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Preface

This text is intended as an introduction to elementary probability theory and sto-
chastic processes. It is particularly well suited for those wanting to see how prob-
ability theory can be applied to the study of phenomena in fields such as engineer-
ing, computer science, management science, the physical and social sciences, and
operations research.

It is generally felt that there are two approaches to the study of probability the-
ory. One approach is heuristic and nonrigorous and attempts to develop in the
student an intuitive feel for the subject which enables him or her to “think prob-
abilistically.” The other approach attempts a rigorous development of probability
by using the tools of measure theory. It is the first approach that is employed in
this text. However, because it is extremely important in both understanding and
applying probability theory to be able to “think probabilistically,” this text should
also be useful to students interested primarily in the second approach.

New to This Edition

The ninth edition contains the following new sections.

• Section 3.7 is concerned with compound random variables of the form
SN =∑N

i=1 Xi , where N is independent of the sequence of independent and
identically distributed random variables Xi , i � 1. It starts by deriving a gen-
eral identity concerning compound random variables, as well as a corollary
of that identity in the case where the Xi are positive and integer valued. The
corollary is then used in subsequent subsections to obtain recursive formulas
for the probability mass function of SN , when N is a Poisson distribution
(Subsection 3.7.1), a binomial distribution (Subsection 3.7.2), or a negative
binomial distribution (Subsection 3.7.3).

xiii



xiv Preface

• Section 4.11 deals with hidden Markov chains. These models suppose that
a random signal is emitted each time a Markov chain enters a state, with
the distribution of the signal depending on the state entered. The Markov
chain is hidden in the sense that it is supposed that only the signals and not
the underlying states of the chain are observable. As part of our analysis
of these models we present, in Subsection 4.11.1, the Viterbi algorithm for
determining the most probable sequence of first n states, given the first n

signals.

• Section 8.6.4 analyzes the Poisson arrival single server queue under the as-
sumption that the working server will randomly break down and need repair.

There is also new material in almost all chapters. Some of the more significant
additions being the following.

• Example 5.9, which is concerned with the expected number of normal cells
that survive until all cancer cells have been killed. The example supposes
that each cell has a weight, and the probability that a given surviving cell is
the next cell killed is proportional to its weight.

• A new approach—based on time sampling of a Poisson process—is pre-
sented in Subsection 5.4.1 for deriving the probability mass function of the
number of events of a nonhomogeneous Poisson process that occur in any
specified time interval.

• There is additional material in Section 8.3 concerning the M/M/1 queue.
Among other things, we derive the conditional distribution of the number of
customers originally found in the system by a customer who spends a time t

in the system before departing. (The conditional distribution is Poisson.) In
Example 8.3, we illustrate the inspection paradox, by obtaining the probabil-
ity distribution of the number in the system as seen by the first arrival after
some specified time.

Course

Ideally, this text would be used in a one-year course in probability models. Other
possible courses would be a one-semester course in introductory probability the-
ory (involving Chapters 1–3 and parts of others) or a course in elementary sto-
chastic processes. The textbook is designed to be flexible enough to be used in a
variety of possible courses. For example, I have used Chapters 5 and 8, with smat-
terings from Chapters 4 and 6, as the basis of an introductory course in queueing
theory.
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Examples and Exercises

Many examples are worked out throughout the text, and there are also a large
number of exercises to be solved by students. More than 100 of these exercises
have been starred and their solutions provided at the end of the text. These starred
problems can be used for independent study and test preparation. An Instructor’s
Manual, containing solutions to all exercises, is available free to instructors who
adopt the book for class.

Organization

Chapters 1 and 2 deal with basic ideas of probability theory. In Chapter 1 an
axiomatic framework is presented, while in Chapter 2 the important concept of
a random variable is introduced. Subsection 2.6.1 gives a simple derivation of
the joint distribution of the sample mean and sample variance of a normal data
sample.

Chapter 3 is concerned with the subject matter of conditional probability and
conditional expectation. “Conditioning” is one of the key tools of probability the-
ory, and it is stressed throughout the book. When properly used, conditioning of-
ten enables us to easily solve problems that at first glance seem quite difficult. The
final section of this chapter presents applications to (1) a computer list problem,
(2) a random graph, and (3) the Polya urn model and its relation to the Bose-
Einstein distribution. Subsection 3.6.5 presents k-record values and the surprising
Ignatov’s theorem.

In Chapter 4 we come into contact with our first random, or stochastic, process,
known as a Markov chain, which is widely applicable to the study of many real-
world phenomena. Applications to genetics and production processes are pre-
sented. The concept of time reversibility is introduced and its usefulness illus-
trated. Subsection 4.5.3 presents an analysis, based on random walk theory, of a
probabilistic algorithm for the satisfiability problem. Section 4.6 deals with the
mean times spent in transient states by a Markov chain. Section 4.9 introduces
Markov chain Monte Carlo methods. In the final section we consider a model for
optimally making decisions known as a Markovian decision process.

In Chapter 5 we are concerned with a type of stochastic process known as a
counting process. In particular, we study a kind of counting process known as
a Poisson process. The intimate relationship between this process and the expo-
nential distribution is discussed. New derivations for the Poisson and nonhomo-
geneous Poisson processes are discussed. Examples relating to analyzing greedy
algorithms, minimizing highway encounters, collecting coupons, and tracking the
AIDS virus, as well as material on compound Poisson processes, are included
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in this chapter. Subsection 5.2.4 gives a simple derivation of the convolution of
exponential random variables.

Chapter 6 considers Markov chains in continuous time with an emphasis on
birth and death models. Time reversibility is shown to be a useful concept, as it
is in the study of discrete-time Markov chains. Section 6.7 presents the computa-
tionally important technique of uniformization.

Chapter 7, the renewal theory chapter, is concerned with a type of count-
ing process more general than the Poisson. By making use of renewal reward
processes, limiting results are obtained and applied to various fields. Section 7.9
presents new results concerning the distribution of time until a certain pattern oc-
curs when a sequence of independent and identically distributed random variables
is observed. In Subsection 7.9.1, we show how renewal theory can be used to de-
rive both the mean and the variance of the length of time until a specified pattern
appears, as well as the mean time until one of a finite number of specified patterns
appears. In Subsection 7.9.2, we suppose that the random variables are equally
likely to take on any of m possible values, and compute an expression for the
mean time until a run of m distinct values occurs. In Subsection 7.9.3, we sup-
pose the random variables are continuous and derive an expression for the mean
time until a run of m consecutive increasing values occurs.

Chapter 8 deals with queueing, or waiting line, theory. After some preliminar-
ies dealing with basic cost identities and types of limiting probabilities, we con-
sider exponential queueing models and show how such models can be analyzed.
Included in the models we study is the important class known as a network of
queues. We then study models in which some of the distributions are allowed to
be arbitrary. Included are Subsection 8.6.3 dealing with an optimization problem
concerning a single server, general service time queue, and Section 8.8, concerned
with a single server, general service time queue in which the arrival source is a
finite number of potential users.

Chapter 9 is concerned with reliability theory. This chapter will probably be
of greatest interest to the engineer and operations researcher. Subsection 9.6.1
illustrates a method for determining an upper bound for the expected life of a
parallel system of not necessarily independent components and (9.7.1) analyzing
a series structure reliability model in which components enter a state of suspended
animation when one of their cohorts fails.

