your hypotheses after you have obtained your re-
sults and then sell your study as successful support of the ‘new’ H1. Also,
you must never explore a data set – the nicer way to say ‘fish for something
useable’ – and, when you then find something significant, sell this result as
a successful test of a ‘previously formulated’ H1. You may of course ex-
plore a data set in search of patterns and hypotheses, but if a data set gener-
ates a hypothesis, you must test that hypothesis with different data.

But while we have seen above how this comparison of the two probabil-

ities contributes to the decision in favor of or against H1, it is still unclear
how this p-value is computed.

3.4.1. One-tailed p-values from discrete probability distributions

Let’s assume you and I decided to toss a coin 100 times. If we get heads, I
get one dollar from you – if we get tails, you get one dollar from me. Be-
fore this game, you formulate the following hypotheses:

Text H0: Stefan does not cheat: the probability for heads and tails is

50% vs. 50%.
Text H1: Stefan cheats: the probability for heads is larger than 50%.

This scenario can be easily operationalized using frequencies:

30 Some fundamentals of empirical research

Statistical H0: Stefan will win just as often as I will, namely 50 times.
Statistical H1: Stefan will win more often than I will, namely more than
 50 times.

Now my question: when we play the game and toss the coin 100 times,
after which result will you suspect that I cheated?

THINK

BREAK

− when you lost 51 times (probably not …)?

− when you lost 55 times? when you lost 60 times? (maybe …)?

− when you lost 80 times or even more often? (most likely …)?

Maybe without realizing it, you are currently thinking along the lines of
significance tests. Let’s make this more concrete (by assuming you lost 60
times) and also paraphrase it in terms of the above four steps of the null-
hypothesis significance testing paradigm:

i. let’s assume you set the significance level pcritical to its usual value of

0.05;
ii. you observe the effect e, namely that you lose 60 times;
iii. you (try to) compute the so-called probability of error p how likely it is

to lose 60 times or more often in the sample (our game of 100 tosses)
when H0 is true and you should have lost 50 times. Why “60 times or
more often”? Well above we said

you compute the so-called probability of error p how like-
ly it is to find e or something that deviates from H0 even
more in your sample when, in the population, H0 is true;

iv. if you can compute p, you compare pcritical and p and decide what to
believe: if p < pcritical, then you can reject H0, accept your H1, and accuse
me of cheating – otherwise, you must stick to H0 and accept your losses.

Thus, you must ask yourself how and how much does the observed re-

sult deviate from the result expected from H0. Obviously, your number of
losses is larger: 60 > 50. Thus, the results that deviate from H0 that much or
even more in the predicted direction are those where you lose 60 times or
more often: 60 times, 61 times, 62, times, …, 99 times, and 100 times. In a

The design and the logic of quantitative studies 31

more technical parlance, you set the significance level to 0.05 and ask
yourself “how likely is it that Stefan did not cheat but still won 60 times
although he should only have won 50 times?” This is exactly the logic of
significance testing.

It is possible to show that the probability p to lose 60 times or more just
by chance – i.e., without me cheating – is 0.02844397, i.e., 2.8%. Since this
p-value is smaller than 0.05 (or 5%), you can now accuse me of cheating. If
we had been good friends, however, so that you would not have wanted to
risk our friendship by accusing me of cheating prematurely and had set the
significance level to 1%, then you would not be able to accuse me of cheat-
ing, since 0.02844397 > 0.01.

This example has hopefully clarified the overall logic even further, but
what is probably still unclear is how this p-value is computed. To illustrate
that, let us reduce the example from 100 coin tosses to the more managea-
ble amount of three coin tosses. In Table 9, you find all possible results of
three coin tosses and their probabilities provided that H0 is correct and the
chance for heads/tails on every toss is 50%. More specifically, the three left
columns represent all possible results, column 4 and column 5 show how
many heads and tails are obtained in each of the eight possible results, and
the rightmost column lists the probability of each possible result. (I will
explain the four boxes in the right half shortly.) As you can see, these are
all the same, 0.125. Why is that so?

Two easy ways to explain this are conceivable, and both of them require
you to understand the crucial concept of independence.

Table 9. All possible results of three coin tosses and their probabilities (when H0

is correct)

Toss 1 Toss 2 Toss 3 # heads # tails presult

heads heads heads 3 0 0.125

heads heads tails 2 1 0.125

heads tails heads 2 1 0.125

heads tails tails 1 2 0.125

tails heads heads 2 0.125

tails heads tails 1 2 0.125

tails tails heads 1 2 0.125

tails tails tails 0 3 0.125

The first one involves understanding that, according to H0, the probabil-

ity of heads and tails is the same on every trial and that all trials are inde-
pendent of each other. This notion of independence is important: trials are

32 Some fundamentals of empirical research

independent of each other when the outcome of one trial (here, one toss)
does not influence the outcome of any other trial (i.e., any other toss). Simi-
larly, samples are independent of each other when there is no meaningful
way in which you can match values from one sample onto values from
another sample. For example, if you randomly sample 100 transitive claus-
es out of a corpus and count their subjects’ lengths in syllables, and then
you randomly sample 100 different transitive clauses from the same corpus
and count their direct objects’ lengths in syllables, then the two samples –
the 100 subject lengths and the 100 object lengths – are independent. If, on
the other hand, you randomly sample 100 transitive clauses out of a corpus
and count the lengths of the subjects and the objects in syllables, then the
two samples – the 100 subject lengths and the 100 object lengths – are de-
pendent because you can match up the 100 subject lengths onto the 100
object lengths perfectly by aligning each subject with the object from the
very same clause. Similarly, if you perform an experiment twice with the
same subjects, then the two samples made up by the first and the second
experimental results are dependent, because you can match up each sub-
ject’s data point in the first experiment with the same subject’s data point in
the second. This notion will become very important later on.

Returning to the three coin tosses: since there are eight different out-
comes of three tosses that are all independent of each other – i.e. equally
probable – the probability of each of the eight outcomes is 1/8 = 0.125.

The second way to understand the rightmost column of Table 9 involves
computing the probability of each of the eight events separately. For the
first row that means the following: the probability to get head in the first
toss, in the second, in the third toss is always 0.5. Since the tosses are inde-
pendent of each other, you obtain the probability to get heads three times in
a row by multiplying the individual events’ probabilities: 0.5·0.5·0.5 =
0.125 (the multiplication rule in probability theory). Analogous computa-
tions for every row show that the probability of each result is 0.125. Thus,
we can show that H0 predicts that each of us should win 1.5 times on aver-
age (i.e., if we played the three-toss game 100 times).

Now imagine you lost two out of three times. If you had again set the
level of significance to 5%, could you accuse me of cheating?

THINK

BREAK

The design and the logic of quantitative studies 33

Of course not. Let me first ask again which events need to be consid-
ered. The observed result – that you lost two times – and the result(s) that
deviate(s) even more from H0 in the predicted direction. This is easy here:
the only such result is that you lose all three times. Let us compute the sum
of the probabilities of these events.

As you can see in column 4, there are three results in which you lose
two times in three tosses: H H T (row 2), H T H (row 3), and T H H (row
5). Thus, the probability to lose exactly two times is 0.125+0.125+0.125 =
0.375, and that is already much much more than your level of significance
0.05 allows. However, to that you still have to add the probability of the
event that deviates even more from H0, which is another 0.125 (row 1); all
these events and their probabilities are highlighted with the four boxes. If
you add this all up, the probability p to lose two or more times in three
tosses when H0 is true is 0.5. This is ten times as much as the level of sig-
nificance so there is no way that you can accuse me of cheating. Note that
even if you had lost all three tosses, you could still not accuse me of cheat-
ing, because the probability of that happening when H0 is true is still 0.125

We can also represent this logic graphically and at the same time go
back to larger numbers of tosses. Figure 4 has six panels, one for 3 tosses,
one for 6, one for 12, and then 25, 50, and 100. In each, the summed prob-
abilities for all possible numbers of heads given the number of tosses made
are represented as bars, and the most extreme result (I always win) is rep-
resented with a grey bar and an arrow pointing to it. In the cases of 3 and 6
tosses, I also plotted the probabilities of these events on top of the bars.

Thus, if you lost more often than you should have according to H0 and
you want to determine the probability of losing as many times and even
more often, you move from the expectation of H0, which is in the middle
(along the x-axis) of the graph, away to the observed result (say, at x = 3)
and add the length of that bar to the lengths of all other bars you encounter
if you continue to move in the same direction, where here there is only one
bar at x = 3 so you’re done immediately.

Figure 4 also illustrates another very important point. First, recall that
the basic distribution underlying this data is a discrete and non-normal
probability distribution, namely 0.5 (heads) vs. 0.5 (tails). Second, as the
numbers of tosses in our games increase, the probabilities of the possible
results look more and more like the bell-shaped curve we know from nor-
mal distributions. Thus, even though the underlying distribution is not
normal, once the sample size becomes large enough, we still get a bell-
shaped curve. This also means that, if the data under investigation are dis-
tributed in a way that is sufficiently similar to the normal distribution (or

34 Some fundamentals of empirical research

another one of several widely used probability density functions, such as
the F-, t-, or χ2-distribution), then one does not have to compute, and sum
over, exact probabilities as we did above, but one can approximate the p-
value from parameters of equations underlying the above distributions; this
is often called using parametric tests. Crucially, this approximation of a p-
value on the basis of a function can be only as good as the data’s distribu-
tional fit to the corresponding function. We will revisit this below.

Figure 4. All probabilities of possible results of 3, 6, 12, 25, 50, 100 coin tosses
and their probabilities (when H0 is correct, one-tailed)

3.4.2. Two-tailed p-values from discrete probability distributions

Now, we have to add another perspective. In the last section, we were con-
cerned with directional H1s: your H1 was “Stefan cheats: the probability for
heads is larger than 50% [and not just different from 50%].” The kind of
significance test we discussed is correspondingly called one-tailed tests
because you were only interested in one direction in which the observed

The design and the logic of quantitative studies 35

result deviates from the expected result (say because you knew for sure you
didn’t cheat). Thus, when you summed up the bar lengths in Figure 4 you
only moved away from H0’s expectation in one direction.

However, often you only have a non-directional H1. In such cases, you
have to look at both ways in which results may deviate from the expected
result. Let us return to the scenario where you and I toss a coin three times,
but this time we also have an impartial observer who has no reason to sus-
pect that only I would be cheating. He therefore formulates the following
hypotheses (with a significance level of 0.05):

Statistical H0: Stefan will win just as often as the other player, namely 50

times (or “Both players will win equally often”).
Statistical H1: Stefan will win more or less often than the other player (or

“The players will not win equally often”).

Imagine now again you lost three times. The observer now asks himself
whether one of us should be accused of cheating. As before, he needs to
determine which events to consider and he also uses a table of all possible
results to help him figure things out. Consider, therefore, Table 10.

Table 10. All possible results of three coin tosses and their probabilities (when H0

is correct)

Toss 1 Toss 2 Toss 3 # heads # tails presult

heads heads heads 3 0 0.125

heads heads tails 2 1 0.125

heads tails heads 2 1 0.125

heads tails tails 1 2 0.125

tails heads heads 2 0.125

tails heads tails 1 2 0.125

tails tails heads 1 2 0.125

tails tails tails 0 3 0.125

First, the observer considers the observed result that you lost three

times, which is listed in row 1 and arises with a probability of 0.125. But
then he also considers the probabilities of events deviating from H0 just as
much or even more. With a directional H1, you moved from H0 only in one
direction – but this time there is no directional hypothesis so the observer
also looks for deviations just as large or even larger in the other direction of
H0’s expectation. As you can see in Table 10, there is another deviation
from H0 that is just as extreme, namely that I lose three times. Since the

36 Some fundamentals of empirical research

observer only has a non-directional hypothesis, he includes the probability
of that event, too, arriving at a cumulative probability of 0.25. This logic is
graphically represented in Figure 5 in the same way as above.

Figure 5. All probabilities of possible results of 3, 6, 12, 25, 50, 100 coin tosses
and their probabilities (when H0 is correct, two-tailed)

Note that when you tested your directional H1, you looked at the result

‘you lost three times’, but when the impartial observer tested his non-
directional H1, he looked at the result ‘somebody lost three times.’ This has
one very important consequence: when you have prior knowledge about a
phenomenon that allows you to formulate a directional, and not just a non-
directional, H1, then the result you need for a significant finding can be less
extreme than if you only have a non-directional H1. In most cases, it will be
like here: the p-value you get for a result with a directional H1 is half of the
p-value you get for a result with a non-directional H1. Prior knowledge is
rewarded, which will be illustrated once more now.

Let us now return to the example game involving 100 tosses. Again, we
first look at the situation through your eyes (directional H1), and then, sec-

The design and the logic of quantitative studies 37

ond, through those of an impartial observer (non-directional H1), but this
time you and the observer try to determine before the game which results
are so extreme that one will be allowed to adopt the H1. We begin with
your perspective: In Figure 6, you find the by now familiar graph for 100
tosses with the expected frequency for heads of 50. (The meaning of the
black lines will be explained presently.)

Figure 6. All possible results of 100 coin tosses and their probabilities (when H0
is correct, one-tailed H1)

Above, we had an empirical result whose p-value we were interested in,

and in order to get that p-value, we moved from the expected H0 results to
the extreme values. Now we want to determine, but not exceed, a p-value
before we have results and have to proceed the other way round: from an
extreme point to the expectation of H0. For example, to determine how
many times you can lose without getting a cumulative probability exceed-
ing 0.05, you begin at the most extreme result on the right – that you lose
100 times – and begin to add the lengths of the bars. (Of course, you would
compute that and not literally measure lengths.) The probability that you
lose all 100 tosses is 7.8886·10-31. To that you add the probability that you
lose 99 out of 100 times, the probability that you lose 98 out of 100 times,
etc. When you have added all probabilities until 59 times heads, then the
sum of all these probabilities reaches 0.0443; all these are represented in
black in Figure 6. Since the probability to get 58 heads out of 100 tosses is
0.0223, you cannot add this event’s probability to the others anymore with-
out exceeding the level of significance value of 0.05. Put differently, if you
don’t want to cut off more than 5% of the summed bar lengths, then you

38 Some fundamentals of empirical research

must stop adding probabilities at x = 59. You conclude: if Stefan wins 59
times or more often, then I will accuse him of cheating, because the proba-
bility of that happening is the largest one that is still smaller than 0.05.

Now consider the perspective of the observer shown in Figure 7, which
is very similar, but not completely identical to Figure 6. The observer also
begins with the most extreme result, that I get heads every time: p100 heads ≈
7,8886·10-31. But since the observer only has a non-directional H1, he must
also include the probability of the opposite, equally extreme result, that we
get heads 0 times. For each additional number of heads – 99, 98, etc. – the
observer must now also add the corresponding opposite results – 1, 2, etc.
Once the observer has added the probabilities 61 times heads / 39 times
tails and 39 times heads / 61 times tails, then the cumulative sum of the
probabilities reaches 0.0352 (cf. the black bars in Figure 7).

Figure 7. All possible results of 100 coin tosses and their probabilities (when H0
is correct, two-tailed H1)

Since the joint probability for the next two events – 60 heads / 40 tails

and 40 heads / 60 tails – is 0.0217, the observer cannot add any further
results without exceeding the level of significance of 0.05. Put differently,
if the observer doesn’t want to cut off more than 5% of the summed bar
lengths on both sides, then he must stop adding probabilities by going from
right to the left at x = 61 and stop going from the left to right at x = 39. He
concludes: if Stefan or his opponent wins 61 times or more often, then
someone is cheating (most likely the person who wins more often).

Again, observe that in the same situation the person with the directional
H1 needs a less extreme result to be able to accept it than the person with a

The design and the logic of quantitative studies 39

non-directional H1: with the same level of significance, you can already
accuse me of cheating when you lose 59 times (only 9 times more often
than the expected result) – the impartial observer needs to see someone
lose 61 times (11 times more often than the expected result) before he can
start accusing someone. Put differently, if you lose 60 times, you can ac-
cuse me of cheating, but the observer cannot. This difference is very im-
portant and we will use it often.

While reading the last few pages, you probably sometimes wondered
where the probabilities of events come from: How do we know that the
probability to get heads 100 times in 100 tosses is 7.8886·10-31? Essential-
ly, those are computed in the same way as we handled Table 9 and Table
10, just that we do not write results up anymore because the sample space
is too huge. These values were therefore computed with R on the basis of
the so-called binomial distribution. You can easily compute the probability
that one out of two possible events occurs x out of s times when the event’s
probability is p in R with the function dbinom.6 The arguments of this func-
tion we deal with here are:

− x: the frequency of the event (e.g., three times heads);

− s: the number of trials the event could occur (e.g., three tosses);

− p: the probability of the event in each trial (e.g., 50%).

You know that the probability to get three heads in three tosses when
the probability of head is 50% is 12.5%. In R:

> dbinom(3, 3, 0.5)¶
[1] 0.125

As a matter of fact, you can compute the probabilities of all four possi-

ble numbers of heads – 0, 1, 2, and 3 – in one line (because, as we will see
below, sequences of integers can be defined with a colon):

> dbinom(0:3, 3, 0.5)¶
[1] 0.125 0.375 0.375 0.125

In a similar fashion, you can also compute the probability that heads

will occur two or three times by summing up the relevant probabilities:

6. I will explain how to install R etc. in the next chapter. It doesn’t really matter if you

haven’t installed R and/or can’t enter or understand the above input yet. We’ll come
back to this …

40 Some fundamentals of empirical research

> sum(dbinom(2:3, 3, 0.5))¶
[1] 0.5

Now you do the same for the probability to get 100 heads in 100 tosses,

> dbinom(100, 100, 0.5)¶
[1] 7.888609e-31

the probability to get heads 58 or more times in 100 tosses (which is larger
than 5% and does not allow you to accept a one-tailed/directional H1),

> sum(dbinom(58:100, 100, 0.5))¶
[1] 0.06660531

the probability to get heads 59 or more times in 100 tosses (which is small-
er than 5% and does allow you to accept a one-tailed/directional H1):

> sum(dbinom(59:100, 100, 0.5))¶
[1] 0.04431304

In fact, you would not have to do this by trial and error as the above

may suggest. You can use the function qbinom to get the largest number of
heads whose cumulative probability with every even more extreme result
does not exceed 0.05, and you can see that this matches the above finding:

> qbinom(0.05, 100, 0.5, lower.tail=FALSE)¶
[1] 58

For two-tailed tests, you can do the same, e.g., compute the probability

to get heads 40 times or less often, or 60 times and more often (which is
larger than 0.05 and does not allow you to accept a two-tailed/non-
directional H1):

> sum(dbinom(c(0:40, 60:100), 100, 0.5))¶
[1] 0.05688793

Here’s the probability to get heads 39 times or less often, or 61 times

and more often (which is smaller than 0.05 and allows you to accept a two-
tailed/non-directional H1):

> sum(dbinom(c(0:39, 61:100), 100, 0.5))¶
[1] 0.0352002

The design and the logic of quantitative studies 41

Again, no need to do this by manual trial and error. You can again use
qbinom to get the largest number of heads whose cumulative probability
with every even more extreme result does not exceed 0.05 – the only com-
plication is that since you want to ‘add bar lengths’ on two sides and the
bar lengths are identical on both sides (because the curves in Figure 6 and
Figure 7 are symmetric), you must get the result that does not exceed 0.05
when you add both sides, i.e. when one side does not exceed 0.025. Then,
you again see that this matches our above manual finding:

> qbinom(0.05/2, 100, 0.5, lower.tail=FALSE)¶
[1] 60

3.4.3. Extension: continuous probability distributions

In the above examples, we always had only one variable with two levels:
TOSS: HEADS vs. TAILS. Unfortunately, life is usually not that easy. On the
one hand, we have seen above that our categorical variables will often in-
volve more than two levels. On the other hand, if the variable in question is
ratio-scaled, then the computation of the probabilities of all possible states
or levels is not possible. For example, you cannot compute the probabilities
of all possible reaction times to a stimulus. For this reason and as men-
tioned above, many statistical techniques do not compute an exact p-value
as we did, but are based on the fact that, as the sample size increases, the
probability distributions of events begin to approximate those of mathemat-
ical distributions whose functions/equations and properties are very well
known. Four such distributions will be important for Chapters 4 and 5:

− the standard normal distribution with z-scores (norm);

− the t-distribution (t);

− the F-distribution (f);

− the chi-squared- / χ2-distribution (chisq).

For each of these distributions, just like for binom from above, there is a
function whose name begins with q and ends with the above function name
(i.e. qnorm, qt, qf, qchisq) and a function whose name begins with p and
ends with the above function name (i.e. pnorm, pt, pf, pchisq). The former
compute the quantile functions of these (four and other) probability distri-
butions whereas the latter compute the inverses of these, the so-called cu-

mulative distribution functions. We can explain this relatively easily on the

42 Some fundamentals of empirical research

basis of Figure 8, both panels of which plot the density function of the
standard normal distribution.

Figure 8. Density function of the standard normal distribution with pone-tailed =
0.05

In Figure 6, we were interested in determining how much a result can

deviate from the expected result of, there, 50 heads and 50 tails, without
being significant, where ‘being significant’ meant arising with a cumulative
probability of less than 0.05 of the whole result space. In that case, we add-
ed up lengths of the bars that make up the curve of the binomial distribu-
tion (using dbinom) or directly identified the largest number of heads
whose cumulative probability with more extreme results did not exceed
0.05 (with qbinom).

> sum(dbinom(58:100, 100, 0.5))¶
[1] 0.06660531
> qbinom(0.05, 100, 0.5, lower.tail=FALSE)¶
[1] 58

For the continuous distributions of the kind illustrated in Figure 8, there

are no bar lengths to add up, but the corresponding notion is the area under
the curve, which is defined as 1 and of which any value on the x-axis can
cut something off to the left or to the right. For such computations, we can
again use functions with q and p. For example, if we want to know which
x-value cuts of 5%, i.e. 0.05, of the left area under the curve, we can com-

The design and the logic of quantitative studies 43

pute it in the following ways with qnorm:

> qnorm(0.05, lower.tail=TRUE)¶
[1] -1.644854
> qnorm(1-0.95, lower.tail=TRUE)¶
[1] -1.644854
> qnorm(0.95, lower.tail=FALSE)¶
[1] -1.644854
> qnorm(1-0.05, lower.tail=FALSE)¶
[1] -1.644854

Thus, the grey area under the curve in the left panel of Figure 8 in the

range -∞ ≤ x ≤ -1.644854 corresponds to 5% of the area under the curve.
Since the standard normal distribution is symmetric, the same is true of the
grey area under the curve in the right panel in the range 1.644854 ≤ x ≤ ∞.

> qnorm(0.95, lower.tail=TRUE)¶
[1] 1.644854
> qnorm(1-0.05, lower.tail=TRUE)¶
[1] 1.644854
> qnorm(0.05, lower.tail=FALSE)¶
[1] 1.644854
> qnorm(1-0.95, lower.tail=FALSE)¶
[1] 1.644854

These are one-tailed tests because you only look at one side of the

curve, either the left (when lower.tail=TRUE in the left panel) or the right
(when lower.tail=FALSE in the right panel). For corresponding two-tailed
tests at the same significance level of 0.05, you would have to proceed as
with binom and consider both areas under the curve (as in Figure 9), name-
ly 2.5% on each edge to arrive at 5% altogether. Thus, to get the x-axis
values that jointly cut off 5% under the curve, this is what you could enter
into R:

> qnorm(0.025, lower.tail=TRUE)¶
[1] -1.959964
> qnorm(1-0.975, lower.tail=TRUE)¶
[1] -1.959964
> qnorm(0.975, lower.tail=FALSE)¶
[1] -1.959964
> qnorm(1-0.025, lower.tail=FALSE)¶
[1] -1.959964

44 Some fundamentals of empirical research

Figure 9. Density function of the standard normal distribution with ptwo-tailed =
0.05

> qnorm(0.975, lower.tail=TRUE)¶
[1] 1.959964
> qnorm(1-0.025, lower.tail=TRUE)¶
[1] 1.959964
> qnorm(0.025, lower.tail=FALSE)¶
[1] 1.959964
> qnorm(1-0.975, lower.tail=FALSE)¶
[1] 1.959964

Again, you see that with non-directional two-tailed tests you need a

more extreme result for a significant outcome: a value of -1.7 is less than
-1.644854 and would be significant in a one-tailed test (if you had predict-
ed the negative direction), but that same value is greater than -1.959964
and thus not small enough for a significant two-tailed test. In sum, with the
q-functions we determine the minimum one- or two-tailed statistic we need
to obtain a particular p-value. For one-tailed tests, you typically use p =
0.05; for two-tailed tests p = 0.05/2 = 0.025 on each side. The functions
whose names start with p do the opposite of those beginning with q: with
them, you determine which p-value our statistic corresponds to. The fol-
lowing two lines get you p-values for one-tailed tests (cf. Figure 8 again):

> pnorm(-1.644854, lower.tail=TRUE)¶
[1] 0.04999996
> pnorm(1.644854, lower.tail=FALSE)¶
[1] 0.04999996

The design and the logic of quantitative studies 45

For the two-tailed test, you of course must multiply the probability by
two because whatever area under the curve you get, you must consider it on
both sides of the curve. (cf. Figure 9 again):

> 2*pnorm(-1.959964, lower.tail=TRUE)¶
[1] 0.05
> 2*pnorm(1.959964, lower.tail=FALSE)¶
[1] 0.05

The other p/q-functions work in the same way, but will require some

additional information, namely so-called degrees of freedom. I will not
explain this notion here in any detail but instead cite Crawley’s (2002: 94)
rule of thumb: “[d]egrees of freedom [df] is the sample size, n, minus the
number of parameters, p [not related to the other ps above, STG], estimated
from the data.” For example, if you compute the mean of four values, then
df = 3 because when you want to make sure you get a particular mean out
of four values, then you can choose three values freely, but the fourth one
is then set. If you want to get a mean of 8, then the first three values can
vary freely and be 1, 2, and 3, but then the last one must be 26. Degrees of
freedom are the way in which sample sizes and the amount of information
you squeeze out of a sample are integrated into the significance test.

The parametric tests that are based on the above distributions are usual-
ly a little easier to compute (although this is usually not an important point
anymore, given the computing power of current desktop computers) and
more powerful, but they have the potential problem alluded to above. Since
they are only estimates of the real p-value based on the equations defining
z-/t-/F-/χ2-values, their accuracy is dependent on how well these equations
reflect the distribution of the data. In the above example, the binomial dis-
tribution in Figure 4 and Figure 5 and the normal distribution in Figure 8
and Figure 9 are extremely similar, but this may be very different on other
occasions. Thus, parametric tests make distributional assumptions – the
most common one is in fact that of a normal distribution – so you can use
such tests only if the data you have meet these assumptions. If they don’t,
then you must use a so-called non-parametric test or an exact test (as we
have done for the coin tosses above) or a permutation test or other
resampling methods. For nearly all tests introduced in Chapters 4 and 5
below, I will list the assumptions which you have to test before you can
apply the test, explain the test itself with the computation of a p-value, and
illustrate how you would summarize the result in the third (results) part of
the written version of your study. I can already tell you that you should
always provide the sample sizes, the obtained effect (such as the mean, the

46 Some fundamentals of empirical research

percentage, the difference between means, etc.), the name of the test you
used, its statistical parameters, the p-value, and your decision (in favor of
or against H1). The interpretation of these findings will then be discussed in
the fourth and final section of your study.

Recommendation(s) for further study
Good and Hardin (2012: Ch. 1, 2, and 3) for many interesting and practical-
ly relevant tips as well as Good and Hardin (2012: Ch. 8) on information
you should provide in your methods and results sections

Warning/advice
Do not give in to the temptation to use a parametric test when its assump-
tions are not met. What have you gained when you do wrong tests and ei-
ther get slammed by reviewers or, worse even, get published with wrong
results that are cited because of your methodological mistake(s)?

4. The design of a factorial experiment: introduction

In this section, we will deal with a few fundamental rules for the design of
experiments.7 The probably most central notion in this section is the token
set (cf. Cowart 1997). I will distinguish two kinds of token sets, schematic
token sets and concrete token sets. A schematic token set is typically a tab-
ular representation of all experimental conditions. To explain this more
clearly, let us return to the above example of particle placement.

Let us assume you want to investigate particle placement not only on
the basis of corpus data, but also on the basis of experimental data. For
instance, you might want to determine how native speakers of English rate
the acceptability of sentences (the dependent variable ACCEPTABILITY) that
differ with regard to the constructional choice (the first independent varia-
ble CONSTRUCTION: VPO vs. VOP) and the part of speech of the head of the
direct object (the second independent variable OBJPOS: PRONOMINAL vs.
LEXICAL).8 Since there are two independent variables for each of the two
levels, there are 2·2 = 4 experimental conditions. This set of experimental
conditions is the schematic token set, which is represented in two different
forms in Table 11 and Table 12. The participants/subjects of course never

7. I will only consider factorial designs, where every variable level is combined with every

other variable level, but most of the rules discussed also apply to other designs.
8. For expository reasons, I only assume two levels of OBJPOS.

The design of a factorial experiment 47

get to see the schematic token set. For the actual experiment, you must
develop concrete stimuli – a concrete token set that realizes the variable
level combinations of the schematic token set.

Table 11. Schematic token set for CONSTRUCTION × OBJPOS 1

 OBJPOS: PRONOMINAL OBJPOS: LEXICAL

CONSTRUCTION: VPO V Part pron. NPdir. obj. V Part lexical NPdir. obj.

CONSTRUCTION: VOP V pron. NPdir. obj. Part V lexical NPdir. obj. Part

Table 12. Schematic token set for CONSTRUCTION × OBJPOS 2

Experimental condition CONSTRUCTION OBJPOS

1 VPO PRONOMINAL

2 VPO LEXICAL

3 VOP PRONOMINAL

4 VOP LEXICAL

However, both the construction of such concrete token sets and the ac-

tual presentations of the concrete stimuli are governed by a variety of rules
that aim at minimizing undesired sources of noise in the data. Three such
sources are particularly important:

− knowledge of what the experiment is about: you must make sure that the
participants in the experiment do not know what is being investigated
before or while they participate (after the experiment you can of course
tell them). This is important because otherwise the participants might
make their responses socially more desirable or change the responses to
‘help’ the experimenter.

− undesirable experimental effects: you must make sure that the responses
of the subjects are not influenced by, say, habituation to particular vari-
able level combinations. This is important because in the domain of,
say, acceptability judgments, Nagata (1987, 1989) showed that such
judgments can change because of repeated exposure to stimuli and this
may not be what you’re interested in.

− evaluation of the results: you must make sure that the responses of the
subjects can be interpreted unambiguously. Even a large number of
willing and competent subjects is useless if your design does not allow
for an appropriate evaluation of the data.

48 Some fundamentals of empirical research

In order to address all these issues, you have to take the rules in (4) to
(12) under consideration. Here’s the first one in (4):

(4) The stimuli of each individual concrete token set differ with regard

to the variable level combinations under investigation (and ideally
only with regard to these and nothing else).

Consider Table 13 for an example. In Table 13, the stimuli differ only

with respect to the two independent variables. If this was not the case (for
example, because the left column contained the stimuli John picked up it
and John brought it back) and you found a difference of acceptability be-
tween them, then you would not know what to attribute this difference to –
the different construction (which would be what this experiment is all
about), the different phrasal verb (that might be interesting, but is not what
is studied here), to an interaction of the two … (4) is therefore concerned
with the factor ‘evaluation of the results’.

Table 13. A concrete token set for CONSTRUCTION × OBJPOS 1

 OBJPOS: PRONOMINAL OBJPOS: LEXICAL

CONSTRUCTION: VPO John picked up it. John picked up the keys.

CONSTRUCTION: VOP John picked it up. John picked the keys up.

When creating the concrete token sets, it is also important to consider

variables which you are not interested in but which may make it difficult to
interpret the results with regard to the variables that you are interested in.
In the present case, for example, the choice of the verbs and the direct ob-
jects may be important. For instance, it is well known that particle place-
ment is also correlated with the concreteness of the referent of the direct
object. There are different ways to take such variables, or sources of varia-
tion, into account. One is to make sure that 50% of the objects are abstract
and 50% are concrete for each experimental condition in the schematic
token set (as if you introduced an additional independent variable). Another
one is to use only abstract or only concrete objects, which would of course
entail that whatever you find in your experiment, you could strictly speak-
ing only generalize to that class of objects.

Recommendation(s) for further study
Good and Hardin (2012: 31ff.) and Good (2005: Ch. 5)

The design of a factorial experiment 49

(5) You must use more than one concrete token set, ideally as many
concrete token sets as there are variable level combinations (or a
multiple thereof).

One reason for (5) is that, if you only used the concrete token set in Ta-

ble 13, then a conservative point of view would be that you could only
generalize to other sentences with the transitive phrasal verb pick up and
the objects it and the book, which would probably not be the most interest-
ing study ever. Thus, the first reason for (5) is again concerned with the
factor ‘evaluation of results’, and the remedy is to create different concrete
token sets with different verbs and different objects such as those shown in
Table 14 and Table 15, which also must conform to (4).

Table 14. A concrete token set for CONSTRUCTION × OBJPOS 2

 OBJPOS: PRONOMINAL OBJPOS: LEXICAL

CONSTRUCTION: VPO Mary brought back him. Mary brought back his dad.

CONSTRUCTION: VOP Mary brought him back. Mary brought his dad back.

Table 15. A concrete token set for CONSTRUCTION × OBJPOS 3

 OBJPOS: PRONOMINAL OBJPOS: LEXICAL

CONSTRUCTION: VPO I eked out it. I eked out my living.

CONSTRUCTION: VOP I eked it out. I eked my living out.

A second reason for (5) is that if you only used the concrete token set in

Table 13, then subjects would probably be able to guess the purpose of the
experiment right away: since our token set had to conform to (4), the sub-
ject can identify the relevant variable level combinations quickly because
those are the only things according to which the sentences differ. This im-
mediately brings us to the next rule:

(6) Every subject sees maximally one item out of a concrete token set.

As I just mentioned, if you do not follow 0, the subjects might guess
from the minimal variations within one concrete token set what the whole
experiment is about: the only difference between John picked up it and
John picked it up is the choice of construction. Thus, when subject X gets
to see the variable level combination (CONSTRUCTION: VPO × OBJPOS:
PRONOMINAL) in the form of John picked up it, then the other experimental

50 Some fundamentals of empirical research

items of Table 13 must be given to other subjects. In that regard, both (5)
and (6) are (also) concerned with the factor ‘knowledge of what the exper-
iment is about’.

(7) Every subject is presented every variable level combination.

The motivation for (7) are the factors ‘undesirable experimental effects’
and ‘evaluation of the results’. First, if several experimental items you pre-
sent to a subject only instantiate one variable level combination, then ha-
bituation effects may distort the results; this you could of course take into
account by adding a variable to your analysis that mentions for each
presentation of an experimental condition how often it has been presented
already. Second, if you present one variable level combination to a subject
very frequently and another one only rarely, then whatever difference you
find between these variable level combinations may theoretically be due to
the different frequencies of exposure and not due to the effects of the varia-
ble level combinations under investigation.

(8) Every subject gets to see every variable level combination more

than once and equally frequently.
(9) Every experimental item is presented to more than one subject and

to equally many subjects.

These rules are motivated by the factor ‘evaluation of the results’. You
can see what their purpose is if you think about what happens when you try
to interpret a very unusual reaction by a subject to a stimulus. On the one
hand, that reaction could mean that the item itself is unusual in some re-
spect in the sense that every subject would react unusually to it – but you
can’t test that if that item is not also given to other subjects, and this is the
reason for the rule in (9). On the other hand, the unusual reaction could
mean that only this particular subject reacts unusually to that variable level
combination in the sense that the same subject would react more ‘normally’
to other items instantiating the same variable level combination – but you
can’t test that if that subject does not see other items with the same variable
level combination, and this is the reason for (8).

(10) The experimental items are interspersed with distractors / filler

items; there are minimally as many filler items as real experimental
items per subject, but ideally two or three times as many filler
items as real experimental items per subject.

The design of a factorial experiment 51

The reason for (10) is obviously ‘knowledge of what the experiment is
about’: you do not want the subjects to be able to guess the purpose of the
experiment (or have them think they know the purpose of the experiment)
so that they cannot distort the results.9

An additional well-known factor that can distort results is the order in
which items and distractors are presented. To minimize such effects, you
must take into consideration the final two rules:

(11) The order of experimental and filler items is pseudorandomized.
(12) The order of experimental and filler items is pseudorandomized

differently for every subject.

The rule in (11) requires that the order of experimental items and filler
items is randomized using a random number generator, but it is not com-
pletely random – hence pseudorandomized – because the ordering resulting
from the randomization must usually be ‘corrected’ such that

− the first stimulus (e.g., the first question on a questionnaire) is not an
experimental item but a distractor;

− experimental items do not follow each other directly;

− ideally, experimental items exhibiting the same variable level combina-
tions do not follow each other, which means that, after John picked it

up, the next experimental item must not be Mary brought him back even
if the two are interrupted by distractors.

The rule in (12) means that the order of stimuli must vary pseudoran-

domly across subjects so that whatever you find cannot be attributed to
systematic order effects: every subject is exposed to a different order of
experimental items and distractors. Hence, both (11) and (12) are con-
cerned with ‘undesirable experimental effects ‘ and ‘evaluation of the re-
sults’. (This re-ordering of stimuli can be quite tedious, especially when
your experiment involves many test items and subjects, which is why, once
you are more proficient with R, it may be useful to write a function called,
say, stimulus.randomizer to do this for you, which is how I do this.)

9. In many psychological studies, not even the person actually conducting the experiment

(in the sense of administering the treatment, handing out the questionnaires, …) knows
the purpose of the experiment. This is to make sure that the experimenter cannot provide
unconscious clues to desired or undesired responses. An alternative way to conduct such
so-called double-blind experiments is to use standardized instructions in the forms of
videotapes or have a computer program provide the instructions.

52 Some fundamentals of empirical research

Only after all these steps have been completed properly can you begin
to print out the questionnaires and have subjects participate in an experi-
ment. It probably goes without saying that you must carefully describe how
you set up your experimental design in the methods section of your study.
Since this is a rather complex procedure, we will go over it again in the
following section.

One final remark about this before we look at another example. I know
from experience that the previous section can have a somewhat discourag-
ing effect. Especially beginners read this and think “how am I ever going to
be able to set up an experiment for my project if I have to do all this? (I
don’t even know my spreadsheet software well enough yet …)” And it is
true: I myself still need a long time before a spreadsheet for an experiment
of mine looks the way it is supposed to. But if you do not go through what
at first sight looks like a terrible ordeal, your results might well be, well,
let’s face it, crap! Ask yourself what is more discouraging: spending maybe
several days on getting the spreadsheet right, or spending maybe several
weeks on doing a simpler experiment and then having unusable results …

Warning/advice
You must be prepared for the fact that usually not all subjects answer all
questions, give all the acceptability judgments you ask for, show up for
both the first and the second test, etc. Thus, you should plan conservatively
and try to get more subjects than you thought you would need in the first
place. As mentioned above, you should still include these data in your table
and mark them with NA. Also, it is often very useful to carefully examine
the missing data for whether their patterning reveals something of interest
(it would be very important if, say, one variable level combination account-
ed for 90% of the missing data or if 90% of the missing data were contrib-
uted by only two out of, say, 60 subjects).

5. The design of a factorial experiment: another example

Let us assume you want to investigate which variables determine how
many elements a quantifier such as some refers to; consider (13):

(13) a. [NP some balls [PP in front of [NP the cat]]
 b. [NP some balls [PP in front of [NP the table]]
 c. [NP some cars [PP in front of [NP the building]]

The design of a factorial experiment 53

Thus, the question is: are some balls in front of the cat as many balls as
some balls in front of the table? Or: does some balls in front of the table
mean as many balls as some cars in front of the building means cars? What
– or more precisely, how many – does some mean? Your study of the litera-
ture may have shown that at least the following two variables influence the
quantities that some denotes:

− OBJECT: the size of the object referred to by the first noun: SMALL (e.g.
ball) vs. LARGE (e.g. car);

− REFPOINT: the size of the object introduced as a reference in the PP:
SMALL (e.g. cat) vs. LARGE (e.g. building).10

Obviously, a study of some with these two variables results in a sche-

matic token set with four variable level combinations, as in Table 16.

Table 16. Token sets (schematic + concrete) for OBJECT × REFPOINT

 REFPOINT: SMALL REFPOINT: LARGE

OBJECT:

SMALL

SMALL + SMALL:

some dogs next to a cat

SMALL + LARGE:

some dogs next to a car

OBJECT:

LARGE

LARGE + SMALL:

some cars next to a cat

LARGE + LARGE:

some cars next to a fence

The (non-directional) hypotheses for this study are:

H0: The average estimate of how many some denotes is independent of

the sizes of the objects (OBJECT: SMALL vs. LARGE) and the sizes of
the reference points (REFPOINT: SMALL vs. LARGE) in the utterances
for which subjects provide estimates: meanSMALL+SMALL = meanSMALL+

LARGE = meanLARGE+SMALL = meanLARGE+LARGE.
H1: The average estimate of how many some denotes is dependent on

the sizes of the objects (OBJECT: SMALL vs. LARGE) and/or the sizes
of the reference points (REFPOINT: SMALL vs. LARGE) and/or some

joint effect of the two: there is at least one ≠ in the above equation.

Let us now also assume you want to test these hypotheses with a ques-
tionnaire: subjects will be shown phrases such as those in Table 16 and

10 I will not discuss here how to decide what is ‘small’ and what is ‘large’. In the study

from which this example is taken, the sizes of the objects were determined on the basis
of a pilot study prior to the real experiment.

54 Some fundamentals of empirical research

then asked to provide estimates of how many elements a speaker of such a
phrase would probably intend to convey – how many dogs were next to a
cat etc. Since you have four variable level combinations, you need at least
four concrete token sets (the rule in (5)), which are created according to the
rule in (4). According to the rules in (6) and (7) this also means you need at
least four subjects: you cannot have fewer because then some subject
would see more than one stimulus from one concrete token set. You can
then assign experimental stimuli to the subjects in a rotating fashion. The
result of this is shown in the sheet <Phase 1> of the file <_input
files/01-5_ExperimentalDesign.ods> (just like all files, this one too can be
found on the companion website (see beginning of Chapter 2). The actual
experimental stimuli are represented only schematically as a uniquely iden-
tifying combination of the number of the concrete token set and the varia-
ble levels of the two independent variables (in column E).

As you can easily see in the table on the right, the rotation ensures that
every subject sees each variable level combination just once and each of
these from a different concrete token set. However, we know you have to
do more than that because in <Phase 1> every subject sees every variable
level combination just once (which violates (8)) and every experimental
item is seen by only one subject (which violates (9)). Therefore, you first
re-use the experimental items in <Phase 1>, but put them in a different
order so that the experimental items do not occur together with the very
same experimental items (you can do that by rotating the subjects different-
ly). One possible result of this is shown in the sheet <Phase 2>.

The setup in <Phase 2> does not yet conform to (8), though. For that,
you have to do a little more. You must present more experimental items to,
say, subject 1, but you cannot use the existing experimental items anymore
without violating (6). Thus, you need four more concrete token sets, which
are created and distributed across subjects as before. The result is shown in
<Phase 3>. As you can see in the table on the right, every experimental
item is now seen by two subjects (cf. the row totals), and in the columns
you can see that each subjects sees each variable level combination in two
different stimuli.

Now that every subjects receives eight experimental items, you must
create enough distractors. In this example, let’s use a ratio of experimental
items to distractors of 1:2. Of course, 16 unique distractors are enough,
which are presented to all subjects – there is no reason to create 8·16 = 128
distractors. Consider <Phase 4>, where the filler items have been added to
the bottom of the table.

Now you must order the all stimuli – experimental items and distractors

The design of a factorial experiment 55

– for every subject. To that end, you can add a column called “RND”,
which contains random numbers ranging between 0 and 1 (you can get
those from R or by writing “=RAND()” (without double quotes, of course)
into a cell in LibreOffice Calc and then double-clicking on the small black
square on the bottom right corner you see when you click on that cell once,
which will fill all cells below with random numbers.

As the next step, you will want to sort the whole spreadsheet (i) accord-
ing to the column “SUBJ” and then (ii) according to the column “RAND”.
However, there is an important detail first: highlight that whole column,
copy the contents into the clipboard, go to Edit: Paste Special…, and
choose to paste back only the text and the numbers. This will make sure
that the random numbers are not re-calculated after anything you do to the
spreadsheet. Then sort as mentioned above so that all items of one subject
are grouped together, and within each subject the order of items is random.
This is required by (12) and represented in <Phase 5>.

When you look at <Phase 5>, you also see that the order of some ele-
ments must still be changed: red arrows in column H indicate problematic
sequences of experimental items and blue arrives indicate potentially prob-
lematic sequences of identical schematic tokens. To take care of these cas-
es, you can arbitrarily move things around. One possible result is shown in
<Phase 6>, where the green arrows point to corrections. If we had used
actual stimuli, you could now create a cover sheet with instructions for the
subjects and a few examples (which in the case of, say, judgments would
ideally cover the extremes of the possible judgments!), paste the experi-
mental stimuli onto the following page(s), and hand out the questionnaires.
Then, when you get the responses back, you enter them into <Phase 7> and
proceed to analyze them statistically. For example, to evaluate this experi-
ment, you would then have to compute a variety of means:

− the means for the two levels of OBJECT (i.e., meanOBJECT: SMALL and
meanOBJECT: LARGE);

− the means for the two levels of REFPOINT (i.e., meanREFPOINT: SMALL and
meanREFPOINT: LARGE);

− the four means for the interaction of OBJECT and REFPOINT.

We will discuss the method that is used to test these means for signifi-
cant differences – a linear model – in Section 5.2.

Now you should do the exercises for Chapter 1 (which you can find on
the website) …

Chapter 2

Fundamentals of R

When we say that a historian or a linguist is ‘innumerate’
we mean that he cannot even begin to understand what

scientists and mathematicians are talking about
Oxford English Dictionary, 2nd ed., 1989, s.v. numeracy.

(cited from Keen 2010: 4)

1. Introduction and installation

In this chapter, you will learn about the basics of R that enable you to load,
process, and store data as well as perform some simple data processing
operations. Thus, this chapter prepares you for the applications in the fol-
lowing chapters. Let us begin with the first step: the installation of R.

1. The main R website is <http://www.r-project.org/>. From there you

can go to the CRAN website at <http://cran.r-project.org/
mirrors.html>. Click on the mirror Austria, then on the link(s) for
your operating system;

2. for Windows you will then click on “base”, and then on the link to
the setup program to download the relevant setup program; for
Mac OS X, you immediately get to a page with a link to a .pkg file;
for Linux, you choose your distribution, maybe your distribution
version, and then the relevant file(s) or, more conveniently, you
may be able to install R and many frequently-used packages using
a package manager such as Synaptic or Muon;

3. then, you run the installer;
4. start R by double-clicking on the icon on the desktop, the icon in

the start menu, or the icon in the quick launch tool bar.

That’s it. You can now start and use R. However, R has more to offer.
Since R is an open-source software, there is a lively community of people
who have written so-called packages for R. These packages are small addi-
tions to R that you can load into R to obtain commands (or functions, as we
will later call them) that are not part of the default configuration.

Introduction and installation 57

5. In R, enter the following at the console install.packages()¶ and
then choose a mirror; I recommend always using Austria;

6. Choose all packages you think you will need; if you have a broad-
band connection, you could theoretically choose all of them, but
that might be a bit of an overkill at this stage. I minimally recom-
mend amap, aod, car, cluster, effects, Hmisc, lattice, qcc,
plotrix, rms, rpart, and vcd. (You can also enter, say, in-
stall.packages("car")¶ at the console to install said package
and ideally do either with administrator/root rights; in Ubuntu, for
example, start R with sudo R¶. On Linux systems, you will some-
times also need additional files such as gfortran, which you may
need to install separately.)

Next, you should download the files with example files, all the code,

exercises, and answer keys onto your hard drive. Ideally, you create one
folder that will contain all the files from the book, such as <_sflwr> on
your harddrive (for statistics for linguists with R). Then download all files
from the companion website of this edition of the book
(<http://tinyurl.com/StatForLingWithR>) and save/unzip them into:

− <_sflwr/_inputfiles>: this folder will contain all input files: text files
with data for later statistical analysis, spreadsheets providing all files in
a compact format, input files for exercises etc.; to unzip these files, you
will need the password “hamste_R2”;

− <_sflwr/_outputfiles>: this folder will contain output files from Chap-
ters 2 and 5; to unzip these files, you will need the password
“squi_R2rel”;

− <_sflwr/_scripts>: this folder will contain all files with code from this
book as well as the files with exercises and their answer keys; to unzip
these files, you will need the password “otte_R2”.

(By the way, I am using regular slashes here because you can use those

in R, too, and more easily so than backslashes.) The companion website
will also provide a file with errata. Lastly, I would recommend that you
also get a text editor that has syntax highlighting for R or an IDE (integrat-
ed development environment). If you use a text editor, I recommend Note-
pad++ to Windows users and geany or the use of Notepad++ with Wine to
Linux users. The probably best option, however, might be to go with RStu-
dio (<http://www.rstudio.org/>), a truly excellent open source IDE for R,
which offers easy editing of R code, sending code from the editor window

58 Fundamentals of R

to the console with just using Ctrl+ENTER, plot histories, and many other
things; you should definitely watch the screencast at RStudio’s website.

After all this, you can view all scripts in <_scripts> with syntax-
highlighting, which will make it easier for you to understand them. I
strongly recommend to write all R scripts that are longer than, say, 2-3
lines in these editors / in the script window of the IDE and then paste them
into R because the syntax high-lighting will help you avoid mistakes and
you can more easily keep track of all the things you have entered into R.

R is not just a statistics program – it is also a programming language
and environment which has at least some superficial similarity to Perl, Py-
thon, or Julia. The range of applications is breathtakingly large as R offers
the functionality of spreadsheet software, statistics programs, a program-
ming language, database functions etc. This introduction to statistics, how-
ever, is largely concerned with

− functions to generate and process simple data structures in R, and

− functions for probability distributions, statistical tests, and graphical
evaluation.

We will therefore unfortunately not be able to deal with more complex

data structures and many aspects of R as a programming language however
interesting these may be. Also, I will not always use the simplest or most
elegant way to perform a particular task but the way that is most useful
from a pedagogical and methodological perspective (e.g., to highlight
commonalities between different functions and approaches). Thus, this
book is not really a general introduction to R, and I refer you to the rec-
ommendations for further study and the reference section for introductory
books to R.

Now we have to address some typographical and other conventions. As
already above, websites, folders, and files will be delimited by “<“ and “>“
as in, say, <_inputfiles/04-1-1-1_tense-aspect.csv>, where the numbering
before the underscore refers to the section in which this file is used. Text
you are supposed to enter into R is formatted like this mean(c(1, 2, 3))¶.
This character “¶” instructs you to hit ENTER (I show these characters here
because they can be important to show the exact structure of a line and
because whitespace makes a big difference in character strings; the code
files of course do not include those visibly unless you set your text editor to
displaying them). Code will usually be given in grey blocks of several lines
like this:

Introduction and installation 59

> a<-c(1, 2, 3)¶
> mean(a)¶
[1] 2

This also means for you: do not enter the two characters > . They are

only provided for you to easily distinguish your input from R’s output. You
will also occasionally see lines that begin with “+”. These plus signs, which
you are not supposed to enter either, begin lines where R is still expecting
further input before it begins to execute the function. For example, when
you enter 2-¶, then this is what your R interface will look like:

> 2-¶
+

R is waiting for you to complete the subtraction. When you enter the

number you wish to subtract and press ENTER, then the function will be
executed properly.

+ 3¶
[1] -1

Another example: if you wish to load the package corpora into R to ac-

cess some of the functions that the computational linguists Marco Baroni
and Stefan Evert contributed to the community, you can load this package
by entering library(corpora)¶. (Note: this only works if you installed the
package before as explained above.) However, if you forget the closing
bracket, R will wait for you to complete the input:

> library(corpora¶
+)¶
>

Unfortunately, R will not always be this forgiving. By the way, if you

make a mistake in R, you often need to change only one thing in a line.
Thus, rather than typing the whole line again, press the cursor-up key to get
back to that line you wish to change or execute again; also, you need not
move the cursor to the end of the line before pressing ENTER.

Corpus files or tables / data frames will be represented as in Figure 10,
where “→” and “¶”denote tab stops and line breaks respectively. Menus,
submenus, and commands in submenus in applications are given in italics
in double quotes, and hierarchical levels within application menus are indi-
cated with colons. So, if you open a document in, say, LibreOffice Writer,

60 Fundamentals of R

you do that with what is given here as File: Open …

PartOfSp → TokenFreq → TypeFreq → Class¶

ADJ → 421 → 271 → open¶

ADV → 337 → 103 → open¶

N → 1411 → 735 → open¶

CONJ → 458 → 18 → closed¶

PREP → 455 → 37 → closed¶

Figure 10. Representational format of corpus files and data frames

2. Functions and arguments

As you may remember from school, one often does not use numbers, but
rather letters to represent variables that ‘contain’ numbers. In algebra class,
for example, you had to find out from two equations such as the following
which values a and b represent (here a = 23/7 and b = 20/7):

a+2b = 9 and
3a-b = 7

In R, you can solve such problems, too, but R is much more powerful,
so variable names such as a and b can represent huge multidimensional
elements or, as we will call them here, data structures. In this chapter, we
will deal with the data structures that are most important for statistical
analyses. Such data structures can either be entered into R at the console or,
more commonly, read from files. I will present both means of data entry,
but most of the examples below presuppose that the data are available in
the form of a tab-delimited text file that has the structure discussed in the
previous chapter and was created in a text editor or a spreadsheet software
such as LibreOffice Calc. In the following sections, I will explain

− how to create data structures in R;

− how to load data structures into R and save them from R;

− how to edit data structures in R.

One of the most central things to understand about R is how you tell it
to do something other than the simple calculations from above. A com-
mand in R virtually always consists of two elements: a function and, in
parentheses, arguments. A function is an instruction to do something, and

Functions and arguments 61

the arguments to a function represent (i) what the instruction is to be ap-
plied to and (ii) how the instruction is to be applied to it. (Arguments can
be null, in which case the function name is just followed by opening and
closing parentheses.) Let us look at two simple arithmetic functions you
know from school. If you want to compute the square root of 5 with R –
without simply entering the instruction 5^0.5¶, that is – you need to know
the name of the function as well as how many and which arguments it
takes. Well, the name of the function is sqrt, and it takes just one argu-
ment which R calls x by default, namely the figure of which you want the
square root. Thus:

> sqrt(x=5)¶
[1] 2.236068

Note that R just outputs the result, but does not store it. If you want to

store a result into a data structure, you must use the assignment operator <-
(an arrow consisting of a less-than sign and a minus). The simplest way in
the present example is to assign a name to the result of sqrt(5). Note: R’s
handling of names, functions, and arguments is case-sensitive, and you can
use letters, numbers, periods, and underscores in names as long as the name
begins with a letter or a period (e.g., my.result or my_result or …):

> a<-sqrt(x=5)¶

R does not return anything, but the result of sqrt(5) has now been as-

signed to a data structure that is called a vector, which is called a. You can
test whether the assignment was successful by looking at the content of a.
One function to do that is print, and its minimally required argument is
the data structure whose content you want to see, but most of the time, it is
enough to simply enter the name of the relevant data structure:

> print(a)¶
[1] 2.236068
> a¶
[1] 2.236068

Three final comments before we discuss various data structures in more

detail. First, R ignores everything in a line after a pound/number sign or
hash, which you can use to put comments into your lines (to remind you
what that line is doing). Second, the assignment operator can also be used
to assign a new value to an existing data structure. For example,

62 Fundamentals of R

> a<-sqrt(x=9) # assign the value of 'sqrt(9)' to a¶
> a # print a¶
[1] 3
> a<-a+2 # assign the value of 'a+2' to a¶
> a # print a¶
[1] 5

If you want to delete or clear a data structure, you can use the function

rm (for remove). You can remove just a single data structure by using its
name as an argument to rm, or you can remove all data structures at once.

> rm(a) # remove/clear a¶
> rm(list=ls(all=TRUE)) # clear memory of all data¶

Third, it will be very important later on to know that functions have de-

fault orders of their arguments and that many functions have default set-
tings for their arguments. The former means that, if you provide arguments
in their default order, you don’t have to name them. That is, instead of
sqrt(x=9)¶ you could just write sqrt(9)¶ because the (only) argument x
is in its ‘default position’. The latter means that if you use a function with-
out specifying all required arguments, then R will use default settings, if
those are provided by that function. Let us explore this on the basis of the
very useful function sample. This function generates random or pseudo-
random samples of elements and can take up to four arguments:

− x: a data structure – typically a vector – containing the elements from
which you want to sample;

− size: a positive integer giving the size of the sample;

− the assignment replace=FALSE (if each element of the vector can only
be sampled once, the default setting) or replace=TRUE (if the elements
of the vector can be sampled multiple times, sampling with replace-
ment);

− prob: a vector with the probabilities of each element to be sampled; the
default setting is NULL, which means that all elements are equally likely
to be sampled.

Let us look at a few examples, which will make successively more use

of default orders and argument settings. First, you generate a vector with
the numbers from 1 to 10 using the function c (for concatenate); the colon
here generates a sequence of integers between the two numbers:

> some.data<-c(1:10)¶

Functions and arguments 63

If you want to sample 5 elements from this vector equiprobably and
with replacement, you can enter the following:11

> sample(x=some.data, size=5, replace=TRUE, prob=NULL)¶
[1] 5 9 9 9 2

But if you list the arguments of a function in their standard order (as we

do here), then you can leave out their names:

> sample(some.data, 5, TRUE, NULL)¶
[1] 3 8 4 1 7

Also, prob=NULL is the default, so you can leave that out, too:

> sample(some.data, 5, TRUE)¶
[1] 2 1 9 9 10

With this, you sample 5 elements equiprobably without replacement:

> sample(some.data, 5, FALSE)¶
[1] 1 10 6 3 8

But since replace=FALSE is the default, you can leave that out, too:

> sample(some.data, 5)¶
[1] 10 5 9 3 6

Sometimes, you can even leave out the size argument, namely when

you just want all elements of the given vector in a random order:

> some.data¶
[1] 1 2 3 4 5 6 7 8 9 10
> sample(some.data)¶
[1] 2 4 3 10 9 8 1 6 5 7

And if you only want the numbers from 1 to 10 in a random order, you

can even do away with the vector some.data:

> sample(10)¶
[1] 5 10 2 6 1 3 4 9 7 8

11. Your results will be different, after all this is random sampling.

64 Fundamentals of R

In extreme cases, the property of default settings may result in function
calls without any arguments. Consider the function q (for quit). This func-
tion shuts R down and usually requires three arguments:

− save: a character string indicating whether the R workspace should be
saved or not or whether the user should be prompted to make that deci-
sion (the default);

− status: the (numerical) error status to be returned to the operating sys-
tem, where relevant; the default is 0, indicating ‘successful completion’;

− runLast: a logical value (TRUE or FALSE), stating whether a function
called Last should be executed before quitting R; the default is TRUE.

Thus, if you want to quit R with these settings, you just enter:

> q()¶

R will then ask you whether you wish to save the R workspace or not

and, when you answered that question, executes the function Last (only if
one is defined), shuts down R and sends “0” to your operating system.

As you can see, defaults can be a very useful way of minimizing typing
effort. However, especially at the beginning, it is probably wise to try to
strike a balance between minimizing typing on the one hand and maximiz-
ing code transparency on the other. While this may ultimately boil down to
a matter of personal preference, I recommend using more explicit code at
the beginning in order to be maximally aware of the options your R code
uses; you can then shorten your code as you become more proficient.

Recommendation(s) for further study
the functions ? or help, which provide the help file for a function (try
?sample¶ or help(sample)¶), and the functions args and formals, which
provide the arguments a function needs, their default settings, and their
default order (try formals(sample)¶ or args(sample)¶)

3. Vectors

3.1. Generating vectors

The most basic data structure in R is a vector. Vectors are one-dimensional,
sequentially ordered sequences of elements (such as numbers or character

Vectors 65

strings (such as words)). While it may not be completely obvious why vec-
tors are important here, we must deal with them in some detail since many
other data structures in R can ultimately be understood in terms of vectors.
As a matter of fact, we have already used vectors when we computed the
square root of 5:

> sqrt(5)¶
[1] 2.236068

The “[1]” before the result indicates that the first (and, here, only) ele-

ment printed as the output is element number 1, namely 2.236068. You can
test this with R: first, you assign the result of sqrt(5) to a data structure.

> a<-sqrt(5)¶

The function is.vector tests whether its argument is a vector or not

and returns the result of its test, here R’s version of “yes”:

> is.vector(a)¶
[1] TRUE

And the function length returns the number of elements of the data

structure provided as its argument:

> length(a)¶
[1] 1

Of course, you can also create vectors that contain character strings –

the only difference is that the character strings are put into double quotes:

> a.name<-"John"; a.name¶
[1] "John"

In this book, we only deal with logical vectors as well as vectors of

numbers or character strings. Vectors usually only become interesting
when they contain more than one element. You already know the function
to create such vectors, c, and the arguments it takes are just the elements to
be concatenated in the vector, separated by commas. For example:

> numbers<-c(1, 2, 3); numbers¶
[1] 1 2 3

66 Fundamentals of R

or

> some.names<-c("al", "bill", "chris"); some.names¶
[1] "al" "bill" "chris"

Note that, since individual numbers or character strings are also vectors

(just vectors of length 1), the function c can not only combine individual
numbers or character strings but also vectors with 2+ elements:

> numbers1<-c(1, 2, 3); numbers2<-c(4, 5, 6) # generate two

vectors¶
> numbers1.and.numbers2<-c(numbers1, numbers2) # combine

vectors¶
> numbers1.and.numbers2¶
[1] 1 2 3 4 5 6

A similar function is append, which takes two or three arguments:

− x: a vector to which something should be appended;

− values: the vector to be appended;

− after: the position in the first argument where the elements of the sec-
ond argument are to be appended; the default setting is at the end.

Thus, with append, the above example would look like this:

> numbers1.and.numbers2<-append(numbers1, numbers2)¶
> numbers1.and.numbers2¶
[1] 1 2 3 4 5 6

An example of how append is more typically used is the following,

where an existing vector is modified:

> evenmore<-c(7, 8)¶
> numbers1.and.numbers2<-append(numbers1.and.numbers2,

evenmore)¶
> numbers¶
[1] 1 2 3 4 5 6 7 8

It is important to note that – unlike arrays in Perl – vectors can only

store elements of one data type. For example, a vector can contain numbers
or character strings, but not really both: if you try to force character strings
into a vector together with numbers, R will change the data type of one
kind of element to homogenize the kinds of vector elements, and since you

Vectors 67

can interpret numbers as characters but not vice versa, R changes the num-
bers into character strings and then concatenates them into a vector of char-
acter strings:

> mixture<-c("al", 2, "chris"); mixture¶
[1] "al" "2" "chris"

and

> numbers.num<-c(1, 2, 3); numbers.char<-c("four", "five",

"six")¶
> nums.and.chars<-c(numbers.num, numbers.char)¶
> nums.and.chars¶
[1] "1" "2" "3" "four" "five" "six"

The double quotes around 1, 2, and 3 indicate that these are now under-

stood as character strings, which means that you cannot use them for calcu-
lations anymore (unless you change their data type back). We can identify
the type of a vector (or the data types of other data structures) with str (for
“structure”) which takes as an argument the name of a data structure:

> str(numbers.num)¶
 num [1:3] 1 2 3¶
> str(nums.and.chars)¶
 chr [1:6] "1" "2" "3" "four" "five" "six"

The first vector consists of three numerical elements, namely 1, 2, and

3. The second vector consists of the six character strings (from character)
that are printed.

As you will see later, it is often necessary to create quite long vectors in
which (sequences of) elements are repeated. Instead of typing those into R
manually, you can use two very useful functions, rep and seq. In a simple
form, the function rep (for repetition) takes two arguments: the element(s)
to be repeated, and the number of repetitions. To create, say, a vector x in
which the number sequence from 1 to 3 is repeated four times, you enter:

> numbers<-c(1, 2, 3)¶
> x<-rep(numbers, 4)¶

or

> x<-rep(c(1, 2, 3), 4); x¶
[1] 1 2 3 1 2 3 1 2 3 1 2 3

68 Fundamentals of R

To create a vector in which the numbers from 1 to 3 are individually re-
peated four times – not in sequence – then you use the argument each:

> x<-rep(c(1, 2, 3), each=4); x¶
[1] 1 1 1 1 2 2 2 2 3 3 3 3

(The same would be true of vectors of character strings.) With whole

numbers, you can also often use the : as a range operator:

> x<-rep(c(1:3), 4)¶

The function seq (for sequence) is used a little differently. In one form,

seq takes three arguments:

− from: the starting point of the sequence;

− to: the end point of the sequence;

− by: the increment of the sequence.

Thus, instead of entering numbers<-c(1:3)¶, you can also write:

> numbers<-seq(1, 3, 1)¶

Since 1 is the default increment, the following would suffice:

> numbers<-seq(1, 3)¶

In fact, you can even just write this:

> numbers<-seq(3)¶

If the numbers in the vector to be created do not increment by 1, you

can set the increment to whatever value you need. The following lines gen-
erate a vector x in which the even numbers between 1 and 10 are repeated
six times in sequence. Try it out (and look at x):

> numbers<-seq(2, 10, 2)¶
> x<-rep(numbers, 6)¶

or

> x<-rep(seq(2, 10, 2), 6)¶

Vectors 69

Finally, instead of providing the increment, you can also let R figure out
it for you, as when you know how long your sequence should be and just
want equal increments everywhere. You can then use the argument
length.out. The following generates a 7-element sequence from 1 to 10
with equal increments and assigns it to numbers:

> numbers<-seq(1, 10, length.out=7); numbers¶
[1] 1.0 2.5 4.0 5.5 7.0 8.5 10.0

With c, append, rep, and seq, even long and complex vectors can often

be created fairly easily. Another useful feature is that you can not only
name vectors, but also elements of vectors:

> numbers<-c(1, 2, 3); names(numbers)<-c("one", "two",

"three")¶
> numbers¶
 one two three
 1 2 3

Before we turn to loading and saving vectors, let me briefly mention an

interactive way to enter vectors into R. If you assign to a data structure just
scan()¶ (for numbers) or scan(what=character(0))¶ (for character
strings), then you can enter the numbers or character strings separated by
ENTER until you complete the data entry by pressing ENTER twice:

> x<-scan()¶
1: 1¶
2: 2¶
3: 3¶
4:¶¶
Read 3 items
> x¶
[1] 1 2 3

Recommendation(s) for further study
the functions as.numeric and as.character to change the type of vectors

3.2. Loading and saving vectors

Since data for statistical analysis will usually not be entered into R manual-
ly, we now turn to reading vectors from files. First a general remark: R can
read data of different formats, but we only discuss data saved as text files,

70 Fundamentals of R

i.e., files that often have the extension: <.txt> or <.csv>. Thus, if the data
file has not been created with a text editor but a spreadsheet software such
as LibreOffice Calc, then you must first export these data into a text file
(with File: Save As … and Save as type: Text CSV (.csv)).

