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Handbook Series on

Computing and Statistics with Applications

The series will publish high quality volumes at the interface of computing and sta-

tistics. Of particular interest are handbooks in important statistical applications areas

where both computing techniques and numerical methods have a major impact. The

aim is twofold: first, to bring together research results in computational statistics that

are scattered throughout publications in specialized areas; second, to provide scien-

tists with reference books and unrivaled sources of information about the most recent

developments in computational statistics and applications. Emphasis will be given to

computational methods with computational statisticians being the primary target read-

ership.

The series focuses on all computational aspects of statistics. The scope is broad

enough to include handbooks in areas of computing which have a major impact on

statistical techniques and methods of data analysis. All aspects of statistics which make

use, directly or indirectly, of computing are considered. Applications of computational

statistics in diverse disciplines will be strongly represented. These areas include, but

are not limited to, economics, medicine and epidemiology, biology, finance, physics,

chemistry, climatology and communication.

Erricos John Kontoghiorghes
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Preface

Latent variable models (LVMs), including but not limited to the factor analysis model

and structural equation models (SEMs), are very useful for investigating the relation-

ships among observed and latent variables. Historically, the factor analysis model is the

most basic LVM which was developed by psychometricians to test hypotheses about

organization of mental ability. Nowadays, this model still represents a powerful multi-

variate method, and has very wide applications in substantive research. An important

development of SEM is due to Karl Jöreskog who integrated the confirmatory factor

analysis and the simultaneous equation model within the LISREL model. Mainly due to

his LISREL program, and other user friendly software such as EQS 6.0 and Mx, SEMs

have been extensively applied not only to behavioral, educational, social and psycho-

logical research, but also to environmental, biological, and medical sciences in recent

years.

The exciting field of LVMs provides plenty of interesting research topics for psycho-

metricians, statisticians, and quantitative social scientists from a variety of disciplines.

The field has had a very rapid and healthy growth in recent years, both in methodologi-

cal developments and in practical applications. To achieve new results researchers have

used various approaches to establish new models, theories, and computing methods.

This Handbook is intended to provide a comprehensive overview of some recent de-

velopments of latent variable and related models to researchers from a wide variety of

disciplines including biology, business, economics, education, medicine, psychology,

public health, and sociology.

From a model perspective, this Handbook includes a class important models, rang-

ing from the most basic but general covariance and/or moment structures; to models

with specific formulations that include the factor analysis model, linear SEMs, nonlin-

ear SEM, multisample SEM, multilevel SEM, mixture of SEMs, as well as the normal

mixed effect models, generalized linear mixed effect models, and spatial mixed models.

For the above mentioned models, many interesting and important topics are discussed.

These not only include the fundamental issues of estimation of parameters, goodness-of-

fit assessments of the hypothesized models, hypothesis testing, and model comparison;

but also cover factor rotation, reliability, and some basic properties in relation to the fac-

tor analysis model (and/or covariance structural models); robustness of inferences for

covariance and moment structures in relation to the normal theory; selection of mani-

fest variables; meta-analysis; and local influence analysis. To address these problems,

the authors used new derivations or new theoretical and computational methodologies,

and/or novel applications of the existing tools.
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VIII Preface

Essentially, most of the chapters used two major approaches. One approach focused

on the sample covariance matrix (or its related statistics), and can be regarded as the

commonly known covariance structural analysis. The other approach focused on spe-

cific formulations of the models with raw observations, and used maximum likelihood

and/or its related methods, as well as some Bayesian methods, for statistical analysis.

Results given in the chapters were obtained through a wide variety of techniques, in-

cluding matrix methods; asymptotic and large sampling theories; geometrical concepts

such as the conformal normal curvature; commonly used numerical methods such as

adaptive quadrature; powerful tools in statistical computing, including the Expectation-

Maximization (EM) algorithm and its related algorithms such as the Monte Carlo EM

algorithm and the stochastic approximation EM algorithm, and Markov chain Monte

Carlo (MCMC) methods such as the Gibbs sampler and the Metropolis–Hastings al-

gorithm, bridge sampling, and path sampling; and finally the user friendly software

EQS 6.0, gllamn, Mx, and WinBUGS.

As expected, the rich class of models and statistical methods described in this Hand-

book provide efficient and powerful tools for analyzing a wide spectrum of different

kinds of complex data. In addition to the common continuous normal data, the non-

standard data that can be analyzed by these tools include arbitrary non-normal data,

binary data, dichotomous and ordered categorical (ordinal) data, ranking data, missing

data with ignorable and non-ignorable missing mechanisms, hierarchical data, and het-

erogeneous data. The analyses of these complex data are illustrated by examples with

real data sets from business, education, medicine, public health, and sociology.

This Handbook owes much to many people. I am most thankful to Professor Erricos

Kontoghiorghes, who initiated the idea to produce a Handbook of Latent Variable and

Related Models, and gave valuable suggestions. I owe a great debt to all the contrib-

utors for their generous support and hard work in contributing the excellent chapters.

These chapters will greatly enhance knowledge of the theoretical and computational

techniques in factor analysis, SEMs, and LVMs. Without their contributions, this Hand-

book would not exist. All chapters have been reviewed, either by the authors of the other

chapters, or by some experts in the field, including Asim Ansari, Douglas G. Bonett,

Michael M. Browne, Chib-ping Chou, Masansori Ichikawa, Man-lai Tang, Bo-cheng

Wei, and Qiwei Yao. I wish to express my deepest thanks to all reviewers who read the

chapters and made constructive comments for revision. Finally, I am grateful to all the

wonderful people on the editorial staff, particularly Andy Deelen and Sweitze Roffel of

Elsevier Science B.V. for their continued assistance, encouragement, and support of our

work.

Sik-Yum Lee
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Covariance Structure Models for Maximal Reliability

of Unit-Weighted Composites

Peter M. Bentler

Abstract

When developing or evaluating scales, the internal consistency reliability of the

scale based on its items or parts is always an important issue. The growth of

structural modeling has allowed the easy computation of model-based estimates of

reliability. These are typically touted as replacements for coefficient alpha, which

remains the most widely used measure of internal consistency. Among model-based

estimates, coefficients based on a 1-factor model have been most widely recom-

mended. However, when the 1-factor model does not fit the data, the meaning of

such a coefficient is unclear. A new identification condition for factor analytic mod-

els is proposed that assures the composite can be modeled with only one common

factor even if the components are multidimensional. This common factor is max-

imally correlated with the composite, and the reliability of the composite is the

maximal internal consistency coefficient for a unit-weighted composite. The coeffi-

cient also describes k-factor reliability, the greatest lower bound to reliability, and

reliability for any composite from a latent variable model with additive errors. Re-

liability coefficients for differentially-weighted composites are also described, and

differentially-weighted maximal reliability is contrasted with unit-weighted maxi-

mal reliability. Computational methods for these coefficients are described.

Structural equation models, especially factor analytic covariance structure models, pro-

vide a new way to think about a very old problem, the assessment of the internal con-

sistency of a composite. Although Spearman (1904, 1907) had invented factor analysis

and reliability as separate methodologies, internal consistency reliability can be viewed

as a special case of covariance structure analysis with an added concern for composite

scores. Composite scores or scale scores are frequently used in psychology and related

social and behavioral sciences. A composite variable is a sum of other variables. In

the typical case, a composite X is a simple sum of p unit-weighted components such

as X = X1 + X2 + · · · + Xp. Our primary discussion in this chapter emphasizes unit-

weighted composites, but in concluding sections we also discuss differentially-weighted

1
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composites such as Y = w1X1 + w2X2 + · · · + wpXp. Examples of composites in-

clude the total score on a test composed of items, an attitude score based on summed

responses to a survey, and so on. An internal consistency reliability coefficient de-

scribes the quality of the composite or scale in terms of hypothesized constituents of

the components Xi . These might represent true and error parts based on classical test

theory (Xi = Ti + Ei), common and unique parts based on common factor analy-

sis (Xi = Ci + Ui), or the loading of the component on its factor plus residual error

(Xi = λiF +Ei). Covariance structure analysis provides models for the decomposition

of the variables used in defining the reliability of the composite.

By far the most widely used measure of internal consistency is Cronbach’s (1951)

coefficient α (Hogan et al., 2000). In the population, it is defined as

α = p

p − 1

(
1 − 1′D1

1′Σ1

)
,

where D is the diagonal of the covariance matrix Σ of the components Xi , and 1 is a

column vector of unit elements which serves as a summing vector. Thus 1′D1 is the sum

of the variances of the p component variables, and 1′Σ1, the sum of all the elements

of the p by p covariance matrix, is the variance of the total score X. In practice, α

is estimated by substituting the sample covariance matrix S in place of Σ , yielding

what we might call α̂. The popularity of this coefficient stems from several facts: it

can easily be computed, it is available in many program packages as a default, it can

be applied without fitting or validating any specific model to the components Xi , and,

importantly, under appropriate conditions it is a lower bound to reliability α � ρxx
(see, e.g., Novick and Lewis, 1967). The latter property arises if the variables have a

decomposition Xi = Ti+Ei , where Ti and Ei are uncorrelated with covariance matrices

ΣT and diagonal ΨE , so that the covariance matrix is decomposed into two orthogonal

parts Σ = ΣT + ΨE . Then the composite has a similar decomposition X = T + E

where T =
∑p

1 Ti , E =
∑p

1 Ei , and the reliability of the composite is defined as the

ratio of var(T )/ var(X), or

ρxx =
σ 2
T

σ 2
X

= 1′ΣT 1

1′Σ1
= 1 − 1′ΨE1

1′Σ1
.

There are many good recent discussions of α, its problems, and its alternatives (e.g.,

Barchard and Hakstian, 1997; Becker, 2000; Bonett, 2003; Enders, 2003; Enders and

Bandalos, 1999; Feldt and Charter, 2003; Green, 2003; Green and Hershberger, 2000;

Hakstian and Barchard, 2000; Komaroff, 1997; Miller, 1995; Osburn, 2000; Raykov,

1997, 1998, 2001, 2004a; Raykov and Shrout, 2002; Schmidt et al., 2003; Schmitt,

1996; Shevlin et al., 2000; Vautier and Jmel, 2003; Zinbarg et al., 2005). For the pur-

poses of this chapter, two issues are important. First, the lower-bound property α � ρxx
has been questioned. When correlated errors are present so that ΨE is not diagonal, α

can exceed ρxx . Second, the size of α provides no information on the degree of unidi-

mensional reliability, sometimes called homogeneity, that is, on the proportion of total

variance due only to the main or only underlying common true score factor. In order to

deal with both of these problems, the recent theoretical literature has suggested aban-
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doning coefficient α and using a coefficient based on a 1-factor covariance structure

model matrix of the parts that make up the composite.

In this approach, the covariance matrix of the true scores is presumed to be uni-

dimensional, that is ΣT = λλ′, where λ(p × 1) is the factor loading vector of the

p variables on a single common factor. Hence the covariance matrix of the observed

scores is decomposed as

Σ = λλ′ + Ψu,

where Ψu is the covariance matrix of the unique variables or residual errors. Then

ρ11 =
σ 2
T

σ 2
X

= 1′λλ′1

1′Σ1
= (1′λ)2

1′Σ1
=
(∑p

1 λi
)2

1′Σ1
= 1 − 1′Ψu1

1′Σ1

defines reliability ρ11 (� ρxx) based on the hypothesis of a unidimensional latent

variable (see, e.g., Jöreskog, 1971, p. 112). Zinbarg et al. (2005) equate ρ11 with Mc-

Donald’s (1985) ωH . Typically, Ψu is taken to be a diagonal matrix representing the

hypothesis of uncorrelated error components, but in some circumstances correlated

errors may be hypothesized (see Bollen, 1980). In practice, of course, ρ11 is not op-

erational. In order to estimate ρ11, the model Σ = λλ′ +Ψu is fit to a sample covariance

matrix S, and estimates λ̂ and Ψ̂u are obtained. These are plugged into the defining

formula, yielding ρ̂11. The approach also provides important information about the con-

tribution of a given component variable to reliability via the factor loading λ̂i . Recent

discussions of this approach are given by Kano and Azuma (2003) and Raykov (2004a).

Although ρ11 is certainly an improvement over α, it has a serious and fundamental

flaw that has been largely overlooked. In realistic applications of covariance structure

analysis, especially with a large number of variables Xi (e.g., p = 40) such as might be

used in a reliability study, the null hypothesis Σ = λλ′ +Ψu of a single common factor

may hardly be tenable. ten Berge and Sočan (2004, p. 613) made the stronger point

that the unidimensional hypothesis “will invariably be rejected when there are more

than three test parts”. If this null hypothesis is rejected, it is hard to know what ρ11

describes. We would argue that if Σ �= λλ′ + Ψu, estimating ρ̂11 based on an incorrect

1-factor model is inappropriate. A similar point of view was espoused by McDonald

(1999, p. 89) who indicated that if the 1-factor fit is poor “. . . we should not be using the

coefficient anyway”. In this chapter, we propose an extension of factor-based reliability

so that it yields an appropriate coefficient of unidimensional internal consistency for all

covariance matrices that can be fit by a general covariance structure model with additive

errors. Among these, the exploratory factor analytic (EFA) model is the prototype. We

show that among coefficients based on unit-weighted composites, our coefficient gives

the largest reliability. This result is then applied to the case of differentially-weighted

composites.

1. Proposed identification condition for factor models

Suppose that an exploratory factor analytic model for a random set of scores

(1)x = μ + Λξ + ε
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holds in the population. Under the usual assumptions that the means μ are unstructured,

ξ and ε are uncorrelated, the covariance matrix of ξ is I , and the covariance matrix of

the ε is given by a diagonal matrix Ψ , the covariance matrix of (x−μ) has the structure

of the standard covariance structure model

(2)Σ = ΛΛ′ + Ψ.

Here we allow the factor loading matrix Λ to be (p × k), where the number of factors

k � (p − 1) can be any appropriate number. When standard approaches to estimation

of factor models are used, k has to be small enough so that there are positive degrees

of freedom when fitting the model to a sample covariance matrix S. We will call this

the “small-k” situation. In such a case, it is well known that without further restrictions

this model is not identified (e.g., Jöreskog, 1967). Based on the partition of the factor

loading matrix into Λ = [λ|Λ̄], where λ is (p × 1) and Λ̄ is (p × (k − 1)), we propose

the following identification conditions:

(1) λ contains unrestricted free parameters.

(2) 1′Λ̄ = 0, that is, the k − 1 columns of Λ̄ sum to zero.

(3) Λ̄ contains free parameters subject to (k− 1)(k− 2)/2 restrictions. Some examples

of such restrictions are:

(a) Λ̄′Ψ−1Λ̄ is diagonal. This is similar to the standard identification condition

in exploratory maximum likelihood factor analysis, where it is based on all k

factors.

(b) Λ̄ contains free parameters except for a triangle of fixed zero elements. A sim-

ple way is to fix Λ̄ij = 0 if j > i. To illustrate, if k = 5, Λ̄ is p×4, and the first

4 rows (out of p) are given as

[ ∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗

]
, where “*” represents a free parameter

and “0” is a fixed zero. An advantage of this approach is that any structural

equation modeling program can be used to estimate the free parameters of the

model.

(c) Rotational criteria are imposed on Λ̄ so that it is in some simple structure form.

If oblique transformations are considered, the defining model may contain cor-

related factors, that is, Σ = ΛΦΛ′ + Ψ , where Φ is the covariance matrix of

the factors. In this approach, the factor corresponding to λ remains uncorrelated

with the remaining factors.

It follows from the above that the number of identification conditions imposed on the

model is (k−1)+(k−1)(k−2)/2, which equals k(k−1)/2, the precise number imposed

on the standard exploratory factor analysis model. Thus the proposed representation is

simply an alternative form of the exploratory factor model.

However, the identification condition is defined more generally. It also holds un-

der conditions where the number of factors generates negative degrees of freedom, i.e.,

exceeds the Ledermann (1937) bound of 0.5(2p + 1 −
√

8p + 1 ) in the standard ex-

ploratory factor model. We will call this the “large-k” situation, which may require a

number of factors near p. Such a large number of factors does not occur in ordinary ex-

ploratory factor analysis, but it occurs in such contexts as minimum trace factor analysis
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(e.g., Bentler, 1972; Shapiro, 1982a; Shapiro and ten Berge, 2000), constrained mini-

mum trace factor analysis (e.g., Bentler and Woodward, 1980, 1983; ten Berge et al.,

1981; Shapiro, 1982a), or minimum rank factor analysis (e.g., della Riccia and Shapiro,

1982; ten Berge and Kiers, 1991; Shapiro and ten Berge, 2002). See also ten Berge

(2000). In the large-k situation, identification condition three is not necessary since its

primary purpose is to enable standard exploratory factor analytic estimation with posi-

tive degrees of freedom.

2. Reliability based on proposed parameterization

Under our model, the total score X is obtained as

X = 1′x = 1′μ + 1′Λξ + 1′ε.

But identification condition two has the consequence that

1′Λ = 1′[λ|Λ̄] = [1′λ|1′Λ̄] = [1′λ|0] =
[ p∑

1

λi |0
]

= [λX|0].

This, in turn, has the consequence that the composite score has a factor analytic decom-

position such that it is solely a function of the first factor ξ1

(3)X = μX + λXξ1 + εX,

where μX = 1′μ and εX = 1′ε. Thus, with T = λXξ1 being unidimensional, and

E = εX, the true and error scores are uncorrelated, and we obtain the unidimensional

internal consistency coefficient

(4)ρkk = σ 2
T

σ 2
X

= λ2
X

λ2
X + σ 2

εX

.

Some algebra verifies that the reliability coefficient ρkk represents the squared corre-

lation between X and ξ1, or, stated differently, ξ1 is the factor that has the highest

correlation with the composite X.1 This correlation is reduced if there are negative

factor loadings since, for a fixed total error variance σ 2
εX

, the sum of factor loadings on

our special first factor determines λ2
X and hence the size of ρkk . Negative loadings in λ

reduce reliability.2

A key feature of our coefficient is that it equally well represents the internal consis-

tency of all k dimensions. But in our model, the remaining k − 1 dimensions contribute

nothing to the reliability of the composite. That is, reliability based on all k dimensions

is identical to reliability based only on our first dimension. Since (1′λ)2 = 1′ΛΛ′1, the

1 This correlation is given as ρXξ1
= Cov{(X − μX)/σX, ξ1} = λX/σX = √

ρkk .
2 This is with respect to a unit-weighted composite. Existence of a negative factor loading implies that a

weight of “−1” should be used instead of a weight of “+1” for that variable to obtain the composite having

maximal reliability. Alternatively, the variable should be reverse-keyed prior to computing the covariance

matrix.
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proportion of common variance across all dimensions to total variance is

(5)ρkk = 1′ΛΛ′1

1′(ΛΛ′ + Ψ )1
= (1′λ)2

(1′λ)2 + 1′Ψ 1
=

λ2
X

λ2
X + σ 2

εX

,

which just takes us back to our coefficient (4). In this setup, the actual number of factors

k is irrelevant.

In practice, the model under the proposed parameterization has to be estimated from

the data. In a saturated means model, μ̂ = �X, the sample mean of X, and a number

k has to be chosen so that the model-reproduced covariance matrix Σ̂ under the given

identification conditions approximates the sample covariance matrix S closely enough

from a statistical point of view. The above formula yields the estimator

(6)ρ̂kk = 1′Λ̂Λ̂′1

1′Σ̂1
= 1 − 1′Ψ̂ 1

1′Σ̂1
= λ̂2

X

λ̂2
X + σ̂ 2

εX

.

As noted above, in the standard situation of exploratory factor analysis, k will be a

relatively small number. Also, then Σ̂ �= S. In contrast, in minimum trace or minimum

rank modeling situations, k will be quite large and while Σ = ΛΛ′ + Ψ as before,

also Σ̂ = S. As a result, λ̂ as well as the estimated total variance 1′Σ̂1 being explained

under the types of models (small-k vs. large-k) are liable to be different, and hence these

diverse approaches no doubt will yield different sample estimates ρ̂kk .

3. Properties of the coefficient

The coefficient ρkk can be computed without imposing our proposed identification

conditions. That is, ρkk = 1′ΛΛ′1/1′Σ1 is invariant to any particular rotation or trans-

formation of the matrix Λ. As noted in (6), only the product ΛΛ′ is required, and this

product is invariant to orthogonal or oblique transformations. Any factor solution is

good enough. Representation of the latent factors using the proposed set of identifica-

tion conditions is not needed for defining or computing ρkk . The interpretation remains

the same: the reliability of a unidimensional composite (3), and also, the proportion

of common variance attributable to all k factors. Furthermore, as is discussed further

below, if Λ is based on minimum trace factor analysis, it is Bentler’s (1972) dimension-

free coefficient, and when based on constrained minimum trace factor analysis, it will

be the greatest lower bound to reliability (Jackson and Agunwamba, 1977).

Nonetheless, if interest centers on unidimensional reliability, and especially, maximal

unidimensional reliability, (4) must be the largest among possible choices of the given

factor. Specifically, the factor ξ1 in (3) must be chosen so that the proportion of total

score variance due to this factor, hence the reliability (4), is maximum. The coefficient

defined by our identification conditions accomplishes this maximum. To see this, we

start with some arbitrary factor loading matrix Λ̃ and finding a maximizing rotation.

THEOREM. Let Σ = Λ̃Λ̃′ +Ψ , and let t be a normal vector (t ′t = 1). Then the factor

loading vector λ = Λ̃t that maximizes (1′λ)2 is given by λ = (1′Λ̃Λ̃′1)−1/2Λ̃Λ̃′1, and

the residual factors Λ̄, where Λ̄Λ̄′ = Λ̃Λ̃′ − λλ′, have zero column sums (1′Λ̄ = 0).
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For proof, see Appendix A.

The proposed identification conditions one and two are thus not arbitrary. They are

necessary to defining the factor ξ1 that yields the maximal unidimensional internal con-

sistency reliability (4). The theorem also shows that the maximal reliability factor can

be obtained as a rotation from any starting factor solution, and in fact a rotation is not

needed, since the factor loading vector can be computed as λ = {1′(Σ −Ψ )1}−1/2(Σ −
Ψ )1 if desired. Furthermore, if one has no interest in the individual factor loadings λi
themselves, coefficient (4) can be computed directly from any initial factor solution,

such as an unrotated maximum likelihood solution. Even though coefficient (4) is based

on (1′λ)2 in the numerator, under the theorem it can be computed as

(1′λ)2 = 1′Λ̃Λ̃′1 = 1′(Σ − Ψ )1 = 1′Σ1 − 1′Ψ 1.

The maximal total common variance based on one factor is just the total variance of

the composite minus the total residual variance. There is no need to compute the opti-

mal factor loadings λ, although these are informative in their own right. Of course, in

practice, the estimators Σ̂ and Ψ̂ are used in such computations.

It might be noticed that the factor loading matrix Λ = [λ|Λ̄] is in a form very similar

to that obtained with centroid factor analysis. For a recent discussion of certain as-

pects of this very old method and relevant references, see Choulakian (2003). However,

centroid factor analysis was developed as a method of factor extraction. In the above

defining formulae, nothing has been stated about what method of estimation is used to

provide estimates of the factor loadings. The theoretical coefficient ρkk in (4) is inde-

pendent of any estimation method, while the estimator ρ̂kk in (6) can be obtained from a

factor solution obtained by any appropriate method of factor analysis. In the small-k sit-

uation, it often will be based on maximum likelihood, generalized least squares, or least

squares estimation, while in the atypical large-k situation, it will be based on minimum

trace, minimum rank, or a similar methodology.

Although the maximal reliability coefficient was developed under the usual factor

analytic assumption that Ψ is a diagonal matrix, all the key results – including the

theorem – also hold when Ψ is a more general covariance matrix of residuals. That is,

“correlated errors” are allowed.

4. Illustration with exploratory factor analysis

Table 1 gives the correlation matrix for the widely known nine psychological variables

based on 101 cases (Harman, 1976, p. 244), which we take as a covariance matrix

for purposes of illustration. A one-factor maximum likelihood solution is presented in

the left part of Table 2. This solution does not fit the data. It has a likelihood ratio

χ2
27 = 190.6. Nonetheless, ρ11 was estimated, yielding ρ̂11 = 0.880. Actually, this

coefficient – for a factor that does not explain the data – is not an improvement over

α̂ = 0.886. A three-factor model fits these data extremely well, with χ2
12 = 1.6. The

loadings λ̂ for this maximal reliability factor are given in the right part of Table 2. It

will be seen that the sum of factor loadings is larger than was the case for the 1-factor

model. The corresponding ρ̂kk is 0.939.
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Table 1

Correlation matrix of nine psychological variables

1.00

0.75 1.00

0.78 0.72 1.00

0.44 0.52 0.47 1.00

0.45 0.53 0.48 0.82 1.00

0.51 0.58 0.54 0.82 0.74 1.00

0.21 0.23 0.28 0.33 0.37 0.35 1.00

0.30 0.32 0.37 0.33 0.36 0.38 0.45 1.00

0.31 0.30 0.37 0.31 0.36 0.38 0.52 0.67 1.00

Table 2

Factor loadings λ̂ in two exploratory factor analysis solutions

Variable number 1-Factor model 3-Factor model

1 0.636 0.727

2 0.697 0.738

3 0.667 0.754

4 0.867 0.789

5 0.844 0.767

6 0.879 0.803

7 0.424 0.492

8 0.466 0.597

9 0.462 0.635

Sum 5.942 6.302

The maximal reliability factor loadings given in the right part of Table 2 can be com-

puted with any covariance structure modeling program that allows linear constraints.

Such a setup using EQS (Bentler, In press) is shown in Table 3, conforming to our

proposed identification conditions. The equation setup contains a nearly completely full

matrix of free factor loadings, except that F3 does not influence V1. Any other choice of

fixed zero loading to prevent F2 and F3 from being rotated would do as well. The /CON-

STRAINTS section forces the sum of factor loadings on F2 to be zero, and also forces

the sum of loadings on F3 to be zero. Other than this, the model setup is completely

standard. The EQS output provides the factor loadings λ̂ as already presented in the

right part of Table 2. In addition, in the output section labeled “reliability coefficients”,

EQS provides the estimated coefficient (6) as

Reliability coefficient RHO = .939

5. Reliability with general latent variable models

Our proposed conceptualization of maximal unit-weighted reliability does not require

that the structure of the variables involved be based on an exploratory factor analy-
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Table 3

EQS setup for maximal unit-weighted reliability with exploratory factor analysis model

/TITLE

Maximum Reliability Model Setup

/SPECIFICATIONS

VARIABLES= 9; CASES=101;

MATRIX=COVARIANCE; METHOD=ML;

/EQUATIONS

V1=*F1+*F2+0F3+E1;

V2=*F1+*F2+*F3+E2;

V3=*F1+*F2+*F3+E3;

V4=*F1+*F2+*F3+E4;

V5=*F1+*F2+*F3+E5;

V6=*F1+*F2+*F3+E6;

V7=*F1+*F2+*F3+E7;

V8=*F1+*F2+*F3+E8;

V9=*F1+*F2+*F3+E9;

/VARIANCES

F1 TO F3 = 1.0;

E1 TO E9 = .5*;

/CONSTRAINTS

(V1,F2)+(V2,F2)+(V3,F2)+(V4,F2)+(V5,F2)+(V6,F2)+(V7,F2)

+(V8,F2)+(V9,F2)=0;

(V2,F3)+(V3,F3)+(V4,F3)+(V5,F3)+(V6,F3)+(V7,F3)+(V8,F3)+(V9,F3)=0;

/MATRIX

1.00

.75 1.00

.78 .72 1.00

.44 .52 .47 1.00

.45 .53 .48 .82 1.00

.51 .58 .54 .82 .74 1.00

.21 .23 .28 .33 .37 .35 1.00

.30 .32 .37 .33 .36 .38 .45 1.00

.31 .30 .37 .31 .36 .38 .52 .67 1.00

/END

sis model. To see this, we consider a structural equation model in which the observed

variables can be decomposed into common scores with additive errors. Specifically,

consider the measurement model and latent variable regressions

(7a)x = μ + Λξ + ε,

(7b)ξ = Bξ + ζ.

The first Eq. (7a) is identical to Eq. (1), but here we conceive of it as representing any

confirmatory factor analysis (CFA) model. The second Eq. (7b) allows any factor ξi to

be regressed on any other factor ξj . Assuming no correlations between ξ, ζ, ε, and a full

rank(I − B), it follows that we can rewrite

ξ = (I − B)−1ζ,

(8)x = μ + Λ(I − B)−1ζ + ε.
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Table 4

Partial EQS setup for maximal unit-weighted reliability with

confirmatory factor analysis model

/EQUATIONS

V1=*F1 +E1;

V2=*F1 +E2;

V3=*F1 +E3;

V4= *F2 +E4;

V5= *F2 +E5;

V6= *F2 +E6;

V7= *F3+E7;

V8= *F3+E8;

V9= *F3+E9;

/VARIANCES

F1 TO F3 = 1.0;

E1 TO E9 = .5*;

/COVARIANCES

F1 TO F3 =*;

With the covariance matrix of the ζ given as Φ, the covariance structure of the model is

given by

(9)Σ = Λ(I − B)−1Φ(I − B)−1′
Λ′ + Ψ.

We now obtain an expression for reliability of the composite based on (9). Our theorem

utilized the decomposition Σ = Λ̃Λ̃′+Ψ . With the definition of Λ̃ = Λ(I−B)−1Φ1/2,

for any square root Φ1/2 such that Φ1/2Φ1/2′ = Φ, the theorem can be directly applied.

We have

COROLLARY. Let Σ = Λ(I − B)−1Φ(I − B)−1′
Λ′ + Ψ and Λ̃ = Λ(I − B)−1Φ1/2.

Then the factor loading vector that maximizes (1′λ)2 is given by λ = (1′Λ̃Λ̃′1)−1/2Λ̃Λ̃′1,

and the residual factors Λ̄, where Λ̄Λ̄′ = Λ̃Λ̃′ − λλ′, have zero column loading sums

(1′Λ̄ = 0).

As a result, we can obtain the unit-weighted maximal reliability (4) in the same

way whether the structural model is an exploratory factor analysis model (2) or a more

general covariance structure model (9) based on a fairly general structural equation

model of the form (7). Even though the model structure may be complex, the composite

will be able to be represented as unidimensional via (3).

Again, any covariance structure modeling program can be used to obtain the reliabil-

ity estimator. When a general model is specified in EQS, the program checks whether

the covariance structure of the model can be translated into a form such as (9). If so,

maximal unit-weighted reliability is computed using Eq. (5). This is done whether Ψ is

diagonal or not; that is, correlated errors are allowed. An illustration of (9) with B being

the null matrix is the 3-factor confirmatory factor analysis model with correlated factors

given in Table 4, again based on the data of Table 1. This model fits the data well. The

goodness of fit is χ2
24 = 19.1 (p > 0.05). The theorem again provides the maximal unit
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weighted internal consistency coefficient. This is printed as

Reliability coefficient RHO = .936

It is seen that the coefficient is somewhat smaller than the one obtained from the ex-

ploratory factor analysis model. But this model has twice as many degrees of freedom.

6. Dimension-free and greatest lower bound reliability

In the large-k exploratory factor analysis model, the matrix expression of the model is

as before in (2), with Σ = ΛΛ′ +Ψ and Ψ diagonal. Instead of fitting this model to S,

the sample covariance matrix, in an approximate way with a small k number of factors,

Bentler’s (1972) dimension-free reliability coefficient is defined to be that coefficient

(5) with factor loading matrix Λ (of arbitrary dimension k) chosen so that trace(ΛΛ′)
is minimized while the model Σ = ΛΛ′ + Ψ holds precisely.3 But

min trace(ΛΛ′) = max trace(Ψ ) = max 1′Ψ 1

so that Bentler’s dimension-free lower bound to reliability is

(10)ρblb = 1 − max
1′Ψ 1

1′Σ1
= min

(
1 − 1′Ψ 1

1′Σ1

)
, with (Σ − Ψ )psd .

There is no smaller reliability coefficient for which (Σ − Ψ ) is positive semidefinite,

i.e., for which the factors are real, and not imaginary. The dimension-free lower bound

is generally associated with a number of factors k larger than the Ledermann bound. If,

at the solution, the unique variance matrix Ψ has non-negative variances, the dimension

free lower bound is the greatest lower bound to reliability.

If in minimizing (10) we also constrain ψii � 0 (i.e., we disallow Heywood cases),

we obtain the greatest lower bound to internal consistency reliability. That is,

ρglb = 1 − max
1′Ψ 1

1′Σ1
= min

(
1 − 1′Ψ 1

1′Σ1

)
,

(11)with (Σ − Ψ ) and Ψpsd .

Since (11) is an optimization problem with an additional constraint as compared to (10),

ρblb � ρglb, with equality when there are no negative unique variances in ρblb.4

Again the theorem holds directly. As a result, although ρblb and ρglb are dimension-

free coefficients of internal consistency with k-dimensional factor spaces, their compos-

ite scores can be represented to be based on a single latent variable via (3). Among the

large-k factors is a single dimension that has maximal unit weighted internal consis-

tency.

3 This criterion makes clear the more recent terminology for this method as “minimum trace factor analysis”

(e.g., della Riccia and Shapiro, 1982; Shapiro, 1982a).
4 Hence, this constrained optimization problem is sometimes called constrained minimum trace factor

analysis (e.g., ten Berge et al., 1981).
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Table 5

Factor loading vector λ̂ for 3-factor CFA and greatest lower bound solutions

Variable number CFA loadings blb and glb loadings

1 0.752 0.727

2 0.721 0.743

3 0.743 0.756

4 0.806 0.790

5 0.754 0.772

6 0.762 0.801

7 0.461 0.499

8 0.596 0.598

9 0.643 0.635

Sum 6.240 6.321

In practice, the population covariance matrix is not available for either Bentler’s

dimension-free lower bound or the greatest lower bound. Hence in these procedures,

we take Σ̂ = S, and the sample decomposition is given by

S = Λ̂Λ̂′ + Ψ̂ .

Thus the factors precisely reproduce the covariances among all variables, with zero

residuals. This leads to a small-sample bias. Bias corrections are available for Bentler’s

coefficient (Shapiro and ten Berge, 2000; Li and Bentler, 2004). At this writing, most

structural modeling programs do not compute blb and glb solutions, but EQS does

so. EQS uses the computational algorithms of Bentler (1972), Bentler and Woodward

(1980, 1983); see also ten Berge et al. (1981) and Jamshidian and Bentler (1998) to

obtain these coefficients without any prespecification of the number of factors k, which

is obtainable at the solution. The results are printed out as follows for the example of

Table 1.

BENTLER’S DIMENSION-FREE LOWER BOUND RELIABILITY = .945

GREATEST LOWER BOUND RELIABILITY = .945

These coefficients are the same since there are no negative unique variances. The 0.945

value exceeds both the 3-factor EFA coefficient of 0.939, and the 3-factor CFA coeffi-

cient of 0.936, previously reported. The factor loadings for the maximal reliability factor

from the solution for the 3-factor CFA model (see Table 4) are given in the left column

of Table 5. The right column of Table 5 gives the loadings for the comparable maximal

reliability factor from the dimension-free solution. The estimates are quite similar.

7. Reliability of weighted composites

The maximal reliability composite discussed above is based on simple summation of

parts, since unweighted sums are typically used to obtain a total score. However, some-

times known or unknown weights wi may be used to give some variables more influence
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than others, resulting in the weighted composite Y = w1X1 + w2X2 + · · · + wpXp.

Since a unit-weighted composite is a special case with wi = 1, it may be desirable

to place the earlier discussion into the context of the more general case of weighted

composites. First we discuss composites with known weights.

It is easy to show that all of the previous results apply directly to the case of weighted

composites. Suppose that w is the p-length column vector of weights, and that Dw is the

diagonal matrix with w in its diagonal. Then rescaling the x variables in (1) with these

weights yields the new variables y = Dwx. Their unit-weighted sum Y = 1′y = 1′Dwx

is the weighted composite. The rescaled variables possess a comparable factor analytic

decomposition

(12)y = Dwx = Dwμ + DwΛξ + Dwε = μy + Λyξ + εy,

and, with obvious notation, the covariance structure of these rescaled variables is given

by

(13)Σy = ΛyΛ
′
y + Ψy .

As a result, the latent structure of the rescaled variables parallels that of the original

variables in the previous sections. Hence, the preceding results, including the theorem,

apply directly to the situation of weighted composites.

In the first part of this paper, we used the decomposition Σ = ΣT + ΨE to define

reliability as ρxx = σ 2
T /σ

2
X = 1′ΣT 1/1′Σ1 = 1 − 1′ΨE1/1′Σ1. Using the same

decomposition, we can also define reliability of a weighted composite Y as

(14)ρyy =
σ 2
Ty

σ 2
Y

= w′ΣTw

w′Σw
= 1 − w′ΨEw

w′Σw
.

The unit-weighted composite is a special case. When the error variances are not known,

it is hard to estimate (14) directly. Bentler (1968) noted that factor analytic concepts can

be fruitfully employed. Let the covariance matrix of the original unweighted variables

Xi have the composition Σ = Σc + Ψ , where Σc is a non-negative definite covariance

matrix of the common variables, and Ψ is the covariance matrix of the unique variables.

Then Bentler’s (1968, Eq. (12)) general formula for internal consistency reliability of a

weighted composite is

(15)ρw′x = w′Σcw

w′Σw
=
(

1 − w′Ψw

w′Σw

)
.

See also Heise and Bohrnstedt (1970, Eq. (32)). Eq. (15) is a lower bound to relia-

bility (14) under the usual factor analytic assumption Ψ = ΨE + ΨS , where unique

covariance matrix Ψ is a sum of the non-negative definite covariance matrices of ran-

dom errors and specific but reliable variables. Then w′Ψw = w′ΨEw + w′ΨSw, and

some algebra shows that

(16)ρyy = ρw′x + (w′ΨSw)/(w′Σw).

Thus ρw′x � ρyy , i.e., (15) is a lower bound to (14). The coefficients will be equal when

there is no specificity.
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Actually, several of the key reliability coefficients defined in earlier parts of this

chapter are just special cases of (15). Obviously, with equal weights and Σc = λλ′,
a single common factor model, and Ψ = Ψu, (15) simplifies to ρ11 as discussed pre-

viously, namely reliability under a 1-factor hypothesis as popularized by McDonald

(1999, p. 89) with coefficient ω. With equal weights and a general k-factor decomposi-

tion Σc = ΛΛ′, (15) becomes ρkk as given in (5) and elsewhere. With unit weights and

optimization criteria to define Ψ , this is the dimension-free and greatest lower bound

given in (10) and (11).

8. Selection of weights for maximal reliability

With our given definitions of reliability of weighted composites, we now consider the

case where the weight vector w is not known, but must be estimated. Following the ear-

lier work of Green (1950), Bentler (1968) reviewed a method for finding w to maximize

the reliability coefficient (14) when the error variances are known. He then developed

a parallel method to maximize (15) for the case where the factor model parameters

are not known, and related this method to Rao’s (1955) canonical factor analysis,

a variant of maximum likelihood factor analysis. In this approach, the weights and

reliability coefficients are derived from the eigenvalue-eigenvector decomposition of

Ψ−1/2(Σ − Ψ )Ψ−1/2, with S replacing Σ when the parameters need to be estimated.

Consider the special case of one common factor Σ − Ψ = λλ′. Then the weights by

Bentler’s method are given by

(17)w = (λ′Ψ−1λ)−1/2Ψ−1λ

and the maximal reliability is given by

(18)ρw′x(max) =
(

λ′Ψ−1λ

λ′Ψ−1λ + 1

)
.

This coefficient has been rediscovered in the recent literature, where it has been referred

to as “maximal reliability” (e.g., Drewes, 2000; Li, 1997; Li et al., 1996; Raykov, 2004b)

or “construct reliability” (Hancock and Mueller, 2001). It is not necessarily written in

the form (18), e.g., Hancock and Mueller write it as λ′Σ−1λ for standardized variables.

EQS computes weighted composite reliability (18) while allowing various constraints

on parameters, thus permitting modifications to the basic coefficient.

If weights (17) are used to define (12) and (13), the internal consistency coefficient

(15) is defined with these weights, and Λy has our identification structure, it can be

shown that parallel to (3) the weighted total score is based on a single common factor

(19)Y = μY + λY ξ1 + εY ,

where μY , λY and εY are unit-weighted sums of μy , the first column of Λy , and εy ,

respectively. While we can write

(20)ρw′x =
λ2
Y

λ2
Y + σ 2

εY

,
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the numerator of (20) is just w′ΛΛ′w = w′Σcw, and the denominator is w′Σw. Thus

the coefficient (20) is the same as (15).

An additional type of optimum weighted reliability coefficient based on (15) was

proposed by Shapiro (1982b). Consider the set of possible ρw′x coefficients as Ψ is

varied, and consider its minimal value minΨ (ρw′x). Shapiro’s method is to find that

w (excluding the null vector) so that the value of {minΨ (ρw′x)} is maximized, i.e., is

as large as possible. This is done without any assumption of unidimensionality. Thus

Shapiro’s min–max weighted greatest lower bound reliability is less restricted concep-

tually than that given by (18), which is based on unidimensionality. EQS computes

Shapiro’s coefficient using an algorithm of Jamshidian and Bentler (1998).

9. Conclusions

Like the 1-factor based internal consistency reliability coefficients, the proposed ap-

proach to maximal unit-weighted reliability requires modeling the sample covariance

matrix. This must be a successful enterprise, as estimation of reliability only makes

sense when the model does an acceptable job of explaining the sample data. Of course,

since a k-factor model rather than a 1-factor model would typically be used in the pro-

posed approach, the odds of adequately modeling the sample covariance matrix are

greatly improved. The selected model can be a member of a much wider class of models,

including exploratory or confirmatory factor models or any arbitrary structural model

with additive errors. Whatever the resulting dimensionality k, and whether the typical

“small-k” or theoretical alternative “large-k” approach is used, or whether a general

structural model with additive errors is used, the proposed identification conditions as-

sure that the resulting internal consistency coefficient ρ̂kk represents the proportion of

variance in the unit-weighted composite score that is attributable to the common factor

generating maximal internal consistency. The proposed coefficient can be interpreted as

representing unidimensional reliability even when the instrument under study is mul-

tifactorial, since, as was seen in (3), the composite score can be modeled by a single

factor as X = μX + λXξ1 + εX. Nonetheless, it equally well has an interpretation as

summarizing the internal consistency of the k-dimensional composite. Although gener-

ally there is a conflict between unidimensionality and reliability, as noted by ten Berge

and Sočan (2004), our approach reconciles this conflict.

When the large-k approach is used to model the covariance matrix, the theory of

dimension-free and greatest lower bound coefficients can be applied. This is based on

a tautological model that defines factors that precisely reproduce the covariance matrix.

As these theories have been developed in the past, reliability is defined on scores that

are explicitly multidimensional. However, we have shown here that the dimension-free

and greatest lower-bound coefficients can equivalently be defined for the single most

reliable dimension among the many that are extracted. Based on this observation, new

approaches to these coefficients may be possible.

The optimal unit-weighted coefficient developed here also applies to composites

obtained from any latent variable covariance structure model with p-dimensional ad-

ditive errors. Although we used a specific type of model as given in (7) to develop

this approach, we are in no way limited to that specific linear model structure. Our ap-
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proach holds equally for any completely arbitrary structural model with additive errors

that we can write in the form Σ = Σ(θ) + Ψ , where Σ(θ) and Ψ are non-negative

definite matrices. Then we can decompose Σ(θ) = ΛΛ′ and proceed as described

previously, e.g., we can compute the factor loadings for the maximally reliable factor

via λ = {1′(Σ − Ψ )1}−1/2(Σ − Ψ )1. The maximal reliability coefficient for a unit

weighted composite based on any model that can be specified as a Bentler and Weeks

(1980) model has been available in EQS 6 for several years.

With regard to reliability of differentially weighted composites, we extended our

maximal reliability for a unit-weighted composite (4) to maximal reliability for a

weighted composite (18). While both coefficients have a similar sounding name, they

represent quite different types of “maximal” reliability, and, in spite of the recent en-

thusiasm for (18), in our opinion this coefficient ought to be used only rarely. Weighted

maximal reliability does not describe the reliability of a typical total score or scale.

Such a scale score, in common practice, is a unit-weighted composite of a set of items

or components. Our unit-weighted maximal reliability (4) or (5) describes this reliabil-

ity. In contrast, maximal reliability (18) gives the reliability of a differentially weighted

composite, and if one is not using such a composite, to report it would be misleading.

Of course, if a researcher actually might consider differentially weighting of items or

parts in computing a total score, then a comparison of (4) to (18) can be very instructive.

If (18) is only a marginal improvement over (4), there would be no point to differential

weighting. On the other hand, if (4) is not too large while (18) is substantially larger,

differential weighting might make sense.

Finally, all of the theoretical coefficients described in this chapter were specified

in terms of population parameters, and their estimation was assumed to be associated

with the usual and simple case of independent and identically distributed observations.

When data have special features, such as containing missing data, estimators of the pop-

ulation parameters will be somewhat different in obvious ways. For example, maximum

likelihood estimators based on an EM algorithm may be used to obtain structured or un-

structured estimates of Σ (e.g., Jamshidian and Bentler, 1999) for use in the defining

formulae. In more complicated situations, such as multilevel modeling (e.g., Liang and

Bentler, 2004), it may be desirable to define and evaluate internal consistency reliability

separately for within-cluster and for between-cluster variation. The defining formulae

described here can be generalized to such situations in the obvious ways and are already

available in EQS 6.
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Appendix A

PROOF OF THEOREM. Let φ = (1′λ)2 − γ (t ′t − 1). Taking derivatives ∂φ/∂γ and

setting to zero establishes t ′t = 1. Then ∂φ/∂t yields the eigenequation (Λ̃′11′Λ̃ −
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γ I)t = 0. Solving this yields γ = (1′Λ̃Λ̃′1) and t = (1′Λ̃Λ̃′1)−1/2Λ̃′1. Substituting

into λ = Λ̃t and simplifying gives λ = (1′Λ̃Λ̃′1)−1/2Λ̃Λ̃′1. It follows that Λ̄Λ̄′1 =
(Λ̃Λ̃′ − λλ′)1 = 0, which means that 1′Λ̄ = 0. Finally, (1′λ)2 is maximized rather than

minimized since the minimum φ occurs with λ = 0. �
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Abstract

Missing data arise in many areas of empirical research. One such area is in the con-

text of structural equation models (SEM). A review is presented of the methodolog-

ical advances in fitting data to SEM and, more generally, to mean and covariance

structure models when there is missing data. This encompasses common missing

data mechanisms and some widely used methods for handling missing data. The

methods fall under the classifications of ad-hoc, likelihood-based, and simulation-

based. Also included are the results of some of the published simulation studies. In

order to encourage further research, a method is proposed for performing sensitivity

analysis, which up to now has been seemingly lacking. A simulation study was done

to demonstrate the method using a three-factor factor analysis model, focusing on

MCAR and MNAR data. Parameter estimates from samples of all available data, in

the form of box plots, are compared with parameter estimates from only the com-

plete data. The results indicate a possible distinction for determining missing data

mechanisms.

1. Introduction

Missing data are broadly experienced in almost all areas of empirical research. A few

examples of well-known situations where missing data arise are: omitted or mistak-

enly recorded information during data entry, non-response to some sensitive questions

(e.g., age, income, drug use), and variables being too expensive to measure (e.g., mea-

surement may require destroying expensive parts, or interviewer needs to travel a long

distance). These examples and, more broadly, situations in which the respondents pro-

vide partial responses are referred to as item non-response, in line with situations where

responses to some items in a questionnaire are missing. Missing data can also occur as

a result of drop-outs, for example, when an experiment is run on a group of individuals

⋆This research was supported in part by the National Science Foundation Grant DMS-0437258.
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Table 1

Number of indexed articles in ISI Web of Science by given keywords. ISI Web of Science consists of five

high-quality databases containing information gathered from thousands of scholarly journals in all areas of

research including Science Citation Index Expanded, Social Sciences Citation Index, Arts & Humanities

Citation Index, Index Chemicus, and Current Chemical Reactions

Keywords 1966–79 1980–84 1985–89 1990–94 1995–99 2000–05

Missing data OR incomplete data 104 65 107 554 1191 2341

(Missing data OR incomplete data)

AND (covariance structure OR

structural equation model OR

factor analysis) 3 1 0 16 28 66

over a period of time as in clinical studies. Yet another form of missing data is unit non-

response in which case no responses are available for a subject that was to be included

in the sample. In one of its broadest definitions, Efron (1994) defines missing data as a

class of problems made difficult by the absence of some part of a familiar data structure.

In the examples mentioned above, the missing structure is an observable covariate that

is not recorded or observed. Efron’s definition of missing data covers a broader class

of problems. For instance, the latent variables in factor analysis would be considered

missing data by his definition. The main task in analyzing missing data seems to be de-

velopment of methodology to realize “the familiar structure”. This, for example, is the

main theme in development of the famous EM algorithm (Dempster et al., 1977) which

is frequently used in analysis of incomplete data.

There is a rich body of statistics literature related to analysis of incomplete data,

going back to the 1960s on survey methodology, and even going further back to 1930s

on experiments. In this chapter, we focus our attention on a portion of this literature that

is related to the structural equation models (SEM) with continuous responses which we

define shortly. Table 1 lists the number of published articles, related to missing data and

SEM, cited in the ISI Web of Science database since 1966. We chose the starting date

of 1966 because the first missing data note on SEM, indexed in the ISI Web of Science,

appeared in Woodbury and Siler (1966). As evident from Table 1, research in analysis of

missing data, both in general and in SEM, has had a notable increase in activity since the

early 1990s, about the beginning of the availability of inexpensive computing resources.

Structural equation modeling mainly consists of placing structures on the population

covariance matrix Σ and sometimes the population mean μ. These structures arise from

a combination of measurement models and latent variable models. Generally, a random

sample of observations, say x1, . . . , xn, from the population is obtained where each xi
is a p × 1 vector consisting of observations on p variables. Then a plausible model of

the form μ(θ) and Σ(θ), where θ denotes the parameters of the model, is fitted to the

data. Obviously, the least restricted model is the saturated model in which no structure

is imposed, namely μ has p free parameters and Σ is an unrestricted symmetric p × p

matrix. A popular example of a covariance structure model, also known as the LISREL

model (Jöreskog and Sörbom, 2004), has the measurement model

(1)xi = μ+ Λζ i + εi, i = 1, . . . , n,
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whereμ is a p×1 intercept vector, Λ is a p×k (< p) matrix of loadings, ζ i is a random

vector of latent variables, and εi is a random vector of measurement errors, independent

of ζ i , with E(εi) = 0 and Cov(εi) = Ψ .

A special case is the basic confirmatory factor analysis model, where μ = 0 and

Cov(ζ i) = Φ, a k × k matrix. In this model, usually some of the parameters in Λ, Φ,

and/or Ψ are fixed to one or more constants and thus the parameter vector θ consists of

the free parameters in (Λ,Φ,Ψ ). The implied covariance matrix for this model is

(2)Σ(θ) = ΛΦΛT + Ψ.

A more general model arises when the measurements xi are split into two groups of

endogenous and exogenous variables and the other components of the measurement

model (1) are partitioned accordingly. More specifically, consider the partition ζ i =
(ηT

i , ξ
T
i )

T, where ηi and ξ i are a k1 × 1 and k2 × 1 endogenous and exogenous latent

vectors with k1 + k2 = k. Furthermore consider the latent variable model

(3)ηi = Bηi + Γ ξ i + δi,

where B and Γ are k1 × k1 and k1 × k2 matrices of unknown parameters such that

B0 = I − B is nonsingular. It is assumed that the random vectors ξ i and δi are inde-

pendent with Cov(ξ i) = Φξ and Cov(δi) = Ψδ , with Ψδ diagonal. The parameters θ

in this model consist of the free elements in Λ, B, Γ , Ψ , Φξ , and Ψδ , and the implied

covariance matrix for this model is given by

(4)Σ(θ) = Λ

(
B−1

0 (Γ ΦξΓ
T + Ψδ)(B

−1
0 )T B−1

0 ΓΦξ

ΦξΓ
T(B−1

0 )T Φξ

)
ΛT + Ψ.

Our aim in this chapter is to give an overview of methodological advances in fitting

data to the models described above, and other more general mean and covariance struc-

tures, when data are incomplete (i.e., xi’s are not all completely observed). It is well

known that the use of inappropriate methods for handling missing data can lead to bias

in parameter estimates, bias in standard errors and test statistics, and inefficient use of

data (see, e.g., Little and Rubin (2002) and references therein).

It turns out that one of the most relevant aspects in selecting an appropriate method

is related to the process by which the data are missing, often referred to as the missing

data mechanism. In Section 2, we will review the often cited missing data mechanisms

of missing completely at random (MCAR), missing at random (MAR), and missing not

at random (MNAR). Most of the published methodologies aim at coping with various

missing data mechanisms as well as various distributional and model assumptions. In

Section 3, we will give a review of some of these methods under the three classifica-

tions of ad hoc, likelihood-based, and simulation-based methods. A body of missing

data SEM literature is devoted to simulation studies and comparison of the methodol-

ogy in this area. In Section 4, we will point out the results of some of these simulation

studies. Finally, as we will see, most of the work done in missing data are based on

the assumption of MCAR or MAR. In general it is difficult, if not impossible, to test

whether data are MNAR. It may, however, be plausible to perform some sort of sensitiv-

ity analysis in this case. This has been mentioned by a few authors, but to our knowledge

no specific proposals for doing sensitivity analysis has been given. In Section 5, we will



24 M. Jamshidian and M. Mata

give a specific method for sensitivity analysis. While our proposed methodology leaves

a lot to be desired, it is aimed at getting the ball rolling in related research in this area.

Tests have been proposed for MCAR, and we will mention those in Section 5. Sec-

tion 6 contains a discussion of the available missing data methods in SEM statistical

software.

2. Missing data mechanism

To begin analyzing a set of data containing missing values, we must have a general

understanding of why the data are missing. There is usually some underlying reason for

why the missing data. A failure to acknowledge this reason and address it in the analysis

may result in biased inference. Missing data mechanism is the term commonly used to

describe the method by which data are missing. Rubin (1976) seems to be the first to

formally introduce the missing data mechanisms of missing completely at random, and

missing at random. These mechanisms are by far the most popular ones used in the

missing data literature.

To elaborate on each missing data mechanism, we begin with missing completely at

random. Let Y denote the matrix of complete data. Following the definition by Rubin

(1987), data are missing completely at random if the missingness does not depend on

either the observed or missing values in Y . An example of this would be when questions

are accidently skipped over when answering a survey. The reason the questions were

skipped has no dependence on the answers to the previous or subsequent questions or

the actual answer that would have been given had the question not been skipped, thus

making it MCAR.

The next missing data mechanism is missing at random. Let Yobs denote the observed

parts of the matrix Y and Ymis the missing parts of Y . We then classify the missing data

mechanism as missing at random if the missingness depends only on Yobs. Returning to

the example above, if age is a completely observed variable and older respondents are

more likely to skip questions, then the data would be missing at random because the

missingness depends on the age of the respondent, which is observed.

When data are not MCAR or MAR, then sometimes they are referred to as missing

not at random (MNAR). In particular, when the missingness depends on the missing

values (i.e., Ymis), data would be MNAR. Returning to the survey example, data missing

not at random would include questions that are left unanswered because they relate to

a sensitive topic to the respondent such as domestic life, income, or substance abuse.

Since there are not any clues as to why the data are missing, the analysis of MNAR data

is challenging in the sense that one may never know the validity of the final inferences

made based on the data.

Values are not always missing from a collection of data because of a failure by the

respondent or omissions in the recording of the data. Some data values are missing

because the researcher chooses for them to be missing. Missing data such as this are

referred to as missing by design. There are many different ways to design a study so that

a portion of the data are missing by design. A basic example of this would be collecting

data that are easy or inexpensive on all the respondents in a study and gathering data
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that are more difficult or more expensive on only a few of the respondents. Kogovsek

et al. (2002) states that a few advantages to using a missing data design are reduction

of respondent burden, reduction of time and cost of the survey, shortening the elapsed

time between waves of questioning, and increasing the quality of the data gathered. For

a more detailed discussion of these issues and examples of studies with data missing by

design, for example, see Arbuckle (1996), Kamakura and Wedel (2000), and Kogovsek

et al. (2002).

In general, to determine the type of missing data mechanism, one must acquire in-

formation about the missing data. This information may be obtained by developing and

relying on some reasonable theory about the missing data, or by collecting additional

data; for example, by follow-ups, to make the mechanism accessible (Graham and Don-

aldson, 1993; Little and Rubin, 1987, Section 12.6). A few statistical tests have been

developed to check MCAR. For example, MCAR can be checked by testing the equal-

ity of the distribution of observed variables across the missing patterns using a t test for

location (BMDP8D, Dixon, 1988; Little, 1988). In this procedure, for each variable with

missing values, the sample is split into two groups consisting of cases with that variable

observed and cases with that variable missing. Then for each of the other variables, we

can compare the means of their observed values in the two groups with the two sample

t tests. If any of the t tests show significant differences between the means, then there is

evidence that the data are not MCAR. Little (1988) and more recently Krishnamoorthy

and Pannala (1998) have proposed other procedures that are more computationally effi-

cient than the procedure just described.

Kim and Bentler (2002) have extended the work of Little (1988) to propose a few

tests for MCAR via testing homogeneity of mean and covariances across groups com-

prised of cases with similar missing data patterns. They rationalize this test by stating

that “the various patterns of missing data come from a single population, that is, that the

data exhibit homogeneity of means and covariances (HMC). Rejection of homogeneity

implies rejection of MCAR. On the other hand, acceptance of HMC does not prove that

a data set is MCAR-though it is unclear when, if ever, data could be HMC but not also

be MCAR.” So Kim and Bentler’s (2002) test is informative when the null hypothesis

(i.e., the hypothesis of HMC) is rejected. In a simulation study, however, we have found

that the Kim and Bentler’s test is very conservative, and it especially has a very low

power when the number of missing data patterns (groups) is large.

It seems to us that, in general, tests of MCAR should not be confined to test dif-

ferences between various data patterns. Two subjects may have the same missing data

pattern, but have different reasons (mechanisms) for missingness. To accommodate such

situations, the data should be grouped in a meaningful manner, and then the HMC test

between the resulting group be performed (for an example of testing homogeneity of

covariances among groups in the context of missing data see Jamshidian and Schott

(2005)). Additional work in this area is indeed warranted and is deemed valuable. We

are not aware of tests for MAR or MNAR. It is clear that the data itself may not be

used to test for MNAR, because the missingness depends on the missing value itself. As

we will see in Section 6, however, some sensitivity analysis may be useful in assessing

MNAR.
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3. Methods for handling missing data

3.1. Ad hoc methods

Among the various ways in which missing data are handled, the ad hoc methods are

relatively easy to understand and execute, but their simplicity, as has been pointed out

in various SEM papers, comes at the price of often generating biased or poor estimates.

Here we describe a few of such methods along with their possible defects.

3.1.1. Complete case analysis

Complete case analysis, also known as listwise deletion (LD), utilizes only the cases in

a data set for which there are no missing values on any of the variables. This can result

in loss of significant amount of information even in data sets that contain a modest

number of variables. For example, when ten variables are independently measured with

a 90% chance of observing a single case of each variable, the probability that a case

contains no missing values is only 35%. When data are MCAR, the complete cases

form a random subsample from the population, thus the estimates obtained will not be

biased. But obviously, there can be a significant loss of efficiency in parameter estimates

when a large amount of data are discarded. Of course, if the data are MNAR the results

of LD will most likely be biased.

3.1.2. Available case analysis

Available case analysis, also known as pairwise deletion (PD), uses all the available data

rather than just cases which have no missing values. This avoids throwing away possibly

useful information, especially if there are few or no complete cases. In almost all SEM

packages, the sample mean and sample covariance are sufficient input to fit a model. In

the available case analysis, the sample mean and the sample variance for each variable

are computed based on all the observed cases for the corresponding variable, and the

covariance between a pair of variables is computed based on all the observed cases for

that pair. Brown (1983) investigated this method in the context of factor analysis. This

method leads to unbiased estimates if data are MCAR, and it leads to biased estimates

for MAR data. One major shortcoming of the available case method is that it can result

in a covariance matrix that is not positive definite. Notwithstanding this problem, be-

cause it uses more data, the available case analysis is expected to be more efficient than

the complete case analysis. If data are MCAR and the correlations between variables

are modest, a simulation by Kim and Curry (1977) supports this expected conclusion.

Other simulations, however, indicate superiority of complete case analysis in presence

of large correlations (Azen and Van Guilder, 1981). Marsh (1998) performed a simula-

tion that indicates this method can lead to substantially biased test statistics, depending

on the percentage of missing data and the sample size.

3.1.3. Single imputation methods

In a single imputation method the missing data are filled by some means and the result-

ing completed data set is used for inference. Mean imputation (MI) is one such method

in which the mean of the observed values for each variable is computed and the missing
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values for that variable are imputed by this mean. This method can lead into severely bi-

ased estimates even if data are MCAR (see, e.g., Jamshidian and Bentler, 1999). Clearly,

if the number of missing values in a variable is large, and these values are imputed by

the observed sample mean, then the resulting variance estimate for that variable can be

severely underestimated.

To take advantage of the correlations that may exist between variables in a data set,

Buck (1960) proposed imputing the missing values by predictions from regression mod-

els that are fitted using the mean and covariance matrix estimated by complete case

analysis. The mean estimates from this method are consistent estimates of the popula-

tion mean (Buck, 1960) for MCAR data and, under some mild regularity conditions, for

MAR data. The variances and covariances are, however, underestimated by this method

but the extent of underestimation is usually less than that of the unconditional mean im-

putation. Sometimes a random noise is added to the imputation values obtained based

on Buck’s method. Such imputations are referred to as stochastic regression imputation.

Other methods of imputation impute the missing data based on the observed cases for

subjects that agree, or approximately agree, on some observed covariates, for example,

age, gender, etc. An example of such a method is the similar response pattern imputa-

tion (SRPI) in which missing values are replaced by observed values from a case that

scored similarly, where the similarity is determined by a set of user-specified matching

variables. Rubin (1987) has discussed a number of other such methods.

3.1.4. A common problem with ad hoc methods in SEM

To fit a structural equation model when using the above methods, with the exception

of the complete case analysis, a two stage method is followed. In the first stage, the

missing data are imputed and the resulting completed data are used to obtain a sample

mean and sample covariance matrix. In the second stage, these values are used in an

SEM program to fit a model. It should be noted that even if the parameter estimates are

unbiased, the standard errors produced by the SEM programs obviously do not take into

account the variability inherent in the imputed values and thus, most likely, the resulting

standard errors are underestimates. Thus one has to be cautious in taking the resulting

standard errors at their face values when making inference. If the resulting mean and

covariance estimates are consistent, as we will discuss in Section 3.2, adjustments to the

standard errors are possible to make them valid.

3.2. Likelihood-based approaches for some standard and non-standard SEMs

A major portion of the SEM missing data literature is devoted to normal-theory maxi-

mum likelihood methods for model fitting and inference. This literature explores com-

putational methods for parameter estimation of various structural equation models,

discusses standard error estimation and tests of hypotheses, and performs simulation

studies to compare the methods.

As in Section 1, let x1, . . . , xn denote a random sample from a population with mean

μ(θ) and covariance Σ(θ), where θ is the parameter vector to be estimated. Further-

more, assume that some of the xi’s are not observed completely and denote the observed

part of xi by yi . Assuming that xi are from a p-variate normal distribution with mean
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μ(θ) and covariance Σ(θ), then yi has a pi (� p)-variate normal distribution with mean

μi(θ) and covariance Σi(θ), where pi is the number of components of yi , and μi(θ)

and Σi(θ) are, respectively, the subvector and submatrix of μ(θ) and Σ(θ) correspond-

ing to the observed components of xi . Assuming that y1, . . . , yn are independent, then

the contribution of a case yi to the log-likelihood is

li(θ |yi) = pi

2
log(2π) − 1

2

{
log

∣∣Σi(θ)
∣∣

(5)+
(
yi − μi(θ)

)T
Σ−1

i (θ)
(
yi − μi(θ)

)}
.

Thus, the maximum likelihood of θ , is the value that maximizes the log-likelihood func-

tion

(6)l(θ |yi) =
n∑

i=1

li(θ).

For the special case of the saturated model and when the data are observed com-

pletely, the maximum likelihood of μ(θ) and Σ(θ) are the usual sample mean and

sample covariance (with divisor of n rather than n − 1). When the data are incomplete,

then maximization of (6) requires iterative methods. The most common method to max-

imize (6) is the EM algorithm of Dempster et al. (1977). An EM algorithm is defined

by a “complete” data with a mapping to the “observed” data. In our context, we let

x1, . . . , xn denote the complete data. Then the EM algorithm consists of two steps: an

expectation step (E-step) and a maximization step (M-step). At a point θ , the E-step

computes

(7)Q(θ ′, θ) = E∗[l(θ ′|xi)
]
,

where E∗(·) = E(·|yi, θ). The M-step consists of maximizing Q(θ ′, θ) with respect to

θ ′ to obtain a new point, θ̃ . The iteration process is then as follows: At each step replace

θ by θ̃ and repeat the E-step and M-step until the values of θ converge.

It turns out that using the EM algorithm for obtaining θ̄ , the ML estimate of θ under

the saturated model is fairly straightforward. For this method, EM is commonly used for

this purpose and the resulting μ(θ̄) and Σ(θ̄) in the SEM literature are often referred

to as the EM mean and covariance. This brings us to the first type of likelihood-based

estimation method.

3.2.1. EM mean and covariance

Because, in the complete data case, the sufficient statistics to obtain ML estimates of θ

in SEM are the sample mean and sample covariance, most SEM software allow these

quantities as input, rather than the raw data. Obviously, these sufficient statistics can-

not be computed based on a set of incomplete data. However, the EM mean μ(θ̄) and

covariance Σ(θ̄) obtained under the saturated model seem to be a natural surrogate for

the complete data sample mean and covariance. This suggests a method to fit an SEM

to incomplete data; namely, to utilize μ(θ̄) and Σ(θ̄) in place of the complete data sam-

ple mean and covariance and proceed with model fitting. We denote the estimate of θ

obtained based on this two-stage procedure by θ̃ . Finkbeiner (1979) and Brown (1983)
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investigated this procedure in the context of factor analysis. Based on a simulation study,

Brown (1983) favored this method over both listwise and pairwise deletion. Arminger

and Sobel (1990) pointed out the difficulty of obtaining standard errors for θ̃ , and that

this method is generally not as efficient as the full information maximum likelihood,

which we will discuss shortly.

When one of the two assumptions of (I) data are MAR and normally distributed, or

(II) data are MCAR and non-normal, is satisfied, Yuan and Bentler (2000) showed that

θ̃ is strongly consistent and asymptotically normally distributed (see also, Laird, 1988).

In their Eq. (6b), they give a sandwich type estimate of the asymptotic covariance of θ̃ .

The sandwich type estimator is a function of the observed information matrix and the

empirical information matrix. Because the EM mean and covariance are not based on n

complete cases, if the sample size of n is input in the SEM software along with these

quantities, the standard errors output by the SEM will be underestimates of the true

standard errors. Enders and Peugh (2004) have investigated input of a smaller sample

size to adjust the standard errors in this circumstance. As expected, and as they point

out, “there is no single value of n that is appropriate when using an EM covariance

matrix as input into an SEM analysis”.

3.2.2. Full information maximum likelihood

A natural method of obtaining ML estimate of θ is to maximize (6) with respect to θ ,

using the μ(θ) and Σ(θ) induced by the model in (3). We denote this estimate by θ̂ . In

factor analysis, one would use μ(θ) = 0 and Σ(θ) = ΛΦΛT + Ψ and maximize with

respect to elements of θ which in this case consist of free elements in Λ, Φ, and Ψ .

In the SEM literature, this method is often referred to as the full information maximum

likelihood (FIML). Under the assumption that the data are normal and data are either

MCAR or MAR, the FIML estimates are asymptotically normal, unbiased, and fully

efficient with standard errors that can be obtained from the observed information matrix.

Note that the Fisher information standard errors are valid for MCAR data, but are not

valid for MAR data (Kenward and Molenberghs, 1998), and it is recommended that

standard errors be computed based on the observed information matrix.

Computation of FIML estimator depends on the type of SEM model being fit.

Finkbeiner (1979) and Lee (1986) respectively gave a quasi-Newton method and a

Fisher-scoring algorithm to directly maximize (6). Jamshidian (1997) proposed an EM

algorithm to obtain FIML estimates for the confirmatory factor analysis in which the

expectation in the E-step and the maximization in the M-step have closed from. Exten-

sion of this method to more general covariance structure models, such as the LISREL

model with implied covariance (4), seem not to be straightforward.

For a more general SEM than the factor model, Muthén et al. (1987) proposed using

a multiple group option of available packages to obtain θ̂ (also see Allison, 1987). In

their procedure, a group consists of all the data with similar missing data patterns. Thus

the usual sample mean and covariance are computed based on the observed data for

each group and the multiple group model is fit under the restriction that μ(θ) and Σ(θ)

are equal across all groups. This method works fine, except for the limitation that there

has to be sufficient number of cases in each group to obtain a positive definite sample

covariance for the groups. Jamshidian and Bentler (1999) gave a general framework
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for implementing EM to obtain FIML estimates. Their algorithm takes advantage of

the machinery used in obtaining FIML when data are complete. Because, for a general

structural equation model, the M-step of their algorithm is iterative, they also proposed

a generalized EM algorithm which is very simple to implement, given a complete data

routine.

Tang and Bentler (1998) developed the statistical theory and proposed an EM al-

gorithm for FIML estimates under equality constraints on parameters. This work can

be extended to inequality constraints on parameters using the methods discussed in

Jamshidian (2004a). In another extension, Graham (2003) has discussed the problem of

adding missing-data-relevant (auxiliary) variables to FIML-based SEM in order to im-

prove efficiency and bias. He has given Amos and LISREL 8.5 code for implementation

of his methods.

3.2.3. Nonlinear SEM

A nonlinear SEM allows modeling a nonlinear relationship between the latent variables,

for example, quadratic and interaction effects amongst the latent variables. To give a

specific model, the linear latent variable model (3) can be replaced by

(8)ηi = Bηi + Γ F(ξ i) + δi,

where F(ξ i) is a k2 × 1 vector valued function. Historically, nonlinear SEM goes as far

back as McDonald (1962), where he considered nonlinear factor analysis. Since then,

a number of papers have appeared on nonlinear SEM, proposing various approaches

to this problem. Lee and Zhu (2002) give a review of this literature and develop the

maximum likelihood approach for nonlinear SEM of continuous and complete data.

Given that a method for complete data nonlinear SEM is available, a natural approach

to estimate the parameters in the incomplete data case is to utilize the EM algorithm. It

turns out, however, that because of the nonlinearity, neither the E-step nor the M-step of

the EM algorithm have closed from solutions. Lee et al. (2003) have utilized the method

of Monte Carlo EM given by Wei and Tanner (1990) to approximate the E-step, and they

use a sequence of conditional maximization, as in the ECM algorithm of Meng and Ru-

bin (1993) to perform the maximization step. Lee et al. (2003) utilize the method from

Louis (1982) to obtain standard errors. In a simpler approach to obtaining standard er-

rors, one may utilize one of the methods proposed by Jamshidian and Jennrich (2000).

Lee et al. (2003) have illustrated their method using a numerical example, and have

suggested methodologies for assessing some of the distributional assumptions made.

More recently, Lee and Tang (2006) have developed a Bayesian approach for analyzing

nonlinear structural equation models with non-ignorable missing data. In general, non-

linear SEM is fairly complicated even for complete data, from both computational and

modeling perspectives. Computations are further exasperated by missing data. It will be

useful to see some real applications of nonlinear SEM and simulation studies that would

reveal the advantages of the this method to the linear SEM method. Finally, we would

like to mention that as in FIML, the models proposed are valid only if data are MCAR

or MAR.
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3.2.4. Mixture SEM

When a data set is comprised of several groups, it would be sensible to fit a mixture

model to the data. For example, if it is assumed that the data are comprised of g groups,

then a g-component mixture model is fit in which each xi is assumed to come from

N (μ(h)(θ),Σ (h)(θ)), for h = 1, . . . , g with some probability πh, where
∑h

h=1 πh = 1.

Accordingly, if yi is the observed part of xi , then its contribution to the likelihood will

be

(9)li(θ |yi) =
g∑

h=1

πhl
(h)
i (θ |yi),

where

l
(h)
i (θ |yi) = pi

2
log(2π) − 1

2

{
log

∣∣Σ (h)
i (θ)

∣∣

+
(
yi − μ

(h)
i (θ)

)T(
Σ

(h)
i

)−1
(θ)

(
yi − μ

(h)
i (θ)

)}
,

where, as before, pi is the number of components of yi , and μ
(h)
i and Σ

(h)
i denote the

subvector and submatrix of μ(h) and Σ (h) corresponding to the observed components

of yi . In this case, the overall number of parameters is the aggregate of the parame-

ters in the mean and implied covariance for each group plus the admixture parameters

π1, . . . , πg .

By far the most popular algorithm to handle mixture models, even in the complete

data case, is the EM algorithm where the admixture parameters πh are considered as

incomplete data. Recently, Lee and Song (2003) formulated the EM algorithm for the

mixture SEM with the implied covariance structure (4) for each group for the case when

data are incomplete. Their algorithm maximizes (4) with li(θ |yi) defined by (9). The

stochastic version of EM (Wei and Tanner, 1990), mentioned above, is used as the E-step

does not have a closed form. The M-step is performed via a sequence of conditional

maximization as in ECM. Lee and Song (2003) performed a set of simulation studies

that showed the superiority of the ML method over the listwise deletion method. They

have also applied this model to real data set collected in the project World Values Survey

1981–1984 and 1990–1993.

3.2.5. Generalized least squares and minimum chi-square

Lee (1986) has proposed a generalized least squares method for estimating the parame-

ters θ in SEM in an effort to do without the normality assumption. Suppose that there

are m missing data patterns and for each pattern j , there exist nj cases, sufficiently

large, based on which a positive definite sample covariance Si is obtained. Lee (1986)

proposed estimating θ by minimizing

(10)G(θ) =
m∑

j=1

nj

n
trace

{(
Sj − Σj (θ)

)
Wj

}
,

where Σj (θ) is the subset of Σ(θ) related to the observed components in the pattern j ,

and Wj is a positive definite weight matrix which converges in probability to the true
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Σ−1(θ). He gave an iterative algorithm to accomplish this and gave formulas for the

standard error of estimates.

With the same intention of moving away from assumption of normality, recently

Yuan and Bentler (2000) gave an estimation method that utilizes the minimum chi-

squared method of Ferguson (1996, Chapter 23). Let vech(.) be an operator that

transforms a symmetric matrix into a vector by stacking the column of the matrix,

leaving out the elements above the diagonal. Let β(θ) = (vech(Σ(θ))T,μ(θ)T)T. Let

β̂ = (vech(Σ(b̄))T,μ(b̄)T)T be the estimate of β obtained from what we called the EM

estimates ofμ and Σ from the saturated model. Furthermore, let Ω̂ denote the sandwich

type estimate of the asymptotic covariance of β̂. Then the minimum chi-square estimate

of θ is obtained by minimizing

(11)Q(θ) =
(
β̂ − β(θ)

)T
Ω−1

(
β̂ − β(θ)

)

with respect to θ . Yuan and Bentler (2000) gave the asymptotic standard error formulas

for this estimator and stated that it is asymptotically normal. They state that when data

are not normal, the minimum chi-square estimator is asymptotically at least as efficient

as the FIML and the ML estimate θ̃ that uses the EM mean and covariance.

3.2.6. Tests of goodness of fit

Tests of goodness of fit are usually performed in order to evaluate the validity of the

structural model μ(θ) and Σ(θ). If θ̂ is the FIML estimator and θ̄ is the estimate of the

parameters under the saturated model, then the test statistics T1 = 2[l(θ̄) − l(θ̂)] is the

usual likelihood ratio test and under the null hypothesis and with the assumptions of

MCAR and normality has an asymptotic χ2 distribution (see Jamshidian and Bentler,

1999). For the estimator θ̃ , a surrogate test to the complete data case is

T2 = n
{

trace
[
Σ−1(θ̃)

(
Σ(θ̄) +

(
μ(θ̄) − μ(θ̃)

)(
μ(θ̄) − μ(θ̃)

)T)]

− log
∣∣Σ(θ̄)Σ−1(θ̃)

∣∣− p
}
.

While T1 and T2 are equal in the complete data case, it is not clear whether the as-

ymptotic distribution of T2 is χ2 with incomplete data. When data are non-normal and

MCAR, Yuan and Bentler (2000) have shown that both T1 and T2 follow a mixture

of χ2 distributions, and give rescaled versions of T1 and T2 as well. Since neither T1

nor T2 or their rescaled versions asymptotically follow a chi-square distribution, Yuan

and Bentler (2000) have proposed a test statistics, that can be evaluated at either θ̂ or

θ̃ , that under some regularity conditions has an asymptotically χ2 distribution. Finally,

Yuan and Bentler (2000) have proposed yet another test T3 = nQ(θ∗), where θ∗ is the

minimizer of (11). This statistics is asymptotically χ2.

3.2.7. SEM with polytomous data

In all of the procedures described above, it is assumed that data are continuous. In social

and behavioral sciences, sometimes data are dichotomous or, more generally, polyto-

mous. Routine application of the continuous data methodology to polytomous data can
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result in biased estimates. Lee and Tang (1992) provided a two-stage procedure for para-

meter estimation in SEM of polytomous incomplete data. The first stage of their method

uses the partition maximum likelihood approach of Lee and Chiu (1990) to estimate the

correlation matrix. Then, in the second stage, this correlation matrix is utilized to es-

timate parameters via the generalized least squares approach. Recently, Song and Lee

(2002) used a Bayesian approach to fitting SEM to MCAR or MAR data that consists

of mixed continuous and polytomous data. They provide standard error of estimates

and related test statistics for their procedure. Lee and Song (2003) have extended this

methodology to nonlinear SEM. Rabe-Hesketh et al. (2004a) have introduced a set of

models called generalized linear latent and mixed models (GLLAMM), which combine

features of generalized linear mixed models (GLMM) and SEM and consist of a re-

sponse model and a structural model for the latent variables. GLLAMMs can handle

responses of mixed type including continuous responses, counts, dutarion/survival data,

dichotomous, and ordered and unordered categorical responses.

3.3. Simulation-based methods

Multiple imputation and bootstrap are two main simulation-based methods that can be

used in analysis of incomplete data with the latter receiving noticeably more atten-

tion in this context. The methods based on the data augmentation of Wei and Tanner

(1990) and the Gibbs sampler, mentioned in the previous section, may also be consid-

ered simulation-based methods, but we would like to think of them more as machineries

to accomplish the E-step of the EM algorithm. Thus in this view, they can be consid-

ered computational algorithms to obtain maximum likelihood estimates. In the context

of SEM of incomplete data, a few articles have recently discussed multiple imputation

and much fewer have been devoted to bootstrap.

3.3.1. Multiple imputation

Multiple imputation consists of producing, say m, complete data sets from the incom-

plete data by imputing the missing data m times by some reasonable method. Then each

completed data set is analyzed using a complete data method and the resulting methods

are combined to achieve inference. Multiple imputation is motivated by the Bayesian

framework and as such, the general methodology suggested for imputation is to impute

using the posterior predictive distribution of the missing data given the observed data

and some estimate of the parameters. For generating imputations from this distribution,

one, for example, can use the ML estimates for the parameters or use the Bayesian

framework to generate m sets of parameter estimates from the posterior distribution of

θ in some Bayesian analysis of the data. More detailed imputation methods and meth-

ods of combining parameters can be found in Rubin (1987). A short overview can be

found in Schafer and Graham (2002) or Jamshidian (2004b).

Schafer and Graham (2002) and Allison (2003) seem to be the two major articles

that discuss employment of multiple imputation in SEM. Both articles discuss various

available software for multiple imputation and their utility for SEM. Clearly the method

of imputation plays a key role in success of the multiple imputation methods. To our

knowledge, to date, the imputation methods that are employed in SEM do not utilize the
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SEM being fit. In a different context than SEM, Song and Belin (2004) discuss the use

of the factor analysis model for imputing incomplete high-dimensional data. We think

that there is much work to be done with regard to the utility of multiple imputation

in the area of SEM. The main job is the method of imputation. Comparison between

proper and improper imputations, employing SEM in place of saturated models for data

imputation, and the effect of data mechanism on the results are future valuable work in

SEM.

3.3.2. Bootstrap

One of the major motivations in using bootstrap is to do away with distributional as-

sumptions and produce nonparametric inference. This methodology can be used for

standard error estimation, construction of confidence intervals, and test of hypothe-

ses. The bootstrap method has been discussed by several authors in the context of

SEM and complete data. There is much less work in the context of incomplete data.

Enders (2001) is the only work that we could find that discusses the method of boot-

strap for testing goodness of fit in the incomplete data setting in SEM. We will discuss

his simulation results in the next section. More work in this area might include ex-

amining various bootstrap methodologies for incomplete data. Following Efron (1994),

Jamshidian (2004b) gives an overview of three methods of nonparametric bootstrap, full

mechanism bootstrap, and multiple imputation bootstrap. He has examined, via simu-

lation, these methodologies in the context of a simple problem, and in some cases the

methods are promising. It would be useful to investigate applications of these methods

in the context of structural equations models. The utility of the methods in analysis of

non-normal data and again their robustness to missing data mechanism is of interest.

4. Simulation studies

Most of the methodological papers mentioned above perform some kind of a simulation

study to empirically examine their theoretical results. In this section, we do not attempt

to report all of these simulation studies, but rather we focus on studies that have made

comparison between various methods. Specifically, in the following two subsections we

summarize simulation studies done with regard to normal and non-normal data.

4.1. Comparison of methods under the normality assumption

Arbuckle (1996) conducted a simulation to demonstrate the efficiency of ML estimates

relative to pairwise and listwise deletion for a typical estimation problem. In his setting,

he used an SEM consisting of two latent variables, each with three observed variables.

He generated data with sample sizes 145 and 500 and considered missing data mech-

anisms of MCAR and MAR with missing rates of 0, 5, 10, 20, and 30%. He used the

parameter estimates from the data with no missing values as a benchmark and compared

the estimates obtained based on incomplete data to the benchmark estimates. His study

found that for MCAR as well as MAR data, ML estimation was superior to both the

pairwise and listwise deletion, with the superiority being more pronounced for MAR
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data. He noted that increasing the sample size could not compensate for the bias of the

listwise and pairwise deletion methods and that ML did not appear to fully compensate

for the bias created by the missing data process.

Bernaards and Sijtsma (1999, 2000) performed an extensive simulation study to

compare FIML to several imputation methods for factor analysis of incomplete data.

They implemented each imputation method with and without adding a random resid-

ual and studied the effects of sample size, percentage of missingness, and missing data

mechanism. They compared how well each method recovered the factor loadings and

concluded that FIML performed best as compared to the considered imputation meth-

ods. Among the imputation methods, however, they recommended methods that impute

mean per person across the available scores for that person.

4.2. Comparison of methods for non-normal data

Enders (2001) explored the impact of non-normality on FIML estimation for SEM with

missing data. Three studies were conducted with the first two concerning MCAR and

MAR data. The methods of LD, PD, MI and SRPI were examined and compared to ML.

These five methods were compared in the four contexts of bias, mean square errors, stan-

dard errors (confidence interval coverage), and model rejection rates. The simulations

for Studies 1 and 2 included a full structural equation model with three latent variables,

each with three observed variables. Samples sizes of 250, 500, and 750; missing data

rates of 0, 5, 10, 15, and 25%; and seven distributional conditions of different levels of

non-normality, skewness, and kurtosis were used. For each of the 105 possible between-

subject designs, 250 raw data matrices were generated.

Enders defined parameter estimate bias as

%Bias =
( ˆ̄θj − θj

θj

)
× 100,

where θj was the true population value for parameter j and ˆ̄θj was the mean of the

corresponding parameter estimate from the 250 replications. He considered percent

bias values of less than 10–15% as non-problematic. For the MCAR data, Enders re-

ported little or no bias in the structural model parameters for all the methods with

non-normality having no noticeable impact on the bias observed. MI did yield biased

factor loadings, with the bias increasing as the missing data rate increased, but the bias

did not exceed problematic levels. For the MAR data, Enders reported that all methods,

except FIML, yielded biased estimates at problematic levels with an increase in bias as

the missing data rates increased. Surprisingly, his study showed that as non-normality,

and particularly skewness, increased the bias from the ad hoc methods decreased. En-

ders cautioned that a different result would most likely have occurred in this case had

the data been negatively, rather than positively, skewed or a different MAR technique

was used.

Enders compared the relative efficiency of FIML to the other ad hoc methods by us-

ing the ratio of the mean squares error (MSE) for these methods. The main message here

was that for the MCAR data the relative efficiency of FIML increased as the missing
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data rates increased, but the distribution shape had little or no impact on the relative effi-

ciencies. For the MAR data, the results were more sensitive to the shape and as with the

bias, the ad hoc methods yielded more efficient estimates under extreme non-normality

than FIML. Again, one has to be cautioned in concluding that general ad hoc methods

work better under non-normality.

In comparing coverage probabilities, Enders’ results for both MCAR and MAR were

nearly the same with the coverage rates dropping below their nominal levels as the non-

normality increased for all the methods. The rejection rates across all methods were also

above their nominal level especially when the non-normality increased, with the level

of deviation depending on the missing data mechanism. Enders’ third study concluded

much more reasonable results in terms of coverage and rejection rates for the Bollen–

Stein bootstrap method under non-normal data. An overall conclusion of Enders was

that the non-normal data had the same negative effect on ML estimation for both missing

and complete data and the presence or amount of missing data did not increase the

problems due to non-normality.

Yuan and Bentler (2000) performed simulation studies to assess their theoretical con-

tributions to the three methods under their study. Their simulation aimed at studying the

two main assumptions of (I) normal data and MAR mechanism, and (II) non-normal

data and MCAR mechanism. They concluded that under the normality assumption, the

estimates under MCAR are generally less biased than those under MAR for the three

methods. They point out that a similar inaccuracy is observed when the distributional

assumptions are incorrect, and emphasize that using a normal distribution and a MAR

missing data mechanism leads to the same parameter estimates as using an unknown

distribution and an MCAR missing data mechanism. Their simulation studies, however,

do not indicate noticeable biases for non-normal data that are MAR. Taking into account

their analytical and simulation results, they recommend use of the minimum chi-squared

method when sample size is large, use of the two-stage method with the sandwich-type

covariance matrices for standard error for medium sample size, and they recognize that

the problem of small samples is still an open one.

5. Sensitivity analysis for missing data mechanism

It is evident that the quality of inference made when data are incomplete critically

depends on the missing data mechanism. Testing for the type of missing data mech-

anisms in absence of auxiliary information is fairly difficult. MCAR may be the easiest

mechanism to test, and tests for MCAR have been proposed (see, e.g., Little, 1988;

Kim and Bentler, 2002). The proposed tests, however, work in some special cases

and the problem of testing MCAR for more general cases seems to be still open.

To test whether data are MNAR is virtually impossible because the missingness

in this case would depend on the missing data itself, thus in the absence of in-

formation no tests can be developed. In the SEM literature (e.g., Allison, 2003;

Schafer and Graham, 2002) and elsewhere, performing sensitivity analysis has been

encouraged as a possible way to detect deviations from an assumed missing data mech-

anism. To our knowledge, however, there does not seem to be any specific proposals
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about how one should go about performing such sensitivity analyses. As we have found

out through some effort, the answer to this question may not be straightforward and

indeed deserves some attention. In this section, we will give one specific method for

sensitivity analysis and report our simulation studies. In the outset we would like to

caution the reader that the methods that we discuss here are not well developed and

have been tested under specific assumptions that we will mention. Our hope is that this

work will encourage further research in this topic and indeed we have such research

underway ourselves.

The method that we propose aims at determining whether data are MCAR. It

differs from the previously proposed methodology (e.g., Kim and Bentler, 2002;

Muthén et al., 1987) in that we do not group the data by their missing data pattern;

you can have two cases with the same missing data pattern that do not follow the same

missing data mechanism. Suppose that a data set consists of n cases, nc of which are

completely observed. We assume that the nc cases are observed at random, and there-

fore they constitute a random sample from the population. Note that one has to examine

this assumption carefully, as it may not hold in some cases. If data are MCAR, then

any subsample of the n cases would be a random sample of the population. Thus, if an

unbiased estimator of model parameters is applied to a random subsample, the result

would be an unbiased estimate of the parameters. Indeed the deviation of the estimates

from the true parameter would depend on the size of the sample. On the other hand,

if data are MNAR, and a subsample is taken, then that subsample may not be consid-

ered a “random sample” from the population in the sense that it may satisfy a different

model as compared to the population as a whole. Thus, if we apply our estimator on

this subsample, the resulting estimate may be different as compared to the estimates ob-

tained from complete cases only. This difference motivates the sensitivity analysis that

we describe next. Because we will use ML estimates, the estimates for both MCAR and

MAR data would be consistent, and in that sense we would say that our methodology is

sensitive to MNAR data.

The sensitivity analysis usually should follow once we have decided on a model and

an estimation method. Having the model and an estimation method at hand, we propose

to perform a sensitivity analysis as follows:

(1) Obtain an estimate of the parameters, using the method and based on the nc com-

plete cases.

(2) Choose a random subsample of size nc from all the n cases and obtain the parameter

estimates based on this random subsample.

(3) Repeat step 2, r times to capture the variability of the estimates.

(4) Compare the estimate obtained in step 1 to the r parameters obtained in step 3.

Significant differences between the parameter estimate in step 1 and those in step 3

can be an indication that data might not be MCAR.

Of course, one can use variations of the above procedure. Some of the variations in-

clude resampling the complete cases to capture the variability of the estimate based on

the complete data, use a sample size different from nc in step 2, and if the number of

complete cases is sufficiently large, we may choose a portion in step 1 and do not use

that portion in the remaining steps. Indeed, success of this method would also depend
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on the sample sizes and the number of complete cases. Moreover, statistical methods

should be developed to do the comparison in 4. These are subject of a current research

underway by the authors. For this chapter, however, we will employ the steps mentioned

above in a simulation study to assess sensitivity to missing data mechanism. For step 4,

we use a simple method of comparison, as we explain.

For our simulation study, we use a three-factor factor analysis model with population

parameters

ΛT =
(
λ λ λ 0 0 0 0 0 0

0 0 0 λ λ λ 0 0 0

0 0 0 0 0 0 λ λ λ

)
, Φ =

(
1 0.5 0.5

0.5 1 0.5

5 0.5 1

)
,

and Ψ a diagonal matrix with diagonal elements 1 − λ. Note that the zero values and

the ones on the diagonal of Φ are fixed. We generated data from a multivariate normal

distribution with mean zero and covariance Σ = ΛΦΛT + Ψ . The parameters that we

estimate are the factor loadings λ, factor covariances, unique variances, as well as the

mean of the nine variables.

As a benchmark setting we use λ = 0.8, and a sample of size n = 1000 with the

nc = 200 complete cases. The remaining 800 cases have roughly 25% of their data

missing. We also use r = 25 in step 3. The data was generated by first generating

200 complete cases and setting them aside. Then an additional 800 cases were created

ensuring that each case had at least one incomplete datum. We did not keep the cases

that “survived” the missing data mechanism, because when generating data that were

MNAR these complete cases would be observed not at random and thus contaminate

our data set. Note that one assumption of our sensitivity analysis is that the complete

data cases are observed at random.

To create data that were MCAR, each datum was assigned a random number from

0 to 1. If that number exceeded 0.75, the datum was deleted and otherwise, it was left

alone. To create the MNAR data, all nine variables were normalized to have mean 0

and variance 1, creating a set of vij corresponding to the (i, j) component of the data

matrix. Then we deleted the (i, j) datum in our data matrix, if vij > 0.67. This created

about 25% missing data.

In our simulation, we have used the benchmark or varied one of the components of

the benchmark. For example, the boxplots shown in Figures 1 and 2, respectively, corre-

spond to two cases of data that are MCAR and MNAR and we changed the percentage

of missing from the benchmark of 25% to the value of 15%. The boxplots on the figures

are a summary of the r = 25 estimates of each of the parameters in μ, Λ, and Ψ (step 3)

and the circle indicates the parameter estimate obtained for the complete data (step 1).

For simplicity, parameters in Φ are not shown. What stands out from these figures is

that the circles are outside of the boxplots’ whiskers in many of the instances for the

MNAR data, but this is not the case for MCAR data. This motivated us to examine the

percentage of times that the complete-data estimate falls outside of the whiskers as a

gauge for step 4 of our procedure. It is interesting to note that in Figure 2, each of the

first boxplots for μ, Λ, and Ψ has a different location than others. This is due to the fact

that we did not install any missing data in the first variable.

To account for variability, we have repeated each of the steps 1–4 ten times, and

observed the number of times the circles (estimates based on the complete data) fall
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Fig. 1. Sensitivity analysis boxplots. Benchmark setting with data MCAR.

Fig. 2. Sensitivity analysis boxplots. Benchmark setting with data MNAR.

outside of the whiskers for each parameter under conditions of MCAR and MNAR

data. Table 2 gives a summary of our observations. Overall, as we had hoped, the av-

erage number of circles outside the boxplots for the MNAR data is significantly larger

than that for MCAR data. An interesting observation is that the parameters in Ψ are
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Table 2

Average number of complete data parameter estimates outside the whiskers when the experiment was repeated

10 times

μ Λ Φ Φ Total

Benchmark MCAR 0.4 0.2 0.1 0.5 1.2

MNAR 5.3 8.1 3 2 18.4

r = 50 MCAR 0.4 0 0.1 0.1 0.6

MNAR 4.8 8 3 1.3 17.1

15% missing data MCAR 0.6 0.4 0.2 0.7 1.9

MNAR 7.3 8 3 1.3 19.6

35% missing data MCAR 0.2 0.4 0.1 0.5 1.2

MNAR 8.9 8 1.8 2.4 21.1

n = 500, nc = 100 MCAR 0.2 0.8 0.2 0.2 1.4

MNAR 2.8 8.5 1.5 0.6 13.4

n = 1000, nc = 100 MCAR 0 1.1 0.1 0.3 1.5

MNAR 4 8.1 2.4 1.6 16.1

λ = 0.4 MCAR 0.7 1.1 0 1 2.8

MNAR 8 3.3 0 7 18.3

less sensitive to the missing data mechanism. This, of course may be an artifact of the

way we have generated our missing data. Ignoring the sensitivities on parameter Ψ ,

our observations are summarized as follows: For the benchmark problem, the average

number of complete data estimates falling outside the boxplots (16.4/21 = 78%) is

significantly higher for MNAR data than that for MCAR data (0.7/21 = 3%).

To ensure that the number of replications r = 25 was sufficient, we run the bench-

mark using r = 50. From the row labeled “r = 50” in Table 2, it is clear that increasing

the replications from 25 to 50 does not significantly change the results. In an attempt to

see the performance of this type of sensitivity analysis with other rates of missing, we

run the benchmark with rates of missing of 15 and 35%. The results for these cases are

very much in line with that of the benchmark, with slightly more sensitivity to missing

data mechanism when the percentage of missing data increases. Experiments with sam-

ple sizes of n = 1000 and nc = 100 and n = 500 and nc = 100 continue to show a

similar pattern to the benchmark case. Finally, to see the effect of factor loading values,

we changed the benchmark value of λ = 0.8 to λ = 0.4. Interestingly, in this case the

sensitivity of parameter estimates in Λ to missing data mechanism decreased, but that

for Ψ increased significantly. Even for this case, however, overall there is a significant

difference between the MCAR and the MNAR case.

While our simulation study is far from complete, it has all the indications that one

may be successful in developing sensitivity analyses to detect missing data mechanisms.

We are in the process of doing further experiments with these types of methods, which,

for example, includes comparison to data that are MAR. What seems to be the case,
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however, is that such sensitivity analysis may produce useful results and detect devia-

tions from model assumptions in practice.

6. SEM software for incomplete data

Schafer and Graham (2002) provide some discussion of the available software for

structural equation modeling of missing data. This section provides some updates and

additions to their note.

We start with EQS 6.1 (Bentler and Wu, In press). Of the ad hoc methods men-

tioned, EQS has implemented LD, PD, mean imputation, regression imputation (Buck’s

method), and stochastic regression imputation. The default in the software is LD. Al-

though classified under imputation methods, EQS has also implemented what we called

EM mean and covariance in Section 3.2. The FIML estimator is also available in EQS,

but a word of caution is that by default the standard errors are based on the Fisher infor-

mation matrix. If data are MAR, one should use standard errors based on the observed

information which are also available in EQS. This software includes tests for multivari-

ate normality when data are incomplete (Yuan et al., 2004) as well as tests for MCAR

(Kim and Bentler, 2002). We have pointed out some of the limitations of the MCAR

tests, and some limitations also have been mentioned in the EQS manual. Methodolo-

gies for obtaining appropriate standard errors and test statistics for non-normal data are

available in EQS. These are mainly based on the published methodology in Yuan and

Bentler (2000).

Mplus (Muthén and Muthén, 2006) provides FIML and least squares estimation

for continuous, censored, binary, ordinal, nominal, counts, or combinations of these

variable types. A nice feature of Mplus is that the default FIML standard errors are

computed based on the observed information, rather than the Fisher information. Ad-

ditionally, bootstrap standard errors and confidence intervals are also available. Mplus

also has facilities for obtaining parameter and standard error estimates based on the

multiple imputation methodology. Rabe-Hesketh et al. (2004b) also have a Stata pro-

gram for the GLLAMMs, mentioned in Section 3.2, which handles incomplete data of

various forms mentioned in Section 3.2.

The currently available Release 5.0.1 of Amos, distributed by SPSS, offers FIML

estimation. The upcoming Release 6.0, will add three imputation methods: regression

imputation (Buck’s method), stochastic regression imputation, and Bayesian imputa-

tion using a Markov chain Monte Carlo (MCMC) algorithm (Metropolis). The latter

two methods can be used in Amos to create multiple data sets with imputations for mul-

tiple imputation analyses. Amos won’t automatically conduct the multiple imputation

analyses (i.e., automatically combine analyses from the multiple data sets), but a calcu-

lator is being made available in SPSS that will combine the results from the multiple

analyses, whether done in Amos or elsewhere.

LISREL 8.7 (Jöreskog and Sörbom, 2004), distributed by Scientific Software Inter-

national, includes FIML, multiple imputation, and imputation by matching (SRPI). The

default method for this program is FIML. The multiple imputation procedure uses the

Monte Carlo Markov Chain, and the EM procedure (Schafer, 1997).
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There are other software, free and commercial, for SEM that we have not covered

here. A list of some of this software can be found at http://www.smallwaters.com/

weblinks/ and http://www.gsm.uci.edu/~joelwest/SEM/Software.html.
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Rotation Algorithms: From Beginning to End

R.I. Jennrich

Abstract

Rotation algorithms used in exploratory factor analysis are discussed. A mostly his-

torical overview beginning with the graphical method of Thurstone and proceeding

to the present is given. Early methods, graphical and analytic, were indirect in that

they attempted to produce simple reference structures rather than simple loadings.

The first methods designed to produce simple loadings were the orthogonal meth-

ods. Later less restrictive oblique methods for simple loadings were introduced.

These early methods were problem specific. More recently simple general orthog-

onal and oblique methods have been developed. The title is a bit presumptuous. It

will be argued that in some sense the rotation algorithm problem in exploratory fac-

tor analysis has been solved. There are now very simple, very general, and reliable

algorithms for orthogonal and oblique rotation. But one can always do more so the

“End” in the title probably represents only a plateau.

1. Introduction

Rotation algorithms began with the graphical methods of Thurstone (1947) for pro-

ducing simple structure in factor analysis. Beginning with an initial reference structure

he produced a sequence of simpler reference structures. Each was constructed from a

graphical analysis of plots produced from a current reference structure. These rather

labor intensive methods actually worked quite well. Simple reference structures tend to

correspond to simple loadings so simplifying reference structures may be viewed as an

“indirect” method of producing simple loadings in the terminology of Harman (1976).

A number of factor analysts Carroll (1953), Neuhaus and Wrigley (1954), and

Saunders (1953) independently proposed the first analytic rotation method. This was

based on maximizing a criterion designed to measure the simplicity of a factor loading

matrix. Their algorithm used a sequence of two factor rotations found in each case by

analytically optimizing the criterion rather than by a graphical analysis of plots. The

common criterion used by these authors is called the quartimax criterion. Unlike Thur-

stone’s method, these methods required the factors to be orthogonal and because of

45
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this restriction often failed to produced results as nice as those obtained from graphical

methods.

A number of alternative rotation criteria were proposed and optimized by sequences

of analytic two factor rotations. Some of these, in particular, varimax (Kaiser, 1958),

worked better than quartimax, but as with quartimax these were restricted to orthogonal

rotation.

One difficulty with these early methods was that algorithms for each criterion were

specific to that criterion. A new criterion required a new algorithm. The first step to re-

move this difficulty was a pairwise orthogonal rotation algorithm proposed by Jennrich

(1970) for optimizing arbitrary quartic criteria which included most of the orthogonal

rotation criteria in use at that time. The only criterion specific code required was a for-

mula to define the criterion.

Carroll (1953) was the first to propose an analytic oblique method. He used a crite-

rion appropriate for oblique rotation called the quartimin criterion and applied it to the

reference structure. He showed how to make a sequence of one factor at a time rotations

to optimize the criterion. Two problems with this approach were that it was restricted

to the quartimin criterion and some modest generalizations of it and like Thurstone’s

method it was indirect.

Jennrich and Sampson (1966) were the first to provide a direct analytic method for

oblique rotation. They showed how to optimize the quartimin criterion applied directly

to the factor loadings using a sequence of one factor rotations. Unlike Carroll’s, their

method was direct and generalized easily to other rotation criteria.

Today there are many nonquartic criteria of interest for both orthogonal and oblique

rotation. A breakthrough came when Browne and Cudeck (see Section 8.3 below) pro-

posed a very simple approach to optimizing arbitrary criteria using pairwise rotation

and a line search algorithm. This can be used for either orthogonal or oblique rotation.

The only criterion specific code required is a formula to define the criterion.

Along the same line Jennrich (2001, 2002) proposed orthogonal and oblique gradient

projection (GP) algorithms for optimizing arbitrary criteria. These methods used gradi-

ents to optimize the criteria directly without requiring pairwise rotations. They require a

formula for the criterion and its gradient. When used with numerical gradients, they re-

quire only a formula for the criterion. With analytic gradients they can be considerably

faster than Browne and Cudeck’s pairwise line search method.

What follows provides details for the overview just given.

2. Factor analysis

The factor analysis model we consider (see, e.g., Harman, 1976) has the form

(1)x = μ + Λf + u,

where x is a vector of observed responses, f is a vector of common factors, and u is

a vector of unique factors defined on a population. The matrix Λ is a p by k matrix of

factor loadings. It is assumed that the vectors f and u have mean zero and are uncor-

related, that the components of f have variance one, and that the components of u are

uncorrelated. The vector μ is the mean of x.
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Table 1

Examples of perfect and Thurstone simple structure

Perfect Thurstone

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

0 1 0 0.89 0.45 0

0 1 0 0.89 0 0.45

0 0 1 0 0.71 0.71

0 0 1 0.71 0 0.71

Under these assumptions, the covariance matrix Σ of x has the structure

Σ = ΛΦΛ′ + Ψ,

where Φ = cov f , Ψ = covu, and Ψ is diagonal.

If there are no further constraints, (1) is called an exploratory factor analysis model.

If there are enough constraints to uniquely identify Λ and Φ it is called a confirmatory

model. Models that are neither exploratory nor confirmatory do not seem to have a

name and are seldom considered. The two named models represent a major division in

the study and application of factor analysis. Often an exploratory analysis is used to

help formulate a confirmatory analysis. Here only exploratory analysis is considered.

For an exploratory analysis there are two steps. The first is estimating

(2)Ω = ΛΦΛ′

and Ψ from a sample of values of x. This is called extraction. The second is estimating

Λ and the correlation matrix Φ from the estimate of Ω . This is called rotation for

reasons that will become clear shortly. The rotation problem is the major component of

exploratory factor analysis and is the problem considered here.

Given Ω there are many Λ and Φ that satisfy (2). The usual approach to estimating

Λ and Φ, that is to the rotation problem, is to find a Λ that looks nice or slightly more

specifically has a simple form or structure. The main problem is what does this vague

statement mean? One case is clear. If each row of Λ has at most one nonzero element,

Λ is said to have perfect simple structure an example of which is displayed in Table 1.

Thurstone (1935) proposed a less demanding definition of simple structure. The second

loading matrix in Table 1 has Thurstone simple structure. Thurstone simple structure

requires a fair number of zeros, but far fewer than perfect simple structure. The difficulty

is that among all factorizations (2) of Ω there may not be a Λ with perfect simple

structure or with Thurstone simple structure and that is the usual case. It may, however,

be possible to find a Λ that approximates Thurstone simple structure or even perfect

simple structure.

Today the usual approach to the rotation problem is to choose a rotation criterion

Q that assigns a numerical complexity Q(Λ) to Λ. The Λ that satisfies (2) for some
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correlation matrix Φ and minimizes Q is the rotated value of Λ corresponding to Q.

Unfortunately there are many choices for Q. Most rotation research is centered on find-

ing useful choices. Fortunately for us, our problem is not to find a desirable criterion Q,

but rather to find general and easy to use algorithms to optimize a given Q. A very nice

overview of rotation criteria can be found in Browne (2001). A common special version

of the exploratory factor analysis model assumes the factors are uncorrelated. These are

called the orthogonal factor analysis models. For them Φ is an identity matrix and (2)

becomes

Ω = ΛΛ′.

When the factors may be correlated, the model is called an oblique factor analysis

model. Because of its greater generality, the oblique model can produce significantly

simpler loading matrices.

3. A parameterization for Λ and Φ

It is helpful to parameterize Λ and Φ in (2) appropriately. Choose an A so

Ω = AA′.

This may be done by using a principal components factorization of Ω . Actually the

extraction step usually presents Ω in this form. The matrix A is called an initial loading

matrix which we assume has full column rank. When this is the case Λ and Φ satisfy

(2) if and only if

(3)Λ = AT −1 and Φ = T T ′

for some nonsingular matrix T with rows of length one. Thus T provides a parameteri-

zation for Λ and Φ. The rows of T correspond to the factors f . Indeed with some abuse

of notation one might write f = T . We will call T the factor matrix.

In the case of orthogonal factor analysis Φ = I , T is an orthogonal matrix, T −1 =
T ′, and the rows of Λ are orthogonal transformations of the rows of A. This motivates

calling the Λ that satisfy (3) with T orthogonal the orthogonal rotations of A. While

it makes less sense, this terminology is also used in the oblique case. Thus the Λ that

satisfy (3) when T is not orthogonal are called the oblique rotations of A when in fact

the rows of Λ are not actually rotations of the rows of A.

Finding an oblique rotation Λ of A to minimize a criterion Q(Λ) reduces to finding

a nonsingular T with rows of length one to minimize

(4)f (T ) = Q(AT −1).

Finding an orthogonal rotation Λ of A to minimize Q(Λ) reduces to finding an orthog-

onal matrix T to minimize

(5)f (T ) = Q(AT ′).
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4. Reference structures

To avoid the T −1 in the definition (3) of the rotated loadings Λ and the difficulty of

working with it, the first approaches to the rotation problem rotated reference structures

rather than loadings. Following Thurstone (1947), let the rows of a nonsingular matrix

U be bi-orthogonal to the rows of T and have length one. Bi-orthogonal means the rth

row of U is orthogonal to the sth row of T whenever r �= s. Let

R = AU ′.

This is called the reference structure rotation of A. It is of interest because

R = AT −1T U ′ = ΛΔ,

where Δ is diagonal because the rows of T and U are bi-orthogonal. Because Δ is

diagonal the columns of R are rescaled versions of the columns of Λ and this suggests

that R is simple when Λ is simple and conversely. Rather than finding a loading matrix

Λ with simple structure a reference matrix R with simple structure is sought. This means

finding a nonsingular matrix U with rows of length one to make R as simple as possible.

Harman (1976) calls making R simple an indirect method and making Λ simple a direct

method. Given R and U it is easy to find the corresponding Λ and T . The rows of U

correspond to what are called reference factors. We will call U the reference factor

matrix.

In the orthogonal case direct and indirect methods are the same because R = Λ and

U = T . To see this note that when T is orthogonal it is bi-orthogonal to itself so U = T

and

Λ = AT −1 = AT ′ = AU ′ = R.

5. Thurstone’s graphical rotation method

Let R be the current value of a reference structure. Assume first that R has two columns.

Then each row of R is an ordered pair of numbers and may be viewed as a point in a

two-dimensional space. Let Figure 1 be a plot of these points, one for each row of R.

Note that none of the points are close to the horizontal or vertical axes and hence

none have a small first or second component. As a consequence R is not simple because

it has no components that are small in magnitude. The slanted line in the plot passes

through a cluster of points and the vector n1 is perpendicular to it. Assuming the points

corresponding to the rows of R are ordered from left to right,

Rn′
1 =

⎛
⎜⎜⎜⎜⎜⎝

∗
∗
∗
ε

ε

ε

⎞
⎟⎟⎟⎟⎟⎠

,
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Fig. 1. A plot of the rows of R denoted by the dots, a line through the cluster on the right, and a vector n1

perpendicular to the line.

where “∗” denotes a fairly large value and “ε” denotes a rather small value. Because of

its three small values this column looks simpler than either of the columns of R. This is

the basic idea behind graphical rotation. One can play the same game with the cluster

of points on the left to produce a normal vector n2. Let

N =
(
n1

n2

)
.

Then

R∗ = RN ′ =

⎛
⎜⎜⎜⎜⎜⎝

∗ ε

∗ ε

∗ ε

ε ∗
ε ∗
ε ∗

⎞
⎟⎟⎟⎟⎟⎠

which has rather simple structure.

When R has more than two columns Thurstone recommends plotting every pair of

columns and selecting several normal vectors from these. A given plot may produce

zero, one, or two normal vectors. The number of normal vectors selected must equal the

number of columns of R. Let N be the matrix containing the normal vectors with zeros

inserted so their components match the appropriate columns of R and let

R̃ = RN ′.
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Fig. 2. Sorted absolute loading plots for the Thurstone and Jennrich solutions to the 26 variable box problem.

Hopefully R̃ will be simpler than R. A difficulty is that R̃ may not be a reference struc-

ture. This can be fixed by an appropriate scaling of the rows of N . Note that

R̃ = AU ′N ′ = A(NU)′

and that R̃ will be a reference structure if the rows of NU have length one. Re-scale the

rows of N so this is the case. Then R̃ is a reference structure and may be viewed as an

update to R. The algorithm proceeds by repeating this process until it converges.

Because it is better to actually do it than simply talk about doing it, the author at-

tempted to graphically rotate the well-known Thurstone 26 variable box data. Figure 2 is

a sorted absolute loading plot (Jennrich, 2004) applied to the reference structure values.

It shows the result of the author’s effort and that of Thurstone (1947).

A proper solution is known to have 27 small values. Thurstone and the author both

got 27 small values. It is also known that a proper solution has three pure indicators and

these should produce three distinct large values. Thurstone found three clearly distinct

large values. The author’s three largest values are not quite as distinct and not quite as

large. Overall, however, the two plots are very similar and the author would like to claim

he did almost as well as Thurstone. This suggests graphical methods can work even in

the hands of a novice.
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6. Early analytic oblique rotation methods

Rather than using graphical methods to produce simple reference structures early an-

alytic methods minimized the value Q(R) of a complexity function Q applied to the

reference structure R.

6.1. Carroll’s one column at a time method

Carroll (1953) provided a rather ingenious way to minimize the quartimin criterion

(6)Q(R) =
∑∑

a �=b

∑

i

r2
iar

2
ib.

He proposed optimizing Q(R) by viewing it as a function of a single column ra of

R, choosing ra to minimize this function, and cycling through columns of R. For the

quartimin criterion this is surprisingly easy because while Q(R) is a quartic function

of R, as a function of ra it is quadratic.

To see this note that (6) may be expressed in the form

(7)Q(R) =
∑∑

a �=b

(
r2
a , r

2
b

)
,

where r2
a is the element-wise square of ra and (x, y) denotes the inner-product between

two vectors x and y. Note that Q(R) may also be expressed in the form

Q(R) =
∑

b �=a

(
r2
a , r

2
b

)
+ other terms,

where the r2
b and “other terms” do not involve ra . Thus Q(R) is a quadratic function of

ra and the problem reduces to minimizing

q =
∑

b �=a

(
r2
a , r

2
b

)

with respect to ra . It follows from the definition of R that

(8)ra = Au′
a,

where ua is the ath row of the reference factor matrix U . Let d =
∑

b �=a r
2
b , D be the

diagonal matrix whose diagonal components are the components of d , and M = A′DA.

Then

q =
(
r2
a , d

)
= r ′

aDra = uaA
′DAu′

a = uaMu′
a .

Thus q and hence Q(R) is a quadratic function of ua . Moreover, it is minimized when

ua , which must have length one, is the transpose of the eigenvector of M that has the

smallest eigenvalue. This is easily found using standard computer software. It provides

an updated value for ua and using (8) gives the corresponding updated value for ra .

Actually this approach can be generalized to the entire orthomin family of criteria in

which the quartimin criterion is by far the most popular. It does not, however, seem to

generalize to other criteria. For some time Carroll’s indirect method was the standard

for oblique analytic rotation.
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6.2. Procrustes rotation to a target

In indirect target rotation one attempts to find a reference structure R that is as close

as possible to a target H in the least squares sense. This is called procrustes rotation.

One of the earliest methods for doing this was that of Mosier (1939). It proceeds as

follows. Given an initial loading matrix A let AB be a least squares approximation to

the target H . This may not be a reference structure because the columns of B may not

have unit length. Mosier re-scaled the columns of B so they have unit length. Then

R = AB is a reference structure that approximates H , but in general it will not be a

least squares reference structure approximation.

Browne (1967) proposed an algorithm for finding an exact least squares reference

structure approximation for the procrustes rotation problem. For this he assumed A had

full column rank and that for every column h of H , A′h was not orthogonal to the

eigenspace corresponding to the smallest eigenvalue of A′A. These assumptions are

almost always satisfied in practice. Cramer (1974) and Ten Berge and Nevels (1977)

have shown how to remove Browne’s assumptions.

While Mosier’s method fails to solve the least squares reference structure problem it

is remarkably simple and this has turned out to be important. Korth and Tucker (1976)

have shown that Mosier’s approximation solves a different problem. It maximizes the

sum of the Tucker congruence coefficients between the columns of H and R. Of far

greater importance Mosier’s method has led to the very popular promax method to be

discussed next.

6.3. Promax rotation

Hendrickson and White (1964) proposed the following method for oblique rotation.

Begin with a varimax or some other orthogonal rotation Λ of an initial loading matrix A

– orthogonal rotation is discussed in Section 8. Let H be the element-wise cube of Λ.

Some other power may be used, but a minor modification is required for even powers.

The next step is to find a Mosier reference structure approximation to H . The result is

the promax rotation of A.

The idea behind the promax method is that cubing the components of Λ will make

components close to zero even closer and increase the ratio between large components

and small components. This tends to make H appear simpler than Λ and a Mosier

approximation to H will hopefully produce a reference structure simpler than that pro-

vided by Λ.

