SPRINGER BRIEFS IN STATISTICS

Jarkko Isotalo
Formulas Useful

for Linear Regression
Analysis and Related
Matrix Theory

t's Only Formulas
Sut We Like Them

@ Springer



SpringerBriefs in Statistics

For further volumes:
http://www.springer.com/series/8921



B S . b e
B o W o, AR s

Photograph 1 Tiritiri Island, Auckland, New Zealand. (Photo: SP)



Simo Puntanen
George P. H. Styan
Jarkko Isotalo

Formulas Useful

for Linear Regression
Analysis and Related
Matrix Theory

It’s Only Formulas But We Like Them

@ Springer



Simo Puntanen George P. H. Styan

School of Information Sciences Department of Mathematics
University of Tampere and Statistics
Tampere, Finland McGill University

Montréal, QC, Canada
Jarkko Isotalo
Department of Forest Sciences
University of Helsinki
Helsinki, Finland

ISSN 2191-544X ISSN 2191-5458 (electronic)
ISBN 978-3-642-32930-2 ISBN 978-3-642-32931-9 (eBook)
DOI 10.1007/978-3-642-32931-9

Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012948184

© The Author(s) 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

Lie la lie, lie la la-lie lie la-lie.
There must be fifty ways to leave your lover.
Oh, still crazy after all these years.

PAuL SimoN!

Think about going to a lonely island for some substantial time and that you are sup-
posed to decide what books to take with you. This book is then a serious alternative:
it does not only guarantee a good night’s sleep (reading in the late evening) but also
offers you a survival kit in your urgent regression problems (definitely met at the day
time on any lonely island, see for example Photograph 1, p. ii).

Our experience is that even though a huge amount of the formulas related to linear
models is available in the statistical literature, it is not always so easy to catch them
when needed. The purpose of this book is to collect together a good bunch of helpful
rules—within a limited number of pages, however. They all exist in literature but are
pretty much scattered. The first version (technical report) of the Formulas appeared
in 1996 (54 pages) and the fourth one in 2008. Since those days, the authors have
never left home without the Formulas.

This book is not a regular textbook—this is supporting material for courses given
in linear regression (and also in multivariate statistical analysis); such courses are
extremely common in universities providing teaching in quantitative statistical anal-
ysis. We assume that the reader is somewhat familiar with linear algebra, matrix
calculus, linear statistical models, and multivariate statistical analysis, although a
thorough knowledge is not needed, one year of undergraduate study of linear alge-
bra and statistics is expected. A short course in regression would also be necessary
before traveling with our book. Here are some examples of smooth introductions to
regression: Chatterjee & Hadi (2012) (first ed. 1977), Draper & Smith (1998) (first
ed. 1966), Seber & Lee (2003) (first ed. 1977), and Weisberg (2005) (first ed. 1980).

The term regression itself has an exceptionally interesting history: see the excel-
lent chapter entitled Regression towards Mean in Stigler (1999), where (on p. 177)
he says that the story of Francis Galton’s (1822—1911) discovery of regression is “an
exciting one, involving science, experiment, mathematics, simulation, and one of the
great thought experiments of all time”.

' From (1) The Boxer, a folk rock ballad written by Paul Simon in 1968 and first recorded by Simon
& Garfunkel, (2) 50 Ways to Leave Your Lover, a 1975 song by Paul Simon, from his album “Still
Crazy After All These Years”, (3) Still Crazy After All These Years, a 1975 song by Paul Simon and
title track from his album “Still Crazy After All These Years”.



vi Preface

This book is neither a real handbook: by a handbook we understand a thorough
representation of a particular area. There are some recent handbook-type books deal-
ing with matrix algebra helpful for statistics. The book by Seber (2008) should be
mentioned in particular. Some further books are, for example, by Abadir & Magnus
(2005) and Bernstein (2009). Quick visits to matrices in linear models and multi-
variate analysis appear in Puntanen, Seber & Styan (2013) and in Puntanen & Styan
(2013).

We do not provide any proofs nor references. The book by Puntanen, Styan &
Isotalo (2011) offers many proofs for the formulas. The website http://www.sis.uta.
fi/tilasto/matrixtricks supports both these books by additional material.

Sincere thanks go to Gotz Trenkler, Oskar Maria Baksalary, Stephen J. Haslett,
and Kimmo Vehkalahti for helpful comments. We give special thanks to Jarmo Nie-
melé for his outstanding ISTEX assistance. The Figure 1 (p. xii) was prepared using
the Survo software, online at http://www.survo.fi (thanks go to Kimmo Vehkalahti)
and the Figure 2 (p. xii) using PSTricks (thanks again going to Jarmo Niemeld).

We are most grateful to Alice Blanck, Ulrike Stricker-Komba, and to Niels Peter
Thomas of Springer for advice and encouragement.

This research has been supported in part by the Natural Sciences and Engineering
Research Council of Canada.

SP, GPHS & J1
June 7, 2012
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Notation

Rn Xm

nxm
Rr

NND,,

(A : B)
A—l

A+

Al/2
A+L/2
(a,b)
(a,b)v

the set of n x m real matrices: all matrices considered in this book
are real

the subset of R”*™ consisting of matrices with rank r

the subset of symmetric n x n matrices consisting of nonnegative
definite (nnd) matrices

the subset of NND,, consisting of positive definite (pd) matrices
null vector, null matrix

column vector of ones, shortened 1

identity matrix, shortened I

the jth column of I; jth standard basis vector

n X m matrix A with its elements a;;, A = (a; : ... : a,) pre-
sented columnwise, A = (a¢y) : ... : ag,))’ presented row-wise

column vector a € R”

transpose of matrix A; A is symmetric if A’ = A, skew-symmetric
ifA' = —-A

partitioned (augmented) matrix

inverse of matrix A,x,: AB=BA =1, = B=A"!
generalized inverse of matrix A: AATA = A

the Moore—Penrose inverse of matrix A: AATA = A, ATAAT =
AT, (AAT) = AAT, (ATA) = ATA

nonnegative definite square root of A € NND,

nonnegative definite square square root of AT € NND,,

standard inner product in R”: (a,b) = a’b

inner product a’Vb; V is a positive definite inner product matrix
(ipm)



Ao
Pa
Py

Pa
Z(A)

N (A)
€ (A)*

(A
Ay

... dy)

Notation

Euclidean norm (standard norm, 2-norm) of vector a: ||a||> = a’a,
also denoted as ||a||,

|a]|3 = a’Va, norm when the ipm is positive definite V
Euclidean (Frobenius) norm of matrix A: |A[% = tr(A’A)
determinant of matrix A, also denoted as |A|

n x n diagonal matrix with listed diagonal entries

diagonal matrix formed by the diagonal entries of A, x,, denoted
also as Ag

rank of matrix A, denoted also as rank (A)

trace of matrix A, x,, denoted also as trace(A): tr(A) = a; +
azy + -+ ann

A is nonnegative definite: A = LL’ for some L

A is positive definite: A = LL’ for some invertible L

A — B is nonnegative definite, Léwner partial ordering

A — B is positive definite

the cosine of the angle, 6, between the nonzero vectors a and b:
cos(a,b) = cos ) = (a,b)/([lal||[bl])

the vector of columns of A, vec(A,xm) = (a]....,a),) € R""

Kronecker product of Ay xm, and Byxg:

auB almB
ARB= : : : c R#Pxmq
anB ... aymB
Schur complement of Aj; in A = (ﬁ; ﬁ;;): Az = Ayp —
AryiAT1A1 = A/Aq

orthogonal projector onto € (A) w.r.t.ipmI: Py, = A(A'A)"A’ =
AAT

orthogonal projector onto ¢’ (A) w.r.t. ipm V: Py.y =
AA’VA)"A'V

projector onto 6’(A) along €' (B): Pyg(A : B) = (A : 0)

column space of matrix A,xm,: €(A) = {y € R” : y = Ax for
some x € R™ }

null space of matrix A, xm,m: A (A) ={xeR" :Ax =0}
orthocomplement of %' (A) w.r.t. ipm I: €(A)L = .4 (A))
matrix whose column space is €(AL) = €(A)* = A (A)
orthocomplement of ' (A) w.r.t. ipm V

matrix whose column space is %(A)%: A‘J; = (VA)* =VIAt



Notation

ch;(A) = A;

ch(A)
nzch(A)
sg;(A) = §;
sg(A)
u+v
ueov
UuBYvy

varg(y) = s;

covy(X,y) = Sxy

corg(x,y) = I'xy
E(x)

cov(x) = X

cor(x)

xi
the ith largest eigenvalue of A, x, (all eigenvalues being real):
(Ai, t;) is the ith eigenpair of A: At; = A;t;, t; # 0
set of all n eigenvalues of A, x,, including multiplicities
set of nonzero eigenvalues of A, x,, including multiplicities
the i th largest singular value of A, x,
set of singular values of A, x,
sum of vector spaces U and V
direct sum of vector spaces U and V; here Y NV = {0}
direct sum of orthogonal vector spaces I/ and U

sample variance: argument is variable vector y € R”:

varg(y) = ~1;y'Cy
sample covariance: ;
cova(x,y) = 725X Cy = ;25> " (xi — %) (yi — )
i=1
sample correlation: 7, = x'Cy/+/X’Cx - y'Cy, C is the centering
martrix

expectation of a p-dimensional random vector x: E(x) = pux =
(H1,....up) €R?
covariance matrix (p x p) of a p-dimensional random vector x:

cov(x) = X = {0} = B(X — p) (X — x)',

cov(xi, x;) = 0jj = E(xi — i) (x; — ),

var(x;) = 0;; = o}
correlation matrix of a p-dimensional random vector x:

cor(s) = {oy} = | 2

0i0j
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Figure 1 Observations from N»(0, X); 0y = 5,0y, = 4, 0x, = 0.7. Regression line has the

slope B1 & 0xy0y/0x. Also the regression line of x on y is drawn. The direction of the first
major axis of the contour ellipse is determined by t;, the first eigenvector of X.

cg(X)J_ Cg(l)J—

SST= SSR + SSE
e= (I— H)y/

Figure 2 TIllustration of SST = SSR + SSE.



Formulas Useful for Linear Regression Analysis
and Related Matrix Theory

1 The model matrix & other preliminaries

1.1  Linear model. By .2 = {y, X8, 02V} we mean that we have the model y =
XB + &, where E(y) = XB € R” and cov(y) = 02V, i.e., E(e) = 0 and
cov(e) = 02V; . is often called the Gauss—Markov model.

e y is an observable random vector, € is unobservable random error vector,
X =(1:Xp)isagivenn x p (p = k + 1) model (design) matrix, the
vector B = (Bo, Bi1.-- -, Br) = (Bo, BL) and scalar 62 > 0 are unknown

o yi =E(i) + & = o +X(;)Bx + & = Po+ Brxin + -+ + Brexik + &,
where x’(i) = the ith row of X

o from the context it is apparent when X has full column rank; when distri-
butional properties are considered, we assume that y ~ N,,(XB,52V)

e according to the model, we believe that E(y) € €(X), i.e., E(y) is a linear
combination of the columns of X but we do not know which linear combi-
nation

e from the context it is clear which formulas require that the model has the
intercept term By; p refers to the number of columns of X and hence in the
no-intercept model p = k

e if the explanatory variables x; are random variables, then the model .#
may be interpreted as the conditional model of y given X: E(y | X) = X8,
cov(y | X) = 02V, and the error term is difference y — E(y | X). In short,
regression is the study of how the conditional distribution of y, when x is
given, changes with the value of x.

S. Puntanen et al., Formulas Useful for Linear Regression 1
Analysis and Related Matrix Theory, SpringerBriefs in Statistics,
DOI: 10.1007/978-3-642-32931-9_1, (© The Author(s) 2013
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1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.12

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

X(14)
X=1:Xp)=1:x1:...:x0) = | | e R** D model matrix
nxp,p=k+1
X{) p.p +
/
X X1 X1z ... X1k
Xo=x1:...:xp)=|  |=|: D | erMK
X/ Xnl Xn2 .- Xnk data matrix
(n)
of x1,..., Xk
1=(,....,1) eR", i;=(0,...,1(th)...,0) € R",
X = x’(i*) = (1,x£i)) = the ith row of X,
i Xo = x/(i) = the ith row of X
X1,..., Xk “variable vectors” in “variable space” R”"
X(1)s - - > X(n) “observation vectors™ in “observation space” R¥
X, =Xp:y) € R k+1) joint data matrix of xp, ..., xx and response y

J=11'")""1" = 111" = Py = J,, = orthogonal projector onto €'(1,)
Jy=yl=y=((.7,....5) eR"

I-J=C C = C, = orthogonal projector onto €’ (1,)*,
centering matrix
I-=Jy=Cy=y—-yl,
=y-y=¥=01—J...c.9n =) centered y
X=(X1,....5%) = %X{,ln
= %(X(l) ++Xm) € RF vector of x-means
JXy:(JX()JY):()Ell)Eklyl) X )7
=X ..o x0y) =1, y) = c R<GK+1)
X j
5(0 = (I—J)XO =CXO = (Xl —)=(1 N ...ZXk—;(k) = (;(1 . ik)
Xq —¥ Xy
= : = c R"*k centered X
X/(n) —-x i/(n)
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113 X, = I-))X,

1.14

1.15

1.16

1.17

1.18

1.19

1.20

=CX, =(CXo:Cy) =Xo:y-¥) =Xo:¥) centered X,
< X,CXo X,C X, Xo X,y
(T — X — oAo ALy _ o020 AoY
T = Xy (I J)Xy XyXy (y/CXO y/Cy) (S’/XO 5,/5,)

1 tiz ... Lk liy

_ (Txx txy) _ ( ssp(Xo) SSP(XO’Y)) —

t;y lyy ssp(y,Xo)  ssp(y) ey tk2 - tkk lky

yi by .. Ly Byy

= ssp(Xp : y) = ssp(X,) “corrected” sums of squares and cross products

n n
TXx = X6X0 = X{)CXO = Zi(i)i/(i) = Z(X(,') — )_()(X(i) — )_()/

i=1 i=1

= x(i)x/(i) —nxX' = {x;Cx;} = {t;;} = ssp(Xo)

7
I

= covg(Xy) = covg(Xp : y) = ﬁT = (S/xx szy)

Sxy Sy
_ ( covg(Xo) covg(Xo,y)
cova(y, Xp)  varg(y)

= cov; (X) = ( covs(X) - covs(x, y )) here x is the vector
Y covy(y.x)  vary(y) of x’s to be observed

) sample covariance matrix of x;’s and y

Ts = diag(T) = diag(t11, ..., tkk, lyy),
Ss = diag(S) = diag(sf, .. .,s,f,si)

Xy =&i:...: %)
= ing_l/z, centering & scaling: diag(f(;f(y) =Ir+1

While calculating the correlations, we assume that all variables have nonzero
variances, that is, the matrix diag(T) is positive definite, or in other words:
x; ¢6Q), i =1,....k, y¢ Q).
R = corg(Xp : y) = corq(X,) sample correlation matrix of x;’s and y

 o12a0-1/2 _ m—1/2mm—1/2

=S, '°SS; =T; ""TT;

_%% = X()?(O X,y _ (R ryy) _ [ cora(Xo) cora(Xo.y)
oy ¥Xo §5 ry, |1 cory(y, Xo) 1



1.21

1.22

1.23
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T = (T:xx txy) , S = (Sxx szy) — n%lT, R = (l{/xx I‘xy)
ty by Sy Sy ry, |1

iy S1y Iy

=11 Sy=|: ] Ty=
iy Sky Tky

SSy = Z(yz 7)? = Zyl - —(Z%)

i=1 i=1

= Zy,-z —ny*> =yCy=yy—yly

n

SPry = 30— D01 - 7) = 3w — H(30) ()

i=1 i=1 i=1 i=1

= Zx,-y,- —nxy =x'Cy =x'y —x'Jy
i=1
SJZ, = var,(y) = varg(y) = n—lly’Cy,

Sxy = covg(x,y) = covg(x,y) = _X 'Cy

=R

rij = corg(x;, x;) = corg(X;,X;) = cos(Cx;, Cx;) = cos(X;,X;) = X;X;

tij Sij x. Cx; SP;;

=¥ Y _ ! j/ = Y sample
Vil osisi o (/X(Cxi -x;Cx; \/SS;SS; correlation

If x and y are centered then cory(x,y) = cos(X,y).
Keeping observed data as a theoretical distribution. Let uy, ..., u, be the ob-
served values of some empirical variable u, and let u be a discrete random
variable whose values are uy, ..., Uy, each with P(ux, = u;) = % Then
E(u*) = u and var(uy) = ”n;ls,% More generally, consider a data matrix
= (ug) :...:ug)) and deﬁne a discrete random vector u, with proba-

blhty functlon P(us =ug)) = i=1,...,n. Then

o
— _ / _ n—1 _ n—1
E(ll*) =u, COV(ll*) = ZU CU = o COVd(U) = TS
Moreover, the sample correlation matrix of data matrix U is the same as the

(theoretical, population) correlation matrix of u.. Therefore, any property
shown for population statistics, holds for sample statistics and vice versa.

Mahalanobis distance. Consider a data matrix U,xp, = (W) @ ... : ug)),
where covq(U) = S € PD,,. The (squared) sample Mahalanobis distance of
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1.30

1.31

1.32

1.33

1.34

1.35

the observation u(;) from the mean vector u is defined as
MHLN?(ug), 8, 8) = (up) —)'S ™ (up) —d) =[S/ —0)|*.

Moreover, MHLN? (ugy,w,S) = (n— l)ﬁii , where H= Pcy. If xis arandom
vector with E(x) = g € R? and cov(x) = X € PD,, then the (squared)
Mahalanobis distance between x and g is the random variable

MHLN?(x, 1, 2) = (x—p)' T (x—p) =2z, z=3""%(x—p).

Statistical distance. The squared Euclidean distance of the i th observation uy;)
from the mean u is of course |lug) — u||?. Given the data matrix U, p, one
may wonder if there is a more informative way, in statistical sense, to measure
the distance between u(;) and u. Consider a new variable z = a’u so that the n
values of z are in the variable vector z = Ua. Then z; = a’u(;) and Z = a’u,
and we may define

lzi —2| _ |a'(ug) —u)
v/ varg(z) Va'Sa
Let us find a vector a, which maximizes D;(a). In view of 22.24c (p. 102),

max D (@) = (ug) ~ B (ug) ~ ) = MHLN’ (uy, . §).
a

D;(a) = where S = cov4(U).

The maximum is attained for any vector a, proportional to S™!(u(;) — ).

% (A) = the column space of Ay, = (a1 @ ... ay)
={zeR":z=At=ajt; +---+ ayt, forsomet € R”} c R"

€ (A)* = the orthocomplement of €' (A)

= the set of vectors which are orthogonal (w.r.t. the standard inner
product u’v) to every vector in €' (A)

={ucR":vAt=0forallt} ={uecR": A'u=0}

= A (A’) = the null space of A’
Linear independence and rank(A). The columns of A, x,, are linearly inde-
pendent iff .4 (A) = {0}. The rank of A, r(A), is the maximal number of
linearly independent columns (equivalently, rows) of A; r(A) = dim % (A).
A1l = a matrix whose column space is €(A+) = €(A)L = 4 (A'):

Zc{At) — A'Z=0and r(Z) =n—r1(A) = dimE(A)* .

The rank of the model matrix X = (1 : X¢) can be expressed as

r(X) =1+ r(Xp) —dim%(1) N € (Xo) = r(1: CXp)
=141(CXp) =1+4r1(Txx) = 1 + r(Sxx),
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and thereby
I(Sxx) = 1(X) — 1 =r(CXp) = r(Xp) —dim € (1) N € (Xo).

If all x-variables have nonzero variances, i.e., the correlation matrix Ryy is
properly defined, then r(Ryy) = r(Sxx) = r(Txx). Moreover,

Sxispd < rX) =k +1 < r(Xo) =k and 1 ¢ €(Xo).
e In 1.1 vector y is a random vector but for example in 1.6 y is an observed
sample value.

e cov(x) = X = {o;;} refers to the covariance matrix (p x p) of a random
vector X (with p elements), cov(x;, x;) = 0y;, var(x;) = 0;; = 01-2:

cov(x) = X = E(x — px) (X — ptx)
= E(xx) — pxpy,  Bx = E(%).
e notation X ~ (i, X) indicates that E(x) = u and cov(x) = X

e the determinant det(X) is called the (population) generalized variance

gjij . .
e cor(x) =0 = { 0"(;‘ } refers to the correlation matrix of a random vector x:
el

cor(x) =0 = £;'’232;'?, z =393}

e cov(Ax) = Acov(x)A' = AXA', A € R¥*?, E(Ax) = Ay
¢ E[Z72(x—pu)] =0, cov[EZ~V2(x —p)] =1,, whenx ~ (g, X)
e cov(T’x) = A, if ¥ = TAT is the eigenvalue decomposition of X

e var(a’x) = a’cov(x)a = a’Ya > 0 for all a € R? and hence every
covariance matrix is nonnegative definite; ¥ is singular iff there exists a
nonzero a € R? such that a’x = a constant with probability 1

L] Var(x1 :|:X2) = 012 + 022 + 2012
. cov (X) _ ( cov(x) cov(x,y)) _ (Zxx ny),
y cov(y,x) cov(y) Ty Zyy
()= (e %)
e cov(x,y) refers to the covariance matrix between random vectors x and y:
cov(x,y) = B(X — ux)(y — sy) = E(XY) — pxpty = Ty

e cov(x,X) = cov(x)
e cov(Ax,By) = Acov(x,y)B' = AX B’
o cov(AX + By) = AX A’ + BZ B’ + AX, B + BX A’
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cov(Ax, By 4+ Cz) = cov(Ax, By) + cov(Ax, Cz)
cov(a’x,y) = a’cov(x,y) = a'oxy, = a101y + -+ + apopy

cov(z) = I,
Oy 0 02 o,
A= = Az)=("* 9],
(UyQ oyv1— Qz) cov(Az) (ny Uyz)

cov(z) = cov (ZI) =1,

Oy Oxy

— cov( Ol )—( g )
oy(ou + 1—0%v)) ~ \oxy o3

10\ (x\]_ x _ (0% 0
cov (—oxy/o)% 1) (y) = oo y—%x _(0 05(1—92))

cova(Uyxp) = cov,(u) refers to the sample covariance matrix
n

cova(U) = ;5U'CU = .25 “(ug) — i) (ug) —a) =S
i=1

the determinant det(S) is called the (sample) generalized variance
covg(UA) = A’ covg(U)A = A’SA = covg(A'u)
covg(US™12) = 1, = cove(CUS™/2)

U = CUS™Y/2: U is centered and transformed so that the new vari-
ables are uncorrelated and each has variance 1. Moreover, diag(UU’) =
diag(dz, e dnz), where a’i2 = MHLNz(u(i), u, S).

U, = CU[diag(S)]"!/2: U, is centered and scaled so that each variable
has variance 1 (and the squared length n — 1)

U = CU[diag(U'CU)]~"/2: Uis centered and scaled so that each variable
has length 1 (and variance ﬁ)

Denote Uy = CUT, where T, comprises the orthonormal eigenvectors
of S: S = TAT', A = diag(Ay,...,A,). Then Uy is centered and trans-
formed so that the new variables are uncorrelated and the ith variable has
variance A;: covq(Uy) = A.

vars(uy + uz) = covg(Upxaln) = 1/ covg(U)1 = 1'Spi01 = sf + s% +
2512

varg(uy £ up) = s¥ 4 53 £+ 2512
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Formulas Useful for Linear Regression Analysis and Related Matrix Theory

2 Fitted values and residuals

2.1

2.2

23

24

2.5

2.6

2.7

2.8

29

2.10

2.11

2.12

2.13

2.14

H=XX'X)" X = XX" =Py orthogonal projector onto % (X)
= XX'X)"'X/, whenr(X) = p

H=P+Pa_px, =P1 + Pi(o X=(1:Xp)
=J+Xo(X[Xo)"X) = J + X,T_ X Xo = (I-J)Xo = CXo

H-J =P =Xo(X;X0) Xf) = Pyrynet

H = Px, + Pm;x,;
M1=I—PX1, X=(X1:X2), XleRnXpl, XzGRnXp2

H—Px, =Py, x, = Pexnem;) = MiXo(X5MX0) " XM,

CM;1X3z) = ¢(X) N E(My),
FMXo)t = A/ (XO0M)) = €(X) T BE (X))

F(Cx) =¢A:x)NEM)L, F(Cx)t=721:x)tBEQ)
r(XoM;X;) = r(X5M)) = r(Xz) — dim €(X;) N €(X2)
The matrix X;M;X; is pd iff (M1 X;) = pa, ie., iff ¥(X;) NE(Xz) = {0}

and X5 has full column rank. In particular, Txy = X;CX is pd iff r(CXp) =
kiffr(X) = k + 1iff

% (Xp) N (1) = {0} and X has full column rank.

H = X; (X;M2X;) XM, + Xo(X5M; X2) " X5M;
ift ¢(X1) N ¢(X2) = {0;

M=I-H orthogonal projector onto (X))t = /(X))
M =1- (Px, + Pm,x,) = M; =Py x, = Mi(I— Py x,)

§ = Hy = X8 = XB = OLSE(XB) OLSE of X8, the fitted values
Because ¥ is the projection of y onto %'(X), it depends only on %' (X), not on

a particular choice of X = X, as long as ¢'(X) = %'(Xx). The coordinates
of y with respect to X, i.e., 8, depend on the choice of X.
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2.15

2.16

2.17

2.18

2.19

2.20

§ =Hy = X = 180 + Xofx = Bol + f1x1 + - + Pixi
= +Pg )y =Jy + A= DXoT tsy = (5 —XTlty)1 + XoTy ts,

§ = XiB1 + XoB2 = X (X{M2X1) ™ X Moy + Xo (XM X2) ™ X5 My
= (Px, +Puyx,)y = X1 (X{ X)) 7' Xy + MiXo(X;Mi Xo) ' XoMyy
=Px,y+ M1X2;§2 here and in 2.15 r(X) = p

OLS criterion. Let ﬁ be any vector minimizing [y — XB||?. Then Xﬂ is

OLSE(XB). Vector X/B is always unique but ﬂ is unique iff r(X) = p. Even

ifr(X) < p, ,B is called the OLSE of B even though it is not an ordinary esti-

mator because of its nonuniqueness; it is merely a solution to the minimizing
problem. The OLSE of K’B is K’B which is unique iff K’ is estimable.

Normal equations. Let ﬁ € R? be any solution to normal equation X'Xp8 =

X'y. Then B minimizes ||y — XB]||. The general solution to X'X8 = X'y is
B =X'X)Xy+[I, — (XX)"XX]z,

where z € R? is free to vary and (X'X) ™ is an arbitrary (but fixed) generalized

inverse of X'X.

Generalized normal equations. Let ﬂ € R? be any solution to the generalized
normal equation X'V™'X8 = X'V~ly, where V € PD,,. Then mlmmlzes
|y — XB|ly-1. The general solution to the equation X' V™!XB = X'V~ ly is

B =XV X)XV !y +[I, - X'V X)XV X]e,

where z € R? is free to vary.

Under the model {y, X8, o1} the following holds:

(a) E§) =E(Hy) = XB. cov(§) = cov(Hy) = o’H

(b) cov(y,y - =0, cov(y,y—§) = o’M

(¢) ¥ ~ N, (XB,02H) under normality

@ y; = x/(i*)ﬁ, where x(;  is the ith row of X Pi ~ N(x{;,,B.0hii)
(e) é=y—-y=1, —H)y =My = res(y; X) & = the residual vector
(f) e=y—XB, E(e)=0, cov(e)=02I, & = error vector

() E(8) = 0, cov(é) = 0>M and hence the components of the residual
vector € may be correlated and have unequal variances

(h) é = My ~ N,,(0,0>M) when normality is assumed

() & =yi—Ji =yi—X; B & ~N0.02(1—hi)], & =theith
residual
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2.21

2.22

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

() var(&) = 0*(1 — hii) = 0*m;;
. —hij o mjj
(1= hi) (X = hip)IV2 (mim;)'/?

(k) cor(&;, &)

() — e ~NO.1). 2N, 1)
o+/1 _hii o

Under the intercept model {y, (1 : Xo)B, 021} the following holds:

’ SYA=)y yHI-DHy \yd—Jy

SSR\'/2
= ( ) = R = Ry.x = the multiple correlation

SST
(b) corg(y,&) =0 the fitted values and residuals are uncorrelated
(c) corg(x;,€) =0 each x;-variable is uncorrelated
with the residual vector
(d) corg(y, &) = (+)(1 — RH)V2 (> 0) y and & may be

positively correlated

(e) &1=yM1=0,ie,) ;& =0  theresidual vector & is centered
) &5=0 &% =0
1=y

() Y1 =yHl =yl,ie., % i di=y the mean of y;-values is

Under the model {y, X8, 52V} we have
(a) E(¥) =XB, cov(y) =0?HVH, cov(Hy, My) = c?HVM,
(b) E(f) =B. cov(B) = o2(X'X)IX'VX(X'X) L. [if r(X) = p]

3 Regression coefficients

3.1

32

33

In this section we consider the model {y, Xg, 021}, where r(X) = p most of
the time and X = (1 : X¢). As regards distribution, y ~ N,, (X8, 02I).

g =XX)Xy= (/20) € RFH! estimated regression
B coefficients, OLSE(B)

X

EB) =8, cov(B) =o2(X'X)""; B ~NeyilB, 02(X'X)™!]

,30 =y- ﬁ;i =y - (/§1)'cl + -4 3k)'ck) estimated constant term,
intercept
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34

3.5

3.6

3.7

3.8

39

3.10

3.11

3.12

3.13

~

Bx=Bi.....Bo)
= (X[,CXp) " 'X}Cy = (X[, Xo) 7 'X}§ = Tty = Slsyy

k=1 X=(1:x). Po=7-pix l§1=_=s_2=ny_
X

If the model does not have the intercept term, we denote p = k, X = X,
and B = (B1.....Bp) = X'X)" X'y = (X()XO)_IXé)y.

IFX = (X;:X),M; =I-Px,,X; € R"Pi j = 1,2, then
s (B (X, M2X;) "X, Mpy
. — _ and
P (ﬂz (XM Xz) " XMy )
B1 = (X( X)Xy — (X[ X1)T'X| X 4s = (X[ X)X (y — X282).

Denoting the full model as .#1, = {y. (X; : X2)B.02I} and

Ay = {y, X1 B1.0°1}, small model
M2 = {sz, MzXlﬁl, 02M2}, withM, =1— PX2 s reduced
model

ﬁ,- (&) = OLSE of B; under the model 7,
we can write 3.8 as
(a) ﬁl(///lz) = ,él(///l) - (X’IXI)_IX’IXZﬁZ(///u),
and clearly we have
(b) B1(M12) = B1(M12.). (Frisch-Waugh—Lovell theorem)
Let #12 = {y, (1 : Xo)B,0°T}, B = (Bo : By, #121 = {Cy, CXoBx,

02C} = centered model. Then 3.9b means that 8 has the same OLSE in the
original model and in the centered model.

ﬂA 1(A12) = (X[ X1) 71Xy, i.e., the old regression coeflicients do not change
when the new regressors (X») are added iff XX, 8, = 0.
The following statements are equivalent:
@ B2=0,  ® XMiy=0, (0 ye N (XM)=7FMX)",
(d) pCOI'd(Xz,y | XOI) =0or y € %(Xl), X = (1 . X01 . Xz)

= (X1 . Xz).

