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Taking a data-driven approach, A Course on Statistics for Finance 
presents statistical methods for financial investment analysis. The author 
introduces regression analysis, time series analysis, and multivariate 
analysis step by step using models and methods from finance.

The book begins with a review of basic statistics, including descriptive 
statistics, kinds of variables, and types of datasets. It then discusses 
regression analysis in general terms and in terms of financial investment 
models, such as the capital asset pricing model and the Fama/French 
model. It also describes mean-variance portfolio analysis and concludes 
with a focus on time series analysis.

Providing the connection between elementary statistics courses and 
quantitative finance courses, this text helps both existing and future 
quants improve their data analysis skills and better understand the 
modeling process.

Features
•	 Incorporates both applied statistics and mathematical statistics
•	 Covers fundamental statistical concepts and tools, including 

averages, measures of variability, histograms, non-numerical 
variables, rates of return, and univariate, multivariate, two-way, and 
seasonal datasets 

•	 Presents a careful development of regression, from simple to more 
complex models

•	 Integrates regression and time series analysis with applications in 
finance 

•	 Requires no prior background in finance 
•	 Includes many exercises within and at the end of each chapter
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Preface

This text has been developed as both a text for university courses and for use
by financial analysts and researchers. As a textbook, it is for a second course
in statistics, specializing in the direction of financial investments analysis.

Readers wanting a review of basic statistics could read any one of a num-
ber of books but one that packs a lot of information into a short space is
David Hand’s very short introduction (2008). Among basic business statistics
books that we have used with success in our department are those by Moore,
McCabe, Craig, Alwan, and Duckworth (2011); McClave, Benson, and Sincich
(2010); or Levine, Stephan, Krehbiel, and Berenson (2011). These books are
listed at the end of this preface. An excellent book that is just above the level
of a first course is that by Box, Hunter, and Hunter (2005, first edition 1978).

Little or no background in finance is assumed, although it is believed that
even those with some such background might profit from reading the book.
Some familiarity with determinants is assumed, such as being able to compute
the determinant of two-by-two and three-by-three matrices. Calculus and vec-
tors are used at points in the book, but slowly and carefully. Further, there
are appendices relating to some of the more advanced topics.

So, is this a book on “applied” statistics or on “mathematical” statistics?
The answer is: both, mixed together. At times there is exposition bordering on
a mathematical proof, and at other times there is discussion of how to dump
data into software.

It is hoped that beginners come away both with improved skills in looking
at data and with a deeper understanding of the process of modeling. I view
this process as perhaps first conceptual, then verbal, and then mathematical.

Main Topics of the Book

The book begins with a review of basic statistics. This includes descriptive
statistics (averages, measures of variability, and histograms) and a discussion
of types of variables (numerical, non-numerical), derived variables (such as ra-
tios and rates of return), and types of datasets (univariate, multivariate, two-
way, seasonal). The book moves relatively soon into regression analysis, which
is discussed in general terms and also in terms of financial investment mod-
els such as the Capital Asset Pricing Model (CAPM) and the Fama/French

xxi
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model. There is an introduction to mean-variance portfolio analysis. Finally,
there are chapters relating to time series analysis.

Software

The book is not geared toward any one statistical software package. There
will be some mention of Microsoft R© Excel

TM

and of statistical computer pack-
ages in general. (My experience has been shaped by varied amounts of use of
MINITAB R©, SAS R©, SPSS R©, R R©, and MATLAB R©).1 Occasionally, sample
output will be shown from MINITAB, slightly edited.

Organization of the Text

Parts of the Book

The parts of the book, consisting of two or three chapters each, are Intro-
ductory Concepts and Definitions, Regression, Portfolio Analysis, and Time
Series Analysis.

Chapter 1 concerns basic statistics but discusses somewhat more advanced
topics because this text is for a second course. Chapter 2 introduces stock
price series and rates of return, both ordinary and continuous. Chapter 3
introduces covariance and correlation, and looks in turn at two stocks, three
stocks, and m stocks. Because many readers will have had an introduction to
regression in an earlier course, Chapter 4, on simple linear regression, pushes
this topic a bit further than in a first course. An example in Chapter 4 is the
CAPM. Chapter 5 is a discussion of multiple regression, an example being the
Fama/French three-factor model, as well as the four-factor model. Chapter
6 discusses bi-criterion portfolio analysis, at the same time introducing some
single criteria such as the Sharpe ratio and VaR (Value at Risk). Chapter
7 introduces a single criterion based on a functional derived from expected

1MicrosoftR© and Excel
TM

are trademarks of Microsoft Corporation in the United States,
other countries, or both. MINITABR© and all other trademarks and logos for the company’s
products and services are the exclusive property of Minitab Inc. See minitab.com for more
information. SASR© and all other SAS Institute Inc. product or service names are regis-
tered trademarks or trademarks of SAS Institute Inc. in the USA and other countries.
R© indicates USA registration. R Development Core Team (2008). SPSSR© is a registered
trademark of IBM Corporation c© 2012. All Rights Reserved. R: A language and environ-
ment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
http://www.R-project.org. MATLABR© is c© 2012 The MathWorks, Inc. MATLAB is a
registered trademark of The MathWorks, Inc.
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exponential utility for investor wealth. Chapter 8 is a brief introduction to
Box/Jenkins ARIMA models. Chapter 9 considers some definitions of Bull
and Bear markets and discusses some ways of segmenting financial time series
into such states.

It is possible to cover all the chapters in a semester (averaging a litle less
than two weeks per chapter). Sections marked with * are more advanced or
not in the mainstream of the development and may be considered optional.
To cover all sections in the book or to move at a more leisurely pace, two
semesters could be used.

There are several appendices: Appendix A on vectors and matrices; Ap-
pendix B on Normal distributions (univariate and multivariate); and Appendix
C on Lagrange multipliers. Although notation is defined when introduced, ab-
breviations and symbols are listed in Appendix D.

Exercises, Mathematical Exercises, Appendices

Exercises appear at the end of some sections and at the end of every chapter.
Additionally, at the ends of chapters there are some mathematical exercises.
At the end of each chapter there is a list of references. There are appendices in
some chapters; these are not side issues and students are advised to read them.

MATLAB R© is a registered trademark of The MathWorks, Inc. For product
information, please contact: The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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“All models are wrong, but some are useful.”

—George Box
(1979, section heading, p. 2)

“Statistics is not a discipline like physics, chemistry or biology
where we study a subject to solve problems in the same subject.
We study statistics with the main aim of solving problems in
other disciplines.”

—C.R. Rao

“He uses statistics as a drunken man uses lamp posts - - for
support rather than for illumination.”

—Andrew Lang
(1844–1912), Scottish poet
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1.1 What Is Statistics?

This chapter is a review of basic statistics. It begins with a discussion of the
nature of data, variables, and statistical analysis. Then, in view of the fact
that this book is mainly for a second course on statistics, the chapter proceeds
with a few nonelementary items.
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1.1.1 Data Are Observations

Data result from the observation of one or more variables. In the context of
statistics, a variable represents a characteristic or property that can be ob-
served or measured. Variables may may be observed on a number of occasions,
or for a number of individuals (or for a number of individuals on a number of
occasions).

1.1.2 Statistics Are Descriptions; Statistics Is Methods

Statistics (plural) are numerical descriptions of data, such as percentages and
averages.

Statistics (singular) is the body of methods used to deal with data, by
computing and interpreting Statistics (plural) and thus transforming data into
information. Information is data summarized and conceptualized. Information
forms a basis for decisions.

1.1.3 Origins of Data

The word data is the plural past participle of the Latin word “to give,” so
“data” are “givens.”

Data are obtained within a particular situation. They may concern individ-
ual people, groups of people, or objects. Financial data include observations
of such variables as prices of stocks and levels of stock indices.

1.1.4 Philosophy of Data and Information

TABLE 1.1
Data to Information to Decision to Action

Statistical Decision
Analysis Analysis Management

DATA ——— > INFORMATION ———> DECISION ——— > ACTION

1.1.4.1 Data versus Information

Most people seem to believe that correct information, gleaned from data, leads
somehow to the truth.



6 A Course on Statistics for Finance

Truth and Information

There is a Russian saying that contrasts truth and information.
The word izvestya means information. The word pravda means
truth. These two words were the names of the major newspapers
in Russia. (Pravda was the official newspaper of the Central
Committee of the Communist Party between 1912 and 1991.
Izvetya was the official newspaper of the Soviet government.

About these newspapers it was said: “In Izvestya, no truth;
in Pravda, no information.” (In “Information,” no truth; in
“Truth,” no information.)

A dataset can hide the real information it contains. This is perhaps par-
ticularly true of large datasets. Underlying patterns must be found to reveal
the essence of what is there. This is one of the tasks of Statistics. Statistical
Analysis transforms Data into Information.

“Uncertainty . . .
Something you can always count on.”

slogan on T-shirt
–American Statistical Association

Variability is inherent in the processes of observation and measurement.
Managers and financial analysts need to use statistical analysis because vari-
ation is everywhere, important patterns may not be obvious, and conclusions
are not certain. Decisions are thus made in an atmosphere of risk.

1.1.4.2 Decisions

Decisions are based on prior experience, expert opinion, and information
gleaned from data. Decisions consider costs and benefits. Decision Analysis
(also called Decision Risk Analysis) transforms Information into Decisions. A
diagrammatic tool that is used in this sort of analysis is the decision tree.
The branches represent different alternative decisions, which are labeled with
their probabilities, costs, and profits or other benefits. Some universities have
courses on decision risk analysis; sometimes the topic is included in courses
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on operations research, operations management, or management science. Some
textbooks on decision risk analysis (Clemen and Reilly 2004, Golub 1997) are
listed in the Bibliography.

The diagram (Table 1.1) shows the progression from Data to Information
to Decisions to Action. The purpose of Statistical Analysis is the transforma-
tion of Data into Information. This transformation is accomplished by means
of Statistical Analysis. Decision Risk Analysis weighs costs against benefits
and forms a basis for making decisions based on information. This book is
concerned mostly with the Statistical Analysis portion of this diagram. As a
beginning, ways of describing and summarizing data will be discussed.

1.2 Characterizing Data

As stated above, in the context of statistics, a variable represents a character-
istic or property that can be observed or measured. Variables will be denoted
by symbols such as X and Y or by more specific symbols such as h for height
or P for price. The values of a variable X for a sample of n individuals will be
denoted by x1, x2, . . . , xn. Usually the discussion centers on a sample rather
than a population. To make a distinction, the values for a population of N
individuals could be denoted by ξ1, ξ2, . . . , ξN . This is in keeping with the
custom of denoting sample quantitites by Latin letters and the corresponding
population quantitites by the corresponding Greek letters.

1.2.1 Types of Data

Perhaps the most common type of dataset is a rectangular array of cases by
variables. Such would be the case for a roster of students, with the major
and year for each. The cases are individual persons or firms. Think of them
as the rows (or records) in a spreadsheet. The variables are properties or
characteristics of the cases. Think of them as the columns (or fields) in a
spreadsheet.

1.2.1.1 Modes and Ways

More generally, data can be characterized in terms of modes, ways, and
levels. (See esp. Carroll and Arabie 1980). An array of cases by variables
is an example of two-mode, two-way data. It is two-way because it is two-
dimensional, with rows and columns. It is two-mode, the modes being cases
and variables.

An example of one-mode, two-way data is a mileage chart, with the names
of cities down the side and across the top, and the entries of the table being
the distances between the cities.
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There is three-way, three-mode data. This can be thought of as a data cube.
A cube has length, width, and height. A data cube can be considered in terms
of such dimensions, with subjects, variables, and occasions of measurement
along the axes.

1.2.1.2 Types of Variables

Variables can be non-numerical or measured on a numerical scale. Stevens
(1966) classified levels of measurement as nominal, ordinal, interval-scale,
or ratio-scale. Non-numerical variables can be nominal or ordinal. Nominal
variables include such things as names or eye color. Ordinal variables can
be recorded as low versus high, or low, medium, or high. Likert scale items
are those where, given a statement, the subject indicates strong agreement,
agreement, neutrality, disagreement, or strong disagreement. This is a five-
point Likert scale, perhaps the most frequently used one. Seven-point and four-
point scales are also common. Ratio-scale variables, such as height, weight,
price, and quantity, have have a meaningful zero. Interval-scale variables, such
as Fahrenheit or Celsius temperature, are numerical but the zero may not have
special meaning: it does not signify the absence of heat. (On the absolute, or
Kelvin, temperature scale, zero means the absence of heat in the sense of the
absence of molecular motion.) Likert scales are often treated as interval scales,
although they really are not. This may or may not make a big difference.

Some numerical variables exhibit a bell-shaped Normal distribution. (That
is, the distribution is shaped like the cross-section of a bell, high in the middle
with the frequency falling off in either direction.)

1.2.1.3 Cross-Sectional Data versus Time Series Data

A single time series consists of a single variable recorded over time. This is
one-way, one-mode data, indexed by time t.

For stock prices Pt people consider daily, weekly, monthly, or annual
prices, that is, time t could be in days, weeks, month, quarters, or years.
The data could also be recorded for each transaction (“tick by tick”).

Multiple time series consist of several single time series. Consider the prices
Pit of stocks i = 1, 2, . . . ,m, at times t = 1, 2, . . . , n. For each fixed stock i,
the prices Pit, t = 1, 2, . . . , n, constitute a time series. Alternatively, the series
may be considered in terms of vectors pt, t = 1, 2, . . . , n, where pt is the vector
(P1t P2t, . . . , Pmt)

′. For a fixed time t, the set of prices Pit, i = 1, 2, . . . ,m, is
cross-sectional data.

1.2.2 Raw Data versus Derived Data

Sometimes two or more variables are processed into a single new variable
before analysis. For example, physical work is the result of a multiplication,
the product of a distance and a weight. Units of work are newton-meters
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(joules). Physical force is the result of a multiplication, the product of mass
and acceleration. Ratios are of course the result of division.

1.2.2.1 Ratios

A ratio is the result of dividing one number, a numerator (or dividend), by
another, a denominator (or divisor). The resulting quotient is a ratio. Thus,
ratios are derived data, but they may be analyzed on their own. Examplesof
ratios are fuel efficiency, fuel consumption, body-mass index, and financial
rates of return.

Given runs of a car, i = 1, 2, . . . , n, and the distance traveled (in kilome-
ters), di, and liters of gasoline gi used in the ith run, the kilometers per liter
for the ith run is the ratio di/gi. If di is in miles and gi is in gallons, the ratio
is in miles per gallon (MPG).

The fuel efficiency ratio is derived data, but it may be analyzed as a depen-
dent variable, as a function of various conditions, such as the type of road and
the type of fuel used. The measure kilometers per liter is usually abbreviated
as km/L. The reciprocal ratio, fuel consumption, would be expressed in liters
per 100 kilometers (L/100 km) or gallons per mile.

1.2.2.2 Indices

An index is another example of derived data. Given i = 1, 2, . . . , n persons,
and their heights hi and weights wi, the body-mass index (BMI) is wi/h

2
i ,

where the height is in meters and the weight in kilograms. The BMIs are then
data derived from the heights and weights. As an example, if a man weighs 80
kg and is 1.76 m tall, his BMI is 80/1.762 = 25.8. (To convert to English units,
write kg/m2 = (lbs./2.2046)/(2.54in./100)2 = 703.1 lb/in2.) BMI, being
computed from height and weight, is a derived variable, but may be analyzed
as if it were raw data, perhaps as a function of various health and nutrition
factors. (BMI was invented by Adolphe Quetelet—a Belgian polymath, in his
case, astronomer, mathematician, statistician and sociologist—between the
years 1830 and 1850.)

An economic index is the consumer price index (CPI). It is the cost at
any fixed point in time of a standard market basket of goods. Stock market
indices are weighted averages of prices of specified sets of stocks, where the
weights may be, for example, the capitalizations of the companies.

Specific financial variables that are derived variables, such as rates of re-
turn, will be introduced in the next chapter and revisited in later chapters on
portfolio analysis.
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1.3 Measures of Central Tendency

This section is concerned with measuring the location or center of sets of data.
Measures of central tendency include the mode, median, and mean. Many of
the concepts apply both to populations and samples, but usually here the
notation and discussion will be in terms of samples.

1.3.1 Mode

The mode is one measure of the location of a set of observations. The mode
is the most frequently occurring value. To take a non-numerical example, if
the variable is first name, and its values in a sample are Jim, Jeff, Stan, Mike,
Judy, Jim, Norm, Dave, Bill, Mark, Gary, Jeff, Jim, Betty, Jerry, Randy, and
Rudy, then there are two Jeffs, three Jims, and one each of Stan, Mike, Judy,
Norm, Dave, Bill, Mark, Gary, Jerry, Randy, Betty, and Rudy, so the name
Jim is the mode, because the name Jim occurs more often than any other
single name. However, this mode is not particularly outstanding, as Jeff is a
close second, with two, and the distribution is flat anyway, with 14 names
for 17 people. The variable here is non-numerical. For a numerical variable,
the mode can be more meaningful when the frequencies of values near it are
also relatively high. Also, modes have more meaning with the distributions
of two or more groups. Consider, for example, adult male and female heights
to the nearest centimeter. The mode for males might be 178 cm. while that
for females might be 165 cm., 13 cm. lower. The modes are descriptive in this
case because presumably nearby values would also be frequent.

1.3.2 Measuring the Center of a Set of Numbers

An indication of the location or center of a set of numbers is often called the
average. The word “average” comes from a root referring to loss or damage
in maritime shipping (Oxford English Dictionary). The word came to refer to
measuring such loss in financial terms. The parties involved would agree to
be equally (or proportionally) responsible for such loss. The word “average”
came to refer to each party’s share.

Suppose that a number a is considered as a candidate for the “average”
of a set of numbers. Then the chosen value a should be in the center of the
set, in some sense.

1.3.2.1 Median

The median is one measure of the center of a set of numbers. Suppose the
heights of a set of 7 men are 170, 181, 176, 175, 177, 182, 165 cm. Put in
order, these are 165, 170, 175, 176, 177, 181, 182. This ordered list is the
order statistic of the sample. The median is the height of the man in the
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center. That is the fourth ranking height, and it is 176 cm. The mean is 176
cm. The median is the middle number. Let n denote the number of individuals
in the sample. That is, if n is odd, the median is located (n+1)/2 observations
from the beginning of the ordered list.

There are various definitions of the median. Generally, if n is odd, say
n = 2m + 1, then the m-th ranking value is the median. If n is even, say
n = 2m, then the median can be taken as the number half-way between the
m-th and the (m + 1)-st. However, it is usually preferable to group the data
into consecutive categories (“bins”) and estimate a median by interpolation
on the bin frequencies to reach a cumulative relative frequency of one-half.

1.3.2.2 Quartiles

The quartiles divide a set of numbers into quarters. They are the first (lower)
quartile, the second quartile (the median), and the third (upper) quartile.
The order statistic of a sample x1, x2, . . . , xn means the sample sorted in
ascending order. It is often denoted by x(1), x(2), . . . , x(n).

If n = 4m + 1, the lower quartile Q1 is x(m) and the upper quartile Q3

is x(3m). However, as remarked in the case of the median, it is often better
to group the data into bins and estimate the quartiles by interpolation on
the bin frequencies to reach cumulative relative frequencies of one-fourth and
three-fourths.

As far as terminology is concerned, it is perhaps better to say “lower”
and “upper” quartile than first and third quartile, because the use of the
words “first” and “third” assumes that you know you are working from low
to high. The lower and upper quartiles can be defined as the medians of the
lower and upper halves of the sample. A five-number summary is useful for
indicating location: the minimum, lower quartile, median, upper quartile, and
maximum. Box plots show the quartiles and the min and max. The median
is also added to the plot.

1.3.2.3 Percentiles

The 100p-th percentile of the distribution of a random variable x is the value
xp which is exceeded with probability 1 − p. Percentiles and quartiles are of
course defined both for distributions and for datasets. The lower quartile is
x.25; the upper quartile, x.75. The second quartile x.5 is the median.

For a standard Normal variable Z, the 95-th percentile is z.95 = 1.645 and
the fifth percentile is z.05 = −1.645. Percentiles of Z can be obtained from
tables, in spreadsheet software, or in statistical software.

A general term which includes both quartile and percentile is quantile.

1.3.2.4 Section Exercises

1.1 Given n = 8 observations 170, 190, 173, 174, 176, 177, 175, 179, find the
median.
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1.2 Given n = 8 observations 170, 190, 173, 174, 176, 176, 175, 179, find the
median. Hint: Same answer as preceding exercise.

1.3 The numbers of children in n = 10 families are 3, 0, 0, 1, 1, 4, 2, 5, 2, 2.
Find the median.

1.4 (continuation) Make a table of two columns, the values 0, 1, 2, 3, 4, 5,
of the numbers of children, and their frequencies.

1.5 (continuation) Make a histogram, that is, a bar graph with the values
along the horizontal axis and the frequencies along the vertical axis.

1.6 (continuation) Estimate the probability of a family’s having two children.
This probability is the proportion of the population of families having exactly
two children.

1.3.2.5 Mean

Next, another way of defining a number, say a, as an “average” of a set of
numbers will be derived. Such a number a to be in the center of the set, in
some sense. The deviations from a are x1 − a, x2 − a, . . . , xn − a. When
xi > a, the deviation xi − a > 0. When xi < a, the deviation xi − a < 0. The
sum of deviations is (x1 − a) + (x2 − a) + · · · + (xn − a). When a is in the
center of the dataset, this sum should be zero.

Given values
x1, x2, . . . , xn,

the sum is denoted using summation notation by

n∑
i=1

xi = x1 + x2 + · · ·+ xn.

The sum of deviations from a is denoted by
∑n
i=1 (xi − a). What kind of

average is in the center of the set of values in the sense that
∑n
i=1 (xi−a) = 0?

To answer this question, note that
∑n
i=1 (xi − a) =

∑n
i=1 xi −

∑n
i=1 a =∑n

i=1 xi − na = 0, Solving this for a gives a =
∑n
i=1 xi/n, often denoted by

x̄. This is called the mean or ordinary arithmetic average; it is the sum over
(divided by) the number.

Deviations from the mean. The deviations from the mean are

x1 − x̄, x2 − x̄, . . . , xn − x̄.

The sum of the deviations about the mean is zero; this is a sense in which
the mean is at the center of the sample. To see this, write

n∑
i=1

(xi − x̄) =

n∑
i=1

xi −
n∑
i=1

x̄ =

n∑
i=1

xi − nx̄ = nx̄− nx̄ = 0.
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The number of degrees of freedom is the number of independent quantities.
There are n deviations from the mean, but only n−1 independent quantitites
among them, hence these n quantities have n − 1 degrees of freedom. If you
tell me the value of the sum of n−1 of the deviations, I can tell you the value
of the n-th, because the sum of all n deviations is zero. For example, if you
tell me that the first n− 1 deviations sum to −3, then I know that the n-th
deviation is +3. As discussed in an earlier section, the mean is at the center
of the sample, in that the size of the sum of the negative deviations equals
the sum of the positive deviations. For example, given heights 170, 171, 173,
175, 177, 177, 178, 180, 183 cm, the mean is 176 cm, and the deviations from
the mean are−6,−5,−3,−1, 1, 1, 2, 4, and 7 cm. The size of the sum of the
negative deviations is 6 + 5 + 3 + 1 = 15, and so is the sum of the positive
deviations, 1 + 1 + 2 + 4 + 7 = 15.

A note on pronunciation. Above, the phrase “arithmetic average” was used. Note
that the four-syllable word arithmetic as an adjective is pronounced a-rith-me-tic, with the
accent on the third syllable. As a noun, it is pronounced a-rith-me-tic, with the accent on
the second syllable.

1.3.2.6 Other Properties of the Ordinary Arithmetic Average

What kind of average, a, represents all the number in the set in the sense that
it will give the total when multiplied by the number n of cases? To answer
this, solve na =

∑n
i=1 xi. This gives a =

∑n
i=1 xi/n = x̄. As an

example, if the mean weight of 200 airline passengers is 80 kg, then the total
weight is 200× 80kg. = 16, 000 kg.

There is another way in which the mean x̄ represents the center of the
whole set. Suppose that the set of observations (x1 x2 . . . xn) is to be re-
placed by (a a . . . a). What choice of a gets closest to (x1 x2 . . . xn), in
the sense of minimizing the distance between the two points (a a . . . a) and
(x1 x2 . . . xn)? Now, in general, the geometric distance between two points
(x1 x2 . . . xn) and (y1 y2 . . . yn) is√√√√ n∑

i=1

(xi − yi)2.

Take (y1 y2 . . . yn) to be (a a . . . a). Then it is seen that the distance between
(x1 x2 . . . xn) and (a a . . . a) is√√√√ n∑

i=1

(xi − a)2.
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We have

min
a

√√√√ n∑
i=1

(xi − a)2 =

√√√√min
a

n∑
i=1

(xi − a)2

=

√√√√min
a

[

n∑
i=1

(xi − x̄)2 + n(x̄− a)2]

=

√√√√ n∑
i=1

(xi − x̄)2.

Here we have used the fact that
∑n
i=1 (xi−a)2 =

∑n
i=1 (xi− x̄)2 +n(x̄−a)2.

To see this, note that

n∑
i=1

(xi − a)2 =
∑

[(xi − x̄) + (x̄− a)]2

=
∑

(xi − x̄)2 + 2
∑

(xi − x̄)(x̄− a) + n(x̄− a)2

=
∑

(xi − x̄)2 + n(x̄− a)2,

because
∑

(xi − x̄)(x̄− a) = (x̄− a)
∑

(xi − x̄) = 0.
The fact that x̄ is the value of a which minimizes

∑n
i=1 (xi− a)2 follows,

because
n∑
i=1

(xi − x̄)2 + n (x̄− a)2 ≥
n∑
i=1

(xi − x̄)2,

this minimum being achieved when a = x̄. The fact that x̄ is the minimizing
value of a can be derived in a couple of other ways that may be useful later.
One of these ways is to expand the square, which means expressing a quadratic
as a square of a binomial term, plus other terms. This gives

n∑
i=1

(xi − a)2 =

n∑
i=1

(x2i − 2axi + a2)

=

n∑
i=1

x2i − 2 a

n∑
i=1

xi + na2

= Ax2 +Bx+ C,

with x = a, A = n, B = −2
∑n
i=1 xi, C =

∑n
i=1 x

2
i . Now, a quadratic

Ax2 + Bx + C obtains its minimum if A > 0 or maximum if A < 0 at
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x = −B / 2A; this gives a = −(−2
∑n
i=1 xi)/2n =

∑n
i=1 xi/n = x̄.

Another way of showing that x̄ is the minimizing value of a is to define

f(a) =

n∑
i=1

(xi − a)2,

differentiate with respect to a , set the derivative equal to zero, and solve for
the number a. This gives

f ′(a) =
d

da

n∑
i=1

(xi − a)2

=

n∑
i=1

d

da
(xi − a)2

=

n∑
i=1

(−2)(xi − a)

= (−2)

n∑
i=1

xi + 2na = 0,

giving
∑n
i=1 xi − na = 0, or a =

∑n
i=1 xi/n.

To summarize: Several properties of the sample mean x̄ have been dis-
cussed:

• x̄ is in the center of the set of numbers, in the sense that it is the choice
of average a such that

∑n
i=1 (xi − a) = 0.

• x̄ is the choice of average a such that multiplying it by n gives the total:
na =

∑n
i=1 xi.

• x̄ is the choice of average a that comes closest to the set of numbers in the
sense that it minimizes

∑n
i=1 (xi − a)2.

1.3.2.7 Mean of a Distribution

The mean (expected value, mathematical expectation) of a random variable
x is denoted by E [x] or µx. If the r.v. X is discrete with values vj , j =
1, 2, . . . ,m, and probability mass function

pX(vj) = Pr{X = vj}, j = 1, 2, . . . ,m,

then

µx =

m∑
j=1

vj pX(vj),
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the probability-weighted average of the possible values of X. If X is contin-
uous with probability density function fX(v), then

µx =

∫
v fX(v) dv.

1.3.3 Other Kinds of Averages

There are many kinds of averages.

Example 1.1 Baseball averages

In baseball there are defensive averages like the Earned Run Average (ERA),
the number of earned runs a pitcher has allowed, per game equivalent, where
the game equivalent is the number of innings pitched, divided by 9.

There are offensive averages like the Batting Average (BA), the number of
hits over the number of at bats, and the Slugging Average (abbreviated as SA
or SLG). The SA is the total bases per at bat, that is, the mean number of
bases per at bat (AB). If in a season a player had 500 ABs, with 80 singles, 50
doubles, 10 triples, and 40 homeruns, then his total bases is 1(80) + 2(50) +
3(10) + 4(40) = 80 + 100 + 30 + 160 = 370 bases. His SA is (total bases)/AB
= 370/500 = 0.740.

As of this writing, the record one-season SA is 0.863 by Barry Bonds in
2001, and the record career SA is 0.690 by Babe Ruth (Baseball Almanac).

1.3.3.1 Root Mean Square

Given positive numbers, say a1, a2, . . . , an, their root mean square is the
square root of the mean of their squares,

RMS =
√∑

a2i /n.

The root mean square of the distances from the mean is a measure of vari-
ability. (See the section on measuring variability; Section 1.4.)

1.3.3.2 Other Averages

The root mean square is one of a type of average in which the observations are
transformed, the results are averaged, and then the inverse transformation is
applied. Given a one-to-one function h()̇, such an average is

Average = h−1[

n∑
i=1

h(xi)/n].
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Here the notation h−1(y) denotes the inverse of the function y = h(x). An
example is h(x) = 1/x (x 6= 0). Then the average is 1/

∑n
i=1 (1/xi)/n. This is

known as the harmonic mean. For positive data, the function h(x) = lnx can
be used. This gives

Average = exp[

n∑
i=1

ln(xi)/n].

This is equal to the n-th root of the product:

exp[

n∑
i=1

ln(xi)/n] = exp[ ln(

n∏
i=1

xi)/n) ]

= exp{ ln[ (

n∏
i=1

xi)
1/n ] }

= [

n∏
i=1

xi]
1//n.

This kind of average is known as the geometric mean. Here the natural log
has been used; common logs or logs with respect to other bases could be used.

1.3.4 Section Exercises

1.7 Five-number summary. Suppose the heights of 9 men are 170, 166,
181, 176, 175, 177, 182, 179, 165 cm.

a. Put these values in order.

b. Find the minimum.

c. Find the maximum.

d. Compute the range.

e. What is the five-number summary?

1.8 Five-number summary. Suppose the heights of 17 men are 172, 170,
173, 166, 181, 176, 175, 177, 178, 184, 182, 167, 180, 183, 179, 165, 174 cm.

a. Put these values in order.

b. Find the minimum.

c. Find the maximum.

d. Compute the range.

e. What is the five-number summary?
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1.9 Using a working mean. (continuation) Compute the mean of these
values, as follows.

a. Put these values in order.

b. Subtract 160 from each height.

c. Compute the mean of these differences from 160.

d. Add 160 to this result to obtain the mean of the original values. The
preliminary number (here 160) is sometimes called a “working mean,”
although in this caseit is less than all the values. The point is to subtract
a number to obtain smaller numbers to average and then add the number
back in.

1.10 Baseball slugging average. Show that the slugging average can be
written as

SA = ( hits + 1 D + 2 T + 3 H ) /AB,

where D = no. of doubles, T = no. of triples, and H = no. of homeruns.

1.11 A time series. The daily average temperature (average temperature
within a day) is the low plus the high, divided by 2. For Chicago for Novem-
ber 1 to 9, 2008, these were 54.4, 53.8, 48.3, 47.2, 41.3, 48.8, 54.7, 55.2, 52.6
degrees Fahrenheit. The mean of these is 50.7. The deviations from the mean
are +3.7,+3.1,−2.4,−3.5,−9.4,−1.9,+4.0,+4.5,+1.9. Plot the series of de-
viations against 1, 2, . . . , 9.

1.12 (continuation) There are two positive deviations, followed by four neg-
ative deviations, and then three positive deviations. Does this seem to be a
random pattern of signs, or is it more suggestive of a correlated time series?
Would you expect to toss two heads, then four tails, then three heads, or
would you expect the heads and tails to be more mixed?

1.4 Measures of Variability

This section, on variability, is concerned with measuring the spread of sets
of numbers and distributions. Measures of variability, including the range,
interquartile range, IQR; mean absolute deviation, MAD; variance, and
standard deviation, are discussed.

1.4.1 Measuring Spread

There are positional and distance-based measures of spread.
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1.4.1.1 Positional Measures of Spread

Positional measures of spread are based on the space between positional sum-
mary statistics; they include the range and the inter-quartile range.

1.4.1.2 Range

The range is the distance between the minimum and maximum; it is the
difference, maximum minus minimum. Box plots show both center and spread
by showing the quartiles and the min and max.

1.4.1.3 IQR

The inter-quartile range (IQR) is the difference between the lower and upper
quartiles. Half the distribution, in the middle of it, is within this range. In the
standard Normal distribution, twenty-five percent of the distribution is less
than 0.6745 standard deviations below the mean, that is, the lower quartile is
at z = −0.6745. The upper quartile is at +0.6745. The IQR is 2(0.6745) =
1.349 standard deviations wide.

1.4.2 Distance-Based Measures of Spread

Distance-based measures of spread are based on an average distance of the
cases to their center.

1.4.2.1 Deviations from the Mean

The deviations from the mean are x1 − x̄, x2 − x̄, . . . , xn − x̄. Their sum
is zero. The sum of the negative deviations equals the sum of the positive
deviations. This is a way in which the mean is in the center of the data.

1.4.2.2 Mean Absolute Deviation

The mean absolute deviation (MAD) is the ordinary arithmetic average of the
distances to the mean. The absolute values of the deviations are the distances
to the mean,

|x1 − x̄|, |x2 − x̄|, . . . , |xn − x̄|.

The MAD is
|x1 − x̄| + |x2 − x̄| + . . . + |xn − x̄|

n
.

That is,

MAD =

n∑
i=1

|xi − x̄|/n.

If di denotes xi − x̄, then the MAD is simply the ordinary arithmetic average
of |d1|, |d2|, . . . , |dn|.
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1.4.2.3 Root Mean Square Deviation

The root mean square deviation is another kind of average distance to the
mean. It is the square root of the ordinary arithmetic average of the squared
distances to the mean. It is computed by finding the sum of squared deviations
from the mean (SSD), dividing it by n, and taking the square root of the result.

1.4.2.4 Standard Deviation

The standard deviation of a sample is computed by finding the sum of squared
deviations from the mean (SSD), dividing it by n− 1 (this result is called the
variance) and taking the square root of the result. So the standard deviation
is

s =
√

variance =
√

SSD / (n− 1) =
√

SSD/
√
n− 1.

As discussed above, the ordinary Euclidean distance (ruler distance) between
two points (p1 p2 . . . pn) and (q1 q2 . . . qn) is√

(p1 − q1)2 + (p2 − q2)2 + · · ·+ (pn − qn)2.

So the numerator of s, namely
√

SSD, is the ordinary (ruler) distance be-
tween the points (x1, x2, . . . , xn) and (x̄, x̄, . . . , x̄). So measures of variabil-
ity involving

√
SSD are in this way the natural measures of variability. Note

again that

s =

√
SSD

(n− 1)
.

A reason for using a divisor of n − 1 rather than n is that the n deviations
d1, d2, . . . , dn are not mathematically independent; rather, their sum is 0.
That is, if n − 1 of their values are known, the n-th is determined. It is said
that these n quantities satisfy one constraint, namely, that their sum be zero,
and hence that they have n− 1 degrees of freedom.

So, what is the “standard” deviation? Judging from the phrase, it should
be some kind of average size of deviation, and it is. More precisely, the sample
standard deviation s is related to the distance between the data vector and
the vector whose every element is the mean. It is this distance, say D, divided
by the square root of n− 1, that is,

s = D/
√
n− 1,

where

D =

√√√√ n∑
i=1

(xi − x̄)2.

That is,
s =

√
v,
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where the sample variance

v =

n∑
i=1

(xi − x̄)2/(n− 1).

Because of the importance of the standard deviation s, the statistic v is often
written as s2.

Computational formulas. The sum of squared deviations SSD =∑n
i=1 (xi − x̄)2 can be computed in several different ways:

SSD =

n∑
i=1

x2i − nx̄2 =
n∑
i=1

x2i − (

n∑
i=1

xi)
2/n.

1.4.2.5 Variance of a Distribution

The variance of a random variable X is denoted by V[x] or σ2
x. If X is discrete,

then

σ2
x =

m∑
j=1

(vj − µx)2px(vj).

If X is continuous, then

σ2
x =

∫
(v − µx)2 fX(v) dv.

The standard deviation of X is the square root of its variance. It is a particular
kind of average distance to the mean, namely, the square root of the average
squared distance to the mean.

In a Normal distribution, about two-thirds of the cases (actually about
68%) are within one standard deviation of the mean, about 95% are within two
standard deviations of the mean, and about 99.7% are within three standard
deviations of the mean. This is called the “68, 95, 99.7 percent” rule for
Normal distributions. Of course, in a sample of 20 you would not expect to
get any observations more than three standard deviations from the mean, but
in a sample of 1,000 you would expect to get several. If adult male height is
Normally distributed with a mean of 173 cm and a standard deviation of 7
cm, then about 68% of the heights are between 173− 7 = 166 and 173 + 7 =
180 cm, about 95% are between 173− 14 = 159 and 173 + 14 = 187 cm, and
about 99.7% are between 173− 21 = 152 and 173 + 21 = 194 cm.

Unbiasedness of s2. If x1, x2, . . . , xn are a random sample from a dis-
tribution, then the statistic s2 computed with a divisor of n−1 is an unbiased
estimate of the true variance σ2 of the distribution. This means that s2 is
correct on the average, in the sense that if s2 were computed for all possible
samples, and the mean of all these values were computed, that mean would be
equal to the true value σ2. This is true regardless of the parent distribution
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(distribution sampled from), provided that its variance exists. The reason for
dividing by n− 1 instead of n is related to the fact that n− 1 is the number
of degrees of freedom of the deviations from the mean. In fact, it would make
some sense to use a divisor of n− 1 rather than n also in defining the MAD,
but in this case the appropriate divisor depends upon the particular parent
distribution.

Example 1.2 Central tendency and variability for daily RORs

Here are four weeks (twenty trading days) of rates of return (RORs) (%) of a
stock (Allstate Insurance Co. common stock in the four weeks starting with
Monday, 7-Oct-2002.)

−1.8,+1.4,−3.4,+4.8,+3.3,
−0.1,+2.9,+1.1,+6.1,+1.4,
+2.1,−0.7,+0.8,−2.7,+0.6,
−0.6,−1.8,+1.2,−0.5,−1.1.

The mean of the RORs is

(−1.08) + 1.4 + (−3.4) + · · ·+ (−1.1)

20
= +0.65%.

The order statistic of the RORs is
−3.4,−2.7,−1.8,−1.8,−1.1,−0.7,−0.6,−0.5,−0.1,+0.6,
+0.8,+1.1,+1.2,+1.4,+1.4,+2.1,+2.9,+3.3,+4.8,+6.1.

Choose convenient intervals (“bins”) into which to place the numbers, say

(−4,−2), (−2, 0), (0,+2), (+2,+4), (+4,+6), (+6,+8).

The frequencies in these intervals are 2, 7, 6, 3, 1, 1. The cumulative frequen-
cies are 2, 9, 15, 18, 19, 20. The cumulative relative frequencies are .10, .45,
.75, .90, .95, 1.00. The upper quartile corresponds to a cumulative relative fre-
quency of .75, so it is +2%. The lower quartile corresponds to a cumulative rel-
ative frequency of .25, so it is in the second interval, (−2, 0). It is approximated
by interpolation as follows. The value −2 corresponds to a cumulative relative
frequency of .10; the value 0, to a cumulative relative frequency of .45. Hence,
Q1 ≈ −2+[(.25− .10)/(.45− .10)](2) = −2+(15/35)(2) = −2+ .85 = −1.15%.
Similarly, the median lies in the third interval, (0, +2), and

Q2 ≈ 0 + [(.50− .45)/(.75− .45)](2) = (.05/.30)(2) ≈ +0.08%.

The minimum is −3.4%; the maximum, +6.1 %. The five-number summary,
consisting of the minimum, lower quartile, median, upper quartile, and max-
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imum, is

minimujm = −3.4

lower quartile = −1.15

median = +0.08

upper quartile = +2.0

maximum = = +6.1

The IQR is +2.0− (−1.15) = 3.15 %. The mean is about +0.65%. The devi-
ations from the mean are

−4.05,−3.35, . . . , 5.45.

The distances from the mean are

4.05, 3.35, . . . , 5.45.

The standard deviation is the RMS of the distances, with a divisor of n−1 and
comes out to about 2.42%. Similar steps are used to find the lower quartile
Q1 and the second quartile Q2, which is the median.

In finding the quartiles, linear interpolation was used. Given (x1, y1) and
(x3, y3), the problem is to approximate the value y2 corresponding to a given
value x2 between x1 and x3. It proceeds as follows:

y2 − y1
y3 − y1

≈ x2 − x1
x3 − x1

Then

y2 ≈ y1 + (y3 − y1)
x2 − x1
x3 − x1

.

Linear interpolation is exact if the relationship between y and x is linear.
For, then, there exist constants a, b such that for any x, the corresponding y
is given by y = a+ bx. In particular, this is true for (x1, y1), (x2, y2), (x3, y3).
That is,

y2 − y1
y3 − y1

=
x2 − x1
x3 − x1

,

so

y2 = y1 + (y3 − y1)
x2 − x1
x3 − x1

,

exactly.
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1.5 Higher Moments

The k-th moment is E [xk]. The k-th central moment is E [(x − µx)k]. The
variance is the second central moment.

Normalized versions of the third and fourth central moments are often
considered as measures of skewness kurtosis (peakedness) of a distribution.
For symmetric distributions, the positive and negative deviations cancel out
one another, so odd moments are zero. A negative skew indicates that the left
tail of the distribution is longer than the right side and many of the values
(possibly including the median) lie to the right of the mean. A positive skew
indicates that the right tail is longer than the left side and many of the values
lie to the left of the mean. For a distribution of a r.v. X, the skewness is
E [ [(X − µ)/σ]3 ] = µ3 / σ

3. The fourth standardized moment is µ4 /σ
4. For

a Normal distribution, this is 3σ4/σ4 = 3. So kurtosis is commonly defined
as µ4 /σ

4 − 3.

1.6 Summarizing Distributions*

(Sections marked with * are more advanced or not in the mainstream of the
development and may be considered as optional.)

This section considers the topics of partitioning distributions and the so-called
moment-preservation method. It discusses numerical summarization of distri-
butions and datasets by discrete-distribution approximation and by partition-
ing.

1.6.1 Partitioning Distributions*

Cox (1957) gave recommendations for summarizing a distribution by a
few intervals. For example, for the standard Normal for three groups
the probabilities should be .27, .46, .27 to minimize the within-groups
sum of squares. This is called the twenty-seven percent rule. The two
boundaries are approximately −0.61 and +0.61; that is, the intervals are
(−∞,−0.61), (−0.61,+0.61), (+0.61,∞). The corresponding group means are
approximately −1.22, 0, and approximately +1.22. See Johari and Sclove
(1976) for further discussion.

Partitioning a sample according to the minimum within-groups sum of
squares leads to the K-means algorithm (MacQueen 1967) and ISODATA
(Ball and Hall 1965, 1967). These algorithms are particularly interesting for
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multivariate data. The integer K denotes the number of clusters to be tried.
One can try a range of values of K, one at a time.

ISODATA starts with initial guesses of K centers, assigns each observa-
tion to the nearest center, updates each center as the mean vector of the
cases assigned to it, and so forth, continuing until convergence. K-means per-
forms an update after each case is assigned. These algorithms converge to a
minimum-distance partition of the set of observations.

1.6.2 Moment-Preservation Method*

Another way to summarize a distribution, be it a data distribution or a the-
oretical one, is to make a discrete approximation to it with K mass points
c1, c2, . . . , cK and their probabilities p1, p2, . . . , pK , by matching moments.
The moments of the sample are m′r =

∑n
i=1 x

r
i /n, r = 1, 2, . . . . The first

moment of a sample is m′1 = m = x̄. The method of summarizing based
on matching moments is called the moment-preservation method. See Harris
(2002). The method can be applied to moments m′r of a sample or moments
µ′r of a probability distribution.

The unknowns whose values are to be found are K mass points and K
probabilities; among these there are only 2K − 1 free unknowns because the
probabilities sum to 1. For example, with K = 2, the equations are p1c1 +
p2c2 = m′1, p1c

2
1 + p2c

2
2 = m′2, p1c

3
1 + p2c

3
2 = m′3, p1 + p2 = 1. The central

moments of the sample are

mr =

n∑
i=1

(xi − x̄)r/n, r = 1, 2, . . . ;

mr is called the r-th central moment of the sample. (These are often modified
to give unbiased estimates, as in the case r = 2 when a divisor n − 1 is
used instead of n.) The equations can be re-expressed in terms of the central
moments. For example, the second and third central moments in terms of the
raw moments are m2 = m′2 −m2 and m3 = m′3 − 3m′2m+ 2m3, respectively.

The moments of a two-valued variable Y taking values c1, c2 with prob-
abilities p1, p2 can be found from those of a binary (0,1) variable, that
is, a variable which takes the value 0 with probability p1 and the value 1
with probability p2. Such a variable is called a Bernoulli variable; denote
it by B. Its mathematical expectation is E [B] = 0 · p1 + 1 · p2 = p2;
in fact, E [Bk] = 0k · p1 + 1k · p2 = 0 · p1 + 1 · p2 = p2. The variance
is V[B] = (0 − p2)2p1 + (1 − p2)2p2 = p1p

2
2 + p21p2 = p1p2(p2 + p1) =

p1p2(1) = p1p2. Now, Y = c1 when B = 0 and Y = c2 when B = 1,
so Y = c1 + (c2 − c1)B. The mean of Y is E [Y ] = E [c1 + (c2 − c1)B] =
c1 + (c2 − c1)E [B] = c1 + (c2 − c1)p2 = p1c1 + p2c2. The variance of Y is
V[Y ] = V[c1+(c2−c1)B] = V[(c2−c1)B] = (c2−c1)2V[B] = (c1−c2)2 p1p2.
The third central moment of B is m′3 − 3m′2m

′
1 + 2m

′3
1 = p2 − 3p22 + 2p32 =

p2(1−3p2 +2p22) = p2(1−p2)(1−2p2) = p2p1(p1 +p2−2p2) = p1p2(p1−p2).
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The third central moment of Y = c1 + (c2 − c1)B is (c2 − c1)3 times that of
B, or (c2 − c1)3p1p2(p1 − p2).

Setting up the problem in terms of matching second and third central
moments gives

p1c1 + p2c2 = m

p1p2(c1 − c2)2 = m2

p1p2(p1 − p2)(c2 − c1)3 = m3

p1 + p2 = 1.

The skewness is the normalized third moment, m3/m
3/2
2 . It is invariant under

linear transformation, so the skewness of Y equals the skewness of B . Thus
the skewness parameter is p1p2(p1−p2)/(p1p2)3/2 = (p1−p2)/(p1p2)1/2. This
theoretical skewness γ = (p1 − p2)/(p1p2)1/2 is matched with the sample

skewness g = m3/m
3/2
2 . That is, the equation (p1 − p2)/(p1p2)1/2 = g =

m3/m
3/2
2 replaces the equation in m3. Note that p1 − p2 and p1p2 can be

expressed in terms of one another, so that one can be eliminated from this
expression. To see this, use the identity xy = (1/4)[(x + y)2 − (x − y)2]
with x = p1, y = p2. This gives p1p2 = (1/4)[(p1 + p2)2 − (p1 − p2)2] =
(1/4)[1− ([p1 − p2)2] and 4p1p2 = 1− (p1 − p2)2, or (p1 − p2)2 = 1− 4p1p2.
This gives g2 = (p1− p2)2/(p1p2) = (1− 4p1p2)/(p1p2) = 1/(p1p2)− 4. Hence
1/(4 + g2) = p1p2 = p1 − p21, giving the quadratic p21 − p1 + 1/(4 + g2) = 0.
This is of the form x2 − x + c = 0 with x = p1, c = 1/(4 + g2). The roots
are x = 1/2 ±

√
1/4− c, that is, p1 = 1/2 ±

√
1/4− 1/(4 + g2) = 1/2 ±√

(1/4)[1− 4/(4 + g2)] = 1/2±1/2
√

1− 4/(4 + g2) = 1/2[1±g
√

1
g2+4 ]. (See

also Tabatabai and Mitchell 1984). Next, p1 and p2 can be replaced in the
equations with their expressions in terms of g. The solution (Tabatabai and
Mitchell 1984) is

c1 = m− s
√
p2/p1, c2 = m+ s

√
p1/p2,

where s is the standard deviation, s =
√
m2 =

√
m
′
2 −m

′2
1 , p2 = [1 +

g
√

1
g2+4 ]/2, p1 = 1 − p2. Lin and and Tsai (1994) give a generalization to

two variables and an example for three variables.
A result for K = 3. For K = 3 mass points, there are five free un-

knowns so the set of equations becomes more involved. However, it is in-
teresting to consider a particular simple case: If the moment-preservation
method is applied to a distribution, such as the standard Normal distribu-
tion, with mean µ = 0, variance µ2 = 1, and third central moment µ3 = 3,
the result is probabilities of p1 = 1/6, p2 = 4/6, p3 = 1/6, on the points
c1 = −

√
3 ≈ −1.732, c2 = 0, c3 = +

√
3 ≈ +1.732. It is interesting to compare

and contrast this with the results of partitioning the standard Normal distri-
bution (Cox 1957, Johari and Sclove 1976), which gives probabilities of .27,
.46, .27 and group means of −1.22, 0,+1.22.
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1.7 Bivariate Data

Consider a pair of variables X and Y , such as height and weight.