Promax may be viewed as orthogonal rotation with oblique polish. Assuming one

has an orthogonal rotation method, promax provides a very simple way to extend it to

oblique rotation. It is still very popular probably because of its early introduction into

statistical software. In some cases it is the only form of oblique rotation provided.

7. Pairwise algorithms

To this point our discussion has focused on indirect methods. Almost all direct rotation

algorithms proceed by modifying the loading matrix Λ two columns at a time and cy-

cling through pairs of columns until convergence is obtained. These are called pairwise
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methods. To see how they proceed note that from (3)

A = ΛT.

Let Λ1 be a pair of columns of Λ, and Λ2 be the other columns. Let T1 be the rows of

T corresponding to the selected columns of Λ and let T2 be the other rows of T . Then

A = Λ1T1 + Λ2T2.

To modify Λ1 let

Λ̃1 = Λ1M
−1,

where M is a nonsingular two by two matrix such that

T̃1 = MT1

has rows of length one in the oblique case and orthonormal rows in the orthogonal case.

The aim is to choose M so Λ̃1 is simpler than Λ1. However this is done, replace the

Λ1 columns of Λ by Λ̃1 and the T1 rows of T by T̃1 and call the results Λ̃ and T̃ .

If simplicity is measured by a complexity function Q, one can choose M to minimize

Q(Λ̃). How to do this will be discussed below. The pairwise algorithm proceeds by

cycling through pairs of columns of Λ until convergence is obtained.

8. Analytic rotation methods: Orthogonal

We have discussed indirect graphical and analytic methods for oblique rotation. The

first direct methods were the orthogonal methods. For these T is an orthogonal matrix.

The rotation criterion Q is applied directly to the loading matrix Λ and optimized over

all orthogonal rotations Λ of an initial loading matrix A. More precisely the problem is

to find an orthogonal matrix T to minimize (5).

8.1. Early pairwise algorithms

Almost all orthogonal rotation algorithms are pairwise algorithms and have the form

outlined in Section 7. Using the notation of Section 7, let M be a two by two matrix

whose rows are chosen so MT1 has orthonormal rows. Since in the orthogonal case

the rows of T1 are orthonormal, M must be an orthogonal matrix and assuming Q(Λ)

is invariant with respect to sign changes in the columns of Λ one may assume M is a

rotation of the form

(9)M =
(

cos θ sin θ

− sin θ cos θ

)
.

The invariance assumption is necessary but almost never mentioned. Fortunately all

rotation criteria known to the author have the required invariance property and hence

requiring M to have the form given in (9) is a harmless restriction. Since M is orthogonal

M−1 = M ′ and in the notation of Section 7, Λ̃1 = Λ1M
′. Note that M is a function of
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θ and as a consequence so is Λ̃. Let

q(θ) = Q(Λ̃).

The next step is to optimize q(θ) with respect to θ . Use the optimizing value of θ and (9)

to define the optimizing value of M and proceed as in Section 7. To do this one must

have a way to optimize q(θ) with respect to θ . The remainder of this section will be

devoted to this problem.

By far the most popular criterion for orthogonal rotation is Kaiser’s (1958) varimax

criterion. This is a simplicity criterion so the object is to maximize rather than minimize

it. The criterion is given by

Q(Λ) =
∑∑

λ4
ir − 1

p

∑

r

(∑

i

λ2
ir

)2

.

The corresponding function q(θ) is a quartic function of sin θ and cos θ that depends on

the loadings λir in Λ1 and is rather complex. Nevertheless Kaiser (1958) has shown that

with a sufficient amount of algebraic manipulation and a sufficient number of trigono-

metric identities the optimizing value of θ satisfies

(10)tan(4θ) = D − AB/p

C − (A2 − B2)/p
,

where

ui = λ4
i1 − λ4

i2,

vi = 2λ2
i1λ

2
i2,

A =
∑

ui,

B =
∑

vi,

C =
∑(

u2
i − v2

i

)
,

D = 2
∑

uivi .

Unfortunately both the maximizing and minimizing value of θ satisfy (10). The follow-

ing table chooses the proper value:

Numerator Denominator Quadrant of 4θ̂

+ + 0◦ � 4θ̂ � 90◦

+ − 90◦ � 4θ̂ � 180◦

− − −180◦ � 4θ̂ � −90◦

− + −90◦ � 4θ̂ � 0◦

where “numerator” is the sign of the numerator in (10) and “denominator” is the sign

of the denominator. This is a rather complex algorithm. More recently Nevels (1986)
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Fig. 3. The optimizing value of 4θ .

developed a pairwise algorithm for varimax rotation that does not require a table to find

an optimal rotation.

A fair number of other quartic criteria have been proposed and used including the

quartimax criterion of Carroll (1953), Neuhaus and Wrigley (1954), and Saunders

(1953), and the orthomax family (Harman, 1960) and the Crawford and Ferguson (1970)

family of criteria. In each case the authors derived formulas similar to Kaiser’s to opti-

mize their criteria.

8.2. A general pairwise algorithm for quartic criteria

Rather than have a special algorithm for each criterion it would be nice to have a single

algorithm for all quartic criteria that requires no more than the definition of the criterion.

Let Q(Λ) be an arbitrary quartic simplicity criterion. Jennrich (1970) noted that because

q(θ) in the previous section is a quartic function of cos θ and sin θ it must have the form

q(θ) = γ0 + α1 cos θ + β1 sin θ + α2 cos 2θ + β2 sin 2θ

+ α3 cos 3θ + β3 sin 3θ + α4 cos 4θ + β4 sin 4θ

and he showed that if Q(Λ) is invariant under permutation and sign changes in the

columns of Λ, q(θ) has period π/2 and as a consequence must have the simpler form

(11)q(θ) = c + a cos 4θ + b sin 4θ.

This is maximized by choosing θ so the vector (cos 4θ sin 4θ) has the same direction as

the vector (a, b) as displayed in Figure 3.

Thus to produce the optimizing value of θ , it is sufficient to find a and b in (11). This

can be done for a general quartic criteria by evaluating q(θ) at three values of θ . This

leads to the equations

Q(θ1) = c + a cos 4θ1 + b sin 4θ1,

Q(θ2) = c + a cos 4θ2 + b sin 4θ2,



Rotation algorithms: from beginning to end 57

Q(θ3) = c + a cos 4θ3 + b sin 4θ3

which may be solved for a, b, and c. If

θ1 = 0, θ2 = π/8, θ3 = −π/8

solving the equations gives

a = Q(0) − Q(π/8)/2 − Q(−π/8)/2,

b = Q(π/8)/2 − Q(−π/8)/2.

Using these values and Figure 3 gives the optimizing value of θ . While other ranges

might be used, choosing θ so π/4 < θ � π/4 has the advantage that rotations near the

identity are represented by θ near zero.

This defines a pairwise algorithm for optimizing any quartic criterion that is invariant

under permutation and sign changes in the columns of Λ. All current quartic criteria

have this property, at least all known to the author.

8.3. A pairwise algorithm for general criteria

Some of the newer rotation criteria are not quartic, for example, the Yates’ (1987) ge-

omin criterion and Jennrich’s (2004) entropy criterion. A dramatic breakthrough came

when Browne and Cudeck showed how to construct an incredibly simple pairwise al-

gorithm that worked for arbitrary criteria. Rather than analytically finding the value of

θ that optimized q(θ) they simply plotted q(θ) and read the optimizing value of θ from

the plot. More precisely they used a standard line search algorithm to optimize q(θ). It

is important to note that the only user supplied input required is a definition for Q(Λ).

Using line searching increases computation time, but not enough to cause concern.

The Browne and Cudeck method has been used successfully with many different cri-

teria. No paper on this algorithm has been published. The algorithm, however, is part

of the CEFA (Comprehensive Exploratory Factor Analysis) software (Browne et al.,

2002). This free software deals with almost every aspect of exploratory factor analysis

including a broad variety of methods for extraction and rotation, factoring correlation

matrices, and providing standard errors for the estimates produced. It has a graphical

user interface and a nice manual. The software and manual may be downloaded from

http://quantrm2.psy.ohio-state.edu/browne/.

8.4. A gradient projection algorithm for general criteria

To this point in our discussion all orthogonal rotation algorithms have been pairwise

algorithms. We consider here an alternate approach based on gradients that does not

require pairwise steps. This algorithm proposed by Jennrich (2001) is called a gradient

projection (GP) algorithm.

As noted all orthogonal rotations Λ of an initial loading matrix A are of the form

Λ = AT ′ for some orthogonal matrix T . And finding a Λ to minimize Q(Λ) means

finding an orthogonal matrix T to minimize the function f defined by (5). Let G be the

gradient of f at the current value of T . One might consider moving T in the negative

gradient direction say to X = T −αG to decrease the value of f (T ). The problem with
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Fig. 4. Graphical representation of the gradient projection algorithm.

this is that X may not be an orthogonal matrix. That is X may not be on the manifold M

of orthogonal matrices. See Figure 4. Jennrich suggested dealing with this by projecting

X onto M to produce the T̃ in Figure 4. In general projecting onto a nonlinear manifold

is a difficult problem, but M is a special manifold and projection is easy. The projection

of X on M is simply

(12)T̃ = UV ′,

where X = UDV ′ is a singular value decomposition of X.

Jennrich (2001) showed:

THEOREM 1. If T is not a stationary point of f restricted to M, then

(13)f (T̃ ) < f (T )

for all α > 0 and sufficiently small.

A strictly decreasing algorithm is obtained by halving α, if necessary, until (13) is

satisfied, replacing T by T̃ , and repeating this process until it converges. Strictly de-

creasing algorithms are important because under mild assumptions they must converge

to a stationary point and since local minimizers are the only points of attraction of a

decreasing algorithm, strictly decreasing algorithms almost always converge to at least

a local minimizer.

This algorithm can be considerably faster than the Browne and Cudeck pairwise

algorithm, but has the disadvantage of requiring both the value and gradient of f at

the current value of T . One way to deal with this is to use numerical gradients. Then

only values of f are required. Using numerical gradients slows the algorithm, but very

little is lost in numerical precision. When the output is printed to a reasonable number

of decimal places the results of using analytic and numerical gradients are essentially

identical. Many psychometricians and statisticians fear numerical derivatives. This is a

big mistake. What they should fear are the consequences of failing to use them.
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One can find free SAS, SPSS, R/S, and Matlab code for GP rotation at http://www.

stat.ucla.edu/research/gpa. Thus for almost any computing environment one is working

in, one can find code written specifically for that environment and hence code that may

be used immediately without any need for translation. There is code using analytic or

numerical gradients. Also given is code for a variety of criteria and their gradients.

A discussion of this software and the gradients provided may be found in Bernaards

and Jennrich (2005).

9. Direct analytic methods: Oblique

Indirect oblique analytic methods were discussed in Section 6. Here we consider direct

oblique methods. Most of these have been pairwise methods.

9.1. A parameterization for pairwise oblique methods

In pairwise methods one chooses a pair of factors or more precisely rows of T and

rotates these to improve the resulting loading matrix Λ. In the orthogonal case both of

the selected rows of T were modified. While this could also be done in the oblique case it

is much simpler to modify just one row or more precisely replace one row of the selected

pair by a linear combination of the two rows. For this we need to replace pairs of rows

of T by ordered pairs of rows. In the notation of Section 7, let T1 be an arbitrary ordered

pair of rows of T and denote these by t1 and t2. The rotated rows will have the form

t̃1 = α1t1 + α2t2,

t̃2 = t2.

In the notation of Section 7,

M =
(
α1 α2

0 1

)
.

The values α1 and α2 are not arbitrary. They must be chosen so t̃1 is of length one. This

means that

(14)α2
1 + 2α1α2φ + α2

2 = 1,

where φ is the inner-product of t1 and t2. It is called φ because it is also the current

estimate of the correlation between the factors corresponding to t1 and t2. Note that

M−1 =
(

1/α1 −α2/α1

0 1

)
=
(
γ −δ

0 1

)
,

where γ = 1/α1 and δ = α2/α1. The values γ and δ may be viewed as a re-

parameterization for M−1. In terms of these parameters (14) becomes

γ 2 = 1 + 2δφ + δ2.

In the notation of Section 7,

(15)Λ̃1 = Λ1

(
γ −δ

0 1

)
.
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If the criterion Q(Λ) is invariant under sign changes in the columns of Λ we may

assume γ is nonnegative. Then Λ̃1 may be viewed as a function of δ by letting

(16)γ = (1 + 2δφ + δ2)1/2.

Thus Λ̃ is a function of δ as is Q(Λ̃). This may be summarized by a theorem proved by

Jennrich and Sampson (1966).

THEOREM 2. If Q(Λ) is invariant under sign changes in the columns of Λ and Λ̃ is

the result of the pairwise rotation defined by (15) and (16), then Q(Λ̃) is a function of

the parameter δ.

Let

(17)q(δ) = Q(Λ̃)

denote the function identified in Theorem 2. Most oblique rotation algorithms are pair-

wise algorithms using the parameterization in this section.

9.2. Pairwise methods for quartic criteria

Most quartic criteria are of the form Q(Λ) = F(Λ2) where Λ2 is the element wise

square of Λ and F is a quadratic function. When this is the case q(δ) in the previous

subsection is a quartic function of δ. Most pairwise algorithms proceed by finding for-

mulas for the coefficients of q(δ) in terms of the current values of Λ and T . Then q(δ)

is optimized and the optimizing value of δ used to complete the pairwise step.

Unfortunately new formulas are required for each criterion making this is a rather

labor intensive approach similar to that used in early orthogonal pairwise algorithms.

A much more efficient approach would be to simply evaluate q(δ) at five values of δ

and solve the resulting linear equations for the five coefficients of the quartic q(δ). This

method will work without change for any quartic criterion. To the author’s knowledge,

however, it has not been used.

Whatever method is used to find q(δ), once it is found, the optimizing value can be

found in closed form by equating its derivative, which is a cubic, to zero and solving

for δ.

9.3. A pairwise algorithm for general criteria

The methods of the previous subsection are restricted to quartic criteria and as in the

orthogonal case there are criteria of interest that are not quartic. Browne and Cudeck

use a minor modification of their orthogonal pairwise algorithm in Section 8.3 to obtain

an oblique pairwise algorithm for general criteria.

For this they used the δ parameterization and function q(δ) in Section 9.1. As in the

orthogonal case, q(δ) is optimized using a line search algorithm and as in that case the

only criterion specific requirement is a formula to define the criterion. This method has

been used successfully with many criteria and is used in the free CEFA software that

may be downloaded as described in Section 8.3.
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9.4. A gradient projection algorithm for general criteria

An alternative to pairwise algorithms for oblique rotation is provided by an oblique GP

algorithm (Jennrich, 2002). This uses a minor modification to the algorithm given in

Section 8.4 for orthogonal rotation. For oblique rotation we seek a nonsingular matrix T

with rows of length one to minimize the function f defined by (4). As in Section 8.4, let

G be the gradient of f at the current value of T and let X = T −αG. In the oblique case

this is projected onto the manifold M of nonsingular matrices T with rows of length

one. Let T̃ denote the projection. See Figure 4. As in the orthogonal case projection is

easy, in fact easier than in the orthogonal case. It is shown by Jennrich that T̃ is simply

X with its rows scaled to have length one. That is

(18)T̃ =
(
dg(XX′)

)−1/2
X.

The remainder of the algorithm is as described in Section 8.4. The only algorithm

change required is to replace Eq. (12) for the orthogonal algorithm by (18).

Jennrich has shown that Theorem 1 also holds for the oblique GP algorithm which

means that as in the orthogonal case the oblique GP algorithm is a strictly decreasing.

The oblique GP algorithm may be used with numerical gradients and in this case like

the Browne and Cudeck algorithm the only criterion specific requirement is a formula

for the criterion.

One can find free SAS, SPSS, R/S, and Matlab code for this oblique GP algorithm

at the web site identified in Section 8.4 including code for a variety of specific criteria

and their gradients.

10. Discussion

We have given an historical review of the development of rotation algorithms for ex-

ploratory factor analysis. Our discussion began with the indirect graphical methods of

Thurstone for oblique rotation. This was followed by a discussion of indirect analytic

methods for oblique rotation including the one factor at a time method of Carroll (1953),

the procrustes method of Mosier (1939), and the promax method of Hendrickson and

White (1964).

Next analytic methods for orthogonal rotation were reviewed. The first direct analytic

methods of any kind were the pairwise orthogonal methods for quartic criteria. These

included the methods of Carroll (1953), Neuhaus and Wrigley (1954), and Saunders

(1953) for the quartimax criterion, Kaiser’s (1958) method for the varimax criterion,

and others. Each criterion had its own algorithm. Jennrich (1970) introduced a general

pairwise algorithm for arbitrary quartic criteria. A breakthrough came with the line

search pairwise algorithm of Browne and Cudeck that can be used with essentially any

criterion. Jennrich (2001) introduced a GP algorithm that is not pairwise and can be

used with arbitrary criteria.

Finally direct, as opposed to indirect, analytic methods for oblique rotation were

reviewed. The first were pairwise algorithms using ordered pairs and a variety of quartic

criteria. These were generalized to arbitrary criteria by using the pairwise line search

algorithm of Browne and Cudeck and the GP algorithm of Jennrich (2002).



62 R.I. Jennrich

By way of comparison the pairwise quartic algorithms have the advantage that no

line search is required and they are probably the fastest of the algorithms discussed.

Their main disadvantage is that they are restricted to quartic criteria.

The main advantage of the general pairwise line search algorithms is that they ap-

ply to arbitrary criteria and the only problem specific code required is that to evaluate

the criterion. Also they are very simple algorithms. Minor disadvantages are that they

require cycling through pairs and require a line search sub-algorithm.

The main advantage of the GP algorithms is that they apply to arbitrary criteria, do

not require stepping through pairs of factors, and when using numerical gradients are

very simple to use. When using analytic gradients they appear to be significantly faster

than the general pairwise algorithms at least in the limited experience of the author.

Their main disadvantage is that when used with analytic gradients they require problem

specific code to produce the gradients. While these can be avoided with almost no loss

of precision by using numerical gradients, the use of numerical gradients sacrifices the

speed advantage of these algorithms.

A number of parameterizations have been important along the way. One is the gen-

eral parameterization for Λ and Φ by the nonsingular matrices T with rows of length

one given in Section 3 and the parameterization for the reference structure R by the

nonsingular matrices U with rows of length one given in Section 4. The two by two ma-

trix M for pairwise rotation was parameterized by the parameter θ given in Section 8.1

for orthogonal rotation and by a parameter δ given in Section 9.1 for oblique rotation.

In a sense the Browne and Cudeck line search and the Jennrich gradient projection

algorithms solve the rotation algorithm problem because they provide simple, reliable,

and reasonably efficient algorithms for arbitrary criteria. It is this that motivated the

title. We of course are not really done with rotation algorithm development.

A number of basic optimization methods have essentially not been tried on the rota-

tion problem. These include derivative free optimization, quasi-Newton, and Newton–

Raphson methods. Actually Bentler (1977) did use Newton–Raphson to optimize his

invariant factor simplicity criterion, but there has been no follow up, no generalization

to other criteria, and no comparison with other methods. Because of the complexity

of the second derivatives required for rotation problems, Newton–Raphson methods

may not be too promising. Because rotation criteria tend to be fairly smooth functions,

derivative free optimization methods may be slow compared to methods that use deriv-

atives. Quasi-Newton methods, especially those that use numerical derivatives, seem

more promising. For these, the only problem specific code required is that to evaluate

the criterion. In this regard they are similar to the line search and GP algorithms using

numerical derivatives. As noted, however, quasi-Newton algorithms don’t seem to have

been formulated and evaluated in the literature.

Some other areas that need further investigation include:

• More testing of the algorithms we have to evaluate precision, reliability, and speed.

• A general comparison of pairwise line search, gradient projection and quasi-Newton

algorithms to possibly recommend the use of one over the others.

• Some applications require more speed. These include simulation studies that require

many executions of a rotation algorithm and local minima problems that are dealt
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with by using many random starts. For these faster algorithms than we presently have

may be required.

• There are applications of rotation in other areas that can be considered. Signal

processing, for example, uses independent components analysis to recover signals

from noisy composites of them. This proceeds by extracting principal components

from the composites and orthogonally rotating these to independence rather than to

simplicity. Algorithms similar to those used in factor analysis may be useful here.

References

Bernaards, C.A., Jennrich, R.I. (2005). Gradient projection algorithms and software for arbitrary rotation

criteria in factor analysis. Educational and Psychological Measurement 65, 676–696.

Bentler, P.M. (1977). Factor simplicity index and transformations. Psychometrika 42, 277–295.

Browne, M.W. (1967). On oblique procrustes rotation. Psychometrika 32, 125–132.

Browne, M.W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behav-

ioral Research 36, 111–150.

Browne, M.W., Cudeck, R., Tateneni, K., Mels, G. (2002). CEFA: Comprehensive Exploratory Factor Analy-

sis, Version 1.10 [Computer software and manual]. Retrieved from http://quantrm2.psy.ohio-state.edu/

browne/.

Cramer, E.M. (1974). On Browne’s solution for oblique procrustes rotation. Psychometrika 39, 159–263.

Carroll, J.B. (1953). An analytical solution for approximating simple structure in factor analysis. Psychome-

trika 18, 23–28.

Crawford, C.B., Ferguson, G.A. (1970). A general rotation criterion and its use in orthogonal rotation. Psy-

chometrika 35, 321–332.

Harman, H.H. (1960). Factor analysis. In: Wilf, H.S., Ralston, A. (Eds.), Mathematical Methods for Digital

Computers. John Wiley & Sons, New York, pp. 204–212.

Harman, H.H. (1976). Modern Factor Analysis, third ed. University of Chicago Press, Chicago.

Hendrickson, A.E., White, P.O. (1964). A quick method for rotation to oblique simple structure. British Jour-

nal of Statistical Psychology 17, 65–70.

Jennrich, R.I. (1970). Orthogonal rotation algorithms. Psychometrika 35, 229–235.

Jennrich, R.I. (2001). A simple general procedure for orthogonal rotation. Psychometrika 66, 289–306.

Jennrich, R.I. (2002). A simple general procedure for oblique rotation. Psychometrika 67, 7–19.

Jennrich, R.I. (2004). Rotation to simple loadings using component loss functions: The orthogonal case.

Psychometrika 69, 257–273.

Jennrich, R.I., Sampson, P.F. (1966). Rotation for simple loadings. Psychometrika 31, 313–323.

Kaiser, H.F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187–200.

Korth, B., Tucker, L.R. (1976). Procrustes matching by congruence coefficients. Psychometrika 41, 531–535.

Mosier, C.I. (1939). Determining a simple structure when loadings for certain tests are known. Psychome-

trika 4, 149–162.

Neuhaus, J.O., Wrigley, C. (1954). The quartimax method: An analytical approach to orthogonal simple

structure. British Journal of Mathematical and Statistical Psychology 7, 81–91.

Nevels, K. (1986). A direct solution for pairwise rotations in Kaiser’s varimax method. Psychometrika 51,

327–329.

Saunders, D.R. (1953). An analytic method for rotation to orthogonal simple structure. Research Bulletin

53-10. Educational Testing Service, Princeton, NJ.

Ten Berge, J.M.F., Nevels, K. (1977). A general solution to Mosier’s oblique procrustes problem. Psychome-

trika 42, 593–600.

Thurstone, L.L. (1935). Vectors of the Mind. University of Chicago Press, Chicago.

Thurstone, L.L. (1947). Multiple Factor Analysis. University of Chicago Press, Chicago.

Yates, A. (1987). Multivariate Exploratory Data Analysis: A Perspective on Exploratory Factor Analysis.

State University of New York Press, Albany.



This page intentionally left blank



Handbook of Computing and Statistics with Applications, Vol. 1

ISSN: 1871-0301

© 2007 Elsevier B.V. All rights reserved

DOI: 10.1016/S1871-0301(06)01004-3

4

Selection of Manifest Variables⋆

Yutaka Kano

Abstract

Manifest variable selection in factor analysis and structural equation modeling

(SEM) is an important process because a set of manifest variables defines a con-

struct that researchers study and use to give scores to respondents. Emphasis on a

model fit is placed in selection of variables. It is shown that the model fit criterion

is as important as traditional psychometric properties, including variable content,

communality or reliability and the number of variables. It is also shown how seri-

ous bias can be created by analysis with a model containing inconsistent variables,

particularly, in reliability analysis. A web-based variable selection program in fac-

tor analysis is introduced. The program is called SEFA. Two examples are provided

with empirical data to illustrate usefulness of the SEFA for manifest variable selec-

tion in scale construction.

Keywords: Coefficient alpha; Error covariances; Indicators; Latent construct; Mea-

surement model; Model fit; Reliability analysis; Scale construction; SEFA

1. Introduction

Variable selection is an important issue in statistics and has been discussed extensively

in the literature. Many important fruitful consequences have been implemented in sta-

tistical programs. Almost all the discussion on variable selection, however, focuses on

the selection of independent variables in models with clear dependent (criteria) vari-

ables, e.g., regression analysis, discriminant analysis and time series analysis. This does

not mean that variable selection in such models as factor analysis and principal com-

ponent analysis is not important. In analyses with those models, variable selection is a

very important step. According to Fabrigar et al. (1999), manifest variable selection is

one of the five major methodological issues for proper use of factor analysis. Little et

⋆This work is prepared based on many invited lectures and talks on variable selections in factor analysis and

structural equation modeling. Those include the IMPS2001 (Osaka), International Symposium on Structural

Equation Modeling (Chicago) and Japanese meetings on statistics, behaviormetrics and psychology. The work

is partially supported by a Grant-in-Aid #15500185 for Scientific Research from the Japan Society for the

Promotion of Science.
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al. (1999), mention that selecting indicators is as important for the generalizability of

research designs as selecting persons or occasions of measurement. Indeed, when one

makes an analysis of data from a questionnaire, there are usually many items (variables)

in it from which appropriate items are selected and analyzed.

Scale construction is recognized as a major research topic that provides a measure

of a latent construct in social sciences (e.g., Bartholomew, 1998). Scale construction

using observational questionnaire data normally conducts factor analysis to select a set

of appropriate items or manifest variables. It is nothing but variable selection in factor

analysis. A measurement model in structural equation modeling (e.g., Bollen, 1989) is

a mechanism that defines latent constructs or factors through manifest variables using

a factor analysis model. Manifest variables with a common factor or a latent construct

are therefore called indicators. Selection of manifest variables is related to the defini-

tion of the latent construct, and thus determination of a measurement model is a core of

structural equation modeling. Consequently, manifest variable selection in factor analy-

sis and related methods is an important process that methodologists have to study to

develop proper and easy-to-use procedures.

Even though the importance of variable selection is recognized in factor analysis

and related multivariate models, research methodologists have paid very little atten-

tion to variable selection in those models (e.g., Hogarty et al., 2004). There is no

well-established procedure, and no option for variable selection is supplied in statis-

tical programs. As a result, the selection of indicators (or variables) has typically relied

on informal or intuitive reasoning or historical precedent (Little et al., 1999).

There are several psychometric properties that applied researchers have used in man-

ifest variable selection. Cattell proposed defining a content domain or a domain of

interest in a study and considered that manifest variables are sampled from the do-

main (e.g., Cattell, 1952, 1978; Nunnally and Bernstein, 1994). In the domain, the

common factor scores are assumed to be unique, i.e., factor score indeterminacy van-

ishes in the domain (Guttman, 1955; Williams, 1978; Mulaik and McDonald, 1978;

Krijnen, 2002). Ideally, the manifest variables selected are those sampled suitably from

the domain. The theoretical idea is related to more practical thinking that gives prac-

titioners useful guidelines on variable selection. The criteria used routinely include

(i) meanings or contents of variables, (ii) the size of communality and reliability of

variables, and (iii) the number of manifest variables. Reliability includes item reliabil-

ity and scale reliability. A large factor loading of a variable usually ensures that the

variable has a strong connection with the latent construct and will result in high reli-

ability. There is a rule-of-thumb on the number of manifest variables. The rule is that

3 to 5 manifest variables for each factor should be chosen (e.g., Fabrigar et al., 1999,

p. 273). The fourth criterion that might be mentioned here is to remove a manifest vari-

able loaded on two or more factors. The criterion is often used in scale construction.

Usually it is preferable to have subscales each of which has a distinct set of items.

In addition to the consideration of the psychometric properties, it is also important to

take statistical aspects into account. There are two statistical tests related to the selection

of manifest variables when factor analysis is conducted, namely to test significance of

factor loadings or communalities and to test a model fit. Testing significance of factor

loadings is a statistical examination of the size of the factor loadings. We first focus on
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the latter here since a model fit examination is of primary importance in practical re-

search, particularly when applying structural equation modeling. The test of significance

of communalities will be used to cope with a certain difficulty in selecting variables with

a model fit.

Inclusion of inconsistent variables in a model under consideration may influence

other manifest variables. For instance, inconsistency of Xi could cause unduly low

factor-loading estimates and communality estimates for some variables other than Xi .

Thus, deletion of manifest variables with low communalities does not work for those

cases. Without examination of a model fit, it would be difficult to see whether the low

communality and factor loading estimate for Xi are caused by the inconsistency of Xi

itself or by that of other variables. See Section 4 for detailed discussions. As a result,

a model fit should be verified before examining the psychometric properties.

In Section 2, we make a literature review on variable selection in factor analysis and

pay attention to selection with a model fit. Some technical details are given. In Section 3,

we introduce a web-based variable selection program SEFA, and give two analyses of

empirical data to demonstrate backward elimination and forward selection procedures

in factor analysis by SEFA. Section 4 discusses the meaning of variable selection with

a model fit in relation to reliability analysis.

2. Manifest variable selection in factor analysis

We shall continue further the discussion on manifest variable selection based on the psy-

chometric properties (i) to (iii) described in the introduction, which properties, although

psychometric, do have statistical aspects.

The issues of communality and the number of variables per factor are strongly re-

lated to required sample sizes in estimation. Ihara and Okamoto (1985) among others

confirmed that a model with smaller communalities makes the optimization problem

in estimation more difficult, via a simulation study. Kano et al. (1993) and Yuan et al.

(1997) have shown that the asymptotic variance of a factor loading estimator becomes

smaller if a latent factor has more indicators. Fabrigar et al. (1999, p. 274) summarized

those results to claim that adequate sample size is influenced by the extent to which

factors are overdetermined and the level of the communalities of the manifest variables.

A larger sample size is required for the smaller number of indicators for each factor

and/or for lower communalities. In addition, it is known that increase of indicators in

number reduces factor score indeterminacy (e.g., Williams, 1978). In theory, applied

researchers are suggested to have more indicators.

Most important is the issue of content or meaning of manifest variables, i.e., whether

the variables selected can define a latent factor that accurately corresponds to the (psy-

chological) construct the researcher defines in his or her research objective. Although

the issue is considered purely psychological, there is a statistical aspect that gives im-

portant insights to this problem. We examine criterion-related validity for choosing an

appropriate set of manifest variables in the context of scale construction. Suppose that a

construct under development is expected to be moderately positively correlated with es-

tablished Construct X, moderately negatively correlated with established Construct Y,
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and uncorrelated with established Construct Z. Prepare a broad set of candidate indi-

cators of the construct and use them to conduct a (strict) confirmatory factor analysis

(CFA) of the four constructs. Then select indicators so that the expected correlations

are achieved. The procedure owes entirely to Little et al. (1999, p. 208). Here a fit of

the CFA model proves useful. In fact, once a CFA model with a set of indicators is well

fitted, CFA models obtained by removing some of the indicators from it are also well

fitted and the correlation structure among the four constructs remains the same, ignor-

ing small fluctuations. As a result, researchers can reduce indicators from the largest

well-fitted CFA model by applying other selection criteria, i.e., reliability and internal

consistency, without any consideration of criterion-related validity.

Practical researchers are likely to remove manifest variables loaded on more than one

factor, particularly when factor analysis is conducted for scale construction. It is done

because items that can be an indicator for more than one latent construct can invalidate

discriminant validity of a (sub)scale. Besides, in our limited experience, such items or

manifest variables are often inconsistent with the factor analysis model, and removal of

the items can improve a fit of the model for the case.

Yanai (1980) and Tanaka (1983) have suggested an alternative approach, where man-

ifest variables are selected so that factor score configuration is maintained.

Kano and his collaborators have suggested selecting manifest variables so as to well

fit a model considered to a data set in factor analysis (Kano and Ihara, 1994; Kano

and Harada, 2000a, 2000b). The following section will explain it in some details. Kano

and Harada (2000a) developed a computer program named SEFA to implement variable

selection on a WWW server. We shall explain SEFA in Section 3.

2.1. Basic idea on variable selection with a model fit

We shall discuss here a basic idea of the selection of manifest variables with a model fit

in factor analysis. Some mathematical background will be described in Section 2.2.

A factor analysis model with k common (latent) factors for a p-vector X of manifest

variables is defined as

X = μ+ Λf + e,

where μ (= E(X)) is a general mean vector, f is a random k-vector of common factors

with E(f ) = 0 and V (f ) = Φ, e being a random p-vector of unique factors with

E(e) = 0 and V (e) = Ψ a diagonal matrix, and Cov(f , e) = 0. The matrix Λ of p × k

consists of factor loadings. In factor analysis, the general mean vector μ is typically a

nuisance and can be estimated by a sample mean vector. The parameters of interest to

be estimated are Λ, Φ and Ψ . The covariance structure of the factor analysis model is

then expressed as

V (X) = ΛΦΛ′ + Ψ.

Partition

(1)

[
X1

X2

]
=
[
μ1

μ2

]
+
[
λ1

Λ2

]
f +

[
e1

e2

]
and Ψ =

[
ψ11 0

0 Ψ22

]
.
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Here we do not discuss the typical issues in factor analysis such as parameter identifi-

cation and factor rotation. For simplicity, we consider the orthogonal factor case, i.e.,

Φ = Ik .

Consider the following hypothesis testing and associate test statistics T0 and T2′ :

T0 · · · H0: V (X) = ΛΛ′ + Ψ versus A0: not H0

and

(2)

T2′ · · · H2′ : V (X) =
[
σ11 σ 12

σ 21 Λ2Λ
′
2 + Ψ22

]
versus A2′ : not H2′ ,

where σ11 and σ 21 are all free parameters.

Kano and Ihara (1994) considered that X1 is inconsistent when T0 suggests rejec-

tion of H0 and T2′ suggests acceptance of H2′ . Kano and Harada (2000a) used the idea

of Lagrange multiplier (LM) tests to develop a new statistic, calculated with minimal

computational effort, that can test goodness-of-fit of all p marginal models with p − 1

manifest variables. The statistic is useful in implementing a backward elimination pro-

cedure. They also derived an approximate test statistic for goodness-of-fit for models

obtained by adding an external variable. The statistic is used to make forward selection.

In practice, one makes backward eliminations and forward selections many times to

identify a well-fitted model. One may ask the following question: Does the procedure

tell us to remove a consistent variable when there are inconsistent variates? Browne

(1998) anticipated that the newly developed LM statistic could not work if X1 were

inconsistent with the model. Regarding this question, Kano (2002) proved that a small

misspecification for the X1 does not fatally influence the performance of the LM test.

Hogarty et al. (2004) experimentally compared variable selection by a model fit and

that reached by the traditional way with the size of factor loadings. They pointed out that

variable selection by a model fit cannot identify any variables that are not correlated with

the latent factors. It is obvious that any factor analysis model with a zero row vector in Λ

is also a factor analysis model. Such manifest variables may not be useful for analysis,

however. SEFA advises against using variables with small communalities. Harada and

Kano (2001) developed a methodology that can statistically test whether communality

is small (or zero) based on the result by Ichikawa (1992), who gave the asymptotic

distribution of a communality estimator. The new methodology has been incorporated

into SEFA.

2.2. Some mathematical details

In this section, we shall describe some mathematical derivations for the consequences

stated in the previous section within the context of covariance structure analysis. The

covariance structure model is written as {V (X) = Σ(θ) | θ ∈ Θ}, where Θ (⊂ Rq)

is a parameter space of θ and Σ(θ) is a twice continuously differentiable matrix-valued

function on Θ . Let X = [X1,X
′
2]′ with X2 a (p − 1)-vector. The covariance matrix

is also partitioned correspondingly. In particular, V (X2) = Σ22(θ2), where θ2 is part

of θ . Consider the following hypothesis testing and associate test statistics T0, T2, T2′
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and T02′ as in (2):

T0 · · · H0: V (X) = Σ(θ) versus A0: not H0,

T2 · · · H2: V (X2) = Σ22(θ2) versus A2: not H2,

(3)T2′ · · · H2′ : V (X) =
[
σ11 σ 12

σ 21 Σ22(θ2)

]
versus A2′ : not H2′

and

T02′ · · · H0: V (X) = Σ(θ) versus H2′ : V (X) =
[
σ11 σ 12

σ 21 Σ22(θ2)

]
.

Suppose that X1, . . . ,XN be a random sample from a multivariate normal popula-

tion N(μ,Σ). Let n = N − 1 and let S be an unbiased sample covariance matrix. The

likelihood ratio test statistic T0 can be expressed as

T0 = n
(
ln
∣∣Σ(θ̂)

∣∣− ln |S| + tr
[
Σ(θ̂)−1

(
S − Σ(θ̂)

)])
,

where θ̂ is the MLE under the model in H0. The statistic T2 can be represented in the

same way. The other statistics can be expressed similarly. Notice that the MLE θ̃2 in the

model in H2′ is the solution to

tr

[
Σ22(θ2)

−1
(
Σ22(θ2) − S22

)
Σ22(θ2)

−1 ∂

∂θi
Σ22(θ2)

]
= 0

(i = 1, . . . , q),

which are thus the same equations as those in H2. The MLEs for σ11 and σ 21 are ob-

tained using the relations:

σ11 = s11 − s12S
−1
22 s21 + s12S

−1
22 Σ22(θ2)S

−1
22 s21,

σ 21 = Σ22(θ2)S
−1
22 s21.

See Kano and Ihara (1994) for a proof. Notice that T2 and T2′ are statistics for testing a

fit of the model for X2, and so they are asymptotically equivalent.

In order to implement a backward elimination procedure, it is necessary to compute

T2 for all p models obtained by deleting manifest variables, one by one. The computa-

tional effort for it is not ignorable if p is large, because optimization problems have to

be solved p times. In addition, some computational difficulties have been reported for

estimation in factor analysis, e.g., nonconvergence of iterative processes and/or occur-

rence of improper solutions. Thus, it is particularly useful if the p test statistics T2’s can

be obtained as explicit functions of θ̂ in H0 and S. For this purpose, Kano and Harada

(2000a) derived

T2 = T2′ + op(1) = T0 − (T0 − T2′) + op(1) = T0 − T02′ + op(1).

Let T02′ be defined as an LM test statistic, and then T02′ and therefore T2 = T0 − T02′

are functions of S and θ̂ under H0. A similar derivation holds for any model deleting

one variable other than X1. Thus, one can obtain p test statistics for testing p marginal

models by solving an optimization problem once to obtain the MLE θ̂ and maximum
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likelihood under H0. Of course, a similar result holds when several variables are re-

moved simultaneously. Note that in factor analysis the procedure is valid only when the

number of factors is held constant.

We shall now derive the LM statistic T02′ . Let v(A) and vec(A) for a matrix A of

order p denote a p(p + 1)/2-vector of elements of lower triangular part of A and a

p2-vector obtained by stacking all column vectors of A in order. Let Dp be the duplica-

tion matrix of order p2 ×p(p+1)/2 which is defined by the relation vec(A) = Dpv(A)

for any symmetric matrix A of order p. Let D+
p = (D′

pDp)
−1D′

p. See Magnus and

Neudecker (1999) for the notation and their properties. Let Σ2′( θ ) denote the covari-

ance structure in H2′ with θ = [ θ ′
1, θ

′
2]′ = [σ11, σ 12, θ

′
2]′. Define

Δ( θ ) = ∂v(Σ2′( θ ))

∂θ
=
[
Ip O

O
∂v(Σ22(θ2))

∂θ ′
2

](
=
[
Ip O

O Δ2(θ2)

]
, say

)
,

Γ N ( θ ) = 2D+
p

(
Σ2′( θ ) ⊗ Σ2′( θ )

)
D+′

p .

The score vector s( θ ) and the Fisher information matrix I ( θ ) can be expressed as

s( θ ) = n · Δ( θ )′Γ N ( θ )−1v
(
S − Σ2′( θ )

)
,

I ( θ ) = n · Δ( θ )′Γ N ( θ )−1Δ( θ ).

The statistic T2′ can then be expressed as

T2′ = s( θ̂ )′I ( θ̂ )−1s( θ̂ ).

Here θ̂ is formed by the estimator θ̂ in the model of H0, and hence T2′ is an explicit

function of θ̂ and S.

A question arises here. Does the newly developed statistic T0 − T02′ produce an

appropriate statistic for a fit of the model for X2 even if X1 is inconsistent? The answer

is yes. To study this, Kano (2002) introduced Pitman’s local alternative:

(4)V (X) = Σ(θ) + 1√
n
D = Σ(θ) + 1√

n

[
d11 d12

d21 D22

]
.

The inconsistency of X1 creates a bias of MLE. Let

Δ = ∂v(Σ(θ))

∂θ ′ and ΓN = 2D+
p

(
Σ(θ) ⊗ Σ(θ)

)
D+′

p .

The asymptotic bias of
√
n(θ̂ − θ) is then given as

(5)
(
Δ′Γ −1

N Δ
)−1

ΔΓ −1
N vec(D),

and the bias may not be zero even if D22 = O. We could make the same assertion for

θ̂2 because it is part of θ̂ .

Let

Δ2 = ∂v(Σ22(θ2))

∂θ ′
2

and ΓN2 = 2D+
p−1

(
Σ22(θ2) ⊗ Σ22(θ2)

)
D+′

p−1.



72 Y. Kano

The test statistic T0 − T02′ has the stochastic expansion as

T0 − T02′ = nv
(
S22 − Σ22(θ̂2)

)′(
Γ −1
N2 − Γ −1

N2 Δ2

(
Δ′

2Γ
−1
N2 Δ2

)−1
Δ′

2Γ
−1
N2

)

(6)× v
(
S22 − Σ22(θ̂2)

)
+ op(1),

and we note that

√
nv
(
S22 − Σ22(θ̂2)

)
=

√
nv

(
S22 − Σ22(θ2) − D22√

n

)

+ v(D22) + Δ2

√
n(θ̂2 − θ2) + op(1).

Since the term involving Δ2 in the above disappears in the quadratic form in (6), the

asymptotic distribution of the statistic T0 − T02′ is free from the bias of θ̂2, and hence it

converges in distribution to the central chi-square distribution if D22 = O, even when

[d11, d
′
12]′ �= 0 in (4). The statistic can surely detect deviation of X2 from the model

Σ22(θ2), which has been expressed as D22, because the statistic converges in law to the

noncentral chi-square distribution if D22 �= O. In other words, whether D22 is null or

not, the effect of [d11, d
′
12]′ asymptotically drops in the distribution of T0 − T02′ if the

deviation [d11, d
′
12]′/

√
n is not so large.

Finally we shall refer to testing a hypothesis concerning a communality. Using the

notation in (1), the communality of X1 is expressible as λ1λ
T
1 . Harada and Kano (2001)

used a Wald type test statistic to test

H : λ1λ
T
1 = c0 versus A: λ1λ

T
1 � c0

for some known small constant c0 � 0, where we have assumed that Φ = Ik . We used

the formula of asymptotic variance of a communality estimator derived by Ichikawa

(1992). Let A = (aij ) = Ψ−1 − Ψ−1Λ(Λ′Ψ−1Λ)−1Λ′Ψ−1 and Ξ = (a2
ij ). Ichikawa

derived the asymptotic variance of the MLE λ̂1λ
T
1 in the form:

2ξ11 + 2σ 2
11 − 4ψ2

1 ,

where ξ11 is the (1, 1)th element of ξ−1.

It should be noted that the theoretical derivation is valid not only for (exploratory)

factor analysis models but also for any other covariance structure models, except for the

communality testing. Thus, it is easily applicable to confirmatory factor analysis (CFA)

models, for instance, and we are now developing a new program for variable selection

in CFA models.

3. SEFA and examples with empirical data

Kano and Harada (2000a) developed the program SEFA (Stepwise Variable Selection

in Exploratory Factor Analysis) based on the theory described in the previous sections.

The SEFA is delivered in a virtually platform-independent manner with only minimal
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requirements on a user’s hardware or software. Anyone with a WWW (World Wide

Web) browser can use the program. The URL of the SEFA is as follows:

http://koko16.hus.osaka-u.ac.jp/~harada/sefa2002/stepwise/

SEFA can print a list of several goodness-of-fit measures for models that are obtained

by deletion or addition of one variable and is extremely useful in backward elimination

and forward selection of manifest variables. SEFA provides an excellent circumstance

for variable selection even though practical users are not interested in fit measures.

On the top page of the SEFA program, a user is asked to input a sample correlation

matrix, the number of variables, sample size, and the number of factors. Click a submit

button, and then (s)he will obtain a table of fit measures for every one-variable-deleted

model and every one-variable-added model, as well as those for the current model.

When the required information is entered, PROC factor in SAS runs once, and fit mea-

sures of those models are computed, using T0 −T02′ , from the sample correlation matrix

and communality estimates imported from the SAS output. When a user wants to drop

manifest variables, (s)he just de-selects the check boxes of the variables, and submits

the job again.

There are some options in SEFA. Any user can choose his (or her) favorite

fit measures from χ2, GFI, AGFI, CFI, IFI and RMSEA (see, e.g., Tanaka, 1993;

Hu and Bentler, 1999, for details of these measures); (s)he can choose significance levels

for the chi-square goodness-of-fit test and the test of communalities. For the latter, (s)he

can specify null hypotheses, i.e., how small a communality can be. After submission of

a job to SEFA, users can obtain an output webpage as in Figure 1. The webpage shows

a table that includes, from the flush-left: (i) selecting box, (ii) variable name, (iii) fac-

tor loading estimate, (iv) communality estimate with p-value of testing communality in

parenthesis, (v) chi-square statistic and other fit measures.

There are several facets on manifest variable selection in factor analysis. The first

facet is backward elimination or forward selection, as noted. The second is conduct-

ing variable selection starting at a model with all variables, as will be demonstrated in

Section 3.1, or to focus on part of the model, that is, a part of the manifest variables,

which includes only indicators of a single or a few factor(s), is selected and examined.

Practitioners can add or delete all manifest variables loaded on a factor simultaneously,

and then the number of factors increases or decreases by one.

We demonstrate a backward elimination procedure in manifest variable selection by

SEFA in Section 3.1; and a forward selection procedure is described in Section 3.2. We

shall use the traditional psychometric properties as well as a model fit.

3.1. Analysis of perception on physical exercise

Using SEFA, we analyzed a data set of a questionnaire of perception on physical exer-

cise, which was collected and analyzed by Oka et al. (2002). The data set has 15 vari-

ables and the sample size is 653. These applied researchers expected the data set to

have a unidimensional structure. A one-factor analysis model receives a rather poor fit

because the chi-square goodness-of-fit statistic gives a value of 460.11 with 90 degrees
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Fig. 1. SEFA output for the initial model with 15 manifest variables.

Fig. 2. SEFA output for the final model with 11 manifest variables.

of freedom, and GFI = 0.920, CFI = 0.892 and RMSEA = 0.080. The stepwise vari-

able selection program SEFA gives an output in Figure 1, suggesting deletion of the

variable X14.
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Recall that the size of communality has been often used as a criterion for variable

selection in factor analysis. Results of the communality estimates in Figure 1 show that

X15 and X7 have small communalities (0.147, 0.224). The communality criterion makes

a totally different choice of variables.

We dropped X14 and ran the SEFA again. The SEFA has suggested dropping X2,

X9 and X13 in order. We followed SEFA’s suggestion until we reached a final model

with 11 variables (Figure 2), where χ2
44 = 107.37, GFI = 0.971, CFI = 0.967 and

RMSEA = 0.047. Removing the four variables, the chi-square statistic improves from

460.11 to 107.37. Their difference follows according to a chi-square distribution with

46 degrees of freedom.

3.2. Analysis of low self-control data

We analyzed a date set in criminal psychology by SEFA. Gottfredson and Hirschi (1990)

considered low self-control and criminal opportunity as principal causes of criminal be-

haviors. Grasmick et al. (1993) developed a scale of low self-control which consists of

the following six subscales: impulsivity (F1), simple tasks (F2), risk seeking (F3), phys-

ical activities (F4), self-centered (F5) and temper (F6). Each subscale has four items so

that the scale has a total of 24 items. Kono and Okamoto (1999, 2001) translated the

low self-control scale to Japanese. Murakami (2000) distributed to university students

questionnaires including the Japanese version of the low self-control scale items, where

220 students returned the questionnaires. Here we shall use her data set removing obser-

vations with missing values, where the sample size is 213. See Grasmick et al. (1993)

for the original English questionnaire items.

Table 1 (left) shows results of exploratory factor analysis for the data set with all

variables, where the factor pattern matrix is rotated by the promax method.

According to Grasmick et al. (1993), manifest variables X1 to X4 are indicators of

the latent construct F1, X5 to X8 are indicators of the latent construct F2, and so on.

The results for the data set are not very consistent with the theory by Grasmick. Indeed,

discriminant validity between F1 and F2 does not hold, and there are several substantial

estimates that destroy simple structure in the factor loading matrix.

The low self-control scale was developed in U.S. and will be valid within the Western

culture. It is not sure if its direct translation is applicable to Japanese as well. The results

could be improved by appropriately selecting manifest variables, as will be tried next.

Because the most serious problem appears in the factor loading estimates for vari-

ables X1 to X8, we first analyzed these variables with two common factors. A fit of the

estimated model is fairly good. We, however, found that X6 is loaded on both factors,

impulsivity and simple tasks, which destroys simple structure. Besides, psychologists

mention that the meaning of the item X6 could relate to the both constructs. As a result,

we decided to delete X6. Next, we chose variables X17 to X24 to examine their suit-

ableness to a two-factor analysis model. An output of SEFA is shown in Figure 3 (left),

indicating that a fit of the model is rather poor (χ2
13 = 39.2723). As far as a model fit is

concerned, SEFA suggests deletion of X17 and X22. Notice that X22 is more loaded on

F1, which is against the theory. Psychologists mentioned that X17 is an important item

that should stay. Accordingly, we decided to delete X22.
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Table 1

Manifest variable selection for the low self-control data by SEFA

Initial model with all 24 variables Final model with X6, X11, X22 deleted

F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6

X1 0.46 0.18 0.12 0.04 −0.05 0.16 0.39 −0.07 0.11 0.11 0.12 0.21

X2 0.21 0.42 0.17 −0.08 −0.04 −0.15 0.62 0.02 0.05 −0.04 −0.01 −0.08

X3 0.17 0.42 0.22 −0.01 −0.12 −0.01 0.44 0.12 0.14 0.04 −0.08 0.01

X4 −0.12 0.53 0.08 0.28 0.02 0.04 −0.15 0.72 0.18 0.23 −0.04 0.02

X5 0.01 0.66 −0.08 −0.12 0.15 −0.09 0.16 0.56 −0.07 −0.16 0.12 −0.06

X6 0.16 0.75 0.00 −0.06 −0.10 0.08

X7 −0.05 0.56 −0.11 0.07 0.13 0.04 0.09 0.55 −0.08 0.01 0.06 0.06

X8 0.09 0.54 −0.33 0.07 0.02 0.02 0.15 0.45 −0.31 0.06 0.05 0.05

X9 0.01 0.00 0.83 0.02 0.02 0.07 0.09 0.00 0.83 0.00 −0.02 0.08

X10 0.04 0.03 0.76 −0.05 0.12 0.03 0.06 0.07 0.81 −0.11 0.06 0.07

X11 0.13 0.02 0.25 −0.13 −0.01 0.39

X12 0.04 −0.15 0.57 0.28 0.01 −0.14 0.09 −0.18 0.51 0.31 0.02 −0.16

X13 0.11 0.07 0.14 0.59 −0.16 −0.01 0.05 0.04 0.11 0.66 −0.08 −0.04

X14 0.09 −0.01 −0.06 0.78 0.00 0.02 0.07 −0.01 −0.11 0.79 0.02 0.06

X15 −0.09 0.18 −0.01 0.76 −0.01 −0.09 0.06 0.20 −0.06 0.73 −0.08 −0.08

X16 0.00 −0.33 0.04 0.56 0.09 0.10 −0.35 −0.09 0.08 0.58 0.14 0.06

X17 0.40 −0.07 −0.18 0.02 0.53 0.02 0.00 −0.06 −0.16 0.04 0.68 0.03

X18 0.07 0.07 0.08 −0.07 0.67 −0.09 −0.07 0.13 0.08 −0.13 0.61 −0.10

X19 0.01 −0.03 0.11 −0.03 0.64 −0.03 −0.11 0.11 0.14 −0.11 0.54 −0.04

X20 0.52 0.05 0.05 0.09 0.40 −0.03 0.24 −0.07 0.05 0.14 0.56 0.00

X21 0.09 −0.01 −0.08 0.09 0.02 0.73 0.00 0.05 −0.01 0.03 0.02 0.79

X22 −0.16 0.18 0.15 −0.03 0.38 0.31

X23 0.02 −0.11 0.02 −0.10 −0.06 0.54 −0.01 −0.06 0.07 −0.13 −0.06 0.52

X24 −0.04 0.10 −0.01 0.08 −0.04 0.37 −0.02 0.13 0.02 0.06 −0.06 0.30

Figures in bold face and with a underline denote factor loading estimates greater than or equal to 0.4.

We added variables X13 to X16 and added one factor; and then added X9 to X12 and

added one factor again. Results are shown in Figure 3 (right). While there is no manifest

variable that can improve a model fit much by its deletion, X11 has a problem which is

loaded more on F4 than on F2. When we ran SEFA for variables X9 to X24 without

X22 to study the problem in more detail, we found the same tendency. Psychologists

mentioned that X11 should not have any relation to the factor ‘temper’. Thus, we decided

to delete X11.

We obtained an improper solution at X23, i.e., its communality estimate is greater

than or equal to one, when we ran SEFA for variables X9 to X12 and X21 to X24 with-

out X11 and X22. See, e.g., Van Driel (1978), Kano (1998) and Chen et al. (2001) for

improper solutions. SEFA can deal with improper solutions, where we have used S−1

for Ψ̂−1 in the program. SEFA alerts users by coloring the corresponding cell yellow

for an improper solution. The improper solution occurs because the three-indicator rule
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Fig. 3. SEFA outputs for low self-control data.

for identification seems to be violated empirically, that is, there are only two indicators

with enough large loading estimates 0.83 and 0.52 for the common factor and the factor

loading estimate 0.28 for X24 is not large. For the situation, the estimates are rather

unstable, and can be improper or proper, depending on variables jointly analyzed.

At a final stage, we added variables X1 to X8 without X6, which results in estimates

in the final model in Table 1 (right). In the final result, one variable X4 is grouped into

the subscale for F2 although X4 is an item for F1 originally. Psychologists mentioned

that the content of X4 is closer to F2 than F1 (in Japan). Looking at the final result in

Table 1, the result after the manifest variable selection represents the Grasmick theory

more accurately.

4. Variable selection with a model fit and reliability analysis

The first version of SEFA came out in 1999. Since then, we have received many ques-

tions from practical users. Some major questions are as follows:

(a) What is the meaning of choosing variables with a model fit?
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(b) Why do they need to choose variables such that their model receives a good fit?

What happens if inconsistent variables remain in their model?

(c) What should they do if SEFA indicates that a marker variable is inconsistent with

their model?

(d) They claim that SEFA is more likely to suggest deleting a variable with a larger

communality estimate, e.g., 0.6 or more. Why is it so? How should they cope with

it?

An all-too-common answer to the questions would be that examination of model

adequacy is the first step of statistical analysis and that a model with a poor fit is often

misleading. In this section we consider a factor analysis model with correlated errors

and a reliability analysis to provide more specific and persuasive examples in reply to

these questions.

Recall that one purpose of factor analysis is to construct a scale of a psychological

construct and to assess reliability of the scale constructed.

4.1. Model with correlated errors

Probably it was Bollen (1980) who first emphasized importance of introducing error

covariances in researches using factor analysis. We shall reanalyze the data set in Sec-

tion 3.1 to achieve a good fit not by removing manifest variables but by allowing error

covariances. We analyzed it with the help of LM tests offered by EQS (Bentler, 2004).

The path diagram of a final model is shown in Figure 4. Fit indices of the final model

are χ2 = 250.375 (df = 83, n = 653), GFI = 0.950, CFI = 0.952, RMSEA = 0.056.

Those statistics indicate a fairly good fit.

Recall that SEFA suggests deletion of the variables X2, X9, X13 and X14. We see that

SEFA chooses such variables to be removed that those error covariances are eliminated.

As a result, the final model with 11 manifest variables is a factor analysis model with

uncorrelated errors. This is an interpretation of how SEFA suggests manifest variables

to be removed. This gives an answer to question (a). Note that there is some freedom

in eliminating error covariances. For example, if either X8 or X9 is removed, the co-

variance between E8 and E9 can be eliminated. If the model in Figure 4 is true, the

choice between X8 and X9 is completely arbitrary from the viewpoint of a model fit.

The situation is slightly more complicated for the variables X11 to X14. It is possible

to remove three of the four variables. Oka et al. (2002) dropped a total of five variables

slightly different from ours by taking into account the meaning of the variables.

There are many cases where it is relevant to introduce error covariances, one of

which is the case where there exist confounding third unmeasured variables that connect

two or more manifest variables. A method factor is a typical example of confounding

variables in studies of social sciences. While common factors cannot usually explain

covariances between manifest variables caused by method factors, error covariances

can explain them. Method factors are often discussed in the analysis of MTMM matrices

(e.g., Campbell and Fiske, 1959; Campbell and O’Connell, 1967).

Green and Hershberger (2000) suggested several kinds of measurement models for

longitudinal data. One of their models is a true score model with a moving average
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Fig. 4. The final model with error covariances.

Fig. 5. A model with a moving average component of order one and its equivalent model.

component of order one given in Figure 5 (left). The model is equivalent to a one-factor

analysis model with errors correlated next to each other (Figure 5 (right)).

A third one is nonlinearity. Suppose that the following nonlinear factor analysis

model holds:

X1 = μ1 + λ11f + λ12f
2 + e1

X2 = μ2 + λ21f + λ22f
2 + e2

X3 = μ3 + λ31f + e3

· · ·
Xp = μp + λp1f + ep,

where the usual assumptions of a factor analysis model are made. Assuming that

the distribution of f1 is symmetric about the origin, we have Cov(f, f 2) = 0, and

Cov(λ12f
2 + e1, λ22f

2 + e2) = λ12λ22 Var(f 2) (�= 0) results in an error covariance.

When the effect of quadratic terms is not large and does not interest the researcher, one

can approximate the effect of f by the linear terms, and the quadratic terms can be

regarded as errors. See Lee and Zhu (2002) for general theory of nonlinear structural

equation models.
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What happens if there exist error covariances in the model and one fits a model

without error covariances? A fit of the model will be poor. In addition, factor loadings

and communality estimates can be biased. This problem will be discussed in the next

section. Which model to employ becomes an issue: a model removing some manifest

variables or a model introducing error covariances. We shall discuss this issue in the

context of reliability analysis in the next section.

4.2. Model fit and reliability analysis

We shall study what happens in reliability analysis or traditional test theory when error

covariances are ignored. See McDonald (1999) for test theory and reliability analysis.

In test theory, suppose first that an observable test score (or scale score) X can be

decomposed into a true score T and a measurement error E, that is,

X = T + E,

where T and E are independently distributed. Define

ρ = V (T )

V (X)
= V (T )

V (T ) + V (E)
.

The coefficient ρ denotes proportion of true score variation to the test score variation,

and is called reliability of X. While a single observation of X cannot determine the

reliability of X, one can evaluate it if multiple observations or indicators for T are

available. Traditional test theory is highly related with factor analysis, as will be stated

below.

Consider a one-factor analysis model:

(7)Xi = μi + λif + ei (i = 1, . . . , p),

where E(f ) = E(ei) = 0, V (f ) = 1, V (ei) = ψi , Cov(f, ei) = 0 and Cov(ei, ej ) = 0

(i �= j). The common factor f is considered a true score for a construct. Precisely

speaking, ei is the sum of a specific factor and an error factor. There is a structural

equation model that can separate these factors if multiple measures for each Xi are

observed. In this chapter, the ei itself is regarded as an error since multiple measures are

hardly observed. Reliability of an item Xi is then given as

ρi = V (λif )

V (Xi)
=

λ2
i

λ2
i + ψi

(i = 1, . . . , p).

For a single-factor analysis model, the reliability above is identical with a communality

of Xi if Xi is standardized.

A scale score of X is defined as the total sum of Xi , i.e., X =
∑p

i=1 Xi . Reliability

of the scale X is expressible in the form:

(8)ρ =
V (
∑p

i=1 λif )

V (X)
=

(
∑p

i=1 λi)
2

(
∑p

i=1 λi)
2 +

∑p

i=1 ψi

.
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Cronbach’s coefficient α (Cronbach, 1951) is a most frequently used measure of relia-

bility, which is defined as

α = p

p − 1

(∑p
i �=j Cov(Xi, Xj )

V (X)

)
.

When a one-factor analysis model in (7) holds true, it is known that ρ � α. In fact,

ρ − α =
p
∑p

i=1(λi − λ̄)2

(p − 1)V (X)
� 0.

See McDonald (1999, p. 93) for a proof. The coefficient α is merely a lower bound of

the true reliability, and the equality holds if and only if λi’s are equal to each other. The

equality condition is said to be essentially τ -equivalent.

What happens if the factor analysis model fails to fit to the data? As an example of un-

fitted models, we consider the case where errors are correlated. Let ψij = Cov(ei, ej ).

Suppose that some of ψij ’s (i �= j) are not zero. Then the correct reliability is no longer

given as in (8), but given as follows:

(9)ρ′ =
(
∑p

i=1 λi)
2

(
∑p

i=1 λi)
2 +

∑p

i=1 ψi +
∑p

i �=j ψij

.

There might be a case where ψij should be counted in true score variance rather than

in error variance as above (Bentler, 2001). The formula in (9) should be used when the

error covariances are caused by method factors because the method factors are usually

not related to the latent construct f and should be regarded as ‘errors’.

Raykov (2001) and Green and Hershberger (2000), among others, have discussed

the bias of reliability coefficients or Cronbach’s α (Cronbach, 1951) caused by error

covariances. The examination of a fit of a (strict) one-factor analysis model gives a

useful criterion to the problem whether the ρ in (8) can be used, as noted by Bentler

(2003).

Here we shall introduce an artificial example of Kano and Azuma (2003) to see how

error covariances influence reliability coefficients. They considered three models (Mod-

els 1 to 3) in Figure 6 as a data generation process, and computed α and ρ ′ as reliability

measures based on the three true models and the correlation matrices implied by the

models. In addition, for the correlation matrices from Models 2 and 3, they estimated a

one-factor analysis model without error covariances, i.e., Model 1, which is a misspec-

ified model. Results are shown in Models 2′ and 3′ also in Figure 6 (estimates of Mod-

els 2′ and 3′ were not reported in Kano and Azuma (2003)). We applied the formula (8)

to figure out the coefficient ρ, where the estimates in Models 2′ and 3′ were used. The

coefficient ρ′ is always true. The example shows that error covariances invalidate use

of ρ and α. Models 2′ and 3′ should receive very poor fits. If practical users ignored the

caution of fit measures, biased results of the analysis including reliability could mislead

them. Thus, a model-fit examination is important. This is an answer to question (b).

Another important implication to be made here is on the relation between the mag-

nitude of a factor loading estimate and inconsistency of the variable. Clearly a variable

with a low factor loading estimate or a low communality is not necessarily inconsistent.
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Fig. 6. Correlated errors and reliability coefficients (Kano and Azuma, 2003).

In an analysis using a model without any error covariances, factor loading estimates

are boosted for positively correlated errors and reduced for negatively correlated errors.

These biases are created because the common factor is forced to explain the error co-

variances. In our limited experience, we find that errors are more likely to be positively

correlated. This fact explains why SEFA often suggests deletion of variables with large

factor loading estimates, provided that our experience can be generalized. This gives an

answer to question (d).

As discussed thus far, there are two options to cope with the problem of error

covariances, namely, deleting manifest variables and modeling error covariances ap-

propriately. Let us study which to choose in terms of reliability. Clearly we obtain a

well-fitted model for Model 2 if either X1 or X2 is removed, and we can delete X2 to

obtain a well-fitted model for Model 3. Resultant models are then the same factor analy-

sis model with three manifest variables and one factor, and reliability coefficient of the

scale consisting of the three variables is 0.63. As a result, it is seen that in the situa-

tion of Model 2, the factor analysis model with an error covariance has a slightly better

reliability (0.65) than the model removing X1 or X2. On the other hand, in Model 3,

the model removing X2 is slightly better than the model with the two error covariances.

Therefore which option produces a scale with better reliability depends. It is unknown

until the reliability is figured out.
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As a matter of fact, the program SEFA does not necessarily suggest deletion of X1 or

X2 for Model 2 nor deletion of X2 for Model 3, because any one-factor analysis model

for three manifest variables is saturate and can be fitted perfectly to data basically, so

that deletion of any one variable in Models 2 or 3 creates a perfectly fitted model.

However, the estimates are seriously biased when X3 or X4 is omitted for Model 2 or

when any variable other then X2 is omitted for Model 3. More importantly, there is no

caution about model examination for the case. One cannot notice that the variable not to

be deleted has been deleted. SEFA does not work when deletion of a manifest variable

creates a saturate model. For a five-or-more-variable model with a similar structure,

SEFA can make a proper suggestion on the variable to be deleted, as expected.

In addition to reliability, construct validity is an important factor for consideration

in scale construction. Because a measurement model and a scale measure a latent psy-

chological construct that practical researchers have defined to achieve their research

purpose, it is meaningless unless a set of variables defines the target construct legiti-

mately. Feasibility is also important. It is tough for respondents to answer too many

items in a questionnaire. Any questionnaire with fewer items will be better if reliability

and validity of a scale or a measurement model maintain. Researchers need to make

a comprehensive decision on selecting manifest variables, taking into account reliabil-

ity, validity and feasibility. Analyses with SEFA and models with error covariances will

provide useful information on final decision making on the choice of manifest variables.

Related to the discussion above is the question of whether variables with large com-

munalities but inconsistent with the model should be dropped. In general, removal of a

variable with a large communality causes reduction of reliability. On the other hand, a

variable unfitted to a one-factor analysis model can reduce reliability as shown above.

Thus, one cannot mention anything about whether such a variable should be included,

without examination of reliability by formula (9), as far as reliability analysis is con-

cerned. In general, any marker variables that practical researchers consider important in

light of their research purpose should not be deleted even though their deletion improves

a model fit. Use of a model with error covariances will then be recommended. This is

an answer to question (c).

A similar problem is whether a variable should be included which is consistent with

the model but whose communality is small. Harada and Kano (2001) offered an option

in the SEFA to print results of testing whether the communality is small (or zero), as

mentioned in Section 3. Examination of the size of communality estimates and their

statistical testing by SEFA enable practical users to easily identify manifest variables

that are not sufficiently correlated to constructs under consideration. It is also possible

to decide whether to include manifest variables with small communalities according to

whether or not their inclusion contributes to improvement of reliability.

5. Conclusion and final remarks

In this chapter, we have emphasized the importance of manifest variable selection via

a model fit and made an introduction of the useful web-based program SEFA. Two
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examples with empirical data were provided to illustrate the usefulness of SEFA. The

statistical theory behind it was summarized.

We should emphasize here that we do not claim that practical users should select

manifest variables based solely on the criterion of a model fit. We would say that a

model fit is as important as the traditional psychometric properties (i) to (iii) described

in the introduction. The model fit criterion is not an option but has become the one that

practical users have to cope with in order to make variable selection or scale construc-

tion in factor analysis appropriately.

We pointed out some problems in factor analysis and reliability analysis if a model fit

is ignored. The specific problems are a bias of the reliability coefficients α and ρ which

can result in unduly boosted reliability and a bias of factor loading estimates which

can mislead researchers to identify inconsistent variables. Two choices are given to deal

with the problem of badly fitted models: one is to delete some manifest variables and

the other is to introduce error covariances. Which to employ depends on reliability, and

programs of structural equation modeling are useful in decision on the two options. In

particular, EQS 6 (Bentler, 2004) is highly recommended because EQS 6 offers efficient

LM tests to find pairs of error variables to be covariated and can print many kinds of

reliability measures.

In this chapter we have emphasized the importance of error covariances as a cause

of violation of the assumptions of a standard factor analysis model. Practical users must

keep in mind that error covariances can be introduced only if a sound theoretical reason

can be found for why they are covariated (e.g., Browne, 1982, p. 101).

We have discussed model unfitness due to inconsistent variables. Of course, there

are other possibilities for unfitted models. Inclusion of outliers into a data set can cause

terrible values of fit measures. Indeed, Bollen (1987) reported an improper solution due

to outliers. Modification by error covariances may not work when there are unknown

latent variables that substantively influence manifest variables. In the case, exploratory

analysis has to be conducted. In our discussion, we have assumed that the model em-

ployed is approximately true while small modification may be needed.

Currently we are working on an extension of the program SEFA to cover a model

with correlated errors along with reliability analysis.
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Abstract

The main objective is to develop an algorithm with a permutation sampler for a

Bayesian approach for analyzing mixture of structural equation models with an

unknown number of components and ignorable missing data that are missing at

random. The permutation sampler is implemented in the posterior simulation for se-

lecting an appropriate identifiability constraint in order to cope with the important

label switching problem. The Bayes factor, which is computed via a path sampling

procedure, is used for model selection. It is shown by means of simulation stud-

ies that (i) the Bayesian estimates are accurate for models with poorly separated

components, and (ii) an inappropriate identifiability constraint may give incorrect

results. Sensitivity analysis of the results with respect to different prior inputs in

the conjugate prior distributions is also conducted via simulation studies. Bayesian

classification is discussed. An illustrative real example is also presented.

Keywords: MAR missing data; Permutation sampler; Identifiability constraint;

Gibbs sampler; Bayes factor; Path sampling; Bayesian classification

1. Introduction

Mixture models have been found to be very useful in behavioral, medical, and psy-

chological research. For example, they have been used for modeling heterogeneity,

handling outliers, and density estimation. Analysis of mixture models has received a

lot of past and recent attention in the field of statistics (see, Titterington et al., 1985;

Richardson and Green, 1997; Stephens, 2000). Recently, analysis of mixture structural

equation models (SEMs) has received a lot of attention in psychometrics. For example,

see Jedidi et al. (1997), Yung (1997), Dolan and van der Maas (1998), and Arminger et

al. (1999) for two-stage method and maximum likelihood based methods with various

algorithms. Zhu and Lee (2001) proposed a Bayesian analysis coupled with MCMC

methods to analyze mixture SEMs; and more recently, Lee and Song (2003a) developed

a procedure to compute the Bayes factor for model comparison.

87
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In practice, missing data are very common. It is well-recognized that the impact of

the incomplete data should be taken into account to achieve correct results. The ap-

proach of replacing the missing entries by estimates obtained from the sample means

or the predicted values by regression on the basis of the fully observed data creates de-

pendent observations which are very difficult to handle. Moreover, for mixture models,

the component memberships of the observations are not identified, hence one does not

know which part of the data should be used to compute the mean estimates or the pre-

dicted values from regression. Lee and Song (2003b) developed a maximum likelihood

(ML) approach for analyzing mixture SEMs with missing data that are missing at ran-

dom (MAR, Little and Rubin, 1987). They pointed out that existing methods proposed

by Finkbeiner (1979), Lee (1986), Jamshidian and Bentler (1999), and Song and Lee

(2002) in analyzing various SEMs with missing data cannot be applied to mixture SEMs

with an unknown number of components. In this chapter, a Bayesian approach for ana-

lyzing mixtures of SEMs with missing data and an unknown number of components is

proposed. The justifications for proposing the Bayesian approach as an alternative are:

(i) It directly incorporates prior knowledge in the analysis. More precise estimates of

the parameters can be obtained under situations in which good prior information is

available.

(ii) As claimed by many important articles on Bayesian analysis of SEMs (Schines

et al., 1999; Lee and Song, 2003b), the sampling-based Bayesian methods give

reliable statistical inference even with small sample sizes.

(iii) The posterior distributions of parameters and latent variables can be estimated, and

means as well as quantiles of posterior distributions can be obtained.

(iv) For model comparison, the Bayesian information criterion (BIC) in the ML ap-

proach is only a rough approximation of the Bayes factor in the Bayesian approach.

For a mixture SEM with K components, it is well known that the model is invariant

with respect to permutation of the labels k = 1, . . . , K . Hence, the model is not identi-

fied, and adoption of an unique labeling for identifiability is important. In the literature,

an identifiability constraint on some entries of the components’ mean vectors is used to

force a unique labeling. However, it is important that the identifiability constraint in a

Bayesian analysis has to be selected more carefully. Arbitrary constraints may not be

able to solve the important labeling switching problem, and may lead to incorrect re-

sults. We will apply the permutation sampler (Frühwirth-Schnatter, 2001) to solve the

labeling switching problem in the Bayesian analysis of mixture of SEMs. By means of

a simulation study (see Section 4.1), we show that accurate Bayesian estimates can be

obtained by using the permutation sampler even for mixture models with rather poor

separation.

The comparison of two mixture SEMs with different numbers of components is

based on the Bayes factor (Berger, 1985), which is an important statistic in Bayesian

model selection and has been applied widely. Inspired by Lee and Song (2003a), an

algorithm on the basis of path sampling (Gelman and Meng, 1998) for computing the

logarithm of the Bayes factor is developed with MAR data. Conjugate prior distribu-

tions with given hyper-parameter values are used. The important issue on the sensitivity

of results with respect to prior inputs is addressed. According to their natures and



Bayesian analysis of mixtures structural equation models with missing data 89

characteristics, we group the hyper-parameters into five categories, then we conduct

a symmetric sensitivity analysis with respect to prior inputs in each category. Moreover,

we also study the sensitivity analysis with respect to the assumption of MAR.

The chapter is organized as follows. Section 2 defines the mixture SEMs with an

unknown number of components and missing data. Here, the issue on the unique la-

beling for identifiability is discussed. Section 3 presents Bayesian estimation of the

mixture SEMs. A permutation sampler is implemented to select an appropriate iden-

tifiability constraint for solving the important label switching problem. An algorithm

based on path sampling for computing the log Bayes factor for model selection is also

developed. Moreover, Bayesian classification is discussed. Results of simulation studies

for investigating the empirical performance of the Bayesian estimates with the selected

identifiability constraints, and the sensitivity analyses with respect to prior inputs, are

reported in Section 4. A real example is presented in Section 5. The freely available soft-

ware WinBUGS to get the Bayesian estimates is introduced in Section 6, followed by a

discussion in Section 7. Technical details about the implementation of the permutation

sampler are presented in Appendices A–C.

2. Model description

A mixture SEMs for a p × 1 random vector yi is defined as follows:

(1)f (yi) =
K∑

k=1

πkfk(yi |μk,Σk), i = 1, . . . , n,

where K is the number of components which can be unknown, πk’s are component

probabilities which are nonnegative and sum to 1.0, fk(y|μk,Σk) is a multivariate nor-

mal density function with an unknown mean vector μk and a covariance matrix Σk .

Conditional on the kth component, suppose that y satisfies the following measurement

model:

(2)y = μk +Λkωk + εk,

where μk is an p× 1 intercept vector, Λk is a p× q factor loading matrix, ωk is a q × 1

random vector of latent variables, and εk is a p×1 random vector of error measurements

with distribution N(0,Ψ k), which is independent of ωk , and Ψ k is a diagonal matrix.

Let ωk be partitioned into (ηT
k , ξ

T
k )

T, where ηk is a q1 × 1 vector, ξ k is a q2 × 1 vector,

and q1 + q2 = q. The structural equation is defined as

(3)ηk = Bkηk + Γ kξ k + δk,

where Bk and Γ k are q1 ×q1 and q1 ×q2 matrices of unknown parameters; and random

vectors ξ k and δk are independently distributed as N(0,Φk) and N(0,Ψ δk), respec-

tively; and Ψ δk is a diagonal matrix. We assume that B0k = (I q1
− Bk) is nonsingular

and |I q1
− Bk| is independent of any elements in Bk . One specific form of Bk that

satisfies this assumption is the lower or upper triangular matrix.
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As the mixture model defined in (1) is invariant with respect to permutation of labels

k = 1, . . . , K , adoption of an unique labeling for identifiability is important. Roeder and

Wasserman (1997), and Zhu and Lee (2001) proposed to impose the ordering μ1,1 <

· · · < μK,1 for eliminating the label switching (jumping between the various labeling

subspace), where μk,1 is the first element of the mean vectorμk . This method works fine

if μ1,1, . . . , μK,1 are well separated. However, if μ1,1, . . . , μK,1 are close to each other,

it may not be able to eliminate the label switching, and may introduce incorrect results.

Hence, it is necessary to find a sensible identifiability constraint. In this chapter, the

random permutation sampler developed by Frühwirth-Schnatter (2001) will be applied

for finding the suitable identifiability constraints. See the following sections for more

details.

Moreover, for each k = 1, . . . , K , structural parameters in the covariance matrix Σk

corresponding to the model defined by (2) and (3) are not identified. A common method

in structural equation modeling for identifying the model is to fix appropriate elements

in Λk , Bk , and/or Γ k at preassigned values. The positions of the preassigned values

of the fixed elements in these matrices of regression coefficients can be chosen on a

problem-by-problem basis, as long as each Σk is identified. In practice, most manifest

variables are usually clear indicators of their corresponding latent variables. This give

rather clear prior information to specify the zero values to appropriate elements in these

parameter matrices. See the illustrative example in Section 5 for a more concrete ex-

ample. For clear discussion of the proposed method, we let π = (π1, . . . , πK), and θ

be the vector which contains all unknown parameters in the covariance matrices that

defines an identified model.

3. Bayesian analysis of the models

3.1. Bayesian estimation and the permutation sampler

To deal with the missing data problem, let yi = {yi,obs, yi,mis}, where yi,obs represents

the observed estimates of yi , whereas yi,mis represents the missing entries. We assume

that missing data are MAR with an ignorable mechanism (Little and Rubin, 1987). For a

fully observed data point yi , yi,mis does not exist. Bayesian analysis of the current mix-

ture of SEMs will be studied on the basis of the observed data set {yi,obs; i = 1, . . . , n}.
Let Y obs = {yi,obs; i = 1, . . . , n}, Ymis = {yi,mis; i = 1, . . . , n} be the collection

of missing data, Y = (Y obs,Ymis), and Z = {ω1, . . . ,ωn} be the matrix of latent

variables. Using the data augmentation idea for overcoming the computational difficul-

ties, the observed data Y obs is augmented with Ymis and Z in the posterior analysis.

Moreover, inspired by the existing work on mixture SEMs (see, Zhu and Lee, 2001;

Lee and Song, 2003a), we further introduce a grouping variable wi for yi as a latent

allocation variable in the analysis. We assume that wi is independently drawn from the

following distribution

(4)p(wi = k) = πk, k = 1, . . . , K,

and given wi , observations are drawn independently from the respective subpopulation.

LetW = (w1, . . . , wn) be the collection of latent allocation variables, then the Bayesian
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estimates of θ and π are obtained from a sequence of observations simulated by some

MCMC methods from the joint posterior distribution [Ymis,Z,W , θ ,π |Y obs].
It is well known that for general mixture models with K-components, the uncon-

strained parameter space contains K! subspaces, each one corresponding to a different

way to label the states. In the current mixture of SEM, the likelihood is invariant to rela-

beling the states. If the priors of θ and π are also invariant, the unconstrained posterior

is invariant to relabeling the states and identical on all labeling subspaces. This induces

a multimodel posterior and has a serious impact on Bayesian estimation.

The MCMC approach proposed by Frühwirth-Schnatter (2001) will be used in this

paper to deal with the above label switching problem. In this approach, an uniden-

tified model is first estimated by sampling from the unconstrained posterior using

the so-called random permutation sampler, where each sweep is concluded by a ran-

dom permutation of the current labeling of the components. The random permutation

sampler delivers a sample that explores the whole unconstrained parameter space and

jump between the various labeling subspace in a balanced fashion. As emphasized in

Frühwirth-Schnatter (2001), although the model is unidentified, the output of the ran-

dom permutation sampler can be used to estimate unknown parameters that are invariant

to relabeling the states and can be explored to find a suitable identifiability constraints.

Then, the model is re-estimated by sampling from the posterior distribution under the

imposed identifiability constraints, again using the permutation sampler. The implemen-

tation of the permutation sampler in relation to the mixtures of SEMs and the method

of selecting the identifiability constraint are briefly described in Appendices A and B,

respectively.

The MCMC sampling scheme under the selected identifiability constraints is imple-

mented as below:

Step (a): Generate (Ymis,Z,W , θ ,π) from the unconstrained posterior p(Ymis,

Z,W , θ ,π |Y obs) according to the following steps via the Gibbs sampler (Geman and

Geman, 1984). At the (r +1)th iteration with a current Y
(r)
mis,Z

(r),W (r), θ (r),π (r): iter-

atively generate W (r+1) from p(W |θ (r),π (r),Y
(r)
mis,Y obs); Z

(r+1) from p(Z|θ (r),π (r),

Y
(r)
mis,W

(r+1),Y obs); Y
(r+1)
mis from p(Ymis|θ (r),π (r),Z(r+1),W (r+1),Y obs); and (θ (r+1),

π (r+1)) from p(θ ,π |Z(r+1),W (r+1),Y
(r+1)
mis ,Y obs). Note that p(W |θ ,π ,Y obs,Ymis) is

simpler than p(W |θ ,π ,Z,Y obs,Ymis) and does not involve Z.

Step (b): Reordering the labeling through the permutation which fulfills the identifi-

ability constraints.

The conditional distributions associated with the Gibbs sampler involve the prior dis-

tributions of θ and π . In this paper, we follow the suggestion of Zhu and Lee (2001), and

Lee and Song (2003a) to use the conjugate prior distributions for θ . More specifically,

for m = 1, . . . , p; l = 1, . . . , q1, we take

p(Λkm|ψkm)
D= N [Λ0km, ψkmH 0ykm],

p
(
ψ−1
km

) D= Gamma[α0εk, β0εk], p(μk) ∼ N [μ0,Σ0],

p(Πkl |ψδkl)
D= N [Π0kl, ψδklH 0ωkl],

(5)p
(
ψ−1
δkl

) D= Gamma[α0δk, β0δk], p(Φk)
D= IWq2

[R0, ρ0],
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where ψkm and ψδkl are the mth diagonal element of Ψ k and the lth diagonal element of

Ψ δk , respectively; ΛT
km and ΠT

kl are vectors that contain unknown parameters in the mth

row of Λk and the lth row of Πk , respectively; α0εk , β0εk , Λ0km, α0δk , β0δk , Π0kl , ρ0,

and positive definite matrices H 0ykm, H 0ωkl , and R0 are hyper-parameters whose val-

ues are assumed to be given, and IWq2
[·,·] denotes the inverted Wishart distribution of

dimension q2. The given values of the hyper-parameters represent the prior information

of the corresponding parameters. Subjective hyper-parameter values can be taken for

situations with accurate prior information, either from analysis of closed related data or

knowledge of experts. For other situations, data-dependent prior inputs are rather com-

mon in analysis of mixture models (see Raftery, 1996; Richardson and Green, 1997;

Song and Lee, 2001, among others). The prior distribution of π is taken to be the follow-

ing symmetric Dirichlet distribution: p(π) ∝ D(α1, . . . , αK), with hyper-parameters

α1, . . . , αK . The mild conditions on the independence of these prior distributions as

specified in Zhu and Lee (2001) are also assumed.

As the conditional distributions corresponding to W ,Z and θ are conditional on Y ,

they are equal to those obtained on the basis of mixture SEMs without missing data.

As the prior distributions involved are the same, these conditional distributions can be

directly obtained from Lee and Song (2003a).

Conditional distribution p(Ymis|θ ,π ,Z,W ,Y obs) is derived as below. For i = 1,

. . . , n, as yi are mutually independent, yi,mis are also mutually independent. As Ψ ε is

diagonal, yi,mis is independent of yi,obs. Also, with given ωi , we know the component

membership of yi,mis, hence π is irrelevant. Let pi be the dimension of yi,mis, we have

p(Ymis|θ ,W ,Y obs,Z) =
n∏

i=1

p(yi,mis|θ ,ωi, wi), and

(6)[yi,mis|θ ,ωi, wi = k] D= N [μi,mis,k +Λi,mis,kωi,Ψ εi,mis,k],
where μi,mis,k is a pi ×1 subvector of μ with elements corresponding to observed com-

ponents deleted,Λi,mis,k is the corresponding pi×q submatrix ofΛk , andΨ εi,mis,k is the

corresponding pi ×pi submatrix of Ψ εk with the appropriate rows and columns deleted.

Hence, this conditional distribution only involves a product of simple normal distribu-

tions. The computational burden involved is light. Convergence of the Gibbs sampler

is monitored by the ‘estimated potential scale reduction (EPSR)’ values as proposed by

Gelman (1996). Bayesian estimates of θ , π and ωi are obtained from the sample means

of the simulated observations after convergence. Standard error estimates are computed

via the corresponding sample covariance matrices. The marginal posterior distribution

can be summarized by tabulating 100(1 − α)% highest probability density (HPD) in-

terval (see Chen and Shao, 1999) for the parameters of interest. The HPD intervals

presented in the real example are estimated via the algorithm given in Chen and Shao

(1999).

3.2. A path sampling procedure for Bayes factor computation

Let M0 and M1 be the two competing mixtures of SEMs with different number of com-

ponents. For v = 0, 1, let p(Y obs|Mv) be the probability density of Y obs given Mv . The
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choice between M0 and M1 is based on the following Bayes factor:

(7)B10 = p(Y obs|M1)

p(Y obs|M0)
.

B10 is a summary of the evidence provided by the data in favor of M1 as opposed to M0.

It measures how well M1 predicts the data relative to M0. Usually, the natural logarithm

of B10 is considered and interpreted via the criterion in Kass and Raftery (1995).

Following similar reasoning as in Gelman and Meng (1998), the procedure proposed

by Lee and Song (2003a) for computing the Bayes factor can be extended to mixture

SEMs with MAR missing as below. Consider the following class of densities with a

continuous parameter t ∈ [0, 1]: p(Ymis,Z, θ ,π |Y obs, t) = p(Ymis,Z, θ ,π |t)/z(t),
where

(8)z(t) = p(Y obs|t) =
∫

p(Y obs,Ymis,Z|θ ,π , t)p(θ ,π) dYmis dZ dθ dπ,

and p(Y obs,Ymis,Z|θ ,π , t) is the complete-data likelihood function of θ and π for a

given t , and p(θ,π) be the prior density of (θ ,π) which is independent of t . We need

to construct a path using t ∈ [0, 1] to link M1 and M0, so that B10 = z(1)/z(0). Taking

logarithm and differentiating (8) with respect to t , and let U(Y obs,Ymis,Z, θ ,π, t) =
d logp(Y obs,Ymis,Z|θ ,π , t)/dt , it can be shown similarly as in Lee and Song (2003a)

that

(9)̂logB10 = 1

2

S∑

s=0

(t(s+1) − t(s))(�U(s+1) + �U(s)),

where t(0) = 0 < t(1) < t(2) < · · · < t(S) < t(S+1) = 1 are fixed grids in [0, 1], and

(10)�U(s) = J−1
J∑

j=1

U
(
Y obs,Y

(j)

mis,Z
(j), θ (j),π (j), t(s)

)
,

in which {Y (j)

mis,Z
(j), θ (j),π (j), j = 1, . . . , J } be simulated observations drawn from

p(Ymis,Z, θ ,π |Y obs, t(s)). See Lee and Song (2003a) for more details in finding a path

to link two competing mixture SEMs with different components.

Note that in computing Bayes factors, the inclusion of an identifiability constraint

in simulating {Y (j)

mis,Z
(j), θ (j),π (j), j = 1, . . . , J } for evaluating �U(s) in (10) is not

necessary. As the likelihood is invariant to relabeling the states, the inclusion of such a

constraint will not change the values of U(Y obs,Ymis,Z, θ ,π , t). As a result, the log

Bayes factors estimated by (9) and (10) will not be changed.

3.3. Bayesian classification

In addition to their role in facilitating computation for estimation and model compar-

ison, the allocation variables in W are also important for Bayesian classification of

observations with and without missing entries. Using the “percentage correctly classi-

fied” loss function (see Richardson and Green, 1997), the Bayesian classification of an
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existing observation yi,obs, i = 1, . . . , n, is given by

ŵi = argmaxk Pr
{
(wi = k|Y obs)

}
,

where wi is the allocation variable corresponding to yi,obs. As yi,obs, i = 1, . . . , n,

are independent, ŵi = argmaxk Pr{(wi = k|yi,obs)}. This posterior probability can be

directly estimated via the sample mean of the corresponding observations in {w(j)
i , j =

1, . . . , J } that are generated by the Gibbs sampler:

Pr{wi = k|yi,obs} ≈ J−1
J∑

j=1

I
(
w

(j)
i = k

)
, k = 1, . . . , K.

For classifying a new incomplete observation y∗
obs, let w∗ be the corresponding allo-

cation variable. The Bayesian classification requires to evaluate Pr{w∗ = k|Y obs, y
∗
obs}.

Theoretically, the addition of y∗
obs in the original sample slightly changes the posterior

distributions, and it seems that the simulation process should be rerun for each new y∗
obs.

However, this is clearly impractical. Hence, we follow the idea of Zhu and Lee (2001)

to employ the following approximation:

Pr
(
w∗ = k|Y obs, y

∗
obs

)
≈ J−1

J∑

j=1

π
(j)
k fk(y

∗
obs|θ (j))

{
∑K

k=1 π
(j)
k fk(y

∗
obs|θ (j))}

,

where fk(y
∗
obs|θ) denotes the marginal density function, and (π

(j)
k , θ (j)) are observa-

tions that are simulated by the Gibbs sampler.

4. Simulation studies

4.1. Simulation study 1: Identifiability constraints and separation of components

Yung (1997), and Dolan and van der Maas (1998) pointed out that some statistical re-

sults they achieved cannot be trusted when the separation of the component is poor.

Yung (1997) considered dkh = maxl∈{k,h}{(μk − μh)
TΣ−1

l (μk − μh)}1/2 as a mea-

sure of separation, and recommended that dhk should be about 3.8 or over. The main

objective of this simulation study is to demonstrate the random permutation sampler

for finding a suitable identifiability constraints. Another objective is to investigate the

performance of the proposed Bayesian approach in analyzing a mixture of SEMs with

two poorly separated components. Random observations are simulated from a mixture

SEMs with two components defined by (1), (2), and (3). The SEM for each k = 1, 2

involves nine manifest variables which are indicators for three latent variables η, ξ1 and

ξ2. The loading matrix in each component takes the following common non-overlapping

structure:

ΛT
k =

[
1.0 λk,21 λk,31 0 0 0 0 0 0

0 0 0 1.0 λk,52 λk,62 0 0 0

0 0 0 0 0 0 1.0 λk,83 λk,93

]
,
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where the one’s and zero’s are fixed parameters for achieving an identified covariance

structure, whilst the others are distinct unknown parameters. In the kth component, the

structural equation is given by: η = γk,1ξ1+γk,2ξ2+δ, where γk,1 and γk,2 are unknown

parameters. The true population values are given by π1 = π2 = 0.5, μ1 = (0.0,

0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0)T, μ2 = (0.0, 0.0, 0.0, 0.5, 1.5, 0.0, 1.0, 1.0, 1.0)T;

λ1,21 = λ1,31 = λ1,83 = λ1,93 = 0.4, λ1,52 = λ1,62 = 0.8, λ2,21 = λ2,31 = λ2,83 =
λ2,93 = 0.8, λ2,52 = λ2,62 = 0.4, γ1,1 = 0.2, γ1,2 = 0.7, γ2,1 = 0.7, γ2,2 = 0.2,

φ1,11 = φ1,22 = φ2,11 = φ2,22 = 1.0, φ1,12 = φ2,12 = 0.3, ψ1,11 = · · · = ψ1,99 =
ψ2,11 = · · · = ψ2,99 = ψ1,δ = ψ2,δ = 0.5. In this 2-component mixture SEM, the total

number of unknown parameters is 62. The separation d12 is equal to 2.56, which is less

than the suggested value by Yung (1997).

Based on the above settings, we simulate 400 observations from each component,

hence the total sample size is 800. The MAR missing data are created via the following

steps: (i) 200 fully observed data points are randomly selected among the 800 obser-

vations, and sample means ȳ(1), ȳ(4), and ȳ(7) are computed on the basis of these data

points. (ii) In each and every of the remaining 600 observations, we decide whether its

elements y(1), y(4) and/or y(7) are missing or not by randomly generating an observa-

tion v from N [0, 1]. More specifically, we randomly generate independent observations

v(1), v(2) and v(3) from N [0, 1], then y(1) is deleted only if v(1) > ȳ(1), y(4) is deleted

only if v(2) < ȳ(4) − 1, and y(7) is deleted only if v(3) > ȳ(7) − 1.5. In this missing data

set, y(2), y(3), y(5), y(6), y(8) and y(9) are retained and a number of y(1), y(4) and/or y(7)
are missing at random.

We focus on μ1 (or μ2) in finding a suitable identifiability constraint. The first step is

to apply the random permutation sampler to produce a MCMC sample from the uncon-

strained posterior with size 5000 after a burn-in phase of 500 simulations. This random

permutation sampler delivers a sample that explores a whole unconstrained parameter

space and jumps between the various labeling subspaces in a balanced fashion. For a

mixture of two SEMs, we just have 2! labeling subspaces. In the random permutation

sampler, after each sweep the 1s and 2s are permuted randomly; that is, with proba-

bility 0.5, the 1s stay as 1s and with probability 0.5 they become 2s. The output can

be explored to find a suitable identifiability constraint. Based on the reasoning given in

Appendix B, it suffices to consider the parameters in μ1. To search for an appropriate

identifiability constraint, we look at scatterplots of μ1,1 versus μ1,l , l = 2, . . . , 9, for

getting information on aspects of the states that are most different. These scatterplots

are presented in Figure 1. They clearly indicate that the most two significant differ-

ences between the two components are sampled values corresponding to μ1,5 and μ1,6.

If permutation sampling is based on the constraint μ1,5 < μ2,5 or μ1,6 > μ2,6, label

switching will not appear. We can see from Figure 1 that if permutation sampling is

combined with the constraint μ1,1 < μ1,2 (or μ1,1 < μ1,3, etc.), label switching may

still present in the MCMC outputs.

Bayesian estimates are obtained by using permutation sampler with the identifiability

constraint μ1,5 < μ2,5, and utilizing the incomplete data with missing entries. Values

of hyper-parameters in the conjugate prior distributions (see (6)) are taken as: For h =
1, . . . , 9, μ0,h equals to the sample mean ȳh, Σ0 = 102I , elements in Λ0km, and Π0kl

(which only involves the γ ’s) are taken to be true parameter values, H 0ykm and H 0ωkl
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Fig. 1. Scatterplots of MCMC output for components of μ1.
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Table 1

Bayesian estimates of parameters, their standard deviations and root mean squares obtained in Simulation 1

Component 1 Component 2

Par Mean SD RMS Par Mean SD RMS

π1 = 0.5 0.510 0.030 0.031 π2 = 0.5 0.490 0.030 0.031

μ1,1 = 0.0 −0.010 0.089 0.101 μ2,1 = 0.0 0.010 0.089 0.087

μ1,2 = 0.0 −0.007 0.048 0.057 μ2,2 = 0.0 0.005 0.061 0.061

μ1,3 = 0.0 −0.003 0.047 0.055 μ2,3 = 0.0 0.006 0.061 0.061

μ1,4 = 0.0 −0.010 0.079 0.080 μ2,4 = 0.5 0.524 0.079 0.078

μ1,5 = 0.0 0.028 0.071 0.084 μ2,5 = 1.5 1.499 0.058 0.077

μ1,6 = 1.0 0.982 0.066 0.109 μ2,6 = 0.0 0.012 0.059 0.090

μ1,7 = 1.0 0.994 0.094 0.100 μ2,7 = 1.0 1.005 0.094 0.097

μ1,8 = 1.0 0.994 0.045 0.042 μ2,8 = 1.0 1.002 0.057 0.056

μ1,9 = 1.0 1.005 0.046 0.045 μ2,9 = 1.0 0.999 0.058 0.057

λ1,21 = 0.4 0.414 0.055 0.053 λ2,21 = 0.8 0.783 0.060 0.056

λ1,31 = 0.4 0.402 0.056 0.054 λ2,31 = 0.8 0.778 0.060 0.063

λ1,52 = 0.8 0.786 0.070 0.084 λ2,52 = 0.4 0.406 0.062 0.073

λ1,62 = 0.8 0.784 0.074 0.089 λ2,62 = 0.4 0.412 0.062 0.065

λ1,83 = 0.4 0.440 0.071 0.076 λ2,83 = 0.8 0.803 0.077 0.059

λ1,93 = 0.4 0.444 0.070 0.081 λ2,93 = 0.8 0.809 0.078 0.069

γ1,1 = 0.2 0.227 0.085 0.076 γ2,1 = 0.7 0.722 0.099 0.088

γ1,2 = 0.7 0.705 0.117 0.089 γ2,2 = 0.2 0.222 0.076 0.061

φ1,11 = 1.0 1.008 0.127 0.122 φ2,11 = 1.0 0.961 0.137 0.142

φ1,12 = 0.3 0.272 0.080 0.078 φ2,12 = 0.3 0.302 0.079 0.073

φ1,22 = 1.0 0.865 0.152 0.181 φ2,22 = 1.0 0.985 0.154 0.128

ψ1,11 = 0.5 0.567 0.094 0.088 ψ2,11 = 0.5 0.553 0.078 0.081

ψ1,22 = 0.5 0.514 0.046 0.046 ψ2,22 = 0.5 0.522 0.055 0.049

ψ1,33 = 0.5 0.520 0.046 0.049 ψ2,33 = 0.5 0.523 0.055 0.052

ψ1,44 = 0.5 0.530 0.071 0.062 ψ2,44 = 0.5 0.568 0.087 0.092

ψ1,55 = 0.5 0.563 0.069 0.091 ψ2,55 = 0.5 0.527 0.053 0.050

ψ1,66 = 0.5 0.540 0.065 0.066 ψ2,66 = 0.5 0.522 0.053 0.061

ψ1,77 = 0.5 0.608 0.107 0.128 ψ2,77 = 0.5 0.588 0.092 0.108

ψ1,88 = 0.5 0.517 0.047 0.045 ψ2,88 = 0.5 0.530 0.059 0.056

ψ1,99 = 0.5 0.519 0.047 0.047 ψ2,99 = 0.5 0.528 0.060 0.054

ψ1,δ = 0.5 0.550 0.092 0.071 ψ2,δ = 0.5 0.561 0.084 0.086

are the identity matrices, α0εk = α0δk = 10, β0εk = β0δk = 8, ρ0 = 6 and R−1
0 = 5I .

The α in the Dirichlet distribution of π is taken as 1. We conduct a few test runs, and

find that the algorithm converged in less than 500 iterations. Hence, Bayesian estimates

in 100 replications are obtained using a burn-in phase of 500 iterations, and a total of

J = 2000 observations collected after the burn-in phase. Based on 100 replications,

the mean (Mean), standard deviations (SD), and root mean squares (RMS) between

estimates and true values are computed. Results are reported in Table 1. We observe

that the means of the Bayesian estimates are pretty close to their true parameter values,

and the RMS values are reasonably small. These results indicate that the permutation

sampler under a suitable identifiability constraint produces rather accurate Bayesian

estimates for a mixture of SEMs with poorly separated components.
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To see the importance of choosing a good identifiability constraint, we have con-

ducted a simulation on the basis of the same settings of the two-component SEMs, but

using the inappropriate constraint μ1,1 < μ2,1. We observe that the means of Bayesian

estimates for the parameters {μ1,5, μ1,6,Λ1,Γ 1} and {μ2,5, μ2,6,Λ2,Γ 2} in 100 repli-

cations are quite close. Hence, the method fails to identify a two-component SEM, and

the means of these parameters in 100 replications are not close to their correspond-

ing true values. For example, the means of the estimates for (μk,5, μk,6) are (0.711,

0.514) when k = 1, and (0.809, 0.487) when k = 2; the means of the estimates

of (λk,21, λk,31, λk,52, λk,62, λk,83, λk,93) for k = 1, 2 are (0.589, 0.583, 0.605, 0.615,

0.613, 0.616), and (0.606, 0.595, 0.575, 0.596, 0.628, 0.634); and the means of the es-

timates of (γk,1, γk,2) for k = 1, 2 are (0.459, 0.480), and (0.488, 0.449); respectively.

The reason for these findings can be revealed from the first scatterplot in Figure 1, in

relation to μ1,1 and μ1,2.

4.2. Simulation study 2: Sensitivity analysis with respect to prior inputs

The objectives of this simulation study is to investigate the sensitivity of model selection

results with respect to different types of prior hyper-parameter inputs. The data set is

generated from a mixture SEMs with two components defined by (1), (2), and (3). For

each k = 1, 2, the model involves six manifest variables which are indicators for three

latent variables η, ξ1 and ξ2. The structure of the loading matrix in each component is

ΛT =
[

1.0 λk,21 0 0 0 0

0 0 1.0 λk,42 0 0

0 0 0 0 1.0 λk,63

]
,

where the one’s and zero’s are fixed parameters for achieving an identified covariance

structure, whilst λk,21, λk,42 and λk,63 are unknown parameters. In the kth component,

the structural equation is of the following form η = γk,1ξ1 + γk,2ξ2 + δ, where γk,1 and

γk,2 are unknown parameters. The true population values are given by π1 = π2 = 0.5,

μ1 = (0, . . . , 0)T, μ2 = (0, 0, 0, 2, 2, 2)T; λ1,21 = λ1,42 = λ1,63 = 0.4, λ2,21 =
λ2,42 = λ2,63 = 0.8, γ1,1 = γ1,2 = 0.6, γ2,1 = 0.6, γ2,2 = −0.6, φ1,11 = φ1,22 =
φ2,11 = φ2,22 = 1.0, φ1,12 = φ2,12 = 0.3, ψ1,11 = · · · = ψ1,66 = 0.5, ψ2,11 =
· · · = ψ2,66 = 0.64, ψ1,δ = 0.36 and ψ2,δ = 0.80. In this 2-component model, the total

number of unknown parameters is 40. The MAR missing data are created via similar

steps as in Section 4.1. We compute the logarithm of the Bayes factor by the proposed

path sampling procedure with 20 grids in [0, 1]. Based on the convergence behaviors of

a few test runs, J = 1000 observations collected after 500 burn-in iterations are used in

the computation of �U(s) at each grid, see (9) and (10).

The sensitivity analysis is conducted to reveal the impact of different prior hyper-

parameters inputs in the conjugate prior distributions given in (6). As there are various

kinds of distributions, we consider five different groups of hyper-parameters according

to the characteristics of the corresponding parameters. These groups are:

(I) α’s in the Dirichlet distribution associated with π ;

(II) (μ0,Σ0) in the normal distribution associated with μk;

(III) (α0εk, β0εk), and (α0δk, β0δk) respectively associated with ψ−1
km and ψ−1

δkl ;
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Table 2

Different prior inputs

Type [Hyper-parameters] Prior inputs

I II III

A [α1, α2] (1, 1) (1, 2) (2, 1)

B [μ0h,Σ0] (ȳ(h), 42I ) (ȳ(h), 22I ) (ȳ(h), 82I )

C [(α0εk , β0εk) = (α0δk, β0δk)] (3, 8) (3, 4) (3, 12)

D [Λ0km,H 0ykm] (T.V., I ) (T.V./2, 2I ) (2 × T.V., 3I )

[Π0km,H 0ωkl ] (T.V., I ) (T.V./2, 2I ) (2 × T.V., 3I )

E [R−1
0

, ρ0] (3I , 8) (2I , 4) (4I , 12)

Note: T.V. means true values. Type A means the other prior inputs in (ii), (iii), (iv), and (v) are fixed at the

basic prior inputs. Types B, C, D and E are similarly defined.

(IV) (Λ0km,H 0ykm) and (Π0kl,H 0ωkl) respectively associated with Λkm and Πkl ,

(V) (R−1
0 , ρ0) associated with Φ.

We study each group separately by holding the hyper-parameter values in the other

groups fixed. We use the following values as the basic prior inputs:

(i) For D(α1, α2): α1 = α2 = 1.

(ii) For N [μ0,Σ0]: μ0h = ȳh, h = 1, . . . , 6, Σ0 = 42I .

(iii) For Gamma(α0εk, β0εk) and Gamma(α0δk, β0δk): (α0εk, β0εk) = (α0δk, β0δk) =
(3, 8).

(iv) For N [Λ0km,H 0ykm] and N [Π0kl,H 0ωkl]: Λ0km and Π0kl are the true parameter

matrices, H 0ykm and H 0ωkl are the appropriate identity matrices.

(v) For IW(R0, ρ0): ρ0 = 8 and R−1
0 = 3I .

According to the suggestion of Kass and Raftery (1995), we perturb the prior inputs

of the hyper-parameter values within the particular group. For example, to study the

sensitivity of the results with respect toμ0 andΣ0, we additionally consider (μ0,Σ0) =
(ȳ(h)/2, 22I ), and (μ0,Σ0) = (2ȳ(h), 82I ), but holding the prior inputs in (i), (iii), (iv),

and (v) fixed at the basic prior inputs. Different types (A, B, C, D, E) of prior inputs are

summarized in Table 2. The total number of different settings is 15.

We consider the performance of path sampling for computing the Bayes factor in

comparing an one-component mixture SEM M1 against a two-component mixture SEM

M2. Due to the heavy computation burden and the fact that it is not absolutely necessary

to use many replications for revealing the performance and the sensitivity of the Bayes

factor, we only taken ten replications. The means and standard deviations that are ob-

tained from the ten replications are presented in Table 3. For the sensitivity analysis, we

compare the means of the logB21 estimates that are obtained under prior inputs I, II,

and III associated with Types A, . . . , E. We observe that the logB21 estimates that are

associated with Types A, E and probably D are not significantly different, whilst the es-

timates that are associated with Types B and C are quite different. These results indicate

that the log Bayes factor is more sensitive to the prior inputs of Types B and C. Compar-

ing the logB21 estimates under priors I, II, and III associated with Type B, we observe
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Table 3

Mean and standard deviation (SD) of estimated logB21

Type Prior inputs

I II III

Mean SD Mean SD Mean SD

A 14.57 8.00 16.92 5.65 19.45 6.34

B 14.34 8.05 19.13 5.03 8.99 6.18

C 14.75 9.74 29.85 5.26 9.45 5.19

D 16.46 6.69 12.14 6.96 11.55 5.94

E 16.70 7.71 13.60 7.79 17.68 4.95

that the estimates under prior III with Σ0 = 82I are generally smaller. According to its

definition and interpretation, the log Bayes factors estimated with prior input III tend

to favor the simpler (one-component) model. This is an natural phenomenon in model

selection of mixture models, because a large Σ0 gives more freedom for μk to vary and

hence has less power to separate the components. However, the Bayes factor still has

enough power to select the correct model. Similarly, from results in relation to Type C

(note that the prior distributions are corresponding to ψ−1
km and ψ−1

δkl ), we observe that

the log Bayes factors estimated on the basis of prior distributions with larger variances

(e.g., prior input III), so that the corresponding parameters have more freedom to vary,

tend to favor the simpler one-component model. Note also that the Bayes factor still has

the power to select the correct model.

We consider the performance of the procedure for comparing a two-component and

a three-component model. The logB32 estimates are computed under the different prior

inputs as before. We observe that the log Bayes factors are within the range −0.3 to

−2.0. According to the criterion for interpreting the log Bayes factors, the correct two-

component mixture SEMs is selected by the log Bayes factor under all different choices

of prior inputs.

The above simulation study has been conducted with the listwise deletion approach

that only uses the fully observed data. We found that an incorrect one-component model

is selected under all the different cases.

5. An illustrative example

The illustrative example is based on a small portion of ICPSR data set collected in

the project WORLD VALUES SURVEY 1981–1984 AND 1990–1993 (World Values

Study Group, ICPSR version, 1994). Although the whole data set was collected in 45

societies around the world, only the data obtained from the United Kingdom are used.

Six variables that are related to respondents’ job and homelife are taken as manifest

variables in y = (y(1), . . . , y(6))
T. For completeness, the corresponding questions are

presented in Appendix C. These variables are measured via a 10-point scale and hence

are treated as continuous. There are 1483 random observations, many of them are with
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missing entries and there are only 196 fully observed data. From the questions asso-

ciated with the manifest variables, it is natural to consider a measurement model with

three latent variables: η, ξ1 and ξ2, such that the first two variables are indicators for η,

the 3rd and 4th variables are indicators for ξ1, and the remaining manifest variables are

indicators for ξ2. We choose the structure that gives non-overlapping latent variables for

clear interpretation and for identifying the model. The following specifications on the

parameter matrices of component are used: B = 0, Γ = (γ1, γ2), Ψ δ = ψδ ,

(11)

ΛT =
(

1.0∗ λ21 0∗ 0∗ 0∗ 0∗

0∗ 0∗ 1.0∗ λ42 0∗ 0∗

0∗ 0∗ 0∗ 0∗ 1.0∗ λ63

)
, Φ =

(
φ11 φ12

φ21 φ22

)
,

and Ψ = diag(ψ1, . . . , ψ6). The latent variables can be roughly interpreted as ‘job

satisfaction, η’, ‘homelife, ξ1’, and ‘job attitude, ξ2’.

We first conduct the model selection analysis to choose an appropriate number of

components for the mixture of SEM, then estimate the unknown parameters in the se-

lected model via the MCMC procedure with a permutation sampler as described in

Section 3.1. Here, the formulation of the model in every component is taken to be the

same as in (11). The Bayes factor computed via path sampling is used to select a model

with the most appropriate number of components. The following hyper-parameters val-

ues are used: μ0 = ȳ, where ȳ is obtained on the basis of the 196 fully observed

data, Σ0 = 92I ; α1 = α2 = 1; Λ0km = 0, Π0kl = 0, H 0ykm = I , H 0ωkl = I ;

(α0εk, β0εk) = (α0δk, β0δk) = (2, 30); and ρ0 = 20, R−1
0 = 5I . Again, for each t(s),

we observe that the Gibbs sampler algorithm converged quickly within 500 iterations.

A total of J = 1000 additional observations are simulated by the Gibbs sampler after

convergence for computing �U(s) in (10), and then log Bayes factors are estimated via

(9), using 20 fixed grids in [0, 1]. Let Mk denotes the mixture model with k components,

the log Bayes factor estimates are equal to ̂logB21 = 61.42, and ̂logB32 = −0.96. Ac-

cording to the criterion given in Kass and Raftery (1995), a two-component model is

selected. The selection results that are obtained via the log Bayes factors have been

cross-validated with different prior inputs. The same conclusion of selecting a two-

component model is obtained.

In estimation, based on MCMC samples simulated by the random permutation sam-

pler, we find that μ1,1 < μ2,1 is a suitable identifiability constraint. Bayesian estimates

of the selected mixture model with two components are obtained by using permutation

sampler combined with this identifiability constraint. Results are presented in Table 4,

together with the HPD intervals. We observe that parameter estimates of μ1, μ2, μ3,

μ5, μ6, λ21, λ63, γ2, φ12, ψ11, . . . , ψ66, and ψδ under components 1 and 2 are quite

different. This finding roughly cross-validates the model selection result that a two-

component model is better than an one-component model. Hence, it is concluded that

there are two heterogeneous groups in the data set, which have some significantly dif-

ferent parameters in their mean vectors and covariance structures. For other structural

models that produce reasonably closeΣk , we expect to get a similar result of selecting a

two-component model. As we have not included all possible models in the comparison,

we cannot conclude that the selecting model is the globally best fitting model.
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Table 4

Bayesian solution under the 2-component model in analyzing the ICPSR data set

Par Component 1 Component 2

Est HPD Est HPD

π 0.336 [0.279, 0.387] 0.664 [0.613, 0.721]
μ1 6.955 [6.616, 7.245] 8.862 [8.762, 8.967]
μ2 6.069 [5.720, 6.391] 8.200 [8.081, 8.315]
μ3 1.864 [1.283, 2.410] 2.543 [2.299, 2.789]
μ4 5.125 [4.772, 5.471] 5.481 [5.243, 5.714]
μ5 5.843 [5.448, 6.248] 8.186 [8.025, 8.342]
μ6 5.024 [4.393, 5.715] 7.839 [7.539, 8.130]
λ21 0.564 [0.309, 0.813] 0.999 [0.857, 1.132]
λ42 2.266 [1.604, 2.942] 2.339 [1.978, 2.688]
λ63 2.714 [0.975, 4.542] 1.069 [0.682, 1.504]
γ1 0.214 [−0.161, 0.582] 0.180 [0.088, 0.277]
γ2 −0.940 [−1.674,−0.248] 0.370 [0.201, 0.545]
φ11 1.111 [0.542, 1.764] 1.310 [0.957, 1.748]
φ12 −0.114 [−0.340, 0.108] 0.180 [0.012, 0.340]
φ22 0.508 [0.211, 0.932] 0.766 [0.467, 1.076]
ψ11 2.645 [1.677, 3.491] 0.615 [0.509, 0.732]
ψ22 3.810 [3.137, 4.610] 0.954 [0.790, 1.136]
ψ33 2.210 [1.310, 3.136] 1.346 [1.043, 1.725]
ψ44 4.396 [2.501, 6.630] 2.453 [1.651, 3.283]
ψ55 5.842 [4.592, 7.072] 1.324 [1.014, 1.642]
ψ66 5.826 [3.736, 8.078] 2.884 [2.030, 3.925]
ψδ 2.576 [1.643, 3.452] 0.752 [0.615, 0.897]

6. Analysis via WinBUGS

In practice, the freely available software WinBUGS (W
¯

indows V
¯

ersion of B
¯

ayesian

I
¯
nference U

¯
sing G

¯
ibbs S

¯
ampling, Spiegelhalter et al., 2003) is very useful for the pro-

duction of reliable Bayesian statistics for a very wide range of statistical models (see

Congdon, 2003), including most SEMs (Lee, 2007). WinBUGS was mainly developed

using MCMC techniques, such as the Gibbs sampler (Geman and Geman, 1984) and

the Metropolis–Hastings (MH) algorithm. Under broad conditions, this software can

provide simulated samples from the joint posterior distribution of the unknown quanti-

ties, such as the parameters and latent variables in the proposed model. As mentioned,

empirical summary statistics can be obtained from these samples to conduct statistical

inferences, such as obtaining Bayesian estimates and their standard error estimates.