Chapter 10 is concerned with Brownian motion and its applications. The theory
of options pricing is discussed. Also, the arbitrage theorem is presented and its
relationship to the duality theorem of linear program is indicated. We show how
the arbitrage theorem leads to the Black–Scholes option pricing formula.

Chapter 11 deals with simulation, a powerful tool for analyzing stochastic mod-
els that are analytically intractable. Methods for generating the values of arbitrar-
ily distributed random variables are discussed, as are variance reduction methods
for increasing the efficiency of the simulation. Subsection 11.6.4 introduces the
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important simulation technique of importance sampling, and indicates the useful-
ness of tilted distributions when applying this method.
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Introduction to
Probability Theory

1
1.1. Introduction

Any realistic model of a real-world phenomenon must take into account the possi-
bility of randomness. That is, more often than not, the quantities we are interested
in will not be predictable in advance but, rather, will exhibit an inherent varia-
tion that should be taken into account by the model. This is usually accomplished
by allowing the model to be probabilistic in nature. Such a model is, naturally
enough, referred to as a probability model.

The majority of the chapters of this book will be concerned with different prob-
ability models of natural phenomena. Clearly, in order to master both the “model
building” and the subsequent analysis of these models, we must have a certain
knowledge of basic probability theory. The remainder of this chapter, as well as
the next two chapters, will be concerned with a study of this subject.

1.2. Sample Space and Events

Suppose that we are about to perform an experiment whose outcome is not pre-
dictable in advance. However, while the outcome of the experiment will not be
known in advance, let us suppose that the set of all possible outcomes is known.
This set of all possible outcomes of an experiment is known as the sample space
of the experiment and is denoted by S.

Some examples are the following.

1. If the experiment consists of the flipping of a coin, then

S = {H,T }
where H means that the outcome of the toss is a head and T that it is a tail.

1



2 1 Introduction to Probability Theory

2. If the experiment consists of rolling a die, then the sample space is

S = {1,2,3,4,5,6}
where the outcome i means that i appeared on the die, i = 1,2,3,4,5,6.

3. If the experiments consists of flipping two coins, then the sample space con-
sists of the following four points:

S = {(H,H), (H,T ), (T ,H), (T ,T )}
The outcome will be (H,H) if both coins come up heads; it will be (H,T )

if the first coin comes up heads and the second comes up tails; it will be
(T ,H) if the first comes up tails and the second heads; and it will be (T ,T )

if both coins come up tails.

4. If the experiment consists of rolling two dice, then the sample space consists
of the following 36 points:

S =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1,1), (1,2), (1,3), (1,4), (1,5), (1,6)

(2,1), (2,2), (2,3), (2,4), (2,5), (2,6)

(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)

(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)

(5,1), (5,2), (5,3), (5,4), (5,5), (5,6)

(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

where the outcome (i, j) is said to occur if i appears on the first die and j

on the second die.

5. If the experiment consists of measuring the lifetime of a car, then the sample
space consists of all nonnegative real numbers. That is,

S = [0,∞)∗ �

Any subset E of the sample space S is known as an event. Some examples of
events are the following.

1′. In Example (1), if E = {H }, then E is the event that a head appears on the
flip of the coin. Similarly, if E = {T }, then E would be the event that a tail
appears.

2′. In Example (2), if E = {1}, then E is the event that one appears on the roll
of the die. If E = {2,4,6}, then E would be the event that an even number
appears on the roll.

∗The set (a, b) is defined to consist of all points x such that a < x < b. The set [a, b] is defined
to consist of all points x such that a � x � b. The sets (a, b] and [a, b) are defined, respectively, to
consist of all points x such that a < x � b and all points x such that a � x < b.
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3′. In Example (3), if E = {(H,H), (H,T )}, then E is the event that a head
appears on the first coin.

4′. In Example (4), if E = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}, then
E is the event that the sum of the dice equals seven.

5′. In Example (5), if E = (2,6), then E is the event that the car lasts between
two and six years. �

For any two events E and F of a sample space S we define the new event E ∪F

to consist of all outcomes that are either in E or in F or in both E and F . That is,
the event E ∪F will occur if either E or F occurs. For example, in (1) if E = {H }
and F = {T }, then

E ∪ F = {H, T }
That is, E ∪ F would be the whole sample space S. In (2) if E = {1,3,5} and
F = {1,2,3}, then

E ∪ F = {1,2,3,5}
and thus E ∪F would occur if the outcome of the die is 1 or 2 or 3 or 5. The event
E ∪ F is often referred to as the union of the event E and the event F .

For any two events E and F , we may also define the new event EF , sometimes
written E ∩ F , and referred to as the intersection of E and F , as follows. EF

consists of all outcomes which are both in E and in F . That is, the event EF

will occur only if both E and F occur. For example, in (2) if E = {1,3,5} and
F = {1,2,3}, then

EF = {1,3}
and thus EF would occur if the outcome of the die is either 1 or 3. In Example (1)
if E = {H } and F = {T }, then the event EF would not consist of any outcomes
and hence could not occur. To give such an event a name, we shall refer to it as
the null event and denote it by Ø. (That is, Ø refers to the event consisting of no
outcomes.) If EF = Ø, then E and F are said to be mutually exclusive.

We also define unions and intersections of more than two events in a simi-
lar manner. If E1,E2, . . . are events, then the union of these events, denoted by⋃∞

n=1 En, is defined to be that event which consists of all outcomes that are in En

for at least one value of n = 1,2, . . . . Similarly, the intersection of the events En,
denoted by

⋂∞
n=1 En, is defined to be the event consisting of those outcomes that

are in all of the events En,n = 1,2, . . . .
Finally, for any event E we define the new event Ec, referred to as the

complement of E, to consist of all outcomes in the sample space S that are not
in E. That is, Ec will occur if and only if E does not occur. In Example (4)



4 1 Introduction to Probability Theory

if E = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}, then Ec will occur if the sum of
the dice does not equal seven. Also note that since the experiment must result in
some outcome, it follows that Sc = Ø.

1.3. Probabilities Defined on Events

Consider an experiment whose sample space is S. For each event E of the sample
space S, we assume that a number P(E) is defined and satisfies the following
three conditions:

(i) 0 � P(E) � 1.
(ii) P(S) = 1.

(iii) For any sequence of events E1,E2, . . . that are mutually exclusive, that is,
events for which EnEm = Ø when n �= m, then

P

( ∞⋃

n=1

En

)

=
∞∑

n=1

P(En)

We refer to P(E) as the probability of the event E.

Example 1.1 In the coin tossing example, if we assume that a head is equally
likely to appear as a tail, then we would have

P({H }) = P({T }) = 1
2

On the other hand, if we had a biased coin and felt that a head was twice as likely
to appear as a tail, then we would have

P({H }) = 2
3 , P ({T }) = 1

3 �

Example 1.2 In the die tossing example, if we supposed that all six numbers
were equally likely to appear, then we would have

P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) = 1
6

From (iii) it would follow that the probability of getting an even number would
equal

P({2,4,6}) = P({2}) + P({4}) + P({6})
= 1

2 �
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Remark We have chosen to give a rather formal definition of probabilities as
being functions defined on the events of a sample space. However, it turns out
that these probabilities have a nice intuitive property. Namely, if our experiment
is repeated over and over again then (with probability 1) the proportion of time
that event E occurs will just be P(E).

Since the events E and Ec are always mutually exclusive and since E ∪Ec = S

we have by (ii) and (iii) that

1 = P(S) = P(E ∪ Ec) = P(E) + P(Ec)

or

P(Ec) = 1 − P(E) (1.1)

In words, Equation (1.1) states that the probability that an event does not occur is
one minus the probability that it does occur.