A very powerful function to load vector data into R is the function scan,
which we already used to enter data manually. This function can take many
different arguments so you should list arguments with their names. The
most important arguments of scan for our purposes together with their
default settings are as follows:

− file="": the path of the file you want to load as a character string, e.g.
"_inputfiles/02-3-2_vector1.txt", but most of the time it is prob-
ably easier to just use the function file.choose(), which will prompt
you to choose the relevant file directly; note, the file argument can al-
so be "clipboard";

− what="": the kind of input scan is supposed to read. The most im-
portant settings are what=double(0) (for numbers, the omissible de-
fault) and what=character(0) (for character strings);

− sep="": the character that separates individual entries in the file. The
default setting, sep="", means that any whitespace character will sepa-
rate entries, i.e. spaces, tabs (represented as "\t"), and newlines (repre-
sented as "\n"). Thus, if you want to read in a text file into a vector
such that each line is one element of the vector, you write sep="\n";

− dec="": the decimal point character; dec="." is the default; if you want
to use a comma instead of the default period, just enter that here as
dec=",".

To read the file <_inputfiles/02-3-2_vector1.txt>, which contains what

is shown in Figure 11, into a vector x, you could enter this.

1¶

2¶

3¶

4¶

5¶

Figure 11. An example file

> x<-scan(file=file.choose(), sep="\n")¶
Read 5 items

Vectors 71

Then you can print out the contents of x:

> x¶
[1] 1 2 3 4 5

Reading in a file with character strings (like the one in Figure 12) is just

as easy; here you just have to tell R that you are reading in a file of charac-
ter strings and that the character strings are separated by spaces:

alpha�bravo�charly�delta�echo¶

Figure 12. Another example file

> x<-scan(file.choose(), what=character(0), sep=" ")¶

You get:

> x¶
[1] "alpha" "bravo" "charly" "delta" "echo"

Now, how do you save vectors into files. The required function – basi-

cally the reverse of scan – is cat and it takes very similar arguments:

− the vector(s) to be saved;

− file="": the path to the file into which the vector is to be saved or
again just file.choose());

− sep="": the character that separates the elements of the vector from
each other: sep="" or sep=" " for spaces (the default), sep="\t" for
tabs, sep="\n" for newlines;

− append=TRUE or append=FALSE (the default): if the output file already
exists and you set append=TRUE, then the output will be appended to the
output file, otherwise the output will overwrite the existing file.

Thus, to append two names to the vector x and then save it under some

other name, you can enter the following:

> x<-append(x, c("foxtrot", "golf"))¶
> cat(x, file=file.choose())¶

Recommendation(s) for further study

the function write, save, and dput to save vectors (or other structures)

72 Fundamentals of R

3.3. Editing vectors

Now that you can generate, load, and save vectors, we must deal with how
you can edit them. The functions we will be concerned with allow you to
access particular parts of vectors to output them, to use them in other func-
tions, or to change them. First, a few functions to edit numerical vectors.
One such function is round. Its first argument is the vector with numbers to
be rounded, its second the desired number of decimal places. (Note, R
rounds according to an IEEE standard: 3.55 does not become 3.6, but 3.5.)

> a<-seq(3.4, 3.6, 0.05); a¶
[1] 3.40 3.45 3.50 3.55 3.60
> round(a, 1)¶
[1] 3.4 3.4 3.5 3.5 3.6

The function floor returns the largest integers not greater than the cor-

responding elements of the vector provided, ceiling returns the smallest
integers not less than the corresponding elements of the vector provided,
and trunc simply truncates the elements toward 0:

> floor(c(-1.8, 1.8))¶
[1] -2 1
> ceiling(c(-1.8, 1.8))¶
[1] -1 2
> trunc(c(-1.8, 1.8))¶
[1] -1 1

The most important way to access parts of a vector (or other data struc-

tures) in R involves subsetting with square brackets. In the simplest form,
this is how you access an individual vector element (here, the third):

> x<-c("a", "b", "c", "d", "e")¶
> x[3]¶
[1] "c"

Since you already know how flexible R is with vectors, the following

uses of square brackets should not come as big surprises:

> y<-3; x[y]¶
[1] "c"
> z<-c(1, 3); x[z]¶
[1] "a" "c"
> z<-c(1:3); x[z]¶
[1] "a" "b" "c"

Vectors 73

With negative numbers, you can leave out elements:

> x[-2]¶
[1] "a" "c" "d" "e"

However, there are many more powerful ways to access parts of vec-

tors. For example, you can let R determine which elements of a vector ful-
fill a certain condition. One way is to present R with a logical expression:

> x=="d"¶
[1] FALSE FALSE FALSE TRUE FALSE

This means, R checks for each element of x whether it is “d” or not and

returns its findings. The only thing requiring a little attention here is that
the logical expression uses two equal signs, which distinguishes logical
expressions from assignments such as file="". Other logical operators are:

& and | or
> greater than < less than
>= greater than or equal to <= less than or equal to
! not != not equal to

Here are some examples:

> x<-c(10:1)¶
> x¶
[1] 10 9 8 7 6 5 4 3 2 1
> x==4¶
[1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

FALSE
> x<=7¶
[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

TRUE
> x!=8¶
[1] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

TRUE
> (x>8 | x<3)¶
[1] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

TRUE

Since TRUE and FALSE in R correspond to 1 and 0, you can easily deter-

mine how often a particular logical expression is true in a vector:

> sum(x==4)¶
[1] 1

74 Fundamentals of R

> sum(x>8 | x<3)¶
[1] 4

The very useful function table counts how often vector elements (or

combinations of vector elements) occur. For example, with table we can
immediately determine how many elements of x are greater than 8 or less
than 3. (Note: table ignores missing data – if you want to count those, too,
you must write table(…, exclude=NULL).)

> table(x>8 | x<3)¶
FALSE TRUE
 6 4

It is, however, obvious that the above examples are not particularly ele-

gant ways to identify the position(s) of elements. However many elements
of x fulfill a logical condition, you always get 10 logical values (one for
each element of x) and must locate the TRUEs by hand – what do you do
when a vector contains 10,000 elements? Another function can do that for
you, though. This function is which, and it takes a logical expression of the
type discussed above:

> which(x==4) # which elements of x are 4?¶
[1] 7

As you can see, this function looks nearly like English: you ask R

“which element of x is 4?”, and you get the response ‘the seventh’. The
following examples are similar to the ones above but now use which:

> which(x<=7) which elements of x are <= 7?¶
[1] 4 5 6 7 8 9 10
> which(x!=8) # which elements of x are not 8?¶
[1] 1 2 4 5 6 7 8 9 10
> which(x>8 | x<3) which elements of x are >8 or <3?¶
[1] 1 2 9 10

It should go without saying that you can assign such results to data

structures, i.e. vectors:

> y<-which(x>8 | x<3); y¶
[1] 1 2 9 10

Note: do not confuse the position of an element in a vector with the ele-

ment of the vector. The function which(x==4)¶ does not return the element

Vectors 75

4, but the position of the element 4 in x, which is 7; and the same is true for
the other examples. You can probably guess how you can now get the ele-
ments themselves and not just their positions. You only need to remember
that R uses vectors. The data structure you just called y is also a vector:

> is.vector(y)¶
[1] TRUE

Above, you saw that you can use vectors in square brackets to access

parts of a vector. Thus, when you have a vector x and do not just want to
know where to find numbers which are larger than 8 or smaller than 3, but
also which numbers these are, you first use which and then square brackets,
or you immediately combine these two steps:

> y<-which(x>8 | x<3)¶
> x[y]¶
[1] 10 9 2 1
> x[which(x>8 | x<3)]¶
[1] 10 9 2 1

Or you use this, which uses the fact that, when you subset with a logical

vector of TRUEs and FALSEs, R returns the elements subset by TRUEs:

> x[x>8 | x<3]¶
[1] 10 9 2 1

You use a similar approach to see how often a logical expression is true:

> length(which(x>8 | x<3))¶
[1] 4

Sometimes you may want to test for several elements at once (e.g., the

numbers 1, 6, and 11), which which can’t do, but you can use the very use-
ful operator %in%:

> c(1, 6, 11) %in% x¶
[1] TRUE TRUE FALSE

The output of %in% is a logical vector which says for each element of

the vector before %in% whether it occurs in the vector after %in%. If you
also would like to know the exact position of the first (!) occurrence of
each of the elements of the first vector in the second, you can use match:

76 Fundamentals of R

> match(c(1, 6, 11), x)¶
[1] 10 5 NA

That is to say, the first element of the first vector – the 1 – occurs the

first (and only) time at the tenth position of x; the second element of the
first vector – the 6 – occurs the first (and only) time at the fifth position of
x; the last element of the first vector – the 11 – does not occur in x.

I hope it becomes obvious that the fact that much of what R does in-
volves vectors is a big strength of R. Since nearly everything we have done
so far is based on vectors (often of length 1), you can use functions flexibly
and even embed them into each other freely. For example, now that you
have seen how to access parts of vectors, you can also change those. Maybe
you would like to change the values of x that are greater than 8 into 12:

> x # show x again¶
 [1] 10 9 8 7 6 5 4 3 2 1
> y<-which(x>8)¶
> x[y]<-12¶
> x¶
[1] 12 12 8 7 6 5 4 3 2 1

As you can see, since you want to replace more than one element in x

but provide only one replacement (12), R recycles the replacement as often
as needed (cf. below for more on that feature). This is a shorter way to do
the same thing:

> x<-10:1¶
> x[which(x>8)]<-12¶
> x¶
 [1] 12 12 8 7 6 5 4 3 2 1

And this one is even shorter:

> x<-10:1¶
> x[x>8]<-12¶
> x¶
 [1] 12 12 8 7 6 5 4 3 2 1

R also offers several set-theoretical functions – setdiff, intersect,

and union – which take two vectors as arguments. The function setdiff
returns the elements of the first vector that are not in the second vector. The
function intersect returns the elements of the first vector that are also in
the second vector. And the function union returns all elements that occur in
at least one of the two vectors.

Vectors 77

> x<-c(10:1); y<-c(2, 5, 9, 12)¶
> setdiff(x, y)¶
[1] 10 8 7 6 4 3 1
> setdiff(y, x)¶
[1] 12
> intersect(x, y)¶
[1] 9 5 2
> intersect(y, x)¶
[1] 2 5 9
> union(x, y)¶
[1] 10 9 8 7 6 5 4 3 2 1 12
> union(y, x)¶
[1] 2 5 9 12 10 8 7 6 4 3 1

Another useful function is unique, which can be explained particularly

easily to linguists: unique goes through all the elements of a vector (to-
kens) and returns all elements that occur at least once (types).

> x<-c(1, 2, 3, 2, 3, 4, 3, 4, 5)¶
> unique(x)
[1] 1 2 3 4 5

In R you can also very easily apply a mathematical function or opera-

tion to many or all elements of a numerical vector. Mathematical opera-
tions that are applied to a vector are applied to all elements of the vector:

> x<-c(10:1)¶
> x¶
[1] 10 9 8 7 6 5 4 3 2 1
> y<-x+2¶
> y¶
[1] 12 11 10 9 8 7 6 5 4 3

If you add two vectors (or multiply them with each other, or …), three

different things can happen. First, if the vectors are equally long, the opera-
tion is applied to all pairs of corresponding vector elements:

> x<-c(2, 3, 4); y<-c(5, 6, 7)¶
> x*y¶
[1] 10 18 28

Second, the vectors are not equally long, but the length of the longer

vector can be divided by the length of the shorter vector without a remain-
der. Then, the shorter vector will again be recycled as often as is needed to
perform the operation in a pairwise fashion; as you saw above, often the
length of the shorter vector is 1.

78 Fundamentals of R

> x<-c(2, 3, 4, 5, 6, 7); y<-c(8, 9)¶
> x*y¶
[1] 16 27 32 45 48 63

Third, the vectors are not equally long and the length of the longer vec-

tor is not a multiple of the length of the shorter vector. In such cases, R will
recycle the shorter vector as necessary, but will also issue a warning:

> x<-c(2, 3, 4, 5, 6); y<-c(8, 9)¶
> x*y¶
[1] 16 27 32 45 48
Warning message:
In x * y : longer object length is not a multiple of shorter

object length

Finally, two functions to change the ordering of elements of vectors.

The first of these functions is called sort, and its most important argument
is of course the vector whose elements are to be sorted; another important
argument defines the sorting style: decreasing=FALSE (the default) or
decreasing=TRUE.

> x<-c(1, 3, 5, 7, 9, 2, 4, 6, 8, 10)¶
> y<-sort(x)¶
> z<-sort(x, decreasing=TRUE)¶
> y; z¶
[1] 1 2 3 4 5 6 7 8 9 10
[1] 10 9 8 7 6 5 4 3 2 1

The second function is order. It takes one or more vectors as arguments

as well as the argument decreasing=… – but it returns something that may
not be immediately obvious. Can you see what order does?

> z<-c("a", "c", "e", "d", "b")¶
> order(z, decreasing=FALSE)¶
[1] 1 5 2 4 3

THINK

BREAK

The output of order when applied to a vector z is a vector which tells

you in which order to put the elements of z to sort them as specified. Let us
clarify this rather opaque characterization: If you want to sort the values of

Vectors 79

z in increasing order, you first have to take z’s first value. Thus, the first
value of order(z, decreasing=FALSE)¶ is 1. The next value you have to
take is the fifth value of z. The next value you take is the second value of z,
etc. (If you provide order with more than one vector, additional vectors are
used to break ties.) As we will see below, this function will turn out to be
useful when applied to data frames.

Recommendations for further study

− the functions any and all to test whether any or all elements of a
vector fulfill a particular condition

− the function abs to obtain the absolute values of a numerical vector

− the functions min and max to obtain the minimum and the maxi-
mum values of numeric vectors respectively

4. Factors

At a superficial glance at least, factors are similar to vectors of character
strings. Apart from the few brief remarks in this section, they will mainly
be useful when we read in data frames and want R to recognize that some
of their columns are nominal or categorical variables.

4.1. Generating factors

As I just mentioned, factors are mainly used to code nominal or categorical
variables, i.e. in situations where a variable has two or more (but usually
not very many) qualitatively different levels. The simplest way to create a
factor is to generate a vector and then change it into a factor using the func-
tion factor. That function usually takes one or two arguments. The first is
mostly the vector you wish to change into a factor. The second argument is
levels=… and will be discussed in more detail in Section 2.4.3 below.

> rm(list=ls(all=TRUE))¶
> x<-c(rep("male", 5), rep("female", 5))¶
> y<-factor(x); y¶
[1] male male male male male female female female

female female
Levels: female male
> is.factor(y)
[1] TRUE

80 Fundamentals of R

When you output a factor, you can see one difference between factors
and vectors because the output includes a by default alphabetically sorted
list of all levels of that factor.

One other very useful way in which one sometimes generates factors is
based on the function cut. In its simplest implementation, it takes a numer-
ic vector as its first argument (x) and a number of intervals as its second
(breaks), and then it divides x into breaks intervals:

> cut(1:9, 3)¶
[1] (0.992,3.66] (0.992,3.66] (0.992,3.66] (3.66,6.34]

(3.66,6.34] (3.66,6.34] (6.34,9.01] (6.34,9.01]
(6.34,9.01]

Levels: (0.992,3.66] (3.66,6.34] (6.34,9.01]

As you can see, the vector with the numbers from 1 to 9 has now been

recoded as a factor with three levels that provide the intervals R used for
cutting up the numeric vector.

− 0.992 < interval/level 1 ≤ 3.66;

− 3.66 < interval/level 1 ≤ 6.34;

− 6.34 < interval/level 1 ≤ 9.01.

This function has another way of using breaks and some other useful
arguments so you should explore those in more detail: ?cut.

4.2. Loading and saving factors

We do not really need to discuss how you load factors – you do it in the
same way as you load vectors, and then you convert the loaded vector into
a factor as illustrated above. Saving a factor, however, is a little different.
Imagine you have the following factor a.

> a<-factor(c("alpha", "charly", "bravo")); a¶
[1] alpha charly bravo
Levels: alpha bravo charly

If you now try to save this factor into a file as you would with a vector,

> cat(a, sep="\n", file=file.choose())¶

your output file will look like Figure 13.

Factors 81

1¶

3¶

2¶

Figure 13. Another example file

This is because R represents factors internally in the form of numbers
(which represent the factor levels), and therefore R also only outputs these
numbers into a file. Since you want the words, however, you simply force
R to treat the factor as a vector, which will produce the desired result.

> cat(as.vector(a), sep="\n", file=file.choose())¶

4.3. Editing factors

Editing factors is similar to editing vectors, but a bit more cumbersome
when you want to introduce new levels. Let’s create a factor x:

> x<-factor(rep(c("long", "intmed", "short"), 1:3)); x¶
[1] long intmed intmed short short short
Levels: intmed long short

Note how the alphabetical ordering of the levels is not particularly use-

ful since it does not coincide with an ascending or descending order of the
meaning of the levels. The easiest thing you may have to do is change the
first level from the alphabetically first level to another one (which will be
important in Chapters 4 and 5). For example, you may want to make short
the first level. For that, you can use the function relevel, which requires
the factor to be changed and the new reference level:

> x<-relevel(x, "short"); x¶
[1] long intmed intmed short short short
Levels: short intmed long

As you can see, the factor content per se has not changed, only the order

in which the levels are listed and now we have a nice ordering of the levels.
If you want to change the order of levels more substantively – for in-

stance reversing their order – you can use the function factor again and
assign the levels in the desired way. Again, the content of the factor is the
same, but the order of the levels is now reversed.

82 Fundamentals of R

> x<-factor(x, levels=levels(x)[3:1]); x¶
[1] long intmed intmed short short short
Levels: long intmed short

Now, what about changing the content of factors? You may want to just

chang the name of a level in that factor to something else. You can do that
by just setting a new level, e.g., changing intmed to intermed:

> levels(x)[2]<-"intermed"; x¶
[1] long intermed intermed short short short
Levels: long intermed short

Then, you may wish to change a particular element to some other level

that is already attested in the factor. In that case, you can treat factors as
you would vectors:

> x[3]<-"short"; x¶
[1] long intermed short short short short
Levels: long intermed short

A difficulty arises when you want to assign a brand new level:

> x[6]<-"supershort"¶
Warning message:
In `[<-.factor`(`*tmp*`, 6, value = "supershort") :
 invalid factor level, NAs generated
> x¶
[1] long intermed short short short <NA>
Levels: long intermed short

Thus, if you want to assign a new level, you must proceed differently:

Let’s re-create x and then first define the new (fourth) level with levels:

x<-factor(rep(c("long", "intermed", "short"), c(1, 1, 4)),

levels=c("long", "intermed", "short"))¶
> x<-factor(x, levels=c(levels(x), "supershort")); x¶
[1] long intermed short short short short
Levels: long intermed short supershort

Note: the factor content has not changed yet, you only have one more

level than before. This also illustrates a factor can have levels that are not
attested in its content. However, now that x has all the levels you need, you
can proceed as above and assign the new value as you would with a vector:

Factors 83

> x[6]<-"supershort"; x¶
[1] long intermed short short short

supershort
Levels: long intermed short supershort

Now, let’s just assume you changed your mind and changed the sixth

data point back to short:

> x[6]<-"short"; x¶
 [1] long intermed short short short short
Levels: long intermed short supershort

Now it is of course not nice to have this level supershort listed in the

levels if it is not really attested especially because later we will use func-
tions that would return output for these levels even if they are unattested.
Thus, let us get rid of this level. Thankfully, that is easy: you can just apply
the function factor again, which will then drop unused levels:

> x<-factor(x); x # also see ?droplevels¶
[1] long intermed short short short short
Levels: long intermed short

Sometimes one wants to conflate factor levels, e.g. to test whether all

levels of a factor that corpus data were annotated for are actually required.
Let’s assume, you decide that you really only want to distinguish ‘short’
from ‘not short’. This is how you change the levels and the factor accord-
ingly, essentially by overwriting the first two levels with the new level.

> levels(x)<-c("not_short", "not_short", "short"); x¶
[1] not_short not_short short short short short
Levels: not_short short

Finally, as I mentioned above, R stores factors as numbers and there are

situations (esp. in the context of plotting, see Ch. 5) where it is useful to
have access to these numbers. The function as.numeric provides these:

> as.numeric(x)¶
[1] 1 1 2 2 2 2

Recommendation(s) for further study

− the function is.factor to test whether a data structure is a factor

− the functions gl and reorder to create factors and reorder levels

84 Fundamentals of R

5. Data frames

The data structure that is most relevant to nearly all statistical methods in
this book is the data frame. The data frame, basically what we would collo-
quially call a table, is actually only a specific type of another data structure,
a list, but since data frames are the single most frequent input format for
statistical analyses (within R, but also for other statistical programs and of
course spreadsheet software), we will concentrate only on data frames per
se and disregard lists for now.

5.1. Generating data frames

Given the centrality of vectors in R, you can generate data frames easily
from vectors (and factors). Imagine you collected three different kinds of
information for five parts of speech and wanted to generate the data frame
in Figure 14:

− the variable TOKENFREQUENCY, i.e. the frequency of words of a partic-
ular part of speech in a corpus X;

− the variable TYPEFREQUENCY, i.e. the number of different words of a
particular part of speech in the corpus X;

− the variable CLASS, which represents whether the part of speech is from
the group of open-class words or closed-class words.

POS → TOKENFREQ → TYPEFREQ → CLASS¶

adj → 421 → 271 → open¶

adv → 337 → 103 → open¶

n → 1411 → 735 → open¶

conj → 458 → 18 → closed¶

prep → 455 → 37 → closed¶

Figure 14. An example data frame

Step 1: you generate four vectors, one for each column:

> rm(list=ls(all=TRUE))¶
> POS<-c("adj", "adv", "n", "conj", "prep")¶
> TOKENFREQ<-c(421, 337, 1411, 458, 455)¶
> TYPEFREQ<-c(271, 103, 735, 18, 37)¶
> CLASS<-c("open", "open", "open", "closed", "closed")¶

Data frames 85

Step 2: The first row in the desired table does not contain data points but
the header with the column names. You must now decide whether the first
column contains data points or also ‘just’ the names of the rows. In the first
case, you can just create your data frame with the function data.frame,
which takes as arguments the relevant vectors; the order of vectors deter-
mines the order of columns. Now you can look at the data frame.

> x<-data.frame(POS, TOKENFREQ, TYPEFREQ, CLASS)¶
> x¶
 POS TOKENFREQ TYPEFREQ CLASS
1 adj 421 271 open
2 adv 337 103 open
3 n 1411 735 open
4 conj 458 18 closed
5 prep 455 37 closed
> str(x)¶
'data.frame': 5 obs. of 4 variables:
 $ POS : Factor w/ 5 levels "adj","adv",..: 1 2 4 3 5
 $ TOKENFREQ: num 421 337 1411 458 455
 $ TYPEFREQ : num 271 103 735 18 37
 $ CLASS : Factor w/ 2 levels "closed","open": 2 2 2 1 1

Within the data frame, R has changed the vectors of character strings in-

to factors and represents them with numbers internally (e.g., closed is 1
and open is 2). It is very important in this connection that R only changes
variables into factors when they contain character strings (and not just
numbers). If you have a data frame in which nominal or categorical varia-
bles are coded with numbers, then R will neither know nor guess that these
are factors and will treat the variables as numeric and thus as interval/ratio
variables in statistical analyses. Thus, you should either use meaningful
character strings as factor levels in the first place (as recommended in
Chapter 1 anyway) or must characterize the relevant variable(s) as factors
at the point of time you create the data frame: factor(vectorname). Also,
you did not define row names, so R automatically numbers the rows. If you
want to use the parts of speech as row names, you need to say so explicitly:

> x<-data.frame(TOKENFREQ, TYPEFREQ, CLASS, row.names=POS)
> x¶
 TOKENFREQ TYPEFREQ CLASS
adj 421 271 open
adv 337 103 open
n 1411 735 open
conj 458 18 closed
prep 455 37 closed
> str(x)¶
'data.frame': 5 obs. of 3 variables:
 $ TOKENFREQ: num 421 337 1411 458 455

86 Fundamentals of R

 $ TYPEFREQ : num 271 103 735 18 37
 $ CLASS : Factor w/ 2 levels "closed","open": 2 2 2 1 1

As you can see, there are now only three variables left because POS now

functions as row names. Note that this is only possible when the column
with the row names contains no element twice.

A second way of creating data frames that is much less flexible, but ex-
tremely important for Chapter 5 involves the function expand.grid. In its
simplest use, the function takes several vectors or factors as arguments and
returns a data frame the rows of which contain all possible combinations of
vector elements and factor levels. Sounds complicated but is very easy to
understand from this example and we will use this many times:

> expand.grid(COLUMN1=c("a", "b"), COLUMN2=1:3)¶
 COLUMN1 COLUMN2
1 a 1
2 b 1
3 a 2
4 b 2
5 a 3
6 b 3

5.2. Loading and saving data frames

While you can generate data frames as shown above, this is certainly not
the usual way in which data frames are entered into R. Typically, you will
read in files that were created with a spreadsheet software. If you create a
table in, say LibreOffice Calc and want to work on it within R, then you
should first save it as a comma-separated text file. There are two ways to
do this. Either you copy the whole file into the clipboard, paste it into a text
editor (e.g., geany or Notepad++), and then save it as a tab-delimited text
file, or you save it directly out of the spreadsheet software as a CSV file (as
mentioned above with File: Save As … and Save as type: Text CSV (.csv);
then you choose tabs as field delimiter and no text delimiter, and don’t
forget to provide the file extension. To load this file into R, you use the
function read.table and some of its arguments:

− file="…": the path to the text file with the table (on Windows PCs you
can use choose.files() here, too; if the file is still in the clipboard,
you can also write file="clipboard";

− header=TRUE: an indicator of whether the first row of the file contains

Data frames 87

column headers (which it should always have) or header=FALSE (the
default);

− sep="": between the double quotes you put the single character that
delimits columns; the default sep="" means space or tab, but usually
you should set sep="\t" so that you can use spaces in cells of the table;

− dec="." or dec=",": the decimal separator;

− row.names=…, where … is the number of the column containing the row
names;

− quote=…: the default is that quotes are marked with single or double
quotes, but you should nearly always set quote="";

− comment.char=…: the default is that comments are separated by “#”, but
we will always set comment.char="".

Thus, if you want to read in the above table from the file

<_inputfiles/02-5-2_dataframe1.csv> – once without row names and once
with row names – then this is what you could type:

> a1<-read.table(file.choose(), header=TRUE, sep="\t",

quote="", comment.char="") # R numbers rows¶

or

> a2<-read.table(file.choose(), header=TRUE, sep="\t",

quote="", comment.char="", row.names=1) # row names¶

By entering a1¶ or str(a1)¶ (same with a2), you can check whether

the data frames have been loaded correctly.
While the above is the most explicit and most general way to load all

sorts of different data frames, when you have set up your data as recom-
mended above, you can often use a shorter version with read.delim:,
which has header=TRUE and sep="\t" as defaults and should, therefore,
work most of the time:

> a3<-read.delim(file.choose())¶

If you want to save a data frame from R, then you can use

write.table. Its most important arguments are:

− x: the data frame you want to save;

− file: the path to the file into which you wish to save the data frame;

88 Fundamentals of R

typically, using file.choose() is easiest;

− append=FALSE (the default) or append=TRUE: the former generates or
overwrites the defined file, the latter appends the data frame to that file;

− quote=TRUE (the default) or quote=FALSE: the former prints factor lev-
els with double quotes; the latter prints them without quotes;

− sep="": between the double quotes you put the single character that
delimits columns; the default " " means a space, what you should use is
"\t", i.e. tabs;

− eol="\n": between the double quotes you put the single character that
separates lines from each other (eol for end of line); the default "\n"
means newline;

− dec="." (the default): the decimal separator;

− row.names=TRUE (the default) or row.names=FALSE: whether you want
row names or not;

− col.names=TRUE (the default) or col.names=FALSE: whether you want
column names or not.

Given these default settings and under the assumption that your operat-

ing system uses an English locale, you would save data frames as follows:

> write.table(a1, file.choose(), quote=FALSE, sep="\t",

col.names=NA)¶

5.3. Editing data frames

In this section, we will discuss how you can access parts of data frames and
then how you can edit and change data frames.

Further below, we will discuss many examples in which you have to ac-
cess individual columns or variables of data frames. You can do this in
several ways. The first of these you may have already guessed from look-
ing at how a data frame is shown in R. If you load a data frame with col-
umn names and use str to look at the structure of the data frame, then you
see that the column names are preceded by a “$”. You can use this syntax
to access columns of data frames, as in this example using the file
<_inputfiles/02-5-3_dataframe.csv>.

> rm(list=ls(all=TRUE))¶
> a<-read.delim(file.choose())¶
> a¶
 POS TOKENFREQ TYPEFREQ CLASS

Data frames 89

1 adj 421 271 open
2 adv 337 103 open
3 n 1411 735 open
4 conj 458 18 closed
5 prep 455 37 closed
> a$TOKENFREQ¶
[1] 421 337 1411 458 455
> a$CLASS¶
[1] open open open closed closed
Levels: closed open

You can now use these just like any other vector or factor. For example,

the following line computes token/type ratios of the parts of speech:

> ratio<-a$TOKENFREQ/a$TYPEFREQ; ratio¶
[1] 1.553506 3.271845 1.919728 25.444444 12.297297

You can also use indices in square brackets for subsetting. Vectors and

factors as discussed above are one-dimensional structures, but R allows you
to specify arbitrarily complex data structures. With two-dimensional data
structures, you can also use square brackets, but now you must of course
provide values for both dimensions to identify one or several data points –
just like in a two-dimensional coordinate system. This is very simple and
the only thing you need to memorize is the order of the values – rows, then
columns – and that the two values are separated by a comma. Here are
some examples:

> a[2,3]¶
[1] 103
> a[2,]¶
 POS TOKENFREQ TYPEFREQ CLASS
2 adv 337 103 open
> a[,3]¶
[1] 271 103 735 18 37
> a[2:3,4]¶
[1] open open
Levels: closed open
> a[2:3,3:4]¶
 TYPEFREQ CLASS
2 103 open
3 735 open

Note that row and columns names are not counted. Also note that all

functions applied to vectors above can be used with what you extract out of
a column of a data frame:

> which(a[,2]>450)¶

90 Fundamentals of R

[1] 3 4 5
> a[,3][which(a[,3]>100)]¶
[1] 271 103 735
> a[,3][a[,3]>100]¶
[1] 271 103 735

The most practical way to access individual columns, however, involves

the function attach (and gets undone with detach). I will not get into the
ideological debate about whether one should use attach or rather with,
etc. – if you are interested in that, go to the R-Help list or read ?with…
You get no output, but you can now access any column with its name:

> attach(a)¶
> Class¶
[1] open open open closed closed
Levels: closed open

Note two things. First, if you attach a data frame that has one or more

names that have already been defined as data structures or as columns of
previously attached data frames, you will receive a warning; in such cases,
make sure you are really dealing with the data structures or columns you
want and consider using detach to un-attach the earlier data frame. Second,
when you use attach you are strictly speaking using ‘copies’ of these vari-
ables. You can change those, but these changes do not affect the data frame
they come from.

> CLASS[4]<-NA; CLASS¶
[1] open open open <NA> closed
Levels: closed open
> a¶
 POS TOKENFREQ TYPEFREQ CLASS
1 adj 421 271 open
2 adv 337 103 open
3 n 1411 735 open
4 conj 458 18 closed
5 prep 455 37 closed

Let’s change CLASS back to its original state:

> CLASS[4]<-"closed"¶

If you want to change the data frame a, then you must make your

changes in a directly, e.g. with a$CLASS[4]<-NA¶ or a$TOKENFREQ[2]<-
338¶. Given what you have seen in Section 2.4.3, however, this is only
easy with vector or with factors where you do not add a new level – if you

Data frames 91

want to add a new factor level, you must define that level first.
Sometimes you will need to investigate only a part of a data frame –

maybe a set of rows, or a set of columns, or a matrix within a data frame.
Also, a data frame may be so huge that you only want to keep one part of it
in memory. As usual, there are several ways to achieve that. One uses indi-
ces in square brackets with logical conditions or which. Either you have
already used attach and can use the column names directly or not:

> b<-a[CLASS=="open",]; b¶
 POS TOKENFREQ TYPEFREQ CLASS
1 adj 421 271 open
2 adv 337 103 open
3 n 1411 735 open

> b<-a[a[,4]=="open",]; b¶
 POS TOKENFREQ TYPEFREQ CLASS
1 adj 421 271 open
2 adv 337 103 open
3 n 1411 735 open

(Of course you can also write b<-a[a$Class=="open",]¶.) That is, you

determine all elements of the column called CLASS / the fourth column that
are open, and then you use that information to access the desired rows and
all columns (hence the comma before the closing square bracket). There is
a more elegant way to do this, though, the function subset. This function
takes two arguments: the data structure of which you want a subset and the
logical condition(s) describing which subset you want. Thus, the following
line creates the same structure b as above:

> b<-subset(a, CLASS=="open")¶

The formulation “condition(s)” already indicates that you can of course

use several conditions at the same time.

> b<-subset(a, CLASS=="open" & TOKENFREQ<1000); b¶
 POS TOKENFREQ TYPEFREQ CLASS
1 adj 421 271 open
2 adv 337 103 open
> b<-subset(a, POS %in% c("adj", "adv")); b¶
 POS TOKENFREQ TYPEFREQ CLASS
1 adj 421 271 open
2 adv 337 103 open

As I mentioned above, you will usually edit data frames in a spreadsheet

software or, because the spreadsheet software does not allow for as many

92 Fundamentals of R

rows as you need, in a text editor. For the sake of completeness, let me
mention that R of course also allows you to edit data frames in a spread-
sheet-like format. The function fix takes as argument a data frame and
opens a spreadsheet editor in which you can edit the data frame; you can
even introduce new factor levels without having to define them first. When
you close the editor, R will do that for you.

Finally, let us look at ways in which you can sort data frames. Recall
that the function order creates a vector of positions and that vectors can be
used for sorting. Imagine you wanted to search the data frame a according
to the column CLASS (in alphabetically ascending order), and within Class
according to TOKENFREQ (in descending order). How can you do that?

THINK

BREAK

The problem is both sorting styles are different: one is decreasing=

FALSE, the other is decreasing=TRUE. What you can do is apply order not
to TOKENFREQ, but to the negative values of TOKENFREQ.

> order.index<-order(CLASS, -TOKENFREQ); order.index¶
[1] 4 5 3 1 2

After that, you can use the vector order.index to sort the data frame:

> a[order.index,]¶
 POS TOKENFREQ TYPEFREQ CLASS
4 conj 458 18 closed
5 prep 455 37 closed
3 n 1411 735 open
1 adj 421 271 open
2 adv 337 103 open

Of course you can do that in just one line:12

> a[order(CLASS, -TOKENFREQ),]¶

You can now also use the function sample to sort the rows of a data

frame randomly (for example, to randomize tables with experimental items;

12. Note that R is superior to many other programs here because the number of sorting

parameters is in principle unlimited.

Data frames 93

cf. above). You first determine the number of rows to be randomized (e.g.,
with nrow or dim) and then combine sample with order. Your data frame
will probably be different because we used a random sampling.

> no.rows<-nrow(a)¶
> order.index<-sample(no.rows); order.index¶
[1] 3 4 1 2 5
> a[order.index,]¶
 POS TOKENFREQ TYPEFREQ CLASS
3 n 1411 735 open
4 conj 458 18 closed
1 adj 421 271 open
2 adv 337 103 open
5 prep 455 37 closed

> a[sample(nrow(a)),] # in just one line¶

But what do you do when you need to sort a data frame according to

several factors – some in ascending and some in descending order? You
can of course not use negative values of factor levels – what would -open
be? Thus, you first use the function rank, which rank-orders factor levels,
and then you can use negative values of these ranks:

> order.index<-order(-rank(CLASS), -rank(POS))¶
> a[order.index,]¶
 POS TOKENFREQ TYPEFREQ CLASS
3 n 1411 735 open
2 adv 337 103 open
1 adj 421 271 open
5 prep 455 37 closed
4 conj 458 18 closed

Recommendation(s) for further study

− the function is.data.frame to test if a data structure is a data frame

− the function dim for the number of rows and columns of a data frame

− the functions read.csv and read.csv2 to read in tab-delimited files

− the function save to save data structures in a compressed binary format

− the function with to access columns of a data frame without attach

− the functions cbind and rbind to combine vectors and factors in a
columnwise or rowwise way

− the function merge to combine different data frames

− the function complete.cases to test which rows of a data frame contain
missing data / NA

94 Fundamentals of R

6. Some programming: conditionals and loops

So far, we have focused on simple and existing functions but we have done
little to explore the programming-language character of R. This section will
introduce a few very powerful notions that allow you to make R decide
which of two or more user-specified things to do and/or do something over
and over again. In Section 2.6.1, we will explore the former, Section 2.6.2
then discusses the latter, but the treatment here can only be very brief and I
advise you to explore some of the reading suggestions for more details.

6.1. Conditional expressions

Later, you will often face situations where you want to pursue one of sev-
eral possible options in a statistical analysis. In a plot, for example, the data
points for male subjects should be plotted in blue and the data points for
female subjects should be plotted in pink. Or, you actually only want R to
generate a plot when the result is significant but not, when it is not. In gen-
eral, you can of course always do these things stepwise yourself: you could
decide for each analysis yourself whether it is significant and then generate
a plot when it is. However, a more elegant way is to write R code that
makes decisions for you, that you can apply to any data set, and that, there-
fore, allows you to recycle code from one analysis to the next. Conditional
expressions are one way – others are available and sometimes more elegant
– to make R decide things. This is what the syntax can look like in a nota-
tion often referred to as pseudo code (so, no need to enter this into R!):

if (some logical expression testing a condition) {
 what to do if this logical expression evaluates to TRUE
 (this can be more than one line)
} else if (some other logical expression) {
 what to do if this logical expression evaluates to FALSE
 (this can be more than one line)
} else {
 what to do if all logical expressions above evaluate to

FALSE
}

That’s it, and the part after the first } is even optional. Here’s an exam-

ple with real code (recall, "\n" means ‘a new line’):

> pvalue<-0.06¶
> if (pvalue>=0.05) {¶

Conditional expressions and loops 95

+ cat("Not significant, p =", pvalue, "\n")¶
+ } else {¶
+ cat("Significant, p =", pvalue, "\n")¶
+ }¶
Not significant, p = 0.06

The first line defines a p-value, which you will later get from a statisti-

cal test. The next line tests whether that p-value is greater than or equal to
0.05. It is, which is why the code after the first opening { is executed and
why R then never gets to see the part after else.

If you now set pvalue to 0.04 and run the if expression again, then this
happens: Line 2 from above tests whether 0.04 is greater than or equal to
0.05. It is not, which is why the block of code between { and } before else
is skipped and why the second block of code is executed. Try it.

A short version of this can be extremely useful when you have many
tests to make but only one instruction for both when a test returns TRUE or
FALSE. It uses the function ifelse, here represented schematically again:

ifelse(logical expression, what when TRUE, what when FALSE)

And here’s an application:

> pvalues<-c(0.02, 0.00096, 0.092, 0.4)¶
> decisions<-ifelse (pvalues<0.05, "*", "ns")¶
> decisions¶
[1] "*" "*" "ns" "ns"

As you can see, ifelse tested all four values of pvalues against the

threshold value of 0.05, and put the correspondingly required values into
the new vector decisions. We will use this a lot to customize graphs.

6.2. Loops

Loops are useful to have R execute one or (many) more functions multiple
times. Like many other programming languages, R has different types of
loops, but I will only discuss for-loops here. This is the general syntax in
pseudo code:

for (some.name in a.sequence) {
 what to do as often often as a.sequence has elements
 (this can be more than one line)
}

96 Fundamentals of R

Let’s go over this step by step. The data structure some.name stands for
any name you might wish to assign to a data structure that is processed in
the loop, and a.sequence stands for anything that can be interpreted as a
sequence of values, most typically a vector of length 1 or more. This
sounds more cryptic than it actually is, here’s a very easy example:

> for (counter in 1:3) {¶
+ cat("This is iteration number", counter, "\n")¶
+ }¶
This is iteration number 1
This is iteration number 2
This is iteration number 3

When R enters the for-loop, it assigns to counter the first value of the

sequence 1:3, i.e. 1. Then, in the only line in the loop, R prints some sen-
tence and ends it with the current value of counter, 1, and a line break.
Then R reaches the } and, because counter has not yet iterated over all
values of a.sequence, re-iterates, which means it goes back to the begin-
ning of the loop, this time assigning to counter the next value of
a.sequence, i.e., 2, and so on. Once R has printed the third line, it exits the
loop because counter has now iterated over all elements of a.sequence.

Here is a more advanced example, but one that is typical of what we’re
going to use loops for later. Can you see what it does just from the code?

> some.numbers<-1:100¶
> collector<-vector(length=10)¶
> for (i in 1:10) {¶
+ collector[i]<-mean(sample(some.numbers, 50))¶
+ }¶
> collector¶
[1] 50.78 51.14 45.04 48.04 55.30 45.90 53.02 48.40 50.38

49.88

THINK

BREAK

The first line generates a vector some.numbers with the values from 1

to 100. The second line generates a vector called collector which has 10
elements and which will be used to collect results from the looping. Line 3
begins a loop of 10 iterations, using a vector called i as the counter. Line 4
is the crucial one now: In it, R samples 50 numbers randomly without re-
placement from the vector some.numbers, computes the mean of these 50

Conditional expressions and loops 97

numbers, and then stores that mean in the i-th slot of collector. On the first
iteration, i is of course 1 so the first mean is stored in the first slot of col-
lector. Then R iterates, i becomes 2, R generates a second random sam-
ple, computes its mean, and stores it in the – now – 2nd slot of collector,
and so on, until R has done the sampling, averaging, and storing process 10
times and exits the loop. Then, the vector collector is printed on the
screen.

In Chapter 4, we will use an approach like this to help us explore data
that violate some of the assumptions of common statistical tests. However,
it is already worth mentioning that loops are often not the best way to do
things like the above in R: in contrast to some other programming lan-
guages, R is designed such that it is often much faster and more memory-
efficient to do things not with loops but with members of the apply family
of functions, which you will get to know a bit later. Still, being able to
quickly write a loop and test something is often a very useful skill.

Recommendation(s) for further study

− the functions next and break to control behavior of/in loops

7. Writing your own little functions

The fact that R is not just a statistics software but a full-fledged program-
ming language is something that can hardly be overstated enough. It means
that nearly anything is possible: the limit of what you can do with R is not
defined by what the designers of some other software thought you may
want to do – the limit is set pretty much only by your skills and maybe your
RAM/processor (which is one reason why I recommend using R for cor-
pus-linguistic analyses, see Gries 2009a). One aspect making this particu-
larly obvious is how you can very easily write your own functions to facili-
tate and/or automate tedious and/or frequent tasks. In this section, I will
give a few very small examples of the logic of how to write your own func-
tions, mainly because we haven’t dealt with any statistical functions yet.
Don’t despair if you don’t understand these programming issues immedi-
ately – for most of this book, you will not need them, but these capabilities
can come in very handy when you begin to tackle more complex data. Al-
so, in Chapter 3 and 4 I will return to this topic so that you get more prac-
tice in this and end up with a list of useful functions for your own work.

The first example I want to use involves looking at a part of a data
structure. For example, let’s assume you loaded a really long vector (let’s

98 Fundamentals of R

say, 10,000 elements long) and want to check whether you imported it into
R properly. Just printing that onto the screen is somewhat tedious since you
can’t possibly read all 10,000 items (let alone at the speed with which they
are displayed), nor do you usually need all 10,000 items – the first n are
usually enough to see whether your data import was successful. The same
holds for long data frames: you don’t need to see all 1600 rows to check
whether loading it was successful, maybe the first 5 or 6 are sufficient.
Let’s write a function peek that by default shows you the first 6 elements of
each of the data structures you know about: one-dimensional vectors or
factors and two-dimensional data frames.

One good way to approach the writing of functions is to first consider
how you would solve that problem just for a particular data structure, i.e.
outside of the function-writing context, and then make whatever code you
wrote general enough to cover not just the one data structure you just ad-
dressed, but many more. To that end, let’s first load a data frame for this
little example (from <_inputfiles/02-7_dataframe1.csv>):

> into.causatives<-read.delim(file.choose())¶
> str(into.causatives)¶
'data.frame': 1600 obs. of 5 variables:
$ BNC : Factor w/ 929 levels "A06","A08","A0C",..:

1 2 3 4 ...
$ TAG_ING : Factor w/ 10 levels "AJ0-NN1","AJ0-VVG",..:

10 7 10 ...
$ ING : Factor w/ 422 levels "abandon-

ing","abdicating",..: 354 49 382 ...
$ VERB_LEMMA: Factor w/ 208 levels "activate","aggravate",..:

76 126 186 ...
$ ING_LEMMA : Factor w/ 417 levels "abandon","abdicate",..:

349 41 377 ...

Now, you want to work with one-dimensional and two-dimensional vec-

tors, factors, and data frames. How would you get the first six elements of
each of these? That you already know. For vectors or factors you’d write:

vector.or.factor[1:6]

and for data frames you’d write:

data.frame[1:6,]

So, essentially you need to decide what the data structure is of which R

is supposed to display the first n elements (by default 6) and then you sub-
set with either [1:6] or [1:6,]. Since, ultimately, the idea is to have R –

Your own functions 99

not you – decide on the right way of subsetting (depending on the data
structure), you use a conditional expression:

> if (is.data.frame(into.causatives)) {¶
> into.causatives[1:6,]¶
> } else {¶
> into.causatives[1:6]¶
> }¶
 BNC TAG_ING ING VERB_LEMMA ING_LEMMA
1 A06 VVG speaking force speak
2 A08 VBG being nudge be
3 A0C VVG taking talk tak
4 A0F VVG taking bully take
5 A0H VVG trying influence try
6 A0H VVG thinking delude think

To turn this into a function, you wrap a function definition (naming the

function peek) around this piece of code. However, if you use the above
code as is, then this function will use the name into.causatives in the
function definition, which is not exactly very general. As you have seen,
many R functions use x for the main obligatory variable. Following this
tradition, you could write this:

> peek<-function (x) {¶
> if (is.data.frame(x)) {¶
> x[1:6,]¶
> } else {¶
> x[1:6]¶
> }¶
> }¶
> peek(into.causatives)¶

This means, R defines a function called peek that requires an argument,

and that argument is function-internally called x. When you call peek with
some argument – e.g., into.causatives – then R will take the content of
that data structure and, for the duration of the function execution, assign it
to x. Then, within the function R will carry out all of peek with x and re-
turn/output the result, which is the first 6 rows of into.causatives.

It seems like we’re done. However, some things are missing. When you
write a function, it is crucial you make sure it covers all sorts of possibili-
ties or data you may throw at it. After all, you’re writing a function to make
your life easier, to allow you not to have to worry about stuff anymore after
you have thought about it once, namely when you wrote the function.
There are three ways in which the above code should be improved:

− what if the data structure you use peek with is not a vector or a factor or

100 Fundamentals of R

a data frame?

− what if you want to be able to see not 6 but n elements?

− what if the data structure you use peek with has fewer than n elements
or rows?

To address the first possibility, we just add another conditional expres-

sion. So far we only test whether whatever we use peek with is a data
frame – now we also need to check whether, if it is not a data frame,
whether it then is a vector or a factor, and ideally we return some warning
if the data structure is none of the three.

To address the second possibility, we need to be able to tell the function
flexibly how many parts of x we want to see, and the way we tell this to a
function is of course by its arguments. Thus, we add an argument, let’s call
it n, that says how much we want to see of x, but we make 6 the default.

To address the final possibility, we have to make sure that R realizes
how many elements x has: if it has more than n, R should show n, but if it
has fewer than n, R should show as many as it can, i.e., all of them.

This version of peek addresses all of these issues:

> peek< function (x, n=6) {¶
> if (is.data.frame(x)) {¶
> return(x[1:min(nrow(x), n),])¶
> } else if (is.vector(x) | is.factor(x)) {¶
> return(x[1:min(length(x), n)])¶
> } else {¶
> cat("Not defined for other data structures ...\n")¶
> }¶
> }¶

Issue number one is addressed by adding a second conditional with the

else if test – recall the use of | to mean ‘or’ – and outputting a message if
x is neither a vector, factor, or a data frame.

Issue number two is addressed by adding the argument n to the function
definition and using n in the body of the function. The argument n is set to
6 by default, so if the user does not specify n, 6 is used, but the user can
also override this with another number.

The final issue is addressed by tweaking the subsetting: instead of using
just n, we use 1: the minimum of n or the number of elements x has. Thus,
if x has more than n elements, then n will be the minimum and we get to
see n elements, and if x has less than n elements, then that number of ele-
ments will be the minimum and we get to see them all.

Finally, also note that I am now using the function return to specify

Your own functions 101

exactly what peek should return and output to the user when it’s done. Try
the following lines (output not shown here and see the comments in the
code file) to see that it works:

> peek(into.causatives)¶
> peek(into.causatives, 3)¶
> peek(into.causatives, 9)¶
> peek(21:50, 10)¶
> peek(into.causatives$BNC, 12)¶
> peek(as.matrix(into.causatives))¶

While all this may not seem easy and worth the effort, we will later see

that being able to write your own functions will facilitate quite a few statis-
tical analyses below. Let me also note that this was a tongue-in-cheek ex-
ample: there is actually already a function in R that does what peek does
(and more, because it can handle more data structures) – look up head and
also tail ;-).

Now you should do the exercise(s) for Chapter 2 …

Recommendation(s) for further study

− the functions NA, is.na, NaN, is.nan, na.action, na.omit, and
na.fail on how to handle missing data

− Ligges (2005), Crawley (2007), Braun and Murdoch (2008), Spector
(2008), Gentleman (2009), and Gries (2009a) for more information on
R: Ligges (2005), Braun and Murdoch (2008), and Gentleman (2009) on
R as a (statistical) programming language, Crawley as a very compre-
hensive overview, Spector (2008) on data manipulation in R, and Gries
(2009a) on corpus-linguistic methods with R

Chapter 3

Descriptive statistics

Any 21st century linguist will be required to read about and understand
mathematical models as well as understand statistical methods of analysis.

Whether you are interested in Shakespearean meter, the sociolinguistic
perception of identity, Hindi verb agreement violations, or the perception

of vowel duration, the use of math as a tool of analysis is already here and
its prevalence will only grow over the next few decades. If you're not pre-

pared to read articles involving the term Bayesian, or (p<.01), k-means

clustering, confidence interval, latent semantic analysis, bimodal and uni-

modal distributions, N-grams, etc, then you will be
but a shy guest at the feast of linguistics.

(<http://thelousylinguist.blogspot.com/2010/01/
why-linguists-should-study-math.html>)

In this chapter, I will explain how you obtain descriptive results. In section
3.1, I will discuss univariate statistics, i.e. statistics that summarize the
distribution of one variable, of one vector, of one factor. Section 3.2 then is
concerned with bivariate statistics, statistics that characterize the relation of
two variables, two vectors, two factors to each other. Both sections also
introduce ways of representing the data graphically; many additional
graphs will be illustrated in Chapters 4 and 5.

1. Univariate statistics

1.1. Frequency data

The probably simplest way to describe the distribution of data points are
frequency tables, i.e. lists that state how often each individual outcome was
observed. In R, generating a frequency table is extremely easy. Let us look
at a psycholinguistic example. Imagine you extracted all occurrences of the
disfluencies uh, uhm, and ‘silence’ and noted for each disfluency whether it
was produced by a male or a female speaker, whether it was produced in a
monolog or in a dialog, and how long in milliseconds the disfluency lasted.
First, we load these data from the file <_inputfiles/03-1_uh(m).csv>.

Univariate statistics 103

> UHM<-read.delim(file.choose())¶
> str(UHM)¶
'data.frame': 1000 obs. of 5 variables:
 $ CASE : int 1 2 3 4 5 6 7 8 9 10 ...
 $ SEX : Factor w/ 2 levels "female","male": 2 1 1 1 2 ...
 $ FILLER: Factor w/ 3 levels "silence","uh",..: 3 1 1 3 ...
 $ GENRE : Factor w/ 2 levels "dialog","monolog": 2 2 1 1 ...
 $ LENGTH: int 1014 1188 889 265 465 1278 671 1079 643 ...
> attach(UHM)¶

To see which disfluency or filler occurs how often, you use the function

table, which creates a frequency list of the elements of a vector or factor:

> table(FILLER)¶
FILLER
silence uh uhm
 332 394 274

If you also want to know the percentages of each disfluency, then you

can either do this rather manually or you use the function prop.table,
whose argument is a table generated with table and which returns the per-
centages of the frequencies in that table (cf. also below).

> table(FILLER)/length(FILLER)¶
FILLER
silence uh uhm
 0.332 0.394 0.274
> prop.table(table(FILLER))¶
FILLER
silence uh uhm
 0.332 0.394 0.274

Often, it is also useful to generate a cumulative frequency table of the

observed values or of the percentages. R has a function cumsum, which
successively adds the values of a vector and returns all sums, which is ex-
emplified in the following two lines:

> 1:5¶
[1] 1 2 3 4 5
> cumsum(1:5)¶
[1] 1 3 6 10 15

And of course you can apply cumsum to our tables:

> cumsum(table(FILLER))¶
silence uh uhm
 332 726 1000

104 Descriptive statistics

> cumsum(prop.table(table(FILLER)))¶
silence uh uhm
 0.332 0.726 1.000

Usually, it is instructive to represent the observed distribution graphical-

ly and the sections below introduce a few graphical formats. For reasons of
space, I only discuss some ways to tweak graphs, but you can turn to the
help pages of these functions (using ?…) and Murrell (2011) for more info.

1.1.1. Scatterplots and line plots

Before we begin to summarize vectors and factors graphically in groups of
elements, we discuss how the data points of a vector are plotted individual-
ly. The simplest approach just requires the function plot. This is a very
versatile function, which, depending on the arguments you use with it, cre-
ates many different graphs. (This may be a little confusing at first, but al-
lows for an economical style of working, as you will see later.) If you pro-
vide just one numerical vector as an argument, then R plots a scatterplot,
i.e., a two-dimensional coordinate system in which the values of the vector
are interpreted as coordinates of the y-axis, and the order in which they
appear in the vector are the coordinates of the x-axis. Here’s an example:

> a<-c(1, 3, 5, 2, 4); b<-1:5¶
> plot(a) # left panel of Figure 15¶

Figure 15. Simple scatterplots

Univariate statistics 105

But if you give two vectors as arguments, then the values of the first and
the second are interpreted as coordinates on the x-axis and the y-axis re-
spectively (and the names of the vectors will be used as axis labels):

> plot(a, b) # right panel of Figure 15¶

With the argument type=…, you can specify the kind of graph you want.

The default, which was used because you did not specify anything else, is
type="p" (for points). If you use type="b" (for both), you get points and
lines connecting the points; if you use type="l" (for lines), you get a line
plot; cf. Figure 16. (With type="n", nothing gets plotted into the main
plotting area, but the coordinate system is set up.)

> plot(b, a, type="b") # left panel of Figure 16¶
> plot(b, a, type="l") # right panel of Figure 16¶

Figure 16. Simple line plots

Other simple but useful ways to tweak graphs involve defining labels

for the axes (xlab="…" and ylab="…"), a bold heading for the whole graph
(main="…"), the ranges of values of the axes (xlim=… and ylim=…), and the
addition of a grid (grid()¶). With col="…", you can also set the color of
the plotted element, as you will see more often below.

> plot(b, a, xlab="A vector b", ylab="A vector a", xlim=c(0,

8), ylim=c(0, 8), type="b"); grid() # Figure 17¶

106 Descriptive statistics

Figure 17. A scatterplot exemplifying a few simple plot settings

An important rule of thumb is that the ranges of the axes must be chosen

such that the distribution of the data is represented most meaningfully. It is
often useful to include the point (0, 0) within the ranges of the axes and to
make sure that graphs to be compared have the same and sufficient axis
ranges. For example, if you want to compare the ranges of values of two
vectors x and y in two graphs, then you usually may not want to let R de-
cide on the ranges of axes. Consider the upper panel of Figure 18.

The clouds of points look very similar and you only notice the distribu-
tional difference between x and y when you specifically look at the range
of values on the y-axis. The values in the upper left panel range from 0 to 2
but those in the upper right panel range from 0 to 6. This difference be-
tween the two vectors is immediately obvious, however, when you use
ylim=… to manually set the ranges of the y-axes to the same range of val-
ues, as I did for the lower panel of Figure 18.

Note: whenever you use plot, by default a new graph is created and the
old graph is lost (In RStudio, you can go back to previous plots, however,
with the arrow button or the menu Plots: …) If you want to plot two lines
into a graph, you first generate the first with plot (and type="l" or
type="b") and then add the second one with points (or lines; sometimes
you can also use the argument add=TRUE). That also means that you must
define the ranges of the axes in the first plot in such a way that the values
of the second graph can also be plotted into it.

Univariate statistics 107

Figure 18. Scatterplots and the importance of properly-defined ranges of axes

An example will clarify that point. If you want to plot the points of the

vectors m and n, and then want to add into the same plot the points of the
vectors x and y, then this does not work, as you can see in the left panel of
Figure 19.

> m<-1:5; n<-5:1¶
> x<-6:10; y<-6:10¶
> plot(m, n, type="b"); points(x, y, type="b"); grid()¶

The left panel of Figure 19 shows the points defined by m and n, but not

those of x and y because the ranges of the axes that R used to plot m and n
are too small for x and y, which is why you must define those manually
while creating the first coordinate system. One way to do this is to use the

108 Descriptive statistics

function max, which returns the maximum value of a vector (and min re-
turns the minimum). The right panel of Figure 19 shows that this does the
trick. (In this line, the minimum is set to 0 manually – of course, you could
also use min(m, x) and min(n, y) for that, but I wanted to include (0, 0)
in the graph.)

Figure 19. Scatterplots and the importance of properly-defined ranges of axes

> plot(m, n, type="b", xlim=c(0, max(m, x)), ylim=

c(0, max(n, y)), xlab="Vectors m and x",
ylab="Vectors n and y"); grid()¶

> points(x, y, type="b")¶

Recommendation(s) for further study
the functions pmin and pmax to determine the minima and maxima at each
position of different vectors (try pmin(c(1, 5, 3), c(2, 4, 6))¶)

1.1.2. Pie charts

The function to generate a pie chart is pie. Its most important argument is a
table generated with table. You can either just leave it at that or, for ex-
ample, change category names with labels=… or use different colors with
col=… etc.:

> pie(table(FILLER), col=c("grey20", "grey50", "grey80"))¶

Univariate statistics 109

Figure 20. A pie chart with the frequencies of disfluencies

One thing that’s a bit annoying about this is that, to use different colors

with col=… as above, you have to know how many colors there are and
assign names to them, which becomes cumbersome with many different
colors and/or graphs. For situations like these, the function rainbow can be
very useful. In its simplest use, it requires only one argument, namely the
number of different colors you want. Thus, how would you re-write the
above line for the pie chart in such a way that you let R find out how many
colors are needed rather than saying col=rainbow(3)?

THINK

BREAK

Let R use as many colors as the table you are plotting has elements:

> pie(table(FILLER), col=rainbow(length(table(FILLER))))¶

Note that pie charts are usually not a good way to summarize data be-

cause humans are not very good at inferring quantities from angles. Thus,
pie is not a function you should use too often – the function rainbow, on
the other hand, is one you should definitely bear in mind.

1.1.3. Bar plots

To create a bar plot, you can use the function barplot. Again, its most
important argument is a table generated with table and again you can cre-
ate either a standard version or more customized ones. If you want to de-
fine your own category names, you unfortunately must use names.arg=…,
not labels=… (cf. Figure 21 below).

110 Descriptive statistics

> barplot(table(FILLER)) # left panel of Figure 21¶
> barplot(table(FILLER), col=c("grey20", "grey40",

"grey60")) # right panel of Figure 21¶

Figure 21. Bar plots with the frequencies of disfluencies

An interesting way to configure bar plots is to use space=0 to have the

bars be immediately next to each other. That is of course not exactly mind-
blowing in itself, but it is one of two ways to make it easier to add further
data/annotation to the plot. For example, you can then easily plot the ob-
served frequencies into the middle of each bar using the function text. The
first argument of text is a vector with the x-axis coordinates of the text to
be printed (with space=0, 0.5 for the middle of the first bar, 1.5 for the
middle of the second bar, and 2.5 for the middle of the third bar), the sec-
ond argument is a vector with the y-axis coordinates of that text (half of
each observed frequency so that the text ends up in the middle of the bars),
and labels=… provides the text to be printed; cf. the left panel of Figure 22.

> barplot(table(FILLER), col=c("grey40", "grey60", "grey80"),

names.arg=c("Silence", "Uh", "Uhm"), space=0)¶
> text(c(0.5, 1.5, 2.5), table(FILLER)/2, labels=

table(FILLER))¶

The second way to create a similar graph – cf. the right panel of Figure

22 – involves some useful changes:

> mids<-barplot(table(FILLER), col=c("grey40", "grey60",

"grey80"))¶
> text(mids, table(FILLER), labels=table(FILLER), pos=1)¶

Univariate statistics 111

Figure 22. Bar plots with the frequencies of disfluencies

The first line now does not just plot the barplot, it also assigns what R

returns to a data structure called mids, which contains the x-coordinates of
the middles of the bars, which we can then use for texting. (Look at mids.)
Second, the second line now uses mids for the x-coordinates of the text to
be printed and it uses pos=1 to make R print the text a bit below the speci-
fied coordinates; pos=2, pos=3, and pos=4 would print the text a bit to the
left, above, and to the right of the specified coordinates respectively.

The functions plot and text allow for another powerful graph: first,
you generate a plot that contains nothing but the axes and their labels (with
type="n", cf. above), and then with text you plot words or numbers. Try
this for an illustration of a kind of plot you will more often see below:

> tab<-table(FILLER)¶
> plot(tab, type="n", xlab="Disfluencies", ylab="Observed

frequencies", xlim=c(0, 4), ylim=c(0, 500)); grid()¶
> text(seq(tab), tab, labels=tab)¶

Recommendation(s) for further study
the function dotchart for dot plot and the parameter settings cex, srt,
col, pch, and font to tweak plots: ?par¶.

1.1.4. Pareto-charts

A related way to represent the frequencies of the disfluencies is a pareto-
chart. In pareto-charts, the frequencies of the observed categories are repre-

112 Descriptive statistics

sented as in a bar plot, but they are first sorted in descending order of fre-
quency and then overlaid by a line plot of cumulative percentages that indi-
cates what percent of all data one category and all other categories to the
left of that category account for. The function pareto.chart comes with
the library qcc that you must (install and/or) load first; cf. Figure 23.

> library(qcc)¶
> pareto.chart(table(FILLER), main=””)¶
Pareto chart analysis for table(FILLER)
 Frequency Cum.Freq. Percentage Cum.Percent.
 uh 394.0 394.0 39.4 39.4
 silence 332.0 726.0 33.2 72.6
 uhm 274.0 1000.0 27.4 100.0

Figure 23. Pareto-chart with the frequencies of disfluencies

1.1.5. Histograms

While bar plots are probably the most frequent forms of representing the
frequencies of nominal/categorical variables, histograms are most wide-
spread for the frequencies of interval/ratio variables. In R, you can use
hist, which just requires the relevant vector as its argument.

> hist(LENGTH)¶

For some ways to make the graph nicer, cf. Figure 24, whose left panel

contains a histogram of the variable LENGTH with axis labels and grey bars.

Univariate statistics 113

> hist(LENGTH, main="", xlab="Length in ms", ylab=
"Frequency", xlim=c(0, 2000), ylim=c(0, 100),
col="grey80")¶

The right panel of Figure 24 contains a histogram of the probability

densities (generated by freq=FALSE) with a curve (generated by lines).

> hist(LENGTH, main="", xlab="Length in ms", ylab="Density",

freq=FALSE, xlim=c(0, 2000), col="grey50")¶
> lines(density(LENGTH))¶

Figure 24. Histograms for the frequencies of lengths of disfluencies

With the argument breaks=… to hist, you can instruct R to try to use a

particular number of bins (or bars). You either provide one integer – then R
tries to create a histogram with as many bins – or you provide a vector with
the boundaries of the bins. The latter raises the question of how many bins
should or may be chosen? In general, you should not have more than 20
bins, and as one rule of thumb for the number of bins to choose you can use
the formula in (14) (cf. Keen 2010:143–160 for discussion). The most im-
portant aspect is that the bins you choose do not misrepresent the data.

(14) Number of bins for a histogram of n data points = 1+3.32·log10 n

114 Descriptive statistics

1.1.6. Empirical cumulatuive distributions

A very useful visualization of numerical data is the empirical cumulative
distribution (function, abbreviated ecdf) plot, an example of which you
have already seen as part of the pareto chart in Section 3.1.1.4. On the x-
axis of an ecdf plot, you find the range of the variable that is visualized, on
the y-axis you find a percentage scale from 0 to 1 (=100%), and the points
in the coordinate system show how much in percent of all data one variable
value and all other smaller values to the left of that value account for. Fig-
ure 25 shows such a plot for LENGTH and you can see that approximately
18% of all lengths are smaller than 500 ms.

Figure 25. Ecdf plot of lengths of disfluencies

This plot is very useful because it does not lose information by binning

data points: every data point is represented in the plot, which is why ecdf
plots can be very revealing even for data that most other graphs cannot
illustrate well. Let’s see whether you’ve understood this plot: what do ecdf
plots of normally-distributed and uniformly-distributed data look like?

THINK

BREAK

Univariate statistics 115

You will find the answer in the code file (with graphs); make sure you
understand why so you can use this very useful type of graph.

Recommendation(s) for further study

− the functions dotchart and stripchart (with method="jitter") to
represent the distribution of individual data points in very efficient ways

− the function scatterplot (from the library car) for more sophisticated
scatterplots

− the functions plot3d and scatterplot3d (from the library rgl and the
library scatterplot3d) for different three-dimensional scatterplots

1.2. Measures of central tendency

Measures of central tendency are probably the most frequently used statis-
tics. They provide a value that attempts to summarize the behavior of a
variable. Put differently, they answer the question, if I wanted to summa-
rize this variable and were allowed to use only one number to do that,
which number would that be? Crucially, the choice of a particular measure
of central tendency depends on the variable’s level of measurement. For
nominal/categorical variables, you should use the mode (if you do not
simply list frequencies of all values/bins anyway, which is often better), for
ordinal variables you should use the median, for interval/ratio variables you
can often use the arithmetic mean.

1.2.1. The mode

The mode of a variable or distribution is the value that is most often ob-
served. As far as I know, there is no function for the mode in R, but you
can find it very easily. For example, the mode of FILLER is uh:

> which.max(table(FILLER))¶
uh
 2
> max(table(FILLER))¶
[1] 394

Careful when there is more than one level that exhibits the maximum

number of observations – tabulating is usually safer.

116 Descriptive statistics

1.2.2. The median

The measure of central tendency for ordinal data is the median, the value
you obtain when you sort all values of a distribution according to their size
and then pick the middle one (e.g., the median of the numbers from 1 to 5
is 3). If you have an even number of values, the median is the average of
the two middle values.