The most advanced version of BUGS is WinBUGS 1.4, which iteratively runs with

Windows and was developed by the Medical Research Council (MRC) Biostatistics

Unit (Cambridge, UK) and the Department of Epidemiology and Public Health of the

Imperial College School of Medicine at St Mary’s Hospital (London). It can be freely

downloaded from the website http://www.mrc-bsu.cam.ac.uk/bugs/. The free version of

WinBUGS is a restricted version, and it is necessary to email the BUGS project for a

key that will allow the user to use the full version. The WinBUGS manual (Spiegelhalter
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Table 5

Results obtained via WinBUGS in analyzing the artificial data set

Component 1 Component 2

Par Est HPD Par Est HPD

π1 = 0.5 0.503 [0.449, 0.547] π2 = 0.5 0.497 [0.442, 0.551]
μ1,1 = 0.0 −0.076 [−0.224, 0.077] μ2,1 = 0.0 0.116 [−0.038, 0.264]
μ1,2 = 0.0 −0.004 [−0.096, 0.091] μ2,2 = 0.0 0.076 [−0.057, 0.203]
μ1,3 = 0.0 −0.010 [−0.095, 0.075] μ2,3 = 0.0 0.028 [−0.057, 0.203]
μ1,4 = 0.0 −0.078 [−0.229, 0.087] μ2,4 = 0.5 0.560 [0.418, 0.701]
μ1,5 = 0.0 0.033 [−0.111, 0.181] μ2,5 = 1.5 1.580 [1.471, 1.690]
μ1,6 = 1.0 1.012 [0.903, 1.121] μ2,6 = 0.0 0.049 [−0.063, 0.150]
μ1,7 = 1.0 0.962 [0.803, 1.119] μ2,7 = 1.0 1.059 [0.887, 1.235]
μ1,8 = 1.0 1.011 [0.924, 1.092] μ2,8 = 1.0 1.084 [0.969, 1.200]
μ1,9 = 1.0 1.002 [0.909, 1.093] μ2,9 = 1.0 1.110 [1.002, 1.230]
λ1,21 = 0.4 0.313 [0.214, 0.418] λ2,21 = 0.8 0.861 [0.744, 0.995]
λ1,31 = 0.4 0.402 [0.303, 0.506] λ2,31 = 0.8 0.816 [0.699, 0.951]
λ1,52 = 0.8 0.724 [0.610, 0.847] λ2,52 = 0.4 0.516 [0.388, 0.665]
λ1,62 = 0.8 0.709 [0.589, 0.837] λ2,62 = 0.4 0.496 [0.365, 0.633]
λ1,83 = 0.4 0.367 [0.235, 0.524] λ2,83 = 0.8 0.768 [0.613, 0.963]
λ1,93 = 0.4 0.418 [0.276, 0.601] λ2,93 = 0.8 0.865 [0.693, 1.067]
γ1,1 = 0.2 0.212 [0.021, 0.394] γ2,1 = 0.7 0.856 [0.648, 1.080]
γ1,2 = 0.7 0.787 [0.549, 1.103] γ2,2 = 0.2 0.194 [0.044, 0.346]
φ1,11 = 1.0 0.992 [0.776, 1.239] φ2,11 = 1.0 0.777 [0.560, 1.027]
φ1,21 = 0.3 0.263 [0.095, 0.459] φ2,21 = 0.3 0.270 [0.143, 0.411]
φ1,22 = 1.0 0.934 [0.549, 1.372] φ2,22 = 1.0 0.925 [0.624, 1.293]
ψ1,11 = 0.5 0.526 [0.376, 0.711] ψ2,11 = 0.5 0.572 [0.437, 0.729]
ψ1,22 = 0.5 0.557 [0.470, 0.656] ψ2,22 = 0.5 0.485 [0.384, 0.600]
ψ1,33 = 0.5 0.507 [0.425, 0.598] ψ2,33 = 0.5 0.569 [0.465, 0.688]
ψ1,44 = 0.5 0.492 [0.368, 0.626] ψ2,44 = 0.5 0.639 [0.484, 0.811]
ψ1,55 = 0.5 0.486 [0.384, 0.600] ψ2,55 = 0.5 0.551 [0.447, 0.665]
ψ1,66 = 0.5 0.548 [0.433, 0.680] ψ2,66 = 0.5 0.505 [0.412, 0.613]
ψ1,77 = 0.5 0.680 [0.452, 0.966] ψ2,77 = 0.5 0.555 [0.387, 0.761]
ψ1,88 = 0.5 0.573 [0.474, 0.681] ψ2,88 = 0.5 0.568 [0.445, 0.701]
ψ1,99 = 0.5 0.569 [0.471, 0.679] ψ2,99 = 0.5 0.494 [0.370, 0.632]
ψ1,δ = 0.5 0.527 [0.356, 0.736] ψ2,δ = 0.5 0.520 [0.379, 0.691]

et al., 2003) is available online, and gives brief instructions on WinBUGS. See also

Lawson et al. (2003, Chapter 4) for supplementary descriptions.

In analyzing mixtures of SEMs with missing data, WinBUGS can be applied to ob-

tain Bayesian estimates of the latent variables, the unknown parameters and their HPD

intervals. However, for model comparison, it does not directly produce the Bayes fac-

tor. Moreover, Spiegelhalter et al. (2003) pointed out that the Deviance Information

Criteria (DIC) may not be appropriate for model comparison of mixture models. Thus,

WinBUGS also does not give the DIC value for mixture model.

To illustrate the application of WinBUGS in estimation for mixtures of SEMs with

missing data, an artificial data set is simulated on the basis of exactly the same settings

presented in the Simulation study I of Section 4. This simulated data set was reanalyzed

by WinBUGS. Again, we first conducted an initial estimation to identify the appropriate
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identifiability constraint μ1,5 < μ2,5 from the output as before. The model is then rean-

alyzed with this constraint, and three starting values of the parameters that are obtained

from the sample mean, the 5th, and the 95th percentile of the corresponding simulated

samples. In analyzing this data set under the same hyperparameter values as before,

WinBUGS converged in less than 2000 iterations. Bayesian estimates are obtained from

2000 observations collected after convergence. These estimates are presented in Table 5,

together with the HPD intervals. We observe that the results produced by WinBUGS are

satisfactory.

7. Discussion

Missing data are particularly important in the analysis of mixture models, because ignor-

ing these data may lead to an incorrect decision in selecting the number of components,

and hence may give very misleading conclusion. We develop a Bayesian approach for

analyzing mixture SEMs with MAR data and an unknown number of components. The

main novel contributions are:

(i) A Bayesian estimation procedure that is coupled with a permutation sampler for

selecting an identifiability constraint to solve the label switching problem. It is

shown that the proposed procedure gives accurate estimates even for mixture SEMs

with poorly separated components, and that inappropriate constraints may give

incorrect results.

(ii) Extensions of the procedures for estimation and model comparison in Lee and

Song (2003a) are developed for analysis of mixture SEMs with MAR data.

(iii) Sensitivity analyses of the statistical results with respect to the assumption of MAR

and to prior inputs of the hyper-parameters.

(iv) Bayesian classification of incomplete observation.

In general, it is well known that (see Kass and Raftery, 1995; Richardson and Green,

1997; among others) Bayesian model selection tends to be more sensitive to priors than

estimation. This is indeed a characteristic of model selection problems that is reflected

by reasonable statistical methods such as the Bayes factor. On the basis of our sensi-

tivity results on prior inputs, more attention should be paid on the prior inputs of Σ0

in the prior distribution of μk , and [(α0εk, β0εk), (α0δk, β0δk)] in the prior distributions

corresponding to the inverses of the error measurement variances. In practice, it is de-

sirable to compute several log Bayes factors with different prior inputs to cross-validate

the decision. Of course knowledge of experts should not be ignored.

Clearly, there are several useful extensions of the current model; for example, mod-

els involve missing data with an non-ignorable missing mechanism, and/or SEMs with

more complex structures. Developments of good statistical methods for handling these

extensions represent interesting topics for future research.
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Appendix A. The permutation sampler

Let ψ = (Ymis,Z,W , θ ,π), the permutation sampler for simulating ψ from the poste-

rior p(ψ |Y obs) is implemented as below:

1. First generate ψ̂ from the unconstrained posterior p(ψ |Y obs) using standard Gibbs

sampling steps;

2. Select some permutation ρ(1), . . . , ρ(K) of the current labeling of the states and

define ψ = ρ(ψ̂) from ψ̂ by reordering the labeling through this permutation,

(θ1, . . . , θK) := (θρ(1), . . . , θρ(K)), π = (π1, . . . , πK) := (πρ(1), . . . , πρ(K)) and

W = (w1, . . . , wn) := (ρ(w1), . . . , ρ(wn)).

One application of permutation sampling is the random permutation sampler, where

each sweep of the MCMC chain is concluded by relabeling the states through a random

permutation of {1, . . . , K}. This procedure delivers a sample that explores the whole

unconstrained parameter space and jumps between the various labeling subspaces in a

balanced fashion. Another application is the permutation sampling under identifiability

constraints. A way to include an identifiability constraint is to use a permutation sam-

pler, where the permutation is selected in such a way that the identifiability constraint

is fulfilled.

Appendix B. Searching for identifiability constraints

For k = 1, . . . , K , let θk denote parameter vector corresponding to the kth compo-

nent. The MCMC output of the random permutation sampler can be explored to find a

suitable identifiability constraint, see Frühwirth-Schnatter (2001). It is sufficient to con-

sider the parameters in θ1, because a balanced sample from the unconstrained posterior

will contain the same information for all parameters in θk with k �= 1. As the random

permutation sampler jumps between the various labeling subspaces, part of the values

simulated for θ1 will belong to the first state, part will belong to the second state, and so

on. To differ for various states, it is useful to consider bivariate scatterplots of θ1,i ver-

sus θ1,a for possible combinations of i and a. Jumping between the labeling subspaces

produces groups in these scatterplots that correspond to different states. By describing

the difference between the various groups geometrically, identification of a unique la-

beling subspace through conditions on the state-specific parameters is attempted. If the

values simulated for a certain component of θ differ significantly between the groups

when jumping between the labeling subspaces, then an order condition on this com-

ponent could be used to separate the labeling subspaces, whilst if the values sampled

for a certain component of θ hardly differ between the states when jumping between

the labeling subspaces, then this component will be a poor candidate for separating the

labeling subspaces.
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Appendix C. Manifest variables in the ICPSR example

The number of the variable corresponding to the original data set is given in parenthesis

at the end of each statement.

y(1): Overall, how satisfied are you with your home life? (V180)

y(2): All things considered, how satisfied are you with your life as a whole in these day?

(V96)

y(3): Thinking about your reasons for doing voluntary work, how important the reli-

gious beliefs in your own case? (V62)

y(4): How important is God in your life? (V176)

y(5): Overall, how satisfied or dissatisfied are you with your job? (V116)

y(6): How free are you to make decisions in your job? (V117)
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Local Influence Analysis for Latent Variable Models

with Non-Ignorable Missing Responses

Bin Lu, Xin-Yuan Song, Sik-Yum Lee and Fernand Mac-Moune Lai

Abstract

A general procedure for local influence analysis of a generic latent variable model

with non-ignorable missing data is provided. The local influence measures are based

on the conditional expectation of the complete-data log-likelihood function in the

corresponding EM algorithm. It is shown that the proposed methodology is feasible

for a wide variety of perturbation schemes. Especially, a minor perturbation to the

missing model is introduced to investigate the effect of how minor perturbations

on the missing mechanism model can lead a large impact on key features of the

whole model. To illustrate the methodology, two models are considered here. For the

normal mixed effects model, results that are obtained from analyses of a simulation

study, and a real example on a longitudinal study of a kidney disease are presented.

And for the generalized linear mixed model, an artificial example is used to show

the performance of our method.

Keywords: Conformal normal curvature; Generalized linear mixed model; Local

influence; Non-ignorable missing mechanism; Normal mixed effects model

1. Introduction

Local influence analysis has been regarded as a crucial component in a thorough sta-

tistical analysis. It is an important statistical technique to assess the stability of the

estimation output with respect to the model inputs. Model inputs may include data,

parameters to be estimated, errors and model specifications, assumptions or other char-

acteristics. Output may include the parameters estimates, final objective function values,

estimates of residuals and standard errors, etc. One main objective of local influence is to

assess whether the model output is particularly sensitive to minor perturbations of the

model input. The perturbations may take the various forms including deletion of part

of the data, changes in model specifications, etc. Cook (1986) proposed a unified ap-

proach for the assessment of local influence in minor perturbations of a statistical model.

In the past years, this approach dominated the local influence analysis in biomedical

statistics. Typical examples are the application to proportional hazards models (Cain

109
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and Lange, 1984; Weissfeld, 1990), regression models with censored data (Escobar

and Meeker, 1992), nonlinear regression (Laurent and Cook, 1993), generalized linear

models (Thomas and Cook, 1989), linear mixed models (Lesaffre and Verbeke, 1998;

Demidenko and Stukel, 2005), and generalized linear mixed models (Ouwens et al.,

2001; Zhu and Lee, 2003), among others.

It is well recognized that latent variable models, such as random effect models

(Laird and Ware, 1982), and generalized linear mixed models (GLMMs) (Zeger and

Karim, 1991; Breslow and Clayton, 1993; Diggle et al., 1994) are particularly useful

for analyzing longitudinal data in biomedical research. In longitudinal studies, miss-

ing response data are very common due to treatment dropout, study dropout, mistimed

measurements, subjects’ inability to participate due to sickness, and so forth. A sub-

ject’s response can be missing at one follow-up time and then can be measured at the

next follow-up time, resulting in arbitrary nonmonotone missing data patterns. Often,

missing response data in these studies are non-ignorable in the sense that the reason

for the missing data often depends on the missing values themselves (Little and Rubin,

1987). For example, the side effects of the treatment may make the patients worse and

thereby affect their participation. Hence, it is important to develop a statistical method

for analyzing latent variable models with missing data that are missing with a non-

ignorable missing mechanism. Recently, Ibrahim et al. (2001) proposed a maximum

likelihood (ML) method for estimating parameters in the GLMMs with non-ignorable

missing data that are also missing with nonmonotone patterns. However, very limited

work has been done so far on developing local influence methods for latent variable

models with nonmonotone and non-ignorable missing data.

Recently, based on Cook’s approach (Cook, 1986), Verbeke et al. (2001) developed

local influence measures for linear mixed models with dropouts. van Steen et al. (2001)

applied their method to the multivariate model of Dale (1986). The principal idea of

their method is to explore how small perturbations around a missing at random (MAR)

dropout model in the direction of a missing not at random (MNAR) mechanism can have

a large impact. However, their work is limited to monotone missing data; hence, missing

data with arbitrary missing patterns cannot be assessed. Moreover, they applied Cook’s

approach which cannot be applied to some complex models because the building blocks

in the associated diagnostic measures involve intractable integrals. Hence, their method

cannot be applied to analyze the general nonmonotone and non-ignorable missing data

in more complex models like GLMMs.

The development of local influence measures for latent variable models with non-

ignorable missing data on the basis of Cook’s approach is rather difficult (see Davidian

and Giltinan, 1995). The reason for this is that the observed data likelihood function

involves intractable integrals, and hence the objective function and second derivatives

in the basic building blocks of Cook’s local influence measures are difficult to evalu-

ate. In this article, we will develop a general procedure for local influence analysis of

a generic latent variable model with non-ignorable missing data based on the approach

given in Zhu and Lee (2001). As this procedure is tied up with the powerful EM algo-

rithm (Dempster et al., 1977) that is effective in handling missing data, and can take the

advantages of the Markov chain Monte Carlo (MCMC) methods in creating the diagnos-
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tic measures, we expect that this procedure has wide application to the local influence

of models in biomedical research.

This paper is organized as follows. Section 2 deals with local influence measures for

a generic latent variable model (LVM) with non-ignorable missing data. The application

of the newly developed methodologies to the normal mixed effects models, and to the

GLMMs are presented in Sections 3 and 4, respectively. Finally, a discussion is given

in Section 5. Some technical details are given in Appendices A–C.

2. Local influence of latent variable models with non-ignorable missing data

2.1. A generic latent variable model with non-ignorable missing data

Consider a data set with observations that are composed of a response, yij , and covariate

vectors xij (s1 × 1) and zij (s2 × 1), where j = 1, . . . , ni within clusters i = 1, . . . , N .

For example, a subject can be considered as a cluster, and repeated measurements for

this subject i can be obtained at ni different time points. Let M0 be a latent variable

model to fit yi = (yi1, . . . , yini )
′ which involves latent variables bi(s2 × 1), i = 1,

. . . , N . Let θ be the vector of unknown parameters in M0 which may involve regression

coefficients and/or variances and covariances of some random vectors and let f (yi; θ)
be the probability density function of yi . Responses yij and yik are correlated, but

yi, i = 1, . . . , N , are independent.

To accommodate the missing data, we define a missing indicator ri = (ri1, . . . , rini )
′

for yi such that rij = 1 if yij is missing, and rij = 0 if yij is observed. Let R =
(r1, . . . , rN ), and Ym and Yo be the missing data and the observed data, respectively.

If the distribution of r is independent of Ym, the missing mechanism is defined to be

MAR; otherwise, the missing mechanism is non-ignorable (Little and Rubin, 1987).

For analyzing missing data with a non-ignorable and unknown mechanism, the basic

issues include specifying specify a reasonable model for r given Ym and Yo, and then

developing statistical methods for analyzing the posited latent variable model together

with the missing model that accounts for the non-ignorable missing mechanism. Let

yi = (y′
oi, y′

mi)
′, where yoi is a vector of observed manifest variables and ymi is a vector

of missing components of the random vector yi . Here, we assume an arbitrary pattern of

missing data in yi ; thus, yi = (y′
oi, y′

mi)
′ may represent some permutation of the indices

of the original yi . Hence, the missing pattern is nonmonotone. Let [ri |yi,Xi,Zi,bi, γ ]
be the conditional distribution of ri given yi,Xi,Zi and bi with parameter γ , where

Xi = (xi1, . . . , xini )
′ and Zi = (zi1, . . . , zini )

′. The observed-data likelihood of θ and

γ based on Yo and R is given by:

Lo(θ , γ ; Yo,R)

(1)∝
N∏

i=1

∫

bi ,ymi

f (yi |bi, θ)f (ri |yi,Xi,Zi,bi, γ )f (bi |θ) dbi dymi .

In general, the integral in (1) does not have a closed form and its dimension is equal

to the sum of the dimensions of bi and ymi . Here, f (ri |yi,Xi,Zi,bi, γ ) is related to
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the non-ignorable missingness mechanism. We now consider the selection of a model

for the non-ignorable missingness mechanism. Theoretically, any general model can be

taken. However, one must be careful not to use a too complicated or large model, since it

can easily become unidentifiable. Moreover, a too complex model will also induce dif-

ficulty in deriving the corresponding conditional distributions of the missing responses

given the observed data, and inefficient sampling from those conditional distributions.

Based on the suggestion in Ibrahim et al. (2001), we propose the following model for

the non-ignorable missingness mechanism:

(2)f (ri |yi,Xi,Zi,bi, γ ) =
ni∏

j=1

π
rij
ij (1 − πij )

1−rij ,

where πij = Pr(rij = 1|yi, xij , zij ,bi, γ ). Ibrahim et al. (2001) pointed out that since

rij is binary, one can use a sequence of logistic regressions for modeling Pr(rij =
1|yi, xij , zij ,bi, γ ) in (2). They also pointed out that this model has the potential for re-

ducing the number of parameters in the missing data mechanism. Furthermore it yields

correlation structures between the rij ’s, allows more flexibility in specifying the miss-

ing data model, and facilities efficient sampling from the conditional distribution of

the missing response given the observed data. Hence, the following logistic regression

model is used:

(3)m(yi, xij , zij ,bi, γ ) = logit
{
Pr(rij = 1|yi, xij , zij ,bi, γ )

}
= γ ′Fij ,

where Fij = (1, y′
i, x′

ij , z′
ij )

′ and γ is the corresponding regression coefficient. Any pa-

rameter in the γ can be fixed to zero. Hence, the non-ignorable missing mechanism

defined in the above is rather flexible. It can be handled in special cases in which ri just

depends on a subset of entries in yi , or a subset of entries in xij and zij , or both. Due

to the complexity of the latent variable model, the complicated pattern of the missing

data, and the presence of the random effects bi , the integral in (1) does not usually have

an analytic form. Therefore, the observed data likelihood is complicated. Hence, it is

difficult to calculate local influence measures based on Cook’s approach that depends

heavily on the observed data likelihood.

2.2. Local influence analysis

Consider a perturbation vector ω = (ω1, . . . , ωm)
′. Let ψ = (θ ′, γ ′)′, and the observed

data log-likelihood ℓo(ψ; Yo,R) = logLo(ψ; Yo,R). In Cook’s approach (Cook,

1986), the following likelihood-displacement function was considered:

LD(ω) = 2
{
ℓo(ψ̂; Yo,R) − ℓo(ψ̂

∗
ω; Yo,R,ω)

}
,

where ψ̂ ∗
ω is the vector that maximizes ℓo(ψ; Yo,R,ω), and the local behavior of

LD(ω) is studied by examining the normal curvature of the influence graph GL(ω) =
(ω′,LD(ω))′ for developing the local influence measures. As ℓo(ψ̂; Yo,R) is usually

very complicated, the Cook approach will encounter serious difficulties.

As pointed out by Ibrahim et al. (2001), the ML estimate ψ̂ of ψ can be obtained

by applying a Monte Carlo EM (MCEM) type of algorithm on the complete data log-

likelihood, ℓc(ψ; Ym,Ω,Yo,R), where Ω = (b1, . . . ,bN ) is treated as hypothetical
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missing data. The E-step at the rth iteration of the MCEM algorithm evaluates

(4)Q(ψ |ψ (r)) = E
[
ℓc(ψ; Ym,Ω,Yo,R)|Yo,R,ψ (r)

]
,

where the expectation is taken with respect to the conditional distribution of (Ym,Ω)

given Yo and R at ψ (r). We derive the local influence measure based on an objective

function that is defined by (4). As usual, we assume that there is a null point ω0 such

that ℓω(ψ; Ym,Ω,Yo,R,ω0) = ℓc(ψ; Ym,Ω,Yo,R) for all ψ . Let ψ̂(ω) be the ML

estimate of ψ for the perturbed model which maximizes

(5)Q(ψ,ω|ψ̂) = E
[
ℓω(ψ; Ym,Ω,Yo,R,ω)|Yo,R, ψ̂

]
.

Obviously, ψ̂(ω0) = ψ̂ . Inspired by Zhu and Lee (2001), we consider the following

Q-displacement function:

(6)fQ(ω) = 2
{
Q(ψ̂ |ψ̂) − Q

(
ψ̂(ω)|ψ̂

)}
.

Similar to Cook (1986), and Zhu and Lee (2001), we measure the influence of an

observation on the local behavior of the Q-displacement function, which is defined

in terms of its normal or conformal normal curvatures for the small perturbation of

ω from ω0. We define the following notations: Q̈ω0 = ∂2Q(ψ̂(ω)|ψ̂)/∂ω∂ω′|ω=ω0 ,

Q̈
ψ̂

= ∂2Q(ψ |ψ̂)/∂ψ∂ψ ′|
ψ=ψ̂

and Δω0 = ∂2Q(ψ,ω|ψ̂)/∂ψ∂ω′|
ψ=ψ̂,ω=ω0 . Under

some mild regularity conditions, −Q̈
ψ̂

and −Q̈ω0 are semi-positive definite. Based on

the reasoning given in Zhu and Lee (2001), the conformal normal curvature BfQ,h at ω0

in the direction of a unit vector h is given as follows:

(7)BfQ,h = −2h′Q̈ω0h

tr{−2Q̈ω0}
,

where

(8)Q̈ω0 = Δ′
ω0 Q̈−1

ψ̂
Δω0 .

Let Q = −2Q̈ω0/ tr{−2Q̈ω0}, and λ1 � · · · � λr > 0 be the r nonzero eigenval-

ues of Q, and e1, . . . , er be the corresponding orthogonal eigenvectors. The follow-

ing aggregate contribution vector (Lesaffre and Verbeke, 1998; Poon and Poon, 1999;

Zhu and Lee, 2001) of all eigenvectors that are associated with all nonzero eigenvalues

M(0) =
r∑

i=1

λie
2
i ,

where e2
i = (e2

i1, . . . , e
2
im)

′, is used for assessing local influence. For j = 1, . . . , m,

it follows from Zhu and Lee (2001) that the j th component of M(0), M(0)j = qj for

j = 1, . . . , m, where qj is the j th diagonal element of the matrix Q. Therefore, it is

very simple to compute qj , because no eigenfunctions and eigenvalues are involved.

The unusual aspects of model input can be detected from the relatively large elements

in {M(0)j , j = 1, . . . , m}. Let �M(0) and SM(0) be the mean and standard deviation

of {M(0)j , j = 1, . . . , m}. We have �M(0) = 1/m (see Zhu and Lee, 2001), which
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just depends on m. Therefore, it is reasonable to regard observations whose M(0)j
is significantly larger than �M(0) = 1/m as influential. Therefore, a relatively large

M(0)j play important roles in determining the influence of single observations. Taking

into account the variation of M(0)j , c1
�M(0) + c2SM(0) may be used as a benchmark,

where c1 and c2 are selected constants. Hence, the j th observation may be regarded as

influential if M(0)j > c1
�M(0) + c2SM(0).

In order to get the conformal normal curvature BfQ,h, we need to calculate Δω0

and Q̈
ψ̂

(see (7) and (8)). Due to the existence of the non-ignorable missing data and

the random effects, these expectations are evaluated by Monte Carlo integrations. The

technical details are given in Appendices A and B.

3. Normal mixed effects model

3.1. Model and local influence analysis

Suppose we use the following normal mixed effects model (Laird and Ware, 1982) to

fit the data described in Section 2. For the j th response for the ith subject, it can be

modelled as:

yij = x′
ijβ + z′

ijbi + εij , i = 1, . . . , N; j = 1, . . . , ni,

(9)bi ∼ Ns2
(0,Σ),

εij ∼ N
(
0, σ 2

f

)
,

where β(s1×1) is a vector of the fixed effects associated with covariate vector xij ; bi are

mutually independent s2 × 1 subject-specific random effects associated with covariate

vector zij ; Σ is the s2 × s2 covariance matrix, and Σ = Σ(σ ) depends on σ (s3 × 1),

a vector of unknown variance components. εij are mutually independent errors, and bi

and εij are independent. As for the missing data, we use the model given in (2) and (3)

to describe the non-ignorable missing mechanism. Let ψ = (β ′, σ 2
f , σ

′, γ ′)′. Then the

complete data log-likelihood apart from a constant is given by:

ℓc(ψ; Ym,Ω,Yo,R)

(10)= ℓ1

(
β, σ 2

f ; Ym,Ω,Yo,R
)
+ ℓ2(σ ;Ω) + ℓ3(γ ; Ym,Yo,R),

where

ℓ1

(
β, σ 2

f ; Ym,Ω,Yo,R
)

(11)= −1

2

N∑

i=1

ni∑

j=1

{
log σ 2

f + 1

σ 2
f

(
yij − x′

ijβ − z′
ijbi

)2
}
,

(12)ℓ2(σ ;Ω) = −1

2

N∑

i=1

{
log |Σ | + bT

i Σ
−1bi

}
,

(13)ℓ3(γ ; Ym,Yo,R) =
N∑

i=1

ni∑

j=1

{
rij logπij + (1 − rij ) log(1 − πij )

}
.
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To study the sensitivity of uncertainties in the data or model, we can proceed by spec-

ifying a perturbation scheme via the vector ω. The following are the four useful pertur-

bation schemes which we considered for the normal mixed effects model. To calculate

the building blocks for Q̈ω0 , we need to calculate ∂2ℓω(ψ; Ym,Ω,Yo,R,ω)/∂ψ∂ω′

for each perturbation scheme and ∂2ℓc(ψ; Ym,Ω,Yo,R)/∂ψ∂ψ ′; see (8). The formu-

lae for these two second derivatives are listed in Appendix C.

(1) Case weights within clusters

Without considering the data structure, we are only interested in finding out influ-

ential data points in all observations. A useful strategy is to add a weight to every data

point. Let ω be an I × 1 perturbation vector, where I =
∑N

i=1 ni . The perturbed com-

plete data log-likelihood ℓω(ψ; Ym,Ω,Yo,R,ω) apart from a constant is given by:

(14)ℓ1ω

(
β, σ 2

f ; Ym,Ω,Yo,R,ω
)
+ ℓ2(σ ;Ω) + ℓ3(γ ; Ym,Yo,R),

where

ℓ1ω

(
β, σ 2

f ; Ym,Ω,Yo,R,ω
)

= −1

2

N∑

i=1

ni∑

j=1

ωij

{
log σ 2

f + 1

σ 2
f

(
yij − x′

ijβ − z′
ijbi

)2
}
,

and the other two parts are the same as in (12) and (13). Then ω0 = 1I , where 1I is an

I × 1 vector with all elements equal to 1. This is the most popular perturbation scheme

in the diagnostic literature.

(2) Case weights among clusters

Suppose that we are interested in identifying the clusters which are outlying among

other clusters. Now, we consider simultaneous changes in the weights of all clusters

via ω = (ω1, . . . , ωN )′, an N × 1 vector of weights. The perturbed complete data log-

likelihood apart from a constant is similar to (14), but here,

ℓ1ω

(
β, σ 2

f ; Ym,Ω,Yo,R,ω
)

= −1

2

N∑

i=1

ωi

(
ni∑

j=1

{
log σ 2

f + 1

σ 2
f

(
yij − x′

ijβ − z′
ijbi

)2
})

.

In this perturbation scheme, the null point ω0 = 1N .

(3) Multiplicative perturbation on random effects

Consider a perturbation scheme via an N × 1 vector ω such that bi(ω) = ωi ⊗ bi .

In this case, ω0 = (1, . . . , 1)′. Ignoring a constant, the perturbed complete data log-

likelihood is given by:

(15)ℓ1ω

(
β, σ 2

f ; Ym,Ω,Yo,R,ω
)
+ ℓ2ω(σ ;Ω,ω) + ℓ3(γ ; Ym,Yo,R),
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where

ℓ1ω

(
β, σ 2

f ; Ym,Ω,Yo,R
)

= −1

2

N∑

i=1

ni∑

j=1

{
log σ 2

f + 1

σ 2
f

(
yij − x′

ijβ − z′
ijbiωi

)2
}
,

ℓ2ω(σ ;Ω,ω) = −1

2

N∑

i=1

{
log |Σ | + ω2

i bT
i Σ

−1bi

}
,

and the other part is the same as in (13). The null point for this case is ω0 = 1N , where

1N is an N × 1 vector with all elements equal to 1.

(4) Case weights perturbation on missing mechanism

As we use the logistic regression model to represent the missing mechanism, it is

necessary for us to investigate the effect of how minor perturbations on the missing

mechanism model can effect a large impact on the key features of the whole model.

Let ω be an I × 1 perturbation vector. The perturbed complete data log-likelihood apart

from a constant is given by:

(16)ℓ1

(
β, σ 2

f ; Ym,Ω,Yo,R
)
+ ℓ2(σ ;Ω) + ℓ3ω(γ ; Ym,Yo,R,ω),

where

ℓ3ω(γ ; Ym,Yo,R,ω) =
N∑

i=1

ni∑

j=1

ωij

[
rijγ

′Fij − log
(
1 + exp(γ ′Fij )

)]
,

and the other two parts are the same as in (11) and (12). Then ω0 = 1I , where 1I is an

I × 1 vector with all elements equal to 1.

3.2. Simulation study

In the simulation study, we consider the following normal random effects model:

(17)yij = β1xij1 + β2xij2 + bi + εij , i = 1, . . . , 50,

where xij1 = j − 3 and xij2 = 1 if i � 25 and 0 if otherwise. The data set involves

50 clusters of size ni = 7. To create the non-ignorable missing data, we consider the

following logistic regression model:

(18)logit Pr(rij = 1|yi, γ ) = γ0 + γ1yi,j−1 + γ2yij ,

for i = 1, . . . , 50; j = 2, . . . , ni .

The parameters involved in (17) are set as follows: β ′ = (2.0, 1.0), εij ∼ N (0, σ 2
f )

with σ 2
f = 0.36, and the random effects bi ∼ N (0, σ 2

b ) with σ 2
b = 0.25. The parameters

involved in the missing mechanism model (18) are set at γ ′ = (1.0, 1.0,−1.0). Under

the above settings, the average rate of missingness is about 30%.

To meet the needs of this paper, we are ready to generate three data sets with outliers.

For data set I, we set b50 = 12 and regenerate {yij : i = 50; j = 1, . . . , 7} according to
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Table 1

ML estimates in the simulation for the normal mixed effects model

Para. MLE

Data I Data II Data III

β1 2.008 2.016 2.007

β2 0.994 0.453 0.985

γ0 0.516 2.791 0.306

γ1 0.823 2.983 0.772

γ2 −0.861 −3.218 −0.761

σ 2
f

0.365 4.301 0.365

σ 2
b

8.280 0.222 0.347

the above normal random effects model. Therefore, the last cluster is an outlying cluster.

For data set II, we use {bi = 12: i = 46, . . . , 50} to generate {yi,ni : i = 46, . . . , 50}
from the same model. There are five outliers in the second data set. Data set III is

generated as follows. To create outliers, for i = 46, 47, 48, 49, 50; j = 7, we set the

missing probabilities of yij to follow the following model:

logit Pr(rij = 1|yi, γ ) = γ0.

That is, for these five responses, their missing probabilities are the constants, which are

different from the other responses.

For each of the above three data sets, the ML estimates of unknown parameters

were obtained via the MCEM algorithm (Ibrahim et al., 2001), and they are reported in

Table 1. To estimate the local influence measures, we ran the Gibbs sampler to collect

52 000 random observations from the joint conditional distribution [Ym,Ω|Yo,R, ψ̂]
based on the ML estimates were derived. The first 2000 observations were discarded as

the burn-in phase, the last 50 000 random observations were used to calculate Δω0 and

Q̈ψ (ψ̂) via the formulae (A.3) and (A.4) in Appendix A.

For data set I, we consider the perturbation schemes 2 and 3. The plots of M(0)j for

these four perturbation schemes are shown in Figures 1 and 2. As we expected, only the

last cluster is identified as an outlying cluster in Figures 1 and 2.

For data set II, we consider perturbation schemes 1 and 2. The plots of M(0)j for

these three perturbation schemes are shown in Figures 3 and 4. From Figure 3, we see

that five artificial outlying observations are detected and from Figure 4, we also see that

the clusters with outlying observations are identified.

For data set III, we consider the perturbation on the missing mechanism (perturba-

tion scheme 4). The plots of M(0)j are shown in Figure 5. As expected, only the five

responses with different missing mechanisms are identified as outliers.

3.3. Real example: the renal data

The data set in relation to this longitudinal study is obtained from 131 patients with

IgA nephropathy. The resulting variable is the patients’ serum levels of creatinine
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Fig. 1. Index plots of M(0)j and benchmark (—) for case weights among clusters: Artificial data I for normal

mixed effects model.

Fig. 2. Index plots of M(0)j and benchmark (—) for multiplicative perturbation on random effects: Artificial

data I for normal mixed effects model.

(creat) which best reflect the renal kidney function. The covariates include cortex

(co), glomerular grade (gg), tubulointerstitial grade (tig), sex (= 0 for ‘male’, and

= 1 for ‘female’), total protein in 24-hour urine (24utp), and serum calcium (ca).

Let yij = logcreatij be the j th observation for the ith patient. For this data set, we

consider the following normal random effects model:

yij = β0 + β1coi + β2ggi + β3tigi + β4sexi + β524utpij

+ β6caij + bi + εij , i = 1, . . . , 131,
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Fig. 3. Index plots of M(0)j and benchmark (—) for case weights within clusters: Artificial data II for normal

mixed effects model.

Fig. 4. Index plots of M(0)j and benchmark (—) for case weights among clusters: Artificial data II for

normal mixed effects model.

where bi ∼ N (0, σ 2
b ) and εij ∼ N (0, σ 2

f ). To cope with the missing responses in this

data set, we use the following logistic regression to model the missing mechanism:

logit Pr(rij = 1|yi, γ ) = γ0 + γ1yi,j−1 + γ2yi,j + γ3coi + γ4ggi + γ5tigi

(19)+ γ6sexi + γ724utpij + γ8caij .

The ML estimates of the model parameters obtained via the MCEM algorithm (Ibrahim

et al., 2001) are reported in Table 2. To estimate the local influence measures, we used
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Fig. 5. Index plots of M(0)j and benchmark (—) for case weights perturbation on missing mechanism:

Artificial data III for normal mixed effects model.

Table 2

Results for the renal data

Para. MLE SE Para. MLE SE

β0 3.799 0.037 γ0 1.136 0.341

β1 −0.017 0.003 γ1 −0.188 0.031

β2 0.134 0.012 γ2 −0.142 0.072

β3 0.344 0.012 γ3 −0.091 0.023

β4 0.242 0.016 γ4 0.401 0.026

β5 −0.032 0.009 γ5 −0.601 0.036

β6 0.034 0.015 γ6 −0.643 0.039

γ7 −1.438 0.313

σ 2
f

0.122 0.005

σ 2
b

0.124 0.012

the Gibbs sampler to collect 52 000 random observations from the joint conditional

distribution [Ym,Ω|Yo,R, ψ̂] based on the ML estimates were derived. After discard-

ing the first 2000 observations as burn-in phase, the last 50 000 random observations

were used to calculate Δω0 and Q̈ψ (ψ̂) via the formulae (A.3) and (A.4) given in

Appendix A.

The four perturbation schemes given in Section 3.1 are considered. Plots of M(0)j
for case weights perturbation within patients (perturbation scheme 1) are shown in Fig-

ure 6. From this figure, we know that 14 observations stand out as the influential or

potential outliers, and they are (2, 7), (9, 8), (49, 9), (62, 5), (66, 3), (88, 2), (88, 3),

(88, 4), (99, 2), (108, 9), (112, 2), (112, 3), (113, 2), and (127, 9), in which the first

entry in the bracket represents the patient’s number, and the second entry denotes the ob-
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Fig. 6. Index plots of M(0)j and benchmark (—) for case weights within clusters: Renal data.

Fig. 7. Index plots of M(0)j and benchmark (—) for case weights among clusters: Renal data.

servation’s number. We find out that these data points are significantly larger or smaller

than the other observations in the data set. For example, the seventh observation of the

second patient (2, 7) is 146, but the other observations of this patient are from 998 to

1358. Therefore, we should pay more attention to this patient; specifically, why the

patient’s serum levels of creatinine change so sharply should be studied.

To identify the influential clusters, we considered the case weights perturbation

among clusters (perturbation scheme 2). Plots of M(0)j associated with this pertur-

bation scheme are presented in Figure 7. There are three patients who were detected as

influential. They are the 9th, 88th, and 112th patients. From the above results, we can
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Fig. 8. Index plots of M(0)j and benchmark (—) for multiplicative perturbation on random effects: Renal

data.

Fig. 9. Index plots of M(0)j and benchmark (—) for case weights perturbation on missing mechanism: Renal

data.

see that some patients with influential observations can also be detected as influential

clusters by the perturbation scheme 2. The 9th patient has the most influential observa-

tion (9, 8) which has the largest M(0)j in the perturbation scheme 1. Meanwhile, the

88th and 112th patients who have more than one influential observations.

To study the effects of departure from the assumption that bi ∼ N (0, σ 2
b ), we con-

sidered the multiplicative perturbation on random effects (perturbation scheme 3). The

diagnostic measures are presented in Figure 8 which also shows us that the 41st, 46th,
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88th, and 100th patients are influential clusters. That is to say that about 3% of the obser-

vations (i.e., four among 131 patients) are more sensitive to the variance σ 2
b . Therefore,

it seems that the assumption of homogeneity of the random effects is reasonable.

To investigate the sensitivity of the missing mechanism, we also considered perturba-

tion scheme 4 for this data set. The diagnostic measures of this perturbation scheme are

plotted in Figure 9. From this figure, we see that there are only two responses which are

more influential. They are the 9th observation of the 6th patient, and the 5th observation

of the 88th patient. Therefore, almost all responses are robust to missing model (19).

4. Generalized linear mixed model

4.1. Model and local influence analysis

In this section, we use another specific latent variable model to fit the data which are

described in Section 2. It is assumed that conditional on a latent vector bi(s2 × 1), yij
follows an exponential family distribution (see, McCullagh and Nelder, 1989) of the

following form:

(20)f (yij |β,bi, φ) = exp
[
φ
{
yij θij − a(θij )

}
+ c(yij , φ)

]
,

where φ is a scalar dispersion parameter, and θ(·) is a link function. The conditional

mean and conditional variance of yij given bi are respectively E(yij |bi) = μij = ȧ(θij )

and var(yij |bi) = ä(θij )/φ, where ȧ(u) = da/du and ä(u) = d2a/du2. The GLMMs

are defined by (20) and the systematic component

(21)g(μij ) = ηij = x′
ijβ + z′

ijbi, or θij = k
(
x′
ijβ + z′

ijbi

)
,

where β = (β1, . . . , βs1
)′ is a vector of regression coefficients, and k(·) and g(·) are

known continuous differentiable functions. Moreover, k(·) and g(·) satisfy k(u) =
ȧ−1(g−1(u)), where ȧ−1(·) and g−1(·) are the inverse functions of ȧ(·) and g(·), re-

spectively. The distribution of bi is assumed to be normal Ns2
(0,Σ), where Σ = Σ(σ )

depends on σ (s3 ×1), which is a vector of unknown variance components. To deal with

the missing data problem, we also use the model given in (2) and (3) to describe the

non-ignorable missing mechanism. Let ψ = (β ′, φ, σ ′, γ ′)′. Then the complete data

log-likelihood apart from a constant is given by:

ℓc(ψ; Ym,Ω,Yo,R)

(22)= ℓ1(β, φ; Ym,Ω,Yo,R) + ℓ2(σ ;Ω) + ℓ3(γ ; Ym,Yo,R),

where

(23)ℓ1(β, φ; Ym,Ω,Yo,R) =
N∑

i=1

ni∑

j=1

[
φ
{
yij θij − a(θij )

}
+ c(yij , φ)

]
,

(24)ℓ2(σ ;Ω) = −1

2

N∑

i=1

{
log |Σ | + b′

iΣ
−1bi

}
,
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(25)ℓ3(γ ; Ym,Yo,R) =
N∑

i=1

ni∑

j=1

{
rij logπij + (1 − rij ) log(1 − πij )

}
.

Similar to Section 3.1, we also considered the following four perturbation schemes

for this model:

(1) Case weights within clusters

Let ω be an I × 1 perturbation vector, where I =
∑N

i=1 ni . The perturbed complete

data log-likelihood, ℓω(ψ; Ym,Ω,Yo,R,ω), ignoring a constant is given by:

(26)ℓ1ω(β, φ; Ym,Ω,Yo,R,ω) + ℓ2(σ ;Ω) + ℓ3(γ ; Ym,Yo,R),

where

ℓ1ω(β, φ; Ym,Ω,Yo,R,ω)

=
N∑

i=1

ni∑

j=1

ωij

[
φ
{
yij θij − a(θij )

}
+ c(yij , φ)

]
,

and the other two parts are the same as in (24) and (25).

(2) Case weights among clusters

Let ω = (ω1, . . . , ωN )′, then the perturbed complete data log-likelihood apart from

a constant is similar to (26), but here:

ℓ1ω(β, φ; Ym,Ω,Yo,R,ω)

=
N∑

i=1

ωi

{
ni∑

j=1

[
φ
{
yij θij − a(θij )

}
+ c(yij , φ)

]
}
.

(3) Multiplicative perturbation on random effects

Consider a perturbation scheme via an N × 1 vector ω such that bi(ω) = ωi ⊗ bi .

The perturbed complete data log-likelihood apart from a constant is given by:

(27)ℓ1ω(β, φ; Ym,Ω,Yo,R,ω) + ℓ2ω(σ ;Ω,ω) + ℓ3(γ ; Ym,Yo,R),

where

ℓ1ω(β, φ; Ym,Ω,Yo,R,ω)

=
N∑

i=1

ni∑

j=1

[
φ
{
yijk(x

′
ijβ + z′

ijbiωi) − a
(
k(x′

ijβ + z′
ijbiωi)

)}
+ c(yij , φ)

]
,

ℓ2ω(σ ;Ω,ω) = −1

2

N∑

i=1

{
log |Σ |+ω2

i b′
iΣ

−1bi

}
,

and the other part is the same as in (25).
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(4) Case weights perturbation on missing mechanism

Let ω be an I × 1 perturbation vector. The perturbed complete data log-likelihood

apart from a constant is given by:

(28)ℓ1

(
β, σ 2; Ym,Ω,Yo,R

)
+ ℓ2(σ ;Ω) + ℓ3ω(γ ; Ym,Yo,R,ω),

where

ℓ3ω(γ ; Ym,Yo,R,ω) =
N∑

i=1

ni∑

j=1

ωij

[
rijγ

′Fij − log
(
1 + exp(γ ′Fij )

)]
,

and the other two parts are the same as in (23) and (24).

To get the conformal normal curvature BfQ,h, we need to calculate the second deriv-

atives ∂2ℓω(ψ; Ym,Ω,Yo,R,ω)/∂ψ∂ω′ and ∂2ℓc(ψ; Ym,Ω,Yo,R)/∂ψ∂ψ ′; see (7)

and (8). The formulae for these two second derivatives are given in Appendix C.

4.2. Artificial example

In this artificial example, we follow the design of Zeger and Karim (1991) and we

consider the following model:

logit Pr(yij = 1|bi)

(29)= β0 + β1tj + β2xi + β3xi tj + bi1 + bi1tj , i = 1, . . . , 100,

where yij is a conditionally independent binary observation, xi = 1 for half of the

samples xi = 0 for the other half, and tj = j − 4 for j = 1, . . . , 7. The data set

involves 100 clusters of size ni = 7. To create the non-ignorable missing data, the

logistic regression model is used to model the missing probability of yij :

(30)logit Pr(rij = 1|yi, γ ) = γ0 + γ1yi,j−1 + γ2yij ,

for i = 1, . . . , 100; j = 2, . . . , ni .

The fixed effects coefficients are set at β ′ = (−2.5, 1.0,−1.0,−0.5) while the

random effects (bi1, bi2) are generated as a series of 100 independent and identically

distributed normal variables with mean 0 and covariance matrix Σ = diag(0.5, 0.25),

a 2 × 2 diagonal matrix. The parameters involved in the missing model (30) are set

at γ ′ = (−1.0, 1.0, 1.0). Under the above settings, the average rate of missingness is

about 30%.

Three data sets with artificial outliers are created to illustrate the performance of

the method proposed in this paper. In data set I, we use xi t7 + 10, i = 1, . . . , 5, as

the covariate for β3 to generate {yi7: i = 1, . . . , 5} from the same model. There are

five outliers in this data set. For data set II, we use {bij = 10: i = 1, 2; j = 1, 2} to

generate {yi : i = 1, 2}. Hence, there are two artificial outlying clusters. Data set III is

generated as follows. To create outliers, for i = 96, . . . , 100; j = 7, we set the missing

probabilities of yij to follow the following model:

logit Pr(rij = 1|yi, γ ) = γ0.
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Table 3

ML estimates in the simulation for the generalized linear mixed model

Para. MLE

Data I Data II Data III

β0 −2.726 −2.866 −2.801

β1 1.090 1.116 1.113

β2 −0.920 −0.588 −0.917

β3 −0.724 −0.720 −0.768

γ0 −0.935 −0.92 −0.924

γ1 0.150 0.326 0.123

γ2 0.956 0.804 0.862

σ11 0.331 0.445 0.365

σ22 0.117 0.116 0.118

Fig. 10. Index plots of M(0)j and benchmark (—) for case weights within clusters: Artificial data I for

GLMMs.

Therefore, the missing mechanism for these five responses is missing completely at

random, which are different from the other responses.

The ML estimates of unknown parameters were obtained via the MCEM algorithm

proposed by Ibrahim et al. (2001). These estimates are reported in Table 3 for each of

the above-simulated data sets. Based on the ML estimates, 52 000 random observations

were simulated from the joint conditional distribution [Ym,Ω|Yo,R, ψ̂] via the Gibbs

sampler (see Appendices A and B). The first 2000 observations were discarded as burn-

in phase, while the last 50 000 random observations were used to calculate the building

blocks, Δω0 and Q̈ψ (ψ̂), via the formulae (A.3) and (A.4) in Appendix A.

For data set I, we consider perturbation schemes 1 and 2. The plots of M(0)j for

these four perturbation schemes are shown in Figures 10 and 11. As we expected, only

the five created outliers stand out with significantly large local influence measures in
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Fig. 11. Index plots of M(0)j and benchmark (—) for case weights among clusters: Artificial data I for

GLMMs.

Fig. 12. Index plots of M(0)j and benchmark (—) for case weights among clusters: Artificial data II for

GLMMs.

Figure 10. From Figure 11, we also see that the clusters with outlying observations are

identified.

For data set II, we consider perturbation schemes 2 and 3. The plots of M(0)j for

these two perturbation schemes are shown in Figures 12 and 13. From these two figures,

we see that only two artificial outlying clusters are detected.

For data set III, we consider the perturbation on the missing mechanism (perturbation

scheme 4). The plots of M(0)j are shown in Figure 14. As expected, only the five

responses with different missing mechanisms are identified as outliers.
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Fig. 13. Index plots of M(0)j and benchmark (—) for multiplicative perturbation on random effects: Artificial

data II for GLMMs.

Fig. 14. Index plots of M(0)j and benchmark (—) for case weights perturbation on missing mechanism:

Artificial data III for GLMMs.

5. Conclusion

Due to the complexity of the observed data log-likelihood functions of the model con-

sidered in this paper, it is very difficult to obtain influence measures based on Cook’s

approach (Cook, 1986). To overcome this difficulty, we developed the influence mea-

sures on the basis of the Q-displacement function instead of the troublesome observed

data log-likelihood function. The results obtained from our simulation studies indicate

that this method works very well, and it can detect influential observations efficiently.
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Appendix A

To get the basic building blocks of local influence measures, we need to derive expres-

sions for Δω0 and Q̈
ψ̂

(see (8)). Assuming the legitimacy of interchange of integration

and differentiation, we have

(A.1)Q̈
ψ̂

= E

[
∂2ℓc(ψ; Ym,Ω,Yo,R)

∂ψ∂ψ ′

∣∣∣∣Yo,R, ψ̂

]∣∣∣∣
ψ=ψ̂

,

(A.2)Δω0 = E

[
∂2ℓω(ψ; Ym,Ω,Yo,R,ω)

∂ψ∂ω′

∣∣∣∣Yo,R, ψ̂

]∣∣∣∣
ψ=ψ̂,ω=ω0

.

Due to the existence of the real missing data, it is difficult to evaluate directly the

conditional expectations of the second derivatives in (A.1) and (A.2). Inspired by the

idea given in (Wei and Tanner, 1990), we can overcome this difficulty via the Monte

Carlo approximation. Therefore, a sufficiently large number of observations need to be

generated from the conditional distribution of (Ym,Ω) given Yo, R and ψ̂ . The Gibbs

sampler (Geman and Geman, 1984) can be used for this aim. The basic algorithm of

the Gibbs sampler is briefly given as below: At the j th iteration with current values Y
j
m

and Ωj :

Step (a): Generate Y
j+1
m from [Ym|Ωj ,Yo,R, ψ̂];

Step (b): Generate Ωj+1 from [Ω|Yj+1
m ,Yo,R, ψ̂].

The details of how to simulate the values from the above two full conditional distribu-

tions are given in Appendix B.

Let {(Yj
m,Ω

j ); j = 1, . . . , J } be a sample randomly drawn from the joint condi-

tional distribution [Ym,Ω|Yo,R, ψ̂], the building blocks can be approximated by

(A.3)Q̈
ψ̂

≈ 1

J

J∑

j=1

∂2ℓc(ψ; Yo,Y
j
m,Ω

j ,R)

∂ψ∂ψ ′

∣∣∣∣
ψ=ψ̂

,

(A.4)Δω0 ≈ 1

J

J∑

j=1

∂2ℓω(ψ; Yo,Y
j
m,Ω

j ,R,ω)

∂ψ∂ω′

∣∣∣∣
ψ=ψ̂,ω=ω0

.

This random sample can usually be obtained by the sampling-based procedure that is

developed for simulating observations in the MCEM procedure for maximum likelihood

estimation. Hence, the additional programming effort is light.

Appendix B

Sampling from f (yij |rij = 1,ψ):

Based on suggestion given in (Roberts, 1996), we choose N [·, α1τ
2] as the proposal

distribution, where τ 2 = (σ−2+γ 2
ij exp(F′

−ijγ−ij )(1+exp(F′
−ijγ−ij ))

−2)−1, γij is the

coefficient of yij in logistic regression (3) and γ−ij is remaining part with γij removed.

The MH algorithm (Metropolis et al., 1953; Hastings, 1970) is implemented as follows:
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At the kth iteration with a current value u
(k)
ij , a new candidate u∗

ij is generated from

N [u(k)ij , α1τ
2], and accepting this new candidate u∗

ij as u
(k+1)
ij with probability

min

{
1,

f (u∗
ij |rij = 1,ψ)

f (u
(k)
ij |rij = 1,ψ)

}
.

Sampling from f (bi |yi, ri,ψ):

Following the arguments in (Quintana et al., 1999), a reasonable proposal distri-

bution for bi is the multivariate normal distribution with mean C(b̂i)Z
′
iWi(b̂i)Zi b̂i

and covariance matrix C(b̂i), where For the convenience of expression, we define the

notations: Z′
i = (zi1, . . . , zini ), W

−1
ij = ä(θij ){ġ(μij )}2, Wi(bi) is the ni × ni di-

agonal matrix with diagonal elements Wij for j = 1, . . . , ni , b̂i is the maximizer

of
∏ni

j=1 f (yi |bi,ψ) and C(bi) = {Σ−1 + Z′
iWi(bi)Zi}−1. However, evaluation of

b̂i wastes a lot of computing time and resulting an inefficient algorithm. Hence, the

following algorithm is implemented to generate observations from the target density

f (bi |yi, ri,ψ): At the kth iteration of the MH algorithm with current value b
(k)
i is

generated from N [b(k)
i , α2C(0)], and accepting this new candidate b∗

i as b
(k+1)
i with

probability

min

{
1,

f (b∗
i |yi, ri,ψ)

f (b
(k)
i |yi, ri,ψ)

}
.

Appendix C

C.1. The derivatives for normal mixed effects model

Let σt1 be the t1th component of σ , Σ̇(t1) = (∂Σ/∂σt1), Σ̈ = (∂2Σ/∂σt1∂σt2), and

Sb =
∑N

i=1 bib
′
i/N .

∂2ℓω(ψ; Ym,Ω,Yo,R)

∂σ 4
f

= 1

σ 4
f

N∑

i=1

ni∑

j=1

{
1

2
− 1

σ 2
f

(
yij − x′

ijβ − z′
ijbi

)2
}
,

∂2ℓω(ψ; Ym,Ω,Yo,R)

∂σ 2
f ∂β

′ = − 1

σ 4
f

N∑

i=1

ni∑

j=1

(
yij − x′

ijβ − z′
ijbi

)
x′
ij ,

∂2ℓω(ψ; Ym,Ω,Yo,R)

∂β∂β ′ = − 1

σ 2
f

N∑

i=1

ni∑

j=1

xijx′
ij ,

∂2ℓω(ψ; Ym,Ω,Yo,R)

∂σt1∂σt2
= − N

2
tr
{
Σ−1Σ̈(t1, t2)Σ

−1(Σ − Sb)

+Σ−1Σ̇(t1)Σ
−1Σ̇(t2)Σ

−1(2Sb −Σ)
}
,
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∂2ℓω(ψ; Ym,Ω,Yo,R)

∂γ ∂γ ′ =
N∑

i=1

ni∑

j=1

{[
rij

πij

− 1 − rij

1 − πij

]
∂2πij

∂γ ∂γ ′

−
[
rij

π2
ij

+ 1 − rij

(1 − πij )2

]
∂πij

∂γ

∂πij

∂γ ′

}
,

whereas ∂2ℓc(ψ; Ym,Ω,Yo,R)/∂ψ∂ψ ′ other terms are equal to zero.

C.1.1. Case weights within clusters

∂2ℓω(ψ; Ym,Ω,Yo,R,ω)

∂ωij∂β
′ = 1

σ 2
f

(
yij − x′

ijβ − z′
ijbi

)
x′
ij ,

∂2ℓω(ψ; Ym,Ω,Yo,R,ω)

∂ωij∂σ
2
f

= − 1

2σ 2
f

{
1 + 1

σ 2
f

(
yij − x′

ijβ − z′
ijbi

)2
}
.

C.1.2. Case weights among clusters

∂2ℓω(ψ; Ym,Ω,Yo,R,ω)

∂ωi∂β
′ = 1

σ 2
f

ni∑

j=1

(
yij − x′

ijβ − z′
ijbi

)
x′
ij ,

∂2ℓω(ψ; Ym,Ω,Yo,R,ω)

∂ωi∂σ
2
f

= − 1

2σ 2
f

ni∑

j=1

{
1 + 1

σ 2
f

(
yij − x′

ijβ − z′
ijbi

)2
}
.

C.1.3. Multiplicative perturbation on random effects

∂2ℓω(ψ; Ym,Ω,Yo,R,ω)

∂ωi∂β
′ = − 1

σ 2
f

ni∑

j=1

z′
ijbix

′
ij ,

∂2ℓω(ψ; Ym,Ω,Yo,R,ω)

∂ωi∂σ
2
f

= − 1

σ 2
f

ni∑

j=1

(
yij − x′β − z′

ijbi

)
z′
ijbi,

∂2ℓω(ψ; Ym,Ω,Yo,R,ω)

∂ωi∂σt1
= b′

iΣ
−1Σ̇(t1)Σ

−1bi .

C.1.4. Case weights perturbation on missing mechanism

∂2ℓω(ψ; Ym,Ω,Yo,R,ω)

∂ωij∂γ ′ = (rij − πij )F
′
ij .

C.2. The derivatives for GLMMs

For the convenience of expression, we define the following notations: ḋij = (yij −
μij )k̇(x

′
ijβ + z′

ijbi) and d̈ij = ä(θij ){k̇(x′
ijβ + z′

ijbi)}2 − (yij − μij )k̈(x
′
ijβ + z′

ijbi).

∂2ℓω(ψ; Ym,Ω,Yo,R)

∂φ2
=

N∑

i=1

ni∑

j=1

∂2c(yij , φ)

∂φ2
,
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∂2ℓω(ψ; Ym,Ω,Yo,R)

∂φ∂β ′ =
N∑

i=1

ni∑

j=1

ḋijx′
ij ,

∂2ℓω(ψ; Ym,Ω,Yo,R)

∂β∂β ′ = −φ

N∑

i=1

ni∑

j=1

d̈ijxijx′
ij ,

∂2ℓω(ψ; Ym,Ω,Yo,R)

∂σt1∂σt2
= −N

2
tr
{
Σ−1Σ̈(t1, t2)Σ

−1(Σ − Sb)

+Σ−1Σ̇(t1)Σ
−1Σ̇(t2)Σ

−1(2Sb −Σ)
}
,

∂2ℓω(ψ; Ym,Ω,Yo,R)

∂γ ∂γ ′ =
N∑

i=1

ni∑

j=1

{[
rij

πij

− 1 − rij

1 − πij

]
∂2πij

∂γ ∂γ ′

−
[
rij

π2
ij

+ 1 − rij

(1 − πij )2

]
∂πij

∂γ

∂πij

∂γ ′

}
,

whereas ∂2ℓc(ψ; Ym,Ω,Yo,R)/∂ψ∂ψ ′ other terms are equal to zero.

C.2.1. Case weights within clusters

∂2ℓω(ψ; Ym,Ω,Yo,R,ω)

∂ωij∂φ
= yij θij − a(θij ) + ∂c(yij , φ)

∂φ
,

∂2ℓω(ψ; Ym,Ω,Yo,R,ω)

∂ωij∂β
′ = φḋijx′

ij .

C.2.2. Case weights among clusters

∂2ℓω(ψ; Ym,Ω,Yo,R,ω)

∂ωi∂φ
=

ni∑

j=1

[
yij θij − a(θij ) + ∂c(yij , φ)

∂φ

]
,

∂2ℓω(ψ; Ym,Ω,Yo,R,ω)

∂ωi∂β
′ = φ

ni∑

j=1

ḋijx′
ij .

C.2.3. Multiplicative perturbation on random effects

∂2ℓω(ψ; Ym,Ω,Yo,R,ω)

∂ωi∂φ
=

ni∑

j=1

ḋij z′
ijbi,

∂2ℓω(ψ; Ym,Ω,Yo,R,ω)

∂ωi∂β
′ = −φ

ni∑

j=1

d̈ij z′
ijbix

′
ij ,

∂2ℓω(ψ; Ym,Ω,Yo,R,ω)

∂ωi∂σt1
= b′

iΣ
−1Σ̇(t1)Σ

−1bi .
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C.2.4. Case weights perturbation on missing mechanism

∂2ℓω(ψ; Ym,Ω,Yo,R,ω)

∂ωij∂γ ′ = (rij − πij )F
′
ij .
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Goodness-of-Fit Measures for Latent Variable Models

for Binary Data

D. Mavridis, I. Moustaki and M. Knott

Abstract

Goodness-of-fit measures for latent variable models for binary responses are dis-

cussed. Overall goodness-of-fit statistics such as the Pearson chi-squared test and the

likelihood ratio test can only be used when the observed and expected frequencies

under the model are large enough. When sparseness is present, limited information

statistics that use information from the lower-order margins have been proposed in

the literature. Those statistics and a new one that is based on the odds ratio are pre-

sented and compared in terms of Type I error and their statistical power. Simulated

results and a real example are used for exploring the performance of the overall and

limited information goodness-of-fit tests under different number of items, sample

size and degree of sparseness. Standardized and adjusted residuals are also studied.

1. Introduction

Goodness-of-fit tests are used to evaluate how well a proposed model fits or predicts a

particular data set. Usually, test statistics compute deviations between the observed data

and predictions from the model. The value of a test statistic is said to be statistically

significant if it is found to be within the rejection area of the distribution of the test

statistic under the assumption that the model is true. The rejection area is often the

upper 5 or 1% of the distribution’s tail.

This chapter discusses goodness-of-fit tests and goodness-of-fit measures for latent

variable models for binary data. Binary manifest variables are very common in the so-

cial sciences where, for example, a yes/no or correct/incorrect response is required.

Latent variable models have been greatly extended in the recent years in many differ-

ent directions. More specifically, latent variable models can handle different types of

observed variables (categorical, metric, survival, mixed variables), variables measured

across time (dynamic models) as well as sampling units nested within levels (multi-

level analysis). Different estimation methods such as the E-M algorithm (Bock and

135
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Aitkin, 1981; Bartholomew and Knott, 1999), the Newton–Raphson algorithm (Rabe-

Hesketh et al., 2001), as well as purely Bayesian approaches (Patz and Junker, 1999;

Dunson, 2000) have been developed for handling the complexity of those multivariate

models. However, less has been done on testing the appropriateness of the fitted latent

variable models.

For k binary variables, the data can be described by a contingency table consisting of

2k cells. The Pearson’s statistic X2 and the likelihood ratio statistic G2 are probably the

most well-known goodness-of-fit statistics for models that are based on the multinomial

distribution. These goodness-of-fit statistics require a large number of observations in

each cell for their asymptotic distributions to hold. However, for a moderate sample size

and large number of variables, sparseness in the 2k table is inevitable. To overcome the

problem of sparseness, limited information statistics similar to Pearson’s X2 but using

only information from the lower order margins are available (Christoffersson, 1975;

Muthén, 1978; Reiser, 1996; Bartholomew and Leung, 2002; Maydeu-Olivares and Joe,

2005).

The chapter is organized as follows: in Section 2, we give a brief description of the

latent variable model for binary variables and the notation that will be used for the rest of

the chapter. In Section 3, we discuss overall goodness-of-fit test statistics and we define

the problem of sparseness and ways to tackle it. Limited information statistics that are

based on lower order margins are presented in Section 4. In Section 5 we propose the

odds ratio for testing model fit. Finally, in Section 6 a large scale simulation study is

performed that compares the available goodness-of-fit statistics in terms of Type I error

and statistical power.

2. Latent variable models for binary responses

Suppose that we have k observed or manifest variables also known as items, and q latent

or unobserved variables. The responses given to a set of k items are called a response

pattern. For a data set with k binary items there are 2k possible response patterns. The

vector of observed variables will be denoted by y where y′ = (y1, y2, . . . , yk) and the

vector of latent variables will be denoted by z where z′ = (z1, z2, . . . , zq).

The responses given to k binary items by n individuals can be presented in two

different ways. One way is to define a data matrix, Y, of dimension n × k, where n

is the number of individuals and k the number of items. The element ymi denotes the

response of the mth individual to the ith item, where m = 1, . . . , n. Another way is to

define a matrix Yr of dimensions 2k × k that contains all possible response patterns in

its rows. The element yrsi of that matrix denotes the value of the response pattern s to

the ith item, where s = 1, . . . , 2k .

The joint distribution of the k observed variables for an individual m is:

(1)f (ym) =
∫

Rz1

. . .

∫

Rzq

g(ym|z)h(z) dz,

where ym is the mth row of matrix Y, h(z) is the prior distribution of the latent variables

z, g(ym|z) is the conditional distribution of the observed variables y given the latent
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variables z and Rzj denotes the range of values of the j th latent variable. The latent vari-

ables are assumed to be independent with standard normal distributions (zj ∼ N(0, 1)

for all j ).

We make the assumption of conditional independence, that is, observed variables are

assumed to be independent conditional on the latent variables. In other words, the asso-

ciations among the observed variables are adequately explained by the latent variables z

giving:

(2)g(ym|z) =
k∏

i=1

g(ymi |z).

Eq. (1) becomes:

(3)f (ym) =
∫ +∞

−∞
. . .

∫ +∞

−∞

k∏

i=1

g(ymi |z)h(z) dz.

For the case of binary variables the distribution of g(ymi |z) is the Bernoulli distribution:

g(ymi |z) =
[
P(ymi = 1|z,β)

]ymi
[
1 − P(ymi = 1|z,β)

]1−ymi ,

i = 1, . . . , k;m = 1, . . . , n,

where P(ymi = 1|z,β) is the probability of individual m answering ‘positively’ to item

i (ymi = 1) conditional on the latent variables (z). The probability P(ymi = 1|z,β) is

modelled with a logistic link written as:

logit
[
P(ymi = 1|z,β)

]
= β0i +

q∑

j=1

βijzj ,

(4)i = 1, . . . , k; m = 1, . . . , n,

where the parameter β0i is an intercept or a location parameter. In psychometrics and

educational testing, the intercept is also known as ‘difficulty’ parameter. The parameters

βij are the factor loadings also known as ‘discrimination’ parameters that measure the

discriminating power of an item. Their size determines the effect that a change in z has

on logitP(ymi = 1|z,β).
It follows that the conditional probability P(ymi = 1|z,β) of answering positively

to item i is:

(5)P(ymi = 1|z,β) =
exp

(
β0i +

∑q

j=1 βijzj
)

1 + exp
(
β0i +

∑q

j=1 βijzj
) .

We denote the vector of all model parameters by β ′ = (β01, . . . , β0k, β11, . . . , β1q , . . . ,

βk1, . . . , βkq). In this paper, the parameters are estimated using maximum likelihood

with the E-M algorithm, treating the latent variables as missing data (Bock and Aitkin,

1981; Bartholomew and Knott, 1999). The estimated vector of parameters is denoted

by β̂.
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3. Goodness-of-fit tests for latent variable models for binary data

The goodness-of-fit of a model can be checked in different ways. One way is to compare

the observed and estimated frequencies under a model across the response patterns. That

will be considered as an overall goodness-of-fit test. Another way is to compare the

observed with the estimated frequencies for lower order margins. Finally, models can

be compared using model selection criteria such as the Akaike (AIC) or the Bayesian

Information Criterion (BIC). In this chapter, we discuss and compare the performance

of tests for overall fit and for fit on the lower order margins.

Each response pattern s occurs in the sample with a frequency ns . The vector

n′ = (n1, n2, . . . , n2k ) contains the observed frequencies of the 2k cells. The 2k vector

of sample (observed) proportions for the response patterns is denoted by p̂
′ = (p̂1,

. . . , p̂2k ). The corresponding vector of true probabilities under the model is denoted by

π(β)′ = (π1(β), . . . , π2k (β)). Each element of π(β)′ is computed from:

P
(
y = yrs

)
= πs(β) =

∫ +∞

−∞
. . .

∫ +∞

−∞

k∏

i=1

g
(
yrsi |z

)
h(z) dz,

(6)s = 1, . . . , 2k,

where yrs denotes the sth row of the data matrix Yr . The estimated probabilities under

the fitted model are denoted by π(β̂)′ = (π1(β̂), . . . , π2k (β̂)) and they are computed

by replacing in (6) the vector β with the estimated one β̂.

In general, the fit of a model is judged by how close the estimated proportions π(β̂)

are to the sample proportions p̂.

3.1. Overall goodness-of-fit tests

The frequencies of the response patterns are considered to follow the multinomial dis-

tribution with parameters the total sample size n and the true probabilities estimated

for each of the 2k response patterns. The multivariate central limit theorem states that,

for large sample size n, the multinomial distribution can be approximated by the multi-

variate normal. This result has been used to obtain approximate distributions for many

goodness-of-fit statistics, such as, the Pearson statistic

(7)X2
Pearson =

2k∑

s=1

(np̂s − nπs(β̂))
2

nπs(β̂)
,

where n is the sample size, p̂s and πs(β̂) are the observed and estimated proportions

respectively for the response pattern s. The estimated probabilities πs(β̂) are computed

from (6) by replacing the true parameters with their corresponding estimates. Cressie

and Read (1984) define a power-divergence family of test statistics given by:

(8)CR(λ) =
2k∑

s=1

2

λ(λ + 1)
np̂s

[(
p̂s

πs(β̂)

)λ

− 1

]
.
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This family contains the Pearson (λ = 1) and the likelihood ratio test (λ = 0). Under a

correct model, all the statistics defined in (8) are asymptotically distributed as χ2 with

(2k-number of parameters estimated-1) degrees of freedom, where k denotes the number

of items.

3.2. Sparseness

When the sample size n is small and the number of items big then the table of frequen-

cies for the response patterns becomes so sparse that the asymptotic results do not give

a good approximation to the distribution of the test statistics.

There is no universally accepted definition of sparseness. Sparseness occurs when the

expected frequency for many response patterns is small. Most researchers claim that the

expected frequency for every response pattern should be at least five (Cochran, 1954)

while others claim that the expected frequency should be at least ten (Cramer, 1946) or

even twenty (Kendall, 1952; Tate and Hyer, 1973).

Many solutions to the problems of sparseness have been proposed in the litera-

ture. One suggestion is to combine cells (Hosmer and Lemeshow, 1980), so that small

expected frequencies vanish. Combining cells is more successful when the extent of

sparseness is not severe. We should note that combining cells eventually means that the

model is fitted on fewer cells which might lead to a non-identified model. In general,

combining cells by a method based on the data leads to an asymptotic distribution of

the statistics of the power-divergence family with an unknown distribution.

Another solution to the problem of sparseness is adding a small constant to the fre-

quency of every response pattern. That leads inevitably to an increase in the sample

size with most response patterns having the same probability. A third and more recent

solution is to fit other distributions for the goodness-of-fit statistics. Morris (1975) and

Koehler and Larntz (1980) claim that if the number of items increases as the sample size

increases, then the goodness-of-fit statistics follow the normal distribution. Simonoff

(1985) proposes a test of goodness-of-fit for this situation. However, the normal distri-

bution is not realistic for most applications.

3.3. Goodness-of-fit tests on the lower margins

Tests similar to the Pearson X2, have been developed for latent variable models

using only the information from the lower-order margins (Christoffersson, 1975;

Muthén, 1978; Reiser and VandenBerg, 1994; Bartholomew and Tzamourani, 1999;

Bartholomew and Leung, 2002; Maydeu-Olivares and Joe, 2005). Expected frequen-

cies for lower-order margins are rarely small.

More specifically, the frequency distribution for a pair of binary items (i, j) is ex-

pressed through a (2 × 2) contingency table. The cells of this table give the observed

frequency of the pair responses ((1, 1), (1, 0), (0, 1), (0, 0)), where (1, 1) indicates a

‘positive’ response to items i and j . If the frequency for one pair of responses is known,

the others are determined from the one-way margins that are regarded as fixed. In total

k(k − 1)/2 contingency tables exist for all pair of items. In addition to the observed

cell frequencies, expected frequencies under the model are computed for the cells of the

k(k − 1)/2 two-way tables. A Pearson X2 statistic can be computed for each cell of the
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k(k − 1)/2 two-way tables. Assuming that the distribution of that statistic in each cell

follows a chi-square distribution with one degree of freedom then any value greater than

four would be an indication of poor fit. We should also note that the chi-square values

obtained from the k(k − 1)/2 cells are not independent and therefore if one sums to

produce an aggregate measure of fit its distribution will be unknown.

In the same way that estimated probability is computed for a response pattern ys
using (6) one can compute estimated lower-order probabilities for the items. More

specifically, the estimated univariate probabilities for item i are

(9)P(yi = 1|β̂) =
2k∑

s=1

yrsiπs(β̂), i = 1, . . . , k,

where yrsi is the ith element of response pattern s. The estimated bivariate probabilities

for items i and j are

(10)P(yi = 1, yj = 1|β̂) =
2k∑

s=1

yrsiy
r
sjπs(β̂), i, j = 1, . . . , k,

where yrsi and yrsj are the ith and j th element, respectively, of response pattern s. By

replacing πs(β̂) in (9) and (10) with p̂s we get the univariate and bivariate sample

proportions, respectively. Higher-order probabilities can be defined in the same way as

above.

Lower-order probabilities (see, e.g., Eqs. (9) and (10)) can be easily obtained using

a matrix notation. This is achieved by multiplying the (2k × 1) vector of observed or

expected proportions with an indicator matrix M consisting of zeros and ones. In the

case of univariate and bivariate margins, matrix M has k(k + 1)/2 rows (number of

univariate and bivariate margins) and 2k columns (number of all possible response pat-

terns). Hence, every univariate and bivariate frequency is linked with a response pattern

through an element of matrix M . Consider a row of matrix M which refers to the bivari-

ate margin of positive responses to items (i, j), then if a response pattern has ‘positive’

answers to items i and j then the cell that links this bivariate margin with this response

pattern will take the value 1 and 0 otherwise. Therefore, the univariate and bivariate

observed and estimated proportions denoted by the vectors p̂l
and π l(β̂) respectively

are obtained from:

(11)p̂
l = Mp̂

and

(12)π l(β̂) = Mπ(β̂),

where p̂ and π(β̂) are the vectors of the observed and estimated proportions for the

whole response pattern.

The dimension of matrix M is defined according to which lower-order margins are

included in the test statistics. For example, when only bivariate proportions are used,

the dimension of matrix M is reduced to (
k(k−1)

2
× 2k) and the vectors p̂

l
and π l(β̂)

from Eqs. (11) and (12), respectively, refer to bivariate margins only.
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Model deviations can be expressed through unstandardized residuals of the whole

response pattern denoted by:

(13)e = p̂ − π(β̂),

where p̂ and π(β̂) are the observed and estimated proportions, respectively.

However, tests discussed in this chapter concentrate on deviations on the lower-order

margins denoted by:

(14)el = p̂
l − π l(β̂),

where the index l indicates residuals obtained from lower-order margins such as univari-

ate (l = 1), bivariate (l = 2), etc. The notation l = 2 refers to bivariate margins only.

All limited information tests presented here study deviations between positive observed

and expected responses to items. The hypothesis of interest is:

(15)H0: εl = pl − π l(β) = 0

against the alternative hypothesis that

(16)H1: εl = pl − π l(β) �= 0,

where p and π(β) are the true proportions and the proportions under the model for the

lth order lower margins. Since (p̂ − π(β̂)) ∼ N2k (0,Σ), see (Rao, 1973), and el can

be computed from the whole response pattern using the M matrix, it follows:

(17)el = M
(
p̂ − π(β̂)

)
∼ Nk(k+1)/2(0,Ω),

where Ω = MΣM ′ is the variance–covariance matrix of el and Σ is the covariance

matrix of e.

All the tests on the lower-order margins in this paper are of the form:

(18)W = el
′
(MΣM ′)−1el .

Using known results from multivariate theory, W follows a χ2 with degrees of freedom

equal to the rank of the asymptotic variance–covariance matrix given by MΣM ′. The

differences among the various tests presented in Section 4 are in the definition of the

covariance matrix used in place of MΣM ′ in (18).

4. Limited information statistics

As it has been shown in Section 3.3, limited information statistics based on residuals

are given in the form of (18). For the computation of (18), the asymptotic variance–

covariance matrix of the residuals el must be computed. In Section 4.1, the asymptotic

variance–covariance matrix of el is computed based on the hypothesis that the parameter

values are known in advance. In Section 4.2, the parameter values are not considered

known but they are estimated from the data. The limited information statistics that are

presented in Section 4.1 claim that the estimation of the model parameters incur an

non-negligible impact on the estimation of the variance–covariance matrix of el .
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4.1. Parameter values are considered to be known

In this section, we review the two limited information test statistics that assume known

parameter values mainly the Bartholomew and Leung (2002) and Christoffersson (1975)

tests. When parameters are considered to be known the lower-order residuals el have a

covariance matrix given by:

(19)Ω = M
(
diag

(
π(β)

)
− π(β)π(β)′

)
M ′.

4.1.1. Christoffersson’s test

Christoffersson’s test (X2
C) is the test defined in (18) where the covariance matrix Ω

defined in (19) of the bivariate residuals el is estimated by:

(20)Ω̂C = M
(
diag(p̂) − p̂p̂

′)
M ′,

where the vector p̂ contains the observed proportions. Christoffersson (1975) claims

that sample proportions p̂ provide a good approximation to the true probabilities.

4.1.2. Bartholomew and Leung test

The Bartholomew and Leung statistic (X2
BL) is:

(21)X2
BL =

k∑

i=1

k∑

j=i+1

(nij − nπ̂ij )
2

nπ̂ij (1 − π̂ij )
,

where nij is the number of individuals that answered positively to items i and j and π̂ij

is the estimated from the fitted model probability. The test accounts only for bivariate

margins and it uses the sum of all k(k − 1)/2 chi-squared values. It is shown in their

paper that the test is also a sum of squares of standardized residuals.

Their simulation studies have shown that the distribution of the X2
BL statistic resem-

bles the distribution of χ2, especially in the upper tail. They give the exact moments of

the statistic and they also derive a linear function of χ2 that has the same moments as

the X2
BL statistic. The statistic in (21) can be also written as:

(22)X2
BL = (p̂ij − π̂ij )

′(diag(Ω̂BL)
)−1

(p̂ij − π̂ij ),

where Ω̂BL denotes the asymptotic covariance matrix of el that is defined by

(23)Ω̂BL = M
(
diag

(
π(β̂)

)
− π(β̂)π(β̂)′

)
M ′.

They report that no significant differences exist between the use of their test when para-

meters are known and when they are estimated. They claim that even with a sample size

as small as 100, their procedure will be adequate. However, Cai et al. (2004) found that

the X2
BL has low power. They increased the power of the test by applying a correction

that accounts for the parameters being estimated from the data. Their test is denoted

as X2
L.

Note that there are two main differences between χ2
BL and the X2

C statistic. First only

the diagonal elements of the matrix Ω̂BL are used in the X2
BL where X2

C uses informa-

tion both from the three way and the four way margins. Second, estimated bivariate

probabilities are used instead of observed.
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4.2. Composite null hypothesis

Both X2
BL and X2

C test statistics assess the fit with Σ defined as if the parameters are

known in advance. In most applications, one is interested in assessing the fit of a model

when the parameters are estimated from the data. When the parameters are replaced by

estimators, there will be an effect on both the test statistic and its sampling distribution.

In computing a test, it is necessary to compensate for the fact that the parameters have

been fitted using the same data.

Reiser (1996) proposed a limited-information test of fit that uses univariate and bi-

variate margins (denoted here as X2
R). When the three-way margins are also included the

test is denoted as X2
R(3). Maydeu-Olivares and Joe (2005) proposed a class of quadratic

form statistics based on the residuals of margins up to order r (denoted here as X2
OJ).

To account for parameter estimation, the multivariate delta method can be used to

find the asymptotic covariance matrix of el . Theoretical results can be found in Birch

(1964), Agresti (1990) and Bishop et al. (1975). The asymptotic covariance matrix of

el is given in Reiser (1996) and Maydeu-Olivares and Joe (2005) and is defined as

(24)Ω = M
(
diag

(
π(β)

)
− π(β)π(β)′ − G(A′A)−1G′)M ′,

where the M matrix is defined in Section 3.3, A = diag(π(β))−1/2∂π(β)/∂β and

G = ∂π(β)/∂β. The π(β) are replaced by the estimated ones. Agresti (1990) has

shown that the estimator of the asymptotic variance–covariance matrix is more efficient

when the maximum likelihood estimates rather than the sample proportions are used.

The product A′A is the Fisher information matrix; its inverse, divided by the sample

size n, gives the asymptotic variance–covariance matrix of the parameter vector β̂.

A common problem encountered in the computation of the asymptotic variance–

covariance matrix of el given in (24) is that it may be ill-conditioned due to very

small eigenvalues that stem from the high multicollinearity in matrix M . The Reiser

(1996) test considers the Moore–Penrose inverse of Ω whereas Maydeu-Olivares and

Joe (2005) replaces the generalized inverse by a matrix that they claim to be more sta-

ble. For the Moore–Penrose inverse a tolerance level needs to be set. In this paper the

eigenvalues of the matrix and the corresponding percentage of the explained variance

for each eigenvalue were computed and eigenvalues that explained just a small percent-

age of the variance, say 1%, were treated as zero. The tolerance level can be adjusted to

the nature of the data set and the estimated parameters.

4.3. Residuals

When one of the limited information tests presented in Section 4 shows a poor fit, our

interest focus on the source of the misfit. The X2
Pearson in Eq. (7) as well as all the tests

discussed in Section 4 can be decomposed to individual terms.

Two different types of residuals can be computed as in Rao (1973), mainly, standard-

ized and adjusted residuals. Standardized residuals for a response pattern s are given by:

(25)est =
√
n

es√
π̂s(1 − π̂s)

,
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where es = p̂s − π̂s and p̂s and π̂s are the observed and expected proportions, respec-

tively, for a response pattern s.

Adjusted residuals are defined as:

(26)eadj =
√
n
es

σs
,

where σs is the standard deviation for es . Both standardized and adjusted residuals fol-

low approximately the standard normal distribution.

Similarly, one can compute standardized and adjusted residuals for the lower-order

margins. Standardized residuals for the two-way margins are:

(27)elst =
√
n

elij√
π̂ij (1 − π̂ij )

,

where elij = p̂ij − π̂ij and p̂ij and π̂ij are the observed and expected proportions

respectively for a pair of items (i, j).

The adjusted residuals are:

(28)eladj =
√
n
eij

σij
,

where σij is the standard deviation for eij obtained from the diagonal element of (24).

5. Test based on the log-odds ratio

A measure of association in 2 × 2 contingency tables is the odds ratio. Consider the

2 × 2 contingency table for items i and j given in Table 1. Cell entry n00 denotes the

number of individuals who responded negatively to items i and j . The odds ratio for

Table 1 is defined as:

(29)θ̂ = n00n11

n01n10
,

where a value close to one shows independence between the items. The estimated odds

ratio under the fitted model based on the expected frequencies is:

(30)θ(β̂) = n̂00n̂11

n̂01n̂10
,

Table 1

Two-way contingency table for items i and j

Items yj

0 1

yi 0 n00 n01

1 n10 n11
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where the quantities n̂00, n̂01, n̂10 and n̂11 are expected frequencies under the fitted

model. One would expect the odds ratio computed from the observed and the expected

frequencies to be close under the assumption that the fitted model is correct. The loga-

rithm of the odds ratio approximates its asymptotic normal distribution (Agresti, 1990).

In a data set with k binary items, there are k(k − 1)/2 possible pair of items and

corresponding log-odds ratios. We denote with log θ̂ the (k(k − 1)/2 × 1) vector that

contains the log-odds ratios of all pair of items.

Clearly log θ̂ can be written as a linear function of p̂ and log θ(β̂) can be written as a

linear function of π(β̂). Hence log θ̂ = g(p̂) and log θ(β̂) = g(π(β̂)). Using the delta

method, the asymptotic distribution of log θ̂ is:

(31)log θ̂ ∼ N
(
log θ

(
π(β̂)

)
,DΩD′),

where D = ∂ log θ(π)
∂π

|
π(β̂)

.

Let us define the difference between the observed and the expected log-odds ratio:

(32)g(e) = log θ̂ − log θ
(
π(β̂)

)
.

To test the hypothesis that g(ε) is zero in the population we use the test statistic:

(33)X2
lort = g(e)(DΩD′)−1g(e)′ ∼ χ2.

The degrees of freedom in (33) are equal to the rank of the matrix DΩD′. In our ex-

amples, we use the estimated covariance matrix given in Christoffersson (1975) for the

case of known parameters and the estimated covariance matrix given in Reiser (1996)

for the case of estimated parameters. In the application section, the first test is denoted

with X2
lor and the latter with X2

lorc.

5.1. Log-odds ratio residuals for pair of items

Similar to the residuals defined in Section 4.3, we give here residuals based on the log-

odds ratio. For every pair of items, residuals are denoted as:

(34)elor(i) = log θ̂i − log θi(β̂), i = 1, . . . ,
k(k − 1)

2
.

The standardized log-odds ratio residuals are given as

(35)
log θ̂i − log θi(β̂)√

ω2
i

,

where ω2
i is the ith diagonal element of DΩD′. We give two different types of residuals

based on the covariance matrix used. When parameters are considered known residuals

will be denoted by elor and when parameters are estimated from the data residuals will

be denoted by elorc.
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5.2. An extension of Bartholomew and Leung test using the log-odds ratio

A similar test to that of Bartholomew and Leung (2002) that approximates the distrib-

ution of the sum of squares of the standardized log-odds ratio residuals elor by a linear

function of a χ2 distribution is developed. The statistic is χ2
lor BL = e′

lorelor ∼ a + bχ2
C.

For the formulation of the test, the hypothesis that the parameter estimation has a non-

negligible impact on the asymptotic variance–covariance matrix of g(e) is made. Cai

et al. (2004) have focused on the same hypothesis for approximating the distribution

of the sum of squares of the standardized residuals. Consider that Φst = DΩD′ where

Ω is taken from (19) and Φadj = DΩD′ where Ω is taken from (24). The π(β) are

replaced by the estimated ones to get the estimated asymptotic matrices Φ̂st and Φ̂adj.

The first three asymptotic moments of the sum of squares of the standardized log-odds

ratio residuals are

μ1

(
χ2

lor BL

)
= tr

(
Φ̂−1

st Φ̂adj

)
,

μ2

(
χ2

lor BL

)
= 2 tr

(
(Φ̂−1

st Φ̂adj)
2
)
,

(36)μ3

(
χ2

lor BL

)
= 8 tr

(
(Φ̂−1

st Φ̂adj)
3
)
.

By equating these moments to the theoretical moments of a linear function of χ2 dis-

tribution the parameters of interest (a, b, c) are estimated (see Bartholomew and Leung

(2002) for details).

6. Simulations

The distribution of overall goodness-of-fit test statistics such as the Pearson and the

likelihood ratio statistic for a latent variable model for binary responses has been inves-

tigated using parametric bootstrapping in many studies (Reiser and VandenBerg, 1994;

Langeheine et al., 1996; Von Davier, 1997; Bartholomew and Tzamourani, 1999;

Tollenaar and Mooijaart, 2003).

We performed simulations using the method of parametric bootstrapping for judging

the goodness-of-fit of the model as well as for comparing the performance of the tests

presented in the chapter in terms of Type I error and power. The steps of parametric

bootstrap are:

(1) Estimate the hypothesized model using the data and compute the test statistics of

interest.

(2) Treat the estimated parameters as true and generate from the hypothesized model a

large number of random samples of same size as the original one.

(3) In each generated data set, estimate the model and compute the goodness-of-fit test

statistics.

(4) Compare the actual value of the test statistic from step 1 with reference to the boot-

strap sampling distribution of the test statistic obtained in step 3.

By this procedure, we assess both the fit of the model and we also study the asymptotic

behavior of the test statistics. More specifically, Type I error is computed for the test
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statistic of interest and an assessment is made on how satisfactorily it resembles its

asymptotic distribution by comparing the empirical moments to the asymptotic ones

and by plotting histograms and qqplots.

Von Davier (1997) claims that for the power-divergence family, given in (8), the

parametric bootstrapping method fails for the likelihood ratio statistic and the Freeman–

Tukey statistic whereas it works for the Pearson and the Cressie–Read statistic.

The power of a test is the probability of rejecting the null hypothesis when the al-

ternative hypothesis is correct. In latent variable models, goodness-of-fit tests have no

clear alternatives and these tests are usually used as omnibus tests against all alterna-

tives. For example, when we compute the power of a t-test for a population mean, we

choose values under the alternative hypothesis for the population mean but in latent

variable modelling there are many parameters involved. In order to assess the power of

the tests we assume the one-factor model under the null hypothesis and the two-factor

model under the alternative. A large number of data sets is generated from a two-factor

model and a one-factor model is fitted in each data set. The data have been generated

assuming independent and distinct latent variables. For all the simulated examples, the

loadings of the first factor for all items are one and for the second factor half of the items

have loadings 1 and half −1. The power of a test statistic, for a given nominal statistical

level α0, is defined, as the proportion of times the test statistic obtained from each sim-

ulation yields a p-value lower than α0. The p-value is computed from the theoretical

distribution of the assumed test statistic.

6.1. Examples

We compare the performance of overall and limited information test statistics using real

and simulated data. The comparisons are performed under different levels of sparseness.

We investigate how satisfactorily the empirical distributions approximate the asymptotic

distributions of the tests and we also evaluate them in terms of Type I error and power.

The first example is a real data set that consists of n = 257 individuals and four items.

The second and third examples are based on simulated data with n = 200 individuals

and six items and n = 200 individuals and eight items, respectively. All simulations are

based on 1000 bootstraps.

6.1.1. Example 1: A real data set

This data set is taken from Duncan (1979) and it is on sex role expectations. In the

1953 Detroit Area Study, a sample of 257 mothers were asked the following question

regarding sex role expectations: ‘Here are some things that might be done by a boy or

a girl. Suppose the person were 13 years old. As I read each of these to you, I would

like you to tell me if it should be done as a regular task by a boy, by a girl, or by

both’ (1) Shovelling walks, (2) Washing the car, (3) Dusting furniture, (4) Making beds.

Responses of ‘boy’ to items (1) and (2) and ‘girl’ to items (3) and (4) were coded as ‘0’

and are referred as the traditional answers. Responses of ‘both’, which Duncan refers to

as ‘egalitarian’ answers are coded as ‘1’.

For testing the overall goodness-of-fit of the one-factor model we computed the Pear-

son chi-square and the likelihood ratio test statistics. These are found to be 23.59 and
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Table 2

Example 1: Asymptotic p-values for the limited information statistics, one-factor model

Statistic X2
BL X2

C
X2

L X2
OJ

X2
OJ(3)

X2
R X2

R(3)
X2

lor
X2

lorc
X2

lor BL

1.95 7.61 1.95 8.60 17.80 13.99 16.99 8.94 9.20 5.86

0.811 0.022 0.007 0.014 0.007 0.003 0.018 0.022 0.027 0.01

Table 3

Example 1: Bivariate standardized and adjusted residuals, ‘log-odds’ residuals,

one-factor model

Pairs elst el
adj

elor elorc

(1, 2) 1.10 2.73 1.94 2.79

(1, 3) −0.48 −2.51 −0.86 −2.55

(1, 4) −0.22 −1.75 −0.39 −1.83

(2, 3) −0.17 −0.54 −0.34 −0.58

(2, 4) −0.55 −2.38 1.029 −2.36

(3, 4) −0.03 −0.41 −0.12 −0.59

24.08, respectively, with a corresponding p-value 0.001 for both tests. Both tests reject

the one-factor model. The absence of sparseness in the data is judged by obtaining a

reasonably large value for the ratio n/2k = 16.063 and by having only four response

patterns with an observed frequency lower than five. Therefore, we expect the overall

goodness-of-fit tests to approximate satisfactorily their asymptotic distributions.

Table 2 gives the asymptotic p-values for the limited information statistics. All lim-

ited information tests except from the log-odds ratio investigate the fit of the model on

pairs and triples of positive responses only. From Table 2, we see that all tests but the

X2
BL reject the one-factor model. Note that the only difference between the X2

BL and X2
L

test is that the later accounts for the estimated parameters. The tests X2
C, X2

OJ and X2
lor

have two degrees of freedom whereas X2
R and X2

lorc have three. Tests that use informa-

tion up to the three-way margins contain more information and have more degrees of

freedom with X2
R(3) having an extra degree of freedom than X2

OJ(3).

Table 3 gives the standardized and adjusted residuals computed from (27) and (28),

respectively, for positive responses only. Assuming that standardized residuals follow

the standard normal distribution, absolute values smaller than 2 indicate a good fit. In

Table 3, all standardized residuals are smaller that 1.2. However, some of the adjusted

residuals indicate a poor fit. It should be noted that adjusted residuals are computed

under the hypothesis that the model parameters are not known in advance but they are

estimated from the model whereas standardized residuals are based on the assumption

that the model parameters are known in advance. Note that the adjusted residuals eladj
are very close to the adjusted log-odds ratio residuals elorc. The results of the parametric

bootstrapping presented in Table 6 aim to investigate the asymptotic distribution of the

overall and the limited goodness-of-fit tests as well as the asymptotic behavior of the

standardized and the adjusted residuals. Tables 4 and 5 give the p-values obtained from
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Table 4

Example 1: Empirical p-values based on 1000 bootstrap samples, one-factor model

Statistic X2
BL X2

C
X2

L X2
OJ

X2
OJ(3)

X2
R X2

R(3)
X2

lor
X2

lorc
X2

lor BL

p-value 0.006 0.014 0.006 0.009 0.006 0.013 0.006 0.008 0.024 0.004

Table 5

Example 1: Empirical p-values for the bivariate residuals based on 1000 boot-

strap values, one-factor model

Pairs Empirical p-values

elst el
adj

elor elorc

(1, 2) 0.008 0.004 0.003 0.004

(1, 3) 0.025 0.018 0.023 0.013

(1, 4) 0.441 0.44 0.428 0.416

(2, 3) 0.247 0.264 0.219 0.225

(2, 4) 0.021 0.018 0.022 0.019

(3, 4) 0.701 0.701 0.598 0.577

the empirical distributions using the value of the test statistic of the original data set.

All tests reject the one-factor model. It is clear that there is a big difference between

the asymptotic and the empirical p-value of the X2
BL. The empirical p-values of the

residuals in Table 5 show a misfit in three bivariate margins. This result is in accordance

with the large adjusted residuals in Table 3.

Figure 1 shows the empirical distribution of the standardized bivariate residuals that

were derived from 1000 bootstrap samples (k(k − 1)/2 = 6 in total since only positive

responses to pair of items are examined). It is clear that the mean value is 0 but the

variance seems much smaller. We hardly observe any value larger than 1 in any of the

standardized residuals. It is known that for a standard normal distribution the first four

theoretical moments are 0, 1, 0 and 3. From Table 6, we see that the empirical second

and fourth moments for the standardized residuals are not close to the theoretical ones.

As far as the adjusted residuals are concerned, the empirical moments are close to the

theoretical ones with the exception of the third adjusted residual.

This is also seen from Figure 2 where the empirical qqplots of the quantiles of the

adjusted residuals eladj versus the quantiles of a standard Normal distribution are plotted.

The qqplot for the adjusted residuals for pair (1, 4) shows some deviation from the tails.

The results are similar for the log-odds ratio residuals but they are not given here.

Table 7 gives Type I error rates for the limited information statistics based on 1000

bootstrap samples. With the exception of X2
BL, all statistics give a Type I error rate

close to the nominal level.1 Table 8 gives the corresponding Type I errors for the overall

statistics.

1 The 95% confidence interval for α0 = 0.01 is [0.038, 0.0162], for α0 = 0.05 is [0.0365, 0.0635] and for

α0 = 0.1 is [0.0814, 0.1186].
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Fig. 1. Empirical distributions for the bivariate standardized residuals.

Table 6

Example 1: Moments for the standardized and the adjusted bivariate residuals from 1000 bootstrap samples,

one-factor model

Empirical moments

elst 1st 2nd 3rd 4th el
adj

1st 2nd 3rd 4th

(1, 2) −0.017 0.425 −0.012 0.103 (1, 2) −0.014 0.997 0.007 2.831

(1, 3) 0.016 0.199 −0.001 0.006 (1, 3) 0.114 1.021 0.05 3.574

(1, 4) −0.002 0.297 −0.003 0.023 (1, 4) 0.001 2.696 3.794 267.369

(2, 3) 0.022 0.156 0.001 0.003 (2, 3) 0.09 0.607 0.435 3.504

(2, 4) −0.008 0.226 −0.001 0.01 (2, 4) −0.019 0.994 −0.044 2.97

(3, 4) 0.021 0.104 0.001 0.001 (3, 4) 0.228 1.068 0.549 4.685

Table 7

Example 1: Type I error rates from 1000 bootstrap samples for the limited information statistics

α0 X2
BL X2

C
X2

L X2
OJ

X2
OJ(3)

X2
R X2

R(3)
X2

lor
X2

lorc
X2

lor BL

0.01 0 0.01 0.006 0.007 0.007 0.006 0.008 0.01 0.01 0.008

0.05 0 0.055 0.04 0.037 0.044 0.044 0.045 0.053 0.05 0.037

0.1 0 0.103 0.1 0.098 0.11 0.096 0.092 0.101 0.083 0.084
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Fig. 2. qqplots for the adjusted bivariate residuals.

Table 8

Example 1: Type I error rates from 1000 bootstrap samples for

the overall goodness-of-fit statistics

Nominal level α0 X2
Pearson X2

CR

0.01 0.011 0.015

0.05 0.058 0.076

0.1 0.122 0.147

We investigate below how close the empirical distributions of the limited information

statistics are to the corresponding asymptotic ones. All statistics presented in Sections 4

and 5 claim to follow a chi-square distribution. The theoretical moments of a χ2 distri-

bution are

μ1 = df,

μ2 = 2df,

μ3 = 8df,

(37)μ4 = 48df + 12df 2.

Table 9 gives the empirical moments of the limited information statistics from the

1000 bootstrap samples. The theoretical moments that are derived from the asymptotic
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Table 9

Example 1: Empirical moments for the limited information statistics, one-factor model

Moments X2
C

X2
OJ

X2
lor

X2
lorc

X2
R X2

OJ(3)
X2

R(3)

1st 2.01(2) 1.97 1.99 2.06 2.75(3) 6.13(6) 6.76(7)

2nd 4.05(4) 3.62 4.03 4.43 6.01(6) 11.33(12) 13.85(14)

3rd 16.84(16) 12.62 16.727 17.01 21.45(24) 35.99(48) 55.45(56)

4th 155.18(144) 104.55 153.15 133.75 208.129(252) 500(720) 892.78(924)

Fig. 3. qqplots for the limited information statistics that use information up to the two-way margins.

distribution of the statistics are given in parenthesis. The tests given in the first four

columns of Table 9 have two degrees of freedom. Only in X2
OJ and X2

OJ(3), there seems

to be some deviation between the third and fourth empirical moments from the cor-

responding asymptotic ones but the difference is found to be non-significant for X2
OJ

whereas it is found to be significant for the fourth moment of X2
OJ(3). Cases where the

empirical moment deviates from the asymptotic ones are printed in bold.

Figure 3 gives the empirical qqplots of the quantiles of the limited information sta-

tistics versus the quantiles of the corresponding χ2 distribution. Figure 4 gives the

empirical qqplots of the quantiles of the limited information statistics that use the in-

formation up to the three-way margins versus the quantiles of the corresponding χ2
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Fig. 4. qqplots for the limited information statistics that use information up to the three-way margins.

distribution. In Figure 3, the log-odds ratio test for the case where the parameters are

estimated from the data is plotted. Most limited information statistics seem to follow

their asymptotic distribution though there seem to be some deviations in the upper tail

especially for the test-statistics that use information up to the three-way margins. With

an example of only 4 items, a test that is based on a comparison between the observed

and the expected, under the fitted model, three-way margins is very close to an overall

goodness-of-fit test.

Table 10 gives the power of the limited information statistics and the overall good-

ness-of-fit measures. Tests that consider that the parameters are known in advance are

less powerful with X2
BL appearing to have no power. Also tests that use information

from higher margins than the two-way margins are less powerful.

6.1.2. Example 2: A simulated data set with six items

A more sparse, with reference to the previous example, data set is constructed by in-

creasing the number of items to six and reducing the sample size to 200. The parameters

that were used for the generation of the data set were zeros for the thresholds (β0) and

ones for the factor loadings (β1) of all items. The ratio n/2k = 3.125 is very small and

there are 16 response patterns that were not observed. Type I error rates obtained from

1000 bootstrap samples for the overall goodness-fit-tests are given in Table 11. They are

all very different from the nominal levels of significance.
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Table 10

Example 1: Power for the limited information statistics when

the data are generated from a two-factor model n = 257, k = 4

Statistic Nominal level α0

0.01 0.05 0.1

X2
BL 0 0 0

X2
C

0.29 0.57 0.8

X2
L 0.82 0.97 1

X2
OJ

0.77 0.89 0.97

X2
OJ(3)

0.52 0.74 0.86

X2
R 0.69 0.88 0.94

X2
R(3)

0.61 0.81 0.91

X2
lor

0.32 0.59 0.81

X2
lorc

0.77 0.91 0.96

X2
lor BL

0.9 0.95 0.98

X2
Pearson 0.5 0.77 0.86

X2
CR

0.51 0.78 0.87

Table 11

Example 2: Type I error rates from 1000 bootstrap samples for

the overall goodness-of-fit statistics, one-factor model

Nominal p-value X2
Pearson X2

CR

0.01 0.233 0.215

0.05 0.434 0.422

0.1 0.576 0.575

Table 12

Example 2: Type I error rates from 1000 bootstrap samples for the limited information statistics, one-factor

model

α0 X2
BL X2

C
X2

L X2
OJ

X2
OJ(3)

X2
R X2

R(3)
X2

lor
X2

lorc
X2

lor BL

0.01 0 0.005 0.007 0.009 0.008 0.01 0.01 0.005 0.011 0.041

0.05 0 0.012 0.041 0.047 0.046 0.046 0.052 0.013 0.051 0.104

0.1 0 0.029 0.08 0.097 0.095 0.097 0.098 0.029 0.09 0.177

Table 12 gives Type I error rates for the limited information statistics. Type I error

rates for some statistics are worse from the corresponding rates computed in the less

sparse example given in Table 7. Type I error rates that lie outside their 95% confidence
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Fig. 5. qqplots for the limited information statistics that use information up to the two-way margins.

intervals are printed in bold. Only the empirical Type I error rates of X2
OJ, X

2
R and X2

lorc
lie within the 95% confidence interval of the theoretical ones. Those three tests assume

that parameters are estimated and are not known in advance.

Figures 5 and 6 give the qqplots for the limited information statistics that use in-

formation up to the two-way and three-way margins, respectively. There is only some

concern for the upper tail of the X2
C. It should be noted that in Figure 5 the log-odds

ratio under the composite hypothesis, X2
lorc, is plotted.

Table 13 gives the empirical moments of the limited-information test statistics where

the theoretical moments are given in parenthesis. The theoretical moments for X2
OJ and

X2
lor are not given since they have the same limiting distribution with X2

C. Significant

differences between empirical and theoretical moments have been found for X2
C and

X2
lor and they are printed in bold. These are the test statistics that assume that the model

parameters are known in advance and this discrepancy is a further evidence that those

test statistics do not follow their asymptotic distribution.

Table 14 gives the power of the tests. The high power of the overall goodness-of-fit

measures is an indication of its high tendency to reject too often even a correct model.

6.1.3. Example 3

The third example consists of n = 300 subjects and k = 8 items generated from a

one-factor model. The parameter values that were used for generating the data are zeros
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Fig. 6. qqplots for the limited information statistics that use information up to the three-way margins.

Table 13

Example 2: Empirical moments for the limited information statistics, one-factor model

Moments X2
C

X2
OJ

X2
lor

X2
lorc

X2
R X2

OJ(3)
X2

R(3)

1st 6.02(9) 8.78 6.11 7.12(7) 9.07(9) 28.74(29) 21.38(21)

2nd 12.64(18) 15.67 13.13 16.49(14) 16.52(18) 52.22(58) 38.55(42)

3rd 65.51(72) 59.75 69.94 59.15(56) 62.64(72) 178.39(232) 123.06(168)

4th 1023.8(1404) 1118.9 1119.9 866.33(924) 1179.3(1404) 8953.9(69513) 4969.8(36729)

for the thresholds and ones for the factor loadings for all items. Table 15 gives Type I

error rates from 1000 bootstrap samples.The test statistics, X2
C, X2

lor and X2
lor BL seem

to be too liberal while X2
BL is found once again to be a very conservative test. Limited

information statistics that are computed under the simple hypothesis fail to produce

Type I error rates that will match their asymptotic Type I error rates.

Note that X2
lorc includes deviations between observed and expected under the model

responses not only for positive responses but for all combinations. More specifically, for

one of the simulated data sets the big discrepancies found among X2
OJ, X

2
lor and X2

lorc

were explained by the fact that for items 4 and 7 the standardized residuals for positive

responses was found to be 0.535 while the corresponding standardized residual for a
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Table 14

Example 2: Power for the limited information statistics when

the data are generated from a two-factor model n = 200, k = 6

Statistic Nominal level α0

0.01 0.05 0.1

X2
BL 0 0 0

X2
C

0.28 0.41 0.48

X2
L 0.78 0.85 0.95

X2
OJ

0.74 0.84 0.91

X2
OJ(3)

0.52 0.74 0.8

X2
R 0.69 0.79 0.89

X2
R(3)

0.55 0.75 0.83

X2
lor

0.32 0.48 0.56

X2
lorc

0.48 0.59 0.68

X2
lor BL

0.94 0.98 1

X2
Pearson 0.85 0.95 0.97

X2
CR

0.85 0.95 0.97

Table 15

Example 3: Type I error rates from 1000 bootstrap samples for the limited information statistics, one-factor

model

α0 X2
BL X2

C
X2

L X2
OJ

X2
OJ(3)

X2
R X2

R(3)
X2

lor
X2

lorc
X2

lor BL

0.01 0 0.038 0.004 0.006 0.004 0.075 0.004 0.049 0.016 0.03

0.05 0 0.096 0.06 0.05 0.039 0.039 0.039 0.108 0.048 0.068

0.1 0 0.159 0.103 0.109 0.075 0.096 0.081 0.179 0.088 0.116

negative response to item 4 and positive to item 7 was −1.761. Having good fit on the

lower-order margins for positive responses and bad fit on the remaining combinations

is more common as the number of items increases.

Table 16 gives the power of the limited and overall goodness-of-fit tests. It is clear

that power has increased considerably in reference with the previous examples (Ta-

bles 10 and 14). Power results should always be interpreted with some caution since

power comparisons require equal Type I error rates. Liberal tests, such as overall

goodness-of-fit tests have high power because they tend to overestimate the significance.

These tests often reject a correct model, let alone a false one. Surprisingly, although the

X2
C and X2

lor are liberal for the case of eight items are not as powerful as the rest of the

tests.
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Table 16

Example 3: Power for the limited information statistics when

the data are generated from a two-factor model n = 300, k = 8

Statistic Nominal level α0

0.01 0.05 0.1

X2
BL 0.01 0.04 0.19

X2
C

0.54 0.66 0.71

X2
L 1 1 1

X2
OJ

1 1 1

X2
OJ(3)

0.98 1 1

X2
R 1 1 1

X2
R(3)

1 1 1

X2
lor

0.54 0.68 0.75

X2
lorc

0.98 0.99 0.99

X2
lor BL

1 1 1

X2
Pearson 1 1 1

X2
CR

1 1 1

7. Conclusion

The chapter reviews overall and limited information goodness-of-fit statistics for latent

variable models with binary items. The fit of the model is examined on a contingency

table consisting of 2k cells where k is the number of items. The usual practices for inves-

tigating the fit of such a model involve the Pearson X2 and the likelihood ratio statistic.

Overall goodness-of-fit tests are proven to be liberal when data are sparse. These statis-

tics do not hold their asymptotic distributions under the presence of sparseness and they

tend to overestimate the significance by a large amount. This was obvious in the second

and third example where the empirical Type I error probabilities for the overall measures

of fit obtained from the simulation study are very different from the theoretical nominal

levels. Even with four items the overall goodness-of-fit tests tend to overestimate the

level of significance when α0 = 0.1. Sparseness is not easily defined and is affected

by the sample size, the number of items as well as model parameters. To overcome the

problem of sparseness, limited information statistics that evaluate the fit of the model in

the lower order margins have been proposed in the literature.

There does not seem to be a panacea for judging the fit of a latent variable model.

Each of the limited information statistics has its pros and cons. Along with the limited

information statistics the estimation of different types of residuals is proposed. The stan-

dardized residuals do not follow the standard normal distribution whereas the adjusted
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residuals seem to approximate it more satisfactorily. The same holds for the log-odds

ratio residuals.

The limited information statistics can be divided into two categories those that as-

sume known parameters and those that assume that parameters are being estimated from

the data. Tests that are based on the latter assumption are more powerful and their em-

pirical Type I error rates are closer to the nominal ones. On the other hand, tests that

consider the parameters known are easily computed. Finally, the asymptotic variance–

covariance matrix of e, when the parameters are estimated from the data, is usually

singular and its inversion might be based on subjective criteria.

Another division of the tests is between those that use only one cell (out of four)

from the pairwise associations and tests that use all four cells of a contingency table of

any two items. Although it is not a usual phenomenon, there might be some examples

where the model fits satisfactorily one cell of a two-way contingency table but not some

or all of the rest. This occurs more often as the number of items increases. Tests that

use the whole information from a two-way contingency table are based on the log-odds

ratio and are discussed here.

The X2
BL test statistic is very conservative and it rarely rejects even a ‘false’ model.

However, the correction to this test suggested by Cai et al. (2004) has improved signifi-

cantly the performance of the X2
BL test.

The test-statistic X2
lor is the analogue of X2

C that uses all the information from a

two-way contingency table. Similarly, X2
lorc is the analogue for X2

R. The statistics X2
C

and X2
lor have similar behavior, similar Type I error rates, similar power and empirical

moments. They are less powerful than X2
R and Xlorc. In the first example X2

C and X2
lor

hold their asymptotic distribution but this is not the case in the rest of the examples

where the number of items has increased to six and eight. The statistics X2
OJ, X

2
R and

X2
lorc seem to have a valid asymptotic distribution. The statistic X2

OJ is a variant of X2
R

that uses less information but at the same time proposes a more stable method for the

inversion of the asymptotic variance–covariance matrix of
√
nel than that of Reiser’s

test. Maydell-Olivares and Joe’s test, as well as Reiser’s test can easily be adjusted to

include higher order margins. In our simulations these tests have been computed up

to the three-way margins. The statistics XOJ(3) and X2
R(3) are less powerful than their

counterparts that use only the univariate and bivariate margins. All tests increase their

power as the number of items increases. However, we should bear in mind that power

comparisons between tests are more meaningful when tests have the same Type I error

rates. Finally we expanded X2
L so as to incorporate all cells of the two-way contingency

table. This test, X2
lor BL, though powerful, does not behave satisfactorily in terms of

Type I error rates.

A potential problem with those tests is that sparsity might still occur in the three-

way margins especially as the number of items increases and the sample size remains

moderate.

From the simulations reported here and others conducted, we have come to the con-

clusion that the use of limited information criteria looks promising and useful and more

research is needed in order to draw safe conclusions about whether or not their asymp-

totic distributions hold. Many combinations of different sample sizes and number of

items should be explored. In results not shown here, it is found that the bootstrap test
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does not perform well with respect to Type I error. Tollenaar and Mooijaart (2003) and

Reiser (2004) have come to the same conclusion as well. This fact, along with the in-

valid asymptotic distribution of overall goodness-of-fit measures when data are sparse,

constitutes the use of limited information test statistics of great importance.
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Bayesian Structural Equation Modeling

Jesus Palomo, David B. Dunson and Ken Bollen

Abstract

Structural equation models (SEMs) with latent variables are routinely used in social

science research, and are of increasing importance in biomedical applications. Stan-

dard practice in implementing SEMs relies on frequentist methods. A simple and

concise description of an alternative Bayesian approach is developed. Furthermore, a

brief overview of the literature, a description of Bayesian specification of SEMs, and

an outline of a Gibbs sampling strategy for model fitting is provided. Bayesian in-

ferences are illustrated through an industrialization and democratization case study

from the literature. The Bayesian approach has some distinct advantages, due to the

availability of samples from the joint posterior distribution of the model parameters

and latent variables, that are highlighted. These posterior samples provide important

information not contained in the measurement and structural parameters. As is illus-

trated using the case study, this information can often provide valuable insight into

structural relationships.

1. Introduction

Structural equation models (SEMs) with latent variables provide a very general frame-

work for modeling of relationships in multivariate data (Bollen, 1989). Although SEMs

are most commonly used in studies involving intrinsically latent variables, such as

happiness, quality of life, or stress, they also provide a parsimonious framework for

covariance structure modeling. For this reason, they have become increasingly used

outside of the traditional social science applications.

Software available for routine fitting of SEMs, including LISREL (Jöreskog and Sör-

bom, 1996), MPLUS (Muthén and Muthén, 1998, 2003) and BMDP (Bentler, 1992),

rely on frequentist methods. Most commonly, SEMs are fitted using either full infor-

mation maximum likelihood estimation (Jöreskog and Sörbom, 1985) or generalized

least squares procedures (Browne, 1974). Such methods can easily allow mixtures of

continuous and ordered categorical observed variables by using an underlying variable

structure (Muthén, 1984; Arminger and Küsters, 1988). Recent research has developed

extensions to allow interactions and nonlinear structures (Jöreskog and Yang, 1996;

163
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Bollen and Paxton, 1998; Wall and Amemiya, 2000). Frequentist inferences are typ-

ically based on point estimates and hypothesis tests for the measurement and latent

variable parameters, marginalizing out the latent variables.

Although the overwhelming majority of the literature on SEMs is frequentist in

nature, Bayesian approaches have been proposed by a number of authors. For factor

models, which are a special case of SEMs, there is a long history of Bayesian methods

(see, for example, Martin and McDonald, 1975; Lee, 1981; Ansari and Jedidi, 2000;

Lopes and West, 2003). For more general SEMs, early work was done by Bauwens

(1984) and Lee (1992). Recent articles have focused on the use of Markov chain Monte

Carlo (MCMC) methods to implement Bayesian analysis in complex cases, involving

nonlinear structures (Arminger and Muthén, 1998; Lee and Song, 2004), heterogeneity

(Ansari et al., 2000; Lee and Song, 2003a, 2003b), and multilevel data (Dunson, 2000;

Jedidi and Ansari, 2001; Song and Lee 2004a, 2004b; Jackman, 2004). In addition,

Raftery (1993) considers the important problem of model selection in SEMs from a

Bayesian perspective. Additional articles on Bayesian SEMs have been published by

Scheines et al. (1999) and Lee and Shi (2000a, 2000b).

