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Preface

In an ever more rapidly evolving modern society with less and less standardized

models of behavior, the government of the territory and of the dynamics that

determine its evolution appears essential for the pursuit of objectives of sustainable

development.

The uncertainty that characterizes the socioeconomic and territorial dynamics of

contemporary society requires the elaboration of forecasting methods and

instruments that are able to manage and govern the complexity (I. Prigogine 1986

and L. von Bertalanffy 1971).

In the absence of correct planning, the rapid growth of cities can provoke the

phenomena of “social exclusion.” The ability to govern the transformation is linked

to the country’s economic, social, technological, cultural, and political prospects of

growth (L. Balbo 1992). It is therefore necessary to adopt a theoretical approach to

the problem that takes account of how the different scenarios change in the course

of time.

The measurement of territorial phenomena is therefore fundamental to the

cognitive model on which we base the choice of territorial policies and urban

plans. The construction of statistical indicators permits the integration of the

different social, economic, environmental, and urban characteristics of a territory

and highlights their relationships or dependence at a territorial level.

This book aims to investigate methods and techniques for spatial statistical

analysis suitable to model spatial information in support of decision systems.

Over the last few years there has been a considerable interest in these tools and

in the role they can play in spatial planning and environmental modeling. One of

the earliest and most famous definitions of spatial planning was “a geographical

expression to the economic, social, cultural, and ecological policies of society”

(European Conference of Ministers Responsible for Regional/Spatial Planning).

Borrowing from this point of view, this text shows how an interdisciplinary

approach is an effective way to a harmonious integration of national policies with

regional and local analysis.

The book covers a wide range of spatial models and techniques: spatial data

mining, point processes analysis, nearest neighbor statistics and cluster detection,
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fuzzy regression model, and local indicators of spatial association. All of these tools

provide the policy-maker with a valuable support to policy development.

Chapter 1 covers basic and more advanced aspects of Bayesian hierarchical

modeling for disease mapping. It also describes the methods for the analysis of

whether the spatial distribution of the disease risk closely follows that of the

underlying population at risk or whether there are some nonrandom local patterns

(disease clusters) which may suggest a further explanation for disease etiology.

The case study examined concerns the spatial distribution of liver cancer mortality

in Apulia.

In Chap. 2 starting from Diamond (1988), defined in the space of triangular

fuzzy numbers, in the context of a simple linear regression model, a multivariate

generalization is proposed, through the indication of a “stepwise” method for the

selection of variables. As an application case of the proposed measure of dissimi-

larity, homogeneous groups of Italian universities are identified, according to

graduates’ opinions on many aspects concerning internship activities.

Chapter 3 enlarges the use of variogram-based geostatistical techniques to

analyze time series. In order to underline the role of the variogram for modeling

and prediction purposes, several theoretical aspects, such as interpolation of miss-

ing values, temporal prediction, nonparametric estimation, and their computational

problems, are faced through an extensive case study regarding an environmental

time series.

In Chap. 4 spatiotemporal geostatistical analysis is combined with the use of

a Geographic Information System (GIS): the integration of geostatistical tools

and GIS enables the identification and visualization of alternative scenarios regard-

ing a phenomenon under study and supports environmental risk management. The

case study is based on environmental data measured at different monitoring stations

in the southern part of the Apulia Region (South of Italy).

Chapter 5 compares two different clustering methods: the first based on the

technique of SaTScan and the other based on the use of Seg-DBSCAN, a modified

version of DBSCAN. The main objective is to identify territorial areas

characterized by situations of deprivation or strong social exclusion through a

fuzzy approach. Grouping methods for territorial units are employed for areas

with high intensity of the phenomenon by using clustering methods that permit

the aggregation of spatial units that are both contiguous and homogeneous with

respect to the phenomenon under study.

Chapter 6 focuses its attention on the topic of “shrinkage,” spatial phenomenon

defined by data and information based on space dimension relying on spatial

information. The wide use of geo-information is a useful aid to extend common

statistical analyses by integrating data collected at different levels, comparing data

at a municipal level to data referring at census area level. The paper includes

an empirical section describing the case of the de-industrialized city of Taranto,

measuring the major indicators of shrinkage.

Chapter 7 describes a procedure for investigating the coherence of the relation-

ship between a “wide” concept of spatial distance from some reference point and

the geographical variation of real estate value. In the case study on the main districts

vi Preface

http://dx.doi.org/10.1007/978-88-470-2751-0_1
http://dx.doi.org/10.1007/978-88-470-2751-0_2
http://dx.doi.org/10.1007/978-88-470-2751-0_3
http://dx.doi.org/10.1007/978-88-470-2751-0_4
http://dx.doi.org/10.1007/978-88-470-2751-0_5
http://dx.doi.org/10.1007/978-88-470-2751-0_6
http://dx.doi.org/10.1007/978-88-470-2751-0_7


of New York, it is possible to investigate the effect of racial steering on ethnic

dissemination and real estate variation.

Finally, in the case study, a variety of themes covered, both from theoretical and

methodological points of view, find a real useful application to immediately

understand the models illustrated.

We would like to thank all the authors for their contributions.

Bari, Italy Silvestro Montrone and Paola Perchinunno
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Chapter 1

Geographical Disparities in Mortality Rates:

Spatial Data Mining and Bayesian Hierarchical

Modeling

Massimo Bilancia, Giusi Graziano, and Giacomo Demarinis

Abstract Achieving health equity has been identified as a major international

challenge since the 1978 declaration of Alma Ata. Disease risk maps provide

important clues concerning many aspects of health equity, such as etiology risk

factors involved by occupational and environmental exposures, as well as gender-

related and socioeconomic inequalities. This explains why epidemiological disease

investigation should always include an assessment of the spatial variation of disease

risk, with the objective of producing a representation of important spatial effects

while removing any noise. Bearing in mind this goal, this review covers basic and

more advanced aspects of Bayesian models for disease mapping, and methods to

analyze whether the spatial distribution of the disease risk closely follows that of

underlying population at risk, or there exist some nonrandom local patterns (disease

clusters) which may suggest a further explanation for disease etiology. We provide

a practical illustration by analyzing the spatial distribution of liver cancer mortality

in Apulia, Italy, during the 2000–2005 quinquennial. (Massimo Bilancia wrote

Sects. 1.1.2, 1.1.4, 1.1.6, 1.2.1, 1.2.3, 1.2.5. Giusi Graziano wrote Sects. 1.1.1,

1.1.3, 1.1.5, 1.2.2, 1.2.4, 1.2.6. Giacomo Demarinis wrote the software for data

analysis. Section 1.3 was written jointly. The three authors read and approved the

final manuscript. We wish to thank Maria Rosa Debellis, Department of Neurosci-

ence and Sense Organs, University of Bari, Italy, and Claudia Monte PhD, Depart-

ment of Physics, University of Bari, Italy, for their valuable support.)
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Keywords Bayesian statistics • Besag–York–Mollié model • Disease cluster

detection • Disease mapping • Spatial scan statistic

1.1 Statistical Thinking in Spatial Epidemiology

1.1.1 Health Equity in a Spatial Setting

Health equity concerns the study of differences in health and health care across

different populations: achieving health equity has been identified as a major

international challenge since the 1978 declaration of Alma Ata. Of course,

inequalities need to be quantified before they can be addressed, and since the

mid-1800s maps have been commonly used to provide a visual representation of

disease outcomes, geographical variability in mortality and incidence, or treatment

and survival. For example, atlases of cancer incidence and mortality provide

important clues concerning many aspects of health equity, such as etiological risk

factors related to occupational and environmental exposures, or gender-related and

socioeconomic inequalities, as well as barriers to enter in health-care delivery

systems or the quality of primary cancer control factors which different ethnic

and racial groups receive [11].

This explains why epidemiological disease investigation should include, when-

ever possible, an assessment of the spatial variation of disease risk, with the

objective of producing a visual representation of important spatial effects while

removing any disturbing noise. For aggregate province or district-level data, dis-

ease mapping has a long history in epidemiology: after briefly reviewing Gaussian

Markov random fields (GMRFs), which are frequently used in statistics and are a

basic building block in spatial statistics, we examine the foundations of Bayesian

modeling in disease mapping in Sects. 1.1.3 and 1.1.4. Spatially aggregated data

will be the main focus of this paper, whereas no attention will be paid to point

patterns, for which we send back to some excellent reviews (see, for example, [29]).

The rest of the paper is organized as follows: in Sect. 1.1.5 we consider a related

but equally important problem for public health, that is whether the presence of

high incidence/mortality rates within a group of neighboring areas means a higher

risk of suffering from the disease under study (the so-called “local cluster detec-

tion” problem). In Sect. 1.1.6, we bridge the gap between Bayesian disease

mapping and local cluster detection methods, with the help of a newly introduced

suitable modification of the Besag–York–Mollié model with ecological covariates

to scan spatial disease rates. The second part of the paper provides a practical

illustration of the methodologies discussed in the first part: in particular, the spatial

distribution of liver cancer mortality in Apulia, Italy, during the 2000–2005 quin-

quennial is analyzed. Finally, current limitations and future prospects are briefly

discussed in the conclusions of the paper.

2 M. Bilancia et al.



1.1.2 Gaussian Markov Random Fields

GMRFs are frequently used in a variety of fields, in particular in disease mapping

for modeling spatial dependence [33] this is due to the fact that risk levels of areas

that are close to each other will often tend to be positively correlated as they share a

number of spatially varying characteristics. In this context, we suppose to have N
overlapping areas with the vectorc ¼ c1; :::; cNð Þ representing the effects describ-
ing the spatially structured variability in the logarithm of area-specific relative

risks. Why log-relative risks should be modeled, rather than the risks themselves,

will be apparent in the next section.

In this section, we are facing with the problem of modeling this N-dimensional

random variable considering the dependence between ci and cj in a suitable way,

where i and j are two different areas. There are two common approaches to specify a

distribution forc: the joint modeling and the conditional one. In the first case, assume

that c is distributed according to the following multivariate Gaussian random field

c � N 0; s2cS
� �

(1.1)

where s2c is the common variance of the ci and S is a N � N positive definite

correlation matrix whose off-diagonal terms describe the dependence between ci

andcj. The matrixS can assume different forms [35] but its elementsSij are usually

expressed as a function of the distance dij between the centroids of area i and j

Sij ¼ f ðdij; lÞ ¼ exp � dij
l1

� �l2
( )

(1.2)

where l1>0 controls the extent of the spatial dependence and l2 2 ½0; 2Þ is a

smoothing parameter. The joint modeling is often computationally expensive and

requires the specification of the elements of the covariance matrixS. As reviewed in
[4], starting from the standard properties of the multivariate Normal, the joint

specification (1.1) is equivalent to the following set of conditional distributions

cijcj � N
XN
j¼1

Wijcj; s2cDii

 !
(1.3)

with Wii ¼ 0; Wij ¼ �Qij=Qii and Dii ¼ Q�1
ii , where Qij is the (i, j)-element of the

matrix Q ¼ S�1. The two approaches are equivalent to each other, in the sense that

the conditional distributions (1.3) require the specification of the matrix W of

weights Wij and the diagonal matrix D whose diagonal elements are Dii, and lead

to the joint specification

c � N 0; s2c I �Wð Þ�1D
� �

(1.4)

1 Geographical Disparities in Mortality Rates 3



provided that the compatibility conditionsWijDjj ¼ WjiDii are satisfied to ensure the

symmetry of Q ¼ D�1 ðI �WÞ. A particularly useful GMRF, also known as condi-
tional autoregression (CAR) model, is obtained by taking Wij 6¼ 0 in (1.3) if areas i
and j are neighbors (abbreviated as i ~ j) and Wij ¼ 0 otherwise (including the case

that Wii ¼ 0). Of course, the simplest definition is Wij ¼ 1 if i ~ j and Wij ¼ 0

otherwise [3, 44]. In this case, denoting with mi the number of areas neighboring to

area i, it is quite simple to show thatDii ¼ m�1
i andWij ¼ m�1

i and that (1.3) reduce to

cijcj � N
1

mi

X
j2@i

cj;
s2c
mi

 !
(1.5)

where@i is the set of neighbors of area i, the conditional mean ofci is the average of

the neighboring ci
0s and the conditional variance is inversely proportional to the

number of neighbors mi. The model (1.5) has been proposed in [2], and it is

commonly referred to as intrinsic conditional autoregression (ICAR) model. It is

a limiting form of the CAR model defined above because the covariance matrix Q
results to be not positive definite. For this reason s2c is only interpretable condi-

tionally and no longer as a marginal variance (because the joint specification no

longer exists). The ICAR model, thanks to Markov Chain Monte Carlo (MCMC)

methods, is very popular in the analyses of areal data. Strategies to address the

theoretical and computational difficulties of CAR models have been proposed [1];

however, the research of other methods is object of ongoing studies.

1.1.3 Bayesian Thinking in Spatial Disease Mapping

Let Yij be the number of disease counts or deaths for a specific cause within area i
(i ¼ 1, 2, . . ., N), classified according to stratum j (j ¼ 1, 2, . . ., J, e.g., sex and age
classes). For rare disease we assume that, independently in each area and stratum

and conditionally on stratum-specific rates pij, counts are distributed as

Yijjpij �ind PoissonðRijpijÞ (1.6)

where pij is the stratum-specific mortality rate within the ith area, and Rij is the

number of person-years at risk. It is customary to reduce the dimension of the

parameter space by assuming that the following proportionality relation holds for

the N � J probabilities pij

pij ¼ qj � yi (1.7)

where qj; j ¼ 1; 2; . . . ; J, is a set of stratum-specific reference rates and yi ¼ pij=qj
is interpreted as a relative risk (rate ratio) associated with area i. The proportionality
assumption (1.7) is discussed in detail by Dabney and Wakefiled [12]: an

4 M. Bilancia et al.



examination of the literature reveals that checking whether (1.7) is valid seems to

be rarely reported. Exploiting the reproductive property of the Poisson distribution,

we may collapse over strata to obtain the following saturated Poisson model for

area-specific counts Yi ¼ SjYij

Yijyi �ind PoissonðEiyiÞ (1.8)

where the expected value is obtained as SjRijpij ¼ SjRijqj � yi ¼ Eiyi and Ei ¼ Sj

Rijqj, that is Ei is the expected number of cases in area i, which accounts for effects

attributable to differences in the confounder-specific populations, and seeks to

answer the question of what would be the number of cases expected in the study

population if people contract the disease at the same rate as people in the standard

population (indirect standardization). Waller and Gotway [45] and Ocaña-Riola

[25] warn against the indiscriminate application of the indirect standardization and

point out some possible inaccuracies arising, for example, from the misuse of total

population as the denominator for incidence or mortality rates from a specific cause.

When the reference population is the same as the population under study we set

the stratum-specific reference rates as

qj ¼
SiYij

SiRij
; j ¼ 1; 2; . . . ; J: (1.9)

This approach centers the data with respect to the current map, and it is a simple

exercise to verify that Si Yi ¼ Si Ei under indirect internal standardization. The

areas where there is an excess of risk are those in which the number of observed

cases exceeds the expected one.

Maximum likelihood estimates of area-specific relative risk in model (1.8) are

given by ŷi ¼ SMRi ¼ Yi=Ei; i ¼ 1; 2; . . . ;N, where SMRi is commonly referred

to as the standardized mortality ratio. Exact area-specific p-values associated with

the null hypothesis of no increased risk H0: yi ¼ 1 against Hi: yi>1 are given by

ri ¼ Prfx � YijEig ¼ 1�
XYi�1

x¼0

expðEiÞEx
i

x!
: (1.10)

All of these values or their complements 1� ri i ¼ 1; 2; . . . ;Nð Þ , as well as

threshold probabilities from the right-continuous distribution function 1� ~ri ¼ Pr

fx � YijEig, may be classified to draw a probability map attributing to each area a

gray or color level that denotes class membership.

It is worth noting that probability maps may be not very informative, as p-values
alone do not give any information about the level of risk. What is worst, outcomes in

spatial units are often not independent from each other: risk levels of areas that are

close to each other will tend to be positively correlated as they share a number of

spatially varying characteristics: ignoring the over dispersion caused by spatial

autocorrelation will lead to incorrect inferences. In other words, the marginal

1 Geographical Disparities in Mortality Rates 5



variance of counts Yi will be systematically larger than the variance resulting from

the independent-component Poisson model (1.8), in which Var(YiÞ ¼ Eiyi equals
EðYiÞ: extreme p-values might be duemore to the lack of fit than to a real risk excess.

If we admit that variation of the observed number of events in a given area

undergoes some degree of extra-Poisson variation, we can summarize this by a prior

distribution p yj�ð Þ , containing information about the variability in the relative risks

across the map, which depends on a vector of hyperparameters � that control the degree
of such variability. For example, in [9, 22] the following Bayesian model is analyzed

Yijyi �ind Poisson(yiEiÞ (1.11)

yij� �indGamma(a; vÞ (1.12)

for i ¼ 1; 2; . . . ;N, in which � ¼ ða; vÞ0 and a prior Gamma(a; vÞ for relative risks is
introduced, whose marginal mean and variance are Eðyij�Þ ¼ ða v= Þ and Var ðyij�Þ
¼ ða v2

� Þ. By integrating out random effects yi, simple calculations show that the

marginal likelihood of the data is the product of NNegative Binomial densities each

one having unconditional mean and variance given by

E ðYij�Þ ¼ Ei
a
v

(1.13)

Var ðYij�Þ ¼ Ei
a
v
þ Ei

a
v2

(1.14)

from which it follows that the marginal areal variance is substantially larger than

the mean. The posterior distribution of relative risks, assuming a and v to be known,
is Gamma(Yi þ a;Ei þ vÞ. In other words, the posterior estimates of relative risks

under a quadratic loss are given by

E ðyijYi; �Þ ¼ Yi þ a
Ei þ v

: (1.15)

A parametric empirical Bayesian (PEB) approach to relative risk estimation is

proposed in [9], according to which unknown hyperparameters are estimated by

numerically maximizing the joint marginal likelihood

hða; vÞ ¼
YN
i¼1

Z
f ðyijyiÞpðyij�Þ dyi (1.16)

and estimates â and v̂ are plugged into the marginal posterior expectations (1.15) to

obtain the PEB estimate of yi as

ŷðEBÞi ¼ Yi þ â
Ei þ v̂

¼ Ei

Ei þ v
ŷi þ 1� Ei

Ei þ v

� �
â
v̂
: (1.17)

6 M. Bilancia et al.



Such an estimate has the form of a “shrinkage” estimator, being a weighted

average of the area-specific SMR and the common prior mean. Each standardized

mortality ratio ŷi is pushed toward the global prior mean, and the size of this effect is

proportionally larger in those areas where the number of expected events Ei is

smaller. PEB techniques have a deep connection with James–Stein estimation,

which has its roots in the Stein’s proof that maximum likelihood estimation

methods are inadmissible under the summed squared error loss beyond simple

one- or two-dimensional situations [8]. Of course, it makes perfect sense to produce

p-values-based maps in which an unconditional Negative-Binomial product-

likelihood is used for calculating probabilities defined by expression (1.10).

Fully Bayesian estimation of relative risks considers various prior models for

area-specific relative risk parameters that account for various aspects of extra-

Poisson dispersion. For example, if no systematic spatial pattern to the variability

of relative risks is present, a normal prior distribution on the logarithm of each

relative risk is often used, as this leads to a generalized linear mixed models

formulation that allows for the inclusion of area-specific covariate information. In

the same way, we have often prior knowledge that geographically close areas tend

to have similar relative risk; as in practice it is often unclear how to choose between

an unstructured prior and a spatially structured prior, the following convolution

model has been proposed by Besag et al. in a seminal paper [2]

fi ¼ logðyiÞ ¼ mþ ci þ ui (1.18)

where cis allow for spatially structured risk patterns, being jointly defined by the

following intrinsic GMRF [33]

p cj s2c
� �

/ exp � 1

2 s2c

X
i�j

ci � cj

� �2( )
(1.19)

which is the joint version of the conditional specification (1.5) and leads to an

improper prior over the space of spatially structured effects. As we said before, a

zero-mean multivariate Gaussian prior is commonly used for unstructured effects uis

p uj s2u
� � / exp � 1

2 s2u

XN
i¼1

u2i

( )
: (1.20)

The parameter m is a baseline log-relative risk and the two prior components are

assumed to be independent. Posterior log-relative risk estimates are smoothed in

comparison with the SMRs, and probability maps may be drawn by estimating area-

specific posterior probabilities E Iðyi>1Þ Yj½ � ¼ Pr yi>1 Yjf g (where Ið�Þ denotes the
event indicator function). Also for p-values-based maps, the resulting choroplets

are likely to be insufficiently informative about the actual level of risk, but their

aspect is often quite smoothed and they may be indeed useful to confirm the

presence of “hotspot” of high-risk areas.

1 Geographical Disparities in Mortality Rates 7



Of course, a Bayesian analysis may depend critically on the modeling

assumptions because changes in the prior distributions may cause relevant changes

in the posterior distributions. In fact, a crucial problem in the formulation of the

BYM model is the specification of the prior distribution for the random effects

variance parameters s2c; s2u [6, 14]. As in the case of the less structured

Poisson–Gamma model, these priors are parameterized by hyperparameters

which control the variability of the relative risks across the map. One common

choice is to specify independent inverse Gamma priors for s2c; s2u , but other
elicitations are indeed possible: for example, [43] considers an inverse Gamma

prior for the total variance s2T ¼ s2c þ s2u and a Beta prior for the spatial fraction

SF ¼ p ¼ s2c
s2c þ s2u

(1.21)

which represents the proportion of the relative risk variation that is attributable to

the spatial component: the closer the spatial fraction is to unity, the greater the

relative risk posterior estimates are shrunken toward a local mean. By back-

transforming from s2T ; p
� �

to s2c; s2u
� �

; it is possible to show that this specifica-

tion induces positive dependence in the joint prior for s2c; s2u
� �

. It is customary to

evaluate the model sensitivity by choosing different prior distributions of the

variance terms: some quite common alternatives will be compared in Sect. 1.2.4.

The computational machinery for calculating posterior parameter estimates has

recently been enriched by a new arrival. Besides traditional (MCMCmethods [10]),

integrated nested Laplace approximation (INLA) provides a fast implementation of

the Bayesian approach to generalized linear mixed models [34].

1.1.4 Identifiability Issues and Bayesian Model Choice

As we said before, the CAR prior (1.19) is not integrable, being equivalent to a joint

multivariate distribution with singular covariance matrix, and hence corresponding

to an improper prior. If an Uniform(R) improper prior is assumed for the overall

log-relative risk m [15], formally prove that the resulting posterior is not integrable,

and Bayesian analysis will become impossible. Apart from a formal proof, a simple

explanation may be provided for this: CAR prior only defines contrasts ci � cj for

i 6¼ j, but they do not identify an overall mean value for log-relative risks because

they are translation invariant, and hence they confound the baseline effect.

A common solution to generate a proper posterior is to identify the overall mean

by adding the constraint

XN
i¼1

ci ¼ 0 (1.22)

which, in the terminology of [13], defines a proper embedded posterior (in the same

paper [13], study in its full generality the conditions under which an embedded
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constrained lower-dimensional parameter has a unique proper posterior). It is

interesting to note that the same constraint has to be added if we consider a BYM

model with ecological covariates, for which the linear predictor has the form

fi ¼ logðyiÞ ¼ mþ x0ibþ ci þ ui (1.23)

for a p-dimensional vector xi of area-specific covariates and a vector of fixed

coefficients b, for which an Uniform(Rp) improper prior is assumed.

If we have a set of q competing Bayesian specifications, a formal Bayesian

procedure of model choice relies on posterior model probabilities [28]

PðMj

		yÞ / PðMjÞmiðyÞ; j ¼ 1; 2; . . . ; q (1.24)

where PðMjÞ is the prior model probability and mjðyÞ the marginal likelihood or

prior predictive density

mjðyÞ ¼
Z

f iðyj�jÞpið�jÞ d�j (1.25)

assuming that, under the modelMj, the data Y are assumed to have density f j yj�j
� �

with prior distribution pjð�jÞ. With the Bayes maximum a posterior rule (BMAP), a

sensible model choice procedure, on the basis of the only evidence provided by the

data, would consider as the “best” model the specification Ms satisfying

P Msjyð Þ ¼ max
j

P Mj

		y� �
; j ¼ 1; 2; . . . ; q: (1.26)

A particular common choice of prior model probabilities, often justified on the

ground of an insufficient knowledge, is PðMjÞ ¼ 1 q= so that

P Mj

		y� � / mjðyÞ; j ¼ 1; 2; . . . ; q: (1.27)

Apart from the fact that prior model probabilities seem often difficult to justify,

harder difficulties arise when improper priors are set (as in the case of the BYM

model). To understand why these difficulties are unavoidable, we consider a simpler

notation for a problem involving the comparison of just two models. In this case the

BMAP rule simply considers the ratio (we assume constant prior model probabilities)

Bjk ¼ mjðyÞ
mkðyÞ ¼

pj cj
�

pk ck=
¼ pj

pk

ck
cj

(1.28)

whereBjk is the Bayes factor in favor of model j against model k, andpjð�jÞ / hjð�jÞ
with normalizing constant being given by

cj ¼
Z

hjð�jÞ d�j (1.29)
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with identical meaning for ck. In the same way, pj is the unnormalized marginal

likelihood

pj ¼
Z

f j y �j
		� �

hj �ið Þ d�j: (1.30)

Of course, if a proper prior is used for eachmodel such thatck<þ1andcj<þ1
are well defined, the Bayes factor is well defined as the ratio ck cj

�
is also defined.

When an improper prior is used such that ck ¼ cj ¼ þ1, using a suitable limiting

procedure [38] prove that the ratiock cj
�

is either 0, 1, or +1 depending on the relative

dimension of the two models. In particular, they show that if the parameter vector can

be partitioned as�‘ ¼ g‘; gð Þ0; ‘ ¼ j; k, and improper priors of the same form are used

only on g, the Bayes factor is then well defined.

To what extent these results are useful to justify the comparison of several

competing BYM models on the ground of the relative marginal likelihoods is still

not fully understood. If we want rely on a sounder but more informal criterion [37],

propose a generalization of the AIC based on the posterior distribution of the

deviance statistics

D fð Þ ¼ �2 log f yjfð Þ þ 2 log hðyÞ (1.31)

where the log-likelihood of the current model is compared to a baseline term h ðyÞ
that is function of the data alone and hence does not affect posterior inference. For

the Poisson likelihood (1.11), written in terms of area-specific log-relative risk exp

ðfiÞ ¼ yi, the deviance statistics assume the following form

DðfÞ ¼ 2
XN
i¼1

Yi log
Yi

expðfiÞEi

� �
 �
� Yi � expðfiÞEi½ �

� 
(1.32)

provided that the standardized terms h(y) is set equal to the saturated likelihood.

The deviance information criterion (DIC) is defined as

DIC ¼ �Dþ pD (1.33)

where �D is the posterior expectation of the saturated deviance (1.31), and

pD ¼ �D� D E fjyð Þ½ � (1.34)

is the posterior expectation of deviance minus the deviance evaluated at the

posterior expectations of log-relative risks. The proposed criterion is justified by

Spiegelhalter et al. [37] by providing several arguments according to which �D can

be considered as a posterior summary of the goodness of fit of the actual model,

whereas pD is interpretable as a penalty term measuring the complexity of the

model. This latter constant is commonly referred to as the effective number of
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parameters, in fact it is often less than the total number of parameters, due to the

interdependencies across parameters in the likelihood introduced by random effects

specified in higher levels (for example: the spatially structured random effect in the

BYM model). It is clear that smaller values of the DIC will indicate a better-fitting

model, after penalizing it for the complexity of the parameter space.

1.1.5 Local Cluster Detection: The Classical Spatial Scan
Statistics

Beside the analysis of spatial variation in risk, spatial cluster detection is an important

tool to identify areas of elevated risk and to generate hypotheses about disease

etiology: as for disease mapping, there exists a considerable interplay between

Bayesian and frequentist methods when local scanning of disease rates is the main

interest. By definition, a scanning window Zj is any collection of connected subareas

in the study area (which will be denoted as G in this section) such that zj \ zk ¼ ;
for j 6¼ k . Typically, a scanning window is a set of connected subareas whose

centroids fall within a scanning circle. In any case, irregularly shaped zones following

the area boundaries are possible. For notational simplicity, in this section we do not

consider any subdivision into strata according to some confounding variable.

Let G denote the study area and Z 	 G a generic scanning window such that XZ

and X �Z (with �Z ¼ GnZ) are independent nonhomogeneous Poisson point processes

having intensities, respectively, given by

lZðxÞ ¼ pmðxÞ1ZðxÞ (1.35)

l �ZðxÞ ¼ qmðxÞ1 �ZðxÞ (1.36)

where p and q indicate the probability that one individual at risk, living, respec-

tively, inside or outside the zone Z, has a given disease: the “background” spatial

intensity m(x) models the distribution of the population at risk over the area G. From
these assumptions, it follows that

YðZÞ ¼ Poisson pmðZÞð Þ (1.37)

Y �Zð Þ ¼ Poisson qm �Zð Þð Þ (1.38)

where Y(Z) represents the random number of cases falling within Z, with YðZÞ �ind Y
�Zð Þ (consequently, YðGÞ � YðZÞ represents the random number of events within �Z):

to test the alternative hypothesis of raised incidence H1: p>q against the null

H0: p ¼ q [17, 18], consider a generalized likelihood-ratio test statistic which,

under the Poisson likelihood, assumes the following form for a given subset Z
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AZ ¼ maxp>qL Z;p;qð Þ
maxp¼qL Z;p;qð Þ

/ YðZÞ
EðZÞ
� �YðZÞ

YðGÞ�YðZÞ
EðGÞ�EðZÞ
� �YðGÞ�YðZÞ

I YðZÞ
EðZÞ>

YðGÞ�YðZÞ
EðGÞ�EðZÞ

� � (1.39)

where EðZÞ ¼ pRmðZÞ is the expected number of cases within Z under a reference

rate pR, and I �ð Þ is the indicator function.
Cluster detection is based on the test statistics

L ¼ max
Z2D

LZ (1.40)

for a suitable collection of scanning windows D. Assessing the statistical signifi-

cance of (1.40) is a difficult problem, as the null sampling distribution is hard to

derive. For these reasons, cluster inference commonly relies on Monte Carlo

computation of approximated p-values, an approach which has been implemented

in the SaTScan software [16]. In Monte Carlo hypothesis testing

simulated p - value =

1þPR
s¼1

I LðsÞ � Lobs

� �
1þ R

; (1.41)

given that R datasets have been simulated independently under the null hypothesis

and values of the test statistics Lð1Þ; Lð2Þ; . . . ;LðRÞ
n o

have been calculated

accordingly. Secondary clusters with high likelihood value containing about the

same areas are usually of little interest: more interestingly secondary clusters are

those located in another part of the map and that do not overlap with the more likely

one. Adaptation of the spatial scan statistics in order to detect disease clusters that

occur in non-compact and non-circular shapes is another very deep problem that has

received a lot of attention in the most recent literature [46].

1.1.6 A Fully Bayesian Approach to Scanning Spatial
Disease Rates

When overdispersion is present, in most cases this is due to the fact that risk levels

of areas that are close to each other will tend to be positively correlated, as they

share a number of spatially varying characteristics. As a consequence, not only the

Poisson assumption is violated but also excessive false alarms or type I errors will

occur [21, 48]. For this reason [5] proposes a cluster detection algorithm based on

the following variation of the standard BYM model i ¼ 1; 2; . . . ;Nð Þ

Yijyi;Ei �ind Poisson yiEið Þ (1.42)

log yið Þ ¼ mþ aZ1
I Ai 2 Z1½ � þ � � � þ aZs

I Ai 2 Zs½ � þ ci þ ui (1.43)
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where, as in the previous section, Zj is any collection of connected subareas

(i.e., cluster) in the study area such that Zj \ Zk ¼ ; for j 6¼ k , and the cluster-

specific fixed effect aZj
enters the model as the coefficient of indicator variable I

Ai 2 Zj

� �
, which assumes value 1 if subarea Ai is in Zj and 0 otherwise. The number

s of non-overlapping clusters is assumed to be finite but unknown.