> median(LENGTH)¶
[1] 897

1.2.3. The arithmetic mean

The best-known measure of central tendency is the arithmetic mean for
interval/ratio variables. You compute it by adding up all values of a distri-
bution or a vector and dividing that sum by the number of values, but of
course there is also a function for this:

> sum(LENGTH)/length(LENGTH)¶
[1] 915.043
> mean(LENGTH)¶
[1] 915.043

One weakness of the arithmetic mean is its sensitivity to outliers:

> a<-1:10; a¶
[1] 1 2 3 4 5 6 7 8 9 10
> b<-c(1:9, 1000); b¶
[1] 1 2 3 4 5 6 7 8 9 1000
> mean(a)¶
[1] 5.5
> mean(b)¶
[1] 104.5

Although the vectors a and b differ with regard to only a single value,

the mean of b is much larger than that of a because of that one outlier, in
fact so much larger that b’s mean of 104.5 neither summarizes the values
from 1 to 9 nor the value 1000 very well. There are two ways of handling
such problems. First, you can add the argument trim=…, the percentage of
elements from the top and the bottom of the distribution that are discarded
before the mean is computed. The following lines compute the means of a
and b after the highest and the lowest value have been discarded:

Univariate statistics 117

> mean(a, trim=0.1)¶
[1] 5.5
> mean(b, trim=0.1)¶
[1] 5.5

Second, you can just use the median, which is also a good idea if the da-

ta whose central tendency you want to report are not normally distributed.

> median(a); median(b)¶
[1] 5.5
[1] 5.5

Warning/advice
Just because R or your spreadsheet software can return many decimals does
not mean you have to report them all. Use a number of decimals that makes
sense given the statistic that you report.

1.2.4. The geometric mean

The geometric mean is used to compute averages of factors or ratios
(whereas the arithmetic mean is computed to get the average of sums).
Let’s assume you have six recordings of a child at the ages 2;1 (two years
and one month), 2;2, 2;3, 2;4, 2;5, and 2;6. Let us also assume you had a
vector lexicon that contains the cumulative numbers of different words
(types!) that the child produced at each age:

> lexicon<-c(132, 158, 169, 188, 221, 240)¶
> names(lexicon)<-c("2;1", "2;2", "2;3", "2;4", "2;5",

"2;6")¶

You now want to know the average rate at which the lexicon increased.

First, you compute the successive increases:

> increases<-lexicon[2:6]/lexicon[1:5]; increases¶
 2;2 2;3 2;4 2;5 2;6
1.196970 1.069620 1.112426 1.175532 1.085973

That is, by age 2;2, the child produced 19.697% more types than by age

2;1, by age 2;3, the child produced 6.962% more types than by age 2;2, etc.
Now, you must not think that the average rate of increase of the lexicon is
the arithmetic mean of these increases:

118 Descriptive statistics

> mean(increases) # wrong!¶
[1] 1.128104

You can easily test that this is not the correct result. If this number was

the true average rate of increase, then the product of 132 (the first lexicon
size) and this rate of 1.128104 to the power of 5 (the number of times the
supposed ‘average rate’ applies) should be the final value of 240. This is
not the case:

> 132*mean(increases)^5¶
[1] 241.1681

Instead, you must compute the geometric mean. The geometric mean of

a vector x with n elements is computed according to formula (15), and if
you use this as the average rate of increase, you get the right result:

(15) meangeom = (x1·x2·…·xn-1·xn)
n

1

> rate.increase<-prod(increases)^(1/length(increases));

rate.increase¶
[1] 1.127009
> 132*rate.increase^5¶
[1] 240

True, the difference between 240 – the correct value – and 241.1681 –

the incorrect value – may seem negligible, but 241.1681 is still wrong and
the difference is not always that small, as an example from Wikipedia (s.v.
geometric mean) illustrates: If you do an experiment and get an increase
rate of 10.000 and then you do a second experiment and get an increase rate
of 0.0001 (i.e., a decrease), then the average rate of increase is not approx-
imately 5.000 – the arithmetic mean of the two rates – but 1 – their geomet-
ric mean.13

Finally, let me again point out how useful it can be to plot words or
numbers instead of points, triangles, … Try to generate Figure 26, in which
the position of each word on the y-axis corresponds to the average length of
the disfluency (e.g., 928.4 for women, 901.6 for men, etc.). (The horizontal
line is the overall average length – you may not know yet how to plot that
one.) Many tendencies are immediately obvious: men are below the aver-
age, women are above, silent disfluencies are of about average length, etc.

13. Alternatively, you can compute the geometric mean of increases as follows:

exp(mean(log(increases)))¶.

Univariate statistics 119

Figure 26. Mean lengths of disfluencies

1.3. Measures of dispersion

Most people know what measures of central tendencies are. What many
people do not know is that they should never – NEVER! – report a measure
of central tendency without some corresponding measure of dispersion.
The reason for this rule is that without such a measure of dispersion you
never know how good the measure of central tendency actually is at sum-
marizing the data. Let us look at a non-linguistic example, the monthly
temperatures of two towns and their averages:

> town1<-c(-5, -12, 5, 12, 15, 18, 22, 23, 20, 16, 8, 1)¶
> town2<-c(6, 7, 8, 9, 10, 12, 16, 15, 11, 9, 8, 7)¶
> mean(town1); mean(town2)¶
[1] 10.25
[1] 9.833333

On the basis of the means alone, the towns seem to have a very similar

climate, but even a quick glance at Figure 27 shows that that is not true – in
spite of the similar means, I know where I would want to be in February.
Obviously, the mean of Town 2 summarizes the central tendency of Town
2 much better than the mean of Town 1 does for Town 1: the values of
Town 1 vary much more widely around their mean. Thus, always provide a
measure of dispersion for your measure of central tendency: relative entro-
py for the mode, the interquartile range or quantiles for the median and
interval/ratio-scaled data that are non-normal or exhibit outliers, and the
standard deviation or the variance for normal interval/ratio-scaled data.

120 Descriptive statistics

Figure 27. Temperature curves of two towns

1.3.1. Relative entropy

A simple dispersion measure for categorical data is relative entropy Hrel.
Hrel is 1 when the levels of the relevant categorical variable are all equally
frequent, and it is 0 when all data points have only one and the same varia-
ble level. For categorical variables with n levels, Hrel is computed as shown
in formula (16), in which pi corresponds to the frequency in percent of the
i-th level of the variable:

(16) Hrel =

()

n

pp

n

i

ii

ln

ln
1

∑
=

⋅
−

Thus, if you count the articles of 300 noun phrases and find 164 cases

with no determiner, 33 indefinite articles, and 103 definite articles, this is
how you compute Hrel:

> article<-c(164, 33, 103)¶
> perc<-article/sum(article)¶
> hrel<--sum(perc*log(perc))/log(length(perc)); hrel¶
[1] 0.8556091

It is worth pointing out that the above formula does not produce the de-

Univariate statistics 121

sired result of 0 when only no-determiner cases are observed because
log(0) is not defined:

> article<-c(300, 0, 0)¶
> perc<-article/sum(article)¶
> hrel<--sum(perc*log(perc))/log(length(perc)); hrel¶
[1] NaN

Usually, this is taken care of by simply setting the result of log(0) to

zero (or sometimes also by incrementing all values by 1 before logging).
This is a case where writing a function to compute logarithms that can
handle 0s can be useful. For example, this is how you could define your
own logarithm function logw0 and then use that function instead of log to
get the desired result:

> logw0<-function(x) {¶
+ ifelse (x==0, 0, log(x))¶
+ }¶
> hrel<--sum(perc*logw0(perc))/logw0(length(perc)); hrel¶
[1] 0

Distributions of categorical variables will be dealt with in much more

detail below in Section 4.1.1.2.

1.3.2. The range

The simplest measure of dispersion for interval/ratio data is the range, the
difference of the largest and the smallest value. You can either just use the
function range, which requires the vector in question as its only argument,
and then compute the difference from the two values with diff, or you just
compute the range from the minimum and maximum yourself:

> range(LENGTH)¶
[1] 251 1600
> diff(range(LENGTH))¶
[1] 1349
> max(LENGTH)-min(LENGTH)¶
[1] 1349

This measure is extremely simple to compute but obviously also very

sensitive: one outlier is enough to yield results that are not particularly
meaningful anymore. For this reason, the range is not used very often.

122 Descriptive statistics

1.3.3. Quantiles and quartiles

Another simple but useful and flexible measure of dispersion involves the
quantiles of a distribution. We have met quantiles before in the context of
probability distributions in Section 1.3.4. Theoretically, you compute quan-
tiles by sorting the values in ascending order and then counting which val-
ues delimit the lowest x%, y%, etc. of the data; when these percentages are
25%, 50%, and 75%, then they are called quartiles. In R you can use the
function quantile, (see below on type=1):

> a<-1:100¶
> quantile(a, type=1)¶
 0% 25% 50% 75% 100%
 1 25 50 75 100

If you write the integers from 1 to 100 next to each other, then 25 is the

value that cuts off the lower 25%, etc. The value for 50% corresponds to
the median, and the values for 0% and 100% are the minimum and the
maximum. Let me briefly mention two arguments of this function. First,
the argument probs allows you to specify other percentages. Second, the
argument type=… allows you to choose other ways in which quantiles are
computed. For discrete distributions, type=1 is probably best, for continu-
ous variables the default setting type=7 is best.

> quantile(a, probs=c(0.05, 0.1, 0.5, 0.9, 0.95), type=1)¶
 5% 10% 50% 90% 95%
 5 10 50 90 95

The bottom line of using quantiles as a measure of dispersion of course

is that the more the 25% quartile and the 75% quartile differ from each
other, the more heterogeneous the data are, which is confirmed by looking
at the data for the two towns: the so-called interquartile range – the differ-
ence between the 75% quartile and the 25% quartile – is much larger for
Town 1 than for Town 2.

> quantile(town1)¶
 0% 25% 50% 75% 100%
-12.0 4.0 13.5 18.5 23.0
> IQR(town1)¶
[1] 14.5
> quantile(town2)¶
 0% 25% 50% 75% 100%
 6.00 7.75 9.00 11.25 16.00
> IQR(town2)¶

Univariate statistics 123

[1] 3.5

You can now apply this function to the lengths of the disfluencies:

> quantile(LENGTH, probs=c(0.2, 0.4, 0.5, 0.6, 0.8, 1),

type=1)¶
 20% 40% 50% 60% 80% 100%
 519 788 897 1039 1307 1600

That is, the central 20% of all the lengths of disfluencies are greater than

788 and range up to 1039 (as you can verify with sort(LENGTH)
[401:600]¶), 20% of the lengths are smaller than or equal to 519, 20% of
the values are 1307 or larger, etc.

An interesting application of quantile is to use it to split vectors of
continuous variables up into groups. For example, if you wanted to split the
vector LENGTH into five groups of nearly equal ranges of values, you can
use the function cut from Section 2.4.1 again, which splits up vectors into
groups, and the function quantile, which tells cut what the groups should
look like. That is, there are 200 values of LENGTH between and including
251 and 521 etc.

> LENGTH.GRP<-cut(LENGTH, breaks=quantile(LENGTH, probs=

c(0, 0.2, 0.4, 0.6, 0.8, 1)), include.lowest=TRUE)¶
> table(LENGTH.GRP)¶
LENGTH.GRP
 [251,521] (521,789] (789,1.04e+03]
 200 200 200
(1.04e+03,1.31e+03] (1.31e+03,1.6e+03]
 203 197

1.3.4. The average deviation

Another way to characterize the dispersion of a distribution is the average
deviation. You compute the absolute difference of every data point from
the mean of the distribution (cf. abs), and then you compute the mean of
these absolute differences. For Town 1, the average deviation is 9.04:

> town1¶
 [1] -5 -12 5 12 15 18 22 23 20 16 8 1
> town1-mean(town1)¶
 [1] -15.25 -22.25 -5.25 1.75 4.75 7.75 11.75

12.75 9.75 5.75 -2.25 -9.25
> abs(town1-mean(town1))¶
 [1] 15.25 22.25 5.25 1.75 4.75 7.75 11.75 12.75

124 Descriptive statistics

9.75 5.75 2.25 9.25
> mean(abs(town1-mean(town1)))¶
[1] 9.041667
> mean(abs(town2-mean(town2)))¶
[1] 2.472222

For the lengths of the disfluencies, we obtain:

> mean(abs(LENGTH-mean(LENGTH)))¶
[1] 329.2946

Although this is a quite intuitive measure, it is unfortunately hardly used

anymore. For better or for worse (cf. Gorard 2004), you will more often
find the dispersion measure discussed next, the standard deviation.

1.3.5. The standard deviation/variance

The standard deviation sd of a distribution x with n elements is defined in
(17). This may look difficult at first, but the standard deviation is con-
ceptually similar to the average deviation. For the average deviation, you
compute the difference of each data point to the mean and take its absolute
value – for the standard deviation you compute the difference of each data
point to the mean, square these differences, sum them up, and after dividing
the sum by n-1, you take the square root (to ‘undo’ the previous squaring).

(17) sd =

() 2

1

1

2

1

















−

−

∑
=

n

xx

n

i

i

Once we ‘translate’ this into R, it probably becomes clearer:

> town1¶
 [1] -5 -12 5 12 15 18 22 23 20 16 8 1
> town1-mean(town1)¶
 [1] -15.25 -22.25 -5.25 1.75 4.75 7.75 11.75

12.75 9.75 5.75 -2.25 -9.25
> (town1-mean(town1))^2¶
 [1] 232.5625 495.0625 27.5625 3.0625 22.5625 60.0625

138.0625 162.5625 95.0625 33.0625 5.0625 85.5625
> sum((town1-mean(town1))^2)¶
[1] 1360.25
> sum((town1-mean(town1))^2)/(length(town1)-1)¶

Univariate statistics 125

[1] 123.6591
> sqrt(sum((town1-mean(town1))^2)/(length(town1)-1))¶
[1] 11.12021

There is of course an easier way …

> sd(town1); sd(town2)¶
[1] 11.12021
[1] 3.157483

Note in passing: the standard deviation is the square root of another

measure, the variance, which you can also compute with the function var.

Recommendation(s) for further study
the function mad to compute another very robust measure of dispersion, the
median absolute deviation

1.3.6. The variation coefficient

Even though the standard deviation is probably the most widespread meas-
ure of dispersion, it has a potential weakness: its size is dependent on the
mean of the distribution, as you can see in the following example:

> sd(town1)¶
[1] 11.12021
> sd(town1*10)¶
[1] 111.2021

When the values, and hence the mean, is increased by one order of

magnitude, then so is the standard deviation. You can therefore not com-
pare standard deviations from distributions with different means if you do
not first normalize them. If you divide the standard deviation of a distribu-
tion by its mean, you get the variation coefficient. You see that the varia-
tion coefficient is not affected by the multiplication with 10, and Town 1
still has a larger degree of dispersion.

> sd(town1)/mean(town1)¶
[1] 1.084899
> sd(town1*10)/mean(town1*10)¶
[1] 1.084899
> sd(town2)/mean(town2)¶
[1] 0.3210999

126 Descriptive statistics

1.3.7. Summary functions

If you want to obtain several summarizing statistics for a vector (or a fac-
tor), you can use summary, whose output is self-explanatory.

> summary(town1)¶
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -12.00 4.00 13.50 10.25 18.50 23.00

An immensely useful graph is the so-called boxplot. In its simplest

form, the function boxplot just requires one vector as an argument, but we
also add notch=TRUE, which I will explain shortly, as well as a line that
adds little plus signs for the arithmetic means. Note that I am assigning the
output of boxplot to a data structure called boxsum for later inspection.

> boxsum<-boxplot(town1, town2, notch=TRUE,

names=c("Town 1", "Town 2"))¶
> text(1:2, c(mean(town1), mean(town2)), c("+", "+"))¶

This plot, see Figure 28, contains a lot of valuable information:

− the bold-typed horizontal lines represent the medians of the two vectors;

− the regular horizontal lines that make up the upper and lower boundary
of the boxes represent the hinges (approximately the 75%- and the 25%
quartiles);

Figure 28. Boxplot of the temperatures of the two towns

Univariate statistics 127

− the whiskers – the dashed vertical lines extending from the box until the
upper and lower limit – represent the largest and smallest values that are
not more than 1.5 interquartile ranges away from the box;

− each data point that would be outside of the range of the whiskers would
be represented as an outlier with an individual small circle;

− the notches on the left and right sides of the boxes extend across the
range ±1.58*IQR/sqrt(n): if the notches of two boxplots do not over-
lap, then their medians will most likely be significantly different.

Figure 28 shows that the average temperatures of the two towns are very

similar and probably not significantly different from each other. Also, the
dispersion of Town 1 is much larger than that of Town 2. Sometimes, a
good boxplot nearly obviates the need for further analysis; boxplots are
extremely useful and will often be used in the chapters to follow. However,
there are situations where the ecdf plot introduced above is better and the
following example is modeled after what happened in a real dataset of a
student I supervised. Run the code in the code file and consider Figure 29.

As you could see in the code file, I created a vector x1 that actually con-
tains data from two very different distributions whereas the vector x2 con-
tains data from only one but wider distribution.

Figure 29. Boxplots (left panel) and ecdf plots (right panel) of two vectors

Crucially, the boxplots do not reveal that at all. Yes, the second darker

boxplot is wider and has some outliers but the fact that the first lighter box-

128 Descriptive statistics

plot represents a vector containing data from two different distributions is
completely absent from the graph. The ecdf plots in the right panel show
that very clearly, however: the darker line for the second vector increases
steadily in a way that suggests one normal distribution whereas the lighter
line for the first vector shows that it contains two normal distributions,
given the two s-shaped curve segments. Thus, while the ecdf plot is not as
intuitively understandable as a boxplot, it can be much more informative.

Recommendation(s) for further study
the functions hdr.boxplot (from the library hdrcde), vioplot (from the
library vioplot), and bpplot (from the library Hmisc) for interesting alter-
natives to, or extensions of, boxplots

1.3.8. The standard error

The standard error of an arithmetic mean is defined as the standard devia-
tion of the means of equally large samples drawn randomly from a popula-
tion with replacement. Imagine you took a sample from a population and
computed the arithmetic mean of some variable. Unless your sample is
perfectly representative of the population, this mean will not correspond
exactly to the arithmetic mean of that variable in the population, and it will
also not correspond exactly to the arithmetic mean you would get from
another equally large sample from the same population. If you take many
(e.g., 10,000) random and equally large samples from the population with
replacement and computed the arithmetic mean of each of them, then the
standard deviation of all these means is the standard error.

> means<-vector(length=10000)¶
> for (i in 1:10000) {¶
+ means[i]<-mean(sample(LENGTH, size=1000, replace=TRUE))¶
+ }¶
> sd(means)¶
[1] 12.10577

The standard error of an arithmetic mean is computed according to the

formula in (18), and from (18) you can already see that the larger the stand-
ard error of a mean, the smaller the likelihood that that mean is a good es-
timate of the population mean, and that the larger sample size n, the smaller
the standard error becomes:

Univariate statistics 129

(18) semean =
n

sd

n

var
=

Thus, the standard error of the mean length of disfluencies here is this,

which is very close to our resampled result from above.

> mean(LENGTH)¶
[1] 915.043
> sqrt(var(LENGTH)/length(LENGTH))¶
[1] 12.08127

You can also compute standard errors for statistics other than arithmetic

means but the only other example we look at here is the standard error of a
relative frequency p, which is computed according to the formula in (19):

(19) sepercentage =
()
n

pp −⋅ 1

Thus, the standard error of the percentage of all silent disfluencies out

of all disfluencies (33.2% of 1000 disfluencies) is:

> prop.table(table(FILLER))¶
FILLER
silence uh uhm
 0.332 0.394 0.274
> sqrt(0.332*(1-0.332)/1000)¶
[1] 0.01489215

Standard errors will be much more important in Section 3.1.5 because

they are used to compute so-called confidence intervals. Note that when
you compare means of two roughly equally large samples and their inter-
vals means±standard errors overlap, then you know the sample means are
not significantly different. However, if these intervals do not overlap, this
does not show that the means are significantly different (cf. Crawley 2005:
169f.). In Chapter 5, you will also get to see standard errors of differences
of means, which are computed according to the formula in (20).

(20) sedifference between means =
2

2_

2

1_ groupmeangroupmean SESE +

130 Descriptive statistics

Warning/advice
Standard errors are only really useful if the data to which they are applied
are distributed pretty normally or when the sample size n ≥ 30.

1.4. Centering and standardization (z-scores)

Very often it is useful or even necessary to compare values coming from
different scales. An example (from Bortz 2005): if a student X scored 80%
in a course and a student Y scored 60% in another course, can you then say
that student X was better than student Y? On the one hand, sure you can:
80% is better than 60%. On the other hand, the test in which student Y
participated could have been much more difficult than the one in which
student X participated. It can therefore be useful to relativize/normalize the
individual grades of the two students on the basis of the overall perfor-
mance of students in their courses. (You encountered a similar situation
above in Section 3.1.3.6 when you learned that it is not always appropriate
to compare different standard deviations directly.) Let us assume the grades
obtained in the two courses look as follows:

> grades.course.X<-rep((seq(0, 100, 20)), 1:6);

grades.course.X¶
[1] 0 20 20 40 40 40 60 60 60 60 80 80 80 80

80 100 100 100 100 100 100
> grades.course.Y<-rep((seq(0, 100, 20)), 6:1);

grades.course.Y¶
[1] 0 0 0 0 0 0 20 20 20 20 20 40 40 40

40 60 60 60 80 80 100

One way to normalize the grades is called centering and simply in-

volves subtracting from each individual value within one course the aver-
age of that course.

> a<-1:5¶
> centered.scores<-a-mean(a); centered.scores¶
[1] -2 -1 0 1 2

You can see how these scores relate to the original values in a: since the

mean of a is obviously 3, the first two centered scores are negative (i.e.,
smaller than a’s mean), the third is 0 (it does not deviate from a’s mean),
and the last two centered scores are positive (i.e., larger than a’s mean).

Another more sophisticated way involves standardizing, i.e. trans-

Univariate statistics 131

forming the values to be compared into so-called z-scores, which indicate
how many standard deviations each value of the vector deviates from the
mean of the vector. The z-score of a value from a vector is the difference of
that value from the mean of the vector, divided by the vector’s standard
deviation. You can compute that manually as in this simple example:

> z.scores<-(a-mean(a))/sd(a); z.scores¶
[1] -1.2649111 -0.6324555 0.0000000 0.6324555 1.2649111

The relationship between the z-scores and a’s original values is very

similar to that between the centered scores and a’s values: since the mean
of a is obviously 3, the first two z-scores are negative (i.e., smaller than a’s
mean), the third z-score is 0 (it does not deviate from a’s mean), and the
last two z-scores are positive (i.e., larger than a’s mean). Note that such z-
scores have a mean of 0 and a standard deviation of 1:

> mean(z.scores)¶
[1] 0
> sd(z.scores)¶
[1] 1

Both normalizations can be performed with the function scale, which

takes three arguments: the vector to be normalized, center=… (the default
is TRUE) and scale=… (the default is TRUE). If you do not provide any ar-
guments other than the vector to be standardized, then scale’s default set-
ting returns a matrix that contains the z-scores and whose attributes corre-
spond to the mean and the standard deviation of the vector:

> scale(a)¶
 [,1]
[1,] -1.2649111
[2,] -0.6324555
[3,] 0.0000000
[4,] 0.6324555
[5,] 1.2649111
attr(,"scaled:center")
[1] 3
attr(,"scaled:scale")
[1] 1.581139

If you set scale to FALSE, then you get centered scores:

> scale(a, scale=FALSE)¶
 [,1]
[1,] -2

132 Descriptive statistics

[2,] -1
[3,] 0
[4,] 1
[5,] 2
attr(,"scaled:center")
[1] 3

If we apply both versions to our example with the two courses, then you

see that the 80% scored by student X is only 0.436 standard deviations (and
13.33 percent points) better than the mean of his course whereas the 60%
scored by student Y is actually 0.873 standard deviations (and 26.67 per-
cent points) above the mean of his course. Thus, X’s score is higher than
Y’s, but if we take the overall results in the two courses into consideration,
then Y’s performance is better; standardizing data is often useful.

1.5. Confidence intervals

In most cases, you are not able to investigate the whole population you are
actually interested in because that population is not accessible and/or too
large so investigating it is impossible, too time-consuming, or too expen-
sive. However, even though you know that different samples will yield
different statistics, you of course hope that your sample would yield a reli-
able estimate that tells you much about the population you are interested in:

− if you find in your sample of 1000 disfluencies that their average length
is approximately 915 ms, then you hope that you can generalize from
that to the population and future investigations;

− if you find in your sample of 1000 disfluencies that 33.2% of these are
silences, then you hope that you can generalize from that to the popula-
tion and future investigations.

So far, we have only discussed how you can compute percentages and

means for samples – the question of how valid these are for populations is
the topic of this section. In Section 3.1.5.1, I explain how you can compute
confidence intervals for arithmetic means, and Section 3.1.5.2 explains how
to compute confidence intervals for percentages. The relevance of such
confidence intervals must not be underestimated: without a confidence
interval it is unclear how well you can generalize from a sample to a popu-
lation; apart from the statistics we discuss here, one can also compute con-
fidence intervals for many others.

Univariate statistics 133

1.5.1. Confidence intervals of arithmetic means

If you compute a mean on the basis of a sample, you of course hope that it
represents that of the population well. As you know, the average length of
disfluencies in our example data is 915.043 ms (standard deviation:
382.04). But as we said above, other samples’ means will be different so
you would ideally want to quantify your confidence in this estimate. The
so-called confidence interval, which is useful to provide with your mean, is
the interval of values around the sample mean around which we will as-
sume there is no significant difference with the sample mean. From the
expression “significant difference”, it follows that a confidence interval is
typically defined as 1-significance level, i.e., typically as 1-0.05 = 0.95.

In a first step, you again compute the standard error of the arithmetic
mean according to the formula in (18).

> se<-sqrt(var(LENGTH)/length(LENGTH)); se¶
[1] 12.08127

This standard error is used in (21) to compute the confidence interval.

The parameter t in formula (21) refers to the distribution mentioned in Sec-
tion 1.3.4.3, and its computation requires the number of degrees of free-
dom. In this case, the number of degrees of freedom df is the length of the
vector-1, i.e. 999. Since you want to compute a t-value on the basis of a p-
value, you need the function qt, and since you want a two-tailed interval –
95% of the values around the observed mean, i.e. values larger and smaller
than the mean – you must compute the t-value for 2.5% (because 2.5% on
both sides result in the desired 5%):

(21) CI = x ±t·SE

> t.value<-qt(0.025, df=999, lower.tail=FALSE); t.value¶
[1] 1.962341

Now you can compute the confidence interval:

> mean(LENGTH)-(se*t.value); mean(LENGTH)+(se*t.value)¶
[1] 891.3354
[1] 938.7506

To do this more simply, you can use the function t.test with the rele-

vant vector and use conf.level=… to define the relevant percentage. R then

134 Descriptive statistics

computes a significance test the details of which are not relevant yet, which
is why we only look at the confidence interval (with $conf.int):

> t.test(LENGTH, conf.level=0.95)$conf.int¶
[1] 891.3354 938.7506
attr(,"conf.level")
[1] 0.95

This confidence interval

identifies a range of values a researcher can be 95% confi-
dent contains the true value of a population parameter (e.g.,
a population mean). Stated in probabilistic terms, the re-
searcher can state there is a probability/likelihood of .95
that the confidence interval contains the true value of the
population parameter. (Sheskin 2011:75; see also Field,
Miles, and Field 2012:45)14

Note that when you compare means of two roughly equally large sam-

ples and their 95%-confidence intervals do not overlap, then you know the
sample means are significantly different and, therefore, you would assume
that there is a real difference between the population means, too. However,
if these intervals do overlap, this does not show that the means are not sig-
nificantly different from each other (cf. Crawley 2005: 169f.).

1.5.2. Confidence intervals of percentages

The above logic with regard to means also applies to percentages. Given a
particular percentage from a sample, you want to know what the corre-
sponding percentage in the population is. As you already know, the per-
centage of silent disfluencies in our sample is 33.2%. Again, you would
like to quantify your confidence in that sample percentage. As above, you
compute the standard error for percentages according to the formula in
(19), and then this standard error is inserted into the formula in (22).

14 A different way of explaining confidence intervals is this: “A common error is to misin-

terpret the confidence interval as a statement about the unknown parameter [here, the
percentage in the population, STG]. It is not true that the probability that a parameter is
included in a 95% confidence interval is 95%. What is true is that if we derive a large
number of 95% confidence intervals, we can expect the true value of the parameter to be
included in the computed intervals 95% of the time” (Good and Hardin 2012:156)

Univariate statistics 135

> se<-sqrt(0.332*(1-0.332)/1000); se¶
[1] 0.01489215

(22) CI = a±z·SE

The parameter z in (22) corresponds to the z-score mentioned above in
Section 1.3.4.3, which defines 5% of the area under a standard normal dis-
tribution – 2.5% from the upper part and 2.5% from the lower part:

> z.score<-qnorm(0.025, lower.tail=FALSE); z.score¶
[1] 1.959964

For a 95% confidence interval for the percentage of silences, you enter:

> z.score<-qnorm(0.025, lower.tail=FALSE)¶
> 0.332-z.score*se; 0.332+z.score*se¶
[1] 0.3028119
[1] 0.3611881

The simpler way requires the function prop.test, which tests whether

a percentage obtained in a sample is significantly different from an ex-
pected percentage. Again, the functionality of that significance test is not
relevant yet, but this function also returns the confidence interval for the
observed percentage. R needs the observed frequency (332), the sample
size (1000), and the probability for the confidence interval. R uses a formu-
la different from ours but returns nearly the same result.

> prop.test(332, 1000, conf.level=0.95)$conf.int¶
[1] 0.3030166 0.3622912
attr(,"conf.level")
[1] 0.95

Recommendation(s) for further study
Dalgaard (2002: Ch. 7.1 and 4.1), Crawley (2005: 167ff.)

Warning/advice
Since confidence intervals are based on standard errors, the warning from
above applies here, too: if data are not normally distributed or the samples
too small, then you should probably use other methods to estimate confi-
dence intervals (e.g., bootstrapping).

136 Descriptive statistics

2. Bivariate statistics

We have so far dealt with statistics and graphs that describe one variable or
vector/factor. In this section, we now turn to methods to characterize two
variables and their relation. We will again begin with frequencies, then we
will discuss means, and finally talk about correlations. You will see that we
can use many functions from the previous sections.

2.1. Frequencies and crosstabulation

We begin with the case of two nominal/categorical variables. Usually, one
wants to know which combinations of variable levels occur how often. The
simplest way to do this is cross-tabulation. Let’s return to the disfluencies:

> UHM<-read.delim(file.choose())¶
> attach(UHM)¶

Let’s assume you wanted to see whether men and women differ with re-

gard to the kind of disfluencies they produce. First two questions: are there
dependent and independent variables in this design and, if so, which?

THINK

BREAK

In this case, SEX is the independent variable and FILLER is the depend-

ent variable. Computing the frequencies of variable level combinations in R
is easy because you can use the same function that you use to compute
frequencies of an individual variable’s levels: table. You just give table a
second vector or factor as an argument and R lists the levels of the first
vector in the rows and the levels of the second in the columns:

> freqs<-table(FILLER, SEX); freqs¶
 SEX
FILLER female male
 silence 171 161
 uh 161 233
 uhm 170 104

In fact you can provide even more vectors to table, just try it out, and

Bivariate statistics 137

we will return to this below. Again, you can create tables of percentages
with prop.table, but with two-dimensional tables there are different ways
to compute percentages and you can specify one with margin=…. The de-
fault is margin=NULL, which computes the percentages on the basis of all
elements in the table. In other words, all percentages in the table add up to
1. Another possibility is to compute row percentages: set margin=1 and
you get percentages that add up to 1 in every row. Finally, you can choose
column percentages by setting margin=2: the percentages in each column
add up to 1. This is probably the best way here since then the percentages
adding up to 1 are those of the dependent variable.

> percents<-prop.table(table(FILLER, SEX), margin=2)¶
> percents¶
 SEX
FILLER female male
 silence 0.3406375 0.3232932
 uh 0.3207171 0.4678715
 uhm 0.3386454 0.2088353

You can immediately see that men appear to prefer uh and disprefer

uhm while women appear to have no real preference for any disfluency.
However, we of course do not know yet whether this is a significant result.

The function addmargins outputs row and column totals (or other user-
defined margins, such as means):

> addmargins(freqs) # cf. also colSums and rowSums¶
 SEX
FILLER female male Sum
 silence 171 161 332
 uh 161 233 394
 uhm 170 104 274
 Sum 502 498 1000

Recommendation(s) for further study
the functions xtabs and especially ftable to generate more complex tables

2.1.1. Bar plots and mosaic plots

Of course you can also represent such tables graphically. The simplest way
involves providing a formula as the main argument to plot. Such formulae
consist of a dependent variable (here: FILLER: FILLER), a tilde (“~” mean-
ing ‘as a function of’), and an independent variable (here: GENRE: GENRE).

138 Descriptive statistics

> plot(FILLER~GENRE)¶

The widths and heights of rows, columns, and the six boxes represent

the observed frequencies. For example, the column for dialogs is a little
wider than that for monologs because there are more dialogs in the data; the
row for uh is widest because uh is the most frequent disfluency, etc.

Other similar graphs can be generated with the following lines:

> plot(GENRE, FILLER)¶
> plot(table(GENRE, FILLER))¶
> mosaicplot(table(GENRE, FILLER))¶

These graphs are called stacked bar plots or mosaic plots and are – to-

gether with association plots to be introduced below – often effective ways
of representing crosstabulated data. In the code file for this chapter you will
find R code for another kind of useful graph.

Figure 30. Stacked bar plot / mosaic plot for FILLER~GENRE

2.1.2. Spineplots

Sometimes, the dependent variable is nominal/categorical and the inde-
pendent variable is interval/ratio-scaled. Let us assume that FILLER is the
dependent variable, which is influenced by the independent variable
LENGTH. (This does not make much sense here, we just do this for exposi-

Bivariate statistics 139

tory purposes.) You can use the function spineplot with a formula:

> spineplot(FILLER~LENGTH)¶

The y-axis represents the dependent variable and its three levels. The x-

axis represents the independent ratio-scaled variable, which is split up into
the value ranges that would also result from hist (which also means you
can change the ranges with breaks=…; cf. Section 3.1.1.5 above).

2.1.3. Line plots

Apart from these plots, you can also generate line plots that summarize
frequencies. If you generate a table of relative frequencies, then you can
create a primitive line plot by entering the code shown below.

Figure 31. Spineplot for FILLER~LENGTH

> fill.table<-prop.table(table(FILLER, SEX), 2); fill.table¶
 SEX
FILLER female male
 silence 0.3406375 0.3232932
 uh 0.3207171 0.4678715
 uhm 0.3386454 0.2088353
> plot(fil.table[,1], ylim=c(0, 0.5), xlab="Disfluency",

ylab="Relative frequency", type="b")¶
> points(fil.table[,2], type="b")¶

140 Descriptive statistics

However, somewhat more advanced code in the companion file shows
you how you can generate the graph in Figure 32. (Again, you may not
understand the code immediately, but it will not take you long.)

Warning/advice
Sometimes, it is recommended to not represent such frequency data with a
line plot like this because the lines ‘suggest’ that there are frequency values
between the levels of the categorical variable, which is of course not the
case. Again, you should definitely explore the function dotchart for this.

Figure 32. Line plot with the percentages of the interaction of SEX and FILLER

Recommendation(s) for further study

the function plotmeans (from the library gplots) to plot line plots with
means and confidence intervals

2.2. Means

If the dependent variable is interval/ratio-scaled or ordinal and the inde-
pendent variable is nominal/categorical, then one is often not interested in
the frequencies of particular values of the dependent variable, but its cen-
tral tendencies at each level of the independent variable. For example, you
might want to determine whether men and women differ with regard to the
average disfluency lengths. One way to get these means is the following:

Bivariate statistics 141

> mean(LENGTH[SEX=="female"])¶
[1] 928.3984
> mean(LENGTH[SEX=="male"])¶
[1] 901.5803

This approach is too primitive for three reasons:

− you must define the values of LENGTH that you want to include manual-
ly, which requires a lot of typing (especially when the independent vari-
able has more than two levels or, even worse, when you have more than
one independent variable);

− you must know all relevant levels of the independent variables – other-
wise you couldn’t use them for subsetting in the first place;

− you only get the means of the variable levels you have explicitly asked
for. However, if, for example, you made a coding mistake in one row –
such as entering “malle” instead of “male” – this approach will not
show you that.

Thus, we use an extremely useful function called tapply, which mostly

takes three arguments. The first is a vector or factor to which you want to
apply a function – here, this is LENGTH, to which we want to apply mean.
The second argument is a vector or factor that has as many elements as the
first one and that specifies the groups of values from the first vector/factor
to which the function is to be applied. The last argument is the relevant
function, here mean. We get:

> tapply(LENGTH, SEX, mean)¶
 female male
928.3984 901.5803

Of course the result is the same as above, but you obtained it in a better

way. You can of course use functions other than mean: median, IQR, sd,
var, …, even functions you wrote yourself. For example, what do you get
when you use length? The numbers of lengths observed for each sex.

2.2.1. Boxplots

In Section 3.1.3.7 above, we looked at boxplots, but restricted our attention
to cases where we have one or more dependent variables (such as town1
and town2). However, you can also use boxplots for cases where you have

142 Descriptive statistics

one or more independent variables and a dependent variable. Again, the
easiest way is to use a formula with the tilde meaning ‘as a function of’:

> boxplot(LENGTH~GENRE, notch=TRUE, ylim=c(0, 1600))¶

(If you only want to plot a boxplot and not provide any further argu-

ments, it is actually enough to just enter plot(LENGTH~GENRE)¶: R ‘infers’
you want a boxplot because LENGTH is a numerical vector and GENRE is a
factor.) Again, you can infer a lot from that plot: both medians are close to
900 ms and do most likely not differ significantly from each other (since
the notches overlap). Both genres appear to have about the same amount of
dispersion since the notches, the boxes, and the whiskers are nearly equally
large, and both genres have no outliers.

Figure 33. Boxplot for LENGTH~GENRE

Quick question: can you infer what this line does?

> text(seq(levels(GENRE)), tapply(LENGTH, GENRE, mean), "+")¶

THINK

BREAK

It adds plusses into the boxplot representing the means of LENGTH for

each GENRE: seq(levels(GENRE)) returns 1:2, which is used as the x-

Bivariate statistics 143

coordinates; the tapply code returns the means of LENGTH for each GENRE,
and the "+" is what is plotted.

2.2.2. Interaction plots

So far we have looked at graphs representing one variable or one variable
depending on another variable. However, there are also cases where you
want to characterize the distribution of one interval/ratio-scaled variable
depending on two, say, nominal/categorical variables. You can again obtain
the means of the variable level combinations of the independent variables
with tapply. You must specify the two independent variables in the form
of a list, and the following two examples show you how you get the same
means in two different ways (so that you see which variable goes into the
rows and which into the columns):

> tapply(LENGTH, list(SEX, FILLER), mean)¶
 silence uh uhm
female 942.3333 940.5652 902.8588
male 891.6894 904.9785 909.2788
> tapply(LENGTH, list(FILLER, SEX), mean)¶
 female male
silence 942.3333 891.6894
uh 940.5652 904.9785
uhm 902.8588 909.2788

Such results are best shown in tabular form such that you don’t just pro-

vide the above means of the interactions as they were represented in Figure
32 above, but also the means of the individual variables. Consider Table 17
and the formula in its caption exemplifying the relevant R syntax.

Table 17. Means for LENGTH ~ FILLER * SEX

 SEX: FEMALE SEX: MALE Total

FILLER: SILENCE 942.33 891.69 917.77

FILLER: UH 940.57 904.98 919.52

FILLER: UHM 902.86 909.28 905.3

TOTAL 928.4 901.58 915.04

A plus sign between variables refers to just adding main effects of vari-

ables (i.e., effects of variables in isolation, e.g. when you only inspect the
two means for SEX in the bottom row of totals or the three means for
FILLER in the rightmost column of totals). A colon between variables refers

144 Descriptive statistics

to only the interaction of the variables (i.e., effects of combinations of vari-
ables as when you inspect the six means in the main body of the table
where SEX and FILLER are combined). Finally, an asterisk between varia-
bles denotes both the main effects and the interaction (here, all 12 means).
With two variables A and B, A*B is the same as A + B + A:B.

Now to the results. These are often easier to understand when they are
represented graphically. You can create and configure an interaction plot
manually, but for a quick and dirty glance at the data, you can also use the
function interaction.plot. As you might expect, this function takes at
least three arguments:

− x.factor: a vector/factor whose values/levels are represented on the x-
axis;

− trace.factor: the second argument is a vector/factor whose val-
ues/levels are represented with different lines;

− response: the third argument is a vector whose means for all variable
level combinations will be represented on the y-axis by the lines.

That means, you can choose one of two formats, depending on which

independent variable is shown on the x-axis and which is shown with dif-
ferent lines. While the represented means will of course be identical, I ad-
vise you to always generate and inspect both graphs anyway because one of
the two graphs is usually easier to interpret. In Figure 34, you find both
graphs for the above values and I prefer the lower panel.

> interaction.plot(FILLER, SEX, LENGTH); grid()¶
> interaction.plot(SEX, FILLER, LENGTH); grid()¶

Obviously, uhm behaves differently from uh and silences: the average

lengths of women’s uh and silence are larger than those of men, but the
average length of women’s uhm is smaller than that of men. But now an
important question: why should you now not just report the means you
computed with tapply and the graphs in Figure 34 in your study?

THINK

BREAK

Bivariate statistics 145

Figure 34. Interaction plot for LENGTH ~ FILLER : SEX

First, you should not just report the means like this because I told you to

never ever report means without a measure of dispersion. Thus, when you
want to provide the means, you must also add, say, standard deviations,
standard errors, confidence intervals:

> tapply(LENGTH, list(SEX, FILLER), sd)¶
 silence uh uhm
female 361.9081 397.4948 378.8790
male 370.6995 397.1380 382.3137

146 Descriptive statistics

How do you get the standard errors and the confidence intervals?

THINK

BREAK

> se<-tapply(LENGTH, list(SEX, FILLER), sd)/

sqrt(tapply(LENGTH, list(SEX, FILLER), length)); se¶
 silence uh uhm
female 27.67581 31.32698 29.05869
male 29.21522 26.01738 37.48895

> t.value<-qt(0.025, df=999, lower.tail=FALSE); t.value¶
[1] 1.962341
> tapply(LENGTH, list(SEX, FILLER), mean)-(t.value*se)¶
 silence uh uhm
female 888.0240 879.0910 845.8357
male 834.3592 853.9236 835.7127
> tapply(LENGTH, list(SEX, FILLER), mean)+(t.value*se)¶
 silence uh uhm
female 996.6427 1002.0394 959.882
male 949.0197 956.0335 982.845

And this output immediately shows again why measures of dispersion

are important: the standard deviations are large and the means plus/minus
one standard error overlap (as do the confidence intervals), which shows
that the differences are not significant. You can see this with boxplot,
which allows formulae with more than one independent variable (boxplot(
LENGTH~SEX*FILLER, notch=TRUE)¶, with an asterisk for the interaction).

Second, the graphs should not be used as they are (at least not uncriti-
cally) because R has chosen the range of the y-axis such that it is as small
as possible but still covers all necessary data points. However, this small
range on the y-axis has visually inflated the differences in Figure 34 – a
more realistic representation would have either included the value y = 0 (as
in the first pair of the following four lines) or chosen the range of the y-axis
such that the complete range of LENGTH is included (as in the second pair
of the following four lines):

> interaction.plot(SEX, FILLER, LENGTH, ylim=c(0, 1000))¶
> interaction.plot(FILLER, SEX, LENGTH, ylim=c(0, 1000))¶
> interaction.plot(SEX, FILLER, LENGTH, ylim=range(LENGTH))¶
> interaction.plot(FILLER, SEX, LENGTH, ylim=range(LENGTH))¶

Bivariate statistics 147

2.3. Coefficients of correlation and linear regression

The last section in this chapter is devoted to cases where both the depend-
ent and the independent variable are ratio-scaled. For this scenario we turn
to a new data set. First, we clear our memory of all data structures we have
used so far:

> rm(list=ls(all=TRUE))¶

We look at data to determine whether there is a correlation between the

reaction times in ms of second language learners in a lexical decision task
and the length of the stimulus words. We have

− a dependent ratio-scaled variable: the reaction time in ms
MS_LEARNER, whose correlation with the following independent varia-
ble we are interested in;

− an independent ratio-scaled variable: the length of the stimulus words
LENGTH (in letters).

Such correlations are typically quantified using a so-called coefficient

of correlation r. This coefficient, and many others, are defined to fall in the
range between -1 and +1. Table 18 explains what the values mean: the sign
of a correlation coefficient reflects the direction of the correlation, and the
absolute size reflects the strength of the correlation. When the correlation
coefficient is 0, then there is no correlation between the two variables in
question, which is why H0 says r = 0 – the two-tailed H1 says r ≠ 0.

Table 18. Correlation coefficients and their interpretation

Correlation

coefficient

Labeling the

correlation

Kind of correlation

0.7 < r ≤ 1 very high positive correlation:

the more/higher …, the more/higher …

the less/lower …, the less/lower …
0.5 < r ≤ 0.7 high

0.2 < r ≤ 0.5 intermediate

0 < r ≤ 0.2 low

r ≈ 0 no statistical correlation (H0)

0 > r ≥ -0.2 low negative correlation:

the more/higher …, the less/lower …

the less/lower …, the more/higher …
-0.2 > r ≥ -0.5 intermediate

-0.5 > r ≥-0.7 high

-0.7 > r ≥ -1 very high

148 Descriptive statistics

Let us load and plot the data, using by now familiar lines of code:

> ReactTime<-read.delim(file.choose())¶
> str(ReactTime); attach(ReactTime)¶
'data.frame': 20 obs. of 3 variables:
 $ CASE : int 1 2 3 4 5 6 7 8 9 10 ...
 $ LENGTH : int 14 12 11 12 5 9 8 11 9 11 ...
 $ MS_LEARNER: int 233 213 221 206 123 176 195 207 172 ...
> plot(MS_LEARNER~LENGTH, xlim=c(0, 15), ylim=c(0, 300),

xlab="Word length in letters", ylab="Reaction time of
learners in ms"); grid()¶

Figure 35. Scatterplot15 for MS_LEARNER~LENGTH

What kind of correlation is that, a positive or a negative one?

THINK

BREAK

This is a positive correlation, because we can describe it with a “the

more …, the more …” statement: the longer the word, the longer the reac-
tion time: when you move from the left (short words) to the right (long
words), the reaction times get higher. But we also want to quantify the
correlation and compute the Pearson product-moment correlation r.

15 Check the code file for how to handle overlapping points.

Bivariate statistics 149

First, we do this manually: We begin by computing the covariance of
the two variables according to the formula in (23).

(23) Covariancex, y =

() ()
1

1

−

∑
=

−⋅−

n

yyxx

n

i

ii

As you can see, the covariance involves computing the differences of

each variable’s value from the variable’s mean. For example, when the i-th
value of both the vector x and the vector y are above the averages of x and
y, then this pair of i-th values will contribute a positive value to the covari-
ance. In R, we can compute the covariance manually or with the function
cov, which requires the two relevant vectors:

> covariance<-sum((LENGTH-mean(LENGTH))*(MS_LEARNER-

mean(MS_LEARNER)))/(length(MS_LEARNER)-1)¶
> covariance<-cov(LENGTH, MS_LEARNER); covariance¶
[1] 79.28947

The sign of the covariance already indicates whether two variables are

positively or negatively correlated; here it is positive. However, we cannot
use the covariance to quantify the correlation between two vectors because
its size depends on the scale of the two vectors: if you multiply both vec-
tors with 10, the covariance becomes 100 times as large as before although
the correlation as such has of course not changed:

> cov(MS_LEARNER*10, LENGTH*10)¶
[1] 7928.947

Therefore, we divide the covariance by the product of the standard devi-

ations of the two vectors and obtain r. This is a very high positive correla-
tion, r is close to the theoretical maximum of 1. In R, we can do all this
more efficiently with the function cor. Its first two arguments are the two
vectors in question, and the third specifies the desired kind of correlation:

> covariance/(sd(LENGTH)*sd(MS_LEARNER))¶
[1] 0.9337171
> cor(MS_LEARNER, LENGTH, method="pearson")¶
[1] 0.9337171

The correlation can be investigated more closely, though. We can try to

150 Descriptive statistics

predict values of the dependent variable on the basis of the independent
one. This method is called linear regression. In its simplest form, it in-
volves trying to draw a straight line in such a way that it represents the
scattercloud best. Here, best is defined as ‘minimizing the sums of the
squared vertical distances of the observed y-values (here: reaction times)
and the predicted y-values reflected by the regression line.’ That is, the
regression line is drawn fairly directly through the scattercloud because
then these deviations are smallest. It is defined by a regression equation
with two parameters, an intercept a and a slope b. Without discussing the
relevant formulae here, I immediately explain how to get these values with
R. Using the formula notation you already know, you define and inspect a
so-called linear model using the function lm:

> model<-lm(MS_LEARNER~LENGTH); model¶
Call:
lm(formula = MS_LEARNER ~ LENGTH)
Coefficients:
(Intercept) LENGTH
 93.61 10.30

That is, the intercept – the y-value of the regression line at x = 0 – is

93.61, and the slope of the regression line is 10.3, which means that for
every letter of a word the estimated reaction time increases by 10.3 ms. For
example, our data do not contain a word with 16 letters, but since the corre-
lation between the variables is so strong, we can come up with a good pre-
diction for the reaction time such words might result in:

predicted reaction time = intercept + b · LENGTH

258.41 ≈ 93.61 + 10.3 · 16

> 93.61+10.3*16¶
[1] 258.41

(This prediction of the reaction time is of course overly simplistic as it

neglects the large number of other factors that influence reaction times but
within the current linear model this is how it would be computed.) Alterna-
tively, you can use the function predict, whose first argument is the (line-
ar) model and whose second argument can be a data frame called newdata
that contains a column with values for each independent variable for which
you want to make a prediction. With the exception of differences resulting
from me only using two decimals, you get the same result:

Bivariate statistics 151

> predict(model, newdata=expand.grid(LENGTH=16))¶
[1] 258.4850

The use of expand.grid is overkill here for a data frame with a single

length but I am using it here because it anticipates our uses of predict and
expand.grid below where we can actually get predictions for a large num-
ber of values in one go (as in the following; the output is not shown here):

> predict(model, newdata=expand.grid(LENGTH=1:16))¶

If you only use the model as an argument to predict, you get the values

the model predicts for every observed word length in your data in the order
of the data points (same with fitted).

> round(predict(model), 2)¶
 1 2 3 4 5 6 7 8
237.88 217.27 206.96 217.27 145.14 186.35 176.05 206.96
 9 10 11 12 13 14 15 16
186.35 206.96 196.66 165.75 248.18 227.57 248.18 186.35
 17 18 19 20
196.66 155.44 176.05 206.96

The first value of LENGTH is 14, so the first of the above values is the

reaction time we expect for a word with 14 letters, etc. Since you now have
the needed parameters, you can also draw the regression line. You do this
with the function abline, which either takes a linear model object as an
argument or the intercept and the slope; cf. Figure 36:

> plot(MS_LEARNER~LENGTH, xlim=c(0, 15), ylim=c(0, 300),

xlab="Word length in letters", ylab="Reaction time of
learners in ms"); grid()¶

> abline(model) # abline(93.61, 10.3)¶

It is obvious why the correlation coefficient is so high: the regression

line is an excellent summary of the data points since all points are fairly
close to it. (Below, we will see two ways of making this graph more in-
formative.) We can even easily check how far away every predicted value
is from its observed value.

This difference – the vertical distance between an observed y-value / re-
action time and the y-value on the regression line for the corresponding x-
value – is called a residual, and the function residuals requires just the
linear model object as its argument.

152 Descriptive statistics

Figure 36. Scatterplot with regressions line for MS_LEARNER~LENGTH

> round(residuals(model), 2)¶
 1 2 3 4 5 6 7 8
 -4.88 -4.27 14.04 -11.27 -22.14 -10.35 18.95 0.04
 9 10 11 12 13 14 15 16
-14.35 -6.96 8.34 11.25 7.82 -14.57 7.82 1.65
 17 18 19 20
 -1.66 10.56 6.95 3.04

You can easily test manually that these are in fact the residuals:

> round(MS_LEARNER-(predict(model)+residuals(model)), 2)¶
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 0

Note two important points though: First, regression equations and lines

are most useful for the range of values covered by the observed values.
Here, the regression equation was computed on the basis of lengths be-
tween 5 and 15 letters, which means that it will probably be much less reli-
able for lengths of 50+ letters. Second, in this case the regression equation
also makes some rather non-sensical predictions because theoretically/
mathematically it predicts reactions times of around 0 ms for word lengths
of -9. Such considerations will become important later on.

The correlation coefficient r also allows you to specify how much of the
variance of one variable can be accounted for by the other variable. What
does that mean? In our example, the values of both variables –

Bivariate statistics 153

MS_LEARNER and LENGTH – are not all identical: they vary around their
means and this variation was called dispersion and quantified with the
standard deviation or the variance. If you square r and multiply the result
by 100, then you obtain the amount of variance of one variable that the
other variable accounts for. In our example, r = 0.933, which means that
87.18% of the variance of the reaction times can be accounted for – in a
statistical sense, not necessarily a cause-effect sense – on the basis of the
word lengths. This value, r2, is referred to as coefficient of determination.

Incidentally, I sometimes heard students or colleages compare two r-
values such that they say something like, “Oh, here r = 0.6, nice, that’s
twice as much as in this other data set, where r = 0.3.” Even numerically
speaking, this is at least misleading, if nothing worse. Yes, 0.6 is twice as
high as 0.3, but one should not compare r-values directly like this – one has
to apply the so-called Fisher’s Z-transformation first, which is exemplified
in the following two lines:

> r<-0.3; 0.5*log((1+r)/(1-r))¶
[1] 0.3095196
> r<-0.6; 0.5*log((1+r)/(1-r))¶
[1] 0.6931472
> 0.6931472/0.3095196
[1] 2.239429

Thus, an r-value of 0.6 is twice as high as one of 0.3, but it reflects a

correlation that is in fact nearly 21/4 times as strong. How about writing a
function fisher.z that would compute Z from r for you …

The product-moment correlation r is probably the most frequently used
correlation. However, there are a few occasions on which it should not be
used. First, when the relevant variables are not interval/ratio-scaled but
ordinal or when they are not both normally distributed (cf. below Section
4.4), then it is better to use another correlation coefficient, for example
Kendall’s tau τ. This correlation coefficient is based only on the ranks of
the variable values and thus more suited for ordinal data. Second, when
there are marked outliers in the variables, then you should also use Ken-
dall’s τ, because as a measure that is based on ordinal information only it is,
just like the median, less sensitive to outliers. Cf. Figure 37, which shows a
scatterplot with one noteworthy outlier in the top right corner. If you cannot
justify excluding this data point, then it can influence r very strongly, but
not τ. Pearson’s r and Kendall’s τ for all data points but the outlier are 0.11
and 0.1 respectively, and the regression line with the small slope shows that
there is clearly no correlation between the two variables. However, if we

154 Descriptive statistics

include the outlier, then Pearson’s r suddenly becomes 0.75 (and the re-
gression line’s slope is changed markedly) while Kendall’s τ remains ap-
propriately small: 0.14.

Figure 37. The effect of outliers on r

But how do you compute Kendall’s τ? The computation of Kendall’s τ

is rather complex (especially with larger samples and ties), which is why I
only explain how to compute it with R. The function is actually the same as
for Pearson’s r – cor – but the argument method=… is changed. For our
experimental data we again get a high correlation, which turns out to be a
little bit smaller than r. (Note that correlations are bidirectional – the order
of the vectors does not matter – but linear regressions are not because you
have a dependent and an independent variable and it matters what goes
before the tilde – that which is predicted – and what goes after it.)

> cor(LENGTH, MS_LEARNER, method="kendall")¶
[1] 0.8189904

The previous explanations were all based on the assumption that there is

in fact a linear correlation between the two variables or one that is best
characterized with a straight line. This need not be the case, though, and a
third scenario in which neither r nor τ are particularly useful involves cases
where these assumptions do not hold. Often, this can be seen by just look-
ing at the data. Figure 38 represents a well-known example from
Anscombe (1973) (from <_inputfiles/03-2-3_anscombe.csv>), which has

Bivariate statistics 155

the intriguing characteristics that

− the means and variances of the x-variable;

− the means and variances of the y-variable;

− the correlations and the linear regression lines of x and y;

are all identical although the distributions are obviously very different.

Figure 38. The sensitivity of linear correlations: the Anscombe data

156 Descriptive statistics

In the top left of Figure 38, there is a case where r and τ are unproblem-
atic. In the top right we have a situation where x and y are related in a cur-
vilinear fashion – using a linear correlation here does not make much
sense.16 In the two lower panels, you see distributions in which individual
outliers have a huge influence on r and the regression line. Since all the
summary statistics are identical, this example illustrates most beautifully
how important, in fact indispensable, a visual inspection of your data is,
which is why in the following chapters visual exploration nearly always
precedes statistical computation.

Now you should do the exercise(s) for Chapter 3 …

Warning/advice
Do not let the multitude of graphical functions and settings of R and/or
your spreadsheet software tempt you to produce visual overkill. Just be-
cause you can use 6 different fonts, 10 colors, and cute little smiley sym-
bols does not mean you should: Visualization should help you and/or the
reader understand something otherwise difficult to grasp, which also means
you should make sure your graphs are fairly self-sufficient, i.e. contain all
the information required to understand them (e.g., meaningful graph and
axis labels, legends, etc.) – a graph may need an explanation, but if the
explanation is three quarters of a page, chances are your graph is not help-
ful (cf. Keen 2010: Chapter 1).

Recommendation(s) for further study

− the function s.hist (from the library ade4) and scatterplot (from the
library car) to produce more refined scatterplots with histograms or
boxplots

− Good and Hardin (2012: Ch. 8), Crawley (2007: Ch. 5, 27), Braun and
Murdoch (2008: Section 3.2), and Keen (2010) for much advice to cre-
ate good graphs; cf. also <http://cran.r-project.org/src/contrib/
Views/Graphics.html>

16. I do not discuss nonlinear regressions; cf. Crawley (2007: Ch. 18, 20) for overviews.

Chapter 4

Analytical statistics

The most important questions of life are,
for the most part, really only questions of probability.

Pierre-Simon Laplace
(from <http://www-rohan.sdsu.edu/%7Emalouf/>)

In my description of the phases of an empirical study in Chapter 1, I
skipped over one essential step: how to decide which significance test to
use (Section 1.3.4). In this chapter, I will now discuss this step in some
detail as well as then discuss how to conduct a variety of significance tests
you may want to perform on your data. More specifically, in this chapter I
will explain how descriptive statistics from Chapter 3 are used in the do-
main of hypothesis-testing. For example, in Section 3.1 I explained how
you compute a measure of central tendency (such as a mean) or a measure
of dispersion (such as a standard deviation) for a particular sample. In this
chapter, you will see how you test whether such a mean or such a standard
deviation differs significantly from a known mean or standard deviation or
the mean or standard deviation of a second sample.

However, before we begin with actual tests: how do you decide which
of the many tests out there is required for your hypotheses and data? One
way to try to narrow down the truly bewildering array of tests is to ask
yourself the six questions I will list in (24) to (29) and discuss presently,
and the answers to these questions usually point you to only one or two
tests that you can apply to your data. (A bit later, I will also provide a visu-
al aid for this process.).

Ok, here goes. The first question is shown in (24).

(24) What kind of study are you conducting?

Typically, there are only two possible answers to that question: “hy-
pothesis-generating” and “hypothesis-testing.” The former means that you
are approaching a (typically large) data set with the intentions of detecting
structure(s) and developing hypotheses for future studies; your approach to
the data is therefore data-driven, or bottom-up; an example for this will be
discussed in Section 5.6. The latter is what most of the examples in this

158 Analytical statistics

book are about and means your approach to the data involves specific hy-
potheses you want to test and requires the types of tests in this chapter and
most of the following one.

(25) What kinds of variables are involved in your hypotheses, and how

many?

There are essentially two types of answers. One pertains to the infor-
mation value of the variables and we have discussed this in detail in Sec-
tion 1.3.2.2 above. The other allows for four different possible answers.
First, you may only have one dependent variable, in which case, you nor-
mally want to compute a so-called goodness-of-fit test to test whether the
results from your data correspond to other results (from a previous study)
or correspond to a known distribution (such as a normal distribution). Ex-
amples include

− is the ratio of no-negations (e.g., He is no stranger) and not-negations
(e.g., He is not a stranger) in your data 1 (i.e., the two negation types
are equally likely)?

− does the average acceptability judgment you receive for a sentence cor-
respond to that of a previous study?

Second, you may have one dependent and one independent variable or

you may just have two sets of measurements (i.e. two dependent variables).
In both cases you typically want to compute a monofactorial test for inde-
pendence to determine whether the values of one/the independent variable
are correlated with those of the other/dependent variable. For example,

− does the animacy of the referent of the direct object (a categorical inde-
pendent variable) correlate with the choice of one of two postverbal
constituent orders (a categorical dependent variable)?

− does the average acceptability judgment (a mean of a ratio/interval de-
pendent variable) vary as a function of whether the subjects doing the
rating are native speakers or not (a categorical independent variable)?

Third, you may have one dependent and two or more independent vari-

ables, in which case you want to compute a multifactorial analysis (such as
a multiple regression) to determine whether the individual independent
variables and their interactions correlate with, or predict, the dependent
variable. For example,

Analytical statistics 159

− does the frequency of a negation type (a categorical dependent variable
with the levels NO vs. NOT; cf. above) depend on the mode of communi-
cation (a binary independent variable with the levels SPOKEN vs.
WRITTEN), the type of verb that is negated (a categorical independent
variable with the levels COPULA, HAVE, or LEXICAL), and/or the interac-
tion of these independent variables?

− does the reaction time to a word w in a lexical decision task (a ratio-
scaled dependent variable) depend on the word class of w (a categorical
independent variable), the frequency of w in a reference corpus (a ra-
tio/interval independent variable), whether the subject has seen a word
semantically related to w on the previous trial or not (a binary independ-
ent variable), whether the subject has seen a word phonologically simi-
lar to w on the previous trial or not (a binary independent variable),
and/or the interactions of these independent variables?

Fourth, you have two or more dependent variables, in which case you

may want to perform a multivariate analysis, which can be exploratory
(such as hierarchical cluster analysis, principal components analysis, factor
analysis, multi-dimensional scaling, etc.) or hypothesis-testing in nature
(MANOVA). For example, if you retrieved from corpus data ten words and
the frequencies of all content words occurring close to them, you can per-
form a cluster analysis to see which of the words behave more (or less)
similarly to each other, which often is correlated with semantic similarity.

(26) Are data points in your data related such that you can associate

them to each other meaningfully and in a principled way?

This question is concerned with whether you have what are called inde-
pendent or dependent samples (and brings us back to the notion of inde-
pendence discussed in Section 1.3.4.1). For example, your two samples –
e.g., the numbers of mistakes made by ten male and ten female non-native
speakers in a grammar test – are independent of each other if you cannot
connect each male subject’s value to that of one female subject on a mean-
ingful and principled basis. You would not be able to do so if you randomly
sampled ten men and ten women and let them take the same test.

There are two ways in which samples can be dependent. One is if you
test subjects more than once, e.g., before and after a treatment. In that case,
you could meaningfully connect each value in the before-treatment sample
to a value in the after-treatment sample, namely connect each subject’s two
values. The samples are dependent because, for instance, if subject #1 is

160 Analytical statistics

very intelligent and good at the language tested, then these characteristics
will make his results better than average in both tests, esp. compared to a
subject who is less intelligent and proficient in the language and who will
perform worse in both tests. Recognizing that the samples are dependent
this way will make the test of before-vs.-after treatments more precise.

The second way in which samples may be dependent can be explained
using the above example of ten men and ten women. If the ten men were
the husbands of the ten women, then one would want to consider the sam-
ples dependent. Why? Because spouses are on average more similar to each
other than randomly chosen people: they often have similar IQs, similar
professions, they spend more time with each other than with randomly-
selected people, etc. Thus, one should associate each husband with his
wife, making this two dependent samples.

Independence of data points is often a very important criterion: many
tests assume that data points are independent, and for many tests you must
choose your test depending on what kind of samples you have.

(27) What is the statistic of the dependent variable in the statistical hy-

potheses?

There are essentially five different answers to this question, which were
already mentioned in Section 1.3.2.3 above, too. Your dependent variable
may involve frequencies/counts, central tendencies, dispersions, correla-
tions, or distributions.

(28) What does the distribution of the data or your test statistic look

like? Normal, some other way that can ultimately be described by a
probability function (or a way that can be transformed to look like
a probability function), or some other way?

(29) How big are the samples you collected? n < 30 or n ≥ 30?

These questions relate back to Section 1.3.4, where I explained two
things: First, if your data / test statistics follow a particular probability dis-
tribution, you can often use a computationally simpler parametric test, and
if your data / test statistics don’t, you must often use a non-parametric test.
Second, given sufficient sample sizes, even data from a decidedly non-
normal distribution can begin to look normal and, thus, allow you to apply
parametric tests. It is safer, however, to be very careful and, maybe be con-
servative and run both types of tests.

Let us now use a graph (<sflwr_navigator.png>) that visualizes this pro-

Analytical statistics 161

cess, which you should have downloaded as part of all the files from the
companion website. Let’s exemplify the use of this graph using the above
example scenario: you hypothesize that the average acceptability judgment
(a mean of an ordinal dependent variable) varies as a function of whether
the subjects providing the ratings are native or non-native speakers (a bina-
ry/categorical independent variable).

You start at the rounded red box with approach in it. Then, the above
scenario is a hypothesis-testing scenario so you go down to statistic. Then,
the above scenario involves averages so you go down to the rounded blue
box with mean in it. Then, the hypothesis involves both a dependent and an
independent variable so you go down to the right, via 1 DV 1 IV to the
transparent box with (tests for) independence/difference in it. You got to
that box via the blue box with mean so you continue to the next blue box
containing information value. Now you make two decisions: first, the de-
pendent variable is ordinal in nature. Second, the samples are independent.
Thus, you take the arrow down to the bottom left, which leads to a blue box
with U-test in it. Thus, the typical test for the above question would be the
U-test (to be discussed below), and the R function for that test is already
provided there, too: wilcox.test.

Now, what does the dashed arrow mean that leads towards that box? It
means that you would also do a U-test if your dependent variable was in-
terval/ratio-scaled but violated other assumptions of the t-test. That is,
dashed arrows provide alternative tests for the first-choice test from which
they originate.

Obviously, this graph is a simplification and does not contain every-
thing one would want to know, but I think it can help beginners to make
first choices for tests so I recommend that, as you continue with the book,
you always determine for each section which test to use and how to identify
this on the basis of the graph.