The goal of this chapter is not to review all of these approaches, but instead to provide

an easily accessible overview of a Bayesian approach to SEMs, illustrating some of the

advantages over standard frequentist practice. The flexibility of the Bayesian approach

allows to apply the method in a very broad class of SEM-type modeling frameworks,

such as nonlinear interactions, missing data, mixed categorical, count, and continuous

observed variables, etc. The WinBUGS software package,1 which is freely available,

can be used to implement Bayesian SEM analysis, see, e.g., Clinton et al. (2004) for a

Bayesian spatial voting model using WinBUGS.

There are several important differences between the Bayesian and frequentist ap-

proaches, which will be highlighted. First, the Bayesian approach requires the spec-

ification of prior distributions for each of the model unknowns, including the latent

variables and the parameters from the measurement and structural models. Frequentists

typically assume Gaussian distributions for the latent variables, but do not specify pri-

ors for mean or covariance parameters.2 Because the posterior distributions upon which

Bayesian inferences are based depend both on the prior distribution and the likelihood

of the data, the prior plays an important role. In particular, specification of the prior

allows for the incorporation of substantive information about structural relationships,

which may be available from previous studies or social science theory. In the absence of

such information, vague priors can be chosen. As the sample size increases, the poste-

rior distribution will be driven less by the prior, and frequentist and Bayesian estimates

will tend to agree closely.

A second difference is computational. Bayesian model fitting typically relies on

MCMC, which involves simulating draws from the joint posterior distribution of the

model unknowns (parameters and latent variables) through a computationally intensive

procedure. The advantage of MCMC is that there is no need to rely on large sample

1 http://www.mrc=bsu.cam.ac.uk/bugs/.
2 Researchers can incorporate observed variables that come from distributions with excess kurtosis by using

corrected likelihood ratio tests, bootstrapping methods, or sandwich estimators for asymptotic standard errors

(Satorra and Bentler, 1988; Bollen and Stine, 1990, 1993).
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assumptions (e.g., asymptotic normality), because exact posterior distributions can be

estimated for any functional of the model unknowns. In small to moderate samples,

these exact posteriors can provide a more realistic measure of model uncertainty, reflect-

ing asymmetry and not requiring the use of a delta method or other approximations. The

downside is that it may take a long time (e.g., several hours) to obtain enough samples

from the posterior so that Monte Carlo (MC) error in posterior summaries is negligible.

This is particularly true in SEMs, because there can be problems with slow mixing pro-

ducing high autocorrelation in the MCMC samples. This autocorrelation, which can be

reduced greatly through careful parametrization or computation tricks (e.g., blocking

and parameter expansion), makes it necessary to collect more samples to produce an

acceptable level of MC error.

An additional benefit that is gained by paying this computational price is that samples

are available from the joint posterior distribution of the latent variables. Often, these

samples can be used to obtain important insights into structural relationships, which

may not be apparent from estimates (Bayesian or frequentist) of the structural parame-

ters. This is certainly the case in the industrialization and democratization application

(Bollen, 1989), which we will use to illustrate the concepts starting in Section 3.

Section 2 reviews the basic SEM modeling framework and introduces the notation.

Section 3 describes the Bayesian approach, focusing on normal linear SEMs for simplic-

ity in exposition, introduces the conditionally-conjugate priors for the parameters from

the measurement and latent variable models, and outlines a simple Gibbs sampling algo-

rithm for posterior computation. Section 4 applies the approach to the industrialization

and democratization case study. Section 5 contains a discussion, including recommen-

dations for important areas for future research.

2. Structural equation models

SEMs provide a broad framework for modeling of means and covariance relationships

in multivariate data. Although the Bayesian approach is flexible enough to allow several

extensions, our focus here is on the usual normal linear SEM, which is often referred

to as a linear structural relations or LISREL model. LISREL models generalize many

commonly-used statistical models, including ANOVA, MANOVA, multiple linear re-

gression, path analysis, and confirmatory factor analysis. Because SEMs are setup to

model relationships among endogenous and exogenous latent variables, accounting for

measurement error, they are routinely used in social science applications. Social sci-

entists have embraced latent variable models, realizing that it is typically not possible

to obtain one perfect measure of a trait of interest. In contrast, biomedical researchers

and epidemiologists tend to collapse multiple items related to a latent variable, such

as stress, into a single arbitrarily-defined score prior to analysis (Herring and Dunson,

2004).

In factor models, a vector of observed variables Y i is considered to arise through

random sampling from a multivariate normal distribution denoted by N(ν + Λf i,Σ),

where f i is the vector of latent variables; Λ is the factor loadings matrix describing the

effects of the latent variables on the observed variables; ν is the vector of intercepts and
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Σ is the covariance matrix. However, in SEMs the focus is also on studying relation-

ships among factors. For this purpose, the distinction between the measurement model

and structural (latent) model is common. The former specifies the relationships of the

latent to the observed variables, whereas the latter specifies the relationships among

the latent variables. Following the standard LISREL notation, as in Bollen (1989) and

Jöreskog and Sörbom (1996), the measurement model is, for i = 1, . . . , N observa-

tions,

(1a)yi = νy +Λyηi + δ
y
i ,

(1b)xi = νx +Λxξ i + δxi ,

where model (1a) relates the vector of indicators yi = (yi1, . . . , yip)
′ to an underlying

m-vector of latent variables ηi = (ηi1, . . . , ηim)
′, m � p, through the p × m factor

loadings matrix Λy . Similarly, (1b) relates xi = (xi1, . . . , xiq)
′ to an n-vector of latent

variables ξ i = (ξi1, . . . , ξin)
′, n � q, through the q × n matrix Λx . The vectors δ

y
i and

δxi are the measurement error terms, with dimensions p×1 and q ×1, respectively. The

vectors νy , p × 1, and νx , q × 1, are the intercept terms of the measurement models.

In Eqs. (1a) and (1b), it is assumed that the observed variables are continuous. How-

ever, as in Muthén (1984), the model remains valid for categorical or censored observed

variables (yi, xi) since they can be linked to their underlying continuous counterparts

(y∗
i , x

∗
i ) through a threshold model. Potentially, one can also define separate general-

ized linear models for each of the observed variables in the measurement model (as in

Sammuel et al., 1997; Moustaki and Knott, 2000; Dunson, 2000, 2003; Dunson et al.,

2003) to allow a broader class of measurement models.

On the other hand, the structural (latent variable) model is focused on studying the

relationships among latent variables, η and ξ . This is performed by regressing the de-

pendent vector, η, on the explanatory vector ξ as follows, i = 1, . . . , N ,

(2)ηi = α + Bηi + Γ ξ i + ζ i,

where the m × m matrix B describes the relationships among latent variables in ηi .

Clearly, the elements of the diagonal of B are all zero. The m × n matrix Γ quantifies

the influence of ξ i on ηi . The m × 1 vectors α and ζ i represent the intercept and the

unexplained parts of ηi , respectively.

Under this parametrization, common assumptions in SEMs are:

(i) the elements of ξ i and ζ i are independent and normally distributed, ξ i ∼ Nn(μξ ,

Ωξ ), Ωξ = diag(ω2
ξ1, . . . , ω

2
ξn), and ζ i ∼ Nm(0,Ωζ ), Ωζ = diag(ω2

ζ1, . . . , ω
2
ζn);

(ii) the measurement error vectors δ
y
i ∼ Np(0,Σy), Σy = diag(σ 2

1y, . . . , σ
2
py), and

δxi ∼ Nq(0,Σx), Σx = diag(σ 2
1x, . . . , σ

2
qx) are assumed independent; and

(iii) δ′ = (δy′, δx′), Cov(ζ , δ′) = 0, Cov(ξ , δ′) = 0, Cov(ξ , ζ ′) = 0, and (I − B) is

nonsingular.

In addition, some constraints need to be placed on Λx and Λy for identifiability. The

standard LISREL formulation considers correlations among ξ . Our proposed parame-

terization allows for such correlations by including additional pseudo-latent variables,

as is illustrated in detail through the case study later in the chapter.
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3. Bayesian approach

Instead of relying on point estimates (MLEs, least squares, etc.) and asymptotically-

justified confidence bounds and test statistics, the Bayesian approach we describe bases

inferences on exact posterior distributions for the parameters and latent variables es-

timated by Markov chain Monte Carlo. As sample sizes increase, Bayesian and fre-

quentist estimators of the parameters should converge. However, an appealing feature

of the Bayesian approach is that posterior distributions are obtained not only for the

parameters, but also for the latent variables. Although the posterior distribution for the

latent variables is shrunk back towards the normal prior, lack of fit can be captured,

including non-normality, non-linearity, and relationships that are not immediately ap-

parent from the parameter estimates. Although frequentist two-stage approaches that

fit the measurement model first and, then, compute factor scores can similarly be used

to capture lack of fit, estimates are biased and measures of uncertainty in the factors

scores are difficult to obtain (Croon and Bolck, 1997). For goodness-of-fit, a number

of authors have proposed the use of posterior predictive (PP) p-values (Scheines et al.,

1999; Lee and Shi, 2000a, 2000b; Zhu and Lee, 2001), though PP p-values can be

conservative due to the double use of the data (Bayarri and Berger, 2000). An alterna-

tive is to use the BIC-criterion advocated by Raftery (1993), though some authors have

questioned the use of the BIC in hierarchical models. Recent work has focused instead

on computational methods for estimating Bayes factors using path sampling, includ-

ing Lee and Song (2002), in the context of a nonlinear SEM with covariates; Lee and

Song (2003a, 2003b) for mixture SEMs; Lee and Song (2004) for nonlinear SEM with

missing categorical data; and Song and Lee (2004a, 2004b) for two-level SEMs, among

others.

Since the Bayesian approach yields estimates of the exact joint posterior distribution

of the latent variables, it can be used flexibly to, for example,

(1) Obtain point and interval estimates for the factor scores of each individual.

(2) Formally compare the factor scores for different subjects (e.g., through a posterior

probability that the score is higher for a particular subject).

(3) Assess whether a particular subject’s factor score has changed over time.

(4) Identify outlying subjects in the tails of the latent variable distribution.

(5) Assess relationships that may not be fully captured by the basic modeling structure

(e.g., is the association between latent traits linear and apparent across the range of

factor scores or predominantly due to the more extreme individuals?).

Potentially, one could use a richer model that allows nonlinear and more complex

relationships among the latent variables. However, it is often not apparent a priori how

such relationships should be specified, and important insights can be obtained through

careful examination of posterior distributions of the latent variables obtained under a

simple LISREL model.

3.1. Specification

The Bayesian model requires the specification of a full likelihood and prior distributions

for the parameters. The complete data likelihood, including the latent variables, has the
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following form:

L(y, x, η, ξ ;Θ) =
N∏

i=1

{
Np(yi; νy +Λyηi,Σy)Nq(xi; νx +Λxξ i,Σx)

× Nm(ηi;α + Bηi + Γ ξ i,Ωζ )Nn(ξ i;μξ ,Ωξ )
}
,

where Θ = (α, b, γ , νy, νx,λy,λx, σ
2
y, σ

2
x,ω

2
ζ ,μξ ,ω

2
ξ ) is the vector of model para-

meters. Here, the lower case bold letters denote that only the free elements are included

in the parameter vector Θ , with the remaining elements being fixed in advance in the

model specification process.

To complete a Bayesian specification of the model, we choose priors for each of the

parameters in Θ . For convenience in elicitation and computation, we choose normal or

truncated normal priors for the free elements of the intercept vectors, νy , νx and α, the

factor loadings, λy and λx , and the structural parameters b and γ . For the variance com-

ponent parameters, including the diagonal elements of Σy , Σx , Ωζ and Ωξ , we choose

independent inverse-gamma priors (avoiding high variance priors for the latent variable

variances, which have well known problems). The bounds on the truncated normal are

chosen to restrict parameters that are known in advance to fall within a certain range. For

example, positivity constraints are often appropriate and may be necessary for identifia-

bility based on the data. It is important to distinguish between frequentist identifiability,

which implies that all the model parameters can be estimated based on the data given

sufficient sample size, and Bayesian identifiability, which implies Bayesian learning. In

particular, Bayesian learning occurs when the posterior distributions can differ from the

prior distributions, reflecting that we have updated our beliefs based on the current data.

Potentially, one can choose informative prior distributions for the parameters in a model

that is underidentified from a frequentist perspective, and still obtain Bayesian identi-

fiability for unknowns of interest. However, we prefer to focus on models which are

identified in a frequentist sense to avoid relying so strongly on the prior specification.

The joint posterior distribution for the parameters and latent variables is computed,

following Bayes’ rule, as

(3)π(Θ, ξ , η|y, x) = L(y, x, η, ξ ;Θ)π(Θ)∫
L(y, x, η, ξ ;Θ)π(Θ) dη dξ dΘ

,

which is simply the complete data likelihood multiplied by the prior and divided by

a normalizing constant referred to as the marginal likelihood. Clearly, calculation of

the marginal likelihood (the term in the denominator) is very challenging, because it

typically involves a high-dimensional integration of the likelihood over the prior dis-

tribution. Fortunately, MCMC techniques can be used to generate draws from the joint

posterior distribution without need to calculate the marginal likelihood. For an overview

of MCMC algorithms, refer to the recent books by Robert and Casella (2004), Gilks et

al. (1996), Gamerman (1997) and Chen et al. (2000). Due to the conditionally normal

linear structure of the SEM and to the choice of conditionally conjugate truncated nor-

mal and inverse-gamma priors for the parameters, MCMC computation can proceed

through a straightforward Gibbs sampling algorithm, see Geman and Geman (1984) or

Gelfand and Smith (1990) for more details.
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3.2. Gibbs sampler

The Gibbs sampler is an MCMC technique that alternately samples from the full con-

ditional posterior distributions of each unknown, or blocks of unknowns, including the

parameters and latent variables. Before proceeding to the next step, the sampled para-

meter or group of parameters value is updated. Under mild regularity conditions, these

samples converge to a stationary distribution, which is the joint posterior distribution.

Hence, we can run the Gibbs sampler, discard a burn-in to allow convergence (diag-

nosed by trace plots and standard tests), and then calculate posterior summaries based

on the collected samples. For illustration, we focus here on full conditional posterior

distributions for the latent variables and structural parameters. Derivation of the condi-

tional distribution for the remaining parameters follows simpler algebraic results and,

in general, is not necessary since black-box sampling algorithms exist. For example,

packages such as WinBUGS, Spiegelhalter et al. (2003), can automatically run Gibbs

sampler algorithms based only on model and prior specifications.

We focus now on deriving the conditional posterior distributions for the latent

variables, ηi , ξ i , and the structural parameters α, b, γ . As introduced previously,

MCMC methods use the joint posterior distribution (3) in terms of π(Θ, ξ , η|y, x) ∝
L(x, y, η, ξ ;Θ)π(Θ). Based on this property and factoring the joint posterior, we com-

pute the conditional posterior for the endogenous latent variable as follows

π
(
ηi |νy,Λy,Σy, μ̃ηi, Ω̃η, yi

)
∝ π(yi; νy +Λyηi,Σy) · π

(
ηi; μ̃ηi, Ω̃η

)

with μ̃ηi = A[α+Γ ξ i], Ω̃η = AΩζA
′ andA = [Im×m−B]−1. After straightforward

computations it is distributed as Nm(η̂i, Ω̂η) with

η̂i = Ω̂η

[
Λ′

yΣ
−1
y (yi − νy) + Ω̃

−1
η μ̃ηi

]
,

Ω̂
−1
η = Λ′

yΣ
−1
y Λy + Ω̃

−1
η .

The conditional posterior for the exogenous latent variable is obtained as follows

π(ξ i |ηi,Ωζ , νx,λx,Σx,α,B,Γ ,μξ ,Ωξ , xi)

∝ π(xi; νx + λxξ i,Σx)π(ηi;α + Bηi − Γ ξ i,Ωζ )π(ξ i;μξ ,Ωξ )

which, after computations, is distributed as Nn(ξ̂ i, Ω̂ξ ) with

ξ̂ i = Ω̂ξ

[
Λ′

xΣ
−1
x (xi − νx) + Γ ′Ω−1

ζ (ηi − α − Bηi) +Ω−1
ξ μξ

]
,

Ω̂
−1
ξ = Λ′

xΣ
−1
x Λx + Γ ′Ω−1

ζ Γ +Ω−1
ξ .

Since the estimates of ηi and ξ i are based on one observation, yi and xi , respectively,

their accuracy will not increase with the sample size. However, a point estimate ob-

tained by the proposed MCMC approach is more accurate than the classical regression

estimate methods. See Lee and Shi (2000a, 2000b) for a comparison between Bayesian

and classical methods.

The structural parameters have the following conditional posteriors:
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• For the vector of intercepts,

π(α|B, ηi,Γ , ξ i,Ωζ ,μα,Ωα)

∝
N∏

i=1

π(ηi;α + Bηi + Γ ξ i,Ωζ )π(α;μα,Ωα)

which is distributed as Nm(α̂, Ω̂α) with

α̂ = Ω̂α

[
μ′
αΩ

−1
α +

N∑

i=1

(ηi − Bηi − Γ ξ i)
′Ω−1

ζ

]
,

Ω̂
−1
α = NΩ−1

ζ +Ω−1
α .

• For the coefficient brj , which measures the impact of ηj on ηr , with r, j = 1, . . . , m

and brr = 0,

π
(
brj |b−rj ,α, ηi,Γ , ξ i,Ωζ , μb, ω

2
b

)

∝
N∏

i=1

π(ηi;α + Bηi + Γ ξ i,Ωζ )π
(
brj ;μb, ω

2
b

)

which is distributed as N(b̂rj , ω̂b) with

b̂rj = ω̂b

[
μb

ω2
b

+
N∑

i=1

η
j
i

ω2
ζ r

(
ηri − αr −

n∑

s=1

(
γrs · ξ si

)
−

m∑

t=1
t �=j

brt · ηti

)]
,

ω̂−1
b =

∑N
i=1(η

j
i )

2

ω2
ζ r

+ 1

ω2
b

.

• For the coefficient γrj , which measures the effect of ξ j on ηr , with r = 1, . . . , m,

j = 1, . . . , n,

π
(
γrj |b,α, γ−rj , ηi, ξ i,Ωζ , μγ , ω

2
γ

)

∝
N∏

i=1

π(ηi;α + Bηi + Γ ξ i,Ωζ )π
(
γrj ;μγ , ω

2
γ

)

which is distributed as N(γ̂rj , ω̂γ ) with

γ̂rj = ω̂γ

[
μγ

ω2
γ

+
N∑

i=1

ξ
j
i

ω2
ζ r

(
ηri − αr −

m∑

s=1

(
brs · ηsi

)
−

n∑

t=1
t �=j

γrt · ξ ti

)]
,

ω̂−1
γ =

∑N
i=1(ξ

j
i )

2

ω2
ζ r

+ 1

ω2
γ

.
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Once all the full conditional posteriors are computed, the following Gibbs sampling

algorithm can be implemented:

GivenΘ0, ξ0, η0

for (k = 1,...,# iterations)

for (i = 1,...,N)

Sample ηki ∼ π(ηi |μ̃k−1
ηi , Ω̃

k−1
η , ξ k−1

i ,Θk−1, yi)

Sample ξ ki ∼ π(ξ i |ηki ,Θk−1, xi)

Sample (νky,λ
k
y) ∼ π(νy,λy |Θk−1, ηk, y)

Sample (νkx,λ
k
x) ∼ π(νx,λx |Θk−1, ξ k, x)

Sample (αk, bk, γ k) ∼ π(α, b, γ |ηk, ξ k,Θk−1, x, y)

Sample (σ 2
y)

k ∼ π(σ 2
y |ηk, νky,λky,Θk−1, y)

Sample (σ 2
x)

k ∼ π(σ 2
x |ξ k, νkx,λ

y
x,Θ

k−1, x)

Sample μk
ξ ∼ π(μξ |ξ k,m,M)

Sample Ωk
ξ ∼ π(Ωξ |ξ k, aξ ,βξ )

Sample Ωk
ζ ∼ π(Ωζ |ηk, aη,βη)

Output= {ηk, ξ k,Θk}
where m, M , aξ , βξ , aη and βη are the hyper-parameters for μξ , Ωξ and Ωζ , respec-

tively.

Along with the benefits of Bayesian SEMs come the need to carefully consider cer-

tain computational issues. A particular concern is slow mixing of the MCMC algorithm,

which can lead to very high autocorrelation in the samples and slow convergence rates.

Parametrization has a large impact on computation in hierarchical models, including

SEMs. For a given implied multivariate normal model, there is an equivalence class of

SEMs having identical MLEs, but with different constraints made to ensure identifiabil-

ity. The level of slow mixing can vary dramatically across SEMs in such an equivalence

class, ranging from autocorrelation values near 1 to values near 0. Fortunately, it is

easy to preselect an SEM in each equivalence class to limit slow mixing by choosing a

centered parametrization. This simply involves incorporating free mean and variance

parameters for each of the latent variables, with constraints instead incorporated in

the intercepts and factor loadings in the measurement model. Following such a rule

of thumb has a dramatic impact on computational efficiency without limiting inferences

– one can always obtain posterior samples under a different parametrization by appro-

priately transforming draws obtained under the centered parametrization. In addition to

centering, techniques that can be used to improve mixing include data augmentation

or parameter expansion (Hills and Smith, 1992) updating parameters in blocks instead

of one by one, and randomizing the order of updating (Liu et al., 1994; Roberts and

Sahu, 1997). Techniques to determine the effective number of Gibbs samples necessary

to produce a given level of precision in a posterior quantile of interest are available

(Raftery and Lewis, 1992). In addition, there are many tests to diagnose convergence of

the Markov chain (cf., Brooks and Gelman, 1998; Brooks and Giudici, 2000).



172 J. Palomo et al.

Table 1

Summary of the industrialization and democratization data

Indicator Min 1st qu. Median Mean 3rd qu. Max Sd

y1 1.250 2.900 5.400 5.465 7.500 10.000 2.623

y2 0 0 3.333 4.256 8.283 10.000 3.947

y3 0 3.767 6.667 6.563 10.000 10.000 3.281

y4 0 1.581 3.333 4.453 6.667 10.000 3.349

y5 0 3.692 5.000 5.136 7.500 10.000 2.613

y6 0 0 2.233 2.978 4.207 10.000 3.373

y7 0 3.478 6.667 6.196 10.000 10.000 3.286

y8 0 1.301 3.333 4.043 6.667 10.000 3.246

x1 3.784 4.477 5.075 5.054 5.515 6.737 0.733

x2 1.386 3.663 4.963 4.792 5.830 7.872 1.511

x3 1.002 2.300 3.568 3.558 4.523 6.425 1.406

4. Democratization and industrialization application

We will illustrate the Bayesian approach and highlight differences with frequentist

methods using a democratization and industrialization example from the literature

(Bollen, 1980, 1989). There has long been interest in studying relationships between

industrialization in developing countries and democratization. To obtain insight into

this relationship, our focus is on assessing whether industrialization level (IL) in Third

World countries is positively associated with current and future political democracy

level (PDL). The common political instabilities make these associations unclear. In the

proposed model, it is assumed that some of the consequences of industrialization, for

example societal wealth, an educated population, advances in living standards, etc., en-

hance the chances of democracy. To test this theory, measures of PDL (in 1960 and

1965) and IL indicators (in 1960) were collected in 75 developing countries. These in-

clude all developing countries, excluding micro-states, for which complete data were

available.

Since political democracy refers to the extent of political rights and political lib-

erties, we define a vector y of measures based on expert ratings: freedom of the

press (y1960
1 , y1965

5 ), freedom of group opposition (y1960
2 , y1965

6 ), fairness of elections

(y1960
3 , y1965

7 ), and elective nature of the legislative body (y1960
4 , y1965

8 ). Each of the

rates were arbitrarily linearly transformed to the scale [0, 10]. See Treier and Jackman

(2005) for a Bayesian latent factor model applied to Polity indicators of democracy.

Industrialization is defined as the degree to which a society’s economy is character-

ized by mechanized manufacturing processes, and the following vector of indicators x is

compiled for consideration: gross national product per capita (x1960
1 ), inanimate energy

consumption per capita (x1960
2 ) and the percentage of the labor force in industry (x1960

3 ).

For simplicity in the notation, we will hereafter remove the superscripts indicating the

year.

The data collected are summarized in Table 1 and plotted in Figure 1.
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Fig. 1. Industrialization and democratization data.

4.1. Model structure

We show in the path diagram of Figure 2 the assumed model, where, for the countries

under study, the PDL in 1960 and 1965 is represented by η60 and η65, respectively,

and the IL in 1960 is symbolized by ξ . Following the convention, circles represent

latent variables, the squares the observed variables and the arrows linear relations. The

relations assumed imply that the IL in 1960, ξ , affects the PDL both in 1960, η60, and

1965, η65, through the regression coefficients γ 60 and γ 65, respectively. The impact of

the PDL in 1960 on the level in 1965 is represented by the arrow b21. The pseudo-latent

variables, D15,D24,D26,D37,D48,D68, are used to represent the correlation among

the errors in the ratings that were elicited by the same expert in two points of time.

For the ith country, the latent variable model, as introduced in (2), is now formulated

in matrix form as follows,

(4)

(
η60
i

η65
i

)
=
(
α60

α65

)
+
(

0 0

b21 0

)(
η60
i

η65
i

)
+
(
γ 60

γ 65

)
ξi +

(
ζ 60
i

ζ 65
i

)
,
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Fig. 2. Path diagram for the democratization study.

where the disturbances ζ i = (ζ 60
i , ζ 65

i ) are assumed to be independent normally dis-

tributed with mean zero and precision parameters ω−1

ζ 60 and ω−1

ζ 65 , respectively. The

measurement model, as introduced in (1), is now formulated as follows

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1i

y2i

y3i

y4i

y5i

y6i

y7i

y8i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

ν
y

2

ν
y

3

ν
y

4

0

ν
y

6

ν
y
7

ν
y

8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

λ
y

2 0

λ
y

3 0

λ
y

4 0

0 1

0 λ
y

6

0 λ
y
7

0 λ
y

8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
η60
i

η65
i

)

(5a)+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 1 0 0 0

0 0 0 1 0 0

0 1 0 0 1 0

1 0 0 0 0 0

0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

D15
i

D24
i

D26
i

D37
i

D48
i

D68
i

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ
y

1i

δ
y

2i

δ
y

3i

δ
y

4i

δ
y

5i

δ
y

6i

δ
y
7i

δ
y

8i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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(5b)

(
x1i

x2i

x3i

)
=

⎛
⎝

0

νx2

νx3

⎞
⎠+

⎛
⎝

1

λx2

λx3

⎞
⎠ ξi +

⎛
⎝

δx1i

δx2i

δx3i

⎞
⎠ ,

where λ
y
j is the influence of PDL on the indicator yj , j = 1, . . . , 8, Drs is a pseudo-

latent variable to model the correlations among the measurement errors δ
y
r and δ

y
s . We

fix the intercepts, ν
y

1 = ν
y

5 = νx1 = 0, and factor loadings, λ
y

1 = λ
y

5 = λx1 = 1, for

identifiability of the model and to scale the latent variables. Therefore, PDL will be

scaled in terms of freedom in press and IL in terms of gross national product per capita.

Furthermore, this approach results in a centered parametrization, which has appealing

computational properties as discussed in Section 3.2.

Under expressions (4) and (5), and for i = 1, . . . , 75 developing countries, the com-

plete data likelihood including the latent variables η and ξ is as follows

L(y, x, η, ξ,D;Θ) =
75∏

i=1

{
N8(yi; νy +Λyηi,Σy)

× N3(xi; νx +Λxξi,Σx)N
(
ξi;μξ , ω

2
ξ

)

× N2(ηi;α + Bηi + Γ ξi,Ωζ )N6(Di; 0,ΩD)
}

withΣy = diag(σ 2
y1, . . . , σ

2
y8),Σx = diag(σ 2

x1, σ
2
x2, σ

2
x3),Ωζ = σ 2

y1 ·diag(ω−1

ζ 60, ω
−1

ζ 65),

ΩD = diag(ω2
D15, ω

2
D24, ω

2
D26, ω

2
D37, ω

2
D48, ω

2
D68), and Θ includes the free elements of

(νy,Λy, νx,Λx,B) and the parameters (σ 2
y, σ

2
x, μξ , ω

2
ξ ,α, γ ,Ωζ ,ω

2
D).

In the Bayesian analysis, the prior specification involves quantifying expert’s uncer-

tainty in the model parameters Θ . In the cases where not much information is available

beyond the observed data, non-informative or objective priors are the usual selection

(Berger, 1985; Bernardo and Smith, 1994). Here, we consider a variety of alternative

priors, with the primary choice based on expert elicitation, choosing a specification that

assigns high probability to a plausible range for the parameter values based on Ken

Bollen’s experience in this area. We also consider priors centered on the MLEs, but

with inflated variance, for sake of comparison. Refer to Appendix A for more details on

the hyperparameters used.

In this case, the joint posterior is computed, following Bayes’ rule, as

π(Θ, ξi, ηi,Di |x, y) ∝ L(y, x, η, ξ ,D;Θ) · π(Θ).

Although this joint posterior distribution is complex, all the corresponding full condi-

tional posterior distributions have simple conjugate forms due to the model assumed.

A Gibbs sampling algorithm based on the general scheme introduced before is used

to obtain samples from the posterior distributions of the parameters of interest, for ex-

ample, PDL and IL for every single country in the study in both periods (1960 and

1965), or the impact of the PDL in 1960 on the PDL in 1965. The implementation of

the algorithm was written in R, and run 50 000 iterations, discarding the first 10 000

for burn-in, and keeping one every 400 iterations to reduce the correlation among the

posterior samples. WinBUGS could also be used, but our R implementation gave us
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Fig. 3. Histograms for the posterior samples under the subjective priors scheme. From left to right: b21, γ 60

and γ 65. The confidence intervals for the MLEs are represented with straight lines.

greater flexibility regarding the computational algorithms and priors we could con-

sider.

4.2. Results

We start by comparing the frequentist (Maximum Likelihood) and Bayesian estimates

for the aforementioned parameters of interest, see Appendix B for a full list of parame-

ters estimates. In Figures 3 and 4 we show graphically the histograms of the posterior

samples for the parameters b21, γ 60, γ 65, μξ and σ 2
ξ along with a confidence interval

for the MLEs. The learning process experimented in updating the prior to the poste-

rior beliefs based on the observed data are presented in Table 2. For example, a prior

95% probability interval for the influence of PDL in 1960 on the level in 1965 is:

[−4.062, 5.736], under the centered MLE priors scheme, and [−1.828, 3.828] under

the subjective priors scheme. These probability intervals, a posteriori, are narrowed to

[0.523, 0.959] and [0.522, 1.1], respectively. This shows a convergence, after observing

the data, regardless of the starting prior knowledge.

As measures of the goodness-of-fit of the frequentist model, we report the R-square

indicators in Table 3. In Bayesian SEMs, we shall use some loss function L(yi, ŷi)

to measure the goodness-of-fit based on the predictive distribution. For example, the

Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE) are common
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Fig. 4. Histograms of the posterior samples for μξ (left) and ω2
ξ (right) under the subjective priors scheme.

The confidence intervals for the MLEs are represented with straight lines.

Table 2

Parameters of interest estimated under the frequentist (MLE) and Bayesian approach (summary of the poste-

rior distributions)

MLE Centered MLE Subjective

Prior beliefs Posteriors Prior beliefs Posteriors

Mean Sd Mean Sd Median Mean Sd Mean Sd Median Mean Sd

b21 0.837 0.098 0.837 2.449 0.744 0.741 0.109 1 1.414 0.814 0.811 0.144

γ 60 1.483 0.399 1.483 2.449 1.455 1.454 0.313 1.5 1.414 1.083 1.077 0.209

γ 65 0.572 0.221 0.572 2.449 0.774 0.774 0.278 0.5 1.414 0.297 0.322 0.205

μξ 5.054 0.084 5.054 2.5 5.054 5.053 0.087 5 1 5.040 5.035 0.098

ω2
ξ 0.448 0.087 0.448 0.224 0.433 0.442 0.077 1 0.5 0.655 0.667 0.119

Table 3

R-square indicators for the frequentist model

R2 estimates

y1 y2 y3 y4 y5 y6 y7 y8 x1 x2 x3 η60 η65

0.723 0.514 0.522 0.715 0.653 0.557 0.678 0.685 0.846 0.947 0.761 0.200 0.961
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Table 4

Measures of the goodness of the predictive distribution

Country46 Country61 Country22

RMSEXi 0.94 0.24 0.323

MAEXi 0.13 0.33 0.384

RMSEY i 0.511 0.277 0.355

MAEY i 1 0.583 0.783

IL1 IL2 IL3

RMSEXj 0.029 0.032 0.075

MAEXj 0.21 0.214 0.54

PDL1 PDL2 PDL3 PDL4 PDL5 PDL6 PDL7 PDL8

RMSEYj 0.096 0.193 0.172 0.116 0.131 0.134 0.131 0.114

MAEYj 0.689 1 1 0.818 0.892 0.912 0.931 0.765

measures computed as follows, i = 1, . . . , 75 and j = 1, . . . , 8,

RMSEi =

√∑8
j=1(yij − E(ŷij ))2

8
, RMSEj =

√∑75
i=1(yij − E(ŷij ))2

75
,

MAEi =
∑8

j=1 |yij − E(ŷij )|
8

, MAEj =
∑75

i=1 |yij − E(ŷij )|
75

,

where E(ŷij ) = 1
MN

∑M
l=1

∑N
k=1 ŷ

lk
ij is the average of the posterior predictions for the

j th PDL indicator and ith country. Those for the indicators of IL follow symmetrically.

We report these estimates in Table 4, where countries {46, 61, 22} are samples from

each of the three industrialization clusters identified.

So far, we have presented summaries of the results obtained following both the fre-

quentist’s and Bayesian’s approaches. However, there is more information available in

the posterior than is present in marginal posterior summaries of the population para-

meters. In particular, the benefit of having posterior samples from the joint posterior

distribution of the latent variables is large. They provide important information not con-

tained in the measurement and structural models. We highlight these issues in the next

section.

4.3. Democratization results

Recall that the main goal is to determine if the IL of a country has an impact on the

change of its PDL. The average across countries of the posterior samples of IL in 1960

are summarized in Table 5.

In Figures 5 and 6 we show boxplots for the PDL in 1960 (gray boxes) and in 1965

(black boxes) for each country in the study, along with their IL (posterior mean) in
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Table 5

Min. 1st qu. Median Mean 3rd qu. Max Sd

3.498 4.374 5.117 5.035 5.560 6.593 0.798

Fig. 5. Boxplots of the PDL in 1960, gray, and in 1965, black. The countries are sorted, black circles, by

increasing posterior mean IL in 1960. The two vertical dotted lines separate the three clusters using IL as

criteria. The two horizontal dashed lines show the first and fourth quartile for the posterior means of PDL

in 1965.

1960 (black circles). To facilitate the interpretation, we have sorted the countries by

increasing posterior mean of IL.

We notice a generalized (two thirds of the countries) reduction in PDL from 1960 to

1965 – in Figure 6 the black diamonds are mostly below the gray circles. In Figure 7

we show this behavior for the countries in the study, where the thin horizontal straight

gray line represents the average across-countries of the PDL change; the PDL average

reduced amount is 0.314. We plot also an horizontal straight black line at zero.

As a first approach, we have linearly regressed each posterior sample of the IL against

the square of the PDL change for each country. We have estimated by least squares the

slope of the regression line, finding that the posterior probability of having a negative

slope is 0.94. This indicates that an increase in the IL will almost surely cause a positive
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Fig. 6. Chart that shows the posterior mean of PDL in 1960, gray circles, and in 1965, black diamonds. The

countries are sorted, black squares, by increasing IL (posterior mean) in 1960. Vertical dotted lines separate

the three clusters using IL as criteria. The horizontal gray lines show the first and third quartile (dashed)

and the median (straight) for the posterior means of PDL in 1960, and black dashed lines show these bands

in 1965.

or negative change in the PDL. However, we notice that this behavior is not homoge-

neous among countries, and consequently further analysis is required. We define three

clusters of countries, corresponding to: poorly industrialized, those countries in the first

quartile; mildly industrialized, those in the second and third quartile; and highly indus-

trialized, those in the fourth quartile. These clusters are represented with vertical dotted

lines in Figures 5, 6 and 7, yielding 19, 37 and 19 countries, respectively, on each group.

The different behavior of the clusters is present in Figure 6, where for the poorly and

highly industrialized groups, whenever their PDL in 1960 is within the (gray) bands,

it will also remain within the (black) bands in 1965. No such pattern is detected in the

case of the mildly industrialized countries, where the variability is considerably higher.

In Figure 7 we also see the difference in the variability of PDL change among clusters:

only 10.5% of the countries in the first cluster increased the PDL, whereas the 35.1

and 52.6% was recorded for the second and third clusters, respectively. Also, 42.1 and

27% are the percentages of countries that experienced an extreme (in the first quartile)

reduction on PDL for the first and second clusters, respectively. This is not the case

for the highly industrialized countries, where only 15.8% of the countries have a PDL
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Fig. 7. Chart that shows the differences in PDL between 1960 and 1965. The countries are sorted, black

squares, by increasing IL (posterior mean) in 1960. Vertical dotted lines separate the three clusters using IL as

criteria, and horizontal gray lines represent the first and third quartile (dashed) and the median (straight) for

the PDL reduction. The straight horizontal black line at zero separates the countries that increased the PDL

in 1965.

change below the average, and none of them reaches the lower band. This indicates that

low levels of industrialization cannot compensate the PDL reduction tendency over the

period 1960–1965 for the countries of study.

5. Discussion and future research

This chapter has provided an overview of a Bayesian approach to structural equation

modeling, highlighting some aspects of the Bayesian approach that have not been fully

explored in previous articles on Bayesian SEMs. In particular, previous authors have not

carefully considered the issue of parametrization, which really does have an enormous

practical impact on Bayesian computation. The most important points to remember in

conducting Bayesian SEM analysis are (1) use a centered parametrization allowing the

latent variables to have free intercepts and variances; (2) do not use diffuse (high vari-

ance) or improper uniform priors for the latent variable variances; and (3) examine the
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posterior distributions of the latent variables, because they often provide additional in-

formation and insight not apparent from the estimated population parameters.

There is a need for additional research into computationally efficient algorithms for

SEMs. There has been a lot of interest in computation for simpler variance component

models, and a variety of approaches have been proposed, including not only centering

but also clever parameter expansion techniques (refer to Gelman (2005), for a recent

reference). The parameter expansion approach can potentially be applied directly to

SEMs, but practical details remain to be worked out.

Another very important issue is the prior specification, particularly in cases in which

limited information is available a priori or one wishes to choose a noninformative prior

in conducting a reference analysis. However, special care must be taken with approaches

that suggest, as a non-informative specification, e.g., Scheines et al. (1999), a uniform

improper prior for the vector of parameters, including the variance components. These

uniform improper priors on the latent variable variances, unfortunately, will result in

an improper posterior, and, therefore, the results are not interpretable, since the pos-

teriors are no longer a density function (it does not integrate to one). This problem is

not solved by using highly diffuse inverse-gamma priors, because the posterior is then

close to improper (i.e., it might as well be improper as far as MCMC behavior and inter-

pretation). In addition, as illustrated by Gelman (2005) for simple variance component

models, there can be enormous sensitivity to the prior variance chosen in the diffuse

gamma prior. Better reference priors for variance component models were suggested by

Gelman (2005) and similar specifications can be used in SEMs.

Additional areas in need of further research, include model selection/averaging and

semiparametric methods, see Dunson (2006) for a semiparametric latent factor model.

The Bayesian approach has the major advantage that it can allow for uncertainty in

different aspects of the model specification in performing inferences about structural

relations of interest. Raftery has developed Bayesian methods for model selection and

averaging in SEMs in a series of papers, primarily based on the BIC and Laplace ap-

proximations to the marginal likelihood. However, due to the constraints involved with

comparing models that have different variance component structures, more accurate

approximations that also allow more flexibility in the prior specification need to be con-

sidered. Expanding the class of models considered to allow unknown latent variable

and measurement error distributions can potentially be accomplished within a Bayesian

approach using Dirichlet process priors, but again details remain to be worked out.

Appendix A. Prior specifications

We consider the following gamma and inverse-gamma formulations for the prior distri-

bution of the precision and variance parameters respectively, where

σ 2 ∼ InvGamma(σ 2;α, β)

f (σ 2) = βα

Γ (α)
(σ 2)−(α+1) exp

(
− β

σ 2

)
,

μ = β

α − 1
, σ 2 = β2

(α − 1)2(α − 2)
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σ−2 ∼ Gamma(σ−2;α, β)

f (σ−2) = βα

Γ (α)
(σ−2)α−1 exp(−βσ−2)

μ = α

β
, σ 2 = α

β2
.

See Table A.1 for the prior parameters used.

Table A.1

Prior distributions for the model parameters and their corresponding ML estimates

MLE centered parameters Subjective parameters MLE estimates

σ 2
y1

∼ IGamma(·, ·) 6.0 9.455 10 36 1.891 0.444

σ 2
y2

∼ IGamma(·, ·) 6.0 36.865 10 36 7.373 1.374

σ 2
y3

∼ IGamma(·, ·) 6.0 25.335 10 36 5.067 0.952

σ 2
y4

∼ IGamma(·, ·) 6.0 15.74 10 36 3.148 0.739

σ 2
y5

∼ IGamma(·, ·) 6.0 11.755 10 36 2.351 0.480

σ 2
y6

∼ IGamma(·, ·) 6.0 24.77 10 36 4.954 0.914

σ 2
y7

∼ IGamma(·, ·) 6.0 17.155 10 36 3.431 0.713

σ 2
y8

∼ IGamma(·, ·) 6.0 16.27 10 36 3.254 0.695

σ 2
x1

∼ IGamma(·, ·) 6.0 0.41 6 1 0.082 0.019

σ 2
x2

∼ IGamma(·, ·) 6.0 0.6 6 1 0.120 0.070

σ 2
x3

∼ IGamma(·, ·) 6.0 2.335 6 1 0.467 0.090

μξ ∼ N(·, σ 2) 5.054 6.25 5 1 5.054 0.084

ω2
ξ ∼ IGamma(·, ·) 6.0 2.24 6 5 0.448 0.087

ω−1

ζ60 ∼ Gamma(·, ·) 4.0 1.912 16 16 2.092

ω−1

ζ65 ∼ Gamma(·, ·) 4.0 43.977 4.0 93.023 0.091

ω2
D15 ∼ IGamma(·, ·) 6.0 3.12 6.0 5.0 0.624 0.358

ω2
D24 ∼ IGamma(·, ·) 6.0 6.565 6.0 5.0 1.313 0.702

ω2
D26 ∼ IGamma(·, ·) 6.0 10.765 6.0 5.0 2.153 0.734

ω2
D37 ∼ IGamma(·, ·) 6.0 3.975 6.0 5.0 0.795 0.608

ω2
D48 ∼ IGamma(·, ·) 6.0 1.74 6.0 5.0 0.348 0.442

ω2
D68 ∼ IGamma(·, ·) 6.0 6.78 6.0 5.0 1.356 0.568

ν
y
2

∼ N(·, σ 2) −2.611 6.0 0 1 −2.611 1.064

ν
y
3

∼ N(·, σ 2) 0.783 6.0 0 1 0.783 0.883

ν
y
4

∼ N(·, σ 2) −2.459 6.0 0 1 −2.459 0.843

(continued on next page)
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Table A.1

(continued)

MLE centered parameters Subjective parameters MLE estimates

ν
y
6

∼ N(·, σ 2) −3.112 6.0 0 1 −3.112 0.928

ν
y
7 ∼ N(·, σ 2) −0.376 6.0 0 1 −0.376 0.878

ν
y
8

∼ N(·, σ 2) −2.459 6.0 0 1 −2.459 0.868

λ
y
2

∼ N(·, σ 2) 1.257 6.0 1 2 1.287 0.182

λ
y
3

∼ N(·, σ 2) 1.058 6.0 1 2 1.058 0.151

λ
y
4

∼ N(·, σ 2) 1.265 6.0 1 2 1.265 0.145

λ
y
6

∼ N(·, σ 2) 1.186 6.0 1 2 1.186 0.169

λ
y
7 ∼ N(·, σ 2) 1.280 6.0 1 2 1.280 0.160

λ
y
8

∼ N(·, σ 2) 1.266 6.0 1 2 1.266 0.158

νx
2

∼ N(·, σ 2) −6.228 6.0 0 1 −6.228 0.705

νx
3

∼ N(·, σ 2) −5.634 6.0 0 1 −5.634 0.774

λx
2

∼ N(·, σ 2) 2.180 6.0 1 2 2.180 0.139

λx
3

∼ N(·, σ 2) 1.819 6.0 1 2 1.819 0.152

α60 ∼ N(·, σ 2) −2.031 6.0 1 2 −2.031 2.037

α65 ∼ N(·, σ 2) −2.332 6.0 1 2 −2.332 1.119

b21 ∼ N(·, σ 2) 0.837 6.0 1 2 0.837 0.098

γ 60 ∼ N(·, σ 2) 1.483 6.0 1.5 2 1.483 0.399

γ 65 ∼ N(·, σ 2) 0.572 6.0 0.5 2 0.572 0.221

Appendix B. Results: posterior parameters estimates (see Table B.1)

Table B.1

MLE Sub. priors Centered MLE

Mean Sd Median Mean Sd Median Mean Sd

α60 −2.031 2.037 −0.021 −0.005 1.051 −1.865 −1.876 1.587

α65 −2.332 1.119 −0.722 −0.763 0.944 −2.788 −2.806 1.287

b21 0.837 0.098 0.814 0.811 0.144 0.744 0.741 0.109

γ 60 1.483 0.399 1.083 1.077 0.209 1.455 1.454 0.313

γ 65 0.572 0.221 0.297 0.322 0.205 0.774 0.774 0.278

(continued on next page)
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Table B.1

(continued)

MLE Sub. priors Centered MLE

Mean Sd Median Mean Sd Median Mean Sd

ν
y
2

−2.611 1.064 −1.235 −1.205 0.708 −2.251 −2.289 0.945

ν
y
3

0.783 0.883 0.208 0.195 0.637 0.630 0.593 0.796

ν
y
4

−2.459 0.843 −1.415 −1.4 0.646 −2.249 −2.281 0.799

ν
y
6

−3.112 0.928 −1.292 −1.296 0.563 −2.555 −2.595 0.82

ν
y
7 −0.376 0.878 0.539 0.529 0.54 −0.014 −0.031 0.757

ν
y
8

−2.459 0.868 −0.841 −0.85 0.536 −2.024 −2.051 0.714

λ
y
2

1.257 0.182 1.039 1.04 0.131 1.186 1.193 0.165

λ
y
3

1.058 0.151 1.173 1.176 0.119 1.086 1.091 0.138

λ
y
4

1.265 0.145 1.111 1.106 0.118 1.218 1.228 0.14

λ
y
6

1.186 0.169 0.850 0.852 0.107 1.076 1.077 0.150

λ
y
7 1.280 0.160 1.095 1.094 0.1 1.207 1.208 0.135

λ
y
8

1.266 0.158 0.962 0.963 0.1 1.175 1.180 0.128

σ 2
y1

1.891 0.444 1.486 1.509 0.215 0.777 0.799 0.178

σ 2
y2

7.373 1.374 4.330 4.409 0.958 4.763 4.896 1.025

σ 2
y3

5.067 0.952 3.534 3.590 0.7305 3.929 4.029 0.843

σ 2
y4

3.148 0.739 2.581 2.620 0.55 2.061 2.118 0.537

σ 2
y5

2.351 0.480 2.567 2.635 0.532 1.868 1.899 0.421

σ 2
y6

4.954 0.914 2.801 2.869 0.619 2.662 2.739 0.647

σ 2
y7

3.431 0.713 2.767 2.811 0.611 2.495 2.578 0.642

σ 2
y8

3.254 0.695 2.422 2.467 0.479 1.937 2.012 0.497

νx
2

−6.228 0.705 −4.059 −4.059 0.48 −6.364 −6.405 0.624

νx
3

−5.634 0.774 −3.361 −3.380 0.536 −5.706 −5.734 0.732

λx
2

2.180 0.139 1.759 1.760 0.095 2.209 2.215 0.123

λx
3

1.819 0.152 1.382 1.381 0.105 1.836 1.838 0.144

σ 2
x1

0.082 0.019 0.106 0.109 0.022 0.083 0.085 0.017

σ 2
x2

0.120 0.070 0.172 0.179 0.056 0.113 0.118 0.04

σ 2
x3

0.467 0.090 0.445 0.454 0.083 0.466 0.478 0.085

ω−1

ζ60 3.956 0.921 2.047 2.091 0.465 4.735 5.046 1.726

ω−1

ζ65 0.172 0.215 3.756 3.826 0.687 2.750 2.840 0.621

μξ 5.054 0.084 5.040 5.035 0.098 5.054 5.053 0.087

(continued on next page)



186 J. Palomo et al.

Table B.1

(continued)

MLE Sub. priors Centered MLE

Mean Sd Median Mean Sd Median Mean Sd

ω2
ξ 0.448 0.087 0.655 0.667 0.119 0.433 0.442 0.077

ω2
D15 0.624 0.358 0.648 0.677 0.204 0.625 0.662 0.22

ω2
D24 1.313 0.702 1.215 1.319 0.565 1.409 1.508 0.566

ω2
D26 2.153 0.734 1.406 1.504 0.571 1.756 1.816 0.499

ω2
D37 0.795 0.608 0.885 0.939 0.336 0.79 0.857 0.329

ω2
D48 0.348 0.442 0.719 0.756 0.251 0.317 0.351 0.15

ω2
D68 1.356 0.568 0.89 0.968 0.376 1.125 1.189 0.384
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The Analysis of Structural Equation Model

with Ranking Data using Mx

Wai-Yin Poon

Abstract

The Thurstonian approach accompanying structural equation modeling is a useful

approach in modeling and analyzing ranking data. The relationship between analyz-

ing ranking data and ordinal categorical data is explored, with a view to making use

of readily available structural equation modeling procedures for analyzing ordinal

categorical data to analyze ranking data. The Mx program, which can be down-

loaded at no cost, is used to illustrate the implementation of the maximum likelihood

estimation procedure. It will be demonstrated that the procedure is very flexible, en-

abling various kinds of Thurstonian model be analyzed in an easy, straightforward,

and efficient way. Various identification constraints, across parameters constraints,

mean structures as well as covariance and correlation structures can be incorporated

into the analysis very easily. Moreover, models with partial ranking data can be an-

alyzed.

Keywords: Ranking data; Thurstonian models; Partial ranking; Mx

1. Introduction

Ranking data are obtained when subjects are asked to rank p objects from 1 (most

preferred) to p (least preferred). A number of approaches have been developed to

model and analyze ranking data. Among others, researches on using Thurstonian

models (Thurstone, 1927) remain active for more than 70 years (see, e.g., Critchlow

and Fligner, 1991; Böckenholt, 1992, 1996, 2001; Chan and Bentler, 1998; Mayedu-

Olivares, 1999), confirming their usefulness in a wide range of disciplines. Thurstonian

models postulate that the ranking of the p objects are determined by a p × 1 latent

continuous random vector Y which is distributed as multivariate normal with mean μ

and covariance matrix Σ . Different models are achieved by putting different restric-

tions on the elements in Σ . In particular, the use of structural equation models by

imposing the structures on Σ substantially enriches the horizon of modeling ranking

data and hence its practical applicability (see, e.g., Currim, 1982; Böckenholt, 1992;

Elrod and Keane, 1995).
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In effect, structural equation modeling remains an extremely active area of research.

The interest derives from both the practical applicability of the approach in addressing

and verifying substantive theories and the technical difficulties involving in modeling

of various types of data together with the estimation of the resulted model. User-

friendly structural equation modeling packages are widely available, such as PRELIS

and LISREL (Jöreskog and Sörbom, 1996a, 1996b), EQS (Bentler and Wu, 1993), Mx

(Neale et al., 1999) as well as Mplus (Muthén and Muthén, 1998). The capabilities

of these packages continue to be extended and nowadays, they all provide options for

analyzing ordinal categorical data in a convenient manner. Although ranking data and

ordinal categorical data are different in nature and require different modeling and esti-

mation techniques, the approaches adopted by popular packages for analyzing ordinal

categorical data and the Thurstonian approach for analyzing ranking data both operate

on the assumption that the observed variables are associated with some underlying con-

tinuous variables distributed as multivariate normal. With reference to this similarity,

the current study establishes a relationship between the analysis of ordinal categorical

data and ranking data with a view to making use of readily available structural equa-

tion modeling procedures for analyzing ordinal categorical data to analyze ranking data.

Specifically, the implementation of the analysis of the Thurstonian models using options

designated for analyzing ordinal categorical data in the widely available software pro-

gram Mx (Neale et al., 1999) is addressed. Some initial effort along similar direction

has been made by Mayedu-Olivares (1999). He has developed a procedure for analyzing

ranking data using the package MECOSA (Arminger et al., 1996).

A description of the Thurstonian model of ranking data, the multivariate normal

model for analyzing ordinal categorical data, and their similarity is given in Section 2.

A summary of the Mx program together with its option for analyzing ordinal categor-

ical data, and the procedure on using the option to implement the Thurstonian models

are given in Section 3. It will be seen that the procedure is very flexible. Different

identification and across parameters constraints together with various structures on the

mean vector and on the covariance/correlation matrix can be incorporated in an efficient

and easy manner. Some examples available in the literature are used for illustration. In

effect, the procedure can also be applied to analyze models for partial ranking data

(Böckenholt, 1992). Two applications are discussed in Section 4. The first application

relates to an analysis of rankings of compound objects. The objective is to examine

whether or not a mean score for a compound choice alternative consisting of two ob-

jects can be predicted by an additive combination of means scores obtained for each

of the two objects separately. The second application relates to the analysis of a set of

8 soft drinks, and the rankings of the soft drinks are obtained via a balanced incomplete

design. The paper is concluded with a discussion in Section 5.

2. Multivariate normal model for analyzing ranking and ordinal categorical data

2.1. The Thurstonian model of ranking data

Suppose that there are p alternatives which are ranked by N subjects without ties from 1

(most preferred) to p (least preferred), the class of Thurstonian models of ranking data
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operate on the assumption that there exists a p × 1 random vector Y = (Y1, . . . , Yp)
′

which is distributed as multivariate normal with mean μ = (μ1, . . . , μp)
′ and covari-

ance matrix Σ = {σij }, and that a respondent ranks the object most preferred if his Yi
value is the largest, second preferred if his Yi value is the second largest, and accord-

ingly, least preferred if his Yi value is the smallest.

Let A be a (p − 1) × p matrix of contrasts given by

(1)A =

⎛
⎜⎜⎝

1 −1 0 . . . 0

1 0 −1 . . . 0
...

...
...

...
...

1 . . . 0 0 −1

⎞
⎟⎟⎠ ,

and let

(2)Y ∗ = AY =

⎛
⎜⎜⎝

Y1 − Y2

Y1 − Y3
...

Y1 − Yp

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Y ∗
1

Y ∗
2
...

Y ∗
p−1

⎞
⎟⎟⎠ ,

then the distribution of Y ∗ is multivariate normal with mean μ∗ = Aμ = (μ∗
1, . . . ,

μ∗
p−1)

′ and covariance matrix Σ∗ = AΣA′ = {σ ∗
ij }. Let T = p! be the total number of

possible ranking patterns, (Yt (1) > Yt (2) > · · · > Yt (p)) be the ordering of the elements

of Y associated with the ranking pattern t, t = 1, . . . , T , and πt the probability of

observing ranking pattern t , then it can be shown that (see, e.g., Chan and Bentler,

1998)

πt = Pr(Yt (1) > Yt (2) > · · · > Yt (p))

(3)= Pr(Yt (1) − Yt (2) > 0, Yt (2) − Yt (3) > 0, . . . , Yt (p−1) − Yt (p) > 0)

(4)= Φp−1

(
DtStμ

∗;DtStΣ
∗S′

tDt

)

(5)= Φp−1

(
DtStAμ;DtStAΣA′S′

tDt

)
,

where Φp−1(z;R) denotes the distribution function of the (p − 1)-dimensional stan-

dardized multivariate normal distribution with correlation matrix R, evaluating at z; St
is a (p − 1) × (p − 1) selection matrix of 0’s, 1’s and −1’s which transform Y ∗ to

those contrasts involved in (3) specific to the pattern t , and Dt = (diag(StΣ
∗S′

t ))
−1/2.

Ignoring a constant term, the log-likelihood function is given by

(6)L(θ) =
T∑

t=1

ft logπt ,

where ft is the observed frequency in pattern t and θ stores the unknown parameters

in μ and Σ . Under the context of structural equation modeling where Σ = Σ(β), θ

consists of the unknown parameters in μ and the structural parameters in β. The model

given in (6) is not identified. It is necessary to impose various constraints on μ and Σ

or on the reduced form parameters μ∗ and Σ∗ to identify the model (see, e.g., Mayedu-

Olivares, 1999). In the latter case, θ stores the unknown parameters in μ∗ and Σ∗ or its

structural parameters.
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2.2. The underlying multivariate normal model for ordinal categorical data

On the other hand, ordinal categorical variable is obtained when subjects are re-

quired to respond to a question on some five-point or seven-point scale. The analy-

sis of ordinal categorical variables under the context of structural equation modeling

has gained considerable attention over the past 15 years (see, e.g., Jöreskog, 1994;

Lee et al., 1995) and many of these recently developed methods have been incorpo-

rated into widely available structural equation modeling software. These independently

developed methods all operate on the same assumption that observed ordinal categor-

ical variables are manifestations of some underlying continuous variables distributed

as multivariate normal. Specifically, let Z = (Z1, . . . , Zq)
′ be a vector of the q ob-

served ordinal categorical variables, and X = (X1, . . . , Xq)
′ a random vector of the

underlying continuous variables distributed as multivariate normal with mean μx and

covariance matrix Σx , the relationship between Zi and Xi is given by

(7)Zi = ki − 1 if αi,ki < Xi < αi,ki+1

for i = 1, . . . , q and ki = 1, . . . , mi ; where mi is the number of categories for the ith

variable with αi,1 = −∞ and αi,mi+1 = ∞.

The vector X is unobservable but a random sample of Z with size Nx is available,

usually organized in the form of a q-way contingency table. Denote the observed fre-

quency in the cell with multiple index (k1, . . . , kq) by gk1,...,kq and the corresponding

cell probability by ξk1,...,kq , the probability that an observation falls into the cell is

given by

(8)ξk1,...,kq = Pr(α1,k1+1 < X1 < α1,k1+2, . . . , αq,kq+1 < Xq < αq,kq+2).

Ignoring a constant term, the log-likelihood function is given by

(9)Lx(γ ) =
m1∑

k1=1

· · ·
mq∑

kq=1

gk1,...,kq log ξk1,...,kq ,

where γ consists of the unknown parameters in thresholds, in μx , and in Σx or its

structural parameters. The model in (9) is not identified and it is again necessary to

impose some constraints on γ to identify the model. Comparing (9) to (6) and (8) to (3),

it is noted that the likelihood functions take the same form. Specifically, (3) is similar

to (8) when q = p − 1, mi = 2 and αi,2 = 0 for all i = 1, . . . , q. Given this similarity,

it is possible to make use of procedures that are designed for finding the maximum

likelihood estimate of γ to obtain the maximum likelihood estimate of θ .

3. Implementation by Mx

Although such similarities exist and a number of procedures have been developed to find

the maximum likelihood estimate of γ , it is not straightforward to use the options that

are available in structural equation modeling software for the analysis of ordinal cate-

gorical data to analyze ranking data. The reason lies in that those approaches adopted in
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the popular software for analyzing ordinal data are not full information maximum like-

lihood methods. Instead, they are some multistage methods built on the idea of partition

maximum likelihood (Poon and Lee, 1987). The Mx program (Neale et al., 1999), on

the other hand, uses the maximum likelihood approach in analyzing ordinal categorical

data and is therefore able to perform maximum likelihood analysis of ranking data with

reference to the aforementioned similarity between (6) and (9).

3.1. The Mx program and its maximum likelihood analysis of raw ordinal data

Mx (Neale et al., 1999) is a flexible software that is capable of doing advanced structural

equation problems (Hamagami, 1997). When many of the fitting functions available in

other structural equation modeling packages are available in Mx, it also allows users

to define their own fit functions. Another important feature of Mx lies in its capabil-

ity in conducting matrix operations. These features together with many others in Mx

substantially facilitate its flexibility and applicability, enabling the analysis of many

nonstandard models. The program can be mastered quite easily for those who are fa-

miliar with LISREL (Jöreskog and Sörbom, 1996b) or have some basic knowledge in

structural equation modeling. Moreover, Mx can be downloaded at not cost, including

program, documentation and examples (Neale et al., 1999; http://griffin.vcu.edu/mx/).

With regard to the analysis of ordinal categorical data, Mx has the option for max-

imum likelihood analysis of 2-way contingency tables (Neale et al., 1999, p. 85). For

data of higher dimensions, it is necessary to use the raw ordinal data option (Neale et al.,

1999, p. 83). As a result, for ranking data with 3 objects, the contingency table and raw

ordinal data options can both be applied; but for ranking data with more than 3 objects,

it is necessary to use the raw ordinal data option. We examine the use of the raw ordinal

data option to analyze ranking data with reference to some ranking data sets available

in the literature.

3.2. Analysis of ranking data (p = 4) using Mx

The first data set is the compact cars data set employed by Mayedu-Olivares (1999).

279 Spanish college students were asked to rank four compact cars {1 = Ford Fi-

esta, 2 = Opel Corsa, 3 = Peugeot 106, 4 = Volkswagen Polo} according to their

purchase preferences. The ranking patterns’ observed frequencies are provided in Ta-

ble 1 where, for example, the pattern (2314) refers to Opel Corsa is the most preferred

car, Peugeot is the second preferred, Ford Fiesta is the third and Volkswagen Polo is the

least preferred one. We demonstrate how various analyses, including those presented

in Mayedu-Olivares (1999), can be easily achieved using Mx. We first analyze the data

using the basic Thurstonian model (model a), that is the model with mean vector μ and

covariance matrix Σ , with the constraints μ4 = 0, σii = 1 for all i = 1, . . . , 4 and

σ43 = 0; we then analyze the data with the additional structure Σ = ΛΛ′ + Ψ given

by an one-factor factor analysis model (model b). Finally, we analyze the data set by

estimating the reduced form parameters μ∗ and Σ∗ (model c). It will be seen that the

Mx input scripts for analyzing these models can be prepared very easily by modifying

the input script for the basic Thurstonian model. The sample input scripts for analyzing

these three models are given in Appendices A, B and C.
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Table 1

The observed frequencies of ranking pattern in the compact car’s data

t ft t ft t ft t ft

1234 16 2134 16 3124 22 4123 21

1243 16 2143 10 3142 14 4132 12

1324 14 2314 19 3214 14 4213 14

1342 2 2341 3 3241 3 4231 9

1423 4 2413 8 3412 8 4312 11

1432 9 2431 9 3421 11 4321 14

1 = Ford Fiesta, 2 = Opel Corsa, 3 = Peugeto 106, 4 = Volkswagen Polo.

From Mayedu-Olivares (1999, Table 1).

All inputs are in multiple group settings with 26 groups (or 25 groups when there are

no functional constraints on parameters), which are divided into three parts. Part I con-

sists of the first group only. This group is used to specify the data set and the model for

analysis; it is therefore needed to be modified when different data set or different model

is employed. Part II consists of 23 groups. This part remains the same for any data set

and any analysis of ranking data with 4 objects. Once a template of this part is created,

it can be used for any further analysis of ranking data with 4 objects. Part III consists of

two groups, namely, group 25 and group 26. Group 25 is a calculation group that com-

putes a component in the goodness-of-fit test statistic. The specification statements in

group 25 are invariant for any analysis of ranking data with 4 objects. Group 26 is a con-

straint group which is used to specify functional constraints on parameters. Group 26

must be modified when applying to models with different functional constraints. Simple

constraints equating a parameter to a constant can be specified in group 1. Group 26 is

not required when there has no functional constraint on the parameters. Moreover, all

statements after the mark “!” are for description.

Three external files have been used. The file “select.4” has T ×(p−1) = 24×3 = 72

rows and p−1 = 3 columns. It stores the 24 selection matrices, St , t = 1, . . . , 24, each

of size 3×3 (see (4)). This file can be used for all ranking data analysis with p = 4. The

file “auto.obs” stores the frequencies of the observed ranking pattern, each frequency

occupies a row. The file “auto.uni” is a file with all its entries equal to 1. It consists of

p − 1 = 3 columns and f1 = 16 rows, where f1 is the observed frequency in the first

pattern.

3.2.1. Model a

Some more explanations about the input file in Appendix A that is used to perform the

first analysis for the basic Thurstonian model are given as follows:

Part I. This part consists of only group 1. It is used to compute the contribution of the

observed frequency in the pattern t = 1 to the likelihood. We have specified in the

“DATA” command line that “NI = 3” because q = 3 when p = 4. We use the “Ordi-

nal” data option. Note that the data file “auto.uni” constructed using the aforementioned

method consists of f1 = 16 ordinal observations with 3 dichotomous items, and obser-

vations of all items fall into the second category (“0” represents the first category and
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“1” the second), indicating they are greater than the threshold that is fixed at zero, the

resulting fit function for group 1 is −2f1 log π̂1 (see (6) and (9)). The parameters in

the basic Thurstonian model are respectively μ and Σ , they are stored in the matrices

H and P , respectively, in the Mx program. It will be seen that for other models, only

modification on input statements concerning these two matrices are required. We have

indicated in the sample input script that many of the matrices are “invariant”, such as

the matrices S, J , U , L, T and I . These matrices can be specified in exactly the same

way for all ranking data analysis with p = 4. Matrix A is a matrix of contrasts (see (1)).

Whenever one works with the basic model with parameters μ and Σ or its structured

form, this matrix is required and remains the same for all ranking data analysis with

p = 4. However, when one is interested in the reduced form parameters μ∗ and Σ∗,

this matrix is no longer required. This point will be further addressed. Finally, the “Al-

gebra” section is used to first transform μ and Σ to μ∗ (stored in M) and Σ∗ (stored

in C), and then to Stμ
∗ and StΣ

∗S′
t specific for the pattern t = 1 (see (5)).

Part II. This part consists of group 2 to group T = 24. Each group computes the

contribution of the observation in the pattern t, t = 2, . . . , T , to the likelihood. When

the preparation of this part has been completed, it can be used for all analyses with

p = 4 and no modification is required. For each group t , we compute −2ft log π̂t .

Therefore, it is necessary to locate ft and St respectively from the matrix O that stores

the observed frequencies and the matrix S that stores St . Matrix K and E are used

to point to the appropriate locations. For group t , the entries for matrix K are given

by {(t − 1) × 3 + 1, 1, t × 3, 3}, and those for matrix E are given by {1, t, 1, t}. The

matrices O and E as well as other matrices that have been specified in group 1 will

remain unchanged in group 2 to group T , unless otherwise specified. We then used

the user-defined fit function to compute −2ft log π̂t , the contribution of group t to the

overall fit function. Therefore, combining all contributions from group 2 to group T and

added to the fit function in group 1 will result to an overall fit function given by

(10)−2L(θ̂) = −2

T∑

t=1

fi log π̂t ,

which is equivalent to the likelihood function given in (6).

Part III. Since there has no functional constraints on the parameters, Part III consists

of only group 25. It is a calculation group that is used to produce a component of the

likelihood ratio test statistic. Since the overall fit function is given by (10), an adjustment

value equals to

(11)2

T∑

t=1

fi log

(
fi

N

)

must be added to the fit function to produce the chi-squared distributed likelihood ra-

tio test statistic G2. The value of this component is computed by the specification of

group 25 and is stored in the matrix F . This computation is invariant for all data sets

and hence the input template for group 25 can be used for all ranking data analysis with

p = 4.
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The value of the fit function produced by this Mx input script is 1733.937 and the

value produced by group 25 is −1707.38, resulting to a likelihood ratio test statistic

G2 = 26.557. G2 is chi-squared distributed with 15 degrees of freedom. The maximum

likelihood estimates of μ and Σ produced by the Mx are respectively given by

(12)

μ̂ =

⎛
⎜⎝

0.1628

0.1166

0.0889

0∗

⎞
⎟⎠ and Σ̂ =

⎛
⎜⎝

1∗ 0.6633 0.5030 0.1688

0.6633 1∗ 0.4410 0.1310

0.5030 0.4410 1∗ 0∗

0.1688 0.1310 0∗ 1∗

⎞
⎟⎠ ,

where parameters with a asterisk are fixed. The estimates are very close to those pro-

duced by Mayedu-Olivares (1999, Table 2).

3.2.2. Model b

Mayedu-Olivares (1999) has also applied an one-factor factor analysis model Σ =
ΛΛ′ + Ψ to analyze the data set with the constraints μ = 0, Λ4 = 0, and Σ equals

to a correlation matrix. Such an analysis can be conducted very easily by modifying

the basic Mx input script already constructed in Appendix A. Specifications for group 2

through group 25 remain unchanged. However, modifications on group 1 are required

to specify the factor structure and a constraint group (group 26) is included to specify

the functional constraints. The details of the input for these two groups to achieve the

analysis are presented in Appendix B. The parameter matrices are now H , F and G,

storing, respectively, the mean vector μ, the factor loading matrix Λ and the matrix of

error variance Ψ . In addition to the basic specifications on these parameter matrices,

the statement “P = F ∗ F ′ + G” in the “Algebra” section is included to specify the

structure of the covariance matrix. It is worthy of note that in order to use Part II input

as given in Appendix A, it is necessary to be consistent in notation. In other words, the

matrices H and P should continue be used to store the mean and the covariance matrix.

They will then be transformed using the contrast matrix A to the reduced form mean

vector μ∗ and covariance matrix Σ∗ that is respectively denoted by M and C in Mx.

Moreover, since Σ is constrained to be a correlation matrix, functional constraints on

the parameters in F and G are required and are specified by group 26. The matrix H ,

on the other hand, is specified in group 1 as fixed at 0. The resulted likelihood ratio test

statistic for this model is G2 = 32.36 with 20 degrees of freedom. The estimates of Λ

and the diagonal elements in Ψ are respectively given by

Λ̂′ = (0.8333, 0.7394, 0.5473, 0∗) and

(13)Diag(Ψ̂ ) = (0.3057, 0.4533, 0.7005, 1∗).

These estimates are again very close to those given by Mayedu-Olivares (1999, Table 3).

It can be seen that once the input script such as that in Appendix A is available, the factor

analysis model and any other structural models can be called for analysis in a very easy

way.
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3.2.3. Model c

In effect, any analysis of Thurstonian models of ranking data with 4 objects can be ob-

tained by modifying the input of groups 1 and 26, including when one is interested in

analyzing the reduced form parameters μ∗ and Σ∗ (see, e.g., Chan and Bentler, 1998).

We present in Appendix C the input required in group 1 to produce a maximum like-

lihood analysis of μ∗ and Σ∗. The basic parameter vectors have been changed to M

and C and it is no longer necessary to use the contrast matrix A to transform the p-di-

mensional mean vector and covariance matrix into (p−1)-dimensional. As a result, the

first two statements in the “Algebra” section of Appendix A and the specification for

the matrix A have been deleted. It is worthy to recall that in order to make use of Part II

input already constructed, the use of M and C to store the reduced form parameters μ∗

and Σ∗ should remain unchanged.

The Mx analysis gives G2 = 26.557 with 15 degrees of freedom, the same as the

unrestricted Thurstonian model, and the estimates of the parameters are given by

(14)μ̂∗ =
(

0.04∗

0.0691

0.1520

)
and Σ̂∗ =

(
0.6060 0.2478 0.2691

0.2478 0.8909 0.2986

0.2691 0.2986 1.4778

)
.

Three different analyses have been conducted for this example, all analyses can be

implemented by Mx using the input script in Appendix A or its slight modifications.

In effect, any analysis on ranking data with p = 4 can be produced by Mx using a

simple modification of group 1 and group 26 of the standard input template given in

Appendix A.

3.3. Generalization

When p �= 4, it is necessary to create other input templates. Similar to the case of

p = 4, the number of groups involved in the input is p! + 2. The first group is used

to specify the data and the model, the next p! − 1 groups in Part II and the first group

in Part III will remain the same for all ranking data analysis with p objects, and the

final group is used to specify functional constraints on parameters. In effect, most of the

specifications for other groups remain similar to those given in the preceding section for

p = 4, only the specifications in the matrices K and E are required to be modified to

reflect the change in dimensions. In order to facilitate future analysis, one can prepare

some sample input templates for different p. As a result, any substantive researches

on ranking data can be conducted by Mx with modifications on the first and the last

groups of the standard templates. Moreover, it is also necessary to create the external

file “select.p” that stores the p! selection matrices St , t = 1, . . . , T (see (4)) each with

dimension (p − 1) × (p − 1) for different p.

4. Applications

Once the standard templates have been created for analyzing ranking data with different

p, they can also be used flexibly to analyze various models of ranking data. We present

two applications on models with partial ranking data (Böckenholt, 1992).
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Table 2

The observed frequencies of single ranking items in the gift’s data

t ft t ft t ft t ft

1234 13 2134 14 3124 4 4123 6

1243 3 2143 9 3142 4 4132 6

1324 10 2314 15 3214 7 4213 4

1342 7 2341 13 3241 9 4231 10

1423 5 2413 2 3412 8 4312 4

1432 4 2431 5 3421 9 4321 7

1 = Camera, 2 = Typewriter, 3 = Portable radio, 4 = Record player.

From (McKeon, 1961).

Table 3

The observed frequencies of composite ranking items in the gift’s data set

Pattern 123 132 213 231 312 321

Frequency 48 17 31 25 19 38

1 = Camera & typewriter, 2 = Typewriter & portable radio, 3 = Portable radio & record player.

From (McKeon, 1961).

4.1. Application: Ranking of compound objects

The observed frequencies of the ranking patterns in Tables 2 and 3 are taken from Böck-

enholt (1992, Tables 1 and 2). The data set is originally from McKeon (1961). The

objective is to examine whether or not a mean score for a compound choice alternative

consisting of two objects, Oij = {Oi,Oj }, can be predicted by an additive combina-

tion of mean scores obtained for each of the two objects separately. In other words, the

relationship

(15)μij = μi + μj ,

is studied, where μij represents the mean score for the compound package with indi-

vidual items having means μi and μj , respectively. Table 2 presents the frequencies

of ranking patterns of the single items {1: camera, 2: typewriter, 3: portable radio, 4:

record player} and Table 3 presents the frequencies of ranking patterns of composite

items {1: camera and typewriter, 2: typewriter and portable radio, 3: portable radio and

radio player}. Böckenholt (1992, Table 3) applied four different models to analyze the

data set, these models are summarized in Table 4, where μI and ΣI denote the 4 × 1

mean vector and 4 × 4 covariance matrix for individual items, μII (3 × 1) and ΣII

(3 × 3) denote those for the compound packages, and I is the identify matrix of appro-

priate dimension. The matrix B is given by

(16)B =
(

1 1 0 0

0 1 1 0

0 0 1 1

)
,
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Table 4

Mx analyses of the gift data set

Model a Model b Model c Model d

ΣI = I ΣI = I ΣI = I ΣI = diag(1, 1, σ 2
33
, 1)

ΣII = I ΣII = BB ′ ΣII = BB ′ ΣII = BΣIB
′

μII = BμI μII = BμI

Parameter estimate

μ̂I1
−0.0764 −0.0601 −0.0764 −0.0523

μ̂I2
0.2058 0.1755 0.2058 0.1681

μ̂I3
0.0989 0.0824 0.0989 0.0747

μ̂I4
−0.2283 −0.1978 −0.2284 −0.1905

μ̂II1
0.0190 0.1154 0.0341 0.1158

μ̂II2
0.1298 0.2579 0.1343 0.2428

μ̂II3
−0.1488 −0.1154 −0.1684 −0.1158

σ̂ 2
33

− − − 0.4417

Fit∗1 1749.697 1732.726 1732.019 1724.474

Adj∗2 −1704.994 −1704.994 −1704.994 −1704.994

G2 44.703 27.732 27.025 19.480

df 23 25 23 24

∗1The overall fit function value.

∗2The adjustment value.

and the constraint that the sum of the mean scores equals to zero is also imposed in all

models. These four models are analyzed using Mx. The input scripts for analysis can be

easily constructed by combining the standard input templates for p = 3 and p = 4 with

appropriate modifications on respectively their first and last groups. The resulting input

script therefore consists of (4! + 2) + (3! + 2) = 34 groups. The likelihood ratio test

statistic G2 is obtained by adjusting the overall fit function value. The adjustment value

is obtained as a total of the values produced respectively for p = 3 and p = 4 using

(11), that is, the values produced by the first groups of Part III inputs in Mx. The results

of the Mx analyses are presented in Table 4, they are nearly the same as those produced

by Böckenholt (1992, Table 3).

4.2. Application: Balanced incomplete block design

Böckenholt (1992) discussed the analysis of partial ranking data. In particular, a bal-

anced incomplete design has been employed to analyze a data set of 8 soft drinks. In

order to reduce the number of possible response patterns that otherwise is equal to 8!,
seven replications of two blocks each entails to the ranking of four objects have been

used. As a result, the observed frequencies of 14 sets of ranking frequencies each with

24 patterns have been obtained. The details are available in Böckenholt (1992, Tables 5

and 6) and are not presented here. Since the objective function for analyzing such a data

set is the sum of 14 functions each takes the form of the usual likelihood given in (6)
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Table 5

Mx analyses of the soft drink data set

Model a Model b Model c Model d

Σ = I Σ = ΛΛ′ + σ 2I Σ = ΛΛ′ + Ψ Σ = ΛΛ′ + Ψ

(Λ given) Λ unrestricted Λ unrestricted

Ψ = I Ψ = I

μ = Λν

ν2
1

+ ν2
2

= 1

Parameter estimate

μ̂1 0.6063 1.2545 1.1340 1.0995

μ̂2 0.5544 1.1793 1.0437 0.9982

μ̂3 0.3623 0.7161 0.6740 0.7496

μ̂4 0.2833 0.5798 0.5251 0.5155

μ̂5 −0.3699 −0.7412 −0.6591 −0.6191

μ̂6 −0.3089 −0.6817 −0.5757 −0.5368

μ̂7 −0.4827 −1.0043 −0.9554 −1.0557

μ̂8 −0.6448 −1.3016 −1.1866 −1.1562

Fit∗1 3270.857 3118.482 3090.168 3103.255

Adj∗2 −2794.322 −2794.322 −2794.322 −2794.322

G2 476.535 324.16 295.846 308.933

df 315 314 299 305

∗1The overall fit function value.

∗2The adjustment value.

with p = 4, it is possible to use the standard template with p = 4 as a basic component

to construct the Mx input script. For simplicity, the adjustment on the likelihood ratio

test statistic is computed using a separate program and only one constraint group is em-

ployed across the 14 sets to specify the constraints. As a result, the inputs in Part III

are not required and the resulting input script consists of 14 × 4! + 1 = 337 groups.

The first group in the input consists of all the major specifications. Specifically, since

the objective is to estimate the mean vector and covariance matrix of a random vector

of dimension 8, these two matrices of dimensions 8 × 1 and 8 × 8 are therefore spec-

ified in the first group as “Free” matrices. Moreover, in each of the first group in the

14 sets, it is necessary to construct a 4 × 8 selection matrix with reference to the 4 soft

drinks available in the specific block and replication (see Böckenholt, 1992, Table 5) so

as to obtain the corresponding 4-dimensional mean vector and covariance matrix. The

other 23 groups are similar to those in Part II of the p = 4 standard template. Finally,

a constraint group is used to specify the functional constraints. Four different models

similar to those employed by Böckenholt (1992) have been analyzed. These models

are summarized in Table 5 where in model b, the value of the factor loading matrix is

fixed as

(17)Λ′ =
(

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 1 1 −1 −1

)
.
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Moreover, the constraint that the sum of the elements in the mean vector is zero has been

imposed to models a, b and c. The results of Mx analyses are presented in Table 5. Some

other parameter estimates not given in Table 5 are respectively given by σ̂ 2 = 1.4387

in model b;

(18)

Λ̂′ =
(

0.9782 0.6243 1.3836 0.8534 −0.8028 −0.7325 −1.3376 −0.9688

0.9453 1.2551 −1.0653 −1.0704 0.6028 0.9235 −0.8359 −0.7512

)

in model c; as well as ν̂1 = 0.9514, ν̂2 = 0.3081 and

(19)

Λ̂′ =
(

0.8427 0.6578 1.1438 0.8467 −0.8268 −0.8163 −0.8503 −1.0036

0.9665 1.2087 −1.0991 −0.9416 0.5438 0.7784 −0.8010 −0.6535

)

in model d.

It is worthy of note that since each respondent has been asked to provide rankings for

two blocks of choice alternatives and most of the expected ranking frequencies are quite

small, not too much attention should be paid to the likelihood ratio statistics. However,

they can still be used to compare the goodness of fits of nested models (Böckenholt,

1992). From Table 5, it is found that the results lead to similar interpretations as those

given in Böckenholt (1992). Specifically, similar preference structure for the soft drinks

has been reviewed and the two underlying factors, namely cola-non-cola and diet-non-

diet, are clearly recognized. Our likelihood ratio statistics are not the same as those

produced by Böckenholt (1992), the differences may attribute to the fact that there are

many empty cells for the ranking patterns, leading to inaccurate approximate of the

normal probabilities.

5. Discussion

We have examined the implementation of the Thurstonian models of ranking data using

the Mx program and have demonstrated that a wide range of models, including models

based on partial ranking data, can be handled in a convenient manner. We have also

proposed a unified method to prepare Mx input scripts. The script consists of many

groups when p is large and appears to be cumbersome, but the price is the availability

of a very flexible standard input template which can certainly be used for any other

ranking data analyses. Only modification on the first group specifying the data set and

model, and on the last group specifying the functional constraints is required. Moreover,

although the standard input script consists of many groups, one can in fact prepare

the standard template very easily due to the systematic and replicable nature of the

command statements in different groups.

In effect, the long input script is a result of the fact that the procedure we employed

in Mx is designated for analyzing raw ordinal data and users flexibility is hindered by

various restrictions in the procedure, such as the format of data input and the limita-

tions in using different available options. However, the software developers themselves

possess a substantially larger flexibility than users. We have identified in this paper the
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similarities in analyzing ranking and ordinal categorical data, and have illustrated how

the basic building blocks for analyzing ordinal categorical data can be used to analyze

ranking data. Making use of these results, structural equation software developers can

easily produce user-friendly options for handling ranking data, enhancing the practica-

bility and applicability of the Thurstonian models.

It is well known that when p is large, the method of maximum likelihood for ana-

lyzing ranking data suffers from various practical and computational problems. Since

the matrix function “mnor” in Mx can compute multiple integrals of the multivariate

normal distribution for up to dimension 10, the method we proposed here can in theory

analyze ranking data with the maximum likelihood method for up to 10 objects. How-

ever, for high dimensional data, Mx may require a long time to produce the solution

that may not be stable. For example, we have studied the CPAI data set used by Chan

and Bentler (1998) that consists of rankings of 6 objects. With good starting values, we

were able to obtain the maximum likelihood estimates similar to those available in Chan

and Bentler (1998); however, the same solution could not be achieved with some other

starting values. Nevertheless, since the number of ranking patterns also increases drasti-

cally when p increases, leading to many practical problems; the use of models on partial

ranking data (Böckenholt, 1992) seems a good alternative for analyzing ranking data.

This alternative method can also be implemented using Mx in an easy and convenient

manner.
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Appendix A. Mx input script for p = 4, auto data set, basic Thurstonian model

! File auto4f.mx

! 2431 means object 2 most preferred, 4 the second ... 1 the least

#define ndata=279 ! define sample size

Group 1

DAta NG=25 NI=3

Ordinal file=auto.uni

Begin Matrices ;

H Full 4 1 Free ! Mean vector, can be further modelled

P Stan 4 4 Free ! Covariance mtx, can be further modelled

O Full 1 24 ! store the observed frequency, specification invariant

S Full 72 3 ! invariant, store the selection matrices $S_t$

A Full 3 4 ! stores the contrast matrix, not required for reduced form

J Full 1 4 ! invariant

U Full 1 3 ! invariant

L Full 1 3 ! invariant
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T Full 1 3 ! invariant

I Full 1 1 ! invariant

End Matrices ;

Specify H 1 2 3 0 ! specify free and fixed ("0") parameters

Specify P 4 5 6 7 8 0

Matrix H 0.0 0.0 0.0 0.0 ! starting values

Matrix P 0.0 0.0 0.0 0.0 0.0 0.0

Matrix O file=auto.obs ! read in the data file

Matrix S file=select.4 ! invariant

Matrix A ! invariant, not required for reduced form

1 -1 0 0

1 0 -1 0

1 0 0 -1

Matrix J 1 1 3 3 ! for extracting $S_1$, the selection mtx of 1st pattern from $S$

Matrix U 100.0 100.0 100.0 ! invariant

Matrix L 0.0 0.0 0.0 ! invariant

Matrix T 1 1 1 ! invariant

Matrix I -2.0 ! invariant

Begin Algebra; ! to compute $\mu_t$ and $\sigma_t$ for t=1

M=A*H ; ! N stores $\mu_t$ and

C=A*P*A’ ; ! R stores $\sigma_t$

B=\part(S,J) ;

N=B*M ;

R=B*C*B’ ;

End Algebra ;

Thresholds -N’ ; ! thresholds are fixed at zero

Covariance R ;

Options It=2000 Optimality=0.00000001 Function precision=0.00000001 End \

End

Group 2 ! INVARIANT for any analyses of p=4

DA NI=0

Matrices=Group 1

K Full 1 4

E Full 1 4

End Matrices

Matrix K 4 1 6 3 ! for extract $S_2$ from $S$

Matrix E 1 2 1 2 ! for extract the frequency for pattern 2 from $O$

Begin Algebra ; ! compute the user defined fit function for pattern 2

D=\part(S,K) ;

W=\part(O,E) ;

V=(D*M)’ ;

Q=D*C*D’ ;

X=\mnor((Q_V_U_L_T)) ;

Y=\ln(X) ;

Z=I*Y ;

End Algebra ;

Compute W*Z /

Option User defined NO Op=0.00000001 Fu=0.00000001 End /

End

...
Group 24 ! INVARIANT for any analyses of p=4

DA NI=0

Matrices=Group 1

K Full 1 4
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E Full 1 4

End Matrices

Matrix K 70 1 72 3 ! for extract $S_{24}$ from $S$

Matrix E 1 24 1 24 ! for extract the frequency for pattern 24 from $O$

Begin Algebra ; ! compute the user defined fit function for pattern 24

D=\part(S,K) ;

W=\part(O,E) ;

V=(D*M)’ ;

Q=D*C*D’ ;

X=\mnor((Q_V_U_L_T)) ;

Y=\ln(X) ;

Z=I*Y ;

End Algebra ;

Compute W*Z /

Option User defined NO Op=0.00000001 Fu=0.00000001 End /

End

Group 25 ! for computation of the adjustment value

Ca

Begin Matrices ;

O Full 1 24=O1

N Full 1 1

I Full 1 1

R Full 1 2

End Matrices ;

Matrix N ndata

Matrix I 2

Begin Algebra;

G=\ln(N~*O) ;

Z=\sum(O.G) ;

F=I*Z ;

End Algebra;

Option Rs

End

Appendix B. Mx input script, auto data set, factor analysis model

! File auto4ffa.mx

! 2431 means object 2 most preferred, 4 the second ... 1 the least

! Factor Analysis Model

#define ndata=279

Group 1: pattern 123

DAta NG=26 NI=3

Ordinal file=auto.uni

Begin Matrices ;

H Full 4 1 Free ! Mean vector, can be further modelled

F Full 4 1 Free ! Factor loading matrix

G Diag 4 4 Free ! Error variance matrix

O Full 1 24

S Full 72 3

A Full 3 4

J Full 1 4

U Full 1 3
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L Full 1 3

T Full 1 3

I Full 1 1

End Matrices ;

Specify H 0 0 0 0

Specify F 4 5 6 0

Specify G 7 8 9 0

Matrix H 0.0 0.0 0.0 0.0

Matrix F 0.8 0.8 0.8 0.0

Matrix G 0.36 0.36 0.36 1.0

Matrix O file=auto.obs

Matrix S file=select.4

Matrix A

1 -1 0 0

1 0 -1 0

1 0 0 -1

Matrix J 1 1 3 3

Matrix U 100.0 100.0 100.0

Matrix L 0.0 0.0 0.0

Matrix T 1 1 1

Matrix I -2.0

Begin Algebra;

M=A*H ;

P=F*F’+G; ! the structure of the covariance mtx

C=A*P*A’ ;

B=\part(S,J) ;

N=B*M ;

R=B*C*B’ ;

End Algebra ;

Thresholds -N’ ;

Covariance R ;

Options It=2000 Optimality=0.00000001 Function precision=0.00000001 End \

End

...
Group 26 Constraint group ! constrain diagonal elements of the

Constraint ! covariance matrix to 1

Matrices=Group 1

E Unit 1 4

End Matrices ;

Constraint E=\d2v(F*F’+G) ;

End

Appendix C. Mx input script, auto data set, model of reduced form parameters

! File auto4.mx

! 2431 means object 2 is most preferred, 4 the second ... 1 the most

#define ndata=279

Group 1: pattern 123



206 W.-Y. Poon

DAta NG=25 NI=3

Ordinal file=auto.uni

Begin Matrices ;

M Full 3 1 Free ! Reduced form mean vector, can be further modelled

C Sym 3 3 Free ! Reduced form covariance mtx, can be further modelled

O Full 1 24

S Full 72 3

J Full 1 4

U Full 1 3

L Full 1 3

T Full 1 3

I Full 1 1

End Matrices ;

Specify M 0 1 2

Specify C 3 4 5 6 7 8

Matrix M 0.04 0.0 0.0

Matrix C 1.0 0.0 1.0 0.0 0.0 1.0

Matrix O file=auto.obs

Matrix S file=select.4

Matrix J 1 1 3 3

Matrix U 100.0 100.0 100.0

Matrix L 0.0 0.0 0.0

Matrix T 1 1 1

Matrix I -2.0

Begin Algebra;

B=\part(S,J) ;

N=B*M ;

R=B*C*B’ ;

End Algebra ;

Thresholds -N’ ;

Covariance R ;

Options It=2000 Optimality=0.00000001 Function precision=0.00000001 End \

End

...
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Multilevel Structural Equation Modeling

Sophia Rabe-Hesketh, Anders Skrondal and Xiaohui Zheng

Abstract

In conventional structural equation models, all latent variables and indicators vary

between units (typically subjects) and are assumed to be independent across units.

The latter assumption is violated in multilevel settings where units are nested in

clusters, leading to within-cluster dependence. Different approaches to extending

structural equation models for such multilevel settings are examined. The most com-

mon approach is to formulate separate within-cluster and between-cluster models.

An advantage of this set-up is that it allows software for conventional structural

equation models to be ‘tricked’ into estimating the model. However, the standard

implementation of this approach does not permit cross-level paths from latent or

observed variables at a higher level to latent or observed variables at a lower level,

and does not allow for indicators varying at higher levels. A multilevel regression

(or path) model formulation is therefore suggested in which some of the response

variables and some of the explanatory variables at the different levels are latent

and measured by multiple indicators. The Generalized Linear Latent and Mixed

Modeling (GLLAMM) framework allows such models to be specified by simply

letting the usual structural part of the model include latent and observed variables

varying at different levels. Models of this kind are applied to the U.S. sample of

the Program for International Student Assessment (PISA) 2000 to investigate the

relationship between the school-level latent variable ‘teacher excellence’ and the

student-level latent variable ‘reading ability’, each measured by multiple ordinal

indicators.

Keywords: Multilevel structural equation models; Generalized linear mixed mod-

els; Latent variables; Random effects; Hierarchical models; Item response theory;

Factor models; Adaptive quadrature; Empirical Bayes; GLLAMM

1. Introduction

The popularity of multilevel modeling and structural equation modeling (SEM) is a

striking feature of quantitative research in the medical, behavioral and social sciences.

209
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Although developed separately and for different purposes, SEM and multilevel mod-

eling have important communalities since both approaches include latent variables or

random effects to induce, and therefore explain, correlations among responses.

Multilevel regression models are used when the data structure is hierarchical with

elementary units at level 1 nested in clusters at level 2, which in turn may be nested

in (super)clusters at level 3, and so on. The latent variables, or random effects, are in-

terpreted as unobserved heterogeneity at the different levels which induce dependence

among all lower-level units belonging to a higher-level unit. Random intercepts rep-

resent heterogeneity between clusters in the overall response and random coefficients

represent heterogeneity in the relationship between the response and explanatory vari-

ables.

Structural equation models are used when the variables of interest cannot be mea-

sured perfectly. Instead, there are either sets of items reflecting a hypothetical construct

(e.g., depression) or fallible measurements of a variable (e.g., calory intake) using dif-

ferent instruments. The latent variables, or factors, are interpreted as constructs, traits or

‘true’ variables, underlying the measured items and inducing dependence among them.

The measurement model is sometimes of interest in its own right, but relations among

the factors or between factors and observed variables (the structural part of the model)

are often the focus of investigation.

Importantly, multilevel structural equation modeling, a synthesis of multilevel and

structural equation modeling, is required for valid statistical inference when the units

of observation form a hierarchy of nested clusters and some variables of interest are

measured by a set of items or fallible instruments. Multilevel structural equation model-

ing also enables researchers to investigate exciting research questions which could not

otherwise be validly addressed. For instance, in this chapter we will consider an impor-

tant question in education: does student ability (a student-level latent trait) depend on

teacher excellence (a school-level latent trait)?

Multilevel structural equation models could be specified using either multilevel re-

gression models or structural equation models as the vantage point. An advantage of

using the multilevel regression approach taken here is that the data need not be bal-

anced and missing data are easily accommodated.

2. Response types

2.1. Continuous responses

Structural equation models were originally developed for continuous responses. In this

case the ‘response model’ or ‘measurement model’ for subject j , relating the observed

response vector yj of manifest variables or indicators to the latent variables ηj , the

observed covariates xj , and the error terms εj (usually representing ‘unique factors’),

has the general form

yj = νj + εj , εj ∼ N(0,�).

Here νj are functions of ηj and xj (see Section 3) and � is the covariance matrix of εj ,

usually specified as diagonal.
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2.2. Noncontinuous responses

2.2.1. Latent response formulation

When the responses are dichotomous or ordinal, the same model as above can be speci-

fied for latent continuous responses y∗
j underlying the observed responses yj . A thresh-

old model links the observed response for the ith indicator to the corresponding latent

response,

yij = s if κis < y∗
ij � κi,s+1,

s = 0, . . . , S − 1, κi0 = −∞, κiS = ∞.

The threshold parameters κis (apart from κi0 and κiS) can all be estimated if the mean

and variance of y∗
j are fixed. Alternatively, two thresholds can be fixed (typically κi1 = 0

and κi2 = 1) for each response variable to identify the means and variances of y∗
j .

Grouped or interval censored continuous responses can be modeled in the same way

by constraining the threshold parameters to the limits of the censoring intervals. By

allowing unit-specific right-censoring, this approach can be used for discrete time dura-

tions.

An advantage of the latent response formulation is that conventional models can be

specified for the underlying continuous responses. By changing the distribution of εj ,

the latent response formulation can also be used to specify logit models. Models for

comparative responses such as rankings or pairwise comparisons can be formulated in

terms of latent responses conceptualized as utilities or utility differences (e.g., Skrondal

and Rabe-Hesketh, 2003).

2.2.2. Generalized linear model formulation

Unfortunately, the latent response formulation cannot be used to specify Poisson models

for counts. Instead, a generalized linear model formulation is typically used where the

conditional expectation of the response yij for indicator i given xj and ηj is ‘linked’ to

the linear predictor νij via a link function g(·),

(1)g
(
E[yij |xj , ηj ]

)
= νij .

The linear model given above for continuous responses uses an identity link whereas

the latent response model for dichotomous responses can be expressed as a generalized

linear model with a probit or logit link. Other possible links are the log, reciprocal and

complementary log–log.

The final component in the generalized linear model formulation is the conditional

distribution of the response variable given the latent and explanatory variables. The

conditional distribution is a member of the exponential family of distributions; a nor-

mal distribution is typically used for continuous responses, a Bernoulli distribution

for dichotomous responses and a Poisson distribution for counts. In structural equa-

tion models with several latent variables, the measurement models for different latent

variables may require different links and/or distributions.

For ordinal responses, the generalized linear model formulation is modified so that

the link function is applied to cumulative probabilities instead of expectations,

g
(
P[yij > s|xj , ηj ]

)
= νij − κi,s+1.
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The threshold parameters κi,s+1 could alternatively be viewed as part of category-

specific linear predictors νsij (treating multinomial responses as multivariate), but this

will not be done here.

In structural equation modeling with categorical (dichotomous or ordinal) manifest

variables, the latent response formulation is predominant. In contrast, item response

models are invariably specified via the generalized linear model formulation (e.g.,

Mellenbergh, 1994). Although Takane and de Leeuw (1987) and Bartholomew (1987)

pointed out the equivalence of the two formulations for many models, the literatures are

still quite separate.

In the remainder of this chapter, we will use the generalized linear model formulation

because it handles more response types. In most cases we are primarily interested in the

form of the linear predictors νij and view the choice of link functions and distributions

as of secondary interest. For response types that can be modeled via a latent response

formulation, the model for the latent responses can be written as νij + εij .

3. Multilevel measurement models

3.1. Single-level factor models

Conventional single-level factor models can be specified as

νj = β +�ηj , ηj ∼ N(0,�).

For observed or latent continuous responses it follows that

(2)y∗
j = β +�ηj + εj , εj ∼ N(0,�).

Here νj and y∗
j are I -dimensional vectors with elements corresponding to the indicators,

β is a vector of intercepts, � a matrix of factor loadings, ηj a m-dimensional vector of

common factors and εj a vector of unique factors. The covariance structure of the latent

responses becomes

(3)� ≡ Cov(y∗
j ) = ���′ +�,

which is called a ‘factor structure’. The factor model can be specified either directly as

in (2) or via the above covariance structure.

An example of an ‘independent clusters’ two-factor model (where each indicator

measures one and only one common factor) for I = 6 is

⎡
⎢⎢⎢⎢⎢⎢⎣

ν1j

ν2j

ν3j

ν4j

ν5j

ν6j

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
νj

=

⎡
⎢⎢⎢⎢⎢⎢⎣

β1

β2

β3

β4

β5

β6

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
β

+

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0

λ21 0

λ31 0

0 1

0 λ52

0 λ62

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�

[
η1j

η2j

]

︸ ︷︷ ︸
ηj

,
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Fig. 1. Independent clusters two-factor model.

where the first factor is measured by the first three indicators and the second factor by

the remaining indicators.

A path diagram for this model is given in Figure 1 where circles represent latent

variables and rectangles observed variables. For continuous observed responses the long

arrows represent linear relations between the responses and the common factors and the

short arrows represent linear relations between the responses and the unique factors. For

other response types the long arrows represent possibly nonlinear relations depending

on the link function and the short arrows represent residual variability, following, for

instance, a Bernoulli or Poisson distribution.

Factor models have a similar structure to random coefficient models as has been

pointed out in the context of growth curve models (Skrondal, 1996), item response mod-

els (Rijmen et al., 2003; De Boeck and Wilson, 2004) and more generally in Skrondal

and Rabe-Hesketh (2004). A two-level random coefficient model can be written as

νj = Xjβ + Zjηj ,

where the design matrix of known constants Zj (varying over clusters j ) takes the place

of the parameter matrix of unknown factor loadings � (constant over clusters j ).

Generalized linear latent and mixed models (GLLAMMs) (Rabe-Hesketh et al.,

2004a, 2004b) unify factor models and random coefficient models by allowing each

latent variable to multiply a term of the form Zjλ, where Zj is a design matrix and λ

a parameter vector. The GLLAMM formulation of the independent clusters two-factor

model discussed previously is as follows:

⎡
⎢⎢⎢⎢⎢⎢⎣

ν1j

ν2j

ν3j

ν4j

ν5j

ν6j

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
νj

=

⎡
⎢⎢⎢⎢⎢⎢⎣

β1

β2

β3

β4

β5

β6

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
β

+η1j

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Z1j

⎡
⎣

1

λ21

λ31

⎤
⎦
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λ1

+η2j

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Z2j

⎡
⎣

1

λ52

λ62

⎤
⎦

︸ ︷︷ ︸
λ2

,
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where Z1j and Z2j are design matrices containing only fixed constants whereas λ1 and

λ2 are vectors of factor loadings. If the factor loadings are known constants, the products

Z1jλ1 and Z2jλ2 become column vectors, giving a random coefficient model.

When viewing factor models as similar to random coefficient models, it is useful to

describe the indicators as level-1 units and the subjects as level-2 units (or clusters). In

the remainder of this chapter, we will therefore denote higher levels in which subjects

are nested as level-3, level-4, etc.

3.2. Two-level factor models

Multilevel factor models are typically required if the subjects of interest are clustered in

some way, for instance, students clustered in schools.

3.2.1. Within and between formulation

A two-level factor model for subjects j in clusters k is often formulated in terms of the

within-cluster and between-cluster covariance matrices, �W and �B , respectively (e.g.,

Longford and Muthén, 1992; Poon and Lee, 1992; Longford, 1993; Linda et al., 1993).

For continuous observed or latent responses, the following two-stage formulation

can be used

y∗
jk ∼ N(μk,�W ),

(4)μk ∼ N(μ,�B).

Here, μ is the overall intercept and μk are cluster-specific intercepts. Factor structures

of the form in (2) are then specified for the two covariance matrices

�W = �(2)�(2)�(2)′ +�(2),

and

�B = �(3)�(3)�(3)′ +�(3).

Here we have used the superscript (2) to denote subject-level variables and parameters

and (3) to denote the cluster-level counterparts. For consistency with the literature, we

call the model a two-level factor model although we think of items as level-1 units,

subjects as level-2 units and clusters as level-3 units.

The two-level factor model can alternatively be expressed more explicitly using a

two-stage formulation with a within-model and a between-model:

y∗
jk = μk +�(2)η

(2)
jk + ε

(2)
jk ,

(5)μk = μ+�(3)η
(3)
k + ε

(3)
k .

The first equation for the latent responses y∗
jk represents a common factor model which

includes random intercepts μk that vary over clusters k. The second equation represents

a common factor model for the random intercepts μk .

For the case of a single common factor at each level, a path diagram reflecting the

above specification is given in Figure 2. Following the conventions used by Muthén and

Muthén (2004), the models for the within and between covariance matrices are labeled
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Fig. 2. Path diagram of two-level factor model in within and between formulation.

‘within’ and ‘between’. The within-model shows the relationship between the observed

responses and the common factor η
(2)
1 at the subject level. The solid circles attached to

the responses indicate that the intercepts μk of these responses vary randomly in the

between-model. In the between-model, these random intercepts are shown as circles

labeled with the names of the corresponding responses. These are modeled using a

common and unique factors at the cluster level.

3.2.2. Reduced-form formulation

Substituting from the second line of (5) for μk in the first line, we obtain the reduced

form

y∗
jk = μ+�(3)η

(3)
k + ε

(3)
k︸ ︷︷ ︸

μk

+�(2)η
(2)
jk + ε

(2)
jk .

A path diagram reflecting the reduced form is given in the left panel of Figure 3.

Following the conventions in Rabe-Hesketh et al. (2004a, 2004b), nested frames repre-

sent the nested levels; variables located within the outer frame labeled ‘cluster k’ vary

between clusters and have a k subscript and variables also inside the inner frame labeled

‘unit j ’ vary between units within clusters and have both the j and k subscripts. Only

common factors are enclosed in circles.

3.3. Variance components factor model

Instead of specifying separate factor models for the two levels, we could think of a single

factor model defined for subjects in which the common factors have random intercepts
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Fig. 3. (a) General two-level factor model and (b) variance components factor model (source: Skrondal and

Rabe-Hesketh, 2004).

varying between the clusters. In the unidimensional case, with a single common factor

η
(2)
jk at level 2, the measurement model for this factor is combined with a structural

model of the form

(6)η
(2)
jk = η

(3)
k + ζ

(2)
jk .

Such a variance components factor model is analogous to a MIMIC (‘Multiple-

Indicator Multiple-Cause’) model (e.g., Jöreskog and Goldberger, 1975) except that the

common factor is not regressed on observed covariates but on a random intercept repre-

senting the effects of unobserved covariates at a higher level. An obvious application is

in item response models if, for example, children’s mean latent abilities vary randomly

between schools (see, e.g., Fox and Glas, 2001).

This model is a special case of the two-level factor model with the same number

of common factors at both levels, no unique factors at level 3 and with factor loadings

set equal across levels, �(2) = �(3). Using the conventions of Muthén (e.g., Muthén

and Muthén, 2004) the unidimensional variance components factor model would be

depicted as in Figure 2 but without the short arrows in the ‘between’ model. Using our

conventions, a natural representation is that given in Figure 3(b).

The cluster-level unique factors in the two-level factor model can be thought of as

representing differential item functioning between clusters. In Longford and Muthén’s

(1992) application to test scores in eight areas of mathematics for students nested in

classes, the unique factors were interpretable as representing the variability in emphases

between classrooms, partly due to tracking.

Note that if the factor loadings are set to 1 the model simply becomes a multilevel

regression model. Such a model has been used by Raudenbush and Sampson (1999).
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4. Multilevel structural equation models

Just as for the single-level case, multilevel measurement models are sometimes of inter-

est in their own right. However, it is often the nature of the relationships between latent

variables at different levels that is the primary focus of the investigation.

4.1. Single-level models

The M latent variables ηj are defined via a measurement model as described in Sec-

tion 3. The structural model for the latent variables then allows these latent variables to

be regressed on each other and on observed covariates. This model often has the form

(e.g., Muthén, 1984)

(7)ηj = Bηj + Ŵwj + ζj .

Here B is a regression parameter matrix for the relations among the latent variables ηj ,

wj is a vector of covariates, Ŵ is a parameter matrix for the regressions of the latent

variables on the covariates, and ζj is a vector of errors or disturbances. The relation-

ships among the latent variables are recursive if the B matrix is strictly upper (or lower)

triangular.

4.2. Multilevel structural equation models

Multilevel structural equation models can be specified in a number of different ways.

The most common approach is the traditional two-stage approach described for factor

models in Section 3.2.1. In this case separate structural equation models are specified

for the within and between covariance matrices (e.g., Muthén, 1994; Lee and Shi, 2001).

A recent application of this approach in education is described by Everson and Millsap

(2004). In contrast, the approach advocated here is based on including latent variables

in random coefficient models or generalized linear mixed models.

One possibility is to specify a conventional random coefficient model but let the

response variable be a latent variable, for instance, ability. The intercept and possi-

bly effects of covariates are then specified as varying randomly between clusters (e.g.,

Fox and Glas, 2001). This is an extension of the unidimensional variance compo-

nents factor model to include covariates and possibly random coefficients of covariates.

The model includes direct paths from cluster-level latent variables to subject-level

latent variables as shown for the variance components factor model in Figure 3(b).

While equivalent models can often be specified via separate models for the within

and between covariance matrices, they require a large number of constraints, in-

cluding nonlinear constraints (Rabe-Hesketh et al., 2004a). Furthermore, the simpler

structure would not be apparent from separate diagrams for the within and between-

models.

Remaining within the random coefficient framework, we can also let covariates be

latent variables. If these covariates are cluster-specific, the model includes responses

varying at different levels. This situation is accommodated within the framework sug-

gested by Goldstein and McDonald (1988) and McDonald and Goldstein (1989) for
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Fig. 4. Multilevel structural equation model with latent dependent variable and latent covariate at level 2.

continuous responses. Fox and Glas (2003) describe a model where both subject-level

and cluster-level covariates are latent and where the measurement models are item

response models. Unfortunately, the traditional two-stage formulations described in

Section 3.2.1 cannot handle responses varying at different levels. This is a rather se-

vere limitation for a multilevel structural equation model.

Rabe-Hesketh et al. (2004a, 2004b) develop the Generalized Linear Latent and

Mixed Modeling (GLLAMM) framework consisting of a response model and a struc-

tural model. The response model has the form described in Section 3.1 but with L levels

of nesting

(8)ν = Xβ +
L∑

l=2

Ml∑

m=1

η(l)m Z(l)
m λ(l)m ,

where we have omitted the indices for units at different levels for notational simplicity.

This model allows specification of random coefficient models, measurement models or

both, as well as hybrid models. The structural model has the same form as (7) for single-

level models but is specified for the vector ηj of all latent variables for subject j . This

allows lower-level latent variables to be regressed on same or higher-level latent and

observed variables. This framework permits specification of random coefficient models

with latent responses or covariates at different levels. In addition, models in the two-

stage formulation can also be specified. One limitation is that it is not possible to have

a random coefficient of a latent covariate as this would correspond to a (cross-level)

interaction among latent variables.

In Section 6 we will apply a model of the kind shown in Figure 4. A subject-level la-

tent variable is regressed on a cluster-level latent variable and has a cluster-level random

intercept. Moreover, the subject-level latent variable is regressed on covariates.
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5. Estimation

5.1. Continuous responses

5.1.1. Maximum likelihood

For the continuous case, Goldstein and McDonald (1988), McDonald and Goldstein

(1989) and Lee (1990) derived theory and succinct expressions for the likelihood, al-

lowing two-level structural equation models to be estimated. For unbalanced multilevel

designs with missing items, Longford and Muthén (1992) proposed a Fisher scoring

algorithm whereas Raudenbush (1995) and Poon and Lee (1998) suggested EM algo-

rithms.

5.1.2. Ad-hoc methods

Because these approaches require specialized software, several two-stage alternatives

have been proposed. Muthén (1989) suggests an approach which corresponds to maxi-

mum likelihood for balanced data where all clusters have the same size n. In this case,

the empirical covariance matrix SW of the cluster-mean centered responses is a consis-

tent and unbiased estimator for �W ,

E(SW ) = �W .

In contrast, the expectation of the empirical covariance matrix SB of the cluster means

is

E(SB) = �B + 1

n
�W .

Within and between structural equation models are specified for �W and �B . Since

�W contributes to both E(SB) and E(SW ), both models must be fitted jointly to the

empirical covariance matrices SB and SW . This can be accomplished by treating the

two matrices as if they corresponded to different groups of subjects and performing two-

group analysis with the required constraints. If there are only a relatively small number

of different cluster sizes, a multiple group approach (with more than two groups) can be

used to obtain maximum likelihood estimates. These approaches as well as an ad-hoc

solution for the completely unbalanced case are described in detail in Muthén (1994)

and Hox (2002).

Goldstein (1987, 2003) suggests using multivariate multilevel modeling to estimate

�W and �B consistently by either maximum likelihood or restricted maximum likeli-

hood. Structural equation models can then be fitted separately to each estimated matrix.

Advantages of this approach are that unbalanced data and missing values are automati-

cally accommodated, and that it is straightforward to extend to more hierarchical levels

and to models where levels are crossed instead of nested.

An alternative ad-hoc approach, similar to the work by Korn and Whittmore (1979),

was proposed by Chou et al. (2000). Here, a factor or structural equation model is esti-

mated separately for each cluster. The estimates are subsequently treated as responses in

a between-model, typically a regression model with between-cluster covariates and an

unstructured multivariate residual covariance matrix. This approach allows, and indeed

requires, all parameters to vary between clusters, including factor loadings.
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A common feature of these two-stage procedures is that standard errors provided

from the second stage are incorrect since they treat the output from the first stage as

data or as empirical covariance matrices.

5.2. Noncontinuous responses

For models with noncontinuous responses maximum likelihood estimation or Bayesian

methods are typically used. Although computationally demanding, these methods au-

tomatically handle lack of balance and missing data and are straightforward to extend

to include for instance mixed responses and nonlinear relations among latent variables.

We note in passing that the ad-hoc approaches of Goldstein (2003, 1987) and Chou et

al. (2000) discussed above can also be used for noncontinuous responses.

5.2.1. Maximum likelihood estimation

The major challenge in maximum likelihood estimation of multilevel latent variable

models for noncontinuous responses is to integrate out the latent variables since closed

form results typically do not exist. Thus, integration usually proceeds by either by

Monte Carlo simulation or using numerical methods.

Lee and Shi (2001) and Lee and Song (2004) use Monte Carlo EM (MCEM) algo-

rithms, employing Gibbs sampling to evaluate the integrals in the E-step. Rabe-Hesketh

et al. (2004a, 2004b) suggest using Newton–Raphson where the latent variables are

integrated out using adaptive quadrature, see also Rabe-Hesketh et al. (2005).

5.2.2. Mean posterior estimation

As in other areas of statistics, Markov Chain Monte Carlo (MCMC) methods have

recently attracted considerable interest in multilevel structural equation modeling. In-

terestingly, very diffuse priors are almost invariably specified in practice. The mean of

the posterior distribution is in this case often quite close to the mode of the likelihood.

MCMC can thus be viewed as a convenient and powerful way of implementing maxi-

mum likelihood estimation for complex models.

MCMC methods have been used by Ansari and Jedidi (2000), Fox and Glas (2001)

and Goldstein and Browne (2005) for binary responses and by Song and Lee (2004) for

continuous and ordinal responses.

6. Application: Student ability and teacher excellence

To investigate whether student ability measured at the student-level depends on teacher

excellence measured at the school-level we analyze data from the Program for Interna-

tional Student Assessment (PISA) 2000 Assessment of Reading (OECD, 2001) using

multilevel structural equation modeling.

6.1. Data description

The data consist of student responses to a reading test and student background question-

naire and responses to a school questionnaire completed by principals.
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At the student level, we focus on a unidimensional latent factor – the ability to inter-

pret written information. We chose four items for this construct from the reading unit

of the test. Three of the items have dichotomous responses and one item has ordinal re-

sponses. We included four observed covariates from the student questionnaire: Parents’

education (one or both parents have higher education = 1, otherwise = 0), Male (male

= 1, female = 0), Reading (some time spent on reading every day = 1, otherwise = 0),

and English (English spoken at home = 1, otherwise = 0).

The school data include ordinal responses from principals to school survey ques-

tions regarding satisfaction with ten aspects of teacher excellence: teacher expectations,

student–teacher relations, teacher turnover, teachers meeting individual students’ needs,

teacher absenteeism, teachers’ strictness with students, teachers’ morale, teachers’

enthusiasm, teachers taking pride in the school, and teachers valuing academic achieve-

ment.

The sample comprises 2484 tenth grade students from 131 U.S. schools. School-level

covariates were not included because this would have drastically reduced the number of

schools due to missing data.

6.2. Model specification

In addition to developing measurement models for student interpretation ability and

teacher excellence, we will estimate a structural equation model where student inter-

pretation ability is regressed on student-level observed covariates and the school-level

latent covariate teacher excellence. There is some doubt regarding the validity of the

measurement of teacher excellence since this was based on a questionnaire completed

by the principal. If teacher excellence is found to be predictive of student interpretation

ability, this could be seen as supportive evidence for the validity of both instruments.

6.2.1. Student-level model

The single-level factor model discussed in Section 3.1 is estimated for the student data,

where the common factor represents interpretation ability. The measurement model for

interpretation ability η
(2)
1jk can be written in terms of underlying continuous responses

y∗
jk . For item i for student j in school k we have

(9)y∗
ijk = βi + λiη

(2)
1jk + εijk, i = 1, 2, 3, 4.