1.7.1 Covariance and Correlation

The covariance of X and Y is E [ (X − µx) (Y − µy) ], that is, the covariance
is the expected value of the cross-product of deviations from the mean. It is
denoted also by C[X, Y ].

The correlation coefficient, or, more simply, the correlation, of variables
x and y denoted by ρxy, is their covariance, divided by the product of their
standard deviations:

Corr(X,Y ) =
C[X,Y ]

SD[x]SD([y]
,

that is
ρxy =

σxy
σxσy

,

where σx or SD[x] is the standard deviation of x, and similarly for y.
The correlation is a dimensionless (unitless) quantity. The units in its

numerator are cancelled by the units in its denominator. The range of the
correlation coefficient is from −1to+ 1.

By reversing the above formula, the covariance is expressed as the product
of the correlation and the standard deviations by reversing the above formula,
that is,

C[x, y] = Corr[x, y] SD[x] SD[y],

or
σxy = ρxyσxσy.

Consider a sample of pairs (xi, yi), i = 1, 2, . . . , n. The sample covariance
is denoted by sxy. It is

sxy =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ).

Consider the contribution of Case i to the covariance, the i-th term (xi −
x̄)(yi− ȳ). Being a product of two factors, it is positive if both have the same
sign and negative if they have opposite signs. So this is positive if both xi
and yi are above average and if both are below average; it is negative if one is
above average and the other is below average. The covariance is the average
of such contributions (except the usual divisor is n− 1 rather than n.)
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1.7.1.1 Computational Formulas

The numerator of the sample covariance is the sum of products of deviations
for x and y. Here are alternative equivalent expressions for the sum of products
of deviations:∑

(xi − x̄)(yi − ȳ) =
∑

(xi − x̄)yi

= =
∑

xi(yi − ȳ)

=
∑

xiyi − n x̄ ȳ

=
∑

xiyi − (1/n) (
∑

xi)(
∑

yi).

1.7.1.2 Covariance, Regression Cooefficient, and Correlation Co-
efficient

The covariance is related to the regression coefficient and to the correlation
coefficient; the covariance is the numerator of both. The coefficient of x in the
regression of Y on x is sxy/s

2
x. The sample correlation coefficient is

ρ̂xy =
sxy
sxsy

.

(Here correlation is denoted by the symbol ρ̂ rather than the frequently used
symbol r because the often-used symbol r denotes continuous rate of return in
this book.) Regression and correlation will be studied in some detail in later
chapters.

1.7.2 Covariance of a Bivariate Distribution

The covariance of a bivariate distribution, that is, of random variables X
and Y, is denoted by C[x, y] or σxy. If X and Y are discrete with values
vj , j = 1, 2, . . . , J and wk, k = 1, 2, . . . ,K, and joint probability mass function
pX,Y (vj , wk) = Pr{X = vj , Y = wk}, then

σxy =

J∑
j=1

K∑
k=1

pX,Y (vj − µx) (wk − µy).

If X and Y are continuous with joint probability density function fX,Y (v, w),
then σxy =

∫ ∫
(v − µx) (w − µy) fX,Y (v, w) dv dw.

It can be shown that the covariance of the sum and the difference of two
random variables is zero if and only if their variances are equal. (See the
exercises.) Thus a test for equality of variances of x and y when they are not
independent uses the covariance of the sum and the difference. The test is the
“Pitman–Morgan” test for equality of variances when, as for paired data, X
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and Y are not independent. (See Morgan (1939), Pitman (1939); and for more
recent reviews, see Harris (1985) and Piepho (1997).)

Suppose that we were trying to develop a test for equality of variances in
the situation in which we have (x, y) pairs, {(xi, yi), i = 1, 2, ..., n}. Without
trying to think about anything fancy, we might consider the difference between
the two sample variances, s2x − s2y. Then we might actually try comparing
the contributions to the variances of x and y, within cases, that is, for each i,
namely,

(xi − x̄)2 − (yi − ȳ)2, i = 1, 2, . . . , n.

Then we might notice, from a2 − b2 = (a+ b)(a− b), that this contribution
of Case i to the difference in variances is

(xi − x̄)2 − (yi − ȳ)2 = [(xi − x̄) + (yi − ȳ)][(xi − x̄)− (yi − ȳ)]

= [(xi + yi)− (x̄+ ȳ)] [(xi − yi)− (x̄− ȳ)]

= (si − s̄)(di − d̄),

where si = xi+yi and di = xi−yi. Summing (and dividing by n−1), we get
the covariance of the sum and difference. The covariance of the sum and the
difference is zero if and only if the variances are equal. So, a test of equality
of variances is equivalent to a test of nullity of the covariance of the sum and
difference. This test can be carried out by computing their correlation rsd and
then t =

√
N − 2 rsd/

√
1− r2sd.

1.8 Three Variables

1.8.1 Pairwise Correlations

Consider three variables X,Y, Z. There are three pairwise correlations,
ρxy, ρxz, ρyz. The correlation matrix must be non-negative definite. There-
fore, its determinant must be non-negative. So not all triplets of correlations
are possible. For example, if ρyx and ρzx are high and positive, then the third
correlation ρxy cannot be negative and of large size.

1.8.2 Partial Correlation

The partial correlation of y and z, adjusting for x, is denoted by ρyz·x. It
is defined as the ordinary correlation of the residuals of y and z from their
respective regressions on x. More precisely, let ŷ = αy.x + βy.xx, ẑ = αz.x +
βz.xx, where these are the regressions of y and z on x. Define the residual
variables ỹ = y − ŷ and z̃ = z − ẑ. Then ρyz·x = ρỹz̃.
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From this definition it can be shown that

ρyz·x = (ρyz − ρyxρxz)/
√

1− ρ2yx
√

1− ρ2xz.

This may be interpreted as follows. The correlation ρyz is the total correlation
between y and z. The product ρyxρxz is the strength of the indirect relation-
ship between y and z, via x. The partial correlation is the difference of these,
normalized.

Conditions on triplets of correlations can be found from the condition that
the size of the partial correlations must be less than or equal to 1.

Notions of sets of correlations, correlation matrices, and partial correlations
extend to more than three variables. See, for example, Anderson (2003) or
Johnson and Wichern (2008).

1.9 Two-Way Tables

This section concerns looking at data via two sets of categories, simultane-
ously. A two-way table is the resulting tabulation. The cell contents may be
measurements or counts.

Example 1.3 Production by day of week and shift

Production may vary by day of week and shift. A two-way table may assist in
studying this variation. Managerial intervention may be warranted.

TABLE 1.2
Production (Number of Widgets), by Day of Week and Shift Simultaneously

Shift
1st 2nd 3rd Mean

M 100 150 200 150
Day T 190 200 210 200
of W 210 200 190 200
Week R 160 240 200 200

F 200 220 180 200

MEAN 172 202 196 190
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The lines of the table are its rows and columns. The rows are the horizontal
lines. The columns are the vertical lines. The body of the table is the number
inside, fifteen in the case above. There is a right-hand margin and a bottom
margin. The margins contain means or totals. The stubs of a table are the
labels across the top and down the left side.

Let yds be the value for day d and shift s. Let yd. be the mean for day d,
let y.s be the mean for shift s and let y·· be the overall mean, the mean of
all (fifteen) numbers in the body of the table. A way of describing the data is

yds = overall mean + day effect + shift effect + error

= y· · + (yd · − y· ·) + (y· s − y· ·) + (yd s − yd · − y· .s + y· ·).

The fitted value ŷds for day d and shift s is the overall mean + day effect +
shift effect, or

y·· + (yd · − y· ·) + (y· s − y· ·) = yd · + y· s − y· ·.

It is the value that might be expected for day d and shift s.
What value might have been expected for Friday’s 3rd shift? A solution is

Value expected = Friday mean + 3rd shift mean−Overall mean

= 200 + 196− 190, or 206 units.

How many fewer than this were produced on Friday’s 3rd shift? Expected -
actual = 206− 180 = 26 units fewer than expected.

1.9.1 Two-Way Tables of Counts

Given categories A1, A2, . . . , Ar and B1, B2, . . . , Bc, the data may be the
frequency (count) ni j of cases in categories Ai and Bj .

Example 1.4 Enrollment in Bus Stat I and Bus Stat II

The university offers an undergraduate business statistics sequence, Business
Statistics I-II. What are the distributions across majors of students in the two
courses? We tabulated the numbers of students by major in Bus Stat I in the
Fall Semester and in Bus Stat II in the next semester and computed the row
percents.
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ACTG FIN IDS MGMT MKTG Total

Bus Stat I 121 (45%) 65 (24%) 30 (11%) 27 (10%) 27 (10%) 270 (100%)
Bus Stat II 59 (33%) 60 (33%) 30 (17%) 11 ( 6%) 20 (11%) 180 (100%)

Source: Hypothetical data, but consistent with real patterns.

It appears that about two-thirds of the students continue into the second
course. Although 10% of those in the first course are MGMT majors, only 6%
of those in the second course are.

1.9.2 Turnover Tables

Turnover tables are based on n persons observed at each of two times.

Example 1.5 Political polling

There are two candidates, A and B. Suppose we have 100 registered voters
observed at two times. For example, we might asked 100 registered voters in
September and again in October which candidate they prefer.

TABLE 1.3
100 Registered Voters, Interviewed in September and Again in October as to
Preferred Candidate, A or B

October
A B Total

A 48 (80%) 12 (20%) 60 (100%)
September

B 16 (40%) 24 (60%) 40 (100%)

Total 64 (64%) 36 (36%) 100 (100%)

Eighty percent of those for A remained for A; only sixty percent of those for
B remained for B. In September, 60 of the 100 were for A; in October, 64.
Suppose the same transition probabilities apply going forward from October
to November; what numbers would then be expected in November?

Brand switching. The method of a turnover table can be applied to
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assessing loyalty (in the sense of repeat buying) to two competing brands A
and B.

1.9.3 Seasonal Data

We think of the “seasons” as Summer, Fall, Winter, Spring, but, financially,
seasonal data include quarterly data and monthly data.

1.9.3.1 Data Aggregation

In analyzing monthly retail sales data, there is a problem in that the months
have different numbers of days. And, how might you deal with the effect of
Easter, which sometimes falls in March and sometimes in April? A solution
would be to aggregate into bi-monthly data, that is, six periods a year. Then
both March and April will fall into the second of the six periods.

1.9.3.2 Stable Seasonal Pattern

A pattern across quarters may be consistent from year to year; then that
pattern can be used for forecasting.

Example 1.6 Best Buy quarterly sales

The table shows Best Buy quarterly sales for several years. The units are
megabucks (M$); for example, 1,606 means 1,606 millions (1.606 M$) or 1.606
billion.

TABLE 1.4
Best Buy Quarterly Sales (megabucks)

Year Q1 Q2 Q3 Q4 Total
1998 1,606 1,793 2,106 2,852 8,357
1999 1,943 2,182 2,493 3,458 10,076
...

...
...

...
...

...
2006 6,959 7,603 8,473 12,899 35,934
Total 35,218 38,701 43,978 61,542 179,439
Percentage 19.6% 21.6% 24.5% 34.3% 100%

The percentages based on the Total row, 35,218/179,439 = 19.6%,
38,701/179,439 = 21.6%, 43,978/179,439 = 24.5%, and 61,542/179,439 =
34.3%, are used as the stable seasonal pattern, provided the pattern is rea-
sonably consistent from year to year.

Stable seasonal pattern (Chen and Fomby 1999) will be discussed further
in the chapter on time series analysis (Chapter 8).
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1.10 Summary

Datasets can be characterized in terms of modes and ways.
Statistics pl. are descriptions, often numerical; statistics sing. is the body

of methods used to analyze statistics pl.
Ratios and indices such as miles per gallon (kilometers per liter), consumer

price index, and body mass index are data derived from more fundamental
measurements.

A time series is generated by observing a single variable over time.

1.11 Chapter Exercises

1.11.1 Applied Exercises

1.13 Best Buy’s sales of 35,934 for the year 2006 were up 16.5% from 2005.
Use this percentage to forecast total sales for 2007.

1.14 (continuation) Next, forecast sales for each quarter of 2007 using the
seasonal pattern of 19.6%, 21.6%, 24.5%, and 34.3% across quarters.

1.15 (continuation) The sales for the first three quarters of 2007 were 7,927,
8,750, and 9,928. Compare your predictions with these actual figures.

1.16 Suppose that a town’s maximum daily temperatures(degrees Fahren-
heit) for June were six days in the 90s, ten days in the 80s, two days in the
70s, and twelve days in the 60s. Why is the mean or median not a good
summary of the the month’s daily high temperatures?

1.17 (continuation) Make a histogram of the data in the preceding exercise.

1.18 What is the standard deviation of the sample x1 = −1, x2 = 0, x3 =
+1?

1.19 What is the standard deviation of the sample x1 = −2, x2 = 0, x3 =
+2?

1.20 Download Best Buy quarterly sales and bring the table up to date. Is
a stable seasonal pattern continuing?
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1.21 Two-way table of counts. A sample of 1,600 registered voters were
asked in September and October which candidate they preferred, C or D. The
results are shown in Table 1.5. Compute the row percents and interpret the
shift, if any.

TABLE 1.5
Preferred Candidate, C or D, in September and October

Oct.
C D Total

C 580 420 900
Sept.

D 270 330 700

Total 850 750 1,600

1.11.2 Mathematical Exercises

1.22 Express C[X+Y, X−Y ], the covariance of the sum and the difference
of two variables, in terms of their variances. Hints. (i) C[A1+A2, B1+B2 ] =
FOIL = first+ outer+ inner+ last = C[A1, B1] + C[A1, B2 ] + C[A2, B1 ] +
C[A2, B2 ]. (ii) C[X,−Y ] = −C[X,Y ] (iii) C[X,X] = VX].

1.23 Show that the covariance of the sum and the difference of two variables
is zero if and only if their variances are equal.

1.24 Conditional expectation of a standard Normal variable. Sup-
pose the random variable z has the standard Normal distribution. Show that
the conditional p.d.f. of z, given a < z < b, is φ(z)/[Φ(b) − Φ(a)], where
φ(z) is the p.d.f. and Φ(z) is the c.d.f.

1.25 Conditional expectation of a Normal variable. Show that if
z has the standard Normal distribution, then the conditional expectation
of z, given a < z < b, is [φ(b) − φ(a)]/[Φ(b) − Φ(a)]. Recall that φ(z) =
(1
√

2π) exp(−z2/2). Hint: Integrate using the substitution u = z2/2, du =
z dz.

1.26 Bernoulli variable. If B has a Bernoulli distribution with parameter
p, and Y = −1 if B = 0 and Y = +1 if B = 1, what is Y in terms of B? What
are the mean and variance of B? What are the mean and variance of Y ?

1.27 Third central moment. Show that µ3 = µ′3 − 3µ′2µ+ 2µ3.
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1.28 Correlations of three variables. If ρxy = .8 and ρyz = .9, find a
lower bound on the third pairwise correlation ρxz using the fact that the
determinant of the correlation matrix must be positive.

1.29 (continuation) Derive the same lower bound using the fact that the size
of the partial correlation ρxz·y must be less than 1.
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2.1 Introduction

This chapter introduces price series and rates of return of individual assets.
Later chapters on portfolio analysis are concerned with sets of assets, such as
a number of stocks, held by an investor.

A price series is, for example, the daily closing prices of a stock. The stock’s

39
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daily rates of return are derived data, calculated from the price series.

2.1.1 Price Series

Stock data are available from such data services as CRSP, the Center for
Research on Security Prices; WRDS, the Wharton Research Data Service;
and on the Web at such sites as finance.yahoo.com.

Daily quotes include the open, high, low, and closing price for the day. In
Table 2.1, the symbols O,L,H,C denote open, low, high, and closing price,
respectively. From these, interday and intraday rates of return (RORs) can be
computed. The interday (between-day) ROR is

(Ct − Ct−1)/Ct−1.

The intraday (within-day) ROR is

(Ct −Ot)/Ot.

The intraday ROR would be analyzed for day trading, where a stock is bought
at the open and sold at the close of the trading day.

TABLE 2.1
Format of Table of Stock Price Data

Open Low High Close

1 O1 L1 H1 C1

2 O2 L2 H2 C2

...
...

...
...

...
n On Ln Hn Cn

Stock closing prices are recorded at the end of successive time periods.
The time period could be days, weeks, months, quarters, or years. Here, for
definiteness, we talk in terms of months.

Here, notation such as C1, C2, C3, . . . , Cn will represent a price series,
that is, the closing price of a share of Stock A at the end of successive months.

There is usually also a column at the right called Adjusted Close, which
adjusts the Close for dividends, splits, and distributions. For example, if there
is a 2-for-1 split, the prices before the date of the split are divided by 2, so
that the time series does not have a jump simply because of the split.

In the financial context, past data are often called historical data. This
use of the word “historical” does not have the same meaning as in everyday
usage, where a state’s historical records might mean its records going back to
the beginning of its statehood.
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2.1.2 Rates of Return

If the price per share of a stock went from $50 at the end of one month to
$52 at the end of the next, then its rate of return (ROR) for that month was
100% ×(52−50)/50 = 4%. If the share price of another stock went from $100
to $102 in a month, its monthly rate of return was (102− 100)/100× 100% =
2/100× 100% = 2.0%.

Portfolio analysis is based on available past data, for example, monthly
RORs. Denote RORt by Rt. Usually RORs will be computed from closing
prices Ct, but here the more general notation, Pt is used. The ROR is

Rt =
Pt − Pt−1
Pt−1

.

We call Pt − Pt−1 the return from t− 1 to t; then the rate of return is the
return, divided by Pt−1. Note that Rt = Pt/Pt−1 − 1, that is, Pt/Pt−1 =
1 +Rt.

2.1.2.1 Continuous ROR and Ordinary ROR

Also, the ordinary Rt is approximated by the continuous ROR, rt, defined by
rt = lnPt − lnPt−1. To see this, note that rt = ln(Pt/Pt−1) = ln(1 +Rt) ≈
Rt, because ln(1 + x) ≈ x for x close to 0, that is, 1 + x close to 1. Here,
the approximation is close when Pt/Pt−1 is close to 1; that is, when Pt is
close to Pt−1. Also, the continuous ROR rt is less than the ordinary ROR
Rt : rt < Rt; rt is a sharp lower bound for Rt. A financial reason why the
continuous ROR is less than the discrete ROR is that if the compounding is
continuous, a smaller rate will produce the same gain.

2.1.2.2 Advantages of Continuous ROR

An advantage of continuous ROR over ordinary ROR is that continuous ROR
is additive. For example, the sum of monthly RORs of a stock is its annual
ROR. For months t = 0, 1, . . . , 12, given prices Pt and writing lnPt as pt and
rt = pt − pt−1, we have

Annual continuous ROR = p12 − p0
= (p12 − p11) + (p11 − p10) + · · ·+ (p1 − p0)

= r12 + r11 + · · ·+ r1

=

12∑
t=1

rt.
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On the other hand, for ordinary ROR, the annual ordinary ROR equals

P12 − P0

P0
= [

P12 − P11

P11
P11 +

P11 − P10

P10
P10 + · · ·+ P1 − P0

P0
P0 ]/P0

= (R12P11 +R11P10 + · · ·+R1P0)/P0

=

12∑
t=1

wtRt,

a weighted average of the monthly ordinary RORs, with weights wt = Pt−1/P0.
Continuous RORs have another advantage over discrete RORs when used

with seasonal data; namely, as above, the continuous RORs add up to the
total; ordinary RORs do not. Daily and weekly RORs illustrate this in the
next example.

Example 2.1 Daily data: Stock prices and RORs by day-of-the-week

Here, the RORs of the S&P Midcap 400 ETF (ticker symbol MDY) day by
day for a couple of weeks in the year 2007 will be used to illustrate ordinary
RORs and continuous RORs. The closing price on Friday, 20-April was 159.88.
Then, for the next two weeks (ten days) the prices were, for M, T, W, R, F
of the first week, 159.91, 160.00, 160.78, 161.68, 160.76, and for M, T, W,
R, F of the second week, 158.44, 158.86, 160.70, 160.97, 162.06. The ten
ordinary RORs are, using RORt, Rt = (Pt − Pt−1) /Pt−1 = Pt/Pt−1 − 1,

R1 = 159.91/159.88 − 1 = −0.019%,
R2 = 160.00/159.91 − 1 = 0.056%,
R3 = 160.78/160.00 − 1 = 0.487%,
R4 = 161.68/160.78 − 1 = 0.560%,
R5 = 160.76/161.68 − 1 = −0.569%,
R6 = 158.44/160.76 − 1 = −1.443%,
R7 = 158.66/158.44 − 1 = 0.265%,
R8 = 160.70/158.66 − 1 = 1.158%,
R9 = 160.97/160.70 − 1 = 0.168%,
R10 = 162.06/160.97− 1 = 0.677%.

The sum of these is −0.019 + 0.056 + 0.487 + 0.560− 0.569− 1.443 + 0.265 +
1.158 + 0.168 + 0.677 = 1.379%, whereas the ordinary ROR for the two
weeks is (P10/P0 − 1 = 162.06/159.88 − 1 = 1.363%. The sum of the or-
dinary RORs is not equal to the ordinary ROR for the whole period. On the
other hand, the sum of the continuous RORs rt will be equal to the contin-
uous ROR for the whole period. To see this, note that the continous RORs
rt = lnPt − lnPt−1 = ln(Pt/Pt−1) are
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r1 = ln(159.91/159.88) = −0.019%,
r2 = ln(160.00/159.91) = 0.056%,
r3 = ln(160.78/160.00) = 0.486%,
r4 = ln(161.68/160.78) = 0.558%,
r5 = ln(160.76/161.68) = −0.571%,
r6 = ln(158.44/160.76) = −1.454%,
r7 = ln(158.66/158.44) = 0.265%,
r8 = ln(160.70/158.66) = 1.152%,
r9 = ln(160.97/160.70) = 0.168%,
r10 = ln(162.06/160.97) = 0.675%.

The sum of these is −0.019 + 0.056 + 0.486 + 0.558− 0.571− 1.454 + 0.265 +
1.152 + 0.168 + 0.675 = 1.354%.

With continuous RORs, one can combine the daily data into a total for
the first week, a total for the second week, and means for M, T, W, R, F. See
Table 2.2.

TABLE 2.2
Daily Continuous RORs (pct) for Two Weeks

M T W R F Total

Week 1 0.019 0.056 0.486 0.558 −0.571 0.549
Week 2 −1.454 0.265 1.152 0.168 0.675 0.806

Sum −1.435 0.321 1.638 0.726 0.104 1.355
Mean −0.717 0.160 0.819 0.363 0.052 0.135

The overall mean continuous ROR across the ten days was 0.135%.
Day-of-week effects. The price on Friday, April 20 was 159.88. The

continuous ROR for the first week was ln 160.76 − ln 159.88 = 0.549%; note
that this is indeed equal to the total for Week 1. The continuous ROR for
the second week was ln 162.06− ln 160.76 = 0.805%, which is indeed equal to
the total for the row for Week 2. Only two weeks of data does not give very
precise results, but for the daily means, note that T, W, R are okay but M
and F are not so good. M was negative in Week 2 but positive in Week1; F
was negative in Week 1 but positive in Week 2.

Computation with ordinary RORs. Ordinary RORs work multiplica-
tively rather than additively. Using ordinary ROR, to combine the daily results
into a weekly ROR, the RORs are changed to multiplicative factors, as follows
for the Week 2 data.

(1 +R6)× (1 +R7)× (1 +R8)× (1 +R9)× (1 +R10)
= (1−0.01443)×(1+0.00265)×(1+0.01158)×(1+0.00168)×(1+0.00677)
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= 0.98557 × 1.00265 × 1.01158× 1.00168 × 1.00677
= 1.00808 = (1 + 0.00808),

giving the weekly ordinary ROR for Week 2 as about 0.808%. This compares
to P10/P5 − 1 = 162.06/160.76 − 1 = 0.008087 = 0.8087%, a little different
due to round-off error in the individual daily ordinary RORs. The continuous
ROR for Week 2 is about 0.806%.

Another type of ROR is the intraday ROR, that is, the within-day ROR,
comparing the day’s closing price to its opening price, as (Ct−Ot)/Ot, or in
the continuous form lnCt − lnOt. Intraday ROR is of interest in day-trading,
to be discussed later. The prefix intra- means within; inter- means between.
So, by way of contrast, the ROR based on closing prices for two successive
days is (Ct − Ct−1) /Ct−1, or lnCt − lnCt−1, the interday ROR.

2.1.2.3 Modeling Price Series

The exponential function. Define a function, to be called exp(x), as

exp(x) = lim
n→∞

(1 + x/n)n.

Then it will turn out that

exp(x) = 1 + x+ x2/2 + x3/3! + · · · + xn/n! + . . . .

To see this, note that, by taking a = 1 and b = x/n in the binomial expansion

(a+ b)n =

n∑
k=0

C(n, k) akbn−k,

where C(n, k) = n!/k!(n− k)! = n(n− 1)(n− 2) · · · (n− k + 1)/k!,

(1 + x/n)n = 1 + n(x/n) + [n(n− 1)/2](x/n)2/2

+ [n(n− 1)(n− 2)] (x/n)3/3! + · · ·+ (x/n)n

= 1 + x + [n(n− 1)/n2]x2/2

+ [(n/n)(1− 1/n)(1− 2/n)x3/3! + · · ·+ (x/n)n.

The result then follows by taking limits as n →∞.

It can further be shown that exp(x) = ex, that is, the values of the func-
tion exp(x) can be found by taking a particular number e to the power x.
This proof proceeds as follows (Kemeny 1957). Give exp(1) the name e. Then
it can be shown that exp(n) = en for integers n. Then for rationals m/n,
the ratio of two integers, it is shown that exp(m/n) = em/n and then finally
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it follows that for all real numbers x, exp(x) = ex.

From interest rates to geometric Brownian motion. Suppose that a
principal amount P0 is held for one time period at an interest rate R. Then the
principal amount P1 at the end of the period is P1 = P0(1+R). If the interest
is compounded m times during the period, then P1 = P0 (1+R/m)m. If the
period is a year, the number m might be 2 for semi-annual compounding, 4 for
quarterly compounding, or 12 for monthly compounding. If the compounding
is “continuous,” at a rate r, then the interest factor is limm→∞ (1+r/m)m =
er.

Now consider n periods, with different rates r1, r2, . . . , rn. Then

Pn = P0(1 + r1/m)m(1 + r2/m)m . . . (1 + rn/m)m.

Then

lim
m→∞

(1 + r1/m)m(1 + r2/m)m . . . (1 + rn/m)m = er1er2 . . . ern

= exp[

n∑
t=1

rt]

This gives

Pn = P0 exp[

n∑
t=1

rt].

Now, take the rates rt to be random variables. Then {Pn, n = 1, 2, . . . } is a
stochastic (random) process. If the rt are independently Normally distributed,
the stochastic process is called geometric Brownian motion (see, e.g., Ross
2010 or Parzen 1962, 1999), although exponential Brownian motion would be
just as good a name.

Modeling the price series. Note that, letting pt = lnPt, we have
pt = (pt − pt−1) + (pt−1 − pt−2) + · · · + (p1 − p0) + p0 = rt + rt−1 + r1 +
p0. Exponentiating, Pt = exp(pt) = exp(rt + rt−1 + · · · + r1 + p0) =
exp(p0) exp(rt + rt−1 + · · ·+ r1) = P0 exp[

∑t
u=1 ru]. This is an exponential

(or geometric) process. When r1, r2, . . . , rt, . . . are independent and identically
distributed according to a Normal distribution, then, as mentioned above, the
time series {Pt} is called geometric Brownian motion.

Often in analyzing a time series, one applies the log transform to the
data if they vary over several orders of magnitude. Further, one takes the
differences if the series is not level. Often this would be done from a purely
statistical viewpoint. (This will be further discussed in the chapter on time
series analysis.) So, analysis of the difference of the logs, that is, the continuous
ROR, is suggested both by the financial and the statistical viewpoints.

Various statistics for RORs include the mean, variance, Sharpe ratio, and
Value-at-Risk (VaR). These, will be discussed in this chapter, but discussion
of these measures for several assets simultaneously (portfolios) is deferred to
later chapters.
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First, mean, variance will be reviewed, in terms of distributions and of
data. (See also Chapter 1.)

2.1.3 Review of Mean, Variance, and Standard Deviation

2.1.3.1 Mean

The mean E [X] of a random variable X is the probability-weighted average
of its possible values. It is also called the expected value or mathematical
expectation. (The notation E is used because the expectation is a function of
a distribution, not just a single variable.) The mean of a sample x1, x2, . . . , xn
is x̄ =

∑n
i=1 xi/n.

2.1.3.2 Variance

The variance V[X ] of a random variable X is V[X ] = E [ (X − µx)2 ]; that
is, the variance is the expected value of the squared deviation from the mean.
The variance is often denoted by σ2

x.
The variance of a sample x1, x2, . . . , xn is

s2 =

n∑
i=1

(xi − x̄)2/(n− 1).

2.1.3.3 Standard Deviation

The square root of the variance is the standard deviation, SD[X], or σx. The
sample standard deviation s is the square root of the sample variance.

2.2 Ratios of Mean and Standard Deviation

Next, measures based on the mean and standard deviation together are dis-
cussed; these include the coefficient of variation and the Sharpe ratio.

2.2.1 Coefficient of Variation

The coefficient of variation, or relative standard deviation, is the ratio of
the standard deviation to the mean, σ/µ for the distribution or s/x̄ in the
sample. Note that this ratio is a dimensionless quantity. The units are the
same in the numerator and denominator, so they cancel out. If Stock A has a
mean ROR of 18% per year and a standard deviation of ROR of 9% per year,
the coefficient of variation is 9/18 = 0.5. If Stock B has a mean ROR of 6%
per year and a standard deviation of 2% per year, the coefficient of variation
is 2/6 ≈ 0.33.
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The reciprocal of the coefficient of variation is the mean divided by the
standard deviation. This can be interesting for RORs. If Stock A has a mean
ROR of 18% per year and a standard deviation of ROR of 9% per year, the
ratio of mean to standard deviation is 2. If Stock B has a mean ROR of 6% per
year and a standard deviation of 2% per year, the ratio of mean to standard
deviation is 3.

2.2.2 Sharpe Ratio

Given the risk-free rate Rf for such an asset as Treasury bills, the excess ROR
of a stock is R − Rf , the stock’s rate of return R minus the risk-free rate.
The Sharpe ratio (Sharpe 1966) of a stock with mean ROR µ and standard
deviation of ROR equal to σ is the ratio of excess ROR to the standard
deviation, (µ − Rf )/σ. The Sharpe ratios of portfolios will be considered in
the chapters on portfolio analysis.

2.3 Value-at-Risk

TheValue-at-Risk (VaR) at level .05 is the value below which there is only a
probability of .05. This is the fifth percentile of the probability distribution
of ROR. The probability is .95 of having a value greater than the VaR. Here
we study this concept in terms of ROR, Rp. Then the .05 VaR is defined by
Pr{Rp ≤ VaR} = .05, that is, Pr{Rp > VaR} = .95. More generally, the
level α VaR, say VaRα, is defined by Pr{Rp ≤ VaRα} = α. It is the 100α-th
percentile of the distribution of Rp.

2.3.1 VaR for Normal Distributions

Under an assumption that Rp has a Normal distribution, the VaR, like any
percentile, depends only upon the mean µ and standard deviation σ. Then

Pr{Rp > VaR} = Pr{(Rp − µ)/σ

> (VaR− µ)/σ}
= Pr{z > (VaR− µ)/σ} = .95,

where z has the standard Normal distribution. But Pr{z > −1.645} = .05.
Therefore, we set (VaR−µ)/σ) equal to −1.645. This gives VaR = µ−1.645σ
as the 95% value of VaR. For example, if µ is 0.5% per month and σ is 1
% per month, this is VaR = 0.5 − 1.645(1) = −1.145%. It is unlikely (5%
chance) that the ROR will be less than −1.145% per month.

The set of stocks having .05-level VaR less than a given value VaR = v
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is the set having µ − 1.645σ ≥ v. In the (σ, µ)-plane, these are the stocks
represented by the points above the line µ = v + 1.645σ.

2.3.2 Conditional VaR

It is interesting to compute the conditional VaR, which is the conditional
expectation of ROR, given that it exceeds some constant c. Note that if Z
has the standard Normal distribution, then E [z | z > z0] = φ(z0)/[1−Φ(z0) ],
where φ(z) is the probability density function and Φ(z) is the cumulative
distribution function. Now, if a rate of return R is distributed according
to a Normal distribution with mean µ and standard deviation σ, then R is
distributed as µ+ σz, and it follows that

E [R |R > c ] = µ + σφ[(c− µ)/σ]/[1− Φ([(c− µ)/σ].

VaR for portfolios will be considered later when portfolio analysis is dis-
cussed.

2.4 Distributions for RORs

The bell-shaped Normal distribution is a possibility for fitting distributions
of RORs. However, Normal distributions drop off relatively rapidly as the
variable becomes large or small. Sometimes the distribution of RORs has more
weight in the tails than that; it is said to have “heavy” (or “fat”) tails. Here
is a way that could happen, starting with a Normal distribution. Suppose that
R1, R2, . . . , Rn are independent and identically distributed (i.i.d.) according
to a Normal distribution with mean zero, but the standard deviation σt varies
with t. Put a distribution on σ, with p.d.f fσ(s), 0 < s < ∞. The resulting
marginal distribution of R will be a t distribution.

2.4.1 t Distribution as a Scale-Mixture of Normals

To develop this, let T and U be random variables, T given U = u being
distributed according to according to a chi-square distribution with m d.f.,
and the conditional distribution of T given U = u being Normal with mean
zero and variance m/u; that is, u/m is the reciprocal variance. If u is large,
the conditional variance of T is small. The p.d.f. of U is

fU (u) = c um/2−1e−u/2, u > 0,

where c = Γ(m/2) / 2m/2. One can then write the conditional p.d.f. of T ,
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given that U = u, derive the (unconditional) p.d.f. of T as

fT (t) =

∫ ∞
0

fT,U (t, u) du =

∫ ∞
0

fT |U (t|u) fU (u) du,

and verify that it is a Student’s t distribution, the p.d.f. of which is

fT (t) = Const. (1 + t2/m)−(m+1)/2,

where Const. = Γ(m+1
2 ) /

√
mπ Γ(m2 ).

This way of deriving the t distribution is summarized by saying that t
distributions are scale-mixtures of Normal distributions.

The members of the family of t distributions have heavier tails than Normal
distributions and so can be useful for modeling RORs in this case.

2.4.2 Another Example of Averaging over a Population

Putting a population distribution over a parameter can be a very helpful way
of modeling. Here is another example. It is not specifically financial, but it
is actuarial. It is a model for accident rates in a population. Suppose that
the yearly number of accidents of any given individual i in a population is
distributed according to a Poisson distribution with parameter λi accidents
per year. Then the probability that an individual with parameter value λ has
exactly k accidents in a year, k = 0, 1, 2, . . . , is eλ λk /k!. Some individuals
are more accident prone (have a higher accident rate) than others, so different
individuals have different values of λ. A distribution can be put on λ to deal
with this. (See the exercises.)

2.4.3 Section Exercises

2.1 Assume that, in fact, over the population, λ has an exponential distri-
bution with mean 1/2, f(λ) = (1/2) exp(−λ/2), 0 < λ < ∞. What is the
probability that a randomly selected individual has exactly k accidents in a
year, k = 0, 1, 2, . . . ?

2.2 (continuation) What is the name of this distribution, and what is the
parameter and its value in this case?

2.3 (continuation) Now suppose that λ has a Gamma distribution with
shape parameter m and scale parameter γ,

f(λ; m, γ) = Const.λm−1 exp(−λ / γ).

(The preceding case was m = 1, γ = 2. ) Find the value of Const. (The integral∫∞
0

tm−1 e−t dt = Γ(m), the gamma function with argument m.)

2.4 (continuation) What is the probability that a randomly selected individ-
ual has exactly k accidents in a year, k = 0, 1, 2, . . . ?
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2.5 (continuation) What is the name of this distribution, and what is the
parameter and its value in this case?

2.6 Carry out the indicated details of the derivation of the t distribution as
a scale mixture of Normal distributions.

2.7 If U has a chi-square distribution with m d.f., what is the p.d.f. of its
reciprocal, 1/U?

2.5 Summary

The daily report of a stock on an exchange includes its open, high, low, and
closing prices.

The interday (between-day) ROR is the closing price on a given day,
minus the closing price on the day before, divided by the latter. This is
(Ct − Ct−1)/Ct−1. The continuous interday ROR is lnCt − lnCt−1.

The intraday (within-day) ROR is the closing price on a given day, minus
the opening price on that day, divided by the latter. This is (Ct −Ot) / /Ot.
The continuous intraday ROR is lnCt − lnOt.

The risk-free rate is taken as the rate of a risk-free asset such as three-
month Treasury bills.

The excess ROR of a stock is the stock’s rate of return minus the risk-free
rate.

The Sharpe ratio of a stock is its mean excess ROR divided by the standard
deviation of its ROR.

A stock’s value at risk (VaR) at level alpha is the 100(1−α)-th percentile
of the ROR distribution of that stock.

Distributions of RORs may be heavy-tailed.

2.6 Chapter Exercises

2.8 Suppose that RORs for nine days are

−1.1,−1.2,+1.2,+0.1,−0.1,+0.2,+1.1,+0.9,+0.8%.

Find the order statistic, median, lower quartile, upper quartile, min, and max.
Give the five-number summary.

2.9 (continuation) Find the mean, deviations from the mean, distances from
the mean, MAD, and standard deviation.
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2.10 Suppose that RORs for ten days are

−1.1,−1.2,+1.2,+0.1,−0.1,+0.1,+0.2,+1.1,+0.9,+0.8%.

Find the order statistic, median, lower quartile, upper quartile, min, and max.
Give the five-number summary.

2.11 (continuation) Find the mean, deviations from the mean, distances from
the mean, MAD, and standard deviation.

2.12 If a stock’s share price goes down $10 a share, from $100 to $90, what
is the rate of return? If now it goes up by $10 a share, what is the rate of
return?

2.13 If a stock’s share price goes from $90 a share to $100 a share, what is
the discrete rate of return, and what is the continuous rate of return?

2.14 If the DJIA falls from a level of 12,000 points by 3%, what is now its
level? If it now increases by 3%, what is its level? Answer: 11,989. By what
percent would it have had to increase to be back at 12,000?

2.15 (continuation) Compute the continuous ROR of the change from 11,640
to 12,000.

2.16 The DJIA went up 490 points one day to close at 12,045. What was
its close the previous day? What was its percent increase? What was the
continuous ROR in percent?

2.17 Show that lnx ≈ x−1 if x is close to 1. Hint: The first terms of a Taylor
series expansion of f(x) about x = a imply that f(x) ≈ f(a) + (x − a)f ′(a)
when x is close to a. Take f(x) = lnx and a = 1.

2.18 Sharpe ratio If µ = 0.5% per month, Rf = 0.1% per month, and
σ = 0.5% per month, what is the Sharpe ratio?

2.19 If µ = 0.5% per month and σ equals 1% per month, what is the 10%
VaR?

2.20 VaR If µ is one-percent per month and σ is 1% per month, what is
the 5% VaR?

2.21 If µ is 1% per month and σ is 1% per month, what is the 10% VaR?

2.22 (continuation) What then is the conditional VaR?

2.23 Show that as the number m of degrees of freedom tends to infinity, the
p.d.f. of the t distribution converges pointwise to that of the standard Normal
distribution.
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3.1 Introduction

This chapter introduces price series and rates of return of several assets, that
is, sets of assets. The price series from a single stock is a single time series;
prices from several stocks constitute a multiple time series. That is, at time
t, the prices P1t, P2t, . . . , Pmt of m assets are observed.

Stock closing prices are recorded at the end of successive time periods. The
time period could be days, weeks, months, quarters, or years.

The RORs are, for i = 1, 2, . . . ,m assets and t = 1, 2, . . . , n time periods,
the ordinary ROR,

Rit = (Pit − Pi,t−1) /Pi,t−1 = Pit/Pi,t−1 − 1,

and the continuous ROR,

rit = ln(Pit/Pi,t−1) = lnPit − lnPi,t−1.

53
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3.2 Review of Covariance and Correlation

The covariance of X and Y is E [ (X − µx) (Y − µy) ], that is, the covariance
is the expected value of the cross-product of deviations from the mean. It is
denoted also by C[X,Y ].

The correlation coefficient, or, more simply, the correlation, of variables X
and Y, denoted by ρxy, is their covariance, divided by the product of their
standard deviations,

Corr[X,Y ] =
C[X, Y ]

SD[X] SD[Y ]
,

that is,

ρxy =
σxy
σxσy

,

where σx or SD[X] is the standard deviation of X, and similarly for Y.
The correlation is a dimensionless (unitless) quantity. The units in its

numerator are cancelled by the units in its denominator. The range of the
correlation coefficient is from −1 to +1.

By reversing the above formula, the covariance is expressed as the product
of the correlation and the standard deviations; that is,

C[X,Y ] = Corr[X,Y ] SD[X] SD[Y ],

or
σxy = ρxyσxσy.

The sample covariance is denoted by sxy. It is

sxy =

n∑
i=1

(xi − x̄) (yi − ȳ) / (n− 1).

The covariance is related to the regression coefficient and to the correlation
coefficient; the covariance is the numerator of both. The coefficient of x in the
regression of y on x is sxy/s

2
x. The sample correlation coefficient is

ρ̂xy =
sxy
sxsy

.

(Here we denote correlation by the symbol ρ̂ because the often-used symbol
r here denotes continuous ROR.) Regression and correlation will be studied
in some detail in subsequent chapters.

Note that correlation Corr[X,Y ], can apply to different r.v.s such as
height and weight or also to r.v.s that are values of a single variable such
as ROR at two different time points, such as Corr[Rt, Rt−1]. This type of
correlation is called autocorrelation and will be discussed in Chapter 8 on
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time series analysis.

Next, descriptive statistics for the cases of two, three, and m stocks are
treated.

3.3 Two Stocks

3.3.1 RORs of Two Stocks

Consider two stocks, A and B. Represent their RORs by random variables X
and Y, with means µx, µy and standard deviations σx, σy. The correlation
is ρxy; the covariance σxy = ρxy σx σy. Table 3.1 gives RORs for two stocks,
for n time periods.

TABLE 3.1
Format of Table of RORs for Two Stocks

Month Stock A Stock B

1 0.5 % 1.6 %

2 −0.3% 1.4 %
...

...
...

n 0.2 % 0.9 %

From the statistics in Table 3.2, it appears that stock A has a moderate ROR,
and B has a higher ROR but is riskier. There is a negative correlation that is
medium-large in size.

The probability that the ROR will be negative, the loss probability, is com-
puted next for Stock A and Stock B.

If the variable X is taken as having a Normal distribution, what is the
probability of loss with Stock A; that is, what is Pr{X < 0}? The standardized
value of x = 0 is z = (0 − 0.4)/0.8 = −0.5, so letting Z be a r.v. with the
standard Normal distribution, Pr{X < 0} = Pr{Z < −0.5} ≈ .309.

What is the probability of loss with Stock B; that is, assuming Normality,
what is Pr{(Y < 0} =? Here, z = (0−1.5)/4.5 = −0.333, and the probability
to the left of that value under the standard Normal curve is about .370.
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TABLE 3.2
Statistics of RORs of Two Stocks

Stock A B

ROR x y

Mean ROR 0.4 % 1.5 %

Std.Dev. of ROR 0.8 % 4.5 %

Correlation of RORs −.6

Example 3.1 The “January effect”

This effect is the tendency of security prices to tend to increase in January.
However, here we view a January effect that is January RORs being more
highly correlated with the annual ROR than are those of the other months.
Here we are not viewing two different stocks but rather a stock index for
January and for the whole year. The S&P500 monthly RORs for the sixteen
years 1951 through 1966 gave the following correlations of each month with
the annual ROR: J: .75, F: .11, M: .38, A: .48, M: .42, J: .35, J: .41, A: .41,
S: .71, O, −.16, N: .15, D: .54. The ROR for January is highest (although
September, at +.71, is also high). The January effect is something that might
be taken into account early in the year in financial planning for the year ahead.

If the twelve months’ RORs were uncorrelated and had the same variance
and equal correlations with the annual ROR, then the squared value of that
correlation would be 1/12, corresponding to a correlation of

√
1/12 ≈ .29.

To see this, let rm be the ROR of month m and r+ =
∑m
t=1 rt and write

the covariance C[rm, r+] = C[rm,
∑12
t=1 rt] =

∑12
t=1 C[rm, rt] = C[rm, rm] =

V[rm]. Then the correlation is Corr[rm, r+] = C[rm, r+]/SD[rm]SD[r+] =
V[rm]/SD[rm]

√
12V[rm] = 1/

√
12 ≈ .29.

3.3.2 Section Exercises

3.1 Download recent monthly S&P500 data and compute the correlations of
monthly RORs with the annual.

3.2 Download recent monthly DJIA data and compute the correlations of
monthly RORs with the annual.



Several Stocks and Their Rates of Return 57

3.4 Three Stocks

3.4.1 RORs of Three Stocks

Next, consider three stocks, A, B, and C. Denote the RORs by X,Y, Z. The
covariances are σxy = ρxyσxσy, σxz = ρxz σx σz, σyz = ρyz σy σz. The
means, standard deviations, and correlations are estimated by their sample
analogs, the sample means, sample standard deviations, and sample correla-
tions.

In this example, the sample correlation of x and y is low and positive, that
of x and z is low and positive, and that of y and z is negative and large in
size.

TABLE 3.3
Format of Table of RORs of Three Stocks

Stock A B C

ROR x y z

Month 1 0.5% 1.6 % −0.1%
Month 2 −0.3% 1.4 % 0.2%

...
...

...
...

Month n 0.2% 0.9 % 1.2%

Mean 0.4% 1.1% 0.9%
Std.Dev. 0.5% 3.1% 4.2%

Correlation
Stock A ρ̂xy = +.2 ρ̂xz = +.3
Stock B ρ̂yz = −.7

3.4.2 Section Exercises

3.3 Some triplets of correlations are not possible. In particular, the deter-
minant of the correlation matrix must be positive. Verify that this is the case
for the three correlations in Table 3.3.

3.4 Check to see whether the determinant of the correlation matrix formed
from ρxy = +.2, ρxz = +.3, and ρyz = −.9 is positive.
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3.5 Given ρxy = +.2 and ρxz = +.3, what range of values is possible for
ρyz?

3.6 Check to see whether the determinant of the correlation matrix formed
from ρxy = +.2, ρxz = +.3, and ρyz = +.4 is positive.

3.7 Given ρ̂xy = +.8 and ρxz = +.8, what range of values is possible for
ρyz?

3.8 Partial correlation Another way to look at triplets of pairwise corre-
lations is through the partial correlation. The partial correlation ρyz·x of y
and z, adjusting for x, is defined as the ordinary correlation of the residu-
als of y and z from their respective regressions on x. From this definition it

follows that ρyz·x = (ρyz − ρyxρxz)/
√

1− ρ2yx
√

1− ρ2xz. Because the partial

correlation is an ordinary correlation (of residual variables), its size must be
less than or equal to 1. Use this fact as another way to do Exercise 3.7.

3.5 m Stocks

3.5.1 RORs for m Stocks

Next, consider m stocks, indexed by i = 1, 2, . . . , m, with RORs
R1, R2, . . . , Rm, or, including the time t in the notation, R1t, R2t, . . . , Rmt
at time t, t = 1, 2, . . . , n.

3.5.2 Parameters and Statistics for m Stocks

The means are µi, i = 1, 2, . . . ,m, the standard deviations are σi, i =
1, 2, . . . ,m, and the covariances are σij = ρijσiσj for stocks i, j =
1, 2, . . . ,m. These parameters are estimated by their sample analogs, the sam-
ple means, sample standard deviations, and sample covariances sij , i, j =
1, 2, . . . ,m. All of this can be written and defined for continuous RORs rit as
well as ordinary RORs Rit.

3.6 Summary

Covariance is the expected value of the deviations of two r.v.s from their
means.