Before we get started, let me remind you once again that in your own
data your nominal/categorical variables should ideally always be coded
with meaningful character strings so that R recognizes them as factors
when reading in the data from a file. Also, I will assume that you have
downloaded the data files from the companion website.

Recommendation(s) for further study
Good and Hardin (2012: Ch. 6) on choosing test statistics

162 Analytical statistics

1. Distributions and frequencies

In this section, I will illustrate how to test whether distributions and fre-
quencies from one sample differ significantly from a known distribution
(cf. Section 4.1.1) or from another sample (cf. Section 4.1.2). In both sec-
tions, we begin with variables from the interval/ratio level of measurement
and then proceed to lower levels of measurement.

1.1. Distribution fitting

1.1.1. One dep. variable (ratio-scaled)

In this section, I will discuss how you compare whether the distribution of
one dependent interval-/ratio-scaled variable is significantly different from
a known distribution. I will restrict my attention to one of the most frequent
cases, the situation where you test whether a variable is normally distribut-
ed (because as mentioned above in Section 1.3.4, many statistical tech-
niques require a normal distribution so you must some know test like this).

We will deal with an example from the first language acquisition of
tense and aspect in Russian. Simplifying a bit here, one can often observe a
relatively robust correlation between past tense and perfective aspect as
well as non-past tenses and imperfective aspect. Such a correlation can be
quantified with Cramer’s V values (cf. Stoll and Gries, 2009, and Section
4.2.1 below). Let us assume you studied how this association – the
Cramer’s V values – changes for one child over time. Let us further assume
you had 117 recordings for this child, computed a Cramer’s V value for
each one, and now you want to see whether these are normally distributed.
This scenario involves

− a dependent interval/ratio-scaled variable called TENSEASPECT, consist-
ing of the Cramer’s V values;

− no independent variable because you are not testing whether the distri-
bution of the variable TENSEASPECT is influenced by, or correlated
with, something else.

You can test for normality in several ways. The test we will use is the

Shapiro-Wilk test (remember: check <sflwr_navigator.png> to see how we
get to this test!), which does not really have any assumptions other than
ratio-scaled data and involves the following procedure:

Distributions and frequencies 163

Procedure

− Formulating the hypotheses
− Visualizing the data
− Computing the test statistic W and p

As always, we begin with the hypotheses:

H0: The data points do not differ from a normal distribution; W = 1.
H1: The data points differ from a normal distribution; W ≠ 1.

First, you load the data from <_inputfiles/04-1-1-1_tense-aspect.csv>
and create a graph; the code for the left panel is shown below but you can
also generate the right panel using the code from the code file.

> RussianTensAsp<-read.delim(file.choose())¶
> attach(RussianTensAsp)¶
> hist(TENSE_ASPECT, xlim=c(0, 1), main=””, xlab="Tense-Apect

correlation", ylab="Frequency") # left panel¶

Figure 39. Histogram of the Cramer’s V values reflecting the strengths of the
tense-aspect correlations

At first glance, this looks very much like a normal distribution, but of

course you must do a real test. The Shapiro-Wilk test is rather cumbersome
to compute semi-manually, which is why its manual computation will not
be discussed here (unlike nearly all other monofactorial tests). In R, how-

164 Analytical statistics

ever, the computation could not be easier. The relevant function is called
shapiro.test and it only requires one argument, the vector to be tested:

> shapiro.test(TENSE_ASPECT)¶
 Shapiro-Wilk normality test
data: TENSE_ASPECT
W = 0.9942, p-value = 0.9132

What does this mean? This simple output teaches an important lesson:

Usually, you want to obtain a significant result, i.e., a p-value that is small-
er than 0.05 because this allows you to accept H1. Here, however, you may
actually welcome an insignificant result because normally-distributed vari-
ables are often easier to handle. The reason for this is again the logic under-
lying the falsification paradigm. When p < 0.05, you reject H0 and accept
H1. But here you ‘want’ H0 to be true because H0 states that the data are
normally distributed. You obtained a p-value of 0.9132, which means you
cannot reject H0 and, thus, consider the data to be normally distributed.
You would therefore summarize this result in the results section of your
paper as follows: “According to a Shapiro-Wilk test, the distribution of this
child’s Cramer’s V values measuring the tense-aspect correlation does not
deviate significantly from normality: W = 0.9942; p = 0.9132.” (In paren-
theses or after a colon you usually mention all statistics that helped you
decide whether or not to accept H1.)

As an alternative to the Shapiro-Wilk test, you can also use a Kolmogo-
rov-Smirnov test for goodness of fit. This test requires the function
ks.test and is more flexible than the Shapiro-Wilk-Test, since it can test
for more than just normality and can also be applied to vectors with more
than 5000 data points. To test the Cramer’s V value for normality, you pro-
vide them as the first argument, then you name the distribution you want to
test against (for normality, "pnorm"), and then, to define the parameters of
the normal distribution, you provide the mean and the standard deviation of
the Cramer’s V values:

> ks.test(TENSE_ASPECT, "pnorm", mean=mean(TENSE_ASPECT),

sd=sd(TENSE_ASPECT))¶
 One-sample Kolmogorov-Smirnov test
data: TENSE_ASPECT
D = 0.078, p-value = 0.4752
alternative hypothesis: two-sided

The result is the same as above: the data do not differ significantly from

normality. You also get a warning because ks.test assumes that no two

Distributions and frequencies 165

values in the input are the same, but here some values (e.g., 0.27, 0.41, and
others) are attested more than once; below you will see a quick and dirty
fix for this problem.

Recommendation(s) for further study

− as alternatives to the above functions, the functions jarqueberaTest
and dagoTest (both from the library fBasics)

− the function mshapiro.test (from the library mvnormtest) to test for
multivariate normality

− the function qqnorm and its documentation (for quantile-quantile plots)
− Crawley (2005: 100f.), Crawley (2007: 316f.), Sheskin (2011: Test 7)

1.1.2. One dep. variable (nominal/categorical)

In this section, we are going to return to an example from Section 1.3, the
constructional alternation of particle placement in English, which is again
represented in (30).

(30) a. He picked up the book. (verb - particle - direct object)
 b. He picked the book up. (verb - direct object - particle)

As you already know, often both constructions are acceptable and native
speakers can often not explain their preference for one of the two. One may
therefore expect that both constructions are equally frequent, and this is
what you are going to test. This scenario involves

− a dependent nominal/categorical variable CONSTRUCTION: VERB-

PARTICLE-OBJECT vs. CONSTRUCTION: VERB-OBJECT-PARTICLE;

− no independent variable, because you do not investigate whether the
distribution of CONSTRUCTION is dependent on anything else.

Such questions are generally investigated with tests from the family of

chi-squared tests, which is one of the most important and widespread tests.
Since there is no independent variable, you test the degree of fit between
your observed and an expected distribution, which should remind you of
Section 3.1.5.2. This test is referred to as the chi-squared goodness-of-fit
test and involves the following steps:

166 Analytical statistics

Procedure

− Formulating the hypotheses
− Computing descriptive statistics and visualizing the data
− Computing the frequencies you would expect given H0
− Testing the assumption(s) of the test:
 − all observations are independent of each other
 − 80% of the expected frequencies are ≥ 517
 − all expected frequencies are > 1
− Computing the contributions to chi-squared for all observed frequencies
− Computing the test statistic χ2, df, and p

The first step is very easy here. As you know, H0 typically postulates

that the data are distributed randomly/evenly, and that means that both
constructions occur equally often, i.e., 50% of the time (just as tossing a
fair coin many times will result in a largely equal distribution). Thus:

H0: The frequencies of the two variable levels of CONSTRUCTION are

identical – if you find a difference in your sample, this difference is
just random variation; nV Part DO = nV DO Part.

H1: The frequencies of the two variable levels of CONSTRUCTION are
not identical; nV Part DO ≠ nV DO Part.

Note that this is a two-tailed H1; no direction of the difference is provid-

ed. Next, you would collect some data and count the occurrences of both
constructions, but we will abbreviate this step and use frequencies reported
in Peters (2001). She conducted an experiment in which subjects described
pictures and obtained the construction frequencies represented in Table 19.

Table 19. Observed construction frequencies of Peters (2001)

Verb - Particle - Direct Object Verb - Direct Object - Particle

247 150

17. This threshold value of 5 is the one most commonly mentioned. There are a few studies

that show that the chi-squared test is fairly robust even if this assumption is violated –
especially when, as is here the case, H0 postulates that the expected frequencies are
equally high (cf. Zar 1999: 470). However, to keep things simple, I stick to the most
common conservative threshold value of 5 and refer you to the literature quoted in Zar.
If your data violate this assumption, then you must compute a binomial test (if, as here,
you have two groups) or a multinomial test (for three or more groups); cf. the recom-
mendations for further study.

Distributions and frequencies 167

Obviously, there is a strong preference for the construction in which the
particle follows the verb directly. At first glance, it seems very unlikely that
H0 could be correct, given these data.

One very important side remark here: beginners often look at something
like Table 19 and say, oh, ok, we have interval/ratio data: 247 and 150.
Why is this wrong?

THINK

BREAK

It’s wrong because Table 19 does not show you the raw data – what it

shows you is already a numerical summary. You don’t have interval/ratio
data – you have an interval/ratio summary of categorical data, because the
numbers 247 and 150 summarize the frequencies of the two levels of the
categorical variable CONSTRUCTION (which you probably obtained from
applying table to a vector/factor). One strategy to not mix this up is to
always conceptually envisage what the raw data table would look like in
the case-by-variable format discussed in Section 1.3.3. In this case, it
would look like this:

Table 20. The case-by-variable version of the data in Table 19

CASE CONSTRUCTION

1 vpo

2 vpo

247 vpo

248 vop

 vop

397 vop

From this format, it is quite obvious that the variable CONSTRUCTION is

categorical. So, don’t mix up interval/ratio summaries of categorical data
with interval/ratio data.

As the first step of our evaluation, you should now have a look at a
graphical representation of the data. A first possibility would be to gener-
ate, say, a dot chart. Thus, you first enter the two frequencies – first the
frequency data, then the names of the frequency data (for the plotting) –
and then you create a dot chart or a bar plot as follows:

168 Analytical statistics

> VPCs<-c(247, 150) # VPCs="verb-particle constructions"¶
> names(VPCs)<-c("V-Part-DO", "V-DO-Part")¶
> dotchart(VPCs, xlim=c(0, 250))¶
> barplot(VPCs)¶

The question now of course is whether this preference is statistically

significant or whether it could just as well have arisen by chance. Accord-
ing to the above procedure, you must now compute the frequencies that
follow from H0. In this case, this is easy: since there are altogether 247+150
= 397 constructions, which should be made up of two equally large groups,
you divide 397 by 2:

> VPCs.exp<-rep(sum(VPCs)/length(VPCs), length(VPCs))¶
> VPCs.exp¶
[1] 198.5 198.5

You must now check whether you can actually do a chi-squared test

here, but the observed frequencies are obviously larger than 5 and we as-
sume that Peters’s data points are in fact independent (because we will
assume that each construction has been provided by a different speaker).
We can therefore proceed with the chi-squared test, the computation of
which is fairly straightforward and summarized in (31).

(31) Pearson chi-squared = χ2 =
()

∑
=

−n

i expected

expectedobserved

1

2

That is to say, for every value of your frequency table you compute a

so-called contribution to chi-squared by (i) computing the difference be-
tween the observed and the expected frequency, (ii) squaring this differ-
ence, and (iii) dividing that by the expected frequency again. The sum of
these contributions to chi-squared is the test statistic chi-squared. Here, it is
approximately 23.7.

(32) Pearson χ2 =
() ()

5.198

5.198150

5.198

5.198247
22

−−
+ ≈ 23.7

> sum(((VPCs-VPCs.exp)^2)/VPCs.exp)¶
[1] 23.70025

Obviously, this value increases as the differences between observed and

Distributions and frequencies 169

expected frequencies increase (because then the numerators become larg-
er). That also means that chi-squared becomes 0 when all observed fre-
quencies correspond to all expected frequencies: then the numerators be-
come 0. Thus, we can simplify our statistical hypotheses to the following:

H0: χ

2 = 0.
H1: χ

2 > 0.

But the chi-squared value alone does not show you whether the differ-
ences are large enough to be statistically significant. So, what do you do
with this value? Before computers became more widespread, a chi-squared
value was used to look up whether the result is significant or not in a chi-
squared table. Such tables typically have the three standard significance
levels in the columns and different numbers of degrees of freedom (df) in
the rows. Df here is the number of categories minus 1, i.e., df = 2-1 = 1,
because when we have two categories, then one category frequency can
vary freely but the other is fixed (so that we can get the observed number of
elements, here 397). Table 21 is one such chi-squared table for the three
significance levels and df = 1 to 3.

Table 21. Critical χ2-values for ptwo-tailed = 0.05, 0.01, and 0.001 for 1 ≤ df ≤ 3

 p = 0.05 p = 0.01 p = 0.001

df = 1 3.841 6.635 10.828

df = 2 5.991 9.21 13.816

df = 3 7.815 11.345 16.266

You can actually generate those values yourself with the function

qchisq. That function requires three arguments:

− p: the p-value(s) for which you need the critical chi-squared values (for
some df);

− df: the df-value(s) for the p-value for which you need the critical chi-
squared value;

− lower.tail=FALSE: the argument to instruct R to only use the area
under the chi-squared distribution curve that is to the right of / larger
than the observed chi-squared value.

> qchisq(c(0.05, 0.01, 0.001), 1, lower.tail=FALSE)¶
[1] 3.841459 6.634897 10.827566

170 Analytical statistics

More advanced users find code to generate all of Table 21 in the code
file. Once you have such a table, you can test your observed chi-squared
value for significance by determining whether it is larger than the chi-
squared value(s) tabulated at the observed number of degrees of freedom.
You begin with the smallest tabulated chi-squared value and compare your
observed chi-squared value with it and continue to do so as long as your
observed value is larger than the tabulated ones. Here, you first check
whether the observed chi-squared is significant at the level of 5%, which is
obviously the case: 23.7 > 3.841. Thus, you can check whether it is also
significant at the level of 1%, which again is the case: 23.7 > 6.635. Thus,
you can finally even check if the observed chi-squared value is maybe even
highly significant, and again this is so: 23.7 > 10.827. You can therefore
reject H0 and the usual way this is reported in your results section is this:
“According to a chi-squared goodness-of-fit test, the frequency distribution
of the two verb-particle constructions deviates highly significantly from the
expected one (χ2 = 23.7; df = 1; ptwo-tailed < 0.001): the construction where
the particle follows the verb directly was observed 247 times although it
was only expected 199 times, and the construction where the particle fol-
lows the direct objet was observed only 150 times although it was expected
199 times.”

With larger and more complex amounts of data, this semi-manual way
of computation becomes more cumbersome (and error-prone), which is
why we will simplify all this a bit. First, you can of course compute the p-
value directly from the chi-squared value using the mirror function of
qchisq, viz. pchisq, which requires the above three arguments:

> pchisq(23.7, 1, lower.tail=FALSE)¶
[1] 1.125825e-06

As you can see, the level of significance we obtained from our stepwise

comparison using Table 21 is confirmed: p is indeed much smaller than
0.001, namely 0.00000125825. However, there is another even easier way:
why not just do the whole test with one function? The function is called
chisq.test, and in the present case it requires maximally three arguments:

− x: a vector with the observed frequencies;

− p: a vector with the expected percentages (not the frequencies!);

− correct=TRUE or correct=FALSE: when the sample size n is small (15
≤ n ≤ 60), it is sometimes recommended to apply a so-called continuity

Distributions and frequencies 171

correction (after Yates); correct=TRUE is the default setting.18

In this case, this is easy: you already have a vector with the observed
frequencies, the sample size n is much larger than 60, and the expected
probabilities result from H0. Since H0 says the constructions are equally
frequent and since there are just two constructions, the vector of the ex-
pected probabilities contains two times 1/2 = 0.5. Thus:

> chisq.test(VPCs, p=c(0.5, 0.5))¶
 Chi-squared test for given probabilities
data: VPCs
X-squared = 23.7003, df = 1, p-value = 1.126e-06

You get the same result as from the manual computation but this time

you immediately also get a p-value. What you do not also get are the ex-
pected frequencies, but these can be obtained very easily, too. The function
chisq.test computes more than it returns. It returns a data structure (a so-
called list) so you can assign a name to this list and then inspect it for its
contents (output not shown):

> test<-chisq.test(VPCs, p=c(0.5, 0.5))¶
> str(test)¶

Thus, if you require the expected frequencies, you just retrieve them

with a $ and the name of the list component you want, and of course you
get the result you already know.

> test$expected¶
[1] 198.5 198.5

Let me finally mention that the above method computes a p-value for a

two-tailed test. There are many tests in R where you can define whether
you want a one-tailed or a two-tailed test. However, this does not work
with the chi-squared test. If you require the critical chi-squared value for
pone-tailed = 0.05 for df = 1, then you must compute the critical chi-squared
value for ptwo-tailed = 0.1 for df = 1 (with qchisq(0.1, 1, lower.tail=
FALSE)¶), since your prior knowledge is rewarded such that a less extreme
result in the predicted direction will be sufficient (cf. Section 1.3.4). Also,
this means that when you need the pone-tailed-value for a chi-square value,
just take half of the ptwo-tailed-value of the same chi-square value. In this

18. For further options, cf. ?chisq.test¶, formals(chisq.test)¶ or args(chisq.test)¶.

172 Analytical statistics

case, if your H1 had been directional, this would have been your p-value.
But again: this works only with df = 1.

> pchisq(23.7, 1, lower.tail=FALSE)/2¶

Warning/advice
Above I warned you to never change your hypotheses after you have ob-
tained your results and then sell your study as successful support of the
‘new’ H1. The same logic does not allow you to change your hypothesis
from a two-tailed one to a one-tailed one because your ptwo-tailed = 0.08 (i.e.,
non-significant) so that the corresponding pone-tailed = 0.04 (i.e., significant).
Your choice of a one-tailed hypothesis must be motivated conceptually.

Another hugely important warning: never ever compute a chi-square
test like the above on percentages – always on ‘real’ observed frequencies!

Recommendation(s) for further study

− the functions binom.test or dbinom to compute binomial tests
− the function prop.test (cf. Section 3.1.5.2) to test relative frequencies /

percentages for deviations from expected frequencies / percentages
− the function dmultinom to help compute multinomial tests
− Baayen (2008: Section 4.1.1), Sheskin (2011: Test 8, 9)

1.2. Tests for differences/independence

In Section 4.1.1, we looked at goodness-of-fit tests for distributions and
frequencies – now we turn to tests for differences/independence.

1.2.1. One dep. variable (ordinal/interval/ratio scaled) and one indep.

 variable (nominal) (indep. samples)

Let us now look at an example in which two independent samples are com-
pared with regard to their overall distributions. You will test whether men
and women differ with regard to the frequencies of hedges they use in dis-
course (i.e., expressions such as kind of or sort of). Again, note that we are
here only concerned with the overall distributions – not just means or just
variances. We could of course do that, too, but it is of course possible that
the means are very similar while the variances are not and a test for differ-

Distributions and frequencies 173

ent means might not uncover the overall distributional difference.
Let us assume you have recorded 60 two-minute conversations between

a confederate of an experimenter, each with one of 30 men and 30 women,
and then counted the numbers of hedges that the male and female subjects
produced. You now want to test whether the distributions of hedge fre-
quencies differs between men and women. This question involves

− an independent nominal/categorical variable, SEX: MALE and SEX:
FEMALE;

− a dependent interval/ratio-scaled: the number of hedges produced:
HEDGES.

The question of whether the two sexes differ in terms of the distribu-

tions of hedge frequencies is investigated with the two-sample Kolmogo-
rov-Smirnov test (again, check <sflwr_navigator.png>):

Procedure

− Formulating the hypotheses
− Computing descriptive statistics and visualizing the data
− Testing the assumption(s) of the test: the data are continuous
− Computing the cumulative frequency distributions for both samples, the

maximal absolute difference D of both distributions, and p

First the hypotheses: the text form is straightforward and the statistical

version is based on a test statistic called D to be explained below

H0: The distribution of the dependent variable HEDGES does not differ

depending on the levels of the independent variable SEX; D = 0.
H1: The distribution of the dependent variable HEDGES differs depend-

ing on the levels of the independent variable SEX; D > 0.

Before we do the actual test, let us again inspect the data graphically.
You first load the data from <_inputfiles/04-1-2-1_hedges.csv>, check the
data structure (I will usually not show that output here in the book), and
make the variable names available.

> Hedges<-read.delim(file.choose())¶
> str(Hedges)¶
> attach(Hedges)¶

174 Analytical statistics

You are interested in the general distribution, so one plot you can create
is a stripchart. In this kind of plot, the frequencies of hedges are plotted
separately for each sex, but to avoid that identical frequencies are plotted
directly onto each other (and can therefore not be distinguished anymore),
you also use the argument method="jitter" to add a tiny value to each
data point, which decreases the chance of overplotted data points (also try
method="stack"). Then, you include the meaningful point of x = 0 on the
x-axis. Finally, with the function rug you add little bars to the x-axis
(side=1) which also get jittered. The result is shown in Figure 40.

> stripchart(HEDGES~SEX, method="jitter", xlim=c(0, 25),

xlab="Number of hedges", ylab="Sex")¶
> rug(jitter(HEDGES), side=1)¶

Figure 40. Stripchart for HEDGES~SEX

It is immediately obvious that the data are distributed quite differently:

the values for women appear to be a little higher on average and more ho-
mogeneous than those of the men. The data for the men also appear to fall
into two groups, a suspicion that also receives some prima facie support
from the following two histograms in Figure 41. (Note that all axis limits
are again defined identically to make the graphs easier to compare.)

> par(mfrow=c(1, 2))¶
> hist(HEDGES[SEX=="M"], xlim=c(0, 25), ylim=c(0, 10), ylab=

"Frequency", main="")¶
> hist(HEDGES[SEX=="F"], xlim=c(0, 25), ylim=c(0, 10), ylab=

"Frequency", main="")¶
> par(mfrow=c(1, 1))¶

Distributions and frequencies 175

Figure 41. Histograms of the number of hedges by men and women

The assumption of continuous data points is not exactly met because

frequencies are discrete – there are no frequencies 3.3, 3.4, etc. – but
HEDGES spans quite a range of values and we could in fact jitter the values
to avoid ties. To test these distributional differences with the Kolmogorov-
Smirnov test, which involves the empirical cumulative distribution of the
data, you first rank-order the data: You sort the values of SEX in the order
in which you need to sort HEDGES, and then do the same to HEDGES itself:

> SEX<-SEX[order(HEDGES)]¶
> HEDGES<-HEDGES[order(HEDGES)]¶

The next step is a little more complex. You must now compute the max-

imum of all differences of the two cumulative distributions of the hedges.
You can do this in three steps: First, you generate a frequency table with
the numbers of hedges in the rows and the sexes in the columns. This table
in turn serves as input to prop.table, which generates a table of column
percentages (hence margin=2; cf. Section 3.2.1, output not shown):

> dists<-prop.table(table(HEDGES, SEX), margin=2); dists¶

This table shows that, say, 10% of all numbers of hedges of men are 4,

but these are of course not cumulative percentages yet. The second step is
therefore to convert these percentages into cumulative percentages. You
can use cumsum to generate the cumulative percentages for both columns
and can even compute the differences in the same line:

176 Analytical statistics

> differences<-cumsum(dists[,1])-cumsum(dists[,2])¶

That is, you subtract from every cumulative percentage of the first col-

umn (the values of the women) the corresponding value of the second col-
umn (the values of the men). The third and final step is then to determine
the maximal absolute difference, which is the test statistic D:

> max(abs(differences))¶
[1] 0.4666667

You can then look up this value in a table for Kolmogorov-Smirnov

tests; for a significant result, the computed value must be larger than the
tabulated one. For cases in which both samples are equally large, Table 22
shows the critical D-values for two-tailed Kolmogorov-Smirnov tests
(computed from Sheskin 2011: Table A23).

Table 22. Critical D-values for two-sample Kolmogorov-Smirnov tests

 p = 0.05 p = 0.01

n1 = n2 = 29 0.3571535 0.428059

n1 = n2 = 30 0.3511505 0.4208642

n1 = n2 = 31 0.3454403 0.4140204

Our value of D = 0.4667 is not only significant (D > 0.3511505), but

even very significant (D > 0.4208642). You can therefore reject H0 and
summarize the results: “According to a two-sample Kolmogorov-Smirnov
test, there is a significant difference between the distributions of hedge
frequencies of men and women: women seem to use more hedges and be-
have more homogeneously than the men, who use fewer hedges and whose
data appear to fall into two groups (D = 0.4667, ptwo-tailed < 0.01).”

The logic of this test is not always immediately clear but worth explor-
ing. To that end, we look at a graphical representation. The following lines
plot the two empirical cumulative distribution functions (ecdf) of men (in
black) and women (in grey) as well as a vertical line at position x = 9,
where the largest difference (D = 0.4667) was found. This graph in Figure
42 below shows what the Kolmogorov-Smirnov test reacts to: different
empirical cumulative distributions.

> plot(ecdf(HEDGES[SEX=="M"]), do.points=TRUE, verticals=

TRUE, main="Hedges: men (black) vs. women (grey)",
xlab="Numbers of hedges")¶

> lines(ecdf(HEDGES[SEX=="F"]), do.points=TRUE, verticals=

Distributions and frequencies 177

TRUE, col="darkgrey")¶
> abline(v=9, lty=2)¶

Figure 42. Empirical cumulative distribution functions of the numbers of hedges
of men (black) and women (grey)

For example, the fact that the values of the women are higher and more

homogeneous is indicated especially in the left part of the graph where the
low hedge frequencies are located and where the values of the men already
rise but those of the women do not. More than 40% of the values of the
men are located in a range where no hedge frequencies for women were
obtained at all. As a result, the largest difference at position x = 9 arises
where the curve for the men has already risen considerably while the curve
for the women has only just begun to take off. This graph also explains
why H0 postulates D = 0. If the curves are completely identical, there is no
difference between them and D becomes 0.

The above explanation simplified things a bit. First, you do not always
have two-tailed tests and identical sample sizes. Second, identical values –
so-called ties – can complicate the computation of this test (and others).
Fortunately, you do not really have to worry about any of this because the
R function ks.test does everything for you in just one line. You just need
the following arguments:19

− x and y: the two vectors whose distributions you want to compare;

19. Unfortunately, the function ks.test does not take a formula as input.

178 Analytical statistics

− alternative="two-sided" for two-tailed tests (the default) or alter-
native="greater" or alternative="less" for one-sided tests de-
pending on which H1 you want to test: the argument alternative="…"
refers to the first-named vector so that alternative="greater" means
that the cumulative distribution function of the first vector is above that
of the second.

When you test a two-tailed H1 as we do here, then the line to enter into

R reduces to the following, and you get the same D-value and the p-value.
(I omitted the warning about ties here but, again, you can use jitter to get
rid of it; cf. the code file.)

> ks.test(HEDGES[SEX=="M"], HEDGES[SEX=="F"])¶
 Two-sample Kolmogorov-Smirnov test
data: HEDGES[SEX == "M"] and HEDGES[SEX == "F"]
D = 0.4667, p-value = 0.002908
alternative hypothesis: two-sided

Recommendation(s) for further study

− apart from the function mentioned in the text (plot(ecdf(…)), you can
create such graphs also with plot.stepfun

− Crawley (2005: 100f.), Crawley (2007: 316f.), Baayen (2008: Section
4.2.1), Sheskin (2011: Test 13)

1.2.2. One dep. variable (nominal/categorical) and one indep. variable

 (nominal/categorical) (indep. samples)

In Section 4.1.1.2 above, we discussed how you test whether the distribu-
tion of a dependent nominal/categorical variable is significantly different
from another known distribution. A probably more frequent situation is that
you test whether the distribution of one nominal/categorical variable is
dependent on another nominal/categorical variable.

Above, we looked at the frequencies of the two verb-particle construc-
tions. We found that their distribution was not compatible with H0. Howev-
er, we also saw earlier that there are many variables that are correlated with
the constructional choice. One of these is whether the referent of the direct
object is given information, i.e., known from the previous discourse, or not.
Specifically, previous studies found that objects referring to given referents
prefer the position before the particle whereas objects referring to new ref-
erents prefer the position after the particle. We will look at this hypothesis

Distributions and frequencies 179

(for the sake of simplicity as a two-tailed hypothesis). It involves

− a dependent nominal/categorical variable, namely CONSTRUCTION:
VERB-PARTICLE-OBJECT vs. CONSTRUCTION: VERB-OBJECT-PARTICLE;

− an independent variable nominal/categorical variable, namely the
givenness of the referent of the direct object: GIVENNESS: GIVEN vs.
GIVENNESS: NEW;

− independent samples because we will assume that, in the data below, the
fact any particular constructional choice is unrelated to any other one
(this is often far from obvious, but too complex to be discussed here in
more detail).

As before, such questions are investigated with chi-squared tests: you

test whether the levels of the independent variable result in different fre-
quencies of the levels of the dependent variable. The overall procedure for
a chi-squared test for independence is very similar to that of a chi-squared
test for goodness of fit, but you will see below that the computation of the
expected frequencies is (only superficially) a bit different from above.

Procedure

− Formulating the hypotheses
− Computing descriptive statistics and visualizing the data
− Computing the frequencies you would expect given H0
− Testing the assumption(s) of the test:
 − all observations are independent of each other
 − 80% of the expected frequencies are ≥ 5 (cf. n. 17)
 − all expected frequencies are > 1
− Computing the contributions to chi-squared for all observed frequencies
− Computing the test statistic χ2, df, and p

The hypotheses are simple, especially since we apply what we learned

from the chi-squared test for goodness of fit from above:

H0: The frequencies of the levels of the dependent variable

CONSTRUCTION do not vary as a function of the levels of the inde-
pendent variable GIVENNESS; χ2 = 0.

H1: The frequencies of the levels of the dependent variable
CONSTRUCTION vary as a function of the levels of the independent
variable GIVENNESS; χ2 > 0.

180 Analytical statistics

In order to discuss this version of the chi-squared test, we return to the
data from Peters (2001). As a matter of fact, the above discussion did not
utilize all of Peters’s data because I omitted an independent variable, name-
ly GIVENNESS. Peters (2001) did not just study the frequency of the two
constructions – she studied what we are going to look at here, namely
whether GIVENNESS is correlated with CONSTRUCTION. In the picture-
description experiment described above, she manipulated the variable
GIVENNESS and obtained the already familiar 397 verb-particle construc-
tions, which patterned as represented in Table 23. (By the way, the cells of
such 2-by-2 tables are often referred to with the letters a to d, a being the
top left cell (85), b being the top right cell (65), etc.)

Table 23. Observed construction frequencies of Peters (2001)

 GIVENNESS: GIVEN GIVENNESS: NEW Row totals

CONSTRUCTION:

V DO PART
85 65 150

CONSTRUCTION:

V PART DO
100 147 247

Column totals 185 212 397

First, we explore the data graphically. You load the data from

<_inputfiles/04-1-2-2_vpcs.csv>, create a table of the two factors, and get a
first visual impression of the distribution of the data (cf. Figure 43).

> VPCs<-read.delim(file.choose())¶
> str(VPCs); attach(VPCs)¶
> Peters.2001<-table(CONSTRUCTION, GIVENNESS)¶
> plot(CONSTRUCTION~GIVENNESS)¶

Obviously, the differently-colored areas are differently big between

rows/columns. To test these differences for significance, we need the fre-
quencies expected from H0. But how do we compute the frequencies pre-
dicted by H0? Since this is a central question, we will discuss this in detail.

Let us assume Peters had obtained the totals in Table 24. What would
the distribution following from H0 look like? Above in Section 4.1.1.2, we
said that H0 typically postulates equal frequencies. Thus, you might assume
– correctly – that the expected frequencies are those represented in Table
24. All marginal totals are 100 and every variable has two equally frequent
levels so we have 50 in each cell.

Distributions and frequencies 181

Figure 43. Mosaic plot for CONSTRUCTION~GIVENNESS

Table 24. Fictitious observed construction frequencies of Peters (2001)

 GIVENNESS: GIVEN GIVENNESS: NEW Row totals

CONSTRUCTION:

V DO PART
 100

CONSTRUCTION:

V PART DO
 100

Column totals 100 100 200

Table 25. Fictitious expected construction frequencies of Peters (2001)

 GIVENNESS: GIVEN GIVENNESS: NEW Row totals

CONSTRUCTION:

V DO PART
50 50 100

CONSTRUCTION:

V PART DO
50 50 100

Column totals 100 100 200

The statistical hypotheses that go beyond just stating whether or not χ2 =

0 would then be:

H0: nV DO Part & Ref DO = given = nV DO Part & Ref DO ≠ given = nV Part DO & Ref DO = given

 = nV Part DO & Ref DO ≠ given
H1: as H0, but there is at least one “≠” instead of an “=“.

182 Analytical statistics

However, life is usually not that simple, for example when (a) as in Pe-
ters (2001) not all subjects answer all questions or (b) naturally-observed
data are counted that are not as nicely balanced. Thus, in Peters’s real data,
it does not make sense to simply assume equal frequencies. Put differently,
H0 cannot look like Table 24 because the row totals of Table 23 show that
the different levels of GIVENNESS are not equally frequent. If GIVENNESS
had no influence on CONSTRUCTION, you would expect that the frequencies
of the two constructions for each level of GIVENNESS would exactly reflect
the frequencies of the two constructions in the whole sample. That means
(i) all marginal totals (row/column totals) must remain constant (as they
reflect the numbers of the investigated elements), and (ii) the proportions of
the marginal totals determine the cell frequencies in each row and column.
From this, a rather complex set of hypotheses follows:

H0: nV DO Part & Ref DO = given : nV DO Part & Ref DO ≠ given ∝

 nV Part DO & Ref DO = given : nV Part DO & Ref DO ≠ given ∝
 nRef DO = given : nRef DO ≠ given and

 nV DO Part & Ref DO = given : nV Part DO & Ref DO = given ∝

 nV DO Part & Ref DO ≠ given : nV Part DO & Ref DO ≠ given ∝
 n V DO Part : n V Part DO
H1: as H0, but there is at least one “≠” instead of an “=“.

In other words, you cannot simply say, “there are 2·2 = 4 cells and I as-
sume each expected frequency is 397 divided by 4, i.e., approximately
100.” If you did that, the upper row total would amount to nearly 200 – but
that can’t be right since there are only 150 cases of CONSTRUCTION: VERB-

OBJECT-PARTICLE. Thus, you must include this information, that there are
only 150 cases of CONSTRUCTION: VERB-OBJECT-PARTICLE, into the com-
putation of the expected frequencies. The easiest way to do this is using
percentages: there are 150/397 cases of CONSTRUCTION: VERB-OBJECT-

PARTICLE (i.e. 0.3778 = 37.78%). Then, there are 185/397 cases of
GIVENNESS: GIVEN (i.e., 0.466 = 46.6%). If the two variables are independ-
ent of each other, then the probability of their joint occurrence is
0.3778·0.466 = 0.1761. Since there are altogether 397 cases to which this
probability applies, the expected frequency for this combination of variable
levels is 397·0.1761 = 69.91. This logic can be reduced to (33).

(33) nexpected cell frequency =
n

 sumcolumn sumrow ⋅

Distributions and frequencies 183

If you apply this logic to every cell, you get Table 26.

Table 26. Expected construction frequencies of Peters (2001)

 GIVENNESS: GIVEN GIVENNESS: NEW Row totals

CONSTRUCTION:

V DO PART
69.9 80.1 150

CONSTRUCTION:

V PART DO
115.1 131.9 247

Column totals 185 212 397

You can immediately see that this table corresponds to the above H0: the

ratios of the values in each row and column are exactly those of the row
totals and column totals respectively. For example, the ratio of 69.9 to 80.1
to 150 is the same as that of 115.1 to 131.9 to 247 and as that of 185 to 212
to 397, and the same is true in the other dimension. Thus, H0 is not “all cell
frequencies are identical” – it is “the ratios of the cell frequencies are equal
(to each other and the respective marginal totals).”

This method to compute expected frequencies can be extended to arbi-
trarily complex frequency tables (see Gries 2009b: Section 5.1). But how
do we test whether these deviate strongly enough from the observed fre-
quencies? Thankfully, we do not need such complicated hypotheses but can

use the simpler versions of χ2 = 0 and χ2 > 0 used above, and the chi-
squared test for independence is identical to the chi-squared goodness-of-fit
test you already know: for each cell, you compute a contribution to chi-
squared and sum those up to get the chi-squared test statistic.

As before, the chi-squared test can only be used when its assumptions
are met. The expected frequencies are large enough and for simplicity’s
sake we assume here that every subject only gave just one sentence so that
the observations are independent of each other: for example, the fact that
some subject produced a particular sentence on one occasion does then not
affect any other subject’s formulation. We can therefore proceed as above
and compute (the sum of) the contributions to chi-squared on the basis of
the same formula, here repeated as (34):

(34) Pearson χ2 =
()

∑
=

−n

i expected

expectedobserved

1

2

The results are shown in Table 27 and the sum of all contributions to

chi-squared, chi-squared itself, is 9.82. However, we again need the num-

184 Analytical statistics

ber of degrees of freedom. For two-dimensional tables and when the ex-
pected frequencies are computed on the basis of the observed frequencies
as here, the number of degrees of freedom is computed as shown in (35).20

Table 27. Contributions to chi-squared for the data of Peters (2001)

 GIVENNESS: GIVEN GIVENNESS: NEW Row totals

CONSTRUCTION:

V DO PART
3.26 2.85

CONSTRUCTION:

V PART DO
1.98 1.73

Column totals 9.82

(35) df = (no. of rows-1) ⋅ (no. of columns-1) = (2-1)⋅(2-1) = 1

With both the chi-squared and the df-value, you can look up the result in
a chi-squared table (e.g., Table 28 below, which is the same as Table 21).
As above, if the observed chi-squared value is larger than the one tabulated
for p = 0.05 at the required df-value, then you can reject H0. Here, chi-
squared is not only larger than the critical value for p = 0.05 and df = 1, but
also larger than the critical value for p = 0.01 and df = 1. But, since the chi-
squared value is not also larger than 10.827, the actual p-value is some-
where between 0.01 and 0.001: the result is very, but not highly significant.

Table 28. Critical χ2-values for ptwo-tailed = 0.05, 0.01, and 0.001 for 1 ≤ df ≤ 3

 p = 0.05 p = 0.01 p = 0.001

df = 1 3.841 6.635 10.828

df = 2 5.991 9.21 13.816

df = 3 7.815 11.345 16.266

Fortunately, all this is much easier when you use R’s built-in function.

Either you compute just the p-value as before,

> pchisq(9.82, 1, lower.tail=FALSE)¶
[1] 0.001726243

20. In our example, the expected frequencies were computed from the observed frequencies

in the marginal totals. If you compute the expected frequencies not from your observed
data but from some other distribution, the computation of df changes to: df = (number of

rows ⋅ number of columns)-1.

Distributions and frequencies 185

or you use the function chisq.test and do everything in a single step. The
most important arguments for our purposes are:

− x: the two-dimensional table for which you do a chi-squared test;

− correct=TRUE or correct=FALSE; cf. above for the correction.21

> test.Peters<-chisq.test(Peters.2001, correct=FALSE)¶
> test.Peters¶
 Pearson's Chi-squared test
data: Peters.2001
X-squared = 9.8191, df = 1, p-value = 0.001727

This is how you obtain expected frequencies or the chi-squared value:

> test.Peters$expected¶
 GIVENNESS
CONSTRUCTION given new
 V_DO_Part 69.89924 80.10076
 V_Part_DO 115.10076 131.89924
> test.Peters$statistic¶
X-squared
 9.819132

You now know that GIVENNESS is correlated with CONSTRUCTION, but

you neither know yet how strong that effect is nor which variable level
combinations are responsible for this result. As for the effect size, even
though you might be tempted to use the size of the chi-squared value or the
p-value to quantify the effect, you must not do that. This is because the chi-
squared value is dependent on the sample size, as we can easily see:

> chisq.test(Peters.2001*10, correct=FALSE)¶
 Pearson's Chi-squared test
data: Peters.2001 * 10
X-squared = 98.1913, df = 1, p-value < 2.2e-16

For effect sizes, this is of course a disadvantage since just because the

sample size is larger, this does not mean that the relation of the values to
each other has changed, too. You can easily verify this by noticing that the
ratios of percentages, for example, have stayed the same. For that reason,

the effect size is often quantified with a coefficient of correlation (called φ
in the case of k×2/m×2 tables or Cramer’s V for k×m tables with k or m >

21. For further options, cf. again ?chisq.test¶. Note also what happens when you enter

summary(Peters.2001)¶.

186 Analytical statistics

2), which falls into the range between 0 and 1 (0 = no correlation; 1 = per-

fect correlation) and is unaffected by the sample size. φ / Cramer’s V is
computed according to the formula in (36):

(36) φ / Cramer’s V / Cramer’s index I =

)(1],min[

2

−⋅
columns

n
rows

nn

χ

In R, you can of course do this in one line of code:

> sqrt(test.Peters$statistic/

sum(Peters.2001)*(min(dim(Peters.2001))-1))¶
X-squared
0.1572683

Given the theoretical range of values, this is a rather small effect size.22

The correlation is probably not random, but also not strong.
Another measure of effect size, which can however only be applied to

2×2 tables, is the so-called odds ratio. An odds ratio tells you how the like-
lihood of one variable level changes in response to a change of the other
variable’s level. The odds of an event E correspond to the fraction in (37).

(37) odds =
E

E

p

p

−1
 (you get probabilities from odds with

odds

odds

+1
)

The odds ratio for a 2×2 table such as Table 23 is the ratio of the two

odds (or 1 divided by that ratio, depending on whether you look at the
event E or the event ¬E (not E)), as in (38):

(38) odds ratio for Table 23 =
147

65

100

85
 = 1.9223

In words, the odds of CONSTRUCTION: V DO PART are (85/185) / (1-85/185) =

85/100 = 0.85 when the referent of the direct object is given and (65/212) / (1-
65/212) = 65/147 = 0.4422 when the referent of the direct object is new. This in

22. The theoretical range from 0 to 1 is really only possible in particular situations, but still

a good heuristic to interpret this value.

Distributions and frequencies 187

turn means that CONSTRUCTION: V DO PART is 0.85/0.4422 ≈ 1.9223 times more
likely when the referent of the direct object is given than when it is not.
From this, it also follows that the odds ratio in the absence of an interaction
is ≈ 1.23

Table 27 also shows which variable level combinations contribute most
to the significant correlation: the larger the contribution to chi-squared of a
cell, the more that cell contributes to the overall chi-squared value; in our
example, these values are all rather small – none exceeds the chi-squared
value for p = 0.05 and df = 1, i.e., 3.841. In R, you can get the contributions
to chi-squared as follows:

> test.Peters$residuals^2¶
 GIVENNESS
CONSTRUCTION given new
 V_DO_Part 3.262307 2.846825
 V_Part_DO 1.981158 1.728841

That is, you square the Pearson residuals. The Pearson residuals, which

you obtain as follows, reveal the direction of effect for each cell: negative
and positive values mean that observed values are smaller and larger than
the expected values respectively.

> test.Peterst$residuals¶
 GIVENNESS
CONSTRUCTION given new
 V_DO_Part 1.806186 -1.687254
 V_Part_DO -1.407536 1.314854

Thus, if, given the small contributions to chi-square, one wanted to draw

any further conclusions at all, then one could only say that the variable
level combination contributing most to the significant result is the combi-
nation of CONSTRUCTION: V DO PART and GIVENNESS: GIVEN, which is
more often observed than expected, but the individual cells’ effects here are
really rather small.

An interesting and revealing graphical representation is available with
the function assocplot, whose most relevant argument is the two-

23. Often, you may find the logarithm of the odds ratio (see especially Section 5.3). When

the two variables are not correlated, this log of the odds ratio is log 1 = 0, and posi-
tive/negative correlations result in positive/negative log odds ratios, which is often a lit-
tle easier to interpret. For example, if you have two odds ratios such as odds ratio1 = 0.5
and odds ratio2 = 1.5, then you cannot immediately and intuitively see, which effect is
larger. The logs of the odds ratios – log odds ratio1 = -0.693 and log odds ratio2 = 0.405
– tell you immediately the former is larger because it is further away from 0.

188 Analytical statistics

dimensional table under investigation: In this plot (Figure 44), “the area of
the box is proportional to the difference in observed and expected frequen-
cies.” The black rectangles above the dashed lines indicate observed fre-
quencies exceeding expected frequencies; grey rectangles below the dashed
lines indicate observed frequencies smaller than expected frequencies; the
heights of the boxes are proportional to the above Pearson residuals and the
widths are proportional to the square roots of the expected frequencies.
Note I do not just plot the table, but the transposed table – that’s what the
t() does. This is so that the row/column organization of the plot corre-
sponds to that of the original table:

> assocplot(t(Peters.2001), col=c("black", "darkgrey"))¶

Figure 44. Association plot for CONSTRUCTION~GIVENNESS

Another interesting way to look at the data is a mixture between a plot

and a table. The table/graph in Figure 45 has the same structure as Table
23, but (i) the sizes in which the numbers are plotted directly reflects the
size of the residuals (i.e., bigger numbers deviate more from the expected
frequencies than smaller numbers, where bigger and smaller are to be un-
derstood in terms of plotting size), and (ii) the coloring and the signs indi-
cates how the observed frequencies deviate from the expected ones: black
indicates positive residuals and grey indicates negative residuals. (For lack
of a better term, I refer to this as a cross-tabulation plot.)

Distributions and frequencies 189

Figure 45. Cross-tabulation plot for CONSTRUCTION~GIVENNESS

This is how you would summarize all the results: “New objects are

strongly preferred in the construction Verb-Particle-Direct Object and are
dispreferred in Verb-Direct Object-Particle. The opposite kind of construc-
tional preference is found for given objects. According to a chi-squared test
for independence, this correlation is very significant (χ2 = 9.82; df = 1; ptwo-

tailed < 0.002), but the effect is not particularly strong (φ = 0.157, odds ratio
= 1.9223).

Let me finally emphasize that the above procedure is again the one
providing you with a p-value for a two-tailed test. In the case of 2×2 tables,
you can perform a one-tailed test as discussed in Section 4.1.1.2 above, but
you cannot do one-tailed tests for tables with df > 1.

Recommendation(s) for further study

− the function dotchart as well as mosaic (from the library vcd) and
table.cont (from the library ade4) for other kinds of plots

− the function assocstats (from the library vcd) for a different way to
compute chi-square tests and effect sizes at the same time

− the function CrossTable (from the library gmodels) for more compre-
hensive tables

− the argument simulate.p.value=TRUE of the function chisq.test and
the function fisher.test, which you can use when the expected fre-
quencies are too small for a regular chi-squared test

190 Analytical statistics

− the Marascuilo procedure to test which observed row or column fre-
quencies are different from each other in pairwise tests (cf. Gries to ap-
pear, who also discusses how to test a subtable out of a larger table)

− Crawley (2005: 85ff.), Crawley (2007: 301ff.), Sheskin (2011: Test 16)

Warning/advice
Again: never ever compute a chi-squared test on percentages – always on
‘real’ observed frequencies! (Trust me, there is a reason I repeat this …)

Let me mention one additional useful application of the chi-squared test

(from Zar 1999: Section 23.4 and Sheskin 2011: 691ff.). Sometimes, you

may have several isomorphic 2×2 tables on the same phenomenon, maybe
because you found another source that discusses the same kind of data. You
may then want to know whether or not the data are so similar that you can
actually merge or amalgamate the data into one single data set. Here are the
text hypotheses for that kind of question:

H0: The trends in the different data sets do not differ from each other:
 χ

2
 heterogeneity = 0.

H1: The trends in the different data sets differ from each other:
 χ

2 heterogeneity ≠ 0.

To explore this approach, let us compare Peters’s data to those of Gries
(2003a). You can enter the latter into R directly using the function matrix,
which needs the vector of observed frequencies (columnwise), the number
of columns, and the names of the dimensions (first rows, then columns):

> Gries.2003<-matrix(c(143, 53, 66, 141), ncol=2,

dimnames=list(CONSTRUCTION=c("V_DO_Part", "V_Part_DO"),
GIVENNESS=c("given", "new")))¶

> Gries.2003¶
 given new
V_DO_Part 143 66
V_Part_DO 53 141

On the one hand, these data look very different from those of Peters

(2001) because, here, when GIVENNESS is GIVEN, then CONSTRUCTION:
V_DO_PART is nearly three times as frequent as CONSTRUCTION:
V_PART_DO (and not in fact less frequent, as in Peters’s data). On the other
hand, the data are also similar because in both cases given direct objects
increase the likelihood of CONSTRUCTION: V_DO_PART. A direct compari-

Distributions and frequencies 191

son of the association plots (not shown here, but you can use the following
code to generate them) makes the data seem very much alike – how much
more similar could two association plots be?

> par(mfrow=c(1, 2))¶
> assocplot(t(Peters.2001))¶
> assocplot(t(Gries.2003))¶
> par(mfrow=c(1, 1))¶

However, you should not really compare the sizes of the boxes in asso-

ciation plots – only the overall tendencies – so we turn to the heterogeneity
chi-squared test. The heterogeneity chi-squared value is computed as the
difference between the sum of chi-squared values of the original tables and
the chi-squared value for the merged tables (that’s why they have to be
isomorphic), and it is evaluated with a number of degrees of freedom that is
the difference between the sum of the degrees of freedom of all merged
tables and the degrees of freedom of the merged table. Sounds pretty com-
plex, but in fact it is not. The following code should make everything clear.
First, you compute the chi-squared test for the data from Gries (2003a):

> test.Gries<-chisq.test(Gries.2003, correct=FALSE)¶
> test.Gries¶
 Pearson's Chi-squared test
data: Gries.2003
X-squared = 68.0364, df = 1, p-value < 2.2e-16

Then you compute the sum of chi-squared values of the original tables:

> test.Peters$statistic+test.Gries$statistic¶
X-squared
[1] 77.85552

After that, you compute the chi-squared value of the combined table …

> chisq.test(Peters.2001+Gries.2003,

correct=FALSE)$statistic¶
X-squared
[1] 65.87908

… and then the heterogeneity chi-squared and its degrees of freedom (you
get the df-values with $parameter):

> het.chisq<-77.85552-65.87908 # 11.97644¶
> het.df<-1+1-1 # 1¶

192 Analytical statistics

How do you now get the p-value for these results?

THINK

BREAK

> pchisq(het.chisq, het.df, lower.tail=FALSE)¶
[1] 0.0005387742

The data from the two studies exhibit the same overall trend (given ob-

jects increase the likelihood of CONSTRUCTION: V_DO_PART) but they still
differ highly significantly from each other (χ2

heterogeneity = 11.98; df = 1; ptwo-

tailed < 0.001). How can that be? Because of the different effect sizes: the
odds ratio for Peters’s data was 1.92, but in Gries’s data it is nearly exactly
three times as large, which is also what you would write in your results
section; we will return to this example in Chapter 5.

> (143/66)/(53/141)¶
[1] 5.764151

1.2.3. One dep. variable (nominal/categorical) (dep. samples)

One central requirement of the chi-squared test for independence is that the
tabulated data points are independent of each other. There are situations,
however, where this is not the case, and in this section I discuss one meth-
od you can use on such occasions.

Let us assume you want to test whether metalinguistic knowledge can
influence acceptability judgments. This is relevant because many accepta-
bility judgments used in linguistic research were produced by the investi-
gating linguists themselves, and one may well ask oneself whether it is
really sensible to rely on judgments by linguists with all their metalinguis-
tic knowledge instead of on judgments by linguistically naïve subjects. This
is especially relevant since studies have shown that judgments by linguists,
who after all think a lot about linguistic expressions, can deviate a lot from
judgments by laymen, who usually don’t (cf. Spencer 1973, Labov 1975, or
Greenbaum 1976). In an admittedly oversimplistic case, you could ask 100
linguistically naïve native speakers to rate a sentence as ‘acceptable’ or
‘unacceptable’. After the ratings have been made, you could tell the sub-
jects which phenomenon the study investigated and which variable you

Distributions and frequencies 193

thought influenced the sentences’ acceptability. Then, you would give the
sentences back to the subjects to have them rate them once more. The ques-
tion would be whether the subjects’ newly acquired metalinguistic
knowledge would make them change their ratings and, if so, how. This
question involves

− a dependent nominal/categorical variable, namely BEFORE: ACCEPTABLE
vs. BEFORE: UNACCEPTABLE;

− a dependent nominal/categorical variable, namely AFTER: ACCEPTABLE
vs. AFTER: UNACCEPTABLE;

− dependent samples since every subject produced two judgments.

For such scenarios, you use the McNemar test (or Bowker test, cf. be-
low). This test is related to the chi-squared tests discussed above in Sec-
tions 4.1.1.2 and 4.1.2.2 and involves the following procedure:

Procedure

− Formulating the hypotheses
− Computing the frequencies you would expect given H0
− Testing the assumption(s) of the test:
 − the observed variable levels are related in a pairwise manner
 − the expected frequencies are ≥ 5
− Computing the test statistic χ2, df, and p

First, the hypotheses:

H0: The frequencies of the two possible ways in which subjects pro-

duce a judgment in the second rating task that differs from that in

the first rating task are equal; χ2 = 0.
H1: The frequencies of the two possible ways in which subjects pro-

duce a judgment in the second rating task that differs from that in

the first rating task are not equal; χ2 ≠ 0.

To get to know this test, we use the fictitious data summarized in Table
29, which you read in from the file <_inputfiles/04-1-2-3_accjudg.csv>.
Table 29 suggests there has been a major change of judgments: Of the 100
rated sentences, only 31+17 = 48 sentences – not even half! – were judged
identically in both ratings. But now you want to know whether the way in
which the 52 judgments changed is significantly different from chance.

194 Analytical statistics

> AccBeforeAfter<-read.delim(file.choose())¶
> str(AccBeforeAfter); attach(AccBeforeAfter)¶

Table 29. Observed frequencies in a fictitious study on acceptability judgments

 AFTER

ACCEPTABLE INACCEPTABLE Row totals

BEFORE ACCEPTABLE 31 39 70

INACCEPTABLE 13 17 30

Column totals 44 56 100

The McNemar test only involves those cases where the subjects

changed their opinion, .i.e. cells b and c of the input table. If these are dis-
tributed equally, then the expected distribution of the 52 cases in which
subjects change their opinion is that in Table 30.

Table 30. Expected frequencies in a fictitious study on acceptability judgments

 AFTER

ACCEPTABLE INACCEPTABLE Row totals

BEFORE ACCEPTABLE 26

INACCEPTABLE 26

Column totals

From this, you can see that both expected frequencies are larger than 5

so you can indeed do the McNemar test. As before, you compute a chi-
squared value (using the by now familiar formula in (39)) and a df-value
according to the formula in (40) (where k is the number of rows/columns):

(39) χ
2 =

()
∑
=

−n

i expected

expectedobserved

1

2

 = 13

(40) df =
()
2

1−⋅ kk
 = 1

As before, you can look up this chi-squared value in the familiar kind of

chi-square table and, again as before, if the computed chi-squared value is
larger than the tabulated one for the relevant df-value for p = 0.05, you may
reject H0. As you can see, the chi-squared value is too large for H0 and we
accept H1.

Distributions and frequencies 195

Table 31. Critical χ2-values for ptwo-tailed = 0.05, 0.01, and 0.001 for 1 ≤ df ≤ 3

 p = 0.05 p = 0.01 p = 0.001

df = 1 3.841 6.635 10.828

df = 2 5.991 9.21 13.816

df = 3 7.815 11.345 16.266

This is how you summarize this finding in the results section: “Accord-

ing to a McNemar test, the way 52 out of 100 subjects changed their judg-
ments after they were informed of the purpose of the experiment is signifi-
cantly different from chance: in the second rating task, the number of ‘ac-
ceptable’ judgments is much smaller (χ2 = 13; df = 1; ptwo-tailed < 0.001).”

In R, this is again much easier. You need the function mcnemar.test
and it typically requires two arguments:

− x: a two-dimensional table which you want to test;

− correct=FALSE or correct=TRUE (the default): when the number of
changes < 30, then som recommend the continuity correction.

> mcnemar.test(table(BEFORE, AFTER), correct=FALSE)¶
 McNemar's Chi-squared test
data: table(BEFORE, AFTER)
McNemar's chi-squared = 13, df = 1, p-value = 0.0003115

The summary and conclusions are of course the same. When you do this

test for k×k tables (with k > 2), this test is sometimes called Bowker test.

Recommendation(s) for further study

− Sheskin (2011: Test 20) on the McNemar test, its exact alternative,
which you can compute with dbinom

− Sheskin (2011: Test 26) for Cochran’s extension of the McNemar test to
test three or more measurements of a dichotomous variable, which takes
only a few lines of code to compute in R – why don’t you try to write
such a function?

− the function runs.test (from the library tseries) to test the random-
ness of a binary sequence

2. Dispersions

Sometimes, it is necessary and/or interesting to not just look at the general

196 Analytical statistics

characteristics of a distribution but also at more narrowly defined distribu-
tional characteristics. The two most obvious characteristics are the disper-
sion and the central tendency of a distribution. This section is concerned
with the dispersion – more specifically, the variance or standard deviation –
of a variable; Section 4.3 discusses measures of central tendency.

For some research questions, it is useful to know, for example, whether
two distributions have the same or a similar dispersion. Put differently, do
two distributions spread around their means in a similar or in a different
way? We touched upon this topic a little earlier in Section 3.1.3.6, but to
illustrate the point once more, consider Figure 46.

Figure 46. Two fictitious distributions

Figure 46 shows two distributions, one group of 10 values (represented

by unfilled circles) and another group of 10 values (represented by cross-
es). The means of these groups are shown with the two horizontal lines
(dashed for the first group), and the deviations of each point from its group
mean are shown with the vertical lines. As you can easily see, the groups
do not just differ in terms of their means (meangroup 2 = 1.99; meangroup 1 =
5.94), but also in terms of their dispersion: the deviations of the points of
group 1 from their mean are much larger than their counterparts in group 2.
While this difference is obvious in Figure 46, it can be much harder to dis-
cern in other cases, which is why we need a statistical test. In Section 4.2.1,

Dispersions 197

we discuss how you test whether the dispersion of one dependent inter-
val/ratio-scaled variable is significantly different from a known dispersion
value. In Section 4.2.2, we discuss how you test whether the dispersion of
one dependent ratio-scaled variable differs significantly in two groups.

2.1. Goodness-of-fit test for one dep. variable (ratio-scaled)

As an example for this test, we return to the above data on first language
acquisition of Russian tense-aspect patterning. In Section 4.1.1.1 above, we
looked at how the correlation between the use of tense and aspect of one
child developed over time. Let us assume, you now want to test whether the
overall variability of the values for this child is significantly different from
that of another child for whom you already have data. Let us also assume
that for this other child you found a variance of 0.025.

This question involves the following variables and is investigated with a
chi-squared test as described below:

− a dependent ratio-scaled variable, namely the variable TENSEASPECT,
consisting of the Cramer’s V values;

− no independent variable because you are not testing whether the distri-
bution of the variable TENSEASPECT is influenced by, or correlated
with, something else.

Procedure

− Formulating the hypotheses
− Computing descriptive statistics
− Testing the assumption(s) of the test: the population from which the

sample whose variance is tested has been drawn or at least the sample
itself from which the variance is computed is normally distributed

− Computing the test statistic χ2, df, and p

As usual, you begin with the hypotheses:

H0: The variance of the data for the newly investigated child does not

differ from the variance of the child investigated earlier; sd
2

TENSEASPECT of the new child = sd
2 TENSEASPECT of the already

investigated child, or sd
2 of the new child = 0.025, or the ratio of

the two variances is 1.
H1: The variance of the data for the newly investigated child differs

198 Analytical statistics

from the variance of the child investigated earlier; sd
2

TENSEASPECT of the new child ≠ sd
2 TENSEASPECT of the already

investigated child, or sd
2 of the new child ≠ 0.025, or the ratio of

the two variances is not 1.

You load the data from <_inputfiles/04-2-1_tense-aspect.csv>.

> RussianTensAsp<-read.delim(file.choose())¶
> str(RussianTensAsp); attach(RussianTensAsp)¶

As a next step, you must test whether the assumption of this chi-squared

test is met and whether the data are in fact normally distributed. We have
discussed this in detail above so we run the test here without further ado.

> shapiro.test(TENSE_ASPECT)¶
 Shapiro-Wilk normality test
data: TENSE_ASPECT
W = 0.9942, p-value = 0.9132

Just like in Section 4.1.1.1 above, you get a p-value of 0.9132, which

means you must not reject H0, you can consider the data to be normally
distributed, and you can compute this chi-squared test. You first compute
the sample variance that you want to compare to the previous results:

> var(TENSE_ASPECT)¶
[1] 0.01687119

To test whether this value is significantly different from the known var-

iance of 0.025, you compute a chi-squared statistic as in formula (41).

(41) χ
2 =

()
variance population

variance samplen ⋅−1

This chi-squared value has n-1 = 116 degrees of freedom. In R:

> chi.squared<-((length(TENSE_ASPECT)-1)*var(TENSE_ASPECT))/

0.025¶
> chi.squared¶
[1] 78.28232

As usual, you can create those critical values yourself or you look up

this chi-squared value in the familiar kind of table.

Dispersions 199

> qchisq(c(0.05, 0.01, 0.001), 116, lower.tail=FALSE)¶

Table 32. Critical χ2-values for ptwo-tailed = 0.05, 0.01, and 0.001 for 115 ≤ df ≤

117

 p = 0.05 p = 0.01 p = 0.001

df = 115 141.03 153.191 167.61

df = 116 142.138 154.344 168.813

df = 117 143.246 155.496 170.016

Since the obtained value of 78.28 is much smaller than the relevant crit-

ical value of 142.138, the difference between the two variances is not sig-
nificant. You can compute the exact p-value as follows:

> pchisq(chi.squared, (length(TENSE_ASPECT)-1), lower.tail=

FALSE)¶
[1] 0.9971612¶

This is how you would summarize the result: “According to a chi-

squared test, the variance of the newly investigated child (0.017) does not
differ significantly from the variance of the child investigated earlier
(0.025): χ2 = 78.28; df = 116; ptwo-tailed > 0.05.”

2.2. One dep. variable (ratio-scaled) and one indep. variable (nominal)

The probably more frequent scenario in the domain ‘testing dispersions’ is
the case where you test whether two samples or two variables exhibit the
same dispersion (or at least two dispersions that do not differ significantly).
Since the difference of dispersions or variances is probably not a concept
you spent much time thinking about so far, let us look at one illustrative
example from the domain of sociophonetics. Gaudio (1994) studied the
pitch range of heterosexual and homosexual men. At issue was therefore
not the average pitch, but its variability, a good example for how variability
as such can be interesting. In that study, four heterosexual and four homo-
sexual men were asked to read aloud two text passages and the resulting
recordings were played to 14 subjects who were asked to guess which
speakers were heterosexual and which were homosexual. Interestingly, the
subjects were able to distinguish the sexual orientation nearly perfectly.
The only (insignificant) correlation which suggested itself as a possible
explanation was that the homosexual men exhibited a wider pitch range in

200 Analytical statistics

one of the text types, i.e., a result that has to do with variability/dispersion.
We will now look at an example from second language acquisition. Let

us assume you want to study how native speakers of a language and very
advanced learners of that language differed in a synonym-finding task in
which both native speakers and learners are presented with words for which
they are asked to name synonyms. You may now not be interested in the
exact numbers of synonyms – maybe, the learners are so advanced that
these are actually fairly similar in both groups – but in whether the learners
exhibit more diversity in the amounts of time they needed to come up with
all the synonyms they can name. This question involves

− a dependent ratio-scaled variable, namely SYNTIMES, the time subjects
needed to name the synonyms;

− a nominal/categorical independent variable, namely SPEAKER: LEARNER
and SPEAKER: NATIVE.

This kind of question is investigated with the so-called F-test for homo-

geneity of variances, which involves the following steps:

Procedure

− Formulating the hypotheses
− Computing descriptive statistics and visualizing the data
− Testing the assumption(s) of the test:
 − the population from which the sample whose variance is tested has

been drawn or at least the sample itself from which the variance is
computed is normally distributed

 − the samples are independent of each other
− Computing the test statistic F, df1 and df2, and p

First, you formulate the hypotheses. Note that H1 is non-directional /

two-tailed.

H0: The times the learners need to name the synonyms they can think

of are not differently variable from the times the native speakers
need to name the synonyms they can think of; the ratio of the vari-
ances F = 1.

H1: The times the learners need to name the synonyms they can think
of are differently variable from the times the native speakers need
to name the synonyms they can think of; the ratio of the variances
F ≠ 1.

Dispersions 201

As an example, we use the (fictitious) data in <_inputfiles/04-2-
2_synonymtimes.csv>:

> SynonymTimes<-read.delim(file.choose())¶
> str(SynonymTimes); attach(SynonymTimes)¶

You compute the variances for both subject groups and plot the data in-

to Figure 47. The variability of the two groups seem very similar: the boxes
have quite similar sizes, but the ranges of the whiskers differ a bit; cf. the
code file for some additional exploration with more precise ecdf plots.

> tapply(SYNTIMES, SPEAKER, var)¶
 Learner Native
10.31731 14.15385
> boxplot(SYNTIMES~SPEAKER, notch=TRUE)¶
> rug(jitter(SYNTIMES), side=2)¶

Figure 47. Boxplot for SYNTIMES~SPEAKER

The F-test requires a normal distribution of the population or at least the

sample. We again use the Shapiro-Wilk test, this time with tapply. Noth-
ing to worry about: both samples do not deviate significantly from normali-
ty and you can do an F-test. This test requires you to compute the quotient
of the two variances (traditionally, but not necessarily – see below – the
larger variance is used as the numerator). Now we compute the ratio of the
two variances, which turns out to be not 1, but somewhat close to it.

>tapply(SYNTIMES, SPEAKER, shapiro.test)¶
$Learner

202 Analytical statistics

 Shapiro-Wilk normality test
data: X[[1L]]
W = 0.9666, p-value = 0.2791
$Native
 Shapiro-Wilk normality test
data: X[[2L]]
W = 0.9751, p-value = 0.5119

> F.value<-var(SYNTIMES[SPEAKER=="Native"])/

var(SYNTIMES[SPEAKER=="Learner"]); F.value¶
[1] 1.371855

To see whether this value is significantly different from 1, you again

need to consider degrees of freedom, this time even two: one for the nu-
merator, one for the denominator. Both can be computed very easily by just
subtracting 1 from the sample sizes (of the samples for the variances); cf.
the formula in (42).

(42) dfnumerator = nnumerator sample-1; dfdenominator = ndenominator sample-1

You get 39 in both cases and can look up the result in an F-table.