Prior specification in model space should keep into account, in some way, the

non-overlapping constraintZj \ Zk ¼ ;. In other words, if we collect an initial set of
candidate clusters/dummy variables as the columns of a matrix D whose rows

represent sub-areas Ai, the model selection algorithm will have to select a subset

of those columns in a suitable way, but not every possible subset corresponds to an

admissible linear predictor in (1.43). Keeping this objective [5], formulate a

sequential cluster detection algorithm based on the DIC criterion, which evolves

according to the following steps:

Step 1. Suppose that the initial matrix Dð1Þ has dimension N � ‘, and let djð1Þ ¼ I

Ai 2 Zjð1Þ
� �

, with 1 � i � N, denote a single column of Dð1Þ. Conditionally on a

fixed djð1Þ, we fit the single-cluster model given by

log yið Þ ¼ mþ aZjð1ÞI Ai 2 Zjð1Þ
� �þ ci þ ui (1.44)

for every djð1Þ; j ¼ 1; 2; :::; ‘. The whole collection of fitted models is put in order

according to the DIC criterion (lower-value DICs indicate better-fitted models), and

the first optimal cluster doptð1Þ corresponds to the area-indicator variable entering

that model having the lowest DIC value.

Step 2. LetDð2Þ be the current candidate cluster matrix. The columns ofDð2Þ are a
subset of those ofDð1Þ: we delete all those columns ofDð1Þ corresponding todoptð1Þ
itself and to each scanning zone overlapping with the first optimal cluster. The

current model is

log yið Þ ¼ mþ aZoptð1ÞI Ai 2 Zoptð1Þ
� �þ aZjð2ÞI Ai 2 Zjð2Þ

� �þ ci þ ui (1.45)

and the current set of scanning zones is assessed according to the DIC criterion by

repeatedly fitting model (1.45) conditionally on the chosen djð2Þ. Whenever neces-

sary, a second optimal cluster doptð2Þ is identified (see Step k).

Step k. The procedure stops at step k provided that it is not possible to improve

data explanation by letting further cluster-specific terms enter the model: this

eventuality can be easily assessed by means of the sequence of lowest DIC values

of each previous step, in the sense that the algorithm stops when such sequence

reaches its minimum and becomes increasing.
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The final model contains s ¼ k fixed-effect terms

log yið Þ ¼ mþ aZoptð1ÞI Ai 2 Zoptð1Þ
� �þ aZoptð2ÞI Ai 2 Zoptð2Þ

� �þ � � � þ
þaZoptðkÞI Ai 2 ZoptðkÞ

� �þ ci þ ui
(1.46)

corresponding to clusters satisfying the required constraint Zopt g
0ð Þ \ Zopt g

00ð Þ ¼ ;
for steps g0 6¼ g00, with 1 � g0; g00 � k.

The initial model space dimension of the fixed effect part, i.e. the Dð1Þ matrix

column space dimension, decays quite fast as new clusters are identified. However,

[5] points out that despite the important theoretical developments that have been

recorded in the last few years, the use of MCMC methods to estimate each model

would be painfully slow from the end user’s point of view, and suggest to use the

newly developed INLA posterior integration numerical scheme [34], which

requires far shorter computational times and makes the implementation of the

proposed methodology computationally feasible. We defer to Sect. 1.2.5 for further

elucidations concerning some practical aspects.

1.2 Case Study: Analysis of the Spatial Distribution of Liver

Cancer in Apulia, Italy

1.2.1 Introduction

Liver cancer, also known as primary liver cancer or hepatoma, is a cancer arising

from the liver. However, the term liver cancer can also refer to cancer that has

spread to the liver from other organs. In this case, the disease is called metastatic or

secondary. Liver cancer is one of the most common cancer in the world with a very

low survival rate usually smaller than one year. The diseases strongly associated

with liver cancer are chronic viral hepatitis, alcoholism, and cirrhosis. The role of

each risk factor, as well as their interrelationship, is well established [19, 39, 47].

This cancer is highly frequent in Southeast Asia (China, Hong Kong, Taiwan,

Korea, and Japan) and accounts for up to half of all cancers in some underdeveloped

countries [27]. This is due to the prevalence of hepatitis B infection, which is

usually a childhood disease and can be easily caught from contaminated blood or

sexual contact. In these areas the cancer usually affects people 30–40 years old. In

contrast, the cases of liver cancer in North America and Western Europe are much

lower even though the rate of diagnosis is rising [20, 23]. This increase is due

primarily to rising obesity and diabetes rates and to chronic hepatitis C. The alcohol

abuse which causes cirrhosis is another very common cause of liver cancer in the

developed countries. Here the people affected by this cancer are in their 60s and 70s

and are men much more than women.

In Italy liver cancer is the seventh leading cause of cancer death even if the

situation at the regional level is very heterogeneous. The spread of hepatocarcinoma

in the Apulia region is substantial and it is related to hepatitis viruses that endemically
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affect the population. Currently the situation is stationary, but it is expected a

reduction in the cancer incidence with the reduced incidence of hepatitis. In fact an

improved prevention and in particular vaccination are favoring a constant descent of

hepatitis B. On the other hand, a better public hygiene and many activities aimed at

preventing the disease condition is driving a decrease in the number of hepatitis C

cases. Particular attention is paid to liver cancer mortality in some areas of the Apulia

showing a significant excess compared to the regional situation. The mortality rates

for liver cancer in the period 2000–2005 are showed in the Causes of Death Atlas of

the Apulia region [26]: in males, it detects the presence of a cluster of municipalities

with high mortality, which belong to the northern area of the province of Bari and the

newly constituted Barletta-Andria-Trani (BAT) province; in females, the geographi-

cal distribution of mortality is comparable to that described for males. In this study

ample space will be given to further illustration of this aspect.

1.2.2 Data Source

The mortality data analyzed in this work are drawn from the Cause of Death

Nominative Registry (RENCAM) of the Apulia region. Data are highly reliable

as they are first collected by referents of smaller registries uniformly distributed

over the whole region, then they are controlled, encoded, and compared with those

of ISTAT (National Institute for Statistics). Data are publicly accessible and

attached to the Causes of Death Atlas of the same region. Here, we consider the

mortality cases, in both sexes, for liver and intrahepatic bile ducts malignant tumor

(ICD-IX:155.0–155.1) occurring in the 258 municipalities of the Apulia during

2000–2005. The ICD-IX codes selected refer only to primary cancer. Age-

standardized expected cases were obtained under indirect internal standardization:

the number of person-years at risk was estimated by the 2000–2005 regional

population (ISTAT source) divided into quinquennial age classes.

1.2.3 Some Homogeneity Tests

Before estimating parameters we test relative risks for the presence of heterogene-

ity, as the use of the BYM model needs to be motivated if the evidence for extra-

Poisson variation is not strong. The heterogeneity may be of course related to

spatially varying risk factors and may lead to an increased risk in the areas more

exposed to these factors.

Testing heterogeneity may be based on traditional goodness-of-fit statistics, in

which the null hypothesis to be tested is

H0: Yijy �ind Poisson yEið Þ (1.47)

which is in turn equivalent to H0: y1 ¼ y2 ¼ � � � ¼ yN ¼ y . Whenever y is set a

priori, the traditional chi-squared statistic
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w2 ¼
XN
i¼1

Yi � yEið Þ2
yEi

(1.48)

follows, asymptotically and under the null hypothesis, a chi-squared distribution

with N degrees of freedom. When y is estimated from the data, given that the

maximum likelihood estimator of y in the restricted model (1.47) is ŷ ¼ SiYi SiEi= ,

it follows that (1.48) must be replaced by the test statistic

w2 ¼
PN
i¼1

Yi � SiYi

SiEi
Ei

� �2
SiYi

SiEi
Ei

: (1.49)

It is worth noting that under internal standardization ŷ ¼ 1, and hence the null

hypothesis corresponding to this special case is given byH0: y1 ¼ y2 ¼ � � � ¼ yN ¼ 1.

With the estimation of y, one degree of freedom is lost, and the test statistic follows

asymptotically a chi-squared distribution with N � 1 degrees of freedom [32]. Of

course, it is straightforward and preferable to carry out aMonte Carlo test by randomly

simulating counts data Yi under the null hypothesis, and calculating the test statistic

under each simulation. Comparison with the observed statistic leads easily to a Monte

Carlo p-value computation: greater departures of counts Yi from their null expected

values yEi produce greater w2 values.
The chi-squared test is expected to have reasonable power under many

alternatives [31]: consider the uniformly most powerful test for the null (1.47)

versus the alternative hypothesis that the relative risks yi are random effects drawn

from the conjugate Gamma distribution. Specifically

H1 : yijl; s2 �indGamma l2 s2; l s2
��� �

(1.50)

for i ¼ 1; 2; . . . ;N , so that E yið Þ ¼ l;Var yið Þ ¼ s2 and the counts follow an

unconditional Negative-Binomial product likelihood. Unfortunately, [31] are able

to derive a valid procedure only in the case in which y is known. For the case in which
y is unknown, they exploit the results given in [30] for the Binomial–Multinomial

case, using the fact that conditionally onSiYi the null model (1.47) becomes free of y
and is equivalent to

Y1; Y2; . . . ; YNj
X
i

Yi � Multinomial
X
i

Yi pi; i ¼ 1; 2; . . . ;Nf g
 !

(1.51)

with area-specific probabilities pi ¼ Ei SiEi= , and test the null (1.51) against the

alternative that counts are drawn from a conjugate Multinomial-Dirichlet random-

effect model. The test statistic is
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PW ¼
XN
i¼1

Ei

XN
i¼1

Yi Yi � 1ð Þ
Ei

" #
: (1.52)

Under H0, (1.52) follows an asymptotic Normal distribution with mean SiYi

SiYi � 1ð Þ and variance 2 N � 1ð Þ SiYi � 1ð Þ. Large values of PW indicate hetero-

geneity and, again, it is preferable to carry out a Monte Carlo test.

Another way to assess the conditional model (1.51) is once again via the

Multinomial chi-squared goodness-of-fit statistic, to test whether area-specific

counts Yi deviate significantly from their expected values under the null area-

specific disease occurrence probabilities pi; i ¼ 1; 2; . . . ;Nf g. In this context [40]

proposes a spatially modified chi-squared, in which the quadratic form measuring

discrepancies between observed and expected cases is defined as

T ¼ r � pð Þ0 A r � pð Þ (1.53)

where p ¼ p1; p2; . . . ; pNð Þ0; r ¼ r1; r2; . . . ; rNð Þ0 with ri ¼ Yi Si= Yi for i ¼ 1;
2; . . . ; N . The matrix A measures the degree to which the areas are connected,

being defined as aij ¼ exp �dij l=
� �

for i 6¼ j and aii ¼ 1 (dij is the distance

between the centroids of areas i and j). Under the null hypothesis and conditionally
on l, [40] proves that (1.53) has an asymptotic chi-squared distribution, even

though a finite-sample Monte Carlo test will be used in our example. Since the

interpretation of the parameter l is not clear, [41] suggests to repeat the procedure

using different l’s and provides a method for facing with multiple testing problems.

The results of Monte Carlo tests applied to our data are shown in Table 1.1: in

particular, the chi-squared and Tango statistics strongly support the evidence for very

significant discrepancies between observed and expected counts under the homogene-

ity hypothesis. In the same way, the Potthoff–Whittinghill’s test indicates that relative

risk is widely varying, and their variation is not accounted for under a constant risk

Poisson model. Non-spatial data analysis cannot therefore explain extra-Poisson varia-

tion in risk and must be supplemented by suitable spatial statistical analyses.

1.2.4 Spatial Data Analysis

If the null hypothesis (1.47) is valid, the expected number of eventsE Yijyð Þ in area i
is proportional to underlying population at risk. The weakness of chi-square

Table 1.1 Heterogeneity

tests of relative risks: for

males (M) and females (F),

p-values are calculated using

R ¼ 9999 Monte Carlo

replicated samples under the

null sampling distribution

indicated in the second

column

Test Sampling p (M) p (F)

Chi-squared Ind. Poisson 0.0001 0.0001

PW Multinomial 0.0001 0.0001

Tango (l ¼ 30) Multinomial 0.0001 0.0001

Tango (l ¼ 50) Multinomial 0.0001 0.0001

Tango (l ¼ 100) Multinomial 0.0001 0.0001

Tango (l ¼ 200) Multinomial 0.0001 0.0001
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goodness-of-fit and other global clustering statistics is that they do not take into

account where the greatest deviations between observed and expected cases occur.

For example, [36] points out that deviations from the null hypothesis may be either

due to a pronounced cluster of regions where the fit is poor, or to elevated peaks

within a more random spatial distribution. Methods of spatial analysis discussed in

the previous section are therefore aimed at depicting the geographic variation in

risk, and answering to the question whether the pattern seen is due to random

fluctuations rather than to spatially varying etiologic risk factors.

Figure 1.1 shows a map of SMRs for liver cancer mortality (separately for both

sexes). Areas were classified into gray levels according to the quintiles of the

empirical distribution. For males, SMRs are widely varying around their overall

mean of 0.90, ranging from 0 to 4.24 with standard deviation of 0.63; for females,

the variation is comparable, ranging from 0 to 3.35 with an overall mean of 0.83 and

a standard deviation of 0.48. These results further support the rejection of the null

hypothesis of homogeneity of relative risks. Indeed, in agreement with the

Potthoff–Whittinghill test, they suggest the presence of spatially varying deviations

from a random pattern. Some additional information comes from the probability

maps represented in Fig. 1.1, obtained by subdividing estimates of 1� ~rið Þ
probabilities into ten equidistant gray levels (areas with higher risks are those

shown in the darkest grays). Despite the disturbing level of sampling noise, it is

apparent that a cluster of neighboring areas at high risk is found for both sexes

(although to a lesser extent for women). This cluster involves a group of

municipalities in the northern of the Bari area, and touches areas falling inside

the BAT province.

MCMC methods were used to obtain fully Bayesian estimates of the relative

risks under the BYMmodel. The following conjugate Gamma priors for inverses of

variances (that is precisions t2c ¼ s�2
c and t2u ¼ s�2

u ) and Uniform priors for

variances were compared:

1. t2c � Gamma 0:5; 0:0005ð Þ, t2u � Gamma 0:5; 0:0005ð Þ.
2. t2c�Gamma 1:58�10�5;3:98�10�5

� �
;t2u �Gamma 4:42�10�4;2:10�10�4

� �
for males;

t2c�Gamma 3:73�10�6;1:93�10�5
� �

;t2u �Gamma 1:04�10�4;1:02�10�4
� �

for females.

3. t2c � Gamma 0:1; 0:1ð Þ; t2u � Gamma 0:001; 0:001ð Þ.
4. t2c � Gamma 0:1; 0:01ð Þ; t2u � Gamma 0:1; 0:01ð Þ.
5. s2c � Uniform 0; 1ð Þ; s2u � Uniform 0; 1ð Þ.
6. s2c � Uniform 0; 100ð Þ; s2u � Uniform 0; 100ð Þ.

Given that no source of information relevant to our study was available, a range

of non-informative priors were used except in the case of model 2, for which a

weakly informative data-based prior was set, separately for both sexes, along the

lines of [24]. In synthesis, location and scale parameters of inverse variances
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Fig. 1.1 From top to bottom: maximum likelihood estimates (SMRs) of relative risk of the

mortality from liver cancer in Apulia, Italy, 2000–2005, and the corresponding probability maps

under the product-Poisson and the product Negative-Binomial likelihood
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Gamma hyperpriors were chosen in such a way that the prior means were, respec-

tively, set equal to

2� 1:65

a

� �2

; for t2u (1.54)

2

�m
� 1:15

a

� �2

; for t2c (1.55)

where �m is the average number of neighbors across the study area, and the

symmetric interval e�a; eað Þ contains about of 90 % of SMRs for males and

75 % for females. Prior variances were set equal to 104 to reflect large uncertainty

about the values set for prior means.

To formally compare the six models and to identify the one that fits better our

data, we computed the (DIC, see Sect. 1.1.4), according to which a model with a

smaller values of DIC is to be preferred. Several posterior summaries are shown in

Tables 1.2 and 1.3 in correspondence of each proposed prior, including the spatial

fraction (1.21) as well as the 90 % relative risk ratio, defined as the mean of the

posterior distribution of the ratio of the 95th to 5th percentile of relative risks. The

posterior means of variances of both the structured and the unstructured component

are very similar in each analysis, but the variance of the spatial effect dominates:

the spatial fraction is always greater than 60 % for females, a value that is as high as

89 % for men. These values are strongly compatible with the presence of a spatially

structured heterogeneity of the relative risks.

Fully Bayesian estimates of posterior probabilities Pr yi>1jYf g for the “best”

model (respectively, prior three for males and prior five for females) are shown in

Fig. 1.2. The variation is much less pronounced than that seen with the probability

maps based on the product-Poisson or product Negative-Binomial likelihood. The

spatial structure is always dominated by the large cluster present in the north of

Table 1.2 Sensitivity analyses for spatial Bayesian analysis of liver cancer mortality among

males

Smoothed SMRs Prior 1 Prior 2 Prior 3 Prior 4 Prior 5 Prior 6

Mean 93.00 92.90 92.90 92.70 92.80 92.70

Standard deviation 23.40 23.80 23.90 24.00 24.40 24.40

Maximum 262.80 263.30 263.40 263.40 264.70 263.90

75 % quartile 104.40 103.90 103.60 103.00 103.50 102.50

Median 83.00 83.60 83.50 83.50 83.40 83.30

25 % quartile 72.60 72.20 72.60 72.20 71.80 71.80

Minimum 44.90 44.60 44.60 44.80 44.10 44.10

90 % ratio 2.65 2.70 2.71 2.69 2.73 2.74

pD 88.70 91.70 91.90 93.30 96.00 95.90

DIC 1193.20 1193.90 1193.10 1193.80 1193.60 1193.60

Spatial fraction 0.98 0.94 0.94 0.89 0.89 0.89
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Bari, although areas near the northwestern border plays now a significant role for

men. In this latter case we cannot assess the size of edge effects, as it is well known

that many analyses can be greatly altered by the inclusion of edge information [42].

As we said before, probability maps are not informative about the true level of

risk: there will always be some geographic patterns apparent to the naked eye, and

even in a fully Bayesian context it is important to assess whether these results are

due to chance or not. This explains why it is useful to supplement the information

provided in the maps by a graph showing the ranked fully Bayesian relative risk

estimates for each area with the associated 95 % posterior credible intervals

(Fig. 1.2). Higher relative risks are associated with credible intervals not including

unity, strongly confirming the evidence of geographic variation due to a cluster of

areas with significantly more cases than expected (an effect that is unlikely to be

due to sampling noise under the BYM Bayesian framework). Of course, this

conclusion follows from the combined information provided by Fig. 1.2.

1.2.5 Local Cluster Detection

As we said before in Sect. 1.1.5, cluster detection tests are concerned with local

cluster detection: they are used when there is a simultaneous interest in testing the

statistical significance of high-risk areas as well as detecting their location. The

Kulldorff–Nagarwalla (KN) scan statistic is usually the first choice: for males and

females, the most likely statistically significant clusters are reported in Fig. 1.3.

Circles are constructed so that only those that contain up to 10 % of the total

expected cases are considered. All calculations involving maximum-likelihood

ratio scan statistic were performed using the SaTScan™ software,1 version 9.1.1

Under the product-Poisson likelihood, a significant primary cluster is present for

both males and females (p ¼ 0.001), so that the presence of a large cluster located

in the north of Bari is definitely confirmed.

Table 1.3 Sensitivity analyses for spatial Bayesian analysis of liver cancer mortality among

females

Smoothed SMRs Prior 1 Prior 2 Prior 3 Prior 4 Prior 5 Prior 6

Mean 92.80 92.60 92.40 92.50 92.10 92.20

Standard deviation 24.80 25.30 26.10 25.80 26.80 26.70

Maximum 196.60 197.50 197.80 196.40 199.70 198.80

75 % quartile 101.00 101.60 100.80 100.60 100.90 100.40

Median 86.90 85.80 86.10 86.30 85.40 85.60

25 % quartile 79.90 78.90 78.50 78.90 77.30 77.80

Minimum 58.40 57.60 57.80 58.70 57.10 57.70

90 % ratio 1.90 1.94 1.93 1.87 1.97 1.93

pD 61.40 63.90 67.30 66.40 71.00 70.70

DIC 1002.00 1002.30 1001.30 1001.20 1000.10 1001.30

Spatial fraction 0.87 0.88 0.82 0.77 0.79 0.75
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The results of the Bayesian model-based cluster detection algorithm described in

Sect. 1.1.6 was obtained using version 1.2b of the software written by the

developers of the method [5]. In synthesis, the algorithm implementation focuses

on creating the matrix whose column encodes all candidate clusters and on posterior

parameter estimation and optimal cluster searches using INLA integration facilities

to make the algorithm of Sect. 1.1.6 computationally feasible. The final optimal

model is elaborated iteratively by removing all those clusters whose associated

posterior credibility intervals include the zero log-relative risks. There are several

available strategies for defining the initial collection of clusters, even though in this

example we construct a sequence of circles of increasing radii from zero to the

maximum distance between two areas, the total number of circles being set via

the n.circles parameter. A scanning window includes all those areas whose

centroid falls within a given circle, provided that the associated number of expected
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Fig. 1.2 Top: probability maps under the BYM model of the risk of liver cancer mortality in

Apulia, Italy, 2000–2005. Bottom: ranked smoothed relative risks for each area, with the

associated 95 % posterior credible intervals
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cases must not exceed 10 % of the total number of expected cases (of course, the

value of this fraction is a fully tunable parameter).

After removing those clusters whose 95 % posterior credible intervals include

zero, several decision rules are available to decide which of them should be

considered as the primary and secondary zone where raised incidence/mortality

occurs. A simulation study is provided in [5], in which the relative merits and

demerits of some possible choices are examined. Here, we consider the uncertainty

associated with posterior estimates, in the sense that cluster terms are ranked

according to the length, from shortest to longest, of 95 % posterior credible interval

of the associated cluster-specific effect aZj
. Simulation results shown in [5] indicate

that this Bayesian cluster detection procedure outperforms traditional KN statistic

in terms of correctly classified areas, even when a product Negative-Binomial

likelihood is considered. The results of primary cluster detection are shown in

Fig. 1.4, and no remarkable differences with the KN statistic output are found.

These indications may be considered worthy of further investigation and may lead

to the generation of new hypotheses concerning the origin of the disease.

1.2.6 Linking Mortality, Exposure and Hazards

The knowledge of socioeconomic factors is sometimes crucial to describe social

inequalities in health. In a disease mapping framework and in absence of individual

data, ecological or contextual measures of socioeconomic level are frequently used,

so we give some illustration of the association between liver cancer mortality and

material deprivation indicators. The hypothesis is strengthened by the existence,

well documented in literature, of inverse gradients between the socioeconomic

status (SES) and the mortality rates of numerous health outcomes. For our purposes

1000000 1100000 1200000 1300000

44
50

00
0

45
50

00
0

46
50

00
0

p=0.001

KN cluster detection: primary cluster (M)

East (UTM)

N
or

th
 (

U
T

M
)

1000000 1100000 1200000 1300000

44
50

00
0

45
50

00
0

46
50

00
0

p=0.001

KN cluster detection: primary cluster (F)

East (UTM)

N
or

th
 (

U
T

M
)

Fig. 1.3 Primary (most likely) clusters found by the Kulldorff–Nagarwall’s spatial scan statistics,

for the risk of liver cancer mortality in Apulia, Italy, 2000–2005

1 Geographical Disparities in Mortality Rates 23



a deprivation index at the municipal level will be compared, separately for both

sexes, with the smoothed SMR estimates. The deprivation index is developed by

Caranci et al. [7] for the whole national area and also separately for each Italian

region. The demographic and socioeconomic data come from the 2001 National

Population Census, conducted by the National Institute for Statistics (ISTAT). To

characterize accurately the deprivation level, the authors select five socioeconomic

and demographic variables reflecting the multiple dimensions of deprivation:

education attainment, job, housing characteristics, and family structure. More

specifically, the five selected indicators consist of 4 % and a ratio:

1. X1: % of less educated people.

2. X2: % of unemployed people.

3. X3: % of homes for rent.

4. X4: % of single-parent families.

5. X5: household crowding index (number of co-residents per 100 m2).
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Fig. 1.4 Primary clusters found by Bayesian model-based cluster detection algorithm, with n.
circles ¼ 100, for the risk of liver cancer mortality in Apulia, Italy, 2000–2005
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The variables are transformed into Z-scores to center the distribution around zero
and exclude the effect of their different variability

Zi ¼
Xi � mXi

sXi

(1.56)

where mXi
and sXi

are the regional (Apulia) mean and standard deviation,

respectively. The final index is the sum of standardized scores

index ¼
X5
i¼1

Zi (1.57)

and is classified according to the quintiles of the population. The upper part of

Fig. 1.5 shows the relationship between the deprivation index and the smoothed
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Fig. 1.5 Association between an area-specific deprivation measure and the smoothed risk of liver

cancer mortality in Apulia, Italy, 2000–2005
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SMRs, but it is not possible to identify a strong correlation between variables both

for men and for women. The pattern of dots is dispersed and without a clear slope.

Some more information can be detected by observing the lower part of Fig. 1.5:

especially for men, higher mortality risk for liver cancer is observed in the category

“most disadvantaged” even if the high variability could affect the interpretation.

The fact that the distribution of relative risks of mortality for liver cancer

exhibits a strong spatial structure might be explained in some other more

suitable ways: the differentials on mortality could be associated with other

factors besides the material deprivation. For example, urbanization may have

an impact on population health because it brings social and economic changes

that can raise risk factors associated with chronic disease. In other words, the

possible relation between the degree of urbanization and the smoothed SMR

estimates is another important aspect that must be kept into account. The

urbanization index is extracted from the database of 2001 Istat National Popu-

lation Census and has three levels: high (the most densely populated

municipalities), medium, and low.

The municipalities less urbanized are those with a higher risk of mortality for

males (Fig. 1.6), whereas no strong hypothesis of association between degree of

urbanization and mortality for liver cancer could be done for females. Surprisingly,

the areas at high risk in our analysis (the northern of the Bari area and the

municipalities belonging to the BAT province) are urbanized and advantaged.

This leads to new research directions to identify other risk factors. Linking mortal-

ity with socioeconomic variables does not help in this case also because there are

different results between males and females. The attention could be focused on the

occupational factors which expose the two sexes differently to the risk of liver

cancer. For example, the exposure to vinyl chloride, a chemical used in making
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some kinds of plastics, raises the risk of hepatocellular cancer. This is only a

suggestion as the scope of this work is to provide an overview of the methods

used to analyze the spatial distribution of a disease and not to investigate its

etiology.

1.3 Conclusions

This paper reviews somemethods in the geographical analysis of diseases. Our focus

was on Bayesian methods, which allow statistical inference in complex models for

spatial dependence. We also discussed a number of issues relating to Bayesian

spatial disease modeling, for example the sensitivity of posterior inference to prior

setup, as well as mathematical difficulties inherent to formal Bayesian methods for

model comparison when applied to spatial models for aggregated data. Of course,

disease mapping studies are of an observational type, and we must be very careful to

the danger ofmisinterpretation of the results, especially when the confounding effect

of area-specific ecological variables such as deprivation and socioeconomic status

are examined. Building an aggregate model from the individual model is an impor-

tant step towards an understanding of the disease etiology, but potential sources of

ecological bias should always be suspected. The long latency of some pathologies,

and the migration problem is another important issue that could lead to misleading

interpretations.

We also considered the problem of identifying disease clusters of neighboring

areas sharing a raised disease risk. With the help of newly designed INLA numerical

techniques for Bayesian posterior computations, we were able to provide a new

method for scanning spatial disease which provide valid inferences when

overdispersion is present, due to the fact that risk levels of neighboring areas will

tend to be positively correlated as they share a number of spatially varying

characteristics. In conclusion, we found a great appeal for the application of Bayesian

approaches to the analysis of aggregated spatial data, and the development of those

ideas will likely result in exciting advancements over the next years in the field of

spatial epidemiology.
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2. Besag, J.E., York, J.C., Mollié, A.: Bayesian image restoration with two applications in spatial

statistics (with discussion). Ann. Inst. Stat. Math. 43, 1–59 (1991). doi:10.1007/BF00116466

3. Bernardinelli, L., Pascutto, C., Best, N.G., Gilks, W.R.: Disease mapping with errors in

covariates. Stat. Med. 16, 741–752 (1997). doi:10.1002/(SICI)1097-0258(19970415)

16:7<741::AID-SIM501>3.0.CO;2-1

4. Besag, J., Kooperberg, C.: On conditional and intrinsic autoregression. Biometrika 82,

733–746 (1995). http://www.jstor.org/stable/2337341

5. Bilancia, M., Demarinis, G.: Bayesian scanning of spatial disease rates with INLA (submitted)

1 Geographical Disparities in Mortality Rates 27

http://dx.doi.org/10.1007/BF00116466


6. Browne, W., Draper, D.: A comparison of Bayesian and likelihood-based methods for fitting

multilevel models. Bayesian Anal. 1(3), 473–514 (2006). doi:10.1214/06-BA117

7. Caranci, N., Costa, G.: Un indice di deprivazione a livello aggregato da utilizzare su scala

nazionale: giustificazioni e composizione dell”indice. In: Costa, G., Cislaghi, C., Caranci, N.

(eds) Disuguaglianze sociali di salute. Problemi di definizione e di misura. “Salute e Società”
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Chapter 2

A Fuzzy Approach to Ward’s Method

of Classification: An Application Case

to the Italian University System

Francesco Campobasso and Annarita Fanizzi

Abstract A great part of statistical techniques has been thought for exact numeri-

cal data, although available information is often imprecise, partial, or not expressed

in truly numerical terms. In these cases the use of fuzzy numbers can be seen as an

appropriate way for a more effective representation of observed data. Diamond

introduced a metrics into the space of triangular fuzzy numbers in the context of a

simple linear regression model; in this work we suggest a multivariate generaliza-

tion of such a distance between trapezoidal fuzzy numbers to be used in clustering

techniques. As an application case of the proposed measure of dissimilarity, we

identify homogeneous groups of Italian universities according to graduates’ opinion

(itself fuzzy) on many aspects concerning internship activities, by disciplinary area

of teaching. Since such an opinion depends not only on the quality of internships,

but also on the local context within which the activity is carried out, the obtained

clusters are analyzed paying attention particularly to the membership of each

university to Northern, Central, or Southern Italy. [This work is the result of joint

reflections by the authors, with the following contributions attributed to

Campobasso (Sects. 2.2, 2.3.2 and 2.4), and to Fanizzi (Sects. 2.1, 2.3 and 2.3.1).]
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2.1 Introduction

In most of empirical contexts the data obtained for decision making are only

approximately known [1].

Modalities of quantitative variables are usually given as single exact numbers,

although there are several sources of imprecision and uncertainty in their measure-

ment, which prevent a researcher from obtaining the corresponding effective

values; categories of qualitative variables are verbal labels of sets with vague

borders and are often expressed in quantitative terms, which represent only accu-

mulation values on an ideal continuum along which such categories are distributed.

Moreover usual descriptive statistics provide important indications about the

intensity of a certain phenomenon, but they generate an unavoidable loss of

information on the collected data. For example the mean represents an ideal

summary value even if it ignores the variability of the observed population.

In 1965 Zadeh [12] introduced the fuzzy set theory in order to manage more

appropriately phenomenons with uncertain borders [2, 11]; in this work we use

trapezoidal fuzzy numbers, which allow us to obtain a more informative synthesis

of the collected data.

2.2 A Generalization of Diamond’s Distance

Diamond [9] introduced a metric into the space of triangular fuzzy numbers.

A triangular fuzzy number ~X ¼ ðx; xL; xRÞT for the variable X is characterized by

a function m ~X : X ! 0; 1½ �, like the one represented in Fig. 2.1, that expresses the

membership degree of any possible value of X to ~X.
The accumulation x value is considered the core of the fuzzy number, while

x ¼ x� xL and �x ¼ xR � x are considered the left spread and the right spread,

respectively. Note that x belongs to ~Xwith the highest degree (equal to 1), while the

other values included between the left extreme xL and the right extreme xR belong to
~X with a gradually lower degree.