Here βi are item intercepts and λi factor loadings or discrimination parameters, and the

εijk have logistic distributions. Interpretation ability is measured by three dichotomous

items and one ordinal item (item 2). For the dichotomous items (i = 1, 3 and 4),

yijk =
{

1 if y∗
ijk > 0,

0 otherwise,

and for the ordinal item (i = 2), the intercept β2 is set to 0 and the threshold model is

specified as

y2jk =

⎧
⎪⎪⎨
⎪⎪⎩

1 if −∞ � y∗
2jk < κ1,

2 if κ1 � y∗
2jk < κ2,

3 if κ2 � y∗
2jk < κ3,

4 if κ3 � y∗
2jk < ∞.
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This is a logistic graded response model (Samejima, 1969) where −βi , i = 1, 3, 4, can

be interpreted as the thresholds for the dichotomous items.

We regress student interpretation ability on the four student background covariates

(Parents’ education, Male, Reading and English):

η
(2)
1jk = γ′wjk + ζ

(2)
1jk.

Here wjk = [w1jk, w2jk, w3jk, w4jk]′ is a vector of the four covariates, γ = [γ1, γ2,

γ3, γ4]′ the corresponding regression parameter vector and ζ
(2)
1jk a vector of student-level

disturbances.

6.2.2. School-level model

Teacher excellence is measured by ten ordinal items, with response categories ‘dis-

satisfied’, ‘somewhat satisfied’ and ‘satisfied’. The following model was used for the

underlying continuous responses for items i and schools k:

(10)y∗
ik = η

(3)
1k + εik,

where η
(3)
1k represents teacher excellence and εik has a logistic distribution. The ordinal

responses are generated from the threshold model

yik =

⎧
⎨
⎩

1 if −∞ � y∗
ik < α1 + τi1,

2 if α1 + τi1 � y∗
ik < α2 + τi2,

3 if α2 + τi2 � y∗
ik < ∞,

where αs (s = 1, 2) is the sth threshold for item 1, whereas τis (i = 2, . . . , 10) is the

difference in the sth threshold between item i and item 1. Thus, αs + τis corresponds

to the threshold parameter κis for the ordinal responses as defined in Section 2.2.1. The

model is a one-parameter version of the logistic graded response model which assumes

that all items have the same discrimination.

The structural model is trivial if we do not wish to include school-level covariates:

η
(3)
1k = ζ

(3)
1k .

6.2.3. Joint model

A joint model for the student data and school survey data combines the student-level

and school-level models. In this example, students are the level-2 units and schools

the level-3 units. Under the general response model in (8), the joint measurement model

combines the item response model for the school survey data and a variance components

factor model as discussed in Section 3.3 for the student data. A path diagram for this

kind of model is shown in Figure 4.
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We can write the model for the responses of a student j from school k and a principal

from school k as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y∗
1jk

y∗
2jk

y∗
3jk

y∗
4jk

y∗
1k
...

y∗
10,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 0 0

0 1 0

0 0 1

0 0 0
...

...
...

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣
β1

β3

β4

⎤
⎦+ η

(2)
1jk

[
I4×4

010×4

]
⎡
⎢⎢⎢⎢⎣

1

λ
(2)
2

λ
(2)
3

λ
(2)
4

⎤
⎥⎥⎥⎥⎦

+ η
(3)
1k

[
04×1

I10×1

]
1 + η

(3)
2k

[
014×1

]
1 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1jk

ε2jk

ε3jk

ε4jk

ε1k

...

ε10,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the vectors and matrices of the above model, student-level elements are placed

above the horizontal lines and school-level elements below the horizontal lines. η
(2)
1jk

represents student interpretation ability, η
(3)
1k teacher excellence, and η

(3)
2k the school-

level random intercept of interpretation ability. The latter is multiplied by zero for each

item since the random intercept does not affect the items directly.

In the structural model, teacher excellence becomes an explanatory variable for inter-

pretation ability. Moreover, interpretation ability is regressed on student-level covariates

and the school-level random intercept η
(3)
2k which allows students’ mean ability to vary

randomly between schools after controlling for the covariates. The structural model can

be written as

η = Bη + Ŵw + ζ .

Specifically,

⎡
⎢⎢⎢⎣

η
(2)
1jk

η
(3)
1k

η
(3)
2k

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣

0 b12 1

0 0 0

0 0 0

⎤
⎥⎦

⎡
⎢⎢⎢⎣

η
(2)
1jk

η
(3)
1k

η
(3)
2k

⎤
⎥⎥⎥⎦

+

⎡
⎣
γ1 γ2 γ3 γ4

0 0 0 0

0 0 0 0

⎤
⎦

⎡
⎢⎢⎣

w1jk

w2jk

w3jk

w4jk

⎤
⎥⎥⎦+

⎡
⎢⎢⎢⎣

ζ
(2)
1jk

ζ
(3)
1k

ζ
(3)
2k

⎤
⎥⎥⎥⎦ .
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Fig. 5. Item characteristic curves for the four interpretation items.

In the structural model, the B matrix defines the relationship among the latent factors

at different levels. In particular, the cross-level coefficient b12 represents the effect of

school-level teacher excellence on student-level interpretation ability.

6.2.4. Results

Maximum likelihood estimates for the models considered above are given in Table 1.

The estimates were obtained using gllamm (Rabe-Hesketh et al., 2004a, 2004b) which

uses adaptive quadrature (Rabe-Hesketh et al., 2005) and runs in Stata (StataCorp,

2005).

In the student-level measurement model, the item difficulties for the dichotomous

items are −βi/λi . For the ordinal item, the κs represent the thresholds. Interpretation

of these parameters is facilitated by inspecting the item characteristic curves shown in

Figure 5.

Overall girls perform slightly better than boys as do students who read often or speak

English at home. However, parents’ education has a negligible estimated effect on stu-

dent performance (not significant at the 5% level) which is somewhat surprising. This

could be due to inaccurate reporting of students on their parents’ education or insuffi-

cient reliability for interpretation ability due to the small number of items.

The school-level model includes threshold parameters for the ten ordinal items.

In category 2 (somewhat satisfied), the principals find “teachers’ strictness with stu-

dents” (item 6) the easiest to endorse and “teachers meeting individual students’ needs”

(item 4) the most difficult. In category 3 (satisfied), “teachers valuing academic achieve-

ment” (item 10) is the easiest and “teachers meeting individual students’ needs” is once

again the most difficult to endorse.
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Table 1

Maximum likelihood estimates for reading test data

Parameter Student model School model Joint model

Est (SE) Est (SE) Est (SE)

Student-level:

β1 [Item 1, intercept] 1.16 (0.16) 1.15 (0.16)

κ1 [Item 2, threshold 1] −0.22 (0.57) −0.25 (0.58)

κ2 [Item 2, threshold 2] −0.92 (0.61) 0.91 (0.62)

κ3 [Item 2, threshold 3] 2.15 (0.79) 2.16 (0.77)

β3 [Item 3, intercept] 0.23 (0.25) 0.25 (0.23)

β4 [Item 4, intercept] −0.94 (0.23) −0.94 (0.22)

λ1 [Item 1, loading] 1 1

λ2 [Item 2, loading] 5.44 (2.88) 5.07 (2.38)

λ3 [Item 3, loading] 2.05 (0.71) 1.80 (0.59)

λ4 [Item 4, loading] 1.51 (0.54) 1.40 (0.46)

γ1 [Parents’ education] −0.02 (0.05) −0.02 (0.05)

γ2 [Male] −0.11 (0.06) −0.12 (0.06)

γ3 [Reading] 0.16 (0.08) 0.16 (0.08)

γ4 [English] 0.27 (0.13) 0.30 (0.13)

var(ζ
(2)
1jk

) [Interpretation ability] 0.20 (0.12) 0.19 (0.10)

School-level:

α1
⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

[Threshold parameters]

−1.86 (0.31) −1.86 (0.31)

τ21 −1.30 (0.47) −1.30 (0.47)

τ31 −0.84 (0.44) −0.84 (0.43)

τ41 0.39 (0.37) 0.39 (0.37)

τ51 −0.41 (0.40) −0.41 (0.40)

τ61 −2.54 (0.67) −2.54 (0.67)

τ71 −0.33 (0.40) −0.33 (0.40)

τ81 −2.03 (0.56) −2.03 (0.56)

τ91 −2.29 (0.60) −2.29 (0.60)

τ10,1 −2.30 (0.60) −2.30 (0.60)

α2 1.69 (0.31) 1.69 (0.31)

τ22 0.06 (0.38) 0.06 (0.38)

τ32 −0.56 (0.37) −0.56 (0.37)

τ42 0.86 (0.42) 0.86 (0.42)

τ52 −0.36 (0.37) −0.36 (0.37)

τ62 −1.44 (0.36) −1.43 (0.36)

τ72 0.35 (0.40) 0.35 (0.40)

τ82 0.29 (0.39) 0.29 (0.39)

τ92 −0.67 (0.37) −0.67 (0.37)

τ10,2 −1.79 (0.36) −1.79 (0.36)

b12 [Cross-level coefficient] 0.02 (0.03)

var(ζ
(3)
1k

) [Teacher excellence] 2.19 (0.42) 2.19 (0.42)

var(ζ
(3)
2k

) [Intercept] 0.05 (0.04)

The school random intercept variance is estimated as 0.05 which is negligible for

a logit model. The teacher excellence variance is estimated as 2.19. Somewhat sur-

prisingly, the cross-level effect of teacher excellence on student interpretation ability
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appears to be negligible. One consequence of this is that the student-level and school-

level parameters in the joint model do not differ much from those in the individual

student and school models. The small estimated regression coefficient casts some doubt

on the validity of the principal’s assessment of teacher excellence based on the school

questionnaire.
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Statistical Inference of Moment Structures

Alexander Shapiro

Abstract

The statistical inference of moment structure models. Although the theory is pre-

sented in terms of general moment structures, the main emphasis is on the analysis of

covariance structures. Identifiability and the minimum discrepancy function (MDF)

approach to statistical analysis (estimation) of such models are discussed. Topics of

the large samples theory, in particular, consistency, asymptotic normality of MDF

estimators and asymptotic chi-squaredness of MDF test statistics are addressed. Re-

sults addressing asymptotic robustness of the normal theory based MDF statistical

inference in the analysis of covariance structures are presented.

1. Introduction

Statistical inferences of moment structures where first and/or second population mo-

ments are hypothesized to have a parametric structure are discussed. Classical examples

of such models are multinomial and covariance structure models. The presented theory

is sufficiently general to handle various situations, however the main focus is on co-

variance structures. Theory and applications of covariance structures were motivated

first by the factor analysis model and its various generalizations and later by the de-

velopment of LISREL models (Jöreskog, 1977, 1981) (see also (Browne, 1982) for a

thorough discussion of covariance structure modeling).

2. Moment structures models

In this section we discuss modeling issues in the analysis of moment structures, and, in

particular, identifiability of such models. Let ξ = (ξ1, . . . , ξm)
′ be a vector variable rep-

resenting a parameter vector of some statistical population. For example, in the analysis

of covariance structures, ξ will represent the elements of a p × p covariance matrix

Σ . That is, ξ := vec(Σ), where vec(Σ) denotes the p2 × 1 vector formed by stacking

229
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elements of Σ . (The notation “:=” means “equal by definition”.) Of course, since ma-

trix Σ is symmetric, vector vec(Σ) has duplicated elements. Therefore an alternative is

to consider ξ := vecs(Σ), where vecs(Σ) denotes the p(p + 1)/2 × 1 vector formed

by stacking (nonduplicated) elements of Σ above and including the diagonal. Note that

covariance matrices Σ are positive semidefinite, and hence the corresponding vectors

ξ are restricted to a (convex) subset of Rm. Therefore, we assume that ξ varies in a set

Ξ ⊂ Rm representing a saturated model for the population vector ξ . In the analysis

of covariance structures we have a natural question whether to use vector ξ = vec(Σ)

or ξ = vecs(Σ) for the saturated model. Since in both cases the dimension of the cor-

responding set Ξ is p(p + 1)/2, it seems more advantageous to use ξ := vecs(Σ).

In that case the set Ξ has a nonempty interior. (The interior of Ξ is the set of points

ξ ∈ Ξ such that Ξ contains a neighborhood of ξ . For example, the interior of the set

of positive semidefinite matrices is formed by its subset of positive definite matrices.

A singular positive semidefinite matrix can be viewed as a boundary point of this set Ξ .

A neighborhood of a point ξ ∈ Rm is a subset of Rm containing a ball centered at ξ

of a sufficiently small positive radius.) However, for actual calculations it is often more

convenient to use ξ := vec(Σ). When dealing with specific applications we will specify

a choice of the corresponding vector ξ .

A model for ξ is a subset Ξ0 of Ξ . Of course, this definition is too abstract and

one needs a constructive way of defining a model. There are two natural ways for

constructing a model, namely either by imposing equations or by a parameterization.

The parameterization approach suggests existence of an m × 1 vector valued function

g(θ) = (g1(θ), . . . , gm(θ)), and a parameter set Θ ⊂ Rq , which relates the parameter

vector θ = (θ1, . . . , θq)
′ to ξ . That is,

(2.1)Ξ0 :=
{
ξ ∈ Ξ : ξ = g(θ), θ ∈ Θ

}
.

We refer to g(θ), θ ∈ Θ , as a structural model for ξ . We assume in the subsequent

analysis that the mapping g(θ) is sufficiently smooth. In particular, we always assume

that g(θ) is twice continuously differentiable. We associate with mapping g(·) its m×q

Jacobian matrix ∂g(θ)/∂θ ′ = [∂gi(θ)/∂θj ]i=1,...,m,j=1,...,q of partial derivatives and

use notation Δ(θ) := ∂g(θ)/∂θ ′.

REMARK 1. It should be noted that the same set Ξ0 could be represented by differ-

ent parameterizations in the form (2.1). For example, let Ξ be the set of all p × p

symmetric positive semidefinite matrices (covariance matrices) and Ξ0 be its subset of

diagonal matrices with nonnegative diagonal elements. This model can be parameter-

ized by the set Θ := R
p
+ and mapping g(θ) := diag(θ1, . . . , θp). (The set R

p
+ denotes

the nonnegative orthant of the space Rp, i.e., R
p
+ := {θ ∈ Rp: θi � 0, i = 1, . . . , p}.)

Alternatively, it can be parameterized by Θ := Rp and g(θ) := diag(θ2
1 , . . . , θ

2
p). Of

course, in applications the considered parameters typically have an interpretation. For

instance, in the above example of diagonal covariance matrices, in the first parame-

terization parameters θi represent the corresponding standard deviations while in the

second parameterization these are the corresponding variances. Note that this set Ξ0

can be also defined by equations by setting the off-diagonal elements of Σ to zero. In

the subsequent analysis we mainly deal with the parameterization approach.
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It is said that model g(θ), θ ∈ Θ , is (globally) identified at a point θ0 ∈ Θ if θ0

is a unique parameter vector corresponding to the value ξ0 := g(θ0) of the population

vector. It is said that the model is locally identified at θ0 if such uniqueness holds in a

neighborhood of θ0. More formally, we have the following definition.

DEFINITION 2.1. It is said that structural model g(θ), θ ∈ Θ , is identified (locally

identified) at a point θ0 ∈ Θ if g(θ∗) = g(θ0) and θ∗ ∈ Θ (θ∗ in a neighborhood of

θ0) implies that θ∗ = θ0.

Of course, (global) identifiability implies local identifiability. A well-known suffi-

cient condition for local identifiability of θ0 ∈ Θ is that the Jacobian matrix Δ(θ0), of

g(θ) at θ0, has full column rank q (e.g., Fisher, 1966). In general, this condition is not

necessary for local identifiability of θ0 even if θ0 is an interior point of Θ . Take, for

example, g(θ) := θ3, θ ∈ R. This model is locally (and globally) identified at θ = 0,

while ∂g(0)/∂θ = 0. This condition becomes necessary and sufficient under the fol-

lowing assumption of constant rank regularity which was used by several authors (e.g.,

Fisher, 1966; Rothenberg, 1971; Wald, 1950).

DEFINITION 2.2. We say that a point θ0 ∈ Θ is locally regular if the Jacobian matrix

Δ(θ) has the same rank as Δ(θ0) for every θ in a neighborhood of θ0.

If the mapping g(θ) is independent of, say, last s parameters θq−s+1, . . . , θq , then,

of course, these parameters are redundant and the model can be viewed as overparame-

terized. In that case the rank of the Jacobian matrix Δ(θ) is less than or equal to q − s

for any θ . In general, it is natural to view the structural model as being (locally) over-

parameterized, at a point θ0 in the interior of Θ , if it can be reduced to the above case

by a local transformation (reparameterization). More formally we have the following

definition (Shapiro, 1986).

DEFINITION 2.3. We say that structural model g(θ), θ ∈ Θ , is locally overparame-

terized, at an interior point θ0 of Θ , if the rank r of Δ(θ0) is less than q and there

exists a local diffeomorphism θ = h(γ ) such that the composite mapping g(h(γ )) is

independent of, say last, q − r coordinates of γ .

Mapping h(γ ) from a neighborhood of γ 0 ∈ Rq to a neighborhood of θ0, with

h(γ 0) = θ0, is called local diffeomorphism if it is continuously differentiable, locally

one-to-one and its inverse is also continuously differentiable. It can be shown that h(γ )

is a local diffeomorphism if and only if it is continuously differentiable and the Jaco-

bian matrix ∂h(γ 0)/∂γ is nonsingular. We can assume, without loss of generality, that

γ 0 = 0.

The local diffeomorphism h(γ ), in the above definition, can be viewed as a local

reparameterization of the model. We do not need to construct such a reparameterization

explicitly but rather to know about its existence since it gives us an information about

a (local) structure of the model. Clearly, if the model is locally overparameterized at
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a point θ0, then it is not locally identified at this point. Moreover, in the case of lo-

cal overparameterization the set of points θ such that g(θ) = g(θ0) forms a smooth

manifold in a neighborhood of θ0. Note that the rank of the Jacobian matrix of the com-

posite mapping g(h(γ )), at γ 0 = 0, is the same as the rank of Δ(θ0). Therefore, in the

reparameterized model the remaining r coordinates of γ are locally identified.

A relation between the concepts of local regularity and local overparameterization is

clarified by the following result known as the Rank Theorem (Fisher, 1966).

PROPOSITION 2.1. Let θ0 be an interior point of the parameter set Θ . Then the fol-

lowing holds.

(i) Suppose that θ0 is locally regular. Then the model is locally identified at θ0 if and

only if the rank r of Δ(θ0) is equal to q, otherwise if r < q, then the model is

locally overparameterized at θ0.

(ii) Conversely, if the model is locally overparameterized at θ0, then r < q and the

point θ0 is locally regular.

The above results are not very useful for verification of (local) identifiability at an

individual point θ0. For one thing the population value of the parameter vector usually

is unknown, and even if the value θ0 is specified, it is not possible to calculate the

rank of the corresponding Jacobian matrix numerically because of the round off errors.

However, one can approach the identifiability problem from a generic point of view.

Suppose that the mapping g(·) is analytic, i.e., every coordinate function gi(·) can be

expanded into a power series in a neighborhood of every point θ ∈ Θ . Suppose also

that the set Θ is connected. Let ι be an index set of rows and columns of Δ(θ) defining

its squared submatrix and vι(θ) be the determinant of that submatrix. Clearly there

is only a finite number of such submatrices and hence the corresponding determinant

functions. Since g(·) is analytic, every such determinant function vι(θ) is also analytic.

Consequently, either vι(θ) is identically zero for all θ ∈ Θ , or vι(θ) �= 0 for almost

every θ ∈ Θ . (The “almost every” statement here can be understood in the sense that

it holds for all θ in Θ except on a subset of Θ of Lebesgue measure zero.) These

arguments lead to the following result.

PROPOSITION 2.2. Suppose that the mapping g(·) is analytic and the set Θ is con-

nected. Then almost every point of Θ is locally regular with the same rank r of the

Jacobian matrix Δ(θ), and, moreover, the rank of Δ(θ) is less than or equal to r for all

θ ∈ Θ .

By the above proposition we have that with the model, defined by analytic mapping

g(θ), is associated an integer r equal to the rank of Δ(θ) almost everywhere. We refer

to this number r as the characteristic rank of the model, and whenever talking about

the characteristic rank we assume that the mapping g(θ) is analytic and the parameter

set Θ is connected (the concept of characteristic rank was introduced in Shapiro (1986)).

It follows from the preceding discussion that either r = q in which case the model

is locally identified almost everywhere, or r < q in which case the model is locally

overparameterized almost everywhere.
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We say that the model is identified (locally identified) in the generic sense if it is

identified (locally identified) at almost every θ ∈ Θ (Shapiro, 1985a). By the above

analysis we have that the model is locally identified in the generic sense if and only if

its characteristic rank is equal q. Note that the characteristic rank is always less than or

equal to the dimension m of the saturated model.

In situations where the model is (locally) overparameterized, the usual practice is to

restrict the parameter space by imposing constraints. According to Definition 2.3, if the

model is locally overparameterized, at a point θ0, then it can be reparameterized such

that the reparameterized model locally does not depend on the last q − r coordinates

γr+1, . . . , γq . Consequently by imposing the constraints γi = 0, i = r + 1, . . . , q,

the reparameterized model becomes locally identified at γ 0 = 0 while its image space

Ξ0 is not changed. For the original model this is equivalent to imposing (locally) the

identifiability constraints ci(θ) = 0, i = r + 1, . . . , q, where γ = c(θ) is the inverse of

the mapping θ = h(γ ).

EXAMPLE 2.1. Consider the factor analysis model:

(2.2)Σ = ΛΛ′ + Ψ ,

which relates the p × p covariance Σ to the p × k matrix Λ of factor loadings and

the p × p diagonal matrix Ψ of the residual variances. The corresponding parameter

vector θ is composed here from the elements of matrix Λ and diagonal elements of Ψ ,

and hence has dimension q = pk + p. Note that the diagonal elements of the matrix Ψ

should be nonnegative while there are no restrictions on the elements of Λ.

By substituting ΛT for Λ, where T is an arbitrary k × k orthogonal matrix, we end

up with the same matrix Σ (this is the so-called indeterminacy of the factor analysis

model). Since the dimension of the (smooth) manifold of k × k orthogonal matrices is

k(k − 1)/2 and the dimension of the space of p ×p symmetric matrices is p(p + 1)/2,

it is possible to show that the characteristic rank r of the factor analysis model (2.2) is

(2.3)r = min
{
pk + p − k(k − 1)/2, p(p + 1)/2

}
.

It follows that for k > 1 the model (2.2) is locally overparameterized. A way of dealing

with this is to reduce the number of parameters given by matrix Λ by setting k(k− 1)/2

appropriate elements of Λ to zero (Jennrich, 1987). Then the question of global (local)

identifiability of the factor analysis model is reduced to the global (local) identifiability

of the diagonal matrix Ψ (Anderson and Rubin, 1956). We have that a necessary con-

dition for generic local identifiability of Ψ is that pk + p − k(k − 1)/2 is less than or

equal to p(p + 1)/2, which is equivalent to (p − k)(p − k + 1)/2 � p, and in turn is

equivalent to k � φ(p), where

(2.4)φ(p) := 2p + 1 −
√

8p + 1

2
.

The above function φ(p) corresponds to the so-called Ledermann bound (Ledermann,

1937). In the present case we have that k � φ(p) is a necessary and sufficient condition

for local identifiability of the diagonal matrix Ψ , of the factor analysis model, in the

generic sense (Shapiro, 1985a).
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It is more difficult to establish (global) identifiability of a considered model. We can

also approach the (global) identifiability problem from the generic point of view. Of

course, if a model is not locally identified it cannot be globally identified. Therefore,

k � φ(p) is a necessary condition for (global) identifiability of the factor analysis

model in the generic sense. It is known that matrix Ψ , in the factor analysis model (2.2),

is globally identified in the generic sense if and only if k < φ(p) (Bekker and ten Berge,

1997).

3. Minimum discrepancy function estimation approach

Let ξ0 ∈ Ξ be a population value of the parameter vector of the saturated model. Recall

that we refer to a subset Ξ0 of Ξ as a model for ξ . Unless stated otherwise it will be

assumed that the model is structural, i.e., the set Ξ0 is given in the parametric form

(2.1). It is said that the model holds if ξ0 ∈ Ξ0. Clearly this means that there exists

θ0 ∈ Θ such that ξ0 = g(θ0). If the model is identified at θ0, then this vector θ0 is

defined uniquely. In that case we refer to θ0 as the population value of the parameter

vector θ .

Suppose that we are given an estimator ξ̂ of ξ0, based on a sample of size n. We will

be interested then in testing the hypothesis H0: ξ0 ∈ Ξ0, and consequently in estimation

of the population value of the parameter θ . Consider the setting of the covariance struc-

tures with Σ being the covariance matrix of p × 1 random vector X, and let Σ = Σ(θ)

be an associated structural model. Let X1, . . . ,Xn be an iid (independent identically

distributed) random sample drawn from a considered population. Then the standard es-

timator of the population value Σ0 of the covariance matrix is the sample covariance

matrix

(3.1)S := 1

n − 1

n∑

i=1

(Xi − �X)(Xi − �X)′,

where �X := n−1
∑n

i=1 Xi . Suppose, further, that the population distribution is (multi-

variate) normal with mean vectorμ0 and covariance matrixΣ0. Then the corresponding

log-likelihood function (up to a constant independent of the parameters) is

(3.2)ℓ(μ,Σ) = −1

2
n ln |Σ | − 1

2
tr

(
Σ−1

n∑

i=1

(Xi − μ)(Xi − μ)′
)
.

(By |A| and tr(A) we denote the determinant and the trace, respectively, of a (square)

matrix A.) The maximum likelihood (ML) estimator of μ0 is �X and the ML estimator

of Σ0, for the saturated model, is

(3.3)Σ̂ = 1

n

n∑

i=1

(Xi − �X)(Xi − �X)′ = n − 1

n
S.

Of course, for reasonably large values of n, the ML estimator Σ̂ is “almost” equal to

the unbiased estimator S. Therefore, with some abuse of notation, we use S = Σ̂ as the

estimator of the population covariance matrix.



Statistical inference of moment structures 235

It follows that two times log-likelihood ratio statistic for testing the null hypothesis

Σ0 = Σ(θ0) is given by nF̂ , where

(3.4)F̂ := min
θ∈Θ

FML

(
S,Σ(θ)

)
,

with FML(·, ·) being a function of two (matrix valued) variables defined by

(3.5)FML(S,Σ) := ln |Σ | − ln |S| + tr(SΣ−1) − p.

The corresponding ML estimator θ̂ of θ0 is a minimizer of FML(S,Σ(θ)) over θ ∈ Θ ,

i.e.,

(3.6)θ̂ ∈ arg min
θ∈Θ

FML

(
S,Σ(θ)

)
.

(By arg min{f (θ): θ ∈ Θ} we denote the set of all minimizers of f (θ) over θ ∈ Θ; this

set can be empty or contain more than one element.) Let us note at this point that the

estimator θ̂ , defined in (3.6), can be calculated whether the model holds or not. We will

discuss implications of this later.

Following Browne (1982), we say that a function F(x, ξ), of two vector variables

x, ξ ∈ Ξ , is a discrepancy function if it satisfies the following conditions:

(i) F(x, ξ) � 0 for all x, ξ ∈ Ξ ,

(ii) F(x, ξ) = 0 if and only if x = ξ ,

(iii) F(x, ξ) is twice continuously differentiable jointly in x and ξ .

Let g(θ), θ ∈ Θ , be a structural model being considered. Given an estimator ξ̂ of ξ0

and a discrepancy function F(x, ξ), we refer to the statistic nF̂ , where

(3.7)F̂ := min
θ∈Θ

F
(
ξ̂ ,g(θ)

)
,

as the minimum discrepancy function (MDF) test statistic, and to

(3.8)θ̂ ∈ arg min
θ∈Θ

F
(
ξ̂ ,g(θ)

)

as the MDF estimator.

The function FML(S,Σ) defined in (3.5), considered as a function of s = vec(S)

and σ = vec(Σ), is an example of a discrepancy function. It is referred to as the maxi-

mum likelihood (ML) discrepancy function. Another popular choice of the discrepancy

function in the analysis of covariance structures is

(3.9)FGLS(S,Σ) := 1

2
tr
[
(S −Σ)S−1(S −Σ)S−1

]
.

We refer to a function of the form

(3.10)F(x, ξ) := (x − ξ)′
[
V (x)

]
(x − ξ), x, ξ ∈ Ξ,

as a generalized least squares (GLS) discrepancy function. Here V (x) is an m × m

symmetric matrix valued function of x ∈ Ξ . We assume that for any x ∈ Ξ , the

corresponding matrix V (x) is positive definite, and hence conditions (i) and (ii) hold,

and that V (x) is twice continuously differentiable, and hence condition (iii) is satisfied.
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The FGLS(S,Σ) function, defined in (3.9), is a particular example of GLS discrepancy

functions with the weight matrix V (s) = 1
2
S−1 ⊗ S−1 (by ⊗ we denote the Kronecker

product of matrices).

We have the following basic result about the structure of discrepancy functions

(Shapiro, 1985b).

PROPOSITION 3.1. Let F(x, ξ) be a discrepancy function satisfying conditions (i)–

(iii). Then there exists a continuous m × m symmetric matrix valued function V (x, ξ)

such that

(3.11)F(x, ξ) = (x − ξ)′
[
V (x, ξ)

]
(x − ξ)

for all x, ξ ∈ Ξ .

The above result shows that any discrepancy function can be represented in a form

of an “almost” GLS function. A difference between the representation (3.11) and the

general form (3.10) of GLS discrepancy functions is that the weight matrix in (3.11)

can also depend on ξ as well as on x.

Let ξ0 ∈ Ξ be a given (say the population) value of vector ξ . Consider matrix

V 0 := V (ξ0, ξ0) associated with the matrix valued function V (·, ·) of representation

(3.11). We can then write

(3.12)F(x, ξ) = (x − ξ)′V 0(x − ξ) + r(x, ξ),

where r(x, ξ ) := (x − ξ)′[V (x, ξ) − V 0](x − ξ). We have that

∣∣r(x, ξ)
∣∣ � ‖x − ξ‖2

∥∥V (x, ξ ) − V 0

∥∥,
and V (x, ξ) tends to V 0 as x → ξ0 and ξ → ξ0. Consequently, for (x, ξ) near (ξ0, ξ0)

the remainder term r(x, ξ) in (3.12) is of order

r(x, ξ) = o
(
‖x − ξ0‖2 + ‖ξ − ξ0‖2

)
.

The notation o(x) means that o(x) is a function of x such that o(x)/x tends to zero

as x → 0. For a sequence Xn of random variables the notation Xn = op(an) means

that Xn/an converges in probability to zero. In particular, Xn = op(1) means that Xn

converges in probability to zero.

This can be compared with a Taylor expansion of F(x, ξ ) at (ξ0, ξ0). We have that

F(ξ0, ξ0) = 0, and since F(·, ξ0) attains its minimum (of zero) at x = ξ0, we have that

∂F (ξ0, ξ0)/∂x = 0, and similarly ∂F (ξ0, ξ0)/∂ξ = 0. It follows that the second-order

Taylor expansion of F(x, ξ) at (ξ0, ξ0) can be written as follows

F(x, ξ) = 1

2
(x − ξ0)

′H xx(x − ξ0) + 1

2
(ξ − ξ0)

′H ξξ (ξ − ξ0)

(3.13)+ (x − ξ0)
′H xξ (ξ − ξ0) + o

(
‖x − ξ0‖2 + ‖ξ − ξ0‖2

)
,

whereH xx := ∂2F(ξ0, ξ0)/∂x∂x
′,H ξξ := ∂2F(ξ0, ξ0)/∂ξ∂ξ

′,H xξ := ∂2F(ξ0, ξ0)/

∂x∂ξ ′ are the corresponding Hessian matrices of second order partial derivatives. By
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comparing (3.12) and (3.13), we obtain that

(3.14)
∂2F(ξ0, ξ0)

∂x∂x′ = ∂2F(ξ0, ξ0)

∂ξ∂ξ ′ = −∂2F(ξ0, ξ0)

∂x∂ξ ′ = 2V 0.

Both discrepancy functions FML(s, σ ) and FGLS(s, σ ), defined in (3.5) and (3.9),

respectively, have the same Hessian matrix

(3.15)
∂2FML(σ 0, σ 0)

∂s∂s′
= ∂2FGLS(σ 0, σ 0)

∂s∂s′
= Σ−1

0 ⊗Σ−1
0 ,

and hence the same second-order Taylor approximation at (σ 0, σ 0).

REMARK 2. For technical reasons we also assume the following condition for discrep-

ancy functions.

(iv) For any (fixed) x̄ ∈ Ξ , F(x, ξ) tends to infinity as x → x̄ and ‖ξ‖ → ∞.

It is not difficult to verify that the ML discrepancy function, defined in (3.5), and the

GLS discrepancy functions satisfy this condition.

4. Consistency of MDF estimators

Let ξ̂ = ξ̂n be a given estimator, based on a sample of size n, of the population value

ξ0 ∈ Ξ of the parameter vector of the saturated model (we use the subscript n, in the

notation ξ̂n, to emphasize that the estimator is a function of a sample of size n being

considered). It is said that the estimator ξ̂n is consistent if it converges with probability

one (w.p.1) to ξ0 as n → ∞. For example, by the (strong) Law of Large Numbers we

have that the sample covariance matrix S converges to Σ0 w.p.1 as n → ∞. For this

to hold we only need to assume that the population distribution has finite second-order

moments, and hence the covariance matrix Σ0 does exist, and that the corresponding

random sample is iid.

Let F(x, ξ) be a chosen discrepancy function satisfying conditions (i)–(iv) speci-

fied in the previous section, and ξ̄ = ξ̄(x) be an optimal solution of the minimization

problem:

(4.1)min
ξ∈Ξ0

F(x, ξ).

Note that since F(x, ·) is continuous and because of condition (iv), such a minimizer

always exists (provided that the set Ξ0 is closed), although it may be not unique. Define

(4.2)ξ̂∗
n := ξ̄(ξ̂n) and ξ∗ := ξ̄(ξ0).

That is, ξ̂∗
n and ξ∗ are minimizers of F(ξ̂n, ·) and F(ξ0, ·), respectively, over Ξ0. It could

be noted that if the model holds, i.e., ξ0 ∈ Ξ0, then the minimizer ξ∗ coincides with ξ0

and is unique (because of the properties (i) and (ii) of the discrepancy function). It is

possible to show that if the minimizer ξ∗ is unique, then the function ξ̄(x) is continuous

at x = ξ0, i.e., ξ̄(x) → ξ∗ as x → ξ0. Together with consistency of ξ̂n this implies the

following result (Shapiro, 1984).
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PROPOSITION 4.1. Suppose that the discrepancy function satisfies conditions (i)–(iv)

and ξ̂n is a consistent estimator of ξ0. Then ξ̂∗
n converges to ξ∗ w.p.1 as n → ∞,

provided that the minimizer ξ∗ is unique. In particular, if ξ0 ∈ Ξ0, then ξ̂
∗
n → ξ0 w.p.1

as n → ∞.

Similar analysis can be applied to studying consistency of the MDF estimators of the

parameter vectors in Θ . For a given x ∈ Ξ consider the optimization (minimization)

problem:

(4.3)min
θ∈Θ

F
(
x,g(θ)

)
.

Recall that the MDF estimator θ̂n is an optimal solution of problem (4.3) for x = ξ̂n.

Let θ∗ be an optimal solution of (4.3) for x = ξ0, i.e.,

θ∗ ∈ arg min
θ∈Θ

F
(
ξ0,g(θ)

)
.

Of course, if ξ0 = g(θ0) for some θ0 ∈ Θ (i.e., the model holds), then θ0 is an optimal

solution of (4.3) for x = ξ0, and we can take θ∗ = θ0. The optimal values of problems

(4.1) and (4.3) are equal to each other and there is a one-to-one correspondence between

the sets of optimal solutions of problems (4.1) and (4.3). That is, if θ̄ is an optimal

solution of (4.3), then ξ̄ = g(θ̄) is an optimal solution of (4.1), and conversely if ξ̄ is an

optimal solution of (4.1) and θ̄ ∈ Θ is a corresponding point of Θ , then θ̄ is an optimal

solution of (4.3). The relation between ξ̄ and θ̄ is defined by the equation ξ̄ = g(θ̄). If

the model is identified at θ̄ , then the equation ξ̄ = g(θ̄) defines the point θ̄ uniquely.

It follows that, under the assumptions of Proposition 4.1, θ̂n is a consistent estima-

tor of θ∗, if the inverse of the mapping g(·) is continuous at θ∗, i.e., if the following

condition holds:

g(θn) → g(θ∗), for some sequence {θn} ⊂ Θ,

(4.4)implies that θn → θ∗.

Note that the above condition (4.4) can only hold if the model is identified at θ∗. This

leads to the following result (Kano, 1986; Shapiro, 1984).

PROPOSITION 4.2. Suppose that the discrepancy function satisfies conditions (i)–(iv),

ξ̂n is a consistent estimator of ξ0, and for x = ξ0 problem (4.3) has unique optimal

solution θ∗ and condition (4.4) holds. Then θ̂n converges to θ∗ w.p.1 as n → ∞. In

particular, if ξ0 = g(θ0), for some θ0 ∈ Θ (i.e., the model holds), then θ0 = θ∗ and the

MDF estimator θ̂n is a consistent estimator of θ0.

Note that uniqueness of the optimal solution θ∗ implies uniqueness of the corre-

sponding optimal solution ξ∗. Converse of that also holds if the model is identified

at θ∗. As it was mentioned above, identifiability of θ∗ is a necessary condition for the

property (4.4) to hold. It is also sufficient if the set Θ is compact (i.e., bounded and

closed). For a noncompact set Θ , condition (4.4) prevents the MDF estimator from

escaping to infinity.
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The above proposition shows that if the model holds, then under mild regularity con-

ditions (in particular, identifiability of the model at θ0) the MDF estimator θ̂n converges

w.p.1 to the true (population) value θ0 of the parameter vector. On the other hand, if the

model does not hold, then θ̂n converges to an optimal solution θ∗ of the problem (4.3).

It could be noted that if the model does not hold, then such an optimal solution depends

on a particular choice of the discrepancy function.

As we can see uniqueness of the (population) minimizer θ∗ is crucial for conver-

gence of the MDF estimator θ̂n. If the model holds, then θ∗ = θ0 and uniqueness of

θ0 is equivalent to identifiability of the model at θ0. Now if a point θ̄ = θ̄(x) is an

optimal solution of problem (4.3) and is an interior point of the set Θ , then it satisfies

the necessary optimality condition

(4.5)
∂F (x,g(θ))

∂θ
= 0.

This condition can be viewed as a system of (nonlinear) equations. Consider a point θ0

in the interior of the set Θ and let ξ0 := g(θ0). By linearizing (4.5) at x = ξ0 and

θ = θ0, we obtain the following (linear) system of equations:

(4.6)

[
∂2F(ξ0,g(θ0))

∂θ∂x′

]
(x − ξ0) +

[
∂2F(ξ0,g(θ0))

∂θ∂θ ′

]
(θ − θ0) = 0.

Note that by (3.14) we have that

(4.7)
∂2F(ξ0,g(θ0))

∂θ∂x ′ = −2Δ′
0V 0 and

∂2F(ξ0,g(θ0))

∂θ∂θ ′ = 2Δ′
0V 0Δ0,

where Δ0 := Δ(θ0). Since the matrix V 0 is positive definite, we have that the matrix

Δ′
0V 0Δ0 is nonsingular iff the Jacobian matrix Δ0 has full column rank q (recall that

this is a sufficient condition for identifiability of θ0). It follows then by the Implicit

Function Theorem that:

If Δ0 has full column rank q, then for all x sufficiently close to ξ0 the system (4.5)

has a unique solution θ̄ = θ̄(x) in a neighborhood of θ0, and θ̄ is the unique optimal

solution of problem (4.3) in that neighborhood of θ0.

The above is a local result. It implies that, under the specified conditions, if the estimator

ξ̂n is sufficiently close to a point ξ0 = g(θ0) satisfying the model, i.e., the fit is good

enough, then the corresponding MDF estimator θ̂n is unique, and can be obtained by

solving Eq. (4.5) with x = ξ̂n, in a neighborhood of the point θ0 ∈ Θ . Of course, in

practice it is impossible to say a priori when “sufficiently close” is close enough for the

above to hold.

5. Asymptotic analysis of the MDF estimation procedure

In this section we discuss a basic theory of asymptotics of the MDF estimation proce-

dure. We assume that the discrepancy function considered satisfies conditions (i)–(iv)
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specified in Section 3. We also assume that the estimator ξ̂n is asymptotically normal.

That is, we assume that the sequence

Zn := n1/2(ξ̂n − ξ0),

of random vectors, with ξ0 being the population value of the parameter vector ξ ∈ Ξ ,

converges in distribution to multivariate normal with mean vector zero and covariance

matrix Γ , i.e., Zn ⇒ N(0,Γ ) (by “⇒” we denote convergence in distribution). For

example, in the analysis of covariance structures we have that vector s := vec(S),

associated with the sample covariance matrix S, is asymptotically normal. This follows

from the Central Limit Theorem provided that the population distribution has fourth-

order moments and the sample is iid. Moreover, if the population distribution is normal,

then Γ = Γ N , where

(5.1)Γ N := 2Mp(Σ0 ⊗Σ0)

with Mp being an p2 × p2 symmetric idempotent matrix of rank p(p + 1)/2 with

element in row ij and column kl given by Mp(ij, kl) = 1
2
(δikδj l + δilδjk) (Browne,

1974) (here δik = 1 if i = k, and δik = 0 if i �= k). It follows that matrix Γ N also has

rank p(p+1)/2, provided that the covariance matrixΣ0 is nonsingular. We assume that

the (asymptotic) covariance matrix Γ , of Zn, has the maximal rank, which in the case

of covariance structures is p(p + 1)/2. It follows then that the linear space generated

by columns of the Jacobian matrix Δ(θ) is contained in the linear space generated by

columns of Γ .

Denote by ϑ(x) the optimal value of problem (4.1), i.e., ϑ(x) := infξ∈Ξ0
F(x, ξ).

Recall that the optimal values of problems (4.1) and (4.3) are the same, and hence ϑ(x)

is also the optimal value of problem (4.3), i.e., we can write ϑ(x) = infθ∈Θ F(x,g(θ)).

Denote by θ̄(x) an optimal solution of problem (4.3), i.e. θ̄(x)∈ arg minθ∈Θ F(x,g(θ)).

By the definitions, we have that F̂ = ϑ(ξ̂n) and θ̂n = θ̄(ξ̂n). Therefore it should not

be surprising that asymptotic properties of the MDF test statistics and estimators are

closely related to analytical properties of functions ϑ(·) and θ̄(·).
Suppose that the model holds, i.e., ξ0 ∈ Ξ0 or equivalently ξ0 = g(θ0) for some

θ0 ∈ Θ . The second-order Taylor approximation of the discrepancy function, at the

point (x, ξ) = (ξ0, ξ0), can be written in the form (3.12). Suppose, further, that the set

Ξ0 can be approximated at the point ξ0 by a cone T ⊂ Rm in the following sense:

(5.2)dist(ξ0 + z, Ξ0) = o
(
‖z‖

)
, z ∈ T ,

(5.3)dist(ξ − ξ0, T ) = o
(
‖ξ − ξ0‖

)
, ξ ∈ Ξ0.

This definition of cone approximation goes back to Chernoff (1954). (By dist(x, A) :=
infz∈A ‖x − z‖ we denote the distance from a point x ∈ Rm to a set A ⊂ Rm. A set

T ⊂ Rm is said to be a cone if for any z ∈ T and t � 0 it follows that tz ∈ T .)

In particular, if Ξ0 is a smooth manifold near ξ0, then it is approximated at ξ0 by a

linear space referred to as its tangent space at ξ0. Suppose that θ0 is an interior point of

Θ and θ0 is locally regular (see Definition 2.2). Denote Δ0 := Δ(θ0). Then the image

g(N ) := {ξ : ξ = g(θ), θ ∈ N } of the set Θ restricted to a neighborhood N ⊂ Θ of
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θ0, is a smooth manifold with the tangent space at ξ0 given by

(5.4)T =
{
ζ = Δ0β: β ∈ Rq

}
.

Of course, g(N ) is a subset of Ξ0, restricted to a neighborhood of ξ0. The asymptotic

analysis is local in nature. Therefore, there is no loss of generality here by restricting

the set Θ to a neighborhood of θ0.

DEFINITION 5.1. A point θ0 ∈ Θ is said to be regular if θ0 is locally regular and there

exist a neighborhood V of ξ0 = g(θ0) and a neighborhood N ⊂ Θ of θ0 such that

Ξ0 ∩ V = g(N ).

In other words, regularity of θ0 ensures that local structure of Ξ0 near ξ0 is provided

by the mapping g(θ) defined in a neighborhood of θ0. Regularity of θ0 implies that Ξ0

is a smooth manifold near ξ0 and is approximated at ξ0 by its tangent space T of the

form (5.4).

In particular, if condition (4.4) holds and Δ(θ) has full column rank q for all θ in

a neighborhood of θ0 (i.e., point θ0 is locally regular of rank q), then Ξ0 is a smooth

manifold near ξ0 and its tangent space at ξ0 is given by (5.4). Note that g(N ) is a

smooth manifold even if the rank of the Jacobian matrix Δ0 is less than q provided that

the local regularity condition holds. Note also that if the tangent space T is given in the

form (5.4), then its dimension, dim(T ), is equal to the rank of the Jacobian matrix Δ0,

i.e., dim(T ) = rank(Δ0).

REMARK 3. Let us remark at this point that if the point θ0 is a boundary point of Θ ,

then under certain regularity conditions the set Θ can be approximated at θ0 by a cone

C ⊂ Rq , rather than a linear space, and consequently Ξ0 can be approximated by the

cone

(5.5)T = {ζ = Δ0β: β ∈ C}.

Later we will discuss implications of this to the asymptotics of the MDF estimators (see

Section 5.4).

The above discussion suggests the following approximation of the optimal value

function ϑ(x) near ξ0 (Shapiro, 1985c, Lemma 3.1).

PROPOSITION 5.1. Suppose that the set Ξ0 can be approximated at ξ0 ∈ Ξ0 by a cone

T ⊂ Rm. Then

(5.6)ϑ(ξ0 + z) = min
ζ∈T

(z− ζ )′V 0(z− ζ ) + o
(
‖z‖2

)
.

Suppose, further, that the cone T actually is a linear space, i.e., Ξ0 can be approxi-

mated at ξ0 ∈ Ξ0 by a linear space T ⊂ Rm. Then the main (first) term in the right-hand

side of (5.6) is a quadratic function of z and can be written as z′Qz for some symmetric

positive semidefinite matrix Q. In particular, if the space T is given in the form (5.4),
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then this term can be written as

(5.7)min
β∈Rq

(z−Δ0β)
′V 0(z−Δ0β) = z′Qz,

where Q = V 0 − V 0Δ0(Δ
′
0V 0Δ0)

−Δ′
0V 0 (by A− we denote a generalized inverse of

matrix A). It is also possible to write this matrix in the form

(5.8)Q = Δc

(
Δ′

cV
−1
0 Δc

)−1
Δ′

c,

where Δc is an orthogonal complement of Δ0, i.e., Δc is an m × (m − rank(Δ0))

matrix of full column rank such that Δ′
cΔ0 = 0. This follows by the standard theory

of linear models (see, e.g., (Seber, 1977, Sections 3.6 and 3.8)). Note that rank(Q) =
m − rank(Δ0).

We already discussed continuity properties of θ̄(·) in Section 4. Suppose that the

model is (globally) identified at θ0, and hence θ̄(ξ0) = θ0 and is defined uniquely.

Then under mild regularity conditions we have that θ̄(·) is continuous at ξ0. Moreover,

we have the following result (Shapiro, 1985c, Lemma 3.1).

PROPOSITION 5.2. Suppose that the set Θ can be approximated at θ0 ∈ Θ by a convex

cone C ⊂ Rq , the Jacobian matrix Δ0 has full column rank q and θ̄(·) is continuous at

ξ0 = g(θ0). Then

(5.9)θ̄(ξ0 + z) = θ0 + β̄(z) + o
(
‖z‖

)
,

where β̄(z) is the optimal solution of the problem

(5.10)min
β∈C

(z−Δ0β)
′V 0(z−Δ0β).

Note that since the approximating cone C is assumed to be convex, rank(Δ0) = q

and the matrix V 0 is positive definite, the minimizer β̄(z) is unique for any z ∈ Rm. If,

moreover, the point θ0 is an interior point of Θ and hence C = Rq , then β̄(·) is a linear

function and can be written explicitly as

(5.11)β̄(z) = (Δ′
0V 0Δ0)

−1Δ′
0V 0z.

Now if ξ0 /∈ Ξ0, then the analysis becomes considerably more involved. It will

be beyond the scope of this paper to give a detailed description of such theory. We

refer the interested reader to Bonnans and Shapiro (2000) for a thorough development

of that theory. We give below some, relatively simple, results which will be relevant

for the statistical inference. In the optimization literature the following result, giving a

first order approximation of the optimal value function, is often referred to as Danskin

Theorem (Danskin, 1967).

PROPOSITION 5.3. Let S be the set of optimal solutions of problem (4.1) for x = ξ0.

Then

(5.12)ϑ(ξ0 + z) = ϑ(ξ0) + min
ξ∈S

g′
ξz+ o

(
‖z‖

)
,



Statistical inference of moment structures 243

where gξ := ∂F (ξ0, ξ)/∂x. In particular, if problem (4.1) has unique optimal solution

ξ∗ for x = ξ0, then

(5.13)
∂ϑ(ξ0)

∂x
= ∂F (ξ0, ξ

∗)

∂x
.

Of course, if ξ0 ∈ Ξ0, then problem (4.1) has unique optimal solution ξ∗ = ξ0 and

hence ∂ϑ(ξ0)/∂x = 0. The following result is a consequence of the Implicit Function

Theorem (Shapiro, 1983, Theorem 4.2).

PROPOSITION 5.4. Suppose that:

(i) for x = ξ0 problem (4.3) has unique optimal solution θ∗,

(ii) the point θ∗ is an interior point of Θ ,

(iii) θ̄(·) is continuous at θ∗,

(iv) the Hessian matrix H θθ := ∂2F(ξ0,g(θ
∗))/∂θ∂θ ′ is nonsingular.

Then θ̄(·) is continuously differentiable and ϑ(·) is twice continuously differentiable at

ξ0, and

(5.14)
∂ θ̄(ξ0)

∂x
= −H−1

θθ H θx,

(5.15)
∂2ϑ(ξ0)

∂x∂x′ = H xx −H ′
θxH

−1
θθ H θx,

where H θx := ∂2F(ξ0,g(θ
∗))/∂θ∂x′ and H xx := ∂2F(ξ0,g(θ

∗))/∂x∂x′.

REMARK 4. If the model holds, and hence θ∗ = θ0, then H θθ = 2Δ′
0V 0Δ0, H θx =

−2Δ′
0V 0 and H xx = 2V 0 (compare with (4.7)). In that case formula (5.14) gives the

same derivatives as (5.9) and (5.11), and (5.15) is equivalent to (5.7), and these formulas

involve only first-order derivatives (i.e., the Jacobian matrix) of g(·). On the other hand,

if the model does not hold, and hence θ∗ �= θ0, then these derivatives involve second-

order derivatives of g(·). Note also that the Hessian matrix H θθ can be nonsingular

only if the Jacobian matrix Δ(θ∗) has full column rank q and hence the model is locally

identified at θ∗.

5.1. Asymptotics of MDF test statistics

Suppose that the model holds, i.e., ξ0 ∈ Ξ0. Since F̂ = ϑ(ξ̂n), we obtain from the

approximation (5.6) the following asymptotic expansion of the MDF test statistic (under

the null hypothesis):

(5.16)nF̂ = min
ζ∈T

(Zn − ζ )′V 0(Zn − ζ ) + op(1).

Recall that Zn ⇒ N(0,Γ ). It follows that

(5.17)nF̂ ⇒ min
ζ∈T

(Z − ζ )′V 0(Z − ζ ),
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where Z is a random vector having normal distribution N(0,Γ ). The optimal value of

the right-hand side of (5.17) is a quadratic function of Z. Under certain conditions

this quadratic function Z′QZ has a chi-square distribution (see, e.g., (Seber, 1977,

Section 2.4)). In particular, this holds if V 0 = Γ −1. As it was discussed earlier, nonsin-

gularity of the covariance matrix Γ depends on a choice of the space where the saturated

model is defined. In applications it is often convenient to take a larger space in which

case Γ becomes singular. It is said that the discrepancy function is correctly specified

if V 0 is equal to a generalized inverse of Γ , that is, Γ V 0Γ = Γ . Of course, if Γ is

nonsingular, then this is the same as V 0 = Γ −1. As it was mentioned earlier we as-

sume that the asymptotic covariance matrix Γ has the maximal rank, e.g., in the case of

covariance structures we assume that rank(Γ ) = p(p + 1)/2. It follows then that each

column vector of the Jacobian matrix Δ(θ) is contained in the linear space generated by

columns of Γ .

We have the following result (Browne, 1982; Shapiro, 1986) giving asymptotics of

the null distribution of the MDF test statistic. Recall Definition 5.1 of a regular point.

THEOREM 5.1. Suppose that the model holds, the discrepancy function is correctly

specified and the point θ0 is regular (and hence the set Ξ0 is approximated at ξ0 =
g(θ0) by a linear space T of the form (5.4)). Then the MDF test statistic nF̂ converges

in distribution to a (central) chi-square with

(5.18)ν = rank(Γ ) − dim(T ) = rank(Γ ) − rank(Δ0)

degrees of freedom.

Suppose that the mapping g(·) is analytic and let r be the characteristic rank of the

model. The above results imply that if the discrepancy function is correctly specified,

then under the null hypothesis, generically, the MDF test statistic nF̂ has asymptoti-

cally a chi-square distribution, with ν = rank(Γ ) − r degrees of freedom. Recall that

“generically” means that this holds for almost every population value θ0 ∈ Θ of the pa-

rameter vector. For example, consider the setting of covariance structures and suppose

that the population distribution is normal. Then the covariance matrix Γ can be written

in the form (5.1), has rank p(p + 1)/2 and matrix V 0 := 1
2
Σ−1

0 ⊗ Σ−1
0 is its gener-

alized inverse. It follows that for a normally distributed population, both discrepancy

functions FML and FGLS, defined in (3.5) and (3.9), respectively, are correctly specified.

Therefore, we have that:

Under the null hypothesis, generically, the MDF test statistics, associated with FML

and FGLS, are asymptotically chi-square distributed, with ν = p(p+1)/2−r degrees

of freedom, provided that the population distribution is normal.

It is possible to extend this basic result in various directions. Suppose now that the

model does not hold, i.e., ξ0 /∈ Ξ0. Let ξ∗ be a minimizer of F(ξ0, ·) over Ξ0, i.e.,

ξ∗ is an optimal solution of problem (4.1) for x = ξ0. Since the model does not hold,

we have here that ξ∗ �= ξ0. Suppose, however, that the population value ξ0 is close

to the model set Ξ0, i.e., there is no big difference between ξ∗ and ξ0. We can em-

ploy approximation (5.6) at the point ξ∗, instead of ξ0, by taking V 0 := V (ξ∗, ξ∗),
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i.e., making the second-order Taylor expansion of the discrepancy function at the point

(x, ξ) = (ξ∗, ξ∗), and using the tangent space T at ξ∗. We obtain the following approx-

imation of the MDF statistic:

(5.19)nF̂ = min
ζ∈T

(Z∗
n − ζ )′V 0(Z

∗
n − ζ ) + o

(
‖Z∗

n‖2
)
,

where

Z∗
n := n1/2(ξ̂n − ξ∗) = n1/2(ξ̂n − ξ0)︸ ︷︷ ︸

Zn

+ n1/2(ξ0 − ξ∗)︸ ︷︷ ︸
μn

.

Recall that it is assumed thatZn ⇒ N(0,Γ ). On the other hand, as n tends to infinity,

the “deterministic” part μn := n1/2(ξ0 − ξ∗) of Z∗
n grows indefinitely. However, the

quadratic approximation, given by the right-hand side of (5.19), could be reasonable if

the “stochastic” part Zn is bigger than the “deterministic” part μn (we will discuss this

in more details later). In order to formulate this in a mathematically rigorous way, we

make the so-called assumption of a sequence of local alternatives. That is, we assume

that there is a sequence ξ0 = ξ0,n of population values (local alternatives) converging to

a point ξ∗ ∈ Ξ0 such that n1/2(ξ0,n − ξ∗) converges to a (deterministic) vector μ (this

assumption is often referred to as Pitman drift). It follows then that Z∗
n ⇒ N(μ,Γ ) and

the remainder term o(‖Z∗
n‖2) in (5.19) converges in probability to zero. If, moreover,

V 0 = Γ −, then the quadratic term in (5.19) converges in distribution to noncentral

chi-square with the same degrees of freedom ν and the noncentrality parameter

(5.20)δ = min
ζ∈T

(μ− ζ )′V 0(μ− ζ ).

Moreover, by (5.6) we have that

(5.21)δ = lim
n→∞

[
n min
ξ∈Ξ0

F(ξ0,n, ξ)
]
.

This leads to the following result (Shapiro, 1983, Theorem 5.5; Steiger et al., 1985).

THEOREM 5.2. Suppose that the assumption of a sequence of local alternatives (Pit-

man drift) holds, the discrepancy function is correctly specified and the set Ξ0 is

approximated at ξ∗ = g(θ∗) by a linear space T generated by the columns of the

matrix Δ∗ = Δ(θ∗). Then the MDF test statistic nF̂ converges in distribution to a non-

central chi-square with ν = rank(Γ )−dim(T ) degrees of freedom and the noncentrality

parameter δ given in (5.20) or, equivalently, (5.21).

From the practical point of view it is important to understand when the noncentral

chi-square distribution gives a reasonable approximation of the true distribution of the

MDF test statistics. By the analysis of Section 4, we have that F̂ converges w.p.1 to the

value

(5.22)F ∗ := min
ξ∈Ξ0

F(ξ0, ξ) = F(ξ0, ξ
∗).
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Recall that ϑ(x) denotes the optimal value of problem (4.1), and hence F̂ = ϑ(ξ̂n) and

F ∗ = ϑ(ξ0). Suppose that ξ∗ is the unique minimizer of F(ξ0, ·) over Ξ0. Then we

have by Danskin theorem (see Proposition 5.3) that ∂ϑ(ξ0)/∂x = ∂F (ξ0, ξ
∗)/∂x. It

follows that

(5.23)n1/2(F̂ − F ∗) = g′
0Zn + op(1),

where g0 := ∂F (x,ξ∗)
∂x

|x=ξ0
, which in turn implies the following asymptotic result

(Shapiro, 1983, Theorem 5.3).

THEOREM 5.3. Suppose that ξ∗ is the unique minimizer of F(ξ0, ·) over Ξ0. Then

(5.24)n1/2(F̂ − F ∗) ⇒ N(0, g′
0Γ g0).

If the model holds, then F ∗ = 0 and g0 = 0. In that case the asymptotic result (5.24)

degenerates into the trivial statement that n1/2F̂ converges in probability to zero. And,

indeed, as it was discussed above, under the null hypothesis one needs to scale F̂ by

the factor of n, instead of n1/2, in order to get meaningful asymptotics. However, as the

distance between the population value ξ0 and the model set Ξ0 becomes larger, the non-

central chi-square distribution approximation deteriorates and the normal distribution,

with mean F ∗ and variance n−1g′
0Γ g0, could become a better approximation of the dis-

tribution of F̂ . The noncentral chi-square approximation is based on the distribution of

the quadratic form

min
ζ∈T

(Z∗
n − ζ )′V 0(Z

∗
n − ζ )

(5.25)= Z∗
n
′
QZ∗

n = Z′
nQZn + μ′

nQμn + 2μ′
nQZn.

Recall that Z∗
n = Zn + μn and μn = n1/2(ξ0 − ξ∗). The first term, in the right-hand

side of (5.25), has approximately a central chi-square distribution with ν = rank(Γ ) −
dim(T ) degrees of freedom. Suppose that ξ0 is close to Ξ0. By (5.6), the second term

in the right-hand side of (5.25) can be approximated as follows

(5.26)μ′
nQμn = n min

ζ∈T
(ξ0 − ξ∗ − ζ )′V 0(ξ0 − ξ∗ − ζ ) ≈ nF ∗.

Recall that, by (5.21), nF ∗ is approximately equal to the noncentrality parameter δ. We

also have that

g0 = ∂F (x, ξ∗)

∂x

∣∣∣∣
x=ξ0

≈ ∂(x − ξ∗)′V 0(x − ξ∗)

∂x

∣∣∣∣
x=ξ0

(5.27)= 2V 0(ξ0 − ξ∗).

Moreover, by the first-order optimality conditions, the gradient vector g0 is orthogonal

to the space T , and hence V 0(ξ0 − ξ∗) ≈ Q(ξ0 − ξ∗).
It follows that the sum of the second and third terms in the right-hand side of (5.25)

has approximately a normal distribution with mean nF ∗ and variance ng′
0Γ g0. There-

fore, for ξ0 close to Ξ0 the difference between the noncentral chi-square and normal

approximations, given in Theorems 5.2 and 5.3, respectively, is the first term in the
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right-hand side of (5.25). The expected value and the variance of a chi-square random

variable with ν degrees of freedom is equal to ν and 2ν, respectively. Therefore, when

the number of degrees of freedom ν = rank(Γ ) − dim(T ) is bigger or comparable

with the noncentrality parameter δ ≈ nF ∗, the noncentral chi-square approximation,

which is based on a second-order Taylor expansion at the point ξ∗, should be better

than the normal approximation, which is based on a first-order approximation at ξ0. On

the other hand, if δ is significantly bigger than ν, then the first term in the right-hand

side of (5.25) becomes negligible and the normal approximation could be reasonable.

This is in agreement with the property that a noncentral chi-square distribution, with ν

degrees of freedom and noncentrality parameter δ, becomes approximately normal if δ

is much bigger than ν. In such a case the normal approximation can be used to construct

a confidence interval, for F ∗, of the form F̂ ± κσ̂F . Here σ̂F is an estimate of the stan-

dard deviation of F̂ and κ is a critical value. Recall that the expected value and variance

of a noncentral chi-square random variable, with ν degrees of freedom and noncentral-

ity parameter δ, is ν+ δ and 2ν+4δ, respectively. Therefore, the normal approximation

could be reasonable if

(5.28)
nF̂ − ν√
4nF̂ + 2ν

� κ,

where κ is a critical value, say κ = 3.

Let us finally remark that from a theoretical point of view one can obtain a better ap-

proximation of the distribution of the MDF test statistic by using a second-order Taylor

expansion of the optimal value function at the population point ξ0. The corresponding

first- and second-order derivatives are given in (5.13) and (5.15), respectively, provided

that the optimal solution ξ∗ is unique. Note, however, that in practical applications this

will require an accurate estimation of the corresponding first- and second-order deriva-

tives which could be a problem.

5.2. Nested models

Suppose now that we have two models Ξ1 ⊂ Ξ and Ξ2 ⊂ Ξ for the same parameter

vector ξ . It is said that the second model is nested, within the first model, if Ξ2 is a

subset of Ξ1, i.e., Ξ2 ⊂ Ξ1. We refer to the models associated with the sets Ξ1 and Ξ2

as full and restricted models, respectively. If Ξ1 is given in the parametric form

(5.29)Ξ1 :=
{
ξ ∈ Ξ : ξ = g(θ), θ ∈ Θ1

}
,

i.e., the full model is structural, then it is natural to define a nested model by restricting

the parameter space Θ1 to a subset Θ2. Typically the subset Θ2 ⊂ Θ1 is defined by

imposing constraints on the parameter vector θ . In this section we discuss asymptotics

of the MDF test statistics nF̂i , i = 1, 2, where

(5.30)F̂i := min
ξ∈Ξi

F
(
ξ̂n, ξ

)
.

Suppose that the population value ξ0 ∈ Ξ2, i.e., the restricted model holds. Suppose,

further, that the sets Ξ1 and Ξ2 are approximated at ξ0 by linear spaces T1 and T2,
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respectively. This holds if both Ξ1 and Ξ2 are smooth manifolds near ξ0 with respective

tangent spaces T1 and T2. Note that T2 ⊂ T1 since Ξ2 ⊂ Ξ1. We have then (see (5.16))

that

(5.31)nF̂i = min
ζ∈Ti

(Zn − ζ )′V 0(Zn − ζ ) + op(1), i = 1, 2.

Suppose, further, that the discrepancy function is correctly specified. Then by the analy-

sis of the previous section we have that nF̂i , i = 1, 2, converges in distribution to a

(central) chi-square with νi = rank(Γ ) − dim(Ti) degrees of freedom. Moreover, it

follows from the representation (5.31) that nF̂1 and nF̂2 − nF̂1 are asymptotically in-

dependent of each other. The corresponding arguments are analogous to derivations of

the statistical inference of linear constraints in the theory of linear models (e.g., Seber,

1977, Section 4.5.1). This can be extended to the setting of a sequence of local alterna-

tives, where there is a sequence ξ0,n of population values converging to a point ξ∗ ∈ Ξ2

such that the following limits exist

(5.32)δi = lim
n→∞

[
n min
ξ∈Ξi

F(ξ0,n, ξ)
]
, i = 1, 2.

Then the following asymptotic results hold (Steiger et al., 1985).

THEOREM 5.4. Suppose that the assumption of a sequence of local alternatives holds,

the discrepancy function is correctly specified and the sets Ξi , i = 1, 2, are approxi-

mated at ξ∗ ∈ Ξ2 by respective linear spaces Ti . Then the following holds:

(i) the MDF test statistics nF̂i converge in distribution to noncentral chi-square with

respective degrees of freedom νi = rank(Γ )−dim(Ti) and noncentrality parameter

δi given in (5.32),

(ii) the statistic nF̂2 − nF̂1 converges in distribution to a noncentral chi-square with

ν2 − ν1 degrees of freedom and noncentrality parameter δ2 − δ1,

(iii) the statistics nF̂1 and nF̂2 − nF̂1 are asymptotically independent of each other,

(iv) the ratio statistic ((F̂2 − F̂1)/(ν2 − ν1))/(F̂1/ν1) converges in distribution to dou-

bly noncentral F -distribution with noncentrality parameters δ2 − δ1 and δ1 and

with ν2 − ν1 and ν1 degrees of freedom.

It is straightforward to extend the above result to a sequence of nested models. Also

we have that nF̂2 = nF̂1 + (nF̂2 − nF̂1). Recall that the variance of a noncentral

chi-square random variable with ν degrees of freedom and noncentrality parameter δ

is 2ν + 4δ. Therefore, under the assumptions of the above theorem, the asymptotic

covariance between nF̂1 and nF̂2 is equal to the asymptotic variance of nF̂1, which is

equal to 2ν1+4δ1. Consequently, the asymptotic correlation between the MDF statistics

nF̂1 and nF̂2 is equal to
√
(ν1 + 2δ1)/(ν2 + 2δ2) (Steiger et al., 1985).

5.3. Asymptotics of MDF estimators

In this section we discuss asymptotics of the MDF estimator θ̂n. Suppose that the model

holds and θ̂n is a consistent estimator of the population value θ0 ∈ Θ (see Section 4
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and Proposition 4.2 in particular). Since θ̂n = θ̄(ξ̂n), we have by (5.9) that, under the

assumptions of Proposition 5.2,

(5.33)n1/2(θ̂n − θ0) = β̄(Zn) + op(1).

Recall that β̄(z) is the optimal solution of (5.10) and note that β̄(·) is positively homoge-

neous, i.e., β̄(tz) = t β̄(z) for any z and t � 0. This leads to the following asymptotics

of the MDF estimator (Browne, 1974; Shapiro, 1983).

THEOREM 5.5. Suppose that the model holds, θ̂n is a consistent estimator of θ0, the set

Θ is approximated at θ0 by a convex cone C and rank(Δ0) = q. Then n1/2(θ̂n − θ0) ⇒
β̄(Z), where Z ∼ N(0,Γ ). If, furthermore, θ0 is an interior point of Θ , and hence

C = Rq , then n1/2(θ̂n − θ0) converges in distribution to normal with mean vector zero

and covariance matrix

(5.34)Π = (Δ′
0V 0Δ0)

−1Δ′
0V 0Γ V 0Δ0(Δ

′
0V 0Δ0)

−1.

Moreover, if the discrepancy function is correctly specified, then Π = (Δ′
0V 0Δ0)

−1.

In particular, if in the setting of covariance structures the population distribution is

normal and the employed discrepancy function is normal-theory correctly specified,

then the asymptotic covariance matrix of n1/2(θ̂n − θ0) can be written as

(5.35)ΠN = 2
[
Δ′

0

(
Σ−1

0 ⊗Σ−1
0

)
Δ0

]−1
.

Note that since it is assumed that the asymptotic covariance matrix Γ has the max-

imal rank, and hence the linear space generated by columns of Δ0 is included in the

linear space generated by columns of Γ , we have here that matrix Δ′
0Γ

−Δ0 is inde-

pendent of a particular choice of the generalized inverse Γ − and is positive definite. In

particular, if the discrepancy function is correctly specified, thenΔ′
0Γ

−Δ0 = Δ′
0V 0Δ0.

It is possible to show (Browne, 1974, Proposition 3) that the inequality

(5.36)Π � (Δ′
0Γ

−Δ0)
−1

always holds. (For q × q symmetric matrices A and B the inequality A � B is under-

stood in the Loewner sense, i.e., that matrix A − B is positive semidefinite.) Basically

this is the Gauss–Markov theorem. That is, for a correctly specified discrepancy func-

tion, the asymptotic covariance matrix of the corresponding MDF estimator attains its

lower bound given by the right-hand side of (5.36). Therefore, for a correctly speci-

fied discrepancy function the corresponding MDF estimator is asymptotically efficient

within the class of MDF estimators.

The above asymptotics of MDF estimators were derived under the assumption of

identifiability of the model. If the model is overparameterized, then it does not make

sense to talk about distribution of the MDF estimators since these estimators are not

uniquely defined. However, even in the case of overparameterization some of the para-

meters could be defined uniquely. Therefore it makes sense to consider the following

concept of estimable functions borrowed from the theory of linear models (e.g., Seber,

1977, Section 3.8.2).
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DEFINITION 5.2. Consider a continuously differentiable function a(θ). We say that

α = a(θ) is an estimable function (of the parameter vector θ ) if θ1, θ2 ∈ Θ and g(θ1) =
g(θ2) imply that a(θ1) = a(θ2). If this holds in a neighborhood of a point θ0 ∈ Θ , we

say α is locally estimable, near θ0.

In the analysis of covariance structures the above concept of estimable functions was

discussed in Shapiro (1986, p. 146). By using local reparameterization (see Proposi-

tion 2.1) it is possible to show the following.

If θ0 is a locally regular interior point of Θ , then a parameter α = a(θ) is locally

estimable, near θ0, iff vector ∂a(θ)/∂θ ′ belongs to the linear space generated by

rows of Δ(θ) for all θ in a neighborhood of θ0.

Consider now vector a(θ) = (a1(θ), . . . , as(θ)) of locally estimable parameters,

near a population point θ0. Suppose that θ0 is locally regular and let α0 := a(θ0) and

α̂n := a(θ̂n). Note that, by local estimability of α, the estimator α̂n is defined uniquely

for θ̂n sufficiently close to θ0. We have then that n1/2(α̂n−α0) converges in distribution

to normal with mean vector zero and covariance matrix

(5.37)A0(Δ
′
0V 0Δ0)

−Δ′
0V 0Γ V 0Δ0(Δ

′
0V 0Δ0)

−A′
0,

where A0 := ∂a(θ0)/∂θ
′ is s × q Jacobian matrix. Note that because of the local

estimability of α, we have that row vectors of A0 belong to the linear space generated

by rows ofΔ0, and hence the expression in (5.37) does not depend on a particular choice

of the generalized inverse of Δ′
0V 0Δ0. In particular, for correctly specified discrepancy

function this expression becomes A0(Δ
′
0V 0Δ0)

−A′
0.

We can also consider a situation when the model does not hold. Under the assump-

tions of Proposition 5.4, in particular, that θ∗ is the unique optimal solution of problem

(4.3), we have that θ̂n converges w.p.1 to θ∗ and, by (5.14), that (Shapiro, 1983, Theo-

rem 5.4):

(5.38)n1/2(θ̂n − θ∗) ⇒ N
(
0,H−1

θθ H θxΓH
′
θxH

−1
θθ

)
.

5.4. The situation where the population value of the parameter vector lies on the

boundary of the parameter space

In the previous sections we discussed asymptotics of MDF test statistics and estimators

under the assumption that the set Ξ0 can be approximated, at a considered point, by a

linear space T . In this section we consider a situation when θ0 is a boundary point of

the set Θ , and as a consequence the set Ξ0 should be approximated at ξ0 = g(θ0) by

a (convex) cone rather than a linear space. This may happen if the set Θ is defined by

inequality constraints and some of these inequality constraints are active at the popu-

lation point. For instance, in Example 2.1 (Factor Analysis model) the diagonal entries

of the matrix Ψ should be nonnegative. If the population value Ψ 0 has zero diagonal

entries (i.e., some residual variances are zeros), then the corresponding value of the

parameter vector can be viewed as lying on the boundary of the feasible region. One

can think about more sophisticated examples where, for instance, it is hypothesized that

some of the residual variances (i.e., diagonal entries of Ψ ) are bigger than the others,
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or that elements of matrix Λ are nonnegative. Statistical theory of parameter estimation

under inequality type constraints is often referred to as order restricted statistical in-

ference. The interested reader can be referred to the recent comprehensive monograph

(Silvapulle and Sen, 2005) for a thorough treatment of that theory. We give below a few

basic results which are relevant for our discussion.

Suppose that the model holds, the Jacobian matrix Δ0 has full column rank q and

the set Θ is approximated at θ0 by convex cone C. We have then that

(5.39)nF̂ ⇒ min
β∈C

(Z −Δ0β)
′V 0(Z −Δ0β),

where Z ∼ N(0,Γ ). Let us look at the optimal value of the minimization problem in

the right-hand side of (5.39). Suppose, for the sake of simplicity, thatΔ0 has full column

rank q. Then we can decompose this optimal value into a sum of two terms as follows

min
β∈C

(Z −Δ0β)
′V 0(Z −Δ0β)

(5.40)= (Z −Δ0β̃)
′V 0(Z −Δ0β̃) + min

β∈C
(β̃ − β)′Δ′

0V 0Δ0(β̃ − β),

where β̃ = (Δ′
0V 0Δ0)

−1Δ′
0V 0Z is the corresponding unconstrained minimizer (com-

pare with (5.11)). The term in the left-hand side of (5.40) can be viewed as a squared

distance from Z to the cone {Δ0β: β ∈ C}, where the distance is defined with respect to

the weight matrix V 0. The first term in the right-hand side of (5.40) is the correspond-

ing unconstrained minimum over β ∈ Rq , and can be viewed as the squared distance

from Z to the linear space generated by Δ0, and the second term can be considered as

the squared distance from β̃ to C. In a sense the above decomposition (5.40) is just the

Pythagoras Theorem. Suppose, further, that the discrepancy function is correctly spec-

ified. Recall that it is assumed that the asymptotic covariance matrix Γ has maximal

rank. By reducing the saturated space, if necessary, we can assume here that Γ is non-

singular, and hence “correctly specified” means that V 0 = Γ −1. It follows then that

β̃ ∼ N(0, (Δ′
0V 0Δ0)

−1).

Assuming that the model holds and V 0 = Γ −1, we have that the first term in the

right-hand side of (5.40) has chi-square distribution, with ν = m−q degrees of freedom,

and is distributed independently of the second term. The second term in the right-hand

side of (5.40) follows a mixture of chi-square distributions (such distributions are called

chi-bar-squared distributions). With various degrees of generality this result was de-

rived in (Bartholomew, 1961; Kudô, 1963; Nüesch, 1966), it was shown in (Shapiro,

1985d) that this holds for any convex cone C. Denote by nF̃ the corresponding uncon-

strained MDF test statistic, i.e.,

F̃ := min
θ∈Rq

F
(
ξ̂n,g(θ)

)
.

We have that nF̃ is asymptotically equivalent to the first term in the right-hand side of

(5.40). Under the above assumptions we obtain the following results:

(i) The unrestricted MDF test statistic nF̃ converges in distribution to chi-square with

ν = m − q degrees of freedom and is asymptotically independent of the difference

statistic nF̂ − nF̃ .
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(ii) The difference statistic nF̂ − nF̃ is asymptotically equivalent to the second term in

the right hand side of (5.40) and converges in distribution to a mixture of chi-square

distributions, that is,

(5.41)lim
n→∞

Prob{nF̂ − nF̃ � c} =
q∑

i=0

wi Prob
{
χ2
i � c

}
,

where χ2
i is a chi-square random variable with i degrees of freedom, χ2

0 ≡ 0 and

wi are nonnegative weights such that w0 + · · · + wq = 1.

Of course, the asymptotic distribution, given by the right-hand side of (5.41), de-

pends on the weights wi , which in turn depend on the covariance matrix of β̃ and cone

C (recall that, for correctly specified discrepancy function, the covariance matrix of β̃ is

(Δ′
0V 0Δ0)

−1). A general property of these weights is that
∑q

i=0(−1)iwi = 0 if at least

two of these weights are nonzeros. If θ0 is an interior point of Θ , and hence C = Rq ,

then w0 = 1 and all other weights are zeros. In that case we have the same asymptotics

of the MDF statistic nF̂ as given in Theorem 5.1. Often the set Θ ⊂ Rq is defined by

inequality constraints. Then, under mild regularity conditions (called constraint qualifi-

cations), the approximating cone C is obtained by linearizing the active at θ0 inequality

constraints. In particular, if only one inequality constraint is active at θ0, then C is de-

fined by one linear inequality constraint and hence is a half space of Rq . In that case

w0 = w1 = 1/2 and all other weights are zeros. If two inequality constraints are active

at θ0, then only weights w0, w1 and w2 can be nonzeros, with w1 = 1/2, etc. For a gen-

eral discussion of how to calculate these weights we can refer, e.g., to (Shapiro, 1988;

Silvapulle and Sen, 2005).

6. Asymptotic robustness of the MDF statistical inference

An important condition in the analysis of the previous section was the assumption of

correct specification of the discrepancy function. In particular, the discrepancy functions

FML and FGLS, defined in (3.5) and (3.9), respectively, are motivated by the assumption

that the underlying population has a normal distribution and are correctly specified in

that case. Nevertheless, these discrepancy functions are often applied in situations where

the normality assumption has no justification or even can be clearly wrong. It turns out,

however, that the asymptotic chi-square distribution of MDF test statistics, discussed

in Theorems 5.1 and 5.2, can hold under considerably more general conditions than

correct specification of the discrepancy function. This was discovered in Amemiya and

Anderson (1990) and Anderson and Amemiya (1988) for a class of factor analysis mod-

els, and in Browne (1987), Browne and Shapiro (1988), and Shapiro (1987) for general

linear models, by using approaches based on different techniques. In this section we are

going to discuss this theory following the Browne–Shapiro approach, which in a sense is

more general although uses a slightly stronger assumption of existence of fourth-order

moments. As in the previous section we assume that n1/2(ξ̂n − ξ0) ⇒ N(0,Γ ).
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Let us start with the following algebraic result (Shapiro, 1987, Theorem 3.1). It is

based on a verification that the corresponding quadratic form has a chi-square distri-

bution. (For the sake of notational convenience we drop here the superscript of the

Jacobian matrix Δ∗.)

PROPOSITION 6.1. Suppose that the assumption of a sequence of local alternatives

holds and the set Ξ0 is approximated at the point ξ∗ = g(θ∗) by a linear space T

generated by the columns of the matrix Δ = Δ(θ∗) (e.g., the point θ∗ is regular).

Suppose, further, that the discrepancy function is correctly specified with respect to an

m×m positive semidefinite matrix Γ 0 of maximal rank. Then nF̂ is asymptotically chi-

squared, with degrees of freedom ν and the noncentrality parameter δ given in (5.18)

and (5.21), respectively, if and only if Γ is representable in the form

(6.1)Γ = Γ 0 +ΔC′ + CΔ′,

where C is an arbitrary m × q matrix.

In particular, we have that for the normal-theory discrepancy functions FML and

FGLS (in the analysis of covariance structures) the MDF test statistics are asymptotically

chi-squared if and only if the corresponding p2 × p2 asymptotic covariance matrix Γ

can be represented in the form

(6.2)Γ = Γ N +ΔC′ + CΔ′,

where matrix Γ N is defined in (5.1).

The representation (6.1) is slightly more general than the following representation

(6.3)Γ = Γ 0 +ΔDΔ′,

where D is an arbitrary q × q symmetric matrix. Clearly, (6.3) is a particular form

of the representation (6.1) with C := 1
2
ΔD. It turns out that under various structural

assumptions, in the analysis of covariance structures, it is possible to show that the

corresponding asymptotic covariance matrix Γ is of the form

(6.4)Γ = Γ N +ΔDΔ′,

and hence to verify that the normal-theory MDF test statistics have asymptotically chi-

square distributions. We also have the following result about asymptotic robustness of

MDF estimators (Shapiro, 1987, Corollary 5.4).

PROPOSITION 6.2. Suppose that the model holds, the set Ξ0 is approximated at the

point ξ0 by a linear space T generated by the columns of the matrix Δ = Δ(θ0),

the Jacobian matrix Δ has full column rank q, the MDF estimator θ̂n is a consistent

estimator of θ0, the discrepancy function is correctly specified with respect to an m×m

positive semidefinite matrix Γ 0 of maximal rank, and the representation (6.3) holds.

Then n1/2(θ̂n − θ0) converges in distribution to normal N(0,Π), the MDF estimator

θ̂n is asymptotically efficient within the class of MDF estimators, and

(6.5)Π = Π0 +D,

where Π0 := (Δ′V 0Δ)−1.
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We have that if the representation (6.3) holds, then the MDF test statistics designed

for the asymptotic covariance matrix Γ 0 still have asymptotically a chi-square distribu-

tion (under a sequence of local alternatives) and the asymptotic covariance matrix of the

corresponding MDF estimators needs a simple correction given by formula (6.5). In the

remainder of this section we discuss situations in the analysis of covariance structures

which lead to the representation (6.4).

We assume below, in the remainder of this section, the setting of the analysis of co-

variance structures, with structural model Σ = Σ(θ) and with Γ being the p2 × p2

asymptotic covariance matrix of n1/2(s − σ 0), where s := vec(S) and σ 0 := vec(Σ0).

We assume that the underlying population has finite fourth-order moments, and hence

the asymptotic covariance matrix Γ is well defined. As before, we denote by Γ N and

ΠN the normal-theory asymptotic covariance matrices given in (5.1) and (5.35), respec-

tively. We also assume that the employed discrepancy function is correctly specified

with respect to a normal distribution of the data, i.e., V 0 is a generalized inverse of Γ N .

Recall that the normal-theory discrepancy functions FML and FGLS satisfy this property.

6.1. Elliptical distributions

In this section we assume that the underlying population has an elliptical distribution.

We may refer to (Muirhead, 1982) for a thorough discussion of elliptical distributions. In

the case of elliptical distributions the asymptotic covariance matrix Γ has the following

structure:

(6.6)Γ = αΓ N + βσ 0σ
′
0,

where α = 1 + κ , β = κ , and κ is the kurtosis parameter of a considered elliptical

distribution. This basic asymptotic result was employed in the studies of Muirhead and

Waternaux (1980), Tyler (1982, 1983) and Browne (1982, 1984).

It can be seen that the corrected covariance matrix α−1Γ has the structure specified

in Eq. (6.4), provided that σ 0 can be represented as a linear combination of columns of

the Jacobian matrix Δ = Δ(θ0). If the point θ0 is regular, and hence Ξ0 is a smooth

manifold near σ 0 = σ (θ0) and the tangent space T , to Ξ0 at σ 0, is the linear space

generated by the columns ofΔ (i.e., can be written in the form (5.4)), then this condition

is equivalent to the condition that σ 0 ∈ T . This, in turn, holds if the set Ξ0 is positively

homogeneous, i.e., it satisfies the property that if σ ∈ Ξ0 and t > 0, then tσ ∈ Ξ0. For

structural models, positive homogeneity of Ξ0 can be formulated in the following form

(this condition was introduced in Browne (1982) where models satisfying this condition

were called invariant under a constant scaling factor):

(C) For every t > 0 and θ ∈ Θ there exists θ∗ ∈ Θ such that tΣ(θ) = Σ(θ∗).

The above condition (C) is easy to verify and it holds for many models used in applica-

tions. For example, it holds for the factor analysis model (2.2). By the above discussion

we have the following results, which in somewhat different forms were obtained in

Tyler (1983) and Browne (1982, 1984), and in the present form in Shapiro and Browne

(1987).
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THEOREM 6.1. Suppose that the assumption of a sequence of local alternatives holds,

the set Ξ0 is approximated at the point σ ∗ = σ (θ∗) by a linear space T , the represen-

tation (6.6) holds with α > 0 and that σ 0 ∈ T . Let α̂ be a consistent estimator of the

parameter α. Then α̂−1nF̂ has asymptotically a chi-squared distribution with ν degrees

of freedom and the noncentrality parameter α−1δ, where ν and δ are defined in (5.18)

and (5.21), respectively.

Recall that the condition “σ 0 ∈ T ”, used in the above theorem, holds if the set Ξ0 is

positively homogeneous, which in turn is implied by condition (C) (invariance under a

constant scaling factor). We also have the following result about asymptotic robustness

of the MDF estimators (Shapiro and Browne, 1987).

THEOREM 6.2. Suppose that the model holds, the set Ξ0 is approximated at the point

σ 0 ∈ Ξ0 by a linear space T generated by the columns of the matrix Δ = Δ(θ0), the

MDF estimator θ̂n is a consistent estimator of θ0, the representation (6.6) holds with

α > 0 and that σ 0 = Δζ for some ζ ∈ Rq . Then n1/2(θ̂n−θ0) converges in distribution

to normal N(0,Π), the MDF estimator θ̂n is asymptotically efficient within the class of

MDF estimators, and

(6.7)Π = αΠN + βζζ ′.

The vector ζ can be obtained by solving the system of linear equations Δζ = σ 0,

which is consistent if σ 0 ∈ T . If the model is invariant under a constant scaling factor,

i.e., the above condition (C) holds, then we can view θ∗ = θ∗(θ , t) as a function of θ

and t . If, moreover, θ∗(θ , t) is differentiable in t , then by differentiating both sides of

the equation σ (θ∗(θ , t)) = tσ (θ) we obtain vector ζ in the form

(6.8)ζ = ∂θ∗(θ0, t)

∂t

∣∣∣∣
t=1

.

For example, if the model is linear in θ , then θ∗ = tθ and hence ζ = θ0. Of course, in

practice the (unknown) population value θ0 should be replaced by its estimator θ̂ .

6.2. Linear latent variate models

Presentation of this section is based on Browne and Shapiro (1988). We assume here

that the observed p × 1 vector variate X can be written in the form

(6.9)X = μ+
s∑

i=1

Aizi,

where μ is a p × 1 mean vector, zi is an (unobserved) mi × 1 vector variate and Ai is

a (deterministic) p × mi matrix of regression weights of X onto zi , i = 1, . . . , s. We

assume that random vectors zi and zj are independently distributed for all i �= j and

have finite fourth-order moments. The above model implies the following structure of
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the covariance matrix Σ of X:

(6.10)Σ =
s∑

i=1

AiΦiA
′
i,

where Φ i is the mi × mi covariance matrix of zi , i = 1, . . . , s.

For example, consider the factor analysis model:

(6.11)X = μ+Λf + u,

whereΛ is a p×k matrix of factor loadings, f = (f1, . . . , fk)
′ is a k×1 common vector

variate, and u = (u1, . . . , up)
′ is a p × 1 unique factor vector variate. It is assumed

that random variables f1, . . . , fk, u1, . . . , up, are mutually independently distributed,

and hence random vectors f and u are independent. This implies that the covariance

matrices Φ and Ψ , of f and u, respectively, are diagonal. Of course, we can write

model (6.11) in the form

(6.12)X = μ+
k∑

i=1

Λifi +
p∑

j=1

Ejuj ,

where Λi is the ith column vector of Λ and Ej is the j th coordinate vector. This shows

that this model is a particular case of model (6.9) with s = k + p and mi = 1, i =
1, . . . , s. Now model (6.11) (or, equivalently, model (6.12)) generates the following

covariance structures model:

(6.13)Σ = ΛΦΛ′ + Ψ .

The only difference between the above model (6.13) and the model (2.2) is that in (2.2)

the covariance matrix Φ is assumed to be the identity matrix.

The linear model (6.9) implies the following structure of the asymptotic covariance

matrix Γ (Browne and Shapiro, 1988, Theorem 2.1):

(6.14)Γ = Γ N +
s∑

i=1

(Ai ⊗Ai)Ci(A
′
i ⊗A′

i),

where Ci is the m2
i × m2

i forth-order cumulant matrix of zi , i = 1, . . . , s.

Suppose now that the weight matrices have parametric structures Ai = Ai(υ), i =
1, . . . , s, where υ ∈ Υ is a parameter vector varying in space Υ ⊂ Rℓ. Then (6.10)

becomes the following covariance structures model

(6.15)Σ(θ) =
s∑

i=1

Ai(υ)Φ iAi(υ)
′,

with the parameter vector θ := (υ ′,ϕ′
1, . . . ,ϕ

′
s)

′, where ϕi := vec(Φ i), i = 1, . . . , s.

Note that the only restriction on the m2
i × 1 parameter vectors ϕi imposed here is that

the corresponding covariance matrix Φi should be positive semidefinite. Note also that

if mi > 1 for at least one i, then such choice of the parameter vector results in over-

parameterization of model (6.15) since ϕi will have duplicated elements. It is possible
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to include in the parameter vector θ only nonduplicated elements of matrices Φ i . This,

however, is not essential at the moment.

By applying the ‘vec’ operator to both sides of Eq. (6.15), we can write this model

in the form

(6.16)σ (θ) =
s∑

i=1

(
Ai(υ) ⊗Ai(υ)

)
ϕi .

It can be seen that the model is linear in parameters ϕi , i = 1, . . . , s, and

(6.17)
∂σ (θ)

∂ϕ′
i

= Ai(υ) ⊗Ai(υ).

That is, the corresponding Jacobian matrix can be written as

(6.18)Δ(θ) =
[
Δ(υ),A1(υ) ⊗A1(υ), . . . ,As(υ) ⊗As(υ)

]
.

Together with (6.14) this implies that Eq. (6.4) holds with matrix

(6.19)D =

⎡
⎢⎢⎢⎣

0 0 0 · · · 0

0 C1 0 · · · 0

0 0 C2 · · · 0

· · · · · · · · ·
0 0 0 · · · Cs

⎤
⎥⎥⎥⎦ .

We obtain the following result (Browne and Shapiro, 1988, Proposition 3.3).

THEOREM 6.3. Consider the linear latent variate model (6.9) and the corresponding

covariance structures model (6.15). Suppose that random vectors zi , i = 1, . . . , s, are

mutually independently distributed, the assumption of a sequence of local alternatives

(for the covariance structures model) holds, and Ξ0 is a smooth manifold near the

point σ ∗. Then the MDF test statistic nF̂ has asymptotically noncentral chi-squared

distribution with ν = p(p + 1)/2 − rank(Δ0) degrees of freedom and the noncentrality

parameter δ.

In particular, the above theorem can be applied to the factor analysis model (6.11).

Note that the MDF test statistics for the model (6.13), with the covariance term Φ,

and model (2.2), without this term, are the same since Φ can be absorbed into Λ and

hence the corresponding set Ξ0 is the same. Note also that in order to derive the as-

ymptotic chi-squaredness of the MDF test statistics we only used the corresponding

independence condition, no other assumptions about distributions of f and uwere made

(except existence of fourth-order moments). For the factor analysis model this result was

first obtained by Amemiya and Anderson (1990) by employing different techniques and

without the assumption of finite forth-order moments.

It is also possible to give corrections for the asymptotic covariance matrix Π of

n1/2(θ̂n − θ0) (compare with formula (6.5) of Proposition 6.2). In order to do that we

need to verify identifiability of the parameter vector θ . Let us replace now ϕi with pa-

rameter vector ϕ∗
i := vecs(Φ i), i = 1, . . . , s, i.e., ϕ∗

i is mi(mi + 1)/2 × 1 vector

formed from the nonduplicated elements of Φi . Eq. (6.4) still holds with the matrix D
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reduced to a smaller matrix D∗ by replacing each m2
i × m2

i matrix Ci by the corre-

sponding mi(mi + 1)/2 × mi(mi + 1)/2 matrix C∗
i formed by the nonduplicated rows

and columns of Ci . We have then that, under the above assumptions,

(6.20)Π = ΠN +D∗.

It follows that the asymptotic covariance matrix of the MDF estimator υ̂ is independent

of the particular distribution of the zi , i = 1, . . . , s, while the asymptotic covariance

matrix of the MDF estimator ϕ̂
∗
i needs the correction term C∗

i as compared with the

normal case. Asymptotic covariances between υ̂ and ϕ̂
∗
i , and between ϕ̂

∗
i and ϕ̂

∗
j , for

i �= j , are the same as in the normal case.

REMARK 5. Suppose, furthermore, that the population value υ0, of the parameter

vector υ, lies on the boundary of the parameter space Υ , and that Υ is approxi-

mated at υ0 by convex cone C (recall that the parameter vectors ϕ̂
∗
i , i = 1, . . . , s,

are assumed to be unconstrained). Let υ̃ be the unconstrained MDF estimator of υ0

(compare with the derivations of Section 5.4). Then, under the above assumptions,

n1/2(υ̃−υ0) ⇒ N(0,U), where the asymptotic covariance matrix U is independent of

the particular distribution of the zi , i = 1, . . . , s. We also have then that the MDF test

statistic nF̂ converges in distribution to the sum of two stochastically independent terms

(compare with Eqs. (5.39) and (5.40)), one term having the usual chi-square distribution

and the other term given by minυ∈C(υ̃ − υ)′U−1(υ̃ − υ). It follows that the asymptotic

distribution of the MDF test statistic nF̂ is chi-bar-squared and is independent of the

particular distribution of the zi , i = 1, . . . , s. That is, under these assumptions, distrib-

ution of the MDF test statistic is again asymptotically robust.
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Meta-Analysis and Latent Variable Models

for Binary Data

Jian Qing Shi

Abstract

Meta-analysis is widely used as a method of summarizing and combining results

from individual research studies. Heterogeneity and publication bias are two major

problems in meta-analysis for binary data. A latent meta-analysis model by using

binomial distributions is proposed. This model allows for heterogeneity among dif-

ferent studies. Based on fitting a model to the funnel plot, a method for sensitivity

analysis is discussed and is used to address the problem of publication bias. The

maximum likelihood estimates based on the exact distributions are calculated by

a Markov chain Monte Carlo EM algorithm. A meta-analysis of epidemiological

studies on the effect of alcohol on the risk of breast cancer is used to illustrate the

method.

Keywords: Heterogeneity; Latent variable model; Markov chain Monte Carlo EM

algorithm; Meta-analysis; Publication bias; Sensitivity analysis; Trend estimation

1. Introduction

In epidemiology and other areas, binary data is usually recorded to study the relation

between manifest and latent variables (the recent development on latent variable mod-

els can be found in other chapters in this book, and the most recent discussion on latent

variable models with binary data is given by Lee and Tang (2006) and Song and Lee

(2006)). Many individual studies may report small experimental or epidemiological in-

vestigations and fail to give any very firm conclusion individually. Meta-analysis is to

summarise and combine results from those individual studies and collectively may sug-

gest a clear overall result. Heterogeneity and publication bias are two major problems

in meta-analysis. Different methods in experimental design, data collection and data

analysis are used in different studies. All those result in the variation in the data used in

meta-analysis. Furthermore, the sample collected is often selective and is usually biased

in favour of large studies and in favour of small studies with positive outcomes. There

261
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are other small studies which have been carried out but which gave negative result and

have not been published. In practice, publication bias is a very common problem. Sutton

et al. (2000) assessed 48 meta-analyses and found that about half showed the signs of

publication bias.

Using the terminology defined in Little and Rubin (2002), publication bias is a

problem with nonignorable missing data. It is very difficult to correct publication bias

without making very strong assumptions. For example, the ‘trim and fill’ method (Duval

and Tweedie, 2000) is based on the strong symmetry assumption which is unverifiable.

An alternative more cautious approach is sensitivity analysis which is proposed by Co-

pas and Shi (2000, 2001). They draw conclusions from the meta-analysis under a variety

of plausible possibilities for the extent of publication bias, and assess how different con-

clusions are drawn from one another and from the results of conventional approaches.

This approach has been extended to 2 × 2 tables in Shi and Copas (2002) by using

exact binomial distributions. They used a random effect model to address the problem

of heterogeneity and used a selection model to address the problem of publication bias.

A Markov chain Monte Carlo EM (MCMC-EM) algorithm was used to calculate max-

imum likelihood estimates. In this chapter, we will use a similar idea to analyse the

relation between manifest and latent variables for binary data. A typical example is the

trend estimation in epidemiological studies of the association between disease and ex-

posure to some agent or hazard. It is often interested to know how much risk increases

as exposure increases. For the example of alcohol use and breast cancer which we will

discuss later in this chapter, we would like to estimate how much the risk increases as

the amount of alcohol consumption increases.

Using the normal approximation for empirical log-odds ratio, Shi and Copas (2004)

conducted a meta-analysis and sensitivity analysis for trend estimation. However, this

method is inappropriate when the sample size is small or the related probability is close

to 0 or 1. We will therefore assume exact binomial distributions for binary data in this

chapter, and use a latent variable model to model the relation between the probability of

being a case and the covariates. Those covariates measure the extent of the exposure and

other factors in trend estimation, for example, the amount of alcohol use. We will focus

on meta-analysis and trend estimation in this chapter, but there is no major difficulty

to extend the method to a more general latent variable model to cover other types of

categorical data.

Section 2 sets out the methodology for meta-analysis. Section 2.1 discusses a basic

model for an individual study, in which an exact binomial distribution is used for binary

data, with a logistic regression model for modelling the relation between the probability

of having a disease and the extent of exposure. A meta-analysis model which allows

for heterogeneity is introduced in Section 2.2. The implementation by using a MCMC-

EM algorithm to calculate maximum likelihood estimates is discussed in Section 2.3.

In Section 3, we will define a selection model with a meta-analysis model and discuss

a method for sensitivity analysis, based on fitting a model to the funnel plot, to address

the problem of publication bias. An illustrated example is discussed in Section 4. Some

final comments and further development are given in Section 5.
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2. Meta-analysis for binary data

2.1. A model for a single study

To study the association between an event and dose level, we usually observe a set of

binomial outcomes from several exposure bands, including the baseline group with zero

dose. To fix the notation, suppose that a typical study has (n + 1) exposure bands, and

has zj cases out of mj subjects in the j th band for j = 0, 1, . . . , n, where j = 0

stands for the baseline control group with zero dose. The binomial outcomes have the

distribution:

z0 ∼ Bin(m0, π0),

(1)zj ∼ Bin(mj , πj ), j = 1, . . . , n.

The related log-odds is

(2)ηj = log

(
πj

1 − πj

)

for j = 0, 1, . . . , n. If the j th dose class can be assumed to have a single dose level xj ,

we can define a logistic regression model by

(3)ηj = α + βxj , j = 0, 1, . . . , n,

where β measures the association between the log-odds ratio and dose level. Parameter

β is the parameter of interest in trend estimation, but α is a nuisance parameter. For

the alcohol use and breast cancer example, zj is the number of patients in group j in

which the average alcohol consumption is xj . The parameter β measures how the odds

of being a case increases when the alcohol consumption increases. The likelihood for

(α, β) given z = (z0, z1, . . . , zn)
T is

(4)p(z|α, β) =
n∏

j=0

(
mj

zj

)
π
zj
j (1 − πj )

mj−zj

(5)∝ exp(z0α)

[1 + exp(α)]m0

n∏

j=1

exp(zj (α + βxj ))

[1 + exp(α + βxj )]mj
.

Maximum likelihood estimates of α and β can be calculated by maximising the above

likelihood.

2.2. Meta-analysis

Suppose that there are K studies in the meta-analysis, in which the ith study has obser-

vation zi = (zi0, zi1, . . . , zini ) with sample size mi0 and mij , and probabilities πi0 and

πij for j = 1, . . . , ni as in distributions (1). Let ηij and xij be the log-odds and the sin-

gle dose level for ith study, as defined in Eqs. (2) and (3). If we allow for heterogeneity,

we may define a random effect logistic regression model as follows

(6)ηij = αi + βixij ,
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(7)βi ∼ N
(
μβ , τ

2
β

)
,

where the overall coefficient μβ measures the association between log-odds ratio and

dose level, and τβ measures the magnitude of the variation between studies. The proba-

bility density function for the ith study now involves an integral

(8)f (zi |θ) =
∫

p(zi |αi, βi)φ(βi;μβ , τβ) dβi,

where θ = (α, μβ , τβ)
′, α = (α1, . . . , αK), φ(·;μβ , τβ) is the density function of

N(μβ , τ
2
β ). The density function p(zi |αi, βi) is given by (5). The log-likelihood for θ

is therefore

(9)L(θ) =
K∑

i=1

log
{
f (zi |θ)

}
.

The above log-likelihood involves integrals. Crouch and Spiegelman (1990) pointed

out that it is not adequate to use Gaussian quadrature to approximate integrals (8), since

that type of integrand is not well approximated by a polynominal function. An alterna-

tive way is to use Markov chain Monte Carlo EM (MCMC-EM) algorithm to calculate

the maximum likelihood estimates directly, analogous to the method used in (Shi and

Copas, 2002).

2.3. Implementation

The basic idea is to treat the latent variable β = (β1, . . . , βK) in (6) as missing and use

an EM algorithm. Let Z be the collection of K vectors of zi , the full log-likelihood for

θ given (Z,β) is

(10)L(Z,β; θ) =
K∑

i=1

[
log

{
p(zi |αi, βi)

}
+ log

{
φ(βi;μβ , τβ)

}]
,

where p(zi |αi, βi) is given by (5) but (α, β) is replaced by (αi, βi). The EM algorithm

involves the calculation of the expectation of the above full log-likelihood conditional

on the current estimate of θ and the observation Z in the E-step, and then updates the

estimate of θ by maximising this conditional expectation in the M-step. The details will

be discussed in the rest of this section.

2.3.1. MCMC-EM: E step

In E-step of the (r + 1)th iteration, we need to calculate the following conditional ex-

pectation

L(θ |θ (r)) = E
[
L(Z,β; θ)|Z, θ (r)

]

=
K∑

i=1

{
E
[
log

(
p(zi |αi, βi)

)
|Z, θ (r)

]

(11)+ E
[
log

(
φ(βi;μβ , τβ)

)
|Z, θ (r)

]}
,
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where θ (r) is the current estimate after the rth iteration. The expectation is calculated in

terms of β. As there is no analytical form for Eq. (11), we use MCMC-EM algorithm;

see, for example, Wei and Tanner (1990) and Booth and Hobert (1999).

To do this, we generate A number of random vectors {βa, a = 1, . . . , A} from the

conditional distribution p(β|Z, θ (r)), and approximate (11) by

(12)LA

(
θ |θ (r)

)
= 1

A

A∑

a=1

L
(
Z,βa; θ

)
.

We will discuss how to update θ by maximising the above log-likelihood in Sec-

tion 2.3.2. Now, we discuss how to generate those random numbers.

Given (Z, θ), the latent variable βi’s are conditional independent for i = 1, . . . , K .

We can therefore generate random number for each component individually. For each

component, its conditional density function is

(13)p
(
βi |zi, θ (r)

)
∝ p

(
zi |α(r)

i , βi
)
φ
(
βi;μ(r)

β , τ
(r)
β

)
,

where p(zi |α(r)
i , βi) is given by (5). We can use Metropolis–Hastings algorithm

(Metropolis et al., 1953; Hastings, 1970) to generate a random variate βi from the above

density function. Carlin and Louis (2000) discussed the details for Metropolis–Hastings

algorithm. Shi and Copas (2004) gave the details how to define a transition density and

calculate acceptance probability for a similar problem.

2.3.2. MCMC-EM: M-step

In the M-step, we need to update θ by maximising the conditional likelihood (12). Since

the unknown parameters (μβ , τβ) are involved in the second term only in the full log-

likelihood function (10), the calculation of the maximum likelihood estimate is rather

simple. This is to estimate (μβ , τβ) by maximising the following objective function

K∑

i=1

log
{
φ(βi;μβ , τβ)

}
.

It is actually equivalent to the problem that we have observed {β1, . . . , βK } from the

normal distribution N(μβ , τβ) and want to calculate the maximum likelihood estimates

of μβ and τβ . Their estimates are simply given by the sample mean and the sample

standard error:

β̄ = 1

K

∑
βi and Vβ =

√
1

K

∑
(βi − β̄)2.

Here, β̄ and Vβ are sufficient statistics for the parameters of (μβ , τβ). In the (r+1)th it-

eration, M-step is to update β and τβ by their conditional expectations E(β̄|Z, θ (r)) and

E(Vβ |Z, θ (r)). It is not possible to get an analytic form for those conditional expecta-

tions. We therefore use the random vectors {β1, . . . ,βA} generated from the conditional

distribution p(β|Z, θ (r)) in E-step, and approximate these conditional expectations by

their sample means:
(
β̄1 + · · · + β̄A

)
/A and

(
V 1
β + · · · + V A

β

)
/A,
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where β̄a and V a
β are the sample mean and sample standard error of βa = (βa

1 , . . . , β
a
K),

respectively.

The parameter αi is updated by maximising Li = log{p(zi |αi, βi)}. There is no

analytic solution. We use the following Newton method to approximate the estimate of

αi at the M-step. For simplifying the notation, we omit the index i here. We update α

by the following subiteration

α = α0 − L̇(α0)/L̈(α0),

where α0 is the current estimate of α, L̇(α0) and L̈(α0) are the first two derivatives

of Li = log{p(zi |αi, βi)} in terms of αi for the ith component. Bear in mind that we

actually need to maximise the conditional expectation of L = log{p(z|α, β)} given β.

This can be approximated by the random numbers generated in MCMC-E step:

L = 1

A

A∑

a=1

log
{
f (z|α, βa)

}
.

The Newton method works very effectively as it is a univariate problem.

2.3.3. Average MCMC-EM algorithm and standard errors

As discussed in (Shi and Copas, 2002), the estimates by the MCMC-EM algorithm

converges to the real maximum likelihood estimates when A is sufficiently large. The

Monte Carlo error is mainly determined by the sample size A. To reduce the Monte

Carlo error we need to take a sufficiently large A (see, e.g., Booth and Hobert, 1999).

An alternative way is to use average MCMC-EM algorithm proposed in (Shi and Copas,

2002). Instead of increasing A, the average value of the estimates collected in the itera-

tions after ‘burn-in’ is used. The average batch mean θ̄
(r)

is defined as the sample mean

of {θ (r−J+1), θ (r−J ), . . . , θ (r)}, where θ (r) is the estimate obtained in the rth iteration.

The estimates θ̄
(r)

is roughly equivalent to the one calculated by using the MCMC-EM

algorithm with Monte Carlo sample size JA, but the former is more efficient and much

easier to implement than the latter.

The standard error of θ̂ can be calculated quite easily for the MCMC-EM algorithm.

The related observed information matrix can be calculated by Louis (1982)

I (θ) = −E
{
L̈(Z,β|Z)

}
− E

{
L̇(Z,β|Z) · L̇T(Z,β|Z)

}
,

where L̇ and L̈ are the first two derivatives of the full log-likelihood (10) with respect to

θ . The expectation is defined in terms of β, which can be approximated by the random

samples generated in MCMC-E step. In each iteration, we calculate

I (θ |β) = −L̈(Z,β) − L̇(Z,β) · L̇T(Z,β),

evaluated at β = βa for each sample βa . The observed information matrix I (θ) is

therefore approximated by the sample mean of {I (θ |βa), a = 1, . . . , A}.
The final estimate of the information matrix can be calculated by the average ‘batch

mean’ for average MCMC-EM algorithm. The variance of the estimates can be calcu-

lated from the inverse of the information matrix.
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For the model we discussed in this section, we update the estimates of αi’s and

(μβ , τβ) in the M-step separately. Thus, it is rather simple to calculate standard errors

for those parameters since they can also be calculated separately. The expressions for

the first two derivatives related to αi are (the index i is omitted for simplifying the

notation)

L̇(α|β) =
n∑

j=0

[
zj − mj

exp(α + βxj )

1 + exp(α + βxj )

]
,

L̈(α|β) = −
n∑

j=0

[
mj

exp(α + βxj )

(1 + exp(α + βxj ))2

]
,

with the related quantities evaluated for the ith component. The variance of α is there-

fore calculated by

[
1

A

A∑

a=1

{
−L̈(α|βa) − L̇2(α|βa)

}]−1

.

The first two derivatives for (μβ , τβ) are given by

L̇(μβ , τβ |β) =
(

K(β̄ − μβ)/τ
2
β

−K/τβ +
∑K

i=1(βi − μβ)
2/τ 3

β

)
,

L̈(μβ , τβ |β) =
( −K/τ 2

β −2K(β̄ − μβ)/τ
3
β

−2K(β̄ − μβ)/τ
3
β K/τ 2

β − 3
∑m

i=1(βi − μβ)
2/τ 4

β

)
,

where β̄ is the average of {β1, . . . , βK }. The observed information matrix for (μβ , τβ)

is calculated by

A∑

a=1

[
−L̈(μβ , τβ |βa) − L̇(μβ , τβ |βa)L̇T(μβ , τβ |βa)

]
/A.

The final estimate of the information matrix can be approximated by the batch mean.

The covariance matrix of (μβ , τβ) is the inverse of information matrix.

3. Publication bias and sensitivity analysis

3.1. Selection model

In meta-analysis, it is always that only a selection of studies is included. In most situa-

tions, there is selection bias or publication bias, meaning that the selected studies cannot

represent the original population. Let β̂ be the estimate of slope in a study and s is the

standard error. We plotted β̂i against si in Figure 1 for the breast cancer example. It

shows that the small studies tend to have larger values of β̂i , recognising the publication

bias that the studies with significant results and/or large sample sizes are more likely

to be published. Let S be the event that a study is selected. To model the possibility
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Fig. 1. Funnel plots of β̂i against its standard error si , where β̂i is calculated by using empirical odds ratio.

The solid line gives the overall estimate μ̂β by using meta-analysis models (6) and (7) without assuming

publication bias.

that the selection is biased in favour of larger studies (with smaller si), and in favour of

studies having a more positive outcome (with larger β̂i in this chapter), suppose that a

study reporting estimate β̂i and standard error si is selected with probability

(14)q(zi |βi) = P
(
Si |β̂i, si, βi

)
= Φ

(
a + b/si + ρ(β̂i − βi)/si

(1 − ρ2)1/2

)
,

where b � 0, ρ � 0, Φ is the cumulate distribution function of the standard normal

distribution. Parameter ρ plays a very important role here, which models the association

between the selection model and the study outcome β̂. If ρ = 0, this is the model

without publication bias. If ρ > 0, the selection probability is larger for the study with

larger value of β̂ (the study with more positive outcome) or smaller value of s (larger

study). This models the phenomenon shown in Figure 1.

The selection probability defined in (14) is conditional on the true value βi . Follow-

ing the discussion in Shi and Copas (2004), the overall selection probability for a study

with data (β̂i, si) is given by

P
(
Si |β̂i, si

)
=
∫

Φ

(
a + b/si + ρ(β̂i − βi)/si

(1 − ρ2)1/2

)
φ(βi;μβ , τβ) dβi

(15)= Φ

(
a + b/si + ρ̃(β̂i − μβ)/(τ

2
β + s2

i )
1/2

(1 − ρ̃2)1/2

)
,

where ρ̃ = ρsi/(τ
2
β + s2

i )
1/2. The marginal probability for a study with standard error

si is

(16)P(Si |si) = Φ

(
a + b

si

)
.
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This gives the interpretation of the parameters a and b that a controls the overall pro-

portion of studies selected and b (expected to be positive) controls how the chance of

selection depends on study size. Some more explanation will be given in Section 4.

Publication bias is the problem with nonignorable missing data. The parameters a

and b are used to measure the nonignorable missing-mechanism. Since we have no

information about the studies in the population that have not been selected, a and b

are not estimable without making strong assumptions. Adopted the same idea proposed

in (Copas and Shi, 2000), we use a sensitivity analysis to deal with the problem of

publication bias. We first give a range of different values of (a, b) and then monitor

how sensitively the estimate (μβ , τβ , ρ) and other quantities depend on the particular

choice of these selection parameters.

3.2. Maximum likelihood estimates

Now we discuss how to obtain estimates for a given pair of (a, b). We still use θ to

denote all the unknown parameters (α, μβ , τβ , ρ). For the meta-analysis of K studies,

the log-likelihood is for those selected studies, and it is therefore given by

L(Z; θ) =
K∑

i=1

log
{
p(zi |Si, θ)

}

=
K∑

i=1

log

{
p(zi,Si |θ)

p(Si)

}

=
K∑

i=1

[
log

{∫
p(zi,Si |θ , βi)φ(βi;μβ , τβ) dβi

}
− log

[
p(Si |si)

]]

=
K∑

i=1

[
log

{∫
p(zi |αi, βi)q(zi |βi)φ(βi;μβ , τβ) dβi

}

(17)− log
[
p(Si |si)

]]
,

where p(zi |αi, βi) is given by (5) and q(zi |βi) is given by (14). We want to find the

estimates of interesting parameters (μβ , μτ , ρ) and nuisance parameters αi’s by max-

imising the above log-likelihood. The MCMC-EM algorithm discussed in Section 2 can

be extended to cover this model.

As before, we still treat β = (β1, . . . , βK) as missing data. The full log-likelihood

of (Z,β) for θ = (α, μβ , τβ , ρ) is

L(Z,β; θ) =
K∑

i=1

log
{
p(zi, βi |Si, θ)

}

=
K∑

i=1

[
log

{
φ(βi;μβ , τβ)

}
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+ log
{
q(zi |βi)

}
+ log

{
p(zi |αi, βi)

}
− log

{
P(Si |si)

}]

(18)= L1 + L2 + L3,

where

L1 =
K∑

i=1

log
{
φ(βi;μβ , τβ)

}
,

L2 =
K∑

i=1

log
{
p(zi |αi, βi)

}
, and

L3 =
K∑

i=1

[
log

{
q(zi |βi)

}
− log

{
P(Si |si)

}]
.

Noting the fact that L1 involves parameters (μβ , τβ) only, L2 involves α only and L3

involves ρ only, we can update those three groups of parameters in the M-step by max-

imising L1, L2 and L3 separately. L1 and L2 are the exact same as the related items

in (10), we can use the same formulae as those discussed in Section 2.3 to update the

estimates for (μβ , τβ) and α in the M-step. The parameter ρ is updated by maximising

L3 alone. Since P(Si |si) in L3 is independent of any unknown parameters, the second

term can be ignored. We use a subiteration of Newton method to update ρ analogous to

the method updating α in M-step as in Section 2.3.2.

In MCMC-E step, we need to generate βi from the following conditional distribution

(19)p(β|z, θ) ∝ q(z|β)p(z|α, β)φ(β;μβ , τβ),

where the related quantity is evaluated for ith component. We still use the Metropolis–

Hasting algorithm as in the last section.