Table 33. Critical F-values for ptwo-tailed = 0.05 and 38 ≤ df1, 2 ≤ 40

 df2 = 38 df2 = 39 df2 = 40

df1 = 38 1.907 1.8963 1.8862

df1 = 39 1.9014 1.8907 1.8806

df1 = 40 1.8961 1.8854 1.8752

Obviously, the result is not significant: the computed F-value is smaller

than the tabulated one for p = 0.05 (which is 1.8907). As usual, you can
compute the critical F-values yourself, and you would have to use the func-
tion qf for that. We need four arguments:

− p: the p-value for which you want to determine the critical F-value (for
some df-values);

− df1 and df2: the two df-values for the p-value for which you want to
determine the critical F-value;

− the argument lower.tail=FALSE, to instruct R to only consider the area
under the curve above / to the right of the relevant F-value.

There is one last thing, though. When we discussed one- and two-tailed

tests in Section 1.3.4 above, I mentioned that in the graphical representa-

Dispersions 203

tion of one-tailed tests (cf. Figure 6 and Figure 8) you add the probabilities
of the events you see when you move away from the expectation of H0 in
one direction while in the graphical representation of two-tailed tests (cf.
Figure 7 and Figure 9) you add the probabilities of the events you see when
you move away from the expectation of H0 in both directions. The conse-
quence of that was that the prior knowledge that allowed you to formulate a
directional H1 was rewarded such that you needed a less extreme finding to
get a significant result. This also means, however, that when you want to
compute a two-tailed p-value using lower.tail=FALSE, then you need the
p-value for 0.05/2 = 0.025. This value tells you which F-value cuts off 0.025
on only one side of the graph (say, the right one), but since a two-tailed test
requires that you cut off the same area on the other/left side as well, this
means that this is also the desired critical F-value for ptwo-tailed = 0.05. Fig-
ure 48 illustrates this logic:

Figure 48. Density function for an F-distribution with df1 = df2 = 39, two-tailed
test

As mentioned above, the expectation from H0 is that F = 1. The right

vertical line indicates the F-value you need to obtain for a significant two-
tailed test with df1, 2 = 39; this F-value is the one you already know from
Table 33 – 1.8907 – which means you get a significant two-tailed result if
either one of the variances is 1.8907 times larger than the other. The left
vertical line indicates the F-value you need to obtain for a significant one-
tailed test with df1, 2 = 39; this F-value is 1.7045, which means you get a

204 Analytical statistics

significant one-tailed result if the variance you predict to be larger (!) is
1.7045 times larger than the one you predict to be smaller. To compute the
F-values for the two-tailed tests yourself, as a beginner you may want to
enter just these lines and proceed in a similar way for all other cells in Ta-
ble 33, and the code file contains code to generate all of Table 33.

> qf(0.025, 39, 39, lower.tail=TRUE)¶
[1] 0.5288993
> qf(0.025, 39, 39, lower.tail=FALSE)¶
[1] 1.890719

The observed F-value is obviously too small for either a directional or a

non-directional significant result: 1.53 < 1.89. It is more useful, however,
to immediately compute the p-value for your F-value. Since you now use
the reverse of qf, pf, you must now not divide but multiply by 2:

> 2*pf(F.value, 39, 39, lower.tail=FALSE)¶
[1] 0.3276319

As we’ve seen, with a p-value of p = 0.3276, the F-value of about 1.37

for df1, 2 = 39 is obviously not significant. The function for the F-test in R
that easily takes care of all of the above is called var.test and it requires
at least two arguments, the two samples. Just like many other functions,
you can approach this in two ways: you can provide R with a formula,

> var.test(SYNTIMES~SPEAKER)¶
 F test to compare two variances
data: SYNTIMES by SPEAKER
F = 0.7289, num df = 39, denom df = 39, p-value = 0.3276
alternative hypothesis: true ratio of variances is not

equal to 1
95 percent confidence interval:
 0.385536 1.378221
sample estimates:
ratio of variances
 0.7289402

or you can use a vector-based alternative:

> var.test(SYNTIMES[SPEAKER=="Learner"],

SYNTIMES[SPEAKER=="Native"])¶

Don’t be confused if the F-value you get from R is not the same as the

one you computed yourself. Barring mistakes, the value outputted by R is

Dispersions 205

then 1/F-value – R does not automatically put the larger variance into the
numerator, but the variance whose name comes first in the alphabet, which
here is “Learner” (before “Native”). The p-value then shows you that R’s
result is the same as yours. You can now sum this up as follows: “The na-
tive’s synonym-finding times exhibit a variance that is approximately 40%
larger than that of the learners (14.15 vs. 10.32), but according to an F-test,
this difference is not significant: F = 0.73; dflearner = 39; dfnative = 39; ptwo-tailed
= 0.3276.”

Recommendation(s) for further study

− Dalgaard (2002: 89), Crawley (2007: 289ff.), Baayen (2008: Section
4.2.3), Sheskin (2011: Tests 3, 11a)

− the function fligner.test to test the homogeneity of variance when
the data violate the assumption of normality

− Good and Hardin (2012: 100ff.) for other (advanced!) possibilities to
compare variances

− see the code file for a function exact.f.test.indep that I wrote to
compute an exact version of this F-test, which you can use when your
sample sizes are very small (maybe <15); careful, this test may take
quite some time

3. Means

The probably most frequent use of simple significance tests apart from chi-
squared tests are tests of differences between means. In Section 4.3.1, we
will be concerned with goodness-of-fit tests, i.e., scenarios where you test
whether an observed measure of central tendency is significantly different
from another already known mean (recall this kind of question from Sec-
tion 3.1.5.1); in Section 4.3.2, we then turn to tests where measures of cen-
tral tendencies from two samples are compared to each other.

3.1. Goodness-of-fit tests

3.1.1. One dep. variable (ratio-scaled)

Let us assume you are again interested in the use of hedges. Early studies
suggested that men and women exhibit different communicative styles with
regard to the frequency of hedges (and otherwise). Let us also assume you

206 Analytical statistics

knew from the literature that female subjects in experiments used on aver-
age 12 hedges in a two-minute conversation with a female confederate of
the experimenter. You also knew that the frequencies of hedges are normal-
ly distributed. You now did an experiment in which you recorded 30 two-
minute conversations of female subjects with a male confederate and
counted the same kinds of hedges as were counted in the previous studies
(and of course we assume that with regard to all other parameters, your
experiment was an exact replication of the earlier one). You now want to
test whether the average number of hedges in your experiment is signifi-
cantly different from the value of 12 reported in the literature. This ques-
tion involves

− a dependent ratio-scaled variable, namely HEDGES, which will be com-
pared to the value from the literature;

− no independent variable since you do not test whether HEDGES is influ-
enced by something else.

For such cases, you use a one-sample t-test, which involves these steps:

Procedure

− Formulating the hypotheses
− Computing descriptive statistics
− Testing the assumption(s) of the test: the population from which the

sample whose mean is tested has been drawn or at least the sample itself
from which the mean is computed is normally distributed

− Computing the test statistic t, df, and p

As always, you begin with the hypotheses:

H0: The average of HEDGES in the conversations of the subjects with

the male confederate does not differ significantly from the already
known average; hedges in your experiment = 12, or hedges in your
experiment-12 = 0, or t = 0;

H1: The average ofHEDGES in the conversations of the subjects with
the male confederate differs from the previously reported average;
hedges in your experiment ≠ 12, or hedges in your experiment-12 ≠
0, t ≠ 0.

Then you load the data from <_inputfiles/04-3-1-1_hedges.csv>:

Means 207

> Hedges<-read.delim(file.choose())¶
> str(Hedges); attach(Hedges)¶

Next, you compute the mean frequency of hedges you found in your ex-

periment as well as a measure of dispersion (cf. the code file for a graph):

> mean(HEDGES); sd(HEDGES)¶
[1] 14.83333
[1] 2.506314

While the literature mentioned that the numbers of hedges are normally

distributed, you test whether this holds for your data, too:

> shapiro.test(HEDGES)¶
 Shapiro-Wilk normality test
data: HEDGES
W = 0.946, p-value = 0.1319

It does. You can therefore immediately proceed to the formula in (43).

(43) t =

samplesample

populationsample

nsd

xx −

> (mean(HEDGES)-12) / (sd(HEDGES)/sqrt(length(HEDGES)))¶
[1] 6.191884

To see what this value means, we need degrees of freedom again.

Again, this is easy here since df = n-1, i.e., df = 29. When you look up the t-
value for df = 29 in the usual kind of table, the t-value you computed must
again be larger than the one tabulated for your df at p = 0.05. To compute
the critical p-value, you use qt with the p-value and the required df-value.
Since you do a two-tailed test, you must cut off 0.05/2 = 2.5% on both sides
of the distribution, which is illustrated in Figure 49.

Table 34. Critical t-values for ptwo-tailed = 0.05, 0.01, and 0.001 for 28 ≤ df ≤ 30

 p = 0.05 p = 0.01 p = 0.001

df = 28 2.0484 2.7633 3.6739

df = 29 2.0452 2.7564 3.6594

df = 30 2.0423 2.75 3.646

208 Analytical statistics

Figure 49. Density function for a t-distribution for df = 29, two-tailed test

The critical t-value for p = 0.025 and df = 29 is therefore:

> qt(c(0.025, 0.975), 29, lower.tail=FALSE)¶
[1] 2.045230 -2.045230

The exact p-value can be computed with pt and the obtained t-value is

highly significant: 6.1919 is not just larger than 2.0452, but even larger
than the t-value for p = 0.001 and df = 29. You could also have guessed that
because the t-value of 6.19 is far in the right grey margin in Figure 49.

> 2*pt(6.191884, 29, lower.tail=FALSE)¶
[1] 9.42153e-07

To sum up: “On average, female subjects that spoke to a male confeder-

ate of the experimenter for two minutes used 14.83 hedges (standard devia-
tion: 2.51). According to a one-sample t-test, this average is highly signifi-
cantly larger than the value previously noted in the literature (for female
subjects speaking to a female confederate of the experimenter): t = 6.1919;
df = 29; ptwo-tailed < 0.001.”

With the right function in R, you need just one line. The relevant func-
tion is called t.test and requires the following arguments:

− x: a vector with the sample data;

− mu=…, the population mean to which the sample mean of x is compared;

Means 209

− alternative="two-sided" for two-tailed tests (the default) or one of
alternative="greater" or alternative="less", depending on
which H1 you want to test: the value you assign to alternative states
the relation of the sample mean to the population mean.

> t.test(HEDGES, mu=12)¶
 One Sample t-test
data: HEDGES
t = 6.1919, df = 29, p-value = 9.422e-07
alternative hypothesis: true mean is not equal to 12
95 percent confidence interval:
 13.89746 15.76921
sample estimates:
mean of x
 14.83333

You get the already known mean of 14.83 as well as the df- and t-value

we computed semi-manually. In addition, we get the exact p-value and the
confidence interval of the mean which does not include the value of 12.

Recommendation(s) for further study

Baayen (2008: Section 4.1.2), Sheskin (2011: Test 2)

3.1.2. One dep. variable (ordinal)

In the previous section, we discussed a test that allows you to test whether
the mean of a sample from a normally-distributed population is different
from an already known population mean. This section deals with a test you
can use when the data violate the assumption of normality or when they are
not interval-/ratio-scaled to begin with. We will explore this test by looking
at an interesting little morphological phenomenon, namely subtractive
word-formation processes in which parts of usually two source words are
merged into a new word. Two such processes are blends and complex clip-
pings; some well-known examples of the former are shown in (44a), while
(44b) provides a few examples of the latter; in all examples, the letters of
the source words that enter into the new word are underlined.

(44) a. brunch (breakfast × lunch), motel (motor × hotel), smog

 (smoke × fog), foolosopher (fool × philosopher)
 b. scifi (science × fiction), fedex (federal × express), sysadmin
 (system × administrator)

210 Analytical statistics

One question that may arise upon looking at these coinages is to what
degree the formation of such words is supported by some degree of similar-
ity of the source words. There are many different ways to measure the simi-
larity of words, and the one we are going to use here is the so-called Dice
coefficient (cf. Brew and McKelvie 1996). You can compute a Dice coeffi-
cient for two words in two simple steps. First, you split the words up into
letter (or phoneme or …) bigrams. For motel (motor × hotel) you get:

− motor: mo, ot, to, or;

− hotel: ho, ot, te, el.

Then you count how many of the bigrams of each word occur in the
other word, too. In this case, these are two: the ot of motor also occurs in
hotel, and thus the ot of hotel also occurs in motor.24 This number, 2, is
divided by the number of bigrams to yield the Dice coefficient:

(45) Dicemotor & hotel = 2/8 = 0.25

In other words, the Dice coefficient is the percentage of shared bigrams
out of all bigrams (and hence ratio-scaled). We will now investigate the
question of whether source words that entered into subtractive word-
formation processes are more similar to each other than words in general
are similar to each other. Let us assume, you know that the average Dice
coefficient of randomly chosen words is 0.225 (with a standard deviation of
0.0809; the median is 0.151 with an interquartile range of 0.125). These
figures already suggest that the data may not be normally distributed.25

This study involves

− a dependent ratio-scaled variable, namely the SIMILARITY of the source
words, which will be compared with the already known mean/median;

− no independent variable since you do not test whether SIMILARITY is
influenced by something else.

The hypotheses should be straightforward:

24. In R, such computations can be easily automated and done for hundreds of thousands of

words. For example, if the vector a contains a word, this line returns all its bigrams:
substr(rep(a, nchar(a)-1), 1:(nchar(a)-1), 2:(nchar(a)))¶; for many such ap-
plications, cf. Gries (2009a).

25. For authentic data, cf. Gries (2006), where I computed Dice coefficients for all 499,500
possible pairs of 1,000 randomly chosen words.

Means 211

H0: The average of SIMILARITY for the source words that entered into
subtractive word-formation processes is not significantly different
from the known average of randomly chosen word pairs; Dice co-
efficients of source words = 0.225, or Dice coefficients of source
words-0.225 = 0.

H1: The average of SIMILARITY for the source words that entered into
subtractive word-formation processes is different from the known
average of randomly chosen word pairs; Dice coefficients of source
words ≠ 0.225, or Dice coefficients of source words-0.225 ≠ 0.

The data to be investigated here are in <_inputfiles/04-3-1-

2_dices.csv>; they are data of the kind studied in Gries (2006).

> Dices<-read.delim(file.choose()¶
> str(Dices); attach(Dices)¶

From the summary statistics, you could already infer that the similarities

of randomly chosen words are not normally distributed. We can therefore
assume that this is also true of the sample of source words, but of course
you also test this assumption (cf. the code file for a plot):

> shapiro.test(DICE)¶
 Shapiro-Wilk normality test
data: DICE
W = 0.9615, p-value = 0.005117

The Dice coefficients are not normally, but symmetrically distributed

(as you can also clearly see in the ecdf plot). Thus, even though Dice coef-
ficients are ratio-scaled and although the sample size is >30, you may want
to be careful and not use the one-sample t-test but, for example, the so-
called one-sample sign test for the median, which involves these steps:

Procedure

Formulating the hypotheses
Computing the frequencies of the signs of the differences between the
 observed values and the expected average
Computing the probability of error p

You first rephrase the hypotheses; I only provide new statistical ones:

H0: medianDice coefficients of your source words = 0.151.

212 Analytical statistics

H1: medianDice coefficients of your source words ≠ 0.151.

Then, you compute descriptive statistics: the median and its interquartile
range. Obviously, the observed median Dice coefficient is a bit higher than
0.151, the median Dice coefficient of the randomly chosen word pairs, but
it is impossible to guess whether the difference is going to be significant.

> median(DICE); IQR(DICE)¶
[1] 0.1775
[1] 0.10875

For the one-sample sign test, you first determine how many observa-

tions are above and below the expected median, because if the expected
median was a good characterization of the observed data, then 50% of the
observed data should be above the expected median and 50% should be
below it. (NB: you must realize that this means that the exact sizes of the
deviations from the expected median are not considered here – you only
look at whether the observed values are larger or smaller than the expected
median, but not how much larger or smaller.)

> sum(DICE>0.151); sum(DICE<0.151)¶
[1] 63
[1] 37

63 of the 100 observed values are larger than the expected median (the

rest is smaller than the expected median) – since you expected 50, it seems
as if the Dice coefficients observed in your source words are significantly
larger than those of randomly chosen words. As before, this issue can also
be approached graphically, using the logic and the function dbinom from
Section 1.3.4.1, Figure 7. Figure 50 shows the probabilities of all possible
results you can get in 100 trials – because you look at the Dice coefficients
of 100 subtractive formations. First, consider the left panel of Figure 50.

According to H0, you would expect 50 Dice coefficients to be larger
than the expected median, but you found 63. Thus, you add the probability
of the observed result (the black bar for 63 out of 100) to the probabilities
of all those that deviate from H0 even more extremely, i.e., the chances to
find 64, 65, …, 99, 100 Dice coefficients out of 100 that are larger than the
expected median. These probabilities from the left panel sum up to approx-
imately 0.006.

Means 213

Figure 50. Probability distributions for 100 binomial trials test

> sum(dbinom(63:100, 100, 0.5))¶
[1] 0.006016488

But you are not finished yet … As you can see in the left panel of Fig-

ure 50, so far you only include the deviations from H0 in one direction – but
your H1 is non-directional, i.e., two-tailed. You must therefore also include
the probabilities of the events that deviate just as much and more from H0
in the other direction: 37, 36, …, 1, 0 Dice coefficients out of 100 that are
smaller than the expected median, as represented in the right panel of Fig-
ure 50. The probabilities sum up to the same value (because the distribution
of binomial probabilities around p = 0.5 is symmetric).

> sum(dbinom(37:0, 100, 0.5))¶
[1] 0.006016488

Again: if you expect 50 out of 100, but observe 63 out of 100, and want

to do a two-tailed test, you must add the summed probability of finding 63
to 100 larger Dice coefficients (the upper/right 38 probabilities) to the
summed probability of finding 0 to 37 smaller Dice coefficients (the low-
er/left 38 probabilities). The ptwo-tailed-value of 0.01203298 you then get is
significant. You can sum up: “The investigation of 100 subtractive word
formations resulted in an average source-word similarity of 0.1775 (medi-
an, IQR = 0.10875). 63 of the 100 source words were more similar to each

214 Analytical statistics

other than expected from random word pairs, which, according to a two-
tailed sign test is a significant deviation from the average similarity of ran-
dom word pairs (median =0.151, IQR range = 0.125): pbinomial = 0.012.”

Recall that this one-sample sign test only uses nominal information,
whether each data point is larger or smaller than the expected reference
median. If the distribution of the data is rather symmetrical – as it is here –
then there is an alternative test that also takes the sizes of the deviations
into account, i.e. uses at least ordinal information. This so-called one-
sample signed-rank test can be computed using the function wilcox.test.
Apart from the vector to be tested, the following arguments are relevant:

− alternative: a character string saying which H1 you want to test: the
default is "two.sided", other possible values for one-tailed tests are
"less" or "greater", which specify how the first-named vector relates
to the specified reference median;

− mu=…: the reference median expected according to H0;

− exact=TRUE, if you want to compute an exact test (only when your
sample size is smaller than 50 and there are no ties) or exact=FALSE, if
an asymptotic test is sufficient; the default amounts to the latter;

− correct=TRUE (the default) for a continuity correction or cor-

rect=FALSE for none;

− conf.level: a value between 0 and 1 specifying the size of the confi-
dence interval; the default is 0.95.

Since you have a non-directional H1, you do a two-tailed test by simply

adopting the default setting for alternative:

> wilcox.test(DICE, mu=0.151, correct=FALSE)¶
 Wilcoxon signed rank test
data: DICE
V = 3454.5, p-value = 0.001393
alternative hypothesis: true location is not equal to 0.151

The test confirms the previous result: both the one-sample sign test,

which is only concerned with the directions of deviations, and the one-
sample signed rank test, which also considers the sizes of these deviations,
indicate that the source words of the subtractive word-formations are more
similar to each other than expected from random source words. This should
however, encourage you to make sure you formulate exactly the hypothesis
you are interested in (and then use the required test).

Means 215

Recommendation(s) for further study

− Baayen (2008: Section 4.1.2), Sheskin (2011: Test 9b, 6)

3.2. Tests for differences/independence

A particularly frequent scenario requires you to test two groups of elements
with regard to whether they differ in their central tendency. As discussed
above, there are several factors that determine which test to choose:

− the kind of samples: dependent or independent (cf. Section 1.3.4.1 and
the beginning of Chapter 4);

− the level of measurement of the dependent variable: interval/ratio-scaled
vs. ordinal;

− the distribution of (interval/ratio-scaled) dependent variable: normal vs.
non-normal;

− the sample sizes.

To reiterate the discussion at the beginning of this chapter: is the de-
pendent variable ratio-scaled as well as normally-distributed or both sample
sizes are larger than 30 or are the differences between variables normally
distributed, then you can usually do a t-test (for independent or dependent
samples, as required) – otherwise you should do a U-test (for independent
samples) or a Wilcoxon test (for dependent samples) (or, maybe, computa-
tionally intense exact tests). The reason for this decision procedure is that
while the t-test for independent samples requires, among other things, nor-
mally distributed samples, we have seen that samples of 30+ elements can
be normally distributed even if the underlying distribution is not. There-
fore, it is sometimes sufficient, though not conservative, if the data meet
one of the two conditions. Strictly speaking, the t-test for independent sam-
ples also requires homogenous variances, which we will also test for, but
we will discuss a version of the t-test that can handle heterogeneous vari-
ances, the t-test after Welch.

3.2.1. One dep. variable (ratio-scaled) and one indep. variable (nominal)

 (indep. samples)

The t-test for independent samples is one of the most widely used tests. To

216 Analytical statistics

explore it, we use an example from the domain of phonetics. Let us assume
you wanted to study the (rather trivial) non-directional H1 that the first
formants’ frequencies of men and women differed. You plan an experiment
in which you record men’s and women’s pronunciation of a relevant set of
words and/or syllables, which you then analyze. This study involves

− one dependent ratio-scaled variable, namely F1-FREQUENCIES, whose
averages you are interested in;

− one independent nominal variable, namely SEX: MALE vs. SEX: FEMALE;

− independent samples since, if every subject provides just one data point,
the data points are not related to each other.

The test to be used for such scenarios is the t-test for independent sam-

ples and it involves the following steps:

Procedure

− Formulating the hypotheses
− Computing descriptive statistics and visualizing the data
− Testing the assumption(s) of the test:
 − the population from which the samples whose means are tested have

been drawn or at least the samples itself from which the means are
computed are normally distributed (esp. with samples of n < 30)

 − the variances of the populations from which the samples have been
drawn or at least the variances of the samples are homogeneous

 − the samples are independent of each other
− Computing the test statistic t, df, and p

You begin with the hypotheses.

H0: The average F1 frequency of men is the same as the average F1

frequency of women: meanF1 frequency of men = meanF1 frequency of women, or
meanF1 frequency of men-meanF1 frequency of men = 0, or t = 0;

H1: The average F1 frequency of men is not the same as the average F1
frequency of women: meanF1 frequency of men ≠ meanF1 frequency of women, or
meanF1 frequency of men-meanF1 frequency of men ≠ 0, or t ≠ 0.

The data you will investigate here are part of the data borrowed from a

similar experiment on vowels in Apache. First, you load the data from
<_inputfiles/04-3-2-1_f1-freq.csv> into R:

Means 217

> Vowels<-read.delim(file.choose()¶
> str(Vowels); attach(Vowels)¶

Then, you compute the relevant means and the standard deviations of

the frequencies. As usual, we use the more elegant variant with tapply.

> tapply(HZ_F1, SEX, mean)¶
 F M
528.8548 484.2740
> tapply(HZ_F1, SEX, sd)¶
 F M
110.80099 87.90112

To get a better impression of the data, you also immediately generate a

boxplot. You set the limits of the y-axis such that it ranges from 0 to 1,000
so that all values are nicely represented; in addition, you use rug to plot the
values of the women and the men onto the left and right y-axis respectively;
cf. Figure 51 and the code file for an alternative that includes a stripchart.

> boxplot(HZ_F1~SEX, notch=TRUE, ylim=(c(0, 1000)),

xlab="Sex", ylab="F1 frequency"); grid()¶
> rug(HZ_F1[SEX=="F"], side=2); rug(HZ_F1[SEX=="M"], side=4)¶

Figure 51. Boxplot for HZ_F1~SEX

The next step consists of testing the assumptions of the t-test. Figure 51

suggests that these data meet the assumptions. First, the boxplots for the

218 Analytical statistics

men and the women appear as if the data are normally distributed: the me-
dians are in the middle of the boxes and the whiskers extend nearly equally
long in both directions. Second, the variances seem to be very similar since
the sizes of the boxes and notches are very similar. However, of course you
need to test this and you use the familiar Shapiro-Wilk test:

> tapply(HZ_F1, SEX, shapiro.test)¶
$F
 Shapiro-Wilk normality test
data: X[[1L]]
W = 0.987, p-value = 0.7723
$M
 Shapiro-Wilk normality test
data: X[[2L]]
W = 0.9724, p-value = 0.1907

The data do not differ significantly from normality. Now you test for

variance homogeneity with the F-test from Section 4.2.2 (whose assump-
tion of normality we now already tested). This test’s hypotheses are:

H0: The variance of the first sample equals that of the second; F = 1.
H1: The variance of one sample is larger than that of the second; F ≠ 1.

The F-test with R yields the following result:

> var.test(HZ_F1~SEX) # with a formula¶
 F test to compare two variances
data: HZ_F1 by SEX
F = 1.5889, num df = 59, denom df = 59, p-value = 0.07789
alternative hypothesis: true ratio of variances is not

equal to 1
95 percent confidence interval:
 0.949093 2.660040
sample estimates:
ratio of variances
 1.588907

The second assumption is also met: since the confidence interval in-

cludes 1 and p > 0.05 so the variances are not significantly different from
each other and you can compute the t-test for independent samples. This
test involves three different statistics: the test statistic t, the number of de-
grees of freedom df, and of course the p-value. In the case of the t-test we
discuss here, the t-test after Welch, the t-value is computed according to the
formula in (46), where sd

2 is the variance, n is the sample size, and the
subscripts 1 and 2 refer to the two samples of men and women.

Means 219

(46) t = ()
2

2

2

1

2

1
21

n

sd

n

sd
xx +÷−

> t.numerator<-mean(HZ_F1[SEX=="M"])-mean(HZ_F1[SEX=="F"])¶
> t.denominator<-sqrt((var(HZ_F1[SEX=="M"])/

length((HZ_F1[SEX=="M"])))+(var(HZ_F1[SEX=="F"])/
length((HZ_F1[SEX=="F"]))))¶

> t.value<-abs(t.numerator/t.denominator)¶

You get t = 2.441581. The formula for the degrees of freedom is some-

what more complex. First, you need to compute a value called c, and with
c, you can then compute df. The formula to compute c is shown in (47), and
the result of (47) gets inserted into (48).

(47) c =

2

2

2

1

2

1

1

2

1

n

sd

n

sd

n

sd

+

(48) df =
()

1

2

2

1

2

1

1

1

−











+

−

−

− n

c

n

c

> c.numerator<-var(HZ_F1[SEX=="M"])/length(HZ_F1[SEX=="M"])¶
> c.denominator<-t.denominator^2¶
> c.value<-c.numerator/c.denominator¶
> df.summand1<-c.value^2/(length(HZ_F1[SEX=="M"])-1)¶
> df.summand2<-((1-c.value)^2)/(length(HZ_F1[SEX=="F"])-1)¶
> df<-(df.summand1+df.summand2)^-1¶

You get c = 0.3862634 and df ≈ 112.195. You then look up the t-value

in the usual kind of t-table (cf. Table 34) or you compute the critical t-value
(with qt(c(0.025, 0.975), 112, lower.tail=FALSE)¶; as before, for a
two-tailed test you compute the t-value for p = 0.025).

Table 34. Critical t-values for ptwo-tailed = 0.05, 0.01, and 0.001 for 111 ≤ df ≤ 113

 p = 0.05 p = 0.01 p = 0.001

df = 111 1.9816 2.6208 3.3803

df = 112 1.9814 2.6204 3.3795

df = 113 1.9812 2.62 3.3787

220 Analytical statistics

As you can see, the observed t-value is larger than the one tabulated for
p = 0.05, but smaller than the one tabulated for p = 0.01: the difference
between the means is significant. The exact p-value can be computed with
pt and for the present two-tailed case you simply enter this:

> 2*pt(t.value, 112.195, lower.tail=FALSE)¶
[1] 0.01618534

In R, you can use the function t.test, which takes several arguments,

the first two of which – the relevant samples – can be given by means of a
formula or with two vectors. These are the other relevant arguments:

− alternative: a character string that specifies which H1 is tested: the
default value, which can therefore be omitted, is "two.sided", other
values for one-tailed hypotheses are again "less" or "greater"; as be-
fore, R considers the alphabetically first variable level (i.e., here “F”) as
the reference category so that the one-tailed hypothesis that the values
of the men are smaller than those of the women would be tested with
alternative="greater";

− paired=FALSE for the t-test for independent samples (the default) or
paired=TRUE for the t-test for dependent samples (cf. the next section);

− var.equal=TRUE, when the variances of the two samples are equal, or
var.equal=FALSE if they are not; the latter is the useful default, which
should hardly be changed;

− conf.level: a value between 0 and 1, which specifies the confidence
interval of the difference between the means; the default is 0.95.

Thus, to do the t-test for independent samples, you can enter either vari-

ant listed below. You get the following result:

> t.test(HZ_F1~SEX, paired=FALSE)¶
 Welch Two Sample t-test
data: HZ_F1 by SEX
t = 2.4416, df = 112.195, p-value = 0.01619
alternative hypothesis: true difference in means is

not equal to 0
95 percent confidence interval:
 8.403651 80.758016
sample estimates:
mean in group F mean in group M
 528.8548 484.2740
> t.test(HZ_F1[SEX=="F"], HZ_F1[SEX=="M"], paired=FALSE)¶

Means 221

The first two lines of the output provide the name of the test and the da-
ta to which the test was applied. Line 3 lists the test statistic t (the sign is
irrelevant and depends on which mean is subtracted from which, but it must
of course be considered for the manual computation), the df-value, and the
p-value. Line 4 states the H1 tested. Then, you get the confidence interval
for the differences between means (and our test is significant because this
confidence interval does not include 0). Finally, you get the means again.

You can sum up your results as follows: “In the experiment, the average
F1 frequency of the vowels produced by men was 484.3 Hz (sd = 87.9), the
average F1 frequency of the vowels produced by the women was 528.9 Hz
(sd = 110.8). According to a t-test for independent samples, the difference
of 44.6 Hz between the means is statistically significant, but not particular-
ly strong: tWelch = 2.4416; df = 112.2; ptwo-tailed = 0.0162.”

In Section 5.2.2, we will discuss the extension of this test to cases where
you have more than one independent variable and/or where the independent
variable has more than two levels.

Recommendation(s) for further study

− Crawley (2007: 289ff.), Baayen (2008: Section 4.2.2), Sheskin (2011:
Test 11)

− see the code file for a function exact.t.test.indep that I wrote to
compute an exact version of this F-test, which you can use when your
sample sizes are very small (maybe <15); careful, this test may take
quite some time (and it requires the library combinat)

3.2.2. One dep. variable (ratio-scaled) and one indep. variable (nominal)

 (dep. samples)

The previous section illustrated a test for means from two independent
samples. The name of that test suggests that there is a similar test for de-
pendent samples, which we will discuss in this section on the basis of an
example from translation studies. Let us assume you want to compare the
lengths of English and Portuguese texts and their respective translations
into Portuguese and English. Let us also assume you suspect that the trans-
lations are on average longer than the originals. This question involves

− one dependent ratio-scaled variable, namely the LENGTH of the texts;

− one independent nominal/categorical variable, namely TEXTSOURCE:
ORIGINAL vs. TEXTSOURCE: TRANSLATION;

222 Analytical statistics

− dependent samples since the LENGTH values for each translation are
connected to those of each original text.

Performing a t-test for dependent samples requires the following steps:

Procedure

− Formulating the hypotheses
− Computing descriptive statistics and visualizing the data
− Testing the assumption(s) of the test: the differences of the paired val-

ues of the dependent samples are normally distributed
− Computing the test statistic t, df, and p

As usual, you formulate the hypotheses, but note that this time the H1 is

directional: you suspect that the average length of the originals is shorter

than those of their translations, not just different (i.e., shorter or longer).
Therefore, the statistical form of H1 does not just contain a “≠”, but some-
thing more specific, “<“:

H0: The average of the pairwise differences between the lengths of the

originals and the lengths of the translations is 0; meanpairwise dif-

fererences = 0; t = 0.
H1: The average of the pairwise differences between the lengths of the

originals and the lengths of the translations is smaller than 0;
meanpairwise differerences < 0; t < 0.

Note in particular (i) that the hypotheses do not involve the values of the

two samples but the pairwise differences between them and (ii) how these
differences are computed: original minus translation, not the other way
round (and hence we use “< 0”). To illustrate this test, we will look at data
from Frankenberg-Garcia (2004). She compared the lengths of eight Eng-
lish and eight Portuguese texts, which were chosen and edited such that
their lengths were approximately 1,500 words, and then she determined the
lengths of their translations. You can load the data from <_inputfiles/04-3-
2-2_textlengths.csv>:

> Texts<-read.delim(file.choose()¶
> str(Texts); attach(Texts)¶

Note that the data are organized so that the order of the texts and their

translations is identical: case 1 is an English original (hence, TEXT is 1,

Means 223

TEXTSOURCE is ORIGINAL, LANGUAGE is ENGLISH), and case 17 is its trans-
lation (hence, TEXT is again 1, but TEXTSOURCE is now TRANSLATION, and
LANGUAGE is PORTUGUESE), etc. First, you compute the means and gener-
ate a plot.

> tapply(LENGTH, TEXTSOURCE, mean)¶
 Original Translation
 1500.062 1579.938
> boxplot(LENGTH~TEXTSOURCE, notch=TRUE, ylim=c(0, 2000))¶
> rug(LENGTH, side=2)¶

The median translation length is a little higher than that of the originals

and the two samples have very different dispersions (only because the
lengths of the originals were ‘set’ to approximately 1,500 words and thus
exhibit very little variation while the lengths of the translations were not
controlled like that).

Figure 52. Boxplot for LENGTH~TEXTSOURCE

Now, this is actually a bad plot to represent the data – why?

THINK

BREAK

This plot does not portray the information that the data points from the

left part – the lengths of the originals – are related to those from the right

224 Analytical statistics

part – the lengths of their translations! Thus, see the code file for three bet-
ter plots (esp. the third). Given the controlled original lengths, the differ-
ence here is not that huge, but in other applications, a boxplot for depend-
ent samples like the above can be very misleading.

Unlike the t-test for independent samples, the t-test for dependent sam-
ples does not presuppose a normal distribution or variance homogeneity of
the sample values, but a normal distribution of the differences between the
pairs of sample values. You can create a vector with these differences and
then apply the Shapiro-Wilk test to it in one line with this shortcut.

> shapiro.test(differences<-LENGTH[1:16]-LENGTH[17:32])¶
 Shapiro-Wilk normality test
data: differences
W = 0.9569, p-value = 0.6057

The differences do not differ significantly from normality so you can in

fact do the t-test for dependent samples. First, you compute the t-value
according to the formula in (49), where n is the number of value pairs.

(49) t =
sdifference

sdifference

sd

nx ⋅

> t.value<-(abs(mean(differences))*

sqrt(length(differences)))/sd(differences)¶
> t,value
[1] 1.927869

Second, you compute the degrees of freedom df, which is the number of

differences n minus 1:

> df<-length(differences)-1; df¶
[1] 15

First, you can now compute the critical values for p = 0.05 – this time

not for 0.05/2 = 0.025 because you have a directional H1 – at df = 15 or, in a
more sophisticated way, create the whole t-table.

> qt(c(0.05, 0.95), 15, lower.tail=FALSE)¶
[1] 1.753050 -1.753050

Second, you can look up the t-value in such a t-table, repeated here as

Table 35. Since such tables usually only list the positive values, you use the

Means 225

absolute value of your t-value. As you can see, the differences between the
originals and their translations is significant, but not very or highly signifi-
cant: 1.927869 > 1.7531, but 1.927869 < 2.6025.

Table 35. Critical t-values for pone-tailed = 0.05, 0.01, and 0.001 (for 14 ≤ df ≤ 16)

 p = 0.05 p = 0.01 p = 0.001

df = 14 1.7613 2.6245 3.7874

df = 15 1.7531 2.6025 3.7328

df = 16 1.7459 2.5835 3.6862

Alternatively, you can compute the exact p-value. Since you have a di-

rectional H1, you only need to cut off 5% of the area under the curve on one
side of the distribution. The t-value following from H0 is 0 and the t-value
you computed is approximately 1.93 so you must compute the area under
the curve from 1.93 to +∞; cf. Figure 53. Since you are doing a one-tailed
test, you need not multiply the p-value with 2.

> pt(t.value, 15, lower.tail=FALSE)¶
[1] 0.03651146

Figure 53. Density function for a t-distribution for df = 15, one-tailed test

Note that this also means that the difference is only significant because

you did a one-tailed test –a two-tailed test with its multiplication with 2
would not have yielded a significant result but p = 0.07302292.

226 Analytical statistics

Now the same test with R. Since you already know the arguments of the
function t.test, we can focus on the only major differences to before, the
facts that you now have a directional H1 and need to do a one-tailed test
and that you now do a paired test. To do that properly, you must first un-
derstand how R computes the difference. As mentioned above, R proceeds
alphabetically and computes the difference ‘alphabetically first level minus
alphabetically second level’ (which is why H1 was formulated this way
above). Since “Original” comes before “Translation” and we hypothesized
that the mean of the former would be smaller than that of the latter, the
difference is smaller than 0. You therefore tell R that the difference is
“less” than zero.

Of course you can use the formula or the vector-based notation. I show
the output of the formula notation but both ways result in the same output.
You get the t-value (ours was positive only because we used abs), the df-
value, a p-value, and a confidence interval which, since it does not include
0, also reflects the significant result.

> t.test(LENGTH~TEXTSOURCE, paired=TRUE, alternative="less")¶
 Paired t-test
data: LENGTH by TEXTSOURCE
t = -1.9279, df = 15, p-value = 0.03651
alternative hypothesis: true difference in means is less

than 0
95 percent confidence interval:
 -Inf -7.243041
sample estimates:
mean of the differences
 -79.875
> t.test(LENGTH[TEXTSOURCE=="Original"], LENGTH[TEXTSOURCE==

"Translation"], paired=TRUE, alternative="less")¶

To sum up: “On average, the originals are approximately 80 words

shorter than their translations (the 95% confidence interval of this differ-
ence is -Inf, -7.24). According to a one-tailed t-test for dependent samples,
this difference is significant: t = -1.93; df = 15; pone-tailed = 0.0365. However,
the effect is relatively small: the difference of 80 words corresponds to only
about 5% of the length of the texts.”

Recommendation(s) for further study

− Crawley (2007: 298ff.), Baayen (2008: Section 4.3.1), Sheskin (2011:
Test 17)

− see the code file for a function exact.t.test.dep that I wrote to com-
pute an exact version of this F-test, which you can use when your sam-

Means 227

ple sizes are very small (maybe <15); careful, this test may take quite
some time (for this example, it returns nearly the exact same p-value)

3.2.3. One dep. variable (ordinal) and one indep. variable (nominal)

 (indep. samples)

In this section, we discuss a non-parametric test for two independent sam-
ples of ordinal data, the U-test. Since I mentioned at the beginning of Sec-
tion 4.3.2 that the U-test is not only used when the samples to be compared
consist of ordinal data, but also when they violate distributional assump-
tions, this section will again involve an example where only a test of these
distributional assumptions allows you to decide which test to use.

In Section 4.3.1.2 above, you looked at the similarities of source words
entering into subtractive word formations and you tested whether these
similarities were on average different from the known average similarity of
random words to each other. The data you used were of the kind studied in
Gries (2006) but in the above example no distinction was made between
source words entering into different kinds of subtractive word formations.
This is what we will do here by comparing similarities of source words
entering into blends to similarities of source words entering into complex
clippings. If both kinds of word-formation processes differed according to
this parameter, this would provide empirical motivation for distinguishing
them in the first place. This example, thus, involves

− one dependent ratio-scaled variable, namely the SIMILARITY of the
source words whose averages you are interested in;

− one independent nominal variable, namely PROCESS: BLEND vs.
PROCESS: COMPLCLIP;

− independent samples since the Dice coefficient of any one pair of source
words has nothing to do with any one other pair of source words.

This kind of question would typically be investigated with the t-test for

independent samples we discussed above. According to the above proce-
dure, you first formulate the hypotheses (non-directionally, since we may
have no a priori reason to assume a particular difference):

H0: The mean of the Dice coefficients of the source words of blends is

the same as the mean of the Dice coefficients of the source words
of complex clippings; meanDice coefficients of blends = meanDice coefficients of

228 Analytical statistics

complex clippings, or meanDice coefficients of blends - meanDice coefficients of complex clip-

pings = 0.
H1: The mean of the Dice coefficients of the source words of blends is

not the same as the mean of the Dice coefficients of the source
words of complex clippings; meanDice coefficients of blends ≠ meanDice coeffi-

cients of complex clippings, or meanDice coefficients of blends - meanDice coefficients of

complex clippings ≠ 0.

You can load the data from the file <_inputfiles/04-3-2-3_dices.csv>.
As before, this file contains the Dice coefficients, but now also in an addi-
tional column the word formation process for each Dice coefficient.

> Dices<-read.delim(file.choose())¶
> str(Dices); attach(Dices)¶

As usual, you should begin by exploring the data graphically:

> boxplot(DICE~PROCESS, notch=TRUE, ylim=c(0, 1),

ylab="Dice")¶
> rug(jitter(DICE[PROCESS=="Blend"]), side=2)¶
> rug(jitter(DICE[PROCESS=="ComplClip"]), side=4)¶
> text(1:2, tapply(DICE, PROCESS, mean), "x")¶

Figure 54. Boxplot for SIMILARITY~PROCESS

As usual, this graph already gives away enough information to nearly

obviate the need for statistical analysis. The probably most obvious aspect
is the difference between the two medians, but since the data are ratio-

Means 229

scaled you also need to explore the means. These are already plotted into
the graph and here is the usual line of code to compute them; note how
large the difference is between the two.

> tapply(DICE, PROCESS, mean)¶
 Blend ComplClip
 0.22996 0.12152
> tapply(DICE, PROCESS, sd)¶
 Blend ComplClip
 0.4274985 0.04296569

In order to test whether the t-test for independent samples can be used

here, we need to test both of its assumptions, normality in the groups and
variance homogeneity. Since the F-test for homogeneity of variances pre-
supposes normality, you begin by testing whether the data are normally
distributed. The rugs in Figure 54 suggest they are not, which is supported
by the Shapiro-Wilk test.

> tapply(DICE, PROCESS, shapiro.test)¶
$Blend
 Shapiro-Wilk normality test
data: X[[1L]]
W = 0.9455, p-value = 0.02231
$ComplClip
 Shapiro-Wilk normality test
data: X[[2L]]
W = 0.943, p-value = 0.01771

Given these violations of normality, you can actually not do the regular

F-test to test the second assumption of the t-test for independent samples.
You therefore do the Fligner-Killeen test of homogeneity of variances,
which does not require the data to be normally distributed and which I
mentioned in Section 4.2.2 above.

> fligner.test(DICE~PROCESS)¶
 Fligner-Killeen test of homogeneity of variances
data: DICE by PROCESS
Fligner-Killeen:med chi-squared=3e-04, df=1, p-value=0.9863

The variances are homogeneous, but normality is still violated. It fol-

lows that even though the data are ratio-scaled and even though the sample
sizes are larger than 30, it may safer to compute a test that does not make
these assumptions, the U-test.

230 Analytical statistics

Procedure

− Formulating the hypotheses
− Computing descriptive statistics and visualizing the data
− Testing the assumption(s) of the test:
 − the samples are independent of each other
 − the populations from which the samples whose central tendencies are

tested have been drawn are identically distributed 2266
− Computing the test statistic U, z, and p

The two boxplots look relatively similar and the variances of the two

groups are not significantly different, and the U-test is robust (see above)
so we use it here. Since the U-test assumes only ordinal data, you now
compute medians, not just means. You therefore adjust your hypotheses
and compute medians and interquartile ranges:

H0: The median of the Dice coefficients of the source words of blends

is as large as the median of the Dice coefficients of the source
words of complex clippings; medianDice coefficients of blends = medianDice

coefficients of complex clippings, or medianDice coefficients of blends - medianDice coeffi-

cients of complex clippings = 0.
H1: The median of the Dice coefficients of the source words of blends

is not as large as the median of the Dice coefficients of the source
words of complex clippings; medianDice coefficients of blends ≠ medianDice

coefficients of complex clippings, or medianDice coefficients of blends - medianDice coeffi-

cients of complex clippings ≠ 0.

> tapply(DICE, PROCESS, median)¶
 Blend ComplClip
 0.2300 0.1195
> tapply(DICE, PROCESS, IQR)¶
 Blend ComplClip
 0.0675 0.0675

Here, the assumptions can be tested fairly unproblematically: The val-

ues are independent of each other since no word-formation influences an-
other one, the distributions of the data in Figure 54 appear to be rather simi-
lar, and a Kolmogorov-Smirnov test of the z-standardized Dice values for
both word-formation processes is completely insignificant (p = 0.9972).

Unfortunately, computing the U-test is more cumbersome than many

26. According to Bortz, Lienert, and Boehnke (1990:211), the U-test can discover differ-

ences of measures of central tendency well even if this assumption is violated.

Means 231

other tests. First, you transform all Dice coefficients into ranks, and then
you compute the sum of all ranks for each word-formation process. Then,
both of these T-values and the two sample sizes are inserted into the formu-
lae in (50) and (51) to compute two U-values, the smaller one of which is
the required test statistic.

> Ts<-tapply(rank(DICE), PROCESS, sum)¶

(50) U1 =
()

1
11

21
2

1
T

nn
nn −

+⋅
⋅ +

(51) U2 =
()

2
22

21
2

1
T

nn
nn −

+⋅
⋅ +

> n1<-length(DICE[PROCESS=="Blend"])¶
> n2<-length(DICE[PROCESS=="ComplClip"])¶
> U1<-n1*n2+((n1*(n1+1))/2)-Ts[1]¶
> U2<-n1*n2+((n2*(n2+1))/2)-Ts[2]¶
> U.value<-min(U1, U2)¶

The U-value, 84, can be looked up in a U-table or, because there are few

U-tables for large samples,27 converted into a normally-distributed z-score.
This z-score is computed as follows. First, you use the formulae in (52) and
(53) to compute an expected U-value and its dispersion.

(52) Uexpected = 0.5·n1·n2

(53) Dispersion Uexpected =
()
12

12121 ++⋅⋅ nnnn

Second, you insert these values together with the observed U into (54).

(54) z =
expected

expected

U Dispersion

UU −

> expU<-n1*n2/2¶
> dispersion.expU<-sqrt(n1*n2*(n1+n2+1)/12)¶
> z<-abs((U.value-expU)/dispersion.expU)¶

27. Bortz, Lienert and Boehnke (1990:202 and Table 6) provide critical U-values for n ≤ 20

and mention references for tables with critical values for n ≤ 40 – I at least know of no
U-tables for larger samples.

232 Analytical statistics

To decide whether H0 can be rejected, you look up this value, 8.038194,
in a z-table such as Table 36 or you compute a critical z-score for ptwo-tailed =
0.05 with qnorm (as mentioned in Section 1.3.4.2 above). Since you have a
non-directional H1, you apply the same logic as above and compute z-
scores for half of the ptwo-tailed-values you are interested in:

Table 36. Critical z-scores for ptwo-tailed = 0.05, 0.01, and 0.001

z-score p-value

1.96 0.05

2.575 0.01

3.291 0.001

> qnorm(c(0.9995, 0.995, 0.975, 0.025, 0.005, 0.0005),

lower.tail=FALSE)¶
[1] -3.290527 -2.575829 -1.959964 1.959964 2.575829

3.290527

It is obvious that the observed z-score is not only much larger than the

one tabulated for ptwo-tailed = 0.001 but also very distinctly in the grey-
shaded area in Figure 55: the difference between the medians is highly
significant, as the non-overlapping notches already anticipated. Plus, you
can compute the exact p-value with the usual ‘mirror function’ of qnorm.

Figure 55. Density function of the standard normal distribution; two-tailed test

Means 233

> 2*pnorm(z, lower.tail=FALSE)¶
[1] 9.117223e-16

In R, you compute the U-test with the same function as the Wilcoxon

test, wilcox.test, and again you can either use a formula or two vectors.
Apart from these arguments, the following ones are useful, too:

− alternative: a character string specifying which H1 you want to test:
the default is "two.sided", other possible values for one-tailed tests are
again "less" or "greater", which specify how the first-named vector
or factor level relates to the second;

− paired=FALSE for the U-Test for independent samples or paired=TRUE
for the Wilcoxon test for dependent samples (cf. the following section);

− exact=TRUE, if you want to compute an exact test, or exact=FALSE if
you don’t (if you don’t change exact’s default setting of NULL and your
data set has fewer than 50 data points and no ties, an exact p-value is
computed automatically);

− correct=TRUE for a continuity correction (the default) and cor-
rect=FALSE for none;

− conf.level: a value between 0 and 1 specifying the size of the confi-
dence interval; the default is 0.95.

The standard version to be used here is this:

> wilcox.test(DICE~PROCESS, paired=FALSE, correct=FALSE)¶
 Wilcoxon rank sum test
data: DICE by PROCESS
W = 2416, p-value = 9.072e-16
alternative hypothesis: true location shift is not equal to 0

You get a U-value (here referred to as W) and a p-value; W is not the

minimum of U1 and U2, but the maximum here, which value you get de-
pends on which vector or factor level comes first in the alphabet. The p-
value here is a bit different from yours since R uses a slightly different
algorithm. You can now sum up: “According to a U-test, the median Dice
coefficient of the source words of blends (0.23, IQR = 0.0675) and the me-
dian of the Dice coefficients for complex clippings (0.12, IQR = 0.0675)
are very significantly different: U = 84 (or W = 2416), ptwo-tailed < 0.0001.
The creators of blends appear to be more concerned with selecting source
words that are similar to each other than the creators of complex clippings.”

234 Analytical statistics

Recommendation(s) for further study:
Dalgaard (2002: 89f.), Crawley (2007: 297f.), Baayen (2008: Section
4.3.1), Sheskin (2011: Test 12)

3.2.4. One dep. variable (ordinal) and one indep. variable (nominal)

 (dep. samples)

Just like the U-test, the test in this section has two major applications. First,
you really may have two dependent samples of ordinal data such as when
you have a group of subjects perform two rating tasks to test whether each
subject’s first rating differs from the second. Second, the probably more
frequent application arises when you have two dependent samples of ratio-
scaled data but cannot do the t-test for dependent samples because its dis-
tributional assumptions are not met. We will discuss an example of the
latter kind in this section.

In a replication of Bencini and Goldberg (2000), Gries and Wulff (2005)
studied the question which verbs or sentence structures are more relevant
for how German foreign language learners of English categorize sentences.
They crossed four syntactic constructions and four verbs to get 16 sentenc-
es, each verb in each construction. Each sentence was printed onto a card
and 20 advanced German learners of English were given the cards and
asked to sort them into four piles of four cards each. The question was
whether the subjects’ sortings would be based on the verbs or the construc-
tions. To determine the sorting preferences, each subject’s four stacks were
inspected with regard to how many cards one would minimally have to
move to create either four completely verb-based or four completely con-
struction-based sortings. The investigation of this question involves

− one dependent ratio-scaled variable, namely SHIFTS, the number of
times a card had to be shifted from one stack to another to create the
perfectly clean sortings, and we are interested in the average of these
numbers;

− one independent nominal variable, namely CRITERION: CONSTRUCTION
vs. CRITERION: VERB;

− dependent samples since each subject ‘generated’ two numbers of shifts,
one to create the verb-based sorting, one to create the construction-
based sorting.

Means 235

To test some such result for significance, you should first consider a t-
test for dependent samples since you have two samples of ratio-scaled val-
ues. As usual, you begin by formulating the relevant hypotheses:

H0: The average of the pairwise differences between the numbers of

rearrangements towards perfectly verb-based stacks and the num-
bers of rearrangements towards perfectly construction-based stacks
is 0; meanpairwise differerences = 0.

H1: The average of the pairwise differences between the numbers of
rearrangements towards perfectly verb-based stacks and the num-
bers of rearrangements towards perfectly construction-based stacks
is not 0; meanpairwise differerences ≠ 0.

Then, you load the data that Gries and Wulff (2005) obtained in their

experiment from <_inputfiles/04-3-2-4_sortingstyles.csv>:

> SortingStyles<-read.delim(file.choose())¶
> head(SortingStyles, 3); attach(SortingStyles)¶

As usual, you compute means and standard deviations and generate a

graph of the results.

> tapply(SHIFTS, CRITERION, mean)¶
Construction Verb
 3.45 8.85
> tapply(SHIFTS, CRITERION, sd)¶
Construction Verb
 4.346505 4.107439
> differences<-SHIFTS[CRITERION=="Construction"]-

SHIFTS[CRITERION!="Construction"]¶
> stripchart(differences, method="stack", xlim=c(-12, 12),

xlab="Differences: ->construction minus ->verb");
abline(v=0, lty=2, col="grey")¶

Note: since the two samples are dependent, we are plotting the differ-

ences, just as in Section 4.3.2.2 above. You then test the assumption of the
t-test for dependent samples, the normality of the pairwise differences.
Given Figure 56, those are obviously not normal:

> shapiro.test(differences)¶
 Shapiro-Wilk normality test
data: differences
W = 0.7825, p-value = 0.0004797

236 Analytical statistics

Figure 56. Strip chart of the differences of shifts

You cannot use the t-test. Instead, you compute a test for two dependent

samples of ordinal variables, the Wilcoxon test.

Procedure

− Formulating the hypotheses
− Computing descriptive statistics and visualizing the data
− Testing the assumption(s) of the test:
 − the pairs of values are independent of each other
 − the populations from which the samples whose central tendencies are

tested have been drawn are identically distributed
− Computing the test statistic T and p

As a first step, you adjust your hypotheses to the ordinal level of meas-

urement, you then compute the medians and their interquartile ranges:

H0: medianpairwise differerences = 0
H1: medianpairwise differerences ≠ 0

> tapply(SHIFTS, CRITERION, median)¶
Construction Verb
 1 11
> tapply(SHIFTS, CRITERION, IQR)¶
Construction Verb
 6.25 6.25

Means 237

The assumptions appear to be met because the pairs of values are inde-
pendent of each other (since the sorting of any one subject does not affect
any other subject’s sorting) and, somewhat informally, there is little reason
to assume that the populations are distributed differently especially since
most of the values to achieve a perfect verb-based sorting are the exact
reverse of the values to get a perfect construction-based sorting. Thus, you
compute the Wilcoxon test; for reasons of space we only consider the
standard variant. First, you transform the vector of pairwise differences,
which you already computed for the Shapiro-Wilk test, into ranks:

> ranks<-rank(abs(differences))¶

Second, all ranks whose difference was negative are summed to a value

T-, and all ranks whose difference was positive are summed to T+; the
smaller of the two values is the required test statistic T:28

> T.minus<-sum(ranks[differences<0])¶
> T.plus<-sum(ranks[differences>0])¶
> T.value<-min(T.minus, T.plus)¶

This T-value of 41.5 can be looked up in a T-table (Table 37), but note

that here, for a significant result, the observed test statistic must be smaller
than the tabulated one.

Table 37. Critical T-values for ptwo-tailed = 0.05, 0.01, and 0.001 for 14 ≤ df ≤ 16

 p = 0.05 p = 0.01 p = 0.001

n = 19 46 32 18

n = 20 52 37 21

n = 21 58 42 25

The observed T-value of 41.5 is smaller than the one tabulated for n =

20 and p = 0.05 (but larger than the one tabulated for n= 20 and p = 0.01):
the result is significant.

Let us now do this test with R: You already know the function for the
Wilcoxon test so we need not discuss it again in detail. The relevant differ-
ence is that you now instruct R to treat the samples as dependent/paired. As
nearly always, you can use the formula or the vector-based function call.

28. The way of computation discussed here is the one described in Bortz (2005). It disre-

gards ties and cases where the differences are zero; cf. also Sheskin (2011:812).

238 Analytical statistics

> wilcox.test(SHIFTS~CRITERION, paired=TRUE, exact=FALSE,
correct=FALSE)¶

 Wilcoxon signed rank test
data: SHIFTS by CRITERION
V = 36.5, p-value = 0.01527
alternative hypothesis: true location shift is not equal to 0

R computes the test statistic differently but arrives at the same kind of

decision: the result is significant, but not very significant. To sum up: “On
the whole, the 20 subjects exhibited a strong preference for a construction-
based sorting style: the median number of card rearrangements to arrive at
a perfectly construction-based sorting was 1 while the median number of
card rearrangements to arrive at a perfectly verb-based sorting was 11 (both
IQRs = 6.25). According to a Wilcoxon test, this difference is significant: V
= 36.5, ptwo-tailed = 0.0153. In this experiment, the syntactic patterns were a
more salient characteristic than the verbs (when it comes to what triggered
the sorting preferences).”

Recommendation(s) for further study:
− Dalgaard (2002:92), Sheskin (2011: Test 18)

4. Coefficients of correlation and linear regression

In this section, we discuss the significance tests for the coefficients of cor-
relation discussed in Section 3.2.3.

4.1. The significance of the product-moment correlation

While the manual computation of the product-moment correlation above
was a bit complex, its significance test is not. It involves these steps:

Procedure

− Formulating the hypotheses
− Computing descriptive statistics and visualizing the data
− Testing the assumption(s) of the test: the population from which the

sample was drawn is bivariately normally distributed. Since this criteri-
on can be hard to test (cf. Bortz 2005: 213f.), we simply require both
samples to be distributed normally

− Computing the test statistic t, df, and p

Coefficients of correlation and linear regression 239

Let us return to the example in Section 3.2.3, where you computed a
correlation coefficient of 0.9337 for the correlation of the lengths of 20
words and their reaction times. You formulate the hypotheses and we as-
sume for now your H1 is non-directional.

H0: The length of a word in letters does not correlate with the word’s

reaction time in a lexical decision task; r = 0.
H1: The length of a word in letters correlates with the word’s reaction

time in a lexical decision task; r ≠ 0.

You load the data from <_inputfiles/04-4_reactiontimes.csv>:

> ReactTime<-read.delim (file.choose())¶
> str(ReactTime); attach(ReactTime)¶

Since we already generated a scatterplot above (cf. Figure 35 and Figure

36), we will skip plotting for now. We do, however, have to test the as-
sumption of normality of both vectors. You can either proceed in a step-
wise fashion and enter shapiro.test(LENGTH)¶ and shapiro.test(
MS_LEARNER)¶ or use a shorter variant:

> apply(ReactTime[,2:3], 2, shapiro.test)¶
$LENGTH
 Shapiro-Wilk normality test
data: newX[, i]
W = 0.9748, p-value = 0.8502
$MS_LEARNER
 Shapiro-Wilk normality test
data: newX[, i]
W = 0.9577, p-value = 0.4991

This line of code means ‘take the data mentioned in the first argument

of apply (the second and third column of the data frame ReactTime), look
at them column by column (the 2 in the second argument slot – a 1 would
look at them row-wise; recall this notation from prop.table in Section
3.2.1), and apply the function shapiro.test to each of these columns.
Clearly, both variables do not differ significantly from a normality.

To compute the test statistic t, you insert the correlation coefficient r
and the number of correlated value pairs n into the formula in (55):

240 Analytical statistics

(55) t =
21

2

r

nr

−

−⋅

> r<-cor(LENGTH, MS_LEARNER, method="pearson")¶
> numerator<-r*sqrt(length(LENGTH)-2)¶
> denominator<-sqrt(1-r^2)¶
> t.value<-abs(numerator/denominator)¶

This t-value, 11.06507, has df = n-2 = 18 degrees of freedom.

> df<-length(LENGTH)-2¶

Just as with the t-tests before, you can now look this t-value up in a t-

table, or you can compute a critical value: if the observed t-value is higher
than the tabulated/critical one, then r is significantly different from 0. Since
your t-value is much larger than even the one for p = 0.001, the correlation
is highly significant.

> qt(c(0.025, 0.975), 18, lower.tail=FALSE)¶
[1] 2.100922 -2.100922

Table 38. Critical t-values for ptwo-tailed = 0.05, 0.01, and 0.001 for

17 ≤ df ≤ 19

 p = 0.05 p = 0.01 p = 0.001

df = 17 2.1098 2.8982 3.9561

df = 18 2.1009 2.8784 3.9216

df = 19 2.093 2.8609 3.8834

The exact p-value can be computed as follows, and do not forget to

again double the p-value.

> 2*pt(t.value, 18, lower.tail=FALSE)¶
[1] 1.841060e-09

This p-value is obviously much smaller than 0.001. However, you will

already suspect that there is an easier way to get all this done. Instead of the
function cor, which we used in Section 3.2.3 above, you simply use
cor.test with the two vectors whose correlation you are interested in
(and, if you have a directional H1, you specify whether you expect the cor-
relation to be less than 0 (i.e., negative) or greater than 0 (i.e., positive)

Coefficients of correlation and linear regression 241

using alternative=…):

> cor.test(LENGTH, MS_LEARNER, method="pearson")¶
 Pearson's product-moment correlation
data: LENGTH and MS_LEARNER
t = 11.0651, df = 18, p-value = 1.841e-09
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.8370608 0.9738525
sample estimates:
 cor
0.9337171

Here are the (edited) results of the corresponding linear regression:

> model<-lm(MS_LEARNER~LENGTH)¶
> summary(model)¶
Call:
lm(formula = MS_LEARNER ~ LENGTH)

Residuals:
 Min 1Q Median 3Q Max
-22.1368 -7.8109 0.8413 7.9499 18.9501
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 93.6149 9.9169 9.44 2.15e-08 ***
LENGTH 10.3044 0.9313 11.06 1.84e-09 ***
--- […]
Multiple R-Squared: 0.8718, Adjusted R-squared: 0.8647
F-statistic: 122.4 on 1 and 18 DF, p-value: 1.841e-09

We begin at the bottom: the last row contains information we already

know. The F-value is our t-value squared; we find the 18 degrees of free-
dom and the p-value we computed. In the line above that, you find the co-
efficient of determination you know plus an adjusted version we will only
talk about later (cf. Section 5.2). We ignore the edited-out line about the
residual standard error for now and the legend for the p-values. The table
above that shows the intercept and the slope we computed in Section 3.2.3
(in the column labeled “Estimate”), their standard errors, t-values – do you
recognize the t-value from above? – and p-values. The p-value for LENGTH
says whether the slope of the regression line is significantly different from
0; the p-value for the intercept says whether the intercept of 93.6149 is
significantly different from 0. We skip the info on the residuals because we
discussed above how you can investigate those yourself (with residu-
als(model)¶).

There is one final but immensely useful thing to be discussed. Recall
that above we used the function predict to get the predicted reaction times

242 Analytical statistics

for every observed word length, but also predicted reaction times for non-
observed word lengths. The function predict can return more than this,
however: it can also return confidence intervals for the predictions, which
also allows to plot the regression line with its confidence interval. Since we
will use this frequently in Chapter 5, we will go over one example here,
which will involve three steps.

The first step repeats what we did above: we generate a data frame
preds.hyp that contains a range of values covering the observed word
lengths and that we will pass on to predict, and we do that as in Section
3.2.3 with expand.grid(). I call it preds.hyp to indicate that these are
predictions from the model not for the actually observed lengths but for a
range of hypothetical values. Note again that the column in preds.hyp has
the same name as the independent variable in model.

> preds.hyp<-expand.grid(LENGTH=min(LENGTH):max(LENGTH))¶

The second step is also similar to Section 3.2.3 above, but with two

small changes. We not only use predict to generate the predictions from
model for this data frame, but (i) we also let R compute the confidence
intervals for all predictions and (ii) we make the predictions and the confi-
dence intervals columns 2 to 4 in preds.hyp:

> preds.hyp[c("PREDICTIONS", "LOWER", "UPPER")]<-predict(

model, newdata=preds.hyp, interval="confidence")¶

If you look at the data frame preds.hyp now, you will see we now have

a very nice result: the independent variable is in the column
preds.hyp$LENGTH, the predicted dependent variable is in the column
preds.hyp$PREDICTIONS, and the lower and upper confidence intervals for
each prediction are in the columns preds.hyp$LOWER and
preds.hyp$UPPER respectively.

The third step now involves generating a nice plot. The following code
pulls many things together and introduces the function matlines:

> plot(MS_LEARNER~LENGTH, xlab="Word length in letters",

ylab="Reaction time of learners in ms", pch=16,
col=rgb(0, 0, 0, 70, maxColorValue=255)); grid()¶

> matlines(preds.hyp[,1], preds.hyp[,2:4], lwd=c(2, 1,
1), lty=c(1, 2, 2), col=c("black", "blue", "blue"))¶

The first line just generates a regular scatterplot – the only new thing is

the use of the function rgb to use a semi-transparent greyshade to avoid

Coefficients of correlation and linear regression 243

information loss through overplotting. The second line uses matlines: the
first argument is the first column of preds.hyp and provides the x-values
for the lines to be plotted. The second argument is columns 2 to 4 of
preds.hyp and provides three different sets of y-values to plot with sepa-
rate lines: first the predicted values (= the regression line), second and third
the lower and upper limits of the confidence intervals. The arguments lwd
(line width), lty (line type), and col (color) describe what the lines should
look like, in the order in which they appear in preds.hyp. The result you
see when you run the code: a scatterplot with a regression line and its con-
fidence band, and we can see again why the correlation is so high: not only
is the regression line a good summary of the data, the confidence band is
quite narrow around it and many points are right in it or very close to it.

This was a very detailed description, but since we will use this many
times in Chapter 5, this is time well spent. To sum up: “The lengths of the
words in letters and the reaction times in the experiment correlate highly
positively with each other: r = 0.9337; adjusted R2 = 0.8647. This correla-
tion is highly significant: t = 11.07; df = 18; p < 0.001. The linear regres-
sion shows that every additional letter increases the reaction time by ap-
proximately 10.3 ms.”

In Section 5.2, we deal with the extensions of linear regression to cases
where we include more than one independent variable, and we will also
discuss more comprehensive tests of the regression’s assumptions (using
plot(model)¶).

4.2. The significance of Kendall’s Tau

If you need a p-value for Kendall’s tau τ, you follow this procedure:

Procedure

− Formulating the hypotheses
− Computing descriptive statistics and visualizing the data
− Testing the assumption(s) of the test: the data from both samples are at

least ordinal
− Computing the test statistic z and p

Again, we simply use the example from Section 3.2.3 above (even

though we know we can actually use the product-moment correlation; we
use this example again just for simplicity’s sake). How to formulate the
hypotheses should be obvious by now:

244 Analytical statistics

H0: The length of a word in letters does not correlate with the word’s
reaction time in a lexical decision task; τ = 0.

H1: The length of a word in letters correlates with the word’s reaction
time in a lexical decision task; τ ≠ 0.