We shall now derive a formula for P(E ∪ F), the probability of all outcomes
either in E or in F . To do so, consider P(E) + P(F), which is the probability
of all outcomes in E plus the probability of all points in F . Since any outcome
that is in both E and F will be counted twice in P(E) + P(F) and only once in
P(E ∪ F), we must have

P(E) + P(F) = P(E ∪ F) + P(EF)

or equivalently

P(E ∪ F) = P(E) + P(F) − P(EF) (1.2)

Note that when E and F are mutually exclusive (that is, when EF = Ø), then
Equation (1.2) states that

P(E ∪ F) = P(E) + P(F) − P(Ø)

= P(E) + P(F)

a result which also follows from condition (iii). [Why is P(Ø) = 0?]

Example 1.3 Suppose that we toss two coins, and suppose that we assume
that each of the four outcomes in the sample space

S = {(H,H), (H,T ), (T ,H), (T ,T )}
is equally likely and hence has probability 1

4 . Let

E = {(H,H), (H,T )} and F = {(H,H), (T ,H)}
That is, E is the event that the first coin falls heads, and F is the event that the
second coin falls heads.
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By Equation (1.2) we have that P(E ∪ F), the probability that either the first
or the second coin falls heads, is given by

P(E ∪ F) = P(E) + P(F) − P(EF)

= 1
2 + 1

2 − P({H,H })
= 1 − 1

4 = 3
4

This probability could, of course, have been computed directly since

P(E ∪ F) = P({H,H), (H,T ), (T ,H)}) = 3
4 �

We may also calculate the probability that any one of the three events E or F

or G occurs. This is done as follows:

P(E ∪ F ∪ G) = P((E ∪ F) ∪ G)

which by Equation (1.2) equals

P(E ∪ F) + P(G) − P((E ∪ F)G)

Now we leave it for you to show that the events (E ∪ F)G and EG ∪ FG are
equivalent, and hence the preceding equals

P(E ∪ F ∪ G)

= P(E) + P(F) − P(EF) + P(G) − P(EG ∪ FG)

= P(E) + P(F) − P(EF) + P(G) − P(EG) − P(FG) + P(EGFG)

= P(E) + P(F) + P(G) − P(EF) − P(EG) − P(FG) + P(EFG) (1.3)

In fact, it can be shown by induction that, for any n events E1,E2,E3, . . . ,En,

P(E1 ∪ E2 ∪ · · · ∪ En) =
∑

i

P (Ei) −
∑

i<j

P (EiEj ) +
∑

i<j<k

P (EiEjEk)

−
∑

i<j<k<l

P (EiEjEkEl)

+ · · · + (−1)n+1P(E1E2 · · ·En) (1.4)

In words, Equation (1.4) states that the probability of the union of n events equals
the sum of the probabilities of these events taken one at a time minus the sum of
the probabilities of these events taken two at a time plus the sum of the probabili-
ties of these events taken three at a time, and so on.
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1.4. Conditional Probabilities

Suppose that we toss two dice and that each of the 36 possible outcomes is equally
likely to occur and hence has probability 1

36 . Suppose that we observe that the
first die is a four. Then, given this information, what is the probability that the
sum of the two dice equals six? To calculate this probability we reason as fol-
lows: Given that the initial die is a four, it follows that there can be at most
six possible outcomes of our experiment, namely, (4,1), (4,2), (4,3), (4,4),
(4,5), and (4,6). Since each of these outcomes originally had the same proba-
bility of occurring, they should still have equal probabilities. That is, given that
the first die is a four, then the (conditional) probability of each of the outcomes
(4,1), (4,2), (4,3), (4,4), (4,5), (4,6) is 1

6 while the (conditional) probability
of the other 30 points in the sample space is 0. Hence, the desired probability
will be 1

6 .
If we let E and F denote, respectively, the event that the sum of the dice is

six and the event that the first die is a four, then the probability just obtained
is called the conditional probability that E occurs given that F has occurred and is
denoted by

P(E|F)

A general formula for P(E|F) which is valid for all events E and F is derived in
the same manner as the preceding. Namely, if the event F occurs, then in order
for E to occur it is necessary for the actual occurrence to be a point in both E and
in F , that is, it must be in EF . Now, because we know that F has occurred, it
follows that F becomes our new sample space and hence the probability that the
event EF occurs will equal the probability of EF relative to the probability of F .
That is,

P(E|F) = P(EF)

P (F )
(1.5)

Note that Equation (1.5) is only well defined when P(F) > 0 and hence P(E|F)

is only defined when P(F) > 0.

Example 1.4 Suppose cards numbered one through ten are placed in a hat,
mixed up, and then one of the cards is drawn. If we are told that the number
on the drawn card is at least five, then what is the conditional probability that
it is ten?

Solution: Let E denote the event that the number of the drawn card is ten,
and let F be the event that it is at least five. The desired probability is P(E|F).
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Now, from Equation (1.5)

P(E|F) = P(EF)

P (F )

However, EF = E since the number of the card will be both ten and at least
five if and only if it is number ten. Hence,

P(E|F) =
1
10
6

10

= 1

6
�

Example 1.5 A family has two children. What is the conditional probability
that both are boys given that at least one of them is a boy? Assume that the sample
space S is given by S = {(b, b), (b, g), (g, b), (g, g)}, and all outcomes are equally
likely. [(b, g) means, for instance, that the older child is a boy and the younger
child a girl.]

Solution: Letting B denote the event that both children are boys, and A the
event that at least one of them is a boy, then the desired probability is given by

P(B|A) = P(BA)

P (A)

= P({(b, b)})
P ({(b, b), (b, g), (g, b)}) =

1
4
3
4

= 1

3
�

Example 1.6 Bev can either take a course in computers or in chemistry. If Bev
takes the computer course, then she will receive an A grade with probability 1

2 ; if
she takes the chemistry course then she will receive an A grade with probability 1

3 .
Bev decides to base her decision on the flip of a fair coin. What is the probability
that Bev will get an A in chemistry?

Solution: If we let C be the event that Bev takes chemistry and A denote
the event that she receives an A in whatever course she takes, then the desired
probability is P(AC). This is calculated by using Equation (1.5) as follows:

P(AC) = P(C)P (A|C)

= 1
2

1
3 = 1

6 �

Example 1.7 Suppose an urn contains seven black balls and five white balls.
We draw two balls from the urn without replacement. Assuming that each ball in
the urn is equally likely to be drawn, what is the probability that both drawn balls
are black?
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Solution: Let F and E denote, respectively, the events that the first and sec-
ond balls drawn are black. Now, given that the first ball selected is black, there
are six remaining black balls and five white balls, and so P(E|F) = 6

11 . As
P(F) is clearly 7

12 , our desired probability is

P(EF) = P(F)P (E|F)

= 7
12

6
11 = 42

132 �

Example 1.8 Suppose that each of three men at a party throws his hat into
the center of the room. The hats are first mixed up and then each man randomly
selects a hat. What is the probability that none of the three men selects his own
hat?