Correlation is normalized covariance; that is, the correlation coefficient is
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TABLE 3.4
Format of Table of RORs Rit, i = 1, 2, . . . ,m, t = 1, 2, . . . , n

Stock 1 2 · · · m

ROR R1 R2 · · · Rm

Month
1 R11 R21 · · · Rm1

2 R12 R22 · · · Rm2

...
...

... · · ·
...

n R1n R2n · · · Rmn

Mean R̄1 R̄2 · · · R̄m
Std.Dev. s1 s2 · · · sm

the covariance divided by the product of the standard deviations. The corre-
lation coefficient is a dimensionless quantity; the units of the numerator equal
the units of the denominator, so the units cancel out.

3.7 Chapter Exercises

3.9 Suppose that RORs of Stock A for five days are

−1.1,−1.2,+1.2,+0.1,−0.1%

and RORs of Stock B for the same five days are

−1.2,−1.1,+1.1,+0.2,−0.2%.

Find the covariance and correlation of the RORs of Stocks A and B.

3.10 Suppose that RORs of Stock A for nine days are

−1.1,−1.2,+1.2,+0.1,−0.1,+0.2,+1.1,+0.9,+0.8%

and RORs of Stock B for the same nine days are

−1.2,−1.1,+1.1,+0.2,−0.2,+0.9,+1.1,+0.7,+0.9%.

Find the covariance and correlation of the RORs of Stocks A and B.



60 A Course on Statistics for Finance

3.11 If rxy = +.9 and ryz = +.8, find a non-trivial lower bound for rxz.

3.12 If rxy = +.7 and ryz = +.9, find a non-trivial lower bound for rxz.

.
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4.1 Introduction

This chapter begins with an example of simple linear regression. Then the
Capital Assets Pricing Model (CAPM), which may be viewed as a particular
application of simple linear regression to finance, is considered. The CAPM
relates the rate of return (ROR) of any given asset to the ROR of the market
as a whole, indicated by a market index such as the S&P500 (Standard &
Poor’s 500 Stock Composite Index). It is shown how the CAPM characterizes
each stock with a parameter beta. The CAPM is regression through the origin,
with only a slope parameter. Next, the usual simple linear regression model
with both slope and intercept is treated. The modification of the CAPM with
intercept as well as slope is discussed.

4.2 Simple Linear Regression

The distribution of a variable Y may be studied in terms of its dependence on
values x of another variable X. The word “simple” in the phrase simple linear
regression refers to the fact that Y is being described in terms of a single
explanatory variable X. In “multiple” regression, a topic of the chapter after
this one, a response variable Y is described in terms of several explanatory
variables.

When it is reasonable that X = 0 implies Y = 0, a model stating simply
that Y is proportional to X can be appropriate. Then only a single parameter,
the proportionality parameter, which is a slope, is needed. The conditional
mean of Y, given that X = x, is E [Y |x ] = β x. The function η(x) =
E [Y |x ] is the regression function. In this case, it is simply η(x) = β x. The
statistical model here is that the response variable Y is equal to its conditional
expectation given x, plus a random deviation ε from that: Y = β x+ ε.

4.2.1 Data

The data for simple linear regression take the form of (x, y) pairs for n cases
or instances of observation, (xi, yi), i = 1, 2, . . . , n.
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The observational model is the statistical model, stated in terms of cases.
This gives the observational equations, which here are

Yi = βxi + εi, i = 1, 2, . . . , n.

The conditional mean of Yi given xi is βxi. The variables εi are differences
from the conditional mean and hence have mean 0.

4.2.2 An Introductory Example

An introductory example will be discussed in some detail. Suppose that for
n = 14 trips of a car, the miles traveled (y) and gallons used (x) were recorded.
The data are shown in Table 4.1. Figure 4.1 is a scatterplot of the data. The
points are labeled with the numbers of the 14 runs.

TABLE 4.1
Gasoline Mileage Data

Run Miles Gallons Run Miles Gallons

1 62 4.6 8 108 8.0
2 49 5.7 9 96 7.5
3 73 4.3 10 61 4.7
4 63 6.1 11 165 10.8
5 108 9.3 12 148 8.9
6 135 9.9 13 197 13.1
7 60 4.9 14 185 12.7

4.3 Estimation

Two estimates of the miles per gallon come to mind almost at once. One is
simply the total miles divided by the total gallons, which is∑

yi∑
xi
. (4.1)

Note that ∑
yi∑
xi

=

∑
yi/n∑
xi/n

=
ȳ

x̄
,

the ratio of the means, where

x̄ =
∑

xi/n and ȳ =
∑

yi/n.
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(The notation
∑

xi is used as shorthand for
∑n
i=1 xi when the meaning is

clear. Sometimes we abbreviate even further as
∑

x.)

FIGURE 4.1
Miles versus gallons

Now, each ratio yi/xi is an estimate of the miles per gallon, so it also
makes sense to consider an estimate that is the mean of the ratios,

1

n

∑ yi
xi
. (4.2)

Note that the “ratio of means” estimate is equal to 13.67 mpg (miles per
gallon). The mpg for the runs are shown. The mean of these fourteen ratios is

Mean ratio = (13.5 + 8.6 + . . . + 14.6)/14 = 13.4 mpg.

(To convert to a metric scale, note that one gallon is four quarts, and one liter
is about 1.06 quarts (more precisely, 1.05668821). Also, one mile is 1.61 km.
It follows that 1 km/liter = 2.34 mpg, or 1 mpg = 0.427 km/liter.)
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TABLE 4.2
Miles per Gallon for Each of the Fourteen Runs

run mpg run mpg

1 13.5 8 13.5
2 8.6 9 12.8
3 17.0 10 13.0
4 10.3 11 15.3
5 11.6 12 16.1
6 13.6 13 15.0
7 12.2 14 14.6

Later, the relative merits of the mean ratio and the ratio of the means will
be discussed. There are still other approaches that should be explored.

One way to develop a model for the situation is to assume that the mean
value function is of the form E [Y |x] = βx, where the regression coefficient β,
the miles per gallon, is an unknown parameter, to be estimated. The notation
E [Y |x] denotes the conditional expectation of Y, given that X = x. If Y
were weight and X were height, this would be the mean of the distribution
of weights of men of given height x, for example, the mean weight of men
70 inches tall. The model implies that the mean weight of men 71 inches
tall would be β pounds more than that of men 70 inches tall. (However, in
this situation, an intercept as well as a slope would usually be used; this is
considered later in the chapter.)

The model based on this conditional expectation states that the mean
value of Y for any given value of x is proportional to that value: miles are
proportional to gallons, β being the constant of proportionality. The graph of
the function y = βx is a line through the origin with slope equal to β. Hence
estimating β in this model is called “fitting a line through the origin.” For n
instances of observation, the model is

Yi = β xi + εi, i = 1, 2, . . . , n.

These n equations are called the observational equations. The variables

εi = Yi − E [Yi |xi ] = Yi − βxi

are called the errors. This does not mean “error” in the sense of a mistake.
The “error” is merely the departure from the (conditional) expected value.
The errors are unobservable. However, if the value of β were somehow known,
the values of the errors would be known, too, because βxi could be subtracted
from Yi to give εi. (The error ε is a random variable, but it is denoted by a
Greek letter because it is unobservable. Greek letters are used for unobservable
quantitites, such as errors and parameters, and Latin letters are used for
observable quantities.)
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In the simplest case, it is asssumed that the errors are uncorrelated, have
mean zero, and have common variance, denoted by σ2. That εi and εj are
uncorrelated is equivalent to C[ εi, εj ] = 0 for i 6= j. Because the means
of the errors are zero, this is E [ εiεj ] = 0 for i 6= j. The assumption that
the errors have common variance is written Var(εi) = σ2, a constant not
dependent upon i. These two assumptions may be combined conveniently as
C[ εi, εj ] = σ2δij , where δij is the Kronecker delta, equal to 1 if i = j and
equal to 0 otherwise.

It turns out that when the errors do in fact have the same variance, a
third estimator, different from the mean ratio or the ratio of means, will have
a smaller variance than either of them. This third estimator is considered next.
Later, when the mean ratio and ratio of means are considered further, it will
be seen that the ratio of averages has the smallest variance when V[ εi ] is
proportional to x, that is, is equal to σ2xi, and the average of the ratios has
the smallest variance when V[ εi ] is proportional to the square of x, i.e., is
equal to σ2x2i .

4.3.1 Method of Least Squares

4.3.1.1 Least Squares Criterion

Let b be any trial value for β, that is, any guess as to the value of the unknown
parameter β. For i = 1, 2, . . . , n, the value ŷi(b) = bxi is the predicted value
of yi corresponding to b. To assess the goodness of the choice of b for β,
each observed value yi is compared with its predicted value ŷi, using the error
yi − ŷi. To combine the results for all n cases, the errors are squared and
summed. The result is

S(b) =
∑

[ yi − ŷi(b) ]2 =
∑

(yi − bxi)2.

This is the least squares criterion for this problem. A reason that it is taken
as the criterion is that it is the (square of) the distance between the points

P1 : ( y1 y2 . . . yn ) and P2 : ( ŷ1 ŷ2 . . . ŷn )

in n-space.

4.3.1.2 Least Squares Estimator

The principle of least squares states that the choice of estimate of the param-
eter β is to be that value b∗ of b that minimizes the least squares criterion.
The quantity S(b) is a score associated with the line y = bx; it is the sum of
squared vertical deviations of the data points (xi, yi ) from this line. A small
score is thus a good score. The value of b that gives the line with the small-
est score is the least squares estimate of the parameter β. This best value is
denoted by b∗. It is given by the sum of products over the sum of squares of
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the values of x, that is, by the expression

b∗ =

∑
xiyi∑
x2i

. (4.3)

To obtain this expression, note that

S(b) =
∑

[yi − ŷi(b)]2

=
∑

(yi − bxi)2

=
∑

(yi − 2bxiyi + b2x2i )

=
∑

y2i − 2b
∑

xiyi + b2
∑

x2i

= (
∑

x2i ) b
2 + (−2

∑
xiyi)b +

∑
y2i

= Ax2 + B x + C ,

with x = b, A =
∑
x2i , B = −2

∑
xiyi, and C =

∑
y2i . The stationary point

of such a quadratic is x = −B/2A. If A > 0, as here, the stationary point
yields a minimum. Here the stationary point is b = −(−2

∑
xiyi)/2

∑
x2i =∑

xiyi/
∑
x2i . That is, the least squares estimator is b∗ =

∑
xi yi /

∑
x2i .

This result can be written succinctly as

b∗ = arg minb S(b),

where S(b) is the least squares criterion
∑n
i=1 (yi − b xi)

2. This says that
b∗ is the value of the argument b of the function S(b) that minimizes that
function.

Summary statistics computed from the data in Table 4.1 are given in
Table 4.3. For these data, the least squares estimate is

TABLE 4.3
Summary Statistics for Gasoline Mileage Data

n = 14∑
x = 110.5 gallons

∑
y = 1, 512 miles∑

x2 = 988.95
∑
y2 = 196, 184∑

xy = 13, 797.7

b∗ =
∑

xiyi /
∑

x2i

= 13, 797.7 miles× gallons / 988.95 gallons2

= 13.952 miles per gallon (mpg).



70 A Course on Statistics for Finance

4.3.2 Maximum Likelihood Estimator under the Assumption
of Normality*

Now assume that the errors εi are independent and jointly Normally dis-
tributed, each with mean zero and variance σ2. The (conditional) probability
density function of Yi given xi is

(2πσ2)−1/2 exp[− (yi − βxi)2/2σ2].

By independence, the joint probability density function is the product, which
simplifies to

(2πσ2)−n/2 exp[−
∑

(yi − βxi)2/2σ2].

The joint probability density function involves the parameters β and σ2.
It is considered a function of the observations, with the parameters fixed. On
the other hand, the likelihood L is the joint probability density, considered a
function of the parameters, with the observations fixed. The method of maxi-
mum likelihood consists of choosing as the parameter estimates those values
that maximize the likelihood, that is, those parameter values that are most
consistent with the observed values of the data, in the sense of maximizing
their probability.

To emphasize that in the likelihood the parameters are variables, we write
β as the variable b and σ2 as the variable v:

L = (2πv)−n/2 exp[−
∑

(yi − bxi)
2/2v ].

The principle of maximum likelihood says to choose as the estimates of β and
σ2 the values of B and v that make the likelihood largest.

Note that
L = (2πv)−n/2 exp[−S(b)/2v ],

so that, for any value v, L is maximized by minimizing S(b). But the value of
b that minimizes S(b) is just the least squares estimate b∗. This can be stated
succinctly as

b∗ = arg maxb L(b) = arg minb S(b).

Hence the least squares estimator of β is the same as the maximum likeli-
hood estimator derived under an assumption of Normality. The least squares
estimator does not depend upon an assumption of Normality. In fact, no dis-
tibution need be assumed when the method of least squares is used.

To obtain the maximum likelihood estimator of σ2, write

lnL = (−n/2) ln(2π)− (n/2) ln v − S(b)/2v.

Differentiate this with respect to v, obtaining ∂ lnL/∂v = (−n/2) 1/v +
S(b)/2v2. Set this equal to 0, obtaining (−n/2)v + S(b)/2 = 0, and solve for
v to obtain v = S(b)/n, the maximum likelihood estimate of σ2. That is, the
maximum likelihood estimate of σ2 is S(b∗)/n.
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4.3.3 A Heuristic Approach

A couple of formal estimation methods have been treated; now a heuristic
method will be discussed.

4.3.3.1 Observational Equations

In terms of variables, the statistical model for a line through the origin is

Y = βx+ ε.

When this is written for the n cases, as

Yi = βxi + εi, i = 1, 2, . . . , n,

these n expressions are called the observational equations.

4.3.3.2 Method of Reduction of Observations

Various estimators can be obtained by working in a heuristic manner with the
observational equations. They are obtained by reducing the set of n equations
to a number of equations equal to the number of unknown parameters and
solving them for estimates of the parameters. Among these estimators are the
average of the ratios, the ratio of the averages, and the least squares estimator.

When xi is not zero, one can divide by it to obtain

yi/xi = β + εi/xi.

Solving for β gives
β = yi/xi − εi/xi.

These operations can be done when each xi is different from zero. In the
example each xi is positive because it is gallons of gasoline. One can now sum
these equations and divide both sides by n to obtain

β =
1

n

∑ yi
xi
− 1

n

∑ εi
xi
.

The term involving εi has mean zero and can be expected to be relatively
small, because positive and negative terms will tend to cancel one another,
and, in any event, the summation is divided by n, so

β ≈ 1

n

∑ yi
xi
.

So it is reasonable to take this as an estimate of β:

β̂ =
1

n

∑ yi
xi
,

the average-of-ratios estimate. (The caret ˆ or “hat” denotes an estimate.
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Given a parameter such as β, the symbol β̂, read “beta hat,” denotes an
estimate of β.)

An alternative method of reduction of the observational equations is simply
to sum them, obtaining ∑

yi = β
∑

xi +
∑

εi,

or
β =

∑
yi/
∑

xi −
∑

εi/
∑

xi .

Here the condition
∑
xi 6= 0 is required to be able to divide. Ignoring the

term involving εi gives

β̂ =
Σyi
Σxi

=
ȳ

x̄
,

the ratio of averages estimate.
Still another method of reduction (Linnik 1961) is to multiply the ith

equation by xi, obtaining

xiyi = βx2i + εixi

and summing to obtain∑
xiyi = β

∑
x2i +

∑
εixi,

or
β =

∑
xiyi/

∑
x2i −

∑
εixi/

∑
x2i .

Here there can be no problem with the divisor
∑
x2i ; it is 6= 0 unless all

xi = 0. Treating the term involving εi as negligible, set

β̂ =
∑

xiyi/
∑

x2i ,

which is the same as b∗, the least squares estimate.

4.3.4 Means and Variances of Estimators

4.3.4.1 Means of Estimators

The estimators considered so far are linear in the observations yi, i =
1, 2, . . . , n, that is, they are of the form

∑n
i=1 ai yi. These estimators are:

Least squares estimator: ai = xi/
∑n
j=1 x

2
j

Ratio-of-averages: ai = 1/
∑n
j=1 xj
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Average ratio: ai = 1/xi.

For now, letting E denote the conditional expectation given {xi}, the ex-
pected value of a linear estimator is

E [

n∑
i=1

(aiYi) ] =

n∑
i=1

E [aiYi]

=

n∑
i=1

aiE [Yi]

=

n∑
i=1

ai(βxi)

= β (

n∑
i=1

aixi),

that is,

E [

n∑
i=1

(aiyi) ] = β

n∑
i=1

aixi. (4.4)

4.3.4.2 Unbiasedness

An estimator is unbiased if its expected value is equal to the true parameter
value, whatever it may be. For the three estimators under consideration, we
have the following.

Least squares estimator:

β
∑
aixi = β

∑
(xi/

∑n
j=1 x

2
j )xi = β

∑
x2i /

∑n
j=1 x

2
j ) = β

Ratio-of-averages:

β
∑
aixi = β

∑
(1/
∑n
j=1 xj)xi = β

∑
xi/
∑n
j=1 xj = β

Average ratio:

β
∑
aixi = β

∑
(1/xi)xi = β

More generally, the condition for
∑

(aiyi) to be unbiased for β is (see (4.4))
β
∑
aixi = β, for all values of β, that is,

∑
aixi = 1, or

∑
aixi − 1 = 0.

4.3.4.3 Variance of the Least Squares Estimator

The variance of a linear combination of the observations is V[
∑
ai yi ] =

σ2
∑
a2i . For b∗, the least squares estimator, ai = xi /

∑
x2j , so

∑
a2i =∑

x2i /(
∑
x2j )

2 = 1/
∑
x2i , and

V[ b∗ ] =
σ2∑
x2i
.
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4.3.4.4 Nonlinear and Biased Estimators

It is not necessary to consider only linear estimators. For example, one might
wish to shrink the estimate closer to some particular value β0, using an esti-
mator pb + (1 − p)β0, for some proportion p between 0 and 1. The quantity
p could even be taken to be a statistic, for example related to the F statistic
for testing the hypothesis that β = β0, where p is close to 1 if F is large and
close to 0 if F is small. Such a p is p = (1 − c/F ), for suitable constants c.
Such nonlinear estimators may be biased. Then instead of the variance, one
considers the mean squared error,

MSE[β̂] = E [ ( β̂ − β)2]

as a measure of the goodness of the estimator. It can be shown that the mean
squared error equals the variance plus the square of the bias,

MSE[β̂] = V[ β̂] + [ Bias[ β̂ ] ]2,

where Bias[β̂] = E [β̂]− β.

4.3.5 Estimating the Error Variance

When the εi have a common variance σ2, this parameter is called the error
variance. Now consider estimating it. The model gives

εi = yi − βxi.

Then the residual ei = yi−bxi is unbiased for εi if b is any unbiased estimator
for β . Because E [εi] = 0, the variance is V[εi] = E [e2i ] = σ2. The squared
residual ei estimates εi. So, its square e2i is a reasonable estimate of E [ε2i ],
which is σ2. One can average the e2i to obtain an estimate of σ2. In averaging,
the divisor is n− 1 rather than n. The reason for this is similar to the reason
for dividing by n − 1 instead of n when computing a sample variance from
deviations xi − x̄. This is related to the number of degrees of freedom, or d.f.,
associated with the vector of deviations from the mean. The sum

∑
(xi− x̄) =

0, so the inner product of the vector of deviations and the vector of all ones
is 0 and so the vector of deviations is perpendicular to the equi-angular line
in n-space, and hence has only n− 1 d.f. In the case of fitting a line through
the origin, if n = 1, we could fit the line to the data exactly, with no error:
we simply draw the line between the origin and the one data point. Then,
e1 = 0. There are no d.f. for error. In general, the number of d.f. for error
in fitting a line through the origin is n − 1. There are n residuals, but they
satisfy

∑
eixi =

∑
(yi − bxi)xi = 0. The vector of residuals is perpendicular

to the vector of xi, so it varies in a space of dimension n− 1. If the values of
n− 1 of the residuals are known, the value of the n-th is determined. Related
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to this fact is the fact that E [ (
∑
e2i ] = (n− 1)σ2. For,

ei = yi − bxi
= yi − βxi + βxi − bxi
= (yi − βxi) + (β − b)xi
= εi − (b− β)xi,

and for the sum of squared residuals,∑
e2i =

∑
[εi − (b− β)xi]

2

=
∑

ε2i − 2(b− β)
∑

εixi +
∑

[(b− β)xi)]
2.

The expected value of the first term is nσ2. The expected value of the third
term is E(b− β)2

∑
x2i = V[ b)

∑
x2i = (σ2/

∑
x2i )
∑
x2j = σ2. For the second

term, we note that

b =
∑
j

xjyj/
∑
i

x2i

= (1/
∑
i

x2i )
∑

xj(βxj + εj)

= β +
∑
j

xjεj/
∑

x2i .

This gives b− β =
∑
j xjεj/

∑
i x

2
i , so that

E [(b− β)
∑

εixi] = E [(
∑
j

εjxj)(
∑
k

εkxk)]/
∑

x2i

=
∑
j

∑
k

xjxkE(εjεk)/
∑
i

x2i

=
∑
j

∑
k

xjxkδjkσ
2/
∑
i

x2i

= σ2
∑
j

x2j/
∑
i

x2i

= σ2.

Collecting terms gives the expectation as (n − 2 + 1)σ2 = (n − 1)σ2. So,
E [ (
∑

e2i ] = (n− 1)σ2, and E [
∑

e2i /(n− 1) ] = σ2; that is,
∑
e2i /(n− 1) is

an unbiased estimator for σ2. This statistic is denoted by s2 and is called the
residual mean square: s2 =

∑
e2i / (n− 1).
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4.3.5.1 Computational Formulas

The sum of squared residuals or sum of squared “errors” is denoted by SSE.
We have

SSE =
∑

e2i

=
∑

(yi − bxi)2

=
∑

y2i − 2b
∑

xiyi + b2
∑

x2i

=
∑

y2i − 2b(b
∑

x2i ) + b2
∑

x2i

=
∑

y2i − b2
∑

x2i ,

which may also be written as
∑
y2i − (

∑
xiyi)

2/
∑
x2i .

4.3.5.2 Decomposition of Sum of Squares

The model here is

Yi = E [Yi |xi ] + (Yi − E [Yi |xi ] ) = βxi + εi,

where the “error” is εi = Yi−E [Yi|xi]. This is a decomposition of the random
variable into its conditional mean plus error, the error being the difference
from the conditional mean,

RESPONSE = CONDITIONAL EXPECTATION + ERROR.

Such models are called additive because the error term is added. Analogous
to this decomposition is the decomposition of the observations,

yi = ŷi + (yi − ŷi) = b∗xi + (yi − b∗xi) = b∗xi + ei,

or
OBSERVATION = FITTED VALUE + RESIDUAL,

a decomposition of the observation into its fitted value ŷi = b∗xi plus a
residual ei = yi− b∗xi, that is a difference from the fitted value. The sum of
squares is∑

y2i = b∗2
∑

x2i − 2b∗
∑

xiei +
∑

e2i = b∗2
∑

x2i +
∑

e2i , (4.5)

because
∑
xiei =

∑
xi(yi − b∗ xi) =

∑
xiyi − b∗

∑
x2i =

∑
xiyi −

(
∑
xiyi/

∑
x2i )
∑
x2i =

∑
xiyi −

∑
xiyi = 0. This expression is a decom-

position of the sum of squares into a part due to regression and a part due to
residuals,

SST = SSR + SSE,

where SST is the total sum of squares
∑
y2i , SSR = b∗2

∑
x2i = b∗

∑
xiyi,

and SSE =
∑
e2i .
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4.4 Inference Concerning the Slope

Inference about the parameter β is considered next.

4.4.1 Testing a Hypothesis Concerning the Slope

First consider the null hypothesis H0 : β = 0. The ratio t = b∗/SE[b∗] is the
estimate b∗, expressed in standard deviation units. The standard deviation
of b∗ is SD[b∗] =

√
V[b∗] =

√
σ2/

∑
x2i = σ/

√∑
x2i . The term “standard

error” is used here to mean an estimate of the standard deviation of a statistic.
The standard error of b∗ is SE[b∗] = s/

√∑
x2i . It is reasonable to reject the

null hypothesis when this ratio is large, say, to accept the null hypothesis when
−2 < b∗/SE(b∗) < +2. Of course, instead of 2 we should have a value that is
an appropriate percentile of the null distribution of this test statistic.

It can be shown that, assuming Normality, the distribution of the ra-
tio of the estimate to its standard error, b∗/SE[b∗], is the Student’s t
distribution with n − 1 d.f. Denote the upper p-th percentile of this dis-
tribution by tn−1,p. Then the acceptance region of the two-tailed level-α
test is −tn−1,α/2 < b∗/SE[b∗] < tn−1,α/2. When n is large and α = .05,
tn−1,α/2 ≈ 1.96, or about 2.

Somewhat more generally, consider testing H0 : β = β0, where β0 is a
specified value of β. (In the CAPM, to be discussed below, one might want to
test β = 1.) The t test statistic for this problem is (b∗ − β0)/SE[b∗].

The t test is generally robust (still gives reasonable results) against mild
violations of the assumptions of Normality and homoscedasticity, that is con-
stant variance. (Non-constant variance is called heteroscedasticity.)

4.4.2 Confidence Interval

When the errors are Normally distributed, uncorrelated and have the same
variance, (b∗ − β0)/SE[b∗] has a t distribution with n− 1 d.f. when β = β0. It
follows then that a 100(1− α)% confidence interval for β is

(b∗ −m.e., b∗ + m.e.),

where m.e. is the margin of error, tn−1,α/2 SE[b∗], . where tm,p denotes the up-
per 100p-th percentage point of the t distribution with m degrees of freedom.

Remember that a confidence interval can be considered to be a range of
plausible (reasonable) values for the parameter, given the data. In particular,
if a value β0 is in the interval, then this value is plausible.



78 A Course on Statistics for Finance

4.5 Testing Equality of Slopes of Two Lines through the
Origin

Suppose that Jones made runs 1 through 10 using regular gasoline and runs
11 through 14 using premium gasoline. He wants to compare the miles per
gallon of the two grades of gasoline. He will test H0 : β1 = β2 against one-
sided alternatives Ha : β2 > β1, where the subscript 1 refers to regular and 2
to premium. The test statistic is (b2 − b1)/SE[b1 − b2]. One then sees where
the value of this test statistics falls in the t distribution with n1 + n2 − 2 =
10 + 4− 2 = 12 d.f.

We give further details in general terms and leave the completion of
this example as an exercise. Write the observations in the two groups as
(xgi, ygi), g = 1, 2, i = 1, 2, . . . , ng. Then the variance of the difference between
the two statistics, which are uncorrelated (in fact, statistically independent),
is

V[ b1 − b2] = V[ b1] + V[ b2]

= σ2 /
∑

x21i + σ2 /
∑

x22i

= σ2(1/
∑

x21i + 1/
∑

x22i).

The estimates of the slopes are, for g = 1, 2, bg =
∑
i xgiygi/

∑
i x

2
gi. The

residual sum of squares is

S =
∑
g

∑
i

(ygi − bgxgi)2 =
∑
g

∑
i

y2gi − b21
∑

x21i − b22
∑

x22i,

with n1 +n2 −2 d.f. The estimate of σ2 is s2 = S/(n1 +n2−2). The estimate
of the variance of the difference between b1 and b2 is s2(1/

∑
x21i + 1/

∑
x22i).

The standard error of the difference SE[b1 − b2] is

SE[b1 − b2] = s
√

1/
∑

x21i + 1/
∑

x22i.

The test statistic is t = (b1 − b2)/SE[b1 − b2].

In the example, the variance of the difference is σ2 (1/
∑10
i=1 x

2
i +

1/
∑14
i=11 x

2
i ), estimated by s2(1

∑10
i=1 x

2
i + 1/

∑14
i=11 x

2
i ). The standard er-

ror SE[b1 − b2] is the square root of this. For this two-sample problem, s2

is computed as [
∑10
i=1 (yi − b1xi)

2 +
∑14
i=11 (yi − b2xi)

2]/12. The divisor is
n − 2 = 14 − 2 = 12. Further details for carrying out the test are left as an
exercise.
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4.6 Linear Parametric Functions

What may be more to the point is whether

Cost per mile for premium < Cost per mile for regular.

Assume that regular gasoline costs creg per gallon and premium costs cprem
(cprem > creg) per gallon. Because

Cost per mile =
Cost per gallon

Miles per gallon
,

Miles per dollar =
Miles per gallon

Dollars per gallon
.

For premium this is β2/cprem and for regular β1/creg . We want to make
inferences about the difference, miles per dollar for regular minus miles per
dollar for premium, that is, β1/creg − β2/cprem . If this is positive, regular is
more cost efficient. We can test

H0 : β1/creg − β2/cprem = 0 against Ha : β1/creg − β2/cprem 6= 0

and make a confidence interval for β1/creg − β2/cprem.
Such a linear combination of parameters is called a linear parametric func-

tion. We denote such a quantity by ψ. Here it is of the form ψ = c1 β1 + c2 β2.
It is also called a linear contrast. The constants c1, c2 are called the contrast
coefficients. The estimate of ψ is ψ̂ = c1b1−c2b2 . The variance of the estimate
is

V[ψ̂] = c21V[b1] + c22V[b2] = σ2 ( c21/
∑

x21i + c22/
∑

x22i ).

The estimate of this is s2 ( c21/
∑
x21i + c22/

∑
x22i ). The standard error of the

estimate of the contrast is the square root of this,

SE[ψ̂] = s
√
c21/
∑

x21i + c22/
∑

x22i.

The test statistic is t = ψ̂/SE[ψ̂]. Assuming approximate Normality, this has

a t distribution and the 100(1−α)% confidence interval is (ψ̂−m.e., ψ̂+m.e.),

where the margin of error is m.e. = t∗ SE[ψ̂] and t∗ = tn−2,α/2, the upper
α/2 percentage point of the t distribution with n−2 d.f., where n = n1 +n2.

The reader is asked to complete the example as an exercise.

4.7 Variances Dependent upon X*

Consider a model in which xi > 0 and V[ εi) = σ2xpi , where p could be any
real number, but the values p = 0, 1, and 2 are of special interest. The case
p = 0 gives the homoscedastic case.
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We work on the principle that the least squares criterion is appropriate
for n cases that are uncorrelated and of equal variance. We shall see in later
chapters that an appropriate criterion can be obtained by transforming to
uncorrelated variables of equal variance, writing the least squares criterion in
terms of them, and then transforming back to the original variables to obtain
a criterion in terms of them. In the present model this merely means dividing
by the variance of the i-th case. We take as the estimate of the parameter β
the value b∗ of b that minimizes the least squares criterion

S(b) =
∑

(yi − b xi)
2/V[Yi)

=
∑

(yi − bxi)2/σ2xpi

=
∑

[(yi − bxi)/xp/2i ]2/σ2.

The estimate can be written as

b∗ = arg minb S(b).

Thus, the problem is to minimize
∑

[(yi−bxi)/xp/2i ]2 with respect to b. This

equals
∑

(vi−bui)2, where ui = xi/x
p/2
i = x

1−p/2
i and vi = yi/y

p/2
i = y

1−p/2
i .

In terms of U and V, the least squares estimate is b =
∑
uivi/

∑
u2i ; in terms

of X and Y, this is bp =
∑

yi x
1−p
i /

∑
x2−pi . The value p = 0 gives the

ordinary least squares estimate; the value p = 1, the ratio of averages; the
value p = 2, the average of ratios.

When one does not wish to assume a particular value for p, it also can
be considered to be a parameter, say λ, and estimated from the data. This
can be done by simple inspection of a plot of the squared residuals against
X, possibly supplemented with the computation of some correlations, or, in
the Normal case, a maximum likelihood analysis. Next we elaborate these
methods.

Let b be any unbiased estimate of β, perhaps the ordinary least squares
estimate, b∗, and compute the residuals ei = yi−bxi. Plot their squares against
xi, because the squared residual estimates the variance at that point. If the
plot looks like a random swarm of points, p = 0 is perhaps justified. If the plot
increases linearly, p = 1 is suggested. If the plot curves, p = 2 is suggested.
One might also supplement this analysis by correlating the squared residuals
with X and with X2.

If it is assumed that the εi have a distribution in some particular family,
then p as well as the other parameters can be estimated by the method of
maximum likelihood. If one assumes tha the errors are distributed according
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to a Normal distribution, then the likelihood is

L(p, b, v) =

n∏
i=1

(2πvxpi )
−1/2 exp[−(yi − b xi)

2/(2vxpi ]

= (2πv)−n/2(

n∏
i=1

xpi )
−1/2 exp[−

∑
(yi − bxi)

2/(2vxpi ],

where we represent the parameters λ, β, and σ2 by variables p, b, and v. It
is required to find the values that achieve maxp,b,v L(p, b, v). The same val-
ues that maximize L also maximize lnL; that is, maximizing L(p, b, v) is
equivalent to maximizing K(p,B, v), where K = lnL. Due to the form of the
function involved, it is convenient to do this in the order maxp[maxv(maxbK)].
That is, we maximize over b for given p, v, then maximize the result with re-
spect to v for given p. Finally, we maximize this result over p in the specified
set, usually p = 0, 1, 2.

For any fixed values p and v, we maximize over b and obtain the estimate bp
Then maxbK(p,B, v) = −n/2 ln(2πv)− (p/2) ln

∑
xi−

∑
(yi−bpxi)2/2vxpi =

−n/2 ln(2πv)− (p/2)
∑

lnxi − Sp/2v, where

Sp =
∑

[(yi − bpxi)2/xpi ]. (4.6)

To maximize over v, we compute ∂[−n/2 ln(2πv)−(p/2)
∑

lnxi−Sp/2v]/∂v =
−n/2v − Sp/2v

2 = 0, nv = Sp, v = Sp/n. Thus maxKb,v =
−(n/2) ln(2πSp/n) − (p/2)

∑
lnxi − n/2. The maximum likelihood estimate

of the power parameter λ is the value of p that maximizes this, that is, which
minimizes (n/2) ln(2πSp/n)+(p/2)

∑
lnxi+n/2, or, equivalently, which min-

imizes n lnSp + p
∑

lnxi, where Sp is given in Equatioin 4.6. Note that the
maximum likelihood estimate of the power parameter λ represented by the
variable p depends not only upon the residual sum of squares, Sp, but also
upon the term p

∑
lnxi in the Normal case. When one is unable to specify a

family of distributions, one could argue that Sp is at least somewhat indicative
of the value of p.

4.8 A Financial Application: CAPM and “Beta”

At this point we return to financial investments analysis with an example of
a “market model.” “Market models” describe the rates of return of assets in
terms of the rate of return and other characteristics of the market as a whole.
Here, the term asset refers to shares of a stock, a mutual fund, or a portfolio
(set of stocks).

Price series and rates of return (RORs) were discussed in the preceding
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chapter. The “raw” (original) data are the prices Pat, a = 1, 2, . . . ,m assets,
t = 1, 2, . . . , n. The RORs Rat = (Pat − Pa,t−1)/Pa,t−1, which are derived
data, are to be the object of analysis here.

Let Rmt denote the ROR of the market as a whole, as indicated, for exam-
ple, by the ROR of the S&P500 composite stock index. (The S&P 500 index
has several ticker symbols, including: ĜSPC[2] and $SPX.) The discussion
here is in terms of R, the ordinary ROR, but continuous ROR r could be used
as well. Let Rft denote the risk-free ROR, as represented for example by the
ROR of one-month or three-month treasury bills. One can realize an ROR
Rft without investing in a risky asset such as shares of stock.

4.8.1 CAPM

The quantity Rat − Rft is called the excess ROR of asset a at time t. The
quantity Rmt − Rft is the excess ROR of the market at time t. The excess
ROR is the ROR associated with the decision to hold the risky asset i rather
than a risk-free instrument. The term “excess” here does not mean “extra” or
“abnormal.” It simply means the amount above the the risk-free ROR. Later,
in discussing portfolio analysis, it will be seen that optimization in terms of
several risky assets and a risk-free asset comes out in terms of excess returns.

The Capital Asset Pricing Model, or CAPM, asserts that the expected
value of the excess ROR of asset i is equal to a coefficient βi times the excess
ROR of the market:

Rat −Rft = βa(Rmt −Rft) + εit.

For asset i this is of the form

yat = βa xt + εat,

the form of model discussed above, with yat = Rat−Rft and xt = (Rmt−Rft).

In general, the units of β are units of y divided by units of x. If y is weight
in pounds and x is height in inches, then the units of β in the regression of
y on x are pounds per inch. The meaning of β is that if x increases by one
x-unit, then the expected value of y increases by β y-units.

In the CAPM, both y and x are rates of return. In particular, they have
the same units. When y and x have the same units, then β is a pure number, in
the sense of being dimensionless (unitless)—the units cancel out. The meaning
of β in the CAPM is that if x increases by δx, then the (conditional) expected
value of Y increases by β δx. If β = 1, an increase of 1% in x is associated with
a 1% one percent increase in the conditional expected value of Y. If β = 2,
an increase of 1% in x is associated with a 2% increase in the conditional
expected value of Y. If β = 1/2, an increase of 1% in x is associated with a
0.5%a increase in the conditional expected value of Y.

For one asset and the market, the dataset can be considered to be in the
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form for simple linear regression,

{(xi, yi ), i = 1, 2, . . . , n}.

The usual and customary size of a dataset for this purpose is five years of
monthly data (n = 60 months).

4.8.2 “Beta”

Usually, βa will be positive, because most assets a are positively correlated
with the market as a whole. If βa > 1, asset a is expected to increase by more
than1% if the market increases by 1%. If 0 < βa < 1, asset a is expected to
increase by less than 1% if the market increases by 1%. Of course, if the market
decreases by 1%, an asset a with 0 < βa < 1 is expected to decrease by less
than 1%. Such an asset, with a beta of less than 1, is called “conservative.” An
asset with a beta of more than 1 is called “risky.” But sometimes a dividing
point more like 1.5 might be used instead of 1.0.

4.9 Slope and Intercept

Even when x = 0 implies y = 0, a model with both a constant and a slope may
be more descriptive of the data. Such is the case, for example, with weight
and height, where the fitted weight w in terms of height h might be something
like ŵ = 4.4h − 137 lb.

4.9.1 Model with Slope and Intercept

So, often a model with both a slope β and an intercept (constant) α is used.
The statistical model is

Y = α+ β X + ε.

The conditional mean E [Y |x ] is the regression function η(x) = α + β x.
(The letter η, Greek y, denotes a mathematical expectation of the r.v. Y. )

The data for simple linear regression take the form of (x, y) pairs for n cases
or instances of observation, (xi, yi), i = 1, 2, . . . , n. The observational model
is the statistical model, stated in terms of cases. This gives the observational
equations, which here are

Yi = α + β xi + εi, i = 1, 2, . . . , n.

The conditional mean of Yi given xi is α + βxi. The variables εi are differ-
ences from the conditional mean and hence have mean 0.

Note that the presence of the additional term α changes the meaning of
and estimate of the slope parameter β. (The β in E [Y |x ] = α+ β x is not
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the same as the β in E [Y |x ] = β x. The value and meaning of any such
parameter is dependent upon what other terms are in the model.)

The least squares criterion evaluated for trial values a and b is

S(a, b) =

n∑
i=1

[yi − (a+ bxi)]
2.

Minimizing by computing partial derivatives with respect to a and b and
setting them equal to zero (or otherwise) leads to two simultaneous linear
equations, the solutions of which are the least squares estimates a∗, b∗. This
can be written as

(a∗, b∗) = arg min
a,b

S(a, b).

These least squares estimates are

b∗ = [

n∑
i=1

xi yi − (

n∑
i=1

xi)(

n∑
i=1

yi)/n] / [

n∑
i=1

x2i − (

n∑
i=1

xi)
2/n]

and

a∗ = [

n∑
i=1

yi − b

n∑
i=1

xi]/n.

These can be written as

b∗ =

n∑
i=1

(xi − x̄)(yi − ȳ) /

n∑
i=1

(xi − x̄)2

and
a∗ = ȳ − b x̄.

(Alternatively, one can write yi = γ+β(xi− x̄) + εi, where γ = α+βx̄, note
that the estimate of γ is simply ȳ, and proceed from there to get the same
a∗, b∗.)

4.9.2 CAPM with Differential Return

In the context of the CAPM, an intercept α is often used to represent the
systematic part of ROR that is not explained by the ROR of the market. This
part is called the differential or abnormal ROR. See Jensen (1968). Seeking
investments that yield positive differential returns is sometimes called “chasing
alpha.” The model is Rat − Rft = αa + βa (Rmt − Rft), t = 1, 2, . . . , n, for
assets a taken one at a time.



Simple Linear Regression; CAPM and Beta 85

4.10 Appendix 4A: Optimality of the Least Squares Es-
timator

Next the optimality of the least squares estimator is illustrated in the case of
estimation of a single regression parameter.

The Cauchy–Schwarz inequality. Let ai, xi, i = 1, 2, . . . , n, be any 2n
numbers. Then

(
∑

ai xi )2 ≤ (
∑

a2i )(
∑

x2i ).

Proof: For any number b, 0 ≤
∑

(ai − b xi)
2 =

∑
a2i − 2 b

∑
ai xi +

b2
∑
x2i = f(b), say. Taking b =

∑
ai xi /

∑
x2i gives

0 ≤ f(
∑

aixi/
∑

x2i ) =
∑

a2i − (
∑

aixi)
2/
∑

x2i .

Multiplying through by
∑
x2i gives the result.

Fact. Let b =
∑
aiyi by any unbiased linear estimator for β. Then V[ b) ≥

V[ b) = σ2/
∑
x2i . That is, the least squares estimator b∗ has minimum vari-

ance in the class of all unbiased linear estimators.

Proof: By the assumption of unbiasedness, β = E [ b ] = E [ (
∑
aiYi ] =∑

aiE [Yi] =
∑

aiβxi = β
∑

aixi, for all values of β, which implies that∑
aixi = 1. Now, V[ b] = V[

∑
aiyi] =

∑
a2iV[Yi] = σ2

∑
a2i . Thus, it suf-

fices to prove that
∑
a2i ≥ 1/

∑
x2i . But, by the Cauchy–Schwarz inequality,∑

a2i
∑
x2i ≥ (

∑
aixi)

2 = 12 = 1, so
∑
a2i ≥ 1/

∑
x2i , as was to be shown.

Remark. The Cauchy–Schwarz inequality shows that the size of the corre-
lation coefficient is less than or equal to one, that is, |r| ≤ 1, or −1 ≤ r ≤ +1.
To see this, given (ui, vi), i = 1, 2, . . . , n, take ai = ui − ū and xi = vi − v̄.

These methods and results generalize to the case of slope and intercept
and to the case of regression on several variables (multiple regression).

4.11 Summary

The conditional expected value of a variable Y given that another variable X
has a particular value, say x, is the mean of the distribution of Y for instances
in which X = x. This conditional expectation is denoted by E [Y |X = x].

The simple linear regression model describes the conditional expected
value of a response (dependent) variable Y as a linear function of an ex-
planatory (independent) variable x. The word “simple” refers to the fact that
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Y is being described in terms of a single explanatory variable x. In “multiple”
regression, the conditional expectation of Y is modeled in terms of several
explanatory variables.

The parameters of a simple linear regression model are the slope β, the
intercept α, and the variance σ2. This is the variance of the conditional dis-
tribution of Y given x.

The statistical model is Y = α + βx + ε. The observational equations are
yi = α+ βxi + εi, i = 1, 2, . . . , n. The variance of εi is σ2.

The least squares criterion for evaluating a, b as estimates of α, β is
S(a, b) =

∑n
i=1 [yi − (a + b xi)]

2. The principle of least squares says to
choose as the estimates those values a∗ for a and b∗ for b that minimize the
least squares criterion.

Regression through the origin refers to a model where E [Y |x] = βx.
In the CAPM (Capital Asset Pricing Model), the variable Y is the excess

ROR of any given asset, and x is the excess ROR of the market.

4.12 Chapter Exercises

4.12.1 Applied Exercises

4.1 Jones’ mpg data are in Table 4.1.

a. Compute the least squares estimate of the mpg.

b. Compute the “ratio of means” estimate.

c. Compute the “mean of the ratios” estimate.

4.2 Suppose there was an error in recording Run 9. The values should be
(98, 12.8) instead of (96, 7.5). The corrected dataset is in Table 4.4.

a. Compute the least squares estimate of the mpg.

b. Compute the “ratio of means” estimate.

c. Compute the “mean of the ratios” estimate.

4.3 Suppose that Jones made runs 1 through 10 using regular gasoline and
runs 11 through 14 using premium.

a. Compute the least squares estimates b1 and b2 of the mpg obtained using
regular and premium.

b. Test the hypothesis of equality of miles per gallon, against the appro-
priate one-sided alternatives.



Simple Linear Regression; CAPM and Beta 87

TABLE 4.4
Gasoline Mileage Data

Run Miles Gallons Run Miles Gallons

1 62 4.6 8 108 8.0
2 49 5.7 9 98 12.8
3 73 4.3 10 61 4.7
4 63 6.1 11 165 10.8
5 108 9.3 12 148 8.9
6 135 9.9 13 197 13.1
7 60 4.9 14 185 12.7

4.4 The car dealer told Jones he should expect to get at least 15 mpg. (It
is an old-model, used car.) Jones bought the car. The data from a number of
fill-ups are in Table 4.4. The least squares estimate is only 13.95 mpg, 1.05
mpg lower than the claimed 15 mpg. Is 13.95 mpg significantly smaller than
15.0 mpg? Test H0 : β = 15 against alternatives Ha : β < 15. ANSWER:
t = 2.08, 13 d.f., one-tailed p = .029 (at the .05 level, for example, reject H0).

4.5 Compare the mpg of regular and premium gasoline (runs 1–10 and 11–
14) by testing the relevant hypothesis. (Using methods to be discussed in
later chapters, this can be done by introducing a dummy variable that is 0 for
regular runs and 1 for premium runs.)

4.6 Cost comparison. Refer to the data in Table 4.1. Compare the dollars
per gallon of regular (runs 1–10) and premium (runs 11–14), as outlined in
the text and using the costs per gallon given there. Make a t test at the .05
level and a 95% confidence interval for the contrast involved.

4.7 The Sarabee Foods Company buys beef for some of its items. The fat
must be trimmed off. Table 4.5 shows total weight and weight of fat for sixteen
purchases of Grade A and fourteen purchases of Grade B beef, sorted within
grades by total weight.

a. Compute the least squares estimate of the proportion of the total weight
that is fat for each grade.

b. Compute the “ratio of means” estimate.

c. Compute the “mean of the ratios” estimate.

4.12.2 Mathematical Exercises

4.8 Given: two points P1 with coordinates (x1, y1) = (1, 3) and P2 with
coordinates (x1, y2) = (3, 5). What is the slope of the line through them?
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TABLE 4.5
Data for Beef Purchases (weight in ounces).

Grade A (n=16) Grade B (n=14 )

Total Weight Fat Total Weight Fat

12 0.6 10 1.0
16 0.8 12 1.1
17 0.8 16 1.2
18 0.9 17 1.3
19 0.9 18 1.3
20 1.0 19 1.5
20 1.1 19 1.5
21 1.2 20 1.7
22 1.3 22 1.8
24 1.4 26 2.4
26 1.5 28 2.4
28 1.5 28 2.4
30 1.5 31 2.6
31 1.5 32 2.7
32 1.5
33 1.5

4.9 (continuation) What is the point half-way between the two given points?

4.10 (continuation) What is the equation of the line perpendicular to this
line and through the point (x1, y1)? Hint: The slope is the negative reciprocal
of that of the given line.

4.11 Given: two points P1 with coordinates (x1, y1) = (0, 0) and P2 with
coordinates (x2, y2). What is the slope of the line through them?

4.12 (continuation) What is the point half-way between the two given
points?

4.13 (continuation) What is the equation of the line perpendicular to this
line and through the point (x1, y1)? Hint: The slope is the negative reciprocal
of that of the given line.

4.14 Model with just a mean. Specialize the regression function
E [Y |x ] = α + β x to the situation in which E [Y |x ] = µ, for all x.
Answer: β = 0 and α = µ (or α = 0, β = µ and x = 1 for every case).

4.15 The sample mean is a least squares estimate. Show that the
sample mean is the least squares estimate of µ in the model Yi = µ + εi.
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4.14 Further Reading

For details on the optimality of least squares estimates in general, the reader
may consult texts on linear statistical models in general, such as that by
Graybill (2000).
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5.1 Multiple Regression Models

Multiple regression models describe the conditional expectation of Y as a
function of the values of p variables X1, X2, . . . , Xp. The variable Y is called
the response variable or dependent variable. The variables X1, X2, . . . , Xp

are called explanatory variables, independent variables, or predictors.

5.1.1 Regression Function

The conditional expectation of Y, given values x1, x2, . . . , xp ofX1, X2, . . . , Xp,
denoted by E [Y |x1, x2, . . . , xp ], is called the regression function. This func-
tion is the mean of the conditional distribution of Y, given that X1 =
x1, X2 = x2, . . . , Xp = xp. That is, it is the mean of Y for cases in which
X1 = x1, X2 = x2, . . . , and Xp = xp. Sometimes we write this function as
η(x1, x2, . . . , xp). (The notation η, Greek letter y, is used for the mathematical
expectation of the r.v. Y .)