As for the assumption: we already know the data are ordinal – after all,

we know they are even interval/ratio-scaled. You load the data again from
<_inputfiles/03-2-3_reactiontimes.csv> and compute Kendall’s τ:

> ReactTime<-read.delim (file.choose())¶
> str(ReactTime); attach(ReactTime)¶
> tau<-cor(LENGTH, MS_LEARNER, method="kendall")¶

To test Kendall’s tau τ for significance, you compute a z-score of the

kind that is by now familiar. You insert τ and the number of value pairs n
into the formula in (56).

(56) z =
()
()19

522

−⋅⋅

+⋅⋅
÷

nn

n
τ

In R:

> numerator.root<-2*(2*length(LENGTH)+5)¶
> denominator.root<-9*length(LENGTH)*(length(LENGTH)-1)¶
> z.score<-abs(tau)/sqrt(numerator.root/denominator.root)¶
> z.score¶
[1] 5.048596

This value can be looked up in a z-table (cf. Table 36) or you generate

these values yourself. The z-score for a significant two-tailed test must cut
off at least 2.5% of the area under the standard normal distribution:

> qnorm(c(0.9995, 0.995, 0.975, 0.025, 0.005, 0.0005),

lower.tail=FALSE)¶
[1] -3.290527 -2.575829 -1.959964 1.959964 2.575829

3.290527

For a result to be significant, the z-score must be larger than 1.96. Since

the observed z-score is even larger than 5, this result is highly significant:

> 2*pnorm(z.score, lower.tail=FALSE)¶
[1] 4.450685e-07

Coefficients of correlation and linear regression 245

The function to get this result much faster is again cor.test. Since R
uses a slightly different method of calculation, you get a slightly different
z-score and p-value, but for all practical purposes the results are identical.

> cor.test(LENGTH, MS_LEARNER, method="kendall")¶
 Kendall's rank correlation tau
data: LENGTH and MS_LEARNER
z = 4.8836, p-value = 1.042e-06
alternative hypothesis: true tau is not equal to 0
sample estimates:
 tau
0.8189904

(The warning refers to ties such as that the length value 11 occurs more

than once). To sum up: “The lengths of the words in letters and the reaction
times in the experiment correlate highly positively with each other: τ =
0.819, z = 5.05; p < 0.001.”

4.3. Correlation and causality

Especially in the area of correlations, but also more generally, you need to
bear in mind a few things even if H0 is rejected: First, one can often hear a
person A making a statement about a correlation (maybe even a significant
one) by saying “The more X, the more Y” and then hear a person B object-
ing to that correlation on the grounds that B knows of an exception. This
argument is flawed. The exception quoted by B would only invalidate A’s
statement if A considered the correlation to be perfect (r = 1 or r = -1) – but
if A did not mean that (and A never does!), then there may be a strong and
significant correlation although there is one exception (or more). The ex-
ception or exceptions are the reason why the correlation is not 1 or -1 but
‘only’, say, 0.9337. Second, a correlation as such does not necessarily im-
ply causality. As is sometimes said, a correlation between X and Y is a
necessary condition for a causal relation between X and Y, but not a suffi-

cient one, as you can see from many examples:

− There is a positive correlation between the number of firefighters trying
to extinguish a fire and the amount of damage that is caused at the site
where the fire was fought. This does of course not mean that the fire-
fighters arrive at the site and destroy as much as they can – the correla-
tion results from a third, confounding variable, the size of the fire: the
larger the fire, the more firefighters are called to help extinguish it and

246 Analytical statistics

the more damage the fire causes.

− There is a negative correlation between the amount of hair men have
and their income which is unfortunately only due to the effect of a third
variable: the men’s age.

− There is a positive correlation such that the more likely a drug addict
was to go to therapy to get off of his addiction, the more likely he was
to die. This is not because the therapy leads to death – the confounding
variable in the background correlated with both is the severity of the ad-
diction: the more severely addicted addicts were, the more likely they
were to go to therapy, but also the more likely they already were to die.

Thus, beware of jumping to conclusions …
Now you should do the exercise(s) for Chapter 4 …

Recommendation(s) for further study

− the functions ckappa and lkappa (from the library psy) to compute the
kappa coefficient and test how well two or more raters conform in their
judgments of stimuli

− the function cronbach (from the library psy) to compute Cronbach’s
alpha and test how consistently several variables measure a construct
the variables are supposed to reflect

− Crawley (2007: Ch. 10), Baayen (2008: Section 4.3.2), Johnson (2008:
Section 2.4), Sheskin (2011: Test 28, 30, 31, 32)

− the function hints (from the library hints) to get ideas about what to
do next with a particular object

Chapter 5

Selected multifactorial and multivariate methods

All models are wrong, but some are useful.
George E.P. Box

So far we have only been concerned with monofactorial methods, i.e.,
methods in which we investigated how maximally one independent varia-
ble is correlated with the behavior of one dependent variable. In many cas-
es, proceeding like this is the beginning of the empirical quantitative study
of a phenomenon. Nevertheless, such a view on phenomena is usually a
simplification: we live in a multifactorial world in which probably no phe-
nomenon is really monofactorial – probably just about everything is corre-
lated with several things at the same time. This is especially true for lan-
guage, one of the most complex phenomena resulting from human evolu-
tion. In this section, we will therefore discuss several multifactorial
techniques, which can handle this kind of complexity better than the mono-
factorial methods discussed so far. You should know, however, each sec-
tion’s method below could easily fill courses for several quarters or semes-
ters, which is why I can unfortunately not discuss every aspect or technical-
ity of the methods and why I will have to give you a lot of references and
recommendations for further study. Also, given the complexity of these
methods, there will be no discussion of how to compute them manually.

Before we can begin to discuss multifactorial methods, however, there
is a lot to discuss. On a very abstract level, this discussion involves the
notions of interaction and model (selection) and will be the subject of Se-
tion 5.1. However, as you will see soon, these notions will quickly lead to a
variety of interrelated concepts and, ultimately, important analytical strate-
gies for the subsequent, more hands-on sections.

1. The notions of interaction and model (selection)

1.1. Interactions

As was mentioned at the beginning of the previous chapter, multifactorial
methods involve a dependent variable and two or more independent varia-

248 Selected multifactorial methods

bles, not just one as in all of Chapter 4. This presence of more than one
independent variable brings about potentially interesting findings, but also
raises the question of how the two or more independent variables jointly
relate to the dependent variable.

There are basically two different ways in which several independent and
dependent variables may be related, which we will explore on the basis of
the example involving constituent lengths from Chapter 1. Let us again
assume you wished to study whether the lengths of constituents – captured
in the dependent variable LENGTH – are correlated with two independent
variables, the variable GRMRELATION (with the two levels SUBJECT and
OBJECT) and the variable CLAUSETYPE (with the two levels MAIN and
SUBORDINATE). Let us further assume you did a small a pilot study in which
you investigated 120 constituents that are distributed as shown in Table 39.

Table 39. A fictitious data set of subjects and objects

 GRMRELATION: SUBJ GRMRELATION: OBJ Totals

CLAUSETYPE: MAIN 30 30 60

CLAUSETYPE: SUBORD 30 30 60

Totals 60 60 120

Let us finally assume you determined the syllabic lengths of all 120

constituents to compute the means for the variable level combinations –
subjects in main clauses, subjects in subordinate clauses, objects in main
clauses, objects in subordinate clauses – and obtained the following results:

− the average length of all subjects (i.e., across main and subordinate
clauses) is less than that of all direct objects;

− the average length of all constituents (i.e., across subjects and objects)
in main clauses is less than that of constituents in subordinate clauses.

The interesting thing is that these monofactorial results – recall from

Section 3.2.2.2 that these are often referred to as main effects – can come in
different forms. On the one hand, the effects of the two independent varia-
bles can be additive. That means the combination of the two variables has
the effect you would expect from each main effect. Since subjects are
short(er), as are constituents in main clauses, additivity predicts that main
clause subjects should be the shortest constituents, and subordinate clause
objects should be longest. This result, which is what H0 would predict, is
represented in Figure 57: black and grey dots indicate mean lengths of ob-

The notions of interaction and model (selection) 249

jects and subjects respectively in the two grammatical relations, but also
averaged across both, and the “m” and the “s” represent the means of main
and subordinate clause constituents across the two grammatical relations.

Figure 57. Interaction plot for LENGTH ~ GRMRELATION * CLAUSETYPE 1

This result is in fact perfectly additive because the two lines are perfect-

ly parallel. That means, if I tell you that

− the difference main clause subject length minus main clause object
length is -2.5 syllables;

− the difference main clause subject length minus subordinate clause sub-
ject length is -2 syllables;

− the average main clause subject length is 2 syllables,

then you can perfectly predict the average subordinate clause object length:
2 + 2.5 + 2 = 6.5.

However, with the exact same kinds of main effects, it is also possible
that the two independent variables interact. Two or more variables interact
if their joint effect on the dependent variable is not predictable from their
individual effects on the same dependent variable. One such scenario is
represented in Figure 58. Consider first the left panel. You can see that
there are still the same kinds of main effect of GRMRELATION (subjects are
again shorter than objects) and CLAUSETYPE (main clause constituents are
again shorter than subordinate clause constituents), but now the lines are
not parallel anymore but intersect.

250 Selected multifactorial methods

Figure 58. Interaction plot for LENGTH ~ GRMRELATION * CLAUSETYPE 2

What does that mean? It means, if I tell you that

− the difference main clause subject length minus main clause object
length is -3 syllables;

− the difference main clause subject length minus subordinate clause sub-
ject length is -4 syllables;

− the average main clause subject length is 2 syllables,

then you can absolutely not predict the average subordinate clause object
length: you would predict 2 + 3 + 4 = 9 syllables (as indicated in the right
panel with the dashed line ending in a circle, which is parallel to the grey
one), whereas the real average subordinate clause object length in the data
is 4 syllables. That is an interaction: you cannot predict the average subor-
dinate clause object length using the two main effects but need an addition-
al interaction term that ‘corrects down’ the prediction from your predicted
9 to the real 4; a test of that interaction term would test whether that term is
significantly different from zero or not.

Yet another kind of interaction is shown in Figure 59. Again, we have
the by now familiar main effects but even though the lines do not intersect,
this is still an interaction for the same reason as above. If I tell you that

− the difference main clause subject length minus main clause object
length is -2 syllables;

− the difference main clause subject length minus subordinate clause sub-

The notions of interaction and model (selection) 251

ject length is -2 syllables;

− the average main clause subject length is 2 syllables,

then you can again not predict the average subordinate clause object length:
you would predict 2 + 2 + 2 = 6 syllables (as again indicated in the right
panel with the dashed line, which is parallel to the grey one), whereas the
real average subordinate clause object length in the data is 8 syllables.

Figure 59. Interaction plot for LENGTH ~ GRMRELATION * CLAUSETYPE 3

Again an interaction: you cannot predict the average subordinate clause

object length using the two main effects but need an additional interaction
term that corrects up the prediction from your predicted 6 to the real 8,
which again may be a significant interaction effect.

Before we move on, let me very briefly give a second example of an in-
teraction, one that you are actually already familiar with, even if you may
not have thought about it like this. The above example involved means, this
one involves frequencies. Imagine you do a corpus study of 60 of-. vs. 80 s-
genitives in which you try to determine whether the genitive choice is cor-
related with the animacy of the possessor NP (e.g., John in John’s car).
Imagine now you presented your results to a colleague in an overview ta-
ble, but you leave out the main body of the table, as in Table 40. If you
now asked your colleague to complete Table 40 without assuming anything
particular going on in the data, that colleague should – maybe implicity –
assume H0 and adopt the logic of the chi-squared test and compute frequen-
cies expected from H0, as in Table 41.

252 Selected multifactorial methods

Table 40. A fictitious data set of genitive choices (totals only)

 Animate possessor Inanimate possessor Totals

of-genitive 60

s-genitive 80

Totals 70 70 140

Table 41. A fictitious data set of genitive choices 1

 Animate possessor Inanimate possessor Totals

of-genitive 30 30 60

s-genitive 40 40 80

Totals 70 70 140

That’s because if your colleague is explicitly told to not assume any-

thing special, any deviation from Table 41 is really hard to motivate. Yes,
your colleague could create something like Table 42 and say, “there’s al-
ways a bit of chance variation”, but … how could he possibly motivate
Table 43 without assuming something special? That “something special”
would be an interaction.

Table 42. A fictitious data set of genitive choices 2

 Animate possessor Inanimate possessor Totals

of-genitive 33 27 60

s-genitive 37 43 80

Totals 70 70 140

Table 43. A fictitious data set of genitive choices 3

 Animate possessor Inanimate possessor Totals

of-genitive 10 50 60

s-genitive 60 20 80

Totals 70 70 140

Thus, what in the chi-squared test scenario corresponds to the frequen-

cies expected from H0 are in fact the frequencies that result from assuming
additive behavior of the two variables. And what a chi-squared test does is
assess whether the data deviate from the distribution assuming no interac-
tion so much that the p-value from the chi-squared test becomes < 0.05,
which in turn means you will reject H0 and assume there is an interaction.

This was probably a painstakingly detailed characterization but the no-
tion of interaction is a very important one (and often misunderstood and/or

The notions of interaction and model (selection) 253

underutilized) so it is absolutely crucial you understand it. This is because
the presence of a significant interaction means you cannot take the main
effects of the independent variables in the interaction at face value! In Fig-
ure 58, while there is a main effect of objects being longer than subjects,
the interaction shows that this is really only true in main clauses, but not in
subordinate clauses. This property of significant interactions – that they
qualify main effects – is one of the most important reasons for why their
inclusion in a model is often essential, a topic to which we will turn now.

1.2. Model (selection)

The last section ended with a sentence using the word model, a word you
also encountered when we discussed linear models and regression. I have
used this word without a formal definition so far but you probably still had
an intuitive understanding of what I meant. Now, more formally, I want to
define a model as a formal characterization of the relationship between
predictors – independent variables and their interactions – and one or more
dependent variables. This ‘characterization’ typically comes in the form of
a (regression) equation of the type you saw in Sections 3.2.3 and 4.4, and
also schematically in the captions of Figure 57, Figure 58, and Figure 59,
where the purpose of the regression equation is to quantify the relationship
between predictors and dependent variable(s) and to generate predictions of
the dependent variable(s). The development of an appropriate model, or
regression equation, is called modeling or model selection, and different
types of modeling are what’s at the heart of most of this chapter.

One word of caution already: this chapter, as short as it is, will hopeful-
ly show that with multifactorial data, the cookbook-recipe type of approach
used in Chapter 4 will not work: analyzing multifactorial data often re-
quires leaving well-trodden paths and cherished distinctions (e.g., between
exploratory and hypothesis-testing approaches). The analysis of a complex
data set is much like detective work or peeling an onion, where at every
step multiple avenues are possible, and I only wish I could claim I had all
the solutions for all the data sets I ever explored … Ok, let’s get to it!

1.2.1. Formulating the first model

The first step in model selection would seem to be the formulation of a first
model, an equation that tries to model the relationship between predictors

254 Selected multifactorial methods

and, for now, one dependent variable. However, there are a variety of
threats to modeling that need to be taken into consideration. One of these
has to do with something as mundane as recognizing the nature of the de-
pendent variable: is it binary? categorical? numeric? numeric but only cov-
ering a particular range of discrete values (e.g., 0 and positive integers as
with frequencies)? or just positive but with a floor as with reaction times?

We have only talked about modeling in a linear-modeling context (with
the function lm), which is typically used when the dependent variable is
numeric and spans a large range of values. However, since a linear regres-
sion will virtually always predict continuous values, it is not really well-
suited to be applied to binary dependent variables (although this is still
common) or categorical ones. Also, since a linear regression will virtually
always predict negative values, it may not be well-suited to predict fre-
quencies. Below, I will discuss different models for different dependent
variables; thankfully, much of the logic of linear models, which you al-
ready know, can be applied to most of these cases.

A second threat is concerned with whether predictors are used on the
most useful information value and scale. As for the former, there is still a
lot of work out there in which continuous predictors are factorized. That
means, instead of using the continuous predictor as is, researchers break it
down into a categorical variable with only a few number of levels (maybe
by using cut). This can not only lose a lot of information especially if the
cutting is not done after a very careful analysis, but it also increases the df
for the analysis, potentially making it harder to get significant results. If
possible, keeping numeric variables numeric is probably a good idea.

As for the latter, the scale, it is important to realize, say, that not all nu-
meric predictors should be entered into model as is. For example, frequen-
cy effects often operate on a logarithmic scale such that, even if word1 is
ten times as frequent as word2, the effect of word1 on the dependent varia-
ble, e.g. reaction time, may only be log (10) times as strong. Thus, what
one should maybe put into the regression equation is log (frequency) (and
to interpret results more easily, it may be good to use logs to the base of 2!

A third threat is concerned with the fact that probably most statistical
modeling in linguistics is some sort of (generalized) linear modeling in
which the effect of a predictor can be summarized with a straight regres-
sion line (in some numerical space). However, relations between predictors
may differ with regard to how they are best characterized, as the two panels
in Figure 60 exemplify. It’s not a good idea to just force a straight regres-
sion line through the data in the right panel …

The notions of interaction and model (selection) 255

Figure 60. Models involing a regression line and a regression curve

Sometimes, data also exhibit interrupted trends that are best character-

ized with two or more regression lines/curves, etc. Again, just fitting one
straight line through such data is risky, to say the least. The good part about
the above three threats is that, if you proceed along the lines of Chapter 4,
you won’t usually make such mistakes. One reason why nearly every sec-
tion in Chapter 4 involved some visualization was to hammer into your
brain the fact that exploratory visualization should be an integral part and at
the beginning of any statistical analysis, and proper visualization will re-
veal logarithmic relations, curvilinear trends, interrupted trends, and so on.

In addtition to these three risks I want to mention two others. One is ra-
ther trivial, one less so. The former is that your model is going to do a
worse job at accounting for the data (the predictive aspect of the modeling
process) and at allowing you to explain the data (the explanatory aspect of
the modeling process) if you leave out important predictors. The latter is
less trivial and brings us back to the notion of interaction, more specifical-
ly, to the question of whether or not to include interactions in your models.
One can probably distinguish three different positions on this matter.

One is that interactions between independent variables should be in-
cluded right from the start. This is because (i) if you do not include interac-

256 Selected multifactorial methods

tions in the model equation, they do not get tested and you don’t know
whether the interactions(s) would in fact help account for the data much
better, and (ii) if you included only interactions for which there was a clear
theoretical motivation, it would become harder to find unexpected things;
this would be a (not uncontroversial) way in which exploratory work seeps
into what is usually a hypothesis-testing approach.

A second position is that you only include interactions you can motivate
theoretically a priori. This has the above disadvantage, but the advanatage
that this makes it hard to fish for something in the data.

The third position may still be the most frequent one: interactions are
not included because the importance of the concept is not clear to the user
or, just as bad, because the software that is being used makes including
interactions hard (Varbrul is a case in point).

This issue of whether or not to include interactions is important enough
to merit a short example (which you may recognize as a previous exercise).
Let’s assume 80 students (L1 speakers of German from two school classes
A and B of 40 students each, a predictor called CLASS) had participated in
one dictation in their L1 German and one in an L2 they are learning, Eng-
lish. Then, the numbers of mistakes in English (ENGLISH) and German
(GERMAN) were counted to determine whether one can predict the numbers
of mistakes made in the L2 on the basis of the numbers of mistakes in the
L1 and the class the students attended. Two multifactorial models might be
fitted to the data, one with the interaction between GERMAN and CLASS,
one without (recall from Section 3.2.2 the two models in (58) are mere
notational variants):29

(57) ENGLISH ~ GERMAN + CLASS
(58) a. ENGLISH ~ GERMAN + CLASS + GERMAN:CLASS
 b. ENGLISH ~ GERMAN * CLASS

The results of the models in (57) and (58) are shown in Table 44 and
Table 45 respectively. Both models are highly significant and explain the
data really well: look at the huge and significant R2-values. However, there
are several important and interrelated problems with the model without the
interaction (in (57)). First, this model does a worse job at accounting for the
data than the model with it (in (58)): the bold figures in the rows called
“Residual var(iance)” show how much variability in the data the models

29. I do not provide the data here but you will see this example again in one of the exercises

for Chapter 5.

The notions of interaction and model (selection) 257

leave unaccounted for and you can see that that value is much higher in
Table 44; a significance test would show that it is in fact significantly high-
er, which is another way of saying that the model in (57) is significantly
worse than the one in (58).

Table 44. The results of the linear model in (57)

 SumSq Estimate Std. error t p

Intercept 23.61 2.75 1.52 1.8 0.08

GERMAN 2931.69 1.75 0.09 20.1 <0.001

CLASS 3010.30 -8.72 0.43 -20.37 <0.001

Residual var. 558.68

overall R2 / p mult. R2=

0.974

adj. R2=

0.973

 F2. 77=

1416

p<0.001

Table 45. The results of the linear model in (58)

 SumSq Estimate Std. error t p

Intercept 24.9 2.82 1.15 2.44 0.017

GERMAN 2461.42 1.64 0.07 24.29 <0.001

CLASS 0.25 -0.28 1.15 -0.25 0.807

GERMAN:CLASS 241.73 -0.515 0.07 -7.61 <0.001

Residual var. 316.95

overall R2 / p mult. R2=

0.985

adj. R2=

0.984

 F3. 76=

1661

p<0.001

Second, the p-values for the regression coefficients, or estimates, are

very different. The main and crucial difference is that the model that ex-
plains the data better ((58)) says CLASS is not significant on its own but
only in the interaction whereas the one that explains the data worse (in
(57)) says CLASS is a significant main effect. This is not an unimportant
technicality: CLASS is a binary variable, which means that, if it is a signifi-
cant, its coefficient is a difference in means between the two classes, and
GERMAN is a numeric variable, which means that, if it is significant, its
coefficient is a slope of a regression line. Thus, what the model in (57)
leads you to believe is this: students from the two classes are differently
good on average (differing by 8.72 mistakes), but you can use one and the
same slope for both classes to predict ENGLISH from GERMAN. This is rep-
resented in the left panel of Figure 61, with GERMAN and ENGLISH on the x
and y-axis respectively, and CLASS is indicated by the letters.

However, the model in (58) says something very different, namely that
there is no difference in means between the two classes (the p-value of

258 Selected multifactorial methods

CLASS is huge). However, GERMAN:CLASS is significant – but what does
that mean? It means that the slope between GERMAN and ENGLISH differs
significantly across classes, which is represented in the right panel of Fig-
ure 61, and even if we did not already know from the first comment above
that this model is better, the fit of the two regression lines with their sepa-
rate slopes certainly seems better. Thus, the two models say very different
things about what CLASS does …

Figure 61. ENGLISH ~ GERMAN + CLASS (+ GERMAN:CLASS)

Finally and related to the previous point, the coefficients in the two
models, and thus their predictions, differ a lot. The residuals of the worse
model are on average more than 36% higher than those of the better one.

In sum, in this case, leaving out the interaction would leave you with a
model that looks great on the surface (large R2 and highly significant) but
that is significantly worse than the model with the interaction, which tells a
very different explanatory story about the data, and which is much worse at
‘predicting’ the data points. Against this background, it is amazing how
often interactions are still not explored (properly).

One thing I have seen is that researchers seem aware of such issues but
that their tools are not equipped to handle interactions (or continuous data)
well; again, Varbrul is a case in point. So how might they then try to ad-

The notions of interaction and model (selection) 259

dress interactions? By fitting a separate model for each class:

(59) ENGLISHCLASS A ~ GERMANCLASS A
(60) ENGLISHCLASS B ~ GERMANCLASS B

If one does that, one does indeed get two significant simple regressions
and the correct slopes of 1.13 for class A and 2.16 for class B. But why is
this still a bad idea?

THINK

BREAK

Well, with this approach how do you know whether the difference be-

tween these two slopes is significant or not? The interaction does not show
up in either model in (59) and (60) so the slopes never get compared to
each other so you don’t get a p-value so you don’t know whether that is a
significant difference or not. I have seen plenaries and papers and more
where Varbrul weights for different time periods were compared to each
other without any test of whether the difference between the Varbrul
weights of different time periods were significant and thus indicative of
change over time or not … You either have to include the interaction and
get a p-value for it, or you have to at least check the confidence intervals of
the slopes for whether they do not overlap (which, here, they do not).

In sum, I advise you to consider carefully the nature of the variables in-
volved,to spend a considerable amount of time exploring your data (espe-
cially visually) before you start doing anything else, and to be very aware
of the potential importance of interactions.

1.2.2. Selecting a final model

Once the above issues have been considered, a first model is formulated,
and often this model is what is called a maximal model, i.e. a model includ-
ing all independent variables, all of their interactions (often only up until
interactions of three independent variables, because interactions of an even
higher order are extremely difficult to understand). However, this is usually
only the starting point since the maximal model usually contains predictors
that do not contribute enough to the model, and since the famous dictum

260 Selected multifactorial methods

called Occam’s razor (entia non sunt multiplicanda praeter necessitatem)
essentially requires you to discard predictors that don’t pull their own
weight or, more formally, do not contribute enough to the model’s success.

Model selection is then influenced by two parameters: the direction of
model selection and the criterion determining whether or not a predictor
gets to be in the model. As for the former, there are three approaches:

− backward selection: here, you start with the maximal model as outlined
above and successively test whether you have to discard predictors
which do not contribute enough to the model. The selection process
ends when no predictor can be discarded anymore with making the
model too much worse or when no predictors are left in the model. The
elimination of predictors begins with the highest level of interactivity
and proceeds downwards in the direction of main effects, and you can-
not discard a predictor that participates in a required higher-order inter-
action. That means, you cannot delete even an insignificant predictor B
if the interaction A:B is significant.

− forward selection: here, you start with a very small model (maybe even
just one that consists of the overall mean) and successively test whether
you can add predictors. The selection process ends when no addition of
a predictor improves the model enough anymore or when all available
predictors are already in the model. The addition of predictors begins
with main effects and moves up to higher-order interactions (if their
main effects have already been included, as above).

− bidirectional: here, you start with some model and allow a usually au-
tomatic algorithm to add and subtract predictors as warranted.

I think the first approach is most widely used in linguistics but there are

also good arguments not to do model selection at all (cf. Harrell 2001: Sec-
tion 4.3 or Faraway 2005: Section 8.2).

As for the latter, I have been intentionally vague above when it came to
describing when predictors are added or discarded: I always just said “good
enough.” This is because there are again at least two possible ways (who
would want life to be easy …):

− a significance-based approach, according to which a predictor can be
added to a model if it makes the model significantly better, and accord-
ing to which a predictor should be discarded if its deletion does not
make the model significantly worse.

− a criterion-based approach: the AIC (Akaike Information Criterion), for

The notions of interaction and model (selection) 261

instance, is one measure that relates the quality of a model to the num-
ber of predictors it contains (and thus operationalizes Occam’s razor). If
two models explain data equally well, then the model with fewer predic-
tors will have a smaller AIC. Thus, in this approach, a predictor can be
added to, or deleted from, a model if that lower AIC.

Once the model selection process has been completed, you have what is

sometimes called the minimal adequate model, which can then be explored
in terms of (i) whether the model as a whole is significant or not and how
well it accounts for the data and (ii) what each predictor in that model con-
tributes to the model: is it significant, what is the direction of its effect(s),
and what is the strength of its effect(s). After this lengthy, but necessary
theoretical introduction, the following sections will discuss all these mat-
ters – (different types of) regression models, main effects, interactions,
model selection. prediction accuracy etc. – on the basis of many practical
examples. Section 5.2 discusses linear models for (multiple) linear regres-
sion, ANOVAs, and ANCOVAs.

Recommendation(s) for further study

− Good and Hardin (2012: Part III) and Crawley (2007: Ch. 9)

2. Linear models

In Sections 3.2.3 and 4.4.1, we looked at how to compute and evaluate the
correlation between an independent ratio-scaled variable and a dependent
ratio-scaled variable using the Pearson product-moment correlation coeffi-
cient r and linear regression. In this section, we will extend this to the case
of multiple independent variables. The data we will explore involve the
question of how to predict speakers’ reaction times to nouns in a lexical
decision task and involves the following variables:30

− a dependent variable, namely the reaction time (RT) to words in a lexi-
cal decision task REACTTIME, whose correlation with the following in-

30. The words (but not the reaction times) are borrowed from a data set from Baayen’s

comprehensive (2008) book; the other characteristics of these words were taken from, or
made up / modified based on, the MRC Psycholinguistic Database; cf.
<http://www.psy.uwa.edu.au/ mrcdatabase/mrc2.html> for more detailed explanations
regarding the variables in general.

262 Selected multifactorial methods

dependent variables you are interested in (in this case, the dependent
variable is an average of reaction times, which would not normally be
the case; this is for expository reasons only and doesn’t matter here);

− an independent numeric variable FREQUENCY, which corresponds to
their logged frequency (according to Kučera and Francis 1967);

− an independent categorical variable FAMILIARITY, which is an index
summarizing subjects’ rated familiarity with the referent of the word;

− an independent binary variable IMAGEABILITY, which is an index sum-
marizing subjects’ rated imageability of the referent of the word;

− an independent numeric variable MEANINGFULNESS, which indicates
subjects’ average meaningfulness rating of the stimulus word.

This is the overall procedure of the linear modeling process we will use:

Procedure
− Formulating the hypotheses
− Loading the data, preparing them for modeling, and exploring them
− Computing, selecting, and interpreting a linear model
 − obtaining p-values for all predictors and for the model as a whole
 − interpreting the regression coefficients/estimates on the basis of (i)

predicted values and (ii) plots of observed and/or predicted values
− Testing the main assumption(s) of the test:31
 − the variances of the residuals are homogeneous and normally distrib-

uted in the populations from which the samples were taken or, at
least, in the samples themselves

 − the residuals are normally distributed (with a mean of 0) in the popu-
lations the samples come from or, at least, in the samples themselves

As you can see, in this section, we will test some assumptions of the lin-

ear modeling only after we have fit a model, which is because you can only
check residuals when you have a model from which they can be computed.
Also, this section is quite different from those in Chapter 4. It has been my
experience – both in teaching and in my own research – that one of the
greatest difficulties in linear modeling is not to get a significant result, but
to understand what the regression coefficients (or estimates, I will use these
terms interchangeably) in the results mean, a problem aggravated by the

31. There are other requirements – e.g., independence of residuals and absence of collineari-

ty (!) – but for reasons of space I cannot discuss them all. See Fox and Weisberg (2011:
Ch. 6) and Field, Miles, and Field (2012: Section 7.7) for exhaustive discussion.

Linear models 263

fact that few books (i) say very explicitly in a language that beginners un-
derstand what the output means and (ii) discuss what the output means for
two different ways to do linear modeling. In order to address both of these
issues, this section will walk you through six fairly simple linear models
that differ in terms of the predictors they involve to show you exactly –
both numerically and visually – what regression coefficients mean. In addi-
tion, each of these linear models will be computed in two ways. One is a
frequently-used standard in some commercial software applications that are
unfortunately still in wide use, the other is the standard way in R.

Before we begin with the modeling, it is important to you to realize that,
if this was a real study, you would not run many different models on the
data to test different but overlapping hypotheses as I will do here. I will
walk you through these models only so that you see how these are fit, in-
terpreted, and visualized – what you would do if this was a real study is a
model selection process of the type discussed in Section 5.2.7.

Let’s begin by formulating the hypotheses, which will be applicable to
all linear models in this section. We use an extension of the coefficient of
determination r2, namely its multiple regression equivalent multiple R2:

H0: There is no correlation between REACTTIME on the one hand and

the predictors (independent variables and their interactions) on the
other hand: multiple R2 = 0.

H1: There is a correlation between REACTTIME on the one hand and the
predictors (independent variables and their interactions) on the oth-
er hand: multiple R2 > 0.

Let us now load the data (from <_inputfiles/05-2_reactiontimes.csv>)

such that the words for which have data become the row names, which is
useful for some plots (output not shown):

> RTs<-read.delim(file.choose(), row.names=1)¶
> summary(RTs)¶

The summary shows you that this is a very small data set – a real study

would better be based on more data. In addition, we find something that is
only too realistic, namely that some variables have missing data, marked as
NA, as they should be. For now, we will adopt a quick and dirty solution
and make use of the fact that R’s linear modeling function lm will automat-
ically discard those cases of variables in the model that have missing data.

Before we begin with the modeling, there are two ways in which data

264 Selected multifactorial methods

can often be prepared for better analysis. One of these is that it is some-
times useful to z-standardize numeric variables (with scale, recall Section
3.1.4), which may help with the problem of collinearity (the undesirable
phenomenon that several of your predictors are highly correlated) and
which may help with interpreting the results because the mean of standard-
ized predictors is zero, which.e.g., makes intercepts and regression coeffi-
cients easy to understand. (On the other hand, it can also make results hard-
er to understand because we lose the original units of the scale.) We will
therefore not use this here, but it’s a good thing to keep in mind for later.

The second thing we are going to do has to do with factors (and now
you will see why I talked about them so much above). If you look at the
summary output, you will see that the factor FAMILIARITY has levels that
are ordered alphabetically but that that order is not compatible with the
ordinal information that the levels communicate. We would want either lo,
med, and hi, or hi, med, and lo, but not hi, lo, med. Thus, for both
FAMILIARITY and IMAGEABILITY, we reorder their levels in an ordinally
reasonable and homogeneous way:

> RTs$FAMILIARITY< factor(RTs$FAMILIARITY, levels=

levels(RTs$FAMILIARITY)[c(2, 3, 1)])¶
> RTs$IMAGEABILITY<-factor(RTs$IMAGEABILITY, levels=

levels(RTs$IMAGEABILITY)[c(2, 1)])¶
> summary(RTs)¶

Since graphical or tabular exploration (e.g., with boxplots or ecdf plots).

which I strongly recommend you always do on data, does not really yield
anything else in need of correction/preparation, we can now attach RTs and
load a few packages we will use. Finally, the code file defines a few func-
tions we will use a few times – se.mean, ci.mean, and error.bar – so just
copy and paste that code into R so that you can use these functions below.

> attach(RTs)¶
> library(aod); library(car); library(effects); library(gvlma);

library(multcomp); library(rgl)¶

2.1. A linear model with a binary predictor

Although this first linear model is the simplest of all, this section will be a
bit longer because all the things having to do with linear models will show
up for the first time. So, don’t despair, everything else later will be shorter.
To test whether IMAGEABILITY is correlated with REACTTIME, we fit what

Linear models 265

is about the simplest possible linear model. However, to get results that are
comparable with what some commercial software outputs, we first set the
way R computes contrasts as shown here (more on that in a while), then we
fit a linear model (where we also tell R which data frame the variables are
from with the data argument), and then we inspect the output:

> options(contrasts=c("contr.sum", "contr.poly"))¶
> model.01<-lm(RT~IMAGEABILITY, data=RTs)¶
> summary(model.01)¶
 […]
Residuals:
 Min 1Q Median 3Q Max
-84.629 -40.016 2.145 26.975 160.799

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 620.666 6.998 88.693 <2e-16 ***
IMAGEABILITY1 12.987 6.998 1.856 0.0693 .
--- […]
Residual standard error: 50.5 on 51 degrees of freedom
 (24 observations deleted due to missingness)
Multiple R-squared: 0.06326, Adjusted R-squared: 0.0449
F-statistic: 3.444 on 1 and 51 DF, p-value: 0.06925

Let’s start at the bottom: the model as a whole is not significant, as the

p-value shows, which in turn is computed from the F-value at df=1, 51
(here it is: pf(3.444, 1, 51, lower.tail=FALSE)¶). The multiple corre-
lation between IMAGEABILITY and REACTTIME, multiple R2, ranges theo-
retically from 0 to 1 and quantifies the variability accounted for, so a value
of 0.06326 is really small. In addition, the value usually reported is the
adjusted R2. This R2-value is adjusted such that you incur a slight penalty
for every predictor included in your model. Thus, if, in a desperate attempt
to explain more variability, you were to add a useless variable into the
model, then it is very likely that whatever little bit of random variation that
useless variable accounts for will be eaten up by the penalty. Thus, this
adjustment brings Occam’s razor into modeling. Obviously, adjusted R2 is
also really small. Then, there is a warning that R deleted 24 observations
because these cases had NA in the variables in the model.

We ignore the residual standard error and briefly skip to the top of the
output,32 where we get a summary output regarding the residuals and we
can already see that these are hardly normally distributed – whatever we
learn here must be interpreted cautiously (We’ll get back to this.)

32. The residual standard error is the root of the quotient of the residual sums of squares

divided by the residual df (in R: sqrt(sum(residuals(model.01)^2)/51).

266 Selected multifactorial methods

While we have not talked about what the coefficients mean, let me al-
ready point out the obvious: they are just estimates, which is how R labels
them, which means you can get confidence intervals for them, and the fact
that the confidence interval for IMAGEABILITY includes 0 already suggests
that, whatever it is – to be discussed in a moment – it’s not significant:

> confint(model.01)¶
 2.5 % 97.5 %
(Intercept) 606.617138 634.71498
IMAGEABILITY1 -1.061602 27.03624

Before we turn to the coefficients and their p-values, let us run two

more lines of code, which are very useful for predictors with more than one
df, i.e. predictors that are neither binary nor numeric (i.e., this does not
apply here, I mention it here anyway for the sake of consistency).

> drop1(model.01, test="F")¶
Single term deletions
Model:
RT ~ IMAGEABILITY
 Df Sum of Sq RSS AIC F value Pr(>F)
<none> 130059 417.69
IMAGEABILITY 1 8783.6 138843 419.15 3.4443 0.06925 .
--- […]
> Anova(model.01, type="III")¶
Anova Table (Type III tests)
Response: RT
 Sum Sq Df F value Pr(>F)
(Intercept) 20060844 1 7866.4268 < 2e-16 ***
IMAGEABILITY 8784 1 3.4443 0.06925 .
Residuals 130059 51 […]

These functions are important ways to get p-values for predictors. The

first, drop1, looks at all the predictors in the model and checks which pre-
dictor could theoretically be deleted from the model at this stage in the
model selection process, and for the predictors that could be deleted at this
point, it returns a p-value for the test of the original model, model.01,
against the model that you would get without that predictor. The second,
Anova, is available from the library car. It computes a p-value for predic-
tors that is the same as commercial software returns by default.33 As you

33. The issue of sums of squares (the type="III" argument) is hotly debated. I will not

engage in the discussion here which approach is better but use type="III" for reasons
of comparability with other software even if type="II" may often be more useful; see
Crawley (2002: Ch. 18, 2007: 368ff.), Larson-Hall (2010: 311-313), Fox and Weisberg
(2011: Sections 4.4, 4.6), Field, Miles, and Field (2012: 475f.) and the R-help list.

Linear models 267

can see, both return the already known p-value for the only predictor.
With this output, let us now turn to the coefficients. First the simpler

part, the p-values, then, second, the coefficients. The p-value for the inter-
cept is usually disregarded: it tests the H0 that the intercept is 0, but there
are few applications where that is relevant. More interesting is the p-value
for the predictor IMAGEABILITY. (In fact, R writes IMAGEABILITY1, I will
explain that in a moment.) In this simplest of cases, where our model only
has one binary predictor, the p-value there is the same as the p-value of the
whole model, and the same of that predictor in the drop1 and in the Anova
output: 0.06925. So, the predictor does not have a significant effect and, in
a sense, the output of drop1 says that most intuitively because what drop1
is essentially saying is “if you drop IMAGEABILITY from model.01, then
the resulting model is not significantly worse (p=0.06925).” A different
way to view this is as showing that the regression coefficient is not signifi-
cantly different from 0. All this is identical to what you get from a t-test.

While this model/predictor is not significant, we will proceed with the
discussion and plotting as if it were, because at this point I want to show
you how such a model output is interpreted and plotted; a more realistic
model selection process follows in Section 5.2.7.

So – finally – what do the estimates mean, the 620.666 of (Intercept)
and the 12.987 for IMAGEABILITY1? I recommend to approach this question
on the basis of the values that the model predicts as in Section 4.4.1:

> preds.hyp<-expand.grid(IMAGEABILITY=levels(IMAGEABILITY));

preds.hyp[c("PREDICTIONS", "LOWER", "UPPER")]<-predict(
model.01, newdata= preds.hyp, interval="confidence");
preds.hyp¶

 IMAGEABILITY PREDICTIONS LOWER UPPER
1 lo 633.6534 612.5138 654.7929
2 hi 607.6787 589.1691 626.1884

Thus, model.01 predicts that, when the word is of low imageability,

then people’s reaction times will be about 26 ms slower than when the
word is of high imageability. Just to make this clear: this means the model
makes only two different predictions: when IMAGEABILITY is low, it al-
ways predicts an RT of 633.6534, and when IMAGEABILITY is high, it al-
ways predicts an RT of 607.6787, and these two predicted values are also
the observed means: try tapply(RT, IMAGEABILITY, mean)¶. Note also
how much the confidence intervals of the two predictions overlap.

If we look at preds.hyp, you may already suspect what the regression
estimates mean. When you compute the linear model as we did here, i.e.
with sum contrasts!, then these two values mean the following:

268 Selected multifactorial methods

− the intercept, 620.666, is the unweighted (!) mean of the means of the
dependent variable, when it is grouped by the independent variable.
That is, 620.666 is the mean of of 633.6534 and 607.6787, and that is an
unweighted mean because it does not take into consideration that the
two levels of IMAGEABILITY are not equally frequent.

− the coefficient for IMAGEABILITY1, 12.987, is what you have to add to
the intercept to get the predicted RT for the first level of IMAGEABILITY
(hence the 1): 620.666 + 12.987 = 633.653. (And since the intercept is
the mean of means, if you subtract the coefficient from the intercept,
you get the predicted RT for the second level of IMAGEABILITY:
620.666 - 12.987 = 607.679.)

This is visually represented in Figure 62.

Figure 62. The regression estimates of model.01 with sum contrasts

Now, you may wonder why it says “slope” in Figure 62. This is because

you can conceptualize the intercept as an x-axis value of 0 and
IMAGEABILITY:1 as an x-axis value of 1, which is pretty much what linear
modeling does under the hood: For numeric variables, effects are given as
slopes which represent how much the predicted y-value changes for every
unit change on the x-axis anyway, but with the above perspective you can
also understand coefficients for factor levels (e.g., 12.987) as slopes.

Finally, while this particular model is so simple that the coefficients etc.
can be understood without any visualization, this can quickly change so I

Linear models 269

will even here present two ways in which the data can be visualized. The
code to generate the plots in Figure 63 is in the code file. The left is an
ordinary barplot of means, the only thing I added are the confidence inter-
vals for the means; the right plot is a very easy-to-generate effect plot.

Figure 63. The effects of model.01: barplot with observed/predicted means and
their 95% confidence-interval bars (left panel); effects plot from the li-
brary effects (right panel)

All the above was how much commercial software would report the re-

sults. However, the standard way in R is actually a bit different, thankfully
it is really only a bit … Since I want you to know R’s standard approach
and since that approach will help you understand logistic regression later, I
will now discuss it very briefly. The only real difference in execution for
this second, R’s standard approach, is that you now use R’s default con-
trasts, treatment contrasts. If you then generate the model again, the R

2-
values, the overall p-value, most is the same but not the coefficients:

> options(contrasts=c("contr.treatment", "contr.poly"))¶
> model.01<-lm(RT~IMAGEABILITY, data=RTs)¶
> summary(model.01)¶
 […]
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 633.65 10.53 60.177 <2e-16 ***
IMAGEABILITYhi -25.97 14.00 -1.856 0.0693 .
--- […]
> confint(model.01)¶

After what we have done above, you probably immediately see what the

270 Selected multifactorial methods

intercept and the coefficient for IMAGEABILITYhi represent:

− the intercept, 633.65, is the observed/predicted mean of the dependent
variable, when the independent variable IMAGEABILITY is its first level,
LO.

− the coefficient for IMAGEABILITYhi, -25.97 is what you add to the in-
tercept to get the predicted RT for the second level of IMAGEABILITY
(hence the HI): 633.65 + -25.97 = 607.68; the p-value shows that the dif-
ference between the intercept (representing IMAGEABILITY: LO) and this
predicted RT for IMAGEABILITY:HI is not significant.

This is also represented in Figure 64, where, as discussed above, the an-

notation of x = 0 and x = 1 motivate the use of the word slope in the plot.

Figure 64. The regression estimates of model.01 with treatment contrasts

As you can see, in this simple case both approaches yield different coef-

ficients, but they amount to the same significance tests (with drop1 again,
see the code file) and the same predictions (in the new preds.hyp; see the
code file). Also, note that I provide some extra code to get p-values for
coefficients using wald.test and glht in the code file. You should always
run that, too, since it will be very useful later; much later you may want to
explore Bretz, Hothorn, and Westfall (2011).

You can summarize the results as follows: “A linear model was fit with
REACTTIME as the dependent variable and IMAGEABILITY (low vs. high) as

Linear models 271

the independent variable. The model was not significant (F = 3.444, df1 = 1,
df2 = 51, p=0.069). There was only a marginally significant tendency such
that low and high imageability correlated with slower and faster reaction
times respectively. [Show graph(s)].”

2.2. A linear model with a categorical predictor

In this section, we still cover only one predictor – so actually, we are still
not doing multifactorial analysis – but we make the model a bit more com-
plex by studying a predictor with three levels (FAMILIARITY), which means
you could not do a t-test anymore.34 First again the approach using sum
contrasts (from now on, I will not show all the output anymore):

> options(contrasts=c("contr.sum", "contr.poly"))¶
> model.01<-lm(RT~FAMILIARITY, data=RTs)¶
> summary(model.01)¶
> confint(model.01)¶

This model is significant: the overall p-value is < 0.001. Since this is al-

so a model with only one predictor, you know that this is now also the p-
value for that one predictor. However, if you look at the table of coeffi-
cients, you don’t find it there. Instead you have an intercept and then two
quite different p-values. How do you get a p-value for FAMILIARITY other
than by looking at the overall p-value (e.g., when you have more than one
predictor)? This is a case where drop1 and Anova are needed because –
remember from above – here the (only) predictor has more than 1 df be-
cause it is neither binary nor numeric. Thus you use drop1 and Anova:

> drop1(model.01, test="F")¶
> Anova(model.01, type="III")¶

There’s the p-value for FAMILIARITY, and this time you can see how the

significance-based and the criterion-based approach agree: FAMILIARITY is
significant and taking it out increases AIC considerably.

34. Incidentally, this section as well as the previous cover linear models that some would

refer to as ANOVAs, analyses of variance. However, since the underlying approach be-
tween linear regressions with only numerical independent variables, ANOVAs with only
categorical independent variables, and ANCOVAs with both categorical and numeric
independent variables is the same – in R they are all fit with lm – I will not topicalize the
differences between these methods but rather focus on their commonalities.

272 Selected multifactorial methods

So, what do the estimates mean? Again, we approach this via the pre-
dicted values. It turns out that there is a nice ordinal effect: as FAMILIARITY
increases, RTs go down, which makes sense.

> preds.hyp<-expand.grid(FAMILIARITY=levels(FAMILIARITY));

preds.hyp[c("PREDICTIONS", "LOWER", "UPPER")]<-
predict(model.01, newdata=preds.hyp,
interval="confidence"); preds.hyp¶

From preds.hyp, you can again guess what the estimates mean, and

this is also visualized again in Figure 65:

Figure 65. The regression estimates of model.01 with sum contrasts

− the intercept, 622.774, is the unweighted (!) mean of the means of the
dependent variable, when it is grouped by the independent variable.
That is, 622.774 is the mean of 663.2880, 613.6471, and 591.3879, and
that is an unweighted mean because it does not take into consideration
that the levels of FAMILIARITY are not all equally frequent;

− the coefficient for FAMILIARITY1, 40.514, is what you add to the inter-
cept to predict the RT for the first level of FAMILIARITY (hence the 1);

− the coefficient for FAMILIARITY2, -9.127, is what you add to the inter-
cept to predict the RT for the second level of FAMILIARITY;

− and if you subtract both coefficients for FAMILIARITY from the inter-
cept, you get the predicted RT for the third level of FAMILIARITY.

Note that you do not get p-values for all differences between the inter-

cept and the levels, and sometimes you may want to run a variety of tests

Linear models 273

on differences between means. One (rather conservative) way to approach
this question involves the function TukeyHSD.

> TukeyHSD(aov(model.01), ordered=TRUE)¶

The main argument of this function is an object created by the function

aov (an alternative to anova), which in turn requires the relevant linear
model as an argument. As a result, you get a table for all three comparisons
you can make between three means. You get the differences between the
means, the lower and the upper confidence intervals for the differences, and
p-values that have been adjusted for the fact that you are suddenly perform-
ing three significance tests on the same data set. Why would p-values have
to be adjusted for that?

THINK

BREAK

The point of a significance level was to make sure that, if you accept an

H1, your probability to do that incorrectly was < 0.05. Now, if you reject
two independent H0 at each p = 0.05, what is the probability that you do so
correctly both times? It’s 0.9025, i.e. 90.25% Why? Well, the probability
you are right in rejecting the first H0 is 0.95. But the probability that you
are always right when you reject H0 on two independent trials is 0.952 =
0.9025. This is the same logic as if you were asked for the probability to
get two sixes when you simultaneously roll two dice: 1/6

2 = 1/36. The proba-
bility that you are always right when you reject H0 on three independent
trials is 0.952 = 0.857375. In fact if you look at 13 H0s, then the probability
that you do not err once if you reject all of them is in fact dangerously close
to 0.5: 0.9513 ≈ 0.5133, a.k.a. pretty far away from 0.95. Thus, the probabil-
ity of error you use to evaluate each of n H0s should not be 0.05 – it should
be smaller so that when you perform all n tests, your overall probability to
be always right is 0.95. Thus, if you want to test n H0s, you must use p =
1-0.95(1/n). For 13, that means p ≈ 0.00394. Then, the probability that you
are right on any one rejection is 1-0.00394 = 0.99606, and the probability
that you are right with all 13 rejections is 0.9960613 ≈ 0.95. A shorter heu-
ristic that is just as conservative (actually, too conservative) is the Bonfer-
roni correction. It consists of just dividing the desired significance level –
i.e., usually 0.05 – by the number of tests – here 13. You get 0.05/13 ≈

274 Selected multifactorial methods

0.003846154, which is close (enough) to the exact probability of 0.00394
computed above. Thus, if you do multiple post hoc tests on a dataset, you
usually adjust the significance level, which makes it harder for you to get
significant results just by fishing around in your data, which should moti-
vate you to formulate reasonable H1s beforehand rather than excessive post

hoc testing.
Back to the data at hand: we can see that the difference between medi-

um and high levels of FAMILIARITY is not significant, but the other two
differences are. What does that mean?

THINK

BREAK

It means that Occams razor would require that you now test whether

you need to uphold the difference between medium and high familiarity or
whether you must conflate the two, and we will do this in Section 5.2.7.

As a last step for this model, you can generate some plots again, and the
code file will show you how to generate plots like Figure 63 for this model.

Now, let us very briefly explore this same model, but now with R’s de-
fault of treatment contrasts again:

> options(contrasts=c("contr.treatment", "contr.poly"))¶
> model.01<-lm(RT~FAMILIARITY, data=RTs)¶
> summary(model.01)¶
 […]
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 663.29 13.23 50.118 < 2e-16 ***
FAMILIARITYmed -49.64 15.59 -3.185 0.002449 **
FAMILIARITYhi -71.90 18.72 -3.842 0.000334 ***
--- […]
> confint(model.01)¶

After what we have done above, the estimates are probably clear:

− the intercept, 663.29, is the observed/predicted mean when the inde-
pendent variable FAMILIARITY is its first level, lo.

− the coefficient for FAMILIARITYmed, -49.64 is what you add to the inter-
cept to predict the RT for the second level of FAMILIARITY.

− the coefficient for FAMILIARITYhi, -71.90 is what you add to the inter-
cept to predict the RT for the third level of FAMILIARITY.

Linear models 275

This is also represented in Figure 66, where, as discussed above, the an-
notation of x = 0 and x = 1 (two times, one for each estimate) help motivate
the use of the word slope in the plot. Thus, in some sense, it’s all the same
as before in Section 5.2.1 and you can summarize this section’s model
along the lines of the one above.

Figure 66. The regression estimates of model.01 with treatment contrasts

2.3. A linear model with a numeric predictor

We are still only preparing for multifactorial models. In the last two mono-
factorial ones, the only predictor was a (binary or categorical) factor and,
correspondingly, its effects were differences between means. However, we
also began to approach that as a slope, by conceptualizing differences be-
tween means as slopes from the y-value at a reference level (at x = 0) to a y-
value at a level defined as x = 1. In this section, we will very briefly revisit
the case of a numeric predictor, i.e., what we discussed in Section 4.4.1.
One nice thing is that, with just an interval-scaled predictor, we do not have
to cover two types of contrasts. We are going to look at the correlation
between FREQUENCY and REACTTIME.

> options(contrasts=c("contr.sum", "contr.poly"))¶
> model.01<-lm(RT~FREQUENCY, data=RTs)¶
> summary(model.01)¶
> confint(model.01)¶

By now we have studied such cases both with cor.test and lm already

so I won’t go over all the results in detail again. Suffice it to say, that the

276 Selected multifactorial methods

model is significant because its only predictor is, etc. Since the predictor is
numeric, we do not really need the following two lines, but just to entrench
them in your mind, here they are again, and they return the same p-value.

> drop1(model.01, test="F")¶
> Anova(model.01, type="III")¶

To determine what the estimates mean, we follow the same strategy as

before and compute predictions for values from the attested range:

> preds.hyp<-expand.grid(FREQUENCY=floor(min(FREQUENCY)):

ceiling(max(FREQUENCY))); preds.hyp[c("PREDICTIONS",
"LOWER", "UPPER")]<-predict(model.01, newdata=
preds.hyp, interval="confidence"); preds.hyp¶

You can recognize what you hopefully already guessed from above:

− the intercept, 667.03, is the predicted RT when the independent variable
FREQUENCY is 0.

− the coefficient for FREQUENCY, -24.266 the increase in the predicted RT
(i.e., given the minus, a decrease) for each unit increase of FREQUENCY.

As usual, you should plot the data to get an impression of the fit, and the

code file provides a few examples of how you could do that.
Now that we have covered the basics, we can finally move on to multi-

factorial linear models. While this introductory part may have seemed long,
having covered everything in that much detail will make things easier now.

2.4. A linear model with a two categorical predictors

We begin with a model in which we try to predict REACTTIME on the basis
of two independent categorical variables, IMAGEABILITY and FAMILIARITY,
and their interaction, IMAGEABILITY:FAMILIARITY. As before, we begin
with a model based on sum contrasts. Recall the notation using the asterisk
to say ‘all these main effects and their interactions’:

> options(contrasts=c("contr.sum", "contr.poly"))¶
> model.01<-lm(RT~IMAGEABILITY*FAMILIARITY, data=RTs)¶
> summary(model.01)¶
> confint(model.01)¶

Linear models 277

The output becomes more complex … The model as a whole is signifi-
cant (p = 0.01138), we can see that IMAGEABILITY is not significant, but we
don’t have individual p-values for FAMILIARITY and the interaction
IMAGEABILITY:FAMILIARITY. Thus, before we try to understand the coeffi-
cients/estimates, a quick look at drop1 and Anova:

> drop1(model.01, test="F")¶
> Anova(model.01, type="III")¶

This time, the output of the two is differently comprehensive. The out-

put of drop1 follows the above logic of backwards model selection and
only returns p-values for those predictors that could be dropped at this time.
Since there is an interaction of two variables and nothing more complex
than that in the model, you can drop that interaction, but you cannot at this
stage drop any of the variables from the interaction as long as the interac-
tion is still in the model. Thus, drop1 only returns the p-value for the model
with vs. without the interaction and since the interaction is not significant,
one should drop it (following Occam’s razor).

The output of Anova is more comprehensive and returns p-values for all
predictors in the model; you can recognize the p-values for IMAGEABILITY
from the summary(lm()) output, and the one for the interaction from the
drop1 output. We will not drop the interaction now because at this point I
want to show you how such a model output is interpreted and plotted;
again, the more realistic model selection process follows in Section 5.2.7.

Now to the predictors and their estimates:

> preds.hyp<-expand.grid(IMAGEABILITY=levels(IMAGEABILITY),

FAMILIARITY=levels(FAMILIARITY)); preds.hyp[
c("PREDICTIONS", "LOWER", "UPPER")]<-predict(model.01,
newdata=preds.hyp, interval="confidence"); preds.hyp¶

I will not explain every coefficient in detail here –see the code file for

painfully detailed definitions of each estimate – for two reasons. First, to
save space: you will see how long and convoluted the definition of the
estimates in the code file can become. Second, the whole point of generat-
ing preds.hyp is that we don’t have to look at the coefficients that much.
Of course you should still understand the explanation in the code file but in
actual practice understanding the coefficients of a model with, say, five
significant 3-way interactions and 10 other predictors on the basis of the
coefficients is pretty much impossible. Thus, read the explanation of the
coefficients in the code file carefully, run the code there to verify my ex-

278 Selected multifactorial methods

planations, and try to recognize their effects in the data, but for now we
will explore the model on the basis of its predictions, which show that

− the observed/predicted means don’t do much as IMAGEABILITY changes
(averaging across FAMILIARITY);

− the observed/predicted means decrease as FAMILIARITY increases (aver-
aging across IMAGEABILITY)’

− there is a hint of an interaction (but we know from above it is not signif-
icant) because, when FAMILIARITY is LO or MED, then a change from
IMAGEABILITY LO to HI speeds up reaction times, but has the opposite
effect when FAMILIARITY is HI.

The Tukey test shows that, with a very conservative post-hoc testing

approach, there is hardly anything significant in the data. But let us visual-
ize the data. The code file shows you different kinds of plots, interaction
plots using lines, a bar plot of means and confidence intervals, dot charts of
means, and a (too?) colorful boxplot of the observed medians and their
notches as well as means and their confidence intervals. Finally, the last
one is an effect plot, which again shows clearly that this interaction is not
significant: the lines for the means are nearly parallel.

Now, what about the same analysis with treatment contrasts?

> options(contrasts=c("contr.treatment", "contr.poly"))¶
> model.01<-lm(RT~IMAGEABILITY*FAMILIARITY, data=RTs)¶
> summary(model.01)¶
> confint(model.01)¶
> drop1(model.01, test="F")¶

Again, everything is the same as above except for the estimates and I

explain what they mean in detail in the code file. However, since under-
standing treatment contrasts will be very important for logistic regressions,
I want to comment on them here as well. There are two central rules that,
once internalized, help you understand all treatment contrast results easily:

(61) Each coefficient/estimate for a predictor X (main effect, interaction,

or factor level) is the value you must add to the intercept to,
a. in the case of categorical variables, predict the value for

the level of X you are looking at;
b. in the case of numeric variables, predict the value that re-

sults from a one-unit change of X;
while, and this is the crucial point, all categorical predictors not

Linear models 279

mentioned in X are set to their first level (usually the alphabetically
first level, but it can also be the one you set first, as in this case),
and all numeric predictors not mentioned in X are 0.

The second rule is just a special case of (61), namely the intercept:

(62) Therefore, the intercept, where no predictor is mentioned, is the

predicted value when
a. all categorical variables in the model equation are set to

their first level;
and/or (!)

b. all numerical variables are set to zero (which, if you cen-
tered or z-standardized them, corresponds to their mean)

Thus,

− the intercept is the predicted RT when both predictors are set to their
first level (LO);

− the second coefficient is what you add to the intercept to predict the RT
for when the predictor mentioned changes to the level mentioned here
(i.e., IMAGEABILITY changes from LO to HI) and when the predictor not
mentioned here stays at the level from the intercept (i.e., FAMILIARITY

remains LO);

− the third coefficient is what you add to the intercept to predict the RT
for when the predictor mentioned changes to the level mentioned here
(i.e., FAMILIARITY changes from LO to MED) and when the predictor not
mentioned here stays at the level from the intercept (i.e., IMAGEABILITY
remains LO), similarly for the fourth coefficient;

− the fifth coefficient is for a predictor that is an interaction. Thus, to use
it for a prediction, you do not just add this estimate to the intercept, but
also the estimates for the main effects that are part of it. Thus, to predict
the RT for when IMAGEABILITY is HI and FAMILIARITY is MED, you add
to the intercept the second coefficient (for when IMAGEABILITY is HI),
the third coefficient (for when FAMILIARITY is MED), and this fifth one
(for the interaction):

> 676.30 + -26.11 + -58.94 + 18.91¶
[1] 610.16

280 Selected multifactorial methods

Compare that to preds.hyp[4,]: the result is the same, and the same
logic applies to the sixth coefficient. It is probably obvious by now why
inspecting preds.hyp and plotting predicted values is easier than plough-
ing through the table of coefficients, especially since preds.hyp is the
basis for the plotting, which you have done above.

You could now summarize model.01 as before: overall model statistics,
predictors and their p-values, and a plot.

2.5. A linear model with a categorical and a numeric predictor

In the last section, both variables were categorical so all effects were (ad-
justments to) means. Now we turn to mixed variables: one variable is cate-
gorical (FAMILIARITY), one is numeric (FREQUENCY). First, sum contrasts:

> options(contrasts=c("contr.sum", "contr.poly"))¶
> model.01<-lm(RT~FAMILIARITY*FREQUENCY, data=RTs)¶
> summary(model.01)¶
> confint(model.01)¶

The model is very significant (p = 0.001728), but as before you do not

get all p-values for all predictors: you can see FREQUENCY is significant,
but you do not get one p-value for FAMILIARITY and the interaction. Thus:

> drop1(model.01, test="F")¶
> Anova(model.01, type="III")¶

Both show that the interaction is not significant. On to the estimates:

> preds.hyp<-expand.grid(FAMILIARITY=levels(FAMILIARITY),

FREQUENCY=floor(min(FREQUENCY)):ceiling(max(FREQUENCY)));
preds.hyp[c("PREDICTIONS", "LOWER", "UPPER")]<-
predict(model.01, newdata=preds.hyp, interval=
"confidence"); preds.hyp¶

This data frame is not easy to process. (Given the length of this table, I

show how to create a version that is easier to process in the code file.) One
can see generally that, as FREQUENCY goes up, predicted RTs go down, but
really what is needed is a graph. But a question first: What does the interac-
tion represent and, therefore, how does this have to be plotted?

Linear models 281

THINK

BREAK

As in Section 5.1.2, the interaction of a categorical and a numeric varia-

ble means that the there is not one slope for the effect of the numeric varia-
ble in the model but as many slopes as there are levels of that categorical
variable. That is, the interaction reflects adjustments to slopes. Hence, we
plot a graph that has different regression lines for FREQUENCY for each
level of FAMILIARITY; the levels of FAMILIARITY are represented by their
first letters. The plot here is quite minimalist (e.g., by not including the
original data points), but the code file provides a variety of alternatives; the
simplest one to do is, as usual, the effect plot.

Figure 67. The interaction FAMILIARITY:FREQUENCY in model.01

The plot shows the results more efficiently than anything else (esp.

when confidence intervals are added to show that interaction is not signifi-
cant). The model shows that, on the whole, FREQUENCY speeds subjects up
but especially when FAMILIARITY is LO compared to when it is not. This,
together with the p-values etc., should be in your summary of the model.

Now again a quick glance at treatment contrasts:

> options(contrasts=c("contr.treatment", "contr.poly"))¶
> model.01<-lm(RT~FAMILIARITY*FREQUENCY, data=RTs)¶

282 Selected multifactorial methods

> summary(model.01)¶
> confint(model.01)¶
> drop1(model.01, test="F")¶

As usual, it’s the coefficients that change, and they change in accord-

ance with the rules in (61) and (62):

− the intercept is the predicted RT when all predictors are set to their first
level or 0, i.e. when FAMILIARITY is LO and FREQUENCY is 0;

− the second coefficient is what you add to the intercept to predict the RT
for when the predictor mentioned changes to the level mentioned here
(i.e., FAMILIARITY changes from LO to MED) and when the predictor not
mentioned here stays at the level from the intercept (i..e. FREQUENCY
remains 0), similarly for the third coefficient;

− the fourth coefficient is what you add to the intercept to predict the RT
for when the predictor mentioned increases by one unit (since
FREQUENCY is numeric, it changes from 0 to 1) and when the predictor
not mentioned here stays at the level from the intercept (i.e.,
FAMILIARITY remains LO);

− the fifth coefficient is for a predictor that is an interaction. Thus, to use
it for a prediction, you do not just add this estimate to the intercept, but
also the estimates for the main effects that are part of it. Thus, to predict
the RT for when FAMILIARITY is MED, and FAMILIARITY increases by 1,
you add to the intercept the second coefficient (for when FAMILIARITY
is MED), the fourth coefficient (for when FAMILIARITY increases by 1),
and this one (for the interaction):

> 697.96 + -66.40 + -32.73 + 21.65¶
[1] 620.48

Compare that to preds.hyp[5,]; same for the sixth coefficient.

2.6. A linear model with two numeric predictors

Now we are getting serious, enough fun and games. We are going to model
REACTTIME as a function of two numeric variables, FREQUENCY and
MEANINGFULNESS, and their interaction. This is somewhat tricky because
of the interaction. An interaction between two categorical variables reflects
adjustments to means, an interaction between a categorical variable and a
numeric variable reflects adjustments to slopes – but what is an interaction

Linear models 283

between two numeric variables? As you will see, it is that one numeric
variable’s slope effect changes across the range of the other numeric varia-
ble, which also means we will sometimes have to consider three-
dimensional plots: one predictor on the x-axis, the other predictor on the y-
axis, the prediction on the z-axis.

With only two numeric predictors, we need not distinguish between sum
and treatment contrasts so let’s get started. (You may also paste the drop1
and Anova lines, but they are unnecessary: every predictor has 1 df.)

> options(contrasts=c("contr.sum", "contr.poly"))¶
> model.01<-lm(RT~MEANINGFULNESS*FREQUENCY, data=RTs)¶
> summary(model.01)¶
> confint(model.01)¶

A just about significant model – although no predictor is significant,

which is somewhat rare. We generate preds.hyp, which this time is a bit
more cumbersome. Since we have two numeric variables, we generate
ranges of values for both of them. For FREQUENCY we do this as before, for
MEANINGFULNESS I do not just use eight values (an arbitrary choice, it
could also be 20) from the attested range, but also 0 and 1 (so I can explain
the coefficients).

> preds.hyp<-expand.grid(MEANINGFULNESS=c(0:1,

seq(floor(min(MEANINGFULNESS, na.rm=TRUE)),
ceiling(max(MEANINGFULNESS, na.rm=TRUE)), length.out=8)),
FREQUENCY=floor(min(FREQUENCY)):ceiling(max(FREQUENCY)))¶

> preds.hyp[c("PREDICTIONS", "LOWER", "UPPER")]<-predict(
model.01, newdata=preds.hyp, interval="confidence")¶

> preds.hyp¶

In fact, the coefficients mean what they always mean; cf. (61) and (62):

− the intercept is the predicted RT when both MEANINGFULNESS and
FREQUENCY is 0;

− the second coefficient is what you add to the intercept to predict the RT
for when the predictor mentioned increases by one unit (i.e., when
MEANINGFULNESS increases from 0 to 1) and when the predictor not
mentioned here stays at the level from the intercept (i.e., FREQUENCY
remains 0);

− the third coefficient is what you add to the intercept to predict the RT
for when FREQUENCY increases from 0 to 1 and when
MEANINGFULNESS stays at the level from the intercept (i.e., remains 0);

284 Selected multifactorial methods

− the fourth coefficient is for a predictor that is an interaction. Thus, to
use it for a prediction, you do not just add this estimate to the intercept,
but also the estimates for the main effects that are part of it. Thus, to
predict the RT for when MEANINGFULNESS is 1 and FREQUENCY is 1,
you add to the intercept all coefficients.