Solution: We shall solve this by first calculating the complementary proba-
bility that at least one man selects his own hat. Let us denote by Ei, i = 1,2,3,
the event that the ith man selects his own hat. To calculate the probability
P(E1 ∪ E2 ∪ E3), we first note that

P(Ei) = 1
3 , i = 1,2,3

P(EiEj ) = 1
6 , i �= j (1.6)

P(E1E2E3) = 1
6

To see why Equation (1.6) is correct, consider first

P(EiEj ) = P(Ei)P (Ej |Ei)

Now P(Ei), the probability that the ith man selects his own hat, is clearly 1
3

since he is equally likely to select any of the three hats. On the other hand, given
that the ith man has selected his own hat, then there remain two hats that the
j th man may select, and as one of these two is his own hat, it follows that with
probability 1

2 he will select it. That is, P(Ej |Ei) = 1
2 and so

P(EiEj ) = P(Ei)P (Ej |Ei) = 1
3

1
2 = 1

6

To calculate P(E1E2E3) we write

P(E1E2E3) = P(E1E2)P (E3|E1E2)

= 1
6P(E3|E1E2)

However, given that the first two men get their own hats it follows that the
third man must also get his own hat (since there are no other hats left). That is,
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P(E3|E1E2) = 1 and so

P(E1E2E3) = 1
6

Now, from Equation (1.4) we have that

P(E1 ∪ E2 ∪ E3) = P(E1) + P(E2) + P(E3) − P(E1E2)

− P(E1E3) − P(E2E3) + P(E1E2E3)

= 1 − 1
2 + 1

6

= 2
3

Hence, the probability that none of the men selects his own hat is
1 − 2

3 = 1
3 . �

1.5. Independent Events

Two events E and F are said to be independent if

P(EF) = P(E)P (F )

By Equation (1.5) this implies that E and F are independent if

P(E|F) = P(E)

[which also implies that P(F |E) = P(F)]. That is, E and F are independent if
knowledge that F has occurred does not affect the probability that E occurs. That
is, the occurrence of E is independent of whether or not F occurs.

Two events E and F that are not independent are said to be dependent.

Example 1.9 Suppose we toss two fair dice. Let E1 denote the event that the
sum of the dice is six and F denote the event that the first die equals four. Then

P(E1F) = P({4,2}) = 1
36

while

P(E1)P (F ) = 5
36

1
6 = 5

216

and hence E1 and F are not independent. Intuitively, the reason for this is clear
for if we are interested in the possibility of throwing a six (with two dice), then we
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will be quite happy if the first die lands four (or any of the numbers 1, 2, 3, 4, 5)
because then we still have a possibility of getting a total of six. On the other hand,
if the first die landed six, then we would be unhappy as we would no longer have
a chance of getting a total of six. In other words, our chance of getting a total
of six depends on the outcome of the first die and hence E1 and F cannot be
independent.

Let E2 be the event that the sum of the dice equals seven. Is E2 independent of
F ? The answer is yes since

P(E2F) = P({(4,3)}) = 1
36

while

P(E2)P (F ) = 1
6

1
6 = 1

36

We leave it for you to present the intuitive argument why the event that the sum
of the dice equals seven is independent of the outcome on the first die. �

The definition of independence can be extended to more than two events.
The events E1,E2, . . . ,En are said to be independent if for every subset
E1′ ,E2′ , . . . ,Er ′, r � n, of these events

P(E1′E2′ · · ·Er ′) = P(E1′)P (E2′) · · ·P(Er ′)

Intuitively, the events E1,E2, . . . ,En are independent if knowledge of the occur-
rence of any of these events has no effect on the probability of any other event.

Example 1.10 (Pairwise Independent Events That Are Not Independent) Let
a ball be drawn from an urn containing four balls, numbered 1, 2, 3, 4. Let E =
{1,2}, F = {1,3}, G = {1,4}. If all four outcomes are assumed equally likely,
then

P(EF) = P(E)P (F ) = 1
4 ,

P (EG) = P(E)P (G) = 1
4 ,

P (FG) = P(F)P (G) = 1
4

However,

1
4 = P(EFG) �= P(E)P (F )P (G)

Hence, even though the events E,F,G are pairwise independent, they are not
jointly independent. �
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Suppose that a sequence of experiments, each of which results in either a
“success” or a “failure,” is to be performed. Let Ei, i � 1, denote the event that
the ith experiment results in a success. If, for all i1, i2, . . . , in,

P(Ei1Ei2 · · ·Ein) =
n∏

j=1

P(Eij )

we say that the sequence of experiments consists of independent trials.

Example 1.11 The successive flips of a coin consist of independent trials if
we assume (as is usually done) that the outcome on any flip is not influenced by
the outcomes on earlier flips. A “success” might consist of the outcome heads and
a “failure” tails, or possibly the reverse. �

1.6. Bayes’ Formula

Let E and F be events. We may express E as

E = EF ∪ EFc

because in order for a point to be in E, it must either be in both E and F , or it
must be in E and not in F . Since EF and EFc are mutually exclusive, we have
that

P(E) = P(EF) + P(EFc)

= P(E|F)P (F ) + P(E|Fc)P (F c)

= P(E|F)P (F ) + P(E|Fc)(1 − P(F)) (1.7)

Equation (1.7) states that the probability of the event E is a weighted average of
the conditional probability of E given that F has occurred and the conditional
probability of E given that F has not occurred, each conditional probability being
given as much weight as the event on which it is conditioned has of occurring.

Example 1.12 Consider two urns. The first contains two white and seven
black balls, and the second contains five white and six black balls. We flip a
fair coin and then draw a ball from the first urn or the second urn depending
on whether the outcome was heads or tails. What is the conditional probability
that the outcome of the toss was heads given that a white ball was selected?
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Solution: Let W be the event that a white ball is drawn, and let H be the
event that the coin comes up heads. The desired probability P(H |W) may be
calculated as follows:

P(H |W) = P(HW)

P (W)
= P(W |H)P (H)

P (W)

= P(W |H)P (H)

P (W |H)P (H) + P(W |Hc)P (Hc)

=
2
9

1
2

2
9

1
2 + 5

11
1
2

= 22

67
�

Example 1.13 In answering a question on a multiple-choice test a student
either knows the answer or guesses. Let p be the probability that she knows the
answer and 1 − p the probability that she guesses. Assume that a student who
guesses at the answer will be correct with probability 1/m, where m is the number
of multiple-choice alternatives. What is the conditional probability that a student
knew the answer to a question given that she answered it correctly?

Solution: Let C and K denote respectively the event that the student an-
swers the question correctly and the event that she actually knows the answer.
Now

P(K|C) = P(KC)

P (C)
= P(C|K)P (K)

P (C|K)P (K) + P(C|Kc)P (Kc)

= p

p + (1/m)(1 − p)

= mp

1 + (m − 1)p

Thus, for example, if m = 5, p = 1
2 , then the probability that a student knew

the answer to a question she correctly answered is 5
6 . �

Example 1.14 A laboratory blood test is 95 percent effective in detecting a
certain disease when it is, in fact, present. However, the test also yields a “false
positive” result for 1 percent of the healthy persons tested. (That is, if a healthy
person is tested, then, with probability 0.01, the test result will imply he has the
disease.) If 0.5 percent of the population actually has the disease, what is the
probability a person has the disease given that his test result is positive?