The old regression coefficients do not change when one new regressor Xy is
added iff X x; = 0 or f; = 0, with f; = 0 being equivalent to x; M;y = 0.
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3.14

3.15

3.16

3.17

3.18

3.19

3.20

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

In the intercept model the old regression coefficients /§ 1, ﬁz, ﬁk, p, (Of
“real” predictors) do not change when new regressors (whose values are in
X,) are added if corg(Xp1,X2) =0o0r f, = 0; here X = (1 : Xp1 : X3).

5, = x,I-Px)y _ x;Myy _u'v

= = s here X = (X : xz) and
X, (I=Px )xx  xMixx Vv W X1+ xe)

u = Myy = res(y; X1), v = Mix; = res(xg; Xy), i.e., Bk is the OLSE of
By in the reduced model .#15.; = {M1y, M1x; Bi,02M; ).

/
52 2 y' My 2 kk .
Bk = Tykan k—1° X Mx,  vk1zk-l 1% - SSE(y; X1)
eV Xy

Multiplying x; by a means that ,3k will be divided by a.
Multiplying y by b means that Bk will be multiplied by b.

5 Si X«

a = R;Xl Iyy, @ =fi—, &y =0, standardized regr. coefficients
Sy (all variables centered & equal variance)
_201/2
A riy —ri2l2y . 2y —Fraly . (1 r2y)
k=2: alzl—z, Olz=1—zv O‘lzrly-2W
— Tz — T2 (I=r)

LetX = (1:X; :X3) :=(Z:X3), where X, € R"*P2, Then
cov(f) = o2(X'X)"!
2 ( n X, )‘1 2 (l/n + XTI —i/T;Xl)
Xp1 XX, ~Tlx T
(00 ;01 0k

:( var(Bo) cov(Bo,ﬁ,a) I

cov(ﬁx, ,éo) COV(ﬁx) B

(ko 4kt kK

(77 TX,\' (T T2
o ’ ’ =0 27 22
X,Z X,X, T2 T

.2 ([Z’(I ~Pyx,)Z]"!

where

X5 — PZ)Xz]_l) ’
(@) T2 =T, = X, —Pax,)Xz2]™!
= (X,3M;iXo) ™! = [X5(C — Pex,)Xo] ™! M; =1-Pqx,)
= [X,CX, — X,CX, (X, CX;) "X, CX,] !
= (Taz — T21 T/ T12) "},
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321

322

3.23

3.24

3.25

3.26

3.27

(0) Tax = (X1 : X2)'C(X; : X5) = (T“ T”) € REXk,

Ty Too
T = (: T'Zz),

© " =[x, XA—-Px)xe]™' X =Xp:xp), Xg = (1:Xg 0.0 %)
= 1/SSE(k) = 1/SSE(xj explained by all other x’s)
= 1/SSE(xx: X1) = 1/tkk-x, corresp. result holds for all ¢/
(d) tkk = (X;CCXk)_l = 1/tgy iff X/ICXk =0 iff ripg =rpp =--- =
rk-1,k =0,

(e 1 =14 IT X = —1Px, )™ = |[X-Px )1 "

Under {y3 (1 : X)ﬂ, 021}:
oy =2 (ML ) = o2 (Zm )

_%/SSy  1/8Sy ) T ss, \ —& 1

2 / =

N _ o N _ 2 X' X AA _ —X
var(f1) = Ss. var(fo) = o 2SS.’ cor(Bo, B1) oxin

cov(B,) = o2(XHM; X)L, BreR”2, X=(X;:X2), Xoisnxp,
cov(Bi | #12) = 0> (X{MaX1) ™! 21 02 (X X1) ™! = cov(By | 41):
adding new regressors cannot decrease the variances of old regression coef-

ficients.

R? = R*(x; explained by all other x’s)

= R*(x;; X(=1)) Xy =0 X1, 0, XL, X 1, .-, XE)
SSR(7) SSE(i) . .
= =1- SSE(i) = SSE(x;: X(—;)), SST(i) = t;;
SST(7) SST() (@) (x; ( l)) (@) ii
1 »
VIF; = W =r', i=1,...,k, VIF; = variance inflation factor
-
_ SST(i) L

— tl‘ilii, R;xl — {rij}’ T;Xl — {ttj}

~ SSE(i)  SSE(i)

VIF; > 1 and VIF; =1 iff corg(x;, X)) =0

Var(/§,~) = o2r"
o2 JVIE: ot o

= —_ =0 =0 =
SSE(i) lii i (1= R}

2
i=1,....k
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3.28

3.29

3.30

3.31

3.32

3.33

3.34

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

2
A o A A
k =2: VaI(,Bi) = PP S COI'(,Bl,,BQ) = —T12
(1- rlz)tii
cor(B1, B2) = —ri2.34..k = —pcora(x1, X2 | X2), Xo = (x3:...:Xg)
cov(B) = 62(X'X)"! estimated covariance matrix of 8
\7a\r(,é,~) =62 = sez(,é,-) estimated variance of ,éi

se(Bi) = Vvar(Bi) = 61 estimated stdev of f;, standard error of B;
B,- + tajon—k—1 se(;éi) (1 — «)100% confidence interval for §;

Best linear unbiased prediction, BLUP, of y. under

o|(2) o3 )

a linear model with new future observation; see Section 13 (p. 65). Suppose
that X = (1: Xo) and denote x; = (1,x}) = (1, x],...,x;). Then

(@) y« =X,B + & new unobserved value y, with
a given (1,x/,) under .,

®) Ju =X,B = o +x,Bx = o+ Prxt + - + Prx}

= (7= B + Bixs = 7 + Br(xs — %) 9. = BLUP(y)

(€) ex = yx — Y« prediction error with a given x
(d) var(§x) = var(x,B) = 02x,(X'X) " 'x4 1= 02y

= var(7) + var[ B (x« — %) NotE: cov(By,7) =0

= 02[L + (% — 0T (x4 — %))
= 0?[} + (e — 'S (% ~ %]
0-2[% + anlMHLNZ(X*, )_(» SXX)]

. 1 (xe—X)? ) PO
(e) var(P«) = o2l - + u , whenk =1; J.= B0+ Brx«
n SS,
(f) var(ex) = var(y« — ) variance of the prediction error
= var(yx) + var(Px) = 02 + 02hy = 02[1 + x,(X'X) " Ixy]
1 — %)? N
(g) var(es) = 02|14+ — + G — %) , whenk = 1; P, = Bo + B1x«
n SS,

(h) se2(Jx) = var(P«) = se(x,B) = 62hy estimated variance of
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(i) se?(es) = Var(ex)

= var(ys — yx) = 62(1 + hy) estimated variance of e,
() Pr % tasoin—k—1 V) = XB £ lajn—k—1 56X} )
= Vs Elojon—k—10hy confidence interval for E(yx)

(k) )7* + ta/z;n—k—l \Ta\r(Y* - .);*) = .)?* + ta/z;n—k—16v 1+ h#
prediction interval for the new unobserved y.

(1) .)7* + \/(k + 1)Fa,k+1,n—k—1 6\/ h#
Working—Hotelling confidence band for E(y«)

4 Decompositions of sums of squares

Unless otherwise stated we assume that 1 € % (X) holds throughout this sec-
tion.

41 SST=|y-yI*=1A-Dyl>* =yA-Ny=yy—ny*=1,, totalSS

42 SSR=[§—y|*> = [H-Jyl|?> = |A-DHy|> =y H-J)y
=yPcx,y =yPg vy =t, T 'ty SS due to regression; 1 € €(X)

Xy XX

43 SSE=|y—3I° = [A-H)y|?> =y d-H)y = yMy = y'(C — Pcx,)y

=yy—-yXB =1, - ti, Ty txy residual sum of squares

44  SST = SSR + SSE
45 (a) df(SST) =r(I—J)=n—1, s;=SST/(n—1),

(b) df(SSR) =r(H—J) =r(X) — 1, MSR = SSR/[r(X) — 1],
(c) df(SSE) = r(I—H) = n —r(X), MSE = SSE/[n — r(X)] = 2.

n n n
46 SST=) (yi—j)?> SSR=) (Fi—j)2 SSE=) (3 — )
i=1 i=1 i=1
SSR
47 SSE = SST(1— === ) = SST(1 — R?) = SST(1 — R?
(1- Sg7) =570 - R =S5TA- 2

A2 2 2 . 2 2 2
48 MSE =6" ~ s,(1 — Rj,) which corresponds to oy, = 0,/(1 —0;.,)
49 MSE =62 = SSE/[n — r(X)] unbiased estimate of o2,

residual mean square
=SSE/(n —k — 1), when r(X) =k + 1
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4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

We always have (I—J)y = (H—J)y + (I — H)y and similarly always y'(I —
Jy =y MH-J)y + y' (I — H)y, but the decomposition 4.4,
@ [@X=Dyll?> = [H-Dyl* + |X-H)y|?

is valid iff (y —¥)'(y = §) = [(H—- D)y A -H)y = y'JH—1I)y = 0, which
holds for all y iff JH = J which is equivalent to 1 € €(X), i.e., to H1 = 1.
Decomposition (a) holds also if y is centered or y € €(X).

1 e ¥X) < H — Jis orthogonal projector < JH = HJ = Jin
which situation Jy = JHy = Jy = (7, 7,..., 7).

In the intercept model we usually have X = (1 : X). If X does not explicitly
have 1 as a column, but 1 € % (X), then ¥(X) = ¥ (1 : X) and we have
H =Py +Pcx = J + Pcx, and H — J is indeed an orthogonal projector.
SSE = min [y - XB||> = SSE(y: X) = [[res(y: X)||?

SST = n}gin |y — 181> = SSE(y; 1) = ||res(y: 1)[|*> y explained only by 1

SSR = mﬂiHIIHy — 18> = SSE(Hy; 1) = [|res(Hy; 1)|*

= SSE(y; 1) — SSE(y; X) change in SSE gained
adding “real” predictors
= ASSE(X( | 1) when 1 is already in the model

SSR SSE
R*=R; = ——=1-——  multiple correlation coefficient squared,
SST SST coefficient of determination

SSE(y; 1) — SSE(y; X

= ¥:D - : X) fraction of SSE(y; 1) = SST accounted
SSE(y: 1) for by adding predictors Xy, . .., Xg

t;y T;:I th _ S;y S;KI Sxy

tyy sf

= r;yR;xery =a'rxy = &1r1y + o0+ Qklrey
R? = max cor (v XB) = corg(y: XB) = cory(y: §) = cos”[Cy. (H - J)y]

(a) SSE = y/[I - (PX1 + PM1X2)]y X= (Xl . X2)v M, =1- PX]
= yM1y — y'Pm,x,y = SSE(Mi1y; M1 X>)
= SSE(y: X1) — SSR(ey.x, ; Ex,.x, ), where

(b) ey.x, = res(y; X1) = My = residual of y after elimination of X{,

(©) Ex,.x; =res(X2;X1) = M1 Xos.
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419 y'Pum;x,y = SSE(y: X1) — SSE(y: X1, X2) = ASSE(Xz | X;)

= reduction in SSE when adding X to the model

420 Denoting .#1, = {y, X8, O'ZI}, 0 = {y, X181, 0'21}, and #12.1 = {Myy,

4.21

4.22

M; X, 85.52M;}, the following holds:

(@) SSE(#12.1) = SSE(#12) =y'My,

(b) SST(A12.1) = y'Miy = SSE(41),

(c) SSR(A12.1) = yM1y —y'My = y'Pum,x,Y.
SSR(#12.1) _ Y'Pmix,¥ _ 1 ¥yMy

(d) R*(Mr21) =

SST(M121)  y'Miy yMyy’
/
. P2 _ .2 2 _ YMy
@ Xz =x): R(M21) =15pyp gogand =715 45 4y = yMy’

(f) 1= R*(Mh2) = [1 — R*(A))][1 — R*(M12.1)]
=[1— R*(y; X[l — R*(My: M;Xp)],

@ 1=R} 1, = U=ry)A =15 )A =155 (L =125 )

If the model does not have the intercept term [or 1 ¢ € (X)], then the decom-
position 4.4 is not valid. In this situation, we consider the decomposition
yy=yHy+yd—-H)y, SST.=SSR.+ SSE..
In the no-intercept model, the coefficient of determination is defined as
, SSR, yHy 11— SSE

R = = — —.
SST. Yy Yy

In the no-intercept model we may have R? = cos?(y,y) # corﬁ (y,y). How-
ever, if both X and y are centered (actually meaning that the intercept term
is present but not explicitly), then we can use the usual definitions of R? and
Riz. [We can think that SSR, = SSE(y;0) — SSE(y; X) = change in SSE
gained adding predictors when there are no predictors previously at all.]

Sample partial correlations. Below we consider the data matrix (X : Y) =
(X1 1. . iXp 1YL 1. 1Y)
(@) Eyx =r1es(Y;X) = I-Pux)Y = MY = (ey,.x : ... : €y,.X),
(b) ey,.x = I—Pux))yi = My;,
(¢) peorg(Y | X) = corg[res(Y; X)] = corg(Ey.x)
= partial correlations of variables of Y after elimination of X,
(d) peora(y1.y2 | X) = corg(ey,.x, €y,.x),
(e) Tyyx = E{xEvx =Y (I —-Pu.x)Y = YMY = {t;;«} € PDg,
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4.23

4.4

4.25

4.26

4.27

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

® tiix =y;I—Pax))y: =y;My; = SSE(y;: 1,X).

/ !
Denote T = (TXX Txy) = (X CY X CX), C=1-J,M=1-Pgy).

Ty Ty Y'CX Y'CY
Then
-1 . —1 .
@1 = (T ) o =R = (M),
yy-x Yy-x

() Tyyx = Tyy — Ty Tl Txy = Y'CY — YCX(Y'CX)"1Y'CX = Y'MY,
(©) Ryx =Ryy — R_WR;X1 Ry,
(d) peorg(Y | X) = [diag(Tyy.x)] ™/ *Tyy.x[diag(Tyy.x)] 712

= [diag(Ryy-x)]~"/*Ryyx[diag(Ryy)] /.

(Y — XB)'C(Y — XB) = (CY — CXB)'(CY — CXB)
> (CY — PcxY)'(CY — PcxY)
=Y C(I—Pcx)CY = Tyy — Ty Ty Tyy

X

for all B, and hence for all B we have
covs(y — B'x) = covy(Y — XB) > Syy — SyxSy Sxys
where the equality is attained if B = Tl Txy = Si!Sxy; see 6.7 (p. 28).

Ixy —TI'xzlyz

Txyz = P 2
\/(1 - rxz)(l - ryz)

partial correlation

Y = (x;:%2), X = (X3 : ... : X) and Ryyx = {r/}, then
A A r12
cor(fy, f2) = —peora(X1,Xz | X3,....Xk) = —ri2.3.k = Sz

Added variable plot (AVP). Let X = (X : x;) and denote

u = ey.x, = My = res(y; X1),

V = ey.x; = Mixg = res(xg; Xq).
The scatterplot of ey, .x, versus ey.x, is an AVP. Moreover, consider the mod-
els 2 = {y, (X1 : xx)B,0°L, with B = (B1), .41 = {y. X,B1,0°1},
and #1231 = {Mly,Mlxkﬂk,ale} = {ey.Xl,exk.xl,Bk,onl}. Then

@) Br(Mh2) = Br( M), (Frisch—Waugh-Lovell theorem)
(b) res(y:X) = res(Myy; Mixp), R*(Mr21) = 1315 515
(©) 1= R*(Mh2) = [1- RZ(//ZI)](l - ryzk-lz...k—l)'
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5 Distributions

5.1 Discrete uniform distribution. Let x be a random variable whose values are
1,2,..., N, each with equal probability 1/N. Then E(x) = %(N + 1), and
var(x) = 5(N?—1).

5.2 Sum of squares and cubes of integers:

n n
doiP=in(+D@n+ 1), Y i*=inPn+ 1%
i=1

i=1

53 Letxy,...,x, bearandom sample selected without a replacement from A =
{1,2,...,N}.Denote y = x1 + -+ xp, = ljl,x. Then var(x;) = %,

cor(x;, Xj) = —ﬁ =0,i,j =1,...,p,cor?(xy,y) = % + (l — %)Q.

5.4  Bernoulli distribution. Let x be a random variable whose values are 0 and
1, with probabilities p and ¢ = 1 — p. Then x ~ Ber(p) and E(x) = p,
var(x) = pq.If y = x1 + -+ + X5, where x; are independent and each
x; ~ Ber(p), then y follows the binomial distribution, y ~ Bin(n, p), and
E(x) = np, var(x) = npq.

5.5  Two dichotomous variables. On the basis of the following frequency table:

5 1 ys _ n 8(1 8)

s = = (11— = X
* n—1n n—1 n n
- 1 ad—bc . _ad —bc 0 1]total
Y -1 o0 Y Vapys’ y 0 la bl «
5 1 |cd| B
2:M:nr2 total 5 n
aBys > y

5.6 Letz = (3) be a discrete 2-dimensional random vector which is obtained
from the frequency table in 5.5 so that each observation has the same proba-
bility 1/n. Then E(x) = ,8—1, var(x) = %(1 — %), cov(x,y) = (ad —bc)/n?,

and cor(x, y) = (ad — bc)/J/aBys.

5.7  Interms of the probabilities:

x
= e 0 1 [total
cov(x,y) = p11p22 — P12p21.
0 .
cor(x, y) = 2Pz~ Puba _ Y Pt piz| p1
’ p1p2p1-po. xy: D21 DP22| P2
total | p.; po| 1
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5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

Oxy =0 det(p“ p”):det(z z)zo

P21 P22
a b
— f&:& = - = —
D21 D22 c d

Dichotomous random variables x and y are statistically independent iff g, =
0.

Independence between random variables means statistical (stochastic) inde-
pendence: the random vectors x and y are statistically independent iff the joint
distribution function of (;) is the product of the distribution functions of x
and y. For example, if x and y are discrete random variables with values
X1,...,Xxrand y1,..., yc, then x and y are statistically independent iff

Px=x;,y=y))=Px=x)P(y=y;), i=1,....r,j=1,...,c.

Finiteness matters. Throughout this book, we assume that the expectations,
variances and covariances that we are dealing with are finite. Then indepen-
dence of the random variables x and y implies that cor(x, y) = 0. This im-
plication may not be true if the finiteness is not holding.

Definition N1: A p-dimensional random variable z is said to have a p-variate
normal distribution N, if every linear function a’z has a univariate normal
distribution. We denote z ~ N, (p, X), where p = E(z) and X = cov(z). If
a’z = b, where b is a constant, we define a’z ~ N(b, 0).

Definition N2: A p-dimensional random variable z, with g = E(z) and X =
cov(z), is said to have a p-variate normal distribution N, if it can be expressed
asz = it + Fu, where F is an p x r matrix of rank » and u is a random vector
of r independent univariate normal random variables.

If z ~ N, then each element of z follows N. The reverse relation does not
necessarily hold.

Ifz= (;) is multinormally distributed, then x and y are stochastically inde-
pendent iff they are uncorrelated.

Letz ~ N,(p, X), where X is positive definite. Then z has a density

. _ —1@nyE 7 @)
n(z; u, X) = (27t)l’/2|):|1/26 2 .

Contours of constant density for N, (u, X) are ellipses defined by
A={zeR?>:(z—pn)X '@z—pn)=c?}.
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These ellipses are centered at g and have axes c+/A;t;, where A; = ch; ()
and t; is the corresponding eigenvector. The major axis is the longest diameter
(line through p) of the ellipse, that is, we want to find a point z; solving
max||z— p||? subject to z € A. Denoting u = z— u, the above task becomes

maxu'u subject touw' X "lu = 2,

for which the solution is u; = z; — g = £c+/Aity, and wju; = 2.
Correspondingly, the minor axis is the shortest diameter of the ellipse .A.

O'2 012 1 o
5.18 The eigenvalues of ¥ = ( 2) = g2 ( ) where o1, > 0, are
031 O o 1

ch|(Z) =0% + 012 =0*(1 + o).
chy (%) = 0% — 012 = 6*(1 — o),

and t; = %(%),tz = JLE(_ll).IfUlz <0,thent; = JLE(_II)

5.19 When p = 2 and cor(z1, z22) = ¢ (# £1), we have

-1 2 -1
-1 _ (011 012 _ 0y 01020
@ X7 = = 2
021 022 01020 0)

I —o0
_ 1 o —o2\ _ 1 o 0102
0202(1 —2) \~012 0F 1-02| ¢ 1 [
0107 022
(b) det(X) = 0?02(1 — 0%) < o}03,
—1 (21— pm1)?
©) n(z;u,X) = ~exp( [
2m0102+/1 — 02 2(1-02) ‘712

0102 (722

—29(11 — m1)(z2 — p2) n (z2 — M2)21|).

X Rx ¥ Exy)
5.20 Suppose thatz ~ N(u, X),z = LU= , = . Then
PP G, 2) (y) i (My) (zyx vy

(a) the conditional distribution of y given that x is held fixed at a selected
value X = X is normal with mean

E(y|x) = pty + Tyl (X — fx)
= (My - Z;yxz;xlllfx) + Zyxz;xlxv

(b) and the covariance matrix (partial covariances)

CoV(Y|X) = Zyyx = Zyy — ZpnZ ol Ty = /T
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5.21

522

5.23

5.24

5.25

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

X lllx
If z= ~ JX), b= .
(y) p+1(, X)), p (My)
Yy = (Z/XX ny) yl = ( yy) then
oLy ay -0

@ E([x) = py +0;y>3;,3(>_<—ux)=(uy 0T iy) + 0, T X

2 2 / -
(b) Var(y |X) y (12..p = Oyx = 0y — axyzxx Oxy

025 Loy
=o§(1 —2 y)
Oy

=0, (1 —03.,) = 1/0”” = conditional variance,

o, X 0
(©) QJ%_X = %;Xy = the squared population multiple correlation.

y

When (;) ~ Na, cor(x, y) = 0, and B := 0y, /02, we have
(@) E(y|x) =ty +Blx —px) = iy + 055 (x — px) = (1y — Bix) + Bx,

2
(b) var(y| x) = 02, = 07 = 2 = 62(1 - ¢?) < 0} = var(y).

The random vector y + Xy X o} (X — px) appears to be the best linear pre-
dictor of y on the basis of x, denoted as BLP(y; x). In general, BLP(y; x) is
not the conditional expectation of y given x.

The random vector

€yx =Y —BLP(y;x) =y — [ILy + nyz;xl(x - ﬂx)]

is the vector of residuals of y from its regression on X, i.e., prediction error
between y and its best linear predictor BLP(y; x). The matrix of partial co-
variances of y (holding x fixed) is

cov(eyx) = Ty = Zyy — Z Xl Ty = /T

If z is not multinormally distributed, the matrix X yy.y is not necessarily the
covariance matrix of the conditional distribution.

The population partial correlations. The ij-element of the matrix of partial
correlations of y (eliminating x) is

Oijx
Oijx = —F/——
/o,-i.xojj.x
{0ijx} = Zyyx,  10ijx} = cor(ey.),

and ey,x = yi — fby, — a;yi ¥ (X — px), 0xy; = cov(x, y;). In particular,

= cor(ey,; x, €y;x)s
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5.26

5.27

5.28

5.29

5.30

5.31

5.32

5.33

5.34

5.35

0 _ Oxy — Qxz Qyz
xy-z = .
VI —03)( - 052)

The conditional expectation E(y | x), where x is now a random vector, is
BP(y; x), the best predictor of y on the basis of x. Notice that BLP(y; x) is the
best linear predictor.

In the multinormal distribution, BLP(y; x) = E(y | x) = BP(y; x) = the best
predictor of y on the basis of x; here E(y | x) is a random vector.

The conditional mean E(y | x) is called (in the world of random variables)
the regression function (true mean of y when x is held at a selected value x)
and similarly var(y | x) is called the variance function. Note that in the multi-
normal case E(y | x) is simply a linear function of x and var(y | x) does not
depend on x at all.

Let (ﬁ) be a random vector and let E(y | x) := m(x) be a random variable
taking the value E(y | x = x) when x takes the value x, and var(y | x) :=
v(x) is arandom variable taking the value var(y | x = x) when x = x. Then

E(y) = E[E(y | x)] = E[m(x)],
var(y) = var[E(y | x)] + E[var(y [ x)] = var[m(x)] 4 E[v(x)].

Let (3 ) be a random vector such that E(y |x = x) = a + Bx. Then =
Oxy/02 and @ = py — Piy.

Ifz ~ (u, X) and A is symmetric, then E(z'Az) = tr(AX) + u'Au.
Central y2-distribution: z ~ N, (0,1,): 2z = y2 ~ x*(n)

Noncentral y2-distribution: z ~ Ny (., 1,): 2z = y2 s ~ x*(n.8),8 = p'n

z~Ny(pn.0%L,): 22/0% ~ y*(n. p'n/0?)

Letz ~ Ny (u, ¥) where X is pd and let A and B be symmetric. Then

(a) ZAz ~ y%(r,8) iff AZA = A, in which case r = tr(AX) = r(AX),
5= pu'Ap,

(b) X7z =2 [cov(z)] 'z ~ x%(r,8), wherer =n,8 = /X ',
© (z—p)E ' (z—p) =MHLN?(z, n, 2) ~ x*(n),

(d) z’Az and z'Bz are independent iff AXB = 0,

(e) Z/Az and b’z are independent iff AXb = 0.
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5.36

5.37

5.38

5.39

5.40

5.41

542

5.43

5.44

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

Letz ~ N, (0, X) where X is nnd and let A and B be symmetric. Then

(a) ZAz ~ x2(r) iff TAXAY = Y AYX, in which case r = tr(AY) =
r(AY),

(b) z’Az and x'Bx are independent <= YAXBX =0,
(c) ZX7z = 2'[cov(z)]"z ~ x?(r) for any choice of ¥~ and r(X) = r.

Letz ~ N,(p, X) where X is pd and let A and B be symmetric. Then
(a) var(zAz) = 2tr[(AX)?] + 4/ AT Ap,
(b) cov(z’Az,2’Bz) = 2tr(AXBX) + 4u’'AXBu.

an,g/m

Noncentral F-distribution: F' =

— ~ F(m,n,8), where x2  and
are independent Xn/n

t-distribution: t>(n) = F(1,n)

Lety ~ N,(XB,02I), where X = (1: Xg), 1(X) = k + 1. Then

@ y'y/o? ~ y*(n, B'X'XB/0?),

b) yA=Dy/o? ~ y*[n—=1,8'X' A-DXB/0?] = y*[n—1, B, TxxBx/07],
© YH-Jy/o? ~ [k, By TxPBx/0?],

(d) y(I—H)y/o? = SSE/0% ~ x2(n —k — 1).

Suppose I, = Aj + -+ + A,,. Then the following statements are equivalent:
(@ n=rAy)+ - +r1r(An),

(b) A2 =A; fori =1,....m,

(c) AjA; =0foralli # j.

Cochran’s theorem. Let z ~ N, (u,I) and let 2z = ZAz + --- + Z’A,z.

Then any of 5.41a-5.41c is a necessary and sufficient condition for z’'A;z to
be independently distributed as y2[r(A;),].

Wishart-distribution. Let U = (u() : ... : ug,)) be a random sample from
N, (0, X), i.e., ug)’s are independent and each uy ~ N, (0, X). Then W =
U'U = }i_, upuy, is said to have a Wishart-distribution with n degrees
of freedom and scale matrix X, and we write W ~ W, (n, X).

Hotelling’s T2 distribution. Suppose v ~ N, (0, X), W ~ W,(m, ), v and
W are independent, X is pd. Hotelling’s T2 distribution is the distribution of
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5.45

T2 =m-vWly

LAY Wishart | '
=v|— ) v=(normalr.v.) S (normal r.v.)
m df

and is denoted as T2 ~ T2(p, m).

LetU = (uq) :ug) : ... : Ug) be a random sample from N, (s, X ). Then:

(a) The (transposed) rows of U, i.e., ug), u), ..., U, are independent
random vectors, each ugy ~ Ny (p, X).

(b) The columns of U, i.e.,uq, uy, ..., u, are n-dimensional random vectors:
2 _
u; ~ Ny (uily, 071y), cov(u;, u;) = oj;1,.

u; 73
() z=vecU)=| : |, E( = : =n®l,.
up Hply
o, only ... o1ply
(d) cov(z) = =X QI,.
op1ly opoly ... ojln

(e) u= %(U(l) +up) +--+uy) = %U/ln = (U1, Uz, ... ,L_lp)/.

i=1

n
= ﬁ( ll(,')ll/(i) — I’ll_ll_l/>.
=1

14
(2) E@) = p, E(S) = X, i ~Ny(p, 1 2).
(h) wand T = U'(XI — J)U are independentand T ~ W(n — 1, X).
(i) Hotelling’s T?: T2 = n(@— po)’S™ (0 — po) = n-MHLN?(a, uo, S),
i T2 ~F(pn—p.6), 6 =n(p—po)ET™" (1 — o).
(j) Hypothesis u = g is rejected at risk level o, if
n(a — ILO)/S_] (w—po) > p,gnf_pl)Fa;p,n—p-
(k) A 100(1 — @)% confidence region for the mean of the N, (u, X) is the
ellipsoid determined by all w such that
(i —p)S™ @ —p) < 28Dy .

O max FEr

afe  aSa (8 — ro)'S™ (i — po) = MHLN’ (@, o, ).
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5.46

5.47

5.48

5.49

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

Let U} and U, be independent random samples from N, (g1, X) and N, (g2,
¥), respectively. Denote T; = U; C,,;U; and
nins

S, =
T 4ng—

2(Tl +Ty), T?=

= (@ —u2)'S; " (W —mp).
ny+np

If 1 = po, then %Tz ~F(p,n1+ny—p—1).

If ny = 1, then Hotelling’s T2 becomes

T = n:42-1 (u) —12)'S5 " (u(y) — ).

Let U = (ug) : ... : Ug) be a random sample from N, (p, X). Then the
likelihood function and its logarithm are

(a L= (Zn)_%m =% exp[—% Z(u(i) -’ (g — ;L)],

i=1

n
(b) log L = —% pnlog(2m) — 4nlog|Z| = Y (ugy — w) =~ (g — ).
i=1

The function L is considered as a function of  and ¥ while U’ is being fixed.
The maximum likelihood estimators, MLEs, of u and X are the vector
and the positive definite matrix X . that maximize L:
© px=2U1= (i1, 02,....10p) =0, X,=:UA-))U="21S

1

—np/2
(2ﬂ)np/2|):*|n/ze :

(d) The maximum of L is ma)g( L(p,X) =
n,

1 e—np/Z
@ry P22

bl

(e) Denote mzax Lo, X) =

where Zog = 1 3" (uy) — po)(ui) — o). Then the likelihood ratio
is

_ maxy L(ko. %) _ (|z*|)”/2

C max, s L(p. X)) \|Zo]
1
Wilks's lambda = A%/" = ————— T2 = n(it — pto)'S™! (il — o).
® p—— (W—po)'S™ (u—po)
LetU' = (uq) : ... : ug)) be arandom sample from Ny (g, X), where

:
(). s (2)

cov(ug)) = (Z,XX axzy), i=1,...,n.