Now, in actual work you would not have added to the predictions values

that are based on MEANINGFULNESS values as far away from the real val-
ues, which also affects the plotting. We therefore generate a data frame
preds.hyp.for.plot with a huge number of predictions, namely all pre-
dictions based on all combinations of 100 MEANINGFULNESS and 100
FREQUENCY values, as shown in the code file (note the use of seq(…,
length.out=…). and the use of na.rm=TRUE to make sure that min and
max don’t have problems with the missing data.

Now you have several possibilities. The first two shown in the code in-
volve something I cannot really demonstrate well in a book: The function
plot3d generates rotatable 3-dimensional plots – you can click onto the
plot and move the mouse to turn the coordinate system – and the col argu-
ment uses the function grey (see ?grey) to make the darkness of the points
dependent on the height of the predicted value. Usually, you have quite
some turning of the plot to do before you can see what’s happening in the
data – I do recommend, however, to let the predicted values be on the ver-
tical axis most of the time. (An alternative plot shows that you can use any
color scaling you want.)

While this is very useful to interpret the data, you cannot usually pub-
lish such graphs. Thus, sometimes you can represent the predicted values
not in a third dimension but using color or plotting symbols. The following
plot is a scatterplot with MEANINGFULNESS and FREQUENCY on the x- and
y-axis respectively, and the size of the predicted value is represented by the
lightness: the lighter the grey, the slower subjects are predicted to be.

On the whole, but especially when MEANINGFULNESS is low, as
FREQUENCY increases, predicted RT decreases – see how in the left half of
the plot, the grey gets darker as you go up. Also on the whole, but especial-
ly when FREQUENCY is low, as MEANINGFULNESS increases, predicted RT
decreases – see how in the lower half of the plot, the grey gets darker as
you go to the right. However, and this is the slight hint at an interaction
(and indicated by the slight bow upwards in the 3-dimensional plot), when
both MEANINGFULNESS and FREQUENCY become very high, we do not get
the fastest RTs:

Linear models 285

Figure 68. The interaction MEANINGFULNESS:FREQUENCY in model.01

In the upper right corner, the points are not the darkest. But, model.01

showed that this bit of an interaction is in fact not significant, which you
would also have to say in your results/discussion section.

Other graphical possibilities to play around with are exemplified in the
code file including an effects plot. One of these uses numbers as plotting
symbols and shows nicely how predictions change in the space spanned by
MEANINGFULNESS and FREQUENCY.

2.7. A linear model selection process with multiple predictors

So far, we have ignored two things. First, for expository reasons we have
ignored Occam’s razor: when a predictor – a main effect or an interaction –
was not significant, we left it in the model and plotted it anyway. In this
section, we will look at how to do a backwards model selection process.

286 Selected multifactorial methods

Second, we have ignored tests of the regression assumptions so we will
also talk about this a bit at the end. The maximal model we will explore
here involves all the independent variables you have seen so far and includ-
ing all their interactions up till (and including) 3-way interactions; let me
note in passing that this can only be a didactic example since the number of
predictors is too high compared to the small number of data points:

> options(contrasts=c("contr.sum", "contr.poly"))¶
> model.01<-lm(RT~(FREQUENCY+FAMILIARITY+IMAGEABILITY+

MEANINGFULNESS)^3, data=RTs[complete.cases(RTs),])¶
> summary(model.01)¶

Note how we define the data argument to make sure only complete

cases are entered into the process. Also note the syntax to say that we want
to include main effects, 2-way, and 3-way interactions: variables are paren-
thesized and then we say ^3.

The results show an overall insignicant model with some significant but
many insignificant predictors in it. Part of the reason why the overall model
is significant is because the large number of (insignificant predictors) in-
creases the degrees of freedom, which makes it harder to get a significant
result; note in this connection the huge difference between multiple R2 and
adjusted R2. Also, we have a problem that is quite common especially with
naturalistic data: one cell in our design has only one observation – the
combination of FAMILIARITY:HI and IMAGEABILITY:LO – which leads to
NAs in the coefficients, which in turn makes the Anova function not work.

> Anova(model.01, type="III")¶

There are three ways to handle this. The probably best one is to use

drop1, which, as usual, will test for all predictors that could be omitted at
this stage whether their deletion would make the model significantly worse:

> drop1(model.01, test="F")¶

As you can see, just as discussed in Section 5.1.2.2, drop1 tests only the

highest-order interactions and the one with the highest p-value would be
the best one to be deleted first: FREQUENCY:FAMILIARITY:IMAGEABILITY.

A second possibility is to add an argument to Anova, which provides the
same result and conclusion regarding which interaction to delete first:

> Anova(model.01, type="III", singular.ok=TRUE)¶

Linear models 287

The final possibility would be the most laborious one. It involves identi-
fying the four interactions that could be deleted, computing four models
each of which differs from model.01 only by missing one of these interac-
tions – that is, the smaller model is a sub-model of the larger! – and then
doing a model comparison to see how much worse the smaller model is.
After this is done for all four candidate interactions to be deleted, you de-
lete the one for which the largest non-significant p-value was obtained.

The first of these steps, generating a sub-model, is best done with the
function update. The first argument is the model which you want to
change, followed by ~., followed by what you want to do, e.g. here sub-
tract a predictor: (I only show the first two updates; you should also explore
the help for update, which can be used in other useful ways.)

> model.02a<-update(model.01, ~. -

FREQUENCY:FAMILIARITY:IMAGEABILITY)¶
> model.02b<-update(model.01, ~. -

FREQUENCY:FAMILIARITY:MEANINGFULNESS)¶

Then you compare the first model with everything to these sub-models

using the function anova (small a!): (Again I only show the first two.)

> anova(model.01, model.02a)¶
> anova(model.01, model.02b)¶

You end up with the interaction to be deleted first. To now delete that

interaction you again use update and now define model.02 as model.01
without FREQUENCY:FAMILIARITY:IMAGEABILITY:

> model.02<-update(model.01, ~. -

FREQUENCY:FAMILIARITY:IMAGEABILITY)¶

This process is now repeated as often as needed and as shown in the

code file. You of course only need to run one of the alternatives shown
there. One comment: drop1 will sometimes already return p-values for the
deletion of predictors of a lower degree of interactivity than the one you are
currently checking. We will stick to the above and only go to a lower level
of interactivity, or to lower-order interactions, if no higher-order interac-
tions is left to delete; cf. the sequence in the code file.

After quite some testing, you arrive at model.14, which, following Oc-
cam’s razor, contains only FAMILIARITY as a predictor – everything else
had to be thrown out.

288 Selected multifactorial methods

> summary(model.14)¶
 […]
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 619.049 7.145 86.636 < 2e-16 ***
FAMILIARITY1 33.201 11.619 2.858 0.00644 **
FAMILIARITY2 -5.541 8.445 -0.656 0.51512
--- […]
Multiple R-squared: 0.1711, Adjusted R-squared: 0.1343
F-statistic: 4.645 on 2 and 45 DF, p-value: 0.01465

But we are not done. FAMILIARITY has three levels, but maybe we don’t

need all of them, something which was above suggested already by Tuk-
eyHSD(aov(…)). We therefore continue with model comparison – not any-
more by testing to discard variables, but now variable levels. Following the
logic of Crawley (2007: 563), we create two new factors, each of which
conflates two adjacent levels and add them to our data frame (to make sure
we test the same number of cases), and then we compute two new models,
one with each conflated version of FAMILIARITY, and then we do anova
model comparisons:

> FAMILIARITY.conflat1<-FAMILIARITY.conflat2<-FAMILIARITY¶
> levels(FAMILIARITY.conflat1)<-c("lo", "med-hi", "med-hi")¶
> levels(FAMILIARITY.conflat2)<-c("lo-med", "lo-med", "hi")¶
> RTs<-cbind(RTs, FAMILIARITY.conflat1=FAMILIARITY.conflat1,

FAMILIARITY.conflat2=FAMILIARITY.conflat2)¶

> model.15a<-lm(RT~FAMILIARITY.conflat1, data=

RTs[complete.cases(RTs),])¶
> model.15b<-lm(RT~FAMILIARITY.conflat2, data=

RTs[complete.cases(RTs),])¶
> anova(model.14, model.15a)¶
> anova(model.14, model.15b)¶

The results show that the first conflation – the one that also had the

higher p-value in the TukeyHSD test – does not make the model signifi-
cantly worse whereas the second one does. So, now Figure 69 is how the
final model can be summarized (see the code and ?plotmath for how the
main heading can feature italics, superscripts, etc.):

Let me at this point briefly interrupt the discussion of this model and re-
turn to a more general point. In this case, we only have a significant main
effect, and in the sections above we discussed how to plot interactions be-
tween two variables. Sometimes, users then raise the question, “ok, but I
have a significant interaction of three variables – how do I plot that one?”

Linear models 289

Figure 69. The final only significant effect from model.15

The usual answer is that you should plot these on the basis of the above

plots. For example, if you have an interaction of three categorical variables
X, Y and Z, then you do plots for X:Y as discussed in Section 5.2.4 for
each level of Z (and ideally you try out different configurations to see
which graph is easiest to interpret). For example, imagine an interaction of
two categorical variables X and Y and one numeric variable Z. In that case,
you might plot X:Z as discussed in Section 5.2.5 for every level of Y (or
Y:Z for every level of X), etc. That is, you just take the plots discussed
above and use them as building blocks for higher-order interactions.

A related and very important question is how to get something like
preds.hyp for a predictor X in a model when X is not the only predictor
left in the model. In such scenarios, the approach with preds.hyp from
above is not ideal when another predictor in the model, say Y, has levels
whose frequencies differ wildly, which often happens with observational
data. For example, model.10 in the model selection process involves the
following formula:

> formula(model.10)¶
RT ~ FREQUENCY + FAMILIARITY + IMAGEABILITY + MEANINGFULNESS

+ IMAGEABILITY:MEANINGFULNESS

If you want to extract the predicted values for FAMILIARITY, then you

290 Selected multifactorial methods

can use the function effect to create a list called, say, fam:

> fam<-effect("FAMILIARITY", model.10); fam¶
 FAMILIARITY effect
FAMILIARITY
 lo med hi
653.7191 613.6080 606.0162

While this output is exactly what you would need, getting these num-

bers out of there (maybe even with confidence intervals) is not as easy as it
seems. You have to know that

− the predictor variables we created with expand.grid are in fam$x;

− the predicted values are now in fam$fit;

− the lower bounds of the confidence interval are in fam$lower;

− the upper bounds of the confidence interval are in fam$upper.

How do you then use this to create something like preds.hyp for the in-
teraction? Check out the code file to see how it’s done.

Back to model.15. The final thing to be done before you explain the
model selection process you have done and summarize the results is to
check the model assumptions. This can be done in many ways but two
practical ones are the following. First, you can inspect some model-
diagnostic graphs; second, you can use the function gvlma from the pack-
age with the same name to get a quick overview.

> par(mfrow=c(2, 2))¶
> plot(model.15)¶
> par(mfrow=c(1, 1))¶

The two left graphs test the assumptions that the variances of the residu-

als are constant. Both show the ratio of the fitted/predicted values on the x-
axis to kinds of residuals on the y-axis. Ideally, both graphs would show a
scattercloud without much structure; here we have only two fitted values
(one for each level of FAMILIARITY.conflat1), but no structure such that
the dispersion of the values increases or decreases from left to right: here,
these graphs look ok.35 Several words are marked as potential outliers. Al-
so, the plot on the top left shows that the residuals are distributed well
around the desired mean of 0.

35. You can also use ncvTest from the library car: ncvTest(model.15)¶, which returns the

desired non-significant result.

Linear models 291

Figure 70. Model diagnostics for model.15

The assumption that the residuals are distributed normally also seems

met: The points in the top right graph should be rather close to the dashed
line, which they are; again, three words are marked as potential outliers.
But you can of course also do a Shapiro-Wilk test on the residuals, which
also yields the result hoped for.

Finally, the bottom right plot plots the standardized residuals against the
so-called leverage. Leverage is a measure of how much a data point may
influence a model (because it is far away from the center of the relevant
independent variable). As you can see, there are a few words with a larger
leverage, and these are all cases of FAMILIARITY:LO, which in this toy data
set is a much smaller number of data points. Let me briefly also show one
example of model-diagnostic plots pointing to violations of the model as-
sumptions. Figure 71 below shows the upper two model plots I once found

292 Selected multifactorial methods

when exploring the data of a student who had been advised (by a stats con-
sultant!) to apply an ANOVA-like linear model to her data. In the left pan-
el, you can clearly see how the range of residuals increases from left to
right. In the right panel, you can see how strongly the points deviate from
the dashed line especially in the upper right part of the coordinate system.
Such plots are a clear warning (and the function gvlma mentioned above
showed that four out of five tested assumptions were violated!). One possi-
ble follow-up would be to see whether one can justifiably ignore the outli-
ers indicated; see Fox and Weisberg (2011: Chapter 6) for discussion.

Figure 71. Problematic model diagnostics

Recommendation(s) for further study

− for model selection:
 − the function step, to have R perform model selection automatically

based on AIC (by default) and the function stepAIC (from the library
MASS). Warning: automatic model selection processes can be danger-
ous: different algorithms can result in very different results

− on model diagnostics:
 − the functions residualPlots and marginalModelPlots and vif

from the library car, the former two as alternatives to plot(model),
the latter to test for collinearity, which is very important to explore;
it is the threat posed by highly intercorrelated predictor variables; cf.
Faraway (2005: Sections 5.3 and 9.3, Fox and Weisberg 2011: Chap-
ter 6)

 − the functions influence.measures and other functions mentioned
in this help file (esp. dfbeta) to identify leverage points and outliers

− the functions oneway.test and kruskal.test as alternatives to mono-

Linear models 293

factorial ANOVAs
− the libraries robust, MASS, and nls for robust as well as nonlinear re-

gressions; cf. esp. Crawley (2002, 2005) and Faraway (2005, 2006)
− the function rpart from the library rpart, and the function ctree from

the library party, to compute classification and regression trees as al-
ternatives to (generalized) linear models

− Harrell (2001), Crawley (2002: Ch. 13-15, 17), Faraway (2005: Ch. 14),
Crawley (2007: Ch. 10-12, 14, 16), Gelman and Hill (2007: Ch. 3-4),
Baayen (2008: 4.4, Ch. 6-7), Johnson (2008: Section 2.4, 3.2, Ch. 4),
Zuur et al. (2009: Ch. 2-4, 6-7), Fox and Weisberg (2011), Baguley
(2012: Ch. 5, 12-15)

3. Binary logistic regression models

In the last section, we dealt with linear methods, in which the dependent
variable is interval-/ratio-scaled and covers a wide range of values. Howev-
er, in many situations the dependent variable is binary, categorical, or nu-
meric but maybe only ≥ 0 and/or discrete (as for frequencies) or … Since
the ‘normal’ linear model discussed above predicts values between -∞ and
+∞, it will predict values that do not make much sense for such dependent
variables – what would a predicted value of -3.65 mean when you try to
predict frequencies of something? For situations like these, other models
are used, some falling under the heading of generalized linear models,
leading to types of regression such as:

− binary logistic regression for binary dependent variables;

− ordinal logistic regression and multinomial regression for ordinal and
categorical dependent variables respectively;

− Poisson/count regression for frequencies as dependent variables.

To be able to apply a linear modeling approach to such data, the de-
pendent variable is transformed with a so-called link function, which trans-
forms the predicted range of values of a linear model (-∞ to +∞) to a range
more appropriate for the dependent variable. For binary logistic regression,
for example, the inverse logit transformation in (63a) transforms values
from the range of -∞ to +∞ to into values ranging from 0 to 1, which can
then be interpreted as probabilities of a predicted event. For Poisson regres-
sion, the exponential transformation in (64a) transforms values from the
range of -∞ to +∞ to into values ranging from 0 to +∞.; the functions in

294 Selected multifactorial methods

(63b) and (64b) transform in the opposite direction:

(63) a. inverse logit of x:
xe+1

1

 b logit of x:
x

x

−1
log

(64) a. exponential function of x:
xe

 b. logarithmic function of x: xnaturallog

Thus, there is good news and bad news … The bad news is that binary

logistic regression is not easy to understand, because of how the link func-
tion transforms the dependent variable and because, as you will see, there
are three different ways in which one can report results of such a regres-
sion, which makes it difficult to understand how textbooks or papers ex-
plain methods/results. The good news is that, once you have abstracted
away from the link function, everything else is pretty much the same as
above, and in this section we can work with R’s default treatment contrasts
all the time – no need for two types of contrasts.

The data set we will explore involves the question how a main and a
subordinate clause in a sentence are ordered. It involves these variables:

− a dependent binary variable, namely ORDER: MC-SC vs. SC-MC indicat-
ing whether or not the main clause precedes the subordinate clause;

− an independent binary variable SUBORDTYPE: CAUS vs. TEMP indicating
whether the subordinate clause is a causal or a temporal one;

− two independent numeric variables LENGTHMC and LENTHSC, repre-
senting the number of words of the main and the subordinate clause;

− an independent numeric variable LENGTHDIFF, which represents the
difference main clause length minus subordinate clause length; that is,
negative values indicate the main clause is shorter;

− a categorical independent variable CONJ, which represents the conjunc-
tion used in the subordinate clause. Since these data are from the study
involving parallel corpus data, these are the levels: ALS/WHEN,
BEVOR/BEFORE, NACHDEM/AFTER, and WEIL/BECAUSE;

− an independent binary variable MORETHAN2CL: NO vs. YES indicating
whether or not there is more than just this main and subordinate clause
in the sentence. This can be understood as a question of whether the
sentence involves more complexity than just these two clauses.

Binary logistic regression models 295

A binary logistic regression involves the following procedure:

Procedure

− Formulating the hypotheses
− Loading the data, preparing them for modeling, and exploring them
− Computing, selecting, and interpreting a logistic regression model
 − obtaining p-values for all predictors and for the model as a whole
 − interpreting the regression coefficients/estimates on the basis of (i)

predicted values and (ii) plots of predicted probabilities
− Testing the main assumption(s) of the test:
 − independence of data points and residuals, no overly influential data

points, no multicollinearity, and no overdispersion
 − fewer than 95% of the model’2 absolute standardized residuals > 2
 − few if any of the absolute dfbetas of any case and predictor > 1

First, the hypotheses:

H0: There is no correlation between ORDER and the predictors (inde-

pendent variables and their interactions): Nagelkerke’s R2 = 0.
H1: There is a correlation between ORDER and the predictors (inde-

pendent variables and their interactions): Nagelkerke’s R2 > 0.

Then you load the data from <_inputfiles/05-3_clauseorders.csv>:

> CLAUSE.ORDERS<-read.delim(file=file.choose())¶
> summary(CLAUSE.ORDERS); attach(CLAUSE.ORDERS)¶

In this case, no further preparation of the data will be undertaken, which

is why the data frame has already been attached. However, we do want to
write two helper functions (and define error.bar again as above), load a
few packages, and make sure we’re using treatment contrasts:

> logit<-function(x) { log(x/(1-x)) }¶
> ilogit<-function(x) { 1/(1+exp(-x)) }¶
> options(contrasts=c("contr.treatment", "contr.poly"))¶

Exploration of the data with cross-tabulations and spineplots of varia-

bles against ORDER does not raise any red flags so let’s go ahead. In this
section, I will show relatively little code/plots in the book so do follow
along with the code file!

296 Selected multifactorial methods

3.1. A logistic regression with a binary predictor

In this section, we will consider whether ORDER is correlated with
SUBORDTYPE. As before, this first section will be longer than the ones that
follow to lay the groundwork for the more complex things later.

Just like a linear model with one binary predictor reduces to a simpler
test we already know – the t-test – so does a logistic regression with a bina-
ry predictor relate to a simpler test: the chi-squared test, since we really just
have two binary variables (as in Section 4.1.2.2):

> orders<-table(SUBORDTYPE, ORDER); orders¶
 ORDER
SUBORDTYPE mc-sc sc-mc
 caus 184 15
 temp 91 113
> chi.orders<-chisq.test(orders, correct=FALSE); chi.orders¶
 Pearson's Chi-squared test
data: orders
X-squared = 106.4365, df = 1, p-value < 2.2e-16

Two brief comments: First, remember the notions of odds and odds rati-

os from Section 4.1.2.2. Here’s how from this table you would compute the
odds of MC-SC first with causal, then with temporal subordinate clauses:
Plus, we also said that you can compute an odds ratio from that and that
sometimes you will see a logged odds ratio

> (184/199) / (15/199)¶
[1] 12.26667
> (91/204) / (113/204)¶
[1] 0.8053097
> 12.26667/0.8053097¶
[1] 15.23224
> log(15.23224)¶
[1] 2.723414

Finally, you can of course express the fact that, obviously, causal subor-

dinate clauses prefer to follow the main clause whereas temporal subordi-
nate clauses prefer to precede the main clause with percentages: 92.46% of
all causal subordinate clauses, but only 44.61% of the temporal subordinate
clauses, follow the main clause. In other words, we have three different but
of course related ways to talk about this result – odds, log odds, and per-
centages/probabilities – something I will come back to in a moment.

The second comment has to do with an alternative to χ2. Logistic regres-
sion does not use a χ2-value as computed in a χ2-test but a so-called likeli-

Binary logistic regression models 297

hood ratio test that results in a G-value. G is also χ2-distributed and, in a
logistic regression involving only one binary/categorical variable, can be
computed in a way that is similar to χ2; cf. (65) and also the code file for a
little demonstration showing how similar χ2 and G are.

(65) G = ∑
=

⋅⋅
n

i expected

observed
observed

1

log2

> 2*sum(orders*log(orders/chi.orders$expected))¶
[1] 116.9747

With all this in mind, let us now run a logistic regression. The main

function is glm, for generalized linear model, and it takes a formula and a
data argument as before, but now also an argument that allows R to infer
you want to use a link function for binary logistic regression (I am simpli-
fying a bit). Also as before, the coefficients the regression will return are
estimates so we immediately request confidence intervals with confint:

> model.01<-glm(ORDER~SUBORDTYPE, data=CLAUSE.ORDERS,

family=binomial)¶
> summary(model.01)¶
 […]
Deviance Residuals:
 Min 1Q Median 3Q Max
-1.2706 -0.3959 -0.3959 1.0870 2.2739

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.5069 0.2685 -9.336 <2e-16 ***
SUBORDTYPEtemp 2.7234 0.3032 8.982 <2e-16 ***
 […]
 Null deviance: 503.80 on 402 degrees of freedom
Residual deviance: 386.82 on 401 degrees of freedom
AIC: 390.82
 […]
> confint(model.01)¶
 2.5 % 97.5 %
(Intercept) -3.076455 -2.016328
SUBORDTYPEtemp 2.156967 3.352559

Similar to lm output, but also different. For example, you do not get an

overall p-value. However, you can infer that the model is significant from
the fact that the only predictor is significant (and that its confidence inter-
val does not include 0). Also, at the bottom you find the so-called null de-
viance – informally speaking, the amount of overall variability in the data –

298 Selected multifactorial methods

and the residual deviance – informally speaking, the amount of variability
left in the data after the predictor has taken care of some of the variability –
and the difference between the two is G. As mentioned above, G is χ

2-
distributed with df as the difference between the dfs of the deviances, i.e. 1.
Thus, the model’s overall p-value can be computed as follows:

> pchisq(503.80-386.82, 402-401, lower.tail=FALSE)¶
[1] 2.899771e-27

Again, we find summary statistics regarding the residuals at the top, and

again, before we discuss the estimates, we run code that would help us to
get p-values for predictors with more than one df:

> drop1(model.01, test="LR")¶
Single term deletions
Model:
ORDER ~ SUBORDTYPE
 Df Deviance AIC LRT Pr(>Chi)
<none> 386.82 390.82
SUBORDTYPE 1 503.80 505.80 116.97 < 2.2e-16 ***
--- […]
> anova(model.01, glm(ORDER~1, family=binomial), test="LR")¶
Analysis of Deviance Table
Model 1: ORDER ~ SUBORDTYPE
Model 2: ORDER ~ 1
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 401 386.82
2 402 503.80 -1 -116.97 < 2.2e-16 *** […]

The only change for drop1 is that we now don’t do an F-test but the

likelihood ratio test (with LR). The line with anova does the same kind of
model comparison: it compares model.01 against a minimal model where
ORDER is only regressed onto an overall intercept (1) and returns the same
likelihood ratio test. We can also use Anova again, we just need to switch to
sum contrasts just for this one test, and again we get the familiar result:

> options(contrasts=c("contr.sum", "contr.poly"))¶
> Anova(model.01, type="III", test.statistic="LR")¶
Analysis of Deviance Table (Type III tests)
Response: ORDER
 LR Chisq Df Pr(>Chisq)
SUBORDTYPE 116.97 1 < 2.2e-16 *** […]
> options(contrasts=c("contr.treatment", "contr.poly"))¶

As before, in the code file I provide some extra code to get p-values for

predictors/coefficients using wald.test and glht.

Binary logistic regression models 299

Now, finally, on to the coefficients and one last time we generate
preds.hyp in the same way as with linear models. However, for general-
ized linear models, predict does unfortunately not return confidence in-
tervals for the predicted values.

> preds.hyp<-expand.grid(SUBORDTYPE=levels(SUBORDTYPE));

preds.hyp["PREDICTIONS"]<-predict(model.01, newdata=
preds.hyp); preds.hyp¶

 SUBORDTYPE PREDICTIONS
1 caus -2.5068856
2 temp 0.2165283

Now what does that mean? Obviously, this is neither an ordering choice

nor 0 vs. 1 choice … To understand what these values mean, you have to
(i) recollect the three different ways we talked about the data above: odds
and odds ratios, log odds, and probabilities, and (ii) you have to realize that
these predicted values are log odds for the predicted ordering, and by de-
fault R predicts the second level of the dependent variable, i.e. here SC-MC.
Once you know that, you can use the above to also realize how the three
ways to consider these data are related, which is represented in Figure 72.

This graph represents the three perspectives on the results next to each
other and it represents the possible numerical ranges of the three ways on
the y-axes: odds range from 0 to +∞, log odds from -∞ to +∞, and probabil-
ities from 0 to 1. Each of these perspectives expresses preference, dispref-
erence, and lack of effect in different ranges. In numerical odds space, no
preference is 1, in log odds space it’s 0, and for predicted probabilities it’s
of course 0.5 (since we have two options). For odds, preferences are re-
flected by odds greater than 1, by positive log odds, and by predicted prob-
abilies of > 0.5, and the opposites reflect dispreferences.

Now, if the predictions above are log odds, we can transform them to
help us recognize what they mean. Let me show orders again first.

> orders¶
 ORDER
SUBORDTYPE mc-sc sc-mc
 caus 184 15
 temp 91 113

If preds.hyp contains log odds, anti-logging/exponentiating them

should give us odds (cf. again Figure 72 and the code file), and it does.

300 Selected multifactorial methods

Figure 72. Three ways to look at results from a binary logistic regression

> exp(-2.5068856) # odds for SC-MC when SUBORDTYPE=="caus"¶
[1] 0.08152174
> exp(0.2165283) # odds for SC-MC when SUBORDTYPE=="temp"¶
[1] 1.241758

This also means, dividing the two gets us an odds ratio, which you also

get from anti-logging the coefficient:

> exp(-2.5068856)/exp(0.2165283) # 1/odds ratio from above¶
[1] 0.06565025
> exp(0.2165283)/exp(-2.5068856) # odds ratio from above¶
[1] 15.23223
> exp(2.7234)¶
[1] 15.23202

Binary logistic regression models 301

Similarly, if preds.hyp contains log odds, applying ilogit should give
us probabilities (cf. again Figure 72 and the code file), and it does:

> ilogit(-2.5068856) # prob. of sc-mc when SUBORDTYPE="caus"¶
[1] 0.07537688
> ilogit(0.2165283) # prob. of sc-mc when SUBORDTYPE="temp"¶
[1] 0.5539216

Finally, you can also get to these probabilities from the odds using the

equation shown in Figure 72 and in (37) on p. 186:

> 0.08152174/(1+0.08152174)¶
[1] 0.07537689
> 1.241758/(1+1.241758)¶
[1] 0.5539215

A great part of what can be so confusing about logistic regression for

beginners is that authors of papers or textbooks can and do use any one of
these three perspectives: they are all right, but without something like Fig-
ure 72 it’s hard to see how these map onto each other. The natural question
now is, which of the three scales is best. As usual, people disagree, but I
will tell you which one I am using in my own work and also here.

I myself don’t like the odds scale on the left. The fact that the numerical
space to express preference (of, say SC-MC) is from 1 to +∞, but that the
corresponding dispreferences are ‘squeezed’ into the range from 0 to 1 and
the multiplicative nature of this scale make me disprefer it strongly. The
log odds scale has attractive properties: it is additive and the numerical
spaces for preference and dispreference are equally large and symmetric
around 0. What I still do not like about the scale is that it is a scale of some-
thing as utterly unintuitive as log odds. Thus, I prefer the probability scale.
I can think in terms of probabilities, and the numerical spaces for prefer-
ence and dispreference are equally large and symmetric around 0.5. It may
now seem that probabilities do not come with a disadvantage – but they do,
which you will learn about in Section 5.3.3 (see p. 306f.), but I still prefer
them. Thus, it is the rightmost scale that we will work with and plot here.

Let us get back to the predictions and re-work this example in a simpler
way with probabilities and add confidence intervals, too. First, we generate
a version of preds.hyp as above, but this time we immediately use the
more powerful approach of the effects package: we generate an object
with all the results for the relevant effect (sot) and extract all relevant info
from it – the levels of the only predictor, the predicted values, and the con-
fidence limits – and apply ilogit to the numeric results:

302 Selected multifactorial methods

> sot<-effect("SUBORDTYPE", model.01)¶
> preds.hyp<-data.frame(sot$x, PREDICTIONS=ilogit(sot$fit),

LOWER=ilogit(sot$lower), UPPER=ilogit(sot$upper))¶
> preds.hyp¶
 SUBORDTYPE PREDICTIONS LOWER UPPER
1 caus 0.07537688 0.0459497 0.1212547
2 temp 0.55392157 0.4851215 0.6207159

Again, these are the predicted probabilities of the second level of the

dependent variable. Thus, the model predicts a low probability of SC-MC
when the subordinate clause is causal and a much higher one when it is
temporal. Since we have two options, it is only natural to make 0.5 the
cutoff-point (as in Figure 72) and say when the predicted probability of SC-

MC is < 0.5, then the model predicts MC-SC – otherwise the model predicts
SC-MC. We can use this to determine how well the model is at predicting
the ordering choices. We first generate a vector that contains a predicted
probability of SC-MC for every data point in our data using fitted. Then
we use ifelse to let R decide for each predicted probability which order-
ing it predicts. And then we tabulate the choices predicted by the model
with the actual choices and compute how often the two were the same:36

> predictions.num<-fitted(model.01)¶
> predictions.cat<-ifelse(predictions.num>=0.5,

"sc-mc", "mc-sc")¶
> table(ORDER, predictions.cat)¶
 predictions.cat
ORDER mc-sc sc-mc
 mc-sc 184 91
 sc-mc 15 113
> (184+113)/length(predictions.cat)¶
[1] 0.7369727

Is that good? What do you compare that to?

THINK

BREAK

Unlike what you might think, you should not compare it to a chance ac-

curacy of 0.5 (because you have two orderings). Why? Because the two
orderings are not equally frequent. The more frequent ordering, MC-SC,
accounts for 68.24% of all data, so just by always guessing that, you al-

36. Harrell (2001:248) cautions against using classification accuracy as a way to measure

how good a model is. We will use a better measure in a moment.

Binary logistic regression models 303

ready get much more than 50% right. From that perspective (see the code
file for another one), the present result is not great: SUBORDTYPE only
improves our accuracy by about 5%.

Let us now also visualize the results. I present two graphs here, nicer
versions of which you will see when you run the code in the code file. The
left panel of Figure 73 shows a bar plot of the predicted probabilities of SC-

MC; the right panel shows a line plot of those probabilities.

> barplot(preds.hyp$PREDICTIONS, ylim=c(0, 1),

names.arg=preds.hyp$SUBORDTYPE)¶
> plot(sot, ylim=c(0, 1), rescale.axis=FALSE)¶

Figure 73. The effects of model.01: barplot with observed/predicted probabilities
and their 95% confidence-interval bars (left panel); effects plot from

the library effects (right panel)

Finally, I want to introduce a very useful tool for all sorts of regression

modeling, the package rms and its function lrm (for logistic regression
modeling). To use all that lrm has to offer, it is useful to first run the first
line of code below so that functions from rms can access basic information
about the ranges of variables etc. The second line uses the function lrm to
fit the model with the formula from model.01. You do not have to specify
family, but for many follow-up applications (later, when you become more
proficient) several other arguments may be provided as shown:

> dd<-datadist(CLAUSE.ORDERS); options(datadist="dd")¶
> model.01.lrm<-lrm(formula(model.01), data=CLAUSE.ORDERS,

x=TRUE, y=TRUE, linear.predictors=TRUE, se.fit=TRUE);
model.01.lrm¶

304 Selected multifactorial methods

 […]
 Model Likelihood Discrimination
 Ratio Test Indexes
Obs 403 LR chi2 116.97 R2 0.353
 mc-sc 275 d.f. 1 g 1.365
 sc-mc 128 Pr(> chi2) <0.0001 gr 3.915
max |deriv| 2e-09 gp 0.240
 Brier 0.159

Rank Discrim.
 Indexes
C 0.776
Dxy 0.552
gamma 0.877
tau-a 0.240
Brier 0.159 […]

I am not showing all the output but some advantages of lrm should be

clear: You get the significance test of the model (see the likelihood ratio
test), you get an R

2-value (often given as Nagelkerke’s R
2 and, as usual,

ranging from 0 to 1), and you get a C-value, which can be used as an indi-
cator of the classification quality of the model. This value ranges from 0.5
to 1 and values above 0.8 are considered good, which we don’t quite
achieve here. (Note in passing, C = 0.5+(Dxy/2).

To sum up: “A binary logistic regression shows there is a highly signifi-
cant but weak correlation betwween the type of subordinate clause and the
order of main and subordinate clause (G = 116.97; df = 1; p < 0.001;
Nagelkerke’s R2 = 0.353, C = 0.776); 73.7% of the orderings are classified
correctly (against a chance accuracy of 68.24%). The model predicts that
causal subordinate clauses prefer to follow main clauses whereas temporal
ones prefer to preceed main clauses. [add a graph and maybe coefficients]”

3.2. A logistic regression with a categorical predictor

As before, we will build up the complexity of the regression models in a
stepwise fashion. We therefore now turn to a categorical predictor, CONJ.
Again, I will show much less output from now on. The model is significant,
with a likelihood ratio value of 123.32 at df =3 (see above). Since
FAMILIARITY has more than 1 df, you use drop1 (or other functions, see the
code file) to get one p-value, and FAMILIARITY is highly significant.

> model.01<-glm(ORDER~CONJ, data=CLAUSE.ORDERS,

family=binomial)¶
> summary(model.01)¶

Binary logistic regression models 305

> confint(model.01)¶
> drop1(model.01, test="LR")¶

To explore what the coefficients reveal, you turn to the predictions.

These show that als/when and nachdem/after prefer SC-MC, whereas
bevor/before and weil/because prefer MC-SC. I will not explain the meaning
of the intercept and all coefficients in detail here but you will find all these
explanations in the code file and should read them carefully! The logic and
everything else is the same as explained above with (61) and (62), just that
the coefficients now represent differences between the intercept – the first
level of FAMILIARITY – and the other levels on the log odds scale.

> conj<-effect("CONJ", model.01)¶
> preds.hyp<-data.frame(conj$x, PREDICTIONS=ilogit(conj$fit),

LOWER=ilogit(conj$lower), UPPER=ilogit(conj$upper))¶
> preds.hyp¶
 CONJ PREDICTIONS LOWER UPPER
1 als/when 0.60215054 0.4997995 0.6962850
2 bevor/before 0.39130435 0.2623180 0.5375019
3 nachdem/after 0.60000000 0.4773236 0.7112984
4 weil/because 0.07537688 0.0459497 0.1212547

Then we see how well the model classifies the orderings. We get an im-

provement over chance, but 76.18% does not seem like a huge step ahead.

> predictions.num<-fitted(model.01)¶
> predictions.cat<-ifelse(predictions.num>=0.5,

"sc-mc", "mc-sc")¶
> table(ORDER, predictions.cat)¶
> (212+95)/length(predictions.cat)¶

Finally, we represent the data visually as before and generate a model

with lrm to get R
2 and C, which are 0.369 and 0.798 respectively. With

these plots and summary statistics, we can now summarize the result of our
regression model in the same way as above on p. 304. Note that, given the
overlap of the temporal conjunctions, one should strictly speaking also test
whether the fine resolution of three temporal conjunctions is warranted …

> barplot(preds.hyp$PREDICTIONS, ylim=c(0, 1),

names.arg=preds.hyp$CONJ)¶
> plot(allEffects(model.01), ask=FALSE, ylim=c(0, 1),

rescale.axis=FALSE)¶
> dd<-datadist(CLAUSE.ORDERS); options(datadist="dd")¶
> model.01.lrm<-lrm(formula(model.01), data=CLAUSE.ORDERS);

model.01.lrm¶

306 Selected multifactorial methods

3.3. A logistic regression with a numeric predictor

As the final monofactorial logistic regression, we will now turn to a numer-
ic predictor, LENGTH_DIFF.

> model.01<-glm(ORDER~LENGTH_DIFF, data=CLAUSE.ORDERS,

family=binomial)¶
> summary(model.01)¶
> confint(model.01)¶

For the sake of consistency you also run drop1 (and maybe Anova/

anova) although LENGTH_DIFF has 1 df so it’s not really necessary.

> drop1(model.01, test="LR")¶

Note there is a slight difference between the p-values from the summary

output on the one hand and drop1, anova, and Anova on ther other hand;
according to Fox and Weisberg (2011:239), the likelihood ratio test you get
with drop1 etc. may be more reliable.

The model is significant but the effect really seems quite weak. To un-
derstand the coefficients, we create the predictions, but this time around we
have to discuss this in more detail, since it is here that a slight disadvantage
of the probability perspective on logistic regression results manifests itself.
In one sense at least, things are as before: the intercept still represents the
probability of the predicted ordering when the independent variable is at its
first level or, as here, 0, which you can see in preds.hyp and compare that
to ilogit(-0.77673)¶:

> lendiff<-effect("LENGTH_DIFF", model.01,

xlevels=list(LENGTH_DIFF=-max(abs(range(LENGTH_DIFF))):
max(abs(range(LENGTH_DIFF))))); lendiff¶

> preds.hyp<-data.frame(lendiff$x, PREDICTIONS=
ilogit(lendiff$fit), LOWER=ilogit(lendiff$lower),
UPPER=ilogit(lendiff$upper)); preds.hyp¶

Similarly, the coefficient of LENGTH_DIFF still represents the change of

the probability of the predicted order, SC-MC, for a unit change of
LENGTH_DIFF. However, this change is linear/constant only on the log
odds scale – once we check it on the probability scale, you can see that a
change of 1 of LENGTH_DIFF does not bring about the same difference in
probabilities: when you increase LENGTH_DIFF by 1

Binary logistic regression models 307

− from -20 to -19, this results in the predicted probability of SC-MC grow-
ing by 0.006019;

− from -10 to -9, this results in the predicted probability of SC-MC growing
by 0.0078747;

− from 0 to 1, this results in the predicted probability of SC-MC growing
by 0.0096109.

This is because the inverse logit transformation is not linear (in proba-

bility space). But let us now see how well this model predicts the orderings:

> predictions.num<-fitted(model.01)¶
> predictions.cat<-ifelse(predictions.num>=0.5,

"sc-mc", "mc-sc")¶
> table(ORDER, predictions.cat)¶
> (272+2)/length(predictions.cat)¶

In some sense, the performance is abysmal: it is worse than chance even

though the direction of the effect makes sense – you should make sure you
recognize that it amounts to ‘short before long’? Also, you can see from the
table that the model hardly ever predicts SC-MC – only five times. To visu-
alize the effect of LENGTH_DIFF and explore this bad performance, let us
plot the predicted probabilities against length differences from preds.hyp
(cf. Figure 74).

> plot(preds.hyp$LENGTH_DIFF, preds.hyp$PREDICTIONS,

xlim=c(-35, 35), ylim=c(0, 1))¶

As you can see, in probability space you do not get a straight regression

line but a curve. Thus, the change of LENGTH_DIFF by one word has differ-
ent effects depending on where it happens and this is the disadvantage of
the probability scale I alluded to earlier. However, given how we can nicely
plot such curves in R, this is a disadvantage I am happy to live with (com-
pared to those of the odds or log odds scales).

Figure 74 also helps understand the bad classification accuracy. The
horizontal line at the cut-off point of y = 0.5 only applied to very few points
(see the rugs). One way to try to force the regression to make somewhat
more diverse predictions is to choose a cut-off point other than 0.5, and one
possibility is to use the median of all predicted probabilities (0.3150244; cf.
Hilbe 2009: Section 7.2.2 for discussion).

308 Selected multifactorial methods

Figure 74. The effects of model.01: scatterplot with predicted probabilities and
their 95% confidence-interval band

If you do that here, you do get more balanced frequencies of categorical

predictions, but the accuracy decreases even further. The code file shows
how, when you choose 0.42 as a cut-off point, you get a slightly more bal-
anced frequency of predictions and still about 68% right; for now, we will
use this value and I leave the topic of ROC curves and how they help iden-
tifying cut-off points for your future exploration Note, however, that if you
do not choose the ‘default’ cut-off point of 0.5 for the categorical predic-
tions, you should mention which one you chose and why. Finally, we do
the regression again with lrm to get the really small R

2 (0.026) and C
(0.603), and then we can summarize our results as above.

> dd<-datadist(CLAUSE.ORDERS); options(datadist="dd")¶
> model.01.lrm<-lrm(formula(model.01), data=CLAUSE.ORDERS);

model.01.lrm¶

3.4. A logistic regression with two categorical predictors

We now move on to the first logistic regression with more than one predic-
tor: we will explore whether CONJ and MORETHAN2CL and their interac-

Binary logistic regression models 309

tion affect the clause orders. Since one of the predictors has more than 1 df,
we fit the model and immediately add drop1 and Anova:

> model.01<-glm(ORDER~CONJ*MORETHAN2CL, data=CLAUSE.ORDERS,

family=binomial)¶
> summary(model.01)¶
> confint(model.01)¶
> drop1(model.01, test="LR")¶
> options(contrasts=c("contr.sum", "contr.poly"))¶
> Anova(model.01, type="III", test.statistic="LR")¶
> options(contrasts=c("contr.treatment", "contr.poly"))¶

You can see that drop1 now only returns the p-value for the non-

significant interaction, which, in a normal model selection process, we
would now omit. We leave it in here to explore how to understand and
visualize the interaction – with Anova, however, we also get all other p-
values; only CONJ seems significant.

On to the predictions using code I only show in the code file because
there I have more space to explain both the code and the meanings of the
coefficients, which as usual follow the rules in (61) and (62)). If you look
at preds.hyp, weil/because sticks out, but the output also shows why the
interaction is not significant: the confidence intervals are huge and, on the
whole, the conjunctions seem to pattern alike across both levels of
MORETHAN2CL. How good are these predictions?

> predictions.num<-fitted(model.01)¶
> predictions.cat<-ifelse(predictions.num>=0.5,

"sc-mc", "mc-sc")¶
> table(ORDER, predictions.cat)¶
> (216+93)/length(predictions.cat)¶

We get nearly 77.7% right, which is at least above chance again. Final-

ly, we represent the data visually as before and generate a model with lrm
for the overall model test (likelihood ratio χ2=132.06, df=7, p < 0.001), R2
(0.392), and C (0.82).

> dd<-datadist(CLAUSE.ORDERS); options(datadist="dd")¶
> model.01.lrm<-lrm(formula(model.01), data=CLAUSE.ORDERS);

model.01.lrm¶

Since the data now involve an interaction, the code can become a bit

more involved (at least when you do not use the functions from the effects
package) and I show it only in the code file. The non-significant interaction
is reflected by the large overlap of the confidence intervals and the similar

310 Selected multifactorial methods

(differences of) values of the predicted probabilities, which is, with every-
thing else, what you would discuss in your results section.

3.5. A logistic regression with a categorical and a numeric predictor

As in Section 5.2.5, we now turn to a case with an interaction between a
categorical and a numeric predictor, which means again that the interaction
coefficients will reflect adjustments to the slope of the numeric predictor.

> model.01<-glm(ORDER~CONJ*LENGTH_DIFF, data=CLAUSE.ORDERS,

family=binomial)¶
> summary(model.01)¶
> confint(model.01)¶
> drop1(model.01, test="LR")¶
> options(contrasts=c("contr.sum", "contr.poly"))¶
> Anova(model.01, type="III", test.statistic="LR")¶
> options(contrasts=c("contr.treatment", "contr.poly"))¶

This time, both main effects are significant, and the interaction is only

just about not significant. Therefore, it would be warranted to at least look
at the interaction (as we will for didactic purposes anyway).

We generate the predictions the usual way and it is again prudent to
maybe also generate a slightly flatter table that can be inspected before we
turn to plots, as shown in the code file:

> intact<-effect("CONJ:LENGTH_DIFF", model.01,

xlevels=list(LENGTH_DIFF=seq(-32, 32, length.out=9)))¶
> preds.hyp<-data.frame(intact$x, PREDICTIONS=

ilogit(intact$fit), LOWER=ilogit(intact$lower),
UPPER=ilogit(intact$upper)); preds.hyp¶

Especially the flatter representation of preds.hyp.2 is now easier to

read. You can see for each conjunction how the predicted probability of SC-

MC changes as LENGTH_DIFF changes. A plot will make this even more
obvious in a moment. Again, read the code file in detail to understand how
the coefficients result in these predictions! How good are the predictions?

> predictions.num<-predict(model.01, type="response")¶
> predictions.cat<-ifelse(predictions.num>=0.5,

"sc-mc", "mc-sc")¶
> table(predictions.cat, ORDER)¶
> (228+83)/length(predictions.cat)¶

Binary logistic regression models 311

Approximately 77.2% are classified correctly, and a cut-off point of
0.57 results in a slightly better value (of about 78.2%). But now, what do
the results amount to? In this case, where the p-values of all effects are at
least < 0.07, we will do some nice plotting, which will be partly based on
preds.hyp.2, as it has separate columns for the conjunctions. Figure 75 is
what we want to create (in the lower panel, the letters are the first letters of
the German conjunctions). Remember, though: the interaction is significant
so that is what you should focus on – not the main effects! The code file
shows how exactly this is done; I know it’s a lot of lines, but you should
invest the time to see what every line is doing because, once you get it, you
will be able to use this logic for many examples in your own work.

The first main effect is somewhat familiar from above. The three tem-
poral conjunctions prefer SC-MC whereas weil/because strongly prefers MC-

SC. The second main effect is also familiar: short-before-long. Now the
interaction is interesting. Three observations can be made:

− als/when and nachdem/after exhibit similar average preferences for SC-

MC and both react to LENGTH_DIFF in a way that is (more) compatible
with short-before-long than the average;

− bevor/before not only has less of a preference for SC-MC but also the
opposite tendency compared to the other two temporal conjunctions:
when the main clause becomes longer, it want to precede the subordi-
nate clause;

− weil/because subordinate clauses are pretty much completely immune to
considerations of length: the want to come second no matter what.

(The code file also contains code for the interaction with confidence in-

tervals, but those make the plot harder to read, defeating its purpose; the
effects plot is more useful in that regard.) All the above, together with the
p-values for the predictors, the p-value for the overall model (likelihood
ratio χ2=135.21, df=7, p < 0.001), R2 (0.399) and C (0.818) from the corre-
sponding model with lrm (see below) would be part of your results section.

3.6. A logistic regression with two numeric predictors

The final logistic regression, as before with two numeric predictors. We are
going to check whether the lengths of the two clauses affect the ordering
choice. First a question: how is this different from checking whether
LENGTH_DIFF is significant?

312 Selected multifactorial methods

Figure 75. All effects in model.01 (remember, however: if the interaction is sig-
nificant, your discussion should focus on it, not the main effects)

Binary logistic regression models 313

THINK

BREAK

It is different because it takes into account where a particular length dif-

ference may be observed: If LENGTH_DIFF is 1, that value does not reveal
whether it arises from the main and the subordinate clause containing 10
and 9 or 20 and 19 words respectively. As usual, we fit the model; since
both variables are numeric, drop1 and Anova are not really necessary:

> model.01<-glm(ORDER~LEN_MC*LEN_SC, data=CLAUSE.ORDERS,

family=binomial)¶
> summary(model.01)¶
> confint(model.01)¶

This is all as non-significant as it gets; it is only for didactic reasons that

we proceed with the predictions, and with two numeric predictors spanning
a wide range of values, both preds.hyp and the flatter preds.hyp.2 (see
the code file) are not easy to process. (Don’t forget to read the code file’s
explanation of the coefficients.) Next, we check the cross-classification
table, immediately using the median of the predicted probabilities as the
cut-off point:

> predictions.num<-predict(model.01, type="response")¶
> predictions.cat<-ifelse(predictions.num>=

median(predictions.num), "sc-mc", "mc-sc")¶
> table(predictions.cat, ORDER)¶
> (151+82)/length(predictions.cat)¶

The accuracy is quite low, even beyond chance, which is not surprising

given the p-values of the predictors. But what do the effects look like? As
before, you have basically two possibilities. First, you can again generate a
3-dimensional rotatable plot (with plot3d), and the code file shows an, I
think, nice version where different colors and different letters (the first
letter of the first clause) represent which ordering is predicted for which
combination of lengths. The fact that the interaction is insignificant is re-
flected by the fact that the letters nearly form a straight plane in 3-
dimensional space. The more publication-ready version is shown in Figure
76.

314 Selected multifactorial methods

Figure 76. The interaction LENGTHMC:LENTHSC in model.01

LENGTHMC and LENGTHSC are on the x- and y-axis respectively. When

the categorical prediction is MC-SC, I plot an m otherwise an s. The larger
and the darker the letter, the more ‘certain’ is the model about the predic-
tion in the sense that the prediction is based on a probability further away
from the cut-off point. The straight grey line is the main diagonal where
both clauses are equally long, and the curved black line indicates for every
main clause length where the prediction flips to the other clause order,
which is why there the letters are so light. While the interaction is not sig-
nificant, we see short-before-long again: when the main clause is short (the
left of the plot), then as the subordinate clause becomes longer, it wants to
go in the hind position, and the same the other way round for subordinate
clauses. The effects plots show the same kind of result, but by splitting up
the subordinate clause lengths into ten different ranges and then plotting
regression lines and their confidence intervals. While easier to generate in
terms of code, I find that graph less easy to interpret than Figure 76.

Binary logistic regression models 315

Finally, you would generate the model with lrm and sum it all up; here
of course, all predictors are weak and non-significant and R2 as well as C
are really low (0.028 and 0.606 respectively).

We have now completed the overview of the different logistic regres-
sion models. Again, as mentioned above on p. 263, you would of course
not have done all these models separately, but a model selection process
like the one in Section 5.2.7. One of the exercises for this chapter will have
you do this for the present data, and you will find that the results shed some
more light on the unexpected behavior of bevor/before in Section 5.3.5.

What remains do be covered, however, is again how to test whether the
assumptions of the regression model are met. Above I mentioned three
different criteria (but see Fox and Weisberg (2011: Ch. 6)). You already
know about inspecting residuals but overdispersion is new. It requires that
you look at the ratio of your model’s residual deviance and its residual dfs,
which should not be much larger than 1. In this case, it is 495.58/399=1.242.
Several references just say that, if you get a value that is much larger than
1, e.g. > 2, then you would run the glm analysis again with the argument
family=quasibinomial and take it from there. Baayen (2008: 199) uses as
an approximation a chi-square test of the residual deviance at the residual
df:

> pchisq(495.58, 399, lower.tail=FALSE)¶
[1] 0.0006880771

Thus, if this was a real analysis with a significant result, one might want

to follow that advice. The other criteria I mentioned were concerned with
the absolute values of the standardized residuals of the model and of the
dfbetas. The former are a type of corrected residuals (see Fox and Weisberg
2011: 286f.) and Field, Miles, and Field (2012: Section 8.6.7.3) suggest
that no more than 5% should be > 2 or < -2. This is easy to test:

> prop.table(table(abs(rstandard(model.01))>2))¶
 FALSE TRUE
0.99751861 0.00248139

In this case not even 1% is > 2 or < -2. Similarly straightforward is the

test of the dfbetas, which reflect how much a regression coefficient changes
when each case is removed from the data. Again, testing this in R is simple:

> summary(dfbetas<-abs(dfbeta(model.01)))¶

316 Selected multifactorial methods

The output (not shown here) indicates that in fact no absolute dfbeta is
greater than 0.1 so this criterion also poses no problems to our model.
Checking diagnostics carefully is an important component of model check-
ing and R in general, and the library car in particular, has many useful
functions for this purpose.

Recommendation(s) for further study

− just like in Section 5.2, it can also help interpreting the regression coef-
ficients when the input variables are centered

− the function hoslem.test from the library ResourceSelection for the
Hosmer-Lemeshow test (see Hilbe 2009: Section 7.2) (you want to see a
non-significant result)

− Field, Miles, and Field (2012: Section 8.8.2) on the assumption of the
linearity of the logit

− Pampel (2000), Jaccard (2001), Crawley 2005: Ch. 16), Crawley (2007:
Ch. 17), Faraway (2006: Ch. 2, 6) , Zuur, Ieno, and Smith (2007: Sec-
tion 6.1), Gelman and Hill (2007: Ch. 5), Baayen (2008: Section 6.3),
Baguley (2012: Ch. 17)

4. Other regression models

The above two types of regression models have been the most widely-used
ones in linguistics. In this section, I will introduce a variety of other regres-
sion models that are not that widespread yet, but which are bound to be-
come used more in the near future: ordinal logistic regression (where the
dependent variable is ordinal), multinomial regression (where the depend-
ent variable is categorical with 3+ levels), and Poisson regression (where
the dependent variable consists of frequencies). The logic of the exposition
will be as above, but – for reasons of space – much abbreviated. Specifical-
ly, after a short introduction to each section and its data, I will only discuss
one example for each regression in the book, namely the case of two inde-
pendent variables, one categorical and one numeric. However, the code file
will discuss six regression models for each, just like before, so that you get
a nice homogeneous treatment of all models. I therefore recommend that
you load the data, read the chapter in the book, and follow along with the
fifth of the six examples in the code file, and then explore the other exam-
ples based on the code file as well.

Other regression models 317

4.1. An ordinal logistic regression with a categorical and a numeric
 predictor

The example we will explore to approach ordinal logistic regression is con-
cerned with which of a set of independent variables allows us to predict
which of three different end-of-term exams or assignments foreign-
language learners of English will choose. It involves these variables:

− a dependent ordinal variable, namely ASSIGNMENT: ORALEXAM vs.
LABREPORT vs. THESIS; crucially, these are ordered in ascending order of
difficulty (based on a previous study);

− an independent binary variable SEX: FEMALE vs. MALE indicating the sex
of the student whose choice has been recorded;

− a categorical independent variable REGION, which represents the geo-
graphic region where the student comes from: CENTRAL-EUROPEAN,
HISPANIC, and MIDDLE-EASTERN;

− an independent numeric variable WORKHOURS, representing the num-
bers of hours/month the students claimed to have invested into the class;

− an independent numeric variable MISTAKES, which represents the num-
bers of mistakes the students made in their last assignment for this class.

Here are the steps of an ordinal logistic regression that we will follow:

Procedure

− Formulating the hypotheses
− Loading the data, preparing them for modeling, and exploring them
− Computing, selecting, and interpreting a logistic regression model
 − obtaining p-values for all predictors and for the model as a whole
 − interpreting the regression coefficients/estimates on the basis of (i)

predicted values and (ii) plots of predicted probabilities
− Testing the main assumption(s) of the test:
 − the usual suspects: independence of data points and residuals, no

overly influential data points, no multicollinearity
 − the dependent variable “behaves in an ordinal fashion with respect to

each predictor” (Harrell 2001:332)

First, the hypotheses:

H0: There is no correlation between ASSIGNMENT and the predictors

318 Selected multifactorial methods

(independent variables and their interactions): R2 = 0.
H1: There is a correlation between ASSIGNMENT and the predictors

(independent variables and their interactions): R2 > 0.

Then you load the data from <_inputfiles/05-4-1_assignments.csv> as
well as the library rms, whose function lrm we will use here:

> rm(list=ls(all=TRUE)); library(rms)¶
> ASSIGNS<-read.delim(file=file.choose()); str(ASSIGNS)¶

If you inspect the summary provided by str, you will see that the levels

of the factor ASSIGNMENT are not in the right order, and that that factor is
not even an ordered factor, which means R treats it as a categorical variable
(as all factors in this book so far), not as the desired ordinal variable. Thus,
we change this (check str again), and then we can attach and, since we
will use the lrm function again, create the required datadist object:

> ASSIGNS$ASSIGNMENT<-factor(ASSIGNS$ASSIGNMENT, ordered=

TRUE, levels=levels(ASSIGNS$ASSIGNMENT)[c(2,1,3)])¶
> str(ASSIGNS); attach(ASSIGNS)¶
> ddist<-datadist(ASSIGNS); options(datadist="ddist")¶

As mentioned before, I will now skip the first four models discussed in

the code file and go directly to the fifth one, where we explore the joint
influence of REGION and WORKHOURS on ASSIGNMENT:

> model.01<-lrm(ASSIGNMENT ~ REGION*WORKHOURS, data=ASSIGNS,

x=TRUE, y=TRUE, linear.predictors=TRUE, se.fit=TRUE)¶
> model.01¶
> anova.rms(model.01)¶

The model is highly significant (Likelihood ratio χ2=493.09, df=5, p <

0.001) and shows there is a very strong correlation: R
2=0.908, C=0.938.

The anova.rms output is a bit different. Rather than giving you a p-value
for each main effect and each interaction (as Anova from the libray car
did), you get two p-values for what each main effect does alone together
with what it does in the interaction, and you get a p-value for the interac-
tion. Since the interaction is nearly significant, we will focus on that. But
what is its nature? The coefficients are now quite different from what we
have seen before: there is more than one intercept. I explain the meanings
of each coefficient in detail in the code file, but the easiest way to under-
stand the results is again via predicted probabilities, which we will generate

Other regression models 319

using the same logic but slightly different code (the effect function does
not work with lrm objects but you can sometimes use polr from the pack-
age MASS). Here are the first two lines:

> preds.hyp<-expand.grid(REGION=levels(REGION),

WORKHOURS=c(0, 1, floor(min(WORKHOURS)):
ceiling(max(WORKHOURS))))¶

> preds.hyp<-data.frame(preds.hyp, predict(model.01,
newdata=preds.hyp, type="fitted.ind"))¶

This generates a data frame preds.hyp again, which contains for each

combination of REGION and a large number of values of WORKHOURS the
predicted probability of each kind of assignment. For example, when the
student is from the Hispanic region and puts in 26 workhours, he is strong-
ly predicted to choose the lab report:

> preds.hyp[preds.hyp$REGION=="hispanic" & preds.hyp$

WORKHOURS==26,]¶

But we want it even nicer: we do not just want the predicted probabili-

ties, but immediately also for each row what the categorical prediction is.
As you can see, the predict function combined the name of the dependent
variable, ASSIGNMENT, with the predicted levels by inserting a period be-
tween them. We do not want to see that so we use the following:

> preds.hyp<-data.frame(preds.hyp, ASSIGNMENT.pred=

sub("^.*?\\.", "", names(preds.hyp)[-(1:2)][
max.col(preds.hyp[,-(1:2)])]))¶

> preds.hyp[38:42,]¶

The function sub takes three arguments: what to look for (and the ar-

gument ".*\\." means ‘characters up to and including a period’), what to
replace it with (and "" means ‘nothing’, i.e., ‘delete’), and where to do all
this (in the three column names of preds.hyp that are not the first two).
And then, these levels are subset with the vector of numbers that results
from R checking for each row where the maximal predicted probability is
(always excluding the first two columns of preds.hyp, which contain the
independent variables!). Verify this by looking at these five lines of output.

We now first remove the first rows of preds.hyp because these were
only included to explain the coefficients but were unrepresentative of the
real values of WORKHOURS. Then, we check the classification accuracy:

320 Selected multifactorial methods

> preds.hyp<-preds.hyp[-(1:6),]¶
> predictions.num<-predict(model.01, type="fitted.ind")¶
> predictions.cat<-sub("^.*?[\\.=]", "", colnames(

predictions.num)[max.col(predictions.num)])¶
> table(predictions.cat, ASSIGNMENT)¶

As you can see, we achieve a good accuracy, nearly 85%, which is high-

ly significantly better than the chance level of 33% (since the three assign-
ments are equally frequent). Then we plot the predicted probabilities,
which, given the multitude of results these types of regressions yield, be-
comes a bit more involved. One way to represent these results is shown in
Figure 77. There is one panel for each region, the workhours are on each x-
axis, the predicted probabilities on each y-axis, and the three assignments
are represented by lines and their first letters. On the whole, there is a very
strong effect of WORKHOURS: students who self-reported lower workhours
are strongly predicted to choose the easiest exam/assignment, the oral ex-
am. Those who report an intermediate number of workhours are strongly
predicted to use the intermediately difficult exam/assignment, the lab re-
port, and those who report the largest numbers of workhours are predicted
to go with the thesis. The nearly significant interaction, however, indicates
that this behavior is not completely uniform across the three regions: For
example, the Hispanic students choose the more difficult exams/
assignments with smaller numbers of workhours than the Middle Eastern-
ers. The Central Europeans stick more to the oral exams even if they work
a number of hours where the other students have already begun to prefer
the lab report, and only the most industrious Middle Easterners choose the
thesis. (See the code file for other graphs.)

Let us finally check some assumptions of this type of regression: The
first five plots represent the residuals and those are mostly quite close to 0,
as required. The ordinality assumption looks a bit more problematic,
though so this requires some more attention, which is beyond the scope of
this book; see the recommendations for further study.

> par(mfrow=c(2, 4))¶
> residuals(model.01, type="score.binary", pl=TRUE)¶
> plot.xmean.ordinaly(ASSIGNMENT ~ REGION*WORKHOURS)¶
> par(mfrow=c(1, 1))¶

Leaving this issue aside for now, you would now be able to summarize

the regression results numerically (Likelihood ratio χ
2, df, p, R

2, C) and
discuss the graph and its implications along the lines discussed above.

Other regression models 321

Figure 77. The interaction REGION:WORKHOURS in model.01

Recommendation(s) for further study

− the function polr from the library MASS, for ordinal logistic regressions
− Harrell (2001: Ch. 13-14), Baayen (2008: Section 6.3.2), Hilbe (2009:

Ch. 10), Agresti (2010), Fox and Weisberg (2011: Section 5.9)

322 Selected multifactorial methods

4.2. A multinomial regression with a categorical and a numeric
 predictor

After having discussed ordinal logistic regression, we now turn to multi-
nomial regression. For the sake of simplicity, we will use the same data set
and just not consider ASSIGNMENT an ordinal variable (and hence an or-
dered factor) but a categorical variable and hence a ‘regular’ unordered
factor. This is the procedure we will follow:

Procedure

− Formulating the hypotheses
− Loading the data, preparing them for modeling, and exploring them
− Computing, selecting, and interpreting a multinomial regression model
 − obtaining p-values for all predictors and for the model as a whole
 − interpreting the regression coefficients/estimates on the basis of (i)

predicted values and (ii) plots of predicted probabilities
− Testing the main assumption(s) of the test:
 − the usual suspects: independence of data points and residuals, no

overly influential data points, no multicollinearity
 − independence of irrelevant alternatives, a non-significant Hasuman-

McFadden test (which I will not discuss, see the references below)

Given that we’re using the same data set, the hypotheses stay the same,

too, plus you can load the file, change the levels of ASSIGNMENT as above,
(without changing it to an ordered factor though), and we load a number of
libraries. Then we fit a multinomial regression model as follows:

> model.01<-multinom(ASSIGNMENT ~ REGION*WORKHOURS,

data=ASSIGNS)¶
> summary(model.01, Wald=TRUE)¶
> mlogit.display(model.01)¶
> confint(model.01)¶

The output of summary is a bit overwhelming because we get again get

multiple intercepts and coefficients for all but the first level of the depend-
ent variable. These represent in a somewhat complicated way the differ-
ences between the first level of the dependent variable and each of the oth-
ers; in a way, multinomial regressions are series of binary logistic regres-
sions. We also get Wald statistics, which are, as usual, the coefficients
divided by their standard errors.

Let us check the significance of the predictors. We can unfortunately

Other regression models 323

not use drop1, but we can do something that is pretty much equivalent to it:
an anova comparison of model.01 to a model without the interaction, plus
we can use Anova in the by now familiar way. Both reveal that the interac-
tion is not significant at all: p > 0.9.

> anova(model.01, multinom(ASSIGNMENT ~ REGION+WORKHOURS))¶
> options(contrasts=c("contr.sum", "contr.poly"))¶
> Anova(model.01, type="III")¶
> options(contrasts=c("contr.treatment", "contr.poly"))¶

Now what do the coefficients mean? I am nearly tempted to say, “you

don’t want to know …” The explanations of the coefficients are even more
evidence why trying to understand the results in terms of coefficients is
often not the best/most intuitive strategy. You will find detailed explana-
tions of them in the code file; suffice it to say here that, when you exponen-
tiate them, you get ratios between different predicted probabilities. One
visual representation we might use is the type exemplified by Figure 77
above and the code file shows you how you can generate that graph as well
as two others. On the whole, the results are comparable to those of Figure
77: low numbers of work hours lead to oral exams, intermediate ones lead
to lab reports, and high ones are more associated with theses, and these
preferences are, with some small differences, obtained for all regions.