Solution: Let D be the event that the tested person has the disease, and
E the event that his test result is positive. The desired probability P(D|E) is
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obtained by

P(D|E) = P(DE)

P (E)
= P(E|D)P (D)

P (E|D)P (D) + P(E|Dc)P (Dc)

= (0.95)(0.005)

(0.95)(0.005) + (0.01)(0.995)

= 95

294
≈ 0.323

Thus, only 32 percent of those persons whose test results are positive actually
have the disease. �
Equation (1.7) may be generalized in the following manner. Suppose that

F1,F2, . . . ,Fn are mutually exclusive events such that
⋃n

i=1 Fi = S. In other
words, exactly one of the events F1,F2, . . . ,Fn will occur. By writing

E =
n⋃

i=1

EFi

and using the fact that the events EFi, i = 1, . . . , n, are mutually exclusive, we
obtain that

P(E) =
n∑

i=1

P(EFi)

=
n∑

i=1

P(E|Fi)P (Fi) (1.8)

Thus, Equation (1.8) shows how, for given events F1,F2, . . . ,Fn of which one
and only one must occur, we can compute P(E) by first “conditioning” upon
which one of the Fi occurs. That is, it states that P(E) is equal to a weighted
average of P(E|Fi), each term being weighted by the probability of the event on
which it is conditioned.

Suppose now that E has occurred and we are interested in determining which
one of the Fj also occurred. By Equation (1.8) we have that

P(Fj |E) = P(EFj )

P (E)

= P(E|Fj )P (Fj )
∑n

i=1 P(E|Fi)P (Fi)
(1.9)

Equation (1.9) is known as Bayes’ formula.
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Example 1.15 You know that a certain letter is equally likely to be in any
one of three different folders. Let αi be the probability that you will find your
letter upon making a quick examination of folder i if the letter is, in fact, in folder
i, i = 1,2,3. (We may have αi < 1.) Suppose you look in folder 1 and do not find
the letter. What is the probability that the letter is in folder 1?

Solution: Let Fi, i = 1,2,3 be the event that the letter is in folder i; and
let E be the event that a search of folder 1 does not come up with the letter. We
desire P(F1|E). From Bayes’ formula we obtain

P(F1|E) = P(E|F1)P (F1)
∑3

i=1 P(E|Fi)P (Fi)

= (1 − α1)
1
3

(1 − α1)
1
3 + 1

3 + 1
3

= 1 − α1

3 − α1
�

Exercises

1. A box contains three marbles: one red, one green, and one blue. Consider an
experiment that consists of taking one marble from the box then replacing it in
the box and drawing a second marble from the box. What is the sample space?
If, at all times, each marble in the box is equally likely to be selected, what is the
probability of each point in the sample space?

*2. Repeat Exercise 1 when the second marble is drawn without replacing the
first marble.

3. A coin is to be tossed until a head appears twice in a row. What is the sample
space for this experiment? If the coin is fair, what is the probability that it will be
tossed exactly four times?

4. Let E,F,G be three events. Find expressions for the events that of E,F,G

(a) only F occurs,
(b) both E and F but not G occur,
(c) at least one event occurs,
(d) at least two events occur,
(e) all three events occur,
(f) none occurs,
(g) at most one occurs,
(h) at most two occur.

*5. An individual uses the following gambling system at Las Vegas. He bets $1
that the roulette wheel will come up red. If he wins, he quits. If he loses then he
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makes the same bet a second time only this time he bets $2; and then regardless
of the outcome, quits. Assuming that he has a probability of 1

2 of winning each
bet, what is the probability that he goes home a winner? Why is this system not
used by everyone?

6. Show that E(F ∪ G) = EF ∪ EG.

7. Show that (E ∪ F)c = EcF c .

8. If P(E) = 0.9 and P(F) = 0.8, show that P(EF) � 0.7. In general, show
that

P(EF) � P(E) + P(F) − 1

This is known as Bonferroni’s inequality.

*9. We say that E ⊂ F if every point in E is also in F . Show that if E ⊂ F , then

P(F) = P(E) + P(FEc) � P(E)

10. Show that

P

(
n⋃

i=1

Ei

)

�
n∑

i=1

P(Ei)

This is known as Boole’s inequality.

Hint: Either use Equation (1.2) and mathematical induction, or else show that⋃n
i=1 Ei =⋃n

i=1 Fi , where F1 = E1, Fi = Ei

⋂i−1
j=1 Ec

j , and use property (iii)
of a probability.

11. If two fair dice are tossed, what is the probability that the sum is i, i =
2,3, . . . ,12?

12. Let E and F be mutually exclusive events in the sample space of an
experiment. Suppose that the experiment is repeated until either event E or
event F occurs. What does the sample space of this new super experiment look
like? Show that the probability that event E occurs before event F is P(E)/

[P(E) + P(F)].
Hint: Argue that the probability that the original experiment is performed n

times and E appears on the nth time is P(E)×(1−p)n−1, n = 1,2, . . . , where
p = P(E) + P(F). Add these probabilities to get the desired answer.

13. The dice game craps is played as follows. The player throws two dice, and
if the sum is seven or eleven, then she wins. If the sum is two, three, or twelve,
then she loses. If the sum is anything else, then she continues throwing until she
either throws that number again (in which case she wins) or she throws a seven
(in which case she loses). Calculate the probability that the player wins.
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14. The probability of winning on a single toss of the dice is p. A starts, and
if he fails, he passes the dice to B , who then attempts to win on her toss. They
continue tossing the dice back and forth until one of them wins. What are their
respective probabilities of winning?

15. Argue that E = EF ∪ EFc, E ∪ F = E ∪ FEc.

16. Use Exercise 15 to show that P(E ∪ F) = P(E) + P(F) − P(EF).

*17. Suppose each of three persons tosses a coin. If the outcome of one of the
tosses differs from the other outcomes, then the game ends. If not, then the persons
start over and retoss their coins. Assuming fair coins, what is the probability that
the game will end with the first round of tosses? If all three coins are biased and
have probability 1

4 of landing heads, what is the probability that the game will end
at the first round?

18. Assume that each child who is born is equally likely to be a boy or a girl.
If a family has two children, what is the probability that both are girls given that
(a) the eldest is a girl, (b) at least one is a girl?

*19. Two dice are rolled. What is the probability that at least one is a six? If the
two faces are different, what is the probability that at least one is a six?

20. Three dice are thrown. What is the probability the same number appears on
exactly two of the three dice?

21. Suppose that 5 percent of men and 0.25 percent of women are color-blind.
A color-blind person is chosen at random. What is the probability of this person
being male? Assume that there are an equal number of males and females.

22. A and B play until one has 2 more points than the other. Assuming that each
point is independently won by A with probability p, what is the probability they
will play a total of 2n points? What is the probability that A will win?

23. For events E1,E2, . . . ,En show that

P(E1E2 · · ·En) = P(E1)P (E2|E1)P (E3|E1E2) · · ·P(En|E1 · · ·En−1)

24. In an election, candidate A receives n votes and candidate B receives m

votes, where n > m. Assume that in the count of the votes all possible orderings
of the n + m votes are equally likely. Let Pn,m denote the probability that from
the first vote on A is always in the lead. Find

(a) P2,1 (b) P3,1 (c) Pn,1 (d) P3,2 (e) P4,2
(f ) Pn,2 (g) P4,3 (h) P5,3 (i) P5,4
( j) Make a conjecture as to the value of Pn,m.
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*25. Two cards are randomly selected from a deck of 52 playing cards.

(a) What is the probability they constitute a pair (that is, that they are of the
same denomination)?
(b) What is the conditional probability they constitute a pair given that they are
of different suits?