A frequently used model is that in which the regression function is linear
in x1, x2, . . . , xp, that is, it is of the form

η(x1, x2, . . . , xp) = α+ β1 x1 + β2 x2 + · · · + βp xp,

where α, β1, β2, . . . , βp are unknown parameters, to be estimated. The statis-
tical model is

Y = α+ β1X1 + β2X2 + · · ·+ βpXp + ε.

The observational model is the statistical model, stated in terms of cases.
This gives the observational equations, which here are

Yi = α + β1x1i + β2 x2i + · · ·+ βpxpi + εi, i = 1, 2, . . . , n.

The conditional mean of Yi, given x1i, x2i, . . . , xp;i is α + β1x1i + β2x2i +
· · · + βp xpi. The variables εi are differences from the conditional mean and
hence have mean 0.

Estimation is discussed next.

5.1.2 Method of Least Squares

The dataset for multiple regression is of the form

{ (yi, x1i, x2i, . . . , xpi ), i = 1, 2, . . . , n}.

Given trial values a, b1, b2, . . . , bp, the corresponding fitted values of Y are

ŷi(a, b1, b2, . . . , bp) = a+ b1x1i + b2x2i + · · ·+ bpxpi.
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The method of least squares consists of minimizing the distance between the
fitted values

(ŷ1(a, b1, b2, . . . , bp) ŷ2(a, b1, b2, . . . , bp) . . . ŷn(a, b1, b2, . . . , bp))

and the actual values
(y1 y2 ; . . . yn).

Minimizing this distance D is equivalent to minimizing its square, D2; that
is,

min
a,b1,b2,...,bp

D(a, b1, b2, . . . , bp) =
√

min
a,b1,b2,...,bp

D2(a, b1, b2, . . . , bp)

=
√

min
a,b1,b2,...,bp

S(a, b1, b2, . . . , bp),

so it is equivalent to minimizing S. The function S is the least squares cri-
terion, the sum of squared deviations between the actual values and fitted
values corresponding to a, b1, b2, . . . , bp :

S(a, b1, b2, . . . , bp) =

n∑
i=1

[(yi − ŷi(a, b1, b2, . . . , bp)]2

=

n∑
i=1

[yi − (a+ b1x1i + b2x2i + · · ·+ bpxpi)]
2.

Taking partial derivatives and setting them equal to zero gives a set of p+ 1
simultaneous linear equations for a, b1, b2, . . . , bp. The partial derivatives are

∂S

∂a
=
∑ ∂S

∂ŷi

∂ŷi
∂a

=
∑
−2(yi − ŷi)(1) = −2

∑
(yi − ŷi) = 0

and

∂S

∂bj
=

∑ ∂S

∂ŷi

∂ŷi
∂bj

=
∑
−2(yi − ŷi)(xji)

= −2
∑

(yi − ŷi)xji = 0, j = 1, 2, . . . , p.

These become ∑
ŷi =

∑
yi

and ∑
xji ŷi =

∑
xjiyi, j = 1, 2, . . . , p.

Writing ŷi = a+ b1 x1i + b2 x2i + · · · + bp xpi and simplifying leads to the
p+ 1 simultaneous linear equations. The solutions a∗, b∗1, b

∗
2, . . . , b

∗
p are the

least squares estimates, the values that minimize the least squares criterion.
This can be written succinctly as

(a∗, b∗1, b
∗
2, . . . , b

∗
p ) = arg min

a,b1,b2,...,bp
S(a, b1, b2, . . . , bp).



94 A Course on Statistics for Finance

5.1.3 Types of Explanatory Variables

Note that some of the explanatory variables could be functions of others; for
example, X2 might be the square of X1. One variable can be the product of two
others, for example, X3 might be X1X2. Further, the explanatory variables
need not be strictly numerical; some could be dummy (0,1) variables. In this
book the notation E [Y |x1, x2, . . . , xp], is used even when the values of the
explanatory variables are fixed, as in a planned experiment, that is, a designed
experiment.

An example with numerical explanatory variables is taken up next. Later
in the chapter, examples in which one or more of the explanatory variables
are binary will be discussed.

5.2 Market Models

The preceding chapter treated the CAPM and the financial analyst’s “beta.”
The CAPM is an example of a market model. Market models describe the
ROR of an asset in terms of the behavior of the market as a whole. The CAPM
attempts to explain this behavior by a single variable, the excess ROR of the
market. Generally, the behavior of an asset is reflected not only in the ROR
of a market index, but also in other explanatory variables reflecting market
characteristics.

Some tests of the CAPM showed that it did not hold in some situations
and was often inaccurate or unsuitable in predicting asset values. Roll (1977)
stated that the CAPM holds in theory but is difficult to test empirically
because stock indexes and other measures of the market are poor proxies for
the CAPM variables. This came to be known as “Roll’s critique.” The CAPM
is still widely taught because of its insights into capital markets and because it
is sufficient for many important applications. But next we discuss extensions
of it.

5.2.1 Fama/French Three-Factor Model

Economists and financial analysts sometimes use the term “factor” for what
statisticians call a “variable.” (Statisticians use the term “factor” for the ex-
planatory variables in a planned experiment, especially when they are set at
discrete levels. They use the term also for the linear combinations of variables
estimating latent variables in factor analysis, a part of multivariate statistical
analysis.)

Fama and French (1992) introduced two other variables (“factors”) along
with the overall market factor, resulting in a three-factor model. Their work
is geared toward assessing the performance of various portfolios, that is, sets
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of stocks. In that context, Rit is the ROR of portfolio i in time period t .
The two additional factors, in addition to the market ROR, are called SMB
and HML:

SMB, for “small [cap] minus big” (smallness)

HML, for “high [book/price] minus low” (value)

These variables (“factors”) SMB and HML measure the excess returns of small
caps (stocks of firms with small capitalization, that is, firms that are small in
this sense) and “value” stocks over the market as a whole. The Fama/French
model is of the form

E [R−Rf ] = α+ βm (Rm −Rf ) + βs · SMB + βv ·HML.

Here R is the portfolio’s rate of return, Rf is the risk-free return rate, and Rm
is the return of the whole stock market. Because of the way they are defined,
the corresponding coefficients βs and βv take values on a scale of roughly 0 to
1: βs = 1 would be a small cap portfolio, βs = 0 would be large cap, βv = 1
would be a portfolio with a high book/price ratio, etc.

This model is in the form of a multiple regression with three explanatory
variables,

E [Y |x1, x2, x3 ] = α+ β1x1 + β2x2 + β3x3,

with Y = R−Rf , x1 = Rm −Rf , x2 = SMB, and x3 = HML.

5.2.2 Four-Factor Model

Carhart (1997) extended the Fama/French model to include a momentum
factor, denoted by MOM or UMD, that is, up-minus-down, a ROR for prior-
month winners minus a ROR for prior-month losers.

This is a multiple regression model with four explanatory variables,

E [Y |x1, x2, x3, x4 ] = α+ β1x1 + β2x2 + β3x3 + β4x4,

with Y = r − rf , x1 = rm − rf , x2 = SMB, x3 = HML, and x4 = UMD.

5.3 Models with Numerical and Dummy Explanatory
Variables

In this section, models with both numerical and dummy explanatory variables
will be discussed.
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5.3.1 Two-Group Models

Consider further the example from the preceding chapter on runs of a car
with premium or regular gasoline. Introduce a dummy variable gt, which is
0 for runs with regular and 1 for runs with premium. This is gt = 0 for runs
t = 1, 2, . . . , 10 and gt = 1 for t = 11, 12, 13, 14. Letting Y = miles and X =
gallons, the regression function can be written as

E [Yt |xt, gt ] = βxt + ∆β xt gt.

Letting βreg = β and βprem = βreg + ∆β, this is

E [Yt |xt, 0] = βxt = βreg xt, for gt = 0

E [Yt |xt, 1] = βxt + ∆β xt (1) = βxt + ∆β xt

= (β + ∆β )xt = βpremxt, for gt = 1.

To fit the model, in a spreadsheet enter columns for y, x, g, and x×g. Then in
software fit the regression of y on x and x×g, using the no-constant (“constant
is zero”) option. The output will include the estimates of β and ∆β and the
t values and p values. The hypothesis H0 : βprem = βreg is equivalent to
H0 : ∆β = 0.

5.3.2 Other Market Models

5.3.2.1 Two Betas

Suppose you wanted to take a long position—buy and hold—on a stock. What
sort of stock would you like? One that goes up, you say—one that goes up
whether the market goes up or down, that is, whether the market is in a Bull
state or a Bear state. This would mean that stock would need a positive beta
in a Bull market and a negative beta in a Bear market. Now, you probably will
not find a stock that behaves that way, but you might find some stocks that
have a large beta in a Bull market and a small beta in a Bear market. Anyway,
right away, this leads to a concept of two betas. A dummy variable can be
included to label each month as Bull or Bear. Then a multiple regression
model can be fit, including this variable. The simplest way of defining such a
variable is Bull (1) if the market ROR was positive and Bear (0) if the market
ROR was negative. This is called the “Up-Down” (U/D) method. method.
It is not exactly what most analysts mean by Bull and Bear states, because
with the U/D method the state can shift in a single month; other ways of
defining Bull and Bear states will be mentioned later in Chapter 9 on regime
switching.

In studying rates of return of forty-nine mutual funds for a six-year period
1966 through 1971, Alexander and Stover (1980) included a dummy variable in
the model to determine whether the beta coefficient for an individual mutual
fund depends on whether the market is moving generally upward (Bull market)
or generally downward (Bear market). A six-year period was used, but the
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conventional period for estimating “beta” is five years of monthly data. (See
also McClave and Benson (1994), pp. 681–682 and 686.)

Following this idea, some data (hypothetical but consistent with recent real
data) are shown in Table 5.1. The RORs shown are excess RORs; the risk-free
rate (three-month Treasury bill rate TB3MS) has been subtracted. (By the
way, although over the past several decades the risk-free rate has varied from
above 15% down to about 0.01%, in recent years it has been very low.) The
asset is a mutual fund. The Up-Down (U/D) Bull/Bear indicator is shown in
Table 5.1. Several models will be estimated: the CAPM without constant, the
CAPM with constant, and models with the U/D Bull versus Bear indicator.

TABLE 5.1
Excess RORs, with Bull/Bear Indicator

Month Market Fund Bull Month Market Fund Bull

5 J 2.16% 2.45% 1 3 J −1.13% −1.80% 0
yrs F −0.32% -0.50% 1 yrs A 1.07% 1.52% 1
ago M 0.73% 0.75% 1 ago, S −9.61% -9.98% 0

A 0.82% 1.35% 1 cont’d O −18.62% -18.24% 0
M −3.53% −3.75% 0 N −7.80% −8.80% 0
J −0.39% −0.78% 1 D 0.78% 1.35% 1
J 0.09% 0.22% 1 2 J −8.97% −9.69% 0
A 1.69% 1.96% 1 yrs F −11.67% −9.11% 0
S 2.03% 2.16% 1 ago M 8.18% 7.58% 1
O 2.69% 3.13% 1 A 8.96% 8.61% 1
N 1.22% 1.31% 1 M 5.16% 5.51% 1
D 0.85% 1.40% 1 J 0.00% 0.31% 1

4 J 0.98% 1.14% 1 J 7.14% 8.69% 1
yrs F −2.63% −2.99% 0 A 3.29% 3.64% 1
ago M 0.58% 0.71% 1 S 3.50% 4.34% 1

A 3.83% 4.51% 1 O −2.00% −2.37% 0
M 2.81% 3.27% 1 N 5.57% 4.67% 1
J −2.18% −1.73% 0 D 1.76% 2.91% 1
J −3.65% −4.22% 0 1 J −3.77% −4.13% 0
A 0.93% 0.94% 1 yrs F 2.80% 4.51% 1
S 3.19% 4.16% 1 ago M 5.70% 6.28% 1
O 1.15% 1.29% 1 A 1.45% 1.32% 1
N −4.78% −3.23% 0 M −8.57% −8.55% 0
D −1.12% −0.56% 0 J −5.55% −5.81% 0

3 J −6.54% −7.32% 0 J 6.64% 7.09% 1
yrs F −3.71% −1.97% 0 A −4.87% −5.05% 0
ago M −0.70% −1.36% 0 S 8.38% 8.96% 1

A 4.54% 4.38% 1 O 3.61% 2.45% 1
M 0.92% 1.92% 1 N −0.24% 0.59% 0
J −9.14% −9.15% 0 D 6.31% 7.31% 1

The first model considered is the CAPM with a constant. Output from the
regression of Excess ROR of the mutual fund on that of the market index is
shown next. The variable “fund” is the excess ROR of a mutual fund; “mar-
ket” is the excess ROR of a market index. The value 1.01 of the regression
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coefficient is the financial analyst’s beta. The standard error of fit (square root
of the Mean Square for Residual Error, 0.573) is s = 0.757078. The output
is shown after Table 5.1.

Regression Analysis: Fund versus Market (without constant)

The regression equation is: fitted value of fund = 1.01 market

Predictor Coef SE Coef t p

No constant

S&P500 1.00961 0.01870 54.00 0.000

s = 0.757078

Analysis of Variance

Source DF SS MS F p

Regression 1 1671.4 1671.4 2916.11 0.000

Residual Error 59 33.8 0.573

Total 60 1705.2

Next, the CAPM with a constant (α, representing “differential” ROR) is
fit. The output is shown below. Check to see if the beta changes much, and
whether the estimate of α is s.d.f.z. (significantly different from zero).

Regression Analysis: fund versus market

The regression equation is

fitted value of fund = 0.228 + 1.01 market

Predictor Coef SE Coef t p

Constant 0.22816 0.09397 2.43 0.018

market 1.01099 0.01797 56.25 0.000

s = 0.727497 R-Sq = 98.2% R-Sq(adj) = 98.2%

Analysis of Variance

Source DF SS MS F p

Regression 1 1674.3 1674.3 3163.57 0.000

Residual Error 58 30.7 0.5

Total 59 1705.0

The estimate of beta remained about 1.01, an estimate of 1.01099 instead of
the previous 1.00961. (This is too many decimals, anyway: the standard error
of estimate of β is about 0.02). The estimate of the constant is s.d.f.z. with a
t of 2.43 ( p = .018). The standard error of fit is about 0.727, an improvement
compared to about 0.757 for the fit with no constant.

Next, two betas—a Bull beta and a Bear beta—will be estimated, using
the U/D variable. First this is done without constants in the model and then
with constants.
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Regression Analysis: fund versus market, market*U/D (without constants)

The regression equation is

fitted value of fund = 0.981 market + 0.0820 market*U/D

Predictor Coef SE Coef t p

No constant

market 0.98092 0.02250 43.59 0.000

market*U/D 0.08202 0.03804 2.16 0.035

s = 0.734705

Analysis of Variance

Source DF SS MS F p

Regression 2 1673.93 836.96 1550.53 0.000

Residual Error 58 31.31 0.54

Total 60 1705.24

The fitted model is ˆfund = 0.981 market + 0.0820 market*U/D. This is

ˆfund = 0.981 market, for U/D = 0(Bear market)

= 1.083 market, for U/D = 1(Bull market).

It is interesting to compare the beta with 1; here, it is less than 1 in a Bear
market and greater than 1 in a Bull market. This model gives a standard error
of fit equal to about 0.735, not quite as low as that (0.727) of the model with
an alpha and one beta.

Next, a model with two betas but a single alpha is estimated, and then
one with two betas and two alphas.

Regression Analysis: fund versus market, market*U/D

The regression equation is

fitted value of fund = 0.173 + 1.00 market + 0.0291 market*U/D

Predictor Coef SE Coef t p

Constant 0.1727 0.1467 1.18 0.244

market 1.00047 0.02791 35.84 0.000

market*U/D 0.02911 0.05881 0.49 0.623

s = 0.732278 R-Sq = 98.2% R-Sq(adj) = 98.1%

Analysis of Variance

Source DF SS MS F p

Regression 2 1674.45 837.23 1561.32 0.000

Residual Error 57 30.57 0.54

Total 59 1705.02
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The fitted model is ˆfund = 0.173 + 1.00 market + 0.0291 market*U/D.
This is

ˆfund = 0.173 + 1.00 market, if U/D = 0

= 0.173 + 1.0291 market, if U/D = 1.

Next, look at results for fitting two betas and two alphas.

Regression Analysis: fund versus U-D, market, market*U/D

The regression equation is

fitted value of fund = - 0.090 + 0.394 U-D + 0.971 market + 0.0334 market*U/D

Predictor Coef SE Coef t p

Constant -0.0896 0.2525 -0.35 0.724

U-D 0.3936 0.3094 1.27 0.209

market 0.97077 0.03628 26.76 0.000

market*U/D 0.03343 0.05860 0.57 0.571

s = 0.728337 R-Sq = 98.3% R-Sq(adj) = 98.2%

Analysis of Variance

Source DF SS MS F p

Regression 3 1675.31 558.44 1052.71 0.000

Residual Error 56 29.71 0.53

Total 59 1705.02

The fitted regression equation is

ˆfund = −0.090 + 0.394U/D + 0.971 market + +0.0334 market*U/D

with a standard error of fit of 0.728, not quite as low as the 0.727 obtained
with one beta and one alpha. The estimate of the constant is not s.d.f.z.

The differences in goodness-of-fit of these several models are not dramatic,
the standard errors of fit ranging from about 0.76 to about 0.72. However,
the exercise of fitting shows how to formulate, fit, and compare alternative,
competing models, in the case models with one or two betas and one or two
alphas. Remember that the perhaps overly simple U/D has been used for the
Bull/Bear states. Other possibilities are considered later.

5.3.2.2 More Advanced Models

Two variances. The error variances may differ between Bull and Bear
markets. Separate models for Bull and Bear can be fit, and the estimated
error variances compared. Larger variance seems to be associated with Bull
periods. Another way of allowing different variances is to use one distribution
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for Bull periods and another for Bear periods, with possibly different variances
as well as different means. Regime switching models provide a way of doing
this.

Regime Switching Models. Studies employing conventional definitions
of Bull and Bear are interesting. However, other models allow the data to speak
for themselves to determine switches between states. The estimates of the
model parameters may or may not then correspond to conventional definitions
of Bull and Bear. A hidden Markov model (HMM) consists of state-conditional
probability functions, for example Normal distributions with different means
and different variances, and a matrix of transition probabilities, entry (j, k)
of which gives the probability of transition to state k , given that the process
was in state j in the preceding time period. Such models are discussed to
some extent in Chapter 9.

5.4 Model Building

Suppose there are several competing alternative models. Generally these will
be models involving different explanatory variables. These models are to be
ranked in some way, or at least it is to be decided which are reasonably good
and which are not.

5.4.1 Principle of Parsimony

It takes only so many parameters to fit a dataset. The principle of parsimony
is that no more parameters than necessary should be used. That is, there must
be a balance between model fit and model complexity. A “model-selection
criterion” is an aid to achieve this balance.

5.4.2 Model-Selection Criteria

Model-selection criteria provide figures-of-merit for alternative models, that
is, they assign scores to the alternative models.

5.4.2.1 Residual Mean Square

The decomposition of sum of squares for any given model is SST = SSR +
SSE. The residual mean square is MSE = SSE/DFE = SSE/(n−k−1), where
k is the number of Xs. The standard error of fit used above is just the square
root of MSE.

MSE involves both the sample size n and the number k of explanatory
variables used. Its square root s, the standard error of the fit, is a kind of
average error of prediction across the n cases in the sample. It is the root-
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mean-square of these errors (except that a divisor of n−k−1 rather than n is
used in computing this average). MSE is of course a smaller-is-better criterion.
MSE, because it involves the number of explanatory variables k, can be useful
for comparing models with different numbers of explanatory variables. (SSE,
on the other hand, cannot increase when an additional variable is included
in the regression, so it is not a suitable model-selection criterion for models
involving different numbers of variables, as it would choose the model with all
variables included.)

5.4.2.2 Adjusted R-Square

The lack of fit of the model, in terms of sums-of-squares, is 1−R2 = SSE/SST.
A degrees-of-freedom adjustment of this consists of replacing SSs with MSs.
This defines adjusted R-square, R2

adj , through 1 − R2
adj = MSE/MST.

Ranking models via adjusted R-square is equivalent to ranking them by MSE,
because MST is constant across models, so adjusted R-square varies with the
model via MSE.

5.4.3 Testing a Reduced Model against a Full Model

Suppose we want to compare a full model with p+ q Xs with a reduced model
containing only the first pXs. The full model is of the form

Yi = β0 + β1x1i + β2x2i + · · ·+ βpxpi + βp+1xp+1,i + · · ·+ βp+q xp+q,i + εi;

the reduced model, of the form

Yi = β0 + β1x1i + β2x2i + · · ·+ βpxpi + εi.

MSE is one reasonable criterion for making the comparison between models.
We have MSEred = SSEred/DFEred and MSEfull = SSEfull/DFEfull. It is
interesting that MSEred < MSEfull is equivalent to F < 1, where this is the
F for testing the reduced model against the full model,

F =
(SSEred − SSEfull)/q

MSEfull
.

The reduced model is better according to MSE if MSEred < MSEfull. This
is equivalent to SSEred/DFEred < SSEfull/DFEfull. This can be shown to
be equivalent to F < 1.

5.4.4 Comparing Several Models

More generally, several models are to be compared. Index these models by
k = 1, 2, . . . ,K, where K is the number of alternative models (number of
models being compared). One way of ranking the models is according to MSEk.

Note that MSEk = SSEk / (n − pk − 1), where pk is the number of ex-
planatory variables in Model k. In Gaussian linear additive models, SSE is
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particularly relevant because it relates directly to the maximum likelihood of
the model. SSE is, in turn, an ingredient in BIC (Schwarz 1978), an interest-
ing and frequently used model-selection criterion. BIC is a smaller-is-better
criterion that is a penalized lack-of-fit criterion. Given K alternative models,
indexed by k = 1, 2, . . . ,K,

BICk = Deviancek + Penalty Termk = Deviancek + (lnn)mk.

Here, the Penalty Termk is like a cost of fitting the parameters, mk being
the number of free parameters estimated in Model k, and the Deviancek is
the lack-of-fit −2LLk, where LLk is the log of the maximized likelihood of
Model k. (See also Kashyap (1981) for a derivation with a few more details.)
Note that BIC incorporates the lack-of-fit, the sample size, and the number
of parameters.

For Gaussian linear models, the deviance is a function of the residual sum
of squares,

−2 LLk = n ln 2π + n ln SSEk − n lnn+ n.

Ignoring constants that do not vary across models k leaves n ln SSEk. Thus,
to rank Gaussian models it suffices to compare n ln SSEk + (lnn)mk across
models, the lowest value indicating the best model.

BIC stands for Bayesian Information Criterion. BIC is derived by
expanding −2 ln p(k |data) and integrating out a prior over the dis-
tributional parameters. Here, p(k | data) is the posterior probability of
Model k, k = 1, 2, . . . ,K. To put BIC on a probability scale, note
then that −2 ln p(k |data) ≈ Const. pk BICk, where pk is the prior
probability of Model k. So, ln p(k |data) ≈ −Const.. pk BICk/ 2, and
p(k |data) ≈ Const. exp[− pk BICk / 2]. The constant is Const. =∑K
k=1 pk exp(−BICk/2), making the probabilities sum to one. Given equal

prior probabilities for the K models, the posterior probability of Model k is ap-
proximately Const. exp(−BICk/2), where Const. =

∑K
k=1 exp(−BICk/2).

5.4.5 Combining Results from Several Models

It is not necessary to use only the best model. Results from alternative models

can be weighted using their posterior probabilities. Let ŷ
(k)
i be the prediction

of Yi based on Model k. An overall prediction is

ŷi =

K∑
k=1

p(k |data) ŷ
(k)
i ,

where p(k |data) is the posterior probability Pr(Model k |data), approximated
via BIC.
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5.5 Chapter Summary

Regression analysis attempts to explain the variation in a response variable
Y in terms of a set x of explanatory variables.

A regression function is the conditional expected value of Y, given x, where
x′ = (x1x2 . . . xp). The conditional expected value is denoted by E [Y |x ].

A linear regression function takes the form α + β′x, where β′ =
(β1 β2 . . . βp).

A simple linear regression function has the form α+β x. A multiple linear
regression function has the form α+ β1x1 + β2 x2 + βp xp.

An additive model takes the form Y = E [Y |x ] + ε, where the error ε is
added to the regression function.

A statistical model is stated in terms of variables such as Y,X, ε, for ex-
ample as Y = α+βX+ε. The corresponding observational model is stated in
terms of values of the variables for n cases, as Yi = α+βxi+εi, i = 1, 2, . . . , n.

The partial correlation between X and Y taking account of Z is the cor-
relation between the residuals of X and Y after regression on Z.

Market models attempt to explain the behavior of asset prices in terms of
the movement of the market as a whole.

Regimes are states of the market such as Bull and Bear states. The Bull
state is associatied with positive rates of return, the Bear state, with negative
rates of return. Often, the volatility (in the sense of standard deviation of
RORs) is higher in the Bear state.

5.6 Chapter Exercises

5.6.1 Exercises for Two Explanatory Variables

5.1 Dr. Smith wants to decide whether or not to use a standard chemistry
test along with her own test to advise students whether to take AP chemistry.
For each of n = 53 students she has scores on y = final numerical grade in
chemistry (mean = 70), x1 = her pretest (mean = 60), and x2 = standard
chemistry aptitude test (mean = 50). The sums of squares and cross-products
of deviations are as follows:

a11 = 10 a12 = 5 a1y = 15
a22 = 10 a2y = 13

ayy = 38
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a. Find the regression equation of Y on X1 and X2.

b. Compute SSE, DFE, MSE, and the standard error of estimate.

c. Find the regression equation of Y on X1 alone.

d. For this regression, compute the residual sum of squares, residual mean
square, and standard error of estimate.

e. Compute the standard deviation of Y . Compare it with the two standard
errors of estimate found.

5.2 Compute the three pairwise correlations for the three variables of the
preceding exercise.

5.3 (continuation) Compute the partial correlation between Y and X2, ad-
justing for X1, by means of the formula

ryx2.x1
=

ry2 − r12r2y
(1− r212)1/2(1− r22y)1/2

.

Compare this partial correlation with the total correlation between Y and X2.

5.4 Compute ryx1.x2
when

a. ry1 = .8, r12 = .9, ry2 = .8

b. ry1 = .8, r12 = .9, ry2 = .9

c. Briefly interpret the values of the partial correlation in the two cases.

5.5 Suppose Y = housing starts, X1 = savings-and-loan association mort-
gage volume, and X2 = commercial bank mortgage volume. Interpret the
values of ryx1.x2 in the two cases.

5.6 Your car can use either regular or premium gasoline (though possibly
not equally efficiently or cleanly). Regular costs $3.199 per gallon; premium,
$3.599. You drive 12,000 miles per year. Maintenance costs $300 each time.
You will need two maintenances a year with regular, only one with premium.
Your car gets 25 mpg with regular, 30 with premium. The total cost is gasoline
cost plus maintenance cost. Compare the annual total costs with premium and
regular. (This is not a statistical problem but rather asks that estimates be
incorporated into a decision problem.)

5.7 Smith’s car can use either regular or premium gasoline (though possibly
not equally efficiently or cleanly). Regular gasoline costs him $3.099 per gal-
lon; premium, $3.599. He drives 24,000 miles a year. Maintenance costs $250
each time. He will need two maintenances a year with regular, only one with
premium. His car gets 20 mpg with regular, 25 with premium. The total cost
is gasoline cost plus maintenance cost. Compare Smith’s annual total costs
with premium and regular.
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5.6.2 Mathematical Exercises: Two Explanatory Variables

5.8 Derive estimating equations for the model yi = β1x1i + β2x2i + εi, i =
1, 2, . . . , n, by the heuristic method of reduction of observations shown in the
text.

5.9 (continuation) Derive estimating equations for the simple linear regres-
sion model yi = β0 +βxi+εi by setting β1 = β0, β2 = β, x1i = 1, and x2i = xi
in the preceding exercise.

5.10 (continuation) Construct the F test of H: β0 = 0 and β = 1, that is,
test the hypothesis that the true model is yi = xi + εi.

5.11 (continuation) Construct the F (or t ) test of the hypotheis H: β = 1.

5.12 Derive estimating equations for the model yi = β0 + β1x1i + β2x2i +
εi, i = 1, 2, . . . , n, by the heuristic method of reduction of observations.

5.13 The sample partial correlation between Y and X2, adjusting for X1,
denoted by ryx1.x2

(see also Exercise 4.3), is the simple correlation between

the parts of Y and X2 not related to X1, that is, between Ỹ and X̃2, where
ỹ = y − ŷ, x̃2 − X̂2, and ŷ|x1 = ȳ + by1x′1, x̂2|x1 = x̄2 + b21x

′
1. Show that

ryx2·x1 =
ry2 − ry1r12

(1− r2y1)1/2(1− r212)1/2
.

5.14 Show that

1−Ry·x1x2
= (1− r2y1)(1− ryx2.x1

).

5.15 The stage-wise estimator formed by regressing Y on X1, and then the
residuals on X2, is

β̂2 =

∑
(x2 − x̄2)(y − y|x1)∑

(x2 − x̄2)2
,

where
y|x1 = ȳ + by1(x1 − x̄1).

The stagewise procedure is useful in exploratory data analysis when one is
studying the relationship between Y and X1 and then realizes that the resid-
uals may be correlated with another variable X2.

a. Assuming the model Y = β0 + β1x1 + β2x2 + ε, compute the mean of
the estimator f β̃2.

b. When is this estimator unbiased?

5.16 (continuation) Compute the mean squared error of this estimator.
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5.17 (continuation) The mean squared error of b2, the LSE, is

σ2/
∑

[x2 − (x2 |x1)]2.

When is the mean squared error of the stagewise estimator less than that of
the LSE, that is, for what parameter values? (See Goldberger, 1961.)

5.6.3 Mathematical Exercises: Three Explanatory Variables

5.18 What is SSEred for testing H: β1 = 2, β2 = 3, β3 = 4, β0 = 5? What
are the numbers of degrees of freedom for F?

5.19 What is SSEred for testing H: β0 = 0. What are the numbers of degrees
of freedom for F?

5.20 What is SSEred for testing H: β0 = 0? What are the numbers of
degrees of freedom for F?

5.21 What is SSEred for testing H: β0 = 0, β1 = 1, β2 = 1, β3 = 1? What
are the numbers of degrees of freedom for F?

5.22 Show that

{(β0, β1, β2, β3) : (
∑

[y − (β0 + β1 + β2 + β3)]2/s2 ≤ F4,n−4(.05)},

where s2 = SSEfull/(n−4), is a 95% confidence region for (β0, β1, β2, β3).

5.23 What is SSEred for testing H: β1 = β2 = β3 = 17? What are the
numbers of degrees of freedom for F?

5.24 What is SSEred for testing H: β1 = β2 = β3 ? What are the numbers
of degrees of freedom for F? Hint: The hypothesis is H: β1 = β2 = β3 = β,
where β is unspecified. That is, under H, there is still one free parameter.

5.6.4 Exercises on Subset Regression

5.25 Consider four variables having the correlation matrix of Table 5.2. In
what order will a forward selection procedure, based at each stage on max-
imum partial correlation (that is, on maximum reduction of residual sum of
squares), introduce the Xs into the regression equation?

5.26 Consider four variables having the correlation matrix of Table 5.3. (This
matrix differs from that of the preceding exercise only in that r12 is .6 here,
instead of .8.)

In what order will a forward selection procedure, based at each stage on
maximum partial correlation (that is, on maximum reduction of residual sum
of squares), introduce the Xs into the regression equation ?

5.27 Outline a procedure for the situation of choosing items for a test in
Exercise 5.1.
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TABLE 5.2
Correlation Matrix of Four Variables

x1 x2 x3

y .6 .4 .3
x1 .8 .1
x2 .5

TABLE 5.3
Correlation Matrix of Four Variables

x1 x2 x3

y .6 .4 .3
x1 .6 .1
x2 .5

5.6.5 Mathematical Exercises: Subset Regression

5.28 How many ways are there to choose 20 items from among 40?

5.29 Prove that introducing an additional X into the regression equation
cannot increase SSE.

5.30 When an additional X is introduced into a regression equation, how
great must the reduction in SSE be in order that there also be a reduction in
MSE?

5.31 Derive the likelihood L for the classical Normal model.

5.32 A special case of model selection occurs when the number K of alter-
native models is just 2. Then the procedure is hypothesis testing. Use BIC to
test H0 : β2 = 0 in the model where Y = β0 + β1x1 + β2x2 + ε, given
the classical Normal assumptions on the errors.

5.33 (continuation) What is the level of the the test? What is the numerical
value of the level if n = 25?
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6.1 Introduction

This chapter considers statistical characteristics of sets of assets, especially
their means, variances, and correlations. . A set of assets held by an investor
is called the investor’s portfolio. The subject of this and the next chapter is
portfolio analysis. This means the attempt to optimize the combination of
assets, based on available data. Portfolios of m risky stocks are considered,
and a combined portfolio of m risky stocks and a risk-free asset is considered.

A section on matrices and vectors is included in Appendix 6A and Ap-
pendix A at the end of the book. These are optional; however, it is recom-
mended that persons interested in statistical finance become acquainted with
vectors and matrices and operations on them.

As stated above, a portfolio is a set of assets, such as stocks, held by
an investor. Portfolioselection refers to the choice of stocks for the portfolio.
Portfolio allocation refers to the choice of weights of those stocks in the
portfolio, where the weight of a stock is the proportion of total investment
put into that stock. Here the focus will be on allocation, with a view toward
choosing weights that give a good portfolio rate of return and low variability.
Much of the chapter concerns formulas for the mean and variance of portfolio
rate of return (ROR), based on the means and variances of the RORs of the
individual stocks, and their correlations.

The reader may wish to review the notation and definitions given earlier
in Chapters 2 and 3, the introduction to financial data.

Characteristics of portfolio ROR, Rp, will be studied in terms of the RORs
Ri of the stocks in the portfolio. When the time period t is to be emphasized,
the notation Rpt is used for portfolio ROR at time t and Rit for the ROR of
asset i at time t. Related notation is given in Table 6.1.

Now let st denote the value of the portfolio at time t. (In terms of an
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TABLE 6.1
Portfolio Quantities at Time t

Asset, Share price, No. of Shares, Amount, Weight,
i Pit ni ai wi

1 P1t n1 a1t = n1P1t w1 = a1t/st
2 P2t n2 a2t = n2 P2t w2 = a2t/st
...

...
...

...
...

m Pmt nm amt = nmPmt wm = amt/st

st =
∑m
i=1 ait

individual investor, this is sometimes called the investor’s “wealth.”) Letting
ait be the amount in stock i at time t, the total value is st =

∑m
i=1 ait. The

rate of return of the portfolio from time t − 1 to time t is Rpt = (st −
st−1)/st−1. But this is a linear combination of the rates of return of the
individual assets. To see this, write

st − st−1 =

m∑
i=1

ai,t −
m∑
i=1

ai,t−1 =

m∑
i=1

(ai,t − ai,t−1).

Because at time t − 1 the m assets are held in proportions wi =
ai,t−1/st−1, i = 1, 2, . . . ,m, the portfolio ROR is

Rpt = (st − st−1)/st−1

=

m∑
i=1

(ait − ai,t−1)/st−1

=

m∑
i=1

[(ait − ai,t−1)/ai,t−1](ai,t−1/st−1)

=

m∑
i=1

[(ai,t − ai,t−1)/ai,t−1]wi

=

m∑
i=1

wiRit.

Note that, of course, the rate of return in terms of the share prices Pi is the
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same as the rate of return in terms of the amounts ai. The ROR of asset i is

(ai,t − ai,t−1)/ai,t−1 = (niPi,t − niPi,t−1)/(niPi,t−1)

= (Pi,t − Pi,t−1)/Pi,t−1

= Ri,t.

Portfolio ROR is the linear combination of individuals RORs when ordinary
ROR is used and is approximately that linear combination if continuous RORs
are used. That is, Rpt =

∑m
i=1 wiRit ≈

∑m
i=1 wi rit, because rit ≈ Rit.

6.1.1 Mean-Variance Portfolio Analysis

Bi-criterion portfolio analysis, or mean-variance analysis, uses the mean and
variance of portfolio ROR. A good portfolio is one with a good combination of
portfolio mean ROR, µp and variance σ2

p of portfolio ROR, namely, relatively
high mean and relatively low variance. The possible combinations are usu-
ally represented in a plot of mean versus standard deviation or mean versus
variance.

A parenthetical note on computation. The plot in Figure 6.1 was made by
sampling triplets of weights (a, b, c) for three stocks. Weight a was set at
.000(.001)1.000, that is, from .000 to 1.000 in steps of .001 (1,001 values). For
each value of a, two values of b were obtained. To insure a representative
sample, the values of b were sampled in antithetic pairs. In this case, that
means that the first was sampled uniformly in the interval (a, 1). Then, paired
with that value of b, the value (1− a− b) was included. Then of course c was
1−a−b. For example, if a = .200, then b was chosen uniformly in the interval
(.200, 1). Say that b was .350. Then c would be 1− .200− .350 = .450. Then,
moving on to a = .201, the value of b would be taken as 1− .201− .350 = .649.
The next pair of b values would be for a = .202 and .203.

The efficient frontier consists of the lowest possible standard deviation for
any given value of the mean, and the highest possible value of the mean for
any given value of the standard deviation. So to obtain the efficient frontier
graphically, there are two equivalent procedures producing it. One can find
the lowest possible standard deviation for any given value of the mean, or
the highest possible value of the mean for any given value of the standard
deviation.

To find the lowest possible standard deviation for any given value of the
mean, start at the left (horizontal axis) and move right until you just reach
the set of feasible points. The standard deviation at that point is the lowest
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FIGURE 6.1
Mean versus standard deviation

standard deviation for that given value of the mean. This point (σ, µ) is called
an efficient point. The set of all such points (upper right boundary of the
feasible set) is called the efficient boundary or efficient frontier.

To find the highest mean for any given value of the standard deviation,
start with a given value of σ along the horizontal axis and go as high as
possible, to the top of the feasible set, getting the highest possible value of µ
at that value of σ.

The good direction is the northwest: high mean (north) and low standard
deviation (west). If an additional risky asset is added to the selection, the
feasible set will move to the northwest.

6.1.2 Single-Criterion Analysis

It would be useful to work in terms of criteria that combine return and risk,
that is, mean and variance. Various such single criteria are discussed. The
Sharpe ratio of a portfolio is discussed later in this chapter, as is Value-at-
Risk (VaR). A utility-based single criterion involving both mean and variance
is discussed in the next chapter.
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6.2 Two Stocks

Next the cases of two stocks and three stocks are treated in some detail.
First consider a portfolio of just two stocks, A and B (Table 6.2). Represent

their RORs by random variables Xx and Y, with means µx, µy; and standard
deviations σx, σy. The correlation is ρxy, the covariance σxy = ρxyσxσy.
That is, knowing the standard deviations and the correlation, the covariance
can be computed. Also, knowing the standard deviations is the same as know-
ing the variances, as each variance is the square of the corresponding stan-
dard deviation. The weights on the two stocks will be denoted by a and b
( a + b = 1). If $100,000 is to be invested, and a is .6, then $60,000 will be
put in Stock A, and the other 40 K$ in Stock B.

TABLE 6.2
Two Stocks. Format of Table of RORs

Month Stock A Stock B

1 0.5 % 1.6 %

2 −0.3 % 1.4 %
...

...
...

n 0.2 % 0.9 %

From the statistics in Table 6.3, it appears that Stock A has a moderate ROR,
and B has a higher ROR but is riskier. There is a negative correlation that is
fairly large in size.

To be good, a portfolio should have high expected return, relative to its risk,
and small loss probability, where by loss probability is meant the probability
that the portfolio ROR will be negative. We compute this loss probability for
Stock A alone, Stock B alone, and a mix of the two stocks.

If the variable X is taken as having a Normal distribution, what is the
probability of loss with Stock A alone, that is, what is Pr{X < 0}? The
standardized value of x = 0 is z = (0 − 0.4)/0.8 = −0.5, so Pr{x < 0} =
Pr{z < −0.5} ≈ .309.

What is the probability of loss with Stock B alone; that is, assuming Nor-
mality, what is Pr{(Y < 0}? Here, z = (0− 1.5)/4.5 = −1/3 ≈ −0.333, and
the probability to the left of that value under the standard Normal curve is
about .370.
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TABLE 6.3
Statistics of RORs of Two Stocks

Stock A B

ROR X Y

Mean ROR 0.4 % 1.5 %

Std.Dev. of ROR 0.8 % 4.5 %

Correlation of RORs − .6

Weights a and b are to be chosen to give a portfolio with good charac-
teristics, in particular, a high mean ROR and a low variance of ROR. The
portfolio ROR is Rp = aX + b Y. Formulas for the mean and variance of
Rp are needed.

6.2.1 Mean

The formula for the expected value of Rp is

E [Rp ] = E [aX + bY ] = a E [X] + b E [Y ],

or, denoting E [Rp] by the abbreviated notation µp, this is µp = aµx + b µy.

6.2.2 Variance

The variance V[x] of a r.v. X is V[X] = E [(X − µx)2], that is, the variance
is the expected value of the squared deviation from the mean.

The square root of the variance is the standard deviation, SD[X], or σx.
The variance is often denoted by σ2

x.

6.2.3 Covariance and Correlation

The covariance of X and Y is E [ (X − µx)(Y − µy) ], that is, the covariance
is the expected value of the cross-product of deviations from the mean. It is
denoted also denoted by C[X,Y ].

The correlation coefficient, or, more simply, the correlation, of variables X
and Y, denoted by ρxy, is their covariance, divided by the product of their
standard deviations,
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Corr(X,Y ) =
C[X,Y ]

SD[X]SD([Y ]
,

that is,

ρxy =
σxy
σxσy

,

where σx or SD[X] is the standard deviation of x, and similarly for Y .
The correlation is a dimensionless (unitless) quantity. The units in its

numerator are cancelled by the units in its denominator. The range of the
correlation coefficient is from -1 to +1.

By reversing the above formula, the covariance is expressed as the product
of the correlation and the standard deviations by reversing the above formula,
that is,

C[x, y] = Corr[x, y] SD[x] SD[y],

or
σxy = ρxy σx σy.

The sample variance of X is denoted by s2x; the sample variance of Y, by
s2y. The sample covariance is denoted by sxy.

The covariance is related to the regression coefficient and to the correlation
coefficient; the covariance is the numerator of both. The coefficient of x in the
regression of y on x is sxy/s

2
x. The sample correlation coefficient is

rxy =
sxy
sxsy

.

6.2.4 Portfolio Variance

Expressions for portfolio variance are developed. First, the variance of a sum
or a difference are discussed.

6.2.4.1 Variance of a Sum; Variance of a Difference

Fact. V[U + V ] = V[U ] + V[V ] + 2 C[U, V ].

Remark. When the variance of a sum or difference of two variables is computed,
the covariance occurs in the cross-product term.

Proof: Let S be the sum, that is, S = U + V. Then

V[S ] = E [ (S − µs)2 ]

= E [ [(U + V ) − µu+v ]2 ]

= E [ [(U − µu) + (V − µv)]2 ]

= E [ (U − µu)2 + (V − µv)2 + 2 (U − µu) (V µv) ]

= E [ (U − µu)2 ] + E [ (V − µv)2 ] + 2 E [ [(U − µu) (V − µv)]
= V[U ] + V[V ] + 2 C[U, V ],
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where the covariance is C[U, V ] = E [ (U − µu) (V − µv) ].

Fact. V[U − V ] = V[U ] + V[V ] − 2 C[U, V ].
Combining the two preceding facts into one statement gives the
Fact. V[U ± V ] = V[U ] + V[V ] ± 2 C[U, V ].

6.2.4.2 Portfolio Variance

The sum and difference are particular linear combinations. Now consider any
linear combination V of X and Y , V = aX + bY. The expected value of
V is, using E [aX ] = aE [X] and E [bY ] = bE [Y ],

E [V ] = E [ aX + bY ] = a E [X] + b E [Y ] = a E [X] + b E [Y ].

Fact. V[aX + bY ] = a2V[X] + b2 V[Y ] + 2 a b C[X,Y ].

The standard deviation, SD[V ], that is, SD[aX + bY ], is of course the
square root of the variance V[aX + bY ]. This standard deviation is denoted
also by σv or σax+by.

Variance as a function of the mean in the case of two stocks. Given
values of µx, µy, σx, σy, and ρxy, the weight a can be written in terms of µp.
This expression for a can be substituted into the expression for σ2

p. Then σ2
p

can be written in terms of µp. The result is of the form σ2
p = Aµ2

p+Bµp+C,
a parabola.

6.2.5 Minimum Variance Portfolio

It is interesting to find the minimum-variance portfolio, although this port-
folio may not have a good mean ROR.

To minimize the variance, a Lagrange multiplier (see Appendix C) can
be used to include the condition a + b = 1, or the variance can be written
as a function of the weight a. This is a quadratic, that is, an expression
of the form Ax2 + Bx + C . When A > 0, this function has a minimum at
x∗ = −B/2A. This fact can be used, or the function can be differentiated with
respect to a, setting the derivative equal to zero, and solving. The variance is
a2σ2

x + b2σ2
y + 2abσxy, or as a function of a, say

V (a) = a2σ2
x + (1− a)2σ2

y + 2a(1− a)σxy.

The derivative is

V ′(a) = 2σ2
x − 2σ2

y(1− a) + 2σxy − 4σxya.

Setting this equal to zero gives

σ2
x − σ2

y(1− a) + σxy − 2σxya = 0, or (σ2
x + σ2

y − 2σxy)a− σ2
y + σxy = 0,
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so the variance-optimal value of a is

a∗ = (σ2
y − σxy)/(σ2

x + σ2
y − 2σxy).

Note that this is C[Y, Y −X]/V[Y −X], the coefficient of regression of Y on
Y −X. The optimal value of b is b∗ = 1−a∗ = (σ2

x−σxy)/(σ2
x+σ2

y−2σxy).
An expression for the minimum-variance weights in the general case of m
stocks is derived in Appendix 6A.

6.3 Three Stocks

Next, consider three stocks: A, B, and C (Table 6.4).

TABLE 6.4
Format of Table of RORs for Three Stocks

Stock A B C

ROR x y z

Month
1 0.5% 1.6 % −0.1%
2 −0.3% 1.4 % 0.2%
...

...
...

...
n 0.2% 0.9 % 1.2%

Mean 0.4% 1.1% 0.9%
Std.Dev. 0.5% 3.1% 4.2%

Correlations
Stock A rxy = +.2 rxz = +.3
Stock B ryz = −.7

Denote the RORs by X,Y, Z. Let the weights be a, b, c, where a+b+c = 1.
The portfolio ROR is R

p
= aX + bY + cZ. The expected value is

E [Rp] = aµx + bµy + cµz.

The variance is

V[Rp] = a2 σ2
x + b2 σ2

y + c2σ2
z + 2 a b σxy + 2 a c σxz + 2 b c σyz.
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The covariances are σxy = ρxyσxσy, σxz = ρxzσxσz, σyz = ρyzσyσz. The
means, standard deviations, and correlations are estimated by their sample
analogs, the sample means, sample standard deviations, and sample correla-
tions. In this example, the sample correlation of x and y is low and positive,
that of x and z is low and positive, and that of y and z is negative and
large in size.

6.4 m Stocks

Next, consider m stocks, indexed by i = 1, 2, . . . ,m, with RORs
R1, R2, . . . , Rm, or, including the time t in the notation, R1t, R2t, . . . , Rmt
at time t (Table 6.5). .

TABLE 6.5
Format of Table of RORs Rit, i = 1, 2, . . . ,m; t = 1, 2, . . . , n.

Stock 1 2 · · · m

ROR R1 R2 · · · Rm

Month
1 R11 R21 · · · Rm1

2 R12 R22 · · · Rm2

...
...

... · · ·
...

n R1n R2n · · · Rmn

Mean R̄1 R̄2 · · · R̄m
Std.Dev. s1 s2 · · · sm

Let the weights be a1, a2, . . . , am, where
∑m
i=1 ai = 1. The portfolio ROR

is RRp
=
∑m
i=1 aiRi. The expected value is

E [Rp] =

m∑
i=1

aiRi =

m∑
i=1

ai E [Ri] =

m∑
i=1

ai µR−i.

The variance is

V[Rp] =

m∑
i=1

m∑
j=1

aiajC[Ri, Rj ] =

m∑
i=1

a2iσ
2
Ri

+ 2

m∑
i=1

m∑
j=i+1

ai aj σRiRj
.
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The covariances are σRiRj
= ρRiRj

σRi
σRj

. The means, standard deviations,
and correlations are estimated by their sample analogs, the sample means,
sample standard deviations, and sample correlations rij , i, j = 1, 2, . . . ,m.