According to Diamond’s metric, the distance between ~X and ~Y is:

dð ~X; ~YÞ2 ¼ d ðx; xL; xRÞT; ðy;yL;yRÞT
� �2 ¼ ðx� yÞ2 þ ðxL � yLÞ2 þ ðxR � yRÞ2:

A generalization of such a distance to trapezoidal fuzzy numbers in a multidi-

mensional context is now used as a dissimilarity measure for hierarchical cluster

techniques.

A trapezoidal fuzzy number ~X ¼ ðx1; x2; xL; xRÞT for the variable X is

characterized by a function m ~X : X ! 0; 1½ �, like the one represented in Fig. 2.2,

that expresses the membership degree of any possible value of X to ~X and fits to

represent statements like “between x1 and x2” [7].
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In particular the values in the interval ðx1; x2Þ are considered the core of the fuzzy
number, while x ¼ x1 � xL and �x ¼ xR � x2 are considered the left spread and the

right spread, respectively. Note that the values included between x1 and x2 belong to
~Xwith the highest degree (equal to 1), while the other values lying before x1 or after

x2 belong to ~X with a gradually lower degree.

As Diamond himself suggested, it is possible to extend the distance introduced

for triangular fuzzy numbers to the space of trapezoidal ones by the following

simple modification:

dð ~X; ~YÞ2 ¼ d ðx1; x2; xL; xRÞT; ðy1; y2; yL; yRÞT
� �2

¼ ðx1 � y1Þ2 þ ðx2 � y2Þ2 þ ðxL � yLÞ2 þ ðxR � yRÞ2:

Let’s assume now to observe k variables, whose modalities can be expressed as

in Fig. 2.2, in a collective of n individuals. Let ~Xi ¼ ðx1i; x2i; xLi; xRiÞT be the

k-dimensional fuzzy vector of ith considered unit, where x1i , x2i , xLi and xRi are
k-dimensional vectors of the two cores, the left extremes and the right extremes,

respectively.

Fig. 2.1 Representation of a

triangular fuzzy number

Fig. 2.2 Representation of a

trapezoidal fuzzy number
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We propose the following generalization of Diamond’s distance:

Dð ~Xi; ~XjÞ¼
Xk
h¼1

dð~xih;~xjhÞ2 ¼
Xk
h¼1

d ðx1ih;x2ih; xLih; xRihÞT; ðx1jh;x2ih;xLjh; xRjhÞT
� �2

¼
Xk
h¼1

ðx1ih� x1jhÞ2þðx2ih� x2jhÞ2þðxLih� xLjhÞ2þðxRih� xRjhÞ2
h i

; i; j¼ 1; :::;n

which still satisfies the required conditions of a distance measure.

2.3 The Use of the Proposed Distance

in Hierarchical Clustering

The proposed generalization of Diamond’s distance can be used as a measure of

dissimilarity between groups in hierarchical clustering. In a previous work [3] we

adopted the centroid method; now we implement the Ward’s method, which

minimizes the total within-cluster variance, by means of Editor Matlab.
As the pair of clusters with minimum distance are merged at each step, such a

hierarchical procedure finds the pair of clusters that leads to minimum increase in

total within-cluster variance. At the initial step, all clusters are singletons (clusters

containing a single point), so that the initial distances are defined to be the squared

Diamond’s distance between points.

It can be shown that the minimization of the increase in the total within-cluster

variance occurs by merging at each step the two clusters which present the lowest

among the following distances (i.e. the so called merging distance):

Dð ~Xi; ~XjÞ ¼ ninj
ni þ nj

Xk
h¼1

dð~xih; ~xjhÞ2: (2.1)

The expression (2.1) corresponds to the squared distance between the centroids
~Xi and ~Xj of the ith and in the jth group, respectively, multiplied by a quantity which

is a function of the numbers ni and nj of units of the two groups themselves.

The optimal number g of groups, in which the collective should be divided, is

detected in correspondence of the transition from g to g�1 groups, reflecting the

maximum relative increase:

dg ¼ Dg�1 � Dg

Dg
; g ¼ 2; . . . ; n

between merging distances. In this case, in fact, the two candidates among g groups
are too heterogeneous with each other to be aggregated.
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In order to evaluate the goodness of the obtained partition, we compute a fuzzy

version of R2 index. Such a fuzzy clustering index can be still obtained subtracting

from one the ratio between the within sum of squares and the total sum of squares,

clearly expressed in accordance with the introduced metrics:

FCI ¼ 1�

Pg
j¼1

Pnj
i¼1

Pk
h¼1

dð~xijh � �xjhÞ2

Pn
i¼1

Pk
h¼1

dð~xih � �xhÞ2
;

where �xjh represent the average of the hth variable in the jth group, while �xjh is the
total average of the hth variable. This index provides a measure of variability

explained by the obtained partition: the closer it is to one, the better the model

fits the observed data.

The just described clustering procedure has been developed through theMatLab
Editor. In particular, on the basis of the matrices of the centers x1 and x2, the left

extremes xL and the right extremes xR as input parameters, the implemented

function provides an output matrix, wherein the first and the second elements of

the jth row show the groups (or singletons) aggregated at the jth iteration, while the
next three elements show the merging distance, the number of groups identified

until the jth iteration and the relative increase between consecutive merging

distances, respectively.

At each iteration the minimization of the expression (2.1) allows us to find the

lowest within sum of squares arising from every possible combination of two

groups among all:

it¼it+1;

e¼[1:nz];

Z(:,1)¼e’;

Comb¼nchoosek(e,2);

nc¼size(Comb);

ncc¼nc(1,1);

j¼1;
dw¼0;

while(j<¼ncc)

c¼Comb(j,1);

r¼Comb(j,2);

nc¼Z1(c,3);

nr¼Z1(r,3);

h¼1;

d¼0;

while (h<¼k)

d¼d+(((Z1(c,h+3)-Z1(r,h+3))^2)+((Z2(c,h)

-Z2(r,h))^2)
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+((ZL(c,h)-ZL(r,h))^2)+((ZR(c,h)-ZR(r,h))^2));

h¼h+1;

end;

dw¼[dw,(d)*((nc*nr)/(nc+nr))];

j¼j+1;

end.

At this point the two groups which determine the minimum increase in the total

within-cluster variance are merged and the new generated group is involved in the

form of its centroid in subsequent iterations:

dw¼dw(:,2:end);

[dmin,imin]¼min(dw);

distward¼[distward, dmin];

c¼Comb(imin,1);

r¼Comb(imin,2);

nc¼Z(c,3);

nr¼Z(r,3);

raggr¼[it, Z(c,2),Z(r,2)];

aggr¼[aggr; raggr];

xm1¼[1, it, (nc+nr)];

xm2¼0;

xmL¼0;

xmR¼0;

j¼1;

while (j<¼k)

xm1¼[xm1,((nr*Z(r,j+3))+(nc*Z(c,j+3)))/(nr+nc)];

xm2¼[xm2,((nr*Z2(r,j))+(nc*Z2(c,j)))/(nr+nc)];

xmL¼[xmL,((nr*ZL(r,j))+(nc*ZL(c,j)))/(nr+nc)];

xmR¼[xmR,((nr*ZR(r,j))+(nc*ZR(c,j)))/(nr+nc)];

j¼j+1;

end;

Z1¼[Z1(1:c-1,:); xm1; Z1(c+1:r-1,:); Z1(r+1:end,:)];

Z2¼[Z2(1:c-1,:); xm2(:,2:end); Z2(c+1:r-1,:); Z2(r+1:end,:)];

ZL¼[ZL(1:c-1,:); xmL(:,2:end); ZL(c+1:r-1,:); ZL(r+1:end,:)];

ZR¼[ZR(1:c-1,:); xmR(:,2:end); ZR(c+1:r-1,:); ZR(r+1:end,:)];

Therefore the implemented hierarchical procedure generates all possible

partitions of the collective from n to 2 groups.
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2.3.1 An Application Case to the Italian University System

The university system can fully respond to its responsibility of promoting develop-

ment only by establishing a connection with manufacturing companies and other

institutions of the territory in which it operates. In this perspective, the growth of

human capital cannot be reduced to mere relationship between teacher and student

established in a classroom, but needs new educational models, alternative to the

pure transfer of theoretical knowledge.

In an effort to encourage the organization of learning communities, university

regulations allow their students to gain a training experience directly in operational

structures. The aim pursued by such regulations is to engage students to adapt in

various contexts and to solve operational problems that will occur more frequently

during their working life; moreover, the direct experimentation of the theoretical

skills stimulates the academic system to recognize the practical needs of the

productive system, encouraging the development of new skills.

The effectiveness of internship activities actually organized can be measured not

only on the basis of objective data, such as by monitoring how many graduates have

pursued the goal of job placement as a result of the gained experience, but also on

the basis of subjective data, such as by analyzing the assessments of satisfaction

expressed by each of them in relation to that experience.

In this work we analyze the judgments provided by students of Italian

universities on the quality of internship activities.

The opinions on internship are collected by the AlmaLaurea consortium in a

sample survey specifically conducted between 2 and 23 April 2008 (i.e., between 16

and 28 months after graduation). The reference population is represented by 61,347

graduates in calendar year 2006 who said they supported an internship approved by

the university, of which 58,904 were potentially reached by e-mail.

The survey, carried out by subjecting 58,904 respondents to a questionnaire

prepared for this purpose, is concluded with a response rate of 42.8 %. Note that the

valid interviews were weighted by the consortium according to specific

characteristics of the reference population correlated with the studied phenomenon,

such as the course of study, the university and the faculty of enrollment, gender and

so on, in order to avoid as far as possible that the sample is distorted; in particular

the answers provided by every graduate interviewed were multiplied by a weighting

factor equal to the ratio between the theoretical proportion of the joint distribution

(note) of the aforementioned features found in the reference population and the

proportion found in the corresponding category.

Respondents express their opinion on a ordinal scale formed by the following

categories: “unquestionably unsatisfied,” “more unsatisfied than satisfied,” “more

satisfied than unsatisfied,” “unquestionably satisfied.” As both Chiandotto and Gola

[8] and Lalla et al. [10] proposed a quantification of such an ordinal scale,

assigning, respectively, 2, 5, 7, and 10 to the above-mentioned categories, we

propose to use the trapezoidal numbers, whose membership function is represented

in Fig. 2.3: in particular “unquestionably unsatisfied” is treated as the trapezoidal
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fuzzy number “between 1 and 2,” “more unsatisfied than satisfied” as “between 4

and 5,” “more satisfied than unsatisfied” as “between 7 and 8” and “unquestionably

satisfied” as the triangular fuzzy number “about 10.”

In so doing, rather than establishing an unrealistic one-to-one correspondence

between verbal terms and numerical values, we associate with each verbal term an

interval represented by a neighborhood of the assigned value, the amplitude of

which varies depending on the intensity of the expressed judgment. Note that the

proposed association of fuzzy numbers is shifted to the right in the interval (1, 10),

according to the natural tendency of respondents to medium-high ratings, and also

that the values assigned to the two central categories are very close.

2.3.2 Homogeneous Groups of Universities According
to the Quality of Internship Activities

At this stage of the work we aim to identify, for each disciplinary area of teaching,

homogenous groups of universities according to the opinions (themselves fuzzy)

expressed by interviewed graduates on the following aspects concerning internship

activities: organization, guidance activities, clearness of formative goals, tutor’s

helpfulness and competence, autonomy in carrying out the assigned tasks, utility for

personal training, prestige of the company and opportunity to convey something

useful to colleagues of the company. In particular only those aspects on which the

expressed opinions are less correlated with each other (Table 2.1) are taken into

account, so that the cluster analysis can be conducted more appropriately: guidance

activities, tutor’s competence, utility for professional training, prestige of the

company, autonomy in carrying out the assigned tasks and opportunity to convey

something useful to colleagues of the company.

A university with less than 15 respondents by single disciplinary area is

discarded as it is deemed unrepresentative; if instead the respondents are over 15,

their answers can be summarized by an average fuzzy trapezoidal vector (which is

more informative than the simple centroid of the collected data).

Fig. 2.3 Fuzzy numbers used to express the four response categories
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Table 2.2 Composition of the obtained groups, by single disciplinary area of teaching

Economics and statistics Geo-biology

Less satisfied

respondents

More satisfied

respondents

Less satisfied

respondents

More satisfied

respondents

Bari Bologna Bari Calabria

Cagliari Ferrara Bologna Camerino

Cassino Modena e Reggio Emilia Cagliari Lecce

Catania Padova Catania Messina

Firenze Siena Ferrara Modena e Reggio

Emilia

Messina Torino Firenze Parma

Perugia Venezia Cà Foscari Genova Perugia

Roma La Sapienza Verona Padova Roma La Sapienza

Trieste Trento Sassari Trieste

Udine Piemonte Orientale Siena Venezia Cà Foscari

Roma Tre Torino Catanzaro

Udine Piemonte Orientale

Basilicata

FCI ¼ 0.72 FCI ¼ 0.55

Engineering Literary sciences

Less satisfied

respondents

More satisfied

respondents

Less satisfied

respondents

More satisfied

respondents

Bologna Calabria Bari Calabria

Cagliari Cassino Bologna Catania

Catania Messina Cagliari Firenze

Ferrara Modena e Reggio Emilia Ferrara Parma

Firenze Salerno Genova Siena

Genova Polytechnic of Torino Lecce Torino

Lecce Reggio Calabria Padova Udine

Padova Roma Tre Perugia Viterbo Tuscia

Perugia Roma La Sapienza Trento

Roma La Sapienza Salerno

Siena Venezia Cà Foscari

Trieste Roma Tre

Udine

Trento

FCI ¼ 0.50 FCI ¼ 0.57

Medicine Political and social sciences

Less satisfied

respondents

More satisfied

respondents

Less satisfied

respondents

More satisfied

respondents

Bari Ferrara Bari Bologna Siena

Bologna Firenze Catania Cagliari Torino

Catania Modena e Reggio

Emilia

Ferrara Calabria Trieste

Genova Padova Firenze Cassino Genova

Messina Perugia Padova Lecce Basilicata

Parma Siena Roma La Sapienza Messina Verona

(continued)
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Our attention is specifically directed to the most common disciplinary areas in

the Italian academic system: economics and statistics, geo-biology, engineering,

literary sciences, medicine, political, and social sciences. For each of the latter we

obtain a bipartition of the collective (universities with more or less satisfied

respondents) characterized by an FCI always greater than 0.5; in particular such

an index exceeds 0.7 in the case of economics and statistics and also of medicine,

maybe because the correspondent graduates expressed their opinions in a more

discordant way than usual (Table 2.2).

Respondents are generally more satisfied in the universities located in Central

and Northern Italy, with a few notable exception: the internship activities organized

by the University of Calabria seem to be appreciated whatever the disciplinary area

of teaching; conversely the activities supported by the University of Roma La

Sapienza are considered not very satisfactory, except those relating to the geo-

biological area.

Focusing on engineering, respondents express a greater satisfaction coming from

small universities than from big ones (except for the Polytechnic of Torino). This

probably happens because the latter have higher expectations and are more critical.

Table 2.3 shows that the final bipartition of universities for each disciplinary area

is determined on the basis of the maximum relative increase in the distance between

groups, formed throughout the entire agglomeration procedure.

The comparison between trapezoidal fuzzy vectors can be complicated with the

naked eye, due to the composite nature of the correspondent components. For this

purpose it is appropriate to identify a synthetic value of every component by means

of a process called defuzzification.

Among the available methods in the statistical literature, we select the graded

mean integration representation [4] for its simplicity, accuracy, and adaptability to

Table 2.2 (continued)

Medicine Political and social sciences

Less satisfied

respondents

More satisfied

respondents

Less satisfied

respondents

More satisfied

respondents

Roma La Sapienza Torino Molise Salerno Sassari

Chieti e Pescara Trieste Roma Tre Trento Udine

Catanzaro Udine Chieti e Pescara

Verona Perugia

Foggia Venezia Cà Foscari

Modena e Reggio

Emilia

Piemonte Orientale

Milano IULM

Roma LUMSA

Viterbo Tuscia

FCI ¼ 0.71 FCI ¼ 0.51
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Table 2.3 Distance between groups formed in the last steps of the agglomeration procedure, by

disciplinary area of teaching

Iteration Number of groups (g) Dg dg
Economics and statistics . . . . . . . . . . . .

15 6 2.72 0.24

16 5 3.38 0.64

17 4 5.56 1.01

18 3 11.15 0.42

19 2 15.82 3.46

20 1 70.59 –

Engineering . . . . . . . . . . . .

16 6 3.59 0.55

17 5 5.55 0.07

18 4 5.96 1.88

19 3 11.21 0.38

20 2 15.49 2.27

21 1 50.65 –

Geo-biology . . . . . . . . . . . .

19 6 4.54 0.82

20 5 8.27 0.07

21 4 8.87 0.16

22 3 10.30 0.18

23 2 12.17 1.50

24 1 30.39 –

Literary sciences . . . . . . . . . . . .

15 6 3.62 0.01

16 5 3.66 1.57

17 4 9.41 0.15

18 3 10.79 0.30

19 2 13.98 2.18

20 1 44.46 –

Medicine . . . . . . . . . . . .

14 6 5.49 0.26

15 5 6.90 0.02

16 4 6.75 0.06

17 3 7.15 1.60

18 2 18.59 2.15

19 1 58.63 –

Political and social sciences . . . . . . . . . . . .

26 6 7.90 0.58

27 5 12.45 0.21

28 4 15.01 0.20

29 3 18.05 0.70

30 2 30.61 1.16

31 1 66.25 –
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trapezoidal fuzzy numbers [5, 6]. In particular the GMIR of a number ~X coincides

with the following form of an expected value:

Eð ~XÞ ¼ xL þ 2x1 þ 2x2 þ xR
6

:

We can see it as a weighted mean value, where central components have double

the weight of the exterior ones.

Table 2.4 shows trapezoidal defuzzificated average vectors in the two final

groups of each disciplinary area.

Whatever the disciplinary area of teaching, the main difference between one

group and the other occurs in the satisfaction both with the tutor’s competence and

with the guidance activities to internship (availability of information, help in the

choice).

Conversely the satisfaction both with the prestige of the company and with the

opportunity to convey something useful to colleagues seems not to contribute to the

identification of the two groups: more specifically respondents’ opinion remains in

any case high on the first aspect and low on the second one. The last circumstance

confirms the difficulties that trainees meet to get involved during the internship

experience.

The bipartition of universities is more pronounced relatively to medicine and to

economics and statistics rather than to other disciplinary areas, due to the discor-

dance in respondents’ opinions on utility for professional training (and also on

autonomy in the latter case).

2.4 Conclusions

In this work, looking for an appropriate solution to the problem of partitioning a

collective on which features with uncertain borders are observed, we propose a

variant of Ward’s method.

The operational aspects of such a clustering procedure, founded on a generali-

zation of Diamond’s distance to trapezoidal fuzzy vectors and developed through

the MatLab Editor, are examined within a classification of Italian universities

which we carry out on the basis of graduates’ judgments (collected by the

AlmaLaurea consortium in a sample survey between 2 and 23 April 2008) on

internship activities.

Respondents express their opinion on a ordinal scale formed by categories, to

each of which we associate an interval of values rather than establish an unrealistic

one-to-one correspondence between verbal terms and exact numerical values.

Whatever the disciplinary area of teaching taken into account (economics and

statistics, geo-biology, engineering, literary sciences, medicine, political and social
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sciences), we obtain a bipartition of universities as a result of the analysis; such a

bipartition is characterized by a fuzzy version of R2 index always greater than 0.5

and even higher in the case of medicine and economics and statistics, maybe due to

a more marked discrepancy in the correspondent graduates’ opinions. In overall

terms it can be stated that respondents are more satisfied in the universities located

in Northern and Central than in Southern Italy, with a few notable exception.

The average profile of each of the two final groups by disciplinary area is

expressed by a trapezoidal fuzzy vector that might be defuzzificated at this stage

of the analysis (for example through the so-called graded mean integration repre-

sentation) in order to facilitate comparisons between one and the other. The main

difference in such comparisons generally occurs in the satisfaction both with the

tutor’s competence and with the guidance activities to internship; conversely, the

satisfaction both with the prestige of the company and with the opportunity to

convey something useful to colleagues seems not to contribute to the identification

of the two final groups.

Evidently the obtained results depend on the adopted distance between observa-

tion units; in the future we will experiment with other distances as well as with other

agglomerative methods (respect to the Ward one), in order to refine the achieved

partition.
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Chapter 3

Geostatistics and the Role of Variogram

in Time Series Analysis: A Critical Review

Sandra De Iaco, Monica Palma, and Donato Posa

Abstract Exploratory data analysis and prediction in time series modeling are not

typically based on geostatistical techniques, although in several cases applying

these techniques might be convenient.

This paper aims to illustrate the usefulness of using Geostatistics and its basic

tool, such as the variogram, in time series, especially when an explicit model for the

process is not an important goal of the analysis. Moreover, the main differences

between the time-domain approach and Geostatistics are highlighted throughout the

paper. In order to underline the role of the variogram for modeling and prediction

purposes, several theoretical aspects, such as interpolation of missing values,

temporal prediction, nonparametric estimation, and their computational problems,

are faced through an extensive case study regarding an environmental time series. A

modified version of GSLib routine for kriging is suitably developed in order to

define appropriate temporal search neighborhoods for missing values treatment and

prediction.

Keywords ARMAmodel •Kriging • Linear predictors • Nonparametric estimation •

Time series • Variogram

3.1 Introduction

In order to describe a stochastic process, one might choose among a simple

stochastic representation, a spectral representation or a closed form of the covari-

ance function or variogram. In the case where a simple stochastic representation is

not available, it is convenient to deal with a continuous covariance function or even
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better with a variogram. Linear Geostatistics—variography and kriging—is clearly

linked to time series analysis, especially to the time-domain approach where

Box–Jenkins methodology [5] is commonly applied.

According to this last approach, it is conventional to inspect the sample autocor-

relation function (ACF) and the partial autocorrelation function (PACF), and to

infer a model for the process under study. It is well-known that Box–Jenkins

techniques for time series analysis essentially use the ACF and PACF for modeling

and prediction purposes. In contrast to the use of the ACF and PACF, in

Geostatistics the explicit modeling stage is omitted and the variogram can be

considered a basic tool to face a variety of inferential problems [7, 26, 37]. The

lack of a modeling stage is due to the types of problems Geostatistics was designed

to solve: in mining [31], for example, the value of the ore grade is more interesting

than the parametric model of the process that produces it. On the other hand,

Box–Jenkins analysis was designed to model economic and industrial processes,

for which understanding and controlling the process are relevant: this is why, in the

time-domain approach, an explicit model is an important goal of the analysis.

Unlike Geostatistics, time series analysis has paid little attention to the

variogram; moreover, most of the well-documented and commonly used software

on time series analysis does not provide variogram-based predictors in order to face

and solve computational aspects related to inferential problems.

However, in the literature, the use of the variogram in time series analysis has

been clarified in different ways: Cressie [9] furnishes a graphical procedure for

determining nonstationarity in time series analysis; Haslett [20] illustrates the use of

the variogram in a time series context and extends the options for its estimation; Ma

[34] uses the variogram in construction of stationary time series models, in particu-

lar, the author introduces a class of stationary covariance functions, derived from the

intrinsically stationary variogram; this class is flexible enough to explain both the

short- and the long-term correlation structure of a time series; Ma [35] characterizes

a stochastic process having orthogonal increments on the real line in terms of its

variogram or its construction; Khachatryan and Bisgaard [28] discuss the variogram

as a graphical tool for assessing stationarity in time series analysis. Moreover, the

same authors [3] derive a general expression for asymptotic confidence intervals for

variogram based on the Delta method for stationary time series. It is also worth

citing some recent contributions on strict conditionally negative definiteness and on

the use of variogram for spatio-temporal predictions [15, 16, 18].

As it will be highlighted hereafter, different theoretical and practical reasons

might justify the use of the variogram even in time series analysis.

The aim of this paper is to enlarge the use of variogram-based geostatistical

techniques to analyze time series, not necessarily equally-spaced over time, in order

to (a) identify trends and periodicity exhibited by data, (b) describe the regularity of

temporal data, (c) estimate missing values, (d) make predictions, (e) estimate the

distribution function.

After a brief overview on stochastic processes and stationarity, differences and

analogies between time-domain approach and Geostatistics have been presented.

Moreover, the role of variogram in time series analysis has been focused and
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discussed through a case study, where predictions, interpolation of missing values,

and nonparametric estimation have been faced. Regarding the computational aspects,

a modified version of the GSLib routine “KT3D” [13], named “KT3DP,” has been

used. This last routine has been suitably developed in order to define appropriate

temporal search neighborhoods for interpolation and prediction purposes.

3.2 Stochastic Processes

The sequence of observations constituting the time series for statistical analysis

may often be considered as a sampling at consecutive (usually, but not necessarily

equally-spaced) time points of a much longer sequence of random variables,

denoted as Xt; t 2 T , where T is the time domain. It is frequently convenient to

treat this longer sequence as infinite. Such a sequence of random variables is known

as stochastic process with a discrete time parameter. A stochastic process of a

continuous time parameter t can be defined for 0bt<1 or �1<t<1. A sample

from such a process could consist of observations at a finite number of times, or it

could consist of a continuous observation over an interval of time.

In the literature, there has been a revived interest in continuous-time processes,

which have also been utilized very successfully for modeling irregularly-space data

[24] or when the physical model takes the form of a stochastic differential equation

[21] or with the aim to develop spatio-temporal random fields [36]. Moreover, a

stochastic process of a discrete time parametermay often be thought of as a sampling

at equally-spaced time points of a stochastic process of a continuous time parameter.

3.2.1 Basic Notions

Let Xt; t 2 Tf g be a real-valued stochastic process over a temporal domain T � R,
with covariance, variogram and ACF defined, respectively, as follows:

C t1; t2ð Þ ¼ E Xt1 � E Xt1ð Þð Þ Xt2 � E Xt2ð Þð Þ½ �; t1; t2 2 T

g t1; t2ð Þ ¼ 0:5Var Xt1 � Xt2½ �; t1; t2 2 T

r t1; t2ð Þ ¼ C t1; t2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xt1ð ÞVar Xt2ð Þp ; t1; t2 2 T:

Techniques, collectively known as time series analysis, have their foundations in

the theory of stationary processes [57]. In particular, a stochastic process

Xt; t 2 Tf g is strict stationary if the finite-dimensional distributions are invariant

under an arbitrary translation of the time points. Second-order stationarity and

intrinsic stationarity are usual work hypothesis of a stochastic process in terms of

the covariance function (or ACF) and the variogram, respectively. The stochastic
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process Xt; t 2 Tf g is second-order stationary if its covariance C t1; t2ð Þ depends

solely on the temporal lag t1 � t2ð Þ and its expected value is constant. Similarly, the

stochastic process Xt; t 2 Tf g is intrinsically stationary if its variogram g t1; t2ð Þ
depends solely on the temporal lag t1 � t2ð Þ and the expected value of the difference
Xt1 � Xt2ð Þ is constant.
Historically, the study of second-order stationary processes originated in the

study of Gaussian processes, for which second-order stationarity entails strict

stationarity. This is not surprising, considering how much of applied probability

and statistics has its origins in the study of Gaussian random variables. Neverthe-

less, the stationarity hypothesis is not without any theoretical justification: many

processes—positive recurrent Markov chains and certain diffusion processes

among them—exhibit limiting stationary behavior.

3.2.2 Alternatives in Stochastic Representation

A stationary process Xt; t 2 Tf g might be described through a simple stochastic

representation (as for the stationary discrete-time autoregressive and moving aver-

age time series—Sect. 3.3.2), a spectral representation or a closed form of the

covariance function or variogram.

In the discrete case, the well-known general linear model of a process X, with
zero expected value, is given as

Xt ¼
X1
i¼1

yiZt�1; (3.1)

where Z is a purely random process (often called white noise); by analogy, one

could define the general linear model in continuous time, that is

Xt ¼
Z 1

0

hðuÞZ t� uð Þ du; (3.2)

where Z is a continuous white noise and h �ð Þ is an absolutely integrable weight

function. Although it turns out to be a useful mathematical construction for some

theoretical and practical purposes, there has been a historical debate on whether it is

possible to think of a continuous white noise, whose ACF is discontinuous (1 in

zero and 0 otherwise), and whose variance is not finite.

Moreover, by recalling the spectral representation theorem, a stationary process

X can be written in the form of the following Fourier–Stieltjes integral:

Xt ¼
Z 1

�1
eiltZ ðduÞ; (3.3)

where Z is an orthogonal random spectral measure and i is the unit pure imaginary

number.
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If a simple representation of the stochastic process is not available or it cannot be

derived from physical laws or previous experiences, dealing with a continuous

covariance function or even better with a variogram is convenient. In the literature,

there are wide classes of covariance functions and variograms [29, 50, 56], which

are characterized by different properties in terms of behavior at the origin or to

infinity.

As it will be clarified hereafter, estimating and modeling the variogram are

crucial steps of traditional structural analysis, since the variogram model might

be used for prediction purposes. Similarly to spatial analysis, the variogram model

might then be used for temporal prediction which could be performed through

several forms of interpolators [38, 41, 42]. Indeed, there are two developments that

lead to the same functional form: radial basis functions and the regression method

known as kriging. The key of the interrelationship lies in the positive definiteness of

the kernel function [43].

3.3 Time Series Analysis Versus Geostatistics

Both time series analysis and Geostatistics provide some tools and techniques for

analyzing second-order stationary stochastic processes. Hence, it is interesting to

propose a comparison between them.

Time series analysis may be approached through the frequency domain, in which

case it is called harmonic analysis [4], or spectral analysis [19, 23, 48] or through

the time-domain, in which case the Box–Jenkins methodology is commonly applied

[5]. On the other hand, Geostatistics may be approached through the structural

analysis often used in multidimensional space [7, 26, 37].

It is shareable that time-domain approach has some elements in common with

Geostatistics. For this reason, some details on similarities, as well as dissimilarities,

between linear Geostatistics—variography and kriging—and the time-domain

approach of time series analysis are presented in the following.

3.3.1 General Similarities and Dissimilarities

In time-domain approach and according to Box–Jenkins techniques for time series

analysis, it is conventional to inspect the ACF and the PACF, and to infer a model

for the process under study. In other words, the ACF and PACF are used for

modeling and prediction purposes. Similarly, in Geostatistics, prediction is directly

based on the correlation structure or variogram; however, the explicit modeling

stage is commonly omitted.

The greatest difference between Geostatistics and the time-domain approach is

that this last approach works essentially in one dimension and it is based on a

fundamental property of time, that is the temporal order; on the other hand,
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Geostatistics applies to multiple dimensions. This is convenient when the data have

a spatio-temporal structure; in this case Geostatistics offers a theoretical basis, not

only for a temporal study, but for a more general space–time analysis [8, 12, 30].

Moreover, in a multiple dimension representation, time series values can be

interpreted as a finite realization of a random field X anchored to different time

units (hour, day, week, month, year). For example, an hourly time series available

for a year might be viewed as a realization of X ðh; wÞ, where h ¼ 1; 2; . . . ; 168
identifies the hour within the week and w ¼ 1; 2; . . . ; 52 the week within the year,

or as a realization of X ðh; w; dÞ, where h ¼ 1; 2; . . . ; 24 identifies the hour within
the day, w ¼ 1; 2; . . . ; 52 the week within the year and d ¼ 1; 2; . . . ; 7 the day of

the week. Such a representation on a two- or three-dimensional domain might be

useful for missing values analysis or to study anisotropies and/or periodicities along

different patterns.

In addition, time series approach is usually based on the analysis of regularly

spaced data, where the regular spacing of the data corresponds sometimes to the

unit time interval. The matter of data spacing is concerned with the distinction

between discrete and continuous processes. Although, within the Box–Jenkins

scheme, it is possible to model a temporal process as continuous by using an

appropriate linear differential equation, Geostatistics avoids this problem by

treating any process as continuous and modeling the variogram as a continuous

function.

3.3.2 Approaches in Problem Solving

Both time-domain approach and geostatistical techniques face the same classes of

problems, such as exploratory data analysis, modeling and prediction [51].