26. A deck of 52 playing cards, containing all 4 aces, is randomly divided into
4 piles of 13 cards each. Define events E1,E2,E3, and E4 as follows:

E1 = {the first pile has exactly 1 ace},
E2 = {the second pile has exactly 1 ace},
E3 = {the third pile has exactly 1 ace},
E4 = {the fourth pile has exactly 1 ace}

Use Exercise 23 to find P(E1E2E3E4), the probability that each pile has an ace.

*27. Suppose in Exercise 26 we had defined the events Ei , i = 1,2,3,4, by

E1 = {one of the piles contains the ace of spades},
E2 = {the ace of spades and the ace of hearts are in different piles},
E3 = {the ace of spades, the ace of hearts, and the

ace of diamonds are in different piles},
E4 = {all 4 aces are in different piles}

Now use Exercise 23 to find P(E1E2E3E4), the probability that each pile has an
ace. Compare your answer with the one you obtained in Exercise 26.

28. If the occurrence of B makes A more likely, does the occurrence of A make
B more likely?

29. Suppose that P(E) = 0.6. What can you say about P(E|F) when

(a) E and F are mutually exclusive?
(b) E ⊂ F ?
(c) F ⊂ E?

*30. Bill and George go target shooting together. Both shoot at a target at the
same time. Suppose Bill hits the target with probability 0.7, whereas George, in-
dependently, hits the target with probability 0.4.

(a) Given that exactly one shot hit the target, what is the probability that it was
George’s shot?
(b) Given that the target is hit, what is the probability that George hit it?

31. What is the conditional probability that the first die is six given that the sum
of the dice is seven?
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*32. Suppose all n men at a party throw their hats in the center of the room.
Each man then randomly selects a hat. Show that the probability that none of the
n men selects his own hat is

1

2! − 1

3! + 1

4! − +· · · (−1)n

n!
Note that as n → ∞ this converges to e−1. Is this surprising?

33. In a class there are four freshman boys, six freshman girls, and six sopho-
more boys. How many sophomore girls must be present if sex and class are to be
independent when a student is selected at random?

34. Mr. Jones has devised a gambling system for winning at roulette. When he
bets, he bets on red, and places a bet only when the ten previous spins of the
roulette have landed on a black number. He reasons that his chance of winning is
quite large since the probability of eleven consecutive spins resulting in black is
quite small. What do you think of this system?

35. A fair coin is continually flipped. What is the probability that the first four
flips are

(a) H , H , H , H ?
(b) T , H , H , H ?
(c) What is the probability that the pattern T , H , H , H occurs before the
pattern H , H , H , H ?

36. Consider two boxes, one containing one black and one white marble, the
other, two black and one white marble. A box is selected at random and a marble
is drawn at random from the selected box. What is the probability that the marble
is black?

37. In Exercise 36, what is the probability that the first box was the one selected
given that the marble is white?

38. Urn 1 contains two white balls and one black ball, while urn 2 contains one
white ball and five black balls. One ball is drawn at random from urn 1 and placed
in urn 2. A ball is then drawn from urn 2. It happens to be white. What is the
probability that the transferred ball was white?

39. Stores A, B , and C have 50, 75, and 100 employees, and, respectively, 50,
60, and 70 percent of these are women. Resignations are equally likely among all
employees, regardless of sex. One employee resigns and this is a woman. What is
the probability that she works in store C?

*40. (a) A gambler has in his pocket a fair coin and a two-headed coin. He
selects one of the coins at random, and when he flips it, it shows heads. What is
the probability that it is the fair coin? (b) Suppose that he flips the same coin a
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second time and again it shows heads. Now what is the probability that it is the
fair coin? (c) Suppose that he flips the same coin a third time and it shows tails.
Now what is the probability that it is the fair coin?

41. In a certain species of rats, black dominates over brown. Suppose that a
black rat with two black parents has a brown sibling.

(a) What is the probability that this rat is a pure black rat (as opposed to being
a hybrid with one black and one brown gene)?
(b) Suppose that when the black rat is mated with a brown rat, all five of their
offspring are black. Now, what is the probability that the rat is a pure black rat?

42. There are three coins in a box. One is a two-headed coin, another is a fair
coin, and the third is a biased coin that comes up heads 75 percent of the time.
When one of the three coins is selected at random and flipped, it shows heads.
What is the probability that it was the two-headed coin?

43. Suppose we have ten coins which are such that if the ith one is flipped then
heads will appear with probability i/10, i = 1,2, . . . ,10. When one of the coins is
randomly selected and flipped, it shows heads. What is the conditional probability
that it was the fifth coin?

44. Urn 1 has five white and seven black balls. Urn 2 has three white and twelve
black balls. We flip a fair coin. If the outcome is heads, then a ball from urn 1 is
selected, while if the outcome is tails, then a ball from urn 2 is selected. Suppose
that a white ball is selected. What is the probability that the coin landed tails?

*45. An urn contains b black balls and r red balls. One of the balls is drawn at
random, but when it is put back in the urn c additional balls of the same color are
put in with it. Now suppose that we draw another ball. Show that the probability
that the first ball drawn was black given that the second ball drawn was red is
b/(b + r + c).

46. Three prisoners are informed by their jailer that one of them has been cho-
sen at random to be executed, and the other two are to be freed. Prisoner A asks
the jailer to tell him privately which of his fellow prisoners will be set free, claim-
ing that there would be no harm in divulging this information, since he already
knows that at least one will go free. The jailer refuses to answer this question,
pointing out that if A knew which of his fellows were to be set free, then his own
probability of being executed would rise from 1

3 to 1
2 , since he would then be one

of two prisoners. What do you think of the jailer’s reasoning?

47. For a fixed event B , show that the collection P(A|B), defined for all events
A, satisfies the three conditions for a probability. Conclude from this that

P(A|B) = P(A|BC)P (C|B) + P(A|BCc)P (Cc|B)

Then directly verify the preceding equation.
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*48. Sixty percent of the families in a certain community own their own car,
thirty percent own their own home, and twenty percent own both their own car
and their own home. If a family is randomly chosen, what is the probability that
this family owns a car or a house but not both?
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Random Variables

2
2.1. Random Variables

It frequently occurs that in performing an experiment we are mainly interested in
some functions of the outcome as opposed to the outcome itself. For instance, in
tossing dice we are often interested in the sum of the two dice and are not really
concerned about the actual outcome. That is, we may be interested in knowing
that the sum is seven and not be concerned over whether the actual outcome was
(1, 6) or (2, 5) or (3, 4) or (4, 3) or (5, 2) or (6, 1). These quantities of interest,
or more formally, these real-valued functions defined on the sample space, are
known as random variables.

Since the value of a random variable is determined by the outcome of the exper-
iment, we may assign probabilities to the possible values of the random variable.