To determine the classification accuracy, we could proceed the usual
way, or we can take take things to the next level. Again we use function
model.statistics from Antti Arppe’s nice package polytomous:

> model.statistics(ASSIGNMENT, predictions.cat,

predictions.num)¶

This provides an immensely useful set of summary statistics: Log-

likelihood statistics and deviances for our model.01 (-329.5837 and
143.4688) and for a model consisting of just the intercept (-71.73441 and
143.4688), the classification accuracy (0.8733), and, as in the excurses
before, Nagelkerke R2 (0.9233), everything one would want to know …

Recommendation(s) for further study

− Gries (2009: Section 5.1) on (hierarchical) configural frequency analy-
sis (and the script hcfa with which it can be computed interactively)
and Field, Miles, and Field (2012: Sections 18.7-18.12) on loglinear
analysis; also see the functions loglin and the function loglm (from the
library MASS) to compute loglinear analyses

324 Selected multifactorial methods

− the function hmftest from the library mlogit to compute the Hausman-
McFadden test

− Agresti (2002: Ch. 7), Faraway (2006: Ch. 5), Fox and Weisberg (2011:
Section 5.7), Field, Miles, and Field (2012: Section 8.9)

4.3. A Poisson regression with a categorical and a numeric
 predictor

In this section, I will discuss another type of generalized linear model,
namely Poisson regression, which is used to model counts/frequencies. As
discussed above on p. 294, just like binary logistic regression this approach
also requires a link function – this time the exponential function – to make
sure that a linear-model type of approach can be applied to a dependent
variable that is never negative. As in the last two sections, I will only dis-
cuss one regression with a categorical and a numeric predictor here in the
book and encourage you to then explore the other five examples in the code
file. The example I will use to explain Poisson regression is concerned with
factors that lead to in-/decreased numbers of disfluencies in conversations
of bilingual and/or highly advanced non-native speakers and involves the
following variables:

− a dependent variable DISFLUENCY, which represents the numbers of
disfluencies 300 speakers each produced in 20 minutes of conversation;

− an independent binary variable SEX: FEMALE vs. SEX: MALE, the speak-
er’s sex;

− a categorical independent variable MOVEDWHEN, which indicates when
the speaker moved to the U.S.A.: as an ADULT, during HIGH SCHOOL, or
during PRIMARY SCHOOL;

− an independent numeric variable REALITYTV, representing the numbers
of hours/month the speakers self-reports to watch reality TV shows;

− an independent numeric variable SOCIALNETWORK, which represents
the numbers of hours/week the speakers self-reports to spend time on
social networks.

Here are the steps of a Poisson regression that we will follow:

Procedure

− Formulating the hypotheses

Other regression models 325

− Loading the data, preparing them for modeling, and exploring them
− Computing, selecting, and interpreting a Poisson regression model
 − obtaining p-values for all predictors and for the model as a whole
 − interpreting the regression coefficients/estimates on the basis of (i)

predicted values and (ii) plots of predicted probabilities
− Testing the main assumption(s) of the test:
 − the usual suspects: independence of data points and residuals, no

overly influential data points, no multicollinearity
 − the model does not suffer from overdispersion

First, the hypotheses, then we load some libraries (see the code file) and

also the data (from <_inputfiles/05-4-3_disfluencies.csv>).

H0: There is no correlation between DISFLUENCY and the predictors

(independent variables and their interactions): R2 = 0.
H1: There is a correlation between DISFLUENCY and the predictors

(independent variables and their interactions): R2 > 0.

> DISFL<-read.delim(file=file.choose())¶
> str(DISFL); attach(DISFL)¶

The model we will discuss here tests the hypothesis that the frequency

of disfluencies is correlated with the point of time when the speaker moved
to the U.S. and the amount of time spent on social networks:

> summary(model.01<-glm(FREQDISFL ~ MOVEDWHEN*SOCNETWORK,

data=DISFL, family=poisson))¶

The output of this model already indicates a first problem: overdisper-

sion. The ratio of the residual deviance (3532.6) and the residual degrees of
freedom (294) is much much larger than one and significant
(pchisq(3532.6, 294, lower.tail=FALSE)¶), which is why we fit the
model again with family=quasipoisson, which corrects the predictors’
standard errors and, thus, the p-values, and we compute what has been pro-
posed as an R2:

> summary(model.01<-glm(FREQDISFL ~ MOVEDWHEN*SOCNETWORK,

data=DISFL, family=quasipoisson))¶
> 1-(model.01$deviance/model.01$null.deviance)¶
[1] 0.2558909

326 Selected multifactorial methods

Since we’re using glm, much of the code for logistic regressions also
applies here. For example, drop1 and Anova get us p-values for predictors.
Obviously, the interaction is not significant at all, so we would normally
update the model by deleting it, and obviously MOVEDWHEN does not
seem to play a role whereas SOCIALNETWORK does.

> drop1(model.01, test="LR")¶
Single term deletions
Model:
FREQDISFL ~ MOVEDWHEN * SOCNETWORK
 Df Deviance scaled dev. Pr(>Chi)
<none> 3532.6
MOVEDWHEN:SOCNETWORK 2 3538.0 0.46628 0.792

> options(contrasts=c("contr.sum", "contr.poly"))¶
> Anova(model.01, type="III", test="LR")¶
Analysis of Deviance Table (Type III tests)
Response: FREQDISFL
 LR Chisq Df Pr(>Chisq)
MOVEDWHEN 2.7684 2 0.2505
SOCNETWORK 19.3469 1 1.09e-05 ***
MOVEDWHEN:SOCNETWORK 0.4663 2 0.7920
 […]
> options(contrasts=c("contr.treatment", "contr.poly"))¶

For expository purposes only, we continue with the interaction. Above,

we used the function effect to obtain predicted probabilities – here, we’re
using it to obtain predicted frequencies and we can really re-use a lot of
what we know about using effect from before. The only real difference is
that, above we applied ilogit to effect’s output, because the binary lo-
gistic regression uses logit as a link function – since the Poisson regres-
sion uses log as a link function, we now apply exp. In the code file, I again
explain the meanings of the coefficients and how they give rise to the pre-
dicted frequencies in much detail. We therefore proceed to the plot. Figure
78 plots DISFLUENCY against the SOCIALNETWORK and then adds three
regression lines, one for each level of MOVEDWHEN. (I omitted the confi-
dence bands here, which clutter up the graph unless one can use colors.)

It is plain to see why the interaction is not significant. The positive cor-
relation between DISFLUENCY and SOCIALNETWORK is the same for each
level of MOVEDWHEN. That positive correlation as a main effect is signifi-
cant, but then the differences between the different levels of MOVEDWHEN
– the intercepts – also do not reach standard levels of significance. Thus,
since here we do not remove the interaction (again, just for expository rea-
sons), we could wrap up the results: “On the whole, there is a highly signif-
icant (L.R. χ2=1214.8; df = 5; p < 0.001) [see page 298 on how to compute

Other regression models 327

this] but not particularly strong correlation (R2= 0.26). This correlation is
due to the fact that the number of hours spent on social networks is signifi-
cantly positively correlated with the numbers of disfluencies produced
(L.R. χ2=19.35; df = 1; p < 0.001) whereas the age of moving to the U.S.A.
is not (p > 0.25), and neither is their interaction (p > 0.79).”

Figure 78. The interaction MOVEDWHEN:SOCIALNETWORK in model.01

Recommendation(s) for further study

− Gries (2009: Section 5.1) on (hierarchical) configural frequency analy-
sis (and a script to compute this interactively) and Field, Miles, and
Field (2012: Sections 18.7-18.12) on loglinear analysis; also see loglin
and loglm (from the package MASS) for loglinear analyses

− Agresti (2002: Ch. 4, 8-9), Faraway (2006: Ch. 3-4), Zuur, Ieno, and
Smith (2007: Section 6.1), Zuur et al. (2009: Ch. 8-9, 11), Hilbe (2009:
Ch. 11), Fox and Weisberg (2011: Section 5.5-5.6)

5. Repeated measurements: a primer

The final section in this part on regression modeling is devoted to a type of
scenario that differs from all previous ones. All models discussed so far

328 Selected multifactorial methods

shared one and the same assumption, that the data points (and their residu-
als) are independent of each other. For instance, in the section on linear
regressions, the average reaction time to each word was considered inde-
pendent of the average reaction time of any of the other words. This scenar-
io, while frequent, is not the only possible one – as you know from page
159 above, groups/samples can be dependent, which means that data points
are related to each other. The most common ways in which data points are
related to each other involve the following scenarios:

− in experimental settings, you obtain more than one response per subject
(i.e., you do repeated measurements on each subject), which means that
the characteristics of any one subject affect more than one data point;

− in experimental settings, you obtain more than one response per, say, a
lexical item which you test in some stimulus, which means that the
characteristics of any one lexical item affect more than one data point;

− in corpus data, you obtain more than one data point per speaker (often
approximated by corpus file), which means …, you get the picture.

If your data involve such related data points but you ignore that in your

statistical analysis, you run several risks. First, you run the risk of what is
called “losing power”, which means you may stick to H0 although H1 is
true in the population (what is called a type II error, a type I error is to
accept H1 although H0 is true in the popluation). Second, you risk obtaining
inaccurate results because your statistical analysis doesn’t take all the
known structure in the data into consideration and will return – in the con-
text of regression modeling – coefficients that are not as precise as they
should be.

In this section, I will talk about methods that are used in such cases.
However, this section will only be very brief because, while the methods
that are used in such cases are quite important and powerful, they also in-
volve considerable complexity and require much more space than I can
devote to them here. (See below for some excellent references for follow-
up study, in particular Girden (1992), which inspired some of the discus-
sion here, and Field, Miles, and Field (2012).) Also, while the overall logic
of repeated measurements applies to many different kinds and configura-
tions of independent and dependent variables, I will only discuss cases that
could be considered repeated-measures ANOVAs, i.e. cases in which the
dependent variable is interval-/ratio-scaled (i.e., not categorical) and in
which the independent variables involved are treated as categorical.

Repeated measurements: a primer 329

5.1. One independent variable nested into subjects/items

By way of introduction, I will begin my discussion here with a brief exam-
ple of three different ways in which the simplest possible dependent-
samples type of data can be analyzed. In Section 4.3.2.2, we dealt with
such a case when we explored the question whether translations of 16 texts
were longer than the originals. That scenario involved dependent samples
because one could connect every original to its translation and we, there-
fore, computed a t-test for dependent samples. Let us clear memory, load
the package ez, reload those data (now from <_inputfiles/05-5-
1_textlengths.csv>) and then revisit this scenario, here for expository rea-
sons as a two-tailed hypothesis (that the mean lengths from originals and
translations differ). Also, before we attach the data frame, we convert the
column TEXT, which simply numbers the texts, to a factor: this variable is
really only categorical since the numbers do not do anything but identify
which text a length belongs to – the sizes of the numbers do not matter.

> Texts<-read.delim(file.choose()¶
> Texts$TEXT<-factor(Texts$TEXT)¶
> str(Texts); attach(Texts)¶

We already know from above that the differences between the originals’

and the translations’ lengths are normally distributed so we immediately
compute the t-test for dependent samples (again, here a two-tailed one) and
obtain the familiar t- and df-values as well as a now only marginally signif-
icant p-value.

> t.test(LENGTH~TEXTSOURCE, paired=TRUE)¶

Above, we saw that a linear model with one binary predictor is essen-

tially equivalent to a t-test for independent samples (recall p. 266f.). It may
therefore not be a big surprise that a repeated-measures ANOVA with one
binary predictor is essentially equivalent to a t-test for dependent samples.
The two ANOVAs differ, however, in how the variability in the data is
divvied up in the analysis. An independent-measures linear model with one
binary or categorical predictor divides the variability in the data up into
variability that is attributed to the levels of the independent variable and
variability that is attributed to random variation (random noise, residual
variability, or error). The effect of the independent variable is then assessed
by comparing the two amounts of variability, and the more variability the
independent variable accounts for compared to the residual variability, the

330 Selected multifactorial methods

more likely it is the independent variable’s effect will be significant.
In a repeated-measures ANOVA, the variability is divided up different-

ly. First, there is variability between typically different subjects or here,
different texts. But then there is also variability within different subjects (or
here, different texts), and a part of that variability is due to the independent
variable (here, TEXTSOURCE: ORIGINAL vs. TEXTSOURCE: TRANSLATION)
and the remainder is random error / residual variation. Since in repeated-
measures ANOVAs the effect of the independent variable is nested within
subjects or, here, texts, we therefore compare the amount of within-
subject/text variability that is attributed to the independent variable not to
the overall remaining variability, but to the remaining amount of within-
subject/text variability, and again the more within-subject variability is
accounted for by the independent variable compared to residual within-
subject variability, the more likely it is the result will be significant. And
this is why dependent-samples / repeated-measurements studies can be
more precise: the effects of independent variables are compared to a small-
er amount of residual (within-subject/text) variability.

How do we do this in R? We use the function aov (for analysis of vari-
ance) and tell it (i) that we want a model in which LENGTH is modeled as a
function of TEXTSOURCE (LENGTH ~ TEXTSOURCE, no surprises here) and (ii)
what the relevant source of error/residual variability (ERROR(…)) is by stat-
ing that the independent variable TEXTSOURCE is nested into, i.e. repeated
within, each element of TEXT (TEXT/TEXTSOURCE):

> model.01.aov<-aov(LENGTH ~ TEXTSOURCE +

Error(TEXT/TEXTSOURCE))¶
> summary(model.01.aov)¶

Error: TEXT
 Df Sum Sq Mean Sq F value Pr(>F)
Residuals 15 210479 14032

Error: TEXT:TEXTSOURCE
 Df Sum Sq Mean Sq F value Pr(>F)
TEXTSOURCE 1 51040 51040 3.717 0.073 .
Residuals 15 205991 13733

As discussed above, the output divides the overall variability into that

between subjects/texts (i.e., the upper part labeled Errror: TEXT) and the
one within the subjects/texts, which in turn is either due to the independent
variable TEXTSOURCE (mean square: 51,040) or random/residual noise
(mean square: 13733). The F-value is then the ratio of the two mean
squares at levels of the independent variable minus 1 and subjects/texts

Repeated measurements: a primer 331

minus 1 degrees of freedom. As you can see, this result is then identical to
the t-test: The F-value is t2, the F-value’s residual df are the t-tests df, the p-
values are identical, and, obviously, so is the conclusion you would write
up: With a two-tailed hypothesis, the means (model.tables(
model.01.aov, "means")¶) do not differ from each other significantly.

A very attractive alternative way to conduct a repeated-measures
ANOVA involves the very useful function ezANOVA from the library ez.
The first argument (data) is the data frame containing the data, the second
(dv) specifies the dependent variable, the third (wid) specifies the sub-
jects/text identifier, and the fourth (within) defines the independent varia-
ble nested within the identifier. You get an ANOVA table with the same F-
value, its two dfs, the same p-value, and a measure of effect size in the
column labeled ges. (Plus, explore the code with ezPlot and look at ?ez-
Stats¶.)

> ezANOVA(data=Texts, dv=.(LENGTH), wid=.(TEXT),

within=.(TEXTSOURCE))¶

5.2. Two independent variables nested into subjects/items

How do we extend the above approach to more complex data such as cases
where two variables are nested into a subject or an item? Consider a hypo-
thetical case where five subjects are asked to provide as many synonyms as
they can to eight stimuli (different for each subject, so there is no repetition
of items), which result from crossing words with positive or negative con-
notations (a variable called MEANING) and words from four different parts
of speech (a variable called POS). Let’s assume we wanted to know wheth-
er the numbers of synonyms subjects named in 30 seconds differed as a
function of these independent variables (and for the sake of simplicity we
are treating these frequencies as interval-/ratio-scaled data). We load the
data from <_inputfiles/05-5-2_synonyms.csv>:

> Syns<-read.delim(file.choose())¶
> str(Syns); attach(Syns)¶

In this case, no monofactorial test is available for comparison so we

immediately do the repeated-measures ANOVA. The logic is actually not
different from above: we want to study the effects of both independent
variables and their interaction but both these variables are nested into
SUBJECT. Thus, we either use aov …

332 Selected multifactorial methods

> model.01.aov<-aov(SYNONYMS ~ MEANING*POS +
Error(SUBJECT/(MEANING*POS)))

> summary(model.01.aov)¶

… or ezANOVA:

> ezANOVA(data=Syns, dv=.(SYNONYMS), wid=.(SUBJECT),

within=.(MEANING, POS))¶

As before, both return the same results: The only effect reaching stand-

ard levels of significance is POS, and the output of model.tables shows
that nouns and verbs resulted in high numbers of synonyms, whereas adjec-
tives and adverbs only yielded medium and lower numbers respectively.
The output of ezANOVA also returns a test for sphericity, a very important
assumption of repeated-measures ANOVAs (see the recommendations for
further study). In this case, all the p-values are > 0.05 so sphericity is not
violated and we can rely on the results of our F-tests.

5.3. Two independent variables, one between, one within subjects/items

One final example, in which I show how to handle cases where you have
two independent variables, but only one of them is nested into subjects –
the other varies between subjects. Imagine you had 10 non-native speaker
subjects, each of whom participated in four proficiency tests, or tasks: an
oral exam, an in-class grammar test, an essay written in class, and an essay
written at home. This is the variable nested into the subjects. However, you
also suspect that the sexes of the speakers play a role and, guess what,
those are not nested into subjects … This is the between-subjects variable.
Let’s load the data from <_inputfiles/05-5-3_mistakes.csv>.

> Mistakes<-read.delim(file.choose())¶
> str(Mistakes); attach(Mistakes)¶

It should be clear what to do: for aov, you specify the formula with all

independent variables and tell it that only TASK is nested into SUBJECTS.

> model.01.aov<-aov(MISTAKES ~ SEX*TASK +

Error(SUBJECT/TASK))¶
> summary(model.01.aov)¶

For ezANOVA, you use the argument between to tell the function that the

Repeated measurements: a primer 333

independent variables SEX does not vary within, but between subjects:

> ezANOVA(data=Mistakes, dv=.(MISTAKES), wid=.(SUBJECT),

within=.(TASK), between=.(SEX))¶

Unfortunately, while we get significant results for both TASK and its in-

teraction with SEX – explore the means with model.tables again – this
time around the sphericity tests are cause for alarm. ezANOVA suggests two
corrections for violations of sphericity, both of which still return significant
values for TASK and TASK:SEX, but this is beyond the scope of this book,
see the recommendations for further study below and the next section.

5.4. Mixed-effects / multi-level models

The above has already indicated that repeated-measures ANOVAs are not
always as straightforward to use as the above may have made you expect.
First, repeated-measures ANOVAs as discussed above only involve cate-
gorical independent variables, but you may often have interval-/ratio-scaled
variables and may not want to factorize them (given the loss of information
and power that may come with that, see Baayen 2010). Second, many vari-
ables you may wish to include are not fixed effects (i.e., variables whose
levels in the study cover all possible levels in the population) but are ran-

dom effects (i.e., variables whose levels in the study do not cover all possi-
ble levels in the population, such as SUBJECT, ITEM, …, see Gelman and
Hill 2007: 245f.). Third, repeated-measures ANOVA requires a balanced
design and may therefore be problematic with missing data in experiments
and unbalanced observational data. Finally, violations of sphericity are not
always easy and uncontroversial to address; (see Baguley 2012: Section
18.2.2 for more discussion).

A strategy to handle data with dependent/related data points and random
effects that is currently very hot in linguistics is the use of mixed-effects
models, or multi-level models. With much simplification, these are regres-
sion models that can handle fixed and random effects as well as repeated
measurements, unbalanced data, and hierarchical/nested data. They do this
by simultaneously modeling different sources of variability by, for exam-
ple, instead of simply fitting one regression line over many subjects
through a point cloud in a coordinate system, they allow the analyst to
model the dependent variable with a different regression line for each sub-
ject or item, where the different regression lines may have, say, subject-

334 Selected multifactorial methods

specific or item-specific different intercepts (called random intercepts,
because they are modeled as a normally-distributed random variable)
and/or slopes (called random slopes). For reasons of space and others to be
discussed below, I will not discuss these highly complex models here in
detail, but I want to give one or two brief examples. For the first of these, I
will return to the t-test for dependent samples again:

> rm(list=ls(all=TRUE)); library(effects); library(nlme)¶
> Texts<-read.delim(file.choose()¶
> Texts$TEXT<-factor(Texts$TEXT)¶
> str(Texts); attach(Texts)¶

The package nlme (as well as the newer package lme4) allows you to fit

a large variety of mixed-effects models. This is one way of applying these
to the t-test data. The function for linear mixed effects is lme, and here it
takes two arguments: First, the argument fixed, which defines the fixed-
effects structure of the model, and our only fixed-effect independent varia-
ble is TEXTSOURCE. Second, the argument random describes the random-
effects structure of the model, and the notation means we want the intercept
(1) to be able to vary by TEXT (|TEXT), which is just another way of captur-
ing text-specific variability as we did in the repeated-measures ANOVA.

> model.01.lme<-lme(fixed = LENGTH~TEXTSOURCE, random= ~

1|TEXT)¶
> summary(model.01.lme)¶

The output we get contains a lot of information but we will only focus

on the random-effects and the fixed-effects output. The former (in the sec-
tion “Random effects”) contains an estimate of the variability of the 16
random intercepts for the 16 texts, namely a standard deviation of
12.23172. The latter (in the section “Fixed effects: …”) contains the famil-
iar kind of table of coefficients, standard errors, t-values, and p-values. The
t-value (1.92787), its df (15), and the p-value (0.073) should look very fa-
miliar, since they correspond to the above results for the same data. And
you can even create the familiar kind of effects plot for this result because
the function effect does accept lme models as input:

> plot(effect("TEXTSOURCE", model.01.lme))¶

Some other applications of repeated-measures ANOVAs can be ex-

plored similarly. For example, the above data on the mistakes can be stud-
ied with this function call:

Repeated measurements: a primer 335

> summary(model.01.lme<-lme(fixed = MISTAKES ~ SEX*TASK,
random= ~ 1|SUBJECT))¶

You can allow intercepts to vary across subjects in the same ways as

above (you can also allow slopes to vary, but I will not discuss that here),
you can plot the main effects or the interactions of such models with
effect, and you can even apply Anova(model) to lme models to get p-
values for the fixed-effect predictors.

Seems simple, doesn’t it? Why isn’t there a whole section on this, ex-
plaining and exemplifying it all in detail as for the other models in this
chapter. Well, unfortunately, things are very far from being that simple. In
fact, mixed-effects modeling is one of the most fascinating but also among
the most complex statistical techniques I have seen. Right now, it actually
seems to be seen as the best thing since sliced bread, and indeed the poten-
tial of this approach is immense and far-reaching. Having said that, I must
admit that I sometimes think that some of the hype about this method is a
bit premature simply because so many things are still unclear. Ask any two
or three experts on how to do X with multi-level models, and you often get
very different responses. Pick any two to three references on mixed-effects
modeling and you will see that not only is there very little agreement on
some seemingly central questions, but also that some types of problems are
not even mentioned very widely. For example,

− it seems we’re not even close to a somewhat widely accepted view on
what a model selection process or even just a maximal model would
look like. Some sources recommend a model selection process where
we begin with no fixed effects but first explore random effects; others
recommend starting with a full-fledged fixed-effects maximal model;
some recommend beginning with a simple random-effects structure (just
intercepts), others recommend beginning with a maximal random-effect
structure with random intercepts and slopes for everything (and then
simulations suggest that these models do no converge even if they are
given the right model structure) …;

− it is not clear yet how predictors should be selected for retention in, or
deletion from a model: some use p-values (based on t- or F-values, but
then it’s debated how to choose the residual dfs), some use MCMC
sampling (which is not easily available for some types of dependent var-
iables); some use information criteria (such as AIC or BIC or even DIC)
for the whole process; some use likelihood ratio tests, which require at-
tention to whether the models have been fit with ML or REML, …;

336 Selected multifactorial methods

− many references do not discuss how to handle the intercorrelations of

random intercepts and slopes;

− many references say practically nothing about how to decide on a co-

variance structure of the data; I think I have seen only one reference
discussing this in a somewhat accessible fashion;

− you have seen that centering variables can be useful in regression mod-
eling but how to do this best in mixed-effects models is again often not
discussed well – when do we center around an overall mean, when
around group means? And the list goes on, boundary effects, how to
compute R2s, …

None of the above is to deny that mixed-effects modeling is very power-

ful and has the potential to help us very much in analyzing our data … once
the field has developed a bit more of some common thoughts on how they
should be applied to the various kinds of data out there. The fact that now
some journals already require mixed-effects modeling for particular data
sets seems a bit overeager, given how many open questions remain. How-
ever, once some standards regarding the many open questions begin to
emerge and once some libraries and functions are developed that make
tackling some of these questions more easily (Baayen’s pvals.fnc is one
case in point), then the discipline will benefit from mixed-effects models in
innumerable ways. Till that happens, here are some, I think, very good
references (of varying degrees of technicality) that will hopefully get you
started beyond this little primer …

Recommendation(s) for further study

− for repeated-measures ANOVAs: Girden (1992), Johnson (2008: Sec-
tions 4.3-4.4), and especially Miles, Field, and Miles (2012: Ch. 13-14)

− for mixed-effects/multi-level models: Twisk (2006), Gelman and Hill
(2007: Ch. 11-15), Zuur, Ieno, and Smith (2007: Ch. 8), Baayen (2008:
Ch. 7), Baayen, Davidson, and Bates (2008), Johnson (2008: Sections
7.3, 7.4), Zuur et al. (2009, in particular Ch. 5), Miles, Field, and Miles
(2012: Ch. 19), Baguley (2012: Ch. 18); also see Baayen (2011)

6. Hierarchical agglomerative cluster analysis

We have so far only concerned ourselves with methods in which independ-
ent and dependent variables were clearly separated and where we already

Hierarchical agglomerative cluster analysis 337

had at least an expectation and a hypothesis prior to the data collection.
Such methods are sometimes referred to as hypothesis-testing statistics, and
we used statistics and p-values to decide whether or not to reject a H0. The
method called hierarchical agglomerative cluster analysis that we deal with
in this section is a so-called exploratory, or hypothesis-generating, method
or, more precisely, a family of methods. It is normally used to divide a set
of elements into clusters, or groups, such that the members of one group are
very similar to each other and at the same time very dissimilar to members
of other groups. An obvious reason to use cluster analyses to this end is that
this method can handle larger amounts of data and be at the same time
more objective than humans eyeballing huge tables.

To get a first understanding of what cluster analyses do, let us look at a
fictitious example of a cluster analysis based on similarity judgments of
English consonant phonemes. Let’s assume you wanted to determine how
English native speakers distinguish the following consonant phonemes: /b/,
/d/, /f/, /g/, /l/, /m/, /n/, /p/, /s/, /t/, and /v/. You asked 20 subjects to rate the
similarities of all (11·10)/2 = 55 pairs of consonants on a scale from 0 (‘com-
pletely different’) to 1 (‘completely identical’). As a result, you obtained 20
similarity ratings for each pair and could compute an average rating for
each pair. It would now be possible to compute a cluster analysis on the
basis of these average similarity judgments to determine (i) which conso-
nants and consonant groups the subjects appear to distinguish and (ii) how
these groups can perhaps be explained. Figure 79 shows the result that such
a cluster analysis might produce – how would you interpret it?

Figure 79. Fictitious results of a cluster analysis of English consonants

338 Selected multifactorial methods

THINK

BREAK

The ‘result’ suggests that the subjects’ judgments were probably strong-

ly influenced by the consonants’ manner of articulation: on a very general
level, there are two clusters, one with /b/, /p/, /t/, /d/, and /g/, and one with
/l/, /n/, /m/, /v/, /f/, and /s/. It is immediately obvious that the first cluster
contains all and only all plosives (i.e., consonants whose production in-
volves a momentary complete obstruction of the airflow) that were includ-
ed whereas the second cluster contains all and only all nasals, liquids, and
fricatives (i.e., consonants whose production involves only a momentary
partial obstruction of the airflow).

There is more to the results, however. The first of these two clusters has
a noteworthy internal structure of two ‘subclusters’. The first subcluster, as
it were, contains all and only all bilabial phonemes whereas the second
subcluster groups both alveolars together followed by a velar sound.

The second of the two big clusters also has some internal structure with
two subclusters. The first of these contains all and only all nasals and liq-
uids (i.e., phonemes that are sometimes classified as between clearcut vow-
els and clearcut consonants), and again the phonemes with the same place
of articulation are grouped together first (the two alveolar sounds). The
same is true of the second subcluster, which contains all and only all frica-
tives and has the labiodental fricatives merged first.

The above comments were only concerned with which elements are
members of which clusters. Further attempts at interpretation may focus on
how many of the clusters in Figure 79 differ from each other strongly
enough to be considered clusters in their own right. Such discussion is ide-
ally based on follow-up tests which are too complex to be discussed here,
but as a quick and dirty heuristic you can look at the lengths of the vertical
lines in such a tree diagram, or dendrogram. Long vertical lines indicate
more autonomous subclusters. For example, the subcluster {/b/ /p/} is ra-
ther different from the remaining plosives since the vertical line leading
upwards from it to the merging with {{/t/ /d/} /g/} is rather long.37

Unfortunately, cluster analyses do not usually yield such a perfectly in-
terpretable output but such dendrograms are often surprisingly interesting

37. For a similar but authentic example (based on data on vowel formants), cf. Kornai

(1998).

Hierarchical agglomerative cluster analysis 339

and revealing. Cluster analyses are often used in semantic, cognitive-
linguistic, psycholinguistic, and computational-linguistic studies (cf. Miller
1971, Sandra and Rice 1995, Rice 1996, and Manning and Schütze 1999:
Ch. 14 for some examples) and are often an ideal means to detect patterns
in large and seemingly noisy/chaotic data sets. You must realize, however,
that even if cluster analyses as such allow for an objective identification of
groups, the analyst must still make at least three potentially subjective deci-
sions. The first two of these influence how exactly the dendrogram will
look like; the third you have already seen: one must decide what it is the
dendrogram reflects. In what follows, I will show you how to do such an
analysis with R yourself. Hierarchical agglomerative cluster analyses typi-
cally involve the following steps:

Procedure

Tabulating the data
− Computing a similarity/dissimilarity matrix on the basis of a user-

defined similarity/dissimilarity metric
− Computing a cluster structure on the basis of a user-defined amalgama-

tion rule
− Representing the cluster structure in a dendrogram and interpreting it
− (Post-hoc exploration (such as average silhouette widths)

The example we are going to discuss is from the domain of cor-

pus/computational linguistics. In both disciplines, the degree of semantic
similarity of two words is often approximated on the basis of the number
and frequency of shared collocates. A very loose definition of a ‘collocates
of a word w’ are the words that occur frequently in w’s environment, where
environment in turn is often defined as ‘in the same sentence’ or within a 4-
or 5-word window around w. For example: if you find the word car in a
text, then very often words such as driver, motor, gas, and/or accident are
relatively nearby whereas words such as flour, peace treaty, dictatorial,
and cactus collection are probably not particularly frequent. In other words,
the more collocates two words x and y share, the more likely there is a se-
mantic relationship between the two (cf. Oakes 1998: Ch. 3, Manning and
Schütze 2000: Section 14.1 and 15.2 as well as Gries 2009a for how to
obtain collocates in the first place).

In the present example, we look at the seven English words bronze,
gold, silver, bar, cafe, menu, and restaurant. Of course, I did not choose
these words at random – I chose them because they intuitively fall into two
clusters with bar (and thus constitute a good test case). One cluster consists

340 Selected multifactorial methods

of three co-hyponyms of the metal, the other consists of three co-hyponyms
of gastronomical establishment as well as a word from the same semantic
field. Let us assume you extracted from the British National Corpus (BNC)
all occurrences of these words and their content word collocates (i.e.,
nouns, verbs, adjectives, and adverbs). For each collocate that occurred
with at least one of the seven words, you determined how often it occurred
with each of the seven words. Table 46 is a schematic representation of the
first six rows of such a table. The first collocate, here referred to as X, co-
occurred only with bar (three times); the second collocate, Y, co-occurred
11 times with gold and once with restaurant, etc.

Table 46. Schematic co-occurrence frequencies of seven English words in the

BNC

Collocate bronze gold silver bar cafe menu restaurant

X 0 0 0 3 0 0 0

Y 0 11 0 0 0 0 1

Z 0 1 1 0 0 0 1

A 0 0 0 1 0 2 0

B 1 0 0 1 0 0 0

C 0 0 0 1 0 0 1

… … … … … … … …

We are now asking the question which words are more similar to each

other than to others. That is, just like in the example above, you want to
group elements – above, phonemes, here, words – on the basis of properties
– above, average similarity judgments, here, co-occurrence frequencies.
First you need a data set such as Table 46, which you can load from the file
<_inputfiles/05-6_collocates.RData>, which contains a large table of co-
occurrence data – seven columns and approximately 31,000 rows.

> load(file.choose ()) # load the data frame¶
> ls() # check what was loaded¶
[1] "collocates"
> str(collocates)¶
'data.frame': 30936 obs. of 7 variables:
 $ bronze : num 0 0 0 0 1 0 0 0 0 0 ...
 $ gold : num 0 11 1 0 0 0 0 1 0 0 ...
 $ silver : num 0 0 1 0 0 0 0 0 0 0 ...
 $ bar : num 3 0 0 1 1 1 1 0 1 0 ...
 $ cafe : num 0 0 0 0 0 0 0 0 0 1 ...
 $ menu : num 0 0 0 2 0 0 0 0 0 0 ...
> attach(collocates)¶
 $ restaurant: num 0 1 0 0 0 0 0 0 0 0 ...

Hierarchical agglomerative cluster analysis 341

Alternatively, you could load those data with read.table(…) from the
file <_inputfiles/05-6_collocates.csv>. If your data contain missing data,
you should disregard those. There are no missing data, but the function is
still useful to know (cf. the recommendation at the end of Chapter 2):

> collocates<-na.omit(collocates)¶

Next, you must generate a similarity/dissimilarity matrix for the seven

words. Here, you have to make the first possibly subjective decision, decid-
ing on a similarity/dissimilarity measure. You need to consider two aspects:
the level of measurement of the variables in point and the definition of
similarity to be used. With regard to the former, we will only distinguish
between binary/nominal and ratio-scaled variables. I will discuss similari-
ty/dissimilarity measures for both kinds of variables, but will then focus on
ratio-scaled variables.

In the case of nominal variables, there are four possibilities how two el-
ements can be similar or dissimilar to each other, which are represented in
Table 47. On the basis of Table 47, the similarity of two elements is typi-
cally quantified using formula (66), in which w1 and w2 are defined by the
analyst:

(66)
))(()(21

1

cbwdwa

dwa

+⋅+⋅+

⋅+

Table 47. Feature combinations of two binary elements

 Element 2 exhibits
characteristic x

Element 2 does not
exhibit characteristic x

Element 1 exhibits
characteristic x

a b

Element 1 does not
exhibit characteristic x

c d

Three similarity measures are worth mentioning here:

− the Jaccard coefficient: w1 = 0 and w2 = 1;

− the Simple Matching coefficient: w1 = 1 and w2 = 1;

− the Dice coefficient: w1 = 0 and w2 = 0.5.

What are their pairwise similarity coefficients of these three vectors?

342 Selected multifactorial methods

> aa<-c(1, 1, 1, 1, 0, 0, 1, 0, 0, 0)¶
> bb<-c(1, 1, 0, 1, 0, 1, 0, 1, 0, 1)¶
> cc<-c(1, 0, 1, 1, 1, 1, 1, 1, 1, 0)¶

THINK

BREAK

− Jaccard coefficient: for aa and bb: 0.375, for aa and cc 0.444, for bb
and cc 0.4;

− Simple Matching coefficient: for aa and bb: 0.5, for aa and cc 0.5, for
bb and cc 0.4;

− Dice coefficient: for aa and bb: 0.545, for aa and cc 0.615, for bb and
cc 0.571 (see the code file for a function that computes these).

But when do you use which of the three? One rule of thumb is that

when the presence of a characteristic is as informative as its absence, then
you should use the Simple Matching coefficient, otherwise choose the Jac-
card coefficient or the Dice coefficient. The reason for that is that, as you
can see in formula (66) and the measures’ definitions above, only the Sim-
ple Matching coefficient fully includes the cases where both elements ex-
hibit or do not exhibit the characteristic in questions.

For ratio-scaled variables, there are (many) other measures, not all of
which I can discuss here. I will focus on (i) a set of distance or dissimilarity
measures (i.e., measures where large values represent large degrees of dis-
similarity) and (ii) a set of similarity measures (i.e., measures where large
values represent large degrees of similarity). Many distance measures are
again based on one formula and then differ in terms of parameter settings.
This basic formula is the so-called Minkowski metric represented in (67).

(67)
yn

i

y

riqi xx

1

1









−∑

−

When y is set to 2, you get the so-called Euclidean distance.38 If you in-

38. The Euclidean distance of two vectors of length n is the direct spatial distance between

two points within an n-dimensional space. This may sound complex, but for the simplest
case of a two-dimensional coordinate system this is merely the distance you would
measure with a ruler.

Hierarchical agglomerative cluster analysis 343

sert y = 2 into (67) to compute the Euclidean distance of the vectors aa and
bb, you obtain:

> sqrt(sum((aa-bb)^2))¶
[1] 2.236068

When y is set to 1, you get the so-called Manhattan- or City-Block dis-

tance of the above vectors. For aa and bb, you obtain:

> sum(abs(aa-bb))¶
[1] 5

The similarity measures are correlational measures. One of these you

know already: the Pearson product-moment correlation coefficient r. A
similar measure often used in computational linguistics is the cosine (cf.
Manning and Schütze 1999: 299–303). The cosine and all other measures
for ratio-scaled are available from the function Dist from the library
amap.39 This function requires that (i) the data are available in the form of a
matrix or a data frame and that (ii) the elements whose similarities you
want are in the rows, not in the columns as usual. If the latter is not the
case, you can often just transpose a data structure (with t):

> library(amap)¶
> collocates.t<-t(collocates)¶

You can then apply the function Dist to the transposed data structure.

This function takes the following arguments:

− x: the matrix or the data frame for which you want your measures;

− method="euclidean" for the Euclidean distance; method="manhattan"
for the City-Block metric; method="correlation" for the product-
moment correlation r (but see below!); method="pearson" for the co-
sine (but see below!) (there are some more measures available which I
won’t discuss here);

− diag=FALSE (the default) or diag=TRUE, depending on whether the dis-
tance matrix should contain its main diagonal or not;

− upper=FALSE (the default) or upper=TRUE, depending on whether the
distance matrix should contain only the lower left half or both halves.

39. The function dist from the standard installation of R also allows you to compute sever-

al similarity/dissimilarity measures, but fewer than Dist from the library amap.

344 Selected multifactorial methods

Thus, if you want to generate a distance matrix based on Euclidean dis-
tances for our collocate dataset you simply enter this:

> Dist(collocates.t, method="euclidean", diag=TRUE,

upper=TRUE)¶

As you can see, you get a (symmetric) distance matrix in which the dis-

tance of each word to itself is of course 0. This matrix now tells you which
word is most similar to which other word. For example, the word silver is
most similar to is cafe because the distance of silver to cafe (2385.566) is
the smallest distance that silver has to any word other than itself.

The following computes a distance matrix using the City-Block metric:

> Dist(collocates.t, method="manhattan", diag=TRUE,

upper=TRUE)¶

To get a similarity matrix with product-moment correlations or cosines,

you must compute the difference 1 minus the values in the matrix. To get a
similarity matrix with correlation coefficients, you therefore enter this:

> 1-Dist(collocates.t, method="correlation", diag=TRUE,

upper=TRUE)¶
 bronze gold silver bar cafe menu restaurant
bronze 0.0000 0.1342 0.1706 0.0537 0.0570 0.0462 0.0531
gold 0.1342 0.0000 0.3103 0.0565 0.0542 0.0458 0.0522
silver 0.1706 0.3103 0.0000 0.0642 0.0599 0.0511 0.0578
bar 0.0537 0.0565 0.0642 0.0000 0.1474 0.1197 0.2254
cafe 0.0570 0.0542 0.0599 0.1474 0.0000 0.0811 0.1751
menu 0.0462 0.0458 0.0511 0.1197 0.0811 0.0000 0.1733
restaurant 0.0531 0.0522 0.0578 0.2254 0.1751 0.1733 0.0000

You can check the results by comparing this output with the one you get

from cor(collocates)¶. For a similarity matrix with cosines, you enter:

> 1-Dist(collocates.t, method="pearson", diag=TRUE,

upper=TRUE)¶

There are also statistics programs that use 1-r as a distance measure.

They change the similarity measure r (values close to zero mean low simi-
larity) into a distance measure (values close to zero mean high similarity).

If you compare the matrix with Euclidean distances with the matrix with
r, you might notice something that strikes you as strange …

Hierarchical agglomerative cluster analysis 345

THINK

BREAK

In the distance matrix, small values indicate high similarity and the

smallest value in the column bronze is in the row for cafe (1734.509). In
the similarity matrix, large values indicate high similarity and the largest
value in the column bronze is in the row for silver (ca. 0.1706). How can
that be? This difference shows that even a cluster algorithmic approach is
influenced by subjective though hopefully motivated decisions. The choice
for a particular metric influences the results because there are different
ways in which vectors can be similar to each other. Consider as an example
the following data set, which is also represented graphically in Figure 80.

> y1<-1:10; y2<-11:20; y3<-c(6, 6, 6, 5, 5, 5, 4, 4, 4, 3)¶
> y<-t(data.frame(y1, y2, y3))¶

Figure 80. Three fictitious vectors

The question is, how similar is y1 to y2 and to y3? There are two obvi-

ous ways of considering similarity. On the one hand, y1 and y2 are perfect-
ly parallel, but they are far away from each other (as much as one can say

346 Selected multifactorial methods

that about a diagram whose dimensions are not defined). On the other hand,
y1 and y3 are not parallel to each other at all, but they are close to each
other. The two approaches I discussed above are based on these different
perspectives. The distance measures I mentioned (such as the Euclidean
distance) are based on the spatial distance between vectors, which is small
between y1 and y3 but large between y1 and y2. The similarity measures I
discussed (such as the cosine) are based on the similarity of the curvature
of the vectors, which is small between y1 and y3, but large between y1 and
y2. You can see this quickly from the actual numerical values:

> Dist(y, method="euclidean", diag=TRUE, upper=TRUE)¶
 y1 y2 y3
y1 0.00000 31.62278 12.28821
y2 31.62278 0.00000 35.93049
y3 12.28821 35.93049 0.00000
> 1-Dist(y, method="pearson", diag=TRUE, upper=TRUE)¶
 y1 y2 y3
y1 0.0000000 0.9559123 0.7796728
y2 0.9559123 0.0000000 0.9284325
y3 0.7796728 0.9284325 0.0000000

According to the Euclidean distance, y1 is more similar to y3 than to y2

– 12.288 < 31.623 – but the reverse is true for the cosine: y1 is more simi-
lar to y2 – 0.956 > 0.78. The two measures are based on different concepts
of similarity. The analyst must decide what is more relevant: low spatial
distances or similar curvatures. For now, we assume you want to adopt a
curvature-based approach and use 1-r as a measure; in your own studies,
you of course must state which similarity/distance measure you used, too.40

> dist.matrix<-Dist(collocates.t, method="correlation",

diag=TRUE, upper=TRUE)¶
> round(dist.matrix, 4)¶
 bronze gold silver bar cafe menu restaurant
bronze 0.0000 0.8658 0.8294 0.9463 0.9430 0.9538 0.9469
gold 0.8658 0.0000 0.6897 0.9435 0.9458 0.9542 0.9478
silver 0.8294 0.6897 0.0000 0.9358 0.9401 0.9489 0.9422
bar 0.9463 0.9435 0.9358 0.0000 0.8526 0.8803 0.7746
cafe 0.9430 0.9458 0.9401 0.8526 0.0000 0.9189 0.8249
menu 0.9538 0.9542 0.9489 0.8803 0.9189 0.0000 0.8267
restaurant 0.9469 0.9478 0.9422 0.7746 0.8249 0.8267 0.0000

The next step is to compute a cluster structure from this similarity ma-

40. I am simplifying a lot here: the frequencies are neither normalized nor logged/dampened

etc. (cf. above, Manning and Schütze 1999: Section 15.2.2, or Jurafsky and Martin
2008: Ch. 20).

Hierarchical agglomerative cluster analysis 347

trix. You do this with the function hclust, which can take up to three ar-
guments of which I will discuss two. The first is a similarity/distance ma-
trix, the second chooses an amalgamation rule that defines how the ele-
ments in that matrix get merged into clusters. This choice is the second
potentially subjective decision and there are again several possibilities.

The choice method="single" uses the so-called single-linkage- or
nearest-neighbor method. In this method, the similarity of elements x and y
– where x and y may be elements such as individual consonants or subclus-
ters such as {/b/, /p/} in Figure 79 – is defined as the minimal distance be-
tween any one element of x and any one element of y. In the present exam-
ple this means that in the first amalgamation step gold and silver would be
merged since their distance is the smallest in the whole matrix (1-r =
0.6897). Then, bar gets joined with restaurant (1-r = 0.7746). Then, and
now comes the interesting part, {bar restaurant} gets joined with cafe be-
cause the smallest remaining distance is that which restaurant exhibits to
cafe: 1-r = 0.8249. And so on. This amalgamation method is good at identi-
fying outliers in data, but tends to produce long chains of clusters and is,
therefore, often not particularly discriminatory.

The choice method="complete" uses the so-called complete-linkage- or
furthest-neighbor method. Contrary to the single-linkage method, here the
similarity of x and y is defined as the maximal distance between any one
element of x and any one element of y. First, gold and silver are joined as
before, then bar and restaurant. In the third step, {bar restaurant} gets
joined with cafe, but the difference to the single linkage method is that the
distance between the two is now 0.8526, not 0.8249, because this time the
algorithm considers the maximal distances, of which the smallest is chosen
for joining. This approach tends to form smaller homogeneous groups and
is a good method if you suspect there are many smaller groups in your data.

Finally, the choice method="ward" uses a method whose logic is similar
to that of ANOVAs because it joins those elements whose joining increases
the error sum of squares least. For every possible amalgamation, the meth-
od computes the sums of squared differences/deviations from the mean of
the potential cluster, and then the clustering with the smallest sum of
squared deviations is chosen. This method is known to generate smaller
clusters that are often similar in size and has proven to be quite useful in
many applications. We will use it here, too, and again in your own studies,
you must explicitly state which amalgamation rule you used. Now you can
compute the cluster structure and plot it.

> clust.ana<-hclust(dist.matrix, method="ward")¶

348 Selected multifactorial methods

> plot(clust.ana)¶
> rect.hclust(clust.ana, 2) # red boxes around clusters¶

Figure 81. Dendrogram of seven English words

This is an uncharacteristically clearly interpretable result. As one would

have hoped for, the seven words fall exactly into the two main expected
clusters: one with the ‘metals’ and one with the gastronomy-related words.
The former has a substructure in which bronze is somewhat less similar to
the other two metals, and the latter very little substructure but groups the
three co-hyponyms together before menu is added. With the following line
you can have R show you for each element which cluster it belongs to
when you assume two clusters.

> cutree(clust.ana, 2)¶
bronze gold silver bar cafe menu restaurant
 1 1 1 2 2 2 2

While I can’t discuss the method in detail, I want to briefly give you at

least a glimpse of how more difficult cluster structures can be explored. As
you will remember, Figure 79 was a much less clear-cut case in terms of
how many clusters should be distinguished: any number between 2 and 5
seems defensible. The function cluster.stats from the library fpc offers a
variety of validation statistics, which can help to narrow down the number
of clusters best distinguished. One of these involves the notion of average
silhouette widths, which quantifies how similar elements are to the clusters
which they are in relative to how similar elements are to other clusters. It is

Hierarchical agglomerative cluster analysis 349

then possible to compute average silhouette widths for all possible cluster
solutions and pick the one with the highest average silhouette widths. If we
apply this logic to Figure 79, we get Figure 82. It shows why the decision
for any one number of clusters is so difficult – many solutions fare nearly
equally well – but why, if anything, four clusters sould be distinguished:
with four clusters, the average silhouette width is highest: 0.14.

Figure 82. Average silhouette widths for all cluster solutions of Figure 79

Now you should do the exercises for Chapter 5 …

Recommendation(s) for further study

− the function daisy (from the library cluster) to compute distance ma-
trices for dataset with variables from different levels of measurement

− the function kmeans to do cluster analyses where you provide the num-
ber of clusters beforehand

− the function pvclust (from the library pvclust) to obtain p-values for
clusters based on resampling methods; cf. also pvrect and pvpick
(from the same library)

− the function varclus (from the library Hmisc) to do variable clustering
− the function nj (from the library ape) to perform neighbor clustering

and phylogenetic cluster analyses
− Crawley (2007: Ch. 23), Baayen (2008: Ch. 5), Johnson (2008: Ch. 6)

Chapter 6

Epilog

Now that you have nearly made it through the whole book, let me give you
a little food for further thought and some additional ideas on the way. Iron-
ically, some of these will probably shake up a bit what you have learnt so
far, but I hope they will also stimulate some curiosity for what else is out
there to discover and explore.

Let me first mention a few areas that you should begin to explore as you
become more familiar with regression modeling. One issue I have only
alluded to in passing in the code file is that of (cross) validation. Regres-
sions often run the risk of what is called overfitting: they fit a particular
data set rather well, but generalize badly to others, which of course jeop-
ardizes the generalizability of the findings to the population as a whole.
Very often, results can be validated by splitting up the existing sample into,
often, 10 parts and then do 10 analyses, in each of which you obtain a re-
gression equation from 90% of the data and apply it to the unseen 10%.
Such methods can reveal a lot about the internal structure of a data set and
there are several functions available in R for these methods. A related point
is that, given the ever increasing power of computers, resampling and per-
mutation approaches become more and more popular; examples include the
bootstrap, the jackknife procedure, or exhaustive permutation procedures.
These procedures are non-parametric methods you can use to estimate
means, variances, but also correlations or regression parameters without
major distributional assumptions. Such methods are not the solution to all
statistical problems, but can still be interesting and powerful tools (cf. the
libraries boot as well as bootstrap).

Recommendation(s) for further study
Good (2005), Rizzo (2008: Ch. 7, 8)

Also, the analysis of special data points in your sample(s) is very im-

portant, given the impact that outliers and points with high leverage can
have on the data. In addition, learning more about what to do with missing
data should be high on your list of things. On the one hand, it may be use-
ful, for instance, to run a regression on missing data to see whether there is
something in the data that allows you to predict well when, say, subjects do

Epilog 351

respond to a stimulus. On the other hand, small proportions of missing data
may be imputed, that is predicted from other data points (see Torgo: Sec-
tion 2.5).

Then, there is a range of additional techniques you may wish to explore.
This book focused on hypothesis-testing approaches, in particular regres-
sions, but there are many interesting exploratory tools that, for reasons of
space, I could not discuss: principal components analysis and correspond-

ence analysis are two well-known cases in point, association rules or naïve

Bayes classifiers are others.
It is also worth pointing out that R has many many more possibilities of

graphical representation than I could mention here. I only used the tradi-
tional graphics system, but there are other more powerful tools, which are
available from the libraries lattice and ggplot2 (you should explore
<http://www.yeroon.net/ggplot2/>). The website <http://gallery.r-
enthusiasts.com/> provides many very interesting and impressive examples
for R plots, and several good books illustrate many of the exciting possi-
bilities for exploration (cf. Unwin, Theus, and Hofmann 2006, Cook and
Swayne 2007, Sarkar 2008, Keen 2010, and of course Murrell 2011).

Finally, note that the null hypothesis significance testing (NHST) para-

digm that is underlying most of the methods discussed here is not as uncon-
troversial as this textbook (and most others) may make you believe. While
the computation of p-values is certainly still the standard approach, there
are researchers who argue for a different perspective. Some of these argue
that p-values are problematic because they do in fact not represent the con-
ditional probability that one is really interested in. Recall, the above p-
values answer the question “How likely is it to get the observed data when
H0 is true?” but what one actually wants to know “How likely is H1 given
the data I have?” Suggestions for improvement include:

− one should focus not on p-values but on effect sizes and/or confidence
intervals (which is why I mentioned these above again and again);

− one should report so-called prep-values, which according to Killeen
(2005) provide the probability to replicate an observed effect (but are
not uncontroversial themselves);

− one should test reasonable H0s rather than hypotheses that could never
be true in the first place (there will always be some effect or difference).

Another interesting approach is the so-called Bayesian approach to sta-

tistics, which allows to include subjective prior knowledge or previous
results with one’s own data. All of these things are worth exploring.

352 Epilog

Recommendation(s) for further study

− Cohen (1994), Loftus (1996), Denis (2003) for discussion of the NHST
− Killeen (2005) on prep-values
− Iversen (1984) on Bayes statistics

I hope you can use the techniques covered in this book for many differ-

ent questions, and when this little epilog also makes you try and extend
your knowledge and familiarize yourself with additional tools and methods
– for example, there are many great web resources, <http://www.
statmethods.net/index.html> and <http://www.r-bloggers.com/> are among
my favorites – then this book has achieved one of his main objectives.

References

Agresti, Alan
 2002 Categorical Data Analysis. 2nd ed. Hoboken, NJ: John Wiley and

Sons.
Agresti, Alan
 2010 Analysis of Ordinal Categorical Data. 2nd ed. Hoboken, NJ: John

Wiley and Sons.
Anscombe, Francis J.
 1973 Graphs in statistical analysis. American Statistician 27: 17–21.
Baayen, R. Harald
 2008 Analyzing Linguistic Data: A Practical Introduction to Statistics Us-

ing R. Cambridge: Cambridge University Press.
Baayen, R. Harald, D.J. Davidson, and Douglas M. Bates.
 2008 Mixed-effects modeling with crossed random effects for subjects and

items. Journal of Memory and Language 59 (4): 390-412.
Baayen, R. Harald
 2010 A real experiment is a factorial experiment? The Mental Lexicon 5 (1):

149-157.
Baayen, R. Harald
 2011 Corpus linguistics and naïve discriminative learning. Brazilian Jour-

nal of Applied Linguistics 11 (2): 295-328.
Backhaus, Klaus, Bernd Erichson, Wulff Plinke, and Rolf Weiber
 2003. Multivariate Analysemethoden: eine anwendungsorientierte Einfüh-

rung. 10th ed. Berlin: Springer.
Baguley, Thom
 2012 Serious Stats: A Guide to Advanced Statistics for the Behavioral Sci-

ences. Houndmills, Basingstoke, Hampshire: Palgrave MacMillan.
Bencini, Giulia, and Adele E. Goldberg
 2000 The contribution of argument structure constructions to sentence

meaning. Journal of Memory and Language 43 (3): 640–651.
Berez, Andrea L., and Stefan Th. Gries
 2010 Correlates to middle marking in Dena’ina iterative verbs. Internation-

al Journal of American Linguistics.
Bortz, Jürgen
 2005 Statistik for Human- und Sozialwissenschaftler. 6th ed. Heidelberg:

Springer Medizin Verlag.
Bortz, Jürgen, and Nicola Döring
 1995 Forschungsmethoden und Evaluation. 2nd ed. Berlin, Heidelberg,

New York: Springer.

354 References

Bortz, Jürgen, Gustav A. Lienert, and Klaus Boehnke
 1990 Verteilungsfreie Methoden in der Biostatistik. Berlin, Heidelberg,

New York: Springer.
Braun, W. John, and Duncan J. Murdoch
 2008 A First Course in Statistical Programming with R. Cambridge: Cam-

bridge University Press.
Brew, Chris, and David McKelvie
 1996 Word-pair extraction for lexicography. In Proceedings of the 2

nd
 In-

ternational Conference on New Methods in Language Processing,
Kemal O. Oflazer and Harold Somers (eds.), 45–55. Ankara: Bilkent
University.

Bretz, Frank, Torsten Hothorn, and Peter Westfall
 2011 Multiple Comparisons Using R. Boca Raton, FL: Chapman and

Hall/CRC.
Chambers, John M.
 2008 Software for Data Analysis: Programmming with R. New York:

Springer.
Chen, Ping
 1986 Discourse and Particle Movement in English. Studies in Language 10

(1): 79–95.
Clauß, Günter, Falk Rüdiger Finze, and Lothar Partzsch
 1995 Statistik for Soziologen, Pädagogen, Psychologen und Mediziner. Vol.

1. 2nd ed. Thun: Verlag Harri Deutsch
Cohen, Jacob
 1994 The earth is round (p < 0.05). American Psychologist 49 (12): 997–

1003.
Cook, Dianne, and Deborah F. Swayne
 2007 Interactive and Dynamic Graphics for Data Analysis. New York:

Springer.
Cowart, Wayne
 1997 Experimental Syntax: Applying Objective Methods to Sentence Judg-

ments. Thousand Oaks, CA: Sage.
Crawley, Michael J.
 2002 Statistical Computing: An Introduction to Data Analysis using S-Plus.

– Chichester: John Wiley.
Crawley, Michael J.
 2005 Statistics: An Introduction Using R. – Chichester: John Wiley.
Crawley, Michael J.
 2007 The R book. – Chichester: John Wiley.
Dalgaard, Peter
 2002 Introductory Statistics with R. New York: Springer.

References 355

Denis, Daniel J.
 2003 Alternatives to Null Hypothesis Significance Testing. Theory and

Science 4.1. URL <http://theoryandscience.icaap.org/content/vol4.1/
02_denis.html>

Divjak, Dagmar S., and Stefan Th. Gries
 2006 Ways of trying in Russian: clustering behavioral profiles. Corpus

Linguistics and Linguistic Theory 2 (1): 23–60.
Divjak, Dagmar S., and Stefan Th. Gries
 2008 Clusters in the mind? Converging evidence from near synonymy in

Russian. The Mental Lexicon 3 (2):188–213.
Everitt, Brian S., and Torsten Hothorn
 2006 A handbook of statistical analyses using R. Boca Raton, FL: Chapman

and Hall/CRC.
von Eye, Alexander
 2002 Configural frequency analysis: methods, models, and applications.

Mahwah, NJ: Lawrence Erlbaum.
Faraway, Julian J.
 2005 Linear models with R. Boca Raton: Chapman and Hall/CRC.
Faraway, Julian J.
 2006 Extending the Linear Model with R: Generalized Linear, Mixed Ef-

fects and Nonparametric Regression models. Boca Raton: Chapman
and Hall/CRC.

Field, Andy, Jeremy Miles, and Zoë Field
 2012 Discovering Statistics Using R. Los Angeles and London: Sage Publi-

cations.
Frankenberg-Garcia, Ana
 2004 Are translations longer than source texts? A corpus-based study of

explicitation. Paper presented at Third International CULT (Corpus
Use and Learning to Translate) Conference, Barcelona, 22–24. Januar
2004.

Fraser, Bruce
 1966 Some remarks on the VPC in English. In Problems in Semantics,

History of Linguistics, Linguistics and English, Francis P. Dinneen
(ed.), p. 45–61. Washington, DC: Georgetown University Press.

Gaudio, Rudolf P.
 1994 Sounding gay: pitch properties in the speech of gay and straight men.

American Speech 69 (1): 30–57.
Gelman, Andrew, and Jennifer Hill
 2007 Data Analysis Using Regression and Multilevel/Hierarchical Models.

Cambridge: Cambridge University Press.
Gentleman, Robert
 2009 R Programming for Bioinformatics. Boca Raton, FL: Chapman and

Hall/CRC.

356 References

Good, Philip I.
 2005 Introduction to Statistics through Resampling Methods and R/S-Plus.

Hoboken, NJ: John Wiley and Sons.
Good, Philip I., and James W. Hardin
 2012 Common Errors in Statistics (and How to Avoid Them). 4th ed. Hobo-

ken, NJ: John Wiley and Sons.
Gorard, Stephen
 2004 Revisiting a 90-year-old debate: the advantages of the mean deviation.

Paper presented at the British Educational Research Association An-
nual Conference, University of Manchester.
http://www.leeds.ac.uk/educol/documents/00003759.htm.

Gries, Stefan Th.
 2003a Multifactorial Analysis in Corpus Linguistics: A Study of Particle

Placement. London, New York: Continuum.
Gries, Stefan Th.
 2003b Towards a corpus-based identification of prototypical instances of

constructions. Annual Review of Cognitive Linguistics 1: 181–200.
Gries, Stefan Th.
 2006 Cognitive determinants of subtractive word-formation processes: a

corpus-based perspective. Cognitive Linguistics 17 (4): 535–558.
Gries, Stefan Th.
 2009a Quantitative Corpus Linguistics with R: A Practical Introduction.

London, New York: Taylor and Francis.
Gries, Stefan Th.
 2009b Statistics for Linguistics with R: A Practical Introduction. Berlin, New

York: Mouton de Gruyter.
Gries, Stefan Th.
 forthc. Frequency tables: tests, effect sizes, and explorations.
Gries, Stefan Th., and Stefanie Wulff
 2005 Do foreign language learners also have constructions? Evidence from

priming, sorting, and corpora. Annual Review of Cognitive Linguistics
3: 182–200.

Harrell, Frank E. Jr.
 2001 Regression Modeling Strategies. With Applications to Linear Models,

Logistic Regression, and Survival Analysis. New York: Springer.
Hawkins, John A.
 1994 A Performance Theory of Order and Constituency. Cambridge: Cam-

bridge University Press.
Hilbe, Joseph M.
 2009 Logistic Regression Models. Boca Raton, FL: Chapman and

Hall/CRC.
Iversen, Gudmund R.
 1984 Bayesian Statistical Inference. Beverly Hills, CA: Sage.

References 357

Jaeger, T. Florian
 2008 Categorical data analysis: away from ANOVAs (transformation or

not) and towards logit mixed models. Journal of Memory and Lan-

guage 59 (4): 434–446
Jaccard, James
 2001 Interaction Effects in Logistic Regression. Thousand Oaks, CA: Sage.
Johnson, Keith
 2008 Quantitative Methods in Linguistics. Malden, MA: Blackwell.
Jurafsky, Daniel, and James H. Martin
 2008 Speech and Language Processing. 2nd ed.. Upper Saddle River, NJ:

Pearson Prentice Hall.
Keen, Kevin J.
 2010 Graphics for Statistics and Data Analysis with R. Boca Raton, FL:

Chapman and Hall/CRC.
Killeen, Peter R.
 2005 An alternative to null-hypothesis significance tests. Psychological

Science 16 (5): 345–353.
Kornai, Andras
 1998 Analytic models in phonology. In The Organization of Phonology:

Constraints, Levels and Representations, Jaques Durand and Bernard
Laks (eds.), 395–418. Oxford: Oxford University Press.

Krauth, Joachim
 1993 Einführung in die Konfigurationsfrequenzanalyse. Weinheim: Beltz.
Kučera, Henry, and W. Nelson Francis
 1967 Computational analysis of Present-Day American English. Provi-

dence, RI: Brown University Press.
Larson-Hall, Jennifer
 2010 A guide to doing statistics in second language research using SPSS.

London and New York: Routledge.
Lautsch, Erwin, and Stefan von Weber
 1995 Methoden und Anwendungen der Konfigurationsfrequenzanalyse.

Weinheim: Beltz.
Ligges, Uwe
 2005 Programmieren mit R. Berlin, Heidelberg, New York: Springer.
Loftus, Geoffrey R.
 1996 Psychology will be a much better science when we change the way we

analyze data. Current Directions in Psychological Science 5 (6): 161–
171.

Maindonald, W. John, and John Braun
 2003 Data Analysis and Graphics Using R: An Example-based Approach.

Cambridge: Cambridge University Press.
Manning, Christopher D., and Hinrich K. Schütze
 2000 Foundations of Statistical Natural Language Processing. Cambridge,

MA: The MIT Press.

358 References

Marascuilo, Leonard A., and Maryellen McSweeney
 1977 Nonparametric and Distribution-free Methods for the Social Sciences.

Monterey, CA: Brooks/Cole.
Matt, Georg E., and Thomas D. Cook
 1994 Threats to the validity of research synthesis. In The Handbook of Re-

search Synthesis, H. Cooper and L.V. Hedges (eds.), 503–520. New
York: Russell Sage Foundation.

Miller, George A.
 1971 Empirical methods in the study of semantics. In Semantics: An Inter-

disciplinary Reader, Danny D. Steinberg and Leon A. Jakobovits
(eds.), 569–585. London, New York: Cambridge University Press.

Murrell, Paul
 2011 R graphics. 2nd ed. Boca Raton, FL: Chapman and Hall/CRC.
Nagata, Hiroshi
 1987 Long-term effect of repetition on judgments of grammaticality. Per-

ceptual and Motor Skills 65 (5): 295–299.
Nagata, Hiroshi
 1989 Effect of repetition on grammaticality judgments under objective and

subjective self-awareness conditions. Journal of Psycholinguistic Re-

search 18 (3): 255–269.
Oakes, Michael P.
 1998 Statistics for Corpus Linguistics. Edinburgh: Edinburgh University

Press.
Pampel, Fred C.
 2000 Logistic Regression: A Primer. Thousand Oaks, CA: Sage.
Peters, Julia
 2001 Given vs. new information influencing constituent ordering in the

VPC. In LACUS Forum XXVII: Speaking and Comprehending, Ruth
Brend, Alan K. Melby, and Arle Lommel (eds.), 133–140. Fullerton,
CA: LACUS.

Rice, Sally
 1996 Prepositional prototypes. In The Construal of Space in Language and

Thought, Martin Pütz and René Dirven (eds.), 35–65, Berlin, New
York: Mouton de Gruyter.

Rietverld, Toni, and Roeland van Hout.
 2005 Statistics in Language Research: Analysis of Variance. Berlin & New

York: Springer.
Rizzo, Maria L.
 2008 Statistical Computing with R. Boca Raton, FL: Chapman and

Hall/CRC.
Sandra, Dominiek, and Sally Rice
 1995 Network analyses of prepositional meaning: Mirroring whose mind –

the linguist’s or the language user’s? Cognitive Linguistics 6 (1): 89–
130.

References 359

Sarkar, Deepayan
 2008 Lattice: Multivariate Data Visualization with R. New York: Springer.

Sheskin, David J.
 2011 Handbook of Parametric and Nonparametric Statistical Procedures.

Boca Raton, FL: Chapman and Hall/CRC.
Shirai, Yasuhiro, and Roger W. Andersen
 1995 The acquisition of tense-aspect morphology: A prototype account.

Language 71 (4): 743–762.
Spector, Phil
 2008 Data Manipulation with R. New York: Springer.
Spencer, Nancy J.
 1973 Differences between linguists and nonlinguists in intuitions of gram-

maticality-acceptability. Journal of Psycholinguistic Research 2 (2):
83–98.

Steinberg, Danny D.
 1993 An Introduction to Psycholinguistics. London: Longman.
Stoll, Sabine, and Stefan Th. Gries
 2009 How to characterize development in corpora: an association strength

approach. Journal of Child Language 36 (5): 1075-1090.
Torgo, Luís
 2011 Data Mining with R: Learning with Case Studies. Boca Raton, FL:

Chapman and Hall/CRC.
Twisk, Jos W.R.
 2006 Applied Multilevel Analysis. Cambridge: Cambridge University Press.
Unwin, Anthony, Martin Theus, and Heike Hofmann
 2006 Graphics of Large Datasets: Visualizing a Million. New York: Spring-

er.
Van Dongen. W. A. Sr.
 1919 He Puts on His Hat & He Puts His Hat on. Neophilologus 4: 322–353.
Wright, Daniel B., and Kamala London
 2009 Modern Regression Techniques Using R. Los Angeles, London: Sage.
Zar, Jerrold H.
 1999 Biostatistical Analysis. 4th ed. Upper Saddle River, NJ: Prentice Hall.
Zuur, Alain F. Elena N. Ieno, and Graham. M. Smith.
 2007 Analysing Ecological Data. Berlin & New York: Springer
Zuur, Alain F., Elena N. Ieno, Neil Walker and Anatoly A. Saveliev
 2009 Mixed Effects Models and Extensions in Ecology with R. Berlin &

New York: Springer

	00_1
	00_2
	00_3
	01
	02
	03
	04
	05
	06
	07