Exploratory data analysis is often useful to analyze a process in detail and

decide which kind of approach is more appropriate, or to solve problems of

classification and recognition. In Geostatistics, the variogram provides such a

characteristic, while in Box–Jenkins analysis the ACF and the PACF play this role.

In modeling, the goals include understanding the nature of the process,

controlling the process by sequential decisions, filtering the process to rid it of

noise and predicting unknown values of the process. In this case, an explicit

parametric expression of the process is required: the form of the model is chosen

on the basis of some structural characteristics of the process among a family of

models and the model parameters are estimated by using appropriate fitting

procedures. Box–Jenkins analysis is a modeling procedure, based on the family

of stationary linear models composed of:

• the moving average (MA) process of order q,

Xt ¼ Zt � y1Zt�1 � � � � � yqZt�q;
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that is Xt ¼ yðBÞZt , where B is the backshift operator BXt ¼ Xt�1ð Þ, yðBÞ is the

polynomial 1� y1B� � � � � yqBq; yi, for i ¼ 1; 2; . . . ; q, are parameters such that

the invertibility of the process is guaranteed, i.e. the roots of the corresponding

characteristic equation, yðBÞ ¼ 0, lie outside the unit circle;

• the autoregressive (AR) process of order p,

Xt ¼ f1Xt�1 þ � � � þ fpXt�p þ Zt;

that is fðBÞXt ¼ Zt , where B is the backshift operator, fðBÞ is the polynomial

1þ f1Bþ � � � þ fpB
p;fi; i ¼ 1; 2; . . . ; p , are parameters such that the

stationarity of the process is guaranteed, or equivalently the roots of the

corresponding characteristic equation, fðBÞ ¼ 0, lie outside the unit circle;

• the autoregressive-moving average (ARMA) process, which is a mixture of the

two above-mentioned processes,

Xt � f1Xt�1 � � � � � fpXt�p ¼ Zt � y1Zt�1 � � � � � yqZt�q;

that is fðBÞXt ¼ yðBÞZt , where B is the backshift operator, fi and yj , for i ¼ 1;
2; . . . ; p and j ¼ 1; 2; . . . ; q , are parameters such that the invertibility and the

stationarity of the process are guaranteed, i.e. the roots of the corresponding

characteristic equations, fðBÞ ¼ 0 and yðBÞ ¼ 0, lie outside the unit circle.

Note that an ARMA model involves fewer parameters than a MA or AR process

itself, since an MA process of finite order can be expressed as an AR process of

infinite order, while an AR process of finite order can be expressed as an MA

process of infinite order. Both MA and AR processes are special cases of the general

linear process (3.1). However, it is well-known that a continuous ARMA process

satisfies an appropriate linear differential equation; hence, its application requires

the knowledge of the underlying physical, dynamic model which describes the

temporal evolution of the variable of interest.

As already pointed out, the modeling stage is not explicit in Geostatistics;

however, the dual form of kriging can be used. In this case, the general form of

the radial basis function [42, 43] depends solely on the kernel function and does not

require a model for the process. The general form of the radial basis function

interpolator is the following:

bX ðtÞ ¼
Xn
i¼1

big t� tið Þ þ
Xp
k¼0

akf kðtÞ;

where the function g must satisfy the positive definiteness condition, Xt is the

function to be interpolated and the ti; i ¼ 1; 2; . . . ; n, are the data time points. The

f kðtÞ; k ¼ 0; 1; . . . ; p , are linearly independent functions, usually taken to be

monomials in t. Micchelli [40] has shown that the coefficients bi; i ¼ 1; 2; . . . ; n,
and ak; k ¼ 0; 1; . . . ; p, are determined, given the conditions on g and fk.
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In prediction, the objective is to estimate the unknown value xt, at time t, of the
stochastic process X, using the data observed in the past (extrapolation mode) and,

in case of interpolation, the data observed after the time point t. This can be

achieved either using Box–Jenkins analysis or, even without any explicit modeling

of the process, using linear Geostatistics, where only the knowledge of the

variogram model is required. Indeed, given the linear predictor bX t of the intrinsic

stationary process X at the time point t:

bXt ¼
Xn
i¼1

liðtÞXti ; (3.4)

where liðtÞ; i ¼ 1; 2; . . . ; n , are unknown real coefficients and Xti are random

variables of the process X at the sampled time points ti (before and after the time

point t, in case of interpolation, or related only to the past in case of extrapolation),

the unknown coefficients or weights liðtÞ; i ¼ 1; 2; . . . ; n, of (3.4) are obtained by

solving the following kriging system

g11 . . . g1n � 1

g21 . . . g2n � 1

..

. . .
. ..

. ..
.

gn1 . . . gnn � 1

1 . . . 1 0

2
66666664

3
77777775

l1
l2

..

.

ln
m

2
66666664

3
77777775
¼

g10
g20

..

.

gn0
1

2
66666664

3
77777775
; (3.5)

where gij ¼ 0:5Var Xti � Xtj

� �
; gi0 ¼ 0:5Var Xti � Xtð Þ; m is the Lagrange multi-

plier. Note that if the variogram function g is conditionally strictly negative

definite, then the above system presents one and only one solution.

This is what is known in literature as ordinary kriging [26, 37] and it is used

when the expected value of the process is constant and unknown (which is the most

common case in practice). Indeed, ordinary kriging and kriging with a trend can be

viewed as two minimum error variance algorithms which apply the same normal

equations, with different constraints, to obtain the kriging weights [26].

Since the kriging system can be expressed in terms of the variogram, as in (3.5),

the kriging predictor can be used even when the stochastic process under study

satisfies the intrinsic hypothesis. Moreover, using a predictor based on a variogram,

rather than on a covariance, avoids the estimation of the expected value, if this last

is unknown. Nevertheless, it is relevant to remind that Gevers [17] showed that the

predictors based on known variogram or covariance are identical when the

unknown mean is replaced by its minimum variance estimator.

In the prediction stage, another difference between Geostatistics and the time-

domain approach lies in the form of the estimators of unknown values. The ARMA

estimator seems to be more general than the linear kriging estimator (3.4), which

has always an autoregressive form. Indeed, if the configuration of the time points in
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the neighborhood does not change, the kriging weights are fixed; hence, the linear

kriging estimator has an autoregressive form. Note that the non-zero kriging

weights, associated with the points in the neighborhood, give an idea of the order

of the corresponding autoregressive process. In addition, the kriging autoregressive

form of Xt is flexible enough to consider, in the modeling stage, variables at time

points before and after the time point t.
Moreover, it is well-known that in the multi-Gaussian case, the conditional

expectation—which is the best in the classical sense—of the unknown value,

given the data, is precisely the kriging estimator. However, since any invertible

ARMA process has an AR representation, the limitation of the kriging estimator is

not really important.

3.3.3 Nonstationary Stochastic Processes

If the stationarity hypothesis is not reasonable for the time series under study, the

integrated mixed models might be a possible modeling choice in Box–Jenkins

analysis. These models are called autoregressive integrated moving average
(ARIMA) processes; more specifically, in presence of a periodic component, they

are called seasonal autoregressive integrated moving average (SARIMA) processes.

To deal with periodicity and trend, Box and Jenkins suggest to difference d times the

process, at appropriate lags, in order to yield a stationary process which may then be

modelled as an ARMA process. In other words, the dth difference of ARIMA and the

dth seasonal difference of SARIMA are stationary mixed ARMA processes. The role

of periodic components in a stochastic process is reduced to that of a deterministic

component, that is factored out by differencing, so that the ACF and the PACF of the

stationary residuals are analyzed. This is justified by the Yule’s model, where

periodicity is treated as a purely deterministic component and the purely stochastic

component is modelled as anMA process. Moreover, this attitude stems from the fact

that Box–Jenkins analysis was first developed for the analysis of economic time

series, in which periodicity usually reflects fairly regular seasonal influences.

Box–Jenkins analysis of nonstationary stochastic processes modeling is closely

related to the intrinsic random function of order k, introduced in Geostatistics by

Matheron [39], where the trend component in a process is usually interpreted as a

deterministic component, modelled with a local polynomial form. If the expected

value of the process is not constant but it can be expressed as a polynomial

functional form, the more general kriging with a trend model (or universal kriging)

could be applied. In both cases, the kriging predictor is built to be unbiased and with

the minimum error variance. Similarly, the variogram of the stationary residual

component is used in the universal kriging system. As regards periodicity, this

component can be factored out (by using, for example, the moving average method)

or alternatively it can be described by a periodic variogram [14]. In [27, 46], it was

shown that, in interpolation situations, the overall contribution of the trend model to

the estimate at an unsampled point, surrounded by data, is similar for both ordinary
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kriging and kriging with a polynomial trend; moreover, if the residual variogram

model is the same, then the estimates obtained by using the two methods are

statistically equivalent, no matter how the trend may appear within the local

neighborhood of the point of interest.

3.4 The Use of Variogram: Main Advantages

Most of geostatistical techniques are based on the use of variogram [7, 26, 37] and

different reasons might justify the use of the variogram even in time series analysis.

First of all, the variogram is usually preferable with respect to the covariance [11],

since it can describe a wider class of stochastic processes: the class of intrinsic

stochastic processes, for which only the variogram is defined, includes the class of

second-order stationary stochastic processes. This is why it was introduced by

Kolmogorov [29] for the study of turbulent flow and by Gandin [16] for meteoro-

logical applications. The second reason is based on a practical aspect: the

variogram, unlike the covariance, does not require the knowledge of the expected

value of the associated stochastic process. As a consequence of above, the

variogram was called the structure function by Yaglom [57].

Some details about the advantages of using the variogram even in time series

analysis are given below.

3.4.1 Estimation Aspects

Before choosing an appropriate temporal correlation model, it is essential to

estimate the corresponding second-order moments from data.

In the time-domain approach, the sample ACF is commonly a standard explor-

atory tool for identifying the model structure of the temporal process under study, as

well as, in Geostatistics, the sample covariance and variogram are basic tools used

essentially for modeling and prediction purposes in the kriging system. However,

the use of variogram estimator is much more convenient, as it will be clarified

hereafter. First of all, under second-order stationarity, if the expected value is

unknown and it is estimated from the data, then this introduces a bias in the

covariance estimator [56]; even for long time series (100–200 sample data) this

bias can be surprisingly large. On the other hand, the variogram is not affected by

this problem, since it automatically filters the expected value and the unbiasedness

is guaranteed for its classical estimator [37]:

bg rtð Þ ¼ 1

2 M rtð Þj j
X
M rtð Þ

Xtþht � Xt½ � 2; (3.6)
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where rt is the temporal lag, M rtð Þ ¼ tþ ht 2 Hf and t 2 H such that

rt � htk k<dtg; dt is the tolerance, H is the set of data at different time points

(not necessarily equally-spaced), and M rtð Þj j is the cardinality of this set.

Moreover, in nature most processes are nonstationary; in this case, the use of the

ACF, or the covariance, can potentially be misleading, since a nonstationary time

series is theoretically characterized by not having constant mean and variance.

Although one can obviously always compute the sample ACF or covariance,

plotting the sample ACF or covariance, against the temporal lags, for nonstationary

time series is inaccurate, since the autocorrelations depend on the supporting time

points. When the process is not mean stationary, the classical estimators of ACF or

covariance become hopelessly biased, moreover if the process is not variance

stationary, the covariance, as well as the ACF, is not even defined. As discussed

in [28], if the nonstationary integrated MA process is considered, i.e.

Xt ¼ Xt�1 þ Zt � yZt�1; t ¼ 1; 2; . . . ;

where Zt is a white noise process, then the covariance C Xt; Xt�hð Þ is a function of

both h and t, since

C Xt; Xt�hð Þ ¼ s2 1� yð Þ 1þ t� h� 1ð Þ 1� yð Þ½ �:

In contrast to the ACF and to the covariance, the variogram is not only a

complementary exploratory tool, but it is well defined for several nonstationary

processes, including ARIMA processes. Indeed, the variogram is well defined for

the much wider class of so-called intrinsic processes, its classical estimator is

unbiased when the process is only mean stationary and an alternative estimator

has only a small bias even when the process is neither mean nor variance stationary.

Haslett [20] illustrated the properties of different variogram estimators.

3.4.2 Trends and Periodicity

The role of variogram to identify trends and periodicity exhibited by data is surely

not negligible.

Khachatryan [28] consolidates the use of the sample variogram as a graphical

tool for assessing stationarity in time series analysis. It is well-known that if the

sample variogram bg rtð Þ increases more rapidly than r2t , then intrinsic stationarity is

not admissible. In this case, analyzing and fitting the trend component that

characterizes the process of interest are necessary. After removing the trend com-

ponent, the sample variogram of the stationary residual component is computed and

modelled; then the corresponding variogram model is used for interpolation and/or

prediction purposes.
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As regards the periodicity, this component can be factored out using, for

example, the moving average method [6], or alternatively it can be retained and

described by a periodic variogram model. It is worth noting that, in the former case,

the variogram of residuals might be viewed as the convolution of the variogram

with periodicity. For example, in Fig. 3.1 the sample temporal variograms for NO2

hourly averages (mg/m3) and NO2 residuals, measured during January 2000 at a

monitoring station in the district of Milan, Italy, are illustrated, together with their

models. Further details about the analytic form of the variogram models are given

in Sect. 3.5.1.

In the case study presented hereafter, the use of periodic and nonperiodic variogram

models has been proposed for both interpolation and prediction purposes and a new

GSLib routine for kriging, named “KT3DP,” has been suitably developed in order to

define appropriate temporal search neighborhoods in presence of periodicity.

3.4.3 Continuity and Scales of Variation

Unlike Box–Jenkins approach, in Geostatistics the behavior of the variogram

function near the origin is analyzed in order to describe the continuity of the

variable under study [44]. Moreover, the variogram is a useful tool for assessing

the scale of variation which characterizes the time series. Regarding this aspect, it is

interesting to recall the following decomposition of the process Xt; t 2 T � Rf g,

Xt ¼ mt þ Yt þ �t þ et; (3.7)

a b

Fig. 3.1 Sample temporal variograms and models. (a) Variogram for NO2 hourly concentrations.

(b) Variogram for NO2 residuals
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where:

• mt ¼ E Xtð Þ is the deterministic mean, also called large-scale variation.

• Y is a zero mean intrinsically stationary process, whose variogram range (if it exists)

is larger than the minimum temporal lag and it is called small-scale variation.

• � is a zero mean intrinsically stationary process independent of Y, whose
variogram range (if it exists) is smaller than the minimum temporal lag and it

is called microscale variation.

• e , called measurement error, is a zero mean white noise process which is

independent of Y and �.

Clearly, decomposition (3.7) is not unique and it involves the specific features of

the process under study.

Ifmt is assumed constant over the temporal domain, then the following variogram

for X is obtained:

gX htð Þ ¼ gY htð Þ þ g� htð Þ þ KME;

whereKME ¼ Var etð Þ, which means that a nugget effect [26] can be recognized, i.e.

lim
htj j!0

gX htð Þ ¼ KME 6¼ 0:

However, since estimation and modeling are based on the available data, nothing

can be generally said about the variogram at temporal lag smaller than the mini-

mum lag. Thus, assuming that

lim
htj j!0

g� htð Þ ¼ KMS 6¼ 0;

the total nugget effect is given by KME þ KMS. In these cases, if gð0Þ is set equal to
KME þ KMS in the right-hand side of system (3.5), kriging does not yield exact

interpolation, but it can smooth the data which contain errors or an unknown

variability [9].

Moreover, the presence of a nugget effect can suggest an improvement in the

sampling scheme or corrections of the measurement errors or detections of outliers.

Janis and Robeson [22] determined the nugget effects of the variogram models,

associated with different subsets of the temporal interval of interest, and studied the

time series of the nugget effects to evaluate the representativeness of historical air-

temperature records.

3.4.4 Missing Values Estimation

The estimation of missing data represents surely one of the main issues to be

addressed in a variety of areas of time series analysis, ranging from engineering
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to economics and to environmental sciences. In literature, there is a large number of

methods for data reconstruction, either based on classical time series approaches for

stationary or nonstationary processes or based on spatial/spatial–temporal interpo-

lation methods, such as simple, ordinary, or universal kriging. A review of classical

missing data techniques, such as listwise deletion, mean imputation, regression

analysis, and expectation maximization, is given in [32]; other contributions can be

found in [33], where the author proposed a Ljung’s method to estimate maximum

values, in [49], where the author proposed a modification of the singular spectrum

analysis for time series with missing data, or in [2, 54, 55].

However, the use of kriging to estimate missing values in time series is conve-

nient for different reasons: availability of the error variance of the estimates,

reconstruction of data referred to regular/irregular spacing, estimation of the

unknown value at time t, using data observed before and after the time point t,
even without any explicit modeling or assumption on the probability distribution of

the process.

In this context, estimating and modeling the variogram of the stochastic process

are fundamental, since only if the variogram model is appropriate, one can rely on

further kriging results. However, the analyst should pay attention to the well-known

screening effect [7, 52]. In this case, positive kriging weights (significantly different

from zero) are concentrated on a restricted subset of data near to the estimation

point and the contribution of the remaining data are screened off. In one-

dimensional space, which is the case of time series, if a linear variogram model is

used (related to a Brownian motion), the ordinary kriging estimator only depends

on the two contiguous realizations; analogous results occur for simple kriging, if an

exponential model is considered, because of the Markov property [7].

Moreover, if the time series is interpreted as a finite realization of a random field

X anchored to different time units (hour, day, week, month, year), the study of

anisotropies along different patterns [47], which often correspond to periodicities in

time series, and the use of an anisotropic variogram might be useful in missing

values interpolation. For example, an hourly time series, available for a year, might

be viewed as a realization of X h; wð Þ, where h ¼ 1; 2; . . . ; 168 identifies the hour

within the week andw ¼ 1; 2; . . . ; 52 the week within the year, as shown in Fig. 3.2.
In this case, a variogram model with zonal anisotropy could be fitted and used in the

kriging system.

The use of kriging for data values reconstruction will be widely discussed in the

case study.

3.4.5 Nonparametric Estimation and Simulation

The usefulness of variogram in time series analysis can be appreciated especially

when the aim concerns typical geostatistical techniques, such as nonparametric

estimation or simulation of the variable under study.
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The kriging approach, based on the knowledge of variogram, leads naturally to

nonparametric estimation as well as to different simulation techniques. Indicator

kriging is a nonparametric approach to estimate the posterior cumulative distribu-

tion function (c.d.f.) of the variable under study at an unsampled point [25, 45]. In

this context, given the observed time series xti ; ti; i ¼ 1; 2; . . . ; n, the conditional

probability Prob Xt � x Hnjf g with Hn ¼ xti ; ti; i ¼ 1; 2; . . . ; nf g, is interpreted as

the conditional expectation of an indicator random field I t; xð Þ,

Prob Xt � x Hnjf g ¼ E I t; x Hnjð Þ½ �;

where

I t; xð Þ ¼ 1; if Xt � x
0; if Xt > x;

�
(3.8)

and it is modelled by a linear combination of neighboring indicator data values. The

weights of this combination are given by a kriging system, equivalent to (3.5),

where the structural function used is the indicator variogram associated with the

indicator data values for a given threshold value x:

gI ht; xð Þ ¼ 0:5E I tþ ht; xð Þ � I t; xð Þ½ �2; 8ht 2 R: (3.9)

This approach might be useful to support national policies for environmental and

health protection, which, for example, have to keep pollution concentrations down the

specific thresholds, called levels of attention, according to national or international

directives. Then, for a given time series of an environmental variable, it might be useful

to estimate the probability that the variable under study exceeds a fixed limit, so that

appropriate and prompt solutions might be adopted. For example, decisions about

traffic limitation in high traffic urban area might be supported by the knowledge of

the probability that a hazardous pollutant exceeds the level of attention.

Moreover, variogram-based simulation algorithms, such as the sequential indi-

cator simulation [18] and the LU decomposition algorithm [1], are useful to study

the temporal variability without choosing a model for the process. Clearly, the goal

Fig. 3.2 Hourly NO2 averages measured in 2000 (plotted per week)

3 Geostatistics and the Role of Variogram in Time Series Analysis 61



of any simulation algorithm is to reproduce the global features of a phenomenon,

usually in terms of the first- and second-order moments of the corresponding

stochastic process [15, 26]. In time series, conditional simulation might be funda-

mental, if it is used as a tool to evaluate the impact of temporal uncertainty on the

results of complex procedures. For example, if a variogram model for the time

series under study can be easily derived, the choice of the variogram-based simula-

tion algorithms in time series is justified to check the variability of the temporal

evolution with respect to the expected results.

The case study, proposed hereafter, will discuss the indicator kriging approach

and its capability for assessing the probability that the variable of interest exceeds

specific threshold values.

3.5 A Case Study

The environmental monitoring network of Lombardy region (Italy) collects data

concerning hazardous pollutants and atmospherical variables, in order to continu-

ously control the air quality of urban, suburban, and industrialized areas of the

region.

In this paper, nitrogen dioxide (NO2) hourly concentrations (mg/m
3) measured at

one of the monitoring stations of the district of Milan during January 2000, have

been analyzed using geostatistical techniques. In particular, the station “Parco

Lambro”, located in an urbanized residential zone and close to one of the main

urban areas of the district of Milan, has been considered.

The case study aims to point out the potentiality of geostatistical techniques, and

especially the role of variogram, to solve estimation and prediction problems in

time series analysis, even in presence of a periodic component. Hence,

• structural analysis,

• estimation of some consecutive values assumed as missing,

• prediction of NO2 hourly averages,

• estimation of the c.d.f. of NO2 hourly averages at some unsampled time points,

will be discussed.

3.5.1 Structural Analysis

As previously pointed out, the variogram is a more general measure of correlation

than the covariance and it is a useful graphical tool for assessing stationarity and

periodicity in time series analysis. The latter aspect is immediately confirmed by the

structural analysis herein developed for the time series of NO2 hourly

measurements.
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The sample temporal variogram, estimated from the data, reflects the diurnal

periodicity at 24 h of the variable under study, as illustrated in Fig. 3.1a. Hence, two

different alternative approaches have been considered:

1. the periodic component has been factored out,

2. the periodic component has been retained and a variogram function with hole

effect has been chosen to model the time series of the original data.

In this last case, the following model has been used:

g htð Þ ¼ 127 Exp htj j 6=ð Þþ
þ 247 Exp htj j 120=ð Þ þ 18:5Cos htj j 12=ð Þ þ 38Cos htj j 24=ð Þ; (3.10)

where Exp �ð Þ and Cos �ð Þ are the shortened forms of the exponential and the cosine

variogram models [10], respectively. Figure 3.1a shows the sample temporal

variograms for NO2 hourly observations, together with the fitted model.

On the other hand, before performing structural analysis, the time series under

study has been previously deseasonalized. The diurnal component which

characterizes NO2 hourly concentrations has been estimated and removed by the

FORTRAN program “REMOVE” described in [14]. Using this program, the NO2

time series has been firstly segmented in 4 homogeneous sub-periods (i.e., from the

1st to the 168th hour, from the 169th to the 336th hour, from the 337th to the 504th

hour, and from the 505th hour to the last time point of the month under study) and

successively the moving average method [6] has been applied to sequences with at

least 60 consecutive values within each sub-period. For each of these sequences the

diurnal component has been separately computed and removed.

Figure 3.1b shows the sample temporal variograms for NO2 hourly residuals,

together with the fitted model

~g htð Þ ¼ 108 Exp htj j 12=ð Þ þ 260 Exp htj j 120=ð Þ: (3.11)

Note that in both cases (original data and residuals), the behavior of the

variogram functions near the origin is linear with no nugget effect.

In order to evaluate the goodness of models (3.10) and (3.11), cross-validation

has been performed and estimates for NO2 hourly concentrations and NO2

residuals, respectively, at all data points have been obtained by using the kriging

technique. Figure 3.3 shows the scatter plots of NO2 observed values (a) and NO2

residuals (b) towards the corresponding estimated values. The high values of the

linear correlation coefficients (0.977 and 0.976, respectively) confirm the goodness

of the above fitted models.

It is important to point out that the variogram model (3.10) has been validated

using a modified version of the GSLib program “KT3D” [13], named “KT3DP.”

This program has been developed in order to properly define the neighborhood, i.e.

the subset of available data used in the kriging system. By taking into account themain

features of the analyzed pollutant and its temporal behavior (periodicity at 24 h),
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the kriging routine has beenmodified in such away that, the value at time t is estimated

by considering data observed

• at the two adjacent time points, t� 1ð Þ and tþ 1ð Þ;
• at the same hour of the day before and/or later, t� dð Þ and tþ dð Þ with d ¼ 24,

and some hours before and/or later, t� d � kð Þ and tþ d � kð Þ with k ¼ 1; 2; 3,
• at the same hour of two days before and/or later, t� 2dð Þ and tþ 2dð Þ with

d ¼ 24, and some hours before and/or later, t� 2d � kð Þ and tþ 2d � kð Þ with
k ¼ 1; 2; 3;

up to a maximum number of eight values.

On the other hand, variogram model (3.11), which describes the temporal

correlation for NO2 residuals, has been validated using the GSLib program

“KT3D.”

3.5.2 Estimation of Missing Values

For several technical reasons, it happens that a monitoring station does not work for

an interval of time or records data which might not be considered valid. In this case,

especially for environmental variables, it is crucial to reconstruct the time series by

estimating the missing values. Among the methods known in literature [32], kriging

could be a very useful tool for time series reconstruction.

In order to illustrate the usefulness of kriging as data reconstruction method,

various series of consecutive missing values have been analyzed for either the

original time series with a 24 h periodic behavior or the deseasonalized time series.

a b

Fig. 3.3 Scatter plots between observed and estimated values. (a) Diagram of NO2 hourly

concentrations towards the estimated ones. (b) Diagram of NO2 residuals towards the estimated

ones
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Firstly, six consecutive NO2 missing values from the 224th to the 229th hour of

the year, i.e. from 8:00 to 13:00 of the 10th of January 2000, have been considered.

Kriging hourly estimations for such missing values have been obtained using,

alternatively

1. the variogram model (3.10), which describes the temporal correlation for NO2

hourly concentrations,

2. the variogram model (3.11), which describes the temporal correlation for NO2

hourly residuals.

In the former case, NO2 hourly measurements have been directly estimated by

the GSLib routine “KT3DP” properly modified in order to consider an ad hoc

neighborhood, as above discussed. In the latter case, the original version of

“KT3D” has been applied to estimate NO2 residuals, then the diurnal component,

previously estimated by the moving average technique, has been added to the

estimated residuals, in order to obtain estimates of NO2 hourly concentrations.

Figure 3.4 shows the time series of the estimated missing values (both estimated

values obtained with the periodic variogram model and those obtained with

nonperiodic variogram model), together with the time series of true NO2 values

corresponding to the period ranging from the 200th hour (i.e., 8:00 of the 9th of

January 2000) to the 253rd hour (i.e., 13:00 of the 11th of January 2000).

Fig. 3.4 Time plot of NO2 estimated missing values and NO2 hourly concentrations from the

200th to the 253rd hour (i.e., from 8:00 of the 9th of January 2000 to 13:00 of the 11th of January

2000)
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The linear correlation coefficients between the NO2 hourly true values and the

estimates computed with the two different procedures confirm the validity of the

estimation procedures. Moreover, the kriging standard deviation associated with

each predicted missing value is lower if the nonperiodic variogram model is used,

with respect to the case of kriging based on the periodic variogram model

(Table 3.1). It is clear the flexibility of kriging to reconstruct the time series even

when the periodic component is not factored out and the temporal correlation is

described by a periodic variogram model.

Finally, three other sequences of missing values longer than the previous one

have been considered. In fact, starting from the shortest sequence of six missing

values above discussed, sequences of 12 (from the 224th to the 235th hour), 18

(from the 224th to the 241st hour), and 24 (from the 224th to the 247th hour)

consecutive missing values have been assumed for the time series under study.

Table 3.2 reports the main results concerning the estimation of NO2 missing

values for the four intervals of time. It is clear that when kriging is performed for the

original time series, the estimates of NO2 values obtained with “KT3DP” using the

periodic variogram model (3.10) keep on being characterized by high correlation

coefficients even when the sequences of consecutive missing values are longer. On

the other hand, when kriging is performed for the time series of NO2 residuals, more

consecutive missing values there are, more unsatisfactory results are produced.

Note that, in this last case, there is a further element of bias due to the diurnal

component which has been added to the estimated residual values in order to

compute the estimates of NO2 concentrations.

3.5.3 Prediction of NO2 Values

In this section, the flexibility and the usefulness of geostatistical techniques, based

on the variogram, have been exploited to make predictions for the variable under

study. Hence, the above discussed variogram models (3.10) and (3.11) of NO2

concentrations and NO2 residuals, respectively, have been used in order to obtain

Table 3.1 Kriging estimation of a sequence of six missing values

Hour

NO2 obs.

value

NO2 est.

valuea
Est. std.

dev.a
Est.

errora
Est.

resid.b
Est. std.

dev.b Trendb
Est.

valueb
Est.

errorb

224 46.2 44.026 10.264 �2.174 52.962 7.337 �5.835 47.127 0.927

225 53.1 56.915 18.543 3.815 58.335 9.271 �4.001 54.334 1.234

226 62.4 62.319 18.543 �0.081 63.578 10.048 �1.705 61.873 �0.527

227 71.9 74.344 18.543 2.444 68.234 10.049 1.743 69.977 �1.923

228 83.3 80.423 18.543 �2.877 73.787 9.272 7.544 81.331 �1.969

229 100.7 100.233 10.264 �0.467 79.712 7.337 16.189 95.901 �4.799
aResults obtained by using the periodic variogram model (3.10).
bResults obtained by using the nonperiodic variogram model (3.11).
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kriging predictions for six intervals of time after the 31st of January 2000. In

particular, the six different prediction periods have concerned intervals of:

• four hours (from the 745th to the 748th hour),

• eight hours (from the 745th to the 752th hour),

• twelve hours (from the 745th to the 756th hour),

• sixteen hours (from the 745th to the 760th hour),

• eighteen hours (from the 745th to the 762th hour),

• twenty-four hours (from the 745th to the 768th hour).

In other words, NO2 hourly concentrations have been firstly predicted for a short

period of 4 h and successively for longer sequences of time points, after the last

available observation. These predictions have been obtained by using, alternatively

1. the available data, the variogram model (3.10) and the modified GSLib routine

“KT3DP” which builds the searching neighborhood taking into account the

periodicity exhibited by the data,

2. the deseasonalized NO2 observations, the variogram model (3.11) and the

original GSLib routine “KT3D” which produces NO2 predicted residuals at

which the diurnal component of the day before has been added to obtain

predictions of NO2 hourly concentrations.

Clearly, in case of extrapolation, the time points considered in the kriging system

are just the observations available in the past.

In Fig. 3.5, the time series of NO2 hourly concentrations measured from the

700th hour to the 748th hour are shown together with the predicted NO2 values for

the first interval, from the 745th to the 748th hour. Although the linear correlation

coefficients between predictions and true values are satisfactory in both cases

(0.999 and 0.988, respectively), the kriging procedure using the variogram model

(3.11) related to NO2 residuals produced overestimates of the pollution levels. This

result could be due to the estimated diurnal component, which represents a further

element of bias. Moreover, the kriging standard deviation associated with each

predicted value is lower if the nonperiodic variogram model is used, with respect to

the case of kriging based on the periodic variogram model (Table 3.3).

As mentioned above, the analysis has been developed to predict NO2 values over

intervals of time longer than four time points. Obviously, the longer is the predicted

period, the greater is the inaccuracy of the predictions, especially when kriging has

Table 3.2 Kriging estimations of 6, 12, 18, and 24 consecutive missing values

Interval of time

NO2 avg.

value

NO2 avg.

estimatea
Correlation

coefficienta
NO2 avg.

estimateb
Correlation

coefficientb

224–229 69.600 69.710 0.992 68.424 0.999

224–235 77.342 68.357 0.857 62.483 0.820

224–241 72.722 63.814 0.879 59.690 0.587

224–247 68.325 60.711 0.901 61.966 0.079
aResults obtained by using the periodic variogram model (3.10).
bResults obtained by using the nonperiodic variogram model (3.11).
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been performed using the deseasonalized NO2 values and the nonperiodic

variogram model (3.11). This is immediately confirmed by the results summarized

in Table 3.4, concerning six different prediction periods, i.e. intervals of 4 (from the

745th to the 748th hour), 8 (from the 745th to the 752th hour), 12 (from the 745th to

the 756th hour), 16 (from the 745th to the 760th hour), 18 (from the 745th to the

762th hour) and 24 (from the 745th to the 768th hour) units time. The linear

correlation coefficients between true values and predicted ones decrease as the

period to be predicted is longer, especially if the intervals of time are longer than

12 h (from 745th to 760th hour, from 745th to 762th hour, from 745th to 768th hour).