Example 2.1 Letting X denote the random variable that is defined as the sum
of two fair dice; then

P {X = 2} = P {(1,1)} = 1
36 ,

P {X = 3} = P {(1,2), (2,1)} = 2
36 ,

P {X = 4} = P {(1,3), (2,2), (3,1)} = 3
36 ,

P {X = 5} = P {(1,4), (2,3), (3,2), (4,1)} = 4
36 ,

P {X = 6} = P {(1,5), (2,4), (3,3), (4,2), (5,1)} = 5
36 ,

P {X = 7} = P {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)} = 6
36 ,

P {X = 8} = P {(2,6), (3,5), (4,4), (5,3), (6,2)} = 5
36 ,

P {X = 9} = P {(3,6), (4,5), (5,4), (6,3)} = 4
36 ,

23
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P {X = 10} = P {(4,6), (5,5), (6,4)} = 3
36 ,

P {X = 11} = P {(5,6), (6,5)} = 2
36 ,

P {X = 12} = P {(6,6)} = 1
36 (2.1)

In other words, the random variable X can take on any integral value between
two and twelve, and the probability that it takes on each value is given by
Equation (2.1). Since X must take on one of the values two through twelve,
we must have that

1 = P

{
12⋃

i=2

{X = n}
}

=
12∑

n=2

P {X = n}

which may be checked from Equation (2.1). �

Example 2.2 For a second example, suppose that our experiment consists
of tossing two fair coins. Letting Y denote the number of heads appearing,
then Y is a random variable taking on one of the values 0, 1, 2 with respective
probabilities

P {Y = 0} = P {(T ,T )} = 1
4 ,

P {Y = 1} = P {(T ,H), (H,T )} = 2
4 ,

P {Y = 2} = P {(H,H)} = 1
4

Of course, P {Y = 0} + P {Y = 1} + P {Y = 2} = 1. �

Example 2.3 Suppose that we toss a coin having a probability p of coming up
heads, until the first head appears. Letting N denote the number of flips required,
then assuming that the outcome of successive flips are independent, N is a random
variable taking on one of the values 1, 2, 3, . . . , with respective probabilities

P {N = 1} = P {H } = p,

P {N = 2} = P {(T ,H)} = (1 − p)p,

P {N = 3} = P {(T ,T ,H)} = (1 − p)2p,

...

P {N = n} = P {(T ,T , . . . , T
︸ ︷︷ ︸

n−1

,H)} = (1 − p)n−1p, n � 1
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As a check, note that

P

( ∞⋃

n=1

{N = n}
)

=
∞∑

n=1

P {N = n}

= p

∞∑

n=1

(1 − p)n−1

= p

1 − (1 − p)

= 1 �

Example 2.4 Suppose that our experiment consists of seeing how long a bat-
tery can operate before wearing down. Suppose also that we are not primarily in-
terested in the actual lifetime of the battery but are concerned only about whether
or not the battery lasts at least two years. In this case, we may define the random
variable I by

I =
{

1, if the lifetime of battery is two or more years
0, otherwise

If E denotes the event that the battery lasts two or more years, then the random
variable I is known as the indicator random variable for event E. (Note that I

equals 1 or 0 depending on whether or not E occurs.) �

Example 2.5 Suppose that independent trials, each of which results in any
of m possible outcomes with respective probabilities p1, . . . , pm,

∑m
i=1 pi = 1,

are continually performed. Let X denote the number of trials needed until each
outcome has occurred at least once.

Rather than directly considering P {X = n} we will first determine P {X > n},
the probability that at least one of the outcomes has not yet occurred after n trials.
Letting Ai denote the event that outcome i has not yet occurred after the first
n trials, i = 1, . . . ,m, then

P {X > n} = P

(
m⋃

i=1

Ai

)

=
m∑

i=1

P(Ai) −
∑∑

i<j

P (AiAj )

+
∑∑∑

i<j<k

P (AiAjAk) − · · · + (−1)m+1P(A1 · · ·Am)
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Now, P(Ai) is the probability that each of the first n trials results in a non-i
outcome, and so by independence

P(Ai) = (1 − pi)
n

Similarly, P(AiAj ) is the probability that the first n trials all result in a non-i and
non-j outcome, and so

P(AiAj ) = (1 − pi − pj )
n

As all of the other probabilities are similar, we see that

P {X > n} =
m∑

i=1

(1 − pi)
n −

∑∑

i<j

(1 − pi − pj )
n

+
∑∑∑

i<j<k

(1 − pi − pj − pk)
n − · · ·

Since P {X = n} = P {X > n − 1} − P {X > n}, we see, upon using the algebraic
identity (1 − a)n−1 − (1 − a)n = a(1 − a)n−1, that

P {X = n} =
m∑

i=1

pi(1 − pi)
n−1 −

∑∑

i<j

(pi + pj )(1 − pi − pj )
n−1

+
∑∑∑

i<j<k

(pi + pj + pk)(1 − pi − pj − pk)
n−1 − · · · �

In all of the preceding examples, the random variables of interest took on ei-
ther a finite or a countable number of possible values.∗ Such random variables are
called discrete. However, there also exist random variables that take on a contin-
uum of possible values. These are known as continuous random variables. One
example is the random variable denoting the lifetime of a car, when the car’s life-
time is assumed to take on any value in some interval (a, b).

The cumulative distribution function (cdf ) (or more simply the distribution
function) F(·) of the random variable X is defined for any real number b,

−∞ < b < ∞, by

F(b) = P {X � b}
In words, F(b) denotes the probability that the random variable X takes on a value
that is less than or equal to b. Some properties of the cdf F are

(i) F(b) is a nondecreasing function of b,

∗A set is countable if its elements can be put in a one-to-one correspondence with the sequence of
positive integers.
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(ii) limb→∞ F(b) = F(∞) = 1,
(iii) limb→−∞ F(b) = F(−∞) = 0.

Property (i) follows since for a < b the event {X � a} is contained in the event
{X � b}, and so it must have a smaller probability. Properties (ii) and (iii) follow
since X must take on some finite value.

All probability questions about X can be answered in terms of the cdf F(·).
For example,

P {a < X � b} = F(b) − F(a) for all a < b

This follows since we may calculate P {a <X �b} by first computing the proba-
bility that X � b [that is, F(b)] and then subtracting from this the probability that
X � a [that is, F(a)].

If we desire the probability that X is strictly smaller than b, we may calculate
this probability by

P {X < b} = lim
h→0+ P {X � b − h}

= lim
h→0+ F(b − h)

where limh→0+ means that we are taking the limit as h decreases to 0. Note that
P {X < b} does not necessarily equal F(b) since F(b) also includes the probabil-
ity that X equals b.

2.2. Discrete Random Variables

As was previously mentioned, a random variable that can take on at most a count-
able number of possible values is said to be discrete. For a discrete random vari-
able X, we define the probability mass function p(a) of X by

p(a) = P {X = a}
The probability mass function p(a) is positive for at most a countable number of
values of a. That is, if X must assume one of the values x1, x2, . . . , then

p(xi) > 0, i = 1,2, . . .

p(x) = 0, all other values of x

Since X must take on one of the values xi , we have

∞∑

i=1

p(xi) = 1
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Figure 2.1. Graph of F(x).

The cumulative distribution function F can be expressed in terms of p(a) by

F(a) =
∑

all xi�a

p(xi)

For instance, suppose X has a probability mass function given by

p(1) = 1
2 , p(2) = 1

3 , p(3) = 1
6

then, the cumulative distribution function F of X is given by

F(a) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, a < 1
1
2 , 1 � a < 2
5
6 , 2 � a < 3

1, 3 � a

This is graphically presented in Figure 2.1.
Discrete random variables are often classified according to their probability

mass functions. We now consider some of these random variables.

2.2.1. The Bernoulli Random Variable

Suppose that a trial, or an experiment, whose outcome can be classified as either
a “success” or as a “failure” is performed. If we let X equal 1 if the outcome is a
success and 0 if it is a failure, then the probability mass function of X is given by

p(0) = P {X = 0} = 1 − p,

p(1) = P {X = 1} = p
(2.2)

where p, 0 � p � 1, is the probability that the trial is a “success.”
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A random variable X is said to be a Bernoulli random variable if its probability
mass function is given by Equation (2.2) for some p ∈ (0,1).