6.5 m Stocks and a Risk-Free Asset

The preceding has concerned portfolios consisting of risky assets. Figure 6.1
shows possible (σ, µ) pairs for such a portfolio. More generally, a portfolio
can be a combination of a risk-free asset, such as an interest-bearing savings
account or certificate of deposit, and a risky portfolio. The ROR of the risk-
free asset will be denoted by Rf . The risk-free rate can vary from time to time,
so we write Rft. It is usually considered as known in advance (specified); it
is a fixed, not a random, variable in the calculations. That is, at the end of
period t− 1, we know the value of Rft.

Let wf denote the weight on the risk-free asset and wr the weight on
the risky portion (wf + wr = 1), and let Rr denote the ROR of the risky
part (the subscript r in wr and Rr denoting “risky”). The ROR of the whole
combination portfolio, including both the risk-free and the risky portions, is

Rp = wfRf + wrRr = (1− wr)Rf + wrRr = Rf + wr(Rr −Rf ).

Let µr denote the mean ROR of the risky portion. Then the expected value
of portfolio ROR is

E [Rp] = E [wfRf + wrRr]

= wfRf + wrµr

= (1− wr)Rf + wrµr

= Rf + wr(µr −Rf ).

The variance of portfolio ROR is, remembering that Rf is taken as fixed, not
random,

V[Rp] = V[wfRf + wrRr] = V[wrRr] = w2
r σ

2
r .

The standard deviation SD[Rp] is σp = wrσr.

6.5.1 Admissible Points

A point (s,m) in the (σ, µ)-plane is inadmissible if there is another point
(s′,m′) such that s′ ≤ s and m′ ≥ m, at least one of these inequalities being
strict. In this case, the point (s′,m′) is said to dominate the point (s,m).
The point (s,m) is admissible if there is no point that dominates it.
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6.5.2 Capital Allocation Lines

Now consider a risky portfolio with standard deviation s and mean m, so that
it is represented by the point (s,m) in the (σ, µ)-plane. Consider a portfolio
that is a combination of this risky portfolio and a risk-free asset, in proportions
wr and wf . As wr varies, a line is traced out in the (σ, µ)-plane. This line
is called the capital allocation line (CAL) corresponding to the given point
(s,m). Any given risky portfolio generates such a line. The intersection of
any of these lines with the feasible set F consists of inadmissible points,
because, given a point on any such line, there is a point above it, that is, a
point corresponding to a portfolio that has the same standard deviation but
a higher mean. The one exception to this is the line tangent to the northwest
part of F . This line is called the tangency line.

It can be shown that the choice of values of wf and wr is separate from
the problem of allocation to assets in the risky portion. It depends upon the
investor’s level of risk aversion. One way of taking all of this into account at
the same time is considered in Chapter 7.

6.6 Value-at-Risk

The Value-at-Risk (VaR) at level .05 is the value below which there is only
a probability of .05. This is the fifth percentile of the probability distribution
of ROR. The probability is .95 of having a value greater than the VaR. Here
we study this concept in terms of ROR, Rp. Then the .05 VaR is defined by
Pr{Rp ≤ VaR} = .05, that is, Pr{Rp > VaR} = .95. More generally, the
level α VaR, say VaRα, is defined by Pr{Rp ≤ VaRα} = α. It is the 100α-th
percentile of the distribution of Rp.

6.6.1 VaR for Normal Distributions

Under an assumption that Rp has a Normal distribution, the VaR, like any
percentile, depends only upon the mean µ and standard deviation σ. Then

Pr{Rp > VaR} = Pr{(Rp − µ)/σ > (VaR− µ)/σ}
= Pr{Z > (VaR− µ)/σ} = .95,

where Zz has the standard Normal distribution. But Pr{Z > −1.645} = .05.
Therefore, we set (VaR−µ)/σ) equal to −1.645. This gives VaR = µ−1.645σ
as the 95% value of VaR. For example, if µ is 0.5% per month and σ is 1% per
month, this is VaR = 0.5− 1.645(1) = −1.145%. It is unlikely (5% chance)
that the ROR will be less than −1.145 % per month.

The set of portfolios having .05-level VaR less than a given value VaR0 is
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the set having µ−1.645σ ≥ VaR0. In the (σ, µ)-plane, these are the portfolios
represented by the points above the line µ = VaR0 + 1.645σ.

6.6.2 Conditional VaR

It is interesting to compute the conditional VaR, which is the conditional ex-
pectation of Rp, given that it exceeds some constant, such as VaR0. Note that
if Z has the standard Normal distribution, E [Z |Z > z0] = φ(z0)/[1−Φ(z0)],
where φ(z) is the probability density function and Φ(z) is the cumulative dis-
tribution function. Now, because Rp is distributed as µrp + σRp

Z, it follows
that

E [Rp |Rp > c ] = µRp
+ σRp

φ[(c− µRp
)/σRp

]/[1− Φ([(c− µRP
)/σRp

].

6.7 Selling Short

Here we have considered the weights a, b, c, etc., as positive. More generally,
some of them could be allowed to be negative, representing short selling. We
do not consider that here, leaving it for the reader’s later exposure to the
topic. A consideration is the necessary availability of resources to cover the
short position in the event of a call on the stock.

6.8 Market Models and Beta

6.8.1 CAPM

Market models attempt to describe the RORs of individual stocks in terms of
characteristics of the market as a whole.

The CAPM (Capital Asset Pricing Model) attempts to describe the RORs
of individual stocks in terms of that of a market index, such as the S&P500.
The CAPM was discussed earlier as an example of simple linear regression,
either through the origin or not. Now this will be reviewed and related to
the problem of computation of covariances in portfolio allocation. The model
is often simply in the form E [Y |x] = βx. Alternatively, a constant can be
included, giving E [Y |x] = α + βx. The response variable Y is the ROR of
the individual stock, the explanatory variable, x, the ROR of the market, as
indicated, say, by that of the S&P500. Often, excess RORs are used: Y is the
ROR of the individual stock minus the risk-free rate, and x is the ROR of
the market minus the risk-free rate. To include time explicitly in the notation,
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write E [Yt |xt ] = α + β xt, t = 1, 2, . . . , n. Often, n is taken to be 60, for
sixty months (five years) of monthly data. For stocks i = 1, 2, . . . ,m, write
E [Yit|xt] = αi +βixt. The constant αi is the differential return or abnormal
return of stock i.

6.8.2 Computation of Covariances under the CAPM

Now, under this model,

C[Yit, Yjt] = C[αi + βixt + εit, αj + βjxt + εjt] = C[βixt + εit, βjxt + εjt]

because αi and αj are constants and do not affect the covariance. Continuing
with the computation,

C[βixt + εit, βjxt + εjt] = C[βixt, βjxt] + C[βixt, εjt]
+ C[εit, βjxt] + C[εit, εjt]

= βi βj V[xt] + 0 + 0 + 0

= βi βj σ
2
x.

Here an assumption that the errors are uncorrelated is used. Taking the covari-
ance of RORs of assets i and j to be simply βiβjσ

2
x simplifies the computation

of optimal portfolios.
The original form of the model in the formulation of the CAPM is simply

E [Yit|xt] = βixt, without the constant term. The result on the simplification
of the covariance of course still holds.

The partial correlation coefficient between x and y, given t, denoted by
rxy.t is defined as the ordinary correlation between the parts of x and y that
are not explained by t; that is, between the residuals in the regression of x
on t and the residuals in the regression of y on t. Let x̂ = axt + bxt, ŷ =
ayt + byt be the predicted values of x and y based on t. Let the residuals be
x̃ = x− x̂, ỹ = y − ŷ. Then

rxy.t = rx̃ỹ,

where here ruv denotes the ordinary correlation coefficient of x and y. The
partial correlation coefficient can be computed in terms of the three correla-
tions rxy, rxt, rty as

rxy.t =
rxy − rxtrty√

1− r2xt
√

1− r2ty
.

To apply partial correlation in the Market Model approach to financial invest-
ments analysis, take t to be the market ROR, and x and y the returns of any
two particular stocks of interest.
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6.8.3 Section Exercises

6.1 Partial correlation. What is the value of rxy.t if rxy = .9, rxt,= .6,
and rty = .8?
Solution. [.9− (.6)(.8)]/[(1− .62)(1− .82)]1/2 = .42/[(.6)(.8)] = .42/.48 = 7/8
or .875. In this example, rxy.t has about the same value as rxy.

6.2 Another set of correlations. What is the partial correlation rxy·t if
rxy = .9, rxt = .6, and rty = .6?

6.3 Interpret the partial correlation when x and y are the RORs of two stocks
and t is the market ROR.

6.4 A “dummy” variable. Suppose that in the regression of Y on X and
D the model is

E [Y |X,D] = 4 + 3X + 2D + 2XD,

where D is a (0,1) variable. What is the difference, E [Y |X,D = 1] −
E [Y |X,D = 0]? Note that in an application to stock returns, X could be
the market return and D a Bull market indicator.
Solution: (Ŷ when D = 1)−(Ŷ when D = 0) = (4+3X+2+2X)−(4+3X) =
2 + 2X or 2(1 +X).

6.9 Summary

6.9.1 Rate of Return

Given a price series {Pt}, for a stock, the stock’s rate of return (ROR) at
time t is Rt = (Pt − Pt−1)/Pt−1.

The continuous ROR rt is the difference of successive log prices, rt =
pt − pt−1.

The continuous ROR is rt ≈ Rt, this approximation being close if
Pt/Pt−1 is close to 1. Also, rt is a lower bound for Rt, that is, rt < Rt.

6.9.2 Bi-Criterion Analysis

The possible portfolios can be represented in a plot of mean ROR versus
standard deviation of ROR.

The best combination for a given risk-free rate is given by the tangency
line to the feasible set. It has maximum Sharpe ratio.
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6.9.3 Market Models

Market models attempt to explain the prices and RORs of stocks in terms of
those of aspects of the market as a whole.

The CAPM (Capital Asset Pricing Model) regresses the ROR of any given
asset on that of the market as a whole, represented, for example, by the
S&P500 Composite Stock Index.

The financial analyst’s “beta” is the coefficient in the regression of RORs
of any particular asset on that of the market as a whole.

The usual and customary way to estimate a beta is from five years of
monthly data (n = 60 RORs). The RORs used here may be excess RORs, that
is, the ROR minus the risk-free rate. This regression may be taken through
the origin, or a constant α may be included in the model. The constant α is
called “abnormal” or “differential” return.

The covariance between asset RORs simplifies to the product of their betas
times the variance of the market ROR.

6.10 Chapter Exercises

6.5 ROR. If a stock’s share price goes from $50.00 to $50.50 in one period,
what is the ROR? What is the continuous ROR?

6.6 ROR. If a stock’s share price goes down from $50.50 to $50.00 in one
period, what is the ROR? What is the continuous ROR?

6.7 Comparing up and down ROR. If a stock’s share price goes from
$100.00 to $90.00, it went down10%. What ROR is needed to get it back from
$90.00 to $100.00?

6.8 (continuation) Analyze the same down and up situation in terms of con-
tinuous ROR.

6.10.1 Exercises on Covariance and Correlation

6.9 Variance of two uncorrelated variables. If V[U ] = 4, V[V ] = 9,
and U and V are uncorrelated, what is V[U + V ]? Answer: 4 + 9 = 13.

6.10 Variance of two positively correlated variables. If V[X ] =
4, V[Y ] = 9, and ρxy = = +.8, what is V[X + Y ]? Solution: 4 + 9 +
(2)(.8)(2)(3) = 13 + 9.6 = 22.6. This is larger than the variance of X and
larger than the variance of Y . The standard deviation is

√
22.6 ≈ 4.75.



130 A Course on Statistics for Finance

6.11 Variance of two negatively correlated variables. If V[x] =
4, V[Y ] = 9 and ρxy = −.8, what is V[X + Y ]? Solution: 4 + 9 +
(2)(-.8)(2)(3) = 13 - 9.6 = 3.4. This is smaller than the variance of X and
smaller than the variance of Y . The standard deviation is

√
3.4 ≈ 1.84.

6.12 Covariance in terms of correlation and standard deviations. If
the standard deviation of X is 7, the standard deviation of Y is 2, and the
correlation of X and Y is −.6, what is C[X,Y ]?

Solution: C[X,Y ] = Corr[X,Y ] SD[X] SD[Y ] = (−0.6)(7)(2) = −8.4.

6.10.2 Exercises on Portfolio ROR

6.13 Portfolio mean. Given µx = 0.5% per month and µy = 0.7% per
month, find a and b = 1− a such that µp = 0.5% per month.

6.14 Portfolio mean. Given µx = 0.5% per month and µy = 0.7% per
month, find a and b = 1− a such that µp = 0.65% per month.

6.15 Portfolio variance. In the formula for V[U + V ], take U =
aX, and V = bY, noting that V[aX] = a2σ2

x and V[bY ] = b2σ2
y.

Then, for a portfolio with a weight of .1 on Stock A and .9 on Stock
B, the portfolio variance is V[ .1X + .9Y ] = .12V[X] + .92V[Y ] +
2 (.1) (.9) Corr[X,Y ] SD[X]SD[Y ]. What is the numerical value of this ex-
pression if Corr[X,Y ] = −.6?

Solution: The variance of the portfolio ROR is (.01)(49) + (.81) (4) +
(2)(.1)(.9)(-0.6)(7)(2) = 2.218. Remarks. (i) The standard deviation is the
square root of this, or about 1.489. (ii) The expected ROR of the portfolio is
(.1)(14)+(.9)(6) = 6.8%. To evaluate the loss probability Pr(portfolio return
< 0), we have z = (0 − 6.8)/

√
2.218 = −6.8/1.489 = −4.566. So Pr(portfolio

return < 0) = Pr{Z < −4.566} = Pr{Z > 4.566}. It can be shown that, for
large values z0, such as the 4.566 in this case, Pr{Z > z0} is approximately
φ(z0) / z0, where φ(z) denotes the Normal p.d.f., (1/

√
2π) exp(−z2/2). For

z = z0 = 4.566, this is about (0.3989)(.000030)/4.566 = .0000026, or about
three chances in a million. [Here exp(x) means ex. ] The loss probability of
the portfolio is much smaller than that of Stock A alone or Stock B alone.
(However, it should be pointed out that even when a Normal distribution fits
most of a distribution, it does not necessarily fit well in the tails.)

6.16 Portfolio variance in terms of portfolio mean. Given µx =
10%/yr., µy = 5%/yr., σx = 20%/yr., σy = 5%/yr., and ρxy = −0.5, find
A,B, and C in σ2

p = Aµ2
p +Bµp + C.

6.17 Portfolio variance in terms of portfolio mean. Given µx =
12%/yr., µy = 6%/yr., σx = 20%/yr., σy = 3%/yr., and ρxy = −0.6, find
A,B, and C in σ2

p = Aµ2
p +Bµp + C.
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6.18 Two stocks. Consider two stocks, A, which has a good mean ROR
but is somewhat risky, and B, which has a moderate return but is less risky.
The characteristics of their RORs x and y are given in Table 6.6. They are
somewhat negatively correlated.

a. If the variable X has a Normal distribution, what is the probability
of loss with Stock A alone, that is, what is Pr{X < 0}? Hint: The
standardized value of x = 0 is z = (0− 0.4)/0.8 = −0.5.

[b.] What is the probability of loss with Stock B alone; that is, assuming
Normality, what is Pr{Y < 0}?

c. With weights a = .6 and b = .4, what is the portfolio mean ROR?

item[ d.] (continuation) What is the variance of portfolio ROR?

e. What is the probability that the ROR of the portfolio will be negative?

TABLE 6.6
Two Stocks. Monthly RORs

Stock A B

ROR x y

Mean ROR 0.4 % 1.5 %

Std.Dev. of ROR 0.8 % 4.5 %

Corr. of RORs −.3

6.19 Two other stocks. Consider two stocks, C, which has a good return
but is somewhat risky, and D, which has a moderate return but is less risky
(Table 6.7).

a. Probability of loss with Stock C alone. Assuming Normality,
Pr{X < 0} = ?

Solution: z = (0− 14)/7 = −2.00, so the probability is about .0228. There
is not much chance of a loss with Stock C.
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b. Probability of loss with Stock D alone. Assuming Normality,
Pr{(Y < 0} =?

Solution: z = (0 − 6)/2 = −3.00, prob = .00135. So there is even less
chance of a loss with Stock D than with Stock C.

c. With weights a = .6 and b = .4, what is the portfolio mean ROR?

d. (continuation) What is the variance of portfolio ROR?

e. What is the probability that the ROR of the portfolio will be negative?

TABLE 6.7
Two Stocks. Annual RORs.

Stock C D

ROR x y

Mean ROR 14% 6%

Std.Dev. of ROR 7% 2%

Corr. of RORs −.6

6.20 Variance of a sum of two uncorrelated variables. If V[U ] =
9, V[V ] = 16, and ρuv = 0, what is V[U + V ]? What is SD[U + V ]?
Solution: The variance is 9 + 16 = 25. The standard deviation is

√
25 = 5.

6.21 Variance of a sum of two uncorrelated variables. If V[U ] =
25, V[V ] = 144, and ρuv = 0, what is V[U + V ]? What is SD[U + V ]?
Solution: The variance is 25 + 144 = 169. The standard deviation is

√
169 =

13.

6.22 Variance of a sum of two positively correlated variables. If
V[X] = 4, V[Y ] = 9 and Corr[X,Y ] = +.8, what is V[X + Y ]?
Solution: 4 + 9 + (2)(.8)(2)(3) = 13 + 9.6 = 22.6, answer (E). Note that the
standard deviation is

√
22.6 ≈ 4.75.

6.23 Covariance in terms of correlation and standard deviations.
Continuing with the same X and Y , what is C[X,Y ]?
Solution: C[X,Y ] = ρxyσxσy = (−0.6)(7)(2) = −8.4.
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6.24 Portfolio variance. The variance is V[(.1X + .9Y ] = .12V[X] +
.92V[Y ] + 2(.1)(.9) Corr[X,Y ] SD[X] SD[Y ]. What is the numerical value of
this?
Solution: The variance of the portfolio’s ROR is V[Rp] = (.12)(72) +
(.92)(22) + 2(.1)(.9)σxy, where σxy = ρxyσxσy = (−.6)(7)(2) = −8.4, so
V[Rp] = (.01)(49) + (.81)(4) + (2)(.1)(.9)(−8.4) = 2.218. The standard devia-
tion is the square root of this, or about 1.489.

Note. The expected return of the portfolio is (.1)(14)+(.9)(6) = 6.8%.
To evaluate Pr(portfolio return < 0), we have z = (0 − 6.8)/

√
2.218 =

−6.8/1.489 = −4.566. So Pr(portfolio return < 0) = Pr{Z < −4.566} =
Pr{Z > 4.566}. It can be shown that

Pr{Z > z0} ≈
φ(z0)

z0
, for large z0,

where φ(z) is the expression for the bell-shaped Normal curve, φ(z) =
(1/
√

2π) exp(−z2/2). Values of z0 greater than 4 could be considered large.
In this case, z0 = 4.566, so we have a right-tail probability of about
(1/
√

2π)φ(4.566)/4.566 ≈ (0.3989)(.000030)/4.566 = .0000026 = 2.6 × 10−6,
or about three chances in a million. The loss probability of the portfolio is
much smaller than that of Stock A or Stock B alone.

6.25 Minimum variance for two stocks. Given two stocks with RORs
X and Y, show that the minimum variance weight a∗ is given by

a∗ = C[Y, Y −X ]/V[Y −X].

6.26 (continuation) Show that this is the coefficient in the regression of Y
on Y −X.

6.27 Find the minimum-variance weights a∗, b∗ using a Lagrange multiplier.
Hint: Define a Lagrangian function L(a, b;λ) = [a2σ2

x + b2σ2
y + 2 ab σxy] +

2λ (1 − a − b); compute the partial derivatives with respect to a, b, and λ;
set them equal to zero; and solve.

6.28 Normal tail probability approximation. Use the right-tail approx-
imation for z0 = 3 and compare the approximation with the actual right-tail
probability, which is about .00135.

6.29 Use the right-tail approximation for z0 = 3.5 and compare the approx-
imation with the actual right-tail probability, which is about .00023.

6.30 Show that E [e−aZ ] = ea
2/2 if Z has the standard Normal distribution.

6.31 Show that E [e−aR] = e−aµ+σ
2a2/2 = e−a(µ−1/2 aσ

2) if R has a Nor-
mal distribution with mean µ and variance σ2.
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6.10.3 Exercises on Three Stocks

6.32 Given µx, µy, µz, σx, σy, σz, ρxz, ρxz, ρyz, find weights a, b, c (a + b +
c = 1) such that the portfolio mean and standard deviation are equal to
given numbers µp and σp. (Note that there are two free unknowns and two
equations.)

6.33 Some triplets of correlations are not possible. In particular, the deter-
minant of the correlation matrix must be positive. Verify that this is the case
for the three correlations in Table 6.4.

6.34 Check to see whether the determinant of the correlation matrix formed
from rxy = +.2, rxz = +.3, and ryz = −.9 is positive.

6.35 Given rxy = +.2 and rxz = +.3, what range of values is possible for
ryz?

6.36 Check to see whether the determinant of the correlation matrix formed
from rxy = +.2, rxz = +.3, and ryz = +.4 is positive.

6.37 Given rxy = +.8 and rxz = +.8, what range of values is possible for
ryz?

6.10.4 Exercises on Correlation and Regression

6.38 The Market Model: “Beta”. If a stock’s beta is 1.10 and its alpha
is 0.25% per month, what is its predicted return for a month in which the
S&P500 goes up 0.3%? Solution: 0.25 + (1.10)(0.3) = 0.25 + 0.33 = 0.58% per
month.

6.39 If a stock’s beta is 1.50 and its alpha is 0.25% per month, what is its
predicted return for a month in which the S&P500 goes up 0.3%?

6.40 A stock with a small beta. If another stock’s beta is 0.5 and its
alpha is 0.40% per month, what is its predicted ROR in a month in which
the S&P500 index goes up 0.3%? Solution: 0.40 + (0.5)(0.3) = 0.4 + 0.15 =
0.55% per month.

6.41 If another stock’s beta is 0.4 and its alpha is 0.20% per month, what is
its predicted ROR in a month in which the S&P500 index goes up 0.3%?

6.42 If the correlation of Stock A’s ROR with that of the S&P500 is .8, and
the correlation of Stock B’s ROR with that of the S&P500 is .7, what is the
range of possibilities for the correlation of the RORs of Stock A and Stock B?

6.43 If the correlation of Stock C’s ROR with that of the S&P500 is .8, and
the correlation of Stock D’s ROR with that of the S&P500 is .6, what is the
range of possibilities for the correlation of the RORs of Stock C and Stock D?



Mean-Variance Portfolio Analysis 135

6.44 If a stock’s beta is 1.2 and the standard deviation of its ROR is 0.5%
per month and the standard deviation of the S&P500 ROR is 0.3% per month,
what is the correlation of the stock’s ROR and that of the S&P500?

6.45 If a stock’s beta is 0.8 and the standard deviation of its ROR is 0.5%
per month and the standard deviation of the S&P500 ROR is 0.3% per month,
what is the correlation of the stock’s ROR and that of the S&P500?

6.11 Appendix 6A: Some Results in Terms of Vectors
and Matrices (Optional)*

For those who may have used vectors and matrices before, some results are
restated in those terms. A bit of advice: Although this section is marked as
optional, it is highly recommended that students of mathematical / statistical
finance become familiar with vector and matrix operations; such knowledge
is a big help in shortening presentations and proofs, and, in my opinion, aids
understanding by eliminating cumbersome scalar notation.

Vectors are denoted here by boldface lower-case letters; matrices, by bold-
face upper-case letters.

6.11.1 Variates

“Multivariate” statistical analysis’ could instead be called “multivariable” sta-
tistical analysis. But it is not. Perhaps one reason that “variate” has been
included in the name is that so much of the analysis devolves upon linear
combinations (“variates”).

Consider a variate in, say, m variables. That is, let

V = b1X1 + b2X2 + · · ·+ bmXm.

Then, because the scalar product of two vectors is the sum of products of
corresponding elements,V can be written as V = b′X, where, given a vector
v, the symbol v′ denotes its transpose, (v1 v2 . . . vm). If v is a column
vector, then v′ is a row vector. So, X = (x1 x2 . . . xm)′. The mean of a
variate V is E [V ] = b′µ, where µ is the mean vector of the random vector
X. The variance of a variate V = b′X is V[V ] = V[b′X] = b′Σb, where
Σ (m×m) is the covariance matrix of the random vector X. The covariance
of two variates a′X and b′X is C[a′X, b′X ] = a′Σ b.
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6.11.2 Vector Differentiation

Given a function f(x) where x = (x1 x2 . . . xm)′, the partial derivative of
f with respect to xj is denoted by ∂f/∂xj . The vector of partial derivatives
is

∂f/∂x = (∂f/∂x1 ∂f/∂x2 . . . ∂f/∂xm)′.

This vector is known as the gradient. (See also Appendix A.)

6.11.2.1 Some Rules for Vector Differentiation

It is easy to verify various rules for vector differentiation, such as the following.
Analogous to

f ′(ax) =
d ax

dx
= a,

we have
d ax

dx
= a1,

where 1 is the vector of ones.
Analogous to

f ′(ax2) =
d ax2

dx
= 2ax,

we have
dx′Ax

dx
= 2Ax.

6.11.2.2 Minimum-Variance Portfolio

In terms of the weight vector w and covariance matrix S, the portfolio
variance is w′Sw. This is to be minimized with respect to w, subject to
constraints.

Including the Lagrange multiplier for the constraint 1′w = 1, the func-
tion V to be minimized is V (w;λ) = w′Sw + 2λ (1−1′w). (It is convenient
to enter the Lagrange multiplier as 2λ rather than λ. ) The vector derivative
with respect to w is ∂ V / ∂w = 2Sw − 2λ1. Setting this equal to zero
gives Sw = λ1. Now let T denote the inverse of S. Pre-multiplying by T
gives w = λT1. Now pre-multiplying by 1′ gives λ1′T 1 = 1′w = 1,
and λ = 1 /1′T 1. This gives the minimum-variance weight vector w∗ as
w∗ = T 1/1′T 1. Thus the optimal weight vector w∗ is in the direction of
T 1. That is, w∗ = Const.T1, where the constant is determined by the con-
dition that the elements of w∗ sum to 1. This solution allows weights to be
negative. When the constraint of positive weights is imposed, mathematical
programming (quadratic programming) must be used to get the solution.

Next the maximization of the Sharpe ratio is considered.
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6.11.2.3 Maximum Sharpe Ratio

Given weight vector w, mean vector m, and covariance matrix S, the port-
folio mean is m′w and the portfolio variance is w′Sw.

The Sharpe ratio S is S = (µp− rf )/ σp = (m′w − rf ) /
√
w′Sw. Here

this is to be considered as a function S(w) of w.
The resulting optimal value of w, sayw∗, is in the direction T m, where

the matrix T is the inverse of the matrix S. That is, w∗ = Const. T m,
where Const. is determined by the condition that the elements of w∗ sum
to 1.

To derive the optimal w∗, note that the function to be maximized, includ-
ing the Lagrange multiplier for the constraint, 1′w = 1, is the Lagrangian

L(w;λ) = S(w) + λ (1− 1′w) = m′w/w′Sw + λ(1− 1′w).

Now, S(w) = N(w) /D(w), where the numerator N = m’ m −Rf and
the denominator D = (w′Sw)1/2. The gradient of S with respect to w
is dS = (dN · D − N · dD)/D2 = . Using this, taking partials of L with
respect to w and λ, setting them equal to zero and solving gives, after some
algebra, w∗ = C(w∗)S−1m, where C is a scalar. Although C depends
upon w∗, the fact that it is a scalar means that w∗ is in the direction given
by the vector S−1m. The scalar C is determined by the condition that the
elements of the weight vector sum to one.

This solution allows weights to be negative. When the constraint of posi-
tive weights is imposed, mathematical programming (quadratic programming)
must be used to get the solution.

6.11.3 Section Exercises

6.46 Find the minimum variance weight vector w∗ = (a∗ b∗)′ for two
stocks whose RORs have standard deviations 0.8% and 0.3% per month and
a correlation of −.4.

6.47 Find the minimum variance weight vector w∗ = (a∗ b∗)′ for two
stocks whose RORs have standard deviations 0.8% and 0.3% per month and
a correlation of +.4.

6.48 Denoting the RORs of m = 2 stocks by x and y, verify that the
elements of the inverse S−1 are s(xx) = syy/D, s

(yy) = sxx/D, s
(xy) =

s(yx) = sxy/D, where D is the determinant, |S | = sxxsyy − s2xy.

6.49 (continuation) Show that D = sxxsyy(1− r2xy).

6.50 (continuation) Show that

s(xx) =
1

sxx(1− r2xy)
, s(yy) =

1

syy(1− r2xy)
, s(xy) = s(yx) =

−rxy
sxsy(1− r2xy)

,
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where sx, sy are the standard deviations of x and y. That is, show that the
inverse covariance matrix is as follows.

S−1 =
1

1− r2xy

[
1/sxx −r/sxsy
−r/sxsy 1/syy

]
6.51 In Section 6.2 on two stocks, the minimum variance weights were de-

rived for that case. Verify that the general result in terms of vectors and
matrices for m stocks reduces to the result obtained there.

6.12 Appendix 6B: Some Results for the Family of Nor-
mal Distributions

(See also the appendices at the end of the book .)
The family of Normal distributions is indexed by the parameter pair (µ, σ2),
the mean and variance. The probability density function of the Normal dis-
tribution with mean µ and standard deviation σ is

φ(x;µ, σ2) =
1√
2π

exp[− 1

2σ2
(x− µ)2], −∞ < x <∞.

If Z has the standard Normal distribution, then its probability density func-
tion is

φ(z) =
1√
2π

exp(−1

2
z2), −∞ < z <∞.

6.12.1 Moment Generating Function; Moments

If Z has this distribution, then E [etX ], the moment generating function, is
E [ etX ] = exp(1/2 t2). To see this, note that

E [ etZ ] =

∫ ∞
−∞

exp(tz)φ(z) dz =

∫ ∞
−∞

exp(tz) (1/
√

2π) exp[ (−1/2)z2 ] dz.

Combine the exponents of e and complete the square to obtain the result.
If X has a Normal distribution with mean µ and variance σ2, then X is
distributed as µ+ σZ. It follows then that E [etX ] = exp(tµ+ 1/2 t2σ2).

6.12.2 Section Exercises

6.52 Use the preceding result to show that if X has a Normal distribution,
then, for any real number s,

E [−sX ] = exp(−sµ+ 1/2s2σ2) = exp[ (−s)(µ− 1/2sσ2) ].
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Remarks. (i) This result will be used in the next chapter. (ii) If − s is
replaced by t, then the resulting function is called the moment generating
function.

6.53 Compute E [Z |Z > z0] if Z has the standard Normal distribution.
Hints: The conditional probability density function is φ(z)/[1−Φ(z0)]. Per-
form the indicated integration using the substitution u = z2/2, du = z dz.
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6.14 Further Reading

The book by Bodie, Kane, and Marcus (2009) is a new edition of a very
widely used introduction to financial investments analysis. Ross (2003) is a
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(2011) is an excellent graduate-level textbook on statistical finance.

Among articles, Wagner (2002) is especially recommended.
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7.1 Introduction

This chapter and the preceding one form a unit on portfolio analysis. In this
chapter, the notion of single-criterion portfolio analysis is continued from the
preceding chapter. Here, a criterion that combines portfolio mean and variance
is derived.

7.1.1 Background

To review, recall that bi-criterion portfolio analysis, or mean-variance analysis,
is based on the mean and variance of portfolio ROR. A good portfolio is
one with a good combination of portfolio mean ROR µp and variance σ2

p

of portfolio ROR, namely, relatively high mean and relatively low variance.
The possible combinations are usually represented in a plot of mean versus
standard deviation or mean versus variance.

141
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7.1.2 Types of Portfolio Analysis

Single-criterion analysis combines the mean µp and variance σ2
p of the port-

folio into a single function, such as µp − 1/2Aσ2
p, for a suitable value of

the risk-aversion constant A. This function is referred to as a functional,
meaning in this case that it is a function of a distribution, namely, the distri-
bution of Rp, through its mean µp and variance σ2

p. This functional is called
the utility-based functional or simply utility functional, because, as will be
seen below, it is derived from a utility function. (The factor 1/2 that appears
results from this derivation.)

The constant A varies from investor to investor. The expression µp −
1/2Aσ2

p may be viewed as penalized ROR, where the penalty term 1/2Aσ2
p

involving the variance is subtracted from the mean ROR µp. The scale factor
1
2 (in A/2) emerges from the analysis to be used here, based on an exponential
utility function for portfolio ROR, so we retain this factor. Details are given
later in the chapter.

To review, remember that, in general, combination portfolios are consid-
ered, meaning the combination of a risk-free portion and a risky portion. The
ROR of the combination portfolio is Rp = wfRf + wrRr, where Rr denotes
the ROR of the risky part and Rf is the risk-free rate. (The subscript r in wr
and Rr denotes “risky.”) Note that

Rp = wfRf + wrRr = (1− wr)Rf + wrRr = Rf + wr(Rr −Rf ).

Next, review the expressions for the mean and variance of portfolio ROR in
terms of the mean µr and variance σ2

r of the risky portion. The expected value
of portfolio ROR is

E [Rp] = E [wfRf + wrRr ]

= wfRf + wrµr

= (1− wr)Rf + wrµr

= Rf + wr (µr −Rf ).

The variance of portfolio ROR is, remembering that Rf is taken as fixed, not
random,

V[Rp] = V[wfRf + wrRr] = V[wrRr] = w2
rσ

2
r .

The choice of values of wf and wr separates from the problem of allocation
to assets in the risky portion. Next we illustrate this in the context of single-
criterion analysis.

7.2 Single-Criterion Analysis

A single criterion incorporates both mean and variability. Such a criterion is
µRp
− 1/2A σ2

Rp
.
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This criterion arises from an exponential utility function for wealth (the
investor’s “fortune,” or at least that part of it devoted to investment). (See,
for example, Ross 2011.) Denote wealth by s. An exponential utility function
for wealth is

U(s) = 1 − exp(−a s), s > 0,

where a > 0 is a constant that varies from investor to investor.
What does this utility function for wealth imply about that of next period’s

portfolio ROR, Rpt? Now, st = st−1(1 +Rpt), where st−1 is the wealth at
the end of the previous period and st is that at the end of period t. Thus,

U(st) = 1− exp(−a st) = 1− exp[−a st−1(1 +Rpt)].

Next, the conditional expected value of utility, given st−1, is computed. This
proceeds as

E [exp(−a st) | st−1] = E [ exp[−ast−1(1 +Rpt) ] | st−1]

= exp(−ast−1) E [ exp(−ast−1Rpt ) | st−1 ]

= exp(−A) E [ exp(−ARpt ) | st−1],

where A = ast−1. Remember, however, that this A depends upon the level
st−1 of wealth at time t− 1.

Now this is evaluated under an assumption that Rpt has a Normal distri-
bution. If X is distributed according to a Normal distribution with mean µ
and variance σ2, then

E [exp(−AX)] = exp(−Aµ+ 1/2A2σ2) = exp[(−A)(µ − 1/2A σ2)].

This gives

E [U(st) ] = 1− exp(−A) E [exp(−ARpt ) | st−1]

= 1− exp(−A)E [exp[(−A) (µ − 1/2Aσ2)].

The expected utility is maximized by maximizing µ − 1/2A σ2 over com-
binations (µ, σ2). Remember that in the present application, µ = µp and
σ2 = σ2

p, the mean and variance of the portfolio ROR, respectively. That is,
the functional to be maximized is µp − 1/2Aσ2

p. Here this criterion is called
the utility-derived or utility-based functional.

This particular functional was derived assuming Normality of portfolio
ROR, but it is perhaps not unreasonable more generally (although we must
admit that mean ROR minus a multiple of standard deviation—rather than
variance—seems more natural in a way).

Remember that here A > 0 is a given constant that varies from investor to
investor and depends on the investor’s level of aversion toward risk and level of
wealth. The value of the risk-aversion constant A varies with the preferences
of the individual investor and A and the investor’s level of wealth and might
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be between, say, 2 and 20 or even 100. See, for example, Bodie, Kane, and
Marcus (2009), who work examples (p. 159) with A equal to 2, 3.5, and 5.

The criterion in the form µp − 1/2A σ2
p is for µp and σRp given as

decimals. To use percents, note that this is µRp%/100− 1/2A (σp%/100)2 =
0.01 [µp%− 1/2A (0.01) (σp%)2]. Ignoring the constant of (0.01) in the front,
because it does not affect the comparison of portfolios, one can work in terms
of

µp%− (0.01) 1/2A (σp%)2.

That is, with RORs in percent, the criterion is expressed as

µp − (1/2)(0.01)Aσ2
p, or µp − 0.005Aσ2

p.

In general, utility does not have units, but here, with µ in percent, the units
can be taken as percent. Values of utility for various values of µ, σ, and A
are given in Table 7.1.

TABLE 7.1
Utility for Various µ, σ,A

µ σ A = 1 A = 2 A = 4 A = 10

0.1 0.05 0.0999875 0.099975 0.09995 0.099875
0.10 0.09995 0.0999 0.0998 0.0995
0.20 0.0998 0.0996 0.0992 0.098

1 0.50 0.99875 0.9975 0.995 0.9875
1.00 0.995 0.99 0.98 0.95
2.00 0.98 0.96 0.92 0.8

2 1.00 1.995 1.99 1.98 1.95
2.00 1.98 1.96 1.92 1.8
4.00 1.92 1.84 1.68 1.2

Examples. (i) Suppose the standard deviation of monthly ROR is 1% but in-
creases from 1% to 2%. What increase in monthly ROR would be necessary to
compensate for that? Because the standard deviation σ increases from 1% to
2%, the variance σ2 increases from 1 to 4, so the term 1/2Aσ2

p increases from
1/2 (0.01)A(1) to 1/2 (0.01)A (4), an increase of 1/2A(0.01)(3) = 0.015A.
The compensating increase in mean monthly ROR would be 0.015A%. If
A = 4, this is 0.06 %. If A = 100, this is 1.5%.
(ii) Now suppose the standard deviation of monthly ROR was 1% but in-
creased from 1% to 3%. What increase in monthly ROR would be necessary
to compensate for that? Because the standard deviation σ increases from 1% to
3%, the variance σ2 increases from 1 to 9, so the term 1/2Aσ2

p increases from
1/2 (0.01)A(1) to 1/2 (0.01)A (9), an increase of 1/2A(0.01)(8) = 0.04A. The
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compensating increase in mean monthly ROR would be 0.04A%. If A = 4,
this is 0.16 %. If A = 25, it is 1.0 %, a 1% increase in mean ROR compensat-
ing for a 2% increase in ROR standard deviation. If A = 100, it is 4.0%, a
4% increase in mean ROR compensating for a 2% increase in ROR standard
deviation.

7.2.1 Mean versus Variance Plot

Refer to the plot in Figure 7.1. This is a plot in the (σ2, µ)-plane, that is, the
plane with the horizontal (x) axis being σ2 and the vertical (y ) axis being µ,
the locus of constant value c for µ− 1/2Aσ2 is {(σ2, µ) : µ− 1/2Aσ2 = c}.
Written in the form y = a + bx, this is µ = c + 1/2A σ2. If y = a + bx,
the slope is b, so here the slope is A/2. To maximize the criterion, start with
a high value of c that gives a line above the set F of feasible pairs (σ2, µ).
As you decrease c, you generate parallel lines moving closer to F . Move down
until you get a line just touching F ; this line is the tangent line. The point
(σ2∗, µ∗) of tangency gives the maximum value of the criterion µ− 1

2 Aσ
2.

7.2.2 Weights on the Risk-Free and Risky Parts of the Port-
folio

Now consider further the case of a risk-free asset and m risky assets. The
portfolio ROR is Rp = wfRf +wrRr, where here Rr is the ROR of the risky
portion. The value of the utility-based functional is

µRp
− 1

2 Aσ
2
Rp

= Rf + wr(µRr
−R0)− 1

2 Aw
2
rσ

2
Rr
.

Optimal weights on the risk-free and risky parts can be calculated. Next
we show this for the single criterion. The criterion is Rf + wr(µr − Rf ) −
1
2 Aw

2
rσ

2
r = ax2 + bx + c, with x = wr, a = − 1

2 Aσ
2
Rr
, b = µRr − Rf , and

c = Rf . Now, the optimal value of wr is

w∗r = x∗ = − b

2a
= − µRr

−Rf
(2)(− 1

2 Aσ
2
Rr

)
=

µRr
−Rf

Aσ2
Rr

.

This is increasing in µRr
and decreasing in Rf , A, and σ2

Rr
.

7.2.3 Separation

From this it is seen that the calculation of optimal weight on the risk-free
asset separates from the computation of the optimal allocation within the
risky portion of the portfolio. That is, given any allocation of weights in the
risky portion, let µRr and σ2

Rr
denote the resulting mean and variance. Then

the above calculation of w∗r can be carried out.
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FIGURE 7.1
Mean versus variance

Even if the investor does not wish to rebalance the weights in the risky
portion for the next time period, the allocation to the risk-free and risky
portions could be changed appropriately according to updated estimates of
the mean and variance of the risky portion’s ROR.

7.3 Summary

The utility functional is µp − 1/2Aσ2
p, where A > 0 is the investor’s risk

aversion constant.
This functional is derived from exponential utility for wealth. The constant

A depends upon the investor’s level of wealth.
An investor’s total portfolio can be divided into a risk-free and a risky

portion. The question of optimal allocation to the two parts is considered.
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7.4 Chapter Exercises

7.1 Two stocks. Consider two stocks, A and B, with RORs x and y. Write
out the utility functional in terms of their means µx, µy; standard deviations
σx, σy; and correlation ρxy. Denote the weights by a and b.

7.2 An investor with risk-aversion constant A = 20 holds a portfolio with
µp = 1.5% per month and σp = 1.2% per month, and a risk-free rate of 0.1%
per month. What are the optimal weights w∗r and w∗f?

7.3 An investor with risk-aversion constant A = 10 holds a portfolio with
µp = 1.5% per month and σp = 1.2% per month, and a risk-free rate of 0.1%
per month. What are the optimal weights w∗r and w∗f?

7.4 Describe the locus of constant value of the utility functional in the
(σ2, µ)-plane.

7.5 Discuss estimation of the utility functional µ − 1/2Aσ2, based on un-
biased estimates m, the sample mean, and s2, the sample variance, for µ and
σ2, respectively.

7.6 (continuation) If m and s2 are based on a random sample of n from a
Normal distribution, what is the variance of the estimator given in answer to
the preceding problem? Hints: Given Normality, m and s2 are statistically
independent, hence uncorrelated. The sample mean m is distributed according
to a Normal distribution with mean µ and variance σ2/n. The r.v. Q =
(n− 1) s2 / σ2 is distributed according to a chi-square distribution with n− 1
d.f., so E [Q ] = n− 1 and V[Q ] = 2(n− 1).
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8.1 Introduction

This chapter concerns various models for time series data. A time series will
be denoted by notation such as

{Yt, t = 1, 2, . . . , n}.

This notation refers to a variable Y observed at time points t.
Such data, observed in time, are temporal data. The observations may be

triggered by events, occurring at irregular intervals. Or the observation times
may be planned, in which case they can be at regular intervals.

Tick-by-tick data (tick data) on the price of a stock are temporal data
observed at irregular intervals. These are triggered by a purchase or sale. These
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data report the prices at each transaction of a specific stock. The subscript t
refers to the t-th transaction.

Often by the phrase “time series” people mean temporal data observed at
regular time intervals, for example, daily, weekly, monthly, quarterly, or an-
nually. The daily closing prices of a stock are a time series observed at regular
intervals, namely, at the closing bell, marking the closing time of the exchange
each trading day. Then the subscript t refers to the t-th day. For example, t
might be in quarters (three-month periods) and Y might be quarterly sales
of a retail company. Then Y5, for example, represents the sales in the fifth
quarter in the dataset.

A time-series plot is a plot of the variable Y against t.

8.2 Control Charts

Time-series plots are used in the control of manufacturing and service pro-
cesses. The variable monitored may be, to mention a few diverse examples,
the diameters of bolts, or the lengths of time to make deliveries to customers,
or the concentation of salt in potato chips. (In regard to the latter, see An-
nenberg Foundation (1989), Program 18, “The Mean and Control Charts.”
This and other videos in that series are highly recommended.)

A control chart is a time series chart with upper and lower limits indicated.
These limits may, for example, be at three standard deviations above and be-
low a center line defined by the mean. Data points falling outside the limits
can be investigated to determine if there is a particular cause (an “assignable
cause”) for the deviation. As these causes are detected and understood, correc-
tive actions can be taken to prevent future results from going “out of control.”
Long periods above or below the center line indicate that a change or shift
in the process has occurred. The point at which the shift occurred should be
investigated, so corrective action can be taken to bring the process back into
control. In statistical process control (SPC), a time-series plot is also called a
run chart. In addition to several (say nine) observations on one side of the cen-
ter line, other rules are used. Such rules are called run signals, decision rules,
multirules, or simply signals. One such signal is the occurrence of two out of
three points in a row between 2 and 3 standard deviations above the center
line, or below the center line. The signals are defined to have false-alarm rates
on the order of one in a thousand. For example, the probability of nine obser-
vations in a row above the median is (1/2)9 or 1/512 ≈ .002. The probability
of two of out three points in a row between 2 and 3 standard deviations above
the center line in the Normal case is 3 [Φ(3)−Φ(2)]2 = 3(.99865− .97725)2 =
3(.02140)2 ≈ 3× 4.58× 10−4 ≈ 1.37× 10−3 = .00137. The reason why these
tests are set to have Type I error rates near one in a thousand rather than
the one in twenty used in conventional hypothesis testing is that the tests are
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done repeatedly, for each point of the chart, and the overall error rate needs
to be controlled.

There are many current and potential applications of control charts, and
not just in manufacturing. For example, in accounting, efficiency could be
measured and charted. A variable to observe might be the number of days it
takes to process an order, from receipt of an invoice to the time the order is
shipped to the customer. Control charts can help detect errors in data, such
as by charting the weekly payroll. A week where the payroll is significantly
higher than prior weeks would be investigated to make sure there is a valid
explanation. Travel and entertainment expenses can be similarly monitored.

Control charts may be based on individual observations. In this case, the
chart is called an I chart, I for individual observations. Although such charts
can be helpful, there is a problem: the individual observations may be corre-
lated, so that the use of two- or three-sigma limits based on random samples
is not valid. Methods of dealing with such correlation are discussed in this
chapter.

Instead of individual observations, control charts may be based on sliding
averages, for example the mean of the first three observations, then the mean
of the next three, etc. That is, the window is for t = 1, 2, and 3, then
for t = 4, 5, 6, etc. First the window reveals the observations for t = 1, 2, 3,
then it slides over to t = 4, 5, 6. Control charts based on the mean are called
x̄-charts, “x-bar charts.”

Control charts may also be based on moving averages, where the window
is moved one point at a time, for example, for times 1, 2, 3, then for times
2, 3, 4, etc. A moving average is updated by dropping the oldest observation
and adding in the newest. When control charts are based on sliding or moving
averages, the effects of correlation are somewhat mitigated.

The idea of control charts and moving averages is applied in many fields,
including financial investments analysis. Long-term and short-term moving
averages are computed and compared; see in particular the average called
MACD later in the chapter (Section 8.3.4.3).

8.3 Moving Averages

Moving averages may be used to smooth a series and thereby to spot trends.
The average used may be a mean or a median.

8.3.1 Running Median

Another name for moving average is running average. “Running” refers to a
moving window. A running average of three is a moving average formed with
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a window of width three. That means computing an average of observations
1, 2, and 3, then of observations 2, 3, 4, then of observations 3, 4, 5, etc.

For three observations, the median is the middle (second-ranking) obser-
vation. If the minimum and maximum of three observations are trimmed off,
one observation remains, and that is the median of the three.

Given a series {yt, t = 1, 2, . . . , n}, the smoothed value, the running me-
dian of three, say rMdnt, is

rMdnt = median{yt−1, yt, yt+1}, t = 2, 3, . . . , n− 1.

Computing a moving average is one method of smoothing a series, and the
values of the moving average are called “smoothed” values.

Example 8.1 Running median of three

Suppose the value of the S&P500 index on seven successive trading days was
y1 = 1135, y2 = 1137, y3 = 1134, y4 = 1129, y5 = 1128, y6 = 1127, y7 = 1125.
The computation of the running median of three proceeds as

rMdn2 = median{1135, 1137, 1134} = 1135,

rMdn3 = median{1137, 1134, 1129} = 1134,

and so on, obtaining smoothed values rMdn4 = 1129, rMdn5 = 1128, and
rMdn6 = 1127. It will be noted that the plot of the rMdn sequence will be
smoother than that of the original sequence. Note the consistent downtrend
of the smoothed series, despite the slight ups and downs of the original series.

8.3.2 Various Moving Averages

A moving average with a window of width four is especially appropriate for
quarterly data because then the smoothed results are balanced, in that each
smoothed result contains each quarter once and only once.