Oxy Oy
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Then the conditional mean and variance of y, given that x = x, are

E(y|X) = py + 04, 25 (X — i) = Bo + Bix.
var(y |x) = 0.,

-1

where Bo = 1y — 0, X ix and Bx = T loy,. Then

MLE(8o) = 7 —5.,S5)% = fo. MLE(By) = Si)syy = Bx.

Xy~ xx
2 1.2 —1 1
MLE(02,) = L(12, —t, T 't,) = LSSE.

Xy XX
The squared population multiple correlation 3., = o7, X 'ox, /07 equals
0iff Bx = T loxy = 0. The hypothesis Bx = 0, i.e., 0.x = 0, can be tested
by
(I-=R3.)/(n—k —1)

6 Best linear predictor

6.1

6.2

6.3

6.4

Let f(x) be a scalar valued function of the random vector x. The mean squared
error of f(x) with respect to y (y being a random variable or a fixed constant)
is

MSE[f(x); ] = E[y — f(X)]*.

Correspondingly, for the random vectors y and f(x), the mean squared error
matrix of f(x) with respect to y is

MSEM[f (x):y] = E[y — f(x)]ly — f(x)]".

We might be interested in predicting the random variable y on the basis of
some function of the random vector x; denote this function as f(x). Then
f(x) is called a predictor of y on the basis of x. Choosing f(x) so that it
minimizes the mean squared error MSE[ £(x); y] = E[y — f(x)]? gives the
best predictor BP(y; x). Then the BP(y; x) has the property

min MSE[/ (x): y] = min E[y — f(®)]?> = E[y — BP(y;x)).

It appears that the conditional expectation E(y | x) is the best predictor of y:
E(y |x) = BP(y;x). Here we have to consider E(y | x) as a random variable,
not a real number.

bias[ f(x); y] = E[y — f(x)]

The mean squared error MSE(a’x + b; y) of the linear (inhomogeneous) pre-
dictor a’x 4+ b with respect to y can be expressed as
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6.5

6.6

6.7

6.8

6.9

Formulas Useful for Linear Regression Analysis and Related Matrix Theory
Ely — (@'x + b)]? = var(y — a'x) + [ty — (@' px + b)]?
= variance + biasz,
and in the general case, the mean squared error matrix MSEM(Ax + b;y) is

E[y — (Ax + b)][y — (Ax + b)]’
= cov(y — Ax) + ||uy — (Apx + b)|%.

BLP: Best linear predictor. Let x and y be random vectors such that

X Mx X Y X xy)
E = ,  cov = .
(y) ("LY) (y) (Z w Xyy

Then a linear predictor Gx + g is said to be the best linear predictor, BLP, for
y, if the Léwner ordering

MSEM(Gx + g;y) <. MSEM(Fx + f;y)
holds for every linear predictor Fx + f of y.

X Y X
Let cov(z) = cov =3 = X X) | and denote
® (y) (ny ZyY)

Bz — | 0\ (x\ _ X
oz 1) \y) T \y—2n2ox)

Then in view the block diagonalization theorem of a nonnegative definite ma-
trix, see 20.26 (p. 89), we have

— /_ I 0 Zxx Exy I _(Z;")lzxy
(a) cov(Bz) = BB = (_zyx):;x I) (ny Zy/\0 I

D) 0 _
= ( OXX Zyy-x) v Ty = Ty — I Xy,
(b) cov(x,y — LT yxXX) =0, and
(@) cov(y — Ly X X) = Xyyx < cov(y —Fx) forallF,
(b) BLP(y;X) = py + Tyx X (X — ftx) = (Uy — Lyx Do Mx) + Ty T o X

Let ey.x =y — BLP(y: x) be the prediction error. Then
(a) €yx =Y — BLP(y:x) =y — [ILy + EyXZ);x(X - ILx)]’
(b) cov(ey.x) = Ty — Ly X Tyy = Xyyx = MSEM[BLP(y; x);y],

(c) cov(eyx.x) =0.

According to 4.24 (p. 18), for the data matrix U = (X : Y) we have



6 Best linear predictor 29

6.10

6.11

6.12

6.13

6.14

Syy — Sny;x1 Sxy <t covq(Y —XB) = covs(y —B'x) forall B,
s}% — s;yS;Xlsxy < varg(y — Xb) = vary(y —b’x) forallb,

where the minimum is attained when B = S!Sy = Ty Txy-
X € C(Txx : fx) and X — py € € (X ) with probability 1.

The following statements are equivalent:

(a) cov(x,y —Ax) = 0.

(b) A is asolution to AXy = Xyy.

(c) Aisoftheform A = XX + Z(I, — T X ); Z is free to vary.
(d) A(X — ptyx) = Xy X (X — px) with probability 1.

Ifb, = Z;Xlorxy (no worries to use X ., ), then

(a) mbin var(y — b'x) = var(y — b/,x)

_ A2 / -1 2 2
=0, — axyzxx Oxy = O0y.12..p = Oyxo

(b) cov(x,y —bix) =0,
(c) mlzjixcorz(y,b/x) = cor’(y,b.x) = corz(y,a;yZ‘;Xlx)
-1

’
axyzxx Oxy 2

= = 0y squared population
o

y multiple correlation,

) o) =0p -0, loxy =05(1 -0, T oy /o)) =07 (1—03.).

(a) The tasks of solving b from miny, var(y — b’x) and max;, cor?(y, b'x)
yield essentially the same solutions by = X 1oy,

(b) The tasks of solving b from miny||y — Ab||? and maxj, cos?(y, Ab) yield
essentially the same solutions Ab, = P,y.

(c) The tasks of solving b from miny, varg(y — Xob) and maxy, cor3(y, Xob)
yield essentially the same solutions by = S sy, = By.

Consider a random vector z with E(z) = u, cov(z) = X, and let the random
vector BLP(z; A’z) denote the BLP of z based on A’z. Then
(a) BLP(z;A'z) = u + cov(z,A'z)[cov(A'z)] [A’z — E(A'z)]
=pn+ZAAZTA)A@zZ—p)
=M+ Pk;z (z—p),

(b) the covariance matrix of the prediction error e,.o7, = z — BLP(z; A’z) is
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coviz—BLP(z;A'z)] = ¥ — TAA'XA)"A'X
=X(1-Pys) =220 -Ps12,)T "2

6.15 Cook’s trick. The best linear predictor of z = (;) on the basis of x is

X X
BLP@x) = (ﬂy + XX (x— ;Lx)) - (BLP(y; X)) '

6.16 Letcov(z) = X and denote z;) = (Z1,...,2;)" and consider the following
residuals (prediction errors)

e1.0 =21, €i.1..i-1 = Zi —BLP(z;;z¢G-1)), i =2,...,p.

Letebe a p-dimensional random vector of these residuals: e = (e1.9, €2.1, .. .,
ep-1..p—1) . Then cov(e) := D is a diagonal matrix and

det(X) = det[cov(e)] = 0702, -+ 02

p12...p—1
=(1- Q%z)(l - Q%.lz) (1= Qf;.],,,p_l)glzgz e 'Uj
<o0703--0,.

6.17 (Continued ...) The vector e can be written as ¢ = Fz, where F is a lower
triangular matrix (with ones in diagonal) and cov(e) = D = FXF’. Thereby
Y = F'DY2DV2(F')~! := LL/, where L = F~!D'/2 is an lower trian-
gular matrix. This gives a statistical proof of the triangular factorization of a
nonnegative definite matrix.

6.18 Recursive decomposition of 1 — Qi.lzm P
1-0}.15. = (1=03) 0 =0 )01 —=0}5.12) - (1 =0} prn. p1)-

6.19 Mustonen’s measure of multivariate dispersion. Let cov(z) = X ,x . Then

p
Mvar(X) = max Z 0,%12...1’—1’

i=1

where the maximum is sought over all permutations of z1, ..., Zp.

6.20 Consider the data matrix Xo = (X1 : ... : X§) and denote ¢; = (I — Py)xy,
e = (I—Pux,...x;,_ )X, E=(e; :e;:...:e). Then E'E is a diagonal
matrix where e¢;; = SSE(x;;1,X1,...,X;-1), and

det(n_ilE/E) = (1 =)= R3.0) (1= REy gy)sis5 5%
= det(Sxx).

6.21 AR(1)-structure. Let y; = oyi—1 +u;, i = 1,...,n, |o| < 1, where u;’s
(i=...,—2,—-1,0,1,2,...)are independent random variables, each having
E(u;) = 0 and var(u;) = o2. Then
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(a)

(b)

(©)
(d)
(e)
®
(8

(h)
@
)

9]

@

1 o o .. Q"‘2
2 1 .o
cov(y) = £ =0%V = Ou © . N e
1 -2 : : : :
Qn—l Qn—2 Qn—.’: 1
2
o .
= 1_“92 {Q" J|}'
ot =V mor (109 = (¥ ) = gy
Yn 12

V1_11V12 = Vl_ll -oV11ip—1 = 0ip—1 = (0,...,0, Q)/ =b, € Rn_l,
BLP(yn;Y(n—l)) = b/*Y(n—l)) = V/12V1_11Y(n—1) = 0Yn-1,
en = Yn —BLP(¥n:¥Y(-1)) = Yn — @¥n—1 = nth prediction error,

COV(Y(n—l)v Yn — b;Y(n—l) = COV(Y(n—l), Yn —0Yn—1) =0¢€ Rn_l,

For each y;,i = 2,...,n, we have

BLP(yi;¥(i-1)) = 0Vi—1, €y;yi_yy = Vi —0Yi—1 = €.

Define e; = y1,¢; = yi —0yi—1,1 =2,...,n,1i.e.,

i 10 0...0 00
y2 = oy 1 0...0 0 0
e=| ya—oy2 |=1]: : : Do y =Ly,
: 00 0...—0 1 0
Yn = 0Vn—1 00 0...0 —1
where L € R"*",

/
cov(e) = o2 ((1) (i Q?Z)I ) := 02D = cov(Ly) = 0’LVL/,
- n—1

LVL' =D, V=L"'DL)!, V!=LDL,
1—0% 0
-1 _ 1 Q —-1/2 _ 1
D™ =2 ( 0 1,,_1)’ = ( 0

JI—020 0...0 0 0

—0 1 0...0 00

..—o 1
0 0 0...0 —o 1

o
()

1
D~!/2LVL'D™!/2 = s KVK =1,

_Q2
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(m) V! =L'D'L=L'D /2D /2L = 1_21(/1(
-0
1 —o 0 ... 0 0 0
1 -0 1+0%> —0 ... 0 0 0
12| : : : : B
€ 0 0 ...—0 1+ —0
0 0 0 ..0 — 1

(n) det(V) = (1 —0*)""".

(0) Consider the model .# = {y,XB,02V}, where 02 = 02/(1 — 0?).
Premultiplying this model by K yields the model .# = {y«, X«B, 021},
where y, = Ky and X, = KX.

6.22 Durbin—Watson test statistic for testing o = 0:

n n AL NS A
. . . 5 Az_eGGeN R
bW = 3 e - /g =5 =20
=

i=1

where 0 = Y 1, & 18/ 1,7 and G € R@®=D>X" and G'G € R™ " are

-1 1 0... 0 0 O
0O -11... 0 0O
G=|: o]
0O 0 O0... -1 1
0O 0 0 0 —-11
1 -1 0 0O 0 O
-1 2 -1 0O 0 O
GG = : : : : : :
o 0 0 ... -1 2 -1
0 0 O 0 -1 1
6.23 Let the sample covariance matrix of x;,...,Xg,y be
S = {rli—j|} — (S/XX szy) c R(k+l)><(k+l).
Sxy Sy

Then sy, = rSxix and ﬁx = S;xlsxy =rir = (0,...,0,r) € Rk,

100...0
110...0
624 IfL=|111...0]¢eR"™" then

Ir11...1
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-1

I 11... 1 1 2—-1 0... 0 O
1 e 2 2 -1 2-1... 0 0
(L)' = 123... 3 3 _ 0-1 2... 0 O
123...n—1n-1 0 0 0... 2-1
123...n—-1 n 0 0 0...-1 1

7 Testing hypotheses

7.1

7.2

7.3

7.4

7.5

Consider the model .2 = {y, X8,021}, wherey ~ N,,(XB,02I),Xisn x p
(p = k + 1). Most of the time we assume that X = (1 : X() and it has full
column rank. Let the hypothesis to be tested be

H:KB =0, where K’ € RZXP, i.e., Kpxg has a full column rank.

Let . #y = {y,XB |K'B = 0, 021} denote the model under H and let €' (X)
be that subspace of ¢’ (X) where the hypothesis H holds:

% (X«) = {z : there exists b such thatz = Xband K'b = 0 }.

Then .#y = {y, X«B, 21} and the hypothesis is H: E(y) € € (X4). In gen-
eral we assume that K’ is estimable, i.e., ¥ (K) C % (X’) and the hypothesis
said to be testable. If r(X) = p then every K’'B is estimable.

0/q 0/q

The F-statistic for testing H: F = 52 = SSE/(1—p) ~F(g,n—p,é)

SSE/0* = yMy/o” ~ x*(n — p)

QO = SSEy — SSE = ASSE change in SSE due to the hypothesis
= SSE(.#y) — SSE(4) SSEy = SSE(.#y) = SSE under H

=y (@—-Px,)y—ydA—-H)y
=y'(H —Px,)y, and hence

_ [SSE(#u) — SSE(A4)]/q

B SSE(#)/(n — p)

_ (RP—R})/q

~ (1-R*»/(n—p)

_ [SSE(#y) — SSE(A)]/[r(X) — r(Xy)]
SSE(4)/[n — r(X)]

_(R?=R})/[r(X) —1(Xy)]

- (1=RY)/In—1(X)]

R%, = R? under H




34

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

0/0% ~ x*(q.8), q =r1(X)—r(Xy) central x? if H true
§ = B'X'(H—Px,)XB/0” = B'X'(1 - Px,)XB/0>
F(Xy) = €(XK1),  1(Xy) = r(X) —dim €(X') N €(K) = r(X) —r(K)
Consider hypothesis H: Bx_q41 = -+ = fr = 0,1.e., B2 =0, when

ﬂ = (g;) s ﬁz (S Rq, X

Then K’ = (0 : I,), X, = X; = XK+, and 7.10-7.16 hold.

(X] ZXZ), Xl = (1 X1t Xk_q).

Q =y H-Px,))y

=yPux,y [M; =1-Px|] § = BLX5M X282 /0”
= yMiXa(X5Mi Xo) T XoMyy

= BLX5Mi X282 = B5Ta21 B2 T2t = XoM1 X,
= Bileov(B2)] ' B2o” cov(Ba) = 0> (X,M; Xp) ™!

(B2 — B2) Taz1 (B2 — B2)/q -

— < Fogn—k—1 confidence ellipsoid for 8,
o

The left-hand side of 7.11 can be written as

(B2 — B2)'[cov(B2) 7" (B2 — B2)0%/q

62

= (B2—B2)'[cov(B2)] " (B2—B2) /4
and hence the confidence region for 8, is

(B2 — B2)' [cov(B2) " (B2 — B2)/q < Furgn—t1-

Consider the last two regressors: X = (X1 : Xg_1,Xx). Then 3.29 (p. 14)
implies that

2 1 —Tk—1,k-X
cor(B2) = | _ )L Tk—1keXy = Th—1k12.k—25
Th—1,k-X, 1

and hence the orientation of the ellipse (the directions of the major and minor
axes) is determined by the partial correlation between Xz and Xg.

The volume of the ellipsoid (B> — B2) [cov(B2)] (B2 — B2) = 2 is pro-
portional to ¢4 det[cov(B5)].

(ﬁx - .Bx),Txx(ﬁAx - ng)/k

6—2

< Fokon—k—1 confidence region for By
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7.16

7.17

7.18

7.19

7.20

Q = [lres(y: Xy) — res(y; X)||> = SSE(y: X1) — SSE(y; X1, X2)
= ASSE = change in SSE when adding X, to the model
=SSR — SSRy = y/(H—J)y — y'(Px, — J)y = ASSR
If the hypothesis is H: K'B = d, where K’ € RZ™”, then
@ Q= (KB-a[KXX)"'K (KB -d
= (K'B — d)/[cov(K'B)] " (K'B — d)o := u'[cov(u)] uo?,
(b) Q/0% = x*(q.9). §=(K'B—-d)[KXX)"'K] (KB -d)/o?

© F =2 = KB ay VKA KB /g ~Fg.p—q.),

(d) K’ —d~ N,y[K'B—d,o?K'(X'X)" K],
(e) SSEx = minkg=ally — XB| = [ly — XB, I,
® B, =B — XX) KK XX)'K|"\(K'B —d). restricted OLSE

The restricted OLSE ﬁ r is the solution to equation

’ 2 ’
()i(),( Ig) (’i ’) = (Xdy) ,  where A is the Lagrangian multiplier.

The equation above has a unique solution iff r(X’ : K) = p + ¢, and hence

B, may be unique even though B is not unique.

If the restriction is K’B = 0 and L is a matrix (of full column rank) such that
L € {K'}, then X, = XL, and the following holds:
(@) XB, = X, (X,X,) X,y = XL(L'X’XL)"'L'Xy,
®) B = (I, - (X’X)'K[K'(X'X)"'K|K') §

= (Ip - Pk;(x/x)—l)ﬁ = PL;X/XB\

= L(LX'XL)"'L'X'XB = L(LX'XL)"'L'Xy.
() cov(B,) = o’L(L'X'XL)"'L/

=o?[(X'X) ™' — (X'X) KK (X'X) K] 'K/ (X'X) ']

If we want to find K so that there is only one solution to X'Xg8 = X'y which
satisfies the constraint KB = 0, we need to consider the equation

X'X _ (Xy ) X _ (Pxy
(K’ ) B = ( 0 ) , orequivalently, (K’) B = ( 0 )

The above equation has a unique solution for every given Pxy iff €(X’) N
%' (K) = {0} and (%) has a full column rank in which case the solution for
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7.21

7.22

7.23

7.24

7.25

7.26

7.27

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

B is (X’X + KK’)"!X'y. Requirement ¢ (X’) N ¢ (K) = {0} means that K’
is not estimable.

H:By=---=8=0,ie, H: E(y) e €(1):
MSR R%/k
F = Foveran = = ~Fk,n—k—1,-
IS MSE T G- R —k—1) ~Fkn )
. B2 ASSE AR?
HZ,B,'ZOZFZF(,B,’)I lA = = )
se2(B;) MSE (1-=R?)/(n—k—-1)
r2
— yi-rest ~F(1,n—k—l,-),

(=2 )/ —k—1)

where AR? = R? — R(Zi) = change in R? when x; deleted, R(Zi) =
R?(y; X(=1)), X(i) = {all other regressors except the ith} = {rest}.

; Bi Bi -
H:Bi=0:t=1tBi))=—5—= — =\ F(Bi) ~tn—k —1)
se(Bi)  Vvar(Bi) !
H:KB=0:F= Kp> _ KP) ~F(n—k—1,)

62K (X'X)'k  var(k/B)

AR?/q
(1-R?»)/(n—p)
where AR? = R? — R, = change in R? due to the hypothesis.

H:KB=d:F=

~F(g,n—p,),

In the no-intercept model R? has to be replaced with R2.

Consider the model .# = {y,XB,0%V}, where X € R;*?, Vispd, y ~
N, (XB,02V), and F(V) is the F-statistic for testing linear hypothesis H:
K'B =d (K € RI*?). Then

oW)/g _  92(V)/q

F V = - ~F LAY &) 8 ’

(@) F(V) = SSE(V)/(n = p) (g.n—p.d)
(b) 62=SSE(V)/f. f=n-—p, unbiased estimator of o2
under {y, X8,02V}
(c) SSE(V) = ming|y — XB?_, weighted SSE

= ming(y — XB)'V™'(y — XB) = (y — XB)'V~'(y — XB),
(d) SSE(V)/0? ~ y*(n — p),
(e) ﬁ~ = (X’V-IX)"1X'V~ly = BLUE(B) under {y, X8,02V},
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7.28

7.29

7.30

) cov(K'B) = o2K/'(X'VIX) 1K = K’ cov(B)K,
() cov(K'f) = &*K'(X'V7IX)'K,

(h) Q(V)=SSEg(V)—SSE(V) = ASSE(V) change in SSE(V)
due to H,

(i 0(V)=KB-KXV'X)'KKS-d

= (K'B —d)'[cov(K'B)] 1 (K'B — d)o? := u'[cov(u)] 'uc?,
() 0)/o* = (K'B—ad)[cov(K'B)] (KB —d) ~ x2(q.9),
k) §=(K'B—d)[cov(K'f)] " (K'B—d)/o2,
(K'B — ) [cov(K'B)| 1 (K'B — d)o?/q

&2

= (K'B — d)'[cov(K'B)] " (K'B —d)/q ~ F(q. .5),

(m) K'f—d~N,[K'B—d,o?K'XV'X)"'K],

O F)=

(n) SSEg (V) = mink/g=ally — XB[2_, = lly — XB,[2_,, where

() B, =B—- XV IX)'KK'X'VIX)'K]"/(K'f —d) restricted
BLUE.

Consider general situation, when V is possibly singular. Denote
SSE(W) = (y — XB)W~(y — XB), where W =V + XUX’

with U satisfying (W) = €(X : V) and Xﬁ = BLUE(X}). Then
52 = SSE(W)/f. where f =r1(X:V)—r1(X) =r(VM),

is an unbiased estimator for gz. Let K’'B be estimable, i.e., ¥ (K) C € (X'),
denoteu = K'f—d, cov(K'B) = 02D, m = r(D), and assume that DD~ u =
u. Then (W'D~u/m)/o? ~ F(m, f.-),ie.,

(K'B — d)'[cov(K'B)]™(K' — d)/m ~ F(m. [.).
If r(X) < p but K'B is estimable, then the hypothesis K’ = d can be
tested as presented earlier by replacing appropriated inverses with generalized
inverses and replacing p (= k + 1) with r = r(X).
One-way ANOVA for g groups; hypothesisis H: 1 = --- = lg.

group 1: y11, y12, -+ Y1y, SS1= 2 1L, (v1j — 31)?

ZIOUD £ Vg1, Vg2, -+ Ygngs SSg = Y15, (Vgj — Fg)?

g
(2) SSE = SSEWithin = SS;+---+SSg, SSBetween = » 1, (ji—7)*,

i=1
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_ SSB/(g—1)

® F = SSE/n—g)

~F(g—1,n—g) if H is true.

7.31 t-test for the equality of the expectations of 2 groups: H : i1 = p».

P (1 — 72)? _ m0h — ¥)? 4 na2(y2 — y)*
SS1 +SS, /1 1 SS1 + SS,
[ (— + R e —

n—2 ni no n—2
niny _ _ SS; + SS, -1 _ _
= (1= y2)- (T) (V1 —)2)
(1) 2 _
= SSE—NF(l,n—Z)—t n—-2), ni+ny=n
n—2niny

7.32  One-way ANOVA in matrix terms.
y=Xpu+e, yi= i Yizo-..vin), i=1....g

V1 1,, ... 0 U1 &1
= S R I
Yg 0 ... 1,/ \Mg €g
Jﬂ] 0 In1 Jn1 0
H= , M= ,
0 Jng 0 Ing Jng
.)711?11 ;’1 Cl’l]yl
Hy = : = , My = : ;
)7g1ng ;’g Cnng
(.)71 _.)7)1111
H-=Jny = )
(Vg = Mn,

g n
SST=yCpy=»_> (vij — 7>
i=1j=1
SSE = y'My = SS; + -+ + SSq,

g

SSR =y (H—1J,)y = ) _ni(7i —7)> = SSB,
i=1

SST = SSR + SSE,  because 1, € ¢(X),

SSEg = SSE(1 = +++ = ug) = SST = SSEp — SSE = SSR.

7.33 Consider one-way ANOVA situation with g groups. Let x be a variable indi-
cating the group where the observation belongs to so that x has values 1, ...,
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g. Suppose that the n data points (y}l ) R (yllnl ) R (yf,] ) e, (ygg,,g )
comprise a theoretical two-dimensional discrete distribution for the random
vector (ﬁ) where each pair appears with the same probability 1/n. Let
E(y|x) := m(x) be a random variable which takes the value E(y | x = i)
when x takes the value i, and var(y | x) := v(x) is a random variable taking

the value var(y | x = i) when x = i. Then the decomposition
var(y) = var[E(y | x)] 4 E[var(y [ x)] = var[m(x)] 4 E[v(x)]
(multiplied by n) can be expressed as

g n 4 g nj
SN == G =97+ D> (i — )
i=1

i=1j=1 i=1;=1
SST =SSR + SSE, y'I-J)y =y H-Dy +y A -Hy,

where J and H are as in 7.32.

7.34 One-way ANOVA using another parametrization.

y=XB+e, yi=iyiz...-.vin) s i=1....g,

vi 1o, 1, ... 0\ (H# 1
. . . . 71 .
= : . + : )
Ye lng 0 lng T.g €g
non ng
niy n 0
X'X — :1 1 7
ng 0 ng
0 0 0 0
0 1/n 0 A y
G=|0 /M e{xx)} f=cxy=|"
0 0 ... 1/ng Ve

8 Regression diagnostics

8.1

Some particular residuals under {y, X8, o2I}:

(@) & =yi— Vi ordinary least squares residual
(b) RESS; = (y; — i)/ scaled residual
(¢c) STUDI; =r; = TN internally Studentized residual

6+ 1—hj;
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8.2

8.3

Formulas Useful for Linear Regression Analysis and Related Matrix Theory
yi — Ji
o)V 1 —hii
6@ = the estimate of o in the model where the ith case is excluded,

STUDE; ~t(n —k —2,-).

(d) STUDE; =¢; = externally Studentized residual

Denote
X(i) ) (y(i)) (ﬂ)
X = . = 5 = )
(X/(i*) y Vi 4 8
Z=(X:i), ij=1(0,...,01),

and let .7y = {y). X)) B, 021,_1} be the model where the i th (the last, for
notational convenience) observation is omitted, and let .#Zz = {y,Zy,c?I}
be thf: extf:nded (mean-shift) model. Denote By = B(A4)), Bz = B(A7),
and § = §(#z). Then
(@) Bz = [X'X—ii)X] X (X —iii))y = (X[;, X)) "' Xy ¥0) = Bos
i;.My éi . . .
o—— = —; we assume that m;; > 0, i.e., § is estimable,
liMli mii

(c) SSEz = SSE(A#7)

=Y I =Pg)y =y M—Py;)y =y I~ isi; = Pu_y;i)x)y

= SSE(;) = SSE — y'Pysi,y = SSE — m;;8% = SSE — 2 /my;,
(d) SSE — SSEz = y'Pwmj; y = change in SSE due to hypothesis § = 0,

© (I, — Py = ((I"‘1 ‘é’xm)y@) :

®) § =

M) 12 = YPusi; y _ SSE-SSEz &
T YM—Py)y/(n—k—2) SSEz/(n—k—-2) se2(§)
(2) z‘i2 ~F(,n—k -2, 82m,~,-/02), F -test statistic for

. testing § = 0in .4z,
(h) se?(8) =65 /mi; = &(zi)/mii,
(i) mij >0 <= Mi; #0 < i; ¢ €(X) < X(x) € %(X’(i))
< § is estimable under .#7
<= P is estimable under .#7.

: Yn =Y Yn—Y
IfZ=(@1:i,),thent, = = ,
S(n)/\/l—l/l’l s(n)‘/l—l/n
where s(zn) = sample variance of yi,...,y,—1 and yo,) = (1 + -+ +

Yn-1)/(n —1).
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8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

8.15

8.16

8.17

8.18

DFBETA; = 8 — B¢y = (X'X)"'X'i;8,  X(8 — Buy) = Hiid

y—XBo =My +Hijd = &) =1i;(y —XBw) = yi —X(;,0Bi =6,

&) = the ith predicted residual: £(;) is based on a fit to the data with the ith
case deleted

é%l) + 4 é%n) = PRESS the predicted residual sum of squares
COOK} = D} = (B~ B)) X'X(B ~ B/ (p5?) Cook’s distance
= = Ju)' G = §u)/ (p6?) = 8%hii/ (p6?) Ju1 =XBw
1 & hy 2 po
COOK? = — i 2L _Ti JiL -\ — gTUpI,
p o my; mij; p mij
hii = X/(i*)(X/X)_lX(i*), hi; = leverage

X(;x) = (1,X(;)) = the ith row of X

hir + hay + -+ hpyn = p (= k + 1) = trace(H) = r(X)

Hl1=1 1e%¢(X)
l 1 . . . . /
— < h;j; < —, ¢ =#ofrows of X which are identical with X(ix) (c>=1)
n c
T oralli # j
hii = % + i/(l)T;(Ii(l)
= 5+ (xo) — 0T Xg) — %) X(;, = the ith row of X,
=14 L (xg) - %Syl (x) — %) = L+ L-MHLN? (x5, X, Sxx)
1 Xi — X 2
hii = _+¥, when k = 1
n SSx

MHLN?(x(;), X, Sxx) = (X¢) —X)'Sq (X¢) —X) = (n — Dhy; - H = Pex,

condition number of X

Chmax (X/X)i| 1/2 _ ngax (X)

XX = [Chmm(X/X) s (X)

himax (X'X) T2 X
w} _ SZnux(X) condition indexes of X

m&X) = [ i XX) | sgX)
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8.19

8.20

8.21

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

Variables (columns) X1, ..., X, are exactly collinear if one of the x;’s is an
exact linear combination of the others. This is exact collinearity, i.e., linear
dependence, and by term collinearity or near dependence we mean inexact
collinear relations.

Let .#7 = {y,Zy.o>I} denote the extended model where Z = (X : U),
M = {y1,X1)B. L,—p} is the model without the last b observations and

X 0
anp == (XE;;) . X(2) € RbXP7 Unxb == (Ib) ) Yy = (g) .

I, -H;; —Hjp
a) M= , a+b=n,
(® ( -Hz Ip —sz)

M;, =1, —Hy, = U'(I, — H)U,
(b) r(M33) = r(UM) = b —dim % (U) N ¢ (X),
(©) rIX'd, —UU)] = (X)) = r(X) — dim ¢(X) N €(U),
(d) dimZ(X)NE(U) = r(X)—r(X()) = r(X(2)) —dim %(X’(l))ﬁ%(x/(z)),
() r(M2) = b —1(X(z)) + dim %(X’(l)) N <ﬁ(X’(Z)),
(f) My ispd <= (X, C C(X[y)) = (X)) =1(X)
— Chl(U,HU) = Ch](sz) <1
— FX)NEN) = {0}
<= § (and then B) is estimable under .#Z7.