Fig. 3.5 Time plot of NO2 predicted values and NO2 hourly concentrations measured from the

700th to the 748th hour (i.e., from 4:00 of the 30th of January to 4:00 of the 1st of February 2000)

Table 3.3 Kriging predictions for 4 h

Hour

NO2 obs.

value

NO2 pred.

valuea
Pred. std.

dev.a
Pred.

errora
Pred.

resid.b
Pred. std.

dev.b Trendb Pred.b
Pred.

errorb

745 58.3 62.058 10.339 3.758 62.650 7.665 �0.681 61.969 3.669

746 51.7 52.755 20.786 1.055 62.079 10.217 �2.853 59.226 7.526

747 49.5 50.448 20.786 0.948 61.622 11.862 �4.188 57.434 7.934

748 48.3 48.572 20.786 0.272 61.256 13.051 �4.628 56.628 8.328
aResults obtained by using the periodic variogram model (3.10).
bResults obtained by using the nonperiodic variogram model (3.11).
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3.5.4 Estimation of c.d.f.

The c.d.f. of NO2 at unsampled time points has been estimated by indicator kriging

[25].

In particular, six threshold values for NO2 (36.30, 46.40, 50.80, 56.50, 67.28,

and 79.12 mg/m3) have been properly chosen and the observed values have been

codified into indicator data (equal to 1 if the value is not greater than the threshold,

0 otherwise).

On the left-hand side of Figs. 3.6 and 3.7, the indicator time series,

corresponding to the above-mentioned thresholds, has been shown through posting

maps of hours of the day towards the days of January 2000.

Temporal indicator variogram has been computed for each threshold (left-hand

side of Figs. 3.6 and 3.7), and the following models have been fitted:

gI ht; 36:30ð Þ ¼ 0:02Exp htj j 6=ð Þ þ 0:16Exp htj j 70=ð Þ;
gI ht; 46:40ð Þ ¼ 0:085 Exp htj j 6=ð Þ þ 0:143 Exp htj j 120=ð Þ þ 0:022Cos htj j 24=ð Þ;
gI ht; 50:80ð Þ ¼ 0:11Exp htj j 6=ð Þ þ 0:12Exp htj j 110=ð Þ þ 0:02Cos htj j 24=ð Þ;
gI ht; 56:50ð Þ ¼ 0:042 Exp htj j 6=ð Þ þ 0:067 Exp htj j 20=ð Þ þ 0:094 Exp htj j 110=ð Þ

þ 0:012Cos htj j 12=ð Þ þ 0:024Cos htj j 24=ð Þ;
gI ht; 67:28ð Þ ¼ 0:097 Exp htj j 12=ð Þ þ 0:034 Exp htj j 60=ð Þ þ 0:009Cos htj j 12=ð Þ

þ 0:017Cos htj j 24=ð Þ;
gI ht; 79:12ð Þ ¼ 0:002 Exp htj j 3=ð Þ þ 0:074 Exp htj j 12=ð Þ þ 0:006Cos htj j 12=ð Þ

þ 0:01Cos htj j 24=ð Þ:

Then the “KT3DP” routine has been used to estimate the c.d.f. corresponding to

three different unsampled time points, i.e. at hours 1:00, 10:00, and 19:00 of the 1st

of February 2000. For each hour of interest, the c.d.f. has been estimated by solving

as many kriging systems as the number of threshold values considered. For each

threshold, the corresponding indicator variogram model has been used for the

Table 3.4 Kriging predictions at 4, 8, 12, 16, 20, and 24 time points after the last available data

Interval of

time

NO2 avg.

value

NO2 avg.

predictiona
Correlation

coefficienta
NO2 avg.

predictionb
Correlation

coefficientb

745–748 51.950 53.458 0.999 58.814 0.988

745–752 51.750 51.331 0.892 56.990 0.700

745–756 54.675 55.298 0.876 59.413 0.841

745–760 61.556 55.809 0.515 59.293 0.360

745–762 64.250 56.828 0.514 60.098 0.431

745–768 64.729 58.000 0.512 60.214 0.437
aResults obtained by using the periodic variogram model (3.10).
bResults obtained by using the nonperiodic variogram model (3.11).
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Fig. 3.6 Indicator maps of NO2 hourly concentrations and their sample indicator variograms with

models, for three threshold values. (a) Indicator map and variogram for the threshold x1 ¼ 36:30.
(b) Indicator map and variogram for the threshold x2 ¼ 46:40. (c) Indicator map and variogram for

the threshold x3 ¼ 50:80 mg/m3
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Fig. 3.7 Indicator maps of NO2 hourly concentrations and their sample indicator variograms with

models, for three threshold values. (a) Indicator map and variogram for the threshold x4 ¼ 56:50.
(b) Indicator map and variogram for the threshold x5 ¼ 67:28. (c) Indicator map and variogram for

the threshold x6 ¼ 79:12 mg/m3
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kriging procedure. Figure 3.8 shows the c.d.f.s estimated at hours 1:00, 10:00, and

19:00 of the 1st of February 2000.

It is clear that the probability of not exceeding a fixed threshold reduces

gradually over the day. For example, the estimated probability that NO2

concentrations, on the 1st of February 2000, do not exceed 56.50 mg/m3 is higher

at 10:00 than in the evening (19:00) and in the night (1:00). Moreover, note that it is

sure or almost sure that NO2 concentrations do not exceed the cutoff 67.28 mg/m
3 at

1:00 and 10:00; on the other hand, it is not likely that NO2 levels do not exceed

67.28 mg/m3 at 19:00 (Table 3.5).

This result might be useful for the local government in fixing directives to

protect and control the air quality, in order to avoid the risk of high levels of

nitrogen dioxide pollution, which might be dangerous for the ecosystem and the

human health.

Fig. 3.8 C.d.f.s estimated for NO2 hourly concentrations at 1:00, 10:00 and 19:00 of the 1st of

February 2000

Table 3.5 Estimated values for c.d.f. at hours 1:00, 10:00, and 19:00 of the 1st of February 2000,

for fixed thresholds

Threshold Hour 1:00 Hour 10:00 Hour 19.00

36.30 0.000 0.000 0.000

46.40 0.000 0.000 0.000

50.80 0.041 0.034 0.000

56.50 0.087 0.957 0.000

67.28 1.000 0.971 0.118

79.12 1.000 1.000 1.000
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3.6 Conclusions

In this paper, the potentiality of geostatistical techniques and its basic tool, such as

the variogram, in time series analysis, have been pointed out.

Although in literature the use of the variogram in time series analysis has been

highlighted in different ways, as widely discussed in this paper, time series analysts

do not typically use Geostatistics for exploratory analysis or prediction, even when

an explicit model for the process is not so relevant. Moreover, most of the software

for time series analysis does not provide variogram-based techniques in order to

face and solve inferential problems.

The importance and convenience of Geostatistics to perform a complete analysis

of a time series have been underlined through the case study, where the exploratory

and prediction stages, even in presence of a periodic behavior, have been presented

and useful computational aspects have been highlighted. A modified version of the

GSLib routine for kriging has been also implemented for missing values treatment

and prediction of time series with a periodic component.

As underlined in [53], time series analysis will keep on representing one of the

main appealing fields of the scientific research, in the presence of lively interaction

with other fields and more and more efforts in several directions. Among these, a

few steps further in using geostatistical tools in time series analysis are expected,

especially regarding software implementation.
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Chapter 4

GIS and Geostatistics for Supporting

Environmental Analyses in Space-Time

Sabrina Maggio, Claudia Cappello, and Daniela Pellegrino

Abstract The environmental risk assessment involves the analysis of complex

phenomena. Different kinds of information, such as environmental, socio-

economic, political and institutional data, are usually collected. In this chapter,

spatio-temporal geostatistical analysis is combined with the use of a Geographic

Information System (GIS): the integration between geostatistical tools and GIS
enables the identification and the visualization of alternative scenarios regarding a

phenomenon under study and supports the environmental risk management.

A case study on environmental data measured at different monitoring stations in

the southern part of Apulia Region (South of Italy), called Grande Salento, is

discussed. Sample data concerning daily averages of PM10, Wind Speed and

Atmospheric Temperature, are used for stochastic prediction, through space–time

indicator kriging.

Kriging results are implemented in a GIS and a 3D representation of the spatio-

temporal probability maps is proposed.

Keywords Conditional probability map • Geostatistics • GIS • PM10 pollution •

Space–time indicator kriging

4.1 Introduction

Environmental risk management involves the integrated use of several tools and

techniques, including Geographic Information System (GIS), Geostatistics and data
management. In particular, a data management process requires the integration of

several data, which are usually classified into three categories: (1) environmental
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data (land use, land cover, vegetation, geology, meteorology and measures of

pollutant concentrations); (2) socio-economic data (population and housing census

data, community vulnerability data and data on utilities and access); (3) political

and institutional data [5].

GIS consists of different tools for storage, retrieval, analysis and display of

spatial data and, in some cases, of spatio-temporal data. Thus, it could be a valid

support for modelling and prediction purposes. However, a thorough geostatistical

analysis for spatial and spatio-temporal data can be provided by using appropriate

geostatistical techniques [24] which are not implemented in the most used GIS
software.

Hence, the interaction of space–time modelling and prediction geostatistical

techniques [10, 19, 23, 25] with urban environment representation (traffic network,

location of industrial facilities, emission sources and topographic conditions),

easily managed in a GIS, is necessary.
The problem of integration between GIS and Geostatistics has been addressed

since early 1990s when Goodchild [18] illustrated the potential advantages of an

integrated use of GIS and spatial analysis. Accordingly, over the years, many

researchers have approached this problem in different ways [1, 3, 4].

The aim of the chapter is to combine the use of space–time geostatistical

techniques and the GIS potential for environmental studies in order to analyse a

dangerous pollutant for the human health.

Hence, after a brief introduction on the integration between GIS and Geostatistics
(Sect. 4.2), a review of the spatio-temporal geostatistical techniques for modelling

and non-parametric prediction purposes (Sect. 4.3) is presented. Finally, a case study

based on an environmental data set is proposed (Sect. 4.4). The analysed data involve

two atmospheric variables (wind speed and temperature) and particulate matter

concentrations, measured in November 2009 at some monitoring stations located in

the Grande Salento (the districts of Lecce, Brindisi and Taranto in the Apulia Region,

Italy). In particular, the variables under study regards: (1) PM10 (particulate matter

with diameter smaller than 10 mm) daily averages concentrations, because of their

negative effects on human health, (2) wind speed (WS) and atmospheric temperature

(AT) daily averages, because of their significant role on the particle pollution.

Exploratory spatial data analysis for a deep understanding of the analysed

phenomenon has been performed using the Geostatistical Analyst Tool of ArcGIS.
Space–time indicator variogram modelling has been provided and spatio-temporal

indicator kriging has been computed by using some modified GSLib routines.

Conditional probabilities that PM10 concentrations are not greater than fixed

thresholds when the atmospheric variables (WS and AT) are lower than the

corresponding monthly means have been determined.

Three-dimensional representations for the space–time evolution of above-

mentioned conditional probability associated with PM10 have been produced by

using ArcScene (an extension of ArcGIS).
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4.2 GIS and Geostatistics

In recent years, many environmental studies have been conducted by using GIS and
Geostatistics techniques jointly [16, 20, 22].

In this context, GIS enables researchers to link results from geostatistical

analysis with some geographic information such as land use, traffic networks and

industrialized areas. On the other hand, Geostatistics provides advanced techniques

to predict a variable of interest at unsampled points and to support decisions

concerning monitoring, sampling, planning and requalification of the territory [6].

Hence, different methods of spatial analysis have been implemented in several

kinds of GIS softwares, such as variogram estimation and modelling, ordinary

kriging and indicator kriging in Geostatistical Analyst Tool of ArcGIS.
Moreover, the open source software GRASS (Geographic Resources Analysis

Support System) interfaces with R, by means of the spgrass6 module, in order to

enable a geostatistical data analysis.

Up to now, the most remarkable developments concern the integration between

GIS and geostatistical tools for the analysis of spatio-temporal data. For example,

ArcScene, which is an extension of ArcGIS, allows to obtain 3D representations in a

GIS project.

4.3 Geostatistical Framework

Environmental risk analysis requires the observation of several variables

characterized by space–time evolution. Hence, either classical multivariate

methods and space–time geostatistical techniques might be applied to analyse,

interpret and control the complex behavior of the observed variables [8].

In this context, the observations of each variable are modelled as a realization of

a second order stationary spatio-temporal random function (STRF)

Z ðuÞ; u ¼ ðs; tÞ 2 D� T � R
2 � R

� �
;

with the following first and second moments

• E Z ðs; tÞ½ � ¼ m;
• Cov Z ðsþ hs; tþ htÞ; Z ðs; tÞ½ � ¼ C ðhs; htÞ;
• Var Z sþ hs; tþ htð Þ � Z s; tð Þ½ � ¼ 2g hs; htð Þ:

Given a second order stationary space–time random field Z, for a fixed threshold
z 2 R, a spatio-temporal indicator random field (STIRF)

I u; zð Þ; u ¼ s; tð Þ 2 D� Tf g (4.1)

is defined as follows:

I u; zð Þ ¼ 1

0

if Z is not greater (or not smaller) than the threshold z;
otherwise:

:

�
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Spatio-temporal correlation of a stationary STIRF is described by the indicator

variogram:

2gI h; zð Þ ¼ Var I uþh; zð Þ � I u; zð Þ½ �;

which depends on the threshold z and the lag vector h ¼ hs; htð Þ, with s; sþ hsð Þ
2 D2 and t; tþ htð Þ 2 T.

The fitted model for gI �; �ð Þmust satisfy an admissibility condition in order to be

valid.

Among different spatio-temporal models proposed in literature [7, 11, 15, 17, 19,

21], the generalized product–sum model [10] can be easily fitted to the empirical

spatio-temporal variogram of the STIRF (4.1). This model is properly defined as

follows:

gI hs; ht; zð Þ ¼ gI hs; 0; zð Þ þ gI 0; ht; zð Þ � kgI hs; 0; zð ÞgI 0; ht; zð Þ; (4.2)

where

• gI hs; 0; zð Þ is a valid spatial bounded marginal variogram.

• gI 0; ht; zð Þ is a valid temporal bounded marginal variogram.

• k 2�0; 1 max sillgI hs; 0; zð Þ; sillgI 0; ht; zð Þ� ���
is the parameter of spatio-

temporal interaction.

A comparative analysis and further theoretical results can be found in [10];

moreover, recently it has been shown that strict conditional negative definiteness of

both marginals is a necessary and a sufficient condition for the product–sum (4.2) to

be strictly conditionally negative definite [12, 13].

Indicator kriging allows the estimation of the probability of exceeding specific

threshold values z, at a given location. At an unsampled point of the domain of

interest, the probability that Z is not greater (or not smaller) than the threshold z can
be estimated using a linear combination of neighbouring indicator variables. The

indicator kriging estimator is defined as follows:

bI u; zð Þ ¼
Xn
a¼1

la ua; zð ÞI ua; zð Þ

where u is an unsampled point, I ua; zð Þ; a ¼ 1; 2; . . . ; n represent the indicator

random variables at the sampled points ua 2 D� T and la ua; zð Þ are the kriging

weights which are determined by solving the following indicator kriging system:

Xn
b¼1

lb u; zð ÞgI ua � ub; z
� �� m u; zð Þ ¼ gI ua � u; zð Þ; a ¼ 1; 2; :::; n

Xn
a¼1

la u; zð Þ ¼ 1

8>>>><
>>>>:

where m is the Lagrange multiplier.
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4.4 Case Study

In the present case study, PM10 concentrations, WS and AT have been analysed and

stochastic prediction for PM10, through space–time indicator kriging, has been

proposed.

Particulate matter (PM) is a complex mixture of organic and inorganic

substances, such as sulphates, nitrates, ammonia, sodium chloride, carbon, mineral

dust, water and metal. There are several kinds of particles, differentiated by size,

composition and origin. In particular, PM10 is composed by particles with a

diameter smaller than 10 mm.

Note that the size of the particles determines the time they spend in the

atmosphere: sedimentation and precipitations remove PM10 from the atmosphere

within a few hours after the emission, consequently it cannot be transported.

Moreover, high values of WS and low values of AT affect the pollutant dispersion.

The study of PM10 evolution is very important for its effects on human health.

Many medical researches have shown that exposure to PM10 increases the risk of

mortality both in long and short term; for example, it has been demonstrated the

existence of correlation between PM10 concentrations and the presence of chronic

respiratory disease [2].

4.4.1 The Data Set

The environmental data set consists of PM10 (mg/m
3), WS (m/s) and AT (�C) daily

averages, measured in November 2009 at 28 monitoring stations located in the

Grande Salento (the districts of Lecce, Brindisi and Taranto, in the Apulia Region,

Italy), as shown in Fig. 4.1.

Data concerning PM10 concentrations are provided by “ARPA Puglia”, while

atmospheric data by “ASSOCODIPUGLIA”.

PM10 survey stations are classified in the following three categories:

1. traffic stations, located in areas with heavy traffic,

2. industrial stations, located close to industrialized areas,

3. ground stations, located in peripheral areas.

Exploratory spatial data analysis has been performed by using Geostatistical
Analyst Tool of ArcGIS. The statistical properties of PM10, WS and AT have been

assessed. Some results are shown in Table 4.1.

According to National Laws concerning the human health protection, PM10 daily

average concentrations cannot be greater than 50 mg/m3 for more than 35 times per

year. During the month under study, the PM10 daily values exceeded the threshold

80 times, especially on the 13th, 14th, 23th and 24th of November (Fig. 4.2). Daily

averages of the variables under study have been used for stochastic prediction of the

PM10 concentrations during the period 1–6 December 2009, through space–time

indicator kriging.
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Fig. 4.1 Location map of PM10, WS and AT survey stations, located in the Grande Salento

Table 4.1 Descriptive statistics of PM10 (mg/m3), WS (m/s) and AT (�C) values, measured in

November 2009 in the Grande Salento

Min. Max. Mean Standard deviation 75th percentile 80th percentile

PM10 4.477 110.10 30.81 15.973 37.804 40.57

WS 0.414 8.893 2.11 1.340 2.61 2.786

AT 8.158 17.995 12.53 2.062 13.818 14.105

Fig. 4.2 Box plots of PM10 daily average concentrations in November 2009, classified by days
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In the present case study, the following aspects have been considered.

1. Definition of the space–time indicator variables according to appropriate

thresholds, computed from the observed data.

2. Estimating and modelling the space–time indicator variogram.

3. Using space–time indicator kriging, over the area of interest and during the

period 1–6 December 2009, in order to obtain

(a) the joint probability that PM10 concentrations exceed fixed thresholds and

the atmospheric values (WS and AT daily averages) are not greater than the

corresponding monthly means (adverse conditions for PM10 dispersion),

(b) the joint probability that WS and AT daily averages are not greater than the

corresponding monthly means.

4. Three-dimensional representations of the probability that PM10 concentrations

exceed the fixed thresholds, conditioned to adverse atmospheric conditions for

PM10 dispersion (i.e. WS and AT daily averages lower than the corresponding

monthly mean values).

Note that ArcScene, an extension of ArcGIS, has been used in the paper to

display the results obtained from the spatio-temporal analysis discussed in the

following sections.

4.4.2 Structural Analysis

As previously pointed out, spatio-temporal observations for the variables under

study have been considered as a realization of a stationary STRF Z.
The formalism of a STIRF (4.1) has been applied to the space–time data of PM10,

AT and WS. Thus, three spatio-temporal indicator variables have been defined on

the basis of the following thresholds, for:

• PM10, the 75th and 80th percentiles of samples data (37.804 and 40.57 mg/m3,

respectively), which can be considered critical values with respect to the law

limit.

• AT and WS, the corresponding monthly mean values, i.e. 12.53 �C and 2.11 m/s,
respectively.

Spatio-temporal indicator kriging using the generalized product–sum variogram

model (4.2) has been applied in order to predict, over the area of interest and for the

period 1–6 December 2009, the probability that PM10 concentrations exceed the

above-mentioned fixed limits, in the presence of adverse atmospheric conditions to

the pollutant dispersion. Hence, three indicator random fields have been defined as

follows.

1. Indicator random field I1 is equal to 1 if PM10 daily average concentrations are

not less than the threshold z1 ¼ 37:804 mg=m3 (75th percentile) and in the

presence of adverse atmospheric conditions to the pollutant dispersion, I1 is

equal to 0, otherwise. It is defined as follows:
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I1 u; 37:804; 12:53; 2:11ð Þ ¼
1 if PM10 � 37:804; AT 	 12:53;

WS 	 2:11;
0 otherwise;

8<
:

with u 2 D� T.
2. Indicator random field I2 is equal to 1 if PM10 daily average concentrations are

not less than the threshold z2 ¼ 40:57 mg/m3 (80th percentile) and in the

presence of adverse atmospheric conditions to the pollutant dispersion, I2 is

equal to 0, otherwise. It is defined as follows:

I2 u; 40:57; 12:53; 2:11ð Þ ¼
1 if PM10 � 40:57; AT 	 12:53;

WS 	 2:11;

0 otherwise,

8><
>:

with u 2 D� T.
3. Indicator random field I3 is equal to 1 if the atmospheric conditions are adverse

to the pollutant dispersion, I3 is equal to 0, otherwise. It is defined as follows:

I3 u; 12:53; 2:11ð Þ ¼ 1 if AT 	 12:53; WS 	 2:11;

0 otherwise,

(

with u 2 D� T.

4.4.2.1 Estimating and Modelling

In order to model the spatio-temporal variogram surfaces of the indicator variables

under study, using the generalized product–sum variogram model (4.2), the follow-

ing steps have been faced:

• estimating sample space–time variograms and marginal variograms in space and

time for the indicator variables I1, I2 and I3,
• fitting marginal indicator variograms and identification of the sill values,

• determining the coefficient k of the generalized product–sum model.

Sample space–time variogram surfaces, sample marginal variograms for space

and time and corresponding fitted models for the random fields I1, I2 and I3 are

shown in Fig. 4.3.

Graphical inspection of the spatio-temporal surfaces allows identifying the

global sills needed to compute the parameters k.
In particular, the models fitted to the spatial and temporal marginal variograms, k

parameters and global sills, are the following:
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1. for STIRF I1

(a) gI hs; 0; z1ð Þ ¼ 0:066 1� exp �3 hsk k 15=ð Þ½ �;
(b) gI 0; ht; z1ð Þ ¼ 0:185 1� exp �3ht 6=ð Þ½ �;
(c) k ¼ 3:767;
(d) Global sill equal to 0.205;

2. for STIRF I2

(a) gI hs; 0; z2ð Þ ¼ 0:059 1� exp �3 hsk k 15=ð Þ½ �;
(b) gI 0; ht; z2ð Þ ¼ 0:169 1� exp �3ht 6=ð Þ½ �;
(c) k ¼ 4:112;
(d) Global sill equal to 0.187;

a

b

c

Fig. 4.3 Sample space–time variogram surfaces, sample marginal spatial and temporal

variograms and relative fitted models for the indicator variables. (a) Indicator random field I1.
(b) Indicator random field I2. (c) Indicator random field I3
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3. for STIRF I3

(a) gI hs; 0; z3ð Þ ¼ 0:094 1� exp �3 hsk k 20=ð Þ½ �;
(b) gI 0; ht; z3ð Þ ¼ 0:235 1� exp �3ht 6=ð Þ½ �;
(c) k ¼ 3:712;
(d) Global sill equal to 0.247.

Figure 4.4 displays the space–time variogram models for the indicator variables

I1, I2 and I3.

4.4.3 Space–Time Predictions Based on Spatio-Temporal
Indicator Kriging

Finally, probability maps have been predicted over the area of interest, for the

period 1–6 December 2009, by using some modified GsLib routines [12]. In

particular, the indicator kriging has been used to estimate:

a b

c

Fig. 4.4 Space–time variogram surfaces for the indicator variables. (a) Indicator random field I1.
(b) Indicator random field I2. (c) Indicator random field I3
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• the joint probability that PM10 concentrations exceed fixed thresholds and the

daily averages of atmospheric variables are not greater than the corresponding

monthly means,

• the joint probability that the daily averages of WS and AT are not greater than

the corresponding monthly means.

Then, the conditional probabilities that PM10 values do not exceed the fixed

thresholds (75th and 80th percentiles), under the established unfavourable weather

conditions to pollutant dispersion, over the area of interest and during the period

1–6 December 2009, have been computed by using the probability values previ-

ously estimated.

The results, obtained by using GSLib modified routines, have been implemented

in ArcMap by generating and storing, for each fixed threshold, a shapefile per day.

Hence, maps concerning the conditional probability that the pollutant

concentrations exceed the established thresholds, in the presence of adverse atmo-

spheric conditions to the pollutant dispersion, have been created by the implemen-

tation of above-mentioned shapefiles in a GIS project.

The maps of conditional probability for the first threshold z1 ¼ 37:804 mg=m3

and the second threshold z2 ¼ 40:57 mg=m3 are shown in Figs. 4.5 and 4.6,

respectively. They are produced by using ArcMap. It is evident that the probability
that PM10 daily concentrations exceed the fixed thresholds, under the established

atmospheric conditions, is high in the central part of the area of interest.

In particular, it is high, during the estimated period, along the boundary among

the districts of Lecce, Brindisi and Taranto, in the northern part (the district of

Brindisi) and in the southern part (the district of Lecce) of the predicted area. This

behaviour is due to the presence of pollution sources such as industrial

establishments and heavy traffic, as well as to the occurrence of unfavourable

atmospheric conditions to the pollutant dispersion.

Figure 4.7 shows a 3D representation (produced by ArcScene of ArcGIS) of the
space–time evolution of the conditional probability associated with PM10, with

reference to the fixed thresholds.

4.5 Conclusions

In this chapter the integration of advanced geostatistical techniques into a GIS has

been proposed. This integration has been realized by implementing the results of

the spatio-temporal analysis, based on spatio-temporal indicator kriging, in a GIS
project developed by using ArcGIS of ESRI.
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Moreover, a 3D representation of the spatio-temporal evolution of the condi-

tional probability associated with PM10 concentrations has been provided by using

ArcScene of ArcGIS.
Up to now, complete integration between geostatistical tools and GIS is not

available. Hence, further developments concerning the implementation of scripts in

a GIS package might be proposed, in order to provide a user-friendly interface for

the analysis of spatio-temporal data and their representation.

Fig. 4.5 Conditional probability maps of PM10 concentrations, for z1 ¼ 37:804 mg=m3 (75th

percentile), in the Grande Salento, during the period 1–6 December 2009, obtained by using

ArcMap
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Fig. 4.6 Conditional probability maps of PM10 concentrations, for z2 ¼ 40:57mg=m3 (80th

percentile), in the Grande Salento, during the period 1–6 December 2009, obtained by using

ArcMap
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Fig. 4.7 Conditional probability maps of PM10 concentrations, in the Grande Salento, during the

period 1–6 December 2009, obtained by using ArcScene. (a) z1 ¼ 37:804 mg=m3 (75th percentile).

(b) z2 ¼ 40:57mg=m3 (80th percentile)
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Chapter 5

Socioeconomic Zoning: Comparing Two

Statistical Methods

Silvestro Montrone and Paola Perchinunno

Abstract The aim of this paper is to identify territorial areas and/or population

subgroups characterized by situations of deprivation or strong social exclusion

through a fuzzy approach that allows the definition of a measure of the degree of

belonging to the disadvantaged group. Grouping methods for territorial units are

employed for areas with high (or low) intensity of the phenomenon by using

clustering methods that permit the aggregation of spatial units that are both contig-

uous and homogeneous with respect to the phenomenon under study. This work

aims to compare two different clustering methods: the first based on the technique

of SaTScan [Kuldorff: A spatial scan statistics. Commun. Stat.: Theory Methods

26, 1481–1496 (1997)] and the other based on the use of Seg-DBSCAN, a modified

version of DBSCAN [Ester et al.: A density-based algorithm for discovering

clusters in large spatial databases with noise. In: Proceeding of the 2nd International

Conference on Knowledge Discovery and Data Mining, pp. 94–99 (1996)].

[The contribution is the result of joint reflections by the authors, with the following

contributions attributed to Montrone (Sects. 5.1, 5.3.3 and 5.4) and to Perchinunno

(Sects. 5.2, 5.3.1 and 5.3.2).]
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5.1 Statistical Methods for the Identification of Geographical

Clustering

5.1.1 Introduction

The great abundance of data deriving from the use of information technology (IT)

and digital mapping (DM), and the frequent use of geographic information systems

(GIS), increases the interest in geographical analysis and modelling, to support the

heuristic creation of new scientific knowledge. In the field of statistics, such

instruments are already numerous; for instance, ordinary data mining (ODM) is

used in market investigation in order to assess consumer preferences or consumer

profiles.

In the field of spatial analysis, instead, although the consciousness of the need to

associate spatial entities with information, geographic data mining (GDM) did not

reach the same level of stability of results due to greater computational complexity,

in problems like geographic clustering, bordering and modelling, due to the intrin-

sic characters of spatial data. In fact in ODM some specific issues are: explorative

data analysis, thematic mapping, multivariate methods, logistic regression (general

linear modeling), and clustering (decision/segment trees).

Sometimes traditional methods are likely to be more useful for ODM studies,

due to the difficulty in the management of spatial-based entities. ODM traditionally

finds relationships between entities without explaining the connection with spatial

location, represented by topographic reference or belonging to a special geometric

group. In fact, ODM does not consider topological relationships or applications. In

order to answer the above questions, spatial databases (SD) and GIS have been

developed starting from the 1970s. SD and GIS, owing to their dynamic-link library

oriented to the integration with external software, help to integrate the conceptual

and pragmatic dimension of the relationship among spatial entities. An incom-

pletely resolved problem is that GIS, and/or geographic analysis machines (GAM)

give only a visualization of problem solution, by heuristics that require very

complex computation.

If it is possible to reduce the analyzed problem to a few aspects of the observed

phenomenon (such as incidence of diseases and/or crimes in a territory), the

cartography becomes a thematic map where areas of interest are joined to each

other with spatial contiguity. The result is a zoning based on a spatial (or

spatial–temporal) clustering, the conceptual aspects of which deserve a better

definition. Knox [17] in his studies on spatial relationship of epidemic phenomena

gave a definition of spatial clustering: a spatial cluster is a non-usual collection/

aggregation of real or perceived (social, economic) events; it is a collection of

spatial, or spatial/temporally delimited events, an ensemble of objects located in

contiguous areas.

Referring to a given phenomenon from a statistical point of view, in this case the

clustering can be based on the identification of areas where a group of points shows
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the maximum incidence inside, and at the same time leaves the minimum incidence

outside. Such an operation is obtained by locating a circular window of arbitrary

radius, by calculating the probability (risk) p1, inside the circle, or the probability

(risk) p2, outside the circle. The minimum p-value (probability of critical region

referring to the test) corresponds to the most important cluster. The identification of

a special area can be based on the intensity of a statistical attribute, instead of the

number of attribute-characterized elements.

In order to examine the possibility of applying such methods to regeneration

programs, it is necessary to introduce a physical reference to urban spaces. In the

field of epidemiological studies many research groups have developed different

typologies of software; these are all based on the same approach, but usually differ

from each other in the shape of the window.

Among the various methods of zoning, there are SaTScan [18] that uses a

circular window, FlexScan [27], that uses contiguity to build the window, the

upper level scan statistics [26], that underpasses the question of geometric shape

of the window including aggregate points and finally AMOEBA (a multidirectional

optimal ecotope-based algorithm) [1], that uses a similar approach to SaTScan,

without the constraint of a circular window.

5.1.2 SaTScan Method

In this section we review the spatial scan statistics following quite closely the

original treatment proposed by Kuldorff in a series of remarkable papers [18].