A moving average may be centered, like the RM above, or may work back in
time, like MAt = (yt + yt−1 + yt−2 + yt−3)/4. An example of a weighted four-
period moving average that weights more recent observations more heavily
is

WMAt = .4yt + .3yt−1 + .2yt−2 + .1yt−3.

Note that .1 + .2 + .3 + .4 = 1. A five-period weighted MA is

(5yt + 4yt−1 + 3yt−2 + 2yt−3 + yt−4)/15,

where we have divided by 15 because 1 + 2 + 3 + 4 + 5 = 15. An n-period
sum-of-digits weighted MA is

[nyt + (n− 1) yt−1 + · · ·+ 2 yt−n+2 + 1 yt−n+1]/[n(n+ 1)/2],

because 1 + 2 + 3 + · · ·+ n = n(n+ 1)/2.
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8.3.3 Exponentially Weighted Moving Averages

An exponentially weighted moving average has coefficients that decrease ex-
ponentially as you go back in time; that is, the coefficients are the terms in a
geometric series. An example of this is

.3 yt + (.3)(.7) yt−1 + (.3)(.72) yt−2 + (.3)(.73) yt−3
= .3 yt + .21 yt−1 + .147 yt−2 + .1029 yt−3.

It can be divided by the sum of the weights so that the resulting weights sum
to one. Recall that 1 + r + r2 + · · · = 1/(1− r) for |r| < 1, and

1 + r + r2 + · · ·+ rn = (1− rn+1)/(1− r), for r 6= 0.

So in this example the sum of the weights is .3(1 − .74)/(1 − .7) = 1 − .74 =
.7599; dividing by this gives

EWMAt = (.3yt + .21yt−1 + .147yt−2 + .1029yt−3)/.7599

≈ .395yt + .276yt−1 + .193yt−2 + .135yt−3.

Note the similarity to the WMA .4yt + .3yt−1 + .2yt−2 + .1yt−3.
In some applications, such as Statistical Quality Control, exponentially

weighted moving averages are indeed called EWMAs, pronounced “You may.”
In financial investments analysis, these are usually called simply EMAs—
Exponential Moving Averages.

An EWMA can be calculated in terms of the current observation and the
preceding value of the EWMA as the weighted average

EWMAt = αyt + (1− α)EWMAt−1,

where EWMAt denotes the smoothed value and α (0 < α < 1) is called
the smoothing constant. The smoothing constant is the weight placed on the
most recent observation. (It would seem more appropriate to refer to 1−α as
the smoothing constant, as larger values of 1 − α, that is, smaller values of
α, produce more smoothing.)

Note that

EWMAt = αyt + (1− α)[αyt−1 + (1− α)St−2]

= αyt + α(1− α)yt−1 + (1− α)2St−2,

which can be iterated to show that the coefficient of yt−k is α(1− α)k.
The EWMA may be written also in terms of its preceding value and the

deviation of the current observation from the preceding value as

EWMAt = αyt + (1− α)EWMAt−1

= EWMAt−1 + α[yt − EWMAt−1].
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8.3.4 Using a Moving Average for Prediction

8.3.4.1 Smoothed Value as a Predictor of the Next Value

Whatever the method of smoothing, the smoothed value St can be taken as a
prediction ŷt+1 of the next future value. That is, one way of predicting is to
predict the next value of the series to be the current smoothed value, that is,

ŷt+1 = St.

For example, the moving-average predictor for the next observation yt+1 based
on the four most recent observations is

ŷt+1 = (yt + yt−1 + yt−2 + yt−3)/4.

8.3.4.2 A Predictor-Corrector Formula

It is noted that such a formula lags. We can correct such a predictor to form
a more responsive, predictor-corrector formula. This includes the predicted
value as if it were a data point. For four points, for example, it is

Corrected ŷt+1 = (ŷt+1 + yt + yt−1 + yt−2)/4

= [(yt + yt−1 + yt−2 + yt−3)/4 + yt + yt−1 + yt−2]/4

= (yt + yt−1 + yt−2 + yt−3 + 4yt + 4yt−1 + 4yt−2)/16

= (5yt + 5yt−1 + 5yt−2 + yt−3)/16.

This can be applied to a weighted moving average (WMA) such as .4 yt +
.3 yt−1 + .2 yt−2 + .1 yt−3, giving

Corrected ŷt+1 = .4ŷt+1 + .3yt + .2yt−1 + .1yt−2

= .4(.4yt + .3yt−1 + .2yt−2 + .1yt−3) + .3yt + .2yt−1 + .1yt−2.

= .46yt + .32yt−1 + .18yt−2 + .04yt−3.

In the exercises, the reader is asked to compute the predictor-corrector formula
for five-point and six-point sum-of-digits WMAs.

8.3.4.3 MACD

An application of a difference between a short-term and longer-term moving
average is considered next. Such differences are used in a number of fields,
including epidemiology and financial investments analysis. Moving Average
Convergence/Divergence (MACD) —“Mac D”—is an indicator of movement
in the price of a security. MACD is the difference, a short-term EMA minus a
long-term EMA. Here t is usually in days, that is, one averages daily closing
prices. The smoothing constant α is often taken to be of the form 2/(n+ 1),
where n is the period of the EMA. An EMA with α equal to 2/(n + 1) is
considered as roughly equivalent to a moving average of n days. If n = 1, then
2/(n + 1) = 1, and the EMA is simply yt. If n = 2, then 2/(n + 1) = 2/3;
then the EMA is
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2
3yt + 2

9yt−1 + 2
27yt−2 + · · · ≈ .67yt + .22yt−1 + .07yt−2 + · · · ,

which is close to the sum-of-digits weighted moving average for n = 2, namely

(2 yt + 1 yt−1)/3 = (2/3) yt + (1/3) yt−1.

A typical value of α for the short-term EMA in a MACD might be α =
2/(12+1) = 2/13 ≈ .15 and the long-term EMA’s αmight be α = 2(/26+1) =
2/17 ≈ .074, approximately half of the short-term α. These EMAs are turned
into a momentum oscillator by subtracting the longer moving average from
the shorter moving average. The resulting plot of the difference against t forms
a line that oscillates above and below zero.

There are many MACD formulas. Using shorter EMAs (ones with higher
α) will produce quicker, more responsive indicators, while using longer moving
averages will produce slower indicators, less prone to anomalous patterns such
as whipsaws, which occur when a buy or sell signal is reversed in a short time.

Usually, a 9-day EMA of MACD itself is plotted along side to act as a
trigger line. A bullish crossover occurs when MACD moves above its 9-day
EMA, and a bearish crossover occurs when MACD moves below its 9-day
EMA. Note that a month includes about 22 trading days, so 26 trading days
is just a little more than a month. Twelve days is about two and a half trading
weeks. Nine days is just under two trading weeks. One simple signal that is
used is when the current price crosses the nine-day EMA.

There seems to be no particular basis for the choices 12, 26, and 9. Further,
MACD does not seem necessarily to be effective in producing excess returns,
that is, rates of return above what is generating by a benchmark strategy
such as buy-and-hold. Even modest transaction costs can wipe out the returns
shown by MACD (St. John 2010).

8.4 Need for Modeling

There are so many ways to form moving averages, depending upon the window
width and the weights, that one feels a need to develop a model to describe
the process generating the data and then develop the method accordingly.
This modeling approach is taken up in subsequent sections. Faced with such
a wide choice of moving averages and the like, the discussion now turns to
statistical modeling of time series, following from a mathematical description
of the process generating the series, in the hope that such modeling will enable
the generation of optimal procedures corresponding to the various models.



Introduction to Time Series Analysis 159

8.5 Trend, Seasonality, and Randomness

One way of modeling is to consider a time series as containing a trend (up-
ward or downward drift), seasonality, and randomness. Economic statisticians
sometimes consider multiplicative models such as

zt = AtBt δt, t = 1, 2, . . . , n,

where At is seasonal, Bt is trend, and δt is multipicative random error. Using
the fact that the log of a product is the sum of the logs, write

log zt = log(AtBtδt) = logAt + logBt + log δt

or
Yt = αt + βt + εt,

where Yt = log zt, αt = logAt, βt = logBt, εt = log δt.
For example, suppose that the data are quarterly. Take

αt = γ1x1t + γ2x2t + γ3x3t + γ4x4t,

where, for j = 1, 2, 3, 4, the dummy variable xjt = 1 for values of t that are
in the j-th quarter and 0 for other values of t. The trend might be taken to be
linear, βt = βt. The parameter β represents the average increase per quarter.
This gives the model

Yt = γ1x1t + γ2x2t + γ3x3t + γ4x4t + βt+ εt, t = 1, 2, . . . , n.

For example,

E [Y1] = β + γ1, one quarter of trend plus first-quarter effect

E [Y2] = 2β + γ2, two quarters of trend plus second-quarter effect

E [Y3] = 3β + γ3, three quarters of trend plus third-quarter effect

E [Y4] = 4β + γ4, four quarters of trend plus fourth-quarter effect

E [Y5] = 5β + γ1, five quarters of trend plus first-quarter effect.

Remarks. (i) Such a model can be appropriate if the assumption of uncorre-
lated errors εt is satisfied. This should be examined using the autocorrelation
function of the residuals. (See the section on autocorrelation functions later
in the chapter.) (ii) Sometimes the trend will be eliminated by differencing.
If the mean of Yt contains a term β t, then the mean of Yt−1 contains a
term β (t− 1), and the mean of the difference Yt − Yt−1 will contain a term
β t − β (t − 1) = β, a constant not involving t, so that the mean of the dif-
ference can be level. If a series is uptrending, it is tempting to model it using
regression on t, or on t and t2. Although a dataset can be fitted in such
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a manner, it is illogical to do so, because phenomena (economic, financial,
biological) are not unlimited, whereas t goes to infinity, and using t2 will lead
to a parabola that goes up or down to infinity as well; and similarly for higher
order polynomials. It is usually preferable to difference the data. This means
analyzing differences such as Yt−Yt−1 instead of Yt itself. It is just as natural
to consider these differences, or changes, as it is to analyze the process itself.
(See also the section on pre-processing the data later in the chapter.) (iii)
Seasonal effects are discussed later in the chapter in the section on seasonal
data and the section on dynamic regression models.

8.6 Models with Lagged Variables

Next considered is the problem of bringing past values of variables into the
model. These may be past values of the same dependent variable Y or past
values of other, explanatory variables, or both.

8.6.1 Lagged Variables

Given a time series consisting of observed values {yt, t = 1, 2, . . . , n}, denote
the corresponding variable by Yt . It is helpful to distinguish between a variable
and its values. When convenient, the value of the variable upper-case Y is
denoted by lower-case y.

The lagged variable is denoted by Yt−1. If Yt is today’s value, Yt−1
denotes yesterday’s value. At time t, Yt = yt and the lagged variable Yt−1 =
yt−1. The lag-two variable is denoted by Yt−2. It would be the result from the
day before yesterday. The lag-two variable is the lag of the lag-one variable.
The lag-k variable is denoted by Yt−k.

A correlation between Yt and Yt−k is called an autocorrelation . The prefix
“auto-” means “self,” and this is a correlation between Yt and a lagged version
of itself.

8.6.2 Autoregressive Models

The model

Yt = φ0 + φ1 yt−1 + φ2 yt−2 + · · ·+ φp yt−p + εt

is an autoregressive model (autoregression model ) of order p. It involves
lags up to and including order p. The lagged values are written as lower-case
because at time t they are realized (known, observed) values. The autoregres-
sion coefficients are φ1, φ2, . . . , φp. The model is analogous to the multiple
regression model Yi = β0 + β1 x1i + β2 x2, + · · · + βp xpi + εi. The
autoregression coefficients are denoted by φ instead of β, and the symbol φ0,
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rather than α or β0, denotes the constant (intercept) in the model. The errors
εt are “white noise.” A white noise sequence is uncorrelated: C[εt, εu] = 0,
for all t, u, t 6= u, and has common variance (variance not varying with t)
V[ εt ] = σ2

ε .

FIGURE 8.1
Uncorrelated and positively correlated data

To compare and contrast correlated and uncorrelated data, Figure 8.1
shows simulated uncorrelated and correlated data with the same mean (just
below 5) and standard deviation (just below 0.4). The autocorrelation coef-
ficient is positive. When the correlated process goes up, it tends to go up
for a while; when it goes down, it tends to go down for a while. And if one
observation is above the center line, chances are that the next one will be
too. The plot of the uncorrelated data is jumpier; two successive observations
are likely to be on the opposite sides of the mean. The plot of the positively
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correlated data is smoother than this. (This would not be the case, however,
if the autocorrelation coefficient were negative.. Then the plot would be even
more jumpy than uncorrelated data, and jagged when successive points are
connected with a line.)

Next, some examples of autoregression will be considered; one in quality
control, another in financial investments analysis, and a third in economics.

Example 8.2 Statistical process control with correlated data
Yield of a chemical process was charted for fifty runs of the process, and
several results were declared out of control, beyond the three-sigma limits.
These results were too far from the mean, but do they signal that the process
was out of control?

Such limits are set up for uncorrelated observations. The data were found
to have a first-order autocorrelation that accounted for some upward and
downward drifts. When deviations from predicted values based on a simple
autoregressive model were plotted, one of the same results still appeared to
be out of control, but others did not. Further, a couple of other points, not
detected by the original three-sigma limits, appeared to be out of control. So,
there had been both false-alarms and failures to detect that were corrected by
a more appropriate model.

Example 8.3 Day trading
In the kind of day trading to be discussed here, if the investor trades a
given stock on a given day, the investor will buy shares of it at the open
of the market and sell at the close. The rate of return will be the intraday
rate of return, the change from open to close, divided by the opening price,
Qt = (Ct − Ot)/Ot. It is interesting to fit an autoregressive model to Qt,
that is, to regress intraday ROR on its lag to see if there might be a hint of
a way to do effective day trading. This will be introduced now and discussed
further later in the chapter, where day-of-the-week effects will also be taken
into account.

An exchange-traded fund (ETF) is like a mutual fund, consisting of assets
like stocks, commodities, or bonds, that trades on an exchange. ETFs offer
diversification like a mutual fund but trade like ordinary stocks. Some ETFs
track an index, such as the S&P500. This example concerns MDY, the S&P400
EFT of stocks of 400 midcap companies. (A similar analysis was done in
Ortiz (2008), in a dissertation advised by the author.) We considered MDY
because we thought it was a bit more exciting than the ETF of SPDR, based
on the S&P500, which are higher cap. The data here are from 1995: Aug.
18 through 2007: June 21. This is 2,981 observations, 2,980 RORs. We used
continuous RORs, although most of the values are small so that there would
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be little difference between continuous ROR and ordinary ROR. (The symbol
Qt rather than qt is used here for continuous ROR because here qt means
the realized value of Qt.)

Here are some summary statistics.

Descriptive Statistics: intradayROR (as decimal, not pct)

------------------------------------------------------------

N Mean SE Mean StDev Minimum Q1

------------------------------------------------------------

2980 -0.000409 0.000200 0.010904 -0.087640 -0.006665

------------------------------

Median Q3 Maximum

------------------------------

0.000280 0.005945 0.064320

The mean is−0.0409%; its standard error is sy/
√
n = 1.0904%/

√
2980 ≈

1.0904/54.59 = 0.0200%. The five-point summary is

min = −8.7%,

Q1 = −0.67%,

median = +0.028%,

Q3 = +0.059%,

max = +6.4%.

The range is max - min = +6.4%− (−8.7%) = 15.1% but the interquartile
range is only Q3 - Q1 = +0.059%− (−0.67%) = 0.73%.

For now, results from a simple first-order autoregression are shown (al-
though the model identification procedures presented later in the chap-
ter suggest perhaps two terms, either second-order autoregression, second-
order moving average, or one autoregressive and one moving average term;
somewhat more complex models will be considered later in the chapter).
The mean square error of fit is 0.000118875; the standard error of fit is
sε =

√
0.000118875 = .010903, or about 1%. (This is not much smaller

than the overall standard deviation, which is .010904.) The estimated autore-
gression coefficient has a value of 0.0212, with t = 1.16 and p = .247. This is
not particularly significant. However, there is a difference between statistical
significance and practical significance. Usually this is stated in the case where
a result is statistically significant but not large enough to be of practical im-
portance. Here, the reverse may be true. Although the effect is small, it may
represent something real, which, if exploited repeatedly, may lead to some
gain.

ARIMA model: IntradayROR

Estimates of Parameters

Type Coef SE Coef t p

AR 1 0.0212 0.0183 1.16 0.247
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Constant -0.0004002 0.0001997 -2.00 0.045

Mean -0.0004089 0.0002040

Number of observations: 2981

Residuals: SS = 0.354129 (backforecasts excluded)

MS = 0.000118875 DF = 2979

Decision risk analysis. The predicted value is Q̂t+1 = −0.04002% +
0.0212 qt. The investor might execute a day trade tomorrow if the predicted
value is sufficiently large. When a buy or a sell is executed, there is a trans-
action cost TC. If TC is expressed as a rate, for example .001 or 0.1%, it
can be subtracted directly from the ROR to get a net ROR. If the transac-
tion cost is a fixed amount, say $10 per trade, and the investor will buy, say
1,000 shares at $100 per share, for $100,000, and sell the 1,000 shares at the
end of the day at $101.00 per share, for $101000, then the TC rate is TC
= (10 + 10)/(100, 000 + 101, 000) = 20/201, 000 ≈ 20/200, 000 − 1/10, 000 =
.0001 or 0.01%. Figuring a TC for both buying and selling, the mean daily
net ROR is estimated as (0.035 − 2 × TC + 0.021% − 2 × TC + 3 IR)/5. For
example, if TC = 0.1%, it could completely erase the positive expected gain
on days when the buy/sell is executed.

A decision risk analysis for this situation proceeds as follows. The net gain
of investing tomorrow is estimated as Q̂t+1− TC, where TC is the transaction
cost, expressed as a rate.

The gain of not investing tomorrow is the one-day interest rate, say IRt+1.
IR can be considered as an actual interest payment when this is realistic,
or, in any case, as an opportunity cost, unrealized interest, if the investor
trades on day t + 1. The difference in the two is (Q̂t+1 − TC ) − IRt+1 =
Q̂t+1 − (TC + IRt+1) = Q̂t+1 − c, where c = TC + IRt+1. This is positive
if Q̂t+1 exceeds this amount c. So a strategy is to do the day trade tomorrow
if the predicted intraday ROR exceeds c. Note that Q̂t+1 = a + b qt, where
a = φ̂0 and b = φ̂1. The condition Q̂t+1 > c is equivalent to a + b qt > c,
that is, qt > (c− a)/b if b > 0 or qt < (c− a)/b if b < 0.

The strategy can be run on a spreadsheet for past data and the accumu-
lated gain (or loss) computed. Also, a theoretical computation of the expected
net gain can be done to see what might be expected and how it depends on
the parameters. The expected net gain is

Pr{Q̂t+1 > c} E [Qt+1 − TC | Q̂t+1 > c ] + Pr{Q̂t+1 ≤ c} IRt+1,

where IRt+1 is treated as a constant as it would be known on day t, when the
decision is made. For short, write Q̂t+1 as a+bqt, where a = φ̂0 and b = φ̂1.
When the ROR Qt has a specified distribution, this can in theory be cal-
culated, for example when Qt+1 is distributed according to a Normal distri-
bution with mean µ = φ0/(1 − φ1) and variance σ2 = σ2

ε/(1 − φ21). The
computation involves the conditional expectation of a Normal r.v., given that
it exceeds a given constant, which can be evaluated using a result from Ap-
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pendix B on Normal distributions. We do not pursue this calculation further
here.

Further thoughts. A more appropriate data analysis results if the first
part of the dataset is used as a training set and the rest as a test set. The
training set is for estimating the parameters of the model. The test set is for
evaluating performance in future samples. Because estimates are optimized
for the training set, there will be shrinkage of goodness of fit and prediction
in future samples. Thus, looking at the performance of the estimated model
in the test set gives a better idea of what to expect in practice.

A way to implement the strategy would be on a rolling basis, updating
the estimates each day. Once a spreadsheet or program is written, this is not
difficult. A rolling window of perhaps 252 days (one year of trading days) or
504 days might be used.

Example 8.4 Price and quantity

Next, consider an economics example of autoregression. Relationships of price
and quantity to lags of one another lead to simultaneous equations and then
to an autoregression for price. To see this, note that price can be a function
of quantity and at the same time quantity a function of price. This leads to a
system of equations such as

E [ pt | qt ] = c+ dqt

E [ qt | pt−1 ] = a+ bpt−1.

Substituting the second equation into the first gives the autoregression

E [ pt | pt−1 ] = c + d(a+ bpt−1),

or
E [ pt | pt−1 ] = φ0 + φ1pt−1,

with φ0 = ad+c, φ1 = bd. This is a first-order autoregression of price alone.

A second-order autoregression takes the form

yt = φ0 + φ1yt−1 + φ2yt−2 + εt

where {εt } is white noise. An alternative way to write this model is in terms
of the preceding value yt−1 and the change yt−1−yt−2. To do this, subtract
and add yt−1 to yt−2 and write the autoregressive part of the model as

φ1yt−1 + φ2yt−2 = φ1yt−1 + φ2(yt−2 − yt−1 + yt−1)

= φ1yt−1 + φ2yt−1 + φ2(yt−1 − yt−2)

= (φ1 + φ2)yt−1 + φ2(yt−1 − yt−2).

The difference yt−1−yt−2 occurring between times t−2 and t−1 can change
signs, producing ups and downs in the pattern of the series.
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8.7 Moving-Average Models

How would you model a time series where adjacent observations are correlated,
but observations more than one time period apart are uncorrelated? Try a
model Yt = µ+ at, where the errors at are written in terms of a white noise
sequence {εt }. In this simplest case, the error sequence is at = εt − θεt−1.
This gives

C[Yt, Yt−1] = C[µ+ at, µ+ at−1] = C[at, at−1]

= C[εt − θεt−1, εt−1 − θεt−2]

= C[εt, εt−1] + C[εt,−θεt−2]

+C[−θεt−1, εt−1] + C[−θεt−1,−θεt−2]

= 0 + 0− θ C[εt−1, εt−1] + 0

= −θ C[εt−1, εt−1] = −θ V[εt−1] = −θ σ2.

It is easy to see that V[Yt] = (1 + θ2)σ2 and hence that Corr[Yt, Yt−1] =
−θ/(1 + θ2). For k = 2, 3, . . . , C[Yt, Yt−k] = 0.

A second-order MA model would have at = εt−θ1εt−1−θ2εt−2. An MA
model of order q (q = 1, 2, 3, . . .) is analogously defined. Then observations
one or two time periods apart would be correlated, but observations three or
more time periods apart would be uncorrelated. The reader can consult one
or another of the texts in the Bibliograpy for the development of higher-order
MA and AR models.

8.7.1 Integrated Moving-Average Model

Consider the particular moving-average model,

Yt = yt−1 + at,

where the errors at are correlated and described as at = εt − θεt−1, the se-
quence {εt} being “white noise”—uncorrelated and with equal variance σ2

ε .
These white-noise variables εt are like those used in ordinary simple and mul-
tiple regression models. Often they are taken to be Normal, in which case we
refer to “Gaussian white noise.”

This particular moving-average model is a reasonable model for many phe-
nomena. It is a “random walk,” in that the current value is equal to the
preceding value plus random error. Here we allow the error sequence to be
correlated.

Another way to consider this model is that the difference is equal to cor-
related random error. That is, letting wt = Dyt = yt − yt−1, the model is
wt = εt − θεt−1. Such a model is called an integrated model because the
difference is directly modeled in terms of the basic building blocks, the er-
ror sequence; the observed series is an “integrated” version of this. In the
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Box/Jenkins notation IMA(d, q), this model is denoted by IMA(1,1), mean-
ing that q, the order of MA, is 1, and d, the order of differencing, is 1. (See
below for a more complete explanation of this notation.)

This integrated moving-average model leads to exponential smoothing as
a prediction procedure. To see this, note that the model for Yt+1 is

Yt+1 = yt + εt+1 − θε̇t.

This gives
ŷt+1 = yt − ε̂t+1 − θε̂t = yt + 0− θ(yt − ŷt),

because the predicted value of the next error is 0 and the predicted value of
the current error is the difference between the current value and its prediction.
This gives

ŷt+1 = yt − θ(yt − ŷt) = (1− θ)yt + θŷt = αyt + (1− α)ŷt,

where α is the smoothing constant discussed above. That is to say, the EWMA
smoothing constant can be estimated by fitting this model and taking α to be
one minus the estimate of θ.

8.7.2 Preliminary Estimate of θ

Let Wt = Yt−Yt−1. As shown above, the first-order autocorrelation ρ1 of Wt

is −θ/(1 + θ2). An estimate of θ can be obtained by the method of moments,
setting ρ1 equal to its sample analog, r1, the sample lag-one autocorrelation
of Wt :

−θ̂/(1 + θ̂2) = ρ̂ = r1.

This gives a quadratic equation, the two roots of which are

θ̂ = −1/(2r1) ± [1/(2r1)2 − 1]1/2.

The two solutions are reciprocals, so only one will be less than one in size, the
other solution being extraneous. If, for example, r1 = −12/25 = −.48, these

solutions are 4/3 and 3/4, so θ̂ is 3/4, and the estimate of the smoothing

constant α is 1 − θ̂ = 1/4. This could now be used, for example, in Excel’s
exponential smoothing command. (Note, however, that what Excel calls the
“smoothing constant” is not our α but rather our θ = 1− α.)

8.7.3 Estimate of θ

This method of estimation by quadratic equation does not work for all values
of r1; statistical computer programs use methods that work for a wider range
of values of r1. So, put your data into such a program, go to the procedures
for Box/Jenkins ARIMA models, and enter the order p of autoregression as
0, the order d of differencing as 1, and the order q of the moving average part
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as 1. Get the estimate of θ, and then subtract it from 1 to get the estimate
of the smoothing constant α. But, once you are in the statistical computer
program, you can get it to do the forecasting that you want, so you would not
necessarily need to take the value of α back to a spreadsheet.

8.7.4 Integrated Moving-Average with a Constant

Next, suppose the model is

Yt = yt−1 + δ + εt − θεt−1.

Now a constant δ has been included in the model. In terms of the difference
variable Wt, this is

Wt = δ + εt − θεt−1.

The parameter δ is the mean of Wt: δ = µw. The time series Wt is supposed
to be level, but its mean δ may be non-zero. This implies that the series Yt
has a drift of an amount δ per time period.

To deal with this, suppose that Zt is zero-mean MA(1). This variable can
be obtained by subtracting the mean δ, estimated by w̄, from each value of
the difference wt. That means that the model for Zt is

Zt+1 = εt+1 − θε̇t.

This gives

ẑt+1 = −ε̂t+1 − θε̂t = 0− θ(zt − ẑt) = −θ(zt − ẑt),

because the predicted value of the next error is 0 and the predicted value of
the current error is the difference between the current value and its prediction.

So the model with constant can be handled by

· Getting ẑt+1 as ẑt+1 = (1− θ)zt + θẑt,

· Adding w̄ to get ŵt+1 = ât+1 + w̄,

· Getting ŷt+1 = ŵt+1 + yt.

8.8 Identification of ARIMA Models

A wide class of models for time series is the class of Box/Jenkins ARIMA mod-
els (Box and Jenkins 1970, 1976; Box, Jenkins, and Reinsel 1994). ARIMA
means autoregressive, integrated, moving average, AR for autoregression, I
for integrated, MA for moving average.
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8.8.1 Pre-Processing

Pre-processing may involve transformation or differencing.

8.8.1.1 Transformation

Sometimes as a first step in the analysis, the series is transformed; for example,
the logarithm lnY instead of Y may be analyzed. Such is often the case when
Y varies over several orders of magnitude.

8.8.1.2 Differencing

As mentioned above, it may be necessary to difference the series before com-
puting the ACF and PACF. This is because the mathematical theory of
stochastic processes states that a stationary process may be represented as
an AR or an MA. Part of the idea of stationarity is that the distribution of
Yt should not depend upon t. In particular, the series must be level, that
is, not uptrending or downtrending. So a first step in analyzing a series is to
examine a plot of it to see if it is trending. If so, the series is differenced and
the differences are analyzed. Often, the first difference D[Yt ] = Yt − Yt−1
is sufficient.

Example 8.5 Continuous rate of return

Let Pt be the price of a share of stock at time t. Often in the time period
under consideration the price may have a wide range. Then the log transform
Lt = lnPt may be made. If the series is uptrending, then the difference may
be computed, resulting in DLt = Lt − Lt−1 = lnPt − lnPt−1. This is the
continuous ROR.

Sometimes a second difference is used. This would be the case if the first
difference is still trending. The second difference D2Yt is the difference of the
difference.

D2Yt = D(DYt) = DWt = Wt −Wt−1

= (Yt − Yt−1)− (Yt−1 − Yt−2)

= Yt − 2Yt−1 + Yt−2.

Example 8.6 Velocity and acceleration

If Yt is the position of an object moving along the axis at time t, then DYt
is the velocity from time t− 1 to time t, and

D2Yt = D(DYt) = (Yt − Yt−1)− (Yt−1 − Yt−2) = Yt − 2Yt−1 + Yt−2
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is the change in velocity, or the acceleration, from time t− 2 to time t.

8.8.2 ARIMA Parameters p, d, q

The parameter d denotes the order of differencing, p the order of autore-
gression, and q the order of the moving-average part of the model, if any.
These are integers, d = 0, 1, 2, . . . , p = 0, 1, 2, . . . , q = 0, 1, 2, . . . . Usually
these are each 0, 1, or 2. First, the order d of differencing required to obtain
a level series is determined. Then the autocorrelation function ACF and par-
tial autocorrelation PACF are used to choose p and q. (ACF and PACF are
discussed in the next section.) Then the values of p, d, q are supplied to the
software, and estimation and forecasting proceed. SCA software (Liu 2008)
has an expert system command that will automatically identify the model,
that is, automatically choose p, d, q.

A shorthand notation for the model is used when one or another of p, d, q
is zero.
· ARIMA(p, 0, q) = ARMA(p, q)
· ARIMA(0, d, q) = IMA(d, q)
· ARIMA(p, d, 0) = ARI(p, d)
· ARIMA(0, 0, q) = MA(q )
· ARIMA(p, 0, 0) = AR(p)

For example, the integrated moving average model discussed above is denoted
by IMA(1,1), that is, d = 1, and q = 1.

· A in ARIMA is for Autoregression, discussed above.

· I in ARIMA is for Integration, referring to the fact that the observed
series may be an integration of a level series and may have to be differenced
before analysis.

· MA in ARIMA is for Moving Average, referring to the part of the model
capturing the autocorrelation of the errors.

8.8.3 Autocorrelation Function; Partial Autocorrelation
Function

Statistical software has procedures for identifiying and estimating Box/Jenkins
ARIMA models. First, the given time series must be differenced to obtain a
level series. Then the autocorrelation function ACF and the partial autocor-
relation function PACF of the differenced series are computed.

The ACF (autocorrelation function) is the set of autocorrelations ACF(k)
for a number of lags k = 1, 2, etc. ACF(k) is the ordinary correlation between
an X and a Y where Y is Yt and X is Yt−k.
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The PACF (partial autocorrelation function) is the set of partial autocor-
relations PACF(k) for a number of lags k = 1, 2, etc. PACF(k) is ACF(k),
with the effects of intervening lags 1, 2, k−1 removed, that is, it is the partial
correlation between Yt and Yt−k, adjusting for Yt−1, Yt−2, . . . , Yt−k+1.

· If the process is MA(q), the ACF has spikes at lags 1 through q and the
PACF tails off.

· If the series is AR(p), the ACF tails off and the PACF has spikes at lags
1 through p.

· If the series is ARMA(p, q), the ACF has an irregular pattern with some
high and some low values at lags 1 through q, then tails off, and the PACF
tails off.

In software, the user can specify a max number of lags for the computation,
or use the default. In Minitab, for example, the default is n/4 for a series
with n ≤ 240 or

√
n+ 45 for n > 240.

Charts indicating the method for time-series model identification are
shown: Table 8.1 is for MA; Table 8.2, for AR; and Table 8.3, for ARMA.
These are oriented horizontally; such charts can be oriented vertically as well.
The number of lags shown is seven. The figures suggest three spikes, or order
3; in practice, 1 or 2 would be more typical.

TABLE 8.1
ACF and PACF Pattern for MA(q)

lag: ACF PACF

1 X X X X X X X X X X X X X X
2 X X X X X X X X X X X
3 X X X X X X X X X X
4 X X X X
5 X X X
6 X X
7 X X

Spikes at lags 1 to q, then cuts off. Tails off.

8.9 Seasonal Data

Seasonal data data include monthly and quarterly data. For financial account-
ing, the quarters of the year are three-month periods ending March 31, June
30, September 30, and December 31. It is natural to use the term “seasonal
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TABLE 8.2
ACF and PACF Pattern for AR(p)

lag: ACF PACF

1 X X X X X X X X X X X X X X
2 X X X X X X X X X X X
3 X X X X X X X X X X X
4 X X X X X
5 X X X X
6 X X X
7 X X

Tails off. Spikes at lags 1 to p, then cuts off.

TABLE 8.3
ACF and PACF Pattern for ARMA(p, q)

lag: ACF PACF

1 X X X X X X X X X X X X X X
2 X X X X X X X X X X X
3 X X X X X X X X X X X
4 X X X X X X
5 X X X X
6 X X X
7 X X

Irregular at lags 1 to q, then tails off. Tails off.

data” for such data, with the quarters more or less corresponding to Winter,
Spring, Summer, and Fall.

The idea for statistical description and modeling is that

· This year’s Fall quarter sales may be related to last year’s Fall quarter
sales

· This year’s Winter sales, to last year’s Winter sales, etc.

The designation seasonal refers also to time periods other than the seasons.
For example, monthly data are seasonal, as are weekly data. Data observed
daily, by day of the work week (M, T, W, R, F), are seasonal, as are data
observed on all seven days (M, T, W, R, F, S, N).
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8.9.1 Seasonal ARIMA Models

The modeling may be done by treating the seasons as categories or by using
regression (seasonal autoregression). In the case of quarterly data, one might
regress Yt on Yt−4 or Yt−4 and Yt−8. After differencing an increasing series
Yt by computing the quarterly difference Wt = Yt − Yt−4, an ARMA model
may be fit to the differences Wt.

Example 8.7 Best Buy company quarterly sales

For many retail firms, fourth-quarter sales are highest. For Best Buy, they
typically account for about a third of annual sales. Thus there are strong
quarterly effects.

Best Buy revenue has been uptrending, with an average annual increase
of about 20%. (More recently, this growth has diminished.) When a series is
not level, then as time goes on, more and more parameters may be required
to model the series adequately. In such a case, the differences, that is, the
changes from one time to the next, can be analyzed. Here these are the quar-
terly differences, the increases from last year’s q-th quarter to this year’s q-th
quarter, q = 1, 2, 3, 4. The quarterly difference D4t = Yt−Yt−4 becomes the
response variable in a regression analysis. The explanatory variable is D4t−4,
which is Yt−4 − Yt−8. That is, the quarterly difference D4t is analyzed in a
first-order seasonal autoregressive model, D4t = Φ0 + Φ1D4t−4 + εt.
Update. In early 2009, Best Buy’s sales increase was aided by the closing of a
competitor, Circuit City. Best Buy quarterly sales are further analyzed in the
section below on stable seasonal pattern (Section 8.9.2).

Seasonal ARIMA parameters. If the data are quarterly, the value of
Yt could be expected to be similar to that of Yt−4. The seasonality S is equal
to 4.

Monthly data are also seasonal. The seasonality S is 12. The value of Yt
could be expected to be similar to that of Yt−12.

Daily data, such as closing stock prices, on Monday, Tuesday, Wednesday,
Thursday, and Friday, are also called seasonal. The seasonality S equals 5.
For a variable observed every day, Monday through Sunday, the seasonality
S = 7.

The order of seasonal AR is denoted by upper-case P ; that of seasonal MA,
by upper-case Q. The overall notation for an ARIMA model with regular and
seasonal parts is ARIMA(p, d, q) S ARIMA(P,D,Q). Similarly, seasonal
AR and MA parameters are denoted by upper-case Φ and Θ, respectively.
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Example 8.8 U.S. Gross Domestic Product

Here the variable Yt is quarterly GDP. GDP is reported in billions (109) of
dollars. So a value 1,000 is one trillion (1012). Here we report our analysis of
data from 1947:1 through 2004:4 (58 years, that is, n = 232 quarters). Over
these six decades, quarterly GDP ranged from about 56 to 3,060 (annual from
about 200 to about 12,000). Because the variable ranges over several orders of
magnitude, it makes sense to take logs, using the transform Wt = lnYt. Also,
because the variable is uptrending, it makes sense to difference (quarterly).
So the variable

Wt = Zt − Zt−4 = lnYt − lnYt−4 = ln GDPt − ln GDPt−4

is analyzed. Note that this difference of logs is just the continuous growth
rate over four quarters. The fitted model involves this transformation and
differencing, and then fitting AR and MA terms. The ACF and PACF of Wt

are examined. They both show spikes for lags 1, 2, and 3 and do not cut off
immediately after that. So both AR and MA terms are considered. Following
Liu (2008, pages 4–13), an ARMA model is fit to the quarterly difference Wt

with Q = 1 (seasonal first-order MA) and p = 3 (regular third-order AR).
For Zt = ln GDPt, this is

ARIMA(p = 3, d = 0, q = 0) S = 4 ARIMA(P = 0, D = 1, Q = 1).

· The seasonality is S = 4

· The regular part is ARIMA(p = 3, d = 0, q = 0),

· The seasonal part is ARIMA(P = 0, D = 1, Q = 1).

ARIMA Model: LN GDP

Estimates of Parameters

Type Coef SE Coef t p

AR 1 1.1163 0.0657 16.98 0.000

AR 2 -0.0156 0.1004 -0.16 0.876 N.S.

AR 3 -0.1715 0.0657 -2.61 0.010

SMA 4 0.5722 0.0636 8.99 0.000

Constant 0.0048221 0.0003980 12.12 0.000

Differencing: 0 regular, 1 seasonal of order 4

Number of observations:

Original series 232, after differencing 228

Residuals: SS = 0.0433254 (backforecasts excluded)

MS = 0.0001943 DF = 223



Introduction to Time Series Analysis 175

The estimated model is

Ẑt = 0.0048 + 1.1163Zt−1 − 0.0156Zt−2 − 0.1715Zt−3 + et − 0.5722et−4.

(Here the symbol e represents the realized value of the error ε. There is a
question of how to use the fitted model whose expression includes e terms
for prediction. The e terms can also be found in terms of preceding values of
the series. For details we defer to books on time series analysis per se.) The
standard error of fit is

√
0.0001943 = 0.01394. This is comparable to Liu’s

Ẑt = 0.0609 + 1.044Zt−1 + 0.018Zt−2 − 0.338Zt−3 + et − 0.421 et−4,

with a standard error of fit of 0.01737, for the period 1947:1 through 1969:4.
(There is a difference of sign in the coefficient of Zt−2, but this coefficient is
not s.d.f.z.)

8.9.2 Stable Seasonal Pattern

One way to treat seasonal data is as compositional data—considering the whole
as the sum of its parts. For example, yearly sales may be considered as com-
posed of (that is, the sum of) monthly sales or quarterly sales. One question
to ask is whether the composition (percentages across quarters) is relatively
constant (“stable”) from year to year. If so, the pattern is said to be a stable
seasonal pattern. Then forecasting is simplified, in that one can build a model
for just the annual totals, forecast the annual total, and apply the appropri-
ate percentages to obtain forecasts for each quarter. The seasonal modeling is
separated from the annual modeling (Chen and Fomby 1999).

Example 8.9 Best Buy quarterly sales, continued: stable seasonal
pattern

Table 8.4 shows quarterly sales in millions of dollars (M$) for the eleven years
1998 through 2008, and for the first three quarters of 2009.

Table 8.5 shows the row percents, which are the seasonal pattern. The
percentages in the last row (All) are the quarterly totals across years, divided
by the grand total. Given a prediction of total sales in 2009, one would predict
that 19.71% of those sales would occur in the first quarter. The prediction
of total sales in 2009 could be obtained by fitting a time-series model to
the annual totals for the years up through 2008. This procedure separates
the fitting of a time-series model from the fitting of a seasonal pattern. For
example, suppose we use an average annual growth rate to make a forecast
for the year 2009. The growth factor has been 45,015/8,357 = 5.387, over
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TABLE 8.4
Sales, by Quarter (M$)

Year Q1 Q2 Q3 Q4 Total

1998 1606 1793 2106 2852 8357
1999 1943 2182 2493 3458 10076
2000 2385 2686 3107 4314 12492
2001 2963 3169 3732 5461 15325
2002 3697 4164 4756 6980 19597
2003 4202 4624 5131 6989 20946
2004 5345 5778 6845 7896 25864
2005 6118 6702 7335 10693 30848
2006 6959 7603 8473 12899 35934
2007 7927 8750 9928 13418 40023
2008 8990 9801 11500 14724 45015

Total 52135 57252 65406 89684 264477

2009 10095 11022 12024

Source. Hoover’s; finance.yahoo.com

ten annual increases. This gives an average annual growth factor (multiplier)
equal to the tenth root of 5.387, or 5.3871/10 = 1.1834, that is, an average
annual factor of .1834 (18.34 % per year). Based on this, at the end of 2008,
the forecast of total sales for 2009 would be 45, 015× 1.1834 = 53, 271 M$.

· The forecast for Q1 of 2009 would have been 19.71%× 53, 271 = 10, 500
M$, compared to the actual 10,095 M$.

· The forecast for Q2 of 2009 would have been 21.65%× 53, 271 = 11, 533
M$, compared to the actual 11,022 M$.

· The forecast for Q3 of 2009 would have been 24.73%× 53, 271 = 13, 174
M$, compared to the actual 12,024 M$.

Later, given the sales of 10,095, 11,022, and 12,024, respectively, for Q1, Q2,
and Q3 of 2009, one might forecast the sales for Q4 of 2009 to be

53, 271− (10, 095 + 11, 022 + 12, 024) = 20, 130 M$.

Another forecast can be made using the quarterly percentages. The results
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TABLE 8.5
Seasonal Pattern: Distribution (%) over Quarters for Each Year

Year Q1 Q2 Q3 Q4 Total

1998 19.22 21.46 25.20 34.13 100.00
1999 19.28 21.66 24.74 34.32 100.00
2000 19.09 21.50 24.87 34.53 100.00
2001 19.33 20.68 24.35 35.63 100.00
2002 18.87 21.25 24.27 35.62 100.00
2003 20.06 22.08 24.50 33.37 100.00
2004 20.67 22.34 26.47 30.53 100.00
2005 19.83 21.73 23.78 34.66 100.00
2006 19.37 21.16 23.58 35.90 100.00
2007 19.71 21.65 24.73 33.91 100.00
2008 19.97 21.77 25.55 32.71 100.00

All 19.71 21.65 24.73 33.91 100.00

for Q1, Q2, and Q3 total 10,095 + 11,002 + 12,024 = 33,121 M$. This should
be about 19.71 + 21.65 + 24.73 = 66.09% of the total. So another estimate
of the total is 33,121/.6,609 = 50,115 M$. Then the forecast for Q4 of 2009
would be

50, 115− 33, 121 = 16, 994M$.

A forecast can be made that combines these via an average or weighted aver-
age. The mean of the two forecasts for Q4 of 2009 is (20,130 + 16,994)/2 =
18,562 M$. The weights would be more appropriately chosen proportional to
the reciprocal variances (see Chen and Fomby (1999) for details).

There was a recession in the year 2009, so the forecasts may be too high.
Another factor is that, according to the theory of life cycle of firms, as a
company matures, its growth rate might diminish. Later we continue this case
and consider other models for the total annual sales, and other methods for
dealing with the quarterly data. But the method of stable seasonal pattern
should not be ignored. It is relatively straightforward and simplifies what can
be some relatively tricky modeling and forecasting problems.
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8.10 Dynamic Regression Models

A regression of Yt on contemporaneous or lagged values of some explanatory
variables X1t, X2t, etc., is regression in a time-series context and thus is called
a dynamic regression model (or transfer function model).

Example 8.10 Steel, iron, and coal

Let st, it, and ct be, respectively, the prices of steel, iron and coal in the t-th
time period. Iron and coal are used in the production of steel, so one might
consider a model such as

st = β0 + β1it−1 + βcct−1 + εt,

where εt is random error.
One could consider a model with a lag of steel price as well as coal and iron
prices:

st = β0 + βsst−1 + β1it−1 + βcct−1 + at.

Such models are more complicated than ordinary multiple regression models
because the dependent variable appears in lagged form on the right-hand side.
However, they may be treated as multiple regression models fairly satisfacto-
rily. (That is, the lagged variable is then treated just as another explanatory
variable in the regression.)

Interesting questions arise, including the following.

· If st−1 is in the model, are it−1 and ct−1 needed?

· Conversely, if it−1 and ct−1 are in the model, is st−1 needed?

Example 8.11 Day trading, continued

As discussed above, a model for intraday ROR can incorporate its lag. Along
with this, there could explanatory variables such as ones for day-of-the-week.
First, day-of-the-week effects alone can be assessed with an Analysis of Vari-
ance (ANOVA). The output is from Minitab, slightly edited. The day-of-week
effects are statistically significant, with F = 2.87 (p = .022). The standard
error of fit is s = 0.01090. The effects of W and R are positive at +0.035% and
+0.021%; those of M, T, F, negative, at −.133%, −0.112%, and −0.051%.
One trading strategy would be to be in on W and R and out on M, T and F.
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The mean daily ROR would be (0.035+0.021)+3 IR)/5, where IR is the daily
interest rate, assuming that if you let the money sit there, you get interest.
For example, if the annual interest rate is 2.6% and the number of business
days per year is 260, then IR = 0.01% per day. The mean daily ROR of the
strategy is (0.035 + 0.021) + 3× 0.01)/5 = 0.086/5 = 0.0172% per day.

When a buy or a sell is executed, there is a transaction cost TC. If TC is
expressed as a rate, for example .001 or 0.1%, it can be subtracted directly
from the ROR to get a net ROR. If the transaction cost is $ 10 per trade, and
the investor will buy, say 1,000 shares at $100 per share, for $100,000, and sell
the 1,000 shares at the end of the day at $101.00 per share, for $101,000, then
the rate is TC = (10+10)/(100, 000+101, 000) = 20/201, 000 ≈ 20/200, 000−
1/10, 000 = .0001 or 0.01%. Figuring a TC for both buying and selling, the
mean daily net ROR is estimated as (0.035−2×TC+0.021%−2×TC+3 IR)/5.
For example, if TC = 0.1%, it would completely erase the positive expected
gain on days when the buy/sell is executed. Suppose then that TC = 0.005%.
Then the expected daily net gain is, using IR = 0.01% per day, [(0.035− 2×
0.005) + (0.021− 2× 0.005) + 3× 0.01)/5 = [0.025 + 0.011 + 3× 0.01)/5 =
0.066/5 = 0.0132% per day. There are usually 252 trading days per year.
Multiplying by 252 gives 252×0.0132 = 3.3264% per year, a relatively modest
amount.

A better test would be obtained by using part of the data as a training set
and the more recent part as a test set. Least squares estimates are optimized
for the training set, so there will be shrinkage in the goodness of fit when they
are applied to the test set.

One-way ANOVA: intradayROR versus WEEKDAY

Source DF SS MS F p

WEEKDAY 4 0.001363 0.000341 2.87 0.022

Error 2976 0.353853 0.000119

Total 2980 0.355216

s = 0.01090 R-Sq = 0.38% R-Sq(adj) = 0.25%

Individual 95% CIs For Mean Based on

Pooled StDev

Level N Mean StDev --+---------+---------+---------+-------

1 561 -0.00133 0.01179 (--------*--------)

2 612 -0.00112 0.01092 (--------*-------)

3 612 0.00035 0.01069 (-------*--------)

4 599 0.00021 0.01062 (--------*--------)

5 597 -0.00051 0.01050 (--------*--------)

--+---------+---------+---------+-------

-0.0020 -0.0010 0.0000 0.0010

Pooled StDev = 0.01090

Tukey 90% Simultaneous Confidence Intervals

All Pairwise Comparisons among Levels of WEEKDAY

Individual confidence level = 98.61%
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WEEKDAY = 1 subtracted from:

WEEKDAY Lower Center Upper

2 -0.00136 0.00021 0.00178

3 0.00011 0.00168 0.00325

4 -0.00004 0.00154 0.00312

5 -0.00075 0.00082 0.00240

WEEKDAY ---------+---------+---------+---------+

2 (---------*---------)

3 (--------*---------)

4 (---------*--------)

5 (---------*---------)

---------+---------+---------+---------+

-0.0016 0.0000 0.0016 0.0032

WEEKDAY = 2 subtracted from:

WEEKDAY Lower Center Upper

3 -0.00006 0.00147 0.00300

4 -0.00021 0.00133 0.00288

5 -0.00093 0.00062 0.00216

WEEKDAY ---------+---------+---------+---------+

3 (--------*---------)

4 (--------*---------)

5 (---------*--------)

---------+---------+---------+---------+

-0.0016 0.0000 0.0016 0.0032

WEEKDAY = 3 subtracted from:

WEEKDAY Lower Center Upper

4 -0.00168 -0.00014 0.00140

5 -0.00240 -0.00086 0.00069

WEEKDAY ---------+---------+---------+---------+

4 (--------*---------)

5 (---------*--------)

---------+---------+---------+---------+

-0.0016 0.0000 0.0016 0.0032

WEEKDAY = 4 subtracted from:

WEEKDAY Lower Center Upper

5 -0.00227 -0.00072 0.00083

WEEKDAY ---------+---------+---------+---------+

5 (---------*--------)

---------+---------+---------+---------+

-0.0016 0.0000 0.0016 0.0032

Let us now combine day-of-the-week effects with autoregression. An AR model
has Q̂t+1 = φ̂0 + φ̂1Qt. An ANOVA (Analysis of Variance) model with day-
of-week can be combined with this in an Analysis of Covariance (ANCOVA).
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In multiple regression terms, the model is

Qt = φ0 + φ1Qt−1 + αM xMt + αT xTt + αW xWt + αRxRt + αFxFt + εt,

t = 1, 2, . . . , n days, where, for d = M, T, W, R, F, the dummy variable

xdt = 1 if day t = d and = 0 otherwise.