If X(1) has full column rank, then ﬁ(///*) = ﬁ(///z) = ﬁ* and
(@) § = (UMU)"'UMy = M) é, &, = lower part of & = My
= (M My : L)y = My, Moy + 2 y2 = lower part of y
(b) SSEz =y'(I, — Pz)y =y (M —Pmu)y = y'[I, — UU’ — P, —uux]y
= SSE. = SSE — y'Pmuy
= SSE — &,M;} &, = SSE — §'M,,8
© B—B. = (XX)"'X'UM,,; UMy
= (X'X)'X{, M5} &, = (X'X)"'X'US

(d) t2 _ y,PMUY/b _ yIMU(U,MU)_lU/MY/b
* YM—Pyu)y/(n—p—Db) SSE./(n — p —b)
é)M5, é>/b

= ~F(b,n—p—b,8'Mp8/0>
SSE./(n—p—p) ~bnop 28/07)

= F-test statistic for testing hypothesis § = 0 in .#Zz

= the multiple case analogue of externally Studentized residual
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8.22

8.23

8.24

8.25

8.26

8.27

(€) COOK, = (B — B)'X'X(B — B.)/(p6?) = §'Hxb/(p6?)
= &,M5 Hpo M5} 8,/ (p62)

1Z'Z] = |X' (I, — UU)X| = X, X(| = [Ma||X'X]

IX'X[(1 - {Hi) = [X' (I —)X], de, my = X Xl/IX'X|

/ ’ Px 0
X)) NEX) =10} — Hz( 0 me)

Pz = (P)(()(” I()) , Qz=1,—-Pz= (I“ _OPX(U g)

b

Corresponding to 8.2 (p. 40), consider the models .Z = {y.XB,02V},
My = i) X@)B.0*Vu—1)} and Az = {y.Zy 0>V}, where 1(Z) =
p + 1,and let y = (B, : 6) denote the BLUE of y under .#z. Then:

@ Bz =Bu, 8=¢éi/mu,

(b) DFBETA; (V) = f — B = (X'VIX)" X'Vl =

mii

where r1;; is the ith diagonal element of the matrix M defined as

() M=V v IXX'VIX)"IX'V'! = M(MVM)"M = (MVM) ™,
and ¢; is the ith element of the vector € = My. We denote

(@ H=V XXV !X)"'X'V ! and hence H + M = V1.

52 52 52
2 _ 4 g 8 -
(e) t7 (V) == = = F -test statistic

=2 car(é: (5
Moy var(é;)  var(§) for testing § = 0

SSE(V . SSE;) (V
#’ where SSE(V) — y/My, 6(21') _ (t)( ),
n—p P—— b1

(2) SSEq (V) = SSE(V) — é2/riv;; = SSE(V) — 8%in; = SSEz(V),

H 6% =

(h) var(é;) = o2,  var(§) = 02/,

B—Ba)XV'X(B—Bw) _rP(V) his

(i) COOK?*(V) = —
po P M

Consider the deletion of the last b observations in model .# = {y, X8,02V}
and let Z be partitioned as in 8.20 (p. 42). Then

(@) B— By = (X’V‘1X)_1)S’V_1U§ = (X'VIX)"IX'V'UM; ] é,
B« is calculated without the last b observations,



44

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

(b) § = (UMU)"'UMy = M;zléz, é, = lower part of & = My
(¢c) SSEz(V) = yMy — yMU(U'MU) UMy

= y'My — &;M;; &

= y'Mzy = y'Mz(MzVMz) Mgzy Mz =1-Py

= SSE.(V),

&, My; /b

SSE«(V)/(n — p —b)
() COOK(V) = (B — B.)X'V'X(B — B.)/(po?) = §'H228/(p5?).

d t2(V) = ~F(b,n— p—b,8Mz,8/52),

9 BLUE: Some preliminaries

9.1

9.2

Let Z be any matrix such that €(Z) = ¢€(X*) = A4 (X) = €M) and
denote F = V1/2X L = VY/2M. Then F'L = X'PyM, and

XPyM =0 — Pp+ P, = Py.) = Py.
Matrix M. Consider the linear model .2 = {y. X8, 02\{_}, where X and V
may not have full column ranks. Let the matrices M and M be defined as

M =MMVM) M, M =PyMPy.

The matrix M is unique iff (X : V) = R”. However, PyMPy is always
unique. Suppose that the condition HPyM = 0 holds. Then

(a) M = PyM(MVM) MPy = Vt — VTX(X'VtX)"X'Vt,
(b) M =MVtM —MVtX(X'VX)"X'VtM,
(¢) M = MM = MM = MMM,
(d) M(MVM)™™ = (MVM)™M = M(MVM)* = (MVM)*,
() MVM = M, i.e., V € {(M)~},
) (M) = r(VM) = 1(V) —dim €(X) N €(V) = r(X : V) —r(X),
(g) If Z is a matrix with property € (Z) = ¥ (M), then
M = PyZ(Z'VZ)"Z'Py, VMV = VZ(Z'VZ)"Z'V.

(h) Let (X : Z) be orthogonal. Then always (even if HPyM # 0)
[(X:2)V(X:2)]" = (X:2)VH(X:2).

Moreover, if in addition we have HPyM = 0, then
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ZVtX ZV+Z
X'VX - X'VZ(Z'VZ)"Z'VX]* -X'V+XX'VZ(Z'VZ)*
—(ZVZ)TZVXX'VYX  [ZVZ - ZVXX'VX)"X'VZ]*)"

[(X: Z)/V(X . Z)]+ _ (X/V+X X/V+Z)

(i) IfV is positive definite and ¢’ (Z) = € (M), then
i) M=M=MMVM)™M = MVM)" = Z(Z'VZ)"Z
=V ' - VIXXVI'X) XV =V (I-Pyy-1),
(i) X(X'VIX)"X' =V —VZ(Z'VZ)"Z'V =V — VMV,
(i) XX'VIX)" X'V =1-VZ(Z'VZ) 7
=I-VM =1-Pjy =1-Py,y-1.
() If V is positive definite and (X : Z) is orthogonal, then
X'V X)) =X'VX - X'VZ(Z'VZ)'Z'VX.

9.3  If Vs positive definite, then
(@ M=V !—H
=V ! - VIXXVI'X) XV =V T = Pyy-1),
(b) M = M(MVM)™M = MMM = MM = MM
=MMVM)*M = (MVM)T™™M = M(MVM)* = (MVM) ™.
94 MMVM) M =MMVM)™M iff M) Cc €MV) iff 1(X:V)=n
9.5  Matrix M: general case. Consider the model {y, X8, V}. Let U be any matrix
such that W = V 4 XUX' has the property € (W) = € (X : V). Then
PwM(MVM) MPyw = (MVM)*
=WH - WHXX'WX)"XWT,
ie.,
PwMPy := My = WH - WHX(X'W™X)"X'W+.
The matrix My has the corresponding properties as Min 9.2 (p. 44).

96 W =VMMVM) MV + X(X'W X)"X

97  V-—VMMVM) MV = X(X'W X)X —X'UX
= HVH — HYM(MVM) MVH
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9.8

9.9

9.10

9.11

9.12

9.13

9.14

Formulas Useful for Linear Regression Analysis and Related Matrix Theory
XX'WHX) " X'WH = X(X'W X)" XW' = [I- WMMWM) M]Pyw
=[I-VMMVM) M]Py = H— HVYM(MVM) MPyw

Let W = V + XUU'X € NND,, have property (X : V) = €(W). Then
W is a generalized inverse of V iff €(V) N €(XUU'X’) = {0}.

Properties of X’W™X. Suppose that V € NND, x,, X € R"*?, and W =
V + XUX', where U € R?*?. Then the following statements are equivalent:
(@ 7(X) C €W,

(b) €(X:V) =7FW),

(¢) 1(X:V)=r1(W),

(d) XWX is invariant for any choice of W,

(e) €(X’W~X) is invariant for any choice of W™,

) 2X'W~X) = ¥ (X’') for any choice of W™,

(g) r(X’'W~X) = r(X) irrespective of the choice of W™,

(h) r(X’W~X) is invariant with respect to the choice of W,

(i) X(X'W—X)"X'W~X = X for any choices of the g-inverses involved.

Moreover, each of these statements is equivalent to (a’) ' (X) C % (W’), and
hence to the statements (b”)—(i’) obtained from (b)—(i), by setting W’ in place
of W. We will denote

W)W ={W,5, W=V+XUX, W)=%X:V)}.
FVXHL =F (W X: I-W™W) W=V+XUX eW
Consider the linear model {y, X8, V} and denote W = V + XUX' € W, and
let W™ be an arbitrary g-inverse of W. Then
W X)®EeX)t =R", FW X)) %X) =R",
FIW)YX] o 2X)t =R", (W)Xt @ %(X) =R".

PA(PANP,) " P, = (PANP,) Py
=P, (PANP,)" = (PANPy)T forany N

Let X, be any matrix such that €' (X) = % (Xx). Then
(a) PyX, (X, VX,) X, Py = PyX(X'VX)"X'Py,
(b) PyX,(X,VX,) X Py = PyX(X'VFX) X'Py,
© ¢X)C?F(V) =
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9.15

9.16

9.17

9.18

9.19

9.20

9.21

9.22

X, (X,V™X,) X, = X(X'V'X)"X' = HHV H)"H = (HV H)".

Let X, be such that €(X) = ¢(X,) and X/ X, = I, where r = r(X). Then
X,(X,VIX,)TX, = HH'VTH)'H = (HVTH)",
whereas X, (X, VTX,) "X = X(X'VIX)TX' iff (X' XX'V) = € (X'V).
Let V € NND,xu, X € R"™P? and U € RP*? be such such that W =
V + XUX’ satifies the condition 4" (W) = %’ (X : V). Then the equality
W =VBB'VB) BV + XX'W X)X
holds for an n x g matrix B iff
F(VW™X) C €B)* and € (VX') C €(VB),
or, equivalently, (VW~™X) = €(B)L N € (V), the subspace € (VW~X)
being independent of the choice of W™.
Let V € NND,,«,, X € R?*? and € (X) C € (V). Then the equality
V =VBB'VB) BV + XXV X)X
holds for an n x g matrix B iff €(X) = €B)L N € (V).
Definition of estimability: Let K' € R?*?, Then K'B is estimable if there
exists a linear estimator Fy which is unbiased for K’f.
In what follows we consider the model {y, X;8; + X282, V}, where X; €
R™Pi | =1,2, p1 + p2 = p.

K'B is estimable iff ¥(K) c € (X') iff K = X'A for some A iff K’[; =
K'(X’X)~X'y is unique for all (X’X)~.

LB is estimable iff (L) C €(X,M;), i.e., L = BM; X, for some B.

The following statements are equivalent:

(a) B, is estimable,

) % (1p, ) € EX),
() €(X1) N?(X2) = {0} and 1(X2) = pa,

(d) I'(M1X2) = I'(Xz) = pz.

Denoting Px,.x, = Xo(X,5M;X5) X ,M;, the following statements are
equivalent:

(a) X,pB, is estimable, (b) rX}) =r(X;My),
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9.23

9.24

9.25

9.26

9.27

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

(©) €(X1) NE(X2) = {0}, d) Px,x; Xz = Xo,

(e) Px,.x, is invariant with respect to the choice of (X;5M;X5) ",
(f) Px,.x, is a projector onto 4 (X>) along €(X;) & € X)*t,
(g) H=Px,x, +Px,x,.

Bk is estimable <= x; ¢ €(X;) <= Mix; # 0
k’B is estimable <= k € ¢ (X’)
B is estimable <= 1(X,xp) = p

Consider the one-way ANOVA using the following parametrization:

y=XB +e, ,B=(M),

T
yl lnl ln] e 0 M €1
. . . T1
= : o e
Ys lng 0 ... lng ‘L’Ig &g

Then the parametric function a’8 = (b, ¢')B = bu + ¢/t is estimable iff
a'u =0, whereu’' = (-1, l’g), ie, b—(c1+--+cg) =0,

and ¢/t is estimable iff ¢'1, = 0. Such a function ¢t is called a contrast, and

the contrasts of the form 7; — t;,7 # j, are called elementary contrasts.

(Continued ...) Denote the model matrix above as X = (1, : Xg) €

R™E€+D andlet C € R"™" be the centering matrix. Then

(@) A(X) =% (u), whereu' = (—1,1}),

(b) A (CXp) = €(X,C)* = €(1z), and hence €' (X,C) = €(1,)*.

10 Best linear unbiased estimator

10.1

10.2

Definition 1: Let k'8 be an estimable parametric function. Then g’y is
BLUE(K’B) under {y, XB,02V} if g’y is an unbiased estimator of k’8 and
it has the minimum variance among all linear unbiased estimators of k’:

E(g'y) = k'8 and var(g'y) < var(f'y) for any f: E(f'y) = k'B.
Definition 2: Gy is BLUE(Xf) under {y, X8, 02V} if
E(Gy) = XB and cov(Gy) <_ cov(Fy) for any F: E(Fy) = Xg.
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10.3

10.4

10.5

10.6

10.7

10.8

10.9

10.10

10.11

Gy = BLUE(Xf) under {y,Xf,02V} <= G(X:VM) = (X :0).
Gauss—Markov theorem: OLSE(X) = BLUE(Xg) under {y, X8, 02I}.

The notation Gy = BLUE(XB) = ffﬁ = Xﬁ should be understood as
Gy S {BLUE(Xﬂ |%)}, i.e., Ge {PX|VM}7

where {BLUE(X | .#)} refers to the set of all representations of the BLUE.
The matrix G is unique iff (X : V) = R”, but the value of Gy is always
unique after observing y.

A gentle warning regarding notation 10.5 may be worth giving. Namely in
10.5 B refers now to any vector 8 = Ay such that X is the BLUE(Xf). The
vector B in 10.5 need not be the BLUE(8)—the parameter vector 8 may not
even be estimable.
Let K’ be an estimable parametric function under {y, X8, 52V}. Then

Gy = BLUE(K'B) < G(X:VM) = (K':0).

Gy = BLUE(Xp) under {y, X8, 02V} iff there exists a matrix L so that G is
a solution to (Pandora’s Box)

vV X\(GY) [0
X 0 L) \XxX )
The general solution for G satisfying G(X : VM) = (X : 0) can be expressed,
for example, in the following ways:
@ G =X:0X: VM) + F{[I, —X: VM)(X: VM),
(b) G, =XX'WX) " XW™ +F,(I, —WW),
() G3 =1, — VM(MVM) M + F3[I, - MVM(MVM)~|M,
(d) G4 = H—-—HVMMVM) M + Fy4[I, - MVYM(MVM)~ M,
where Fy, F,, F3 and F4 are arbitrary matrices, W = V + XUX' and U is
any matrix such that ¥(W) = €(X : V), i.e., W € W, see 9.10w (p. 46).
If €(X) C €(V), {y.XB.02V} is called a weakly singular linear model.

Consistency condition for .# = {y,XB,52V}. Under .#, we have
y € € (X : V) with probability 1.

The above statement holds if the model .# is indeed correct, so to say (as all
our models are supposed to be). Notice that € (X : V) can be written as

C(X:V)=€(X: VM) = €(X) @ €(VM).
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10.12

10.13

10.14

10.15

10.16

10.17

10.18

10.19

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

Under the (consistent model) {y, X8, 02V}, the estimators Ay and By are said
to be equal if their realized values are equal for ally € €(X : V):

Aqyequals A,y < Ajy=Ayy forallye ¥(X:V) =%(X:VM).

If A1y and A,y are two BLUEs under {y, Xf, 02V}, then Ay = A,y for all
yeé¢X:V).

A linear estimator £y which is unbiased for zero, is called a linear zero func-
tion. Every linear zero function can be written as b’'My for some b. Hence an
unbiased estimator Gy is BLUE(X}) iff Gy is uncorrelated with every linear
zero function.

If Gy is the BLUE for an estimable K’ under {y, X8, 02V}, then LGy is the
BLUE for LK'B; shortly, {L[BLUE(K’'B)]} C {BLUE(LK’B)} for any L.

Gy = BLUE(GXp) under {y, X8,0%V} <= GVM =0

If Gy = BLUE(Xf) then HGy = BLUE(Xp) and thereby there exists L
such that XLy = BLUE(Xf).

Consider the models .#Z = {y, X, V} and #Zw = {y,XB, W}, where W =
V + XUU'X/, and €(W) = € (X : V). Then
(a) cov(XB | .#w) = HWH,

cov(XB | #w) = X(X'W™X)"X' = (HW H)T,
(b) cov(XB|.#) =HVH, cov(XB|.#)=XXWX)"X —XUUX/,
() cov(XB | Mw) —cov(XB | Mw) = covXB | #) — cov(XB | ),
(d) {BLUE(XB | .#w)} = {BLUE(XB | .#)}.

Under {y, X8, 02V}, the BLUE(Xp) has the representations
BLUE(XB) = XB =XB = ii

=Py.y-1y = XXV 'X)"X'V'ly V pd
= X(XXy) " Xyys y# = V7 12y X, = V712X
=XXVX)XVy €(X) C Z(V)

= [H— HVM(MVM) M]y

= OLSE(XB) — HVM(MVM) My

= [I— VM(MVM) My

= XX'W X) " X'Wy W=V +XUX e W
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10.20 BLUE(B) = B = (X'X)" !Xy — (X'X)"'X'VM(MVM) My

=B — (X'X)"'X'VMy only r(X) = p requested
= X'VtX)"IX'V'y € (X) C €(V), any V™ will do
1021 (a) cov(Xf) = X(X'V71X)"X’ V pd
=XX'VX)"X = (HV-H)*t €(X) C € (V)
= HVH — HYM(MVM)"MVH
= K,K, — K,P K, K. = V/?H, L = V/2M

= cov(Xp) —- HYM(MVM) MVH
=V - VM(MVM) MV = V/2(I — Py1,2y,)V'/?
= X(X'W~ X)X — XUX/,

(b) cov(B)
= X'V IX)~! Vpd, r(X) =p
= (X'’X)"IX'VX(X'X)"! — (X’X)"'X'VM(MVM)"MVX(X'X)"!
= cov(B) — (X’X)'K'PLK(X'X)"! only r(X) = p requested
= (X'X)"(K'K — K'PLK)(X'X)"! K =V!/2X, L = V/2M
= (X'VtX)~! €(X) C €(V)., r(X) =

10.22 Denoting ¥ = (H : M)V(H : M), we have cov(Xﬂ) = MVM/X and
hence r(X) = r(V) = r(MVM) + r[cov(XB)], which yields rfcov(Xp)] =
r(V)—r(VM) = dim €(X)N% (V). Moreover, <g[cov(X/B)] =FX)NE (V)
and if r(X) = p, we have r[cov(ﬁ)] =dim ¢(X) N € (V).

10.23 The BLUE of X and its covariance matrix remain invariant for any choice
of X as long as %' (X) remains the same.

10.24 (a) cov(XB — XB) = cov(XB) — cov(Xf) = HYM(MVM) MVH

(b) cov(B — B) = cov(B) — cov(B)
= (X'X)"'X'VM(MVM) MVX(X'X)™!

(© cov(B, B) = cov(B)

1025 & =y — XA = VM(MVM) My = VMy residual of the BLUE

10.26 cov(&) = cov(y — XB) = cov(y) — cov(XB) = cov[VM(MVM)~My]
= cov(VMy) = VM(MVM) MYV, €lcov(8)] = € (VM)

10.27 Pandora’s Box. Consider the model {y, X8, 52V} and denote
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10.28

10.29

10.30

10.31

10.32

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

(VX _(By B\ _ (V X\ _,._
r=(y ) wmem=(p %)=(¥3) e

Then

@ ¢ (x)ne(y) = o

(b) r (;(', f)() =r(V:X) + r(X),

(©) XB,X =X, XB;X =X,
(d) XB,X' = XB,X' = VB,X' = XB;V = VB,X' = XB,V,
() X’B1X, X'B;V and VB;X are all zero matrices,
(f) VB, VB,V =VB,;V =VB|VB,V =VBV,
(g) tr(VBy) =1(V : X) —r(X) = tr(VB)),
(h) VBV and XB4X’ are invariant for any choice of B; and By,
(i) XB =XB,y, cov(Xf)=XB,X' =V —VB,V,
e =y—XB =VByy,
(j) for estimable k', k'f = k'BLy = k'Bzy, var(k'f) = 02k'B,k,
(k) 62 = y'B,y/f is an unbiased estimator of 62; f = r(VM).

E=y—XB =(I-Pyy1)y residual of the BLUE, V pd
= VM(MVM) My = VMy V can be singular
gy = V125 residual in .#Zy = {ys, XgB.021}, V pd

=V '21—Pyy-1)y
SSE(V) = mﬂin||y — X3, = rrgn(y —XB)V'(y—XB)
=y - Px;v—lynéﬂ
=ly—-XBl;-i =y -XB)'V'(y—XB) =&'V's
= &,64 = yu(1—Px,)ys ys = V'12%y, X, = V712X
=y[V ! -V IXX'VIX)"X'V ]y
= yM(MVM) My = y'My general presentation

2 = SSE(V)/[n — r(X)] unbiased estimator of 02, V pd

Let W be defined as W = V + XUX/, with €(W) = ¢ (X : V). Then an
unbiased estimator for 62 is
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(a) 62 =SSE(W)/f, where f =1r(X:V)—r(X) =r(VM), and
(b) SSE(W) = (y —XBYW~(y —XB) = (y = XB)'V~(y - XB)
=&W & =y[W — W XXW X)"XWly
= yM(MVM) My = y'My = SSE(V). Norte: y € € (W)
10.33 SSE(V) = yMy = yMy = SSE(I) Vy € €(X : V) <= (VM)? = VM
10.34 Let V be pd and let X be partitioned as X = (X : X3), r(X) = p. Then, in
view of 21.23-21.24 (p. 95):
@) P, xv—1 = Xi(XVTIX)TIX VT + VM X (XM Xo) 7 XM,
= X; (X, M X)) 71X M, 4 X5 (X5M; Xo) T X, My,
(b) Ml =vV1- V‘1X1(X/1V_1X1)_1X/1V_1 =M;(M;VM;)"M;,
© Bi = (X\M:X)"'X[ Moy, B> = (X;MiXo) "' XMy,
(d) cov(Ba) = o2(X,M; Xo) 7!,
(e) cov(B2) = 0 (X,M X,) I XHM; VM, X5 (X, M X5) 71,
(f) BLUE(XB)
=Px,x):v-1Y = X181 + X282
= X (X{M2X1) 71X, Moy + Xo(X5M X5) ' X5 My
= X; (X[ V7IX)7IX V7 ly + VML X0 (XM Xo) 71X My
= PXI;qu + VM]XzﬁZ
= X181 (A1) + VM Xo B (M12), My = {y. X1B1.0%V}
(@) Bi(Ahz) = Br(ty) — Xy VX)X VT X Bo (A1),
(h) Replacing V™! with V* and denoting P.y+ = A(A'VTA)TA'VT, the
results in (c)—(g) hold under a weakly singular model.
10.35 Assume that ¢(X;) N ¥ (X3) = {0}, r(M;X;) = p, and denote
W=V+X1U1X/1 +X2U2X/2, W; =V+X,‘UiX;, i=1,2,
Miw = M;(M;WM;)"M; = M;(M; W,M;)"M;,
where ¥(W;) = €(X; : V), ¥(W) = €(X : V). Then
BLUE(ﬂz) = ﬁz(.//]z) = (X’lesz)_lX’lewy.
10.36 (Continued ...) If the disjointness holds, and €' (X;) C % (X} : V), then
(@) Xofa(M2) = Xa(XHM; X2) "X, My,
(b) X1 B1(M2) = X1 B (A1) = Xs (X{WTX ) "X WX 85 (1),
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(c) BLUE(XB|.#12)
= BLUE(X;B1 | 1) + WiM, - BLUE(X,8; | #12)
= BLUE(X; B, | .#\) + Wy - BLUE(M; X285 | #12).

SSE(V) = mﬂin||y —XB|3_ = yMuy M, =M
=yvV'a- Px,:x5):v-1)Y

=y V' I~ Py, .y-1)y — YMi Xo(X5M; X2) ' X5My
= SSEy (V) — ASSE(V) H:B,=0

ASSE(V) = y'M; X2 (X5M; X2) ' X5 My
= y'Myy — yMi2y change in SSE(V') due to the hypothesis
= minlly — Xy, —minfly — X3 H:fr=0
= Bileov(B)) ' B20? = Q(V)

OLSE(XpB) = BLUE(Xp) iff any of the following equivalent conditions

holds. (Note: V is replaceable with V* and H and M can be interchanged.)

(a) HV = VH, (b) HV = HVH,

(c) HVYM =0, (d) X'VZ =0, where €(Z) = €M),

() Z(VX) c?(X), (B Z(VX)=%¢X)NEV),

(g HVH <| V,ie., V—HVH is nonnegative definite,

(h) HVH < V,ie.,r(V—HVH) =r(V)—r(HVH), i.e, HVYH and V are
rank-subtractive, i.e., HVH is below V w.r.t. the minus ordering,

(i) % (X) has a basis consisting of r = r(X) ortonormal eigenvectors of V,

() r(T/{l}X) +-+ r(T’{S}X) = r(X), where Ty; is a matrix consisting of
the orthonormal eigenvectors corresponding to the ith largest eigenvalue
Agy of Vi Ay > Agpy > -+ > Ayq, Ag;y’s are the distinct eigenvalues
of V,

k) T’{i}HT{i} = (T/{i}HT{i})2 foralli =1,2,...,s,

o) T;i}HT{j} =0foralli,j =1,2,...,5,i # ],

(m) the squared nonzero canonical correlations between y and Hy are the
nonzero eigenvalues of V"HVH for all V™, i.e.,

cc’ (y,Hy) = nzch(V"HVH) forall V_,

(n) V can be expressed as V = HAH + MBM, where A > 0,B > 0,i.e.,
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10.40

10.41

10.42

VeV, ={V>0:V=HAH+MBM, A> 0, B> 0},

(0) V can be expressed as V = XCX' + ZDZ’, where C > 0,D >| 0, i.e.,
VGVZZ{VELOZVZXCX/"_ZDZ/, CELO,DzLo}v
(p) V can be expressed as V = oI + XKX' + ZLZ/, where @ € R, and K
and L are symmetric, such that V is nonnegative definite, i.e.,
VeV;={V>0:V=al+XKX' +ZLZ , K=K, L=L"}.

Intraclass correlation structure. Consider the model .#Z = {y,XB,02V},
where 1 € €(X). If V = (1 — o)I + ¢11’, then OLSE(Xp8) = BLUE(Xp).

Consider models .#, = {y,XB,02V} and .#y = {y,XPB, 0?1}, where V
has intraclass correlation structure. Let the hypothesis to be tested be H:
E(y) € ¥(X.), where it is assumed that 1 € % (Xx) C % (X). Then the
F-test statistics for testing H are the same under .#, and ..

Consider the models .#; = {y,XB,V1} and .#, = {y, X, V,} where V;
and V, are pd and X € R}*?. Then the following statements are equivalent:

(a) BLUE(XB|.#,) = BLUE(XB | .#>).
(®) Pyyrt =Py,
© X'V3'Pyy1 =X'V5,

@ P;(;Vl—lvz_lpx;vl—‘ = V3 'Pyyo1s

(e) VEIPX;VT‘ is symmetric,

O VX)) =C(V;'X),

(@ C(ViXh) = € (V2X1),

() E(V2V{'X) = €(X),

() X'V{'V,M =0,

G CVTVPVL V2 vTX) = gV,

(k) ‘K(VI_IMX) has a basis U = (u; : ... : u,) comprising a set of r
eigenvectors of V;l/ 2Vlefl/ 2,

(1) V;'2X = UA for some A, . 1(A) = r,

(m) X = Vi/zUA; the columns of V:/zU are r eigenvectors of Vo,V

(n) %(X) has a basis comprising a set of r eigenvectors of V, V7.
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10.44

10.45

10.46
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Consider the models .77 = {y,XB,V:1} and .#>, = {y,XB,V,}, where
r(X) = r. Denote PX;WT = X(X'W{X)"X'W, where W; = V; +
XUU'X/, and ¥(W;) = €(X : Vp) and so Px;wfy is the BLUE for X
under .#;. Then Px;wfry is the BLUE for Xg also under .#5 iff any of the
following equivalent conditions holds:

(@) XWiVaM =0, (b) €(V2W/X) C €(X),

(© C(VaM) C AN (XW) = CWHX)E = 9(6): G € (W X)L,

d ¢ (W1+X) is spanned by a set of r proper eigenvectors of V, w.r.t. Wy,
(e) ¥ (X) is spanned by a set of r eigenvectors of VQWT,

® Px;wfr V, is symmetric,

(g) V2 €{V, e NND, : V, = XN; X’ + GN,G’ for some N; and N }.
Consider the models .#; = {y,XB,V1} and .#, = {y,XB,V>}, and let
the notation {BLUE(XB | .#1)} C {BLUE(Xp | .#>)} mean that every rep-

resentation of the BLUE for X8 under .#; remains the BLUE for X# under
M>. Then the following statements are equivalent:

(a) {BLUE(XB|.#1)} C {BLUE(XB |.#>)},

(b) {BLUE(K'B | .#1)} C {BLUE(K'B) | .#>)} for every estimable K’'fB,

(© C(V2X+H) C €(ViXH),

(d) Vo, =aV; +XN; X'+ VIMN,MV; for some a € R, N; and N,

() Vo = XN3X' + VIMN;MV; for some N3 and Ny.

Consider the models .#; = {y,XB,V1} and 4> = {y, X, V2}. For X8 to

have a common BLUE under .#1 and .#, it is necessary and sufficient that
E(ViX1: VoXH) NneX) = {0).

Consider the linear models .#;, = {y,XB,V1}and .#, = {y, X8, V2}. Then

the following statements are equivalent:

(a) GX:VM:V,M) = (X:0:0) has a solution for G,

(b) € (ViM: V:M) N ¢'(X) = {05,

MV, MV, M
© 7 (MVZ) ce (Msz) :

Let U € R™* be given such that r(U) < n — 1. Then for every X satis-
fying €(U) C € (X) the equality OLSE(X8) = BLUE(Xg) holds under
{y.XB. 02V} iff any of the following equivalent conditions holds:
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10.48

10.49

10.50

10.51

10.52

[V — Py)]
Vd-Py) = ——A-Py),
(@) VI—Py) 7 —1(U) (I—-Py)
(b) Vcanbeexpressedas V = al+UAU’, wherea € R, and A is symmetric,
such that V is nonnegative definite.

(Continued ...) If U = 1,, then V in (b) above becomes V = al + 11/, i.e.
V is a completely symmetric matrix.

Consider the model .#1, = {y, X181 + X282, V} and the reduced model
e%12.1 = {Mly, M1X2ﬁ2, MIVMI}. Then
(a) every estimable function of B8, is of the form LM;X, g, for some L,

(b) K’'B, is estimable under . iff it is estimable under .#15.;.

Generalized Frisch—Waugh—Lovell theorem. Let us denote
{BLUE(M1X2ﬂ2 |%12)} = {Ay : Ay is BLUE for M1X2ﬂ2 }

Then every representation of the BLUE of M X, 8, under .#, remains the
BLUE under .#1,.1 and vice versa, i.e., the sets of the BLUEs coincide:

{BLUEM X283 | #12)} = {BLUE(M X285 | #12.1)}-

In other words: Let K’ B, be an arbitrary estimable parametric function under
M1>. Then every representation of the BLUE of K’'B, under .#, remains
the BLUE under .#,.; and vice versa.

Let B, be estimable under .#1,. Then
Bo(t2) = Bo(M21),  Ba(Mh2) = Ba(Miz).
Equality of the OLSE and BLUE of the subvectors. Consider a partitioned

linear model .#,, where X has full column rank and '(X;) N% (X,) = {0}
holds. Then the following statements are equivalent:

@) Ba(th2) = Ba( A1),

() Bo(M121) = Bo( M),

() “¥M1VYM;X5) C #M;X>),

(d) €M VM;(M;X)h] € (M Xo)t,

(&) Pv;x,M1 VM| = M; VM Py x,.