3.3. Sensitivity analysis

In trend estimation, we are mainly concerned with the estimate of the slope μβ . We

therefore develop a sensitivity analysis for μβ allowing for a range of plausible values

of (a, b). A rough procedure is described as follows.

(i) Select a range of possible values of (a, b). This can be helped by the marginal

selection probabilities, especially the selection probabilities for the smallest study

and the largest studies:

Pmax = Φ(a + b/smin), Pmin = Φ(a + b/smax),

where smin and smax are the standard error of βi for the largest study and the small-

est study, respectively. We may select (Pmax, Pmin) from a grid of (0, 1) × (0, 1),

and then for each of the pair to calculate the values of a and b.

(ii) For each pair of (a, b), calculate the maximum likelihood estimates for all un-

known parameters θ = (α, μβ , τβ , ρ) by MCMC-EM algorithm discussed in the

previous subsection.
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(iii) Based on fitting to the funnel plots and other methods, develop sensitivity analysis

about μβ for the set of pairs of (a, b) selected in Step (i).

In sensitivity analysis, it is useful to calibrate (a, b) into a single or more statistical

quantities. One method is to test the model for fit to the funnel plots. For example,

the solid line shown in Figure 1 is the estimate of μβ obtained from a meta-analysis

model without assuming publication bias. It obvious not a good fit for the funnel plot.

In sensitivity analysis, we test whether a meta-analysis model and a selection model

with a particular pair of (a, b) give a good fit for the funnel plot. A formal approach can

be given by constructing a hypothesis test. The meta-analysis model is given by Eqs. (6)

and (7) and a selection model is given by (14) with the given pair of (a, b). We call this

model as M(a, b). Now, we replace (7) by

(20)βi ∼ N
(
μβ + γ si, τ

2
β

)
,

and test the null hypothesis H0: γ = 0 against H1: γ �= 0. If we reject the null

hypothesis, it means that the model M(a, b) does not give a good fit for the funnel plot.

The related model and the pair of (a, b) are not acceptable.

In sensitivity analysis, we can therefore reject all the models M(a, b) if the related

P-value for the above hypothesis testing is less than say 0.05. We may also use other

statistical quantities in sensitivity analysis, for example, the marginal selection proba-

bility, especially the selection probabilities for the smallest study and the largest study.

We can also use the following quantity to give a rough guidance how many studies are

missing

K∑

i=1

(
1 − P(Si)

P (Si)

)
.

Some other statistics can also be used in sensitivity analysis (see, for example, Copas

and Shi, 2000; Copas and Shi, 2001). In the next section, we will use a real example to

detail the procedure for sensitivity analysis.

4. An illustrated example

4.1. Trend estimation for alcohol use and breast cancer

To study the association between breast cancer and alcohol consumption, a number of

epidemiologic investigations have been conducted. Table 1 reports the results for such

a study (Hiatt and Bawol, 1984). In this follow-up study, each row is correspond to an

exposure band, including the baseline group with zero dose. The empirical odds ratio

reported in the last column gives an estimate of the odds of being a case versus being

a control. We apply the model defined in Section 2.1 for this data-set, and obtain the

estimates α̂ = −4.6117 and β̂ = 0.0092. The value of β measures the relation between

the alcohol consumption and the risk of breast cancer. The estimate β̂ = 0.0092 implies

that one extra drink daily (about 13 gram of alcohol) increases risk by about 12%.
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Table 1

Follow-up data on alcohol use and breast cancer

Alcohol (g/day) Assigned dose x No. of cases No. of controls Empirical OR

0 0 252 24089 1.0

< 26 6.8 505 49432 1.024

39–65 46.34 68 3892 1.670

> 78 83.6 13 760 1.635

Fig. 2. The estimates of μβ and τβ in each iterations of MCMC-EM algorithm. The solid line gives the values

of batch mean with J = 100.

Fourteen studies were collected by Greenland and Longnecker (1992). For each one

of studies, we calculate the estimates of αi and βi . The values of β̂i are presented in Fig-

ure 1. They ranges from 0.00084 (excess risk 1% for one extra drink daily) to 0.15232

(excess risk 198%). The epidemiologic findings regarding the relation between alco-

hol consumption and risk of breast cancer is inconsistent. It is therefore necessary to

perform a meta-analysis to obtain an overall estimate for the slope β.

We use meta-analysis models (6) and (7) defined in Section 2.2 for those 14 studies.

This model allows for heterogeneity between studies but without considering publi-

cation bias. The MCMC-EM algorithm is used to calculate maximum likelihood es-

timates. In MCMC-E step, we generate A = 100 random numbers and use them to

calculate the conditional expectation of the log likelihood, and then update the estimates

of the parameters in M-step. In each iteration, the estimates of unknown parameters θ

are calculated. The estimates of μβ and τβ in each iterations are plotted in Figure 2,

which show that the MCMC-EM algorithm converges very fast. We use the average

MCMC-EM algorithm, and calculate the batch mean with J = 100. The batch mean

is plotted as solid line in Figure 2. They become stable after about 120 iterations. The

automatic stopping rule proposed in Shi and Copas (2002) can be used here. The final

results are

μ̂β = 0.0093 and τ̂β = 0.00022.
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The overall estimate μ̂β = 0.0093 indicates that the excess risk is about 12% for one

extra drink daily, a quite high excess risk. In the next subsection, we will show that the

risk is actually overestimated.

4.2. Publication bias and sensitivity analysis

Figure 1 gives a funnel plot of β̂i against its standard error si . It shows that the small

studies tend to give larger values of β̂i , showing the sign of publication bias. The solid

line in this figure gives the estimate of μβ , the estimate obtained from the model with-

out considering publication bias, which is obvious not fitted to the funnel plot. This is

also verified by using a formal hypothesis test. Using model (20) with meta-analysis

model (6), we obtain estimates by MCMC-EM algorithm:

μβ = 0.006365, τβ = 0.000153, ρ = 0.979328, γ = 0.666547.

A likelihood ratio test gives P-value = 0.0028 for testing H0: γ = 0. We therefore

reject the null hypothesis, indicating that the meta-analysis models (6) and (7) does not

fit the funnel plot. The value of βi may depend on the value of si , i.e., the size of study.

There is publication bias for those 14 studies collected in this meta-analysis.

Now, we use the approach discussed in Section 3 to demonstrate how to do a sensi-

tivity analysis. We first choose values for a pair of (a, b), for example, a = −1.4 and

b = 0.0073. This corresponds to a maximum marginal selection probability of about

96% and a minimum marginal selection probability of about 30%. In this example, two

studies are extremely small (see the studies with two largest values of si in Figure 1). By

choosing the above values of a and b, the marginal selection probability corresponding

to those two studies are quite small, but the selection probabilities corresponding to the

other studies are actually not very small (larger than 53%). Thus the selection model

with this pair of (a, b) assumes a moderate publication bias. It seems plausible for this

example. By using MCMC-EM algorithm, we obtain the maximum likelihood estimates

as follows

μ̂β = 0.007, τ̂β = 0.002, ρ̂ = 0.546.

This gives a 9% excess risk for one extra unit alcohol consumption daily, down a quar-

ter comparing to the excess risk 12% (μ̂β = 0.009) without considering publication

bias.

By selecting (Pmax, Pmin) from a grid of (0, 1) × (0, 1), we get a set of pairs (a, b).

For each pair, we calculate the maximum likelihood estimates for the unknown parame-

ters, and also calculate other statistical quantities such as P-value for fit to the funnel plot

discussed around Eq. (20). The results are presented in Figure 3. The numerical results

for three typical pairs of (a, b) are reported in Table 2. Figure 3(i) presents contours

of μ̂β against (a, b). The contours of the related maximum and minimum marginal

selection probabilities are given in Figure 3 (ii) and (iii), respectively. The selection

probabilities for both the smallest study and the largest study are close to one in upper

right corner, thus it corresponds to the model with no selection bias or with very slight

publication bias. The estimate of μ̂β is about 0.009. The first row in Table 2 gives a typ-

ical example in this area. The marginal selection probabilities for this example are 84
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Fig. 3. Results of a sensitivity analysis: contours of different statistical quantities against (a, b), which are

(i) the estimate of slope μ̂β ; (ii) selection probability for the largest study; (iii) selection probability for the

smallest study; and (iv) P-value for the fit to funnel plot.

Table 2

The results of sensitivity analysis for three pairs of (a, b)

a b μβ τβ ρ P (smax)
∗1 P(smin)

∗2 P-value∗3

0.9292 0.0017 0.009027 0.000239 0.25739 0.8353 0.9384 0.0272

−1.4061 0.0073 0.007851 0.000225 0.54628 0.1131 0.8868 0.1075

−2.4769 0.0056 0.006544 0.000206 0.44224 0.0100 0.319 0.1858

∗1 Marginal selection probability for the largest study.

∗2 Marginal selection probability for the smallest study.

∗3 P-value for fit to the funnel plot discussed around (20).

and 94% for the smallest and the largest studies, respectively. The P-value for fit to the

funnel plot is less than 3%, meaning this pair (a, b) is not acceptable if we use 5% as a

test level. The contours of the P-value for fit to the funnel plot are given in Figure 3(iv).

It shows that the P-value is less than 0.05 in this corner.

In the middle of the contour plot, corresponding to moderate publication bias as-

sumption, the estimate is about 0.007. Table 2 reports the numerical results for the pair

discussed in the second paragraph in this subsection. The P-value for fit to the funnel

plots is 11%. It indicates that the related model is acceptable.
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Fig. 4. The estimate μ̂β against P-values for fit to the funnel plot. The solid vertical line gives 0.05 test level.

The lower left corner corresponds to a severe publication bias. The estimates of μ̂β is

down to about 0.005, i.e. the excess risk is only about 6%, half of the excess risk without

considering publication bias. The third row in Table 2 gives a typical example in this

corner. Although the P-value for fit to the funnel plot is 19%, the marginal selection

probabilities are too extreme to be accepted.

In Figure 4, we plot the estimates of μβ against the P-value for fit to the funnel plot

for all pairs of (a, b). If we take 5% as the test level, then all the pairs of (a, b) with

P-values less than 0.05 are not acceptable. The estimate of μβ is therefore down to at

most 0.0085 from 0.0093. Combining the above discussion for sensitivity analysis by

using P-values and the marginal selection probabilities, it seems reasonable to assume a

moderate publication bias for this example. The estimate of μβ should be around 0.006

and 0.007. The conventional estimate μ̂β = 0.0093 is overestimated.

5. Discussion and further development

In this chapter we have conducted a meta-analysis for binary data in trend estimation.

A logistic regression model and a latent variable model are used to combine the data

from a set of studies and give an overall estimation for the parameters of interest. This

model allows for heterogeneity between studies. A MCMC-EM algorithm is used for

implementation. We then use a sensitivity analysis approach to address the problem of

publication bias by defining a selection model. Although we focus on the problem of

trend estimation in this chapter, there is no major difficulty to extend the approach to a

more general problem, for example, for multi-nominal data with a general latent model.

We use the unconditional likelihood approach in this chapter. In some circumstances,

unconditional estimates may be biased (see, for example, (Cox and Snell, 1989; Shi and

Copas, 2002)). If we use a conditional likelihood approach, fixed Z0+Z1+· · ·+Zn = t ,
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the conditional likelihood for a single study is

p(z0, z1, . . . , zn|Z0 + Z1 + · · · + Zn = t)

=
(
m0

z0

)∏n
j=1

(
mj

zj

)
exp(βzjxj )

∑
u1,...,un

(
m0

t−u1−···−un

)∏n
j=1

(
mj

uj

)
exp(βujxj )

,

for all u1, . . . , un satisfying

0 � uj � mj , t − m0 � u1 + · · · + un � t.

Computation for such a likelihood is tedious. It needs an efficient algorithm or a good

approximation.

In trend estimation, the exposure levels for each subject are often not recorded ex-

actly but grouped into class intervals; see, for example, the first column in Table 1. We

used an assigned value for each group in this chapter. But for the grouped dose level,

we may suppose that exposure is an underlying continuous covariate belonging to ob-

servable intervals Jij , so that each subject in the j th group in the ith study has x ∈ Jij .

Suppose the exposure levels of all individuals in a particular study are sampled from the

same distribution with the probability density function f (x). The probability of being a

case, given dose x, is given by π(x) in (1), (2) and (3), the probability that an individual

in class interval J is a case is

(21)πJ =
∫
J
π(x)f (x) dx∫
J
f (x) dx

where π(x) = exp(α + βx)/{1 + exp(α + βx)}. It is not trivial to extend the approach

discussed in this chapter to the problem with grouped dose-level.

It is worth a further research for those problems.

Fig. 5. Funnel plots of β̂i against its standard error si , where β̂i is calculated by using adjusted odds ratio.
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In this chapter, we use the exact binomial distribution and the latent variable model

to study the overall relation between alcohol use and breast cancer. If we believe there

is moderate publication bias for the data collected (it seems plausible for this exam-

ple), then the excess risk for one extra unit alcohol consumption is about 9%. By using

normal approximation and the values of adjusted odds ratios, the funnel plot is given

by Figure 5. It shows the sign of severer publication bias than Figure 1. Shi and Copas

(2004) reported that the excess risk is only about 5% assuming a moderate publication

bias. The detailed discussion for this example is given in Shi and Copas (2004). Unfor-

tunately, we have not been able to extract the raw data which is used to calculate the

adjusted odds ratio. Nevertheless, the results obtained in this chapter coincide with Shi

and Copas’ (2004) findings that the excess risk estimate 12% obtained by the conven-

tional method is overestimated. The real risk may be much less than this percentage.
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Analysis of Multisample Structural Equation Models

with Applications to Quality of Life Data

Xin-Yuan Song

Abstract

A maximum likelihood (ML) approach for analyzing a multisample structural equa-

tion model with missing ordered categorical outcomes is introduced. In the ML

estimation, the observed data are augmented with the real missing data and the hypo-

thetical missing data that involve the latent variables and the unobserved continuous

responses underlying the ordered categorical data. The resulting problem is handled

by the implementation of a Monte Carlo EM algorithm to produce ML estimates

of the unknown parameters. A path sampling procedure is proposed to compute the

complicated observed-data log-likelihood, and eventually the Bayesian information

criterion for model comparison and hypothesis testing. The proposed methodolo-

gies are used to analyze a two-sample quality of life (QOL) data set to investigate

the similarities and differences of QOL between people in Western countries and in

China.

Keywords: Latent variables; Maximum likelihood; MCEM algorithm; Gibbs sam-

pler; Path sampling; QOL

1. Introduction

Structural equation models (SEMs) are widely appreciated in behavioral, educational,

sociological, and medical research in analyzing multivariate correlated data from la-

tent variables. SEMs allow one to evaluate a series of simultaneous hypotheses about

the relationships of some latent and manifest variables with other variables, on the

basis of nonexperimental data. In the past quarter of a century, they have drawn a

great deal of attention in psychometrics and sociometrics, both in terms of theoretical

developments and practical applications (Bollen, 1989; Jöreskog and Sörbom, 1996;

Bentler, 1992). Although not to the extent that they have been used in behavioral,

educational, and social sciences, the LISREL (Jöreskog and Sörbom, 1996) or EQS

(Bentler, 1992) programs have been widely used in other researches. In fact, research

in various disciplines has outlined the usefulness of this kind of latent variable model

279
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with various types of data. For instance, in a review of methodology, Francis dis-

cussed the implications of structural equation models for necropsychological theory

and practice (Francis, 1988). Bentler and Stein gave a very comprehensive review

with many important medical applications (Bentler and Stein, 1992). In addition to

those cited by Bentler and Stein (1992), SEMs have recently been applied in assess-

ing the inter-relationships among components of metabolic syndrome (Chan et al.,

1996); in analyzing ecological and evolutionary biology data (Pugesek et al., 2003);

and in investigating the behavior of twins in genetics (Boomsma and Molenaar, 1987;

Dolan et al., 1991).

More than a dozen standard programs use structural equation models to cope with

the high demand in various fields. The statistical development of most software occurs

under the assumption that the data are continuous measurements with a multivariate nor-

mal distribution. However, in practice studies, we frequently encounter dichotomous

or ordered categorical variables. Typically, respondents are asked to select answers

from ‘yes’ or ‘no’ about the existence of a symptom, ‘strongly disagree’, ‘disagree’,

‘no opinion’, ‘agree’, ‘strongly agree’ about a policy, ‘feeling better’, ‘no change’,

‘worse’ about the effect of a drug, or ‘satisfactory’, ‘no opinion’, ‘unsatisfactory’ about

the performance of a staff, etc. Moreover, the empirical distribution of discrete ob-

servations is often skewed. Hence, the basic assumption that the data come from a

continuous normal distribution is clearly violated. Maximum likelihood (ML) analy-

sis of structural equation models with ordered categorical data is not straightforward.

A difficult computational problem is encountered in evaluating the cell probabilities

that are induced by the ordered categorical outcomes. Some two-stage methods have

been proposed to reduce the computational burden in evaluating the high-dimensional

integrals that are associated with the cell probabilities (Jöreskog and Sörbom, 1996;

Lee et al., 1995). Shi and Lee (2000) pointed out that the two-stage estimators are not

statistically optimal as the ML estimator, and need to invert at each iteration of its min-

imization procedure a huge matrix, the dimensions of which increase very rapidly with

the number of manifest variables. They further developed a Monte Carlo EM type al-

gorithm for ML analysis of a factor analysis model with mixed continuous and ordered

categorical outcomes (see also, Wei and Tanner, 1990).

In this article, for handling more complex practical data, the ML method proposed

in Shi and Lee (2000) in analyzing ordered categorical data is generalized in four

directions. First, the factor analysis model is generalized to a more general SEM,

for assessing the effect of the exogenous (independent) latent variables on the en-

dogenous (dependent) variables. Second, the single sample model is extended to a

multisample SEM, for analyzing the behavior of different treatment groups and/or

cultural groups, etc. Third, the ML methodology is extended to accommodate data

that are missing at random (MAR) (Little and Rubin, 1987). In most missing data

sets in medical research, the number of missing patterns are large, and the sample

size within some missing patterns can be small. Hence, the approach with existing

software in structural equation models (Jöreskog and Sörbom, 1996; Bentler, 1992;

Muthen and Muthen, 2001), which employs a multiple group analysis by treating obser-

vations in a missing pattern as an independent group, is not practical. Finally, hypothesis
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testing via the Bayesian information criterion (BIC) is proposed for comparisons across

different groups.

The present work is motivated by the increasing recognition that measures of health

related quality of life (QOL) have great value for clinical work and the planning and

evaluation of health care. It has been generally accepted that QOL is a multidimen-

sional concept that is best evaluated by a number of different latent domains (variables)

such as health status, physical function, mental status, and social relationships (Staquet

et al., 1998; Drota, 1998). Many questionnaires in QOL research are divided into several

‘scales’, each of which comprises several related items for measuring the corresponding

latent variables. To improve consistency and efficiency, the related items are combined

via the measurement equation of the SEM to form a latent variable (factor) for analyzing

the corresponding latent domain. The relationship of these latent domains (variables)

are assessed via the structural equation of the model. As the items in the questionnaire

are often ordered categorical, most QOL data involve multidimensional discrete ob-

servations. Moreover, as missing data are frequently encountered and it is sometimes

necessary to compare different groups (e.g., different treatment or cultural groups), it is

necessary to develop ML methods for multisample SEMs, in the context of incomplete

ordered categorical variables. To illustrate the newly developed ML methodologies, we

will analyze the WHOQOL-BEEF (Power et al., 1999) data set, which contains twenty-

six ordered categorical items, and is obtained from many Western countries and China.

The underlying instrument has been shown to be useful to health professionals (Power

et al., 1999). We note the presence of missing data and that several items are heavily

skewed to the right. Treating these ordinal data as coming from a normal distribution is

likely to produce biased results.

We will develop ML methods for analyzing a multisample SEM with missing or-

dered categorical outcomes, and apply these methods to study the similarities and

differences of QOL in the different cultural groups. The statistical inferences include

ML estimation and hypothesis testing via the BIC criterion. A MCEM algorithm is im-

plemented to produce the ML estimate, and a path sampling (Geman and Geman, 1984)

procedure is constructed to compute the complicated observed-data log-likelihood that

involves intractable integrals.

The rest of the paper is organized as follows. Section 2 presents the multisample

SEM, and describes the missing ordered categorical data. The ML approaches for esti-

mation and model comparison (hypothesis testing) are discussed in Section 3. Section 4

describes the results that are obtained from the analysis of the WHOQOL data (Power

et al., 1999). Section 5 provides a discussion, and technical details are given in Appen-

dices A, B.

2. A multisample SEM with missing ordered categorical variables

2.1. The model and the data

We consider G independent groups of individuals that may represent populations of

patients who receive different treatments, or are from different cultures, etc. For g = 1,
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. . . ,G, let v
(g)
i be the random vector that contains j = 1, . . . , p manifest variables that

correspond to the ith observation (subject) in the gth group, i = 1, . . . , ng . Similar to

the LISREL model, v
(g)
i is related to a q × 1 random vector of latent variables ωi by the

following measurement equation:

(1)v
(g)
i = μ(g) +Λ(g)ω

(g)
i + ε

(g)
i ,

where μ(g) is the vector of the intercepts, Λ(g) is the parameter matrix of regression

coefficients that reflects the relation of manifest variables in v
(g)
i with the latent variables

in ω
(g)
i , and ε

(g)
i is a random vector of the measurement errors. It is assumed that ω

(g)
i

and ε
(g)
i are independent, and the distribution of ε

(g)
i is N [0,Ψ (g)], where Ψ (g) is a

diagonal covariance matrix. Let ω
(g)
i = (η

(g)′

i , ξ
(g)′

i ), where η
(g)
i represents the vector

of endogenous latent variables, and ξ
(g)
i represents the vector of the exogenous latent

variables. An important component of the proposed model is the following structural

equation that addresses relationships of η
(g)
i and ξ

(g)
i :

(2)η
(g)
i = B(g)η

(g)
i + Γ (g)ξ

(g)
i + δ

(g)
i ,

where B(g) and Γ (g) are parameter matrices of regression coefficients such that I − B(g)

is nonsingular, and δ
(g)
i is the random vector of error measurements that is independent

of ξ
(g)
i . It is further assumed that ξ

(g)
i is distributed as N [0,Φ(g)], and δ

(g)
i is distributed

with N [0,Ψ (g)
δ ], where Ψ

(g)
δ is a diagonal covariance matrix.

To handle the ordered categorical outcomes, suppose that v
(g)
i = (x

(g)′

i , y
(g)′

i )′, where

x
(g)
i is an observable subvector of continuous responses, and y

(g)
i is a subvector of un-

observable continuous responses, the information of which is reflected by an observable

ordered categorical vector zi with equal dimension. In a generic sense, an ordered cat-

egorical variable z
(g)
h is defined with its underlying latent continuous random variable

y
(g)
h by:

(3)z
(g)
h = k if α

(g)
h,k � y

(g)
h < α

(g)

h,k+1, k = 1, . . . , b
(g)
h ,

where {−∞ = α
(g)

h,1 < α
(g)

h,2 < · · · < α
(g)
h,bh

< α
(g)
h,bh+1

= ∞} is the set of threshold

parameters that define the categories, and b
(g)
h is the number of categories for the ordered

categorical variable z
(g)
h . Note that the categories can be unequally spaced under this

formulation. To deal with the missing data, let x
(g)
i = {x(g)io , x

(g)
im } and z

(g)
i = {z(g)io , z

(g)
im },

where x
(g)
io and z

(g)
io represent the observed data, and x

(g)
im and z

(g)
im represent the missing

data. For a fully observed data point, x
(g)
im and z

(g)
im are empty. We assume that the missing

data are missing at random (MAR); that is, the data mechanism that has caused the

missing data depends only on the observed data and not on the missing data themselves

(Little and Rubin, 1987). For any i �= j , we allow that the dimensions of x
(g)
io and

z
(g)
io can be different from the dimensions of x

(g)
jo and z

(g)
jo . Therefore, the number of

missing patterns can be large, and the sample sizes within some missing patterns can
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be small. Consequently, the multiple group approach that is commonly used by the

common software in structural equation models by treating observations in a missing

pattern as an independent group is not practical.

2.2. Identification

To tackle the identification problem, we have to pay attention to the following is-

sues. There are two kind of indeterminacies for the multisample SEM with ordered

categorical variables. First, the SEM that is defined by (1) and (2) is not identified.

This indeterminacy can be solved by the common method of fixing appropriate el-

ements in Λ(g),B(g), and/or Γ (g) at preassigned values. The other indeterminacy is

induced by the ordered categorical variable. Consider an ordered categorical variable

z
(g)
h that is defined by a set of thresholds α

(g)
h,k and an underlying latent continuous

variable y
(g)
h with a distribution N [μ(g)

h , σ
2(g)
h ]. The indeterminacy is caused by the

fact that α
(g)
h,k, μ

(g)
h , σ

2(g)
h are not simultaneously estimable. For a given group g, a

common method to solve this identification problem with respect to the hth ordered

categorical variable is to fix α
(g)

h,2 and α
(g)
h,bh

at preassigned values (Lee et al., 1995;

Shi and Lee, 2000; Lee et al., 2005). For example, we may fix α
(g)

h,2 = Φ∗−1(f
(g)

h,2 ), and

α
(g)
h,bh

= Φ∗−1(f
(g)
h,bh

), where Φ∗ is the cumulative function of N [0, 1], f (g)

h,2 and f
(g)
h,bh

are the frequencies of the first category and the cumulative frequencies of categories

with z
(g)
h < b

(g)
h . For analyzing multisample models with interest in group comparisons,

it is important to impose conditions for identification of the ordered categorical vari-

ables such that the latent continuous variables have the same scale among the groups.

To achieve this, we can choose the first group as the reference group, and identify its

ordered categorical variables by fixing both end thresholds as above. Then, for any h

and g �= 1, we impose the following restrictions,

(4)α
(g)
h,k = α

(1)
h,k, k = 1, . . . , b

(g)
h ,

on the thresholds for every ordered categorical variable z
(g)
h . Under these identification

conditions, the unknown parameters in the groups should be interpreted in a relative

sense, compared over groups. Note that when different reference groups are used, rela-

tions over groups are unchanged. Hence, the statistical inferences are unaffected by the

choice of the reference group. Clearly, the compatibility of the groups is reflected by

the differences of the parameter estimates.

3. ML analysis

In this section, we describe a ML approach that produces consistent ML estimates

with optimal statistical properties, standard error estimates, scores of the latent vari-

ables, the observed-data log-likelihood, and the BIC statistic for model comparison,

on the basis of the fully and partially observed data of mixed continuous and or-

dered categorical outcomes. For g = 1, . . . ,G, let X
(g)
o = {x(g)io , i = 1, . . . , ng},
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X
(g)
m = {x(g)im , i = 1, . . . , ng}, Z

(g)
m = {z(g)im , i = 1, . . . , ng}, Zo = {Z(1)

o , . . . ,Z
(G)
o }, and

Zm = {Z(1)
m , . . . ,Z

(G)
m }. Hence, Xo and Xm are the observed and the missing continuous

data, and Zo and Zm are the observed and the missing ordered categorical data.

3.1. Estimation

Let θ (g) be the unknown parameter vector in the identified model that corresponds to the

gth group. In multisample analysis, a certain type of parameter in θ (g) is often hypothe-

sized to be equal to that type of parameter in θ (h). For example, we impose restrictions

on the thresholds, and we often test Λ(1) = · · · = Λ(G),Φ(1) = · · · = Φ(G), and/or

Γ (1) = · · · = Γ (G). Hence, we allow common parameters in θ (1), . . . , θ (G). Let θ be

the vector that contains all unknown distinct parameters in θ (1), . . . , θ (G), by defini-

tion, the ML estimate of θ is a vector that maximizes the observed data log-likelihood

Lo(Xo,Zo; θ). However, due to the existence of missing data, and the discrete nature

of the ordered categorical variables, Lo(Xo,Zo; θ) involves very complicated mul-

tiple integrals. Maximizing this function for obtaining the ML estimate is difficult.

To solve the problem, we augment the observed data with the real missing data and

the hypothetical missing data that contain the latent variables and the latent continu-

ous responses. Let Yo and Ym be the latent continuous data sets that correspond to

Zo and Zm, and let Vm = (Xm,Ym). Moreover, let Ω = {Ω(1), . . . ,Ω(G)} be the

collection of all latent variables, where Ω(g) = {ω(g)
i , i = 1, . . . , ng}. In the ML

analysis, the observed data set Do = (Xo,Zo) is augmented with the missing data set

Dm = (Xm,Yo,Ym,Ω) = (Yo,Vm,Ω) to form a complete data set D = (Do,Dm).

Note that once Ym is given, Zm is not important. Let Lc(D; θ) be the complete-data log-

likelihood. The ML estimate of θ is obtained by applying the Monte Carlo EM (MCEM)

algorithm (Wei and Tanner, 1990). This algorithm is implemented as follows. At the rth

iteration with a current value θ (r), it involves the following E-step and M-step.

E-step: Evaluate Q(θ; θ (r)) = E{Lc(D; θ)|Do, θ (r)}, where the expectation is taken

with respect to the joint conditional distribution of Dm given Do at θ (r). It can be shown

that the log-likelihood function based on the complete-data set D is given by

Lc(D; θ)
= logp(D|θ)

= −1

2

G∑

g=1

ng∑

i=1

{
(p + q) log(2π) + log

∣∣Ψ (g)
∣∣+ log

∣∣Ψ (g)
δ

∣∣+ log
∣∣Φ(g)

∣∣

+ ξ
(g)′

i Φ(g)−1

ξ
(g)
i +

(
v
(g)
i − μ(g) −Λ(g)ω

(g)
i

)′
Ψ (g)−1

×
(
v
(g)
i − μ(g) −Λ(g)ω

(g)
i

)

×
(
η
(g)
i − B(g)η

(g)
i − Γ (g)ω

(g)
i

)′
Ψ

(g)−1

δ

(
η
(g)
i − B(g)η

(g)
i − Γ (g)ω

(g)
i

)}

(5)+ 1

2

G∑

g=1

ng∑

i=1

log I
(
y
(g)
i ∈ A

(g)
i

)
,
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where I (y ∈ A) is a indicator function which takes the value 1 if y ∈ A zero otherwise,

and

A
(g)
i =

(
α
(g)

1,z
(g)
i1

, α
(g)

1,z
(g)
i1 +1

]
× · · · ×

(
α
(g)

s,z
(g)
is

, α
(g)

s,z
(g)
is +1

]
,

where s is the number of ordered categorical variables, and z
(g)
ij is the j th element

of z
(g)
i . It should be noted that the likelihood function based on the observed data is

much more complicated than the function given in (5).

M-step: Update θ (r) to θ (r+1) by the maximum of Q(θ; θ (r)).
The conditional expectations at the E-step are approximated by a large number of

observations that are generated from the conditional distribution of Dm given Do at

θ (r) (Wei and Tanner, 1990). The idea is to approximate the expectation by the sample

mean of a large sample of observations that are simulated from the target distribution.

Hence, the main task is to simulate a sufficient amount of observations from the target

conditional distribution. We use the well-known Markov chain Monte Carlo (MCMC)

methods, namely the Gibbs sampler (Geman and Geman, 1984) and the Metropolis–

Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970), to complete this

task. Technical details are presented in Appendix A. Note that one component in the

Gibbs sampler is sampling Vm from its conditional distribution given Do,Yo, and Ω

at θ (r). As observations in the independent groups are mutually independent, they can

be simulated separately, one by one, from the corresponding conditional distribution

(see Eq. (A.2) in Appendix A). Hence, the number of missing patterns, and the possible

small sample sizes of the patterns do not create any problem in our MCMC procedure.

Let {Dmj ; j = 1, . . . , J } be a sufficiently large sample that is simulated by the MCMC

methods. Hence,

(6)Q(θ; θ (r)) .= 1

J

J∑

j=1

Lc(Do,Dmj ; θ (r)).

As observations that are obtained from the Monte Carlo simulation are used to complete

the E-step, the algorithm is regarded as a Monte Carlo EM (MCEM) algorithm.

The M-step updates the unknown parameters by maximizing the conditional expec-

tation of the complete-data log-likelihood that is obtained in the E-step. The unknown

thresholds in α are updated by the method that is given by Lee and Shi (2001). The

other structural parameters are updated by solving the following system of equations:

(7)
∂Q(θ; θ (r))

∂θ
= 0.

The common Newton–Raphson or Fletcher–Powell algorithm can be applied. However,

an attractive method is conditional maximization (Meng and Rubin, 1993).

The convergence of the MCEM algorithm is monitored by the method that was given

by Shi and Copas (2002). This method has been found satisfactory in the ML approaches

of a number of SEMs (Lee and Song, 2004a, 2004b). The estimates of the latent variable

scores can be obtained from the sample of observations {Ωj = (Ω
(1)
j , . . . ,Ω

(G)
j ); j =
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1, . . . , J } that are simulated in the E-step at the last iteration of the MCEM algorithm

as follows:

(8)ω̂
(g)
i = 1

J

J∑

j=1

ω
(g)
ij ,

where ω
(g)
ij is in Ω

(g)
j .

The selection of the sample size, say J , in the Monte Carlo E-step is an issue in the

MCEM algorithm. To decrease the Monte Carlo error at the E-step, J should be large.

As it is inefficient to start with a large J when θ̂
(j)

is far from the ML estimate, it has

been suggested that J should be increased from one iteration to the next (Wei and Tan-

ner, 1990; Booth and Hobert, 1999). One method is to take J = J1 + J2j , for some

positive integers J1 and J2. As J1 is not related to j , its size does not have a significant

impact. The choice of J2 depends on the complexity of the underlying problem, and

should be approached on a problem-by-problem basis. Convergence can either be mon-

itored by ratios of the observed-data likelihood values at consecutive iterations (Meng

and Schilling, 1996), computed via bridge sampling (Meng and Wong, 1996), or com-

puted by absolute or relative error of the parameter estimates. Alternatively, Shi and

Copas (2002) proposed the following scheme without iteratively increasing J . After the

mth iteration, they computed

(9)θ̄
(j) = 1

m
(θ (j−m+1) + · · · + θ (j)),

and monitored convergence via the stopping rule: for given small values δ1 and δ2 (e.g.,

0.001), the procedure is stopped if

(10)
‖θ̄ (j) − θ̄

(j−γ0)‖
‖θ̄ (j−γ0)‖ + δ1

is smaller than some predetermined small value δ2. To avoid the danger of premature

stopping, a value of γ0 = 5 is suggested. Convergence is claimed after the stopping rule

is satisfied for several consecutive iterations; θ̄
(j)

is then taken to be the ML estimate.

Shi and Copas (2002) argued that for a sufficiently large m, the average of the Monte

Carlo errors in (9) is negligible. To reduce the bias, one should take an appropriate m

which can control the Monte Carlo errors within a bearable limit. In the example given

in Section 4, we take m = 50. One can use the method in Shi and Copas (2002), or take

J = J1 + J2j , or use a combination of both as in our example.

Finally, standard error estimates are produced by approximating the Louis (1982)

formulae at the ML estimates via a sufficiently large number of observations that are

obtained at the E-step of the final iteration, together with newly generated observations,

if necessary.

Standard errors estimates of the ML estimates can be obtained by inverting the

Hessian matrix of the observed-data log-likelihood function Lo(Do|θ). However, this

matrix is generally not in closed form. Hence, we use an identity of Louis (1982) and
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random samples generated from p(Dm|Do, θ̂) to obtain standard error estimates. It fol-

lows from Louis (1982) that

−∂2Lo(Do|θ)
∂θ∂θ ′ = EDm

{
−∂2Lc(Do,Dm|θ)

∂θ∂θ ′

}

(11)− VarDm

{
∂Lc(Do,Dm|θ)

∂θ

}
,

where expectations involved in (11) are taken with respect to the conditional distribution

of Dm given Do and θ , and the whole expression is evaluated at θ̂ . These expectations are

difficult to evaluate analytically, but they can be approximated respectively by the sam-

ple mean and the sample covariance matrix of the random samples {Dmt , t = 1, . . . , T }
generated from p(Dm|Do, θ̂) using the Gibbs sampler algorithm. Thus, the right-hand

side of (11) can be estimated by

T −2

(
T∑

t=1

∂Lc(Do,Dmt |θ)
∂θ

)(
T∑

t=1

∂Lc(Do,Dmt |θ)
∂θ

)′∣∣∣∣
θ=θ̂

+ T −1
T∑

t=1

[
−∂2Lc(Do,Dmt |θ)

∂θ∂θ ′ −
(
∂Lc(Do,Dmt |θ)

∂θ

)

(12)×
(
∂Lc(Do,Dmt |θ)

∂θ

)′]

θ=θ̂
.

Explicit formulae for the partial derivatives can be obtained via standard matrix differ-

entiation.

3.2. Model comparison and hypothesis testing

In analyzing the multisample SEM one important statistical inference beyond estima-

tion is on testing whether some types of parameters are invariant over the groups.

For instance, the hypotheses of interest may be Λ(1) = · · · = Λ(G),Φ(1) = · · · =
Φ(G), etc., which specify certain kinds of constraints on some parameters among

groups. One common approach to hypothesis testing is to use the significance tests

on the basis of p-values that are determined by the asymptotic chi-square statis-

tic. For the current situation, the asymptotic test is not available. Hence, the BIC is

used. This statistic has been widely applied to model comparison in the ML analy-

sis of models in statistics, and structural equation models (Lee and Song, 2004b;

Raftery, 1993; Song and Lee, 2005, 2006).

Let M1 and M2 be two nested or non-nested multisample SEMs under comparison.

For k = 1, 2, let θ̂k be the ML estimate of the parameter vector θk that contains the

distinct unknown parameters under Mk , let dk be the dimension of θk , and let n be the

sample size. The BIC for comparing M1 and M2 is defined as

BIC12 = −2
{
logp(Do; θ̂1,M1) − logp(Do; θ̂2,M2)

}

(13)+ (d1 − d2) log n,
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where p(Do; θ̂k,Mk) is the observed-data likelihood evaluated at θ̂k under Mk . The

following criterion can be used for interpretation of BIC12 (see Kass and Raftery,

1995):

BIC12 < 0 0 to 2 2 to 6 > 6

Support M1 No conclusion Support M2 Strongly support M2

This statistic can be applied to test various hypotheses about the invariance of some

types of parameters over the groups. For example, let M1 be the model without any

constraint on the parameters, and M2 be the model that associates with the constraints

Λ(1) = · · · = Λ(G). We can use the BIC12 to assess the hypothesis H1: Λ(1) �= · · · �=
Λ(G) against H2: Λ(1) = · · · = Λ(G). The statistic BIC12 gives precise evidence about

which model is better. Moreover, it can be applied to compare non-nested models. For

the current multisample SEM with missing continuous and ordered categorical data, the

computation of logp(Do; θ̂k,Mk) in the BIC is rather involved. Some MCMC methods,

such as importance sampling (Newton and Raftery, 1994) or bridge sampling (Meng and

Wong, 1996), can be applied to compute logp(Do; θ̂k,Mk) (see, for example, Song et

al., 2001). Recently, Gelman and Meng (1998) developed an efficient method, known

as path sampling, and showed that it is a generalization of importance sampling and

bridge sampling. Hence, this method is expected to produce more accurate results. In

this article, the method is applied to compute the observed data log-likelihoods in (13),

and then the BIC. A description of how to use the method is given in Appendix B.

4. Illustrative example: analysis of multisample synthetic QOL data

As the latent constructs of QOL can be naturally regarded as latent variables that are

reflected by the related items (observed variables) in the questionnaire, factor analysis

and structural equation models have been used in analyzing QOL data. For instance,

Power et al. (1999) applied a multisample model to investigate whether the WHOQOL

instrument is structurally comparable in different cultures, and Menleners et al. (2003)

applied a LISREL model to analyze the QOL for adolescents. However, the above cited

work, as well as most applications of the factor analysis model to QOL, are based on

fully observed continuous data with a normality assumption.

The WHOQOL-BREF (Power et al., 1999) instrument was taken from the WHOQOL-

100 instrument by selecting twenty-six ordered categorical items out of 100 original

items. The observations were taken from 15 international field centers, one of which is

China, and most of the rest are Western countries, such as the United Kingdom, Italy,

and Germany. The first two items are the overall QOL and general health, the next

seven items address physical health, the next six items address psychological health, the

three items that follow are for social relationships, and the last eight items address the
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Table 1

Frequencies of the ordered categorical scores of the items

WHOQOL items Group 1 No. of

missing

obs.

Group 2 No. of

missing

obs.
1 2 3 4 5 1 2 3 4 5

Q1 Overall QOL 3 40 95 186 75 1 6 27 191 165 8 1

Q2 Overall health 29 109 89 132 41 0 13 59 116 196 7 7

Q3 Pain and discomfort 22 57 93 125 103 0 21 53 135 137 44 8

Q4 Medical treatment

dependence

22 60 79 90 147 2 18 63 139 110 64 4

Q5 Energy and fatigue 17 59 128 101 90 5 10 44 198 121 23 2

Q6 Mobility 17 38 72 114 154 5 11 31 123 189 43 1

Q7 Sleep and rest 29 71 85 139 76 0 8 45 104 216 24 1

Q8 Daily activities 10 69 76 184 59 2 9 26 108 235 19 1

Q9 Work capacity 23 85 95 135 57 5 9 31 107 233 18 0

Q10 Positive feeling 10 25 114 191 56 4 7 25 206 129 28 3

Q11 Spirituality/personal

beliefs

9 35 115 165 74 2 6 20 204 141 26 1

Q12 Memory and

concentration

5 30 172 154 36 3 5 23 211 137 22 0

Q13 Bodily

image/appearance

5 34 126 125 107 3 2 17 235 102 41 1

Q14 Self-esteem 9 47 121 173 50 0 4 20 110 249 14 1

Q15 Negative feeling 4 40 105 196 52 3 8 38 135 126 80 11

Q16 Personal relationship 6 19 70 195 110 0 4 8 104 259 17 6

Q17 Sexual activity 28 51 120 111 58 32 7 18 119 143 8 103

Q18 Social support 9 6 87 191 105 2 6 19 130 223 11 9

Q19 Physical safety and

security

4 23 160 152 52 2 10 25 186 162 12 3

Q20 Physical environment 8 23 160 152 52 5 29 36 197 123 7 6

Q21 Financial resources 17 41 162 103 75 2 32 67 227 61 8 3

Q22 Daily life information 7 26 120 175 68 4 22 72 223 67 5 9

Q23 Leisure activity

participation

16 92 120 124 48 0 13 94 171 104 13 3

Q24 Living condition 6 16 42 203 133 0 19 73 115 179 7 5

Q25 Health accessibility 4 23 71 241 60 1 12 70 122 180 2 12

Q26 Transportation 7 19 56 213 103 2 16 76 117 178 7 4

environment. All of the items are measured with a 5-point scale (1 = ‘not at all/very dis-

satisfied’; 2 = ‘a little/dissatisfied’; 3 = ‘moderate/neither’; 4 = ‘very much/satisfied’;

and 5 = ‘extremely/very satisfied’).

To illustrate the developed methodology, we use a synthetic two-sample data set that

mimic the QOL study with the same items as mentioned above for each sample. The

two data for analysis are presented in Table 1. The sample sizes for the first and the

second groups are 388 and 400, respectively. We note from these datasets that several

items, especially those in relation to group 1 tend to take maximum values for most

patients, and hence seriously skew to the right. Treating these discrete data as coming

from a normal distribution may lead to a misleading conclusion.
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We apply the multisample SEM as defined in (1) and (2) with G = 2 to analyze the

data. In the ML analysis, we identify the ordered categorical variables by the method

described in Section 2.2, using the Western countries as the reference group (g = 1).

Based on the meaning of the questions, we use the following non-overlapping Λ(g) for

clear interpretation of latent variables: For g = 1, 2

(14)

Λ(g)′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 λ
(g)
2,1

0 0 · · · 0 0 0 · · · 0 0 0 0 0 0 · · · 0

0 0 1 λ
(g)
4,2

· · · λ
(g)
9,2

0 0 · · · 0 0 0 0 0 0 · · · 0

0 0 0 0 · · · 0 1 λ
(g)
11,3

· · · λ
(g)
15,3

0 0 0 0 0 · · · 0

0 0 0 0 · · · 0 0 0 · · · 0 1 λ
(g)
17,4

λ
(g)
18,4

0 0 · · · 0

0 0 0 0 · · · 0 0 0 · · · 0 0 0 0 1 λ
(g)
20,5

· · · λ
(g)
26,5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where 1’s and 0’s are fixed parameters. Hence, the latent variables in ω
(g)′

i = (η
(g)
i ,

ξ
(g)

1i , ξ
(g)

2i , ξ
(g)

3i , ξ
(g)

4i ) are interpreted as ‘health related QOL, η’, ‘physical health, ξ1’,

‘psychological health, ξ2’, ‘social relationship, ξ3’, and ‘environment, ξ4’. The mea-

surement equation in the model is given by

(15)v
(g)
i = μ(g) +Λ(g)ω

(g)
i + ε

(g)
i , g = 1, 2,

with Λ(g) defined as above. The following structural equation is used to assess the ef-

fects of the latent constructs in ξ
(g)
i to the health related QOL, η(g):

(16)η
(g)
i = γ

(g)

1 ξ
(g)

1i + γ
(g)

2 ξ
(g)

2i + γ
(g)

3 ξ
(g)

3i + γ
(g)

4 ξ
(g)

4i + δ
(g)
i .

In the MCEM algorithm for computing the ML estimates under the competing mod-

els, we generate J = 50+20j observations to approximate the conditional expectations

at the E-step of the j th iteration. Convergence was be monitored via the method of Shi

and Copas (2002) by using (10) with γ0 = 5, δ1 = δ2 = 0.001, and θ̄
(j)

is computed

via (9) with m = 50. Convergence is claimed if the stopping rule is satisfied for five

consecutive iterations. To reveal convergence in analyzing M0, plots of some parame-

ters in the second group against iterations are displayed in Figure 1. Based on the above

stopping rule, the algorithm stops at the 89-th MCEM iteration; and θ̄
(89)

is taken as the

ML estimate. In the path sampling procedure, we take S = 20 and J = 1000.

In the multisample analysis, we employ the BIC to study the relations of the para-

meters in the model, and try to identify a comparatively good model. We consider the

model M0 as the general model that is defined by (15) and (16) without any constraints

among the parameters in group 1 and group 2. This model is compared with M1, which

is the model defined by (15) and (16) together with the constraint μ(1) = μ(2), and with

M2, which is also defined by (15) and (16) but with the constraint Λ(1) = Λ(2). Using

the path sampling procedure for computing p(Do; θ̂k,Mk), we obtain the observed-

data log-likelihoods that correspond to M0,M1 and M2 as −24308.22,−25199.66,

and −24741.68. Hence, it follows from (13) that BIC01 = −1609.10, and BIC02 =
−726.59. Hence, the hypothesis μ(1) = μ(2) is rejected, and the hypothesisΛ(1) = Λ(2)

is also rejected.
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Fig. 1. Average estimates of μ(2), Λ(2), Γ (2), and Φ(2) in M0.

As the hypothesis μ(1) = μ(2) is rejected, we conclude that the latent means of the

QOL items corresponding to these two groups are different. From the ordered categor-

ical outcomes of these two groups, which are presented in Table 1, we observe that

people from group 1 have high scores in most of the QOL items (the empirical dis-

tribution skewed more to the right). As the hypothesis H0: Λ(1) = Λ(2) is rejected,

the factor loading matrices of these two groups are different. What is the interpreta-

tion of this result? From the structure of Λ(g) (see Eq. (14)) and the corresponding

QOL items (indicators), we have a rather clear interpretation of the latent variables

η(g), ξ
(g)

1 , ξ
(g)

2 , ξ
(g)

3 , and ξ
(g)

4 as the health related QOL, physical health, etc. Based on

(15), we see that the associations between the latent variables and their respective in-

dicators (QOL items) are clearly indicated by the corresponding elements in Λ(g). The

rejection of the null hypothesis H0 reveals that the associations in group 1 are different

from those in group 2. A common practice in multisample analysis of structural equa-

tion models is to continue the analysis by testing more strict hypotheses in a hierarchical

order if H0 is not rejected, and stop if H0 is rejected (Bollen, 1989). Hence, we can just

report the ML estimates and stop. The reason for ending further analysis may be due to

the belief that rejection of H0 implies that the scale of measurements of the latent vari-

ables in group 1 are different from the scale of measurements of the latent variables in

group 2. However, based on the significance test with p-value, the conclusion that H0 is

not rejected does not imply that H0 is true, and it does not imply that the scales of these

two groups are the same. Hence, the justification that is based on the result of hypothesis

testing for continuing the analysis is not very strong. Moreover, for ordered categorical

variables, as the underlying continuous responses are not observed, it is difficult to draw

a conclusion on the scales of the latent variables on the basis of the hypothesis testing
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Table 2

ML estimates of unknown parameters in the 2-group SEM

Western

countries

China Western

countries

China Western

countries

China

μ1 0.001 −0.404 λy 1.226 0.909 γ1 0.560 0.560

μ2 0.006 0.185 λ12 0.936 0.552 γ2 0.267 0.267

μ3 0.003 −0.180 λ13 1.128 0.905 γ3 −0.054 −0.054

μ4 0.006 −0.303 λ14 1.173 0.855 γ4 0.083 0.083

μ5 −0.002 −0.152 λ15 0.770 0.758 ψ1 0.407 0.150

μ6 0.000 −0.329 λ16 1.340 1.098 ψ2 0.350 0.164

μ7 0.004 0.054 λ17 1.194 0.951 ψ3 0.593 0.533

μ8 0.007 0.030 λ29 0.768 0.835 ψ4 0.601 0.368

μ9 0.014 0.220 λ2,10 0.690 0.899 ψ5 0.408 0.149

μ10 0.010 −0.310 λ2,11 0.733 0.559 ψ6 0.352 0.094

μ11 −0.000 −0.246 λ2,12 1.001 0.741 ψ7 0.730 0.184

μ12 0.008 −0.068 λ2,13 0.780 0.577 ψ8 0.178 0.093

μ13 0.004 −0.308 λ3,15 0.326 0.607 ψ9 0.346 0.084

μ14 0.008 0.113 λ3,16 1.130 0.988 ψ10 0.440 0.180

μ15 0.012 0.050 λ4,18 0.876 1.043 ψ11 0.635 0.167

μ16 −0.004 −0.340 λ4,19 0.851 0.711 ψ12 0.695 0.365

μ17 0.006 0.091 λ4,20 0.874 0.837 ψ13 0.663 0.282

μ18 0.004 −0.501 λ4,21 0.834 0.647 ψ14 0.369 0.190

μ19 0.006 −0.190 λ4,22 1.028 0.651 ψ15 0.609 1.290

μ20 0.004 −0.467 λ4,23 0.761 0.814 ψ16 0.459 0.107

μ21 0.007 −0.546 λ4,24 0.883 0.756 ψ17 0.956 0.244

μ22 0.005 −0.856 φ11 0.405 0.405 ψ18 0.474 0.173

μ23 0.006 −0.170 φ12 0.367 0.367 ψ19 0.532 0.546

μ24 0.019 −1.007 φ13 0.186 0.186 ψ20 0.653 0.472

μ25 −0.001 −0.756 φ14 0.280 0.280 ψ21 0.680 0.391

μ26 0.011 −0.864 φ22 0.587 0.587 ψ22 0.660 0.293

φ23 0.310 0.310 ψ23 0.687 0.428

φ24 0.354 0.354 ψ24 0.565 0.347

φ33 0.377 0.377 ψ25 0.755 0.428

φ34 0.294 0.294 ψ26 0.671 0.348

φ44 0.419 0.419

ψδ 0.079 0.117

result. From the non-overlapping structure of Λ(g), these latent variables can be clearly

interpreted as the latent constructs in relation to health related QOL, physical health,

etc., although the associations of these latent constructs and their indicators are not the

same in groups 1 and 2. Hence, we think that it is desirable to conduct a complementary

analysis to obtain a deeper understanding of these latent constructs about QOL. This

optional complementary analysis involves comparisons with following models.

M3: The model that is given in (15) and (16), and Γ (1) = Γ (2),

M4: The model that is given in (15) and (16), and Φ(1) = Φ(2),

M5: The model that is given in (15) and (16), and Ψ (1)
ε = Ψ (2)

ε ,

M6: The model that is given in (15) and (16), and Ψ
(1)
δ = Ψ

(2)
δ .
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Fig. 2. Plots of residuals δ̂
(1)
i

against (a) ξ̂
(1)
i1

, (b) ξ̂
(1)
i2

, (c) ξ̂
(1)
i3

, and (d) ξ̂
(1)
i4

.

The observed-data log-likelihoods computed via the path sampling procedure for

M3,M4,M5, and M6 are equal to −24314.56,−24322.02,−24859.40, and −24311.80.

It follows from (13) that BIC03,BIC04,BIC05, and BIC06 are equal to 14.05, 39.23,

−928.61, and −0.47. From BIC03 and BIC04, we conclude that M3 and M4 are bet-

ter than M0. Hence, the sample data give evidence of support to the null hypothesis

H0: Γ (1) = Γ (2), and H0: Φ(1) = Φ(2). To cross validate this conclusion, we consider
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Fig. 2. (Continued.)

the following M7.

M7: The model given by (15) and (16), and Γ (1) = Γ (2), and Φ(1) = Φ(2).

The observed-data log-likelihood under M7 is −24334.51. Again, it follows from (13)

that BIC37 = 26.92, and BIC47 = 1.74. Hence, the sample data give evidence of support

to the fact that M7 is better than M3 or M4. The ML estimates of the parameters in

the selected M7 are presented in Table 2. Inspired by model checking techniques in
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Fig. 3. Plots of residuals δ̂
(2)
i

against (a) ξ̂
(2)
i1

, (b) ξ̂
(2)
i2

, (c) ξ̂
(2)
i3

, and (d) ξ̂
(2)
i4

.

regression, we use the following estimated residuals to reveal the goodness-of-fit of M7

to the empirical data with the latent structure: δ̂
(g)
i = η̂

(g)
i − γ̂

(g)

1 ξ̂
(g)

1i − γ̂
(g)

2 ξ̂
(g)

2i −
γ̂
(g)

3 ξ̂
(g)

3i − γ̂
(g)

4 ξ̂4i , ε̂
(g)
i = v̂

(g)
i − μ̂

(g) − Λ̂
(g)
ω̂
(g)
i , where estimates of the latent vectors

ω
(g)
i and latent quantities v

(g)
i are obtained from the observations that are simulated by

the Gibbs sampler in the E-step of the final MCEM iterations. The estimated residuals
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Fig. 3. (Continued.)

ε̂
(g)
i and δ̂

(g)
i are computed. To save space, only plots of δ̂

(g)
i against ξ̂

(g)

i1 , ξ̂
(g)

i2 , ξ̂
(g)

i3 ,

and ξ̂
(g)

i4 are displayed in Figure 2 (g = 1) and Figure 3 (g = 2). The residual plots

that correspond to each component in ε̂
(g)
i against the latent variables are similar. These

plots lie within two parallel horizontal lines that are centered at zero, and no linear or

quadratic trends are detected. This roughly indicates that the proposed measurement

and structural equations at both groups are adequate.
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We have the following interpretations from the results in Table 2.

(1) Comparing the relative mean estimates of the items that correspond to group 1 with

those correspond to group 2, it seems that the averages of most item scores of the

observation in group 1 are lower than those in group 2, including the overall QOL

(see μ̂
(1)
1 and μ̂

(2)
1 ). However, by comparing μ̂

(1)
2 = 0.006 with μ̂

(2)
2 = 0.185, it

seems that the subjects in group 1 consider themselves as having a better health

than the subjects in group 2.

(2) All of the loadings are high, which indicates strong associations between each of

the latent constructs and their respective items, in both group. Note that most of the

λ̂
(1)
i,j are close to λ̂

(2)
i,j , only λ̂

(1)
4,2, λ̂

(1)
17,4, and λ̂

(1)
24,5 are substantially different from the

corresponding estimates in group 2. This finding gives more support to conducting

the complementary analysis.

(3) As M7 is selected, the relationships of the latent constructs that are identified by the

measurement equations (keeping in mind that three λ̂
(1)
i,j and λ̂

(2)
i,j are different) to

the latent health-related QOL in these two groups are the same. Hence, the effects

of physical health, psychological health, social relationships, and the environment

on the health-related QOL of patients in these two different groups are the same.

From the magnitudes of γ̂
(g)

1 , . . . , γ̂
(g)

4 , it can be concluded that physical health and

psychological health have stronger effects than social relationships and the environ-

ment, and that the effect of the last two latent constructs are not substantial. These

results seem theoretically reasonable and logical.

(4) The sample data give evidence of support to the hypothesis that the correlations of

the latent constructs in these two groups are not different. As expected, these latent

constructs are positively correlated.

(5) The estimated residual variables, ψ̂
(1)
δ = 0.075 and ψ̂

(2)
δ = 0.117, are quite small.

This indicates that the fitting of the health-related QOL by its latent constructs via

the structural equation is quite good.

5. Discussion

Latent variables are frequently encountered in substantive research. A clear understand-

ing of the inter-relationships among these latent variables and their relationships with

manifest variables is important in making correct decisions. Structural equation mod-

eling is an important multivariate method of achieving this purpose, and its standard

model with the normality assumption has been widely applied to practical problems.

However, to analyze multisample data from different treatment groups, cultural groups,

etc., it is necessary to extend the single sample model to a multisample model. More-

over, as missing data, and/or heavily skewed ordered categorical data are frequently

encountered in medical research, the developed statistical methods should be able to

handle this kind of missing discrete data. The main objective of this article is to estab-

lish an ML approach for analyzing multisample SEMs with missing ordered categorical

variables, by means of the standard tools in statistical computing, such as the MCEM

algorithm and path sampling. Based on the statistics produced from the proposed ML



298 X.-Y. Song

approach, we can perform other statistical analyses. For instance, the observed-data log-

likelihood can be applied to discriminant analysis.

Most probably due to the complexity of the different data and the problem, there are

a number of research directions of analyzing various kind of QOL data. The current de-

velopment provides an alternative for analyzing multisample ordered categorical QOL

data with missing entries.

An advantage of the current SEM approach is that it can be naturally generalized to

more complex models and data structures to cope with the real complicated situations

in QOL or other medical research. In future research, it will be desirable to establish

multilevel SEMs for analyzing hierarchically structural data, and mixture SEMs for

analyzing heterogenous data. Finally, the methodology that is provided in this paper

provides a solid foundation for developing longitudinal SEMs, which will be important

for investigating time effects on QOL analysis, and other medical research.
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Appendix A

The Gibbs sampler is implemented as follows. At the j th iteration with a current value

Dmj = (Vmj ,Yoj ,Ωj ), we simulate in turn:

(A.1)

Vm,j+1 from p[Vm|Yoj ,Ωj ,Do, θ (r)],
Yo,j+1 from p[Yo|Vm,j+1,Ωj ,Do, θ (r)],
Ωj+1 from p[Ω|Vm,j+1,Yo,j+1,Do, θ (r)],

where p[·| · · ·] denotes the corresponding conditional distribution. The above cycle is it-

erated many times. As j tends to infinity, it can be shown by standard theory in statistical

computing that the joint distribution of Dmj converges in distribution to the joint con-

ditional distribution of Dm given Do at θ (r). Hence, there is a sufficiently large integer

J ∗, such that for j > J ∗,Dmj can be regarded as an observation from the conditional

distribution (Dm|Do) at θ (r). The conditional distributions that are involved in (A.1) are

given follows.

(i) Conditional distribution of p[Vm|·]. Let Vm = {v(g)im = (x
(g)′

im , y
(g)′

im )′, g = 1, . . . ,

G; i = 1, . . . , ng}. For i = 1, . . . , ng , as v
(g)
i are mutually independent, v

(g)
im are

also mutually independent. As Ψ (g) is diagonal, v
(g)
im is conditionally independent

with y
(g)
io given ω

(g)
i . Hence, it follows from (1) that

p(Vm|Yo,Ω,Do, θ) =
G∏

g=1

ng∏

i=1

p
(
v
(g)
im |ω(g)

i , θ (g)
)
, and

(A.2)
[
v
(g)
im |ω(g)

i , θ (g)
] D= N

[
μ
(g)
i,m +Λ

(g)
i,mω

(g)
i ,Ψ

(g)
i,m

]
,
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whereμ
(g)
i,m is a p

(g)
i ×1 subvector ofμ(g),Λ

(g)
i,m is a p

(g)
i ×q submatrix ofΛ(g) with

rows that correspond to observed components deleted, and Ψ
(g)
i,m is a p

(g)
i × p

(g)
i

submatrix of Ψ (g) with the appropriate rows and columns deleted. In general, the

structure of Vm may be very complicated with a large number of missing patterns

having different positions of missing entries. However, the corresponding condi-

tional distribution only involves a product of very simple normal distributions. The

computational burden for simulating Vm is light.

(ii) Conditional distribution of p[Yo|·]. Suppose the dimension of y
(g)
i is t . Based on

the definition and properties of the current model, it can be shown that:

p(Yo|Vm,Ω,Do, θ)

= p(Yo|Ω,Zo, θ) =
G∏

g=1

ng∏

i=1

t∏

h=1

p
(
y
(g)
ih |ω(g)

i , z
(g)
ih , θ (g)

)
,

p
(
y
(g)
ih |ω(g)

i , z
(g)
ih , θ (g)

)

(A.3)
D= N

[
μ
(g)
h +Λ

(g)
h ω

(g)
i , ψ

(g)
hh

]
I
(
y
(g)
ih ∈

(
α
(g)

h,z
(g)
ih

, α
(g)

h,z
(g)
ih +1

])
,

where Λ
(g)
h is the hth row of Λ(g);ψ (g)

hh is the hth diagonal element of Ψ (g); z(g)ih is

hth element of z
(g)
i associated with y

(g)
ih , and I is an indicator function.

(iii) Conditional distribution of p[Ω|·].

p(Ω|Vm,Yo,Do, θ) =
G∏

g=1

ng∏

i=1

p
(
ω
(g)
i |v(g)i , θ (g)

)
, where

(A.4)

p
(
ω
(g)
i |v(g)i , θ (g)

)
∝ p

(
ω
(g)
i |θ (g)

)
p
(
v
(g)
i |ω(g)

i , θ
(g)
i

)

× exp

[
−1

2

{(
v
(g)
i − μ(g) −Λ(g)ω

(g)
i

)′
Ψ (g)−1

×
(
v
(g)
i − μ(g) −Λ(g)ω

(g)
i

)
+ ω

(g)′

i Σ (g)−1

ω ω
(g)
i

}]
.

It can be shown that

p
(
ω
(g)
i |·

) D= N
(
Σ−1

g Λ(g)′Ψ (g)−1

(v
(g)
i − μ(g)),Σg

)
,

where

Σ−1
g = Σ (g)−1

ω +Λ(g)′Ψ (g)−1

Λ(g), and

Σ (g)
ω =

[
A(g)−1

(Γ (g)Φ(g)Γ (g)′ + Ψ
(g)
δ )A(g) A(g)Γ (g)Φ(g)

Φ(g)Γ (g)′A(g)′ Φ(g)

]
,

A(g) = (I − B(g))−1.

Simulating observations from the conditional distributions that are given in

(A.3) involves the univariate truncated normal distribution, and this is done by the
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inverse distribution method proposed by Devroye (1985). Conditional distribution

in (A.4) is normal, simulating observations from it is straightforward.

Appendix B

We describe the application of path sampling (Gelman and Meng, 1998) to compute

logp(Do; θ̂1,M1). To facilitate the computation, we choose a model M0 with a para-

meter vector θ0 that is nested in M1, such that θ1 = (θ0, θ
∗
1) and θ1 reduces to θ0

under M0. Then we define a path to link M1 and M0 by a linked model Mt with a pa-

rameter vector tθ1 = (θ0, tθ
∗
1) via a continuous path t in [0, 1], such that Mt = M1 if

t = 1, and Mt = M0 if t = 0. Let p(D; θ) be the complete-data likelihood function,

U(D; t θ̂1) = d logp(D; t θ̂1)/dt , and

λ10 = log
[
p(Do; θ̂1,M1)/p(Do; θ̂0,M0)

]
.

It can be shown that (Gelman and Meng, 1998)

λ10 = 1

2

S∑

s=1

(t(s+1) − t(s))(�U(s+1) + �U(s)),

where {t(s): s = 0, . . . , S} are grids in [0, 1] such that 0 = t(0) < t(1) < · · · <

t(s+1) = 1, �U(s) = J−1
∑J

j=1 U(Do,Dmj ; t(s)θ̂1), with {Dmj : j = 1, . . . , J } are ob-

servations that are simulated from the conditional distribution of Dm given Do at t(s)θ̂1.

The MCMC method at the E-step of the MCEM algorithm can be directly applied to

simulate the above sample of observations for computing λ10. If we can find a simple

M0 such that p(Do; θ̂0,M0) can be evaluated, then

logp(Do; θ̂1,M1) = λ10 + logp(Do; θ̂0,M0).

In practice, M0 can be chosen as v
(g)
i = μ(g) + ε

(g)
i , so that its observed-data log-

likelihood can be obtained via single integration (note that Ψ (g) is a diagonal), see (Lee

and Song, 2004b).
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The Set of Feasible Solutions for Reliability

and Factor Analysis

Jos M.F. Ten Berge and Gregor Sočan

Abstract

The mathematical model underlying factor analysis has the same structure as clas-

sical test theory. Both in factor analysis and in test theory, a convex set of “feasible

tautologies” has been defined. In factor analysis, the set contains all nonnegative

diagonal matrices Ψ of unique variances which entail a reduced covariance matrix

Σ − Ψ with no negative eigenvalues. In reliability theory, the set contains all non-

negative diagonal matrices of error variances which entail a true score covariance

matrix with no negative eigenvalues. Points in the feasible set are considered which

have direct psychometric interpretations. The most reliable point in test theory has

Principal Component Analysis as a factor analysis counterpart. Similarly, the least

reliable point, associated with the greatest lower bound to reliability, corresponds

to Minimum Trace Factor Analysis. Other factor solutions in the set are Minimum

Rank Factor Analysis (minimizing the unexplained common variance for different

numbers of retained common factors), and a novel quadratic variant of it. The lat-

ter method minimizes the same function as Least Squares Factor Analysis, but does

constrain the solution to be in the feasible set. Minimum Rank Factor Analysis so-

lutions have no direct counterparts in test theory, except when only one common

factor is extracted. The single factor solution corresponds to the most unidimen-

sional (most congeneric) point in test theory. To evaluate the reliability of congeneric

test, the greatest lower bound is argued to be preferable to reliability measures based

on a single factor hypothesis. The greatest lower bound is also argued to be superior

to reliability based on multiple factor solutions.

For many decades, factor analysis has upheld intimate relationships with classical test

theory. It is not just that practitioners use factor analysis to construct reliable scales. The

very mathematical model underlying factor analysis has the same structure as classical

test theory. Both in factor analysis and in reliability theory, a “set of feasible tautologies”

has been defined. In factor analysis, the set contains all nonnegative diagonal matrices

Ψ of unique variances such that the common parts covariance matrix Σ − Ψ , holding

communalities in the diagonal, has no negative eigenvalues. Each point in the set refers

303
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to one particular factor analysis solution in a tautological manner, e.g., Browne (1969).

In test theory, the set contains all nonnegative diagonal matrices of error variances which

entail a true score covariance matrix that has no negative eigenvalues. Each point in the

set now defines a possible set of error variances, and, by implication, a possible value of

the reliability. The focus of this paper is on points in the feasible set which have direct

psychometric interpretations.

After an introduction of the feasible set in the factor analysis context, a historical

overview is given of Ledermann’s bound to the number of factors needed for perfect

fit. Then the feasible set is discussed from a reliability point of view, by reviewing

the “greatest lower bound” (glb) to reliability (Jackson and Agunwamba, 1977). Next,

the set is again considered from a factor analysis point of view. Minimum Trace Fac-

tor Analysis (Bentler and Woodward, 1980; Shapiro, 1982) and Minimum Rank Factor

Analysis (Ten Berge and Kiers, 1991) are reviewed, and a new type of least squares

factor analysis which is also in the feasible set is introduced. The concepts of test uni-

dimensionality and test reliability are discussed and compared in terms of an example.

Finally, reliability based on multiple factor solutions is discussed. Both for the single

and the multiple factor situation, the glb is argued to be the superior estimate of relia-

bility.

1. Introduction

Factor analysis of a set of variables x1, . . . , xm, decomposes each variable xj into a

common part cj , giving rise to correlation between xj and xk , j �= k, and a unique part

uj , defined to be uncorrelated with c1, . . . , cm and with uk , k �= j . Upon writing

(1)xj = cj + uj ,

j = 1, . . . , m, and using the property that u1, . . . , um are uncorrelated with c1, . . . , cm
and among themselves, we have

(2)Σ = FF′ + Ψ ,

where Σ is the covariance or correlation matrix of the variables, Ψ the diagonal ma-

trix of unique variances, and FF′ the covariance matrix of the common parts cj , j =
1, . . . , m, of the variables. The variances of these common parts are in the diagonal of

FF′. They are the communalities of the variables.

Factor analysis aims at a decomposition (2) with Σ −Ψ of low rank r , which can be

factored as Σ − Ψ = FF′, with F an m × r matrix. However, in practice, the smallest

value of r for which (2) can be solved exactly tends to be prohibitively high, an issue to

be reviewed in the next section. For practical purposes, we shall have to allow that some

common factors will be discarded, and decompose Σ , for some small value of r , as

(3)Σ = F1F′
1 + F2F′

2 + Ψ ,

where F1 is the m × r matrix of loadings on r retained common factors, and F2,

with columns orthogonal to those of F1, holds the loadings on common factors to be
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discarded. This means that the variances of the variables (diagonal elements of Σ)

are decomposed into explained common variances (diagonal elements of F1F′
1), unex-

plained common variances (diagonal elements of F2F′
2), and unique variances (diagonal

elements of Ψ ). It is essential to note that (3) still requires that both Σ − Ψ and Ψ are

at least positive semidefinite. Negative elements in Ψ , known as Heywood cases, have

drawn a lot of attention. However, when Σ −Ψ , the covariance matrix for the common

parts of the variables, would appear to be indefinite, that would be equally incompatible

with (3).

A small example may be instructive. Suppose we have observed the covariance ma-

trix

(4)Σ =

⎡
⎢⎣

1 0.73 0.36 0.36

0.73 1 0.36 0.36

0.36 0.36 1 0.52

0.36 0.36 0.52 1

⎤
⎥⎦ .

When Ψ has the diagonal elements 0.27, 0.27, 0.48, and 0.48, respectively, we obtain a

matrix Σ − Ψ of rank 2, with communalities 0.73, 0.73, 0.52 and 0.52 in the diagonal

cells. Its eigenvalues are 2.0, 0.50, 0, and 0, so Ψ is indeed in the feasible set. We can

factor Σ − Ψ as FF′, where

(5)F =

⎡
⎢⎣

0.8 −0.3

0.8 −0.3

0.6 0.4

0.6 0.4

⎤
⎥⎦ .

Because the common factors account for all covariances between the variables, we have

found a solution for (2). The total common variance is 2.5, the sum of communalities. It

is fully explained by the two common factors, which means that 100% of the common

variance is explained by the two factors. Because of the perfect fit, any particular method

of common factor analysis would produce the same solution.

The situation changes when it is desired to determine only a single common factor.

One possible solution would be to preserve the elements of Ψ , and determine F1 and

F2 as columns 1 and 2 of F, respectively. The common variance to be explained re-

mains 2.5, but now only 2.0 is explained by the single factor, which amounts to 80% of

explained common variance.

The above rank-one solution is not the standard solution from least squares fac-

tor analysis. The latter method yields F1 = [0.7905 0.7905 0.5509 0.5509]′, and it

defines the diagonal elements of Ψ as 0.375, 0.375, 0.697, and 0.697. Now Σ − Ψ

has eigenvalues 1.8566, 0.3217, −0.1052, and −0.2165. Dividing the first eigenvalue

(explained common variance) by the sum of all eigenvalues (common variance to be

explained) would reveal that 100% of the common variance is explained by a single

factor. Because there is no perfect fit, this value is of no use at all. This is not an idio-

syncrasy of the miniature data. In fact, when for any r-factor solution, the percentage

of explained common variance is evaluated as the sum of the r largest eigenvalues

of Σ − Ψ , divided by the sum of all its eigenvalues, least squares factor analysis

(regardless of the particular algorithm used) invariably yields 100% of explained com-

mon variance, because the last m − r eigenvalues (0.3217, −0.1052, and −0.2165
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in the example above) sum to zero (Harman, 1976, p. 182). Incidentally, as Harman

has explained, the same goes for maximum-likelihood factor analysis. When perfect

fit is abandoned, and approximate least squares or maximum likelihood solutions are

adopted instead, the concept of explained common variance is sacrificed. This is be-

cause these methods imply matrices Ψ which do not belong to the feasible set. If it is

desired to preserve the concept of explained common variance, we shall have to resort

to methods which do stay in the feasible set. Such methods will be discussed in due

course.

2. The Ledermann bound

As we have seen above, the unexplained common variance entailed by (3) will be zero

when F2 vanishes, that is, when r , the number of common factors to be retained, equals

the rank ofΣ−Ψ , which we shall call the reduced rank ofΣ in the sequel. Accordingly,

the question is to what extent the rank ofΣ−Ψ can be reduced by an appropriate choice

of unique variances in Ψ , or, equivalently, of communalities to put in the diagonal of Σ .

The answer has an intriguing history, revolving around Ledermann’s bound. Ledermann

(1937) proposed that the rank of Σ −Ψ could always be reduced to the smallest integer

equal to or above the function

(6)ϕ(m) =
[
2m + 1 −

√
8m + 1

]
/2.

For instance, when m = 6, we would need at most three factors to solve (2), and when

m = 10, six factors would be enough. For m = 4, the Ledermann bound is 1.63, indi-

cating that 2 factors would be enough.

Ledermann (1937) inferred that the function ϕ(m) given in (6) should be seen as an

upper bound to r , the number of factors needed to solve (2), by counting the equations

and parameters involved in solving (2). This optimistic view was shattered by coun-

terexamples presented by Wilson and Worcester (1939) and Guttman (1958). Guttman

showed that the universal upper bound to r is as high as m − 1, also see Bekker and De

Leeuw (1987). Ledermann’s bound seemed history, albeit that the bound did keep a role

in the number of degrees of freedom for the chi-square test of the factor analysis model,

e.g., Jöreskog (1967).

A surprising remake of Ledermann’s bound took place in the eighties. Contrary

to what Ledermann believed, Shapiro (1982) showed that the bound is almost surely

a lower bound to the number of factors needed in factor analysis. Specifically, Shapiro

has shown that the set of covariance matrices Σ the rank of which can be reduced to

a value below the Ledermann bound by changing the diagonal elements has Lebesgue

measure zero. This means that, when m = 4, we almost surely need at least two factors

to solve (2), when m = 6 we almost surely need at least three, and when m = 10, we

need at least six. For the covariance matrix given in (4), where m = 4, we have seen

that two factors are enough to solve (2), but cases where we need three factors also arise

with positive probability. For instance, if the covariance between variables 1 and 4 in (4)

is changed to 0.55, we need three factors to solve (2).
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Shapiro (1982) also proved that the minimum rank is unstable below the Ledermann

bound. This means that, when the rank of a given Σ can be reduced to a value be-

low the Ledermann bound (for instance, when such a matrix is artificially constructed),

any change, no matter how small, of the off-diagonal elements of Σ will increase the

minimum reduced rank of Σ . Furthermore, Shapiro (1985) has shown that any Ψ that

solves (2), with Σ − Ψ positive semidefinite of rank r , is almost surely non-unique

(meaning that other choices of Ψ , entailing the same reduced rank r , exist) when r is

above the Ledermann bound, and almost surely locally unique at and below the Leder-

mann bound. Local uniqueness means that in a neighborhood of any Ψ that satisfies (2)

no other solutions exist. Shapiro (1985) also conjectured that Ψ is almost surely glob-

ally unique when r is strictly below the Ledermann bound. This conjecture has been

proven correct (Bekker and Ten Berge, 1997).

The results on Ledermann’s bound are important in that they provide answers to

long-standing questions. However, from a practical point of view, the results are not

what one might have hoped for. In cases of perfect fit, uniqueness of Ψ holds only below

(sometimes at) Ledermann’s bound, but such cases do not arise in practice. Accordingly,

we shall have to resort to solutions for (3) rather than (2), to obtain an F2 which is small

in some sense, and can be discarded without losing much information. Methods for

obtaining such solutions will be discussed below.

Incidentally, Ledermann’s bound also plays a role in the so-called inverse princi-

pal component problem of a correlation matrix. That is, when the number of retained

principal components (possibly rotated) is at or above the Ledermann bound, the entire

correlation matrix can be retrieved from the retained loadings (Ten Berge and Kiers,

1999). For instance, the loadings on three principal components of a correlation matrix

of six variables carry enough information to allow retrieving that correlation matrix.

The fact that solving (2) is not possible for a small number of factors r has led

the mainstream of factor analysis to turn to approximations where some function of

Σ−FF′, with F a tall matrix, is minimized subject to either no constraints, or subject to

the constraint that the unique variances, evaluated as the diagonal elements of Σ − FF′,
are nonnegative. We have seen an example of Least Squares Factor Analysis above. It

yields a Ψ outside the feasible set. It is well known that Maximum Likelihood Factor

Analysis does satisfy the constraint that Σ−F1F′
1 is a Gramian matrix (Browne, 1969),

but it yields a Σ −Ψ that cannot be written as F1F′
1 + F2F′

2 because it has one or more

negative eigenvalues. So it is likewise outside the feasible set. In fact, there are very

few methods which decompose Σ by (2) with both Σ − Ψ and Ψ Gramian. Until the

nineties, the only exception was Constrained Minimum Trace Factor Analysis (CMTFA,

Bentler and Woodward, 1980; Shapiro, 1982), which has its roots in the framework of

classical test theory. That framework will be discussed next.

3. Reliability theory and a convex set of possible solutions for (2)

Classical test theory starts from the axiom that, for a test X composed of test parts

x1, . . . , xm, each test part xj consists of a true score tj and error ej :

(7)xj = tj + ej ,
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j = 1, . . . , m, the error ej being uncorrelated with t1, . . . , tm and with ek , k �= j . The

reliability of test X is defined as

(8)Var(T )/Var(X) = 1 − Var(E)/Var(X),

where X = x1 + · · · + xm, T = t1 + · · · + tm, and E = e1 + · · · + em. The relia-

bility can be evaluated as the correlation between the test and a parallel test. However,

parallel tests are more often than not absent, whence one may have to settle for lower

bounds to the reliability. By far the best known amid these is Guttman’s lower bound λ3

(Guttman, 1945), usually referred to as Cronbach’s alpha. The relation between alpha

and the reliability can be expressed by the identity

(9)alpha + 1

(m − 1)Var(X)

∑

j<k

Var(tj − tk) = reliability,

see Ten Berge and Sočan (2004). This formula reveals at once that alpha is a lower

bound to the reliability, as we know from Guttman (1945), and that alpha equals the

reliability if and only if all true score differences tj − tk have variance zero, as we know

from Novick and Lewis (1967).

Jackson and Agunwamba (1977) noted that all lower bounds to reliability use part

of the information implicit in the classical definitions. For instance, alpha uses non-

negativity of all variances of true score differences tj − tk , as is immediate from (9).

Jackson and Agunwamba, elaborating on pioneering work by Bentler (1972), asked the

fundamental question of how to use all information implied by the classical assump-

tions. The zero covariance of error terms with true scores and with errors of other test

parts implies that the observed covariance matrix Σ can be decomposed as

(10)Σ = ΣT +ΣE,

where ΣE , the covariance matrix of e1, . . . , em, is diagonal, and both ΣE and ΣT (the

covariance matrix of t1, . . . , tm), are positive semidefinite. Jackson and Agunwamba

thus arrived at the set of all feasible states of nature: It is the set of all nonnegative

diagonal matrices ΣE for which Σ−ΣE has no negative eigenvalue. The set is convex,

and the m = 2 case can be pictured as in Figure 1.

The area at and below the curve represents the set of all cases where Σ − ΣE is

positive semidefinite and positive definite, respectively. The positive quadrant contains

all nonnegative diagonal matrices ΣE , and the shaded area is the intersection of the

two sets. This intersection defines all possible solutions for ΣE . It contains all diagonal

matrices ΣE that are compatible with the classical axioms. The points in the set that are

on the curve are the boundary points of the set. They correspond toΣ−ΣE singular, and

all interior points correspond to Σ − ΣE nonsingular, assuming that Σ is nonsingular

to begin with. It may be noted that we can move from each interior point to a boundary

point by adding λmIm to ΣE , where λm is the smallest eigenvalue of Σ −ΣE . The new

pointΣE+λmIm corresponds to a matrixΣ−ΣE−λmIm which is positive semidefinite

and singular.

At this point, it is instructive to consider points in the set that can be identified at

once. First, because ΣX − O = ΣX is positive semidefinite, there is the origin. It
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Fig. 1. An example of the feasible set (m = 2).

represents the point where all error variances are zero. Next, there are m boundary points

which have one positive coordinate, and all other coordinates zero. They correspond to

the covariance matrices that remain when variable xj is replaced by its multiple linear

regression on all other m − 1 variables, j = 1, . . . , m, viz. the points (0.955, 0) and (0,

0.951) in Figure 1. The nonzero coordinate (that which is subtracted from the variance

of variable j ) is the residual variance associated with the regression on the other m − 1

variables. Clearly, the resulting ΣE is a boundary point with Σ −ΣE singular.

Furthermore, we have a boundary point with all coordinates equal. It is the point

where ΣE is λmIm, where λm is the smallest eigenvalue of Σ . When that eigenvalue is

zero, either the entire feasible set collapses into the origin, or one or more coordinates

vanish. For instance, when variable xm is the sum of variables x1, . . . , xm−1, the origin

is the only point in the feasible set; when, however, there is a linear dependency in

just a subset of variables, the coordinates of points in the feasible set vanish for those

variables. In both cases, removing one or more variables to restore linear independence

is indicated.

Finally, the set has a unique boundary point (Ten Berge et al., 1981; Della Riccia

and Shapiro, 1982) that has the largest sum of coordinates. This is the point where the

tangent hyperplane orthogonal to the vector of ones, that is, the hyperplane defined by a

constant sum of error variances, touches the feasible set. When m = 2, the hyperplane

becomes the tangent line with angle −45◦, portrayed in Figure 1.

We now consider implications of the feasible set for reliability theory. By map-

ping the set of possible ΣE into the interval [0, 1] by the reliability function rXX =
1 − tr(ΣE)/Var(X), that interval is split in two areas of possible versus impossible

values for the reliability. Clearly, because ΣE = O (the origin) belongs to the set, a

reliability as high as 1 can never be ruled out on the basis of a single test administration.

On the other hand, the worst possible situation for reliability is when the sum of error

variances is a maximum over the set of possible ΣE . It defines the worst case scenario
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for reliability. It has the largest possible sum of error variances under full consideration

of all information. Accordingly, the greatest lower bound (glb) to reliability is defined

as the reliability value associated with that point (Jackson and Agunwamba, 1977).

Hence, in the [0, 1] interval, the possible reliability values are in the range [glb, 1], and

the impossible reliability values are in the range [0, glb). All lower bounds (except when

they happen to coincide with the glb) are in the interval [0, glb) of impossible reliability

values, or they are impossible because they are negative.

An efficient computational method to evaluate the glb as the worst possible case in

the feasible set has been proposed by Bentler and Woodward (1980), also see Ten Berge

et al. (1981). It does not just yield the maximum value of tr(ΣE), but also identifies the

maximizing ΣE . Hence, the method offers a possible solution for (10). But then it also

offers a possible solution for (2): Upon replacing ΣE by Ψ , and ΣT by FF′, it provides

the solution to (2) with the maximum sum of unique variances. It has been christened

Constrained Minimum Trace Factor Analysis (CMTFA) by Shapiro (1982). It yields

the solution to (2) having the smallest possible trace for the reduced covariance matrix

Σ −Ψ , subject to the constraints that both Σ −Ψ and Ψ (diagonal) be at least positive

semidefinite. However, although CMTFA does solve (2) subject to its constraints, it has

no appeal whatsoever as a method of factor analysis, because it is not aimed at reducing

Σ to a matrix Σ − Ψ of (approximately) low rank, as will be shown next.

4. Minimizing the sum and the sum of squares of unexplained common variances

The purpose of CMTFA is to find the solution for (2) which minimizes tr(Σ − Ψ )

or, equivalently,
∑m

j=1 λj (Σ − Ψ ) (the sum of all eigenvalues of Σ − Ψ ) subject to

its constraints. Because there is no separation here between explained and unexplained

common variance as detailed in (3), CMTFA has no link to the purpose of factor analy-

sis. It is not aimed at (approximate) rank reduction. In fact, CMTFA often yields all

reduced eigenvalues nonzero, except the last. In other words, CMTFA is not aimed at

finding a decomposition (3) with F1 “big” in some sense, and F2 “small”. To obtain a

method more germane to the purpose of factor analysis, Ten Berge and Kiers (1991)

proposed a generalization of CMTFA, called Minimum Rank Factor Analysis (MRFA),

which does aim at finding a “small” F2 in (3). For any given number r of common fac-

tors to be retained, MRFA minimizes the sum of the smallest m−r reduced eigenvalues.

Equivalently, it decomposes Σ in such a way that, for a fixed r , the sum of squares of

F2 is minimized. In terms of reduced eigenvalues, MRFA minimizes

(11)f1(Ψ ) =
m∑

j=r+1

λj (Σ − Ψ ),

subject to the constraint λ1 � λ2 � · · · � λm � 0, with Ψ a nonnegative diagonal

matrix. It may be noted that CMTFA is the special case of MRFA when r = 0.

In earlier work (e.g., Shapiro, 1982), MRFA used to be associated with factor so-

lutions that satisfy (2) exactly with r as small as possible. However, Ten Berge and

Kiers (1991) have relaxed this definition of MRFA to include approximate solutions.
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Table 1

Three methods targeted at small reduced eigenvalues

Eigenvalue criterion

minimized

ssq

minimized

Heywood case

protection

Last m − r

eigenvalues

Explained common

variance

MRFA Sum of last m − r

eigenvalues

ssq(F2) Automatic Nonnegative Percentage

available

MRFA-Q Sum of squares of

last m − r

eigenvalues

ssq(F2F′
2
) Automatic Nonnegative Percentage

available

ULS Sum of squares of

last m − r

eigenvalues

ssq(F2F′
2
) Available Summing

to 0

Percentage not

available

The practical interpretation of MRFA is that it offers the very solution to (3) that min-

imizes the common variance left unexplained when as few as r factors are used. This

is fully compatible with the purpose of factor analysis. However, MRFA does not just

minimize the unexplained common variance: It also reveals how small it is. This is pos-

sible because MRFA preserves the distinction between communalities and explained

common variances: The former are the diagonal elements of Σ − Ψ , and the latter are

the row sums of squares of F1. In terms of eigenvalues of Σ − Ψ , the total common

variance is λ1+···+λm and the unexplained part of this is f1(Ψ ), whence the percentage

of explained common variance is 100 × (λ1 + · · · + λr)/(λ1 + · · · + λm).

Although f1 seems a meaningful criterion for factor analysis, alternatives are easily

conceived of. In particular, we might minimize

(12)f2(Ψ ) =
m∑

j=r+1

λ2
j (Σ − Ψ ),

the sum of squares of the smallest m − r eigenvalues of Σ − Ψ , subject to the same

constraints as (11). This minimizes the sum of squares (rather than the plain sum) of

unexplained common variances. We shall refer to it as quadratic MRFA (MRFA-Q). Re-

search into the practical performance of MRFA-Q, using a numerical method by Prof.

Arkadi Nemirovski, is in progress, e.g., Sočan and Ten Berge (2005). It may be noted

that MRFA-Q is a protected version of Least Squares Factor Analysis, for which we

shall use the acronym ULS (Unweighted Least Squares) henceforth. The latter method

also minimizes f2, but with Σ − Ψ indefinite except in cases of perfect fit. Inciden-

tally, ULS refers to one particular way (Jöreskog, 1967) of minimizing (12). Other

approaches (such as Minres and Principal Axis Factoring) can be found in Harman and

Jones (1966). The properties of MRFA, MRFA-Q, and ULS are summarized in Table 1.

Maximum Likelihood Factor Analysis (MLFA) also has an interpretation in terms

of reduced eigenvalues, very similar to ULS (Jöreskog, 1967; Ten Berge, 1998). In

simulation studies by Briggs and MacCallum (2003) and Sočan (2003), ULS appeared

slightly superior to MLFA in retrieving underlying factors from samples.

It is tempting to believe that minimizing the unexplained common variance, as is

done by MRFA, is tantamount to maximizing the explained common variance, but that
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is not the case. The eigenvalues of a symmetric matrix are monotonic functions of the

diagonal elements. Hence, the maximum of the sum of the r largest eigenvalues of

Σ − Ψ is obtained when Ψ vanishes. This would take us right back to PCA. It is the

point in the feasible set with the minimum sum of unique variances. It might be called

maximum trace factor analysis, maximizing tr(Σ − Ψ ).

To see how useful a percentage of explained common variance can be, consider the

ULS analysis of nine intelligence tests by Carroll (1993, pp. 96–98). Carroll reports

that a four factor solution is sufficient. When MRFA is applied with r = 3 and r = 4,

we find solutions for Ψ with percentages of explained common variance of 93.16 and

99.10, respectively. This is very clear evidence that four factors are indeed enough. In

terms of the resulting factor solutions, the MRFA loadings for r = 4 are very similar

to those reported by Carroll. The main difference is that MRFA (or MRFA-Q, for that

matter) yields, as a bonus, the percentage of explained common variance associated

with any number of factors.

A study on the sample sizes, needed to infer population factors from MRFA fac-

tors in samples, was done by Sočan (2003). The results indicate that, except for cases

of low average communalities (which may be expected when factoring, for example,

test items), samples of n = 200 are more than enough to obtain reliable estimates of

loadings and explained common variances. Asymptotic theory for MRFA has been de-

veloped by Shapiro and Ten Berge (2002).

Sočan (2003) also found that standardizing variables before the analysis has hardly

any impact at all on retrieving underlying factors from samples. This is reassuring be-

cause MRFA is not scale-free.

5. The feasible set from two perspectives

The feasible set of test theory has two points of particular interest: The glb point is

the maximum error variance point (minimum reliability point), and the origin is the

perfect reliability point. In terms of factor analysis, these points correspond to CMTFA

(the maximum unique variance point) and PCA, the minimum unique variance point,

respectively. In terms of reduced eigenvalues (the eigenvalues of Σ − Ψ ), CMTFA

and PCA are the points where the sum of reduced eigenvalues is a minimum, and a

maximum, respectively. Additional points can now be identified in the context of factor

analysis.

Before turning to such points, it is important to remember that the covariance matrix

Σ does not admit aΨ such that the rank ofΣ−Ψ is below the Ledermann bound, almost

surely (Shapiro, 1982). Low ranks occur, for that matter, neither inside nor outside the

feasible set. Since approximations of low rank are mandatory in applied factor analysis,

we may either seek points outside the feasible set, implying that one or more reduced

eigenvalues are negative (ULS, MLFA), or we may seek solutions inside the set (MRFA,

MRFA-Q). Using MRFA for a given value of r produces the point inside the set where

the sum of the last m−r reduced eigenvalues is a minimum, and MRFA-Q produces the

point where the sum of squares of those eigenvalues is a minimum. In both cases, the

explained common variance can meaningfully be evaluated as sum of the first r reduced
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eigenvalues divided by the sum of all m reduced eigenvalues. It follows that the feasible

set has a best rank-r MRFA (and MRFA-Q) point, r = 1, 2, 3, . . . , m − 2. All these

points are boundary points, and they often are very close. The points will typically be

unique when at least one of the smallest m − r reduced eigenvalues is positive, and

non-unique otherwise.

The r = 1 MRFA solution can be interpreted as the most unidimensional point

in the set, the r = 2 MRFA solution is the most two-dimensional point, and so on.

Counterparts in test theory are not obvious except when r = 1. This point corresponds

to the most “congeneric” point in test theory.

Clearly, all mathematical results on the feasible set apply equally to test theory and

factor analysis. For instance, Roff (1936) noted that the residual variances of a test in

the regression analysis on all m−1 other tests are upper bounds to the unique variances.

So they are also upper bounds to the error variances in test theory. When Ihara and Kano

(1986) proposed a new estimator of the uniqueness in factor analysis, they contributed

a new estimator for error variance in test theory. When Yanai and Ichikawa (1990) de-

veloped new bounds for communalities in factor analysis, they contributed new bounds

for true score variances.

The above discussion of factor analysis and reliability from the perspective of the

feasible set is not meant to imply that points inside the set are necessarily “good”

and those outside are “bad”. After all, all lower bounds to reliability (Guttman, 1945;

Jackson and Agunwamba, 1977) except the glb are outside the set (unless they hap-

pen to coincide with the glb) and one of these, coefficient alpha, has been extremely

useful for applied research. Likewise, ULS has an excellent record of retrieving un-

derlying factors from samples in simulation studies (Briggs and MacCallum, 2003;

Sočan and Ten Berge, 2005). The fact that ULS solutions are outside the feasible set

does not detract from that at all.

It should be clear at this point that, although factor analysis and test theory can be

described in terms of the same mathematical framework of a “feasible set”, they refer to

entirely different points in that set. In fact, because we treat specific variance as part of

the reliable variance, evaluating reliability on the basis of factor solutions is impossible.

This will be further explained for single and multiple factor solutions, respectively.

6. Reliability measures derived from a single factor solution

When a test is congeneric, i.e., made up of test parts having perfectly correlated true

scores, there is a decomposition Σ = ΣT + ΣE , see (10), with ΣT of rank one. So

ΣT can be factored as f1f ′
1, for some vector f1. The reliability is the sum of elements of

ΣT , divided by Var(X). This gives

(13)(1′ΣT 1)/Var(X) = (1′f1f ′
11)/Var(X) = (1′f1)

2/Var(X),

e.g., McDonald, 1970, also see Zinbarg et al., 2005. In practice, we know that rank

one is not possible when m > 3. But we may still run a factor analysis program with

r = 1, and evaluate (13). For example, Ten Berge and Sočan (2004) have done this

for six political survey items described by De Leeuw (1983). These items are meant
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Table 2

Six variables of De Leeuw (1983)

alpha glb (13) ECV

n = 100 0.836 0.893 0.892 77.48

n = 250 0.839 0.888 0.888 79.40

n = 500 0.840 0.887 0.886 79.76

n = 1000 0.839 0.886 0.885 79.92

Population 0.840 0.885 0.885 80.10

to measure the same trait, and therefore should be close to congeneric. The correlation

matrix is

(14)Σ =

⎡
⎢⎢⎢⎢⎢⎣

1.000

0.446 1.000

0.462 0.380 1.000

0.398 0.241 0.589 1.000

0.583 0.536 0.569 0.459 1.000

0.516 0.483 0.417 0.403 0.514 1.000

⎤
⎥⎥⎥⎥⎥⎦
.

Following De Leeuw (1983), Ten Berge and Sočan treated this correlation matrix (based

on n = 119 members of parliament) as if it was based on the population, and constructed

sets of 500 samples of sizes 100, 250, 500, and 1000, respectively, under the assumption

of multivariate normality. For each sample, they evaluated alpha, glb, and the single-

factor based reliability coefficient (13), evaluated from the r = 1 MRFA solution. Also,

they included the “unidimensionality” measure ECV (percentage of Explained Com-

mon Variance with one factor) associated with the latter solution. Table 2 gives average

results (over 500 replications) for 4 different sample sizes, and for the population.

In general, the sampling bias of the glb was quite small for the correlation matrix

(14), yet it was slightly larger (in absolute size) than for alpha. As expected, the glb was

much higher than alpha both in population and in samples. Remarkably, (13) behaved

very similarly to the glb in every respect. In fact, it tends to display the same sampling

bias for which the glb is renowned. Ten Berge and Sočan (2004) gave the following

explanation:

For correlation matrices like (14), with all elements positive, the true score vari-

ances implied by the glb tend to be very close to the communalities of the r = 1

MRFA solution. This means that ΣT of the glb will be nearly identical to Σ − Ψ of

MRFA with r = 1. Upon factoring ΣT as ΣT = f1f ′
1 + F2F ′

2, where f1 is the vec-

tor of loadings on the first common factor, the glb 1′ΣT 1/1′Σ1 will be very close to

1′(f1f ′
1 +F2F′

2)1/1′Σ1, whereas (13) yields 1′f1f ′
11/1′Σ1. Because all elements ofΣT

are positive, all loadings in f1 have the same sign. Because the columns of F2 are or-

thogonal to f1, the column sums of F2 are close to zero, hence 1′F2F′
21 is near zero. This

means that, although the factors associated with F2 do explain some variance, they do

not contribute to reliability, because positive and negative contributions to true scores

cancel. This explains why the glb must be close to (13) for data like (14). However,
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whereas (13) is based on an assumption of unidimensionality, the glb is not. Therefore,

it seems safer to use the glb.

7. Reliability derived from multiple factor analysis

To obtain a reliability estimate involving multiple common factors, (13) needs to be

generalized to

(15)(1′FF′1)/Var(X),

e.g., McDonald (1970), where F contains the loadings on r common factors. Bentler

(2004) has, just like Ten Berge and Sočan (2004) challenged the idea of reliability based

on a single factor because the single factor hypothesis is untenable. Whereas the latter

authors adopted the glb instead, Bentler insisted that (15) should be used. Interestingly,

Bentler showed that the solution F entering (15) can be rotated such that one factor will

have a loading vector f∗ with the maximum possible sum of loadings, and loadings on

the other factors sum to zero. Accordingly, either F or f∗ can be entered in (15), yielding

the multifactorial reliability estimate

(16)(1′FF′1)/Var(X) = (1′f∗f∗′1)/Var(X) = (1′f∗)2/Var(X).

Because it defines the reliable variance on the basis of more than one factor, it will usu-

ally exceed (13). Before discussing the merits of (16), it may be instructive to consider

an example.

Bentler (2004, p. 20), computed (16) for Harman’s (1976) nine psychological tests

(Table 3), using maximum likelihood factor analysis with r = 1 and r = 3, respectively.

Because F or f∗ can be based on any method of factor analysis, it is instructive to

complement Bentler’s analysis with the r = 1 and r = 3 solutions of MRFA and ULS,

respectively.

In fact, we first consider the MRFA factor solutions for r = 0, 1, 2, and 3, respec-

tively. The r = 0 solution is obtained from the MRFA program by running it with zero

common factors. Because MRFA minimizes the sum of the last m − r reduced eigen-

values, it will minimize the sum of all reduced eigenvalues when r = 0, which means

Table 3

Correlation matrix of Harman’s nine psychological tests

1.00 0.75 0.78 0.44 0.45 0.51 0.21 0.30 0.31

0.75 1.00 0.72 0.52 0.53 0.58 0.23 0.32 0.30

0.78 0.72 1.00 0.47 0.48 0.54 0.28 0.37 0.37

0.44 0.52 0.47 1.00 0.82 0.82 0.33 0.33 0.31

0.45 0.53 0.48 0.82 1.00 0.74 0.37 0.36 0.36

0.51 0.58 0.54 0.82 0.74 1.00 0.35 0.38 0.38

0.21 0.23 0.28 0.33 0.37 0.35 1.00 0.45 0.52

0.30 0.32 0.37 0.33 0.36 0.38 0.45 1.00 0.67

0.31 0.30 0.37 0.31 0.36 0.38 0.52 0.67 1.00
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Table 4

MRFA communalities (h2), eigenvalues (λ), and percentage of ECV

r = 0 r = 1 r = 2 r = 3

h2 λ h2 λ h2 λ h2 λ

0.85 4.543 0.85 4.543 0.84 4.543 0.85 4.543

0.75 1.083 0.75 1.083 0.75 1.087 0.75 1.086

0.77 0.882 0.77 0.882 0.77 0.882 0.77 0.885

0.96 0.058 0.96 0.057 0.96 0.058 0.97 0.058

0.77 0.048 0.77 0.048 0.77 0.048 0.77 0.048

0.77 0.029 0.77 0.030 0.76 0.029 0.76 0.030

0.41 0.016 0.41 0.016 0.41 0.013 0.41 0.012

0.60 0 0.60 0 0.59 0 0.59 0

0.80 0 0.80 0 0.81 0 0.81 0

Sum 6.658 6.658 6.658 6.658 6.660 6.660 6.662 6.662

ECV 68.23% 84.52% 97.79%

that it yields the error variances defining the glb, or, equivalently, the unique variances

defining CMTFA. Communalities and reduced eigenvalues are reported in Table 4.

The communalities in Table 4 reveal that, for the data of Table 3, the best r = 1

point, the best r = 2 point, and the best r = 3 point of MRFA are very close to the

CMTFA (r = 0) point. The percentage of ECV is 97.79 for three factors, indicating

that a three-factor solution gives an almost perfect fit. The glb is 1 − tr(ΣE)/1′ΣX1 =
1 − (9 − 6.658)/42.3 = 0.9446, much higher than alpha (0.886). Incidentally, Table 4

may suggest that the exact minimum rank is 7, but it is 6. This fact can not be seen from

the results presented here, but rather from inspection of MRFA solutions for r = 5 and

r = 6.

Next, we turn to factor based reliability, using MLFA, MRFA and ULS. Table 5 gives

the loadings f for r = 1 and f∗ for r = 3, for each of these three methods, along with

the implied reduced eigenvalues λj for ULS. The bottom lines of the table report the

sums of loadings, and the associated values of (15). In the r = 1 cases, this boils down

to (13).

It is clear from Table 5 that the r = 1 loading vectors f differ widely between the

three methods, and so do the associated reliability estimates, ranging from 0.8347 to

0.9398. In fact, the MLFA value of 0.8347 is even smaller than alpha (0.886), just as

Bentler has noted, reporting 0.880 for (15) instead. This shows that, when the single

factor model is blatantly inadequate (it is always inadequate when m > 3, but some-

times may get close), it matters quite a bit which particular method of factor analysis is

used.

When turning to the more realistic r = 3 case, the loading vectors f∗ become very

similar, and so do the associated values of (15), now ranging from 0.9389 to 0.9446.

The explanation for this is that, when r = 3, the negative reduced eigenvalues of ULS

(see Table 5) and MLFA are very close to zero for the data under consideration. That is,

the solutions are still outside the feasible set (they always will be unless there is perfect

fit), yet they are very close to the boundary of that set. Since the MRFA rank-3 solution
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Table 5

Loadings of MLFA, MRFA and ULS, and ULS eigenvalues (λ)

MLFA MRFA ULS

r = 1 r = 3 r = 1 r = 3 r = 1 r = 3

f f∗ f f∗ f λ f∗ λ

0.636 0.727 0.742 0.728 0.706 4.297 0.726 4.519

0.697 0.738 0.760 0.743 0.750 0.746 0.740 1.062

0.677 0.754 0.764 0.755 0.750 0.614 0.755 0.858

0.867 0.789 0.814 0.793 0.774 −0.094 0.788 0.027

0.844 0.767 0.785 0.771 0.780 −0.163 0.769 0.018

0.879 0.803 0.816 0.800 0.824 −0.201 0.802 0.009

0.424 0.492 0.472 0.497 0.461 −0.241 0.494 −0.002

0.466 0.597 0.562 0.597 0.535 −0.266 0.596 −0.021

0.462 0.635 0.589 0.638 0.537 −0.395 0.635 −0.031

Sum 5.942 6.302 6.305 6.321 6.117 4.297 6.304 6.439

(15) 0.8347 0.9389 0.9398 0.9446 0.8846 0.9395

is on that very boundary, the closeness of all three solutions is no surprise. Also, the glb

solution happens to be close to the rank-3 MRFA solution, as we know from Table 4.

Unfortunately, the tendency of the three methods to yield increasingly similar load-

ings as the fit gets better does not extend to the situation of perfect fit. The reason is

that perfect fit will only arise in situations where the number of factors is equal to or

above the Ledermann bound. Specifically, for the data of Table 3, the minimum rank

is 6. Because 6 is strictly above the Ledermann bound, there is an infinite number of

rank-6 solutions, each having their own value of (15). It is not just a problem that differ-

ent methods may produce different solutions: The methods themselves admit an infinite

number of solutions. The feasible set for the data of Table 3 has an infinite number of

rank-6 solutions on its boundary.

The situation is less dramatic but still problematic when the minimum rank is exactly

on the Ledermann bound. Then there is only a finite number of solutions. For instance,

consider the data of Wilson and Worcester (1939, p. 74), who constructed the correlation

matrix of Table 6. This correlation matrix admits two different rank-3 solutions. That is,

the feasible set contains two distinct boundary points, each entailing a 3-factor solution

with perfect fit. The associated values of (15) are 0.8666 and 0.8548, whereas the glb is

0.8542. Because the former two values are in the feasible set, they are “possible values

of the reliability”, and therefore can no longer be smaller than the glb.

Undoubtedly, Bentler’s suggestion to derive reliability estimates from (15) or (16),

taking multiple factors into account, is on a much better footing than adhering to the

single factor hypothesis. Also, it is likely to bring the reliability estimate closer to the

glb. Still, it is not clear what “reliability on the basis of multiple factor analysis” has to

offer in addition to glb.

First, consider the case of close but imperfect fit, where r is less than the minimum

reduced rank of Σ . Regardless of the method we use, when evaluating (15), Σ −Ψ will

merely be approximated by a rank-r matrix FF′, and that rank-r matrix still does not
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Table 6

Correlation matrix of Wilson and Worcester

1.00 0.56 0.16 0.48 0.24 0.64

0.56 1.00 0.20 0.66 0.51 0.86

0.16 0.20 1.00 0.18 0.07 0.23

0.48 0.66 0.18 1.00 0.30 0.72

0.24 0.51 0.07 0.30 1.00 0.41

0.64 0.86 0.23 0.72 0.41 1.00

correspond to a point in the feasible set because the feasible set does not contain low

rank points (almost surely). Nevertheless, the associated value of (15) can be expected

to be close to the glb. Because points outside the set may still imply reliability values in

the range [glb, 1], the value of (15) may or may not be a possible value of the reliability.

Incidentally, the numerical closeness of (15) and the glb implies that the former are

likely to have the same upward sampling bias as the latter, see (Ten Berge and Sočan,

2004). The sampling bias is indeed a problem for the glb (Shapiro and Ten Berge, 2000;

Li and Bentler, 2004), but it affects (15) just as much.

Next, suppose we do base (15) on a perfectly fitting solution. Now every factor solu-

tion corresponds to a Ψ inside the feasible set, hence every value of (15) derived from

such a solution is a possible value of the reliability. As was demonstrated for the data of

Table 6, there typically is no unique factor solution, even when a fixed method of factor

analysis is adopted. For the sake of the argument, suppose we were able to determine,

among all perfectly fitting the solutions, the one (ρmax) which maximizes and the one

(ρmin) which minimizes (15). Then the range [glb, 1] of possible reliability values could

be narrowed down to the range [ρmin, ρmax]. However, this would still be based on a the

fundamental assumption that unique variance and error variance of the variables coin-

cide. In view of the fact that the glb does not rely on such an assumption, and typically

will be very close to (15) in cases of imperfect but close fit, it seems that the glb is to be

preferred. As said before, the glb does have a fierce sampling bias problem, but there is

every reason to believe that (15) will have exactly the same problem.

8. Discussion

The set of feasible tautologies allows treating reliability and factor analysis in the same

framework. The set contains all possible states of nature, but there is no way of telling

which is true. As for reliability, we only know that the true reliability of a test is some-

where between the glb (the least reliable point) and 1, the most reliable point. As for

unidimensionality, we only know that the true unidimensionality is somewhere between

the percentage of variance explained by the first principal component (the least unidi-

mensional point) and the percentage of common variance explained by a single-factor

MRFA (the most unidimensional point).

McDonald (1970) proposed reliability estimates based on either single or multiple

factor solutions. Bentler (2004) has insisted that only the latter should be used. Although
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this is indeed much more realistic, the method still has no clear advantages over using

the glb. It remains based on the assumption that unique variance and error variance

coincide. This assumption seems unlikely, because it implies that a variable has no

reliable specific variance and, besides, it resists verification, whence it seems that the

glb is to be preferred.

The discussion of the feasible set of solutions for error variances in test theory or

unique variances in factor analysis may have given the impression that solutions inside

the set are necessarily good and those outside the set are always evil. However, that

impression would not be warranted, as we have explained. The main reason for adher-

ing to the feasible set in factor analysis rests in the percentage of explained common

variance. This concept will be lost when some of the reduced eigenvalues are allowed

to be negative. The main reason for adhering to it in the reliability context is the glb.

Numerically, the glb behaves almost exactly like reliability estimates based on multiple

factor analysis, sampling bias included. Conceptually, however, the glb is more elegant

in that it neither relies on the hypothesis that specific variances and error variances of

the variables coincide nor does its numerical value depend on the specific choice of a

factor analysis method.

A Pascal program for MRFA can be downloaded from http://www.ppsw.rug.nl/

~kiers/. A Matlab code for MRFA-Q is available upon request.
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Nonlinear Structural Equation Modeling

as a Statistical Method

Melanie M. Wall and Yasuo Amemiya

Abstract

Structural equation analysis allows exploring and modeling relationships among la-

tent variables. The most traditional analysis deals only with linear relationships.

However, in applied problems, relevant research questions can be associated with

some form of nonlinear relations. Also, from a statistical modeling or data analy-

sis point of view, capabilities to address unrestricted nonlinear relations would be

welcome. A review is given for the existing approaches that have been developed

and designed for specific nonlinear models. Then, a statistical formulation of gen-

eral nonlinear structural equation analysis is introduced, and a general model fitting

procedure applicable under weak assumptions on latent variable distributions is de-

veloped. An example with a nonpolynomial nonlinear structural model is discussed

using the new method.

1. Introduction

Structural equation modeling originated (Jöreskog (1973); Bentler (1980); Bollen

(1989)) as a method for modeling linear relations among observed and hypothesized

latent variables. Despite limitations inherent in the linearity assumption of traditional

structural equation modeling, it has indeed provided a revolutionary and popular frame-

work for addressing research questions in the social, psychological and behavioral

sciences where latent variables are quite common. In order to expand the flexibility

and thus applicability of this already useful statistical modeling method, a natural ex-

tension is to include the possibility of modeling nonlinear relations among the latent

variables in addition to linear relations.

There has been a growing literature (some of which described later in this paper) de-

veloping different kinds of nonlinear structural equation models and estimation methods

for them. Generally, the estimation methods in this literature can be described as either

making and relying on distributional assumptions for the underlying latent variables or

instead leaving the distribution unspecified. Furthermore, the methods can be described

321
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as being either tailor-made to a specific sort of nonlinear structural model, i.e., poly-

nomial or specifically low-dimensional polynomial, or else being applicable to a more

general nonlinear structural model.

In this paper we present a general nonlinear structural equation model and estimation

methods for it. Section 2 presents the general nonlinear structural equation model as an

extension of the linear structural equation model. Section 2 also describes special cases

of the nonlinear structural equation model including those that have been considered

in the literature. Section 3 presents an estimation method for the general model which

does not make strong distributional assumptions about the latent variables and can be

implemented using a pseudo-likelihood approach combined with the Monte Carlo Ex-

pectation Maximization algorithm (MCEM). Section 4 presents an example motivated

by an investigation of cystic fibrosis patients where treatment adherence is examined

in relation to social, familial and personal factors, and a nonlinear structural equation

model is specified and the estimation method described herein is used. Section 5 pro-

vides some discussion.

2. General nonlinear structural equation model

2.1. Linear structural equation models

The traditional linear structural equation model is typically made up of two parts: the

measurement model describing the relationships between the observed and latent vari-

ables and the structural model describing the relationships between the latent variables.

Given a vector of p observed variables Zi for the ith individual in a sample of size n

and a vector of q latent variables f i , the linear structural equation model system can be

written:

(1)Zi = μ+Λf i + εi,

(2)b0 + B0f i = δ0i,

where in the measurement model, the matrices μ (p × 1) and Λ (p × q) contain fixed

or unknown scalars describing the linear relation between the observations Zi and the

common latent factors f i , and εi represents the (p× 1) vector of random measurement

error independent of f i such that E(εi) = 0 and Var(εi) = Ψ with fixed and unknown

scalars in Ψ ; and in the structural model, the matrices b0 (d × 1) and B0 (d × q) con-

tain fixed or unknown scalars defining d different additive linear simultaneous structural

equations relating the factors to one another plus the (d × 1) vector of random equa-

tion error δ0i , where E(δ0i) = 0 and Var(δ0i) = Δ0 with fixed and unknown scalars

in Δ0.

The simultaneous linear structural model as written in (2) is very general. For many

practical research questions which can be addressed by simultaneous structural models,

it is useful to model specific variables in terms of the rest of the variables, i.e., it is useful

to consider some of the latent variables as endogenous and others as exogenous, where

endogenous variables are those that are functions of other endogenous and exogenous

variables. Let f i = (η′
i, ξ

′
i)

′ where ηi are the d endogenous latent variables and ξ i are
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the q − d exogenous latent variables. Then a commonly used form for the structural

model (2) becomes:

(3)ηi = b + Bηi + Γ ξ i + δi,

where it is assumed the equation errors δi have E(δi) = 0, Var(δi) = Δ and are

independent of the ξ i as well as independent of εi in (1), and the matrices b (d × 1),

B (d × d), Γ (d × (q − d)), and Δ (d × d) are fixed or unknown scalars. The structural

model (3) is said to be in implicit form, implicit because it has endogenous variables

on both sides of the equations, i.e., it is not “solved” for the endogenous variables. It is

assumed that the diagonal of B is zero so that no element of ηi is a function of itself.

A sufficient condition for solving (3) is that (I − B) is invertible, then (3) can be solved

for the endogenous variables and written as

(4)ηi = b∗ + Γ ∗ξ i + δ∗
i ,

where b∗ = (I − B)−1b, Γ ∗ = (I − B)−1Γ , and Var(δ∗
i ) = (I − B)−1Δ(I − B)−1′

. The

structural model (4) is said to be in reduced form as the ηi now appears only on the

left-hand side of the equation. It is important to note the assumption that the equation

errors δi were additive and independent of the ξ i in the implicit form (3) results in the

equation errors δ∗
i in the reduced form (4) also being additive and independent of the ξ i .

Given p, q and d , additional restrictions must be placed on μ,Λ,Ψ ,b0,B0, and Δ0

in (1)–(2) in order to make all the unknown parameters identifiable. The assumption

that (2) can be written in reduced form (4) is the typical restriction placed on the struc-

tural model. Additionally, a common restriction placed on the measurement model (1) is

the errors-in-variables parameterization where q of the observed variables are each fixed

to be equal to one of the q different latent variables plus measurement error. For a thor-

ough discussion of identifiability in linear structural equation models see, e.g., Bollen

(1989). Finally, it should be noted that there is no inherent distributional assumptions

needed for εi , δ0i , nor f i at this point of model specification although distributional

assumptions may be added eventually to perform estimation.