The analysis can be done on a spreadsheet with a multiple regression func-
tion, but then one of the day-of-week terms must be omitted, and φ0 will
represent its effect. In statistical software, ANCOVA can be performed with
a GLM (General Linear Model) command. In the data spreadsheet, the data
are stacked, with a column for the values of the dependent variable Qt, a
column for the lag Qt−1, and a column for the day of the week. The day
of the week is entered as the “factor,” and the lag is entered as a “covari-
ate.” Software output is shown below. One interesting question is whether the
correlation of intraday ROR is positive, or negative, from day to day. The es-
timate of the lag-one autoregression coefficient is positive, at +0.02113. The
p-value is about .25, not particularly significant. The standard error of fit is
s == 0.0109052, about the same as that of the ANOVA model.

General Linear Model: intradayROR versus WEEKDAY

Factor Type Levels Values

WEEKDAY fixed 5 1, 2, 3, 4, 5

Analysis of Variance for intradayROR, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F p

------------------------------------------------------------------

lagIntradayROR 1 0.0001691 0.0001580 0.0001580 1.33 0.249

WEEKDAY 4 0.0013519 0.0013519 0.0003380 2.84 0.023

Error 2974 0.3536792 0.3536792 0.0001189

-------------------------------

Total 2979 0.3552002

s = 0.0109052 R-Sq = 0.43% R-Sq(adj) = 0.26%

Term Coef SE Coef t p

Constant -0.000469 0.000200 -2.34 0.019

lagIntradayR 0.02113 0.01833 1.15 0.249

WEEKDAY

1 -0.000853 0.000409 -2.09 0.037

2 -0.000625 0.000396 -1.58 0.114

3 0.000841 0.000396 2.12 0.034

4 0.000673 0.000399 1.69 0.092

Means for Covariates

Covariate Mean StDev

lagIntradayROR -0.000472 0.01092

Least Squares Means for intradayROR
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WEEKDAY Mean SE Mean

1 -0.001332 0.000460

2 -0.001104 0.000441

3 0.000362 0.000441

4 0.000194 0.000446

5 -0.000514 0.000447

Bonferroni 95.0% Simultaneous Confidence Intervals

Response Variable intradayROR

All Pairwise Comparisons among Levels of WEEKDAY

WEEKDAY = 1 subtracted from:

WEEKDAY Lower Center Upper ---+---------+---------+---------+---

2 -0.001563 0.000228 0.002020 (--------*--------)

3 -0.000097 0.001694 0.003485 (-------*--------)

4 -0.000274 0.001527 0.003327 (--------*--------)

5 -0.000984 0.000818 0.002620 (--------*--------)

---+---------+---------+---------+---

-0.0020 0.0000 0.0020 0.0040

WEEKDAY = 2 subtracted from:

WEEKDAY Lower Center Upper ---+---------+---------+---------+---

3 -0.000285 0.001466 0.003217 (-------*--------)

4 -0.000464 0.001298 0.003061 (-------*--------)

5 -0.001175 0.000590 0.002355 (--------*--------)

---+---------+---------+---------+---

-0.0020 0.0000 0.0020 0.0040

WEEKDAY = 3 subtracted from:

WEEKDAY Lower Center Upper ---+---------+---------+---------+---

4 -0.001930 -0.000167 0.001595 (--------*--------)

5 -0.002640 -0.000876 0.000888 (--------*-------)

---+---------+---------+---------+---

-0.0020 0.0000 0.0020 0.0040

WEEKDAY = 4 subtracted from:

WEEKDAY Lower Center Upper ---+---------+---------+---------+---

5 -0.002481 -0.000708 0.001064 (-------*--------)

---+---------+---------+---------+---

-0.0020 0.0000 0.0020 0.0040

Bonferroni Simultaneous Tests

Response Variable intradayROR

All Pairwise Comparisons among Levels of WEEKDAY

WEEKDAY = 1 subtracted from:

Difference SE of Adjusted

WEEKDAY of Means Difference t-Value p-Value

2 0.000228 0.000638 0.3579 1.0000

3 0.001694 0.000638 2.6570 0.0793

4 0.001527 0.000641 2.3822 0.1727

5 0.000818 0.000642 1.2751 1.0000

WEEKDAY = 2 subtracted from:

Difference SE of Adjusted

WEEKDAY of Means Difference t-Value p-Value

3 0.001466 0.000623 2.3513 0.1877

4 0.001298 0.000628 2.0691 0.3862
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5 0.000590 0.000628 0.9390 1.0000

WEEKDAY = 3 subtracted from:

Difference SE of Adjusted

WEEKDAY of Means Difference t-Value p-Value

4 -0.000167 0.000627 -0.267 1.000

5 -0.000876 0.000628 -1.395 1.000

WEEKDAY = 4 subtracted from:

Difference SE of Adjusted

WEEKDAY of Means Difference T-Value p-Value

5 -0.000708 0.000631 -1.123 1.000

Trading strategy based on day-of-the-week and yesterday’s intraday
ROR. At the closing bell, the investor will obtain the intraday ROR for
the day, Qt. The investor will execute a day trade on the next day if its
predicted intraday ROR for tomorrow is large enough, that is, if Q̂t+1 > c.
A decision risk analysis to determine c proceeds as follows, comparing the
net expected ROR of trading tomorrow with that of not trading tomorrow. It
is assumed that tomorrow’s daily interest rate IRt+1 is known. The ROR of
not trading tomorrow is IRt+1. The predicted net ROR of trading tomorrow
is Q̂t+1 − TC, where TC is the transaction cost, expressed as a rate. The
difference is Q̂t+1 − TC − IRt+1 = Q̂t+1 − c, where c = TC + IRt+1. So a
strategy is to trade tomorrow if Q̂t+1 > TC + IRt+1. As mentioned, here TC
is expressed as a rate.

The proceeds are at a rate IRt on days t when the investor sits on the
sidelines and at a rate Qt−TC on days t when the investor trades. The daily
proceeds can be added up on a spreadsheet. Again, better estimates of how
such a strategy would perform in practice would be obtained by saving the
more recent part of the dataset as a test set.

An alternative is to using a rolling computation, updating the parameter
estimates. This could be done each day, one the spreadsheet is set up or
program is written. The window might be, for example, 252 days (the typical
number of trading days in a year), or perhaps 504 days.

8.11 Simultaneous Equations Models

Above it was seen how relationships of price and quantity to lags of one another
lead to simultaneous equations and then to an autoregression for price.

More generally, there can be a system of equations involving a number
of variables. There are large-scale econometric models of the U.S. economy,
involving a large number of variables.
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8.12 Appendix 8A: Growth Rates and Rates of Return

If a principal amount P0 earns interest for one period at a rate r per period,
the principal at the end of the period is P1 = P0(1 + r). If this continues for
n periods, then Pn = P0(1 + r)n. If there are different rates r1, r2, . . . , rn in
the different periods, then this is Pn = P0(1 + r1)(1 + r2) . . . (1 + rn).

8.12.1 Compound Interest

If there is compounding m times per period, for n periods, with rates
R1, R2, . . . , Rn, then Pn = P0(1 +R1/m)m(1 +R2/m)m . . . (1 + rn/m)m. If
the rateR is compoundedm times during the period, then P1 = P0(1+r/m)m.

To convert an annual rate R to a monthly rate, one can approximate
as R/12. However, a more precise computation of the monthly rate is (1 +
R)1/12 − 1. For example, if R = .06 or 6% per year, the monthly rate is
approximately 0.06/12 = .005 or 0.5% per month, but on a compound basis
the rate is 1.061/12 − 1 = .0048675 or 0.45675% per month, a little less than
0.5% per month.

If a rate r is compounded continuously over the period, then

P1 = lim
m→∞

(1 + r/m)m = P0e
r.

If the compounding is continuous, then

Pn = P0e
r1 er2 . . . ern = P0 exp(r1 + r2 + . . . + rn) = P0 exp(

n∑
t=1

rt).

8.12.2 Geometric Brownian Motion

If the rates of return r1, r2, . . . , rn are random variables, then {Pn, n =
1, 2, . . .} is a random process. If in addition the rt are i.i.d. (independent and
identically distributed) according to a Normal distribution, then the process
Pn = P0 exp(

∑n
t=1 rt) is called geometric (exponential) Brownian motion, or

GBM.

Note that in the GBM, the variables rt are the continuous RORs, rt =
lnPt − lnPt−1, t = 1, 2, . . . , n, and lnPn = lnP0 exp(

∑n
t=1 rt) = lnP0 +

ln(exp(
∑n
t=1 rt) = lnP0 +

∑n
t=1 rt = lnP0 +

∑n
t=1 (lnPt − lnPt−1). Taking

the term lnP0 to the left-hand side, we have

lnPn − lnP0 =

n∑
t=1

(lnPt − lnPt−1) =

n∑
t=1

rt.

This says that the continuous ROR for the whole period is the sum of
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the n RORs. For example, weekly continuous ROR is the sum of the daily
RORs. This property is not shared by ordinary (discrete) ROR, Rt =
(Pt − Pt−1)/Pt−1. For example, let daily prices be P0 for last Friday, P1 for
this Monday, P2 for this Tuesday, P3 for this Wednesday, P4 for this Thursday,
and P5 for this Friday. Then the weekly ROR is (P5 − P0)/P0, and in terms
of the daily RORs Rt = (Pt − Pt−1)/Pt−1, t = 1, 2, 3, 4, 5, we have

(P5 − P0)/P0 = [(P5 − P4) + (P4 − P3) + (P3 − P2) + (P2 − P1) + (P1 − P0)]/P0

= [P4(P5 − P4)/P4 + P3(P4 − P3)/P3 + P2(P3 − P2)/P2

+P1(P2 − P1)/P1 + P0(P1 − P0)/P0]/P0

= [P4 R5 + P3 R4 + P2 R3 + P1 R2 + P0 R1]/P0

= (P4/P0)R5 + (P3/P0)R4 + (P2/P0)R3 + (P1/P0)R2

+ (P0/P0)P0R1

6= R1 + R2 + R3 + R4 + R5.

Thus, the weekly ROR is not a simple sum but rather a weighted sum of the
daily RORs in which the weights Pt/P0 depend on the daily prices Pt.

8.12.3 Average Rates of Return

If annual rates of increase are r1, r2, . . . , rn, then the average rate of increase
r is derived from

(1 + r)n = (1 + r1)× (1 + r2)× · · · × (1 + rn).

This means that it is given by the formula

r = [(1 + r1)× (1 + r2)× · · · × (1 + rn)]1/n − 1.

If instead of the rates of increase the annual sales sales y0, y1, y2, ..., yn are
given, then the average annual rate of increase r is defined by

yn = (1 + r)n y0.

This gives r = (yn/y0)1/n − 1. Suppose sales in eight years a company’s
capitalization grew from 2 m$. to 10 M$. What is the average annual rate of
growth, r? The solution is given by yn = y8 = 10M$ = (1 + r)n y1 = (1 +
r)8 (2M$), (1 + r)8 = 5, 1 + r = 51/8 ≈ 1.223, r ≈ .223 or 22.3% per year.

8.12.4 Section Exercises: Exponential and Log Functions

8.1 ln(ex) = x. Why?
Solution: The two functions are inverses of one another, so the answer is x.

8.2 For x > 0, eln x = x. Why?
Solution: The two functions are inverses of one another, so the answer is x.
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8.3 ln(2e) = 1+ln(2). Why? Solution: ln(2e) = ln(2)+ln(e) = ln(2)+1.,

8.4 Which of the following is closest to the value of the number 1/e: 1/3,
0.3679, 1/2, 3, or 3.14159? Solution: The number e is a little less than
3, so 1/e is approximately 1/3. More precisely, 1/e = e−1 ≈ 1/2.71818 ≈
0.3679.

8.13 Appendix 8B: Prediction after Data Transforma-
tion

8.13.1 Prediction

Because the conditional expectation minimizes the mean squared error of pre-
diction, the predicted value of Yt+1 is usually taken as the estimate of the
conditional expectation of Yt+1, given the past data, that is, the past history
of the time series, up to and including time t, denoted by Ht. (The past
history Ht includes yt, at, yt−1, at−1, . . . .)

The prediction would be Ŷt+1 = E [Yt+1 |Ht ]. Now, this will involve
parameters, which must be estimated from the data. For example, in the case
of AR(1), E [Yt+1 |Ht ]. = φ0 + φ1 yt, and φ0 and φ1 must be estimated. So

the prediction Ŷt+1 will be φ̂0 + φ̂1 yt.

8.13.2 Prediction after Transformation

But suppose that the data have been transformed, according to Z = h(Y ).
Then the model is built in terms of Z. Then how should Y be predicted? The
inverse transform is Y = h−1(Z) = g(Z), where we let g(·) = h−1(·), for
short. One way to proceed would be simply to plug in Ẑ, taking the prediction
of Y to be Ŷ = g(Ẑ).

For example, suppose Z = lnY and the model is AR(1). Then Ẑt+1 =

φ̂0 + φ̂1zt. The inverse transform is Y = h−1(Z) = g(Z) = eZ and a

prediction of Yt+1 is exp(Ẑt+1) = exp(φ̂0 + φ̂1zt) = exp(φ̂0) exp(φ̂1zt) =

exp(φ̂0) exp(zt)
φ̂1 = exp(φ̂0) y φ̂1

t .

8.13.3 Unbiasing

This is not an unreasonable way to proceed. But the predicted value of Yt+1

is supposed to be its conditional expectation given the data, and E [Y ] =
E [h−1(Z)] 6= h−1(E [Z]), unless h(·) is linear.

An approach to finding an unbiasing term proceeds as follows. Let
h−1(z) = g((z) for short. The first two terms of a Taylor series approxi-
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mation, expanding g(z) about the point z0, are

y = g(z) ≈ g(z0 + (z − z0)g′(z0) + (1/2)(z − z0)2 g′′(z0).

Taking z0 to be µz, here representing E [Z |Ht], gives

y = g(z) ≈ g(µz) + (z − µz)g′(µz) + (1/2)(z − µz)2 g′′(µz).

This gives

E [Y ] = E [g(Z)]

≈ g(µz) + E [(Z − µz) g′(µz)] + (1/2)E(Z − µz)2g′′(µz)
= g(µz) + 0 + (1/2)σ2

zx g
′′(µz)

= g(µz) + (1/2)σ2
z g
′′(µz).

So the bias correction term added to g(µz) is (1/2)σ2
z g
′′(µz).

8.13.4 Application to the Log Transform

The log transform is Z = h(Y ) = lnY. The inverse is Y = g(Z) =
exp(Z). The derivatives involved are g′(z) = exp(z) and g′′(z) = exp(z).
The unbiasing term is (1/2) σ2

z g
′′(µz) = (1/2) σ2

z exp(µz). Then µy is
approximated by g(µz) + (1/2)σ2

z g
′′(µz) = exp(µz)+ (1/2) σ2

z exp(µz) =
exp(µz) [1+ (1/2) σ2

z ]. That means the bias-corrected prediction is taken as
Ŷt+1 = exp(Ẑt+1) [1+ (1/2) s2z], where s2z is the mean squared error obtained
in fitting the model to {Zt }. Note that the bias-corrected prediction is the
plug-in prediction exp(Ẑt+1) times a bias-correction factor [1+ (1/2) s2z].

8.13.5 Generalized Linear Models

Generalized linear models generalize the multiple linear regression model given
by the regression function E [Y |x1, x2, . . . , xp] = β0 + β1 x1 + β2 x2 + · · ·+
βp xp. A transform h(E [Y |x1, x2, . . . , xp]) is taken as obeying a multiple
linear regression model: h(E [Y |x1, x2, . . . , xp]) = β0 +β1 x1 + β2 x2 + · · ·+
βp xp. Thus E [Y | x1, x2, . . . , xp] = h−1(β0 + β1 x1 + β2 x2 + · · ·+ βp xp) =
g(β0 + β1x1 + β2 x2 + · · ·+ βp xp), and the preceding analysis can be applied
to improve upon the plug-in prediction g(b0 + b1 x1 + b2 x2 + · · · + bp xp).

A word on terminology. Do not confuse the terms Generalized Linear
Model and General Linear Model. Generalized Linear Model refers to a model
where the transform of the mean of Y obeys a multiple linear regression model.
The term General Linear Model refers to a model where Y itself obeys a
multiple linear regression model but allows that model to be other than a
standard simple linear regression or balanced ANOVA.
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8.14 Appendix 8C: Representation of Time Series

Representation of time series includes expressing Yt in terms of past values
yt−1, yt−2, . . . and εt or in terms of the error sequence {εt}. Such representa-
tions can be used to obtain means, variances, and covariances, and to obtain
predicting formulas. Some simple results are stated and derived. For more
advanced results and details, we defer to books on time series analysis per se.

8.14.1 Operators

Throughout, the operators E for mathematical expectation, V for variance,
and C for covariance are used.

In this section, some additional operators are used. The backshift operator
B operates as B[Yt ] = Yt−1. The identity operator I is I[Yt ] = Yt. Note
that the difference operator D is I − B, that is,

D[Yt ] = (I − B)[Yt ] = I[Yt ] − B[Yt ] = Yt − Yt−1.

The backshift operator is also called the lag operator and written L[Yt ] =
Yt−1.

We denote operators by script letters so that they are not confused nota-
tionally with scalars, vectors, or matrices, and so that it is clear that operators
are different than ordinary functions.

8.14.2 White Noise

The error sequence {εt} is white noise. That means E [ εt ] = 0, V[ εt ] = σ2
ε ,

a constant not depending on t, and C[ εt, εu ] = 0, for t 6= u. A short way
of writing this is C[ εt, εu ] = σ2

ε δtu, where δtu is the Kronecker delta:
δtu = 1 if t = u and δtu = 0 if t 6= u.

8.14.3 Stationarity

Strong stationarity means that all the finite-dimensional distributions are
time-invariant; that is, for any p and any time points (t1, t2, . . . , tp), the joint
distribution of Yt1+h, Yt2+h, . . . , Ytp+h does not depend upon h. For time
series analysis, weak stationarity (covariance stationarity) suffices. This means
that E [Yt] does not depend upon t, and for every k = 0, 1, 2, . . . , C[Yt, Yt−k]
depends only upon k and not t. In what follows it is assumed that the series
{Yt} is covariance stationary. In particular, its mean, variance, and covariances
will not depend upon t.
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8.14.4 AR

The AR(1) model is Yt = φ0 + φ1yt−1 + εt. The mean can be found as
follows: µ = E [Yt ] = E [φ0 + φ1 Yt−1 ] = φ0 + φ1 µ; this gives

µ− φ1µ = (1− φ1)µ = φ0,

so µ = φ0/(1 − φ1). The deviation from the mean is Ỹt = Yt − µ. Its
conditional expectation is φỹt−1, because

E [ Ỹt | yt−1 ] = φ0 − µ+ φ1yt−1

= φ0 − φ0/(1− φ1) + φ1yt−1 = φ0 [1− 1/(1− φ1)] + φ1yt−1

= φ0[−φ1/(1− φ1)] + φ1yt−1 = [φ0/(1− φ1)](−φ1) + φ1yt−1

= −φ1µ+ φ1yt−1 = φ1 (yt−1 − µ) = φ1 ỹt−1.

The model can be rewritten as

Ỹt − φ1 ỹt−1 = εt, or (I − φ1B)[ Ỹt ] = εt.

Proceeding formally to write the inverse operator gives

Ỹt = ( I − φ1B)−1[ εt ],

where, given a sequence x1, x2, . . . , xn, . . . , the back-shift operator B is B[xt] =
xt−1. The expression involving the inverse can be expanded using the formula
for the sum of a geometric series with common ratio r:

1 + r + r2 + · · · =
1

1− r
, for |r| < 1.

Take r = φ1 B to obtain a representation of Ỹt in terms of {εt }. Stationarity
implies |φ1| < 1. The representation is

Ỹt =

∞∑
k=0

φk1 εt−k.

8.14.4.1 Variance

The variance is

V[Yt ] = V[ Ỹt ] = V[

∞∑
k=0

φk1 εt−k ] = σ2
ε

∞∑
k=0

φ2k1 =
σ2
ε

1− φ21
,

where the fact that the covariances C[εt, εu] for t 6= u are zero has been used.
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8.14.4.2 Covariances and Correlations

The notation Yt denotes the value of Y at time t. For k = 1, 2, . . . , the
notation Yt−k denotes the value of Y at time t − k, that is, k time units
earlier. The integer k is called the lag. The lag-k covariance is

C[ Yt, Yt−k ] = C[ Ỹt, Ỹt−k ]

= C[
∞∑
i=0

φi1 εt−i,
∞∑
j=0

φj1 εt−k−j ]

= C[
k−1∑
i=0

φi1 εt−i +

∞∑
i=k

φi1 εt−i,

∞∑
j=0

φj1 εt−k−j ]

= C[
k−1∑
i=0

φi1 εt−i,

∞∑
j=0

φj1 εt−k−j ]

+ C[
∞∑
i=k

φi1 εt−i,

∞∑
j=0

φj1 εt−k−j ]

= 0 + C[
∞∑
i=k

φi1 εt−i,

∞∑
j=0

φj1 εt−k−j ]

= C[
∞∑
i=k

φi1 εt−i,

∞∑
j=0

φj1 εt−k−j ]

= C[
∞∑
m=0

φm+k
1 εt−k−m,

∞∑
j=0

φm+k
1 εt−k−j ]

= C[ φk1
∞∑
m=0

φm1 εt−k−m,

∞∑
j=0

φj1 εt−k−j ]

= φk1 C[
∞∑
m=0

φm1 εt−k−m,

∞∑
j=0

φj1 εt−k−j ]

= φk1 C[ Ỹt−k, Ỹt−k] = φk1 V[ Ỹt−k ] = φk1 V[Yt−k ]

= φk1 σ
2
ε/(1− φ21).

The lag-k autocorrelation is φk / (1− φ21).

8.14.4.3 Higher-Order AR

Similar calculations yield results for AR(p). Details are omitted here; see one
or another of the books on time series in the Bibliography.
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8.14.5 MA

The MA(q) model is Yt = µ + εt − θ1εt−1 − · · · − θqεt−q, where the error
sequence {εt} is white noise. The mean is E [Yt ] = µ.

8.14.5.1 Variance

The model Yt = µ + εt − θ εt−1, where {εt } is white noise, is an MA(1)
model. The variance σ2

y = V[ Yt ] is

V[ Yt ] = V[ εt − θ εt−1]

= V[ εt ] + 2 C[ εt, − θ εt−1 ] + V[−θεt−1 ]

= V[ εt ] − 2 θ C[ εt, εt−1 ] + (−θ)2 V[ εt−1 ]

= σ2
ε + 0 + θ2 σ2

ε

= (1 + θ2)σ2
ε .

The variance in an MA(q) model can be obtained as σ2
ε (1+θ21 +θ22 + · · ·+θ2q)

by similar operations.

8.14.5.2 Correlation

In an MA(1), Yt and Yt−1 are correlated but Yt and Yt−k for k = 2, 3, . . . are
uncorrelated. In an MA(q), observations within q time periods of one another
are correlated; observations farther apart are not.

8.14.5.3 Representing the Error Variables in Terms of the Obser-
vations

As mentioned in the text, in developing forecasts for models with MA parts,
it is necessary to represent the realized errors et in terms of the values of
past and current observations yt, yt−1, . . . . In terms of operators B[Yt ] ,=
Yt−1 and I, the identity operator I[Yt ] = Yt, write Yt = Iεt − θB εt =
[I − θB]εt. Proceeding formally, write [I − θB]−1Yt = εt, εt = [I + θB +
θ2B2 + · · · ]Yt = Yt + θ Yt−1 + θ2 Yt−2 + · · · . The realized value is
et = yt + θ yt−1 + θ2 yt−2 + · · · . Now, the data series goes back only to
y1. Note, however, that et ≈ yt − θ yt−1 + θ2 Yt−2 + · · · + θt−1 y1. The
approximation is good because higher powers of θ are very small.

As an example, consider predicting the next observation in an MA(1). The
model is Yt+1 = εt+1 − θ εt. The conditional expectation is

E [Yt+1 |Ht ] = E [ εt+1 − θ εt |Ht ]

= E [ εt+1 |Ht ]− θ E [εt|Ht ]

= 0− θ et = − θ(yt + θ yt−1 + θ2 yt−2 + · · · )
≈ − θ (yt + θ yt−1 + θ2 yt−2 + · · · + θt−1 y1)

= −θyt − θ2yt−1 − · · · − θt y1 .

Note, then, that for MA(1), Ŷt+1 = − θ(yt− θyt−1− θyt−2−· · · = −θ(yt −
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Ŷt). That is, the predicted value is − θ times the preceding prediction error

yt − Ŷt. Of course, in these formulas, an estimate θ̂ would be plugged in for
θ.

The method of representation of Yt in terms of {εt} can be extended to
MA(q) by inverting the operator I − θ1B − θ2B2 + · · ·+ θq Bq. This involves
finding roots of the corresponding auxiliary polynomial equation.

8.14.6 ARMA

ARMA models

Yt = θ0 + φ1yt−1 + · · ·+ φpyt−1 + εt − θ1εt−1 − · · · − θqεt−q

can be similarly represented. We defer to advanced books on time series for
details.

8.15 Summary

Temporal data are data observed in time. Time series are temporal data ob-
served at regular time intervals, for example, daily, weekly, monthly, quarterly,
or annually.

A trend is a general up movement or down movement.
Moving averages smooth the data and facilitate the detection of trends in

the data. The average used may be the mean or the median. The window width
is the number of observations averaged. A moving average may be centered,
or may work back in time.

The smoothed value St may be taken as a prediction Ŷt+1 of the next
value Yt+1.

Often, the changes, or differences, rather than the original values are an-
alyzed. That is, a series may be pre-processed by differencing to yield a level
series for analysis. Sometimes a second difference may be used. The first dif-
ference corresponds to velocity; the second, to acceleration.

Exponentially weighted moving averages weight more recent observations
more heavily. The smoothing constant is the weight given to the most recent
observation.

Autoregressive models seek to explain and predict a response variable in
terms of its past values.

ARIMA models may include differencing, autoregressive terms and moving
average terms. The moving average part of the model is autoregression in the
errors.

Dynamic regression models (transfer function models) try to explain and
predict a response variable in terms of past values of other variables.
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Monthly and quarterly data are examples of seasonal data.
If in a spreadsheet the rows correspond to years and the columns to quar-

ters, then the row percents give the seasonal pattern. If the seasonal pattern
is stable, it can be used for purposes of forecasting.

8.16 Chapter Exercises

8.16.1 Applied Exercises

8.5 Given the time series y1 = 218, y2 = 217, y3 = 214, y4 = 216, y5 =
211, y6 = 214, y7 = 212, compute the running median of three.
Solution: Let rMdn denote the running median. The computation proceeds as

rMdn2 = median{218, 217, 214} = 217, rMdn3 = median{217, 214, 216} = 216.

Continue the computation, obtaining smoothed values 214, 214, and 212.

8.6 (continuation) Plot the original and smoothed values on the same graph.
Note that the plot of the rMdn sequence will be smoother than that of the
original sequence. Note the consistent downtrend of the smoothed series, de-
spite the slight ups and downs of the original series.

8.7 (continuation) Compute the predictor-corrector formula for a six-point
sum-of-digits WMA.

8.8 Show that if α = 2/(n+ 1), then n = (2− α)/α = 2/α− 1.

8.9 Weights for an EMA. Compute the EMA weights for α = .1 and
compare them with the weights 1/n for a moving average, where n = (2 −
.1)/.1 = 19. Remark. The weights for the MA are then 1/19, or just above
.05.

8.10 Weights for an EMA. Compute the EMA weights for α = .2 and
compare them with the weights 1/n for a moving average, where n = (2 −
.2)/.2 = 9. Remark. The weights for the MA are then 1/9 ≈ .111, or just
above .10.

8.11 Stable seasonal pattern. Suppose sales in 2009 were 5.0 M$, and
there is a stable seasonal pattern across quarters, namely 10%, 20%, 30%, and
40% for the first, second, third, and fourth quarters, respectively. Using the
predictor that total sales for 2010 will be 10% higher than sales were for 2009,
what is the forecast of total sales for 2010? Solution: 5.0 M$ × 1.10 = 5.5 M$.

8.12 (continuation) Using this forecast of annual sales, predict sales for the
second quarter of 2010 using the stable seasonal pattern. Solution: The forecast

of second quarter sales is 20% of 5.5 M$ = 1.1 M$.
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8.13 Update the Best Buy quarterly sales data in the text (Table 8.4. Update
the analyses using the augmented dataset.

8.14 Suppose Yt = φ0 +φ1 yt−1 +εt, t = 1, 2, . . . , n. If the one-step-ahead
predictor is Ŷn+1 = φ0 + φ1 yn, and if the two-step-ahead predictor Ŷn+2

is taken to be φ0 + φ1 Ŷn+1, what is Ŷn+2 in terms of yn?

8.15 (continuation) Given observations y1, y2, . . . , yn of a time series, denote
the prediction of Yt+h at time n that is, the h-step ahead prediction at time
n, by Ŷn(h), h = 1, 2, . . . . Use the method of the preceding problem to
compute this for AR(1).

8.16.2 Mathematical Exercises

8.16 Add up 1 + 2 + 3 + 4 + 5 + 6 as (1 + 6) + (2 + 5) + (3 + 4).

8.17 Add up 1 + 2 + 3 + 4 + 5 as (1+5) + (2+4) + 3.

8.18 (continuation) Compute the predictor-corrector formula for a five-
point sum-of-digits WMA.

8.19 Show that 1 + 2 + 3 + · · · + n = n(n+ 1)/2.

8.20 Compute the correlation between (Y1+Y2+Y3)/3 and (Y4+Y5+Y6)/3
when the Yt are uncorrelated with common variance σ2.

8.21 Compute the correlation between (Y1+Y2+Y3)/3 and (Y4+Y5+Y6)/3
when Yt = εt − θ εt−1 and {εt} is white noise (uncorrelated with common
variance σ2).

8.22 Compute the correlation between (Y1+Y2+Y3)/3 and (Y4+Y5+Y6)/3
when Yt = φYt−1 + εt, where {εt} is white noise and Y0 is uncorrelated with
{εt, Yt, t = 1, 2, . . . } and has variance σ2.

8.23 For the preliminary estimate of θ in an MA(1) model, set up the indi-
cated quadratic equation in a form so that the constant is 1.

8.24 (continuation) Show that this implies that the product of the roots is
1, that is, that the roots are reciprocal.

8.25 (continuation) Solve the equation.

8.26 Quarterly effects. Write a model for quarterly effects with monthly
data. Show how it is a restriction of the model for monthly effects. (There
will be four quarterly parameters rather than twelve monthly parameters but
each is repeated three times, because the data are monthly. Also, the number
of dummy variables required in either case is one less than the number of
categories.)
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8.27 (continuation) Show how to test the adequacy of quarterly effects
compared to monthly effects.

8.28 Estimation. Show that the mean squared error
∫

(y − a)2 fY (y) dy
is minimized by a = µy.

8.29 Prediction. Show that the mean squared error∫
[y − T (x)]2 fY |X(y|x) dy

is minimized by T (x) = E [Y |x ].

8.30 Prediction. Show that the mean squared error∫
[yt+1 − T (yt)]

2 fYt+1|Yt
(yt+1|yt) dyt

is minimized over predictors T (yt) by T (yt) = E [Yt+1 | yt ].
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8.18 Further Reading

Those interested in further reading on time series analysis might begin with the
book by McCleary and Hay (1980) or the book by Nelson (1973). The books
on time series in the Bibliography are listed by level of difficulty. (Difficulty is
not necessarily a negative attribute, however!) It is good also to put time series
in the broader context of stochastic processes. Helpful texts on this subject
include Parzen (1962, 1999) and Ross (1996). The Bibliography section above
lists books and then other materials (video, articles, and dissertations).
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9.1 Introduction

(Parts of this chapter are more advanced than most of the rest of the book.)
This chapter discusses states or phases of the market and the economy.
The states of the market are conventionally called Bull and Bear. The states
of the economy are referred to as recession, recovery, expansion, contraction.
Questions arise as to how many such states to use, and whether the nature of
the states detected by statistical methods corresponds to conventional notions
about the phases of the market or the economy.

The models considered involve a series {Yt, St}, where Y is observed and
S is the state, or label. For example, Yt may be the rate of return of the
S&P500 index in month t, and St may be 1 or 0, for Bull or Bear for that
month. One definition of Bull and Bear is that the state variable St = 1 if
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the ROR Yt > 0 and St = 0 if Yt ≤ 0. In that case, St is directly derivable
from the data. In other cases, the labels {St} are unobserved and then are
estimated from the observed process {Yt} by more complicated means. The
act of estimating St for each t, that is, labeling each time point of a time
series with the name of its estimated state, is called time series segmentation.
A segment (regime, epoch) is a sequence of time points with the same label.

Some definitions of phases are in terms of patterns; others are obtained in
terms of fitting models in which the states are explicit elements of the model,
albeit unobservable. Patterns will be considered first, and then hidden state
models.

9.2 Bull and Bear Markets

9.2.1 Definitions of Bull and Bear Markets

The popular financial press repeats the conventional wisdom relating to the
definition of Bull and Bear markets. One common definition (Vanguard Group;
Investopedia) is that a Bear market is indicated by a price decline of 20% or
more in a key stock market index from a recent peak over at least a two-month
period. Others consider a twelve-month period. With this definition, on the
average, the market is in a Bear state every four or five years. During an
average Bear market, the S&P loses about 25% of its value. It usually takes
eleven to eighteen months for the market to hit bottom. That would be about
two or three to four or five quarters, or one to one and a half years.

The simplest definition of Bull and Bear states would be to label a month
as a Bear month if the market index went down in that month and as a Bull
month if the market index went up in that month. This is the Up-Down (U/D)
method considered in Chapter 5. The U/D method definition of a Bull market
indicator variable is

Bullt = [sgm(xt) + 1]/2,

where xt is the market ROR in month t and the sign function is

sgm(x) = −1 if x ≤ 0 and = +1 if x > 0.

If sgm(xt) = −1, then Bullt = 0; and if sgm(xt) = +1, then Bullt = 1.
Other definitions of Bull/Bear states can involve a moving window of, say,
three months of market RORs because some analysts say that three consec-
utive down months of a market index constitute a Bear market. This notion
can be applied to the data considered in Chapter 5. The idea is that the
state should remain Bull until there are three consecutive months with neg-
ative market ROR and should remain Bear until there are three consecutive
months with positive market ROR. Accordingly, define Bull3, a Bull/Bear in-
dicator built on this idea of agreement of the most recent three months. That
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TABLE 9.1
Monthly Excess RORs (%) of Market and Fund, with Bull/Bear State Defined
as Bull3. (S3 is the moving sum of 3).

Mo. Market Fund Bull S3 Bull3

5 J 2.16% 2.45% 1 * 1
yrs F −0.32% −0.50% 1 * 1
ago M 0.73% 0.75% 1 3 1

A 0.82% 1.35% 1 3 1
M −3.53% −3.75% 0 2 1
J −0.39% −0.78% 1 2 1
J 0.09% 0.22% 1 2 1
A 1.69% 1.96% 1 3 1
S 2.03% 2.16% 1 3 1
O 2.69% 3.13% 1 3 1
N 1.22% 1.31% 1 3 1
D 0.85% 1.40% 1 3 1

4 J 0.98% 1.14% 1 3 1
yrs F −2.63% −2.99% 0 2 1
ago M 0.58% 0.71% 1 2 1

A 3.83% 4.51% 1 2 1
M 2.81% 3.27% 1 3 1
J −2.18% −1.73% 0 2 1
J −3.65% −4.22% 0 1 1
A 0.93% 0.94% 1 1 1
S 3.19% 4.16% 1 2 1
O 1.15% 1.29% 1 3 1
N −4.78% −3.23% 0 2 1
D −1.12% −0.56% 0 1 1

3 J −6.54% −7.32% 0 0 0
yrs F −3.71% −1.97% 0 0 0
ago M −0.70% −1.36% 0 0 0

A 4.54% 4.38% 1 1 0
M 0.92% 1.92% 1 2 0
J −9.14% −9.15% 0 2 0

is, take Bull3 to be 0 (Bear) if the past three months had negative market
ROR, equal to 1 (Bull) if the past three months had positive market ROR, and
equals Bull3t−1 otherwise. That is, the Bull/Bear indicator Bull3t is defined
in terms of Bullt as follows.

Initialization:

for t = 1, 2, 3, Bull3t = Bullt.

Computation:

for t = 4, 5, . . . , n,

Bull3t = 0 if Bullt = Bullt−1 = Bullt−2 = 0

Bull3t = 1 if Bullt = Bullt−1 = Bullt−2 = 1

Bull3t = Bull3t−1 otherwise.
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TABLE 9.2
Monthly Excess RORs, cont’d

Mo. Market Fund Bull S3 Bull3

3 J −1.13% −1.80% 0 1 0
yrs A 1.07% 1.52% 1 1 0
ago, S −9.61% −9.98% 0 1 0
cont’d O −18.62% −18.24% 0 1 0

N −7.80% −8.80% 0 0 0
D 0.78% 1.35% 1 1 0

2 J −8.97% −9.69% 0 1 0
yrs F −11.67% −9.11% 0 1 0
ago M 8.18% 7.58% 1 1 0

A 8.96% 8.61% 1 2 0
M 5.16% 5.51% 1 3 1
J 0.00% 0.31% 1 3 1
J 7.14% 8.69% 1 3 1
A 3.29% 3.64% 1 3 1
S 3.50% 4.34% 1 3 1
O −2.00% −2.37% 0 2 1
N 5.57% 4.67% 1 2 1
D 1.76% 2.91% 1 2 1

1 J −3.77% −4.13% 0 2 1
yr F 2.80% 4.51% 1 2 1
ago M 5.70% 6.28% 1 2 1

A 1.45% 1.32% 1 3 1
M −8.57% −8.55% 0 2 1
J −5.55% −5.81% 0 1 1
J 6.64% 7.09% 1 1 1
A −4.87% −5.05% 0 1 1
S 8.38% 8.96% 1 2 1
O 3.61% 2.45% 1 2 1
N −0.24% 0.59% 0 2 1
D 6.31% 7.31% 1 2 1

In programming this, it is convenient to work in terms of the moving sum

S3t = Bullt + Bullt−1 + Bullt−2.

Then

Bull3t = 0 if S3t = 0,

Bull3t = 1 if S3t = 3, and

Bull3t = Bull3t−1 if S3t = 1 or 2.

Table 9.1 shows the RORs and the Bull3 indicator. Table 9.2 is a contin-
uation of this table.

9.2.2 Regressions on Bull3

Next some regressions on Bull3 are shown, namely:
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· Two betas, no alpha: Regression of fund on market and mar-
ket*Bull3 (no constant)

· Two betas, one alpha: Regression of fund on market and mar-
ket*Bull3 (with constant)

· Two betas, two alphas: Regression of fund on market, Bull3 and
market*Bull3 (with constant)

9.2.2.1 Two Betas, No Alpha

This is the regression of Y = excess ROR of the fund on X1 = excess ROR
of the market and X2 = X1 × Bull3 (without a constant).

Regression Analysis: fund versus market, market*Bull3

The regression equation is

fitted value of fund = 0.975 market + 0.0939 market*Bull3

Predictor Coef SE Coef t p

Noconstant

market 0.97463 0.02259 43.15 0.000

market*Bull3 0.09388 0.03700 2.54 0.014

s = 0.724429

Analysis of Variance

Source DF SS MS F p

Regression 2 1674.80 837.40 1595.66 0.000

Residual Error 58 30.44 0.52

Total 60 1705.24

The fitted regression Ŷ = b1x1 + b2x2 is

fitted value of fund = 0.975 market + 0.0939 market*Bull3.

This is

fitted value of fund = 0.975 market, if Bull3 = 0

= 1.069 market, if Bull3 = 1.

The standard error of fit is 0.724.
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9.2.2.2 Two Betas, One Alpha

This is the regression of Y = excess ROR of the fund on X1 = excess ROR of
the market and X2 = X1 × Bull3 (with constant). The fitted regression will
be of the form Ŷ = a+ b1x1 + b2x2.

Regression Analysis: fund versus market, market*Bull3

The regression equation is

fitted value of fund = 0.171 + 0.983 market + 0.0729 market*Bull3

Predictor Coef SE Coef t p

Constant 0.17081 0.09671 1.77 0.083

market 0.98350 0.02275 43.24 0.000

market*Bull3 0.07286 0.03824 1.91 0.062

S = 0.711544 R-Sq = 98.3% R-Sq(adj) = 98.2%

Analysis of Variance

Source DF SS MS F p

Regression 2 1676.16 838.08 1655.32 0.000

Residual Error 57 28.86 0.51

Total 59 1705.02

The fitted regression Ŷ = a+ b1x1 + b2x2 is

fitted value of fund = 0.171 + 0.983 market + 0.0729 market*Bull3.

This is

fitted value of fund = 0.173 + 0.983 market, if Bull3 = 0

= 0.173 + 1.056 market, if Bull3 = 1.

The standard error of fit is 0.7115.

9.2.2.3 Two Betas, Two Alphas

This is the regression of Y = excess ROR of the fund on X1 = Bull3, X2 =
excess ROR of the market and X3 = X2 ×Bull3 (with constant), that is, the
regression of fund on market, Bull3, and market*Bull3 (with constant):

Regression Analysis: fund versus market, Bull3, market*Bull3

The regression equation is

fitted value of fund = 0.002 + 0.975 market + 0.224 Bull3 + 0.0778 market*Bull3
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Predictor Coef SE Coef t p

Constant 0.0018 0.1957 0.01 0.993

market 0.97472 0.02440 39.94 0.000

Bull3 0.2236 0.2251 0.99 0.325

market*Bull3 0.07775 0.03856 2.02 0.049

S = 0.711626 R-Sq = 98.3% R-Sq(adj) = 98.2%

Analysis of Variance

Source DF SS MS F p

Regression 3 1676.66 558.89 1103.62 0.000

Residual Error 56 28.36 0.51

Total 59 1705.02

The fitted model is

fitted value of fund = 0.002+0.9747 market +0.224Bull3+0.0778 market*Bull3.

If Bull3 = 0, this is

fitted value of fund = 0.002 + 0.9747 market.

If Bull3 = 1, this is

fitted value of fund = (.002 + .224) + (0.9747 + 0.0778) market

= .226 + 1.0525 market.

The standard error of fit is 0.7116, about the same as the 0.7115 obtained
with the preceding model.

9.2.3 Other Models for Bull/Bear

9.2.3.1 Two Means and Two Variances

A model with separate Bull and Bear distributions can be considered. There
can be a mean and variance for the Bull state and another mean and variance
for the Bear state. The parameters of the two distributions can be estimated
from the months with Bull3 = 0 and those with Bull3 = 1. The results are
shown below. The mean and standard deviation for Bear months are −3.34%
and 7.53%, respectively; those for Bull months are +0.988% and 3.635%, re-
spectively. Thus as expected, there is a negative mean and relatively large
standard deviation for Bear months and a positive mean and relatively small
standard deviation for Bull months. The size of the coefficient of variation–
ratio of standard deviation to absolute value of the mean–is 7.53/3.34 = 2.25
for Bear months and 3.635/0.988 = 3.68 for Bull months.
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Descriptive Statistics: market

Bull3 N N* Mean SE Mean StDev Min Q1 Median Q3 Max

0 16 0 -3.34 1.88 7.53 -18.62 -9.10 -2.42 1.03 8.96

1 44 0 0.988 0.548 3.635 -8.570 -0.938 1.065 3.265 8.38

The preceding is predicated upon a given indicator for Bull/Bear states.
Indicators such as Bull and Bull3 seem somewhat arbitrary. What about a
Bull4, based on a moving window of width 4, or a Bull2, based on a moving
window of width 2? Why not use a more flexible method that lets the data
do more to speak for themselves? To do this, we consider other descriptions,
which model Bull and Bear as hidden (latent) states, to be detected from the
data.

9.2.3.2 Mixture Model

Another model that incorporates hidden (latent) states and fits state-specific
distributions is the finite mixture model. (See, for example, McLachlan and
Peel 2000). This model is for any number K of states and observations xt
that may be vectors. The p.d.f. is of the form

f(xt) = π1 f1(xt) + π2 f2(xt) + · · ·
+ πk fk(xt) + · · · + πK fK(xt), t = 1, 2 . . . , n,

where the observations are at n time points. The p.d.f.s fk are called compo-
nent p.d.f.s. or state-conditional p.d.f.s. Sometimes the states are called classes
and the corresponding distributions are called class-conditional distributions.
The mixture probabilities πk add to 1. The mixture probability πk is the prior
probability that an observation comes from class k.

When there are just two states, it is often convenient to index them by
k = 0, 1. The p.d.f. is

f(xt) = π0 f0(xt) + π1f1(xt),

where the mixture probabilities π0 and π1 add to 1. The two class-conditional
distributions could be multivariate Normal. Of course, the vector x can be
just a scalar x. The class-conditional densities could, for example, be Normal,
with fk(x) = φ(x;µk, σ

2
k), k = 0, 1, where φ(x;µ, σ2) is the p.d.f. of the Nor-

mal distribution with mean µ and variance σ2. The probabilities πk, k = 0, 1
are prior probabilities of the distributions given by f0 and f1. The posterior
probability of state k, given x, is

π(k |x) =
πk fk(x)

f(x)
=

πkfk(x)

π0f0(x) + π1f1(x)
, k = 0, 1.

In the Gaussian case this is

π(k |x) =
πk φ(x;µk, σ

2
k)

π0φ(x;µ0, σ2
0) + π1φ(x;µ1, σ2

1)
, k = 0, 1.
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Denote estimates of πk, µk, σ
2
k, π(k |x) by pk, mk, vk, p(k |x). Estimation

starts with initial guesses p
(0)
k ,m

(0)
k , v

(0)
k , k = 0, 1. Then it alternates between

estimating the posterior probabilities and the distributional parameters. (This
alternation is an example of the EM algorithm; see Dempster, Laird and Rubin
1978; McLachlan and Krishnan 1997). At stage N (N = 0, 1, 2, . . .) set

p(N+1)(k|x) =
p
(N)
k φ(x;m

(N)
k , v

(N)
k )

p
(N)
0 φ(x;m

(N)
0 , v

(N)
0 ) + p

(N)
1 φ(x;m

(N)
1 , v

(N)
1 )

, k = 0, 1,

p
(N+1)
k =

n∑
t=1

p(N+1)(k |xt)/n, k = 0, 1,

m
(N+1)
k =

n∑
t=1

w(N+1)(k|xt) xt, v
(N+1)
k =

n∑
t=1

w(N+1)(k|xt) (xt −m(N)
k )2,

where the weights w(N+1)(k |xt) are proportional to the estimated posterior
probabilities,

w(N+1)(k |xt) = p(N+1)(k |xt)/
n∑
t=1

p(N+1)(k |xt).

Iterations are continued until adequate precision is reached.

9.2.3.3 Hidden Markov Model

Another model with hidden (latent) states is the hidden Markov model
(HMM). Like a finite mixture model, an HMM includes state-conditional
probability functions, for example, Normal distributions with different means
and different variances, but in addition there is a matrix of transition prob-
abilities. The entry πjk of the matrix gives the probability of transition to
state k, given that the process was in state j in the preceding time period,

πjk = Pr{St = k |St−1 = j}, j, k = 1, 2, . . . , K states,

where {St} is the unobservable state process. Each St = 1, 2, . . . , or K.
The p.d.f. for an HMM is analogous to that of a mixture model, but with

transition probabilities taking the place of mixture probabilities:

f(xt |St−1 = j) = πj1f1(xt) +πj2f2(xt) + · · ·+πjkfk(xt) + · · ·+ πjK fK(xt).