SaTScan is employed to examine an area of interest with a moving window

comparing a smoothing of its internal and external intensity: clusters are formed by

aggregating units belonging to contiguous windows with similar intensity.

Windows of different sizes are used. The most likely cluster is that with the

maximum likelihood, by which we intend the cluster least likely to be due to

chance. A p-value is assigned to this cluster.

The description of the SaTScan method which follows assumes that the region

being examined can be divided into subareas that share no common points, together

with the existence of exactly one subset Z (formed by uniting one or more areas)

and two independent Poisson processes defined on Z and Zc, indicated, respectively,
with XZ and Xc

Z which have the intensity functions:

lZðxÞ ¼ pmðxÞ and lZcðxÞ ¼ qmðxÞ; (5.1)

where p and q indicate the individual probability of occurrence, respectively, inside
and outside the Z zone.

The “background” has an intensity function with a significant digit that varies

according to the particular application considered: for example, in epidemiological

investigations, it models the spatial distribution of the population at risk.
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The null hypothesis H0:p ¼ q is that the probability of occurrence is not higher

within the area considered than it is outside: it is resolved employing the following

likelihoods ratios:

LZ ¼ maxp>qL Z; p; qð Þ
maxp¼qL Z; p; qð Þ ¼

yZ
mðZÞ
� �yZ yG�yZ

mðGÞ�m ðZÞ
� �yG�yZ

yG
mðGÞ
� �yG ; (5.2)

where yz and yG, respectively, represent the number of events observed within the

Z zone and the entire region under study, while m(Z) and m(G) are usually

approximated by the consistency of the population “at risk,” respectively, within

Z and the whole region under investigation.

The advantage of proceeding according to this method is that the most probable

cluster is detected by the highest value of the likelihood ratio seen as a function of Z:

L ¼ maxZ LZ; (5.3)

where Z is an appropriate collection of subsets of G, or at least a collection

of putative spatial clusters [22].

In addition, when the statistical significance of the cluster area defined on the

Z zone that maximizes the likelihood ratio has been evaluated, other secondary

clusters may be significant: in almost all cases the clusters considered are those

which do not overlap the main cluster [29].

5.1.3 The DBSCAN and Seg-DBSCAN Models

DBSCAN (density-based spatial clustering of application with noise) was the first

density-based spatial clustering method proposed [11]. The fundamental idea

behind this method is that in order to define a new cluster, or extend an already

existing one, it is necessary to establish the neighborhood of a point with a given

radius e that must contain at least a minimum number of points MinPts, i.e. the
density in the neighborhood is determined by the choice of a distance function for

two points p and q, denoted by dist(p, q).
There are two different kinds of points in a clustering: core points and non-core

points. A point is a core point if it has more than a specified number of points

(MinPts) within e. These are points that are at the interior of a cluster. The non-core
points in turn are either border or noise points. A border point has fewer than

MinPts within e, but is in the neighborhood of a core point. A noise point is any
point that is not a core point or a border point.

So any two core points that are close enough—within a distance e of one

another—are put in the same cluster; any border point that is close enough to a

core point is put in the same cluster as the core point; instead noise points are

discarded.
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The algorithm DBSCAN, which discovers the clusters and the noise in a

database according to the above definitions, is based on the fact that a cluster is

equivalent to the set of all points inD which are density-reachable from an arbitrary

core point in the cluster. The retrieval of density-reachable points is performed by

iteratively collecting directly density-reachable points. DBSCAN checks the

e-neighborhood of each point in the database. If the e-neighborhood NeðpÞ of a

point p has more thanMinPts points, a new cluster C containing the objects inNeðpÞ
is created. Then the e-neighborhood of all points q in C which have not yet been

processed is checked. If NeðpÞ contains more than MinPts points, the neighbors

of q which are not already contained in C are added to the cluster and their

e-neighborhood is checked in the next step. This procedure is repeated until no

new point can be added to the current cluster C. The greatest advantages of

DBSCAN are that it can follow the shape of the clusters and that it requires only

one distance function and two input parameters. Their choice is crucial because

they determine whether a group is a cluster of points or a simple noise.

So as to limit arbitrariness in the adoption of a value to assign to e, usually
detected by a heuristic procedure, we have developed a new algorithm in this work:

Segmented DBSCAN (Seg-DBSCAN), a modified version of DBSCAN, in which

the clusters are aggregated according to multiple levels of value of e. Levels of e are
defined by fixing a value ofMinPts and we analyze the distribution of the maximum

radius of the cores that represent groups formed by MinPts points. We then

construct a histogram of this distribution and we choose e in coincidence with the

histogram peaks that indicate a proximity of the cores of a cluster. As suggested in

literature, we can fix MinPts value to 4, and a number of levels of e equal to the

number of the highest histogram peaks. The final phase of the algorithm involves

merging the clusters obtained. The merger of two clusters C1 and C2 with different

levels of density e1 and e2 is obtained if:

dðC1;C2Þ � maxðe1; e2Þ: (5.4)

With this modified algorithm, parameter e is no longer established a priori [21].

5.1.3.1 The Choice of Distance

The function that in these terms links two points A and B of coordinates A(x1A,
x2A, . . ., xKA) and B(x1B, x2B, . . ., xKB) is a common function of distance. In certain

situations at each point, the n-tuple of coordinates, it may be necessary to assign the

intensity to a further phenomenon, that is to assign the weights wi to the

observations in order to change the distance between them. A generic point can,

therefore, be represented as Pi ¼ (x1i, x2i, . . ., xKi, wi) with 0 < wi < 1.

If A and B are geometrically close to one another with both presenting high

values of w, they are hence even more similar to one another, and it is therefore

necessary to “reduce” their distance. Conversely, if A and B are geometrically close
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to one another but both have low values of w they are not similar, and it is therefore

necessary to “enhance” their distance to prevent their fusion into a single core.

According to this logic, the “weighted distance” between the two points is

generically obtained through the following formula, given by the ratio between

the distance chosen and a mean of order integer t > 0:

dpesataðA;BÞ ¼ dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

w�t
A
þw�t

B

t

q : (5.5)

In particular, choosing the Euclidean distance we obtain:

dpesataðA;BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
j¼1

ðxjA � xjBÞ2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

w�t
A
þw�t

B

t

q : (5.6)

In this distance the triangle inequality does not hold, so it is a semi-metric, but

this restriction does not affect the definitions of density-reachability and density

connectivity necessary for DBSCAN algorithm [11]. With this function the distance

increases in matching pairs of points with low intensity value, so that they are

penalized in the formation of clusters. To vary by t modifies the shape of the

function passing from a more rounded to a more angular form, or to a more precise

form (Fig. 5.1).

5.1.3.2 Validation Index

The CDbw (Composed Density between and within clusters) is a cluster validity

index, proposed by Halkidi and Vazirgiannis [13, 14] that assesses the compactness

of clusters and the separation between the clusters generated by an algorithm that

takes into account the density distribution between and within the clusters.

In particular, the index is based on cohesion of the relative density in terms of

Fig. 5.1 Variation of the function with t ¼ 1 or t tending to 1

98 S. Montrone and P. Perchinunno



intra-cluster density and distance, and it takes account of the different geometric

shapes of the clusters and the distribution of noise points between the clusters. The

CDbw index is defined as the product of three factors:

CDbwðCÞ ¼ CohesionðCÞ � SepðCÞ � CompactnessðCÞ; (5.7)

where Cohesion(C) means the ratio between the measured density cohesion within

the clusters and the density variations observed within the same; Sep(C) means the

separation of clusters as measured by the maximum distance between the clusters

considering the number of points distributed among the respective clusters and

taking account of noise points; finally Compactness(C) means the average relative

density within clusters compared to a contraction factor s.
Let S be a collection of data and D ¼ (V1, . . ., Vc) a partition of the data set S in

c clusters where each Vi ¼ (vi1, . . ., vir) is a representative set of r points in cluster

Ci. Because the CDbw is well suited to assess results on data sets with clusters of

arbitrary shapes, each cluster is not represented by a single point, for example the

centroid, but from a collection of r points fairly well scattered within the same

cluster, in order to diversify the geometry of the various clusters. We introduce

definitions for the construction of the index.

Definition 1 (Closest Representative Points)

Let Vi and Vj be two sets of representative points of clusters Ci and Cj, a point vik of
Ci is said to be the closest representative points vjl of Cj, and is denoted by

closest_repi(vjl) if vik is the representative point of Ci with the minimum distance

from vjl, namely

dðvjl; vikÞ ¼ minvix2Vi
dðvjl; vixÞ
� �

;

where d is the Euclidean distance.

Therefore the collection:

CRi
j ¼ ðvik; vjlÞ vjl ¼ closest rep jðvikÞ

�� �
:

�
(5.8)

Definition 2 (Respective Closest Representative Points)

The set of points is:

RCRi
j ¼ fðvik; vjlÞjvjk ¼ closest repiðvjlÞ; vjl ¼ closest rep jðvikÞg (5.9)

is said to be the respective closest representative points and is the intersection of the
closest representative points of Cj with respect to Ci and the closest representative
points of Ci with respect to Cj that is RCRij ¼ CRi

j \ CR
j
i.

The separation is defined in terms of the density of the area between the clusters,

by which we mean the area between the respective closest representative points of
clusters (Fig. 5.2).
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Definition 3 (Density Between Clusters)

Let clos rep
p
ijðvik; vjlÞ be the pth pair of respective closest representative points

clusters Ci and Cj, so clos rep
p
ijðvik; vjlÞ 2 RCRij, and letu

p
ij be the middle point of the

segment defined by vik and vjl then the density between the cluster Ci and Cj is

defined by:

DensðCi;CjÞ ¼ 1

RCRij

�� �� � X
RCRijj j

i¼1

dðclos rep
p
ijÞ

2 � dev � cardinalityðupijÞÞ;
 

(5.10)

where:

• dðclos rep
p
ijÞ is the Euclidean distance between the pair of points defined by

clos rep
p
ijðvik; vjlÞ 2 RCRij.

• RCRij

�� �� is the cardinality of the set RCRij.

• dev is the average of the difference between the representative points

considered.

• cardinalityðupijÞ ¼
Pniþnj

l¼1

f ðxl; upijÞ
niþnj

with xl 2 Ci [ Cj ; ni and nj are the cardinality of

Ci and Cj, respectively.

In particular, cardinalityðupijÞ represents the average number of points Ci and Cj

that belong to the neighborhood of upij. The function f tests whether or not the point x
belongs to the neighborhood of upij is:

f ðx; uijÞ ¼ 1 se dðx; uijÞ<dev and x 6¼ uij
0 otherwise

�
:

Neighborhood of up
ij

nij shifted by s

Cluster Ci

Cluster Cj

Clos _ rep p
ij (nik, njl) 

n_ij

u p
ij

nik

nij

njl

s dev

Fig. 5.2 The density within clusters and between clusters for the index CDbw
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ThecardinalityðupijÞ is influenced by the definition of neighborhood of a point. An
appropriate definition of neighborhood is necessary for each data set, in the specific

case of the previous definition the neighborhood considered is a hyper-sphere

centered at upij with radius equal to dev.

ConsideredC ¼ Ci i ¼ 1; ::::; cjf g a partition of c cluster with c > 1 we have the

following definitions of density and separation between clusters and density,

compactness and cohesion within the cluster.

Definition 4 (Inter-cluster Density)

The maximum distance between Ci and the other clusters in C measure the density

of clusters, denoted with Inter-cluster density, is defined as:

Inter densðCÞ ¼ 1

c

Xc
i¼1

max
j¼1;:::;c

j 6¼1

Dens ðCi;CjÞ
� �

(5.11)

with c > 1 and c � n.
Definition 5 (Clusters Separation)

The following ratio defines the measure of separation between clusters:

SepðCÞ ¼

1
c

Pc
i¼1

min
j¼1;:::;c

j 6¼ 1

DistðCi;CjÞ
� �

1þ Inter densðCÞ (5.12)

with:

• c > 1 and c � n.
• DistðCi;CjÞ ¼ 1

RCRijj j �
PRCRijj j
i¼1

dðclos rep
p
ijÞ, where RCRij

�� �� is the cardinality of

set RCRij.

Definition 6 (Relative Intra-cluster Density)

The relative density of clusters compared to a contraction factor, s, is defined as:

Intra densðC; sÞ ¼ Dens clðC; sÞ
c � dev (5.13)

with:

• c > 1.

• Dens clðC; sÞ ¼ 1
r

Pc
i¼1

Pr
j¼1

cardinalityðvijÞ.

• cardinalityðvijÞ ¼
Pni
l¼1

f ðxl;vijÞ
ni

where ni is the number of points xl that belong to the

Ci and f is the function as defined earlier.
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Definition 7 (Compactness)

The compactness of a partition in terms of density is defined as the average density

inside the C partition:

CompactnessðCÞ ¼
X
s

Intra densðC; sÞ
ns

; (5.14)

where ns is the number of different values considered for s and for which the

intra-cluster density is calculated, usually s varies in the range 0; 1; 0; 8½ �.
Definition 8 (Intra-density Change)

The variation in density within the clusters is defined with the following ratio:

Intra ChangeðCÞ ¼

P
i¼1;::::;ns

Intra densðC; siÞ � Intra densðC; si�1Þj j

ðns � 1Þ ; (5.15)

where ns is the number of factors of contraction s considered. Significant changes
in density within the cluster (intra-density change) indicate high-density areas

alternate to low-density areas.

Definition 9 (Cohesion)

Cohesion is a measure of the intra-cluster density compared to density variations

observed within them is defined through the following ratio:

CohesionðCÞ ¼ CompactnessðCÞ
1þ Intra ChangeðCÞ : (5.16)

Definition 10 (Separation Respect to Compactness)

The product of the density between clusters and density within clusters is denoted

by:

SCðCÞ ¼ SepðCÞ � CompactnessðCÞ: (5.17)

Now we have the elements for the definition of the index CDbw: Composed

Density between and within clusters.

Definition 11 (CDbw)

The CDbw(C) index has a minimum when all points are considered as clusters

whereas it has a local maximum if the data set has a natural tendency to clustering:

CDbwðCÞ ¼ CohesionðCÞ � SCðCÞ (5.18)

with c > 1.
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The index CDbw(C) can be used:

• to select the best input parameters for each cluster algorithm,

• to select between various cluster algorithms, the algorithm which presents the

best results,

• to compare the CDbw(C) index with other indices of validity with respect to the

number of clusters identified.

5.1.4 The DENCLUE Model

There are other density-based clustering methods; these include Optics [2] and

another clustering algorithm used in large multimedia databases, known as

DENCLUE (DENsity-based CLUstEring). This approach is based on the analytical

modelling of the overall point density as the sum of influence functions of the data

points.

The cluster model employed in the DENCLUE algorithm is based on kernel

density estimation. The DENCLUE framework for clustering [15, 16] builds upon

Schnell’s algorithm. Local maxima of the density estimate are used to define

clusters. Data points are assigned to local maxima by hill climbing. The points

which are assigned to the same local maximum are included in a single cluster.

The advantages of this approach are:

• It has a solid statistical basis.

• Its clustering properties are good even in data sets that have large amounts of

noise.

• It allows arbitrarily shaped clusters in high-dimensional data sets to be described

in a compact mathematical way.

• It is significantly faster than existing algorithms.

DENCLUE has the disadvantage that the hill climbing used may make small

steps in the beginning unnecessary and, while it does closely approach the

maximum, it never completely converges. However, the superiority of this new

approach emerges when it is compared to DBSCAN shows. Further developments

involve applying a “weighted” DENCLUE, obtained using the intensity of a

phenomenon instead of the density kernel.

5.2 Multidimensional Aspects of Socioeconomic Deprivation

5.2.1 Construction of Indicators of Socioeconomic Deprivation

Over recent years, and related in particular to the significant recent international

economic crisis, an increasingly worrying rise in poverty levels has been observed

both in Italy and in other countries.
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Such a phenomenon may be analyzed from an objective perspective (i.e., in

relation to the macro and micro-economic causes by which it is determined) or,

rather, from a subjective perspective (i.e., taking into consideration the point of view

of individuals or families who consider themselves as being in a condition of

hardship). Indeed, the individual “perception” of a state of being allows for the

identification of measures of poverty levels to a much greater degree than would

the assessment of an external observer. For this reason, experts in the field have, in

recent years, attempted to overcome the limitations of traditional approaches, focus-

ing instead on a multidimensional approach towards social and economic hardship,

equipping themselves with a wide range of indicators on living conditions, whilst

simultaneously adopting mathematical tools which allow for a satisfactory investiga-

tion of the complexity of the phenomenon under examination [24].

Since the end of the 1970s, numerous studies have been based on a variety of

approaches, each of which adopted an attentive definition and conceptualization

of the phenomena. Townsend [28] defines poor families as those that “lack the

resources for a quality of alimentation, participation in activities and enjoyment

of the living conditions which are standard, or at least widely accepted, in the

society in which they are living.” The reference is, therefore, towards a concept of

poverty as relative privation, which takes into account the particular historical,

economic, social, geographical, cultural, and institutional context under examina-

tion. Within this study, 12 principal dimensions of poverty were identified which

are: diet, clothing, housing costs, costs within the household, living conditions,

working conditions, health, education, the environment, family activities, recrea-

tional activities, and social relations. It may be noted that 3 of the 12 areas

considered are connected to housing conditions. The 12 categories described

above have been used in many later studies based on the concept of so-called

multidimensional poverty, carried out amongst others by Gailly and Hausman [12]

and Desai and Shah [9].

With regard to the choice of poverty index, there is, therefore, a consideration of
various aspects associated with educational levels, with working conditions, and

with housing conditions along with the quality of housing. In this case the indices

were chosen with the aim of identifying the level of residential poverty and were

calculated in order to align elevated levels on the indices with elevated levels of

poverty.

A particular index tied to social difficulty of the resident population, the index of
lack of progress to high school diploma, is obtained by elaborating the ratio

between the total resident population aged 19 or over who have not achieved a

high school diploma and the total resident population of the same age. Such an

evaluation presupposes that poverty is in some way tied to levels of schooling, at

the very least in cultural terms.

Another important index as a measure of poverty, tied to occupational dynamics,

is the rate of unemployment, understood as resulting from the ratio between the

population aged 15 or over in search of employment with respect to the total labor

force of the same age group.

104 S. Montrone and P. Perchinunno



A further measure is the index of overcrowding: the ratio between the total

number of residents and the size of dwellings occupied by residents. Connected to

the phenomena of housing deprivation is the evaluation of the classification of
housing status (in rented accommodation, homeownership, usufruct, or free use).

In particular, it is evident that homeownership is an indicator inversely correlated

with poverty.

A measure of poverty is, therefore, represented by the incidence of the number of
dwellings occupied by rent-payers with respect to the total number of dwellings

occupied by residents.

Finally, aspects of residential poverty associated with the availability of
functional services are considered in the analysis, including goods of a certain

durability destined for communal use such as the availability of landline telephone

or the presence of heating systems. Consistent with the aim of identifying aspects

related to poverty, the incidence of the number of dwellings deprived of services
was calculated for each residence (landline telephone and heating system) with

respect to the total number of dwellings occupied by residents.

5.2.2 Statistical Methods for Multidimensional Analysis
of Hardship

The different scientific research approaches are consequently directed towards the

creation of multidimensional indicators, sometimes going beyond dichotomized

logic in order to move towards a classification which is “fuzzy” in nature, in which

every unit belongs to the category of poor with a range from 1 to 0, where the value

1 means definitely poor, 0 means not poor at all, and the other values in the interval

reflect levels of poverty. Classifying populations simply as either poor or non-poor
constitutes an excessive simplification of reality, negating all shades of difference

existing between the two extremes of high level well-being and marked material

impoverishment. Poverty is certainly not an attribute which can characterize an

individual in terms simply of presence or absence, but rather is manifested in a

range of differing degrees and shades [8, 25].

The development of fuzzy theory stems from the initial work of Zadeh [30], and

successively of Dubois and Prade [10] who defined its methodological basis. Fuzzy

theory assumes that every unit is associated contemporarily with all identified

categories and not univocally with only one, on the basis of ties of differing

intensity expressed by the concept of degrees of association. The use of fuzzy

methodology in the field of “poverty studies” in Italy dates back only a few years,

and is primarily due to the work of Cheli and Lemmi [8] who define their method

“Total Fuzzy and Relative” (TFR) on the basis of the previous contribution from

Cerioli and Zani [7].
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The TFR method defines the measurement of an individual’s degree of member-
ship to the fuzzy totality of the poor, comprised within the interval between

0 (where an individual does not clearly demonstrate membership of the totality of

the poor) and 1 (where an individual clearly demonstrates membership of the

totality of the poor). In mathematical terms a method of this type involves the

construction of a function of membership of “the fuzzy totality of the poor” that is

continuous in nature, and “able to provide a measurement of the degree of poverty

present within each unit” [8]. Assuming that k indicators of poverty are observed

for every family, the function of membership of ith family to the fuzzy subset of the

poor may be defined thus [7]:

f ðxi:Þ ¼

Pk
j¼1

gðxijÞ � wj

Pk
j¼1

wj

; i ¼ 1; 2; . . . ; n: (5.19)

The wj are only a weighting system [8, 19, 20], as for the generalization of Cerioli

and Zani [7], whose specification is given:

wj ¼ ln 1
.
gðxjÞ

� �
: (5.20)

The weighting operation is fundamental for creating synthetic indexes, by the

aggregation of function of membership of each single indicator of poverty. An

alternative, by Betti, Cheli, and Lemmi starts from the conjoint use of the coeffi-

cient of variation as the first component of the set of weights, with the correlation

coefficient as the second component [3–5]. The new set of weights, that is proposed

for continuous variables, takes into account two factors, described in the following

multiplicative form:

wj ¼ w
ðaÞ
j � wðbÞ

j ; (5.21)

where:

• w
ðaÞ
j ¼ �sjmj is the coefficient of variation of Xj.

• w
ðbÞ
j ¼ 1�

P
l 6¼j

rðXj;XlÞ

Pk
l¼1

rðXj;XlÞ
is the complement to one of the ratio between the sum of all

correlation coefficients, left out the j array, and the whole sum of correlation

coefficients referring to Xj.
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5.3 A Case Study

5.3.1 Socioeconomic Indices in Some Cities of South Italy

The subject of the case study arises from the necessity to identify geographical

areas characterized by situations of poverty in some metropolitan areas in the South

of Italy: Cagliari, Bari, and Napoli. With the aim of analyzing the phenomena of

poverty on a geographical basis, the work makes use of the data deriving from the

Population and Housing Census 2001 carried out by ISTAT; such information

allows the geographical analysis in sections according to the census, albeit disad-

vantaged by the unavailability of the most recent data.

Table 5.1 shows average indexes of poverty for each city. The analysis of social

poverty in the above-mentioned cities shows that the percentage of people aged

over 19 who have not achieved a high school diploma ranges from 47.5 % in

Cagliari to 58.5 % in Napoli. As regards to the unemployment rate we see very low
percentages in Cagliari (17.6 %) and Bari (19.5 %) and higher scores in Napoli

(30.5 %). This index highlights the serious social and economic difficulties occur-

ring in some areas. With regard to the overcrowding rate, an average of less than

Table 5.1 Average of indexesa in some Southern Italian metropolitan areas, 2001

Educational

qualifications

Working

conditions Overcrowding

Housing

status

Lack of landline

telephone

Lack of heating

system

Cagliari 47.5 17.6 2.7 18.9 15.2 23.5

Bari 54.9 19.5 3.4 29.4 16.8 10.2

Napoli 58.5 30.5 4.1 44.2 16.9 33.1

Source: Our elaboration of the data from the Population and Housing Census, 2001
aIndex 1—index of lack of progress to high school diploma: ratio between the total number of

residents aged 19 or over who have not obtained a high school diploma and the total number of

residents of the same age group. Index 2—rate of unemployment: the ratio between the total

number of residents aged 15 or over who are in search of employment and the workforce of the

same age group. Index 3—index of overcrowding: the ratio between the total number of residents

and size of dwellings occupied by residents. Index 4—incidence of the number of dwellings

occupied by rent-payers: ratio between the number of dwellings occupied by rent-paying residents

and the total number of residents. Index 5—incidence of the number of dwellings lacking a landline

telephone: ratio between the number of dwellings occupied by residents without a landline

telephone and the total number of dwellings occupied by residents. Index 6—incidence of the

number of dwellings lacking a heating system: ratio between the number of dwellings occupied by

residents without a heating system and the total number of dwellings occupied by residents
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3 inhabitants per 100 m2 is observed in Cagliari at variance with Napoli where the

largest rate of about 4 people on average for every 100 m2 of housing occurs. As

regards the typology of occupation, the percentage of the dwellings occupied by

renters ranges from a minimum of 18.9 % of residents renting in Cagliari to a

maximum of 44.2 % in Napoli. As regards the incidence of dwellings deprived of
landline telephone, scores vary from a minimum of 15.2 % in Cagliari to a

maximum of 16.8 % in Bari and of 16.9 % in Napoli. Even stronger is the difference

with respect to dwellings with no heating system: higher percentages are observed
in Napoli (33.1 %).

In Table 5.2, the TFR measures of poverty, estimated for the total population of

the different cities for the year 2001, are classified into four different typologies of

poverty in accordance with the resulting fuzzy values: well-off (fuzzy value

between a minimum of zero and a maximum of 0.25), non-poor (between 0.25

and 0.50), almost poor (between 0.50 and 0.75), and unquestionably poor (between
0.75 and 1).

Considering the set of indicators relating to socioeconomic deprivation,
20.4.7 % of the resident population in Napoli is classified by our fuzzy technique

in the unquestionable poverty class, at variance with much lower percentages in

Cagliari (6.8 %) and Bari (7.8 %). Moreover, Fig. 5.3 indicates that there is a clear

percentage of well-off in Bari (52.7 %) and Cagliari (42.2 %).

Table 5.2 Composition of absolute values and percentage values of the census sections in some

Italian metropolitan areas for conditions of poverty in 2001

Conditions of poverty Absolute values Percentage values (%)

Cagliari 1,198 100.0

Well-off 506 42.2

Non-poor 419 35.1

Almost poor

Unquestionably poor

Bari

191

82

1,312

15.9

6.8

100.0

Well-off 691 52.7

Non-poor 349 26.5

Almost poor

Unquestionably poor

Napoli

170

102

3,839

13.0

7.8

100.0

Well-off 1,212 31.6

Non-poor 1,020 26.5

Almost poor

Unquestionably poor

825

782

21.5

20.4

Source: Our elaboration on the data from the Population and Housing Census, 2001
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5.3.2 An Application with SaTScan

In this case, SaTScan operates by locating a circular window of arbitrary radius, and

calculating the probability of urban poverty, inside the circle, or the probability of

urban poverty, outside the circle, and consequently by optimizing the dimension of

the radius [24].

In particular, three cities of the south of Italy have been represented (Napoli,

Bari and Cagliari), all with situations of significant social and housing deprivation.

In detail, for each city we have identified a different number of clusters, composed

of a different number of census sections, where the identification of difficulty is

given by the inside average; the higher the average value, the higher is the level of

poverty.

A further aspect of interest is given by the p-value, that is the probability of the

critical region of the test, where the lower the values shown, the better defined is the

cluster.

The interpretation of data analysis shows that the values of the inside averages

(included in the interval 0–1) are very high. Optimal values are shown also by

p-values. Among the different clusters, some are strongly discriminating, whereas

others show a nonsignificant p-value since we either have few cases inside the area

or a strong variability is apparent, although around a high value of the inside

average (Table 5.3).

The different clusters are shown on a map by different shades of gray ranging

from maximum degree of social and housing deprivation (the darkest gray) to

minimum degree (the lightest gray), so that the represented reality is immediately

understandable (Figs. 5.4, 5.5, and 5.6).

Fig. 5.3 Composition of percentage values of the census sections of Bari, Cagliari, and Napoli for

conditions of social and housing deprivation

5 Socioeconomic Zoning: Comparing Two Statistical Methods 109



In detail, two critical areas are observed in Bari (Fig. 5.4): the old center of the
city, called “San Nicola” (with inside average of 0.67), Madonnella and Carrassi

(with inside average of 0.58). We have two secondary clusters as well

(characterized by a lower average of 0.41), which can be identified with areas in

which intense council housing took place during 1960s (Stanic, San Girolamo,

Carbonara and Ceglie) [6].

The situation in Napoli (Fig. 5.5) is much more critical in that there is a wide

area with high average values (ranging from a minimum value of 0.6 to a maximum

of 0.7).

Table 5.3 Description of clusters referring to social and housing deprivation sets (SaTScan

method)

Cluster Number of cases Inside average Outside average p-value

Bari

1 69 0.67 0.27 0.0010

2 39 0.58 0.28 0.0040

3 480 0.41 0.26 0.0010

Napoli

1 220 0.65 0.48 0.0010

2 2,226 0.60 0.37 0.0010

Cagliari

1 2 0.93 0.25 0.3240

2 31 0.77 0.24 0.0010

3 6 0.60 0.25 0.7440

4 505 0.34 0.20 0.0010

Source: Our elaboration of the data from the Population and Housing Census, 2001

Bari

Unclussified

0.6 to 0.7
0.5 to 0.6
0.4 to 0.5

(69)
(39)

(480)
(894)

Fig. 5.4 SaTScan model for the identification of Hot Spots of social and housing deprivation

in Bari
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In particular, we can see the presence of areas of maximum deprivation, such as

Scampia, Piscinola, Pianura and Bagnoli, where known and serious problems of

urban decay occurs. Also, we can see another large area comprising Secondigliano,

Miano, S. Pietro Paterno, Poggioreale, Barra, S. Giovanni a Teduccio, Ponticelli,

S. Carlo Arena, and S. Lorenzo.

Napoli
0.6 to 0.7

0.5 to 0.6

Unclussified

(2226)

(1897)

(220)

Fig. 5.5 SaTScan model for the identification of Hot Spots of social and housing deprivation

in Napoli

Cagliari
0.9 to 1
0.8 to 0.9
0.6 to 0.7
0.4 to 0.5

(2)
(28)

(7)
(505)
(834)Unclussified

Fig. 5.6 SaTScan model for the identification of Hot Spots of social and housing deprivation

in Cagliari

5 Socioeconomic Zoning: Comparing Two Statistical Methods 111



In Cagliari (Fig. 5.6) we have two areas of strong deprivation, where an average
of 0.93 is observed. In particular, the areas identified are Manna-Barracca and

Levante. In the west side of the city, however, the data can give a misperception,

due to the existence of a relevant amount of tourist houses. In this case two

secondary clusters are noted (specifically clusters 1 and 3) which present a high

p-value (respectively 0.324 and 0.744).

Starting from identified clusters concerning social and housing deprivation, it

could be possible to obtain useful indications for planning urban regeneration

policies, making decisional process more transparent and scientifically supported.

In this way SaTScan offers a possibility for policy makers to localize places urban

regeneration interventions should be concentrated, with a methodologically

accountable selection of areas [23].

5.3.3 An Application with DBSCAN

The same data on social and housing deprivation were analyzed using the

Seg-DBSCAN method of associating the different geographical coordinates with

the intensity of fuzzy index of deprivation.

From the analysis of data with the Seg-DBSCAN clusters were obtained for

which the average hardship index values are summarized in Table 5.4, also

indicating the validation index value of those clusters, as described above (CDbw).

Table 5.4 Description of clusters referring to social and housing deprivation sets (Seg-DBSCAN

method)

Cluster Number of cases Inside average CDbw

Bari 0.017181

1 63 0.7–0.8

2 5 0.6–0.7

3 219 0.5–0.6

4 217 0.4–0.5

5 18 0.3–0.4

Napoli 0.000083

1 10 0.8–0.9

2 35 0.7–0.8

3 566 0.6–0.7

4 1,431 0.5–0.6

5 127 0.4–0.5

Cagliari 0.001638

1 18 0.8–0.9

2 10 0.6–0.7

3 141 0.5–0.6

4 416 0.4–0.5

5 6 0.3–0.4

6 5 0.2–0.3

Source: Our elaboration of the data from the Population and Housing Census, 2001
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The different clusters are shown on a map by a shades of gray ranging from

maximum degree of social and housing difficulty (the darkest gray) to minimum

degree (the lightest gray) so that the represented reality is immediately under-

standable (Figs. 5.7, 5.8, and 5.9).