® Pv;x, M1 VM 1Qum,x, = 0, where Qm,x, =1 —Pum; x5,

(2) Pm;x, VM = M VPy x,,

(h) Py, x, VM =0,

(i) € (M;X) has a basis comprising p, eigenvectors of M; VM.
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11 The relative efficiency of OLSE

11.1 The Watson efficiency ¢ under model .# = {y,Xp, V}. The relative effi-
ciency of OLSE vs. BLUE is defined as the ratio

det[cov(B)] _ IX'X|?
det[cov(B)] CXVX] - XVTIX]
We have 0 < ¢ < 1, with ¢ = 1 iff OLSE(8) = BLUE(B).

eff(B) = ¢ =

BWK The Bloomfield—Watson—Knott inequality. The lower bound for ¢ is
4/\1An . 4)&21,1_1 4A-pkn—p+l — 7'_12_[22‘“_’:2 < ¢7
(Al + An)2 (AZ + /ln—l)2 (/\p + An—p+1)2 P

i.e.,
. . 1 L Y S L,
min¢ = min = = 2,
X ¢ x'x=1I, [X'VX] - | X'V~IX] bl Ai + An—iv1)? 11:11 fi
where A; = ch;(V), and t; = ith antieigenvalue of V. The lower bound is
attained when X is
Xbad = (tl :ttn et tp :ttn_p+1) = T(i1 :|:in Lt ip :tin_p+1),

where t;’s are the orthonormal eigenvectors of V and p < n/2.

112 Suppose that r(X) = p and denote K = V/2X, L = V/2M. Then
Xy\ _ (X'VX X'VM) _ (KK K'L
“Y{imy) = \mvx mvM) T \L'K LL)’

cov (@) _ (cov(é) cov(g)) _ ((X’X)“X’VX(X’X)‘l )
B cov(B) cov(B) . .
B FK'KF FK'(I, — P.)KF oo
= (FK’(In —P,)KF FK/(I, — PE)KF) CF=@X%)7
cov(B) = cov(B) — (X'X) "' X' VM(MVM) " MVX(X'X)"!
= (X'X)'K'(I, — PL)K(X'X)"! := cov(B) — D.

_Jeov(B)] _ IX'VX — X'VM(MVM)"MVX] - [X'X| 2
B lcov(B)| B IX'VX] - [X'X]| 72
IX'VX — X'VM(MVM)"MVX|
- IX'VX]
= I, — (X'VX)"'X'VM(MVM) " MVX|
= |I, - (K'K)'K'P.K],

11.3
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11.4

11.5

where we must have r(VX) = r(X) = p so that dim (X)) N €(V)+ = {0}.
In a weakly singular model with r(X) = p the above representation is valid.

Consider a weakly singular linear model where r(X) = p and let and k1 >
ky > -+ >kp >0and 6y > 6, > --- > 6, > 0 denote the canonical

correlations between X'y and My, and ﬁ and ﬁ , respectively, i.e.,
ki = cc;(X'y,My), 6; =cc;(B.B), i=1,....p.

Suppose that p < n/2 in which case the number of the canonical correlations,
i.e., the number of pairs of canonical variables based on X'y and My, is p.
Then

(a) m = r(X’VM) = number of nonzero «;’s,
p = number of nonzero 6;’s,
(b) {k?,... k%) = nzch[(X'VX) ' X'VM(MVM) MVX]
= nzch(Pyi/2xPy1/2yy) = nzch(Py1/25Py1/2p)
= nzch(PgPL),
(©) {6f.....62} = ch[X'X(X'VX)'X'X - (X'VIX)™']
ch{(cov(B))™" - cov(B)]
ch[(cov(B)) ™" (cov(B) — D)]
ch[I, — X'’X(K'K) 'K'PLK(X'X)™!]
ch[l, — (K'’K) 'K'PL K] = {I — ch[(K'K) 'K'P_K]}
{1 — ch[(X'VX)"'X'VM(MVM) MVX]},

(d) 91.2 =1 —K;#H, ie.,

cciz(ﬁ,ﬁ) =1 —cc?)_i_H(X/y,My), i=1,...,p.

Under a weakly singular model the Watson efficiency can be written as

IX'X|? IX'VX — X'VM(MVM)"MVX]|
= XVX[ XVIX] IX'VX|
= |I, - X' VM(MVM) " MVX(X'VX)"!|
= [In = Pyi2xPyi2y| = [In — Py124Py1/2]

p

)4
=[]0?=]]a-«D.
i=1

i=1

11.6 The 6?’s are the roots of the equation det[cov(B) — 62 cov(ﬁ)] = 0, and

thereby they are solutions to cov(ﬁ)w =62 cov(ﬁ)w, w #£ 0.

11.7 Let Gy be the BLUE(Xf) and denote K, = V/2H. Then
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Hy\ (HVH HVM\ (KK, K,L
“¥{imy) = \mvea mvmM) T \LK, LL)
Hy\ (HVH GVG'\ _ K, K. K, (I—Pp)K,
““Ney) T \eve’ 6ve') T \K,@-P K. K.I-PK, /"
Denote Ty = (HVH) " HVM(MVM) MVH, T, = (HVH)"GVG'. Then
(a) cci(Hy, My) = {«2,...,k2} m =r(HVM)
= nzch(T;) = nzch(PLPxk,)
= nzeh(PLPy) = cc?, (X'y, My),
(b) cc’ (Hy, Gy) = {67....,602} g = dim € (X) N € (V)
= nzch(T,) = nzch[(HVH)"GVG’]
nzch[(K K. "K (I, — Pp)K,]
nzch[Pg, (I, — Pr)] = nzch[Px (I, — Pp)],

(c) cci(Hy, Gy) = max cor’(a’Hy, b'Gy)
a,
'GVG’
— max > max taken subject to VHa # 0
a  a’HVHa

= ch;[((HVH)"GVG'] = 67,
(d) ccf(Hy,My) = 1—cc;_,,,(Hy,Gy), i=1,....h h=r(VH).

11.8 u = # of unit canonical correlations (k;’s) between X'y and My
= # of unit canonical correlations between Hy and My
= dim € (V'/?2X) N €(VY/?M) = dim €(VX) N € (VM)
=r1(V) —dimZ(X) N € (V) —dimE M) N € (V)
= r(HPyM)

11.9 Under .# = {y, X, V}, the following statements are equivalent:
(a) HPyM = 0, (b) PyM = MPy, (c) €(PyH) C €(H),
(d) €(VH) NE (VM) = {0},  (e) €(VY/2H) N E(V'/2M) = {0},
® ¢X)=¢X)NEV)BEX)NE V)L,

(g) u =dim%(VH) N € (VM) = r(HPyM) = 0, where u is the number of
unit canonical correlations between Hy and My,

(h) cov(XB) = PyX(X'V+X)"X'Py.
11.10 The squared canonical correlations Kiz’s are the proper eigenvalues of K'P K
with respect to K'K, i.e.,
HVM(MVM) MVHw = «>’HVHw, VHw # 0.
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11.11

11.12

11.13

The squared canonical correlations 91-2’5 are the proper eigenvalues of L'L =
GVG’ with respect to K'’K = HVH:

GVG'w = ?’HVHw = (1 —«>)HVHw, VHw # 0.

We can arrange the KiZ’S as follows:
2 2
ki ==k, =1, u = r(HPyM)
2 2 _ 2 —
1>k, > >Kyyy =Ky >0, m = r(HVM)
2 2 2 2
Kytt+1 = K1 = 0 = Kpyyg = 0, = 0,

where k7 = 1— 05—i+1’ i =1,....,h =1r(VH), s = dim ¢ (VX) N €(X)
and t = dim % (V) N €(X) — s.

Antieigenvalues. Denoting x = V!/2z, the Watson efficiency ¢ can be inter-
preted as a specific squared cosine:
(x'x)? (x'V1/2.y~1/2x)2 2 1/2¢0 y—1/2
= = == V N V
¢ X'Vx - x'V-Ix X'Vx - x'V-Ix cos™( X %)
7'Vz)?
= ¥ = cos?(Vz,z).
ZV2z-7'2

The vector z minimizing ¢ [maximizing angle Z(Vz, z)] is called an antieigen-
vector and the corresponding minimum (112) the first antieigenvalue (squared):

28/ A1 An _ VA1 An
kl"‘xn (A1+An)/2’
where ¢(V) is the matrix angle of V and (A;, t;) is the i th eigenpair of V. The

first antieigenvector has forms proportional to z; = +/A,t; = /A1t,. The
second antieigenvalue of V is defined as

] = n;g)l cos(Vz,z) := cos (V) =

. 2V A2 01
7, = min cos(Vz,z) = ———.
270,221 =0 A,z + kn—l

Consider the models .#1, = {y, X181+ X282, V}, # = {y,X8.,V}, and
Ay = {Hy,X; 81, HVH}, where X is of full column rank and €(X) C
% (V). Then the corresponding Watson efficiencies are

cov(Bl2)| _  IXXP?

lcov(B | #12)|  IX'VX[- [X'VEX]

(@) eff(B | #12) =

n cov(Ba | A, X/ M;X,|?
(b) e (B | M12) = | (€2| 12)] — IX5M; X5 | - ’
lcov(Ba | A12)]  IX5M1 VM Xo| - XM Xs|
XX [?

ft 3 % == s
© P = Xl VX
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11.14

11.15

11.16

11.17

11.18
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X)X, |2
X, VX, |- X (HVH) "X, |

) eff (B |.#m) =

(Continued ...) The Watson efficiency eff (ﬁ | .#12) can be expressed as
eff(B | A12) = eff (B1 | A1) - eff (B2 | A12) T |,
where
XX
X7 VX[ [X; (HVH) X, |
= |I,, — X, VM, X, (X5M,; VM, X,) "' XOM, VX (X VX)) 7L

eff(B1 | Mm) =

(Continued . ..) The following statements are equivalent:
(@) eff(B| #12) = eff (B2 | M12),

(b) €(X1) C € (VX),

(c) Hy is linearly sufficient for X; 81 under the model ..

(Continued ...) The efficiency factorization multiplier y is defined as
y = eff(ﬁ | #12)
eff (B1 | #12) - eff (B2 | A412)

We say that the Watson efficiency factorizes if y = 1, i.e., eff(ﬁ | AM12) =
eff (B1 | #12) - eff (B2 | #12), which happens iff (supposing X'X = I,,)

Ly — Py+1/2x, Py+1/2x, | = [In — Pyi2x, Pyi/ay, |-

Consider a weakly singular linear model .#Zz = {y,Zy,V} = {y, Z( g ) Vi,
where Z = (X : i;) has full column rank, and denote .# = {y, X, V}, and
let .#iy = {y), X@)B, V(i) } be such a version of .# in which the i th obser-
vation is deleted. Assume that X'i; # 0 (i = 1,...,n), and that OLSE(B)
equals BLUE(B) under .#. Then

/3(///(,-)) = /}(///(i)) foralli =1,...,n,

iff V satisfies MVM = A2M, for some nonzero scalar A.

The Bloomfield—Watson efficiency :
Y = 1|HV — VH|} = [HVM|% = 1 c(HV — VH)(HV — VH)’

V4
= w(HVMV) = tr(HV?) — tr(HV)* < 1> (4 = Aui1)?,
i=1

where the equality is attained in the same situation as the minimum of ¢15.
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11.19 C.R. Rao’s criterion for the goodness of OLSE:

n = trfcov(XB) — cov(XB)] = tr[HVH — X(X'VX)"'X/]

p

1/2 1/2 2

S S IGRELLIND
i=1

11.20 Equality of the BLUEs of X,f, under two models. Consider the models

A2 =y, X1B1 + X282, Vi and #12 = {y, X181 + X282, V}, where
% (X1) N € (X3) = {0}. Then the following statements are equivalent:

(a) {BLUE(X8> | #12} C {BLUE(X2B2 | #12},

(b) {BLUE(M;X,85 | #12} C {BLUE(M; X385 | .#12},

(©) F(YM) C €(X; : VM),

(d) €M YM) C €M1 VM),

(e) ¢[M;VYM;(M;X)1] € €[M;VM;(M; X)),

(f) for some L; and L, the matrix M; VM can be expressed as

M;VYM; = M;XoL; X5M; + M; VM, Qu, x, L2 Qwm, x, M1 VM,
= M1X2L1X/2M1 + M; VML, MVM;

12 Linear sufficiency and admissibility

12.1

12.2

12.3

Under the model {y, X8, 02V}, a linear statistic Fy is called linearly sufficient
for X if there exists a matrix A such that AFy is the BLUE of X8.

Let W = V 4+ XUU’X’ be an arbitrary nnd matrix satisfying (W) = ¢ (X :
V); this notation holds throughout this section. Then a statistic Fy is linearly
sufficient for X iff any of the following equivalent statements holds:

(a) €X) C €(WF),

b) #/F)NEX:V)C E(VXD),

(©) r(X: VF') = r(WF),

(d) €X'F') = ¢(X') and €(FX) N CFVXL) = {0}.

(e) The best linear predictor of y based on Fy, BLP(y; Fy), is almost surely

equal to a linear function of Fy which does not depend on S.

Let Fy be linearly sufficient for X8 under .# = {y,Xp,02V}. Then each
BLUE of X under the transformed model {Fy, FX8, c2FVF'} is the BLUE
of XB under the original model .# and vice versa.
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12.4

12.5

12.6

12.7

12.8

12.9

12.10

12.11

12.12

12.13

Formulas Useful for Linear Regression Analysis and Related Matrix Theory
Let K'B be an estimable parametric function under the model {y, X8, 02 V}.
Then the following statements are equivalent:
(a) Fy is linearly sufficient for K'8, (b) A (FX : FVX1) c A/ (K :0),
(©) FIXX'W-X) K] C ¢(WF).
Under the model {y, X, 02V}, a linear statistic Fy is called linearly minimal

sufficient for X, if for any other linearly sufficient statistic Ly, there exists a
matrix A such that Fy = ALy almost surely.

The statistic Fy is linearly minimal sufficient for X8 iff ¢ (X) = € (WF').
Let K'B be an estimable parametric function under the model {y, X8, 02 V}.
Then the following statements are equivalent:

(a) Fy is linearly minimal sufficient for K’'B,

(b) N (FX:FVXL) = 4/ (K :0),

(c) (K) = €(X'F') and FVX' = 0.

Let X181 be_ estimable under {y, X; 81 + X382, V}.and denote W; =V +

X X and M, = M,(MW;M;)"M,. Then XM,y is linearly minimal
sufficient for X 1.

Under the model {y, X8, 02V}, alinear statistic Fy is called linearly complete
for X if for all matrices A such that E(AFy) = 0 it follows that AFy = 0
almost surely.

A statistic Fy is linearly complete for Xg iff €'(FV) C % (FX).

Fy is linearly complete and linearly sufficient for X <= Fy is minimal
linear sufficient < %(X) = ¢(WF).

Linear Lehmann—Scheffé theorem. Under the model {y, X8, 52V}, let Ly be
linear unbiased estimator for Xf and let Fy be linearly complete and linearly
sufficient for Xf. Then the BLUE of X is almost surely equal to the best
linear predictor of Ly based on Fy, BLP(Ly; Fy).

Admissibility. Consider the linear model .# = {y,XB,02V} and let K’
be an estimable parametric function, K’ € R?*?, Denote the set of all linear
(homogeneous) estimators of K'f as LE; (y) = { Fy : F € R?*" }. The mean
squared error matrix of Fy with respect to K’ is defined as

MSEM(Fy: K'B) = E(Fy — K')(Fy —K'B)’,
and the quadratic risk of Fy under .# is
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12.14

12.15

12.16

risk(Fy; K'B) = trace MSEM(Fy; K'B)
= E(Fy —K'B)'(Fy —K'B)
= o2 trace(FVF') + ||(FX — K)B|*
= trace cov(Fy) + bias? .

A linear estimator Ay is said to be admissible for K’ among LE,(y) under
A if there does not exist Fy € LE,(y) such that the inequality

risk(Fy; K'B) < risk(Ay; K'B)
holds for every (8,02) € R? x (0,00) and is strict for at least one point
(B, 0?). The set of admissible estimators of K'B is denoted as AD(K'B).
Consider the model {y,XB,02V} and let K'8 (K’ € R?%?) be estimable,
i.e., K" = LX for some L. € R?*", Then Fy € AD(K'B) iff

€(VF) C €(X), FVL —FVF >_0 and

¢[(F —L)X] = ¢[(F — L)N],
where N is a matrix satisfying €'(N) = ¢ (X) N € (V).

Let K'B be any arbitrary parametric function. Then a necessary condition for
Fy € AD(K'B) is that €(FX : FV) C €(K’).

If Fy is linearly sufficient and admissible for an estimable K’f, then Fy is
also linearly minimal sufficient for K’'B.

13 Best linear unbiased predictor

13.1

BLUP: Best linear unbiased predictor. Consider the linear model with new
observations:

_ y Xﬂ 2 \% V12
o ={(0)-(55) (v v2))

where y is an unobservable random vector containing new observations (ob-
servable in future). Above we have E(y) = X8, E(ys) = X8, and

cov(y) = o2V, cov(ys) = 02V,  cov(y. yr) = o%V1,.

A linear predictor Gy is said to be linear unbiased predictor, LUP, for y if
E(Gy) = E(yr) = XyB forall B € R?,ie. E(Gy—ys) = 0,ic, % (X)) C
¢ (X’). Then y is said unbiasedly predictable; the difference Gy — y7 is the
prediction error. A linear unbiased predictor Gy is the BLUP for y if

cov(Gy —yr) <L cov(Fy —ys) forall Fy € {LUP(yy)}.
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13.2

13.3

13.4

13.5

13.6

13.7

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

A linear predictor Ay is the BLUP for y iff the equation
AX: VXY = (Xf 1 VX

is satisfied. This is equivalent to the existence of a matrix L such that A sat-
isfies the equation (Pandora’s Box for the BLUP)

(V x) (A’) _ (Vlz)
= ll I
X 0 L X v
A linear estimator £y which is unbiased for zero, is called a linear zero func-

tion. Every linear zero function can be written as b"My for some b. Hence a
linear unbiased predictor Ay is the BLUP for ys under .# iff

cov(Ay —ys,2'y) =0 for every linear zero function £'y.
Let <K(X}) C ¢(X'), ie., X¢B is estimable (assumed below in all state-
ments). The general solution to 13.2 can be written, for example, as

Ao = Xy : VaM)(X: VM) T + F(I, — Pxivm).

where F is free to vary. Even though the multiplier A may not be unique, the
observed value Ay of the BLUP is unique with probability 1. We can get, for
example, the following matrices A; such that A;y equals the BLUP(y):

A; =X/B + Vy WL, - XX'WX)"X'W],

Ay = X/B + Vo VI, - X(X'WX)"X'W,

As = X;B + V,M(MVM) M.,

Ay = X;(X'X) "X + [Va; — X, (X'X) X' VIM(MVM) ™M,
where W = V + XUX’ and B = (X’'W~X)"X'W~ with U satisfying
EC(W)=%¢(X:V).

The BLUP(ys) can be written as
BLUP(y;) = X/B + V21 W™ (y — XB)
=X/ B+ Vs W E=Xs8+VyVé
= X8 + V2:M(MVM) ™My = BLUE(X; 8) + V21 My
= Xfﬁ + (Vo1 — XfX+V)My
= OLSE(XrB) + (V21 — XfX+V)My,
where & =y — Xﬁ~ is the vector of the BLUE'’s residual:
X8 =y— VM(MVM) My =y—VMy, &= VMy= WMy.

BLUP(ys) = BLUE(X/8) <= %(Vi2) C €(X)

The following statements are equivalent:
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13.8

13.9

13.10

13.11

13.12

(a) BLUP(ys) = OLSE(X/8) = X;f for afixed X; = LX,
(b) EVar — VX)*X,] € €(X).
(¢) €(Va; — VHL') C €(X).

The following statements are equivalent:
(a) BLUP(yyr) = OLSE(XfB) = Xfﬁ for all Xy of the form Xy = LX,
(b) €(VX) C ¥(X) and ¥ (V1) C ¥ (X),
(c) OLSE(XpB) = BLUE(Xp) and BLUP(ys) = BLUE(X/B).
Let X¢ B be estimable so that Xy = LX for some L, and denote Gy =
BLUE(Xg). Then
cov[BLUP(ys)] = cov(Xfﬁ) + cov[V1V (y — Xﬁ)]
= cov(LXB) + cov[Var V™ (y — X)]
= cov(LGy) + cov[V21 V™ (y — Gy)]
= cov(LGy) + cov(V21My)
= Lcov(Gy)L' + VoMV,
= Lcov(Gy)L' + V2 V[V — cov(Gy)]V Via.

If the covariance matrix of (y’, y})/ has an intraclass correlation structure and
1, € €(X), 1,, € € (Xy), then

BLUP(y;) = OLSE(X/8) = X/f = X;(X'X) "Xy = X;X*y.
If the covariance matrix of (y', y7)’ has an AR(1)-structure {o/"~/!}, then

BLUP(yy) = X, B + 0i,& = X, B + 0éy.

where X} corresponds to Xy and & is the vector of the BLUE’s residual.

Consider the models .#y and .#, where X¢ B is a given estimable parametric
function such that %(X}) C ¢(X’) and ‘5()_(}) c¢X'):

(23 ()
o={(3)- () (o ¥2))

Then every representation of the BLUP for ys under the model .# is also a
BLUP for yr under the model .#y if and only if

X VuM X vViuM
%(Xf Yle) C%(Xf V21M)'
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13.13

13.14

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

Under the model .#, a linear statistic Fy is called linearly prediction suf-
ficient for yz if there exists a matrix A such that AFy is the BLUP for y,.
Moreover, Fy is called linearly minimal prediction sufficient for y if for any
other linearly prediction sufficient statistics Sy, there exists a matrix A such
that Fy = ASy almost surely. Under the model .#, Fy is linearly prediction
sufficient for yz iff

N (FX : FVX1) € ¥ (Xy 1 Vo X1,

and Fy is linearly minimal prediction sufficient iff the equality holds above.

Let Fy be linearly prediction sufficient for yr under .#. Then every repre-
sentation of the BLUP for ys under the transformed model

« _ J(Fy) (FXB » (FVF FV,
Ay = %(yf)’ (Xfﬂ) '@ (Vle/ Vo

is also the BLUP under ///f and vice versa.

14 Mixed model

14.1

14.2

14.3

The mixed model: y = X + Zy + e, where y is an observable and & an un-
observable random vector, X x , and Z,, x4 are known matrices, f is a vector
of unknown parameters having fixed values (fixed effects), y is an unobserv-
able random vector (random effects) such that E(y) = 0, E(¢) = 0, and
cov(y) = 02D, cov(e) = o°R, cov(y, &) = 0. We may denote briefly

Lﬂmix = {y7 Xﬁ + Z)’, OzD, (TZR}.
Then E(y) = XB, cov(y) = cov(Zy + €) = 02(ZDZ' + R) := 02X, and

Y\ _ 2(ZDZ +R ZD\ _ ,( = ZD
cov y =0 DZ/ pl=°\pz b/

The mixed model can be presented as a version of the model with “new ob-
servations”; the new observations beingnow in y:y =X +Zy + e,y =
0-B + ey, where cov(es) = cov(y) = 2D, cov(y,e) = cov(er,e) = 0:

v\ (X , (ZDZ' +R ZD
= )G ()

The linear predictor Ay is the BLUP for y under the mixed model .#,;, iff
AX:XM) = (0:DZ'M),

where ¥ = ZDZ/ + R. In terms of Pandora’s Box, Ay = BLUP(y) iff there
exists a matrix L such that B satisfies the equation
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(& 0)(x)=(V)
X 0J\L) \o0o)°
The linear estimator By is the BLUE for Xf under the model .,  iff
BX:XM)=(X:0).

14.4 Under the mixed model .#,,;x we have
(a) BLUE(XB) = X8 = X(X'WX)"X'Wy,
(b) BLUP(y) =5 =DZ'W (y—XB) =DZ'W & =DZ'Y "¢
= DZ'M(MXM) My = DZ'Myy,
where W = X + XUX/, ¢(W) = ¢(X : X) and My = ZM(MXIM) M.

14.5 Henderson’s mixed model equations are defined as
X'R™1X X'R™!Z B\ _(XRly
ZR'X ZR'Z+D V) \y) \ZRly)"
They are obtained by minimizing the following quadratic form f(B8, y) with
respect to B and y (keeping also y as a non-random vector):

/ —1
F(B.y) = (Y‘Xﬁ‘zy) (‘(} 10)) (Y‘X/;—ZV).

If B« and y. are solutions to the mixed model equations, then X8, =
BLUE(Xf) = X and y« = BLUP(yp).

14.6 Let us denote

_(y (X Z _ (RO (B
y*“(o)’ X*‘(o Iq)’ V*—(o D)’ “—(y :
Then f(B,y) in 14.5 can be expressed as
F(B.y) = (y& — Xua) Vi (v — Xue0),

and the minimum of f(B, y) is attained when & has value

q= (’?) = (X, VX)XV e Xed = (Xﬂ - Z”) .
4 4
14.7 If V, is singular, then minimizing the quadratic form
F(B.y) = (y4 — Xua) W, (y4 — Xs),
where W, = V, + X, X/, yields 8 and .

. . I M
14.8  One choice for X;- is Xy = (_"Z,) M = (—Z’M) .
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14.9

14.10

14.11

14.12

14.13

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

Let us consider the fixed effects partitioned model
F.y=XB+Zy +e, cov(y) =cov(e) =R,

where both B and y are fixed (but of course unknown) coefficients, and sup-
plement .% with the stochastic restrictions yo = p + &g, cov(eg) = D. This
supplementation can be expressed as the partitioned model:

mpexana=|2).( D)) (D)

Model %, is a partitioned linear model .# = {y, X8 +Zy, R} supplemented
with stochastic restrictions on p.

The estimator By, is the BLUE for X« under the model .7, iff B satisfies
the equation B(X, : V. X7) = (X4 : 0), i.e.,

@) By B\ (XZ RM \ (XZO
By1 B /\0 I, -DZM) \0 I, 0/
Let By, be the BLUE of X« under the augmented model .%,, i.e.,
Bi1 B2 B B>
B - =
Y (le Bzz) ¥ (le)Y+ (Bzz) yo
= BLUE(Xo | F%).

Then it is necessary and sufficient that B,y is the BLUP of y and (By; —
7B,,)y is the BLUE of X8 under the mixed model .#,;; in other words, (a)
in 14.10 holds iff

In -7 B y\ B11 — ZB21 _ BLUE(XB |%)
0 I, 0) = B,: Y=\ BLUP(y |.2) )
or equivalently

s(Y) _ (Bu), _ (BLUE(XB|.#) + BLUP(Zy | .4)
0) ~\By )Y ™ BLUP(y | .#) '

Assume that B satisfies (a) in 14.10. Then all representations of BLUEs of
X B and BLUPs of y in the mixed model .#,;x can be generated through

(B11 I; ZB21) y by varying B;; and B;;.
21

Consider two mixed models:

Ay ={y. XB+Zy.Di. Ri}, Ao ={y. XB +Zy.D;. Ry},

and denote X; = ZD;Z’'+R;. Then every representation of the BLUP(y | .#})
continues to be BLUP(y | .#>) iff any of the following equivalent conditions
holds:
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14.14

14.15

(Continued...) Both the BLUE(Xf | .#) continues to be the BLUE(XS | .#5)
and the BLUP(y | .#1) continues to be the BLUP(y | .#>) iff any of the fol-
lowing equivalent conditions holds:

,M .M
(@) 7 (DZZ’M) ce (D1Z’M) ’

R,M R,M
(b) & (D2Z’M) ce (D1Z’M) ’

(¢) €(ViaX}) C €(Vir1Xy), where
R, 0 I
Vi = (0’ D,-) and Xi = (_%,) M.

(d) The matrix V., can be expressed as

Vo = XuN1 Xy + Vo XEN2 (X5)'V,  for some Ny, No.

Consider the partitioned linear fixed effects model
F =1y, XiB1 + X282, R} = {y. XB.R}.

Let . be a linear mixed effects model y = X;8; + X,p, + &, where
cov(yz) = D, cov(e) = R, which we denote as

% = {y,Xlﬂl, E} = {y, Xlﬂlv XZDX/Z —+ R}
Then, denoting ¥ = X2DX/2 + R, the following statements hold:

(a) There exists a matrix L such that Ly is the BLUE of M,X; 81 under the
models % and . iff A/ (X; : X5 : RXT?) C A4 (M2X; : 0:0).

(b) Every representation of the BLUE of M, X 81 under .% is also the BLUE
of MpX; 81 under ./ iff € (X, : RX1) D €(ZX7).

(c) Every representation of the BLUE of M,X; 8 under .# is also the
BLUE of M,X; 8; under .7 iff (X, : RX1) C €(ZX?).
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15 Multivariate linear model

15.1

15.2

15.3

Instead of one response variable y, consider d response variables y1, ..., yq.
Let the n observed values of these d variables be in the data matrix Y,,xg4
while X,x, is the usual model matrix:

y/(1) X/(1)
Y=(y1:...:y4) = s X=X xp) = :
Y X(n)
Denote B = (B; :...: Bq) € RP*¢ and assume that
yj =XBj +¢&;. cov(ej) =07l,, E(g;) =0, j=1...d,
i:...:50)=XB1:...:Bg)+(e1:...:84), Y=XB+ €.
The columns of Y, y1, ..., Yq, are n-dimensional random vectors such that

yj N(Xﬂj,()’jzln), COV(yj,yk) =Ojk1n» ],k = l,._.,d.
Transposing Y = XB + & yields
Yay: - ¥Ym) =B'(xa)y i ... 1 X)) + (€) © -+ €m)),

where the (transposed) rows of Y, i.e., y«),...,Y@u), are independent d-
dimensional random vectors such that

Yo) ~ B'xG). X),  cov(ya).y,) =0, i # J.

Notice that in this setup rows (observations) are independent but columns
(variables) may correlate. We denote this model shortly as ./ = {Y,XB, X }.

Denoting
Vi X ... 0\ /B
y«=vec(Y)=| |, E(yd)=|: ". : :
Ya 0 ... X/ \Bg
= (I ® X) vec(B),
we get
otl, oply ... 014y
cov(ys) =| : =25,
oaln oaoln ... o031,

and hence the multivariate model can be rewritten as a univariate model

B = {vec(Y),Ig ® X)vec(B), T @I} := {y«, XuBx, Vi}.

By analogy of the univariate model, we can estimate XB by minimizing

tr(Y — XB) (Y — XB) = |[Y — XB|%.
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The resulting XB = HY is the OLSE of XB. Moreover, we have
(Y -XB)(Y—-XB) > (Y-HY)(Y-HY) = YMY :=E, VB,
where the equality holds iff XB = XB = PxY = HY.

15.4  Under multinormality, Y'MY ~ W[n —1(X), Z], and if r(X) = p, we have
MLE(B) = B = (X'’X)"'X'Y, MLE(Z) = 2Y'MY = 1E.,.

155 € (V«Xs) C €(X4«) = BLUE(X.B+«) = OLSE(X.B+)
15.6 Consider a linear hypothesis H: K'B = D, where K € R7™? and D € R?7*4
are such that K'B is estimable, Then the minimum Eg, say, of
(Y —XB)' (Y —XB) subjectto K'B =D
occurs (in the Lowner sense) when XB equals
XBy = XB — X(X'X)"K[K'(X'’X) K] ' (K'B — D),
and so we have, corresponding to 7.17 (p. 35),
Ey — Es = (K'B— D) [K' (X'’X)" K] (K'B — D).