For modeling Bull and Bear states, we take k = 0, 1 and use Normal p.d.f.s,
obtaining the p.d.f.

f(xt |St−1 = k) = πk0 φ(xt;µ0, σ
2
0) + πk1 φ(xt;µ1, σ

2
1), k = 0, 1,

where St denotes the hidden (unobservable) state, 0 for Bear, 1 for Bull, at
time t.
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Remarks. (i) Here, an HMM is being applied to RORs. It is often noted that
the distribution of RORs is not Gaussian. Note, however, that although the
marginal distribution of xt may not be Gaussian, the component densities
fk(xt) in a finite mixture model or HMM may be. (ii) In the above formula-
tion, the transition probabilities are taken as stationary (not time dependent,
that is, the corresponding stochastic process is homogeneous), but they may
instead be modeled in terms of time-varying covariates, such as the risk-free
rate.

HMMs for Bull and Bear markets. Maheu and McCurdy (2000) used
a Markov-switching model that incorporates duration dependence to capture
nonlinear structure in both the conditional mean and the conditional variance
of stock returns. Their data are monthly returns including dividends (1802
to 1925 from Schwert 1990; 1926 to 1995:12 from CRSP, the Center for Re-
search in Security Prices). The model sorts returns into a high-return stable
state and a low-return volatile state. These can be labeled as Bull and Bear
states, respectively. The authors’ method identifies all major stock-market
downturns in over 160 years of monthly data. Bull markets have a declining
hazard function although the best market gains come at the start of a Bull
market. Volatility increases with duration in Bear markets. Allowing volatil-
ity to vary with duration captures volatility clustering. According to their
method, the market spent 90% of the time as a Bull market and only 10% in
a Bear market.

Lunde and Timmermann (2004) studied time series dependence in the
direction of stock prices by modeling the (instantaneous) probability that a
Bull or Bear market terminates as a function of its age and a set of underlying
state variables, such as interest rates. A random walk model is rejected for
both Bull and Bear markets. Although it fits the data better, a generalized
autoregressive conditional heteroscedasticity model (GARCH) is also found
to be inconsistent with the very long Bull markets observed in the data. The
strongest effect of increasing interest rates is found to be a lower Bear market
hazard rate (chance of ending, as time goes on) and hence a higher likelihood
of continued declines in stock prices.

Huang and Sclove (2011) segmented the time series of S&P500 monthly
RORs using an HMM with Gaussian p.d.f.s with differing means and vari-
ances. Three values of the number K of states were tried: K = 1, 2, 3.
With K states, the number of free parameters is 2K means and variances
and K(K − 1) free parameters in the transition probability matrix, a total of
2K + K(K − 1) = K(K − 1 + 2) = K(K + 1). This is 6 for K = 2, 12 for
K = 3, and just 2 for K = 1. A conclusion that K = 1 fits best corresponds
to no state-switching and might justify fitting a single ARIMA model over all
time points. A conclusion that K = 2 corresponds to the conventional use of
two states, Bull and Bear, particularly if one state has a positive mean ROR
and the other has a negative mean. A conclusion that K = 3 would suggest
another state, perhaps intermediate between Bull and Bear. BIC (Schwarz
1978) was used to compare models.
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BICk is an expansion of −2 ln(posterior probability of Model k), and so
can be put onto a scale of posterior probability. That is, the posterior probabil-
ity of Model k, p(k |data), is approximately proportional to exp(− BICk/2).
(This assumes equal prior probabilities of 1/K but the expression can be
adjusted for unequal prior probabilities.) That is,

p(k | data ) ≈ exp[−BICk/2] /

K∑
j=1

exp[− BICj/2].

It was found that the conventional number of states K = 2 has the best
(lowest) BIC and hence the highest posterior probability, with a larger variance
(and smaller mean) corresponding to the Bear state.

Formulation of HMMs. Next the likelihood function for HMMs will be
discussed.

Joint distribution. The joint distribution of the observations in a time
series may be built up from

f(x1,x2, . . . ,xn) =
f(x1)f(x2 |x1)f(x3 |x2,x1) · · · f(xn |xn,xn−1, . . . ,x2,x1).

In the case of a first order Markov process, this becomes

f(x1,x2, . . . ,xn) = f(x1)f(x2 |x1)f(x3 |x2) · · · f(xn |xn).

The joint distribution for an HMM takes account of both the observa-
tions and the hidden states. The observation vector xt is (yt st). Thus,
f(xt | xt−1) = f(yt, st | yt−1, st−1) = f(yt | st, yt−1, st−1) f(st | yt−1, st−1) =
f(yt | st)f(st | st−1) = fst(yt)πst−1,st . Here we have used the facts of
the HMM model formulation that f(yt | st, yt−1, st−1) = f(yt | st) =
fst(yt) and f(st | yt−1, st−1) = f(st | st−1) = πst−1,st . For a given state
sequence the probability is

p(s0)πs0,s1 f(y1| s1)πs1s2f(y2 | s2) · · ·πsn−1snf(yn | sn).

This involves also an initial distribution p(s0), s0 = 1, 2, . . . ,K. The marginal
distribution of the observable y1, y2, . . . , yn is a sum of this over all such pos-
sible state sequences, because the event that y1, y2, . . . , yn occurs is the union
of their occurrence over possible state sequences.

The Likelihood. The likelihood is the joint distribution of the obser-
vations, with the observations taken as given and the parameters taken as
variables. The likelihood is to be maximized over the parameters, both the
distributional parameters and the transition probabilities.

Estimating the Parameters of an HMM.

The parameters may be estimated by direct maximization of the likelihood or
by the Baum/Welch algorithm (Baum and Welch (ca. 1970); Baum, Petrie,
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Soules, and Weiss 1970). In the Baum, Petrie, Soules, and Weiss article (1970),
there is a reference to a paper by Baum and Welch submitted to the Proceed-
ings of the National Academy of Sciences (PNAS), but the archives of PNAS
reveal no publication by Baum and Welch. The Baum/Welch algorithm has
become an important tool in many fields, first especially in speech recognition.
The algorithm estimates the probability distribution πt(k) = Pr{St = k}
over the states of the hidden Markov chain at each time point. Though formu-
lated before any general formulation of the EM algorithm, the Baum/Welch al-
gorithm is an EM algorithm. We do not elaborate further on the Baum/Welch
algorithm here. See, for example, McLachlan and Krishnan (1997).

9.2.4 Bull and Bear Portfolios

Having segmented the relevant time series of market indicators into states
such as Bull and Bear, one may then estimate the mean vector and covariance
matrix of a portfolio of selected stocks and form a portfolio that is opti-
mal in Bull markets and a portfolio that is optimal in Bear markets, using
formulas such as those in earlier chapters on portfolio optimization. The es-
timate of an optimal weight vector w is a function of the estimate m of the
mean vector and S of the covariance matrix, say ŵ∗ = H(m,S). There
are estimates m0 and S0 and m1, S for Bull and Bear states, respectively;
ŵ∗0 = H(m0,S0), ŵ∗1 = H(m1,S1). One would try to predict whether
or not there will be a change in the state of the market, and rebalance or
not, accordingly. A decision risk analysis should be performed to see if the
expected increase in portfolio ROR would compensate for transaction costs
incurred in rebalancing. The transaction costs might be proportional to the
amount of buying and selling across the m stocks, that is, proportional to
m∑
a=1
| ŵ∗1a − ŵ∗0a |, where wka is the weight of asset a in the portfolio for state

k, k = 0, 1.

Example 9.1 /rm

GDP: Gross Domestic Product
Next, a macro-economic example, GDP, will be considered further. GDP

was considered in the preceding chapter, on time-series analysis, where a sea-
sonal ARIMA model for log quarterly GDP was discussed. It is interesting to
compare this with a model with different states, although even if it happened
that a single ARIMA model fit better, one might still want to fit a model with
states, which labels the time points.

Chen and Sclove (2011) fit a state model to GDP. The time series of quar-
terly growth rates of US GDP, from 1947 through the third quarter of 2010,
was segmented by hidden Markov models (HMMs). HMMs with several states
were fit and compared with a single distribution for the growth rate. State-
conditional Normal distributions with different means and variances were fit
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for different numbers of states. The extent to which states correspond to re-
cession, recovery, expansion, and contraction was assessed. The HMMs were
scored by BIC (Schwarz 1978). Some comparison was made to ARIMA models
involving regular and quarterly differencing and regular and quarterly autore-
gression of log GDP. Components of GDP were also fit with HMMs, with a
view toward determining which components are leading or lagging indicators
of the state of overall GDP.

9.3 Summary

Time series may have states. These are phases through which the process
passes over time. Examples are Bull and Bear states of the stock market, and
Recession, Recovery, Expansion, and Contraction in the economy.

The model is that at each time point there is an observable variable and
a state variable, the latter indicating the phase of the process at that time
point. The states may be unobservable but inferred from the observed values.
A segment (regime, epoch) is a sequence of time points having the same state.
Segmentation involves estimating the states, that is, labeling each time point
with its most likely state, or giving a probability distribution over the states
for each time point.

Hidden Markov models (HMMs) involve state-conditional p.d.f.s and tran-
sitions between states. The state process is a Markov chain with a transition
probability matrix.

Alternative, competing models can be compared with criteria such as BIC
(Bayesian Information Criterion). The values of BIC for the alternative models
can be put on a scale of posterior probability.

9.4 Chapter Exercises

9.4.1 Applied Exercises

9.1 From finance.yahoo.com, or otherwise, obtain data for the most recent
five years on the Dreyfus fund with ticker symbol DREVX and the S&P500
(ticker symbol ĜSPC; this is “hat” followed by GSPC). Obtain the rates
for three-month Treasury bills (TB3MS). Compute the excess RORs. Do the
regression of the fund on the Bull indicator. Compare the results with those
obtained in Chapter 5.
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9.2 (continuation) Compute the mean and standard deviation for the Bull
months and for the Bear months. Which has the larger standard deviation?

9.3 Obtain data for the most recent five years on the Dreyfus fund DREVX
and the S&P500 ĜSPC. Obtain the rates for three-month Treasury bills
(TB3MS). Compute the excess RORs. Do the regression of the fund on the
Bull3 indicator. Compare the results with those obtained in this chapter.

9.4 (continuation) Compute the mean and standard deviation for the Bull
months and for the Bear months. Which has the larger standard deviation?

9.5 Repeat the preceding two exercises for another mutual fund.

9.6 Choose two stocks. Compute their Bull and Bear betas by any of the
methods discussed. Form Sharpe-ratio optimal Bull and Bear portfolios. (This
is probably most interesting if the RORs of the two stocks are negatively
correlated, or at least not highly positively correlated.)

9.7 Choose three stocks. Compute their Bull and Bear betas by any of the
methods discussed. Form Sharpe-ratio optimal Bull and Bear portfolios. (This
is probably most interesting if there is one negative correlation among the
three pairwise correlations of the RORs of the stocks.)

9.4.2 Mathematical Exercises

9.8 Infinite mixture. We use the term finite mixture model because there
is such a thing as an infinite mixture model. As an example, show that the
p.d.f. of Student’s t is a scale mixture of Gaussian p.d.f.s, with the reciprocal
variance of the Gaussian family taken as having a Gamma distribution. (See
Section 2.4.1.)

9.9 Compound distribution. Show that if the Poisson parameter λ has a
Gamma distribution, the resulting marginal distribution is Negative Binomial.
This sort of compound distribution is another example of an infinite mixture.
(See Section 2.4.2.)

9.10 Infinite mixture of Poissons. Interpret the result of the preceding
problem in terms of the number of claims of insureds having different accident
rates (accident proneness) with a Gamma distribution over their individual
accident rates. (See Section 2.4.2.)
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9.6 Further Reading

The model selection criterion BIC was formulated by Schwarz (1978); the
paper by Kashyap (1982) is also very helpful and gives more details.

To begin a study of HMMs, it is helpful to begin with the Viterbi algorithm,
which finds the most likely state sequence. See Viterbi (1968) and Forney
(1978). Then for further study on the HMM, one may refer, for example, to
McLachlan and Krishnan (1997) or Zucchini and MacDonald (2009).
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at times. Some of the results discussed here were presented also earlier in the
text where needed.

A.1 Introduction

This appendix deals with arrays. A two-dimensional array is a matrix . An m×
n (read “m-by-n”) matrix may be written as having m rows and n columns,
the rows being horizontal lines, the columns being vertical lines.

Each line of a matrix is a vector. An m × 1 array is a column vector. A
1× n array is a row vector.

A vector v with elements v1, v2, . . . , vm, say, may be pictured as a one-
dimensional array, but its essence is that it is a function from the set of
subscripts i (i = 1, 2, . . . ,m, say) to the objects (usually numbers) vi that
are the elements of the vector. Similarly, a matrix A with elements aij , i =
1, 2, . . . ,m, j = 1, 2, . . . , n, may be pictured as a two-dimensional array, but
its essence is that it is a function from the set of pairs (i, j) to the numbers
a(i, j) that are the elements of the matrix.

A.2 Vectors

A vector, then, is an ordered set of elements (usually numbers in our case).
For example, if John buys three items at the grocery store, two dozen eggs

at $1.00 per dozen, three loaves of bread at $1.50 per loaf, and four cans of
soup at $0.60 per can, then the prices and quantities can be taken as vectors

p = (p1 p2 p3) = ($1.00 $1.50 $0.60),

and
q = ( q1 q2 q3 ) = (2 3 4),

where the subscript 1 denotes eggs, 2 denotes bread, and 3 denotes soup.

A.2.1 Inner Product of Two Vectors

At the cash register, John will owe

$1.00× 2 + $1.50× 3 + $0.60× 4 = $2.00 + $4.50 + $2.40 = $8.90.

This operation is a sum of products of corresponding elements of the price
and quantity vectors.

The inner product or dot product, or scalar product u · v of two vectors
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u = (u1 u2 . . . un) and v = (v1 v2... vn) of the same dimension, n, is the sum
of products of corresponding elements:

u · v = u1v1 + u2v2 + ...+ unvn.

Above we had n = 3, u = p, and v = q; the inner product u · v = p · q
is the total bill.
Remark. We often write u · v as u′v. This is often considered a row vector
times a column vector, although all that is essential is that it is a sum of
products of corresponding elements.

A.2.2 Orthogonal Vectors

To plot a vector, draw an arrow from the origin to the point indicated by the
vector’s coordinates. Plot the vectors (1 1) and (1 − 1). You will note that
these two vectors are orthogonal (perpendicular). The angle between them is
a right angle.

Two vectors u = (u1 u2 . . . up) and v = (v1 v2 . . . vp) of the same
dimension are orthogonal if their dot product is 0.

The “arrows” representing two such vectors are at right angles to one
another.

A.2.3 Variates

In many fields, including statistics, economics, and finance, linear combina-
tions of variables play a major role.

Given variables v1, v2, ..., vp, a linear form in those variables is a linear
combination of those variables, that is, a function of the form

f(v1, v2, . . . , vp) = a1v1 + a2v2 + . . . + apvp,

where a1, a2, . . . , ap are constants. In statistics this linear combination is
sometimes called a variate. It can be written in terms of vectors as

a′v.

A special case is a weighted average, where

ai = wi > 0 and

n∑
i=1

wi = 1.

Sometimes a constant is added: a0 + a′v.

A.2.4 Section Exercises
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A.1 On graph paper draw the vectors (1, 1) and (1, −1). Note that their
inner product is zero. Notice on the graph paper that the angle between these
two vectors is a right angle.

A.2 Find two vectors orthogonal to (1, 1, 1).

A.3 Find two vectors orthogonal to (1, 1, 1) and to each other.

A.4 Find two vectors orthogonal to (1, 2, 3).

A.5 Find two vectors orthogonal to (1, 2, 3) and to each other.

A.6 Show that a0 + a′v = (a0 a)′(1 v).

A.7 Show that (1 1 1)′(v1 v2 v3) =
∑3
i=1 vi. That is, the inner product of

a vector with the vector of ones equals the sum of the elements of the vector.

A.8 Show that (1 0 0)′(v1 v2 v3) = v1. That is, the inner product of a
vector with the vector with its first element 1 and the other elements 0 picks
out the first element of the vector. (Similarly, the inner product of a vector
and the vector with its second element 1 and the other elements 0 picks out
the vector’s second element.)

A.9 (In regard to the next exercises, see also Section A.5 on Vector Differ-
entiation below.) What is the partial derivative of a′v with respect to v1?

A.10 What is the partial derivative of a′v with respect to v2?

A.11 The notation grad f (gradient of f) or ∂f(v)
∂v denotes the p-vector

of partial derivatives of f with respect to each of the entries of v. What is
this if f is the variate a′v?

A.3 Matrices

A matrix is a rectangular array of numbers. The lines of a matrix are called
rows and columns. A matrix can be considered a set of column vectors or a
set of row vectors, that is, the lines of a matrix are called rows and columns.

Vectors are matrices of one row or one column.
It is convenient to denote matrices by uppercase boldface, for example,

M , and vectors by lowercase boldface, for example, v.
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A.3.1 Entries of a Matrix

If M is an I × J matrix with elements (or entries ) mij , i =
1, 2, . . . , I, and j = 1, 2, . . . , J, then we write

M = [mij ]i=1,2,...,I; j=1,2,...,J .

A.3.2 Transpose of a Matrix

First recall that if v is a vertical (column) vector, then the transpose v′

denotes the same elements arranged as a horizontal (row) vector.
If M is a matrix with elements mij , i = 1, 2, ..., I, and j = 1, 2, ..., J, then

its transpose is the J × I matrix

M ′ = [mji]j=1,2,...,J; i=1,2,...,I.

(For vectors, usually v will be taken to be a column vector; v’, a row vector.)
The columns of M become the rows of M ′.

A.3.3 Matrix Multiplication

If A is m× n and B is n× p, then their product AB is the m× p matrix
whose (i, j)-th entry is the inner product of the i-th row of A and the j-th
column of B, for i = 1, 2, . . . ,m; j = 1, 2, . . . , p.

Note. Here the word “matrix” is used as the adjectival form of the noun
matrix, as in the phrase matrix algebra. Sometimes the adjectival form is taken
as “matric,” as in matric algebra.

In addition to matrix addition, subtraction, and multiplication, an addi-
tional operation is multiplication of a matrix by a scalar. In the context of
vectors and matrices, a number is called a scalar. Let A = [ aij ] be an
m-by-n matrix and let c be a number. Then the matrix c ·A, or simply cA,
is the m× n matrix obtained by multiplying each entry of A by c:

cA = [ c aij ].

The matrix cA is called a scalar multiple of A.

A.3.4 Section Exercises

A.12 Peter and Paul go to the grocery store. They each buy the same three
items: eggs, bread, and canned soup. Peter buys two dozen eggs, one loaf of
bread, and five cans of soup. Paul buys one dozen eggs, two loaves of bread,
and three cans of soup. The prices are $1.00 per dozen eggs, $1.50 per loaf of
bread, and $0.60 per can of soup. Let B be the 3 × 1 vector of prices and
A be the 2×3 matrix of quantities, two rows for the boys, and three columns
for the items. Compute and interpret the matrix product AB.
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A.13 (continuation) Recompute the matrix product if the prices of eggs is
$0.50 per dozen.

A.3.5 Identity Matrix

The identity matrix of order n, denoted by I, is the n× n matrix with
1’s on the main diagonal and 0’s elsewhere. Its products are given by AI =
A and IB = B.

A.3.6 Inverse

A.3.6.1 Inverse of a Matrix

Given a square matrix A, if there is a matrix B such that AB = I, then
the matrix B is called the inverse of A. Then BA = I as well.

The inverse of the matrix M is denoted by M−1. So the preceding state-
ment says that

A−1A = I = AA−1.

A.3.6.2 Inverse of a Product of Matrices

First of all, suppose you put on your shirt, and then you put on your sweater
over that. To reverse this, you must first take off the sweater, then the shirt.

To see this for matrices and linear transformations, let A be m× n and
B be n× p. Let C = AB. Now suppose y = Cx. We shall see that

C−1 = B−1A−1,

that is, the inverse of a product is the product of the inverses, in reverse order.
Suppose that y = Cx; that is, y = ABx. Then x = B−1A−1y. To

see this, pre-multiply y = ABx by A−1, obtaining

A−1 y = A−1ABx = I Bx = Bx.

Now, pre-multiply by B−1, obtaining

B−1A−1 y = B−1Bx = x.

So
x = C−1y = B−1A−1 y,

that is,
C−1 = B−1A−1.
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A.3.7 Determinant

There are several reasonable scalar measures of the “size” of a matrix. One is
the determinant, denoted by det M or |M |.

The reader is referred to books on linear algebra for the full definition of
the determinant.

In two-dimensional space, the area of a parallelogram bounded by vectors
v and w with v = (a, b) and w = (c, d) is ad − bc, the determinant of
the corresponding two-by-two matrix. Similar results hold for volumes and
hypervolumes in higher dimensions.

A.4 Vector Differentiation

Let x = (x1 x2 . . . xn)′. Let f be a scalar function of x, f(x).
The vector of partial derivatives of f with respect to x1, x2, . . . , xn is de-

noted by

grad f =
∂f

∂x
= (

∂f

∂x1

∂f

∂x2
. . .

∂f

∂xn
)′.

Sometimes this notation is written in-line, as, for example ∂f/∂xi. Analogous
to d ax / d x = a, we have, for

a′x = a1 x1 + a2 x2 + · · · + an xn,

the rule
∂a′x /∂x = a = (a1 a2 . . . an)′.

A.5 Paths

Let x = (x1 x2 . . . xn)′ and x = p(t), where the variable t is time in a
number of applications. The function x(t) is called a path or trajectory. In
terms of elements, p(t) = (p1(t) p2(t) . . . pn(t))′. The derivatives dpi/dt of
the elements pi of p are in the vector ∂p/dt = (dp1/dt dp2/dt . . . dpn/dt)

′.
The gradient of f(x) is grad f(x) = (∂f/∂x1 ∂f/∂x2 . . . ∂f/∂xn)′. In
terms of x = p(t), the function f is a composite function f(p(t)). The
derivative of f with respect to t is

df

dt
=

n∑
i=1

∂f

∂xi

dxi
dt

=

n∑
i=1

∂f

∂pi

dpi
dt

= grad · ∂p
dt
,
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where ∂p/dt = (dp1/dt dp2/dt . . . dpn/dt)
′. This is a chain rule for vector

functions.
These notions will be used in Appendix C on Lagrange multipliers.

A.6 Quadratic Forms

Given variables v1, v2, . . . , vp, a quadratic form in those variables is a linear
combination of quadratic terms, that is, products of the form vivj and v2i . It
is a function of the form

f(v1, v2, . . . , vp) = a11v
2
1 + a12v1v2 + · · ·+ ap−1,pvp−1vp + appv

2
p.

A quadratic form can be written in terms of its vector v and its matrix A
as v′Av.

Remark. The matrix A of a quadratic form can always be taken as symmetric.
For, if A is not symmetric, combine aijvivj + ajivjvi into 2a∗ijvivj , where

a∗ij = (aij + aji)/2 and so a∗ji = a∗ij .

Analogous to d ax2/dx = 2 ax, the derivative of a quadratic form is
∂x′Ax/∂x = 2Ax.

A.7 Eigensystem

Given a p× p symmetric matrix S, consider maximizing the quadratic form
w′Sw with respect to w. There must be a condition on w; otherwise taking
one of its elements to be infinite would lead to a trivial maximum. Consider a
condition of the form w′w = c. (This is the condition that the squared length
of w be equal to c, that is, the length of w is

√
c.) Define a Lagrangian

function for this problem (see Appendix C on Lagrange multipliers for details
on this method) : L(w, λ) = w′Sw + λ (c − w′w). The condition

∂L

∂w
= 2Sw − 2λw = 0

leads to equations Sw = λw, or

(S − λI)w = 0.

This set of homogeneous simultaneous linear equations has a nontrivial solu-
tion (solution other than the zero vector) if and only if its coefficient matrix
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S−λI has determinant equal to 0. This determinant is a polynomial of degree
p (the order of S) in the variable λ, so setting it equal to zero gives an equa-
tion with p roots, the eigenvalues of S. Substituting the largest eigenvalue
into

Sw = λw

and solving gives w1, the choice of w that maximizes the quadratic form.
Note that if w is a solution, then so is dw, for any constant d. To make
the solution unique, the side condition is needed. Pre-multiplying byw gives

w′Sw = λw′w.

Taking the constant c in the side condition w′w = c to be 1, that is, taking
the side condition to be w′w = 1, gives w′Sw = λ, so that λ is then the
value of the quadratic form.

The pair (λ, w) is called an eigenpair. The values λ are called eigen-
values. The eigenvalues of a symmetric matrix S are real and non-negative.
Conventionally, these are numbered as

λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0.

The corresponding eigenvectors are numbered

w1,w2, . . . ,wp.

The set {(λv, wv), v = 1, 2, . . . , p } of pairs (λv,wv ) is called the eigensys-
tem of the given matrix. Eigenvalues and vectors are called also characteristic
values and vectors, and latent values and vectors.

Several measures of the size of a matrix come to mind, including the de-
terminant, the trace (sum of the diagonal elements), and the maximum eigen-
value. Note that these are all functions of the set of eigenvalues. The trace
turns out to be their sum; the determinant, their product.

A.8 Transformation to Uncorrelated Variables

A.8.1 Covariance Matrix of a Linear Transformation of a
Random Vector

Given a p-dimensional random vector (r.vec.) Y , let X = M Y , where
M is a p × p matrix. Then the covariance matrix of X, say ΣX , is given
by ΣX = M ΣY M

′, where ΣY is the covariance matrix of Y . To see this,
write C[X] = E [(X−µx) (X −µx)′] = E [(MY −Mµy) (MY −M µy)′] =

M E [(Y − µy )(Y − µy)]M ′ = M C[Y ]M ′.
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A.8.2 Transformation to Uncorrelated Variables

A given r.vec. Y of p elements can be linearly transformed to a r.vec. U of
p uncorrelated elements. (We say “a” r.vec. rather than“the” r.vec. because
there are many ways to do this.) To see this, note that the eigensystem of
ΣY , say

{ (λv,wv), v = 1, 2, . . . , p},

can be expressed in matrix notation as

W ′ΣY W = Λ = diag(λ1, λ2, . . . λp),

the diagonal matrix with diagonal elements λv, v = 1, 2, . . . , p. The vector
U = W ′ Y has covariance matrix ΣU = W ′ΣY W = Λ, which is diagonal.
The off-diagonal elements, the covariances, are zero. Thus, the variables in the
r.vec. U are uncorrelated.

A.8.3 Transformation to Uncorrelated Variables with Vari-
ances Equal to One

The p elements of a r.vec. Y are linearly dependent if the is a vector a such
that a′ Y = c, a constant (with probability one). In this case, E [a′Y ] = c.
But E [a′Y ] = a′µy. So E [a′Y ] = a′µy, that is, E [a′(y − µy)] = 0. The p
elements of Y are linearly independent if there is no non-zero vector a such
that E [a′(Y − µy)] = 0.

When the p variables in Y are linearly independent, its covariance matrix
Σy is non-singular and so its eigenvalues are positive. Then the r.vec. U =
W ′ Y of uncorrelated elements can be further transformed to a vector Z
whose elements are not only uncorrelated but also have variances equal to 1.
To do this, let Z = Λ−1/2U , where Λ1/2 = diag(

√
λ1,
√
λ2, . . . ,

√
λp). Then

ΣZ = Λ−1/2 Λ Λ−1/2 = I. Note that U = W ′ Y and Z = Λ−1/2U =
Λ−1/2W ′Y , so the transformation from Y to Z can be written in terms
of a single matrix. as Z = M Y , where M = Λ−1/2W .

Further, given any orthogonal matrix P (that is, a matrix P such that
P ′P = I = P P ′ ), take F = PM . Then FY has covariance matrix equal
to F ΣY F

′ = P M ΣY M
′P ′ = P I P ′ = P P ′ = I. Any transformation

of the form Z = P Λ−1/2W Y has identity covariance matrix. Note that
then Y = W ′ Λ1/2P ′Z, and one particular such transformation is simply
Y = W ′ Λ1/2Z.

The eigensystem of Σy gives W ′ΣyW = Λ, that is,

Λ−1/2W ′ΣyWΛ−1/2 = I.

The matrix W is orthogonal: WW ′ = I = W ′W . Thus, upon pre-
multiplying by W and post-multipying by W ′, this gives WW ′ΣyWW ′ =
WΛW ′, or Σy = W ΛW ′, expressing Σy in terms of its eigensystem. Note
that this can be written Σy =

∑p
v=1 λvwvw

′
v. This is called the spectral
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representation or spectral decomposition of the given covariance matrix Σy.
Note that the representation is Σy = CC ′, where C = WΛ−1/2. Also,
Σ−1y = (CC ′)−1 = C ′−1C−1 = (C−1)′C−1.

A.9 Statistical Distance

Suppose that it is taken as axiomatic that Euclidean distance is appropriate
for variables that are uncorrelated and have equal variances. This implies a
distance for other variables. To see this, note first that the Euclidean distance
between z and z0 is taken as the length of the vector d = z− z0. The length
is
√
d′d; the squared length is d′d. Now, given the r.vec. Y , with covariance

matrix Σy, it has been seen that there exists a matrix C (non-singular) such
that the r.vec. Z = CY has identity covariance matrix. Any such matrix C
satisfies CC ′ = Σ−1Y . Thus, with z0 = C y0, the squared distance is

d′ d = (Z − z0)′ (Z − z0)

= (CY −Cy0)′ (C Y −C y0)

= (Y − y0)′C ′C (Y − y0)

= (Y − y0)′Σ−1Y (Y − y0)

= D2(Y ,y0; ΣY ),

where, given vectors u and v and a non-singular matrix M , the function
D2(u,v;M) is (u − v)′M−1 (u − v). The squared distance D2 is squared
statistical distance, or Mahalanobis distance (Mahalanobis 1936). It is distance
that is adjusted for correlations and unequal variances.

A.10 Appendix Exercises

A.14 What is the cosine of the angle between the vectors (1 1) and (1 −1)?

A.15 Are the vectors (1 1 1) and (1 − 1 0) orthogonal?

A.16 (continuation) Show that the vector (1 1 − 2) is orthogonal to these
two.

A.17 Show that (1 + v2)−1 = 1− α v2, where α = 1/(1 + v2).

A.18 Rank-one perturbation. Show that the inverse of I + vv′ is I −
αvv′, where α = 1/(1 + v′v).
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A.19 (continuation) Generalize this to M +vv′, where M is non-singular.

A.20 (continuation) By taking M to be of the form M = XX ′ and v to
be the vector of values of a new explanatory variable to be included, show
how this can be applied to stepwise regression.

A.21 What is the inverse of I + uv′?

A.22 Expand [I − vv′]−1 in powers of v′v when v′v < 1.

A.23 Show that cv,where c is a constant, satisfies the eigenpair equation
for I + vv′. What is the corresponding eigenvalue?

A.24 (continuation) Verify that c (v2 −v1 0 . . . 0)′, where c is a constant,
is an eigenvector of I + vv′ and that 1 is the corresponding eigenvalue.

A.25 (continuation) Verify that c(v3 0 − v1 0 . . . 0)′ is an eigenvector of
I + vv′ and that 1 is the corresponding eigenvalue.
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A.12 Further Reading

For further study of vectors and matrices, the reader may wish to consult text-
books such as those by Hohn(2003) or Lay (2012). Appendix A in Anderson
(2003) is concise and helpful.
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This appendix relates to univariate and multivariate Normal distributions.
Vectors and matrices, as discussed in Appendix A, are used here.

B.1 Some Results for Univariate Normal Distributions

B.1.1 Definitions

The family of Normal distributions is a two-parameter family. The parameters
are the mean µ and the variance σ2. The standard deviation is the square root
of the variance. The standard Normal distribution is the Normal distribution
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with mean 0 and variance 1. Its p.d.f. is

φ(z) =
1√
2π

e−z
2/2, −∞ < z <∞.

The c.d.f. is Φ(z) =
∫ z
−∞ φ(z) dz = Pr{Z ≤ z}, where Z is a random

variable having the standard Normal distribution.
If a random variable Y has a Normal distribution with mean µ and vari-

ance σ2, then sometimes for brevity this is denoted by Y ∼ N (µ, σ2). If
Y ∼ N (µσ2), then Y is distributed as µ + σZ, where Z is distributed
according to the standard Normal distribution, that is, Z ∼ N (0, 1). The
p.d.f. of Y is

φ(y; µ, σ2) =
1

σ
√

2π
e−(y−µ)

2/2σ2

, −∞ < y <∞.

The c.d.f. is denoted by Φ(y;µ, σ2).

B.1.2 Conditional Expectation

The conditional expectation

E [Z | a < Z < b ] =

∫ b

a

zφ(z) dz

=

∫ b

a

z
1√
2π

e−z
2/2 dz / [Φ(b)− Φ(a)]

=

∫
u

1√
2π

e−u du / [Φ(b)− Φ(a)]

=
1√
2π

[−e−u ] / [Φ(b)− Φ(a)]

=
1√
2π

[−e−z
2/2 ]ba/ [Φ(b)− Φ(a)]

=
φ(a)− φ(b)

Φ(b)− Φ(a)
,

where the integration is by substitution with u = z2/2, du = z dz. If b =∞,
then the result gives

E [Z |Z > a ] = φ(a)/[1− Φ(a)].

If a = −∞, then the result gives

E [Z |Z < b ] = −φ(b)/Φ(b).

If Y is distributed according to the Normal distribution with mean µ and
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variance σ2, the conditional expectation of Y, given that y0 < Y, y1, is

E [Y | y0 < Y < y1 ] = E [µ+ σ Z | y0 < µ+ σZ < y1 ]

= E [µ+ σ Z | (y0 − µ)/σ < Z < (y1 − µ)/σ ]

= µ + σE [Z | (y0 − µ)/σ < Z < (y1 − µ)/σ ]

= µ + σ
φ(z0)− φ(z1)

Φ(z1)− Φ(z0)
,

where z0 = (y0 − µ)/σ and z1 = (y1 − µ)/σ. If y1 =∞, then

E [Y |Y > y0 ] = µ + σ
φ(z0)

1− Φ(z0)
,

where z0 = (y0 − µ)/σ . If y0 = −∞, then

E [Y |Y < y1 ] = µ − σ
φ(z1)

Φ(z1)
,

where z1 = (y1 − µ)/σ .

B.1.3 Tail Probability Approximation

For large z, the tail probability Pr{Z > z} ≈ φ(z)/z. This is a sharp upper
bound (see Feller 1957, page 166). For example, for z = 3, this gives .001477,
whereas the exact answer is about .00135.

B.2 Family of Multivariate Normal Distributions

The family of multivariate Normal distributions plays a central role in much
of the field of statistics.

A particular member of the family of multivariate Normal distributions is
specified by its parameters, the mean vector and covariance matrix. The mean
vector µ is the vector of means of the p variables, µv, v = 1, 2, . . . , p, and
the covariance matrix Σ is the matrix of covariances σuv, u, v = 1, 2, . . . , p.
The parameter σvv is the variance of the v-th variable; it is the square of the
standard deviation σv; that is, σvv = σ2

v .
Because each covariance is the product of the corresponding correlation,

times the product of the standard deviations, that is, σuv = ρuvσuσv, spec-
ifying the covariance matrix is equivalent to specifying the correlations and
standard deviations.

An interesting and important characterizing property of the family of Nor-
mal distributions is that if a random vector Y has a multivariate Normal dis-
tribution, then every linear combination of the elements of Y has a univariate
Normal distribution.
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Another important property is linearity of the conditional expecta-
tion. If (X1, X2, . . . , Xp, Y ) have a multivariate Normal distribution, then
E [Y |x1, x2, . . . , xp ] is of the form α+ β1 x1 + β2 x2 + · · · + βp xp.

B.3 Role of D-Square

The multivariate Normal probability density function (p.d.f.) involves Maha-
lanobis D-squared, D2(x,µ; Σ), which is the quadratic form

D2(x; µ, Σ) = (x− µ)
′
Σ−1(x− µ),

where x is the vector of values of the variables, µ is the mean vector, and
Σ is the covariance matrix. In scalar notation,

D2 =

p∑
u=1

p∑
v=1

σuv (xu − µu)(xv − µv),

where σuv is the (u, v)-th element of Σ−1.
Denote this quadratic form by Q for short. Then the p.d.f. ϕ(x;µ,Σ) is

of the form
ϕ = Const. e−Q/2,

where
Const. = [ (2π)−p/2 (det Σ)−1/2 ],

“det” denotes determinant, and p is the number of variables. When p = 1,
Const. = 1/

√
2πσ2 = 1/σ

√
2π.

The quantity Q is the square of the statistical (Mahalanobis) distance
between x and µ. The larger this distance, the smaller the probability den-
sity; the density decreases exponentially with the square of the distance. The
Normal density is denoted by ϕ and is

ϕ(x; µ, Σ) = Const. e−Q/2

= (2π)−p/2 (det Σ)−1/2 exp[(−1/2)D2(x; µ, Σ)].

In the univariate case, the quadratic form simplifies to Q = z2, where z =
(x− µ)/σ, the so-called z score or standard score.

B.4 Bivariate Normal Distributions

A bivariate Normal distribution (joint Normal distribution of p = 2 variables)
is specified by giving the values of five parameters, namely,
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· the two means,

· the two standard deviations, and

· the correlation (or, equivalently, the covariance).

Example: Height and weight

Suppose for a population of adult males, height H and weight W are jointly
Normally distributed with µH = 68 in., σH = 2.5 in., µW = 165 lbs., σW =
25 lbs., and ρH,W = +.4. Then, letting C denote covariance, C[H,W ] is
σHW = ρHW /σHσW = (+.4)(2.5)(25) = +25.0. (The units of the covariance
are then lb. × in.)

B.4.1 Shape of the p.d.f.

Because the density decreases exponentially with the square of the distance
between (x, y) and the mean vector, the bivariate Normal p.d.f. gives a sur-
face z = f(x, y) that is bell-shaped. The “bell-shaped” univariate Normal
distribution is a cross-section of the bivariate Normal bell.

B.4.2 Conditional Distribution of Y Given X

Another way to specify a bivariate normal distribution is in terms of the condi-
tional distribution of Y givenX and the marginal distribution ofX. Analogous
to Pr(A ∩B) = Pr(A) Pr(B|A), for p.d.f.s we have f(x, y) = f(x)f(y|x). It is
often easy to describe these two and then multiply them to obtain the joint
p.d.f.

B.4.3 Regression Function

The conditional distribution of Y given X involves the mean of Y when
X = x; as we know, this function is called the “regression function.” When X
and Y have a joint Normal distribution, the regression function is E [Y |x ] =
α + β x, where β = σxy/σ

2
x and α = µy − β µx.

The variance σ2
y|x of the conditional distribution is a constant (not

varying with x) and is equal to σ2
y|x = σ2

y(1−ρ2xy) = σ2
y−σ2

xy/σ
2
x = σ2

y−β2σ2
x.

The parameter σy|x is called the standard error of regression and is denoted
also by σy·x.
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Example: Height and weight, continued

In the example, the mean weight for men of height h is α+ βh, where

β = σHW /σ
2
H = +25.0/6.25 = 4.0 lbs. per in.

α = µW − βµH = 165− (4)(68) = 165− 272 = −107 lbs.;

that is, the mean weight for men of height h is 4h − 107 lbs. For example, if
h = 70 in., this is

4(70)− 107 = 280− 107 = 173 lbs.

The conditional variance σ2
wt|ht = 252−4.02(6.25) = 625−100 = 525;σwt|ht =√

525, or about 22.9 lbs.

B.5 Other Multivariate Distributions

There are many continuous multivariate distributions in addition to the Nor-
mal. It is interesting to construct one from elementary considerations. Let the
conditional distribution of Y given X = x be exponential with parameter x:

f(y|x) = x exp(−xy), y > 0, x > 0.

Let X have an exponential distribution with parameter λ :

f(x) = k exp(−kx), x > 0.

Then,

f(x, y) = f(x)f(y|x)

= k exp(−kx)x exp(−xy)

= k x exp[−(kx+ xy)]

= k x exp[−x(y + k)], x > 0, y > 0.

B.6 Summary
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B.6.1 Concepts

This appendix concerns the family of multivariate Normal distributions.

1. The parameters of a multivariate Normal distribution are the mean
vector and the covariance matrix.

2. The bivariate Normal distribution has five parameters: two means,
two variances, and a covariance. Specifying the variances and covari-
ance is equivalent to specifying the correlation and the two standard
deviations.

B.6.2 Mathematics

1. The multivariate Normal p.d.f. depends upon x only through Ma-
halanobis D-square.

2. When X and Y have a bivariate Normal distribution, the regression
function of Y on X is a linear function of x.

3. If (X1, X2, . . . , Xp, Y ) have a multivariate Normal distribution,
then E [Y |x1, x2, . . . , xp ] is of the form α+ β1 x1 + β2 x2 + · · · +
βp xp.

B.7 Appendix B Exercises

B.7.1 Applied Exercises

B.1 The partial correlation coefficient between X and Y, taking account of
T, can be written as

ρxy.t = (ρxy − ρxtρty)/
√

1− ρ2xt
√

1− r2ty.

If ρxy = .8, ρxt = .6, and ρty = .8, compute ρxy.t.

B.2 (continuation) If ρxy = 0, ρxt = .6, ρty = .8, compute ρxy.t.

B.3 Download the Fisher iris data (Anderson 1935, Fisher 1936) from
the University of California–Irvine (UC - I) dataset repository at the URL
http://archive.ics.uci.edu/ml/datasets.html. The dataset consists of 150 observa-
tions, 50 observations on each of three species of iris. The p = 4 variables are
petal and sepal length and width. Use software to estimate the mean vectors
and covariance matrices in the three species.

B.4 (continuation) Do the elements of the three mean vectors look different?
For all four variables?
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B.5 (continuation) Do the covariance matrices seem similar across the three
species?

B.7.2 Mathematical Exercises

B.6 In scalar notation, write Mahalanobis D-squared for the bivariate case.

B.7 (continuation) Write the p.d.f. for the bivariate case.

B.8 If for adult males the systolic blood pressure has a mean of 120 and a
standard deviation of 17 and the diastolic blood pressure has a mean of 80
and a standard deviation of 11 and the correlation is .8, find the regression
function of systolic on diastolic and the conditional variance.

B.9 If for adult males the systolic blood pressure has a mean of 120 and a
standard deviation of 17 and the age has a mean of 44 and a standard deviation
of 11 and the correlation is .35, find the regression function of systolic on age
and the conditional variance. The regression functionf E [ Sys |Age ] is of the
form α+ β Age. Is the estimated regression function close to 100 + Age / 2,
corresponding to the simple rule, 100 plus half the age?

B.10 In the bivariate exponential example, find the p.d.f. of X |Y , that is,
the conditional p.d.f. of X given Y . Hints: It is f(x|y) = f(x, y)/f(y). First
find f(y) by integrating f(x, y) with respect to x.
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B.9 Further Reading

Books on multivariate statistical analysis contain thorough discussions of the
family of multivariate Normal distributions. There are books at different levels.
The first, definitive, text is that by T. W. Anderson (1958).
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C.1 Notation

(See also Appendix A on Vectors and Matrices.)

The symbol x denotes an n-dimensional vector, with elements x1, x2, . . . , xn.
The functions f and g are scalar functions of x. The dot product (inner prod-
uct, scalar product) of vectors u andv is denoted by u · v. (See Appendix
A - Vectors and Matrices.)

The null vector is denoted by 0. The gradient of f(x), denoted by
grad f(x), is the vector of partial derivatives of f with respect to the
elements of x :

grad f = (∂f/∂x1 ∂f/∂x2 · · · ∂f/∂xn).

C.2 Optimization Problem

The following general optimization problem is considered.

Maximize f(x), subject to x in S, where S = {x : g(x) = 0}.

Remarks. (i) This is called “maximizing f subject to the side condition (con-
straint) g(x) = 0.” (ii) The same mathematics applies to the problem of
minimizing f subject to a constraint. The point is that a stationary point of
a function, the Lagrangian, incorporating the constraint, is found.
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Lemma. Suppose f attains its maximum on S at a point x ∗ not on the
boundary of S. Then

grad f(x∗) = k grad(x∗)

for some constant k.

Theorem. A point x∗ where f(x) has its maximum value on the surface
g(x) = 0 satisfies g(x∗) = 0 and grad (f − kg)(x∗) = 0 for some constant
k.

Remark. The application of the theorem is in maximizing f(x) subject to
the constraint g(x) = 0. One forms the function

f(x)− kg(x),

takes its partial derivatives with respect to the elements ofx, and sets them
equal to zero. One then solves the resulting equations, together with the
equation g(x) = 0. The constant k is called a Lagrange multiplier.

Proof of Lemma. Let x = p(t) be any path lying in S and passing through
x∗, that is, x∗ = p(t∗) for some t∗. Then f [p(t)] has its maximum at t∗

and its derivative must be zero there. The chain rule for vector functions gives

df/dt = grad f · ∂p/dt.

Because df/dt = 0 at x∗, then grad f(x∗) · ∂p/dt|t=t∗ = 0, so grad f(x∗)
is orthogonal to ∂p/dt|t=t∗, that is, grad f(x∗) is perpendicular to the
path at x∗. Therefore, grad f(x∗) lies in the direction normal to S at
x∗. But grad g(x∗) also is normal to S at x∗. Therefore, grad f(x∗)
and grad g(x∗) are parallel, that is, there exists a constant k such that
grad f(x∗) = k grad g(x∗).

Proof of Theorem. We have gradf = k grad g iff. grad f = k grad g =
0 iff. grad (f − kg) = 0.

C.3 Bibliography

Loomis, Lynn (1977). Calculus. 2nd ed. Addison-Wesley, Reading, MA. (1st
ed. 1974).
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C.4 Further Reading

The calculus book by Loomis is especially highly recommended in general. In
particular, see pages 590–591 on Lagrange multipliers (or page 696, Exercise
21, in the first edition).
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D.1 Abbreviations

D.1.1 Statistics

c.d.f. Cumulative distribution function
d.f. Degrees of freedom
EM Expectation-Maximization (algorithm)
HMM Hidden Markov model
i.i.d. Independent and identically distributed (random variables)
m.e. Margin of error
p.d.f. Probability density function
p.m.f. Probability mass function
r.v. Random variable
r.vec. Random vector
SD Standard deviation
SE Standard error

D.1.2 General

AAAS American Association for the Advancement of Science
ASA American Statistical Association
IEEE Institute of Electrical and Electronics Engineers
iff. if and only if
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D.1.3 Finance

CAPM Capital Asset Pricing Model
DJIA Dow Jones Industrial Average
DREVX Ticker symbol for Dreyfus Fund, Inc.
EFT Exchange Traded Fund
GBM Geometric Brownian motion model
MDY Ticker symbol for Standard and Poor’s midcap 400 ETF
ROR Rate of return
S&P500 Standard & Poor’s 500 Stock Composite Index
SPDR Standard & Poor’s Depositary Receipts
SPY Ticker symbol for Standard and Poor’s 500 ETF

D.2 Symbols

D.2.1 Statistics

Boldface lower-case such as v,w,x is used for vectors; upper-case letters such
as A,S, for matrices.

X,Y, Z r.v.s.
It is often helpful to denote a r.v. by an upper-case letter
such as Y, a realized value it by the corresponding
lower-case letter y, and a sample of n values by y1, y2, . . . , yn.

pX(vj) p.m.f. of the discrete r.v. X with values vj , j = 1, 2, . . . ,m
fX(v) p.d.f. of the continuous r.v. X evaluated at v
fX,Y (x, y) Joint p.d.f. of the r.v.s X,Y evaluated at x, y
fY |X(y|x) Conditional p.d.f. of the r.v. Y, given X = x, evaluated at y
µx or E [X] Expected value, mathematical expectation, mean
σ2
x or V[X ] Variance
σx or SD[X] Standard deviation
C[X,Y ] : Covariance. Denoted also by σxy.
Corr[X,Y ] Correlation of the r.v.s X and Y. Denoted also by ρxy.
βy·x Coefficient of regression of Y on x
ρyz·x Partial correlation coefficient of y and z, adjusted for x
x̄ Sample mean
sx Sample standard deviation
s2x Sample variance
sxy Sample covariance
ρ̂xy Sample correlation
Y r.vec., with elements Y1, Y2, . . . , Yp
Σy or C[Y ] Covariance matrix of the r.vec. Y
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D.2.2 Finance

Pt Price at time t
pt Logarithm (natural log) of price at time t

(Note that this use of P and p breaks our convention
about lower-case letters being realized values
of the corresponding upper-case letter.)

Rt ROR at time t
rt Continuous ROR at time t

(Note that this use of R and r breaks our convention
about lower-case letters being realized values
of the corresponding upper-case letter.)

Ot Opening price of a stock for time period t (on day t, say)
Ct Closing price of a stock for time period t
Ht Highest price of a stock for time period t
Lt Lowest price of a stock for time period t

AAAS + u = ∆
(AAAS plus you equals change!)

—American Association for the Advancement of Science
T-shirt slogan
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