In the city of Bari (Fig. 5.7), five clusters of socioeconomic deprivation may be

identified through the use of the Seg-DBSCAN model, consisting of a number of

different sections of a census, totalling 525 sections (as compared to 588 with the

SaTScan method). This method confirms the presence of areas of socioeconomic

hardship in the old city (San Nicola), in neighborhoods adjacent to the city center

(such as Madonnella, Libertà, and Carrassi) or those entirely peripheral (San Paolo,

Ceglie, and Carbonara). It is particularly evident that the Seg-DBSCAN method is

more discriminating than the SaTScan method as it is able to exclude sections from

the cluster that do not “effectively” conform to the average values of the cluster,

since these areas are subject to redevelopment or not intended for occupancy

(schools, public buildings).

The situation in Napoli (Fig. 5.8) reflects what has already been demonstrated

with the SaTScan method, with enhanced specification of areas of particular

hardship. Specifically, 2,169 sections were revealed as belonging to the clusters

as compared with 2,446 sections highlighted with the SaTScan method. The

neighborhoods highlighted are Scampia, Secondigliano, Barra, and San Giovanni

a Teduccio (which present an internal average of between 0.6 and 0.7) and the

industrial area of the city, evidently void of housing, is now excluded having

been previously included in the SaTScan mapping. Included within the cluster

Fig. 5.7 Seg-DBSCAN model for the identification of clusters of socioeconomic deprivation

in the city of Bari
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(albeit with average values lower than the previous ones, yet high nonetheless) is

the area surrounding the port of Naples, extending towards the San Lorenzo district

and the San Carlo Arena.

With regard to the city of Cagliari (Fig. 5.9), 544 census sections are highlighted

in the clusters identified through the Seg-DBSCAN method as compared to 596

with the previous method. It would appear evident that the new method is far more

discriminating than the previous one in terms of identifying areas more clearly and

better-localized in sections of effective hardship while excluding areas not destined

for housing. Specifically, the neighborhoods identified are Sant’Elia and C.E.P.

with a highly elevated internal average (of between 0.8 and 0.9), San Michele (with

an internal average of between 0.6 and 0.7) Sant’Avendrace, Stampace, and Is

Mirrionis (with an internal average of between 0.5 and 0.6).

We observe that SaTScan identifies areas formed by contiguous spatial units in

which a smoothing of the disadvantaged housing index is performed. This method

is effective in identifying areas of high or low intensity and therefore may be a

useful indication of areas “at risk” to be monitored. Like the SaTScan method,

Seg-DBSCAN identifies areas in which the spatial units meet a criterion of adja-

cency, but Seg-DBSCAN can exactly identify sections of the city with housing

problems, excluding those areas where the phenomenon is absent. For example, in

the case of the San Nicola district, the old town of Bari, the SaTScan method

Fig. 5.8 Seg-DBSCAN model for the identification of clusters of socioeconomic deprivation

in the city of Napoli
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identifies the whole district while the Seg-DBSCAN method identifies the same

area of hardship but also analyzes the area in more detail (Fig. 5.10).

Fig. 5.9 Seg-DBSCAN model for the identification of clusters of socioeconomic deprivation in

the city of Cagliari

Fig. 5.10 SaTScan model and Seg-DBSCAN model—zoom of districts of Bari and Napoli
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The method identifies the particular points with a greater presence of the

phenomenon and excludes the points where the phenomenon is not present because

of the restoration of historic buildings.

5.4 Conclusions

The ability to describe territorial phenomena by means of an integrated model

begins from the construction of multidimensional socioeconomic indicators as a

basis for adapting models that can identify zones where there is a risk of social and

housing deprivation. When accompanied by careful study, the application of these

models to real economic situations has shown that they have a significant capacity

to define the areas of deprivation in geographical terms by means of “hot spots,”

with an evident correspondence between internal characteristics (housing poverty)

and external characteristics (social deprivation).

Urban and economic experience tend to suggest that at the same time as the

dynamics of the market evolve at speeds that vary greatly between those of the

structural characteristics of real estate and those of social context (without rapid and

radical changes). It is, in fact, very probable that a representation of the deprivation

indicators halfway between censuses would show limited variations of the fuzzy

variables in comparison with great changes in the real estate market, as the most

recent years show.

The different methodologies proposed here identify areas with a high depriva-

tion index. As we have noted above, the Seg-DBSCAN method emerges from the

comparison of the two methods as more accurate in identifying the spatial units

where housing problems are found. In our future studies, we will seek a statistically

sound cluster validity index for spatial data that takes noise points into account and

provides the accurate measurement of the Seg-DBSCAN method.

The utilization of SaTScan or Seg-DBSCANmethodology to identify hot spots of

housing deprivation raises certain issues for future social research and urban

planning in regeneration areas that are particularly relevant to the European

Union policy agenda. The data obtained by the cluster intersection of housing

deprivation could provide useful indications for the planning of policies of urban

regeneration, making decisional processes more transparent and scientifically valid.

Further developments include the application of a “weighed” DENCLUE obtained

by using the intensity of a phenomenon instead of the density kernel.

The determination of degraded urban environments indicates how any future

general policies in support of housing must take into account the diversities that

exist between cities and how urban poverty cannot be considered in the same way in

all metropolitan areas.

At a time when public resources for investment are very limited, the first

question in seeking town planning and architectonic solutions to the problem of

urban regeneration focuses on the identification of areas with the highest urban

poverty levels so as to assist political decision-makers in forming their policies in a
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transparent, carefully planned, and objective manner. It is the opinion of the present

authors that the model used in this study is able to provide the data necessary for the

accurate identification of such areas.

In conclusion, the model tested here appears to be of value in what the European

Union defines as target areas in the context of regional policies for urban regenera-

tion for which there are specific urban plans to be supported with public and private

economic and financial resources.
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Chapter 6

A Geostatistical Approach to Measure

Shrinking Cities: The Case of Taranto

Beniamino Murgante and Francesco Rotondo

Abstract Measuring shrinkage and its effects appears as a fundamental issue in

cities’ research. Also, shrinkage is a spatial phenomenon defined by data and

information based on space dimension relying on a spatial information. The wide

use of geo-information is a useful aid to extend common statistic analyses

integrating data collected at different levels, comparing data at a municipal level

to data referring at census area level (particularly useful for detailed analyses at a

neighbourhood scale). Such analyses are particularly suitable for medium and large

cities shrinkage analyses, where different neighbourhoods could have different

levels of shrinkage and could need distinct strategies to face such phenomenon.

Another methodological problem is the interrelation with other spatial units and

nearby cities, which can have an influence on urban labour market, economic

development, migration flows and housing market. Thereby, the definition of an

appropriate regional context is of crucial importance. After an introduction about a

comparison between common statistic analyses and geo-statistical methods, with a

short literature review, the paper includes an empirical section describing the case

of de-industrialized Taranto city, measuring the major indicators of shrinkage, with

data referring to census area level, trying to understand if there are shrinking

neighbourhoods in the city of Taranto and what is the appropriate regional

shrinking context. Then, the paper continues with a section in which the theoretical

knowledge is evaluated comparing theory strongholds to main features of shrinkage

exemplified by the case of Taranto, trying to contribute to a better understanding of

the questions addressed, highlighting the unresolved problems to address some
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conclusions about still open research challenges. [The contribution is the result of

joint reflections by the authors, with the following contributions attributed to

Rotondo (Sects. 6.1, 6.2.1 and 6.4) and the others to Murgante.]

Keywords Ecological development • Geostatistics • Socio-economic develop-

ment • Urban planning strategies

6.1 Introduction

Urban planning in western countries over the past two centuries has developed with

the aim of identifying territories involved in governing relentless demographic and

economic growth phenomena, often involving overcrowding, traffic issues and hous-

ing tensions. Although in the contemporary most populous nations of the world

(China, India, Indonesia, Brazil, Russia and Pakistan) cities continue to grow, in

western countries there are numerous cities that suffer from obvious demographic

and economic contraction phenomena [21]. The causes are numerous1 and not simple

to identify, yet the consequences and phenomena associated with such demographic

and economic decline are often similar: increasing numbers of empty properties,

stagnation and economic recession, the reduced attraction of the city. A definition of a

shrinking city is required in order to better understand such a phenomenon. To date

there still exists no widely accepted, unique or shared definition within the interna-

tional scientific community. Indeed, the phenomenon is described along various

lines, often overlapping with distinct concepts such as urban decline or urban
decay [11, 14] coined or previously brought into question [15].

The term Shrinking Cities first entered parlance in Germany with the expression

“Schrumpfende Städte” during the 1990s and defines, according to the Shrinking
Cities International Network (SCiRN) research group, densely populated urban

areas with a minimum population of 10,000 residents which have suffered a loss of

population in the majority of the territory during the previous 2 years and are

experiencing economic transformation demonstrating various symptoms of struc-

tural crisis [23].

Such shrinking cities have been the subject of studies on urban change in

traditional research fields such as demographic and cultural change, urban social

geography, suburbanization, deindustrialization and urban regeneration amongst

others [30]. It is, therefore, imperative to recognize how such processes may be

linked, or contribute towards the phenomenon of the contraction of cities.

Shrinking cities can take on differing characteristics according to the context in

which they occur. Studies on the dynamics of growth and decline over longer

periods (up to 100 years) assist in an understanding of the phenomenon and, for

instance, exemplify why a period of decline may have replaced a previous period of

1Oswalt [22] and others have attempted to draw up a classification of shrinking cities based on

possible causes.
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growth, or vice versa. A generalization of the phenomenon remains problematic

(as with all social phenomena), since shrinking processes occurring on similar

spatial scales or in local contexts with similar characteristics may be substantially

different in nature.

A loss of population is often seen as a sign of failure and may imply “losing out”

in the national or global competition among cities. Research on the decline of cities

across the globe [4, 7, 35] demonstrate population decline as an ancient phenome-

non, linked to the natural course of events following demographic processes and

economic change.

Research groups studying shrinking cities2 are, however, highlighting the global

dimension of a phenomenon often considered merely as an isolated “incident” in

wealthy countries, requiring the investment of public funds and planning for a new

period growth in order to resolve the issue. The inexorable decline and the relentless

depopulation of cities in the USA, Japan and Western and Eastern Europe have,

however, stimulated scientific research towards identifying causes and ways of

thinking about urban decline and regeneration.

6.2 Methodological Framework

6.2.1 Measuring Shrinking Cities

The study of cities in contraction provides, in the current social landscape, infor-

mation essential to the development of regional planning strategies. For this

purpose it is important to identify which indicators may be useful in “measuring”

urban shrinkage and verify, through such study, the dynamics involved.

The existing literature comparing the evolution of cities in Europe [8] provides a

picture of the mode of urban decline (and/or growth) measured to date. Compara-

tive studies are generally based on population indicators [6, 9, 32]. There are,

however, numerous examples in which population and economic development do

not necessarily go hand in hand. There are, for instance, cases of cities that despite a

decreasing population manage to maintain solid economic structure and

2 The first international study on the phenomenon was the shrinking cities project carried out by

Kulturstiftung des Bundes in Germany with the support of architect Philipp Oswalt, the Galerie für

Zeitgenössische Kunst Leipzig, the Stiftung Bauhaus Dessau and the Archplus magazine (http://

www.shrinkingcities.com/, web site visited 24 May 2012). Furthermore, the shrink smart project

focuses on how challenges are met by policy and governance systems in various shrinking urban

regions (http://www.shrinksmart.de/, web site visited 24 May 2012). Such work is supported by

the above-cited Shrinking Cities International Research Network (SCiRN™, http://www.

shrinkingcities.org/Home, web site visited 24 May 2012) as well as the Cost Action TU0803:

Cities Re-growing Smaller (CIRES, http://www.shrinkingcities.eu, web site visited 24 May 2012).

The two authors are members of this last European research group (CIRES).
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development and, in others, general demographic stability yet significant problems

concerning economic activity and employment.

Population may consequently be considered as an initial premise in urban

processes as well as a leading indicator, yet the study of factors in demographic

decline provides only a partial view of an issue involving far more complex

dynamics.

A set of criteria related to economic and social issues in the context of the

development of the population must be considered in order to describe such

complexities. Specifically, such indicators regard the housing market, the labour

market and economy as well as the environmental and cultural fabric of the case

under study.

6.2.1.1 Population Total Evolution, Age, Migration

Three aspects seems to be considered in assessing population development: total

evolution, migration and ageing. Population decline may be caused by a natural

reduction in the population and/or emigration that, in many cases, leads to an ageing

population.

Total Evolution

The natural balance of the population (birth/death rates) provides information on

natural changes. Population growth is produced by the increase in births and,

therefore, fertility rates and birth rates, essential in identifying current or recent

growth in the population.

A decisive role in the evolution of the population is also played by singular

events, such as a war or a natural disaster (it is particularly clear observing the so

defined age pyramid of a country).

The variation in birth rates in many European countries reflects a change

in reproductive behaviour, primarily due to changing political-economic and

socio-cultural conditions, often brought about by a new conception of the role of

the family and the woman (the second demographic transition). It is also necessary

to consider the evolution of women of childbearing age as an expression of the

development of future births [13].

Migration

Migration flows and their development, taking into account net migration, repre-

sent, together with the natural decline in births, a key factor for the study of urban

decline.

In analyzing the phenomenon of migration it is necessary to consider the age of

migrants, their place of origin, the characteristics of migrants (gender, age, social

status) and causes of migration that may affect such a study in a number of ways.
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Immigrants and women of reproductive age produce, for example, a natural

decrease in population in their area of origin while, at the same time, a possible

population increase in the new place of residence. Furthermore, the age of those

migrating and whether or not such movements affect entire families is an essential

factor in better understanding population dynamics. Indeed, in this case such a

factor does not significantly affect the percentage of births. Migrants aged between

18 and 35 years old play a particularly decisive role [33] during phases of the

creation of a family, in terms of both employment and education.

Birth rates and, above all, the abandonment of a city by the young lead to

changes in population structure in relation to the age of those remaining (in

particular, the selectivity of migration linked to ageing is largely responsible for

such phenomenon).

To better understand the dynamics of the city motives for migration must be

understood; the principal grounds for such movement is the search for jobs or on

educational grounds resulting in long-distance migration [33]. This is accompanied

by the desire to improve the quality of life in an environmental/aesthetic sense,

health or the social environment, cases which may not necessarily see long distance

migration.

The separation of internal (suburbanization) and external migration can also be

significant as regards the employment conditions of migrants (those moving to the

suburbs and not necessarily losing their job in the city). Migration due to economic

downturn tends to produce the largest occupational impact on a city, together with

demographic change [13].

Migration in search of employment by those willing to relocate over long

distances is, furthermore, decisive in terms of development patterns in the local

area of origin that cannot compensate for the draw of employment opportunities

elsewhere.

The skills of the migrant population should also be considered as this phenome-

non largely affects those with high levels of education and highly qualified

personnel. This would also appear to be the case for migration over short distances.

Short distance migration mainly seeks to optimize lifestyles and, in analogy with

the theory of the life cycle, such migration generally involves families and the

elderly [13]. This is reflected in changes to age structures in the city and

surrounding areas whilst not, however, significantly affecting the labour market

[10]. The impact of this type of migration may, however, be identified with the

increase of the total population in surrounding areas. Such dynamics characterize

established phenomena of suburbanization in towns and cities. Migration and

natural population growth can occur over similar time-scales yet demonstrating

completely different dynamics.

Migration may suddenly and radically change while the fertility rate is

characterized by set time-scales (a set time between birth and childbearing age).

In contrast to the continuous loss of population, singular events trigger a rapid

decline in the birth rate or increase migration in the short to medium term and,

possibly, even the long term. A decline in population may result from individual

events (episodic population) as, for example, natural disasters, war and political

6 A Geostatistical Approach to Measure Shrinking Cities: The Case of Taranto 123



transformation processes such as those of 1989/1990 in Eastern Europe following

the disintegration of the Soviet Union.

Ageing

Ageing increases community dependence on younger age groups resulting in a

potential decrease in the per capita wealth produced [13]. The most widespread

indicator in measuring such a phenomenon is the dependency ratio, commonly

employed in reports on world population trends by the Department of Economic

and Social Affairs of the United Nations.3

6.2.1.2 Social Indicators

Structural economic change (such as the loss of the industrial base in western

countries) can provoke a loss of jobs and population, when combined with demo-

graphic changes, in a highly problematic vicious circle. Socio-demographic change

plays a decisive role due to the concurrence of several demographic and economic

causes and factors.

As mentioned above, migration is highly selective (mostly affecting the young

and qualified), with consequences in the areas concerned; those who migrate no

longer play a part in the local labour market. This favours the approach of supply

towards demand for both the qualified (job vacancies) and unskilled (LTU) labour

market, as well as a quantitative increase. The economy is also affected due to

the remaining population (the poor, the elderly, trainees and immigrants) being

frequently discriminated from the labour market (low-skilled workers, unemploy-

ment) [32].

The income of the population indicates the state of economic well-being and a

reduction in wages will result in lower family incomes and an increase in economic

disparity. In addition, growing unemployment could cause an increase in the

number of people living below the poverty line.

The situation of the young is particularly critical. Without access to jobs their

entry into the labour market is consequently delayed, accompanied by a dwindling

in the creation of new families who may struggle to identify employment

opportunities. Similarly, the decline in the attraction of a city as a place for

education may provoke a decrease in the number of students enrolled in compulsory

education and, therefore, the closure of schools (preschool and school facilities)

resulting in reduced investment in education. Students are, furthermore, essential

for the development of a city as they require accommodation, food, supplies and

educational facilities and may increase the skill levels of the population. The

3 The Department web site (http://esa.un.org/unpd/wpp/Excel-Data/population.htm) reports

old-age dependency ratios for all nations in the world.
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presence of low-skilled citizens in the labour market could result as disadvanta-

geous for the economy of a city.

Levels of education and, in particular, labour, schools and recreational facilities

are therefore crucial in the educational and cultural life of a shrinking city.

6.2.1.3 Economic Factors

Population decline reveals a strong correlation and interrelation with economic

development. Indeed, economic analysis can be described by structural economic

change in cities.

The central problem is not the transformation of the economic base but, rather,

its extensive erosion. Traditional production may not, in this case, be replaced by

modern services or other branches of the service sector [33] that have a

corresponding effect on social structure and space. Structural economic crisis

sees the economy as a whole shrink due to changing economic conditions, possibly

followed by a long period of contraction [34]. Such circulation in economic cycles

is characteristic of the theory of long waves and the duration of product life cycle.

This can have global economic consequences yet may simply relate to specific

areas, such as the dispersion of textile and mining towns in northern England [12]

or, indeed, the present study of the crisis in the steel industry in Italy and, in

particular, in Taranto [26].

The above examples relate to “single product” economic areas whose main

characteristic is the long period of decline in demand resulting in a crisis that

tends to spread to other companies, industries or economic sectors in the same

region or city [12].

In addition to long-term processes of economic restructuring due to globaliza-

tion and the destruction of the industrial base, especially in established industrial

cities, economic change may also be recorded over a relatively short period. The

processes of economic restructuring (globalization and de-industrialization) differ

according to both regional contexts and city size [12].

The contentious parameter of gross domestic product (GDP) is often still applied

in the absence of viable alternatives when describing changes in the economy (this

fundamental question has been debated many times and by many authors, but yet no

results have been reached in the real policies to change this insufficient indicator).

Employment dynamics provide a quantitative indication of the effects of

economic changes on the population and, therefore, on society.

The study of unemployment must be analyzed in conjunction with the develop-

ment or loss of jobs while taking into account the possibility of immigration

movements. The indicator of unemployment is, in itself, incapable of considering

this effect in its entirety. From the combination of the two indicators it is, however,

possible to draw conclusions on the state of the labour market.

6 A Geostatistical Approach to Measure Shrinking Cities: The Case of Taranto 125



6.2.1.4 Housing Market Indexes

Population dynamics (whether natural or due to migration) has a significant impact

on real estate market and housing development. A declining population may reflect

the decrease in the number of families and it may determine a declining house’s

request. Socio-cultural variations in behaviour and lifestyle may also lead to

changes in family structure away from a traditional multigenerational family.

Indeed, many societies witness an ever-increasing number of mononuclear families.

This change is reinforced by selective emigration (young singles or couples) and

increased life expectancy (greater proportion of the elderly living alone). Neverthe-

less, the overall number of families may not, in fact, decrease, due to the growing

number of smaller households (single person families). In Italy, the number of

family’s components has been declining from 3,3 persons for each family in the

1971 to 2,2 in 2010.4 The family structure is changing (in terms of a transformation

in household structure) and with it the needs of the family thus generating changes

in demand with a consequent affect on property values (land and house prices).

Contraction in cities may, moreover, involve a decrease in construction; in addition

to a shift in price levels (rent, land and housing prices), financial problems can be

caused by the presence of numerous vacant properties [25].

It should, however, be noted that the housing market is closely linked to the

functions of a city (as, for example, the functions of a regional capital, tourist city,

etc.). In order to study housing indicators, it is therefore necessary to examine the

nature of the real estate market in question including, for example, the type and

segmentation of the request or the attractiveness of the city (urban added value).

6.2.1.5 Environmental Factors

Environmental aspects could play a significant role in a shrinking city. Lower

population densities may constitute the better use of the environment by citizens,

reducing the environmental impact related to urbanization, thus improving the

quality of life of residents.

A crucial aspect in ecological issues is that of time. Ecological changes may

occur over the relatively short or medium term, while their consequences are

generally medium to long term in nature.

In the case of the city of Taranto the long presence of the steel industry and the

high pollution rates produced were the significant factors in the phenomena of

suburbanization.

Some young couples have chosen to live near Taranto in a smaller town but with

a better environment [27].

4 Data derived from www.istat.it, web site visited 24 May 2012.
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6.2.1.6 Methodological Issues

Initial difficulty lies in the fact that population decline takes on distinct

characteristics from city to city; the second issue concerns the choice of indicators

that may best describe the phenomenon.

Such indicators provide a starting point for the analysis of shrinking cities; yet, it

is necessary to identify the relationships and interrelationships between such

parameters.

Economic and demographic dynamics cannot, for example, be treated separately

since they are often interrelated. The abandonment of cities could coincide with the

reduction of job opportunities in highly qualified companies. Unemployment may,

for example, result as the consequence of declining business, leading to emigration

and increasing the dependency ratio, thus causing an aging population.

Having identified indicators of contraction study should be focused on their

evolution over time in order to better understand dynamics in the medium to long

term. The choice of the time intervals becomes critical as they affect results,

considering that neither growth nor contractions are linear processes. Data avail-

ability is also crucial for comparative analysis and is dependent on both times and

scales.

A further methodological problem occurs when comparisons are performed

between countries as a result of different detection methods. The question of

comparative indicators of a small European range is highly complex as even

countries outside the European Union do not all possess equivalent indicators and

several new Member States have not yet adopted European standards.

At the end, the majority of geo-statistical works about shrinking use data at a

municipal level to measure shrinking phenomena, but, in our opinion, it seems

insufficient to evaluate medium and big shrinking cities phenomena, because very

often they are linked to suburbanization or changes in the neighbourhoods

dimensions, caused by urban degradation or subsequent regeneration process.

That is why, in the next paragraphs, we have tried to identify spatial concentration

of urban shrinking in micro census zones inside a medium city such as Taranto in

the Apulia Region, already evaluated as a shrinking city [26] and the nearest

municipalities probably affected by phenomena of suburbanisation. These micro

census zones named “sezioni” in the Italian Census survey.5

6.2.2 Spatial Statistical Techniques Applied to Shrinkage
Phenomena

The identification of spatial concentration of urban shrinking has been achieved

adopting spatial autocorrelation techniques.

5 Istat, Censimento generale della popolazione, 1991, 2001, available on www.istat.it visited

24 May 2012.
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The concept of spatial autocorrelation directly derives from the first law of

geography by Tobler [31]: “All Things Are Related, But Nearby Things Are

More Related Than Distant Things.”

Analyzing the spatial dimension of statistical data it can be noticed that they are

not mutually independent, values of a spatial unit phenomenon tend to influence

values of contiguous spatial elements, and a certain degree of interdependency

occurs in all directions due to the interaction with other neighbouring elements.

Considering two elements i and j in a set of n objects, traditional approaches to

data analyses take into account the degree of similarity of attributes i and j, at the
same time spatial autocorrelation considers the degree of similarity of location i and
j, also. Spatial autocorrelation does not analyze a phenomenon along a single

direction, but it considers all possible relationships of an element with its surrounding

spatial units in all directions. This is important to understand whether a phenomenon

is isolated or it has a good level of interaction with its surrounding elements.

The concept of contiguity can be defined as a usually symmetrical generalized

matrix of W weight, representing the pattern of connections or ties and their

intensity [5], where wi weights denote the effect of spatial unit j on unit i. Generally
a dichotomic contiguity matrix has been adopted where wij ¼ 1 if the i area touches
the boundary of j area, and wij ¼ 0 if otherwise. Distances of centroids of spatial

elements, square of distances, inverse of distance, etc. can be considered instead of

value 1. In the case of point data, it is also possible to define a critical distance

beyond which two events will never be adjacent. If the elements are included within

this distance, i and j are contiguous, and wij will be equal to 1; otherwise, wij will be

equal to 0.

Both global and local autocorrelation indexes have been adopted in analyzing

urban shrinkage phenomena. Global indicators of autocorrelation are useful to

identify if a spatial interdependence exists or not without describing where the

phenomenon is concentrated. Local indexes of autocorrelation define where highest

or lowest levels of autocorrelation are located.

In this study, Moran Index (I), corresponding Moran scatter plots and Local

Indicator of Spatial Association (LISA) have been calculated. Moran I provides an
overall measure of spatial autocorrelation [16], Moran scatter plot [1] allows to

achieve a graphic representation of spatial relationships and enables us to investi-

gate possible local agglomerations, whilst LISA allows us to take into account local

effects of the phenomenon [2, 3].

6.2.2.1 Moran’s I Statistic

Moran Index (1948) can be formalized as follows:

I ¼ n

s0
¼

Pn
i¼1

Pn
j¼1

ðxi � �xÞðxj � �xÞwij

Pn
i¼1

ðxi � �xÞ2
(6.1)
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where:

• xi is the variable observed in n spatial partitions and �x is variable average.
• Wij is the generic element of contiguity matrix.

• S0 ¼
Pn
i¼1

wij is the sum of all matrix elements defined as contiguous according to

the distance between points-event. In the case of spatial contiguity matrix, the

sum is equal to the number of non-null links.

Since the expression of spatial dependence refers to the connection between

nearest units, prior of autocorrelation concept, there is the problem of expressing

the degree of proximity of areas by defining the concept of spatial contiguity [20].

Index values may fall outside the range �1; þ1. Moreover, in case of no

autocorrelation the value is not 0 but it is �1/(n�1). So if:

• I < �1/(n�1) ¼ negative autocorrelation,

• I ¼ �1/(n�1) ¼ no autocorrelation,

• I > �1/(n�1) ¼ positive autocorrelation.

A positive and significant value of such statistic indicates that similar values of

the variable analyzed tend to characterize contiguous localized areas. In contrast, a

significant negative value of Moran-I indicates the presence of dissimilar values of

the variable in contiguous areas. The significance of the index does not imply

absence of autocorrelation, i.e. the presence of a random distribution of the variable

in space.

Moran’s index, however, does not allow to evaluate if the general positive

spatial dependence corresponds to territorial clusters of regions with high or low

level of specialization. It is also possible that the degree of spatial dependence

between various different groups within the sample is characterized by the exis-

tence of a few clusters, located in specific parts of the study region. Considering

these limitations, Moran scatter plot has been adopted.

6.2.2.2 Moran Scatter Plot

GEODA software [1] allows to build Moran scatter plot together with the calcula-

tion of Moran’s I. The graph represents the distribution of the statistical unit of

analysis. Moran scatter plot shows the horizontal axis in the normalized variable x,
and on the normalized ordinate spatial delay of that variable (Wx).

The first and third quadrants represent areas of values with positive correlations

(high–high, low–low) while the second and fourth quadrants represent areas in

negative correlation.

However, Moran scatter plot gives no information on the significance of spatial

clusters. The significance of the spatial correlation measured through Moran’s I and
Moran scatter plot is highly dependent on the extent of the study area.

In case of a large territory the measure does not take into account the presence of

heterogeneous patterns of spatial diffusion. Moran’s I cannot identify outliers
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present in the considered statistical distribution. LISA allows to consider local

effects related to the phenomenon.

6.2.2.3 Local Indicators of Spatial Association

The currently most popular index of local autocorrelation is the so-called LISA [2,

3]. This index can be locally interpreted as an equivalent index of Moran. The sum

of all local indices is proportional to the value of Moran one.

The index is calculated as follows:

Ij ¼

P
j

wijðyi � yÞðyj � yÞ
P
i

ðyi � yÞ2 (6.2)

with:
P
i

Ii ¼ g � I:
For each location, it allows to assess the similarity of each observation with its

surroundings. Five scenarios emerge:

• Locations with high values of the phenomenon and high level of similarity with

its surroundings (high–high), defined as HOT SPOTS.

• Locations with low values of the phenomenon and high level of similarity

with its surroundings (low–low), defined as COLD SPOTS.

• Locations with high values of the phenomenon and low level of similarity with

its surroundings (high–low), defined as potential “Spatial Outliers”.

• Locations with low values of the phenomenon and low level of similarity with its

surroundings (low–high), defined as potential “Spatial Outliers”.

• Locations devoid of significant autocorrelations.

LISA can effectively bind a measure of the degree of spatial association relative

to its surroundings to each territorial unit, allowing to highlight the type of spatial

concentration for the detection of spatial clusters.

6.3 The Case Study

The application has been developed in southern Italy, more particularly Taranto and

its surrounding municipalities have been considered in quantifying the shrinkage

(Fig. 6.1).

Taranto has 191.810 inhabitants distributed over 209.64 km2, it was one of the

main centres of Magna Grecia, it has the second Italian trading port for freight

traffic, mainly connected with Asia and it has important industries in the fields

of iron, steel and oil refinery. The localization of these activities generated a

great dwelling demand, complied with the construction of very intensive
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neighbourhoods. Such a disordered growth realized without master plan, produced

urbanization in areas largely disconnected and without continuity. These activities

produced a lot of health and environmental problems. Taranto is one of the most

polluted cities in Western Europe due to industrial emissions. From this description

it can be easily imagined that Taranto could be a very interesting case study in

measuring shrinkage.

6.3.1 A Demographically Declining Territory: Taranto City

A brief analysis of the major demographic, economic and social trends at a

municipal level highlights possible relations with the dynamics of urban evolution,

leading to a clear understanding of the high level of shrinkage in the city. The

analysis of the last available census (2008) by the Italian National Statistical

Institute (ISTAT6) revealed the demographic dynamics (population trends, Net

migration, natural balance) of the city are in a constant negative trend, from 1981

to the present. Indeed, the population of Taranto fell from 244,101 in 1981 to

Fig. 6.1 The city of Taranto and its surrounding municipalities in the South of Italy

6 All the statistics cited are taken from www.istat.it.
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194,021 in 2008. Net migration is consistently negative from 2002 to 2008 and the

city loses, on average, 1,123 inhabitants per year.

The natural balance (live births/deaths) has been constantly negative with the

exception of the years 2004 and 2008. In these two years the natural balance is, in

any case, significantly below the Net migration as previously shown, with an

average of�1,123 inhabitants per year with the overall balance therefore remaining

negative. Globalization and the subsequent de-industrialization of European

economies is a major cause of urban shrinkage [4, 12, 21]. The relationship between

the cycles of the capitalist economy, the life cycles of the city and the effects of

globalization on cities and urban regions has been the subject of much study, by

authors such as Saskia Sassen.

In the case of Taranto the unemployment rate for the entire Province is 4 %

higher than the Apulia Region (18 % with respect to 14.7 % for the Apulia Region

as a whole). Indeed, the percentage of those employed in the city of Taranto is 78 %

as compared with 80 % in the Province and the Region. Moreover, the total

percentage of those in search of employment in the city of Taranto is 22 %, as

compared with 20 % in the Province and the Region. Taranto shows a low level of

employment compared within its local region .