The hypothesis testing in multivariate model can be based on some appropri-
ate function of (Eg — Eres)Er_es1 , or on some closely related matrix.

15.7 Consider two independent samples Y| = (ya1) @ ... : Yn,)) and Y, =
(Y1) © -+ - 1 ¥Y(2ny)) so thateach y(i;) ~ Ng(p1, X) and y2i) ~ Ng(p2, X).
Then the test statistics for the hypothesis w1 = p» can be be based, e.g., on
the

_ niny _ _ _
chi[(Eg — Eres)El] = Ch1|: 2§ - ¥2) G - yz)/Eresl:|
ny+no

= a1 —¥2)'S. 51 — ¥2).

_ (nit+np=2)n1ny _ 1 _
where o = FrE , Sy = n1+n2—2EreS =

1
n1+n2—2T*’ and

B = Y (I, —H)Y = Y,C,,, Y1 + Y,Cp, Y = T,
Efg —E. = Y/(In - Jn)Y - Y/(In - H)Y = Y/(H - Jn)Y
= 1 —-YF1 -V + 1232 -T2 - )
nin - — - -
= 2 ¥1—y2)§1 — Y2)/ := Egetween:
ny +np
EH = EBetween + Eres-

Hence one appropriate test statistics appears to be a function of the squared
Mahalanobis distance

MHLN?(§1,¥2,85) = (F1 — ¥2)'S; ' (51 — §2).

One such statistics is n’ifrfz (Y1 —¥2)'S; 1 (y1 —¥2) = T? = Hotelling’s T2.
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16 Principal components, discriminant analysis, factor analysis

16.1

16.2

16.3

16.4

Principal component analysis, PCA. Let a p-dimensional random vector z
have E(z) = 0 and cov(z) = X. Consider the eigenvalue decomposition
of X: X = TAT, A = diag(A1,...,4,), TT =1,, T = (t; : ... : t,),
where Ay > A, > --- > A, > 0 are the ordered eigenvalues of X. Then the
random variable tgz, which is the i th element of the random vector T’z, is the
ith (population) principal component of z.

Denote T(;) = (t1 : ... : t;). Then, in the above notation,

e max var(b'z) = var(tjz) = A1,

e max var(b'z) = var(tjz) = A;,
Jb'b=1
T(;_;,b=0
ie., t;-z has maximum variance of all normalized linear combinations un-
correlated with the elements of T’(i_l)z.

Predictive approach to PCA. Let A, have orthonormal columns, and con-
sider the best linear predictor of z on the basis of A’z. Then, the Euclidean
norm of the covariance matrix of the prediction error, see 6.14 (p. 29),

IZ -~ ZAAZA)TAZ|F = |[2V2(0; —Pgi24) T V2 ||F,

is a minimum when A is chosen as T(x) = (t; : ... : t). Moreover, minimiz-
ing the trace of the covariance matrix of the prediction error, i.e., maximizing
tr(Px1/2, X) yields the same result.

Sample principal components, geometric interpretation. Let X be an n x P
centered data matrix. How should G, xx be chosen if we wish to minimize the
sum of orthogonal distances (squared) of the observations X;y from € (G)?
The function to be minimized is

IE: = X - XPa|} = n(X'K) - w(PX'X),

and the solution is G = Twy = (t1 1 ... 1 tg), where t; are the first k

orthonormal eigenvectors of X’X (which are the same as those of the corre-
sponding covariance matrix). The new projected observations are the columns

of matrix T(k)T’(k)X’ = Pr,X’. In particular, if k = 1, the new projected
observations are the columns of

)X = t,(t,X') = t,(t)Xq), ..., )X 1= tis],

where the vector s; = Xt; = t,X@a). - ...t X)) € R” comprises the val-
ues (scores) of the first (sample) principal component; the i th individual has
the score t;X;) on the first principal component. The scores are the (signed)
lengths of the new projected observations.
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16.5

16.6

16.7

16.8

PCA and the matrix approximation. The matrix approximation of the centered
data matrix X by a matrix of a lower rank yields the PCA. The scores can be
obtained directly from the SVD of X: X = UAT. Withk = 1, th~e scores
of the jth principal component are in the jth column of UA = XT. The
columns of matrix T'X’ represent the new rotated observations.

Discriminant analysis. Let x denote a d-variate random vector with E(x) =
ft1 in population 1 and E(x) = p, in population 2, and cov(x) = X (pd) in
both populations. If

[@'(n1 — ) [ (1 —p)?  [al(pr — po))?
max ——————— = max =
a#0 var(a’x) a#0 a’'Xa a, Ya,

)

then a/,x is called a linear discriminant function for the two populations.
Moreover,
[a'(p1 — p2))? -1 2

max B2 (4 — o) BT (i — o) = MHLN (1 o, ),

a%0 a’Xa
and any linear combination a/,x with a, = b - X ~1(st1 — p2), where b # 0
is an arbitrary constant, is a linear discriminant function for the two popula-
tions. In other words, finding that linear combination a’x for which a’p; and
a’ ., are as distant from each other as possible—distance measure in terms
of standard deviation of a'x, yields a linear discriminant function a’/,x.

Let U] = (W) @ ...t uqy,)) and U, = (uq) @ ... : Uep,)) be indepen-
dent random samples from d -dimensional populations (1, X) and (2, X),
respectively. Denote, cf. 5.46 (p. 26), 15.7 (p. 73),

Tl = U:CnlUla T* = Tl +T27
1

o= —

* ny+ny,—2

and @; = ;-Uj1,;, @ = (U] : U)1,. Let Sy be pd. Then

[a’(a; —up)]?

Ty, n=mny+ny,

a0 a’S.a
= (0 —)'S; " (W — 1) = MHLN?(@y, 02, S4)
a’'(a; —uy)(a; —uy)a a’Ba
= (n —2) max (o 2)(il 2) = (n — 2) max ,
a0 a'T.a a#0 a’'Tya
where B = (i —lip) (0 —i1p)' = -2 Y7 n; (@; —1)(@; —1a)'. The vector

nins
of coefficients of the discriminant function is given by a, = S;'(@; —u5) or
any vector proportional to it.

The model for factor analysis is x = u + Af + &, where X is an observable
random vector of p components; E(x) = g and cov(x) = X. Vector f is an
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m-dimensional random vector, m < p, whose elements are called (common)
factors. The elements of & are called specific or unique factors. The matrix
Apxm is the unknown matrix of factor loadings. Moreover,

E(e) =0, cov(e) =V = diag(t/flz, . 1,//p2),
Ef)=0, cov(f)=® =1,, cov(f,e)=0.

The fundamental equation for factor analysis is cov(x) = cov(Af) + cov(e),
ie., X = AA’ + W¥. Then

cov (X) = ):, A and cov(f —Lx) > cov(f—A’X " !x) forall L.
f AT,

The matrix L, = A’Y ! can be represented as
L, =AY = AV A+ 1,) 'A¥

and the individual factor scores can be obtained by L. (x — ).

17 Canonical correlations

17.1

17.2

17.3

Letz = ( ;) denote a d-dimensional random vector with (possibly singular)
covariance matrix X. Let x and y have dimensions d; and d, = d — dj,
respectively. Denote

X ZXX Zx
cov (y) =Y = (ny Zyi) . (Zxy) =m, 1(Tx) =h <1(Tyy).

Let 07 be the maximum value of cor?(a’x,b’y), and leta = a; and b = b,
be the corresponding maximizing values of a and b. Then the positive square
root \/Q—% is called the first (population) canonical correlation between x and
y, denoted as cc1 (X, y) = 91, and u; = ajx and v; = b}y are called the first
(population) canonical variables.

Let 03 be the maximum value of cor?(a’x, b'y), where a’x is uncorrelated
with a}x and b’y is uncorrelated with by, and let u, = a,x and v, = b}y

be the maximizing values. The positive square root \/Q_% is called the second
canonical correlation, denoted as cc(X,y) = 02, and u, and v, are called
the second canonical variables. Continuing in this manner, we obtain / pairs
of canonical variables u = (u1,us,...,up) and v = (vy,va,...,vp) .

We have
(@' Z yb)? @, 2822 = ?b,)2

200/ /
cor‘(a’x,b'y) = = ,
@x.bY) = 5 a-bI,b ala, - b,b,

where a, = Zi,{za, b, = Z;y/zb. In view of 23.3 (p. 106), we get
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max cor®(a’x, b'y) = sg3 (X ;1/22:“2;;1/2)

a,b
=chi(TLEWE ] Zp) = ccf(x.y) = o]

X

17.4 The minimal angle between the subspaces A = % (A) and B = €(B) is
defined to be the number 0 < 8, < 7/2 for which

24 2u.v) (e’ A'BB)?
Cc0S” Opin = max cos“(u,v) = max ——
T we A veB Aa#0 /A’Aa - B'B'BB
u#0, v£0 BB#0
17.5 Let A,xq and B, « be given matrices. Then
(¢’A’BB)? (oc’lA’Bﬂl)2
max =
Ae#0 ’/A’Aa - B'B'BB o |A’Aa; - BB'BB,
BB#0
(XIIA/PBA(Xl
=1 — ch(PsPp) = A2,
o A'Ad, 1(PsPg) 1

where (A2, ;) is the first proper eigenpair for (A’PgA, A’A) satisfying
A'PpAa; = MjA'Aa;, Aa; #0.

The vector B is the proper eigenvector satisfying
B'PABB; = \’B'BB;, BB, #0.

17.6  Consider an n-dimensional random vector u such that cov(u) = I,, and define
x = A'uand y = B'u where A € R"*? and B € R”*?. Then

X _ A/ll _ A,A A/B o Zxx ny _
o (3) =0 ) = (o ) = (5 33) ==

Let p; denote the i th largest canonical correlation between the random vectors
A’uand B'u and let ) A’u and B/ B’u be the first canonical variables. In view

of 17.5,
'A’Bp)? " A'PgA
0% = max G A) = al/ BA®L _ ch; (PoPpg).
rago /A’Aa- BBBE o A'Aa,
BB#0

In other words, (03, a1) is the first proper eigenpair for (A’PgA, A’A):
A'PpAa; = 0?A’'Aa;, Aa; #0.

Moreover, (07, Aar) is the first eigenpair of PAPp: PAPpAa; = 0?Aa;.

17.7 Suppose that r = r(A) < r(B) and denote

cc(A'w,B'w) = {01,...,0m>Om+1, - .,0n} = the set of all cc’s,

ccr(A'u,B'u) = {o01,...,0m}
= the set of nonzero cc’s, m = r(A’B).
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Then

()

(b)

(©
(d)

(e)
®
(8
(h)

there are 1 = r(A) pairs of canonical variables o;A’u, B;B'u, and &
corresponding canonical correlations 01 > 02 > -+ > g5 > 0,

the vectors o; are the proper eigenvectors of A’'PgA w.r.t. A’A, and the
Q%’s are the corresponding proper eigenvalues,

the o7 ’s are the / largest eigenvalues of P, Py,
the nonzero Qiz’s are the nonzero eigenvalues of PoPg, i.e.,

cc} (A'u, B'u) = nzch(PsPp) = nzch(Zy T Ty Ty, ).

the vectors B; are the proper eigenvectors of BP,B w.r.t. B'B,

the number of nonzero ;s is m = r(A’B) = r(A) —dim €(A) N (B)*,
the number of unit o;’s is u = dim ¢’ (A) N € (B),

the number of zero g;’s is s = r(A) — r(A’B) = dim ¥'(A) N €(B)~ .

17.8 Let u denote a random vector with covariance matrix cov(u) = I, and let
K € R"™? L € R™4, and F has the property ¢ (F) = € (K) N ¢ (L). Then

(a)

(b)

The canonical correlations between K'Qpu and L’Qgu are all less than
1, and are precisely those canonical correlations between K'u and L'u
that are not equal to 1.

The nonzero eigenvalues of PxPy, — Py are all less than 1, and are pre-
cisely those canonical correlations between the vectors K'u and L'u that
are not equal to 1.

18 Column space properties and rank rules

18.1 For conformable matrices A and B, the following statements hold:

(a)
(b)
(©)
(d)
(e)
6y
(8
(h)

N (A) = N (A'A),

CA) = F(AH) = /' (A),

C(A) CEB) < FB): C FA)*,

F(A) = €(AA)),

r(A) =r(A) =r(AA') =r(A’A),

R" = € (Anxm) B € (Apxm)™ = €(A) B A (A),
t(Apxm) = n —1(A+) = n — dim 4 (A),

€ (A :B) = F(A) + €(B),
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18.2

18.3

18.4

18.5

18.6

18.7

18.8

18.9

18.10

18.11

18.12

18.13

i r(A:B) =r(A) +r(B)—dim%(A) N E(B),

B
k) €(A+B)CF(A)+EB)=7F(A:B),
O r(A+B)<r(A:B)<r(A) +r(B),

(m) F(A :B)*+ =FA)LNEMB)*L.

G) r (A) =r1(A) + r(B) —dim € (A") N €(B'),

(a) LAY = MAY & r(AY) =r(A) = LA =MA rank cancel-
lation rule

(b) DAM = DAN & r(DA) =1r(A) = AM = AN

r(AB) =r(A) &« FAB=0 — FA =0

(a) r(AB) =1(A) = r(FAB) = r(FA) for all F

(b) r(AB) =r(B) = r(ABG) = r(BG) for all G

r(AB) = r(A) — dim ¢ (A") N €(B)* rank of the product
r(A:B) =1(A) +r[I—Pa)B] =r(A) + r[(I—- AA7)B]

=r1(A) +r(B) —dim € (A) N €(B)

£ (B) =)+ 0P = ra) 4 1B - A7)

=1(A) + r(B) — dim €(A") N €(B')

r(A'UA) = r(A'U)
s Z(A'UA) = C(A'U)
> A'UA(A'UA)"A'U = A'U [holds e.g. if U >, 0]

r(A'UA) = 1(A) <= Z(A'UA) = €(A’) <= A'UAA'UA) A’ = A’

r(A+ B) =r(A) +r(B)
= dimEA)NEB) =0=dimEA)NEMB)

FU+V)=%U:V)ifUandV are nnd
€ (G) = 6(Gx) = C(AG) = €(AGy)

%(Anxm) = %(anp)
iff IF: Apxm = Bux pFpxm, where €(B') N € (F*) = {0}
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18.14

18.15

18.16

18.17

18.18

18.19

18.20

18.21

18.22

18.23

18.24

18.25

Formulas Useful for Linear Regression Analysis and Related Matrix Theory
AA’ = BB’ < 3Jorthogonal Q: A = BQ
Lety € R” be a given vector,y # 0. ThenyQx =0V Q,x, = x=0.
Frobenius inequality: r(AZB) > 1(AZ) + 1(ZB) —r(Z)
Sylvester’s inequality:
t(AmxnBnxp) = 1(A) + 1(B) — n, with equality iff 4" (A) C € (B)

For A € R™™™ we have

@ (I, —AA7) € {At},

(b) I, — (AT)A" € {A+},

© L —(A)"A € {At},

(d) Ln—A"A € {(A)*},

(e) I, —AAtT =1, — Py = Q4 € {AL}.

In Anx an + QA 0
(e i )] (30)
Qa=1-Py

I, Buxg )"

(%) <)) |

Consider Ayxp, Znxq, D = diag(dy,...,d;) € PD,, and suppose that
Z'7 =1, and €(A) C €(Z). Then DY/2Z/(I,, — P,) € {(D™/2Z'A)*).

Amp\
0‘1><17 ’

¢(A) NE(B) = FIAA'BH)'] = €[AA'Qp)*] = C[AI — Pyrg,)]
€ (A) N C(B)" = C[AA'B)"] = C[AI - Pap)] = G[Pa(1 - Parp)]
% (A) N € (B) = €[AA'(AA’ + BB')"BB/|

Disjointness: € (A) N €' (B) = {0}. The following statements are equivalent:
(@ E(A)NEB) ={0},

A/ i n— /. N A, 0
(b) (B,) (AA’ + BB)~(AA’ : BB) = (0 B,),
(c) A/(AA’ +BB)"AA’ = A/,
(d) A/(AA’ +BB)"B =0,
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(e)
()
€9)
(h)
()
()]
k)
()
(m)
(n)
(0)

(AA’ + BB')™ is a generalized inverse of AA’,
A'(AA’ + BB)"A =Py,

0 A’
“(w) < ()
AN(A:B) C A4(0:B),
Y(A : B) = (0 : B) has a solution for Y,

r = (% )
r(QgA) =r(A),
¢(A'Qp) = C(A),
Purg,A = A,

chy (PAPg) < 1,
det(I — PoPg) # 0.

18.26 Let us denote Po.g = A(A’QpA)~A’Qpg, Qg = I — Pg. Then the following
statements are equivalent:

(a) Pa.p is invariant w.r.t. the choice of (A’QgA)~,

(b) C[A(A’QA)~A’Qg] is invariant w.r.t. the choice of (A’QgA)~,
(c) r(QBA) =r(A),

(d) PapA = A,

(e) Pa.p is the projector onto %’(A) along € (B) B €' (A : B)*,

® ¢ (A) N B) = {0},

(g) Py = Pa + Pgpa.

18.27 Let A € R™? and B € R"*4. Then

r(PaPpQa) = r(PsPg) + r(Pa: Pp) —r(A) —1r(B)
1(PAPg) + r(QaPp) —1r(B)
r(PgPa) + r(QpPa) — r(A)
r(PgPAQs).

1828 (2) €(APg) = €(AB),
(b) r(AB) = r(APp) = r(PpA’) = r(B'A’) = r(PpPa’) = r(Pa'Pp).



82

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

19 Inverse of a matrix

19.1

19.2

19.3

19.4

19.5

(a) Ala, B]: submatrix of A,x,, obtained by choosing the elements of A
which lie in rows o and columns f; @ and B are index sets of the rows
and the columns of A, respectively.

(b) Afa] = Alw, «]: principal submatrix; same rows and columns chosen.

(c) Al = ith leading principal submatrix of A: Al = A[l,...,i].

(d) A(a, B): submatrix of A, obtained by choosing the elements of A which
do not lie in rows o« and columns f.

(e) A(i, j) = submatrix of A, obtained by deleting row i and column ;.

(f) minor(a;;) = det(A(i, j) = ij th minor of A corresponding to a;;.

(g) cof(a;j) = (—1)itJ minor(a;;) = ijth cofactor of A corresponding to
aij.

(h) det(A[e]) = principal minor.

(i) det(A}) = leading principal minor of order i.

Determinant. The determinant of matrix A, x;,, denoted as |A| or det(A), is
det(a) = a when a € R; when n > 1, we have the Laplace expansion of the
determinant by minors along the i th row:
n
det(A) = Zaif cof(a;j), ie{l,...,n}.
j=1

An alternative equivalent definition of the determinant is the following:
det(A) = Y (=D ay; az, - ani,,

where the summation is taken over all permutations {iy, ..., i,} of the set of
integers {1, ..., n}, and the function f(iy,...,i,) equals the number of trans-
positions necessary to change {i,...,i,}to{l,...,n}. Atransposition is the
interchange of two of the integers. The determinant produces all products of
n terms of the elements of A such that exactly one element is selected from
each row and each column of A; there are n! of such products.

If AysnBrxn = I, then B = A~! and A is said to be nonsingular. A, x, is
nonsingular iff det(A) # 0 iff rank(A) = n.

_fa b 1 1 d —b .
IfA = (C d), then A = m (—C a ), det(A) =ad — bc.

IfA = {aij}, then
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ATl ={aV} = f(A)] = dj(A),
{a"} det(A) [cof (A)] der(A) j(A)
where cof (A) = {cof(a;;)}. The matrix adj(A) = [cof(A)]  is the adjoint
matrix of A.
19.6 Let a nonsingular matrix A be partitioned as A = (A” Arz , where Aq;
Az Ax

is a square matrix. Then

@a=(. L 0 (An 0 I AlAs,
“lAuA 1)L 0 Apn—AnATlAL) 0 T

(b) 18_1 = (IAI_I1 + A1_1111&12A521-1‘?21A1_11 _A1_11A112A5211)
_A52_1A21A1_1 A2_2-1
= ( _1A1_11-2 1 . —A_gll.zAIZ_AIEZI _1)
_A22A21A11.2 AZZ +A22A21A11.2A12A22
A0 —AT}A _ ~
- ( (1)1 0) + ( li 12) Ay (—Az AT} : T), where

©) A1 =A11 — A12A;21A21 = the Schur complement of A, in A,
Ay =Ap — A21Af11A12 = A/Aq.
(d) For possibly singular A the generalized Schur complements are

Aj1o = A1 —ARALAL,  Appg = Ax —AyAT A

(e) r(A) =r1(A11) + (A1) if €(A12) CE (A1), C(AS)) C C(A])
= I'(Azz) + r(All-Z) if %(AZI) C Cg(Azz), (K(AIIZ) C %(AIZZ)

) |A| = |A11]|A22 — Az AT A 2| if ¢(A12) C € (A11),
T (AS) CE(A])

= |A2||A11 — A12A5, A | if ¢(A21) C € (A22),

C(A],) CE(AL,)

(g) Let Aij € R™" and A11A21 = Az1Aq:1. Then |A| = |A11A22 —
A21Ap|.

19.7 Wedderburn—Guttman theorem. Consider A € R"*?, x € R",y € R? and
suppose that & := x’Ay # 0. Then in view of the rank additivity on the Schur
complement, see 19.6e, we have

A Ay _ _ ’ 1 /
r (X’A X/Ay) =r1(A) =r(x’Ay) + r(A — o~ "Ayx'A),
and hence rank(A — o~ 'Ayx’A) = rank(A) — 1.

I A (I -A
19.8 (0 1) :(o 1)’

Ei’l xXn Fn Xm

0 Guxm

= |E[|G|
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19.9

19.10

19.11

19.12

19.13

19.14

19.15

19.16

19.17

19.18
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Let A be nnd. Then there exists L such that A = L’L, where

L L'L, L'L, A1 A
A = T — 1 . — 1 1 —
=LL= (L;) (L1 Lo) = (L’2L1 L’2L2) = (A21 Axn )’

If A is positive definite, then

Al = ( (LjQz2Ly) ™! —(L'leLl)_lL/le(leLz)_l)
—(L5Ly)'L5L; (L) QoLy) ™! (L5Q1Ly) ™!

All A12
=(A21 Azz), Q =I-Py,, LQL; =A;.,,

where A!! and A'? (and correspondingly A2 and A2!) can be expressed also
as

A'' = (/L)™' + (L)L) 'L Ly (L5Q Ly) LA L (L)L) 7Y,
A% = —(LiL) 'L Ly(L5Q L)~ L.

/ -1 -1y _z/m—1
o - ) (55 )
X1 XX —T X T

(00 ;01 0k
th tll tlk
II;O t’;l t’;k
_ X'X Xy\ ! G -fL
(X:y)X:y)] 1=( X /y) =< ~ 1 ﬁISSE , where
y Yy - SSE  SS§

G =[X(I-P)X]"! = (XX)"! + ff//SSE

IX'X] = n[Xo(I— DXo| = n|Tx| = [XpXo[1'(I— Px,)1
= [X(Xol - |(X — Px,)1||?

|(X:y)(X:y)| = [X'X]|-SSE

r(X) = 1 + 1(Xo) — dim (1) N €(Xo)
=1+ r[(I - J)XO] =1+ r(Txx) =1+ r(Rxx) =1+ r(Sxx)

Ru| #0 <= tX) =k +1 < |XX|#0 < |Tx| #0
— 1(Xo) =k &1 ¢ €(Xo)

ri;j = 1 for some i # j implies that |Ry| = O (but not vice versa)

(a) The columns of X = (1 : Xg) are orthogonal iff
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19.19

19.20

19.21

19.22

19.23

19.24

19.25

19.26

19.27

19.28

19.29

19.30

19.31

19.32

(b) the columns of Xy are centered and corq(Xo) = Ryx = Ix.

The statements (a) the columns of X are orthogonal, (b) corg(Xp) = I (i.e.,
orthogonality and uncorrelatedness) are equivalent if X is centered.

It is possible that

(a) cos(x,y) is high but corg(x,y) = 0,

(b) cos(x,y) = 0 but corg(x,y) = 1.

corg(x,y) =0 = ye €(Cx)t =71 :x)t BE1)
[exclude the cases when x € ¥’ (1) and/ory € ¥ (1)]

T = (’tI;xx txy) , S = (S,xx sxy) ,
Xy tyy Sxy Syy
Ry rip
_ RXX er _ /
R=|, =|r}
ry, 1
r, 1
Xy

IR| = Ryl (1 — rj R ryy) = [Ry|(1 — RZ,) < 1
IRy| = [Ri1|(1 —r,RTr12) = Ryg|(1 = R ,_y)

IRl = Ru|(1 = Ry D)1= R}, Ry, = R*(y:X)

IR[ =(1— ”122)(1 - Rg.lz)(l - Ri123)"'(1 - Ri-123...k—l)(1 - Ri-x)
R =R a2 a2y )
yex |Rxx| - yl y2-1 y3-12 yk-12..k—1

_ R X . _ Rll l.12 .
R '= ((rxy)/ ,,yy) = {rl]}’ Rxxl = ((rIZ)/ rkk) = {rlj}

_ T X . _ Tll t12 .
T ! = ((txJ’)/ l«yy) = {_tl]}’ Txxl = ((t12)/ tkk) = {tl]}

R™ = (R —Iyry,) ' =Ry + Rl rr) R /(1 - R?)
Y = 1/SSE = the last diagonal element of T~

' = 1/SSE(x;; X(-i)) = the ith diagonal element of T!
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1 1
19.33 r¥? = e = 5— = the last diagonal element of R!
-1, Rgryy 1= Ry,

= VIF; = the ith diagonal element of R,!, R? = R*(x;;X(—;))

XX

19.35 Assuming that appropriate inverses exist:

(@ B—CD'C)"! =B~! + B !CS™!C'B!, where S =D - C'B~!C.

B luv'B™!
b) (B Nl=pl__—— "
() (B +uv) 1+ vB~lu
1
s =1 _ p—1 —1; s/ p—1
© B kid) = =B - g, B WP
1 .
_p-1_ I
=B e

@ [X'@—ii)X]™" = (X[, X)) ™"

=XX)'+ (X'X) ™ xx(;) (X X)L

1 — hij
@© (A+kD™' =A=' —kA~I(I+kA"D)IA"L,

20 Generalized inverses

In what follows, let A € R,

20.1 (mpl) AGA = A, (mpl) <= G e {A™}
(mp2) GAG = G, (mpl) & (mp2): G € {A[} reflexive g-inverse
(mp3) (AG) = AG, (mpl) & (mp3): G € {A; }: least squares g-i
(mp4) (GA) = GA, (mpl) & (mp4): G € {A,,}: minimum norm g-i
All four conditions <= G = A™: Moore—Penrose inverse (unique)

20.2 The matrix G, is a generalized inverse of A, x,, if any of the following
equivalent conditions holds:

(a) The vector Gy is a solution to Ab = y always when this equation is
consistent, i.e., always wheny € € (A).

(b1) GA is idempotent and r(GA) = r(A), or equivalently
(b2) AG is idempotent and r(AG) = r(A).
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20.3

20.4

20.5

20.6

20.7

20.8

209

20.10

20.11

20.12

20.13

(c) AGA =A. (mpl)
AGA = A & 1(G) =r(A) < G is areflexive generalized inverse of A

A general solution to a consistent (solvable) equation Ax =y is
A7y + (I, — A”A)z, where the vector z € R™ is free to vary,
and A~ is an arbitrary (but fixed) generalized inverse.

The class of all solutions to a consistent equation Ax =y is {Gy}, where G
varies through all generalized inverses of A.

The equation Ax = y is consistent iffy € €(A) iff [A'u = 0 — y'u =0].
The equation AX = Y has a solution (in X) iff 4°(Y) C € (A) in which case
the general solution is

A7Y + (I, — A" A)Z, where Z is free to vary.
A necessary and sufficient condition for the equation AXB = C to have a

solution is that AATCB™B = C, in which case the general solution is

X=A"CB +Z-AAZBB™, where Z is free to vary.

Two alternative representations of a general solution to g-inverse of A are
(a) G=A"+U—-A"AUAA",
b) G=A"+V(I,—AA) + (I, —ATA)W,

where A~ is a particular g-inverse and U, V, W are free to vary. In particular,
choosing A~ = A ™, the general representations can be expressed as

© G=At+U—PyUPs, (d) G=A"+V(I,—Py)+ (L, —Ps)W.

LetA # 0, C # 0. Then AB™~ C s invariant w.r.t. the choice of B~ iff 4’(C) C
¢(B) & C€(A') C €B).

AA~C = C for some A~ iff AA—C = C for all A~ iff AA™C is invariant
w.r.t. the choice of A~ iff ¥ (C) C € (A).

AB B=A < %(A') Cc¢®B)
Let C # 0. Then 4 (AB™C) is invariant w.r.t. the choice of B~ iff €(A’) C

% (B') holds along with ¥(C) C %' (B) or along with rf(ABTL) = r(A),
where L is any matrix such that €' (L) = ¢(B) N € (C).



88 Formulas Useful for Linear Regression Analysis and Related Matrix Theory

20.14 rank(AB~C) is invariant w.r.t. the choice of B~ iff at least one of the column
spaces ¢ (AB~C) and ¥ (C'(B’)~A’) is invariant w.r.t. the choice of B™.

20.15 r(A) = r(AATA) < r(AA7) <r(A7), r(AT)=r1(A)
20.16 €(AAT) = €(A) but C(A A)=%F(A) < A e{A,}
20.17 €Iy, —A"A) = N (A), N (I, —AAT) =% (A)
20.18 €(AT) = €(A))
20.19 AT = (A’/A)TA’ = A/(AA))T
2020 (AT) = (AT, (A7) €{A)7}
20.21 If A has a full rank decomposition A = UV’ then
AT =vVV'V) LU UL

2022 (AB)" = BTAT <= ¥(BB'A') C ¥(A') & €(A’AB) C ¥ (B)

A 0

A .
0 0) V’. Then:

20.23 Let A, x» have a singular value decomposition A = U (

- (AT K,
Ge{A}<=>G—V(L N)U,

- (A" K ,
Ge{A12}<:>G_V(L LAIK)U’

_ _ ATV 0.,
Ge{Ap)={A7} <= G=V(7 (]|U.

—1
Ge{Al=1{A,} & G=V (A(; E) U,

G=A" < G=V(A01_1 g)U’,

where K, L, and N are arbitrary matrices.

20.24 LetA = TAT = T;AT) bethe EVD of A with A | comprising the nonzero
eigenvalues. Then G is a symmetric and nnd reflexive g-inverse of A iff

_p(A L\ . . .
G=T ( L L’AlL) T', where L is an arbitrary matrix.

B C

20.25 If Apsm = (D b

) andr(A) = r = r(B;xr), then
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B! 0 _
Ganz( 0 O)G{A }.