2.2. Extension to nonlinear structural models

A natural way to examine many scientific theories empirically is by measuring some

variables on a sample of a population then examining several possible relationships be-

tween the variables. The two parts of the structural equation model (1)–(2) match this

idea where (1) is measuring the latent variables and (2) is relating the latent variables

to one another. A straightforward extension then is to assume that the way the variables

are measured in (1) is reasonable, but that there may be more complicated relationships

between the latent variables of interest than just linear ones. Thus the general nonlin-

ear structural equation model we introduce retains the linear measurement model but

considers nonlinear structural relations:

(5)Zi = μ+Λf i + εi,

(6)H0(f i;β0) = δ0i,
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where the general simultaneous nonlinear structural model system is described by the

(d × 1) vector function H0 which is a known function of f i with unknown parame-

ters β0. The parameters, μ, Λ, and the specification of the errors εi and δ0i to have

zero expectation and variances Ψ and Δ0, respectively, are the same as for the linear

structural equation model (1)–(2) above.

Motivated by the desire (as in the linear structural model) to model systems of struc-

tural models where certain sets of variables are written as functions of other variables

plus error, we consider again endogenous and exogenous ηi and ξ i and introduce the

following class of nonlinear structural equation model

(7)ηi = H(ηi, ξ i;β) + δi,

where H is a (d × 1) vector function with unknown parameters β, and δi is random

equation error independent of ξ i and εi with E(δi) = 0 and Var(δi) = Δ such that

Δ is a (d × d) matrix of fixed or unknown scalars. Note that since H is a function of

both ηi and ξ i we refer to this simultaneous nonlinear model (7) as being in implicit

form. It is assumed that H is such that there are no elements of ηi which are functions

of themselves.

In order that the parameters in (7) are identifiable, it is important that the model is

written in an unambiguous way. One way of doing this is to focus on models that can be

written in an explicit reduced form. In the linear structural model, choosing models that

had reduced form meant restricting to the subset of models in (3) that had (I−B) invert-

ible. Here in the nonlinear case, the rules for knowing when (7) can be solved explicitly

for ηi and thus written in reduced form are not so simple. A substantial literature from

econometrics investigates the solvability of systems of nonlinear simultaneous equa-

tions (where the ηi and ξ would be considered observed), see, e.g., Benkard and Berry

(2005) and no general set of rules is available. Nevertheless we continue the general

development of the nonlinear structural model by assuming that the model of interest

can be written in reduced form and then (in the next subsection) we describe useful

subclasses of implicit form models which can be written in reduced form.

The general reduced form simultaneous nonlinear structural model of (7) (when a

reduced form exists) can then be written

(8)ηi = h
(
ξ i, δi;β∗),

where h is a (d × 1) vector function with unknown parameters β∗ and ηi , ξ i , and δi
are as in (7). Note that in general, solving a nonlinear implicit form (7) results in the

equation error term δi entering the reduced form function h nonlinearly. Thus, additive

equation error independent of ξ i in the implicit form of the nonlinear structural model

does not necessarily result in additive error in the reduced form.

2.3. Subclasses of nonlinear structural models

In the following we present several classes of simultaneous nonlinear structural models

each of which can be written in reduced form and hence are subclasses of the general

nonlinear structural model (8).
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Linear endogenous, nonlinear exogenous. This name describes a class of nonlinear

structural models that is linear in the endogenous variables but possibly nonlinear in the

exogenous variables, that is,

(9)ηi = Bηi + g(ξ i, γ ) + δi,

where g is a vector function of ξ i with unknown parameters γ and the matrix (I − B) is

invertible. The equation errors δi are as before in (7). Note that because of the linearity

in the endogenous variables, nonrecursive models are also included here. It is straight-

forward to see how this model can be written in reduced form by multiplying both sides

by the inverse of (I−B). We note that the reduced form has separable (additive) equation

error.

Nonlinear recursive. This name describes a class of nonlinear structural models that

is possibly nonlinear in both the endogenous and exogenous variables but where the

system of equations is recursive (i.e., one equation can be substituted into the next), that

is,

(10)η1i = g1(ξ i,β1) + δ1i,

(11)η2i = g2(η1i, ξ i,β2) + δ2i,

...

(12)ηdi = gd(η1i, . . . , η(d−1)i, ξ i,βd) + δdi,

where g1 . . . gd are nonlinear functions of the corresponding latent variables and un-

known parameters β1, . . .βd respectively and the vector of equation errors formed by

taking (δ1i, δ2i . . . δdi)
′ is treated as δi in (7). As a result of the triangular recursive form,

it is straightforward to see how the model can be written in reduced form by substitu-

tion, but we note that the equation error will not necessarily be separable in the reduced

form.

Linear endogenous, additive nonlinear exogenous. This class restricts the model (9)

so that g(ξ i, γ ) is an additive function of possibly nonlinear terms involving only ξ i .

This model could also be described as linear in parameters, but nonlinear in the exoge-

nous latent variables, that is,

(13)ηi = Bηi + Γ g(ξ i) + δi,

where Γ is a (d×r) matrix of fixed or unknown scalars and g(ξ i) = (g1(ξ i), g2(ξ i), . . .

gr(ξ i))
′ is a (r × 1) vector function of known functions of the exogenous variables.

This class of nonlinear structural models and particularly its subsets below for the

polynomial and specifically the second order model is the one almost exclusively exam-

ined in the literature up to this point. Assuming normality for ξ i , Arminger and Muthén

(1998) and Zhu and Lee (1999) described the Bayesian method for (13) with a linear

measurement model (5) while Lee and Zhu (2002) describe the full maximum likelihood

method for it. The nonlinear structural model (13) has also been examined by Lee and

Zhu (2000), Lee and Song (2003a, 2003b), Song and Lee (2002), Lee and Lu (2003),
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and Lee et al. (2003). An estimation method for (13) not relying on distribution as-

sumptions for ξ i was developed by Bollen (1995, 1996) using a two-stage least squares.

The method uses the instrumental variable technique where instruments are formed by

taking functions of the observed indicators. One difficulty of the method comes from

finding an appropriate instrument. Bollen (1995) and Bollen and Paxton (1998) show

that the method works for the quadratic and interaction model but for general g(ξ i) it

may be impossible to find appropriate instruments.

General polynomial. Further restricting (13) so that g(ξ i) is taken to be all the pure

powers and all the multi-way interactions of those powers of the elements in ξ i results

in the polynomial structural equation model. An estimation method for the general or-

der polynomial structural equation model was described by Wall and Amemiya (2000,

2003). The two stage method of moments estimator produces consistent estimators for

the structural model parameters for virtually any distribution of the observed indicator

variables where the linear measurement model holds. The procedure uses factor score

estimates and estimates of their measurement error in a form of nonlinear errors-in-

variables regression and produces closed-form method of moments type estimators as

well as asymptotically correct standard errors.

Quadratic and interactions. Finally, if the general polynomial model is restricted to

simply the second order model, we have the quadratic and/or interaction structural equa-

tion model. In particular,

(14)ηi = γ0 + γ1ξi + γ2ξ
2
i + δi or

(15)ηi = γ0 + γ1ξ1i + γ2ξ2i + γ3ξ1iξ2i + δi,

each taken as the structural model underlying its own linear measurement model are

the models presented and estimated by the pioneering paper of Kenny and Judd (1984).

In fact, these came to be known by some literature as the “Kenny and Judd model”

and attracted much methodological discussions and alterations by a number of papers,

including Hayduck (1987), Ping (1996), Jaccard and Wan (1995), Jöreskog and Yang

(1996, 1997), Schumacker and Marcoulides (1998), Li et al. (1998) and within growth

curve modeling Li et al. (2000) and Wen et al. (2002). The method of estimation pro-

posed by Kenny and Judd (1984) involved taking products of the observed indicators

Zi and treating these products as themselves indicators of the quadratic or interaction

terms. This results in many (tedious) constraints on the model covariance matrix but

nevertheless is possible to implement in existing linear structural equation modeling

software programs (e.g., LISREL). The Kenny and Judd (1984) method relied on the

normality assumption for ξ i and was shown to produce inconsistent estimators when the

observed indicators are not normally distributed (Wall and Amemiya, 2001). Building

on the products of indicators method, Wall and Amemiya (2001) developed an estima-

tion method practical for the quadratic and interaction model that produces consistent

estimators without assuming any distributional form for the underlying factors or er-

rors. Comparisons via simulation study between several different approaches for the

interaction model were examined in Marsh et al. (2004) and Lee et al. (2004).
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3. Pseudo-likelihood estimation for the general nonlinear structural equation

model

3.1. Motivation and setup

Estimation for the parameters in the general nonlinear structural model comprised of

the linear measurement model (5) and the reduced form nonlinear structural model (8)

will be the aim of this section. The error terms εi , and δi will be assumed to be nor-

mally distributed which can often be considered reasonable in most applications. The

distribution of the latent variables ηi and ξ i on the other hand will not be specified as

normal. Because the structural model can be written in reduced form where ηi is a di-

rect function of ξ i and δi , only the distribution of ξ i remains unspecified. The aim is to

develop an estimator of β∗ and Δ that work well for weakly specified distributions of

ξ i . The method presented here follows closely the work of Amemiya and Zhao (2001,

2002).

For individual i, the joint distribution of the observed data and the latent variables

can be written under the nonlinear structural equation model (5)–(8)

P(Zi,f i; θ) = P(Zi |f i; θm)P (f i; θ s)
= P(Zi |ηi, ξ i; θm)P (ηi, ξ i; θ s)

(16)= P(Zi |ηi, ξ i; θm)P (ηi |ξ i; θ1)P (ξ i; θ ξ ),
where θm represents the measurement model parameters, θm = {μ,Λ,Ψ }, and θ s rep-

resents the structural model parameters which are made up of the parameters in the

nonlinear structural function (8), i.e., θ1 = {β∗,Δ} and the parameters θ ξ describing

the distribution of ξ . Note that the parameters in the three parts are all distinct.

Given a known distribution for P(ξ i; θ ξ ) with nice form, estimation for all the pa-

rameters given data could proceed via maximum likelihood, or with the addition of

prior information proceed within a fully Bayesian setting. Treating the latent variables

as missing data, the expectation maximization algorithm can be used for full maximum

likelihood estimation although difficulty arises in the integration of the E-step since no

closed form is available. Taking the distribution of P(ξ i; θ ξ ) to be normally distributed,

Amemiya and Zhao (2001) performed the full maximum likelihood for the general non-

linear model using the Monte Carlo EM algorithm.

Very commonly it is assumed that the distribution of the exogenous variables,

P(ξ i; θ ξ ) are normally distributed only for computational convenience. This restric-

tive assumption will be weakened in the current method by taking the hypothetically

assumed distribution for ξ i to be a multivariate normal mixture, i.e.,

(17)ξ i ∼
J∑

j=1

πj N(μj ,Σξ ),

where μj is the ((q−d)×1) mean vectors for the j th component of the mixture and the

covariance matrixΣξ is assumed to be the same for all components. The normal mixture

is considered as it can approximate a large class of distributions reasonably well and it is

practical. That is, essential aspects of the estimation method, latent variable distribution



328 M.M. Wall and Y. Amemiya

deconvolution and Monte Carlo simulation from an estimated density, can be carried

out readily using the normal mixture form.

While it would be possible to consider a full likelihood or fully Bayesian approach

incorporating the finite mixture distribution for P(ξ i; θ ξ ), the current paper presents

an estimate for θ1 utilizing the pseudo maximum likelihood estimation procedure pro-

posed by Gong and Samaniego (1981) and Parke (1986). In this approach, instead of

maximizing the likelihood with respect to θ1, θm, and θ ξ , some consistent estimators

of the nuisance parameters θm, and θ ξ are substituted into the likelihood, and the re-

sulting function is maximized only with respect to θ1. The pseudo-likelihood approach

is computationally simpler than full likelihood while not loosing the ability to consider

flexible distributions for ξ i .

3.2. Estimating the nuisance parameters

Estimation of the structural model parameter θ1 is of primary interest, thus θm and θ ξ
are considered nuisance parameters and will be estimated separately. The goal is to use

estimators for these nuisance parameters which are consistent under weak distributional

assumptions for the latent variables. The approach presented here is similar to that pre-

sented by Amemiya and Zhao (2002).

We start with describing our estimator θ̂m of θm. It has been shown that the maxi-

mum normal likelihood estimators of the factor loadings and error variances in the linear

factor analysis are consistent and have nice properties for nearly any unspecified distri-

bution of the factor vector. See, e.g., Amemiya et al. (1987), Anderson and Amemiya

(1988), and Brown and Shapiro (1988). Hence, we apply the maximum likelihood es-

timation to the linear measurement models (5) treating f i normal with an unrestricted

covariance matrix, and obtain θ̂m.

Now, given estimates for θm we focus on estimating the parameters θ ξ describing

the distribution of ξ i . To obtain an estimate of θ ξ in the latent variable normal mixture

distribution, we use a method referred to as a measurement error deconvolution. This

method starts with obtaining the so-called factor score estimator ξ̂ i of each ξ i based on

the measurement model and its estimated parameters. The factor score estimator for f i

is

(18)f̂ i = [Λ̂′Ψ̂
−1
Λ̂]−1Λ̂′Ψ̂

−1[Zi − μ̂]
and ξ̂ i is taken as the corresponding subset of elements from f̂ i . To use these factor

score estimates for making inference about the distribution of ξ i , it is necessary to have

an estimate of the measurement error that exists in f̂ i as a measure of f i . Ignoring the

errors of Op(n
−1/2) in estimation of θm and recalling the εi are normally distributed

and independent of f i , we have

(19)f̂ i = f i + ri,

where ri ∼ N(0,Σ r), and Σ rξ denotes the elements of Σ r corresponding to Var(ξ̂ i −
ξ i), and a consistent estimator Σ̂ r of Σ r is

(20)Σ̂ r = [Λ̂Ψ̂−1
Λ̂′]−1.
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An alternate form of (18) and (20) are given in Wall and Amemiya (2000, 2003) for the

case when Ψ̂ is singular. Denote the elements of Σ̂ r corresponding to Σ rξ as Σ̂ rξ . It

follows from (19) and (17) that

(21)ξ̂ i ∼
J∑

j=1

πj N(μj ,Σ ξ̂
),

where

(22)Σ
ξ̂

= Σξ +Σ rξ

and so by fitting a normal mixture to ξ̂ via maximum likelihood following, for example,

a standard EM algorithm for normal mixtures from McLachlan and Peel (2000) to obtain

{π̂j , j = 1 . . . J }, {μ̂j , j = 1 . . . J }, and Σ̂
ξ̂
, we can then obtain an estimate of Σξ by

subtraction (deconvolution), i.e. Σ̂ξ = Σ̂
ξ̂
− Σ̂ rξ . However, such a difference estimator

may not be a proper covariance matrix, i.e., a nonnegative definite matrix. Also, to

assure meaningful estimation of θ1 at this model fitting stage, we need to have a strictly

positive definite estimate of Σξ . One practical way to address this difficulty is to use

an adjustment by eigenvalues in the error-matrix metric, described in, e.g., Amemiya

(1985). Consider the eigenvalue-eigenvector decomposition

Σ̂
−1/2
rξ Σ̂

ξ̂
Σ̂

−1/2
rξ = QDQ.

Then, an estimator of Σξ based on the difference Σ̂
ξ̂

− Σ̂ rξ guaranteed to be positive

definite is

Σ̂
1/2
rξ MΣ̂

1/2
rξ ,

where the ith element of a diagonal M is

mi = max

{
di − 1,

c

n

}
,

where di is the ith diagonal element of D and c is a positive constant.

3.3. MCEM for the pseudo-likelihood

Given consistent estimators θ̂m and θ̂ ξ for the nuisance parameters, the pseudo max-

imum likelihood estimator (PMLE) for θ1 is obtained by maximizing the likelihood

evaluated at θ̂m and θ̂ ξ with respect to θ1. Since the likelihood function does not have

an explicit expression, we consider performing the maximization using a Monte Carlo

EM (MCEM) algorithm. The complete data pseudo-likelihood is

Lc =
n∏

i=1

P
(
Zi,f i; θ1, θ̂m, θ̂ ξ

)

=
n∏

i=1

P
(
Zi |ηi, ξ i; θ̂m

)
P(ηi |ξ i; θ1)P

(
ξ i; θ̂ ξ

)
.
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Then the E-step obtains the expectation of the complete data pseudo-likelihood given

the observations and the current parameter estimates θ
(t)
1

(23)E
(
logLc|Z1 . . .Zn; θ (t)1 , θ̂m, θ̂ ξ

)

(24)=
n∑

i=1

∫
logP

(
Zi,f i; θ1, θ̂m, θ̂ ξ

)
P
(
f i |Zi, θ

(t)
1 , θ̂m, θ̂ ξ

)
df i

=
n∑

i=1

E

(
logP(Zi,f i; θ1, θ̂m, θ̂ ξ )

(25)×
P(Zi |f i; θ

(t)
1 , θ̂m, θ̂ ξ )∫

P(Zi |f i; θ
(t)
1 , θ̂m, θ̂ ξ )P (f i; θ

(t)
1 , θ̂m, θ̂ ξ ) df i

)

(26)≡ g
θ
(t)
1

(
θ1; Z, θ̂m, θ̂ ξ

)
,

where the expectation is taken with respect to the random latent variables f i . The Monte

Carlo method can then be used to approximate this expectation. Given the current θ
(t)
1

along with θ̂ ξ , a Monte Carlo sample (f 1
i , . . .f

M
i ) is generated. The mth sample for

individual i is generating as follows:

(27)ξmi ∼ P
(
ξ i; θ̂ ξ

)
,

(28)δmi ∼ N(0,Δ(t)),

then take

(29)ηmi = h
(
ξmi , δ

m
i ;β∗(t))

so fm
i = (ηmi , ξ

m
i )

′. The expectation can then be approximated as

g
θ
(t)
1

(
θ1; Z, θ̂m, θ̂ ξ

)
≈

n∑

i=1

1

M

M∑

m=1

[
logP(Zi,f

m
i ; θ1, θ̂m, θ̂ ξ )

]
Wm

i

(30)≡ gMC

θ
(t)
1

(
θ1; Z, θ̂m, θ̂ ξ

)

where

Wm
i =

P(Zi |fm
i ; θ (t)1 , θ̂m, θ̂ ξ )

1
M

∑M
m=1 P(Zi |fm

i ; θ (t)1 , θ̂m, θ̂ ξ )

is a weight which can be calculated straightforwardly. The value for P(Zi |fm
i ; θ (t)1 , θ̂m,

θ̂ ξ ) can be calculated directly from the multivariate normal distribution. Note that if

the normally distributed equation error δi is not additive in the reduced form for h

in (8), then the probability P(ηmi |ξmi ;β∗(t),Δ(t)) will not follow a multivariate normal

distribution. In cases where the structural model has the nonlinear recursive structure

described in Section 2.3 with independent equation errors, then it will be possible to

calculate P(ηmi |ξmi ;β∗(t),Δ(t)) by appropriate recursive conditioning on the sequential

endogenous variables using a product of conditional normal distributions. Generally,
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the probability can be calculated by taking the multivariate normal probability for δmi
appropriately scaled by the Jacobian of δ = h−1(η) taken with respect to η. That is

P
(
ηmi |ξmi ;β∗(t),Δ(t)

)
= P

(
δmi ;Δ(t)

)∣∣∣∣
∂δ

∂η

∣∣∣∣
ηmi

∣∣∣∣.

The M-step is to maximize gMC

θ
(t)
1

(θ1; Z, θ̂m, θ̂ ξ ) with respect to θ1. From (16),

we note that θ1 only appears in the term in P(ηi |ξ i; θ1), hence to maximize

gMC

θ
(t)
1

(θ1; Z, θ̂m, θ̂ ξ ) we only need to maximize

G
θ
(t)
1

(θ1; Z, θ̂m, θ̂ ξ ) =
n∑

i=1

1

M

M∑

m=1

[
logP(ηmi |ξmi ; θ1)

]
Wm

i .

Given the general nonlinear structural model ηi = h(ξ i, δi;β∗) and given the equa-

tion errors δi are multivariate normal with Var δi = Δ, the maximization to obtain

θ
(t+1)
1 = (β∗(t+1),Δ(t+1)) can be accomplished by multivariate nonlinear weighted

least squares. Note that for simpler forms of the nonlinear structural model, less com-

putationally involved methods of maximization may be possible to implement. For

example, multivariate linear regression can be used when the nonlinear structural model

has the linear in endogenous, additive nonlinear in exogenous form as in (13).

The MCEM algorithm will iterate between the E-step and the M-step until the para-

meters converge according to some criteria. It has been pointed out that it is inefficient

to choose a large Monte Carlo sample size M when theta is far from the ML estimate

(Wei and Tanner, 1990; Booth and Hobert, 1999) and that it is preferable to start with

a small M and increase it for each iteration by some fixed number. The convergence of

the EM algorithm can be monitored by plotting theta versus the iteration number.

3.4. Standard errors estimation

The computation of the estimated covariance matrix for the PMLE was discussed in

Parke (1986). Let θ2 = (θm, θ ξ ) represent all the nuisance parameters. Let (θ0
1, θ

0
2) be

the true values for (θ1, θ2), and let the information matrix for (θ1, θ2) at (θ0
1, θ

0
2) for

the full likelihood be denoted by

(31)Σ =
(
Σ11 Σ12

Σ21 Σ22

)
,

partitioned corresponding to (θ1, θ2). Parke (1986) showed that if

√
n
(
θ̂2 − θ0

2

) L−→ N(0,Υ ), as n → ∞,

then the PMLE θ̂1 satisfies

√
n
(
θ̂1 − θ0

1

) L−→ N(0,Ξ ),

where n is the sample size, and

Ξ = Σ−1
11 +Σ−1

11 Σ12ΥΣ21Σ
−1
11 .
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While an estimator for the part of Υ corresponding to θ̂m may be readily available

from standard software packages that fit confirmatory factor analysis models, the part

of Υ corresponding to θ̂ ξ and the covariance between the two are not readily available

from canned software. Thus an estimator Υ̂ of Υ can be obtained using a nonpara-

metric bootstrap covariance matrix to estimate Υ . To avoid identifiability problems

bootstrapping the estimates for the mixture model parameters θ ξ , it is recommended

to use the same starting values for estimation on each bootstrap sample (McLachlan

and Peel (2000), p. 70). To estimate Σ11 and Σ12 in (31), we use an approximation

to the expected information matrix, as described in McLachlan and Krishnan (1997,

pp. 120–122). The observed data log-likelihood is

n∑

i=1

logP(Zi; θ) =
n∑

i=1

log

∫
P(Zi |f i; θ)P (f i; θ) df i,

and the corresponding individual score vector is

s(Zi, θ) = ∂ logP(Zi; θ)/∂θ .
We propose to use an estimator of the form

n∑

i=1

s
(
Zi; θ̂

)
s′(Zi; θ̂

)
,

using our estimator θ̂ , and to extract Σ̂11 and Σ̂12 parts. It can be shown that

s(Zi; θ) = E{∂lci(θ)/∂θ |Z; θ}, where lci(θ) = logP(Zi,f i; θ). Thus ŝ(Zi; θ̂) can

be computed using Monte Carlo method, with {(ηmi , ξ
m
i ): m = 1, 2, . . . ,M} and

{Wm
i : m = 1, 2, . . . ,M} obtained in the last step of the MCEM algorithm. Then, Σ̂11

and Σ̂12 can be obtained in

n∑

i=1

ŝ
(
Zi; θ̂

)
ŝ′(Zi; θ̂

)
.

Combining Σ̂11, Σ̂12, and Υ̂ , we obtain our estimate of the asymptotic covariance ma-

trix of the PMLE θ̂1 as

(32)n−1
[
Σ̂

−1
11 + Σ̂

−1
11 Σ̂12Υ̂ Σ̂21Σ̂

−1
11

]
.

4. Example

4.1. The data

The data used in this section is not real life data (due to data privacy issues) but is

instead computer generated data mimicking and motivated by a real life study. The data

is motivated by a study of children with cystic fibrosis (CF) which was interested in

examining the influences that stressors in the child’s life, self esteem, and feelings of

dejection have on the child’s adherence to the treatment regimes. The data have been
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generated directly from the nonlinear structural equation model described below and

are used only to provide an example of the kind of nonlinear structural equations that

might be considered and how to apply the pseudo-likelihood approach for inference.

The results are not intended to represent or even reflect the results in the motivating

study.

Suppose we have data collected from a self-report questionnaire asking adolescents

who have cystic fibrosis about the strains and stresses they encounter and feel, their

self esteem, their feelings of dejection, and their frequency of skipping (nonadhering)

to their treatments. The model considered of interest is shown in Figure 1 where

• parental/youth strain is measured by 3 items (Z1–Z3), e.g., You get into hassles/fights

with your parents. Denote this latent factor as ξ1.

• peer/youth strain is measured by 3 items (Z4–Z6), e.g., None of your friends seem to

understand what having CF is like. Denote this latent factor as ξ2.

• personal worries and strains is measured by 5 items (Z7–Z11), e.g., You worry about

the future or You stay at home when you really do not want to. Denote this latent

factor as ξ3.

• self-esteem is measured by 6 items (Z12–Z17), e.g., I feel that I have a number of

good qualities. Denote this latent factor as η1.

• feelings of dejection is measured by 2 items (Z18–Z19), e.g., You get so sick of all

you have to do to take care of yourself that you just want to give up. Denote this latent

factor as η2.

• nonadherence is a score (Z20) created as a frequency of not adhering to a number of

items including, e.g., You skip doing chest physical therapy treatments. This observed

variable will be treated as an observed latent variable, denoted η3.

From Figure 1 we see that there are three exogenous and three endogenous variables

of interest. The explicit relationships specified among these variables are described be-

low. Denote Z = (Z1, . . . Z20) as in Figure 1. Then the nonlinear structural equations

model considered is

(33)Z = μ+Λ(ξ1, ξ2, ξ3, η1, η2, η3)
′ + ε,

(34)η1 = β10 + β11ξ1 + β12ξ2 + β13ξ3 + δ1,

(35)η2 = β20 + β21 exp(β22η1 + β23ξ1 + β24ξ2 + β25ξ3) + δ2,

(36)η3 = β30 + β31η1 + β32η2 + β33η1η2 + δ3,

μ′ =
(

0 μ1 μ2 0 μ3 μ4 0 μ5 μ6 μ7 μ8 0 μ9 μ10 μ11 μ12 μ13 0 μ14 0
)
,

Λ′ =

⎛
⎜⎜⎜⎜⎝

1 λ11 λ12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 λ21 λ22 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 λ31 λ32 λ33 λ34 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 λ41 λ42 λ43 λ44 λ45 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 λ51 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

and the last element of ε is set equal to zero since the endogenous variable η3 = non-

adherence is treated as directly observed by Z20. The data shown in Figure 2 and
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Fig. 1. Structural equation model – Unobserved variables represented by ovals or circles (circles for the

errors), rectangles represent observed variables. Nonlinear relationships are not explicitly represented in the

figure.

that used for the rest of this example were generated from the model above as fol-

lows: (ξ1, ξ2, ξ3)
′ = sqrt(exp(x1, x2, x3)), where (x1, x2, x3)

′ is multivariate normal

with all means zero, variances equal to 1 and Cov(x1, x2) = 0.5, Cov(x1, x3) = 0.6,

Cov(x2, x3) = 0.4; ε1 . . . ε19, δ1, δ2, δ3 are independent and normally distributed each

with mean zero (recall ε20 = 0); variances of ε’s are equal to 0.25, variance of δ1 is

1, and variances of δ2 and δ3 are 0.25; all unknown values in μ are set at zero and all

unknown elements of Λ are set at one for data generation; and β10 = 6, β11 = −0.5,

β12 = −0.5, β13 = −0.5; β20 = 0, β21 = 1, β22 = −0.05, β23 = 0.25, β24 = 0.25,

β25 = 0.25; β30 = 6, β31 = −0.7, β32 = 1, β33 = −0.125.

Note that the exogenous variables (ξ1, ξ2, ξ3) are not normally distributed due to

the transformation taken. One dataset with 1000 independently sampled vectors Z was

generated under these specifications.

4.2. Description of the nonlinearities

The particular nonlinearity considered between the strains, self-esteem, feelings of de-

jection and the unhealthy behavior of nonadhering to treatment extends the types of

models usually considered for relating stress, self-esteem, and unhealthy behaviors.

Many studies have considered linear relationships between stress, self-esteem and dif-

ferent unhealthy behaviors, e.g., related to suicide, Wilburn and Smith (2005); related

to smoking, Byrne and Mazanov (2001); while some others have considered interac-

tion effects between stress and self-esteem, e.g., Roberts and Kassel (1997), and Abel
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Fig. 2. Relationships between the true generated latent variables. In upper right figure, “combinestress” is

the true sum of the three strain variables. To aid in viewing the interaction effect, plus signs and circles in

bottom two figures represent those observations with high or low (respectively) values of the other nonplotted

variable predicting nonadherence, i.e. dejection on the left and self-esteem on the right.

(1996). In contrast to the studies given as examples here where the measurement of the

latent variables was considered to be done exactly using an observed scale treated with

no measurement error, the full nonlinear structural equation model not only considers

more general nonlinear relationships but also takes into account the measurement error

inherent in the latent variables through the measurement model.

A description of the theoretical reasons for considering the nonlinear structural mod-

els (35) and (36), for η2, i.e., feelings of dejection and η3 nonadherence, is best given

by examining the behavior of the functions seen for the generated data found in Fig-

ure 2. Dejection (Parrott, 2001) is a state of sadness in particular describing a feeling

of being defeated. As self-esteem decreases and as overall stress increases, feelings of

dejection increase. But the nonlinearities suggest that dramatically increased feelings

of dejection come at a sort of tipping point or breaking point. That is, after a certain

level of stress or a certain lack of self-esteem, the feelings of dejection are much higher.

This can be modelled by the exponential model. The interaction term in the model for

nonadherence is motivated by the fact that higher self-esteem is expected to weaken the

effect that feelings of dejection have on nonadherence and likewise high levels of feel-
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ings of dejection would be expected to weaken the protective effect that self-esteem has

on nonadherence. This is seen, for example, in the bottom left figure in Figure 2 where

the for low levels of dejection (represented with circles) the increase of nonadherence

as self-esteem decreases is much milder than when dejection is high (represented with

plus signs).

4.3. Estimation

The pseudo maximum likelihood method described in Section 3 will be used to fit model

(33)–(36) to the generated data.

First the measurement model is fit using SAS Proc Calis and the μ̂, Λ̂, and Ψ̂ are ob-

tained. Then using Eqs. (18) and (20), the ξ̂ are obtained and also Σ̂ rξ . Then using the

EMclust function from the mclust library (Fraley and Raftery (2002)) in the R statistical

package, several finite mixture models were considered for fitting the model (17) to ξ̂ .

Based on the BIC criterion, a mixture model with 5 components and spherical covari-

ance matrix Σ
ξ̂

fit best. Thus the estimates for {π̂j , j = 1 . . . 5}, {μ̂j , j = 1 . . . 5}, and

Σ̂
ξ̂
, are obtained and Σ̂ξ can be obtained by subtracting Σ̂ rξ . Appendix A presents all

the estimated nuisance parameters. Figures 3 and 4 compare the marginal and bivariate

distributions of the true underlying non normally distributed exogenous latent variables

with the estimated distributions fitted with the mixture model. Marginally (Figure 3)

we see that the mixture model with 5 components appears to adequately capture the

positive skew. Bivariately, the major fanning feature between the true latent variables

is captured by the mixture model via the two distant components in opposite directions

from the rest. It is possible that a mixture model allowing different volumes (i.e., dif-

ferent Σ
ξ̂
) for each of the 5 components would capture the distribution more closely,

although the much simpler model fit here with common Σ
ξ̂

appears reasonable. Fur-

thermore we note that after the adjustment for the differential measurement error in the

ξ̂ i by subtracting Σ̂ rξ , the estimate Σ̂ξ has different variances along the diagonal.

Given the estimates for the nuisance parameters (shown in Appendix A), we can

proceed with the MCEM for doing maximum pseudo-likelihood. Taking advantage of

the recursive nature of the nonlinear structural model considered and the equation errors

being independent we have

P
(
ηmi |ξmi ; θ1

)
≡ P

(
ηm1i, η

m
2i, η

m
3i |ξmi ; θ1

)

= P
(
ηm3i |ηm2i, ηm1i;β3

)
P
(
ηm2i |ηm1i, ξmi ;β2

)
P
(
ηm1i |ξmi ;β1

)
,

where each of the three components has a univariate normal distribution and is a func-

tion of separate parameters. Hence calculation of the weights in the E-step is straightfor-

ward as a product of normal densities and maximization in the M-step can be performed

separately for each of the three parts using least squares. For the P(ηm1i |ξ
m
i ;β1) and

P(ηm3i |ηm2i, ηm1i;β3), ordinary linear least squares is used since the equations are linear

in the parameters β1 and β3. For P(ηm2i |ηm1i, ξ
m
i ;β2) a nonlinear least squares is nec-

essary but is easily implemented, for example, using the nlm maximization function

in R. A program for the MCEM pseudo-likelihood approach for this model has been

implementing in R and is available from the authors.
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Fig. 3. Marginal distribution of true underlying exogenous latent variables and respective estimated distribu-

tions for them using a normal mixture with 5 components.

Fig. 4. Bivariate distribution of true underlying exogenous latent variables and respective estimated distribu-

tions for them using a normal mixture with 5 components.

The standard errors as described in Section 3.4 are also computed. The bootstrap

method was used to obtain Υ̂ . This involved obtaining 5000 bootstrap samples for

which θ̂
(B)

m B = 1 . . . 5000 were computed for the measurement model from SAS

PROC CALIS, and then using the same bootstrap samples, θ̂
(B)

ξ was computed using

the Mclust function in R. Denoting θ̂
(B)

2 = (θ̂
(B)′

m , θ̂
(B)′

ξ )′ and taking mean(θ̂
(B)

2 ) =
1

5000

∑5000
B=1 θ̂

(B)

2 , then the estimator Υ̂ is computed as
∑5000

B=1(θ̂
(B)

2 −mean(θ̂
(B)

2 ))(θ̂
(B)

2 −
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Table 1

Estimates based on pseudo maximum likelihood for θ1

Parameter Truth Estimate Standard error

β10 6 5.979 0.113

β11 −0.5 −0.540 0.122

β12 −0.5 −0.483 0.089

β13 −0.5 −0.484 0.114

δ1 1 0.994 0.072

β20 0 0.301 0.265

β21 1 0.674 0.214

β22 −0.05 −0.032 0.013

β23 0.25 0.314 0.039

β24 0.25 0.270 0.048

β25 0.25 0.316 0.036

δ2 0.25 0.218 0.029

β30 6 5.803 0.200

β31 −0.7 −0.655 0.044

β32 1 1.095 0.061

β33 −0.125 −0.149 0.016

δ3 0.25 0.295 0.036

mean(θ̂
(B)

2 ))′. For obtaining standard errors of the structural model parameters θ̂1, the

estimator Υ̂ is combined with results from the MCEM. In particular, the estimators

ŝ(Zi; θ̂) are obtained from the last step of the MCEM and the estimated asymptotic co-

variance is calculated for θ̂1 using (32). Note that the distribution for ξ i used in forming

the complete data likelihood for calculating ŝ(Zi; θ̂) was taken to be a 5 component nor-

mal mixture with common diagonal covariance matrix in each component. The standard

errors are taken as the square root of the diagonal and 95% confidence intervals can be

formed based on an assumption of asymptotic normality. Results are shown in Table 1.

Not surprisingly since this is simulated data with a sample of size 1000 the resulting

estimates are close to the true values.

5. Discussion

In this paper, the nonlinear structural equation model was described generally and an

estimation procedure was presented using a flexible mixture model for the underlying

exogenous factors and a pseudo-likelihood approach for estimating the parameters of

interest. Particular attention was placed on distinguishing between techniques that make

strong distributional assumptions for the underlying factors (i.e., normally distributed)

verses those techniques not relying on (or more robust) to these assumptions. Sound

statistical methods should generally aim to be practicably feasible and applicable to

many problems while minimizing the number of uncheckable assumptions. That is the

aim of the model and method presented in this paper.
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A related modeling area to the one presented in this paper is nonlinear measurement

error models, e.g., Fuller (1987), and Carroll et al. (1995). When the unknown measure-

ments are considered random, it is then sometimes called nonlinear structural models,

e.g., Patefield (2002). Generally a nonlinear measurement error model considers a non-

linear relationship between latent variables (variables that cannot be observed directly)

similar to those in the current paper, but a confirmatory factor analysis type model is not

typically used as the measurement model. Instead, only one variable is typically used to

measure each latent variable and there is some assumptions made or external informa-

tion used about the magnitude of the measurement error. Estimation methods including

nonparametrics are well developed in this related field and may provide insight into

methods useful for nonlinear structural equation modeling.

The nonlinear structural equation model presented in this paper could be made more

general in two natural ways. One would be to allow for a measurement model with cat-

egorical observed variables. That is, a deviation from the linear measurement model.

One of the possible difficulties with this is related to the desire to keep the underly-

ing exogenous factor distribution flexible via the finite mixture model. It is not clear

that the good results expected for estimating a flexible distribution for ξ will work well

when the measurement model is not linear. The other extension is to include observed

covariates into the structural model. In fact, this can already be considered within the

model presented, although it may not be immediately obvious. An observed covariate

can be included directly into the structural model by taking it to be a perfect mea-

sure of its own exogenous latent variable with error equal to zero (similar to what

was done for Z20 in the example). Then the observed variable can be considered as

a special element in ξ that is always equal to itself and never generated within the

MCEM.

While general nonlinear relationships between latent variables may be natural to

consider, there appears to be a lack of current theories motivating their use in the be-

havioral sciences (based on the authors’ own experience and reading of literature). This

may be do in part to the small signal to noise ratio often expected in data collected

in the social sciences which does not lend itself to thinking of any more than just lin-

ear relationships, but it may also be due to a lack (until more recently) of models and

methods for fitting nonlinear relationships between latent variables. The hope is that

if there are nonlinear theories out there just waiting for a method, that the already

existing methods (including that in this paper) will be discovered and become imple-

mented.

Appendix A

> Lambda

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.0000 0.0000 0.0000 0.0000 0.0000 0

[2,] 0.9431 0.0000 0.0000 0.0000 0.0000 0

[3,] 0.9901 0.0000 0.0000 0.0000 0.0000 0

[4,] 0.0000 1.0000 0.0000 0.0000 0.0000 0
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[5,] 0.0000 0.9654 0.0000 0.0000 0.0000 0

[6,] 0.0000 0.9691 0.0000 0.0000 0.0000 0

[7,] 0.0000 0.0000 1.0000 0.0000 0.0000 0

[8,] 0.0000 0.0000 1.0058 0.0000 0.0000 0

[9,] 0.0000 0.0000 0.9731 0.0000 0.0000 0

[10,] 0.0000 0.0000 1.0439 0.0000 0.0000 0

[11,] 0.0000 0.0000 0.9804 0.0000 0.0000 0

[12,] 0.0000 0.0000 0.0000 1.0000 0.0000 0

[13,] 0.0000 0.0000 0.0000 0.9815 0.0000 0

[14,] 0.0000 0.0000 0.0000 1.0145 0.0000 0

[15,] 0.0000 0.0000 0.0000 1.0165 0.0000 0

[16,] 0.0000 0.0000 0.0000 1.0040 0.0000 0

[17,] 0.0000 0.0000 0.0000 0.9898 0.0000 0

[18,] 0.0000 0.0000 0.0000 0.0000 1.0000 0

[19,] 0.0000 0.0000 0.0000 0.0000 0.9631 0

[20,] 0.0000 0.0000 0.0000 0.0000 0.0000 1

> mu

[1] 0.00000 0.08254 0.03744 0.00000 0.07588 0.07115

[7] 0.00000 0.04293 0.06978 -0.01494 0.02725 0.00000

0.07329 -0.07574

[15] -0.07303 -0.00933 0.04260 0.00000 0.05085 0.00000

> diag(Psi)

[1] 0.22879 0.25550 0.26387 0.22457 0.24857 0.25313 0.24940

[8] 0.24991 0.26225 0.23446 0.26237 0.24384 0.23845 0.25896

0.25449

[16] 0.24356 0.25510 0.23300 0.28825 0.00000

> output$mu, mu_1...mu_5 for mixture model using 5 components

1 2 3 4 5

[1,] 1.450040 2.158594 3.445283 0.7947789 1.891052

[2,] 1.321064 1.770537 1.559521 0.8865848 2.919759

[3,] 1.431786 3.415500 2.113866 0.8422715 1.368160

> output$pro, pi_1...pi_5 for mixture model

[1] 0.27121709 0.01595621 0.02719309 0.64279488 0.04283873

> output$sigma, Sigma_ksihat for mixture model for ksihat

[,1] [,2] [,3]

[1,] 0.2304556 0.0000000 0.0000000

[2,] 0.0000000 0.2304556 0.0000000

[3,] 0.0000000 0.0000000 0.2304556

> Sigrksihat, from equation (21)

[,1] [,2] [,3]

[1,] 0.08645236 0.00000000 0.00000000

[2,] 0.00000000 0.08394503 0.00000000

[3,] 0.00000000 0.00000000 0.05005088
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> Sigma_ksi = Sigma_ksihat - Sigrksihat

[,1] [,2] [,3]

[1,] 0.1440033 0.0000000 0.0000000

[2,] 0.0000000 0.1465106 0.0000000

[3,] 0.0000000 0.0000000 0.1804047

References

Abel, M.H. (1996). Self-esteem: Moderator or mediator between perceived stress and expectancy of success?.

Psychological Reports 79, 635–641.

Amemiya, Y. (1985). What shold be done when an estimated between-group covaraince matrix is not non-

negative definite?. The American Statistician 30, 112–117.

Amemiya, Y., Zhao, Y. (2001). Estimation for nonlinear structural equation system with an unspecified distri-

bution. In: Proceedings of Business and Economic Statistics Section, The Annual Meeting of the American

Statistical Association (CD-ROM).

Amemiya, Y., Zhao, Y. (2002). Pseudo likelihood approach for nonliear and non-normal structural equation

analysis. In: Proceedings of Business and Economic Statistics Section, The Annual Meeting of the Ameri-

can Statistical Association (CD-ROM).

Amemiya, Y., Fuller, W.A., Pantula, S.G. (1987). The asymptotic distributions of some estimators for a factor

analysis model. Journal of Multivariate Analysis 22, 51–64.

Anderson, T.W., Amemiya, Y. (1988). The asymptotic normal distribution of estimators in factor analysis

under general conditions. Annals of Statistics 16, 759–771.

Arminger, G., Muthén, B. (1998). A Bayesian approach to nonlinear latent variable models using the Gibbs

sampler and the Metropolis–Hastings algorithm. Psychometrika 63 (3), 271–300.

Benkard, C.L., Berry, S. (2005). On the nonparametric identification of nonlinear simultaneous equations

models: Comment on B. Browne (1983) and Roehrig (1988). Technical Report. http://www.stanford.

edu/~lanierb/research/emanote041805.pdf.

Bentler, P.M. (1980). Multivariate analysis with latent variables: Causal modeling. Annual Review of Psychol-

ogy 31, 419–456.

Bollen, K.A. (1989). Structural Equations with Latent Variables. Wiley, New York.

Bollen, K.A. (1995). Structural equation models that are nonlinear in latent variables: A least squares estima-

tor. Sociological Methodology 25, 223–251.

Bollen, K.A. (1996). An alternative two stage least squares (2SLS) estimator for latent variable equation.

Psychometrika 61, 109–121.

Bollen, K.A., Paxton, P. (1998). Interactions of latent variables in structural equation models. Structural Equa-

tion Modeling 5, 267–293.

Booth, J.G., Hobert, J.H. (1999). Maximizing generalized linear mixed model likelihoods with an automated

Monte Carlo EM algorithm. Journal of the Royal Statistical Society Series B 62, 265–285.

Brown, M.W., Shapiro, A. (1988). Robustness of normal theory methods in the analysis of linear latent variate

models. British Journal of Mathematical and Statistical Psychology 41, 193–208.

Byrne, D.G., Mazanov, J. (2001). Self-esteem, stress and cigarette smoking in adolescents. Stress and

Health 17 (2), 105–110.

Carroll, R.J., Ruppert, D., Stefanski, L.A. (1995). Measurement Error in Nonlinear Models. Chapman and

Hall, London.

Fraley, C., Raftery, A.E. (2002). MCLUST: Software for model-based clustering, density estimation and dis-

criminant analysis. Technical Report, Department of Statistics, University of Washington. See URL: http:

//www.stat.washington.edu/mclust.

Fuller, W.A. (1987). Measurement Error Models. John Wiley, New York.

Gong, G., Samaniego, F.J. (1981). Pseudo maximum likelihood estimation: theory and applications. The An-

nals of Statistics 9 (4), 861–869.

Hayduck, L.A. (1987). Structural Equation Modeling with LISREL: Essentials and Advances. The Johns

Hopkins University Press, Baltimore.



342 M.M. Wall and Y. Amemiya

Jaccard, J., Wan, C.K. (1995). Measurement error in the analysis of interaction effects between continuous

predictors using multiple regression: Multiple indicator and structural equation approaches. Psychological

Bulletin 117 (2), 348–357.

Jöreskog, K.G. (1973). A general method for estimating a linear structural equation system. In: Goldberger,

A.S., Duncan, O.D. (Eds.), Structural Equation Models in the Social Sciences. Academic Press, New

York, pp. 85–112.

Jöreskog, K.G., Yang, F. (1996). Non-linear structural equation models: The Kenny–Judd model with inter-

action effects. In: Marcoulides, G.A., Schumacker, R.E. (Eds.), Advanced Structural Equation Modeling:

Issues and Techniques, pp. 57–88.

Jöreskog, K.G., Yang, F. (1997). Estimation of interaction models using the augmented moment matrix: Com-

parison of asymptotic standard errors. In: Bandilla, W., Faulbaum, F. (Eds.), SoftStat ’97. Advances in

Statistical Software 6, pp. 467–478.

Kenny, D.A., Judd, C.M. (1984). Estimating the nonlinear and interactive effects of latent variables. Psycho-

logical Bulletin 96 (1), 201–210.

Lee, S.Y., Lu, B. (2003). Case-deletion diagnostics for nonlinear structural equation models. Multivariate

Behavioral Research 38 (3), 375–400.

Lee, S.Y., Song, X.Y. (2003a). Maximum likelihood estimation and model comparison of nonlinear structural

equation models with continuous and polytomous variables. Computational Statistics and Data Analy-

sis 44, 125–142.

Lee, S.Y., Song, X.Y. (2003b). Model comparison of nonlinear structural equation models with fixed covari-

ates. Psychometrika 68 (1), 27–47.

Lee, S.Y., Zhu, H.T. (2000). Statistical analysis of nonlinear structural equation models with continuous and

polytomous data. British Journal of Mathematical and Statistical Psychology 53, 209–232.

Lee, S.Y., Zhu, H.T. (2002). Maximum likelihood estimation of nonlinear structural equation models. Psy-

chometrika 67 (2), 189–210.

Lee, S.Y., Song, X.Y., Lee, J.C.K. (2003). Maximum likelihood estimation of nonlinear structural equation

models with ignorable missing data. Journal of Educational and Behavioral Statistics 28 (2), 111–134.

Lee, S.Y., Song, X.Y., Poon, W.Y. (2004). Comparison of approaches in estimating interaction and quadratic

effects of latent variables. Multivariate Behavioral Research 39, 37–67.

Li, F., Harmer, P., Duncan, T., Duncan, S., Acock, A., Boles, S. (1998). Approaches to testing interaction

effects using structural equation modeling methodology. Multivariate Behavioral Research 33 (1), 1–39.

Li, F., Duncan, T., Acock, A. (2000). Modeling interaction effects in latent growth curve models. Structural

Equation Modeling 7, 497–533.

Marsh, H.W., Wen, Z., Hau, K.T. (2004). Structural equation models of latent interactions: Evaluation of

alternative estimation strategies and indicator construction. Psychological Methods 9 (3), 275–300.

McLachlan, G., Krishnan, T. (1997). The EM Algorithm and Extensions. John Wiley and Sons, New York.

McLachlan, G., Peel, D. (2000). Finite Mixture Models. John Wiley and Sons, New York.

Parke, W.R. (1986). Pseudo maximum likelihood estimation: the asymptotic distribution. The Annals of Sta-

tistics 14 (1), 355–357.

Parrott, W. (2001). Emotions in Social Psychology. Psychology Press, Philadelphia.

Patefield, M. (2002). Fitting non-linear structural relationships using SAS procedure NLMIXED. The Statis-

tician 51 (3), 355–366.

Ping, R.A. (1996). Estimating latent variable interactions and quadratics: The state of this art. Journal of

Management 22, 163–183.

Roberts, J.E., Kassel, J.D. (1997). Labile self-esteem, life stress, and depressive symptoms: prospective data

testing a model of vulnerability. Cognitive Therapy and Research 21 (5), 569–589.

Schumacker, R., Marcoulides, G. (Eds.) (1998). Interaction and Nonlinear Effects in Structural Equation

Modeling. Lawrence Erlbaum Associates, Mahwah, NJ.

Song, X.Y., Lee, S.Y. (2002). A Bayesian approach for multigroup nonlinear factor analysis. Structural Equa-

tion Modeling 9 (4), 523–553.

Wall, M.M., Amemiya, Y. (2000). Estimation for polynomial structural equation models. Journal of the Amer-

ican Statistical Association 95, 929–940.

Wall, M.M., Amemiya, Y. (2001). Generalized appended product indicator procedure for nonlinear structural

equation analysis. Journal of Educational and Behavioral Statistics 26 (1), 1–29.



Nonlinear structural equation modeling as a statistical method 343

Wall, M.M., Amemiya, Y. (2003). A method of moments technique for fitting interaction effects in structural

equation models. British Journal of Mathematical and Statistical Psychology 56, 47–63.

Wei, G.C.G., Tanner, M.A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man’s

data augmentation algorithm. Journal of the American Statistical Association 85, 699–704.

Wen, Z., Marsh, H.W., Hau, K.T. (2002). Interaction effects in growth modeling: A full model. Structural

Equation Modeling 9 (1), 20–39.

Wilburn, V., Smith, D. (2005). Stress, self-esteem, and suicidal ideation in late adolescents. Adolescence 40

(157), 33–45.

Zhu, H.T., Lee, S.Y. (1999). Statistical analysis of nonlinear factor analysis models. British Journal of Math-

ematical and Statistical Psychology 52, 225–242.



This page intentionally left blank



Handbook of Computing and Statistics with Applications, Vol. 1

ISSN: 1871-0301

© 2007 Elsevier B.V. All rights reserved

DOI: 10.1016/S1871-0301(06)01016-X

16

Matrix Methods and their Applications to Factor Analysis

Haruo Yanai and Yoshio Takane

Abstract

Since the introduction of Spearman’s two factor model in 1904, a number of books

and articles on theories of factor analysis have been published. During the same

period, a number of matrix methods have also been developed, particularly in the

theory of g-inverses and projection matrices. These two lines of developments, ma-

trix methods and some important topics of factor analysis are integrated, and some

of the earlier theories of factor analysis extended. A wide range of topics of fac-

tor analysis are covered including identifiability conditions, communality problems,

analysis of image and anti-image variables, estimation of factor scores, and equiv-

alence conditions on canonical factor analysis. In particular, the conditions under

which the SMC of a variable is equal to the communality of the variable are devel-

oped, and some equivalent conditions under which the eigenvalues resulting from

canonical factor analysis are either 1 or 0 are discussed. Methods for estimating fac-

tor score matrices when the unique variance matrix is singular are also introduced.

1. Introduction

Over the past hundred years since the introduction of Spearman’s two-factor model of

intelligence (in 1904), a number of books and articles have been published on theo-

ries of factor analysis (Harman, 1967; see also Yanai and Ichikawa (2007)). During the

same period of time, there have been a number of interesting developments in matrix

theory, particularly in the theory of g-inverses and projectors. In this chapter we attempt

to integrate these two lines of developments, matrix methods and some important topics

of factor analysis such as identifiability conditions, communality problems with special

reference to squared multiple correlation (SMC), image and anti-image analysis, estima-

tion of factor scores, equivalence conditions on canonical factor analysis, etc. Through

this exercise, we also attempt to generalize some of the earlier theories. Throughout

this chapter, we emphasize the use of g-inverse and projection matrices, which have

been proven useful (Takeuchi et al., 1982; see also Takane (2004)) in explicating some

intricate concepts underlying factor analysis models as well as other multivariate data

analysis techniques. All matrices considered in this paper are real matrices.
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2. Fundamentals of matrix methods

2.1. General definitions of g-inverse matrices and orthogonal projectors

Let A be a matrix of order n × m, and let X be a matrix of order m × n. Consider the

following four equations:

(1)

(i) AXA = A, (ii) XAX = A, (iii) (AX)′ = AX, (iv) (XA)′ = XA.

Matrix X satisfying (i) is called g-inverse of A and is generally denoted as A−, while

X satisfying both (i) and (iii) is called least squares g-inverse of A, and X satisfying

both (i) and (iv) is called minimum norm g-inverse. These three types of g-inverses are

not uniquely determined. Matrix X satisfying all of the above four conditions is called

Moore–Penrose (g)-inverse matrix and is generally denoted as A+. The Moore–Penrose

inverse is uniquely determined. (See (c) below.)

We give some basic properties of g-inverses and orthogonal projectors:

(a) Let X = A−
ℓ be a least squares g-inverse of A. Then,

(2)AX = AA−
ℓ = A(A′A)−A′ = PA,

where PA is the orthogonal projector onto Sp(A), space spanned by the column

vectors of A.

(b) Let X = A−
m be a minimum norm g-inverse of A. Then,

(3)XA = A−
mA = A′(AA′)−A = PA′ ,

where PA′ is the orthogonal projector onto Sp(A′), space spanned by the row vectors

of A. Observe that PA and PA′ are symmetric and invariant over any choice of g-in-

verses of A′A and AA′, respectively, and for any choice of vectors spanning Sp(A)

and Sp(A′), respectively.

(c) Let X1 and X2 be two Moore–Penrose inverse matrices of A. Then,

(4)X1 = (X1A)X1 = (X2A)X1 = X2(AX1) = X2(AX2) = X2

due to the relationships given in (2) and (3). This shows the uniqueness of the

Moore–Penrose inverse matrix.

2.2. Decompositions of the orthogonal projector

Let A and B be n × p and n × q matrices, respectively, and let Sp(A) and Sp(B)

represent subspaces spanned by the column vectors of A and B. Let In be the iden-

tity matrix of order n. Then, QA = In − PA and QB = In − PB are the orthogonal

projectors onto Sp(A)⊥ and Sp(B)⊥, respectively, where Sp(A)⊥ and Sp(B)⊥ are the

ortho-complement subspaces of Sp(A) and Sp(B). Obviously, PAQA = QAPA =
PBQB = QBPB = O.

We introduce three important properties of the orthogonal projectors:
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PROPERTY 1. (Rao and Yanai, 1979) Let Sp(A,B) represent the space spanned by

column vectors of matrix [A,B]. Let P[A,B] be the orthogonal projector onto Sp(A,B).

Then,

(5)P[A,B] = PA + PQAB = PB + PQBA.

PROPERTY 2. (Yanai and Puntanen, 1993) Let Q[A,B] be the orthogonal projector onto

the ortho-complement subspace of Sp(A,B), that is, Sp(A,B)⊥. Then,

(6)Q[A,B] = QQABQA = QQBAQB .

PROPERTY 3. (Baksalary, 1987) Let A and B be n × p and n × q matrices, respec-

tively. Further, let PA and PB be orthogonal projectors onto Sp(A) and Sp(B). Then

the following eight statements are equivalent:

(1) PAPB = PBPA. (2) A′B = A′PBPAB.

(3) (PAPB)
2 = PAPB . (4) QBPAB = O.

(5) QAPBA = O. (6) P[A,B] = PA + PB − PAPB .

(7) rank(QBA) = rank(A) − rank(A′B). (8) A′QBQAB = O.

Baksalary (1987, Theorem 1) provides thirty eight other equivalent conditions.

PROPERTY 4. (Baksalary and Styan, 1990) Let A, B, PA, PB , QA and QB be matrices

as defined in Properties 1, 2 and 3. Then,

(7)rank(A′B) = rank(A′QBQAB) + rank(A) + rank(B) − rank(A,B).

A straightforward proof of the equivalence between (7) and (8) in Property 3 can be

given by combining Property 4 and the following rank formula:

(8)rank(A,B) = rank(A) + rank(QAB) = rank(B) + rank(QBA).

2.3. Image and anti-image vectors

Let X = [x1, . . . , xp] be a column-wise centered data matrix of order n × p. Further,

let X(j) = [x1, . . . , xj−1, xj+1, . . . , xp] be the n by p−1 matrix excluding the j th col-

umn vector, xj , from X. Then, using an orthogonal projector we can write the squared

multiple correlation, SMC(j), obtained by regressing xj onto X(j) as

(9)SMC(j) ≡ R2
j/(j) = ‖PX(j)

xj‖2/‖xj‖2.

We also have

(10)xj = PX(j)
xj + QX(j)

xj

for i = 1, . . . , p, where PX(j)
xj and QX(j)

xj are called image vector of xj on Sp(X(j))

and anti-image vector of xj on Sp(X(j))
⊥, respectively. Note that the image and anti-

image vectors of xj are orthogonal.
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Observe that (9) ensures that SMC(j) can be computed even if X′
(j)X(j) is singular.

Let

(11)XI = [PX(1)
x1, . . . , PX(p)

xp],
and

(12)XA = [QX(1)
x1, . . . ,QX(p)

xp].
Then, it follows from (10) that X = XI + XA. Assume that X is columnwise standard-

ized. Then, R = (1/n)X′X, where R is the correlation matrix.

PROPERTY 5. (Yanai and Mukherjee, 1987, Theorem 1)

(13)
1

n
X′

AX =

⎡
⎢⎢⎣

d1 0 . . . 0

0 d2 . . . 0
...

...
. . .

...

0 0 . . . dp

⎤
⎥⎥⎦ ≡ D,

where 1 − dj = R2
j/(j) (the latter having been defined in (9)), and

(14)XA = PXXA = XR−D,

(15)
1

n
X′

AXA = DR−D,

(16)
1

n
X′

IXI = (R − D)R−(R − D),

and

(17)
1

n
X′

AXI = D − DR−D.

PROOF. (13) follows immediately by noting that x′
jQX(j)

xi = 0 because xi ∈
Sp(X(j)) for i �= j . (14) follows, since Sp(XA) ⊂ Sp(X) and XA = PXXA =
X((1/n)X′X)−(1/n)X′XA = XR−D. (15), (16) and (17) are direct consequences of

(13) and (14). To prove (15), note that (1/n)X′
AXA = (1/n)X′

AXR−D = DR−D,

observing that X = XA + XI . �

The above results are extensions of Kaiser (1976) in that R+ (the Moore–Penrose

inverse of R) is replaced by a weaker g-inverse R−.

Now, from X one can construct an n × j matrix of the form X[j ] = [x1, . . . , xj ].
Further, let PY |X = PQXY . Then, Properties 1 and 2 can be extended to the following

lemmas.

LEMMA 1. (Rao and Yanai, 1979) Let Vi = Sp(Xi), and X = (X1, X2, . . . , Xq) and

let Vi|i−1 = {x | x = QX[i−1]y, y ∈ Vi}. Then,

(18)PX = PX1
+ PX2|X1

+ · · · + PXj |X[j−1] + · · · + PXp |X[p−1],

where PXi |X[i−1] is the orthogonal projector onto Vi|i−1.
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LEMMA 2.

(19)QX = QX1
QX2|X1

. . .QXj |X[j−1] . . .QXp |X[p−1] .

2.4. Matrix inequalities

PROPERTY 6. (Beckenbach and Bellman, 1961) If A and B are positive-semidefinite

(PSD) matrices of order p, such that A − B is also PSD, then

(20)ρj (A) � ρj (B)

for 1 � j � p, where ρj (A) is the j th largest eigenvalue of A.

PROPERTY 7 (Poincaré Separation Theorem). Let A be a symmetric matrix of order p,

and let B be a p × m matrix such that B ′B = Im. Then,

(21)ρp−m+i(A) � ρi(B
′AB) � ρi(A)

for i = 1, . . . , p.

PROPERTY 8. (Anderson and Gupta, 1963) If A and B are symmetric matrices of or-

der p,

(22)ρi(A + B) � ρj (A) + ρk(B)

for j + k � i + 1.

2.5. Miscellaneous properties of matrix and its rank

PROPERTY 9. (Yanai, 1990) Let A and B be matrices of order p × m and q × m,

respectively. Then, rank(AB ′) = rank(A) is necessary and sufficient for

(23)B ′(AB ′)−AB ′ = B ′.

Further, let rank(AB ′) = rank(A) = rank(B). Then, B ′(AB ′)−A is the projector onto

Sp(B ′) along Ker(A).

PROPERTY 10. (Kristof, 1970) Let Tj (j = 1, . . . , m) denote orthogonal matrices of

order p, and let Dj (j = 1, . . . , m) denote diagonal matrices of order p with nonneg-

ative diagonal elements. Then, tr(
∏m

j=1 TjDj ) � tr(
∏m

j=1 Dj ).

When m = 1, Property 10 reduces to the following.

PROPERTY 11. (ten Berge, 1993) Let T and X be n × p matrices. Let T ′T = Ip,

and let the singular value decomposition of X be given by X = VΔU ′, where V ′V =
U ′U = UU ′ = Ip. Then, tr(T ′X) � tr(Δ), and the equality is attained when

(24)T = VU ′ = X(X′X)−1/2.
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PROOF. Let H = U ′T ′V denote a square matrix of order p. Then, H ′H =
V ′T UU ′T ′V = V ′PT V � V ′V = Ip, where V ′PT V � V ′V indicates V ′V −V ′PT V

is PSD. Since
∑p

k=1 h
2
jk � 1 implies h2

jj � 1, where H = (hjk), we obtain 0 � hjj
� 1, establishing

tr(T ′X) = tr(T ′VΔU ′) = tr
(
(U ′T ′V )Δ

)
= tr(HΔ)

=
p∑

j=1

hjj δj �

p∑

j=1

δj = tr(Δ),

where δj is the j th diagonal element of Δ. The equality holds when H = Ip yielding

U ′T ′V = Ip, which implies T = VU ′. �

3. Applications of matrix methods to factor analysis

3.1. Lower bounds for communalities

Let X denote an n×p columnwise standardized data matrix, and consider the following

traditional factor analysis model:

(25)X = FΛ′ + EΨ 1/2,

where F = [f1, . . . , fm] is the n × m common factor score matrix, Λ is the p × m

factor loading matrix, E = [e1, . . . , ep] is the n × p unique factor score matrix, and

Ψ is the positive-definite diagonal matrix of order p of unique variances. We typically

assume (1/n)E′E = Ip, and F ′E = O. In an orthogonal solution, we additionally

assume (1/n)F ′F = Im, so that

(26)R = ΛΛ′ + Ψ,

where R = (1/n)X′X is a correlation matrix, and Ψ is a diagonal matrix whose j th

diagonal element, ψj , is the unique variance of the j th variable, xj . Let h2
j denote the

communality of this variable satisfying h2
j + ψj = 1 for j = 1, . . . , p.

We first give a property that allows to represent the communality in terms of orthog-

onal projector onto Sp(F ), the space spanned by column vectors of F .

PROPERTY 12. Let h2
j denote the communality of the j th observed variable, xj , and

let PF denote the orthogonal projector onto Sp(F ). Then,

(27)h2
j = ‖PF xj‖2/‖xj‖2.

The relationships among xj , Sp(F ), PF xj , and hj = ‖PF xj‖ are depicted in Figure 1.

Observe that 0 � h2
j � 1, where the first equality holds if xj ∈ Sp(F )⊥ and the

second equality holds if xj ∈ Sp(F ). The unique variance, ψj , is obtained by

(28)ψj = ‖QF xj‖2/‖xj‖2.

We next give a well-known property on the relationship between communality and

SMC.



Matrix methods and their applications to factor analysis 351

Fig. 1. Representation of communality h2
j

of a vector xj in terms of orthogonal projection assuming

‖xj ‖ = 1.

PROPERTY 13. (Roff, 1936) For 1 � j � p, SMC(j) is a lower bound to communality

h2
j , i.e.,

(29)SMC(j) � h2
j .

Using Property 1, we are in a position to give a straightforward proof of Property 13

and look into the conditions under which the equality in (29) holds.

THEOREM 1. Let X(j) = [x1, . . . , xj−1, xj+1, . . . , xp] be a columnwise standardized

n by p−1 matrix obtained by eliminating xj from X. Then, (29) holds, and the equality

in (29) holds in the following two cases:

(30)SMC(j) = 1 (Case 1),

and

(31)SMC(j) �= 1, and rjiψi = 0 for any i �= j (Case 2),

where rji is the (j, i)th element of R−.

PROOF. By Property 1, we have

(32)PF + PQFX(j)
= PX(j)

+ PQX(j)
F .

By pre- and postmultiplying the above equation by x′
j and xj , respectively, we obtain

from (26) and (1/n)F ′F = Im that

1

n
x′
jQFX(j) = 1

n
x′
jX(j) −

(
1

n
x′
jF

)(
1

n
F ′X(j)

)

(33)= r ′
j/(j) − λ′

j (Λ(j))
′ = 0,
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where Λ(j) is the factor loading matrix with p−1 variables excluding xj , λj is the vector

of factor loadings of the j th variable, and rj/(j) is the vector of correlation coefficients

between xj and the remaining p − 1 variables. It follows from (27) and (33) that

(34)h2
j = SMC(j) + x′

jPQX(j)
F xj ,

which implies (29), since x′
jPQX(j)

F xj is nonnegative.

We now look for conditions under which the equality holds in (29). If (33) is true,

then x′
jPQX(j)

F xj = 0, leading to x′
jQX(j)

F = 0′, which implies that anti-image vector

QX(j)
xj (j = 1, . . . , p) is orthogonal to Sp(F ). Noting that Sp(QX(j)

) ⊂ Sp(X), we

obtain

(35)(PXQX(j)
xj )

′F = x′
jQX(j)

XR−Λ = O.

By postmultiplying (35) by Λ′, and using (26), we obtain from (13) that

(QX(j)
xj )

′X
(
(1/n)X′X

)−{
(1/n)X′X − Ψ

}

= (QX(j)
xj )

′X
(
Ip − ((1/n)X′X)−Ψ

)

=
(
0, . . . , 0, 1 − SMC(j), 0, . . . , 0

)
(Ip − R−Ψ ) = 0′,

which implies

(
1 − SMC(j)

)
rjiψi = 0 (i �= j), and

(36)
(
1 − SMC(j)

)(
1 − rjjψj

)
= 0.

This completes the proof of Theorem 1. �

We provide an example of Theorem 1, assuming that rji �= 0, which implies ψi = 0

(i �= j ), and h2
i = 1 (i �= j). We will discuss the case in which rji = 0 (i �= j) later.

EXAMPLE 1. Suppose that the correlation matrix among four variables, x1, x2, x3, and

x4, is given by

R =

⎡
⎢⎣

1 0 a a

0 1 a −a

a a 1 0

a −a 0 1

⎤
⎥⎦ ,

where 2a2 � 1. The SMC of x1 can be computed as

1 − det(R)/ det

[
1 a −a

a 1 0

−a 0 1

]
= 1 − (1 − 2a2)2

1 − 2a2
= 2a2,

provided that 2a2 �= 1. Similarly, it can be shown that the SMC’s of all the four variables

are equal to 2a2.
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The following factor loading matrix Λ and the unique variance matrix Ψ ,

Λ =

⎡
⎢⎣

1 0

0 1

a a

a −a

⎤
⎥⎦ , and Ψ =

⎡
⎢⎣

0 0 0 0

0 0 0 0

0 0 1 − 2a2 0

0 0 0 1 − 2a2

⎤
⎥⎦ ,

on the other hand, satisfy the factor analysis model, (26). The communalities of the

four variables can be computed as (1, 1, 2a2, 2a2). Thus, the SMC’s are equal to the

communalities for variables 3 and 4, while the SMC’s are smaller than (or equal to) the

communalities for variables 1 and 2. Since the communalities of variables 1 and 2 are

unity, factors f1 and f2 can be rotated to coincide with them. Since the SMC’s are equal

to the squared length of the projection of x3 and x4 onto the factor space which are

now spanned by x1 and x2, it can be easily seen that the SMC’s of variables x3 and x4

coincide with their communalities. In terms of the factor analysis model, we can write

(37)ψ1 = ψ2 = 0, and ψ3 = ψ4 = 1 − 2a2.

This result covers Case 2 in (31). It also covers Theorem 3 of Roff (1936, p. 5), which

states that SMC(j) is equal to the communality of variable xj , if variables contain m

(m < p) statistically independent variables each with unit communality (where p is the

number of variables and m is the number of common factors).

In (31) it is important to consider the case in which ψi = 0 (i �= j) does not hold. In

such a case, rji = 0 (i �= j) should be true. Since rji is the (j, i)th element of R−, it

follows from (8) of Property 3, that

(38)(QX(j)
xj )

′(QX(i)
xi) = 0 (i �= j),

provided that Rj/(j) �= 1, which implies that the diagonal matrix D as defined by (13) is

nonsingular. (38) implies that the anti-image of variable xj is uncorrelated with that of

variable xi . It is interesting to note that (38) is closely related to Theorem 4 of Guttman

(1953), which states that if a common-factor space of dimensionality m is determinate

for an infinitely large universe of content, then there is no other determinate common

factor space. In this case, the communalities are uniquely determined and are equal to

the corresponding total norms, and in addition the common-factor scores are the total

image scores, and the unique factor scores are the total ant-images. If (38) holds for any

combination of i and j , then anti-image variable QX(j)
xj behaves like the unique factor,

ej , corresponding to the j th variable, xj .

NOTE 1. If Sp(F ) is a subspace of Sp(X(j)), then PX(j)
F = F , leading to X′

(j)QX(j)
F

= O. In case of orthogonal factor analysis, F is columnwise orthogonal. Then, if m

vectors in X(j) are orthogonal, Sp(F ) can be embedded in a subspace of Sp(X(j)).

Thus, the equality in (29) holds.

NOTE 2. Let X1 = [x1, . . . , xk] and X2 = [xk+1, . . . , xp], which satisfies the follow-

ing factor analysis model:

[X1, X2] = F [Λ′
1,Λ

′
2] + E

[
Ψ

1/2
1 O

O Ψ
1/2
2

]
,
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where F is the n × m matrix of common factor scores, Λ1 and Λ2 are k × m and

(p−k)×m factor loading matrices corresponding to X1 and X2, respectively, and Ψ1 and

Ψ2 are diagonal matrices of uniqueness variances of order k and p − k, corresponding

to X1 and X2, respectively. Then,

(39)ΛjΛ
′
j � X′

jPXi
Xj (j, i = 1, 2, j �= i),

where ΛjΛ
′
j � X′

jPXi
Xj means ΛjΛ

′
j − X′

jPXi
Xj is PSD.

From Property 1, we have

(40)P[F,Xi ] = PF + PQFXi
= PXi

+ PQXi
F .

Premultiplying (40) by PXj
and noting that (1/n)X′

jQFXi = (1/n)X′
jXi − ΛjΛ

′
i =

O, we obtain X′
jPFXj = X′

jPXi
Xj +X′

jPQXi
FXj , establishing (39). The term on the

left side of (39) represents generalized forms of communalities for variables Xj , and

the term on the right may be called generalized SMC’s.

3.2. Stronger upper and lower bounds for communalities

In this section, we consider the random model of factor analysis as opposed to the

traditional model of factor analysis introduced earlier in (25). The random model of

factor analysis is written as

(41)x = Λf + e

with E(f ) = 0, E(e) = 0, Cov(f, e) = E(f e′) = O, V(f ) = Φ, and V(e) = Ψ ,

where E, V, and Cov are expectation, variance, and covariance operators, respectively.

The corresponding representation of the factor analysis model in terms of a correlation

matrix can be expressed as

(42)Σ = ΛΦΛ′ + Ψ,

where Σ is the population correlation matrix. We have

PROPERTY 14. (Yanai and Ichikawa, 1990)

(a) Let h2
(j) denote the j th largest communality among the p variables. Then, for 1 �

j � p,

(43)h2
(j) � 1 − ρp+1−j (Σ),

where ρp+1−j (Σ) is the (p + 1 − j)th largest eigenvalue of Σ .

(b) For any positive definite correlation matrix Σ with distinct eigenvalues, we have

(44)1 − ρp(Σ) � SMC(j) for 1 � j � p.

(c) For any 1 � j � p,

(45)h2
(j) � 1 − ρ(p+m+1−j)(Σ).

These results can be proved by the matrix inequalities given by (20), (21), and (22).
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Table 1

Communalities, SMC’s, and upper and lower bounds for communalities in the numerical example (Yanai and

Ichikawa, 1990)

Variable Communality NLB UB SMC

1 0.770 0.735 – 0.654

2 0.680 0.645 – 0.573

3 0.650 0.568 – 0.518

4 0.650 0.510 0.735 0.498

5 0.560 – 0.645 0.453

6 0.450 – 0.568 0.384

EXAMPLE 2. Suppose we have the following factor loading matrix, Λ, and the unique

variance matrix, Ψ :

Λ =

⎡
⎢⎢⎢⎢⎢⎣

0.6 0.5 0.4

0.6 0.4 0.4

0.2 0.6 0.5

0.2 0.5 0.6

0.4 0.6 0.2

0.5 0.4 0.2

⎤
⎥⎥⎥⎥⎥⎦

and Ψ = diag

⎛
⎜⎜⎜⎜⎜⎝

0.23

0.32

0.35

0.35

0.44

0.55

⎞
⎟⎟⎟⎟⎟⎠

,

which yield

Σ = ΛΛ′ + Ψ =

⎡
⎢⎢⎢⎢⎢⎣

1 0.72 0.62 0.61 0.62 0.58

0.72 1 0.56 0.56 0.56 0.54

0.62 0.56 1 0.64 0.54 0.44

0.61 0.56 0.64 1 0.50 0.42

0.62 0.56 0.54 0.50 1 0.48

0.58 0.54 0.44 0.42 0.48 1

⎤
⎥⎥⎥⎥⎥⎦
.

With some calculations, the eigenvalues of Σ are found to be ρ1 = 3.810, ρ2 = 0.648,

ρ3 = 0.490, ρ4 = 0.432, ρ5 = 0.355, and ρ6 = 0.265, from which we obtain the new

lower bounds (NLB), and the upper bounds (UB) summarized in Table 1. For compari-

son we also give SMC’s in the last column of the table. The NLB’s for variables 1, 2, 3,

and 4 improve upon SMC’s used as lower bounds of communalities. It seems that there

are generally more than one variable in which the NLB is better than the SMC.

EXAMPLE 3. Let Σk (k = p − 1 and p) be a correlation matrix of order k with all the

correlation coefficients being equal to a (0 < a < 1). The SMC’s of all p variables are

computed by

SMC(j) = 1 − det(Σp)/ det(Σp−1)

= 1 −
{(

1 + (p − 1)a
)
(1 − a)p

}
/
{(

1 + (p − 2)a
)}
(1 − a)p−1

(46)= a2/
(
a + (1 − a)/(p − 1)

)
,

and the eigenvalues of Σp are:

ρ1(Σp) = 1 + (p − 1)a, and ρj (Σp) = 1 − a for 2 � j � p.
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Note that the last p−1 eigenvalues are equal to a. Furthermore, from (a) of Property 14,

a gives a stronger lower bound of communality for each of the p − 1 variables, since

a − a2/
(
a + (1 − a)/(p − 1)

)
= a(1 − a)/

(
(1 − a) + a(p − 1)

)
> 0.

It is interesting to note that as p approaches infinity, SMC(j) computed by (46) ap-

proaches a which coincides with the communalities of the p variables. This is consistent

with the suggestion first made by Roff (1936) and later proved by Guttman (1940).

3.3. Variable selection in factor analysis

It is recommended that some rotation methods be applied to the factor loading matrix

derived by some initial factor extraction method to construct some psychological scales

such as personality, vocational interest, and so on. In some cases, a number of items load

highly on some factors, while smaller numbers of items load highly on other factors. In

such cases, it is important to check whether a particular variable is a suitable indicator

of a factor extracted. We present a stepwise variable selection method in factor analysis,

following Yanai (1980).

Let X = [x1, . . . , xp] denote a standardized data matrix, and assume that the factor

score matrix, F = [f1, . . . , fm], consists of m orthogonal factors. Let R2
X/fj

denote the

squared multiple correlation obtained by regressing fj onto X. Then, from Lemma 1

we obtain

s = R2
X/f1

+ · · · + R2
X/fm

(47)=
m∑

j=1

(
f ′
jPXfj

)
/
(
f ′
jfj

)
= tr

(
PX

m∑

j=1

Pfj

)
= tr(PXPF ),

using the relationship, PF = Pf1
+ · · · + Pfm , which follows from Lemma 1 and the

orthogonality of F . Note that s defined in (47) is the sum of the squared canonical

correlation coefficients between F and X representing the relationship between the ex-

tracted factors and observed data. We propose a forward inclusion method for stepwise

selection of variables in factor analysis by employing the following decomposition of

tr(PXPF ):

s = tr(PXPF ) = tr(Px1
PF ) + tr(Px2|x1

PF ) + · · · + tr(Pxp |X[p−1]PF )

(48)= s1 + s2 + · · · + sp.

Then, the proposed procedure of stepwise selection can be described as:

Step 1: Select a variable xj with the largest communality h2
j , since tr(PxjPF ) =

‖PF xj‖2/‖xj‖2 = h2
j follows from (27).

Step 2: Suppose that variable xj is selected. Then, select variable xk (k �= j) with

the largest value of
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Table 2

Results of the stepwise selection method in principal factor analysis

Step Scale Factor 1 Factor 2 Factor 3 Factor 4 Communality sj s(j)

1 D 0.684 −0.298 0.254 −0.326 0.728 0.728 0.728

2 A 0.183 0.821 −0.040 0.098 0.715 0.698 1.426

3 Co 0.751 0.186 −0.189 0.199 0.674 0.451 1.877

4 C 0.466 −0.102 0.534 −0.018 0.512 0.265 2.412

5 R 0.032 0.457 0.209 0.438 0.445 0.190 2.333

6 G −0.082 0.677 −0.030 −0.117 0.479 0.170 2.503

7 S −0.135 0.795 0.012 0.030 0.651 0.099 2.602

8 N 0.808 −0.157 0.045 0.059 0.684 0.088 2.690

9 Ag −0.056 0.404 0.407 0.026 0.332 0.057 2.747

10 O 0.837 0.073 −0.020 0.011 0.707 0.053 2.800

11 T 0.157 0.092 −0.171 0.471 0.284 0.034 2.834

12 I 0.383 −0.535 0.185 0.000 0.461 0.020 2.854

sk = tr(Pxk |xjPF ) = tr(PQxj
xkPF )

(49)=
(
h2
j r

2
jk + h2

k − 2rjk

√
h2
jh

2
k

)
/
(
1 − r2

jk

)
,

where rjk is the correlation coefficient between xj and xk .

Step 3: In earlier j − 1 steps, suppose, for simplicity, that j − 1 variables X[j−1] =
[x1, . . . , xj−1] are selected. (This is just for notational convenience.) Then, select a

variable xk (k � j) with the largest value of

(50)sk = tr(Pxk |X[j−1]PF ) = ‖bk‖2/
(
1 − R2

X[j−1]/xk

)
,

where bk = λk − Λ′
[j−1]R

−
[j−1],[j−1]r(j−1)/k .

EXAMPLE 4. We first performed principal factor analysis and extracted four common

factors from the data with twelve scales in Yatabe–Guilford Personality Inventory. (This

is the most popular personality inventory in Japan.) We show the result of stepwise

selection of the variables in Table 2, in which scales are arranged in descending order of

sj for j = 1, . . . , p. (The list of the twelve scales is given in Table 3.) We then computed

the communalities for the twelve scales. It turned out that the Depression scale (Scale D,

for short) had the largest communality of 0.728 among the twelve scales. In the second

step, Scale A with the sk value (defined in (49)) of 0.698 was selected. Interestingly,

Scale D had the highest factor loading on the first factor, while Scale A had the highest

factor loading on the second factor. Continuing this way, we came to the final step where

Scale I was selected with the sk value (defined in (50)) of only 0.020. In reference to

the values of s(j) = s1 + · · · + sj given in the last column of Table 2, we may say that

only five or six scales are sufficient for explaining the information contained in the four

common factors. As an alternative method of stepwise selection in factor analysis, Kano

and Harada (2000) developed SEFA (Stepwise variable selection in Exploratory Factor

Analysis) by employing several goodness-of-fit measures used in structural equation

modeling.
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Table 3

List of twelve scales

No. Symbol Scale

1) D Depression

2) A Ascendance

3) Co Lack of cooperativeness

4) C Cyclic tendency

5) R Rhathymia

6) G General activity

7) S Social extraversion

8) N Nervousness

9) Ag Lack of agreeableness

10) O Lack of objectivity

11) T Thinking extraversion

12) I Inferiority feelings

3.4. Representation of SMC when the correlation matrix may be singular

Let R denote a correlation matrix with three variables, x1, x2, and x3, with correlation

coefficients rx1x2
= rx1x2

= a (a �= ±1) and rx2x3
= 1. We write R, and a g-inverse of

R, denoted by P = R−, as

R =
[

1 a a

a 1 1

a 1 1

]
, and

P =
(
1/(1 − a2)

)
[

1 −wa −(1 − w)a

−xa t1 t2
−(1 − x)a t3 1 − t1 − t2 − t3

]
,

where −1 � a � 1, and t1, t2, t3, w, and x are arbitrary. Let I3 − RP = [g1, g2, g3].
Then with some computations, we obtain g1 = 0, and gj �= 0 (j = 2, 3). According

to Theorem 1 of Kahtri (1976), SMC(1) = a2, and SMC(j) = 1 for j = 2, 3. Thus,

SMC’s can be computed for all variables, even if R is singular.

Furthermore, let W = [X, Y ] be a matrix of order n × (p + q), where X = [x1,

. . . , xp] and Y = [y1, . . . , yq ] are matrices of orders n× p and n× q, respectively. Let

R = RWW be the correlation matrix, and let P = R− denote a g-inverse of R. Let R

and P be partitioned analogously:

(51)R =
[
RXX RXY

RYX RYY

]
, and P =

[
PXX PXY

P YX P YY

]
.

Then, with some computations, we obtain

RXX.YP
XXRXX.Y = RXX.Y , where

(52)RXX.Y = RXX − RXYR
−
YYRYX.
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Let

SMC(X|Y) =

⎡
⎢⎢⎢⎣

R2
x1|Y Rx1x2|Y . . . Rx1xp |Y

Rx2x1|Y R2
x2|Y . . . Rx2xp |Y

...
...

. . .
...

Rxpx1|Y Rxpx2|Y . . . R2
xp |Y

⎤
⎥⎥⎥⎦

a square matrix of order p, where

R2
xj |Y = ‖PY xj‖2, and Rxixj |Y = x′

iPY xj .

Then, we have the following lemma.

LEMMA 3. Let R and P be matrices defined in (51). Further, let

H = RP =
[
HXX HXY

HYX HYY

]
, and B =

[
HXX − Ip

HXY

]

be matrices of orders p + q and (p + q) × p, respectively. If B = O, then

(53)SMC(X|Y) = RXYR
−
YYRYX = RXX −

(
PXX

)−1
,

and if rank(B) = p, then SMC(X|Y) = RXX.

PROOF. It follows from Lemma 4 of Kahtri (1976), that rank(B) = p− rank(X′QYX).

If B = O, then rank(X′QYX) = p, indicating RXYR
−
YYRYX is nonsingular. Then,

RXX.YP
XX = Ip follows from (52), establishing (53). If rank(B) = p, then X′QYX =

O, which implies SMC(X|Y) = X′PYX = X′X. �

The term SMC(X|Y) defined in Lemma 3 coincides with the right-hand side of (39),

which we call generalized SMC, since it reduces to the communality of a variable when

X consists of a single vector. The above result represents an extension of Kahtri (1976).

3.5. Interpretation of communalities from a regularization perspective

A major difference between principal factor analysis (PFA) and principal component

analysis (PCA) is that the former obtains the eigen-decomposition of R − Ψ (assum-

ing that Ψ is tentatively known), whereas the latter obtains that of R. The analysis of

R−Ψ may be justified from a regularization perspective. In the ridge type of regulariza-

tion (Hoerl and Kennard, 1970) estimates of regression coefficients in linear regression

models are obtained by

(54)b̃ = (X′X + κIp)
−1X′y,

where X is an n×p matrix of predictor variables, y is an n-component vector of criterion

variable, and κ is a ridge parameter, which typically takes a small positive value. The

prediction vector is obtained by

(55)Xb̃ = P(κ)y,
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where P(κ) = X(X′X + κIp)
−1X′ is called ridge operator. The ridge estimates of

regression coefficients are usually biased, but are associated with smaller MSE (mean

square errors; Hoerl and Kennard, 1970).

Takane and Yanai (2005) recently introduced the following metric,

(56)M(κ) = In + κ(XX′)+,

in an effort to generalize the ridge type of regularization to other techniques of multi-

variate analysis. Using M(κ), they could rewrite P(κ) as P(κ) = X(X′M(κ)X)−X′,
where X′M(κ)X = X′X + κPX′ , and PX′ is the orthogonal projector onto Sp(X′),
which reduces to Ip when X is columnwise nonsingular. Note that P(κ) is invariant

over the choice of g-inverse of X′M(κ)X, and that (X′X + κIp)
−1 ∈ {(X′M(κ)X)−}.

Takane and Yanai (2005) further extended the metric matrix to:

(57)M(L)(κ) = In + κ(XL−X′)+,

where L is PSD with Sp(L) = Sp(X′). With this generalized metric matrix, we obtain

X′M(L)(κ)X = X′X + κL.

The ridge estimation generally has the effect of shrinking the estimates toward zero

by adding κPX′ or κL to X′X on the predictor side. Presumably, a similar shrinkage

effect can be obtained by subtracting the same from the criterion side. Let

(58)M(Ψ )(−1) = In −
(
XΨ−1X′)+.

Then,

(59)(1/n)X′M(Ψ )(−1)X = R − Ψ,

which, as noted earlier, is the matrix whose eigen-decomposition is taken in PFA.

(59) may be seen from (XΨ−1X′)+ = XΨ−1/2((Ψ−1/2X′XΨ−1/2)+)2Ψ−1/2X′ =
X(X′XΨ−1X′X)+X′. This indicates that in PFA we are sort of obtaining shrinkage

estimates (of factor loadings) relative to PCA loadings. This leads to the idea that the

estimate of Ψ is chosen in such a way that it reproduces an R that cross-validates best.

3.6. Methods of estimating factor scores

It is useful to estimate factor scores of individual subjects. A number of methods of

estimating factor scores have been proposed so far.

The first estimator starts from the parametric model of factor analysis, x = Λf + e,

where E(e) = 0, and V(e) = Ψ is a nonsingular diagonal matrix of unique variances.

It is assumed that the factor loading matrix, Λ, and the unique variance matrix, Ψ , are

known, and only e is a vector of random variables analogous to the disturbance terms in

linear regression models. The generalized least squares estimate of f , which we denote

by f1, minimizing

(60)(x − Λf )′Ψ−1(x − Λf )

is given by

(61)f1 =
(
Λ′Ψ−1Λ

)−1
Λ′Ψ−1x.
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It can be easily verified that this estimator is unbiased and its covariance matrix is given

by V(f1) = (Λ′Ψ−1Λ)−1. This is called Bartlett estimator (Bartlett, 1937).

NOTE 3. If we neglect Ψ , the minimization of (x − Λf )′(x − Λf ) with respect to f

yields

(62)f2 = (Λ′Λ)−1Λ′x,

which was first derived by Horst (1965). Note that f2 defined above is also unbiased.

We now consider an estimation of f when Ψ is possibly singular.

LEMMA 4. (Rao and Yanai, 1979) Under the Gauss–Markov model, (y,Xβ, α2G)

where G may be singular, the BLUE (the best linear unbiased estimator) of Xβ can

be expressed as

(63)Xb = Py,

where P satisfies both (i) PX = X, and (ii) PGZ = O, where Z = QX is the

orthogonal projector onto Sp(X)⊥. If Sp(X) and Sp(GZ) cover the entire space of En,

P is the projector onto Sp(X) along Sp(GZ), and it can be expressed in the following

three forms:

(1) X(X′QGZX)−X′QGZ .

(2) In − GZ(ZGZ)−Z.

(3) X(X′T −1X)−X′T −1, where T = XUX′ + G and rank(T ) = rank(X,G).

We attempt to minimize (60) when Ψ is singular. To deal with this problem, Bentler

and Yuan (1997) minimized (x −Λf )′Ψ+(x −Λf ). Our solution, on the other hand, is

based on Lemma 4.

LEMMA 5. If En = Sp(Λ) + Sp(Ψ ), and W = QΛ is the orthogonal projector onto

Sp(Λ)⊥, the BLUE of f can be expressed in the following three equivalent forms:

(1) Λ(Λ′QΨWΛ)−Λ′QΨWx.

(2) (In − ΨW(WΨW)−W)x.

(3) Λ(Λ′T −1Λ)−Λ′T −1x, where T = ΛUΛ′ + Ψ and rank(T ) = rank(Λ,Ψ ).

Note that in the parametric model of factor analysis, a factor score vector and a raw

data vector can be defined for each of n individual subjects. Let f(j) and x(j) denote

these vectors for the j th subject. These vector may be represented collectively by ma-

trices F ′ = [f(1), . . . , f(n)] and X′ = [x(1), . . . , x(n)]. Anderson and Rubin (1956)

obtained an estimate of F which minimizes

(64)(1/n)

n∑

j=1

(x(j) − Λf(j))
′Ψ−1(x(j) − Λf(j))
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subject to (1/n)F ′F = (1/n)
∑n

j=1 f(j)f
′
(j) = Φ, where Φ is the matrix of correlations

among m factors and thus is positive-definite (PD). Observe that (1/n)
∑n

j=1 tr(f ′
(j)Λ

′ ×
Ψ−1Λf(j)) = tr(Λ′Ψ−1Λ((1/n)

∑n
j=1 f(j)f

′
(j))) = tr(Λ′Ψ−1ΛΦ). Thus, the mini-

mization of (64) is equivalent to maximizing
∑n

j=1 f
′
(j)Λ

′Ψ−1x(j) = tr(FΛ′Ψ−1X′) =
tr(FΦ−1/2(XΨ−1ΛΦ1/2)′) subject to (1/n)F ′F = Φ. Note that (1/n)F ′F = Φ is

equivalent to Φ−1/2(1/n)F ′FΦ−1/2 = Im. We obtain from Property 11 that

(65)F = XΨ−1ΛΦ1/2
(
Φ1/2Λ′Ψ−1X′XΨ−1ΛΦ1/2

)−1/2
Φ1/2,

which yields

f(j) = Φ1/2(Φ1/2Λ′Ψ−1X′XΨ−1ΛΦ1/2)−1/2Φ1/2Λ′Ψ−1x(j)

(66)(j = 1, . . . , n).

Note that

Φ1/2Λ′Ψ−1X′XΨ−1ΛΦ1/2 = Φ1/2Λ′Ψ−1(ΛΦΛ′ + Ψ )Ψ−1ΛΦ1/2

= (Φ1/2Λ′Ψ−1ΛΦ1/2)2 + Φ1/2Λ′Ψ−1ΛΦ1/2.

By denoting L = Φ1/2Λ′Ψ−1ΛΦ1/2, we may rewrite (66) as

(67)f(j) = Φ1/2(L2 + L)−1/2Ψ 1/2Λ′Ψ−1x(j).

We denote (67) by f3 for any j . Obviously, (1/n)F ′F = Φ holds. This estimator was

further discussed by Rao (1979) and ten Berge (1999).

Next, let us consider a random effect model of the form, x = Λf + e, where Λ is

a factor loading matrix of order p × m, x and e are p-dimensional random vectors, the

latter satisfying E(f e′) = O. Let P denote a square matrix of order p and define Px as

an estimate of Λf where f is assumed to be random. Differentiating

g(P ) = tr
(
E(Px − Λf )(Px − Λf )′

)

= tr
(
E(Pxx′P ′ − Pxf ′Λ′ − Λfx′P ′ + Λff ′Λ′)

)

(68)= tr(PΣP ′ − PΛΦΛ′ − ΛΦΛ′P ′ + ΛΦΛ′)

with respect to P , we obtain

(69)PΣ = ΛΦΛ′.

If Σ is nonsingular, we have

Λf4 = Px =
(
ΛΦΛ′Σ−1

)
x = ΛΦΛ′(ΛΦΛ′ + Ψ )−1x,

yielding

(70)f4 = ΦΛ′Σ−1x = ΦΛ′(ΛΦΛ′ + Ψ )−1x,

which coincides with the regression estimator of f on x first introduced by Thurstone

(1935) and further discussed by Thomson (1946).
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If Σ is singular, we obtain from (69) that

(71)P = ΛΦΛ′Σ− + Z(I − ΣΣ−),

where Z is arbitrary. Let S = ΣΣ−x−x. Then, E(SS′) = O, which implies ΣΣ−x =
x. Postmultiplying (71) by x, we obtain Λf4 = Px = ΛΦΛ′Σ−x, yielding

(72)f4 = ΦΛ′Σ−x.

The relationships among the four methods of estimating factor scores were discussed in

McDonald and Burr (1967).

Now we consider the relationship between f1 and f4. With some derivations, it fol-

lows that

f4 = ΦΛ′Σ−1x = ΦΛ′(Ψ + Λ′ΦΛ)−1x

= ΦΛ′(Ψ−1 − Ψ−1Λ(Λ′Ψ−1Λ + Φ−1)−1Λ′Ψ−1
)
x

= Φ
(
Im − Λ′Ψ−1Λ(Λ′Ψ−1Λ + Φ−1)−1

)
Λ′Ψ−1x

= (Λ′Ψ−1Λ + Φ−1)−1Λ′Ψ−1x

=
(
I + Φ−1(Λ′Ψ−1Λ)−1

)−1
(Λ′Ψ−1Λ)−1Λ′Ψ−1x

(73)=
(
I + Φ−1(Λ′Ψ−1Λ)−1

)−1
f1.

Assume that Φ = Im. Then, it follows from Anderson (2003, Section 14.7) that the

mean square errors of f4 given by

E
[
(f4 − f )(f4 − f )′

]
=
(
Im + Λ′Ψ−1Λ

)−1

are smaller than the variances of the unbiased estimator, f1, given by V(f1) =
(Λ′Ψ−1Λ)−1. The above result indicates that f4 is a linear combination of f1.

3.7. Application of Property 3 to canonical factor analysis

Let F denote a matrix of common factor scores, and let X denote a standardized data

matrix of p variables. Further, let f = Xw denote a linear composite score vector.

Then, maximizing

(74)‖PFf ‖2/‖f ‖2

with respect to w yields

(75)(X′PFX)w = λ(X′X)w,

leading to

Rw = λ̄Ψw, where λ̄ = 1/(1 + λ)

in view of ΛΛ′ = R − Ψ . (75) is the eigen-equation resulting from canonical factor

analysis introduced by Rao (1955). Note that the sum of eigenvalues obtained from (75)

coincides with tr(PXPF ), as defined by (47).

Using Property 3, we can establish:
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THEOREM 2. Let Λ denote a factor loading matrix of order p×m. Then, the following

seven statements are all equivalent:

(1) λj = 1 or 0 for j = 1, . . . , m.

(2) PXPF = PFPX. (3) ΛΛ′( 1
n
X′X)−Λ = Λ.

(4) Ψ (X′X)−Λ = O. (5) (( 1
n
X′X)−ΛΛ′)2 = ( 1

n
X′X)−ΛΛ′.

(6) rank(X) = rank(Λ) + rank(Ψ ). (7) (X − FΛ′)′QXF = O.

PROOF. Equivalence between (1) and (2) is well known. To show (2) implies (3), we

note Λ = (1/n)F ′X. To show (3) implies (4), we note ΛΛ′((1/n)X′X)−Λ = Λ, which

implies (R − Ψ )R−Λ = RR−Λ − ΨR−Λ = Λ. This establishes the desired result,

since RR−Λ = (1/n)(X′X)(X′X)−X′F = (1/n)X′F = Λ. To show (4) implies (3),

we have ((1/n)X′X−ΛΛ′)((1/n)X′X)−(1/n)X′F = Λ−ΛΛ′((1/n)X′X)−Λ = O.

To show (7) implies (3), ΛF ′QXF = ΛF ′(In − X(X′X)−X′)F = n(Λ − ΛΛ′ ×
((1/n)X′X)−Λ) = O. Equivalence between (3) and (5) is easy to establish, since (5)

immediately follows from (3), while (3) follows from (5) by pre- and postmultiplying

both sides of (5) by (1/n)X′X and (ΛΛ′)−Λ, respectively. To show (4) implies (6),

observe that Sp(ΛΛ′ +Ψ ) = Sp(Λ,Ψ 1/2). Further, suppose that ΛΛ′α +Ψβ = 0. By

premultiplying both sides by Λ′(X′X)−, we obtain ΛΛ′α = 0. Thus, Sp(Λ) and Sp(Ψ )

are disjoint, establishing rank(X′X) = rank(X) = rank(Λ) + rank(Ψ ). Equivalence

between (6) and (7) is established immediately, following a similar line of proof to that

of the equivalence between (7) and (8) in Property 3. We set A = X and B = F and

note that rank(QFX) = rank((1/n)X′QFX) = rank(R − ΛΛ′) = rank(Ψ ). �

3.8. Some extension of the identifiability condition

It is well known that a sufficient condition for the matrix of unique variances to be

uniquely determined is that there exists at least two disjoint square matrices both non-

singular and of rank m in the factor loading matrix Λ when any one row vector is

deleted from Λ (Anderson and Rubin, 1956). Ihara and Kano (1986), and Kano (1989)

gave some extensions to Anderson and Rubin’s result. We give an alternative extension

using Property 9.

LEMMA 6. Suppose that the factor loading matrix, Λ, of order (p1 + p2 + r) × m,

where p1 � m, p2 � m, and r � min(p1, p2), is partitioned as Λ′ = [Λ′
1,Λ

′
2,Λ

′
3],

where Λ1, Λ2, and Λ3 are of orders p1 × m, p2 × m, and r × m, respectively. The

population correlation (covariance) matrix, Σ , is then expressed in a partitioned form

as

Σ =
[
Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33

]
=
[
Λ1Λ

′
1 + Ψ1 Λ1Λ

′
2 Λ1Λ

′
3

Λ2Λ
′
1 Λ2Λ

′
2 + Ψ2 Λ2Λ

′
3

Λ3Λ
′
1 Λ3Λ

′
2 Λ3Λ

′
3 + Ψ3

]

= ΛΛ′ + Ψ.

Assume further that rank(Λ1Λ
′
2) = rank(Λ1) = rank(Λ2), and Sp(Λ′

3) ⊂ Sp(Λ′
2).

Then, Ψ is determined uniquely.
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PROOF. Sp(Λ′
3) ⊂ Sp(Λ′

2) implies Λ′
3 = Λ′

2W for some W . rank(Λ1Λ
′
2) = rank(Λ1)

= rank(Λ2) implies Λ′
2(Λ1Λ

′
2)

−Λ1 is the projector onto Sp(Λ′
2) along Ker(Λ1) (Prop-

erty 9), and it is thus invariant over any choice of g-inverse of Λ1Λ
′
2. We then have

Σ32Σ
−
12Σ13 = Λ3Λ

′
2(Λ1Λ

′
2)

−Λ1Λ
′
3 = Λ3Λ

′
2(Λ1Λ

′
2)

−Λ1Λ
′
2W

(76)= Λ3Λ
′
3 = Σ33 − Ψ3,

establishing Ψ3 = Σ33 − Σ32Σ
−
12Σ13, which is invariant over any choice of g-inverse

of Σ12. �

This establishes the desired result. Observe that Lemma 6 covers the result of

Anderson and Rubin (1956), where it was assumed that rank(Λ1Λ
′
2) = rank(Λ1) =

rank(Λ2) = m, which automatically implies Sp(Λ′
3) ⊂ Sp(Λ′

2). Lemma 6 also covers

Kano (1989), since

m = rank(PΛ′
1
PΛ′

2
) � rank(Λ1Λ

′
2) � rank(Λj ) = m

for j = 1, 2. Note that rank(PΛ′
1
) = rank(PΛ′

2
) = m, and that Sp(Λ′

3) ⊂ Sp(Λ′
2) also

holds.

NOTE 4. As a reviewer of this manuscript has pointed out (see also Takeuchi et al.,

1982, Section 7.2.2), there are in general an infinite number of possible Ψ ’s that satisfy

the factor analysis model if Λ is allowed to change in such a way that Sp(Λ′
3) ⊂ Sp(Λ′

2)

no longer holds.
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Robust Procedures in Structural Equation Modeling⋆

Ke-Hai Yuan and Peter M. Bentler

Abstract

The classical procedure for structural equation modeling was developed under the

assumption of normally distributed data. In practice, data are seldom normally dis-

tributed, and often possess heavy tails. When the normality assumption is slightly

violated, the normal distribution based maximum likelihood (ML) procedure still

generates consistent parameter estimates. When data come from a distribution with

severe heavy tails, parameter estimates by ML may no longer be consistent. Stan-

dard errors and test statistics based on modeling the sample means and covariances

may not be valid either. This chapter systematically introduces three types of ro-

bust procedures. Statistical properties of each procedure are reviewed, and their

strengths and weaknesses as well as scope of applicability are discussed. Exam-

ples are provided to contrast the properties of these procedures. While each of the

robust procedures improves the ML procedure to certain extent, only those that

downweight the effect of outlying cases are really robust. The ML procedure is

not recommended for use with non-normally distributed data in practice although it

may possess asymptotic robustness.

1. Introduction

Structural equation modeling (SEM) has been widely used in social and behavioral sci-

ences. The most commonly used method for estimation and testing in SEM is the normal

theory based maximum likelihood (ML). In this method, parameter estimates are ob-

tained by maximizing the likelihood function derived from the multivariate normal dis-

tribution. Standard errors (SE’s) of the maximum likelihood estimators (MLE) are based

on the covariance matrix that is obtained by inverting the associated information matrix.

Overall model evaluation is accomplished by referring the likelihood ratio (LR) statis-

tic to a chi-square distribution. In practice, however, data, including survey data that

are often analyzed with SEM, may never be normally distributed (see Micceri, 1989;

⋆This research was supported by NSF grant DMS04-37167, the James McKeen Cattell Fund, and grants

DA01070 and DA00017 from the National Institute on Drug Abuse.
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Geary, 1947). It is possible that the ML procedure can still provide reliable inference

when data do not follow a normal distribution, but this cannot be taken for granted. In

cases where the ML methodology does not provide reliable model inference, improved

procedures are necessary. This chapter discusses various robust procedures that gener-

ally lead to more reliable inference, i.e., procedures that can give reasonable inference

when the underlying distribution of the population is unknown or when data are conta-

minated. We will discuss the theoretical/asymptotic properties as well as the empirical

performance of each approach, so that readers will have a good overall picture of the

field.

In the SEM literature, the term “robust” is used very broadly. We will discuss three

classes of robust procedures. The first class involves extending the ML methodology

in which parameter estimates remain the MLE but the SE’s are asymptotically correct

for arbitrary distributions with finite 4th-order moments. An associated rescaled LR

statistic is used for overall model evaluation. In certain situations, the rescaled statistic

asymptotically follows a chi-square distribution and can lead to more reliable model

inference than the LR statistic. The second class is based on generalized least squares

(GLS), where weight matrices involving 4th-order moments are explicitly involved in

the estimation process. This class of procedures enjoys many nice analytical properties,

and some also enjoy good finite sample properties. The third class is more consistent

with the standard statistical literature on robustness (e.g., Huber, 1981; Hampel et al.,

1986), where a proper weight is assigned to each case, and those lying far from the

center of the data cloud or from the model get smaller weights. Because problematic

cases receive smaller weights, their effect is minimized not only on SE’s and model

evaluation but also on parameter estimates. Most properties of these procedures are

studied under the assumption of a correctly specified model; limited results relating to

misspecified models also are available. The three classes of procedures in Sections 2

to 4 are developed under the assumption that the model is correctly specified. Section 5

will introduce the parallel results covering situations where the model is misspecified.

Examples contrasting these procedures will be presented in Section 6.

Although the ML methodology in SEM is very sensitive to bad data, the LR statistic

may still asymptotically follow a chi-square distribution when the population distrib-

ution of the sample and the model satisfy certain structural specifications. Similarly,

asymptotically correct SE’s for some parameter estimates may be obtained as well.

These strengths of ML have been designated as asymptotic robustness in the literature

of covariance structure analysis. We will discuss asymptotic robustness in the context of

the ML procedure and its extensions. Furthermore, robust procedures have been devel-

oped mainly to deal with covariance structure analysis (CSA). We will present robust

methods in the more general framework of mean and covariance structure analysis. In

the remainder of this section, we introduce notation that will facilitate the technical

development in later sections.

Let x represent the p observed variables whose population mean vector and covari-

ance matrix are E(x) = μ0 and Cov(x) = Σ0. In SEM we want to model μ0 and

Σ0 by interesting structures μ(θ) and Σ(θ), where θ is a vector of free parameters. As

described in several other chapters in this volume, free parameters may include factor

loadings, latent variable regression coefficients, latent means, and so on, depending on
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the particular SEM structure being studied. Ideally, one would like to have

(1)H0: μ0 = μ(θ0) and Σ0 = Σ(θ0),

where θ0 is the population value of θ corresponding to the correctly specified models.

Because μ0 and Σ0 are generally unknown, we have to use their sample counterparts

to evaluate whether (1) is achievable, and to obtain an estimate of θ that is close to

θ0 if (1) holds. All the procedures will assume a random sample x1, . . . , xn with the

sample mean vector x̄ and sample covariance matrix S. For a p×p symmetric matrix A,

let vec(A) be the operator that stacks the columns of A, and let vech(A) stack only

the elements on and below the diagonal. Then vec(A) contains duplicated elements of

vech(A), and there exists a matrix Dp such that vec(A) = Dp vech(A). We denote s =
vech(S), σ = vech(Σ), ti = (x′

i, vech′{(xi − x̄)(xi − x̄)′})′, t̄ = (x̄′, s′)′, β = (μ′, σ ′)′,

Wc = 2−1D′
p(Σ

−1 ⊗Σ−1)Dp, and

W = diag
(
Σ−1,Wc

)
=
(
Σ−1 0

0 Wc

)
.

We will use a dot on top of a vector function to imply derivatives or a Jacobian matrix

as in β̇(θ) = ∂β(θ)/∂θ ′ and double dots on top of a function to imply the matrix

of second derivatives as in μ̈i(θ) = ∂2μi(θ)/∂θ∂θ
′. We may omit the argument of

the function when it is evaluated at the population value corresponding to a correctly

specified model as in β = β(θ0) and W = W(θ0). We will use I for the identity matrix

and 0 for a vector or matrix of zeros, and subscripts will be used when their dimensions

are not obvious. Convergence in probability and distribution will be denoted by
P−→

and
L−→, respectively.

The regularity conditions for SEM are

(C1) θ0 is an interior point of Θ which is a compact subset of Rq ;

(C2) β(θ) = β(θ0) only when θ = θ0;

(C3) β(θ) is twice continuously differentiable;

(C4) β̇ is full rank; and

(C5) the vector (x′
i, vech′{(xi − μ0)(xi − μ0)

′})′ has a covariance matrix that is full

rank.

Conditions (C1) and (C3) are the standard regularity conditions and are generally satis-

fied in practice. Condition (C2) implies that the model structure is identified. If the struc-

tural model is properly parameterized, condition (C4) will be satisfied. Conditions (C1)

and (C2) are needed for consistency of parameter estimates. Conditions (C3) and (C4)

are needed to establish the asymptotic normality of parameter estimates. (C5) is needed

in order for parameter estimates or statistics for the overall model evaluation to have

proper asymptotic distributions. (C5) will be satisfied when xi ∼ N(μ0,Σ0) and Σ0

is full rank. When directly modeling S, Cov[vech{(xi − μ0)(xi − μ0)
′}] needs to exist.

When the outlying cases are downweighted as in Section 4, only Σ0 needs to exist.

Further discussions of regularity conditions can be found in Browne (1984), Shapiro

(1984), Kano (1986), and Yuan and Bentler (1997a). We will implicitly assume these

conditions throughout the chapter.
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2. Normal theory ML and related procedures

When the distribution of x is known, the ML methodology based on the true distribution

of x has many nice asymptotic properties. Because we do not know the true distribution

of x, we might use x ∼ N(μ,Σ) as a working assumption. Then the log likelihood

function of θ is given by

(2)l(θ) = −n

2
ln
∣∣Σ(θ)

∣∣− n

2
tr
{
Σ−1(θ)

(
S +

[
x̄ − μ(θ)

][
x̄ − μ(θ)

]′)}
.

Let the MLE that maximizes l(θ) be θ̂ . When all the elements in μ and Σ are free

parameters, their MLE’s are given respectively by μ̂ = x̄ and Σ̂ = S with β̂ = (x̄′, s′)′.
When evaluated at μ̂ = x̄ and Σ̂ = S,

(3)l(x̄,S) = −n

2
ln |S| − np

2
.

It follows from (2) and (3) that

2
[
l(x̄,S) − l(θ)

]
= nDML

[
x̄,S,μ(θ),Σ(θ)

]
,

where

DML

[
x̄,S,μ(θ),Σ(θ)

]
=
[
x̄ − μ(θ)

]′
Σ−1(θ)

[
x̄ − μ(θ)

]
+ tr

[
SΣ−1(θ)

]

(4)− log
∣∣SΣ−1(θ)

∣∣− p

is commonly called the normal theory based ML discrepancy function. Because l(x̄,S)

is a constant, the MLE θ̂ also minimizes DML[x̄,S,μ(θ),Σ(θ)]. It is obvious that

TML = nDML

[
x̄,S,μ(θ̂),Σ(θ̂)

]

is the LR statistic. When x ∼ N(μ0,Σ0) and (1) holds, standard large sample theory

(Ferguson, 1996; Rao, 1973) tells us that

TML
L−→ χ2

df ,

where df = p(p + 3)/2 − q and q is the number of free parameters in θ . Thus, a

significantly large TML when referred to the given chi-square distribution implies that

the model structure is most likely misspecified. Under x ∼ N(μ0,Σ0) and (1), standard

asymptotic theory also implies that θ̂ is consistent and

(5)
√
n(θ̂ − θ0)

L−→ N(0,ΩML),

where

ΩML = (β̇ ′Wβ̇)−1.

When the mean structure μ(θ) is saturated, (4) becomes

(6)DMLc

[
S,Σ(θ)

]
= tr

[
SΣ−1(θ)

]
− log

∣∣SΣ−1(θ)
∣∣− p,

where the subscript c is used to denote CSA only. We will still use θ to denote the vector

of free parameters whose dimension is now qc, and the corresponding test statistic is
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TMLc. For normally distributed data and a correctly specified Σ(θ), there exist

(7)TMLc
L−→ χ2

dfc
,

with dfc = p(p + 1)/2 − qc and

(8)
√
n(θ̂ − θ0)

L−→ N(0,ΩMLc),

where ΩMLc = (σ̇ ′Wcσ̇ )
−1. In the context of CSA with non-normally distributed data,

TMLc enjoys some nice properties that are not shared by TML. We will discuss these

properties first and then turn to limited results for mean and covariance structure analy-

sis.

When data are not normally distributed, the MLE θ̂ is still consistent as long as β(θ)

is identified and correctly specified. It follows from the central limit theorem that

(9)
√
n(t̄ − β0)

L−→ N(0,Π),

where

Π =
(
Σ0 Δ

Δ′ Γ

)

with Δ = Cov(x, vech[(x − μ0)(x − μ0)
′]) and Γ = Cov[vech{(x − μ0)(x − μ0)

′}].
Let

Uc = Wc − Wcσ̇ (σ̇
′Wcσ̇ )

−1σ̇ ′Wc

and κj , j = 1, . . . , dfc, be the nonzero eigenvalues of UcΓ . Under the condition of a

correctly specified model, by using a Taylor expansion we will obtain (see the appendix

of Yuan et al. (2002a) for detail)

(10)TMLc =
dfc∑

j=1

κjz
2
j + op(1),

where z2
j ’s are independent and each follows a chi-square distribution with 1 degree

of freedom, and op(1) denotes a random term that approaches zero in probability as

n → ∞. Eq. (10) implies that the asymptotic distribution of TMLc is determined by

the fourth-order moments of x as well as the model structure. Notice that, when x ∼
N(μ,Σ),

Γ = 2D+
p (Σ ⊗Σ)D+ ′

p = W−1
c ,

where D+
p = (D′

pDp)
−1D′

p is the generalized inverse of Dp. Thus, κ1 = κ2 = · · · =
κdfc = 1 and (7) holds. We next explore the structure of Γ and asymptotic robustness

of several ML statistics within a class of non-normal distributions introduced in Yuan

and Bentler (1999a).

Let ξ1, . . . , ξm be independent random variables with E(ξj ) = 0, E(ξ2
j ) = 1, E(ξ3

j )

= ζj , E(ξ4
j ) = ϕj , and ξ = (ξ1, . . . , ξm)

′. Let r be a random variable that is in-

dependent of ξ , E(r2) = 1, E(r3) = γ , and E(r4) = τ . Also, let m � p and
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L = (lij ) = (l1, . . . , lm) be a p × m matrix of rank p such that LL′ = Σ , where

lj = (l1j , . . . , lpj )
′. Then the random vector

(11)x = μ+ rLξ

follows a non-normal distribution with E(x) = μ and Cov(x) = Σ . Different distribu-

tions are obtained by choosing a different set of ξj ’s, L and r . Yuan and Bentler (1999a)

obtained the fourth-order moment matrix Γ = Cov{vech[(x − μ)(x − μ)′]} as

Γ = 2τD+
p (Σ ⊗Σ)D+ ′

p + (τ − 1)σσ ′

(12)+ τ

m∑

j=1

(ϕj − 3) vech(lj l′j ) vech′(lj l′j ).

It was noted by Yuan and Bentler (1999a) that for a given matrix L, different marginal

skewnesses will not affect the Γ matrix in (12). When all the ϕj ’s equal 3, then the Γ

in (12) reduces to that of an elliptical distribution for x (see Browne, 1984). Yuan and

Bentler (1999a) called the corresponding distribution of x in (11) a pseudo-elliptical

distribution because it may still have arbitrary skewness. When τ = 1 in addition to

ϕj = 3, then Γ reduces to that of x ∼ N(μ,Σ). Yuan and Bentler (1999a) called the

corresponding distribution of x in (11) a pseudo-normal distribution. Due to allowing

skewness, the class of pseudo-elliptical distributions is much larger than the class of

elliptical distributions (see Fang et al., 1990). Similarly, N(μ,Σ) is only a member of

the class of pseudo-normal distributions.

It is obvious that in CSA TMLc and θ̂ are functions of S only. Thus, (7) and (8)

hold within the class of pseudo-normal distributions. Of course, statistics in other mul-

tivariate procedures such as correlations, principal components and exploratory factor

models also enjoy the same asymptotic distributions within the class of pseudo-normal

distributions as well (Yuan and Bentler, 2000a, 2002).

It follows from (10) that any asymptotic robustness conditions for TMLc must lead to

κ1 = κ2 = · · · = κdfc = 1. When the κj ’s are not equal, TMLc will not asymptotically

follow a chi-square distribution. When κ1 = κ2 = · · · = κdfc = κ �= 1, TMLc will not

approach a chi-square variate either. However, using a consistent estimate κ̂ for κ , we

can rescale the LR statistic to TRMLc = κ̂−1TMLc and

(13)TRMLc
L−→ χ2

dfc
.