In the city of Taranto, as in other European cities, the service sector accounts for

the largest number of those employed, although traditional industry still accounts

for 25 % of total employees (13,767 employees in an industrial sector with 55,174

Fig. 6.2 Taranto the city of the two sea. On the left side of the image the whole area of the city is

dedicated to the ILVA steel plant. (Source: OpenStreetMap.)
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employees in total). The largest steel plant in Europe is located in Taranto which

still employs around 13,346 workers, accounting for almost 100 % of employment

within the manufacturing sector in the city. The plant was founded during the 1960s

as a state-owned company, under the name “Italsider” in line with fashionable

economic and industrial theories of the day regarding large industrial poles

(Fig. 6.2). In 1995, after a long crisis in terms of both turnover and employment,

the company was sold to the Riva Group (www.rivagroup.com), a major Italian

industrial group that operates in the steel industry. Employees in the iron and steel

industry are still today predominantly located within younger age groups

(21–30 years) with only 23 % exceeding 40 years of age. The steel industry is

still, therefore, of fundamental importance to the local labour market of the city of

Taranto and its neighbouring municipalities, a plant which would seem extremely

difficult to decommission given the long period of economic crisis engulfing

western countries [26].

6.3.2 Choosing Indicators for Taranto

The following variables, previously tested in another study [19], have been consid-

ered in order to evaluate shrinkage phenomena:

• Dependency ratio is considered as an indicator of economic and social signifi-

cance. The numerator is composed of people who, because of age, cannot be

considered economically independent (youth and elderly), and the denominator

of the population older than 15 and younger than 64, who should provide for

their livelihood. This index is important in analyzing urban shrinkage because

economically active population highlights a degree of vitality in city. While a

low level of economically independent population coupled with low birth rate

denotes a large presence of hold population.

• Foreign population per 100 residents. Normally foreign number is considered as

capability attractiveness, but in southern Italy, where concealed labour rate is

22.8 % and unemployed rate is 20 %, immigration phenomena can be considered

a threat and not an opportunity [17, 29].

• Unemployment rate undoubtedly is an important indicator of economic urban

decay, which prospects future migration scenarios.

• People living in rented flats. In Italy dwellings ownership rate is more than 80 %;

consequently, if resident population lives in rented flats this implies a low-

income. In Italy the percentage of tax evasion is high; consequently dwellings

ownership is an indicator of economic robustness.

• Per cent of population which had never been to school or dropped out school

without successfully completing primary school programs: these indicator

denotes the poor quality of social services and social programmes in education.
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• Number of people per room in flats occupied by residents. People living in very

crowded flats is an underdevelopment indicator because a household can have a

flat without respecting the minimum standards, 33 m3 for inhabitant.

6.3.3 Spatial Distribution of Urban Shrinking

Spatial data have been considered at buildings scale and polygons have been

converted in points. Attributes have been associated with such data using census

data. In particular, census data of 1991 and 2001 have been adopted. As previously

explained, Moran Index is a global indicator of autocorrelation, able to detect a

tendency in the whole study area, without precisely defining where the phenomenon

is more concentrated. Despite Moran Index lacks in giving a detailed spatial

location, it is important for a general analysis of the phenomenon.

Table 6.1 highlights that autocorrelation occurs, in most cases in significant way,

for great part of the considered variables. The only Moran Index value close to zero

is the Foreign population in 1991, which represents the beginning period of

migration phenomenon. Despite this low value, it is important to notice a large

increase in transition from 1991 to 2001, where Moran Index reaches a medium

level of autocorrelation. The comparison of this index between two different dates

allows to assess the phenomenon trend over time.

Data concerning phenomenon concentration have to be compared with the

decrease in total population; it means that despite the presence of less people,

occurrences of events are more clustered. Considering that the population decrease

between 1991 and 2001 in Taranto is 7.2 % and that, at the same time, this reduction

arises throughout the whole province, it means that several phenomena are more

concentrated in few parts of the study area, increasing the difference in urban

quality.

Moran scatter plots at both dates and for all six variables (Figs. 6.3 and 6.4) have

been calculated considering standardized variables as abscissa, and spatial

weighted standardized variables as ordinate. In the graph, Moran Index corresponds

to the direction coefficient of linear regression which represents the scatter plot.

Table 6.1 Moran Index at 1991 and 2001

Indicator

Moran’s I
(1991)

Moran’s I
(2001)

Dependency ratio 0,4860 0,5580

Unemployment rate 0,3808 0,3427

People living in rented flats 0,1410 0,2572

Foreign population per 100 residents 0,027 0,3452

Population which had never been to school or dropped out school

without successfully completing primary school program

0,2882 0,3117

Number of people per room in flats occupied by residents 0,1059 0,1515
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Fig. 6.4 Moran scatter plot for the six variables in 2001. (Source: our elaboration with GeoDa on
ISTAT data.)
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Spatial autocorrelation has been classified according to Moran scatter plot

quadrants. Positive autocorrelation corresponds to spatial clusters upper right

(high–high) and lower left (low–low) quadrants. Lower right (high–low) and

upper left (low–high) can be classified as spatial outliers.

Figures 6.3 and 6.4 show that the slope of Moran Index is concentrated within

the first and fourth quadrants; consequently spatial autocorrelation is positive.

Despite global spatial autocorrelation analysis generates just a value which

summarizes the whole study area, the significance of results encourages to apply

local autocorrelation index. In many geographical applications, it is highly possible

that similar values are located very close to each other. LISA Index allows to

discover where the phenomenon is more clustered. After interpreting the current

tendency using Moran Index for 1991 and 2001, it is important to understand the

place where adopted variables have comparable values. In the study case the

attention will be completely paid to 2001 data.

In results achieved adopting LISA, only “hot and cold spots” and potential

“Spatial Outliers” have been visualized on the maps while elements without

significant autocorrelations have not been showed in order to ensure a clearer

visualization. As previously explained, the central aspect characterizing the spatial

component in autocorrelation is the weight matrix W.

In the case of point data, the only possible elements of weight matrix can be

calculated adopting a fixed distance band. If the spatial unit, which represents

buildings, is included within this distance, elements are considered contiguous.

Fig. 6.5 LISA cluster map of dependency ratio, with fixed distance band of 200 m
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Therefore the choice of such a distance is fundamental in order to achieve good

results [18].

As an example, considering Figs. 6.5 and 6.6 the same variable, dependency

ratio collects very different results of LISA index adopting a distance of 200 and

1,500 m, respectively.

In this case a distance of 200 m (Fig. 6.5) includes few buildings in a neighbour;

consequently, it is not enough to compare the similarity of a variable of contiguous

elements. In Fig. 6.6 the dependency ratio with a distance of 1,500 m collects good

results, showing that the phenomenon is mainly concentrated in the old part of

Taranto city, in the Talsano, Salinella, Tamburi and Paolo VI neighbourhood and in

Montemesola municipality. These results highlight a concentration in the direction

between Taranto and Martina Franca, the second largest and more populated city of

the Province after Taranto.

Obviously, length of the distance is related to study area dimension. In the case

of a small municipality, 200 m could be enough.

Analyzing the variable “number of people per room in flats occupied by

residents”, which can be considered as a crowding index (Fig. 6.7), it is very

clear that officially this is not a problem for the area. Nevertheless, the large amount

of non-regularized foreign people misrepresents the index in a conspicuous way. In

Italy, a strong increase in foreign residence permits has been registered in 2002,

following the approval of a law by Italian parliament, concerning immigration

discipline and rules.

Fig. 6.6 LISA cluster map of dependency ratio, with fixed distance band of 1,500 m
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Fig. 6.7 LISA cluster map of crowding index, with fixed distance band of 1,500 m

Fig. 6.8 LISA cluster map of educational level of population, with fixed distance band of 1,500 m
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Analyzing the educational level of population (Fig. 6.8), the large clustering of

“people which had never been to school or dropped out school without successfully

completing primary school program” is mainly concentrated in the old part of the

city with a high rate of elderly population and in the Talsano, Salinella, Tamburi

and Paolo VI neighbourhood and in several municipalities surrounding Taranto

(Montemesola, Grottaglie, San Giorgio Ionico, Faggiano) (Fig. 6.9).

Analyzing the cluster map of immigration the large clustering is mainly

concentrated in the hold part of the city, with some hot spots in the same quarters

of the city previously cited and in several municipalities surrounding Taranto

(Grottaglie, San Giorgio Ionico, Leporano).

Unemployed clustering is more concentrated within the city of Taranto

(Fig. 6.10).

6.4 Conclusions

This first essay to employ geo-statistical methods to identify spatial concentration

of urban shrinking in micro census zones inside a medium city such as Taranto and

in the nearest municipalities probably affected by phenomena of suburbanization

has shown that it can be helpful to highlight quarters and directions of

suburbanisation.

Fig. 6.9 LISA cluster map of immigration, with fixed distance band of 1,500 m
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It seems interesting the possibility offered by these analyses to deep the

shrinking investigation inside the city, bringing out the quarters, the parts

characterized by urban decline phenomena. In spite of having been used only six

indicators, then a reduced number of indexes, in the case of Taranto, the study has

indicated a probable presence of shrinking phenomena in the quarters which in

other studies have been resulted to regenerate [26–28]. Tamburi, Paolo VI and

Salinella quarters, in fact, together with old city center have all been the objective of

regeneration policies.7 In these quarters the economic situation is really difficult

and the population decline is accompanied by a physical degradation, as already

demonstrated in other studies [28]. It has also shown a direction for the suburbani-

zation phenomena highlighting the census zone interested by the correlation.

The essential nature of the suburbs is that they are not constituted territories but

dynamic, developing spaces undergoing slow, or even rapid transformation. More-

over, the suburbs are territories that cannot be completely remodelled: they can only

be altered bit-by-bit, according to the degree of obsolescence of their different parts

(uncultivated land, residual zones that can be bought up with public funds, partial

Fig. 6.10 LISA cluster map of unemployment rate, with fixed distance band of 1,500 m

7The Salinella neighbourhood contract (€3 m), the Urban II program (€39 m), the Tamburi

program agreement (€68 m), the Paolo VI program (€4 m), the Talsano program (€4 m) and

Inner City Interventions (€6 m) are all autonomous programs with different urban objectives

which are potentially useful [24].
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urban renewal operations), or else according to political opportunity (planned

transformation of a sector using public resources).

Geo-statistical methods could be effective to represent this suburbs dynamics,

just analyzing data at a micro level. These tools could be more and more important

for the larger cities where shrinking phenomena could be relevant inside the same

city or the suburbanization could move inhabitants to the nearest municipalities, so

increasing car mobility and in some case exalting shrinking phenomena.
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Chapter 7

Social Identity as Determinant of Real Estate

Economy in Manhattan

Carmelo M. Torre and Palmarita Oliva

Abstract This paper tells about a procedure for investigating the coherence of the

relationship between a “wide” concept of spatial distance and the geographical

variation of real estate value.

Such coherence is analyzed taking a special attention to the “multiple identity”.

That characterizes some urban places.

Many authors consider that real estate value of similar housing units can depend

mainly on distance from some reference points; furthermore, its variation can be

considered roughly linear.

On this basis the use of geo-statistical approaches based on kriging techniques

has been developed in mass appraisal.

A second relevant point of view underlines the relationship between the presence

of higher real estate value in those places where several amenities are coexisting.

But in those urban realities where the number of central points and the number of

amenities are high, the complexity does not support the construction of models, and

this complexity leads to a different concept of identity as synthesis of distance,

borders and concentration.

In this complexity maybe further aspect can arise. In the case of study, that is to

say New York, it is possible to investigate the effect of racial steering on ethnic

dissemination and real estate variation. Born as a symbol of racial discrimination, in

the nowadays city it assumes an identity character that affect in a singular way the
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housing market. The aim of this paper is to demonstrate this hypothesis. [The paper

is the result of a joint effort: Oliva wrote Sect. 7.1 and Torre wrote Sect. 7.2. The

conclusions are due to both authors.]

Keywords Fuzzy clustering • Racial steering • Real estate market • Urban identity

7.1 Introduction

Real estate appraisal has founded its main approach on multiple regression analysis

for a long time. Any kind of parameter has been investigated in the main urban

reality of the world.

Furthermore, property value represents a major indicator of quality of life and

services. In the 1970s, the concept of hedonic pricing has been pointed to define the

relationship between the presence of the so-called Amenities (environment, urban

services, cultural heritage) and the level of housing estate prices [4].

In the recent years, anyway, a new view of the relationship distance–estate value,

put the attention on kriging techniques to make real estate value varying by the

distance. Therefore, we can doubtlessly think that it is possible, and it is allowed by

scientific literature the search for a model based on distance among settlements

referring to some centrality.

But some limits of such models are identifiable with the aspects that will be

reported as it follows.

Distance in urban complex realities can be measured towards/from a number of

reference points, all potentially affecting real estate value.

A strong limitation regards the co-presence of many central amenities that

makes difficult to identify the contribution of each one of the same amenities to

the variation of value. In simple words the social complexity affects the value with a

non-linear rule.

Last, but absolutely not the least, social identity of places affects real estate

maybe more than physical distance.

In some places the urban social identity changes from road to road, the aspect of

a quarter is totally different if compared with the neighbour.

In this approach, counterposed to purely statistical methods, relations of conti-

guity are investigated when it occurs inside a city that high residential areas and

distressed areas coexist in proximity; the board among such two pieces of city is

sometimes a physical “transition” element (a bridge, a road) by which you can

move fast from one area to another without interruption.

“Public works” at the same time contribute to the construction of the grey area

between quality and degradation, and those images people have of it once and for

all and essentially due to its physical configuration, but the outcome is of the life

stories of those who practice and the lives of their constant building and rebuilding

perimeters and assignments to places.
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Under the light of spatial diversity that is unlinked with distance, we can

consider the evidence of New York City; its character is represented by the

conjunction between the old metropolis of the 1930s, where the coexistence of

Harlem with Chinatown and the cross road between the Fifth Avenue and the

Broadway were so well described by Lewis Mumford [11] in his newspapers

articles, and the new city where new ethnic groups are added to the old ones.

New York is a city of more or less 8,400,000 inhabitants. It covers an area of

1,214 km2 at the mouth of the Hudson River in the Atlantic Ocean.

Situated partly on land and partly on islands in the Bay of New York (New York

Bay) and is administratively divided into five districts (boroughs): Manhattan,

Bronx, Queens, Brooklyn and Staten Island.

Of these, one is on the mainland (the Bronx, just north of Manhattan), three are

located on an island surrounded by the sea (Staten Island, Queens and Brooklyn,

respectively, in the northwestern and southwestern coast of the island of Long

Island) and aManhattan on appendix bottom of the peninsula where there is also the

Bronx, but it is separated by Harlem River, river-canal linking the Hudson to the

East River. The five borough offices are also metropolitan county: the county of

New York itself occupies the whole of Manhattan, Brooklyn and Kings, that of

Richmond Staten Island, the other two counties (Bronx and Queens) are homonyms

of the boroughs whose administrative territory overlap.

The population of New York is among the most diverse in the world, both in

terms of cultural ethnicity. Always a popular destination for immigrants from all

over the world, today 36 % of the inhabitants were born abroad. Immigration

recently seen at the top of the following countries: Dominican Republic, China,

Jamaica, Guyana, Mexico, Ecuador, Haiti, Trinidad and Tobago, Colombia and

Russia in the city there are about 170 different languages spoken. It also has the

largest African American community in the USA (31 %), the largest Jewish

community outside Israel (12 %) and the largest Puerto Rican community outside

Puerto Rico.

The population is divided as shown in Fig. 7.1.

Fig. 7.1 Racial distribution

in New York (modified from

NY Bureau of Census, 2008)
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White, Hispanic, and Asian people represent about the 90 % of the population in

New York. Only few native Americans and the 10 % of Asian complete the

distribution of ethnic groups.

As regards the origin of white, the 8.7 % has Italian provenance, 6.9 % has

Caribbean roots, 5.3 % Irish roots, 3.2 % Germany roots and 3.0 % Russian roots.

New York is the most populous city in the Union, and one of the most influential

economic and cultural centres of the American continent in the global economy.

New York is part of the system of “global economic network” whose development

is influenced more by what happens in world events than by local [5]. As we can see

below the city is characterized by relevant social problems due to the coexistence in

one big area of a patchwork of ethnic groups that live in close contact and the

coexistence of areas with different levels of quality resulting in urban and social

issues that arise. The proximity of these areas and the accessibility of data has

sparked interest in New York as a case study. The presence of physical boundaries

such as bridges, roads and rivers that separate the different districts favouring the

interest in comparing the phenomenon of urban poverty among the different

districts that make up the City of New York.

The less fascinating, but considerably relevant aspect is that the variability of the

urban context in New York is surely not gradually changing.

A sudden difference can arise between one avenue to another, in the high

density, in the dynamic of buildings’ substitution, decay, restoring, in a high density

tissue; some buildings, some public spaces denote the immediate boundary between

different neighbours that have a trade-marked identity.

The city is the symbol of metropolitan areas that grow both horizontally and

vertically. The idea that the distance from a central position can be a measure of the

value of a place at this point loses consistency. For example, such distance shall be

measured horizontally and vertically. In cities where the urban grid in a vertical

block contains more apartments than you can count from one side to another of a

bridge suggests that the values of things do not vary gradually with distance from a

service, from a park, from a central point; those values suddenly change, in a jump.

In addition, this jump of a knitted fabric to the other can pass from a block of a

thousand of flats to a block as many offices, or by a block of five thousand white

residents to five thousand Asian residents, and finally by a block of one thousand

accommodations for rich to one thousand of popular housing.

The assumptions described above are intended to specify some special

characters of the relationship between space and economic value of urban estate.

If we refer to the models of above (based on spatial density of amenities and

distance), the high density, in the same time, denotes high concentration of possible

amenities affecting real estate value; and the existence of physical boundary put on

evidence a criticism for the idea of a gradual variation of values.

In other works we have already considered some criticism related to the assump-

tion that given a unique segment of market, ceteris paribus, the only variable

affecting the real estate value is the position [9, 10].
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In this paper we assume that it is possible to define with a fuzzy clustering a

similarity function in order to compare the districts inside the quarters of New York

and to validate the relationship value–distance.

7.2 Measuring Values of Housing Property in New York

7.2.1 General Data of the Case of Study

Despite the physical continuity, the character of the city changes fast, especially

when pedestrians pass from south Manhattan to Harlem along the Central Park, or

from the Greenwich Village to the East side.

The city is facing with the greatest estate market crisis of the last two decades.

Property prices are now at the same level of 15 years ago [3]. The refurbishment

process shows some stop going around, and it is possible to discover some aban-

doned Building also near the seat of Wall Street.

All the city is divided in more less sixties administrative contexts, named

Districts.

Manhattan accounts 12 districts, Brooklyn 18, Queens 13 and Bronx 12. In

addition to the previous, Staten Island is divided into three districts that could be

defined metropolitan only with some approximation.

The presence of public intervention is more spread than anybody could imagine.

In order to obtain a comparison, we developed several multidimensional

analyses: starting from a measure of distress of housing stock and the related social

policies, and from a measure of the ethnic distribution inside the City Quarters, we

produced a study that shows that a main expressive social character of identity is

identifiable in the multiracial dimension of New York.

The spatial transition from a racial concentration to another inside the urban tissue

is almost instantaneous, due to the divisor character of some main streets in the city.

Aspects from which to define the level of urban social and housing distress are as

follows:

• Family composition: couples vs wide families.

• High/low rent housing stock (under 50,000 dollars per year vs over 1,000,000).

• Mix of function inside the building (commercial, residential, offices).

• Real estate value.

• Racial composition and racial steering.

Racial steering is the attitude that addresses home buyers according to their race

towards certain neighbourhoods. Racial steering practice can be identified in the

action of advising customers to purchase homes in particular neighbourhoods on the

basis of race.

The method will be to compare a couple of alternatives each other, which in this

case are represented by the quarters’ districts.
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7.2.2 Area of Study

The study interested the main boroughs of New York that profile the border

between the main districts that make up the boroughs of Manhattan, Bronx

Brooklyn and Queens. Substantially all those districts that are contiguous of

Bronx Brooklyn and Queens to the East River, and those that belong to Manhattan.

The analysis does not consider data relating to the district of Staten Island.

The Quarters (Bronx, Queens, Brooklyn and Manhattan) with a high degree of

reciprocal contiguity are physically filtered by the presence of physical constraints

(bridges, canals) that mark the transition from one to another.

You can move from Manhattan to Queens in few minutes through the under-

ground tunnel or from Brooklyn to Manhattan and back across the bridges, as many

roads to allow structural grandeur of the passage between Manhattan and the Bronx

continually doing their filter/connection function between the two parties.

It is not uncommon therefore to have socio-economic housing similarity or

completely different in the two parts (Table 7.2).

The investigation has been carried out looking at a restricted group of districts

that surround the core area of Manhattan. All the Eastern part of Manhattan was

considered, from the southern to the northern area of the neighbour (Mn3, Mn6,

Mn8, Mn10, Mn11, Mn12).

In addition, those districts that represent the enclosure of the Manhattan area

have been considered; in the north side District of the Bronx; in the south area

District of Brooklyn.

The Bronx’s Districts (named Bx1, Bx2, Bx4, Bx5, Bx8) represent a physical

area of continuity with Columbia and Harlem.

The Brooklyn’s Districts (named Bx1, Bx2, Bx4, Bx5, Bx8) are joining the

Skyscrapers’ Peninsula by bridges.

Fig. 7.2 Quarters surrounding Manhattan and the East River
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All the area of study is posed along a south–north axis, for around 7 km.

Tables 7.1 and 7.2 show the main data regarding price values and rent values of

districts in the case study.

Note that some districts of Brooklyn show median value of prices not dissimilar

from the price of Manhattan area.

The analysis examines the relationships between the districts belonging to the

quarter of Manhattan and districts belonging to the three quarters bordering it

(Bronx, Queens, Brooklyn). Inside Manhattan, as we saw in the previous analysis,

districts have a low aggregate poverty index.

More detailed analysis shows that Manhattan can be defined as a district is

uneven from a social point of view with clear pockets of poverty at the

neighbourhood such as Harlem and Chinatown that are opposed to areas more

economically fortunate, such as Upper East Side which together help to reduce the

overall poverty rate in the districts of Manhattan.

Secondly, Bronx is characterized by the widest presence of social housing,

counterposed to a small part of properties in the free market: private properties

are rented or are building units with a mortgage with a margin of more than 35 % of

household income and therefore not easily accessible.

We can explore what real estate market indicates to us, and if there is a

relationship between values housing typologies and property, and ethnic group.

By comparing the values of Brooklyn 2 and Queens 2 (Table 7.1), we can see

that they are almost comparable; one might think that there is a similarity between

the conditions of two seats belonging to adjacent districts.

A comparison among the values of Manhattan 10, 11 and 12 Bronx 1+2, 4 and 7

shows that the incidence of costs of living in case of mortgage or rent is higher in

the Bronx than in Manhattan.

In the tenth district of Manhattan, the impact of the cost of living, in the presence

of mortgage, and families in rent is just as high, and this is also in that piece of

Manhattan district in between with Harlem, where the low income/black population

is concentrated and construction stock is predominantly public.

Table 7.3 Distribution of the housing property in the borderline-districts FY 2008 by mortgaged

and rented stock

Housing units

with a mortgage (%)

Housing units without

mortgage (%)

Occupied units paid

rents (%)

Bronx 1+2 47.3 17.7 45.9

Bronx 4 40.9 14.6 51.8

Bronx 5 44.3 11.7 53.3

Bronx 8 22.5 15.2 37.1

Brook 1 5.6 24.6 40.5

Brook 2 29.6 14.8 30.6

Brook 6 24.0 15.9 33.0

Manh 3 36.2 16.4 37.9

Manh 6 23.7 13.6 30.3

Manh 8 25.4 13.9 29.5

Manh 10 36.3 19.0 39.7

Manh 11 30.4 19.9 30.9

Manh 12 19.6 8.6 44.5
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Table 7.3 above shows the values of the impact of living, measured in relation to

family income, and therefore the type of dwelling defined in real estate parlance,

“non-affordable housing” and thus relating to the free market. Close examination of

the data shows that it is possible to draw some considerations on the housing stock

that characterizes the city of New York.

Manhattan is characterized by the widest presence of the occupied properties in

the open market of rents.

7.2.3 Multidimensional Ranking

If the variation is so much connected to a high density of aspects in small areas, the

dependence on these aspects is complex.

This complexity cannot be so easily broken down in simple relationships. At this

point it is perhaps useful to consider the variables listed above as the size of a multi-

variable fuzzy function.

For each alternative is composed of a set of criteria, representative of those given

aspects of racial composition and housing stock.

Let’s consider a fuzzy function m that measures the dominance of an element X
on an element Y and let’s assume that:

• m� represents the fuzzy cluster of gaps that identify the highest level of

prevalence in the comparison between X and Y.
• m> represents the fuzzy cluster of gaps that identify a moderate level of

prevalence in the comparison between X and Y.
• m~ represents the fuzzy cluster of gaps that identify a moderate level of similar-

ity in the comparison between X and Y.
• m¼ represents the fuzzy cluster of gaps that identify the highest level of

similarity in the comparison between X and Y.
• m< represents the fuzzy cluster of gaps that identify a moderate level of non-

prevalence in the comparison between X and Y.
• m� represents the fuzzy cluster of gaps that identify the highest level of non-

prevalence in the comparison between X and Y.

Let’s consider a crisp function C that measures the dominance of an element X
on an element Y and let’s assume that:

• C� represents the crisp cluster of gaps that identify the highest level of

prevalence in the comparison between X and Y.
• C> represents the crisp cluster of gaps that identify a moderate level of preva-

lence in the comparison.

• C~ represents the crisp cluster of gaps that identify a moderate level of similarity

in the comparison.

• C¼ represents the crisp cluster of gaps that identify the highest level of similarity

in the comparison.

• C< represents the crisp cluster of gaps that identify a moderate level of non-

prevalence in the comparison.
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• C� represents the crisp cluster of gaps that identify the highest level of non-

prevalence in the comparison.

The transition from moderate to highest is due to a threshold that is fuzzy for m
and crisp for C.

Through the “Novel Approach for Imprecise Assessment of Decision Environ-

ment” [2], which allows a fuzzy comparison based on multiple criteria comparison,

we will evaluate the level of urban housing distress for each quarter.

From the evaluation, the approach produces a double ranking.

The first ranking expresses the values of Фþ corresponding to the possibility

that a given district could be affected by urban distress.

The second rank, actually expresses the values of Ф�, corresponding to the

opposite possibility that a given district could not suffer for social distress of

housing sock linked with racial composition.

Since fuzziness, Фþ and Ф� are not automatically reversible.

Under uncertainty it should be noted an asymmetry of values, and in conse-

quence the two lists do not match.

Relations in formulas (7.1) and (7.2) show the expression of Ф+ and Ф�.

FþðXÞ ¼
Pn�1

k¼1

½m�ðX; YkÞ ^ C�ðX;YkÞ þ m>ðX; YkÞ ^ C>ðX; YkÞ�
Pn�1

k¼1

C�ðX; YkÞ þ
Pn�1

k¼1

C>ðX; YkÞ
(7.1)

F�ðXÞ ¼
Pn�1

k¼1

½m�ðX; YkÞ ^ C�ðX; YkÞ þ m<ðX; YkÞ ^ C<ðX; YkÞ�
Pn�1

k¼1

C�ðX; YkÞ þ
Pn�1

k¼1

C<ðX; YkÞ
: (7.2)

If the observation of both lists expresses the same priority with respect to this

alternative is also strengthened by the finding that the alternatives posed at the top

(i.e. the “least worst” is the “best”) are almost coincident, so there is a good level

certainty widespread.

A breakdown of preferences confirmed by reference to different criteria, the

priorities of the alternatives equally clear.

In our case the ranking Ф+ and Ф� refer to the quality of settlement (typology

and ratio between low price and high price properties). A simple correlation study

in Table 7.4 allows to proceed with a further investigation.

The quality is associated with the mix of function (residential, commercial and

services) to the housing typology (houses or dwelling in multi-family buildings).

Фþ and Ф� appear strictly connected with the distribution of median price

value and in the same with the presence of Hispanic, White and Native American

(the absolute value of the correlation index is mostly for all the groups equal or

higher than 0.7). This correlation should allow us to think that there is some

evidence of the relationship between racial composition of the population quarter

and real estate value.
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If we consider that the spatial transition from a racial prevalence to another is

connected as well with quarters, this link appears more strong that the one linked

to the distance. Maybe it could be still existing a sport of racial steering that

concentrates some ethnic group, still homogeneous in terms of family income and

general economic conditions and attitude to expenditure, in some area with some

real estate value.

A further proof of this connection could be shown be the absence of a strong

relationship of real estate value with the diffusion of black population.

Maybe black population nowadays, in the USA of Obama, is equally present in

high, middle and low class.

7.2.4 Clustering

In the fuzzy cluster method [7, 12] the difference of value between elements of a

cluster is measured on the basis of semantic distance [4].

Formula (7.3) shows the formulation of the semantic distance among districts,

measured in a multidimensional space where on the axes are measured the defined

criteria referring to housing characters and racial steering effects [3, 6]. The

“Semantic Distance” is represented by the sum of two double integrals:

SdðfjðxÞ;gjðyÞÞ ¼
ðþ1

�1

ðþ1

X

Y�Xj jgjðYÞ; fjðXÞdY dXþ
ðþ1

�1

ðX
�1

X�Yj jfjðXÞ;gjðYÞdY dX:

(7.3)

Let’s give a jth quantitative attribute of a set of two elements X and Y; let’s
suppose that fj(X) and gj(Y) represent the value functions of the fuzzy attribute for

X and Y.
The functions fj and gj can be crisp numbers (this means that the function give a

certain result), probabilistic values (this means that fj and gj represent expected
values), or fuzzy numbers (this means that fj and gj represent ownership function).

The “Semantic Distance” provides an indication of the certainty of the preva-

lence of one alternative over another. It, between two points identifying two

different levels of courts, may take a value, at the comparison between judgements

of certain preference.

After the clustering a Similarity index is calculated. The index aggregates the

group on the basis of two indicators: price value and rent value. Table 7.5 shows the

matrix of similarity among all couples of districts. Furthermore, the dendrogram in

Fig. 7.3 shows the relevant similarities.

In the case of study some relevant clusters have been identified as significant of

toblerian condition of contiguity of values: the couple of the eleventh and tenth

District of Manhattan represent a Grey area where Manhattan reality is melt with
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the Bronx in correspondence with the poorest part of Harlem (similarity equal

to 0.89)

Another relevant group is represented by some district of Brooklyn connected

with the corresponding district of Manhattan from one side to another of the east

river. These realities represent the richest part of the “skyscrapers area”.

Bk1 and Bk2 of Brooklyn and the Mn3 of Manhattan (similarity 0.88)

The richest part of Manhattan (District Mn8) is near by Guggenheim Museum,

towards the east side, moving from the Fifth Avenue and Central Park.

Other group looks less spatially related. In front of such part we find the richest

district of Brooklyn (District Bk6) that is shifted more towards south. The similarity

decreases (0.85).

7.3 Conclusions

The use of fuzzy multidimensional analysis gives back an idea of the possible

relationship between values and identity of quarters in the New York reality. The

identity can be marked by ethnic distribution. The qualitative idea of contiguity,

instead, in the definition of similarity appears more strongly than the quantitative

idea of distance.

In fact the similarity identifies immediately some areas that are on the borderline

of neighbours and that show a proper identity (as the case of the poorer Harlem, or

the richer South–East Side).

Fig. 7.3 Dendrogram of similarity for New York Districts
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More than among quarters, it seems more appropriate to consider at the local

scale inside each district or inside each—however defined—part of the neighbours,

the influence of distance.

The reality of the city shows a variation that is well identified with the physical/

perceptual modern/historical barriers that still design the urban tissue.

Even if some parts of the city have changed their social character, and face a

continuous dynamic substitution of some ethnic group with another, the structural

and dimensional character of property seems to survive as evidence of a different

economic status of residents in some area.

Such estate values, in their highest peaks, are often conserving a “status symbol”

[1, 8], while in the intermediate conditions their variation maintains a character of

fuzziness.

Finally the clustering appears useful to put on a better evidence the identicalness

of some well-characterized areas, evidence to the walker, as Lewis Mumford told.
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