20.26 In (a)—(c) below we consider a nonnegative definite A partitioned as

(a)

(b)

(©

L/L L/L A A
— 17T — 11 12 _ 11 12
A=LL= (L/2L1 L/2L2) - (A21 A22) ’

Block diagonalization of a nonnegative definite matrix:

. ) I —(L\L;)"LiLy\ I AT A2\

(i) (Ly:Ly) (0 I =L{, ] :=LU
= [L1 . (I —PLI)Lz],

. L' L, 0
. 2 B4 4 1
(ii)) UL'LU =UAU = ( 0 L,a PLI)Lz) ,

(i) I 0\, (T -AjAR) _ (AL 0
—AAT T 0 I Lo An—AyApAL)

_ _ I 0\ [An 0 [ AnAn
) A= (A21A1=1 I) ( 0 Azz—A21A1_1A12) (0 I ’

where AT;, AT}, and AT are arbitrary generalized inverses of A, and
A1 = Az — Az AT, Az = the Schur complement of Ajy in A.

The matrix A* is one generalized inverse of A:

At = ( ~AT1-2 N N _/iTl-zAliAgz ~)
_A22A21A11-2 Azz + A22A21A11-2A12A22

where A11.0 = L’1 Q:L;, with B™ denoting a g-inverse of B and Q, =
I — Py,. In particular, the matrix A* is a symmetric reflexive g-inverse
of A for any choices of symmetric reflexive g-inverses (L,L,)~ and
(L} Q2L;)~. We say that A* is in Banachiewicz—Schur form.

If any of the following conditions hold, the all three hold:

) 1(A) =1(A11) +1(A22), ie, €(L1) N € (L) = {0},

(i) At = ( +AT1.2 + + _":Tl-zAliA;z +)
—ApA2aATL, Aj +ARANATLARAY,

(iii) A¥ = (Aﬁ + AT ALAT, AsAT, —AﬁAuAL.I)
+ .

+ +
_A22-1A21A11 A22-1

20.27 Consider A, x,, and B, «,, and let the pd inner product matrix be V. Then

lAX|lv < |[Ax + By|v Vx,y € R” <= A'VB = 0.

The statement above holds also for nnd V, i.e., t'Vu is a semi-inner product.
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20.28

20.29

20.30

20.31

20.32

20.33

20.34

20.35

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

Let G be a g-inverse of A such that Gy is a minimum norm solution (w.r.t.
standard norm) of Ax =y for any y € ¥’(A). Then it is necessary and suffi-
cient that AGA = A and (GA)' = GA, i.e., G € {A],}. Such a G is called a
minimum norm g-inverse and denoted as A, .

Let A € R™ and let the inner product matrix be N € PD,, and denote a
minimum norm g-inverse as A € R™" Then the following statements
are equivalent:

(@ G= A,;(N)a

m(N)

(b) AGA = A, (GA)'N = NGA (here N can be nnd),
(c) GANT!TA’ = N~1A/,
(d) GA = PNflA/;N, i.e., (GA)/ = PA’;N71 .

(&) N+A'A) AAN+AA)A]” € {A;(N)},
(b) ¥(A) C¥(N) — N A (AN A) € {A;I(N)}.
Let G be a matrix (not necessarily a g-inverse) such that Gy is a least-squares
solution (w.r.t. standard norm) of Ax =y for any y, that is

ly — AGy| < |ly — Ax| forallx € R™, y € R".
Then it is necessary and sufficient that AGA = A and (AG)’ = AG, that is,
G € {A];}. Such a G is called a least-squares g-inverse and denoted as A} .
Let the inner product matrix be V € PD,, and denote a least-squares g-inverse
as AZ(V). Then the following statements are equivalent:
@ G=Ayy,
(b) AGA = A, (AG)'V = VAG,
(¢) A’VAG = A’V (here V can be nnd),
(d) AG = Payy.

(A'VA)"A'V € (A,
Let the inner product matrix V,x, be pd. Then {(A’)> (V)} = {(AZ(V_I))/}.

The minimum norm solution for X'a = kisa = (X'),, vk = Gk, where
X)w) = G = WXXWX)": W=V4+XX.
Furthermore, BLUE(kK'B) = 2’y = K'G'y = K'(X’'W™X)"X'Wy.
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21 Projectors

21.1

21.2

21.3

Orthogonal projector. Let A € R”*™ and let the inner product and the corre-
sponding norm be defined as (t,u) = t'u, and ||t| = /(t,t), respectively.
Further, let A* € R”* be a matrix spanning '(A)* = .4'(A’), and the
columns of the matrices A, € R™ " and AIJ; e R™(=7) form bases for

% (A) and €' (A)~, respectively. Then the following conditions are equivalent
ways to define the unique matrix P:

(a) The matrix P transforms every y € R”,
Y=Ya+Yarl. Ya€CA). yu €CA),

into its projection onto %’ (A) along € (A)~; that is, for each y above, the
multiplication Py gives the projection y4: Py = y4.

(b) P(Ab + Atc) = Ab forallb € R™, ¢ € RY.

(c) PAA: A1) =(A:0).

(d) P(Ap 1 Aj) = (Ap 1 0).

(e) €(P) C F(A), mbin||y — Ab||? = ||y — Py||*> forally € R".

(f) €(P)CCA), PA=A.

(e) €(P) =%(A), PP=P.

(h) €(P) =%(A), P2=P, P =P.

() €(P)=%(A), R'"=%P)BEA, —P).
() P=A(A’A)"A’ = AA™.

() P = Ay(A,Ap) A,

) P=AA) = U(I(; 3)U/, where U = (A, : A}), the columns of A, and
A(J; forming orthonormal bases for % (A) and € (A)L, respectively.

The matrix P = P4, is the orthogonal projector onto the column space €' (A)
w.r.t. the inner product (t,u) = t'u. Correspondingly, the matrix I, — Py is
the orthogonal projector onto €' (A+): I,, — Py = P,..

In 21.3-21.10 we consider orthogonal projectors defined w.r.t. the standard
inner product in R” so that they are symmetric idempotent matrices. If P is
idempotent but not necessarily symmetric, it is called an oblique projector or
simply a projector.

P, + Pg is an orthogonal projector <= A’B = 0, in which case P, + Pg
is the orthogonal projector onto %' (A : B).
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21.4

21.5

21.6

21.7

21.8

Formulas Useful for Linear Regression Analysis and Related Matrix Theory
Pp) = Pa + Pa_p,s

The following statements are equivalent:

(a) PA — Pg is an orthogonal projector, (b) PoPg = PP, = Py,
(©) ||IPax| > ||Ppx]| for all x € R”, (d) Po—Pg >0,

(e) €(B) C F(A).

If any of the above conditions hold, then PA—Pp = P_py)a = Py A)NEB)L-

Let L be a matrix with property ¢’ (L) = ¥ (A) N € (B). Then
(@ F(A) =F[L:A-PL)A] = F(A)NEB) BE[I—-PLA]
(b) Py =P +Pa—pa = PL + Pyaynea)Ls

(c) PaPg =Py +Pu_p )aPa—r. ),

(d) I=Pp)Ps =PoA(I-Pr) =Pa —PL = Pyn)new)ts
(e) €[ —PL)A] = €[(1 - PL)PA] = C(A) N C (L),

) r(A) =dimE(A) N EB) + dimF(A) N F (L) .
Commuting projectors. Denote (L) = %’ (A) N € (B). Then the following
statements are equivalent;

(a) PaPg = PgPy,

(b) PaPg = Pyanem) = P,

(¢) P@a:p) = Ps + Pp — PaPg,

d) ZA:B)NEB)L =% (A)NEB)*L,

(e) €(A) =F(A)NEB)BEA)NEMB)?L,

) r(A) =dimE(A) N E(B) + dimF(A) N F(B)*,

(g) 1(A’B) = dim € (A) N € (B),

(h) Pa—p,)B = Pp — PaP3,

(i) €(PsB) =% (A)NE(B),

() €(PaB) C €(B),

k) Pa—p)aPa-pr,8 = 0.

Let P, and Pg be orthogonal projectors of order n x n. Then
(@ —1 <ch;(Px—Pg) <1, i=1,...,n,

(b) 0 <ch;(PAPg) <1, i=1,...,n,
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21.9

21.10

21.11

21.12

21.13

21.14

21.15

(c) trace(PAPg) < r(P5P3),
(d) #{ch;(PaPg) = 1} = dim % (A) N ¥ (B), where #{ch;(Z) = 1} = the
number of unit eigenvalues of Z.
The following statements are equivalent:
chi(PAPp) <1, FA)NFEB) = {0}, det(I—P,Pg) #DO0.
Let A € R B € R”*® and T € R"*, and assume that €(T) C € (A).
Moreover, let U be any matrix satisfying €' (U) = € (A) N €' (B). Then
% (QrU) = €(QrA) N¢(QrB), where Qr = I, — Pr.
As a generalization to y' (I, — Px)y < (y — Xb)'(y — Xb) for all b, we have,
for given Y, x4 and X,,x », the Lowner ordering

Y'(I, — Px)Y <. (Y —XB)'(Y — XB) forall Bx,.

LetP = (g; gg) be an orthogonal projector where Py is a square matrix.

Then Py;.; = P2y — P51 P, Py2 is also an orthogonal projector.

The matrix P € R?*" is idempotent iff any of the following conditions holds:
(a) P = AA™ for some A,

(b) I, — P is idempotent,

(©) r(®) +r, —P) =n,

(d R*=%P) &¢I, —P),

(e) P has a full rank decomposition P = UV’, where V'U = I,

#) P=B (I(; g) B!, where Bis a nonsingular matrix,

(gy P=D (I(; g) D', where D is an orthogonal matrix and C € R”**=7)

(h) r(P) = tr(P) and r(I, — P) = tr(I, — P).

If P2 = P then rank(P) = tr(P) and
ch(P) ={0,...,0,1,...,1}, #{ch(P) = 1} = rank(P),
but ch(P) = {0,...,0,1,..., 1} does not imply P? = P (unless P’ = P).

Let P be symmetric. Then P> = P <= ch(P) = {0,...,0,1,...,1}; here
#{ch(P) = 1} = rank(P) = tr(P).
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21.16

21.17

21.18

21.19

21.20

21.21
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P2 = P = P is the oblique projector onto € (P) along .4 (P), where the
direction space can be also written as A4 (P) = € (1 — P).

AA~ is the oblique projector onto %’ (A) along .4 (AA™), where the direction
space can be written as ./ (AA™) = € (I, — AA™). Correspondingly, A~A
is the oblique projector onto ¥’ (A~A) along A4 (ATA) = A (A).

AAT =P,, ATA =Py

Generalized projector Py . By P4jp we mean any matrix G, say, satisfying
(a) G(A:B)=(A:0),

where it is assumed that %’ (A) N €' (B) = {0}, which is a necessary and suf-
ficient condition for the solvability of (a). Matrix G is a generalized projector
onto €' (A) along ¥'(B) but it need not be unique and idempotent as is the
case when %(A : B) = R”. We denote the set of matrices G satisfying (a) as
{Pap} and the general expression for G is, for example,

G=(A:0)(A:B)” + FI—-P,.p), whereF is free to vary.

Suppose that €'(A) N € (B) = {0,} = €(C) N € (D). Then

{Pcp} C{Psg} &= %(A) C €(C) and ¢ (B) C ¢(D).
Orthogonal projector w.r.t. the inner product matrix V. Let A € R, and
let the inner product (and the corresponding norm) be defined as (t,u)y =
t'Vu where V is pd. Further, let A‘l, be an n X ¢ matrix spanning %(A)‘l, =

N (A'V) = €(VA)L = €(V1AL). Then the following conditions are
equivalent ways to define the unique matrix P.:

(a) P«(Ab + A{;c) = Ab forallb € R™, ¢ € RY.
() P.(A:AY) =P (A: VAL =(A:0).
(©) €(Px) CE(A), minfly — Ab[3 = [ly = Puyll§ forally € R”.

(d) €(Py) C €(A), P,VA = VA.

(e) PL.(VA:AL) = (VA:0).

M TPy =% (A), P VI, —Py) =0

(g) €(Py) =€ (A), P2=P,, (VP,) =VP,.

(h) €(Py) = €(A), R" = €(Ps) B E{, — Py); here H refers to the
orthogonality with respect to the given inner product.

(i) P« = A(A’VA)~A’V, which is invariant for any choice of (A’VA)~.

The matrix Px = P,y is the orthogonal projector onto the column space
% (A) w.r.t. the inner product (t,u)y = t'Vu. Correspondingly, the matrix
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21.22

21.23

21.24

I, — P4.v is the orthogonal projector onto %(A%):
L —Pyy =Py = VIZZNVNT'Z)TZ =P,y =Pyogy,

where Z € {A1},ie,Pyy =1, — Py =l —Pyisiy.

Consider the linear model {y, Xf, V} and let %(X)é‘_l denote the set of vec-
tors which are orthogonal to every vector in %’ (X) with respect to the inner
product matrix V1. Then the following sets are identical:

@ €X)y-rs (b) T(VXH), (© A XV,

@ ¢V @) A (Pxy-1), (D) Fdy —Pyxy-1).

Denote W = V + XUX', where (W) = € (X : V). Then
E(VXH) =W X: 1, — W W)L,

where W™ is an arbitrary (but fixed) generalized inverse of W. The column
space € (VX™) can be expressed also as

C(VXH) = C[(WYX : I, — (W)Wt
Moreover, let V be possibly singular and assume that €' (X) C € (V). Then
FVXH) =¢(VX:L, -V V)t c eV X)),

where the inclusion becomes equality iff V is positive definite.

Let V be pd and let X be partitioned as X = (X; : X5). Then

(a) Py, .v—1 + Px,.v is an orthogonal projector iff X, V™1X, = 0, in which
X;V 23 g proj 1
case PX1 ;V_] + PXz;V_] = P(X12X2);V_1 N

(b) Prx,ix,p)v—1 = Pxpy-1 + P(I—leiv_l)xz;v—l»

(c) P(I—lezv,l)xz;v—l = PVM]X2;V71 = VM1X2(X/2M1X2)_1X/2M1,
(d M; = V- - VIX (X, VX)) 71X,V = M (M VM) M.
Consider a weakly singular partitioned linear model and denote Py.,y+ =
A(A’VTA)~A’Vt and M; = M;(M;VM;)" M. Then
Pyyv+ = X(X'VIX)"X'VT = V2P, p VT2
= Vl/z(Pv+1/2X1 +P(I*P 1)V+1/2X2)V+1/2

+1/2

v+1/2x

=P +V/2p 2%,V
XVt (I—PV+1/2X1)V+ /2%,

_ 1/2 . +1/2

= PX1;V+ +V Pvl/2M1x2V

= Py,.v+ + VM1 Xo(X,M X,) "X, M, Py.
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22 Eigenvalues

22.1

22.2

22.3

224

Definition: The scalar A is an eigenvalue of A, if
At = At for some nonzero vector t, i.e., (A — AL,)t = 0,

in which case t is an eigenvector of A corresponding to A, and (4, t) is an
eigenpair for A. If A is symmetric, then all eigenvalues are real. The eigen-
values are the n roots of the characteristic equation

pa(d) = det(A — AL,) =0,
where pa (A1) = det(A—AI,) is the characteristic polynomial of A. We denote
(when eigenvalues are real)

Ay z = An, chi(A) =44,

ch(A) = {A1,..., Ay} = spectrum of A,

nzch(A) ={A; : 4; #0}.

The characteristic equation can be written as
PA) = (1) + S1 (=" 4 Spi (1) + S, =0,
pad) =@Ar—=2)--- (4 — 1) =0,

for appropriate real coefficients S1, ..., S,: S; is the sum of all i xi principal
minors and hence S,, = pa(0) = det(A) = A1---4,, ST =tr(A) = A1 +
.-+ + A, and thereby always

det(A) = Ay Ay, tr(A) =241+ -+ Ay
For n = 3, we have

det(A — Als)

= (=1)? + tr(A)(-1)?

i

The characteristic polynomial of A = (z IC’) is
pa(d) =A% —(a + )X + (ac —b*) = A% —tr(A) - A + det(A).

The eigenvalues of A are 1 (a + ¢ + /(a — ¢)? + 4b2).

The following statements are equivalent (for a nonnull t and pd A):

Aazz dz3
aszz dsz

ail ais
asy; dass

ail diz
daz1 dzz

)(—x) + det(A).

(a) tis an eigenvector of A, (b) cos(t, At) =1,
(c) YAt — (YA~1t)"! = 0 with ||t]| =1,
(d) cos(A/2t,A"1/2¢t) =1,
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225

EVD

22.6

22.7

22.8

(e) cos(y,At) =0 forally € € (t)*.

The spectral radius of A € R™™" is defined as p(A) = max{|ch; (A)[}; the
eigenvalue corresponding to p(A) is called the dominant eigenvalue.

Eigenvalue decomposition. A symmetric A, x, can be written as

A =TAT = Aitgt] + -+ + Autyt),,

and thereby
(Atl . Atz Lt Atn) = (kltl . Aztz et )Lntn), AT = TA,
where T,,x, is orthogonal, A = diag(Aq,...,A,),and A; > --- > A, are

the ordered eigenvalues of A; ch;(A) = A;. The columns t; of T are the
orthonormal eigenvectors of A.

Consider the distinct eigenvalues of A, A(;} > -++ > A, and let Ty;) be an
n X m; matrix consisting of the orthonormal eigenvectors corresponding to
Agiy; m; is the multiplicity of Ag;y. Then

A=TAT = A{I}T{I}Tél} + -+ )&{S}T{S}T/{s}.

With this ordering, A is unique and T is unique up to postmultiplying by a
blockdiagonal matrix U = blockdiag(Uy, ..., Uy), where U; is an orthogonal
m; x m; matrix. If all the eigenvalues are distinct, then U is a diagonal matrix
with diagonal elements equal to +1.

For a nonnegative definite n x n matrix A with rank » > 0 we have

Ay 0\ (T,
A =TAT = (T; : Ty) ( 01 0) (T(l)) =T,A\T,
= Aitit) + -+ At ot

where A1 > --- > A, > 0, A; = diag(A1,...,A;),and Ty = (t; : ... : t;),
Ty = (tr+1 e tn)
The nnd square root of the nnd matrix A = TAT’ is defined as

A1/2 — TAI/ZT’ _ TlAi/zT/l; (A1/2)+ — T1AII/2T/1 — A+1/2.
IfApxp = (@—b)I,+b1,1), forsomea, b € R, then A is called a completely

symmetric matrix. If it is a covariance matrix (i.e., nnd) then it is said to have
an intraclass correlation structure. Consider the matrices

APXP = (a - b)Ip + blpl;v prp = (1 - Q)Ip + lel;.
(@) det(A) = (a —b)" Ya + (p — 1)b],

(b) the eigenvalues of A are a + (p — 1)b (with multiplicity 1), and a — b
(with multiplicity n — 1),
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(¢) Aisnonsingulariffa # b and a # —(p — 1)b, in which case

1 b
A7l = I, — 1,1},
a—b(” a—l—(p—l)bpp)

1+ (p—1)0 with multiplicity 1,

(d) ch(X) =

1-o with multiplicity p — 1,

(e) X is nonnegative definite <= —ﬁ <p<1,

(f) ty = al, =eigenvectorwrt. Ay =14+ (p—1)0,0 # o € R,
ty....,t, are orthonormal eigenvectors w.r.t. A; =1 —0,i =2,...,p,
ty,...,t, form an orthonormal basis for ‘K(IP)J-,

(g) det(Z) = (1-0)?7'[1 + (p - Dal,

(h) X1, =[1+(p—Dollp := A11,;if 0 # —ﬁ,then 1, =A7'%1,in
which case
1,271, = 22,2221, = A?1,21, = —F

1+ (p—1Do’

1 0 1
i) ! = L, - 1,1/ ), f 1, _
(1) 1_9(1’ 1+(p_1)Q17p) Orgi’é Q;é p_l

(j) Suppose that

X Yix Ox
v (3) = (52 7)== 0 + eyt

Xy
where (necessarily) —% < o < 1. Then

po*

2 ’ -
= b =
Qrx = Tay @y = 1707

x\ X ol, 1;,
(k) Assume that cov (y) = (le 1;7 5 , Where

¥ = (1 -0, + ol,1,,. Then cor(1,x,1)y) =

L+ (p—De
22.9 Consider a completely symmetric matrix Apx, = (a — b)I, + b1,1,, Then
a-b 0 0... O b
0 a-b0... O b
L7AL=| & 0 : : =F,
0 0 0...a-b b

0 0 0... 0 a+(p—1b
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22.10

22.11

22.12

22.13

22.14

22.15

where L carries out elementary column operations:

L= (B ), = (o)
-1, 1) v, 1)

and hence det(A) = (a —b)?![a + (p — 1)b]. Moreover, det(A — AL,) = 0
iff det(I, — AF) = 0.

The algebraic multiplicity of A, denoted as alg mult, (A) is its multiplicity as
aroot of det(A — AI,) = 0. The set {t # 0 : At = At} is the set of all
eigenvectors associated with A. The eigenspace of A corresponding to A is

{(t:(A—AL)t=0}= (A —AL).

If alg mults (A) = 1, A is called a simple eigenvalue; otherwise it is a multiple
eigenvalue. The geometric multiplicity of A is the dimension of the eigenspace
of A corresponding to A:

geomult, (1) = dim A (A — AL,) = n —r(A — AL,).
Moreover, geomult, (A) < algmult, (A) for each A € ch(A); here the equal-

ity holds e.g. when A is symmetric.

Similarity. Two n x n matrices A and B are said to be similar whenever there
exists a nonsingular matrix F such that F"'AF = B. The product F~!AF is
called a similarity transformation of A.

Diagonalizability. A matrix A, x, is said to be diagonalizable whenever there
exists a nonsingular matrix F,x, such that F"'!AF = D for some diagonal
matrix Dy, x,, i.e., A is similar to a diagonal matrix. In particular, any sym-
metric A is diagonalizable.

The following statements concerning the matrix A, , are equivalent:

(a) A is diagonalizable,

(b) geomult, (A) = algmult, (A) forall A € ch(A),

(c) A has n linearly independent eigenvectors.

Let A € R B € R™ ", Then AB and BA have the same nonzero eigen-
values: nzch(AB) = nzch(BA). Moreover, det(I,, — AB) = det(I,, — BA).
Let A,B € NND,,. Then

(a) tr(AB) <ch;(A) -tr(B),

(b) A>B = ch;(A) >ch;(B),i = 1,...,n; here we must have at least
one strict inequality if A # B.
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22.16

22.17

22.18

22.19
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CFT

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

Interlacing theorem. Let A, x, be symmetric and let B be a principal subma-
trix of A of order (n — 1) x (n — 1). Then

chi+1(A) <ch;(B) <ch;(A), i=1,...,n—1.

Let A € R and denote B = (), 8). sg(A) = {8;.....5,}. Then the
nonzero eigenvalues of B are §1, . .. 8,, —81,...,—6p.
In 22.18-EY1 we consider A,x, whose EVD is A = TAT  and denote
Ty =1 :...:tg), Ty = (th—tg1 : -0 ty).
/
A
(a) chi(A) = A; = max XAX _ max X Ax,
x#0  X'X x'x=1
/
A
(b) ch,(A) = A, = min XA% _ min X'Ax,
x#0 X'X x'x=1
‘A ‘A
(©) ch,(A) =47, < X y X <A1 =chi(A), XAxX = Rayleigh quotient,
X'x
(d) chy(A) = A, = max X'Ax,
xX'x=1
t’lx=0
() chpr1(A) = Agyq = max XAX = Apy1, k=1,. — 1.
T(k)x 10

Let A, x, be symmetric and let k be a given integer, k < n. Then

max tr(G'AG) = max tr(PgA) = Ay + -+ + A,
G/G=Iy G/G=I;

where the upper bound is obtained when G = (t; : ... : tg) = T).

Poincaré separation theorem. Let A, x, be a symmetric matrix, and let G, xx
be such that G'G = I, k < n.Then, fori =1,...,k,

chy—x1i(A) < ch;(G'AG) < ch;(A).

Equality holds on the right simultaneously for alli = 1,...,k when G =
T K, and on the left if G = TL; K and L are arbitrary orthogonal ma-
trices.

Courant-Fischer theorem. Let A, be symmetric and let k be a given integer
with2 < k < n and let B € R"**~D_Then

"Ax

X
(a) min max = Ak,
B B'x=0 X'X

(b) max min

= An—k+1-
B'x=0 X'X nokt

The result (a) is obtained when B = T _;) and x = t;.
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EY1

22.20

22.21

2222

Eckart—Young theorem. Let A, x, be a symmetric matrix of rank r. Then

in [A—B||% = min tr(A—B)(A—B) = 1? cee A2,
DA~ BIE = fin, A ZBIA B = Ak b

and the minimum is attained when

B = T(k)A(k)T/(k) = lltlt/l + -+ )thkt;c.

Let A be a given n x m matrix of rank r, and let B € szm, k < r.Then
(A—B)(A-B) > (A—APp)(A —APy) = A(l, — Pp)A’,

and hence |A — B||%7 > |A — APy ||%, Moreover, if B has the full rank

decomposition B = FG’, where G'G = I, then Pgr = Pg and
(A—B)(A—B) > (A—FG)(A -FG) = A(Il,, — GGHA".

Suppose V € PD, and C denotes the centering matrix. Then the following
statements are equivalent:

(a) CVC = ¢2C for some ¢ # 0,

(b) V = I + al’ + 1a/, where a is an arbitrary vector and « is any scalar
ensuring the positive definiteness of V.

The eigenvalues of V in (b) are o +1'a & v/na’a, each with multiplicity one,
and o with multiplicity n — 2.

Eigenvalues of A w.r.t. pd B. Let A, %, and B, ,, be symmetric of which B is
nonnegative definite. Let A be a scalar and w a vector such that

(a) Aw = ABw, Bw #0.

Then we call A a proper eigenvalue and w a proper eigenvector of A with
respect to B, or shortly, (A, w) is a proper eigenpair for (A, B). There may
exist a vector w # 0 such that Aw = Bw = 0, in which case (a) is satisfied
with arbitrary A. We call such a vector w an improper eigenvector of A with
respect to B. The space of improper eigenvectors is €' (A : B)*. Consider next
the situation when B is positive definite (in which case the word “proper” can
be dropped off). Then (a) becomes

(b) Aw = ABw, w#0.

Premultiplying (b) by B~! yields the usual eigenvalue equation B~'Aw =
Aw, w # 0. We denote

(c) ch(A,B) =ch(B~'A) =ch(AB™!) = {A,,..., A,
The matrix B~1A is not necessarily symmetric but in view of
(d) nzch(B~'A) = nzch(B~/2B~1/2A) = nzch(B~'/2AB~/?),

and the symmetry of B~1/2AB~1/2, the eigenvalues of B~'A are all real.
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Premultiplying (a) by B~1/2 yields B~ /2Aw = AB!/2w, e, B"1/2AB~1/2.
B'/2w = AB!/2w, which shows the equivalence of the following statements:
(e) (A,w) is an eigenpair for (A, B),

() (A,B'/2w) is an eigenpair for B~1/2AB~1/2,
(g) (A, w) is an eigenpair for B~'A.
22.23 Rewriting (b) above as (A—AB)w = 0, we observe that nontrivial solutions w

for (b) exist iff det(A — AB) = 0. The expression A — AB, with indeterminate
A, is called a matrix pencil or simply a pencil.

22.24 Let A, xp, be symmetric and B,,x, positive definite. Then

X' Ax X/BI/Z'B_l/ZAB_I/Z'BI/ZX
@ T;())( xBx rgi%( x'B1/2 . B1/2x
2B 1/2AB1/24
=—max ——
240 7'z

= ch;(B"2AB"/2) = ch,(B7'A)

:= A1 = the largest root of det(A — AB) = 0.
(b) Denote W; = (wq :...: w;). The vectors wy, ..., W, satisfy

xXAx W Aw
max = /1—1 = chl(B_lA) =,
x#0 X'Bx w;Bw;

XAx  WAw;

max - = — = chi(B_lA) =A;, I>1,
w/_ Bx=0 X'Bx w;Bw;

x#0
iff w; is an eigenvector of B™!'A corresponding to the eigenvalue
ch; (B~'A) = A;, i.e., A; is the ith largest root of det(A — AB) = 0.

a'x)? x -aa’-x
(c) max @x) = max ——— = ch;(aa’B™!) = a’B'a.
x#0 X'Bx x#0 X'Bx

22.25 Let B, x, be nonnegative definite and a € €’(B). Then

14\ 2
@x) = a'Ba,

max
Bx#0 X'Bx

where the equality is obtained iff Bx = «a for some « € R.

22.26 Let Vpx, be nnd with Vg = diag(V) being pd. Then
a'Va

a’'Vsa

max = chy (V5 2VV;2) = ch (Ry),
a
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22.27

22.28

22.29

where Ry = VS_I/ 2VV5_1/ 2 can be considered as a correlation matrix. More-
over,

a’Va

a’Vga

<p forallae R?,

where the equality is obtained iff V = y2qq’ for some y € R and some q =
(41 -.-.4p), and a is a multiple of a, = V;l/zl = %(l/ql, o 1/gp) .

Simultaneous diagonalization. Let A, x5, and B, x, be symmetric. Then there
exists an orthogonal matrix Q such that Q’AQ and Q'BQ are both diagonal
iff AB = BA.
Consider the symmetric matrices A, x, and B, x,.
(a) If Bis pd, then there exists a nonsingular matrix Qy,x, such that

Q'AQ = A =diag(A1,....4,), QBQ=1,,

where ch(B~'A) = {A1....,A,}. The columns of Q are the eigenvectors
of B™'A; Q is not necessarily orthogonal.

(b) Let B be nnd with r(B) = b. Then there exists a matrix L, such that
L'AL = diag(A1,...,43), L'BL =1,.

(¢) Let B be nnd with r(B) = b, and assume that r(N’AN) = r(N’A), where
N = B~L. Then there exists a nonsingular matrix Q,x, such that

’ _ Al 0 ’ _ Ib 0
where A1 € RP*? and A, € R®=2X(=b) gre diagonal matrices.

Asin 22.22 (p. 101), consider the eigenvalues of A w.r.t. nnd B but allow now
B to be singular. Let A be a scalar and w a vector such that

(a) Aw = ABw, ie, (A—AB)w=0, Bw#0.

Scalar A is a proper eigenvalue and w a proper eigenvector of A with respect
to B. The nontrivial solutions w for (a) above exist iff det(A — AB) = 0.
The matrix pencil A — AB, with indeterminate A, is is said to be singular if
det(A — AB) = 0 is satisfied for any A; otherwise the pencil is regular.

22.30 If A; is the ith largest proper eigenvalue of A with respect to B, then we write

chy(A,B)=1;, A1 >Ar>---> 1y, b=r1(B),
ch(A,B) = {A1,...,Ap} = set of proper eigenvalues of A w.r.t. B,
nzch(A, B) = set of nonzero proper eigenvalues of A w.r.t. B.
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22.33

22.34

22.35

22.36

22.37

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

Let A, x,, be symmetric, B, x, nnd, and r(B) = b, and assume thatr(N'AN) =
r(N’A), where N = B~. Then there are precisely b proper eigenvalues of A
with respect to B, ch(A,B) = {11, ..., A4}, some of which may be repeated
or null. Also wy, ..., wp, the corresponding eigenvectors, can be so chosen
that if w; is the ith column of W, 3, then

WAW = A; = diag(A1,.... 1), WBW=1,, WAN=0.