Thus, conditions leading to κ1 = κ2 = · · · = κdfc = κ are also of great interest.

Several conditions are necessary to characterize properties of TRMLc. For a covariance

structure Σ(θ), if for any parameter vector θ and positive constant α there exists a

parameter vector θ∗ such that Σ(θ∗) = αΣ(θ), then Σ(θ) is invariant with respect to a

constant scaling factor (ICSF). As noted by Browne (1984), nearly all structural models

in current use are ICSF. Let R(σ̇ ) represent the range space spanned by the column

vectors of σ̇ . If σ ∈ R(σ̇ ), then the model is said to be quasi-linear (QL). Because ICSF

implies QL (Satorra and Bentler, 1986), condition QL is also satisfied by almost all of

the models in current use.

Under the condition of ICSF, Browne (1984) and Shapiro and Browne (1987) showed

that the κj ’s are equal within the class of elliptical symmetric distributions. Earlier work
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in this direction by Muirhead and Waternaux (1980) and Tyler (1983) showed that the

LR statistics in canonical correlation and several simple covariance structures can be

rescaled to asymptotically follow chi-square distributions. The correction factor κ̂ they

used is based on Mardia’s (1970) measure of multivariate kurtosis. Satorra and Bentler

(1988) observed that tr(UcΓ ) =
∑dfc

j=1 κj . They suggested

(14)κ̂ = tr(ÛcΓ̂ )/dfc

in constructing TRMLc. With (14), Yuan and Bentler (1999a) noted that (13) holds when

x follows (11) and vech(lj l′j ) ∈ R(σ̇ ). When κ is estimated using Mardia’s multi-

variate kurtosis and the condition of QL is satisfied, (13) holds within the class of

pseudo-elliptical distributions. So (13) is valid within a much larger class of non-normal

distributions when (14) is used in TRMLc.

Similarly, there exist conditions for using (8) to provide consistent SE’s for a subset

of θ̂c (see Anderson and Amemiya, 1988; Yuan and Bentler, 1999b). As noted above,

the property that TMLc or a subset of θ̂ enjoys the same asymptotic distribution for

non-normally distributed data as for normally distributed data is commonly called as-

ymptotic robustness. Early characterizations of this type of robustness were made by

Browne (1987), Anderson and Amemiya (1988) and Amemiya and Anderson (1990)

for confirmatory factor models (CFM). The results were generalized in various direc-

tion by Browne and Shapiro (1988), Kano (1992), Mooijaart and Bentler (1991), Satorra

(1992), Satorra and Bentler (1990), Yuan and Bentler (1999a, 1999b).

Simulation studies indicate that TRMLc performs quite robustly under a variety of

conditions (Curran et al., 1996; Hu et al., 1992; Yuan and Bentler, 1998a). While excep-

tions have been studied, most data generation in these studies satisfies the asymptotic

robustness condition for TRMLc (see Yuan and Bentler, 1999a). In general, however,

TRMLc does not approach a variate possessing a chi-square distribution. Instead, it only

approaches a variate T with E(T ) = df . It is likely that the distributional shape of T

is far from chi-square. In such cases, TRMLc will not behave like a chi-square variate.

Limited simulation results in Yuan and Bentler (1998a) and Bentler and Yuan (1999)

indicate that, when the κj ’s are not equal, TRMLc may behave worse as n increases.

When sample size is small, TRMLc as well as TMLc may not behave like a chi-square

variate even for normally distributed data. It should be noted that most conditions for

asymptotic robustness are not verifiable in practice. It is misleading to blindly trust that

the statistic TMLc or TRMLc will asymptotically follow a chi-square distribution before

the necessary conditions can be verified.

In contrast to CSA, little or no results exist on the asymptotic robustness of TML when

simultaneously modeling mean and covariance structures. Yuan and Bentler (2006)

noted that the asymptotic robustness condition in CSA will not make TML asymptot-

ically follow a chi-square distribution. But, for correctly specified models, we can still

write

TML =
df∑

j=1

κjz
2
j + op(1),
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where κj ’s are the nonzero eigenvalues of UΠ with

(15)U = W − Wβ̇(β̇ ′Wβ̇)−1β̇ ′W,

and where z2
j , j = 1, . . . , df , are independent χ2

1 variates. The following rescaled

statistic with κ̂ = tr(ÛΠ̂)/df has been proposed in different contexts (Satorra, 1992;

Satorra and Bentler, 1994; Yuan and Bentler, 2000b, 2001a)

TRML = κ̂−1TML,

but few or no empirical studies have been conducted to evaluate its performance.

When data are not normally distributed, the asymptotic distribution of θ̂ is character-

ized by

(16)
√
n(θ̂ − θ0)

L−→ N(0,ΩSW),

where

ΩSW = (β̇ ′Wβ̇)−1(β̇ ′WΠWβ̇)(β̇ ′Wβ̇)−1

is commonly called the sandwich-type covariance matrix. Like TRML, ΩSW makes an

adjustment for distributional violations of the normal theory based ML procedure. When

data are normally distributed, W = Π−1, so (16) reduces to (5). The sandwich-type

covariance matrix was first proposed by Huber (1967). It is now widely used in SEM

(Bentler, 1983; Bentler and Dijkstra, 1985; Browne, 1984; Browne and Arminger, 1995;

Satorra and Bentler, 1994; Shapiro, 1983; Yuan and Bentler, 1997b, 1998b, 1998c).

Comparing ΩSW with ΩML, one has to estimate the extra matrix Π. Simulation results

in CSA (Yuan and Bentler, 1997b) indicate that standard errors based on (16) match

those of empirical ones very well for normally as well as non-normally distributed data.

Yuan and Bentler (1997b) recommended using (16) as the default formula for calculat-

ing SE’s of θ̂ .

3. Generalized Least Squares (GLS) procedures

With typical non-normal data in the social and behavioral sciences (Micceri, 1989), the

ideal is to have a statistic that approximately follows a chi-square distribution regardless

of the underlying distribution of the data. One of the original proposals in this direction

was a GLS procedure made by Browne (1984) in the context of CSA. Because CSA

alone does not enjoy extra properties for GLS procedures, we will discuss mean and

covariance structure models, without paying special attention to CSA. Let St be the

sample covariance matrix of ti . Then Π̂ = St is consistent for Π. When Π̂ is nonsin-

gular, which needs the sample size n to be greater than p(p + 3)/2 at least, the GLS

estimator θ̃ will be obtained by minimizing

(17)DGLS

[
x̄,S,μ(θ),Σ(θ)

]
=
[

t̄ − β(θ)
]′
Π̂

−1[
t̄ − β(θ)

]
.
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The corresponding statistic for overall model evaluation is

(18)TGLS = nDGLS

[
x̄,S,μ(θ̃),Σ(θ̃)

]

and is referred to χ2
df for significance. For the asymptotic distribution of θ̃ , we have

(19)
√
n(θ̃ − θ0)

L−→ N(0,ΩGLS),

where

ΩGLS = (β̇ ′Π−1β̇)−1.

It is obvious that, for normally distributed data, Π = W−1 and ΩGLS = ΩML = ΩSW.

For non-normally distributed data, ΩGLS � ΩSW, thus θ̃ is asymptotically at least as

efficient as θ̂ . However, empirically θ̃ can be much less efficient than θ̂ even when

data are non-normally distributed. Also, SE’s of θ̃ based on (19), with Π̂ = St , are

too optimistic compared to those obtained by Monte-Carlo. Yuan and Bentler (1997b)

proposed a corrected estimator of ΩGLS by

(20)Ω̂CGLS = n − 1

n − p(p + 3)/2 − 2

(
β̇

′
(θ̃)S−1

t β̇(θ̃)
)−1

,

which is also consistent for ΩGLS. Although SE’s based on (20) are still smaller than

the Monte-Carlo SE’s, the biases are much smaller compared to those directly based on

(19), especially when p is large.

Because TGLS asymptotically follows χ2
df as long as Π exists – without requiring

any specific distribution assumption – the GLS procedure is commonly referred to as

the asymptotically distribution free (ADF) method in the context of covariance struc-

ture analysis (Browne, 1984). The ADF property is desirable. However, the distribution

of TGLS may be far from χ2
df for typical sample sizes encountered in practice. Most

correctly specified models are rejected when TGLS is referred to χ2
df (Yuan and Bentler,

1997a). With TGLSc being the corresponding statistic for CSA, Hu et al. (1992) showed

that the mean and variance of TGLSc are also much greater than those of χ2
dfc

.

Note that, when x ∼ N(μ,Σ), both 2D+
p (S ⊗ S)D+′

p and the sample covariance

matrix, Sz, of zi = vech{(xi − x̄)(xi − x̄)′}, i = 1, . . . , n, are consistent for Γ . In the

literature of CSA, the GLS procedure with weight given by 2−1[D+
p (S ⊗ S)D+′

p ]−1 is

commonly called the normal theory GLS procedure, while the one with weight given

by S−1
z is commonly called the ADF procedure.

In an effort to find statistics that perform better in rejection rates with smaller n’s,

Yuan and Bentler (1997a) compared mean and covariance structure analysis with mul-

tivariate regression and suggested using

Π̃ = 1

n

n∑

i=1

(
ti − β(θ̃)

)(
ti − β(θ̃)

)′

in constructing a GLS discrepancy function. Because Π̃ � Π̂ = St , the greater type I

error in TGLS will be corrected when using Π̃
−1

as the weight matrix in formulating a
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GLS procedure. Let the corrected GLS discrepancy function be

(21)DCGLS

[
x̄,S,μ(θ),Σ(θ)

]
=
[

t̄ − β(θ)
]′
Π̃

−1[
t̄ − β(θ)

]
.

Because (21) involves Π̃, it seems that one has to obtain θ̃ before minimizing (21). Yuan

and Bentler (1997a) showed that θ̃ also minimizes (21) and the relation

(22)TCGLS = nDCGLS

[
x̄,S,μ(θ̃),Σ(θ̃)

]
= TGLS/(1 + TGLS/n)

holds. Because TGLS/n approaches zero, TCGLS asymptotically follows χ2
df as long

as Π exists. Simulation results in Yuan and Bentler (1997a) imply that the mean of

TCGLS approximately equals df for all sample sizes across many distribution conditions.

However, at smaller sample sizes TCGLS tends to over-correct the behavior of TGLS by

having a type I error smaller than the nominal level.

Notice that TGLS is in the form of Hotelling’s T 2 statistic. It is well-known that T 2

approaches a chi-square distribution as n → ∞, but using an F -distribution better

describes the distribution of T 2. Motivated by this, Yuan and Bentler (1999c) further

proposed the following F -statistic

(23)TF = (n − df )TGLS

(n − 1)df

and suggested referring TF to Fdf,n−df , the F -distribution with df and n−df degrees of

freedom. It is obvious that TCGLS, TGLS and TF are asymptotically equivalent. Actually,

they also perform similarly when n is very large (Yuan and Bentler, 1999c). When n is

small, the performance of TF lies between that of TCGLS and TGLS, with a slight over-

rejection on average, but with quite satisfactory performance overall.

Both TF and TCGLS are asymptotically distribution free and perform quite reliably

when n is not too small. However, the GLS procedure has a drawback of nonconver-

gences at smaller sample sizes (see Hu et al., 1992; Yuan and Bentler, 1997a). When

a nonconvergence occurs, θ̃ is not available nor is TF or TCGLS. In the context of co-

variance structure analysis, Browne (1984) also proposed a residual-based statistic.

Extending this statistic to mean and covariance structure analysis yields

TRGLS = n
[

t̄ − β(θ̂)
]′(
Π̂

−1 − Π̂
−1
β̇(θ̂)

[
β̇

′
(θ̂)Π̂

−1
β̇(θ̂)

]−1
β̇

′
(θ̂)Π̂

−1)

(24)×
[

t̄ − β(θ̂)
]
,

where θ̂ can be the MLE, a GLS or any other consistent estimator that is easier to

obtain. Like TGLS, TRGLS approaches χ2
df as n tends to infinity. However, TRGLS also

behaves like TGLS for finite n. It over-rejects correct models too often unless n is very

large. Parallel to TCGLS, Yuan and Bentler (1998a) proposed TCRGLS whose performance

under H0 is almost the same as TCGLS, with an empirical mean approximately equal to

df and some under-rejection of the correct model with small sample sizes (Bentler

and Yuan, 1999; Yuan and Bentler, 1998a). Yuan and Bentler (1998a) also proposed a

residual-based F -statistic TRF based on TRGLS; it also performs similarly to TF.

The GLS procedures enjoy better asymptotic properties than the ML procedure. The

statistics TRF and TCRGLS also enjoy nice finite sample properties. Because TRML does

not approach a chi-square distribution in general, conditions exist for TRML to yield poor

inferences. These have not been systematically explored.
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4. Real robust procedures

Although the ML and GLS procedures enjoy some nice properties, they are based on

modeling x̄ and S, which are efficient only when x ∼ N(μ,Σ). When a data set pos-

sesses moderately heavy tails, x̄ and S will be inefficient estimates of their population

counterparts (Kano et al., 1993; Tyler, 1983). When the heavy tails are severe, the pop-

ulation 4th-order moment matrix Γ may not exist, and the previously obtained θ̂ and θ̃

have unbounded covariance matrices. Heavy tails can be caused by outliers. Since one

outlier in a sample can move an element of x̄ or S to an arbitrary value, results obtained

by ML or GLS procedures may have little meaning. When the sample contains outliers

or x has heavy tails, a robust procedure can provide better parameter estimates and more

reliable model evaluation.

Following Huber (1964), many robust statistical methods have been developed (e.g.,

Huber, 1981; Hampel et al., 1986; Hubert et al., 2004; Rousseeuw and Leroy, 1987;

Wilcox, 2004). Maronna (1976) obtained the properties of M-estimators for the pop-

ulation mean vector and covariance matrix. Lopuhaä (1989, 1991) and Rocke (1996)

studied other estimators that can allow the sample to contain nearly 50% contaminated

observations. We will mainly use M-estimators for robust SEM procedures, aiming for

samples containing a proportion of contaminated but not extreme observations.1 There

exist two main approaches to robust SEM. One is to first get robust estimates μ̂ and Σ̂ ,

then treat these estimates as x̄ and S and use ML or GLS procedures for further analy-

sis. The other fits the structural model to raw data directly by a robust method without

explicitly estimating the saturated model. We will call the first one the two-stage pro-

cedure and the second the direct procedure. We will also discuss related procedures for

robustness and robust procedures for related models.

4.1. Two-stage procedures

In a robust estimation process for μ̂ and Σ̂ , cases are differentiated by their distances to

the center of the majority of the data, as measured by

d(x,μ,Σ) =
[
(x − μ)′Σ−1(x − μ)

]1/2
.

The farther xi is from the center, the less weight it will get. Let u1(·) and u2(·) be de-

creasing weight functions. Robust M-estimates μ̂ and Σ̂ can be obtained by iteratively

solving

(25a)μ =
n∑

i=1

u1(di)xi/

n∑

i=1

u1(di),

(25b)Σ =
n∑

i=1

u2

(
d2
i

)
(xi − μ)(xi − μ)′/n,

1 When a large proportion of the sample is contaminated, the sample may come from two or several

distributions. Then a mixture model might be more appropriate (Arminger et al., 1999; Hoshino, 2001;

Lee and Song, 2003; Muthén, 2001; Yung, 1997). This topic is beyond the scope of this chapter.
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where di = d(xi,μ,Σ). Two commonly used classes of weight functions for M-esti-

mators are Huber-type weights and weights based on a multivariate t-distribution. Let

ρ be the percentage of influential cases one wants to control, and r be a constant deter-

mined by ρ through P(χ2
p > r2) = ρ. The Huber-type weights are given by

(26)u1(d) =
{

1, if d � r,

r/d, if d > r

and u2(d
2) = {u1(d)}2/̺, where ̺ is a constant determined by ρ through E{χ2

pu2(χ
2
p)}

= p. The purpose of ̺ is to make Σ̂ unbiased for Σ when x ∼ N(μ,Σ). The weights

corresponding to a p-variate t-distribution with m degrees of freedom are given by

(27)u1(di) = u2

(
d2
i

)
= (p + m)/

(
m + d2

i

)
.

Notice that the only tuning parameter in using (26) is ρ and that in using (27) is m.

Motivated by the formula for calculating the sample covariance matrix, Campbell

(1980) defined another form of M-estimator by solving

(28a)μ =
n∑

i=1

u(di)xi/

n∑

i=1

ui

and

(28b)Σ =
n∑

i=1

u2(di)(xi − μ)(xi − μ)′/

(
n∑

i=1

u2(di) − 1

)
,

where u(d) = w(d)/d with

(29)w(d) =
{
d, if d � d0,

d0 exp{− 1
2
(d − d0)

2/b2
2}, if d > d0,

d0 = √
p+ b1/

√
2, b1 and b2 are constants. So there are two tuning parameters in (29).

Based on empirical experience, Campbell (1980) suggested b1 = 2 and b2 = ∞ or

b1 = 2 and b2 = 1.25. When b1 = 2 and b2 = ∞, (28) defines a Huber-type M-es-

timator; when b1 = 2, b2 = 1.25, (28) defines Hampel-type redescending M-estimator

(Hampel, 1974); (28) leads to μ̂ = x̄ and Σ̂ = S when choosing b1 = ∞.

Robust M-estimation for μ0 and Σ0 was motivated by ML within the class of el-

liptical distributions (see Maronna, 1976). However, Σ̂ generally does not approach

Σ0 = Cov(x) within the class of elliptical distributions. Instead, it approaches αΣ0 for

a scalar α > 0. When the population elliptical distribution is known, one can theoret-

ically calculate α and rescale Σ̂ to make it consistent for Σ0. Because essentially all

commonly used covariance structure models are ICSF, such an inconsistency will not

cause any problems for statistical inference when treating αΣ as the covariance matrix.

See Yuan and Bentler (1998c) and Yuan et al. (2004a) for further discussion on this

aspect. Thus we may still use Σ0 instead of αΣ0 in the following development.

When replacing x̄ and S in (2), (4), (6), (17) or (21) by μ̂ and Σ̂ , we will obtain the

corresponding robust estimates for θ . Let these robust estimates be denoted by θ̂ or θ̃ , as

before. Then all the robust properties of μ̂ and Σ̂ will be inherited by θ̂ or θ̃ (see Yuan
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and Bentler, 1998b, 1998c). In order to have proper SE’s for parameter estimates and test

statistics for overall model evaluation, we need a consistent estimate for the covariance

matrix of β̂ = (μ̂′
, σ̂

′
)′, where σ̂ = vech(Σ̂). Yuan and Bentler (1998c) proposed to

use the estimating equation approach to characterize the asymptotic distribution of β̂

and to estimate its covariance matrix. It is obvious that μ̂ and σ̂ satisfy

1

n

n∑

i=1

g1(xi, μ̂, Σ̂) = 0 and
1

n

n∑

i=1

g2(xi, μ̂, Σ̂) = 0,

where

g1(x,μ,Σ) = u1

{
d(x,μ,Σ)

}
(x − μ)

and

g2(x,μ,Σ) = u2

{
d2(x,μ,Σ)

}
vech

[
(x − μ)(x − μ)′

]
− σ

corresponding to (25); and

g1(x,μ,Σ) = u
{
d(x,μ,Σ)

}
(x − μ)

and

g2(x,μ,Σ) = u2
{
d(x,μ,Σ)

}
vech

{
(x − μ)(x − μ)′ −Σ

}
+ 1

n
σ

corresponding to (28). Let g = (g′
1, g′

2)
′ and ġ = ∂g/∂β ′, then (see Yuan and Bentler,

1998c)

(30a)
√
n

(
μ̂− μ0

σ̂ − σ 0

)
L−→ N(0,V),

where V = H−1BH′ −1 with

(30b)H = E
{
ġ(x,μ0, σ 0)

}
and B = E

{
g(x,μ0, σ 0)g

′(x,μ0, σ 0)
}
.

In contrast to (9), we only require Σ0 to exist in order for (30) to hold. A consistent

estimate of V can be obtained by using consistent estimates for H and B; these are

given by

Ĥ = 1

n

n∑

i=1

ġ(xi, μ̂, σ̂ ) and B̂ = 1

n

n∑

i=1

g(xi, μ̂, σ̂ )g
′(xi, μ̂, σ̂ ).

Now, with x̄, S and Π̂ being replaced by μ̂, Σ̂ and V̂, respectively, all the procedures in

the previous two subsections can be applied in a robust manner.

Let V11 and V22 be the submatrices of V corresponding to asymptotic covariance

matrices of μ̂ and σ̂ , respectively. When data follow an elliptical distribution, μ̂ and σ̂

are asymptotically independent and (see Maronna, 1976; Tyler, 1983; Yuan and Bentler,

1998b)

(31)V11 = τ1Σ0, and V22 = 2τ2D+
p (Σ0 ⊗Σ0)D

+′
p + τ3σ 0σ

′
0,
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where the scalars τ1 to τ3 are related to the underlying distribution of the data and

the weights used in the estimation. A consistent estimator for V can also be obtained

based on (31) when data are truly elliptically distributed. The one based on (30) is

more robust against violation of distribution assumptions (Yuan and Jennrich, 1998).

The value of (31) is that, when replacing S by Σ̂ and Γ̂ by V̂22, the rescaled statistic

TRMLc for CSA asymptotically follows χ2
dfc

. Parallel to modeling x̄ and S in mean and

covariance structure analysis, the rescaled statistic TRML when modeling μ̂ and Σ̂ will

only approach a distribution whose mean equals df . Of course, we can also obtain the

MLE when the specific elliptical distribution form of x is known (see Fang et al., 1990;

Kano et al., 1993). However, in real data analysis, it is unlikely that we would know the

exact distributional form for a given data set.

The Huber-type weight, the redescending weight, and the weight based on a multi-

variate t-distribution, can all effectively control the influence of heavy tails or outliers.

However, differences exist among them. Based on empirical experience, Yuan and

Bentler (1998b, 1998c) found that, in Huber-type estimators, the effect of abnormal

cases is down-weighted but not eliminated. If data are nearly normal, the estimators

based on Huber-type weights are still highly efficient. So Huber-type weights are bet-

ter used for data sets whose distributions are not too far away from normal. By using

redescending weights, the effect of outlying cases can be minimized; this is almost

equivalent to outlier removal. But the estimators will lose efficiency as compared to

those based on Huber-type weights when data are approximately normal. Yuan and

Bentler (1998c) also found that the tuning parameters for the redescending M-estimator

recommended by Campbell (b1 = 2 and b2 = 1.5) leads to many cases with essentially

zero weights, resulting in near singular Σ̂ and V̂. Thus, b2 has to be adjusted upwards

to have a proper redescending effect. The weights based on a multivariate t-distribution

are best used for a data set whose spread can be approximately described by the t-dis-

tribution, or for a data set with heavy tails but with no obvious outliers. In addition

to these rough guidelines, statistical procedures have also been proposed for choosing

proper weights. These have been studied mainly in the context of CSA.

For choosing the tuning parameter ρ in using the Huber-type weights of (26), let

u2i = u2{d2(xi, μ̂, Σ̂)} and

(32)x
(ρ)
i =

{√
u2i(xi − μ̂)

}

at the convergence of (25). Then we can rewrite (25b) as

Σ̂ = 1

n

n∑

i=1

x
(ρ)
i x

(ρ)′
i ,

which is just the sample covariance matrix of the x
(ρ)
i . Yuan et al. (2000) proposed

using (32) as a transformation formula. Working with several practical data sets, they

found that the transformed samples x
(ρ)
i are much better approximated by a multivari-

ate normal distribution than the original sample xi , as measured by Mardia’s (1970)

multivariate skewness

M1 = 1

n2

n∑

i,j=1

{
(xi − x̄)′S−1(xj − x̄)

}3
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and kurtosis

M2 = 1

n

n∑

i=1

{
(xi − x̄)′S−1(xi − x̄)

}2
.

Considering that the sample covariance matrix is most efficient when data are normally

distributed, they further proposed using

zM2
=
[
M2 − p(p + 2)

]
/
[
8p(p + 2)/n

]1/2 ∼ N(0, 1)

as a criterion in choosing the tuning parameter ρ. This can be done by starting at 0

and incrementing by a step of size 0.05 until zM2
corresponding to x

(ρ)
i is no longer

significant. By transforming (32) further into

x
(ρ)
i0 = Σ1/2(θ̂)Σ̂

−1/2
x
(ρ)
i

and resampling from the sample represented by x
(ρ)
i0 , Yuan and Hayashi (2003) proposed

to use a bootstrap procedure to choose ρ. They discussed a rationale for choosing ρ

that makes the statistic TMLc approximately following χ2
dfc

. Using real data sets, they

showed that TMLc applied to a properly transformed sample can closely follow χ2
dfc

,

while the behavior of TGLSc and TRMLc remains significantly different from χ2
dfc

when

applied to the sample x
(ρ)
i0 . It is obvious that these approaches to selecting ρ are equally

applicable to selecting m when using the weights based on a multivariate t-distribution.

They can also be applied to selecting b1 and b2 in applying (28) and (29) by defining

u2i = nu2
i /

(
n∑

i=1

u2
i − 1

)

in (32).

Because efficiency of parameter estimates is one of the most important concerns in

promoting a statistical methodology, Yuan et al. (2004a) proposed to use the empiri-

cal efficiency of θ̂ in selecting a particular transformation or weight among different

downweighting procedures. For such a purpose, we need to focus on a set of invari-

ant parameters. Within the context of LISREL models (Jöreskog and Sörbom, 1996,

pp. 1–3), when factor loadings are fixed at 1.0 to identify the scales of latent variables,

all the free coefficients in the measurement and structural models are invariant para-

meters. Working with several real data sets, Yuan et al. (2004a) found that Huber-type

weights in (26) often lead to the most efficient parameter estimates.

4.2. Direct procedures

In the two-stage approaches, cases are judged according to their distances from μ. In

mean and covariance structure analysis, the model structure reflects a substantive the-

ory. A case lying far from the saturated μ may not necessarily be far from the model

structure. This parallels regression where not all leverage points are necessarily out-

liers. Thus, it is more reasonable to weight cases according to their distances from the
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structural model. Let yi = (x′
i, vech′(xix′

i))
′ and

ν(θ) =
(

μ(θ)

vech[Σ(θ) + μ(θ)μ′(θ)]

)
.

Then mean and covariance structure analysis can be expressed as the regression model

yi = ν(θ) + ei, i = 1, 2, . . . , n,

where ei is the error term. Parallel to robust regression (see e.g., Holland and Welsch,

1977), we may define a robust estimator θ̂ by solving

(33)

n∑

i=1

ν̇′(θ)Wi(θ)
(
yi − ν(θ)

)
= 0,

where Wi(θ) is a weight matrix with dimension p(p + 3)/2. In order for the estimator

θ̂ to be robust, the Wi has to explicitly account for the distance of the ith case from the

model. Yuan and Bentler (2000c) proposed

Wi = u(di)W,

where W does not depend on i, u(·) is a decreasing function, and

(34)d2
i =

(
yi − ν(θ)

)′
W
(
yi − ν(θ)

)
.

As with the two-stage procedures, there are several ways to choose the function u(·)
in controlling the influence of yi on θ̂ . We may choose u(·) to be the Huber-type weight

as in (26) or the weight based on a multivariate t-distribution as in (27). Yuan and

Bentler (2000c) used u(d) = w(d)/d with w(·) being given in (29), d being given in

(34) and

W(θ) =
[

n∑

i=1

u2
i

(
yi − ν(θ)

)(
yi − ν(θ)

)′/
(

n∑

i=1

u2
i − 1

)]−1

,

where ui = u(di). Once the u(·) and the W are chosen, θ̂ can be obtained through the

following iterative procedure:

Step 1. Choosing a positive definite matrix W(1) and initial estimator θ (1).

Step 2. With the j th-step estimates θ (j) and W(j), the (j + 1)th-step estimates are

given by

θ (j+1) = θ (j) + Δθ (j)

with

(35)Δθ (j) =
(

n∑

i=1

uij ν̇
(j) ′W(j)ν̇(j)

)−1 n∑

i=1

uij ν̇
(j) ′W(j)

(
yi − ν(j)

)
,

and

(36)W(j+1) =
[

1

(
∑n

i=1 u
2
ij − 1)

n∑

i=1

u2
ij

(
yi − ν(j)

)(
yi − ν(j)

)′
]−1

,
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where ν(j) = ν(θ (j)), ν̇(j) = ν̇(θ (j)), uij = u(dij ) with dij being (34) evaluated at θ (j)

and W(j).

Step 3. For a prespecified small number ε, repeat step 2 until ‖Δθ (j)‖ < ε.

Since W(j) does not change from case to case in each iteration, we can also write

(35) as

(37)Δθ (j) =
(
ν̇(j) ′W(j)ν̇(j)

)−1
ν̇(j)′W(j)

(
ỹ − ν(j)

)
,

where ỹ =
∑n

i=1 uijyi/(
∑n

i=1 uij ). Eqs. (35) and (37) are parallel to (28a), and (36) is

parallel to (28b). The main difference between the two-stage and the direct approaches

is that in (35) and (36) each case gets its weight based on its distance to the structural

model ν(θ) rather than to the saturated mean as in (28). Actually, (35) and (36) do

not generate μ̂ and Σ̂ corresponding to the saturated model. Steps 1 to 3 constitute

the well-known iteratively reweighted least squares (IRLS) algorithm. The convergence

properties of this algorithm were studied by Holland and Welsch (1977), Rubin (1983)

and Green (1984).

The IRLS procedure leads to a robust estimate θ̂ , but it does not provide a way to

obtain the SE’s of θ̂ or to evaluate the overall model structure. Similar problems also

exist in robust regression. Although the regression model is a saturated model where

a statistic for overall model evaluation is not relevant, SE’s for robust regression coef-

ficients are necessary and have been well-discussed in the literature (see Huber, 1973;

Gross, 1977; Carroll, 1979; Birch and Myers, 1982). Motivated by SE’s in robust re-

gression, Yuan and Bentler (2000c) proposed to obtain SE’s of θ̂ similar to that for the

GLS procedures in the previous section. Denote the estimated weights at convergence

of (35) and (36) by ûi and Ŵ with Ŵi = ûiŴ. Then, θ̂ satisfying (33) corresponds to

minimizing the GLS function

n∑

i=1

(
yi − ν(θ)

)′
Ŵi

(
yi − ν(θ)

)
.

However, n1 =
∑n

i=1 ûi and n2 =
∑n

i=1 û
2
i play a similar role as sample size, and

hence they need to be properly accounted for in obtaining SE’s and formulating a test

statistic for overall model evaluation. Comparing (33) and the IRLS procedure to those

in robust regression (see Rousseeuw and Leroy, 1987, pp. 44–45), Yuan and Bentler

(2000c) suggested using

√
n1(θ̂ − θ0)

L−→ N(0,Ω),

where

Ω = (n2 − 1)

n1
(ν̇ ′Wν̇)−1,

for the SE’s of θ̂ . They also suggested referring

TIRLS =
n2

1

(n2 − 1)
(ỹ − ν̂)′W(ỹ − ν̂)

to χ2
df for the overall model evaluation.
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The above IRLS procedure is totally decided by u(·), di and W. When ui = 1 and

W = S−1
y with Sy being the sample covariance matrix of yi , then the above inference

procedure yields the GLS procedures discussed in Section 3. The statistic TIRLS will be

equivalent to TCGLS. In the context of covariance structure analysis, Yuan et al. (2004b)

proposed to use W(θ) = [Cov(yi)]−1 when assuming xi ∼ N(μ,Σ(θ)), u(·) as in

(26), and a di based on residuals from predicting the factor score. Examples show that

the residual based di can effectively identify cases that deviate from a theoretical model

structure. When these cases are downweighted according to a Huber-type weight, the

model fits the data better, and reliability coefficients of a measurement scale can in-

crease.

The principle for selecting turning parameters as discussed for two-stage approaches

also applies in the direct approach. The bootstrap can be used to compare the empirical

efficiency of a set of invariant parameter estimates. With given tuning parameters, one

may also use the bootstrap to obtain the SE’s of θ̂ and to test model hypothesis based

on TIRLS.

4.3. Other approaches to robustness and related procedures

Techniques for identifying outliers or influential cases are also useful when facing data

containing heavy tails or outliers. Berkane and Bentler (1988), Bollen and Arminger

(1991), Lee and Wang (1996), Poon and Poon (2002), and Poon and Wong (2004)

provided various procedures for identifying outliers. With multiple outliers, masking

effect may cause difficulty in identifying the true ones (Fung, 1993; Poon et al., 2000;

Rousseeuw and van Zomeren, 1990). When true outliers are not obvious, the idea of

using empirical efficiency to compare different procedures can also be used to decide

whether to keep or remove certain cases or outliers. Evidence in Yuan and Hayashi

(2003) and Yuan et al. (2004a) implies that outlier removal is not as efficient as a proper

robust procedure.

Model comparison is of fundamental interest in statistics and SEM as well, and cross-

validation is a universally accepted criterion for model selection (Stone, 1974). When

a sample contains heavy tails or outliers, the model that fits the majority of the data

may not cross-validate well. Cross-validation combined with a robust procedure will

give a model the proper merit it deserves. Yuan et al. (2002b) discussed cross-validation

with robust covariance matrices. The same idea can be applied to mean and covariance

structure analysis using two-stage as well as direct robust procedures.

The success of robust estimation requires having a weighting scheme so that cases ly-

ing far from the center of the data cloud or from the model are properly downweighted.

When the underlying distribution of x is known, then the ML procedure is generally

preferred. Similar to robust estimation, an ML procedure based on a distribution having

heavy tails can also properly control the effect of influential cases. Recent development

in Markov chain Monte Carlo can allow x to have rather complicated distribution where

ML methodology is still feasible (see Lee and Xia, In press). When the chosen distribu-

tion is misspecified, MLE other than those based on x ∼ N(μ,Σ) may not be consistent

(Gourieroux et al., 1984), but they may still control the effect of influential cases.
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Due to the advance of computing power, robust procedures have been developed and

applied to almost every aspect of statistics and data analysis2 (see e.g., Maddala and

Rao, 1997). This chapter has focused mainly on robust procedures for SEM. Robust

procedures for two closely related procedures, principal components and exploratory

factor analysis, are also well developed. Some useful sources on robust principal com-

ponents are Devlin et al. (1981), Ruymgaart (1981), Cui et al. (2003), Ibazizen and

Dauxois (2003), and Hubert et al. (2005); and on factor analysis are Yuan et al. (2002a)

and Pison et al. (2003).

Statistical theory for robust estimation has been developed primarily within the class

of elliptical distributions (Huber, 1981; Hampel et al., 1986), mainly because analyz-

ing Σ̂ and S leads to the same substantive conclusion. In practice, data might contain

outliers which will make a true symmetric distribution skewed at the sample level. In

such a situation, a robust procedure is definitely preferred (Yuan and Bentler, 2001b;

Yuan et al., 2000). If one believes that the true distribution of x is skewed, then the re-

sults corresponding to analyzing μ̂ and Σ̂ may not be substantively equivalent to those

of analyzing x̄ and S. Hampel et al.’s (1986, p. 401) discussion implies that robust pro-

cedures might still be preferred even when x has a skewed distribution. We recommend

that robust and classical procedures be compared when having a data set with a highly

significant zM2
. We illustrate this comparison in Section 6.

5. Misspecified models

We have discussed the properties of parameter estimates and test statistics with correctly

specified models. When models are misspecified, the results presented in Sections 2 to 4

may no longer hold. This section will present parallel results for misspecified models.

Because most technical developments for misspecified models are based on ML, we

will mainly discuss the ML procedure. Most results also hold for the GLS and the ro-

bust procedures. We will discuss consistency and asymptotic normality of the parameter

estimates, consistency of standard errors, the distribution of the LR and rescaled statis-

tics.

Whether or not the model is correctly specified, there exists

(38)DML

[
x̄,S,μ(θ),Σ(θ)

] P−→ DML

[
μ0,Σ0,μ(θ),Σ(θ)

]
.

Let θ∗ be the vector that minimizes DML[μ0,Σ0,μ(θ),Σ(θ)]. Then, under standard

regularity conditions θ̂ will converge to θ∗ according to (38) (see Kano, 1986; Shapiro,

1984). In general, θ∗ does not equal θ0. Thus, θ̂ is no longer consistent for θ0. The

asymptotic bias in θ̂ is given by θ∗ − θ0. However, this does not mean that all the

parameter estimates are inconsistent. Yuan et al. (2003) and Yuan and Bentler (2006)

showed that many parameter estimates in CSA and SEM are still consistent even when

a model is misspecified. An intuitive approach to identifying parameters that are not

affected by misspecification was recently provided by Yuan et al. (2005). We might

2 One may find an overwhelming list of books, monographs and conference proceedings on robust statistics

by searching the web (e.g., http://www.amazon.com).



386 K.-H. Yuan and P.M. Bentler

need to emphasize that when the model is misspecified, different procedures result in

different θ∗’s, and statistics TML, TRML and TGLS are no longer equivalent (see Yuan

and Chan, 2005).

When the model is misspecified, the MLE θ̂ is still asymptotically normally distrib-

uted. We need to introduce additional notation to characterize its distribution. Let

li(θ) = −1

2
ln
∣∣Σ(θ)

∣∣− 1

2

[
xi − μ(θ)

]′
Σ−1(θ)

[
xi − μ(θ)

]
.

Then the l(θ) in (2) can be rewritten as

l(θ) =
n∑

i=1

li(θ).

Let A = E[l̈i(θ∗)] and B = E[l̇i(θ∗)l̇′i(θ∗)], where the expectations are with respect to

the true distribution of the data. Then (see Arminger and Schoenberg, 1989; Browne and

Arminger, 1995; Gourieroux et al., 1984; Shapiro, 1983; Vuong, 1989; White, 1982)

(39)
√
n(θ̂ − θ∗)

L−→ N(0,A−1BA−1).

Consistent estimates of A and B are obtained by

Â = 1

n

n∑

i=1

l̈i(θ̂) and B̂ = 1

n

n∑

i=1

l̇i(θ̂)l̇
′
i(θ̂).

Note that when the model is misspecified, (39) is different from (5) even when x ∼
N(μ,Σ); (39) is also different from (16) unless the model is correctly specified. SE’s

in standard software are commonly based on either (5) or (16), which are not consistent

in general (see Yuan and Hayashi, 2006). When the model is saturated, (39) is a special

case of (30).

Misspecified models not only affect parameter estimates but also statistics for overall

model evaluation. An early technical development in CSA was given by Satorra and

Saris (1985) and Steiger et al. (1985), who proposed to use the noncentral chi-square

to describe the distribution of TMLc. Actually, TML as well as other LR statistics also

asymptotically follow noncentral chi-square distributions (Wald, 1943) under certain

conditions. The key condition behind this development is the concept of a sequence

of local alternative hypotheses. For the given model structures μ(θ) and Σ(θ), this

assumption specifies a sequence of population mean vectorsμn
0 and covariance matrices

Σn
0 that satisfy

(40)μn
0 = μ

(
θn∗
)
+ O(1/

√
n ) and Σn

0 = Σ
(
θn∗
)
+ O(1/

√
n ).

Condition (40) makes nDML[μn
0,Σ

n
0,μ(θ

n
∗),Σ(θn∗)] have a limit that does not depend

on n. This limit value is the commonly used noncentrality parameter δ so that

(41)TML
L−→ χ2

df (δ).

It can be shown that, if T
L−→ χ2

df under (1), then T will approach a noncentral

chi-square distribution under (40). For example, Shapiro and Browne (1987) showed
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that TRMLc approaches a noncentral chi-square distribution within the class of ellipti-

cal distributions. When a robust covariance matrix is modeled instead of S, Yuan et al.

(2004a) showed that the noncentrality parameter in the noncentral chi-square distribu-

tion is greater, as is the power of TRMLc.

In practice, one has a sample of size n whose population means and covariance ma-

trix are unknown but fixed. So the limiting noncentral chi-square distribution in (41) is

not valid with fixed alternatives (see Stroud, 1972). Actually, in many contexts, LR sta-

tistics have been shown to asymptotically follow normal distributions (Sugiura, 1969;

Vuong, 1989; Yanagihara et al., 2005). Under fixed alternatives, Shapiro (1983) showed

that test statistics in CSA generally follow normal distributions. By extending the results

of Shapiro (1983) and Vuong (1989) to mean and covariance structure models, Yuan et

al. (In press) provided a normal distribution description for TML. Let μ∗ = μ(θ∗),
Σ∗ = Σ(θ∗), β̇∗ = β̇(θ∗), σ̈ij∗ = σ̈ij (θ∗), μ̈i∗ = μ̈i(θ∗),

Wc∗ = 2−1D′
p

(
Σ−1

∗ ⊗Σ−1
∗
)
Dp,

η = Σ−1
∗ (μ0 − μ∗) = (η1, . . . , ηp)

′,

Υ = Σ−1
∗
[
Σ0 + (μ0 − μ∗)(μ0 − μ∗)

′]Σ−1
∗ ,

H = (hij ) = Σ−1
∗ − Υ ,

M∗ =
(

Σ−1
∗ 2−1(η′ ⊗Σ−1

∗ )Dp

2−1D′
p(η ⊗Σ−1

∗ ) Wc∗

)
β̇∗,

Q∗ = β̇
′
∗

(
Σ−1

∗ (η′ ⊗Σ−1
∗ )Dp

D′
p(η ⊗Σ−1

∗ ) D′
p[(Υ − 2−1Σ−1

∗ ) ⊗Σ−1
∗ ]Dp

)
β̇∗

+ 1

2

p∑

i=1

p∑

j=1

hij σ̈ij∗ −
p∑

i=1

ηiμ̈i∗,

W∗0 = diag
(
Σ−1

∗ ,Wc0

)
, U∗ = W∗0 − M∗Q−1

∗ M′
∗

and

ΓN = 2D+
p (Σ0 ⊗Σ0)D

+′
p .

The result of Yuan et al. (In press) is

(42)
√
n(TML/n − μ∗)

L−→ N
(
0, ω2

∗
)
,

where

μ∗ = DML[μ0,Σ0,μ∗,Σ∗] + tr(U∗Π]
n

and

ω2
∗ = 4(μ0 − μ∗)

′Σ−1
∗ Σ0Σ

−1
∗ (μ0 − μ∗) + 2 tr

[(
Σ−1

∗ Σ0 − Ip
)2]

+ tr
{[

D′
p

(
Σ−1

∗ −Σ−1
0

)
⊗
(
Σ−1

∗ −Σ−1
0

)
Dp

]
(Γ − ΓN )

}

+ 4 tr
({[

(μ0 − μ∗)
′Σ−1

∗
]
⊗ (Σ−1

∗ −Σ−1
0 )

}
DpΔ

)
.
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Notice that (42) is valid for both normal and non-normally distributed data. When the

model is approximately correct, tr(U∗Π) ≈ tr(UΠ) with U being given by (15). For

normally distributed data, tr(UΠ) = df . So the term tr(U∗Π)/n in μ∗ accounts for

model complexity. Empirical results in Yuan et al. (In press) indicated that, for normally

distributed data, (42) better describes the distribution of TML than (41) unless (1) is

trivially violated; for non-normally distributed data (42) is better than (41) even for a

small effect size in a mean comparison of latent variables.

6. Illustration

Sections 2 to 4 discussed ML, GLS, and their extensions, as well as robust procedures.

Each is insensitive to certain distributional violations. This section compares these pro-

cedures based on a real data set and with some artificial contamination. Our interest is

to compare the main strengths of these procedures, not to illustrate every feature.

Holzinger and Swineford (1939) contains test scores on the following subtests or

variables: Visual Perception, Cubes, Lozenges, Paragraph Comprehension, Sentence

Completion, Word Meaning, Addition, Counting Dots, Straight-Curved Capitals. The

first three variables were designed to measure spatial ability, the next three variables

were designed to measure verbal ability, and the last three variables were administered

with a limited time and were designed to measure a speed factor in performing the tasks.

Let x = (x1, x2, . . . , x9)
′ represent the observed variables, f1, f2, and f3 represent

respectively the spatial, verbal, and speed latent scores. Then, with f = (f1, f2, f3)
′,

Holzinger and Swineford’s design can be represented by the following confirmatory

factor model

(43a)x = μ+Λf + e,

where μ = E(x), E(f) = 0, E(e) = 0,

Λ =
(
λ11 λ21 λ31 0 0 0 0 0 0

0 0 0 λ42 λ52 λ62 0 0 0

0 0 0 0 0 0 λ73 λ83 λ93

)′

.

Let Φ = (φij ) = Corr(f) be a correlation matrix, Ψ = Cov(e) be a diagonal matrix and

assume f and e are uncorrelated. Then Σ0 = Cov(x) can be modeled by

(43b)Σ(θ) = ΛΦΛ′ + Ψ ,

where θ contains the unknown elements in Λ, Φ and Ψ . Because standard deviations of

the nine variables differ a lot, we divide them respectively by 6, 4, 8, 3, 4, 7, 23, 20, 36

to keep each marginal standard deviation between 1 and 2. This change of scale has no

substantive effect on the model evaluation but makes the iterative convergence faster.

The normalized Mardia’s kurtosis for this data set is zM2
= 3.037. Compared to

many data sets in the social sciences,3 the sample only has slightly heavier tails than

those of a normal distribution. Based on empirical efficiency of parameter estimates,

3 We have seen many zM2
’s that are greater than 100 in students’ dissertations and research projects.
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Table 1

Test statistics for the overall model evaluation

ML GLS H(0.25)

TMLc TRMLc TRGLSc TCRGLSc TRFc TGLSc TCGLSc TFc TRMLc

(I)

T 51.187 49.381 64.261 44.527 2.250 57.916 41.386 2.028 41.879

P 0.001 0.002 0.000 0.007 0.002 0.000 0.015 0.007 0.013

(II)

T 83.148 51.630 74.735 49.317 2.617 64.355 44.572 2.253 42.597

P 0.000 0.001 0.000 0.002 0.000 0.000 0.007 0.002 0.011

(III)

T 28.099 27.831 31.501 25.879 1.160 30.124 24.942 1.110 23.302

P 0.212 0.222 0.111 0.307 0.294 0.146 0.353 0.345 0.443

(IV)

T 52.432 34.387 46.047 34.948 1.696 35.246 28.354 1.298 24.494

P 0.000 0.060 0.003 0.053 0.035 0.049 0.203 0.183 0.377

(I) raw data, model 1; (II) contaminated data, model 1; (III) raw data, model 2; (IV) contaminated data,

model 2.

Data from Holzinger and Swineford (1939).

Yuan and Hayashi (2003) recommended Huber-type weights as in (26) with ρ = 0.25,

denoting it by H(0.25). They also showed that, when fitting the model in (43) to x
(0.25)
i0 ,

TMLc approximately follows χ2
24. Yuan et al. (2002b) found that H(0.25) applied to this

sample is supported by cross-validation. So, in addition to the ML and GLS procedures,

we will apply the two-stage robust procedure by minimizing DMLc(Σ̂,Σ(θ)) for para-

meter estimates and using the rescaled statistic for model evaluation.

Fitting the sample covariance matrix S to the model in (43) (model 1), nine statis-

tics for overall model evaluation are presented in the first line of Table 1: These are

respectively the LR statistic and the rescaled statistic discussed in Section 2; the resid-

ual based GLS statistic for CSA parallel to (24) with θ̂ being the MLE; the corrected

residual-based statistic parallel to (22); the residual based F -statistic parallel to (23);

the GLS statistic as in (18) for CSA; the corrected GLS statistic as in (22) for CSA; the

F -statistic as in (23) for CSA; and the rescaled statistic in the robust procedure H(0.25).

The second line of numbers are the corresponding p-values when these statistics are re-

ferred to either χ2
24 or F24,121. The largest p-value, corresponding to the corrected GLS

statistic TCGLSc, is still highly significant. So none of the statistics endorses the model

in (43).

Being available to the public, the covariance structure of the nine variables has

been examined by many authors using the ML procedure (e.g., Jöreskog, 1969;

Sörbom, 1989; Yuan et al., 2003) and robust procedures (Yuan and Bentler, 1998c).

One of the recommended models is to let variable x9 load on factor f1 in (43), that

is, free λ91 in the factor loading matrix. Adding this parameter to (43) results in a dif-

ferent model (model 2) whose corresponding nine statistics are given in part (III) of

Table 1. The p-values are obtained by referring these statistic to either χ2
23 or F23,122.
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The smallest p-value (0.111) corresponds to the residual based GLS statistic TRGLSc,

which still indicates that the model fits the data reasonably well. The largest p-value

(0.443) corresponds to the rescaled statistic based on H(0.25).

As has been discussed, all the procedures may give reasonable inference when a

sample comes from a distribution that is approximately normally distributed. To see the

reactions of these methods to bad data, we change the last five cases in the Holzinger

and Swineford (1939) data file by

xi = rixi, i = 141 to 145,

where ri = exp(zi) and zi is generated by the function normal(seed) in SAS IML

with the initial seed given by 1111111111. With n = 145, about 3% observations are

contaminated. The contaminated sample has a much larger multivariate kurtosis, zM2
=

55.377, and thus is more comparable to many non-normal data sets in practice.

Fitting model 1 and model 2 to the contaminated sample, the resulting statistics are

in parts (II) and (IV) of Table 1, respectively. Comparing the statistics under (I) with

those under (II), all the statistics increased for the contaminated sample, so model 1 is

still a poor model. Among these statistics, TMLc is most sensitive to the data contami-

nation; TRMLc under H(0.25) is least sensitive, since the influence of the contaminated

observations are automatically downweighted. Because Huber-type weights keep a bal-

ance between efficiency and robustness, the effect of contaminated data are not totally

removed by H(0.25). Actually, in H(0.25), cases with numbers 143, 144, 145, 24, 7 get

the smallest weights in the contaminated sample, while cases numbered 24, 106, 7, 77,

40 get the smallest weights before the contamination. Compared to TMLc, the other sta-

tistics in Table 1 also enjoy some robustness. Turning to part (IV) for the contaminated

data with model 2, TMLc implies that the model is far from being adequate. Other sta-

tistics under ML also indicate that the model is marginal or not adequate. This implies

that the ML and related statistics are not robust enough. Under the GLS heading, TGLSc

implies that model 2 is marginal. On the other hand, TCGLSc and TFc indicate the model

fits the sample pretty well, which indicates that the improved statistics for the GLS pro-

cedure not only are asymptotically distribution free but also enjoy some finite sample

robustness properties. As with model 1, the least sensitive statistic is still TRMLc under

H(0.25), reflecting its real robustness to data contaminations.

Next we examine the parameter estimates and their SE’s for some of these procedures

in the original data as well as in the contaminated sample. Table 2 contains parameter

estimates and their associated SE’s by ML, GLS and H(0.25) for model 1, with the

left side containing information on the original data and the right side containing the

parallel information for the contaminated data. The SE’s for the MLE θ̂ are based on the

sandwich-type covariance matrix as in (16), the SE’s for the GLS estimates θ̃ are based

on (20), the SE’s for θ̂ under H(0.25) are based on (16) with Π̂ = V̂ being estimated

according to (30). Comparing results on the right to those on the left, the MLE changes

the most. For example, λ̂11 changes from 0.779 to 2.001; λ̂93 changes from 0.720 to

3.222, reflecting the lack of robustness of the ML procedure with data contamination.

The SE’s associated with the MLE also change substantially, reflecting the heavier tails

of the contaminated sample. The GLS estimates, as well as estimates by H(0.25), are

much more stable. Although the GLS estimates are based on modeling S, because the
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Table 2

Parameter estimates and the associated SEs for model 1, based on data from Holzinger and Swineford (1939)

and with some contaminations

Raw data Contaminated

ML GLS H(0.25) ML GLS H(0.25)

θ θ̂ (SE1) θ̃ (SE2) θ̂ (SE3) θ̂ (SE) θ̃ (SE) θ̂ (SE)

λ11 0.779 (0.116) 0.734 (0.113) 0.783 (0.107) 2.001 (0.766) 0.792 (0.119) 0.852 (0.111)

λ21 0.574 (0.094) 0.322 (0.076) 0.536 (0.098) 2.304 (0.901) 0.450 (0.159) 0.666 (0.120)

λ31 0.721 (0.091) 0.560 (0.092) 0.690 (0.095) 0.871 (0.285) 0.577 (0.105) 0.664 (0.091)

λ42 0.974 (0.084) 0.940 (0.086) 0.928 (0.089) 1.769 (0.565) 0.972 (0.086) 0.971 (0.086)

λ52 0.964 (0.083) 1.005 (0.086) 0.965 (0.087) 2.606 (0.991) 1.061 (0.133) 1.042 (0.101)

λ62 0.938 (0.082) 0.961 (0.085) 0.891 (0.086) 2.012 (0.786) 0.961 (0.087) 0.906 (0.085)

λ73 0.682 (0.080) 0.710 (0.079) 0.681 (0.089) 1.804 (0.647) 0.794 (0.090) 0.741 (0.088)

λ83 0.837 (0.089) 0.794 (0.079) 0.789 (0.085) 2.645 (1.020) 0.917 (0.138) 0.908 (0.110)

λ93 0.720 (0.086) 0.825 (0.069) 0.667 (0.083) 3.222 (1.465) 0.900 (0.135) 0.831 (0.104)

φ21 0.541 (0.094) 0.899 (0.103) 0.578 (0.090) 0.926 (0.059) 0.886 (0.103) 0.627 (0.087)

φ31 0.522 (0.100) 0.680 (0.109) 0.479 (0.107) 0.965 (0.031) 0.755 (0.116) 0.619 (0.099)

φ32 0.335 (0.115) 0.608 (0.093) 0.342 (0.112) 0.918 (0.066) 0.628 (0.109) 0.453 (0.106)

ψ11 0.721 (0.168) 0.513 (0.146) 0.617 (0.149) 0.736 (0.141) 0.495 (0.158) 0.581 (0.148)

ψ22 0.905 (0.140) 0.892 (0.138) 0.858 (0.129) 1.043 (0.199) 0.961 (0.145) 0.891 (0.136)

ψ33 0.560 (0.108) 0.658 (0.099) 0.580 (0.117) 0.913 (0.122) 0.690 (0.111) 0.627 (0.114)

ψ44 0.317 (0.066) 0.273 (0.067) 0.307 (0.066) 0.487 (0.071) 0.258 (0.069) 0.308 (0.066)

ψ55 0.422 (0.072) 0.374 (0.067) 0.376 (0.070) 0.294 (0.080) 0.358 (0.070) 0.386 (0.073)

ψ66 0.409 (0.076) 0.318 (0.078) 0.388 (0.077) 0.535 (0.098) 0.309 (0.077) 0.384 (0.074)

ψ77 0.604 (0.080) 0.566 (0.086) 0.594 (0.091) 0.776 (0.108) 0.541 (0.087) 0.611 (0.089)

ψ88 0.402 (0.112) 0.189 (0.080) 0.321 (0.091) 0.602 (0.125) 0.198 (0.082) 0.365 (0.088)

ψ99 0.540 (0.085) 0.360 (0.081) 0.510 (0.082) 0.691 (0.285) 0.284 (0.079) 0.441 (0.076)

1 Based on the sandwich-type covariance matrix as in (16);

2 based on the correct estimator as in (20);

3 based on the sandwich-type covariance matrix as in (16) with Π = V being estimated according to (30).

weight matrix S−1
t automatically adjusts for the heavy tails of the contaminated sample,

θ̃ changes little between the two samples.

Parameter estimates and standard errors for the three procedures applied to model 2

are given in Table 3. As in Table 2, the MLE as well as their associated SE’s change

most when data are contaminated, especially, λ̂93, ψ̂88, λ̂91 in the contaminated sam-

ple are no longer significant at the 0.05 level when referring z = θ̂/SE to N(0, 1).

The GLS estimates and the estimates by H(0.25) are very stable. The GLS estimate

ψ̃88 is negative, an improper solution or a Heywood case in both raw and contaminated

samples. This could happen due to a large sampling error, ψ88 being small in the popu-

lation, or due to a misspecified model (Anderson and Gerbing, 1984; Boomsma, 1985;

Chen et al., 2001; Kano, 1998; Rindskopf, 1984; van Driel, 1978). Because ψ̃88 is not

statistically significant, the improper solution here is most likely caused by a small ψ88

together with a large sampling error. Actually, the GLS estimates can be quite inefficient

at n = 145. The SE’s in the table, based on (20), might be too optimistic (see Yuan and

Bentler, 1997b). In addition to ψ̃88 not being significant, φ̃32 is also not significant in
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Table 3

Parameter estimates and the associated SEs for model 2, based on data from Holzinger and Swineford (1939)

and with some contaminations

Raw data Contaminated

ML GLS H(0.25) ML GLS H(0.25)

θ θ̂ (SE) θ̃ (SE) θ̂ (SE) θ̂ (SE) θ̃ (SE) θ̂ (SE)

λ11 0.819 (0.109) 0.845 (0.105) 0.831 (0.101) 1.994 (0.767) 0.879 (0.118) 0.882 (0.106)

λ21 0.543 (0.093) 0.557 (0.097) 0.501 (0.098) 2.282 (0.907) 0.714 (0.136) 0.641 (0.119)

λ31 0.688 (0.088) 0.678 (0.088) 0.656 (0.090) 0.866 (0.284) 0.688 (0.098) 0.647 (0.087)

λ42 0.975 (0.084) 0.892 (0.091) 0.930 (0.089) 1.771 (0.564) 0.933 (0.095) 0.972 (0.086)

λ52 0.964 (0.083) 0.909 (0.090) 0.965 (0.087) 2.602 (0.993) 0.943 (0.131) 1.041 (0.100)

λ62 0.937 (0.083) 0.858 (0.092) 0.890 (0.087) 2.016 (0.784) 0.862 (0.099) 0.905 (0.085)

λ73 0.708 (0.084) 0.521 (0.084) 0.703 (0.095) 1.832 (0.640) 0.586 (0.100) 0.770 (0.090)

λ83 0.900 (0.098) 1.158 (0.134) 0.833 (0.097) 2.733 (0.993) 1.147 (0.140) 0.976 (0.113)

λ91 0.460 (0.103) 0.603 (0.099) 0.416 (0.106) 2.355∗ (1.220) 0.667 (0.126) 0.451 (0.121)

λ93 0.453 (0.093) 0.251 (0.080) 0.452 (0.101) 0.902∗ (0.579) 0.295 (0.104) 0.524 (0.121)

φ21 0.554 (0.091) 0.536 (0.101) 0.582 (0.088) 0.938 (0.050) 0.564 (0.117) 0.627 (0.085)

φ31 0.392 (0.112) 0.393 (0.104) 0.355 (0.115) 0.933 (0.052) 0.484 (0.134) 0.489 (0.110)

φ32 0.240 (0.117) 0.068∗ (0.109) 0.259 (0.116) 0.870 (0.097) 0.148∗ (0.172) 0.362 (0.115)

ψ11 0.657 (0.160) 0.455 (0.134) 0.540 (0.140) 0.764 (0.121) 0.491 (0.142) 0.529 (0.140)

ψ22 0.940 (0.142) 0.920 (0.137) 0.894 (0.133) 1.146 (0.235) 0.952 (0.143) 0.924 (0.139)

ψ33 0.607 (0.096) 0.599 (0.100) 0.626 (0.105) 0.922 (0.113) 0.610 (0.111) 0.649 (0.106)

ψ44 0.315 (0.066) 0.335 (0.072) 0.304 (0.065) 0.481 (0.072) 0.326 (0.078) 0.304 (0.065)

ψ55 0.422 (0.072) 0.322 (0.068) 0.377 (0.070) 0.316 (0.082) 0.323 (0.069) 0.387 (0.073)

ψ66 0.411 (0.077) 0.402 (0.081) 0.390 (0.077) 0.519 (0.095) 0.388 (0.080) 0.386 (0.074)

ψ77 0.568 (0.083) 0.584 (0.088) 0.562 (0.092) 0.676 (0.097) 0.550 (0.089) 0.568 (0.089)

ψ88 0.293 (0.130) −0.241∗ (0.272) 0.249 (0.124) 0.131∗ (0.144) −0.127∗ (0.198) 0.238 (0.122)

ψ99 0.479 (0.076) 0.459 (0.083) 0.445 (0.079) 0.747 (0.199) 0.404 (0.080) 0.423 (0.075)

∗ Not significant at 0.05 level.

both samples. This again shows the stability of the GLS procedure. As for estimates by

H(0.25), the z score for ψ̂88 = 0.238 within the contaminated sample is z = 1.957,

corresponding to a p-value of 0.025 or 0.050 using one-sided or two-sided test, so it

is marginally significant. With the raw data, ψ̂88 = 0.249, corresponding to a z score

of 2.001, is also marginally significant. Improper solutions do not happen in either the

MLE or estimates by H(0.25).

In summary, although there exist conditions for asymptotic robustness, the ML pro-

cedure is quite sensitive to data contamination. The GLS procedure together with the

improved statistics is not sensitive to data contaminations. By giving a proper weight to

each case, the robust procedure is designed to handle heavy tails, or contamination and

outliers, and thus, as expected, it performs very stably.

The robustness properties illustrated in the example should be distinguished from

the performance of these methods when samples are drawn from the same distribution

with finite 4th-order moments. In such situations, the ML procedure with rescaled or

residual-based statistics and SE’s based on the sandwich-type covariance matrix per-

forms reasonably well. Compared to ML, the GLS procedure may encounter more
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nonconvergences, more improper solutions, as well as less accurate SE’s. In practice, of

course, a sample may be from a heavy-tailed population, contain data contamination, or

both. From this point of view, the robust procedure in Section 4 should be preferred in

general.

The statistics TRML, TCRGLS, TRF, TCGLS, TF as well as TRML based on the robust

procedure with weights given by (29) are available in EQS 6.0 (Bentler, 2007). SE’s

based on the sandwich-type covariance matrix in (16), based on robust estimates, and

based on the GLS estimators (20), are also available in EQS 6.0.
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Stochastic Approximation Algorithms for Estimation

of Spatial Mixed Models

Hongtu Zhu, Faming Liang, Minggao Gu and Bradley S. Peterson

Abstract

A class of spatial mixed models is introduced first. Spatial mixed models include

latent Markov random fields, which make their likelihood functions complex. This

complexity in turn makes statistical inferences (e.g., parameter estimates and pre-

diction of latent fields) prohibitively difficult. Therefore, two algorithms are also in-

troduce by integrating recent developments in stochastic approximation algorithms

and Monte Carlo methods. The first of these algorithms, a stochastic approximation

expectation-maximization (SAEM) algorithm, is developed to estimate the strength

of spatial regularization in latent Markov random fields and other parameters. The

second algorithm, an annealing stochastic approximation Monte Carlo (ASAMC)

algorithm, is proposed to compute optimal estimates of latent fields, which are the

global maxima of the likelihood functions of complete data. These algorithms are

applied to data sets of the distribution of vegetation species and simulated images to

demonstrate their effectiveness.

Keywords: Expectation-maximization; Multicanonical algorithm; Spatial mixed

models; Stochastic approximation; Vegetation

1. Introduction

Spatial mixed models (SMM) are natural extensions of generalized linear models

and allow for additional components of variability that account for unobservable la-

tent processes. SMMs have wide applications in image analysis, ecology, psychology,

physics, and biophysics. For instance, a number of fundamental processes in image

analysis, including image restoration, segmentation, and edge-preserving filtering, have

been modeled by using SMMs since the seminal work by Besag (1974) and Geman and

Geman (1984). See, for example, Zhang (1993), Jalobeanu et al. (2002), Saquib et al.

(1998), and Lakshmanan and Derin (1989), among many others. SMMs also include

generalized linear mixed models (GLMM) (Breslow and Clayton, 1993; Zhu and Lee,

2002) and latent variable models (LVM) (Bentler and Dudgeon, 1996), both of which

can be used to accommodate overdispersion and correlation among outcomes (Zeger et

399
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al., 1988) and to predict and interpolate (or smooth) spatial data (Diggle et al., 1998;

Zhang, 2002). Thus, these models have applications in biomedical and educational

research, the social sciences, and other fields that investigate complex multivariate, lon-

gitudinal, and family data.

However, SMMs are highly complex because of the latent Markov random fields

they contain. This complexity makes calculating the maximum likelihood estimates and

estimating latent fields prohibitively difficult and therefore poses a major challenge in

the applications of SMMs. This challenge can be divided into three distinct issues.

The first issue is that likelihood functions of observed data are often represented

by high-dimensional integrals in order to account for latent variables, and these inte-

grals may become irreducibly complicated. Most of the existing procedures for locat-

ing maxima of likelihood functions include the expectation-maximization (EM) algo-

rithm (Dempster et al., 1977), the Monte Carlo EM algorithm (Wei and Tanner, 1990;

Booth and Hobert, 1999), Monte Carlo Newton–Raphson algorithm (McCulloch, 1997),

and stochastic approximation algorithm (Gu and Kong, 1998; Delyon et al., 1999).

However, these optimization algorithms only work for some SMMs (such as GLMMs

and LVMs) but not for others, because they strongly depend on a simple likelihood

function of complete data (including both latent variables and observed data).

Second, latent Markov random fields (MRF) also add to the complexity of the like-

lihood functions of SMMs. MRFs have been recently used in a range of fields, such as

ecology and image processing, to model spatial and geographical correlation among ob-

servations (Winkler, 1995; Li, 2001). For example, ecologists use MRFs to describe the

spatially correlated distribution of single or multiple species within a given geographical

area (Huffer and Wu, 1998; He et al., 2003). Unknown parameters of MRFs in SMMs

usually control the granularity of latent fields, and the corresponding normalizing fac-

tor (or partition function) of MRFs, as a function of these unknown control parameters,

is not known analytically. In practice, the values of these unknown control parameters

are either arbitrarily set or heuristically tuned to particular datasets; maximum likeli-

hood estimates (MLE) of control parameters for MRFs in SMMs are rarely calculated

because of the considerable computational burden that is involved. Moreover, most

existing optimization algorithms for computing MLEs (Geyer and Thompson, 1992;

Gu and Zhu, 2001) are based on observed MRFs and therefore are inappropriate for

latent MRFs in SMMs. Several approximation methods, such as mean-field approxi-

mation, have been used to find approximate estimates of control parameters for latent

MRFs (Jalobeanu et al., 2002; Qian and Titterington, 1991; Vasconcelos and Lippman,

2001). Recently, a stochastic approximation EM algorithm has been proposed, and its

convergence has been established under some conditions (Zhu et al., 2005a, 2005b).

However, performance of this SAEM algorithm when applied to many important appli-

cations, such as distributions of vegetation data in ecology and imaging analysis, has

not yet been investigated.

The third issue in the use of SMMs is how to find optimal estimates of latent fields.

This is the central issue of many research questions in ecology, psychology, and image

analysis that involve the prediction of latent variables within a data set. For instance,

latent field in image segmentation is a set of labels that represents the identities of

individual voxels/pixels. In some cases, estimating latent fields is equivalent to mini-
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mizing/maximizing a complicated energy function with a large number of variables and

is therefore nearly infeasible computationally. Several optimization methods, such as the

iterated conditional modes (ICM), can only give a local optimal solution. Stochastic al-

gorithms, such as the simulating annealing and genetic algorithms, have been proposed

to search for the globally optimal estimates of latent fields (Kirkpatrick et al., 1983;

Holland, 1975); however, these stochastic algorithms converge very slowly and have a

high probability of missing the global minimum (Liang, 2005c). Recently, advanced

Monte Carlo algorithms, including annealing stochastic approximation and contour

Monte Carlo, have been proposed that are efficient for complex simulation and opti-

mization (Liang, 2004, 2005a, 2005b, 2005c). We will apply the annealing stochastic

approximation Monte Carlo (ASAMC) algorithm to find optimal latent fields by maxi-

mizing the complete-data likelihood functions given MLEs.

In this paper, we formally introduce SMMs and discuss some examples in the fields

of ecology. We then propose two advanced stochastic approximation algorithms (SAEM

and ASAMC) for calculating MLE and optimal estimates of latent fields in SMMs.

Finally, we evaluate the performance of these algorithms using real-world examples,

including distributions of vegetation species and image restoration. Throughout the dis-

cussion, we will address the three computational issues of SMMs discussed above.

2. Spatial mixed models

We consider stochastic processes f = {f (s): s ∈ S}, X = {X(s): s ∈ S}, and

Y = {Y(s): s ∈ S}, where S = {si : i = 1, . . . , n} is a known discrete index set in Rd .

We define SMMs as follows:

(i) conditional on (f , x), the components of Y are mutually independent, and the con-

ditional density of Y(s) given (f , x) is p(y(s)|f , x;α), where α is an unknown

parameter vector;

(ii) latent field f = {f (si): i = 1, . . . , n} is said to be an MRF with respect to a

neighborhood system N = {Ni : i = 1, . . . , n}, which is characterized by a Gibbs

distribution:

(1)p(f |τ) = exp
{
−U(f , τ ) − logC(τ)

}
,

where U(f , τ ) is a potential (or energy) function, which exhibits the interaction

between components of f (Besag, 1974). In addition, the normalizing constant

C(τ) is a partition function having the form

(2)C(τ) =
∫

Sf

exp
{
−U(f , τ )

}
m(df ),

where Sf is the minimal sample space of f and m(df ) is either the Dirac’s delta

measure or df according to whether f takes discrete or continuous values, respec-

tively.

The above SMMs include many statistical models as special cases. For instance,

GLMM is a special class of the SMMs (Breslow and Clayton, 1993) in which f are
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random effects. For linear LV models, we have μ(s) = E[y(s)|f , x] = μ+Λf (s) with

f following a multivariate normal distribution (Bentler and Dudgeon, 1996), where Λ

is a factor loading matrix. SMMs also include more general LV models (Lee and Zhu,

2000, 2002).

Let us study two examples from image analysis: image restoration and segmentation.

EXAMPLE 1 (Image restoration). Let s be a pixel-site (or line-site) in a pixelated image,

f the true scene and y the observed image, which is a noisy version of f . SMMs have

been used to characterize image construction and restoration. A particular example for

image restoration is defined by

(3)y = Hf + ε,

where H is the convolution matrix and ε ∼ N(0, φ−1In), in which In is an identity

matrix. In this case, we have μ(s) = E[y(s)|f ] = H (s)f . Furthermore, we will assume

that the true image f follows a Gaussian random field (GRF) given by

p(f |B) = const ×|B|1/2 exp
{
−0.5σ−2(f − μ)TB(f − μ)

}
,

where B = (b(si, sj )), the inverse matrix of the covariance matrix of f , controls the

spatial dependence structure of f (Besag, 1974). Therefore, we have

U(f , τ ) = 0.5σ−2f TBf − σ−2μTBf + 0.5σ−2μTBμ,

where τ represents all unknown parameters in (B, μ, σ ). In particular, evaluating |B|1/2

is computationally prohibit, because B is an n × n-dimensional matrix (e.g., a 2048 ×
2048 matrix corresponding to a 64 × 64 lattice) (Rue, 2001; Gu and Zhu, 2001). For

edge-preserving image recovery, we further consider a generalized GRF (Bouman and

Sauer, 1993) defined as follow:

p(f |B) = 1

σNC(B, p0)
exp

{
− 1

p0σp0

∑

si∼sj

b(si, sj )
∣∣f (si) − f (sj )

∣∣p0

}
,

where the summation is taken over all nearest-neighbor pairs (si ∼ sj ), p0 ∈ (1, 2], and

the normalized constant C(B, p0) depends on both b(si, sj ) and p0.

EXAMPLE 2 (Image segmentation). Image segmentation is used to classify an image

into a set of nonoverlapping regions {R1, . . . , RK }. We consider a special case of SMMs

as follows. The observation at a particular pixel s can be written as

(4)y(s) =
K∑

k=1

Φ(s, βk)fk(s) + ε(s),

where ε(s) ∼ N(0, φ−1), Φ(·, ·) is a parametric model, and βk is the parameter vector

for Rk . In addition, f (s) = (f1(s), . . . , fK(s)), fk(s) ∈ {0, 1},
∑K

k=1 fk(s) = 1, and

fk(s) = 1 if and only if s ∈ Rk . Thus, μ(s) = E[y(s)|f ] =
∑K

k=1 Φ(s, βk)fk(s). We

further assume that the joint distribution of the label field f = {f (s): s = 1, . . . , n} is
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given by

p(f |τ) = exp

{
τ
∑

si∼sj

δ
(
f (si), f (sj )

)
− logC(τ)

}
,

where the summation is taken over all nearest-neighbor pairs (si ∼ sj ), δ(x, z) is the

Kronecker function equaling to 1 when x = z and 0 otherwise, and τ is the parameter

controlling the granularity of the field. In addition, C(τ) is obtained by summing over

all possible configurations f (e.g., nM terms).

3. Estimation procedure

Much effort has been devoted to developing procedures for estimating the parameters

and latent fields of SMMs. See, for example, Marroquin et al. (2003), Lakshmanan and

Derin (1989), Jalobeanu et al. (2002), Saquib et al. (1998), Qian and Titterington (1991),

Zhu et al. (2005a), and Younes (1989). An approach proposed by Lakshmanan and De-

rin (1989) is based on jointly maximizing the unknown parameters and the latent fields,

but the estimates of parameters under this approach may not be consistent statistically

(Neyman and Scott, 1948). For instance, for GLMM, specific conditions are required

for validity of this approach (Jiang et al., 2001). To avoid such a pitfall, we take an alter-

native approach by calculating MLE of ξ = (τ, α) first and then computing a maximum

a posteriori (MAP) estimate of latent field f . In particular, MLE of ξ is a consistent es-

timate under certain conditions (Guyon, 1995). Thus, our estimation procedure consists

of two key steps as follows:

Stage 1: compute MLE of ξ , denoted by ξ̂ , by using the SAEM algorithm;

Stage 2: given ξ̂ obtained in Stage 1, we calculate the MAP estimate of f by using the

ASAMC algorithm.

3.1. Stochastic approximation expectation-maximization algorithm

The MLE ξ̂ = (τ̂ , α̂) is defined by

(5)L(ξ̂ ; yo) = max
ξ

L(ξ ; yo),

where yo denotes the observed data, and the likelihood function of observed-data

L(ξ ; yo) is given by

(6)

L(ξ ; yo) =
∫ [

n∏

i=1

p
(
y(si)|f , x, α

)
]

exp
{
−U(f , τ ) − logC(τ)

}
m(df ).

The integration above is usually of very high dimension, making direct numerical eval-

uation difficult even for today’s computers. In addition, C(τ) may involve a large matrix

as in Example 1, a huge summation as in Example 2, and so on. In order to obtain ξ̂ ,

we assume throughout the paper that L(ξ ; yo) is sufficiently smooth and ξ̂ always exists

and is unique throughout the paper.
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To calculate MLE, we approximate the first-order and second-order derivatives of

the log-likelihood function of observed data. From the missing information principle, it

follows that the first-order derivative of log-likelihood function can be written as

(7)sξ (ξ ; yo) = ∂ξ logL(ξ ; yo) = E
[
Sξ (ξ ;f )|yo, ξ

]
,

where ∂ξ = ∂/∂ξ , E[·|yo, ξ ] denotes the expectation taken with respect to the con-

ditional distribution f given the observed data, and Sξ (ξ ;f ) is the first derivative of

complete-data log-likelihood function. Here, the complete-data log-likelihood function

lc(ξ ;f , yo) is given by

(8)
∑

s∈S
logp

(
y(s)|f , x, α

)
− U(f , τ ) − logC(τ).

To calculate the second-order derivative of the log-likelihood function, we apply Louis’s

(1982) formula and obtain

(9)−∂2
ξ logL(ξ ; yo) = E

[
Iξξ (ξ ;f ) − Sξ (ξ ;f )⊗2|yo, ξ

]
+ sξ (ξ ; yo)

⊗2,

where for vector a, a⊗2 = aaT, and Iξξ (ξ ;f ) = −∂2
ξ lc(ξ ;f , yo) denotes the complete

data information matrix.

For SMMs, we need to approximate the first-order and second-order derivatives of

the complex C(τ). Following Gu and Zhu (2001), we can show that

(10)∂τ logC(τ) = −Eτ

[
∂τU(f , τ )

]
,

∂2
τ logC(τ) = −Eτ

[
J (τ ;f )

]
−
{
∂τ logC(τ)

}⊗2
,

where J (τ ;f ) = ∂2
τU(f , τ )−[∂τU(f , τ )]⊗2 and Eτ is taken with respect to MRF (1).

Based on (10), we approximate ∂τ logC(τ) and ∂2
τ logC(τ) by using certain Markov

chain Monte Carlo (MCMC) methods, such as the hybrid Markov chain, the birth-

and-death process, and the Metropolis–Hastings (MH) algorithm. See, for example,

Metropolis et al. (1953), Hastings (1970), Liu (2001), Möller (1999), and Robert and

Casella (1999), among others. An alternative approach is to use numerical integration,

but it usually gives unstable estimates except in some special cases.

We can approximate the first-order and second-order derivatives of the likelihood

functions of observed data by using Eqs. (7), (8), and (10). The ∂ξ logL(ξ ; yo) can be

approximated by ([Sτ,1 − Sτ,2]T, Sα(ξ ;f )T)T, where Sτ,2 = ∂τ logC(τ) and Sτ,1 =
−Eξ [∂τU(f , τ )|yo]. We define

I1(ξ ;f ) =
(
∂2
τU(f , τ ) 0

0 Iαα(ξ ;f )

)

and

I2(ξ ;f ) = −
(

−∂τU(f , τ )

Sα(ξ ;f )

)⊗2

.
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The information matrix −∂2
ξ logL(ξ ; yo) can be approximated by

Eξ

[
I1(ξ ;f )|yo

]
+
(

−Eτ [J (τ ;f )] − (Sτ,2)
⊗2 0

0 0

)
+ Eξ

[
I2(ξ ;f )|yo

]

(11)+
(

−(Sτ,2)
⊗2 + Sτ,1S

T
τ,2 + Sτ,2S

T
τ,1 0

0 0

)
+ sξ (ξ, yo)

⊗2.

3.1.1. Basic steps of the SAEM algorithm

We introduce the SAEM algorithm for SMMs as follows. We adaptively update seven

estimates: ξ k , the current estimate of ξ̂ ; Sk
τ,1, the current estimate of E

ξ̂
[−∂τU(f , τ )|yo];

Sk
τ,2, the current estimate of −∂τ logC(τ̂ ); hk , the current estimate of sξ (ξ̂ , yo); Γ

k
1, the

current estimate of E
ξ̂
[I1(ξ̂ ;f )|yo]; Γ k

2, the current estimate of E
ξ̂
[I2(ξ̂ ;f )|yo]; and

Γ k
3, the current estimate of Eτ̂ [J (τ̂ ;f )]. Let 'τ (·, ·) denote the Markov transition prob-

ability of the MH algorithm for simulating f from MRF (1), and let 'yo,ξ (·,·) denote

the transition probability of the MH algorithm for simulating f conditional on yo.

Step 1. At the kth iteration, set f k,0 = f k−1,Nk−1
and f y,k,0 = f y,k−1,Nk−1

. For

i = 1, . . . , Nk , generate f k,i and f y,k,i from the transition probability 'τ k−1(f k,i−1, ·)
and 'yo,ξk−1(f y,k,i−1, ·), respectively.

Step 2. Update the seven estimates as follows:

(12)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ k = ξ k−1 + γk[Γ k]−1H
(
ξ k−1;f k,f y,k

)
,

hk = hk−1 + γk
(
H
(
ξ k−1;f k,f y,k

)
− hk−1

)
,

Γ k
1 = Γ k−1

1 + γk
(
I 1

(
ξ k−1;f y,k

)
− Γ k−1

1

)
,

Γ k
2 = Γ k−1

2 + γk
(
I 2

(
ξ k−1;f y,k

)
− Γ k−1

2

)
,

Γ k
3 = Γ k−1

3 + γk
(
J
(
τ k−1;f k

)
− Γ k−1

3

)
,

Sk
τ,1 = Sk−1

τ,1 + γk
(
−∂τU

(
f y,k, τ

k−1
)
− Sk−1

τ,1

)
,

Sk
τ,2 = Sk−1

τ,2 + γk
(
∂τ Û

(
f k, τ

k−1
)
− Sk−1

τ,2

)
,

where hkT = (hkT
τ ,hkT

α ), f k = (f k,1, . . . ,f k,Nk
) and f y,k = (f y,k,1, . . . ,f y,k,Nk

),

I 1(ξ ;f y,k) =
Nk∑

i=1

I1(ξ ;f y,k,i)/Nk,

I 2(ξ ;f y,k) =
Nk∑

i=1

I2(ξ ;f y,k,i)/Nk,

J (τ ;f k) =
Nk∑

i=1

J (τ ;f k,i)/Nk,

Γ k = Γ k
1 + [hk]⊗2 +

(
−Γ k

3 − (Sk
τ,2)

⊗2 0

0 0

)
,
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∂τU(f y,k, τ ) = 1

Nk

Nk∑

i=1

∂τU(f y,k,i, τ ),

∂τ Û (f k, τ ) = 1

Nk

Nk∑

i=1

∂τU(f k,i, τ ),

H(ξ ;f k,f y,k)

=
(
[
−∂τU(f y,k, τ ) + ∂τ Û (f k, τ )

]T
,

1

Nk

Nk∑

i=1

Sα(ξ ;f y,k,i)
T

)T

.

3.1.2. Gain constants

Gain constants play an essential role in ensuring the convergence of stochastic approx-

imation algorithms. For fixed Nk , the gain constants sequence {γk} must satisfy the

following conditions:

(13)0 � γk � 1 for all k,

∞∑

k=1

γk = ∞, and

∞∑

k=1

γ 2
k < ∞.

In practice, gain constants are usually defined by γk = b1/(k
a1+b1−1), k = 1, . . . , K1,

where integer b1 and real number a1 ∈ (1/2, 1] are preassigned and K1 is determined

by some random criteria (Gu and Zhu, 2001; Zhu et al., 2005a). For a given sequence

γk , the SAEM algorithm iterates Steps 1 and 2 as described above. At the beginning of

the SAEM algorithm, we suggest to choosing a small a1 so that the SAEM algorithm

will move quickly towards to the feasible region. When the algorithm starts to stabilize

near the neighborhood of MLE, we set a1 to be close to 1, and a small integer is chosen

for b1, say, a1 = 0.8 and b1 = 2. At the same time, an averaging procedure is used,

with ξ̃0 = ξ0, h̃0 = h0, S̃0
τ,m = S0

τ,m, and Γ̃
0
m′ = Γ 0

m′ ,

ξ̃ k = ξ̃ k−1 + (ξ k − ξ̃ k−1)/k, h̃k = h̃k−1 +
(
hk − h̃k−1

)
/k,

S̃k
τ,m = S̃k−1

τ,m +
(
Sk
τ,m − S̃k−1

τ,m

)
/k, and Γ̃

k
m′ = Γ̃

k−1
m′ +

(
Γ k

m′ − Γ̃
k−1
m′

)
/k,

for m = 1, 2 and m′ = 1, 2, 3. Theoretically, this averaging procedure automat-

ically leads to an optimal convergence without estimating the information matrix

(Polyak, 1990; Polyak and Juditski, 1992). Under some conditions, the off-line average

(ξ̃K1, h̃K1) converges to (ξ̂ , sξ (ξ̂ , yo)) almost surely, as K1 → ∞ (Zhu et al., 2005a).

Finally, we can substitute S̃
K1
τ,m (m = 1, 2) and Γ̃

K1

m′ (m′ = 1, 2, 3) into Eq. (11) to

estimate −∂2
ξ logL(ξ̂ ; yo).

3.2. Annealing stochastic approximation Monte Carlo algorithms

The annealing stochastic approximation Monte Carlo (ASAMC) algorithm originates

from the multicanonical algorithm (Berg and Neuhaus, 1991). In the past decade,

the multicanonical algorithm has been studied extensively. See, for instance, (1/k)-

ensemble sampling in Hesselbo and Stinchcombe (1995), the Wang–Landau algorithm
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in Wang and Landau (2001), the generalized Wang–Landau (GWL) algorithm in Liang

(2004, 2005a, 2005b), and the stochastic approximation Monte Carlo (SAMC) in Liang

et al. (2005) and Liang (2005c), among others. In particular, the GWL and SAMC

algorithms improve the multicanonical algorithm and its variants by introducing the

concept of partitioning the sample space and further extending the multicanonical al-

gorithm from discrete system to continuum system. Computational advances, including

the GWL and SAMC algorithms, led to possible solutions to many complex statistical

problems, such as model selection, highest posterior density region/interval construc-

tion, and the Monte Carlo optimization, among others.

3.2.1. Multicanonical algorithm

We use the Ising model as an example to the explicate multicanonical algorithm. The

Gibbs distribution of the Ising model on an L × L lattice space can be written as

(14)p(f |τ) ∝ exp
{
−U(f )/τ

}
, f ∈ Sf ,

where U(f ) = −
∑

si∼sj
δ(si, sj ) and Sf = {−1, 1}L2

. We are interested in estimat-

ing Ω(u) = #{f : U(f ) = u}, called the density of states (or spectral density) of the

system. We may directly use MCMC algorithms (e.g., the MH algorithm or the Gibbs

sampler) to draw samples from p(f |τ) and then use the simulated samples to esti-

mate Ω(u). However, conventional MCMC algorithms can become trapped into a local

energy minimum indefinitely, rendering the simulation ineffective. The multicanonical

algorithm provides an attractive solution to this difficulty. The multicanonical algorithm

seeks to draw samples from a modified distribution given by

(15)pm(f ) ∝ exp
{
− logΩ

(
U(f )

)}
.

If samples can be exactly drawn from (15), then the resulting distribution for U should

be uniform distribution, that is, pU (u) ∝ 1. Thus, the algorithm will not become trapped

into a local energy minimum, because sampling from pm(f ) leads to a “free” random

walk in the space of energy. However, Ω(u) is unknown prior to the simulation.

The key idea of the multicanonical algorithm is to iteratively update the approxima-

tion of Ω(u), denoted as Ω̂(u), then producing Monte Carlo samples from an approxi-

mated version of pm(f ). The statistical quantities related to p(f ) can then be estimated

based on the Monte Carlo samples with the technique of importance sampling. In ad-

dition, the multicanonical algorithm is useful for optimization. For instance, a study on

protein folding problems (Hansmann and Okamoto, 1997) shows that the multicanon-

ical algorithm is much more efficient than the temperature rescaling-based algorithms,

including simulated tempering and simulated annealing (Marinari and Parisi, 1992;

Geyer and Thompson, 1995; Kirkpatrick et al., 1983).

3.2.2. Basic steps of the ASAMC algorithm

Let Ũ (f ) be the negative of the complete-data log-likelihood function of SMMs,

−ℓc(ξ̂ ;f , yo). Given ξ̂ in Stage 1, the ASAMC algorithm is then applied to find an

optimal configuration of f , denoted by f̂ , which minimizes Ũ(f ). The ASAMC algo-

rithm comprises four steps as follows:
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Step 1. Partition the sample space Sf into M disjoint subregions, E1, . . . , EM , and

set an arbitrary configuration f 0, gT
0 = (g0,1, . . . , g0,M ) = (0, . . . , 0), a pre-specified

parameter *, U
(0)
min, and the search space S

(0)
f =

⋃M
i=1 Ei ;

Step 2. At the kth iteration, use the MH algorithm with a global proposal distribution

to simulate a sample f k from the distribution

pgk (f ) ∝
I (U

(k−1)
min +*)∑

i=1

ψ(f )

egk−1,i
δ(f ∈ Ei),

where ψ(f ) = exp{−Ũ(f )/t0}, t0 is a preassigned number, δ(f ∈ Ei) is the Kro-

necker function equaling to 1 when f ∈ Ei and 0 otherwise, U
(k−1)
min is the minimum

energy value obtained until the (k − 1)th iteration, and I (z) denotes the index of sub-

region where a sample f with energy Ũ (f ) = z belongs to (e.g., I (Ũ(f )) = j for

f ∈ Ej );

Step 3. Update the working parameter gk in the following manner:

gk,i = gk−1,i + γk
[
δ(f k ∈ Ei) − πi

]
, i = 1, . . . ,M,

where πi ∈ (0, 1) and
∑M

i=1 πi = 1, and nonincreasing sequence γk (k = 1, . . .)

satisfies

(16)γk > 0,

∞∑

k=1

γk = ∞, and

∞∑

k=1

γ
q
k < ∞,

where q ∈ (1, 2). Throughout the paper, we set γk = [k0/max(k0, k)]a2 for some

specified value k0 > 1, where a2 ∈ (0.5, 1];
Step 4. Increase k to k + 1 and update U

(k)
min, M , and the sample space to S

(k)
f =

⋃I (U
(k)
min+*)

i=1 Ei .

We have to impose several conditions on the sample space Sf in the ASAMC al-

gorithm. In Step 1, the sample space is usually partitioned into M disjoint subregions

as follows: E1 = {f : Ũ (f ) � u1}, E2 = {f : u1 < Ũ(f ) � u2}, . . . , EM−1 =
{f : uM−2 < Ũ(f ) � uM−1}, and EM = {f : uM � Ũ (f ) > uM−1}, where u1,

. . . , uM are specified real numbers such that u1 < · · · < uM . For SMMs, ψ(f ) =
exp{−Ũ (f )/t0} and wψ,i =

∫
Ei

ψ(f )m(df ) is the partition function of the truncated

distribution of f in the subregion Ei . Furthermore, we assume that the sample space Sf
is compact. This condition is trivial for some discrete systems, such as the Ising model.

However, for continuous systems, we restrict Sf to a set {f : Ũ (f ) � Ũmax}, where

Ũmax is a fixed large value so that the set {f : Ũ (f ) > Ũmax} is not of interest.

Two other important features of the ASAMC algorithm are approximately sampling

from pm(f ) as in the multicanonical algorithm and updating working estimates gks. For

simplicity, we temporarily assume that U
(k−1)
min is fixed and I (U

(k−1)
min +*) = M (Liang

et al., 2005). At the kth iteration, we use an MCMC algorithm to draw a sample from

the distribution

(17)pgk (f ) ∝
M∑

i=1

ψ(f )

egk−1,i
δ(f ∈ Ei),
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where gk = (gk,1, . . . , gk,M) ∈ G is an estimate of (logwψ,1, . . . , logwψ,M) until the

kth iteration. In practice, for continuum system, we set G = [−B,B]n with B = 10100.

Because adding to or subtracting from gk a constant will not change pgk (f ), gk can be

kept in the compact set in simulations by adjusting with an additive constant. Under

appropriate conditions,

(18)gk,i →
{
c + log(

∫
Ei

ψ(f )m(df )) − log(πi + η), Ei �= ∅,
−∞, Ei = ∅,

where η =
∑

j∈{i:Ei=∅} πj/(M − M0) and M0 is the number of empty subregions,

as k → ∞ (Liang et al., 2005). In addition, c is a constant which can be determined

by imposing a constraint on gk . For instance,
∑m

i=1 e
gk,i is equal to a fixed number.

Since the sample space is partitioned blindly in the ASAMC algorithm, some of the

subregions may be empty, that is,
∫
Ei

ψ(f ) df = 0. The working distribution pgk (f )

is obtained by a piecewise modification of p(f |τ), where each subregion is associated

with a different weight egk,i (Liang et al., 2005).

The above stochastic approximation algorithm is an annealing algorithm, because the

sample space S
(k)
f shrinks during each iteration. Theoretically, the ASAMC algorithm

can find the global energy minimum if the algorithm is run long enough, but the process

of locating the global energy minimum may be very slow due to the breadth of the

sample space. To accelerate the process, Liang (2004, 2005c) proposed to restrict the

sample space of the ASAMC algorithm to a small region during each iteration. Suppose

that the subregions E1, . . . , EM have been arranged in ascending order by energy; that

is, if i < j , then U(f ) < U(f ′) for any f ∈ Ei and f ′ ∈ Ej . The ASAMC algorithm

starts with S
(0)
f =

⋃M
i=1 Ei , and then iteratively sets

(19)S
(t)
f =

I (U
(k−1)
min +*)⋃

i=1

Ei .

Remarkably, the ASAMC algorithm preserves the convergence (18) on the limiting

sample space limt→∞ S
(k)
f , provided that the proposal distribution used at each itera-

tion is global, that is, a proposal distribution q(f ,f ′) is global if q(f ,f ′) > 0 for all

f ,f ′ ∈ Sf .

As known by many researchers, the state of the art algorithm for stochastic opti-

mization is the simulated annealing algorithm (Kirkpatrick et al., 1983). For instance,

we consider the problem of minimizing the function Ũ (f ). Simulated annealing works

by simulating from a sequence of distributions scaled by the temperature as follows,

ptk (f ) ∝ exp
{
−Ũ(f )/tk

}
, k = 1, 2, . . . ,

where tk’s are called the temperatures forming a decreasing ladder t1 > · · · > tk >

· · · � 0. Under some conditions, simulated annealing will converge to the set of global

minima of Ũ(f ) in probability 1 when the temperature decreases sufficiently slowly,

i.e., tk > 1/ log(Lk), where Lk = N1 + · · · + Nk (Geman and Geman, 1984). In ad-

dition, Nk is the number of iterations generated from the MH algorithm in simulating

from the distribution ptk (f ). In practice, such a slow cooling scheme is impractical.
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Instead, people use a linearly or geometrically decreasing cooling scheme, but such

scheme cannot guarantee that the global minima will be reached. The ASAMC algo-

rithm does not suffer from such a pitfall. If the proposal distribution is global and the

gain constants satisfy the condition (16), the ASAMC algorithm will converge to the

set of global minima as the number of iterations is large. The ASAMC algorithm will

result in a “free” random walk in the subspace of the subregions. Its self-adjusting abil-

ity for the acceptance of a new proposal guarantees that it will not become stuck into

a local energy minimum. Hence, as a stochastic optimization algorithm, the ASAMC

algorithm is potentially much more powerful than the simulated annealing algorithm

(Liang, 2005c).

3.2.3. Practical issues

For an effective implementation of the ASAMC algorithm, several issues need to be

considered.

(i) Partitioning the sample space: For optimization problems, the partition can be

done according to the energy function. The maximum energy difference in each sub-

region should be bounded by a reasonable number, say, 2, to ensures that a reasonable

acceptance rate is achieved for the local MH moves within the same subregion. Note that

within the same subregion, sampling from the working density (17) reduces to sampling

from ψ(f ).

(ii) Choice of *: The performance of the ASAMC algorithm depends on the value

of * to some extent. If * is too large, the ASAMC algorithm may take a long time to

locate the global minimum due to the breadth of the sample space. If * is too small,

the ASAMC algorithm may also take a long time to locate the global minimum. In

this case, the sample space may contain only a few isolated regions, and most of the

proposed transitions will be rejected. Allowing a sampler to jump to intermediate states

of high energy will increase the probability of transition from one local energy minimum

to others. To compensate for the negative effect of the sample space restriction, the

proposal distribution used in the ASAMC algorithm should be spread out.

(iii) Choice of k0 and the number of iterations: The γk controls the moving ability of

the ASAMC algorithm across subregions, and k0 controls the speed of γk converging to

zero. In practice, k0 can be chosen according to the complexity of the problem. The more

complex the problem, the larger value of k0. A large value of k0 will force the sampler to

reach all subregions quickly, even in the presence of multiple local energy minima. The

appropriateness of the choice of k0 and the number of iterations can be diagnosed by

examining the convergence of the run, which can be further diagnosed by examining the

equality of the realized sampling frequencies of limiting subregions. As suggested by

Wang and Landau (2001), a run can be regarded as converged if the sampling frequency

for each of the subregions is not less than 80% of the average sampling frequency;

that is,

(20)min

{
ei

ē
: i = 1, . . . , I (Umin + *),Ei �= ∅

}
� 80%,

where ei denotes the realized sampling frequency of the subregion Ei , and ē is the

average sampling frequency of the subregions included in the above set. If a run does
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not converge, the ASAMC algorithm should be re-run with more iterations or a larger

value of k0.

(iv) Choosing the proposal function: In the ASAMC algorithm, the global proposal

distribution ensures the ergodicity of the algorithm. In practice, a global proposal dis-

tribution can be designed easily for both discrete and continuum systems. For example,

in simulations from an Ising model of linear size L, a new configuration can be gener-

ated with the following steps: draw an integer T with probability εt (t = 1, . . . , L2),

0 < εt < 1 and
∑L2

t=1 εt = 1; choose T spins from the set S = {(i, j): i, j = 1, . . . , L}
at random and with replacement; reset the value of each of the T spins to +1 or

−1 with equal probability. We will call this Sampling Method (I). For a particular

configuration generated with the above procedure, the transition probability is then

q(f ,f ′) = εT /2T. A typical choice for the εt ’s is ε1 = 0.9 and εt = (1 − ε1)/(L
2 − 1)

for t = 2, . . . , L2. For a continuum system, q(f ,f ′) can be set to the random walk

Gaussian proposal f ′ ∼ N(f , σ 2), with σ 2 being calibrated to have a desired accep-

tance rate, such as 0.25.

4. Applications

In this section, we analyzed two real data sets from imaging studies from ecology. They

will be discussed to illustrate the behavior of the SAEM algorithm, the ASAMC algo-

rithm, and their combination. All computations were done in C++ on a Dell laptop. All

computer codes and executable files can be downloaded from Dr. Zhu’s website:

http://www.bios.unc.edu/~hzhu/SMM/smm.tar.

4.1. Distributions of vegetation species

We consider an automulticategorical model to analyze the dataset of vegetation species

in Alberta, Canada. The primary goal of this data analysis is to demonstrate the effi-

ciency of the stochastic approximation algorithm in locating MLE in complex spatial

models. In particular, through this example, we want to show the feasibility of roughly

approximating the first-order and second-order derivatives of the partition function dur-

ing each iteration and controlling amount of noises by using stochastic approximation

(Robbins and Monro, 1951). The secondary goal is to illustrate the wide application of

spatial models.

Vegetation species is in the form of an atlas map with resolution pixel equaling 0.5 ◦C

latitude × 0.5 ◦C longitude; see Figure 1(a). With the aid of remote sensing and aer-

ial photogrammetric technologies, information on four species occurrence in Alberta,

Canada is documented by this format (Little, 1971; Arnold, 1993, 1995; Mitchell-Jones

et al., 1999). There are total of 375 grid cells. At each site (k, l), there are a categorical

response Y(k, l) and 2 interesting climate covariates: X1(k, l) (absolute minimum tem-

perature); and X2(k, l) (annual degree-days). Five major types of vegetation in Alberta

are: V0 – Background, V1 – subarctic evergreen forest, V2 – boreal evergreen forest, V3

– boreal summergreen woodland, and V4 – grass prairie. Two covariates are expected to
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Fig. 1. Distribution of four vegetation types in Alberta, Canada: 0 = background, 1 = subarctic evergreen

forest, 2 = boreal evergreen forest, 3 = boreal summergreen woodland, and 4 = grass prairie. There are

four panels: (a) the observed distribution; (b) the fitted distribution; (c) the predicted distribution with annual

degree-days (X2(k, l)) being increased 350; and (d) τ(1)k at each iteration of the SAEM algorithm.

be among those determining the distributions of vegetation at geographical scales and

having significant changes in global warming.

Following Zhu et al. (2005b), the second-order automulticategorical regression

model is assumed for Y = {Y(k, l), (k, l) ∈ S}, where the conditional probability at

site (k, l) ∈ S given all the other values Y(m, n) ((m, n) �= (k, l)) is given as follows

(21)Pr(Yk,l = i | all other sites) = exp{gk,l(i|θ)}∑4
j=0 exp{gk,l(j |θ)}

, i = 0, . . . , 4.

In addition, gk,l(i|θ) = X(k, l)Tβ(i) + τ(i)y∗
k,l(i) for i = 0, . . . , 4, where y∗

k,l(i)

is the number of eight sites {(k, l − 1), (k, l + 1), (k − 1, l), (k + 1, l), (k − 1, l − 1),

(k+1, l+1), (k−1, l+1), (k+1, l−1)} colored i. To avoid redundancy, we assume that

β(0) = 0 and τ(0) = 0. The SAEM algorithm with (a1, b1) = (0.8, 4) and Nk = 5000

was used to find the maximum likelihood estimates. The algorithm converged in 2231

iterations. The initial value for the vector ξ was set to be ξ0 = 0.
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Table 1

Maximum likelihood estimates of the automulticategorical model to the distribution of vegetation species data

in Alberta, Canada

Cluster 1 Cluster 2 Cluster 3 Cluster 4

EST SD EST SD EST SD EST SD

β(1) β(2) β(3) β(4)

Intercept 2.021 8.765 −5.269 9.003 −7.887 9.993 −18.112 15.700

X1(k, l) 0.129 0.184 0.041 0.188 0.151 0.201 0.428 0.309

X2(k, l) 0.003∗ 0.001 0.005∗ 0.001 0.009∗ 0.002 0.018∗ 0.005

τ(1) τ (2) τ (3) τ (4)

0.624∗ 0.161 0.526∗ 0.111 0.383∗ 0.138 0.779∗ 0.308

∗ represents that parameters are different from zero at the significance level α = 0.05.

The obtained results are summarized in Table 1. The distribution of the vegetation

species is related to the annual degree-days. The autocorrelation coefficient τ(i) (i =
1, 2, 3, 4) are significantly different from zero. The fitted map Y of the distribution of

four vegetation types in Alberta is shown in Figure 1(b). Figure 1(d) shows the estimate

τ(1)k at each iteration of the stochastic approximation algorithm. We observe that our

stochastic approximation algorithm is robust to the initial value of ξ and can find MLE.

An important scientific issue is to predict the redistribution of vegetation species

under various global warming scenarios. For instance, an enhanced greenhouse effect

(e.g., the doubling of atmospheric concentration of CO2) would increase the global

mean temperature from 1.5 to 4.5 ◦C in the future 30 to 50 years. One advantage of the

automulticategorical model is that the climate change effect can be quantified through

odds ratio of the conditional probabilities. For example, if the annual degree-days X2

increases by 350 (approximately equivalent to 1 ◦C increase in daily temperature) while

other variables remain constant, then the odds ratio of the conditional probabilities of

the j th vegetation presence is supposed to increase by a factor e350β2(j). This result

suggests that subarctic evergreen forest, boreal evergreen forest, boreal summergreen

woodland, and grass prairie will be increased by global warming. The impact of climate

change on the distributions of four vegetation types is shown in Figure 1(c).

4.2. Simulation study

Consider a degraded pixel image on a finite grid S of pixels, placing a binary random

variable Y(i, j) at each site (i, j) on S, a subset of a regular M0 × N0 lattice. Let the

true image be f = {f (k, l): (k, l) ∈ S}, where f (k, l) = 0 represents a white pixel

and f (k, l) = 1 represents a black pixel. Because S is usually a irregular lattice in

most applications, we consider the joint distribution of the internal site responses f I =
{f (k, l): (k, l) ∈ So} conditional upon fixed boundary values f B = {f (k, l): (k, l) ∈
∂S}, where ∂S and So denote the set of all sites forming the boundary of S and the set

of all internal sites of S, respectively. Following Besag (1974), the probability function
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of the first-order autologistic regression of f I given f B can be written in a Gibbsian

form as follow:

(22)p
(
f I |τ,f B

)
= exp

{
τTT (f )

}
/C(τ),

where T (f ) =
∑

(k,l)∈So f (k, l)X̃f (k, l) and X̃f (k, l) = (X(k, l)T, f̃ (k, l)/2)T, in

which f̃ (k, l) is the number of sites in {(k, l − 1), (k, l + 1), (k − 1, l), (k + 1, l)}
colored 1. Also, X(k, l) is a p × 1 vector of covariates at site (k, l), τ = (βT, τ1)

T ∈
Rp+1, β ∈ Rp, and τ1 ∈ R. Given the true image f , the true observed image Y =
{Y(k, l): (k, l) ∈ S} is assumed to be conditionally mutually independent and

(23)Y(k, l)|f (k, l) ∼ Binomial
(
1, p

(
f (k, l)

))
,

where p(0) = 0 and p(1) = exp(−α(1)2) ∈ (0, 1]. That is, if f (k, l) = 0, Y(k, l) =
0 with probability 1, while Y(k, l) = 1 with probability p(1) and Y(k, l) = 0 with

probability 1−p(1) under f (k, l) = 1. Thus, we obtain an SMM. In practice, scientists

may consider the first-order, second-order and even higher correlation structures; see,

for example, the first-order structure in Huffer and Wu (1998) and the second-order

structure in Besag (1974, 1986) and He et al. (2003).

In order to check the usefulness of the proposed algorithm, we consider the follow-

ing simulation study, in which the autologistic regression model is set on a 30 × 30

lattice and X(k, l) = (2.5 × sin(0.1 × (k + l))). In our simulation, β = 1, τ1 ∈
{0.2, 0.4, 0.6, 0.8}, and α(1) = 0.85(p(1) ≈ 0.325). Therefore, there are three un-

known parameters. To simulate the process f = {f (k, l): (k, l) ∈ So} from (22), we

use the standard Gibbs sampler. The initial state of the process is taken at random such

that X(k, l) is independently taken to be 1 or 0 with 1/2 probability and the Gibbs sam-

pler is repeated 10 000 times (10 000 Monte Carlo steps) to ensure that the equilibrium

state is achieved. Afterwards, the binomial noise is added according to (23).

For each parameter vector ξ = (τ1, β, p(1))
T, we generated N = 500 datasets.

For each pseudo-observed dataset, the SAEM algorithm with (a1, b1) = (0.8, 5) was

applied to get the MLE of the unknown parameters. The initial value of ξ was set at

(0, 0, 0.5). In each iteration of the algorithm, the standard Gibbs sampler was used to

generate f from p(f |τ); therefore, we can estimate ∂τ logC(τ) and ∂2
τ logC(τ). To

simulate the process Y given f , we used the following algorithm. If f (k, l) = 1, Y(k, l)

must be equal to 1; however, given Y(k, l) = 0 and other f (u, v)s, we have

P
(
f (k, l) = 1|Y(k, l) = 0, all other values

)

= (1 − p(1)) exp(X(k, l)Tβ + f̃ (k, l)τ1)

1 + (1 − p(1)) exp(X(k, l)Tβ + f̃ (k, l)τ1)
.

The standard Gibbs sampler is also used. The number Nk was set at 30.

In this simulation study, β = 1 represents relatively strong covariate effect and τ1

ranges in four different cases. We calculated the bias, the mean of the standard deviation

estimates, and the root mean-square error obtained from the 500 estimates. The results

obtained are summarized in Table 2. It can be seen that all the relative efficiencies

are close to 1.0. This demonstrates that the SAEM algorithm is a useful method for

optimizing SMMs.
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Table 2

Bias, RMS, SD, and EFF of the maximum likelihood estimators of the noisy autologistic regression model

True Bias RMS SD EFF True Bias RMS SD EFF

β 1.0 −0.008 0.081 0.081 1.005 β 1.0 −0.004 0.080 0.079 1.017

τ1 0.2 0.003 0.082 0.081 1.007 τ1 0.4 0.004 0.073 0.077 0.945

p(1) 0.325 0.009 0.064 0.064 0.997 p(1) 0.325 0.007 0.043 0.044 0.978

β 1.0 −0.010 0.081 0.076 1.066 β 1.0 −0.002 0.083 0.083 0.991

τ1 0.6 −0.027 0.075 0.074 1.009 τ1 0.8 0.002 0.083 0.087 0.955

p(1) 0.325 0.006 0.033 0.034 0.962 p(1) 0.325 0.003 0.028 0.027 1.011

True denotes the true value of parameters; Bias denotes the bias of the mean of estimates; RMS denotes the

root-mean-square error; SD denotes the mean of standard deviation estimates; and EFF denotes the ratio of

SD and RMS.

4.3. Noisy vegetation data

We analyzed a real data on the distribution of subarctic evergreen woodland vegetation

in terms of climate variables in the province of British Columbia, Canada. The subarctic

evergreen woodland is in the form of an atlas map with resolution pixel equaling 0.5 ◦C

latitude × 0.5 ◦C longitude. The observed map Y of the subarctic evergreen woodland

is shown in Figure 2(a). There are total of 707 grid cells. At each site (k, l), there are a

binary Y(k, l) and 5 climate covariates of interest: X1(k, l) (absolute minimum tempera-

ture); X2(k, l) (annual degree-days); X3(k, l) (total actual evapotranspiration); X4(k, l)

(annual soil moisture deficit); and X5(k, l) (annual snowpack). These covariates are

expected to be among those determining the distribution of vegetation at geograph-

ical scales, and they are also the variables likely to change significantly because of

global warming. Here, Y(k, l) = 1 indicates that at least one subarctic evergreen wood-

land vegetation has been observed and Y(k, l) = 0 indicates that subarctic evergreen

woodland are either not inhabited or the subarctic evergreen woodland have not been

observed. It is an obvious idea to interpret the observed map in Figure 2(a) as a degraded

pixel image, in which a part of the originally black squares are white in the observed

map.

We fitted the dataset by the noisy autologistic regression model (22) and (23). The

stochastic approximation algorithm with (a1, b1) = (0.8, 4) and Nk = 30 was used to

find the MLE. The initial value of ξ = (τ1, β, p(1)) was set to be ξ0 = (0, 0, 0.5).

The obtained results are summarized in Table 3. The distribution of subarctic evergreen

woodland vegetation is related to the absolute minimum temperature and the annual

degree-days. The autocorrelation coefficient τ1 is as high as a value at 1.52. Figure 2(c)

shows the trace of (τ k1 , τ̃
k
1 ) and (p(1)k, p̃(1)k) at each iterations of the SAEM algorithm.

We compared ICM with the simulated annealing and ASAMC algorithms, which

search for the MAP f̂ by minimizing Ũ (f ) = −ℓ(f |Y; ξ̂ ) (except for a constant)

given by

−τ̂TT (f ) −
∑

(k,l)∈So

log
[(

1 − p̂
(
f (k, l)

))1−Y(k,l)
p̂
(
f (k, l)

)Y(k,l)]
,
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Fig. 2. Subarctic evergreen woodland data: (a) observed map; (b) restored map by the ASAMC algorithm;

(c) (τ k
1
, τ̃ k

1
) and (α(1)k, α̃(1)k) at each iteration of the SAEM algorithm.

where T (f ) =
∑

(k,l)∈So f (k, l)X̃(k, l). The Ũ (f ) contains N0 = 496 variables

{f (k, l): Y(k, l) = 0}, because if Y(k, l) = 1, f (k, l) must be one. Thus, the sam-

ple space has 2N0 = 2496 configurations and direct searching for global minima is

therefore nearly infeasible computationally. The ICM method (Besag, 1986) converged

in only three iterations and leads to a local minimum 322.935. The simulated annealing

and the ASAMC algorithms were run for 2 × 106 iterations. The simulated annealing

located a local minimum close to 312.638, while the ASAMC algorithm located a en-

ergy minimum at 311.8. This demonstrates that the simulated annealing and ASAMC

algorithms require much more computational cost, but they are able to locate the global

energy minima with high probability. We include MAP f̂ estimated from the ASAMC

algorithm in Figure 2(b).

For the simulated annealing algorithm, we considered a linear cooling scheme. We

set the highest temperature T1 = 10, the total number of temperature levels K = 400,
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Table 3

Model fits to the subarctic evergreen woodland data

Iter/time MCMC-SA algorithm (α = 0)

β τ1 p(1)

const X1 X2 X3 X4 X5

5391 EST −0.7608 0.0371∗ −0.0012∗ 0.0091∗ 0.0024 −0.0004 1.5190∗ 0.6534∗

650s SD 0.9639 0.0154 0.0004 0.0046 0.0016 0.0003 0.1493 0.0695

∗ represents that parameters are different from zero at the significance level α = 0.05.

and the lowest temperature T400 = 0.01. At the Tt temperature level, we set ε1 =
0.5 + (10 − Tt )/25 and εt = (1.0 − ε1)/(N0 − 1) in Sampling Method (I) and run

this procedure for 5000 iterations. The temperature decreased linearly such that Tt =
Tt−1 − ρ, where ρ = (T1 − T400)/(K − 1) ≈ 2.504 × 10−2. The initial configuration

of {f (k, l): Y(k, l) = 0} was set as {f (k, l) = 0: Y(k, l) = 0}.
We presented in Figure 3(a) the index plot of the minimum values of Ũ (f ) at each

temperature level and included in Figure 3(b) the index plots of the values of Ũ (f ) in

the first and last 15 000 iterations. We observed that the simulated annealing algorithm

led to a random walk in the sample space at high temperature. However, the simulated

annealing algorithm became trapped in a local minimum 312.877 at low temperature,

even though it located a minimum value at 312.638 across all temperature levels.

We applied the ASAMC algorithm to search for the minimum energy value of Ũ (f )

by using the following settings. The sample space was partitioned into M = 1998

subregions with an equal energy bandwidth: E1 = {f : Ũ (f ) � 310.599}, E2 = {f :

310.599 < Ũ(f ) � 310.849}, . . . , and E1998 = {f : Ũ(f ) � 810.059}. We set

ψ(f ) = exp(−Ũ (f )/10), π1 = · · · = πM = 1/M , Ũmax = 810.059, a2 = 0.6,

k0 = 2500, and * = 5. The total number of iterations of the ASAMC algorithm was

set at 2×106, which is the same as that of the simulated annealing algorithm. We chose

the proposal distribution of Sampling Method (I), in which εt = (1 − ε1)/(N0 − 1) for

t = 2, . . . , N0 and ε1 was set as 0.9 for 0 � k � 5 × 105, 0.7 for 5 × 105 < k � 106,

and 0.5 for k > 106. The initial configuration of {f (k, l): Y(k, l) = 0} was set as

{f (k, l) = 0: Y(k, l) = 0}.
The ASAMC algorithm outperforms the simulated annealing algorithm in this com-

plex noisy vegetation data. In Figure 3(c), we presented the index plots of the values of

Ũ(f ) at the 5000kth iteration and the minimum values of Ũ (f ) until the 5000kth itera-

tion from the ASAMC algorithm, where k = 0, . . . , 400. We observed that the ASAMC

algorithm converges very quickly to a global minimum of Ũ (f ) at 311.8; in contrast,

the simulated annealing algorithm wondered around in the sample space at the high

temperature and became trapped in local minima at the low temperature (Figure 3(b)).

Figure 3(d) shows the sampling frequency of each of the subregions of the ASAMC

run. The 10 subregions with the lowest Ũ (f ) values are sampled approximately evenly.

This indicates that the run has converged. Recall the diagnostic criterion given in (20)

for the convergence of the ASAMC runs.
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Fig. 3. Subarctic evergreen woodland data: comparison of the simulated annealing and ASAMC algorithms.

Ũ (f ) is the negative value of the log-likelihood function of complete data, −ℓc(ξ̂ ,f ; yo). There are four

panels: (a) the index plot of the minimum energy values of Ũ (f ) at each temperature level from the simulated

annealing algorithm; (b) the index plots of the energy values of Ũ (f ) in the first (red line) and last (green

line) 15 000 iterations from the simulated annealing algorithm; (c) the index plots of the energy values of

Ũ (f ) (red line) at each of the 5000kth iterations and the minimum energy values of Ũ (f ) (blue line) until

the 5000kth iteration from the ASAMC algorithm, where k = 0, . . . , 400; (d) the sampling frequency in last

ten subregions from the ASAMC algorithm. (For interpretation of the references to color in this figure legend,

the reader ir referred to the web version of this chapter.)
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