Suppose that r(QgAQg) = r(QpA) holds; here Qg = I, — Pg. Then
(a) nzch(A,B) = nzch[(A — AQp(QpAQp) QsA)B7],
(b) €(A) C ¥(B) = nzch(A,B) = nzch(AB™),
where the set nzch(AB™) is invariant with respect to the choice of the B™.
Consider the linear model {y, X, V}. The nonzero proper eigenvalues of V
with respect to H are the same as the nonzero eigenvalues of the covariance
matrix of the BLUE(X}).
If Ajxp is symmetric and B, «,, is nnd satisfying €' (A) C % (B), then

xX'Ax  wWjAw,;

= = Ay = chy(BTA) = ch;(A,B),
lrarigé)(()x/Bx w)Bw; 1= chi( ) = cha( )

where A, is the largest proper eigenvalue of A with respect to B and w; the
corresponding proper eigenvector satisfying Aw; = A;Bwy, Bw; # 0. If
% (A) C €(B) does not hold, then x’Ax/x'Bx has no upper bound.

Under a weakly singular linear model where r(X) = r we have
x'Hx

max =X =ch;(VTH) =ch;(HVTH) = 1/ch,(HVTH)",
vx#£0 X' VX

and hence 1/A1 is the smallest nonzero eigenvalue of COV(X/§ ).

Consider symmetric n x n matrices A and B. Then

n n

Y chi(A)chy—i—1(B) < r(AB) < ) ch;(A) ch; (B).

i=1 i=1

Suppose that A € R**?, B € R?*" and k = min(r(A), r(B)). Then
k k
— Y sg;(A)sg;(B) < tr(AB) < ) " sg;(A) sg;(B).
i=1 i=1

Suppose that A, B and A — B are nnd n x n matrices. Then
Ch,’(A—B)ZChH_k(A), i=1,....n—k,
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and with equality for all i iff B = T(k)A(k)T’(k), where A (r) comprises the
first k eigenvalues of A and Tqxy = (t1 : ... : tg).

22.38 For A,B € R™™ wherer(A) = r and r(B) = k, we have

sgi(A—B) =sg; ,(A), i+k=r,

and sg; (A —B) > O fori + k > r. The equality is attained above iff k < r
and B = Zle sg; (A)t;ju}, where A = >°7_, sg; (A)t;u] is the SVD of A.

23 Singular value decomposition & other matrix decompositions

SVD Singular value decomposition. Matrix A € R?*™, (m < n), can be written
as

4
A= (U : U) (Aol g) (2’,}) —UAV = U,A,V, = U,A,V/
0

/ !
=8mvy + -+ 5u,v,,

where A, = diag(61,...,6¢),61 =+ > 6, >0, A € R™™ and

A= (Ao1 8) B (Ao) ER™M, Ay eR™T, A, eR™M,

A, = diag(6y1,...,8,,8741,...,0m) = the first m rows of A,

Srr1 =842 ="=08, =0,
8; = sg;(A) = /ch;(A’A)
= ith singular value of A, i =1,...,m,

Upsn = (U : Ug), U e RP", UU=UU =1,
Vixm = (V1 : Vo), Vi eR™ VV=VV =1,,
U, = (ug :...:uy,) = the first m columns of U, U, € R,
I A/ / 2 A% 0 mxm
VA'AV = A'A = A5 = 0 0 eR ,
2
UAAU=AA = A} = (Aol g) e R™",
u; = ith left singular vector of A; ith eigenvector of AA’,

v; = ith right singular vector of A; ith eigenvector of A’A.
23.1 With the above notation,
(a) {82,...,82} = nzch(A’A) = nzch(AA'),
(b) €(V1) =¢(A), €U =7F(A),

(C) AV,‘ = 51'11,', A’u,- = 5,‘V,‘, i = 1,...,m,
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d Aw; =0, i=m+1,...,n,

(e) wAv; =6;, i=1,....,m, wAv; =0 fori # j.

Not all pairs of orthogonal U and V satisfying U'AA’U = AZ and V'A’AV =

A2 yield A = UAV'.

Let A have an SVD A = UAV’ = §;u;v| + - + 6,u,v,, r(A) = r. Then
sgi(A) = §; = maxx’Ay subjectto xX'x =y'y =1,

and the maximum is obtained when x = u; andy = v,

‘A 2
sgi(A) = 87 = max (),( y?
x#0,y#0 X'X - Y'Yy

= ch;(A'A).
The second largest singular value 8, can be obtained as 6, = max x’Ay, where
the maximum is taken over the set
{(xeR" yeR":Xx=yy=1,xu; =yvi =0}
The ith largest singular value can be defined correspondingly as

x' Ay

max — =41, k=1,...,r—1,
x#0, y#0 VXX y'y ket
Uk)x=0,V(x)y=0
where Ug) = (uy @ ... :ug) and Vi) = (vy @ ... : vg); the maximum

occurs when X = gy andy = Vg4

Let A € R B € R, C € R™ and B and C are pd. Then
(X/Ay)z (X/B1/2B—1/2Ac—1/2cl/2y)2
max ————— = max
x#0,y#0 XBx - y'Cy  x#0,y20 x'B1/2Bl/2x .y C1/2Cl/2y
(t/B—l/ZAc—l/Zu)Z

_ 2 mp—1/2 A (—1/2
= ma =sg7 (B AC .
t£0, u);éO t't-u'u el )

With minor changes the above holds for possibly singular B and C.

The matrix 2-norm (or the spectral norm) is defined as

X A’Ax \/?
x'x )

A2 = max ||Ax]|; = rnax(
Ix[l2=1 x7#0

Ixll2=
= /ch;(A’A) = sg;(A),
where x|, refers to the standard Euclidean vector norm, and sg; (A) =

v/ch; (A’A) = §; = the ith largest singular value of A. Obviously we have
|AX|l2 < ||A]|2]|x]|2- Recall that

|AllF = /87 +---+ 62, [Al2 =381, wherer = rank(A).
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EY2

23.6

23.7

FRD

CHO

QRD

POL

SCH

ROT

Eckart—Young theorem. Let A, x,, be a given matrix of rank r, with the sin-
gular value decomposition A = U; A V| = §iu;v) + -+ 6,u,v,. Let B
be an n X m matrix of rank k (< r). Then

min|A —B|[% = 8, + - + 67,
and the minimum is attained taking B = B, = Siupvy + -+ Spug vy
Let A,x;; and B,,x, have the SVDs A = UAAV’, B = RARS’, where
A = diag(ay,...,a,), Ag = diag(By, ..., Br), and r = min(n, m). Then
|r(AXBY)| < a1 81 + -+ + o By
for all orthogonal X,,x;, and Y, x,. The upper bound is attained when X =
VR and Y = SU".
Let A and B be n x m matrices with SVDs corresponding to 23.6. Then

(a) the minimum of || XA — BY||r when X and Y run through orthogonal
matrices is attained at X = RU’ and Y = SV,

(b) the minimum of ||A — BZ| r when Z varies over orthogonal matrices is
attained when Z = LK’, where LAK’ is the SVD of B’A.
Full rank decomposition of Ay, x;, r(A) = r:
A =BC’, where r(B,x;) = 1(Cpx,) =1

Cholesky decomposition. Let A, x, be nnd. Then there exists a lower trian-
gular matrix U, x, having all u;; > 0 such that A = UU'.

QR-decomposition. Matrix A, x, can be expressed as A = QuxnRuxm,
where Q is orthogonal and R is upper triangular.

Polar decomposition. Matrix A,x, (n < m) can be expressed as A =
P« Upxm, where P is nonnegative definite with r(P) = r(A) and UU’ = I,,.

Schur’s triangularization theorem. Let A, x,, have real eigenvalues A1, . .., A,.
Then there exists an orthogonal U, x, such that UAU = T, where T is an
upper-triangular matrix with A;’s as its diagonal elements.

Orthogonal rotation. Denote
cosf —sinf cosf sinf
0 =1 ., Bp=|_. )
sinf cos6 sinf —cosf
Then any 2 x 2 orthogonal matrix Q is Ag or By for some 6. Transformation
Agug;) rotates the observation u;) by the angle 6 in the counter-clockwise
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direction, and Bgu(;) makes the reflection of the observation ugy w.r.t. the
line y = tan(%)x. Matrix

cosf sinf
Co = .
—sinf cosf
carries out an orthogonal rotation clockwise.

Hartwig—Spindelbock decomposition. Let A € R™*" be of rank r. Then there
exists an orthogonal U € R”*” such that

A=TU (AOK AOL) U, where A = diag(61L,,,...,8:I,),

with A being the diagonal matrix of singular values of A, §; > --- > §; > 0,
ri+--+r; =r, while K € R”" L € R™*"7) satisfy KK’ + LL’ = I,..

Consider the matrix A € R”*" with representation HSD. Then:

K'A2K K'A’L A2 0
! — A ! A
(a)AA_U(L,AzK L/!ZL)U, AA—U(O 0)U,

K'K K'L I, 0
+A / + — r /
A A_U(L/K L/L)U, AA _U(0 0)U,

(b) A is an oblique projector, i.e., A2 = A, iff AK = I,

(c) A is an orthogonal projector if L =0, A =1,, K =1,.

A matrix E € R™" is a general permutation matrix if it is a product of
elementary permutation matrices E;;; E;; is the identity matrix I, with the
ith and jth rows (or equivalently columns) interchanged.

(a) Auxn is nonnegative if all a;; > 0,

(b) Ay xn is reducible if there is a permutation matrix Q, such that

i [A11 Ar2
QAQ—(0 Azz)’

where A1; and A, are square, and it is otherwise irreducible.

Perron—Frobenius theorem. If A, x, is nonnegative and irreducible, then

(a) A has a positive eigenvalue, o, equal to the spectral radius of A, p(A) =
max{|ch; (A)|}; the eigenvalue corresponding to p(A) is called the dom-
inant eigenvalue,

(b) o has multiplicity 1,

(c) there is a positive eigenvector (all elements > 0) corresponding to o.
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23.11

23.12

Stochastic matrix. If A € R"*" is nonnegative and Al, = 1,, then A is a
stochastic matrix. If also 1, A = 1/,, then A is a doubly stochastic matrix. If,
in addition, both diagonal sums are 1, then A is a superstochastic matrix.

Magic square. The matrix
16 3 2 13
5 10 11 8
A= 9 6 7 12}
4 15 14 1

appearing in Albrecht Diirer’s copper-plate engraving Melencolia I is a magic
square, i.e., a k X k array such that the numbers in every row, column and in
each of the two main diagonals add up to the same magic sum, 34 in this case.
The matrix A here defines a classic magic square since the entries in A are
the consecutive integers 1,2, ..., k2. The Moore—Penrose inverse A1 also a
magic square (though not a classic one) and its magic sum is 1/34.

24 Lowner ordering

24.1

242

Let A, x, be symmetric.
(a) The following statements are equivalent:
(i) A is positive definite; shortly A € PD,,, A > 0
(i) x’Ax > 0 for all vectors x # 0
(iii) ch;(A) >0fori =1,...,n
(iv) A = FF’ for some Fpxy,, 1(F) = n
(v) all leading principal minors > 0
(vi) A™!is positive definite
(b) The following statements are equivalent:
(i) A is nonnegative definite; shortly A € NND,, A > 0
(ii) x’Ax > 0 for all vectors x
(iii) ch;(A) >0fori =1,...,n
(iv) A = FF’ for some matrix F

(v) all principal minors > 0

A< B < B—A> 0 < B— A = FF for some matrix F

(definition of Lowner ordering)
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Let A,B € NND,,. Then
(A A< B < F(A) CEB) & ch;(AB7) <1

in which case ch; (AB7) is invariant with respect to B™,
(b) A< B < ¥(A) C¥B)&AB A <_A.
LetA > Bwhere A > 0and B > 0. Thendet(A) = det(B) =— A = B.
Albert’s theorem. Let A = (2;} i;;) be a symmetric matrix where Ay is a
square matrix. Then the following three statements are equivalent:
@ A=0,
(b1) A1 >0, (b2) C(A12) CE(A11), (b3) Axx —A21AT A2 > 0,
(c1) A2 >0, (c2) C(A21) CEC(A22), (c3) A1l —ApALLAz > 0.

(Continued ...) The following three statements are equivalent:
(a) A>_0,

(b1) A1 >0, (b2) A2z —AzATA > 0,

(c1) Az >0, (c2) A1 —ARAS Az > 0.

The following three statements are equivalent:

@ a=(y o)=o

(b) B—bb'/a >0,
©) B>0, be%®B), bBb<a.

Let U and V be pd. Then:
(@ U-B'VIB> 0 & V-BU'B > 0,
® U-BVB> 0 < V-BU'B' > 0.

LetA > 0and B >_ 0. Then: A <, B <= A~! > Bl

Let A > 0 and B > 0. Then any two of the following conditions imply the
third: A <, B, AT > B*, r(A) = r(B).

Let A be symmetric. Then A — BB’ > 0 iff
A> 0, ¥B)C%EA), and [-BA B> 0.

Consider a symmetric matrix
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24.13

24.14

24.15

24.16

24.17

1 riz 73
R=\|ry 1 ry3|, whereall rl-zj <1.
r31 rax 1

Then R is a correlation matrix iff R is nod which holds off det(R) = 1 —

réy — iy —r3; + 2riariaras > 0, or, equivalently, (r12 — ri3r23)* < (1 —
2 1— 2 )

riz)(1 —r33).

The inertia In(A) of a symmetric A, x,, is defined as the triple {x, v, £}, where
7 is the number of positive eigenvalues of A, v is the number that are negative,
and ¢ is the number that are zero. Thus 7 + v =r(A)and 7 + v 4+ { = n.
Matrix A isnnd if v = 0, and pd if v = ¢ = 0.

. . - . A A .
The inertia of the symmetric partitioned matrix A = ( AH Alz) satisfies
21 A22

(a) III(A) = In(All) + III(AZZ — A21A171A12) lf %(Alz) C %(All),
(b) In(A) = In(A22) + In(A11 — A12A5,A21) if € (Az1) C € (Az2).

The minus (or rank-subtractivity) partial ordering for A, x;, and By, x,:
A< B < r(B—A)=r(B)—r(A),

or equivalently, A <~ B holds iff any of the following conditions holds:

(@) ATA=A"Band AA™ = BA™ forsome A~ € {A™},

(b) ATA=A"Band AA™ = BA™ forsome A, A~ € {A7},

(©) {B7} C{A7},

@ €A NEB—-—A)={0}and A )NEDB —A") = {0},

(e) €(A) C €B),C(A") C ¥(B') & AB~A = A for some (and hence for

all) B~.

Let V € NND,,, X € R"*?, and denote
U={U:0<,. U<V, %) Cc?é¢X)}.

The maximal element (in the Lowner partial ordering) U in I/ is the shorted

matrix of V with respect to X, and denoted as Sh(V | X).

The shorted matrix S = Sh(V | X) has the following properties:

(a S= cov(Xﬁ) under {y, X8, V}, (b) €S) =FX)NF(V),

(©) €(V)=%()dE(V-1), (d) (V) =r(8) +1(V-9),

(e) SVH(V—-S)=0,

(f) V= € {S7} for some (and hence for all) V™= € {V~},ie., {V7} C{S7}.
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25 Inequalities

CSI

25.1

252

25.3

25.4

25.5

25.6

25.7

25.8

KI

259

xy)? <xx-yy Cauchy—Schwarz inequality with equality holding
iff x and y are linearly dependent

Recall: (a) Equality holds in CSIif x = 0 or y = 0. (b) The nonnull vectors
x and y are linearly dependent (1.d.) iff x = Ay for some A € R.

In what follows, the matrix V,«, is nnd or pd, depending on the case. The or-

dered eigenvalues are A1, ..., A, and the corresponding orthonormal eigen-
vectors are t1,...,t,.

(x'Vy)? <x'Vx-y'Vy equality iff Vx and Vy are 1.d.
x'y)? <x'Vx-yVly equality iff x and Vy are 1.d.; V is pd
(x'Pyy)? <x'Vx-y'V'y equality iff V1/2x and V*+1/2y are 1.d.

x'y)> <x'Vx-y'VTy forally € €(V)

/)2
ox?
X'Vx-x'V-Ix —
where the equality holds (assuming x # 0) iff x is an eigenvector of V: Vx =
Ax for some A € R.

x'x)? <xX'Vx-xX'V'x, ie,

(x'Vx)~! < x'V7Ix, where x'x = 1 equality iff Vx = Ax for some A

Let V € NND,, with V{?} defined as
vl = yr p=1,2,...,
=Py. p=0,
=wvhHirl. p=—1-2, ...
Then: (x' VI#+0/2y)2 < (x'Vilix)(y VI®y) forh, k = ..., —1,0,1,2,...,
with equality iff Vx oc VII+(E=h)/2}y

> 401 A, _ (x'x)?
Ty =
D7 (A 4+ 402 ~ X'Vx-x'V-Ix

Kantorovich inequality
)&,’ = ch; (V), V € PD,

Equality holds in Kantorovich inequality KI when x is proportional to t; &t
where t; and t,, are orthonormal eigenvectors of V corresponding to A; and
An; when the eigenvalues A1 and A, are both simple (i.e., each has multiplicity
1) then this condition is also necessary.
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25.10 71 = VA 1A, /[(A1 + An)/2] = the first antieigenvalue of V

2511 =2 = M +An)? _ atAn) (/A +1/A)
: 421 hn 2 2

_ [%(Al‘i‘kn):r_ 1
B V/‘\'lkn B 1_<A1_/1n>2

Al +An

1
2512 XVx— —— < (VA1 = Van)? (¥x=1)

x'V-Ix

WI  Wielandt inequality. Consider V € NND,, withr(V) = v and let A; be the i th
largest eigenvalue of V and t; the corresponding eigenvector. Let x € %' (V)
and y be nonnull vectors satisfying the condition x'y = 0. Then

(x'Vy)? - A=Ay )\ _q1_ 4A 1Ay )2
xX'Vx-y'Vy ~ \ 1 + 1, A+ A2

The upper bound is attained whenx = t; + t, andy = t; — t,,.

25.13 If X € R" P and Y € R"¢ then
0< Y(I,—Px)Y <_ (Y —XB) (Y —XB) forall Bx,.

25.14 [X'Y)? < |X'X|-|[Y'Y] for all X,,x, and Yy

25.15 Let V € NND,, with V¢?} defined as in 25.8 (p. 112). Then
X' Vit 2y (y' vk y) my vidHR/2ix < X'vBX forall X and Y,
with equality holding iff € (V*/2}X) c ¢ (V¥#/2}Y).

25.16 X'PyX(X'VX) " X'PyX < X'VtX equality iff €(VX) = €(PyX)
AL+ Ay)?
25.17 X'VtX <, gX/PVX(X/VX)_X/PVX r(V) = v
401 Ay
A+ Ay)?
25.18 X'VX <, MX’PVX(X’WX)*X’PVX r(V) = v
401 Ay
A1+ An)?
25.19 X'VIX <. MX’X(X’VX)_IX/X V pd
A1

25.20 If X’PyX is idempotent, then (X'VX)* < X’V*X, where the equality holds
iff PyXX'VX = VX.

2521 (X'VX)T <, X'VIX, if V is pd and XX'X = X
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25.22

25.23

25.24

25.25

25.26

Formulas Useful for Linear Regression Analysis and Related Matrix Theory

Under the full rank model {y, X8, V} we have

2
(@) cov() <. cov(B) <, % ov(f),
2
) (VX = ) XVR) s A ey
1tn

() cov(B) —cov(f) = X'VX — (X'V7IX)~!
<L (VA = VAL, XX =1,

Consider V € NND,, X;,xp and Y, x4, satisfying X'PyY = 0. Then
AL — Ay
/11 + Av
(b) V-PyX(X'VtX)"X'Py > VY(Y'VY)"Y'V,

©) X'VX — X'PyX(X'V+X)"X'PyX > X'VY(Y'VY)"Y'VX,

where the equality holds iff r(V) = r(VX) + r(VY).

2
(a) X'VY(Y'VY) Y'VX <, ( ) X'VX, r(V) = v

Samuelson’s inequality. Consider the n x k data matrix Xo = (x(1) : ... :
X(n))' and denote X = (X1,..., %), and Syx = n—ingCXo. Then

(n—1)?

Sxx — (X(j) - i)(x(j) - i)/ >0,
or equivalently,

(x¢j) — )_()/S;Xl (X(H) —X) = MHLN? (X(j)- X, Sxx)
(n — 1)2

< , j=1,...,n.
n

The equality above holds iff all x(;) different from x(;) coincide with their
mean.

Let Vpxp be nnd. Then 1'V1 > %[I’Vl —tr(V)], i.e., assuming 1'V1 # 0,
tr(V
1> 2 (1259 _ o).
p—1 'Vl

where the equality is obtained iff V = y211’ for some y € R. The term a(1)
can be interpreted as Cronbach’s alpha.

Using the notation above, and assuming that diag(V) = Vj is pd [see 22.26
(p. 102)]

a@ =L (1= (L ),
p—1 aVa )~ p—1 chi(Ry)/ ~
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for all a € R?, where Ry is a correlation matrix calculated from the covari-
ance matrix V. Moreover, the equality a(a) = 1 is obtained iff V = y2qq’
for some y € R and some q = (q1,...,4p), and a is a multiple of

ae = (1/q1,....1/qp)"

26 Kronecker product, some matrix derivatives

26.1

26.2

26.3

26.4

26.5

26.6

26.7

26.8

26.9

26.10

26.11

26.12

26.13

26.14

The Kronecker product of Apx, = (a1 @ ... : ap) and Bpx, and vec(A) are
defined as
allB CllzB alnB
a21B azzB ... dp B a
A®B=| " : U erma vec(A) =

: : : s
amB aB ... ay,B

A®B)=A'"®B, a®@b=>ba’'=bRa’, 1QA=1A=AQ®1
F:G)@B=(FeB:G®B), (A®B)(C®D)=AC®BD
A®b)c®D) =D QA)(D®c)=Acb'D

Anxm @ Bpxx = (AR I,)(In ® B) = (I, @ B)(A ® I)

AB) '=A"1@B"!, A®B)"=A"@B"

Pagp =PA®Pg, r(A®B)=r(A)- r(B)

tr(A®B) =tr(A)-tr(B), [|AQB|r = ||AllF-|BlF

LetA> 0and B > 0. ThenA ® B > 0.

Letch(A,xn) = {A1,...,An}and ch(Byxm) = {i1,..., Um}.- Thench(A®
B) ={Aip;}andch(A® 1L, + 1, ® B) = {A; + pu;}, wherei =1,...,n,
j=1....m.

vec(eA 4+ BB) = avec(A) 4+ Bvec(B), o, <R

vec(ABC) = (I ® AB) vec(C) = (C' ® A) vec(B) = (C'B’ ® I) vec(A)
vec(A™) = [(A7!Y ® A1 vec(A)

tr(AB) = [vec(A")] vec(B)
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26.15 Below are some matrix derivatives.

(a)

(b)

(©)

(d)

(e

®

(€]

0AXx

ox

0x'Ax
0x

d vec(AX)

d vec(X)’ =I®A
d vec(AXB)
d vec(X)’
8tr;§X) A
dtr(X’AX)
X
dlog|X'AX|
0X

!

= (A+ A')x; 2Ax when A symmetric

=B ®A

= 2AX for symmetric A

= 2AX(X’AX)"!  for symmetric A
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R = cory(y,y) 10

cor(B1,B2) 14,18
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corg(Xo) = Ry 3
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cov(ﬁ) 12

cov(ﬁz) 13
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Index

19

85

Xi
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covg(y —B’x) 18,28

e (B) = leov(B)l/lcov(B)| 58

IZ —ZAWAZA) AT 74

||A —BZ|| r subject to Z orthogonal 107

|[A —B| £ subjecttor(B) = k 101,107

X —XPgllr 74

ly—Ax|ly 94
ly—18] 16
ly —Ax| 91
ly—XBl 9

tr(le/zAZ) 74

var(g'y) subjectto X'g =k 48
var(y —b’x) 29

varg(y — Xob) 28,29

angle 77

mean squared error 28

mean squared error matrix 28
orthogonal distances 74

minor 82

leading principal 82
principal 82
minus partial ordering 54, 111

mixed model 68
MLE

of Boand By 27
of gand ¥ 26
ofo, 27

model matrix 2

rank 5,84

multinormal distribution

definition 20

conditional mean 22,27
conditional variance 22,27
contours 20

density function of No 21
density function of N, 20
sample U’ from N, 25

Index

multiple correlation
R = cory(y,y) 10
in #1217
in no-intercept model 17
population 22, 27,29
squared RZ 16
multivariate linear model 72
Mustonen’s measure 30

N

Niemeld, Jarmo  vi
no-intercept model 1, 17,36
nonnegative definiteness
of partitioned matrix 110
nonnegative matrix 108
norm
matrix 2-norm 106
spectral 106
normal distribution  see multinormal
distribution
normal equation 9
general solution 9
generalized 9
null space 5

(0]

observation space 2
observation vector 2
OLS criterion 9
OLSE

constraints 35
fitted values 8

of 10
of K'B 9
of XB 8,9

restricted OLSE 35

without the i th observation 40

without the last b observations 42
ordinary least squares see OLSE
orthocomplement

AN

¢(VXt) 95

c(VXLH) =W X: I—-W- W)L 46,

95

¢(V71X)L 95

C(X)ym 95

ALt 580,91

Ay 94
orthogonal projector  see projector

simple properties of P, 91

simple properties of P5.y 94
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H 8
J 2
M 8
P2o.1 93
Pemnem 92
Pownems) 92
Px.y-1 =1— P/M;V 45,95
commuting PAPg = PgP, 92
decomposition of P(x,.x,).v+ 95
decomposition of P(x, .x,):v-1
difference P, — Py
sum Py, +Pg 91
orthogonal rotation 107
overall-F-value 36

P

Pandora’s Box
BLUE 49,51
BLUP 66

mixed model 68
partial correlation
peorg(Y|X) 17

Qijx 22
Oxy-z 22
Txy.z 18

decomposition of 1 — Qf,_x 30
decomposition of 1 — R§-12...k

53,95

17

i 2
decompositionof 1 — Rj. ;5 , 85

population 22
partial covariance 22
partitioned matrix

g-inverse 89

inverse 83

MP-inverse 89

nonnegative definiteness 110
pencil 102, 103
permutation

determinant 82

matrix 108
Perron-Frobenius theorem 108
Poincaré separation theorem 100
polar decomposition 107
predictable, unbiasedly 65
prediction error

Gy—ys 65
y — BLP(y;x) 22,28
ei-1..i—1 30

Mahalanobis distance 14
with a given Xy 14
prediction interval for ys 15
principal component analysis 74
matrix approximation 75
predictive approach 74

sample principal components 74
principal components

from the SVD of X 75
principal minor

sum of all i X i principal minors
principal submatrix 82

projector  see orthogonal projector
Pag 94
PXlVM 49
oblique 91,94

proper eigenvalues
ch(A,B) 103
ch(GVG/,HVH) 60
ch(V,H) 104
PSTricks vi

Q

QR-decomposition 107
quadratic form

E(zZAz) 23
var(z'Az) 24
distribution 23, 24
independence 23,24

quadratic risk 64
R

random sample without replacement
rank

definition 5

simple properties 78

of 1:Xo) 5,84
of (A:B) 79
of cov(XB) 51
of AB 79

of APy 81

of A= 88

of HPyM 60
of Tyex 5,8

of X'(V4+XUX') "X 46

of X/2M 1 Xz 8

of correlation matrix 5, 84

of model matrix 5, 84
rank additivity

r(A+B) =r(A) +r(B) 79

Schur complement 83
rank cancellation rule 79
rank-subtractivity
Rao’s efficiency 63
Rayleigh quotient x’Ax/x'x 100
recursive decomposition

of 1—g2, 30

of Ll=RZ ., , 17

2
of 1 =Ry 5 x 85

96
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of det(R) 85
of det(S) 30
of det(X) 30
reduced model
R%2(#12.1) 17

M2 5T
My 62
AVP 18

SSE(#12.1) 17
reducible matrix 108
reflection 108
regression coefficients 10

old ones do not change 11

standardized 12
regression function 23
regression towards mean v

relative efficiency of OLSE  see Watson
efficiency
residual
y — BLP(y;x) 22,28
ei.1..i—1 30

after elimination of X; 16
externally Studentized 40, 42
internally Studentized 39
of BLUE 51,52
of OLSE 9,39
predicted residual 41
scaled 39
residual mean square, MSE 15
residual sum of squares, SSE 15
rotation 107
of observations 75

S

Samuelson’s inequality 114
Schur complement 83
determinant 83
MP-inverse 89
rank additivity 83
Schur’s triangularization theorem 107
Seber, George A. F. v, vi
shorted matrix 111
similarity 99
Simon, Paul v
simultaneous diagonalization
by a nonsingular matrix 103
by an orthogonal matrix 103
of commuting matrices 103
singular value decomposition 105

skew-symmetric: A’ = —A  ix
Smith, Harry v
solution

to AX : VX1) = (X : Vo1 X)) 66

Index

to AX : VX1) = (Xf : Vo X)) 66

toAX =B 87
toAXB=C 87
toAx =y 87
toA™ 87

toGX: VM) = (X:0) 49

toX'XB =Xy 9

toX(A:B)=(0:B) 94
spectral radius 97, 108
spectrum  see eigenvalues, 96
square root of nnd A 97
standard error of 8; 14
statistical distance 5
Stigler, Stephen M. v
stochastic matrix 109
stochastic restrictions 70
Stricker-Komba, Ulrike  vi
sufficiency

linear 63

linear prediction 68

linearly minimal 64
sum of products SPy, =y, 4
sum of squares

change in SSE 16, 33,35

change in SSE(V) 37

predicted residual 41

SSy =t,, 4

SSE 15

SSE under .#17.1 17

SSE, various representations 16

SSR 15

SST 15

weighted SSE 36,52
sum of squares and cubes of integers
Survo  vi
Sylvester’s inequality 80

T

theorem
Albert 110
Cochran 24

Courant-Fischer 100
Eckart-Young 101, 107
Frisch-Waugh-Lovell 11, 18,57
Gauss—Markov 49
interlacing 100
Lehmann-Scheffé 64
Perron-Frobenius 108
Poincaré separation 100
Schur’s triangularization 107
Wedderburn—-Guttman 83

Thomas, Niels Peter vi

Tiritiri Island  ii
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total sum of squares, SST 15
transposition 82

Trenkler, Gtz vi

triangular factorization 30
triangular matrix 30, 107

U

unbiased estimator of o2
6% 15
)
0 40
G2 36,37,52
unbiasedly predictable 65

\%

variable space 2

variable vector 2

variance
vary(y), varg(y) 4
var(x) = B(x — y)?  xi
se2(Bi) 14
var(a’x) =a’Xa 6
var(B;) 13
var(§;) 10

125

of a dichotomous variable 19
of prediction error with a given x 14
variance function 23
vec 115
in multivariate model 72
in multivariate sample 25
vector of means X 2
Vehkalahti, Kimmo vi
VIF 13,86
volume of the ellipsoid 34

A

Watson efficiency

definition 58

decomposition 62

factorization 62

lower limit 58
weakly singular linear model: '(X) C ¢'(V)

49

Wedderburn—Guttman theorem 83
Weisberg, Sanford v
Wielandt inequality 113
Wilks’s lambda 26
Wishart-distribution  see distribution
Working—Hotelling confidence band 15
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