2.2.2. The Binomial Random Variable

Suppose that n independent trials, each of which results in a “success” with prob-
ability p and in a “failure” with probability 1 − p, are to be performed. If X

represents the number of successes that occur in the n trials, then X is said to be
a binomial random variable with parameters (n,p).

The probability mass function of a binomial random variable having parameters
(n,p) is given by

p(i) =
(

n

i

)

pi(1 − p)n−i , i = 0,1, . . . , n (2.3)

where

(
n

i

)

= n!
(n − i)! i!

equals the number of different groups of i objects that can be chosen from a set
of n objects. The validity of Equation (2.3) may be verified by first noting that the
probability of any particular sequence of the n outcomes containing i successes
and n − i failures is, by the assumed independence of trials, pi(1 − p)n−i . Equa-
tion (2.3) then follows since there are

(
n
i

)
different sequences of the n outcomes

leading to i successes and n − i failures. For instance, if n = 3, i = 2, then there
are

(3
2

)= 3 ways in which the three trials can result in two successes. Namely,
any one of the three outcomes (s, s, f ), (s, f, s), (f, s, s), where the outcome
(s, s, f ) means that the first two trials are successes and the third a failure. Since
each of the three outcomes (s, s, f ), (s, f, s), (f, s, s) has a probability p2(1−p)

of occurring the desired probability is thus
(3

2

)
p2(1 − p).

Note that, by the binomial theorem, the probabilities sum to one, that is,

∞∑

i=0

p(i) =
n∑

i=0

(
n

i

)

pi(1 − p)n−i = (
p + (1 − p)

)n = 1

Example 2.6 Four fair coins are flipped. If the outcomes are assumed
independent, what is the probability that two heads and two tails are obtained?

Solution: Letting X equal the number of heads (“successes”) that ap-
pear, then X is a binomial random variable with parameters (n = 4, p = 1

2 ).
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Hence, by Equation (2.3),

P {X = 2} =
(

4

2

)(
1

2

)2(1

2

)2

= 3

8
�

Example 2.7 It is known that any item produced by a certain machine will
be defective with probability 0.1, independently of any other item. What is the
probability that in a sample of three items, at most one will be defective?

Solution: If X is the number of defective items in the sample, then X is a bi-
nomial random variable with parameters (3, 0.1). Hence, the desired probability
is given by

P {X = 0} + P {X = 1} =
(

3

0

)

(0.1)0(0.9)3 +
(

3

1

)

(0.1)1(0.9)2 = 0.972 �

Example 2.8 Suppose that an airplane engine will fail, when in flight, with
probability 1−p independently from engine to engine; suppose that the air-
plane will make a successful flight if at least 50 percent of its engines remain
operative. For what values of p is a four-engine plane preferable to a two-engine
plane?

Solution: Because each engine is assumed to fail or function independently
of what happens with the other engines, it follows that the number of engines
remaining operative is a binomial random variable. Hence, the probability that
a four-engine plane makes a successful flight is

(
4

2

)

p2(1 − p)2 +
(

4

3

)

p3(1 − p) +
(

4

4

)

p4(1 − p)0

= 6p2(1 − p)2 + 4p3(1 − p) + p4

whereas the corresponding probability for a two-engine plane is

(
2

1

)

p(1 − p) +
(

2

2

)

p2 = 2p(1 − p) + p2

Hence the four-engine plane is safer if

6p2(1 − p)2 + 4p3(1 − p) + p4 � 2p(1 − p) + p2

or equivalently if

6p(1 − p)2 + 4p2(1 − p) + p3 � 2 − p
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which simplifies to

3p3 − 8p2 + 7p − 2 � 0 or (p − 1)2(3p − 2) � 0

which is equivalent to

3p − 2 � 0 or p � 2
3

Hence, the four-engine plane is safer when the engine success probability is
at least as large as 2

3 , whereas the two-engine plane is safer when this probabil-
ity falls below 2

3 . �

Example 2.9 Suppose that a particular trait of a person (such as eye color or
left handedness) is classified on the basis of one pair of genes and suppose that
d represents a dominant gene and r a recessive gene. Thus a person with dd genes
is pure dominance, one with rr is pure recessive, and one with rd is hybrid. The
pure dominance and the hybrid are alike in appearance. Children receive one gene
from each parent. If, with respect to a particular trait, two hybrid parents have a
total of four children, what is the probability that exactly three of the four children
have the outward appearance of the dominant gene?

Solution: If we assume that each child is equally likely to inherit either
of two genes from each parent, the probabilities that the child of two hybrid
parents will have dd , rr , or rd pairs of genes are, respectively, 1

4 , 1
4 , 1

2 . Hence,
because an offspring will have the outward appearance of the dominant gene if
its gene pair is either dd or rd , it follows that the number of such children is
binomially distributed with parameters (4, 3

4 ). Thus the desired probability is

(
4

3

)(
3

4

)3(1

4

)1

= 27

64
�

Remark on Terminology If X is a binomial random variable with pa-
rameters (n,p), then we say that X has a binomial distribution with parameters
(n,p).

2.2.3. The Geometric Random Variable

Suppose that independent trials, each having probability p of being a success, are
performed until a success occurs. If we let X be the number of trials required
until the first success, then X is said to be a geometric random variable with
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parameter p. Its probability mass function is given by

p(n) = P {X = n} = (1 − p)n−1p, n = 1,2, . . . (2.4)

Equation (2.4) follows since in order for X to equal n it is necessary and sufficient
that the first n − 1 trials be failures and the nth trial a success. Equation (2.4)
follows since the outcomes of the successive trials are assumed to be independent.

To check that p(n) is a probability mass function, we note that

∞∑

n=1

p(n) = p

∞∑

n=1

(1 − p)n−1 = 1

2.2.4. The Poisson Random Variable

A random variable X, taking on one of the values 0, 1, 2, . . . , is said to be a Poisson
random variable with parameter λ, if for some λ > 0,

p(i) = P {X = i} = e−λ λi

i! , i = 0,1, . . . (2.5)

Equation (2.5) defines a probability mass function since

∞∑

i=0

p(i) = e−λ
∞∑

i=0

λi

i! = e−λeλ = 1

The Poisson random variable has a wide range of applications in a diverse number
of areas, as will be seen in Chapter 5.

An important property of the Poisson random variable is that it may be used to
approximate a binomial random variable when the binomial parameter n is large
and p is small. To see this, suppose that X is a binomial random variable with
parameters (n,p), and let λ = np. Then

P {X = i} = n!
(n − i)! i!p

i(1 − p)n−i

= n!
(n − i)! i!

(
λ

n

)i (

1 − λ

n

)n−i

= n(n − 1) · · · (n − i + 1)

ni

λi

i!
(1 − λ/n)n

(1 − λ/n)i
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Now, for n large and p small

(

1 − λ

n

)n

≈ e−λ,
n(n − 1) · · · (n − i + 1)

ni
≈ 1,

(

1 − λ

n

)i

≈ 1

Hence, for n large and p small,

P {X = i} ≈ e−λ λi

i!

Example 2.10 Suppose that the number of typographical errors on a single
page of this book has a Poisson distribution with parameter λ = 1. Calculate the
probability that there is at least one error on this page.

Solution:

P {X � 1} = 1 − P {X = 0} = 1 − e−1 ≈ 0.633 �

Example 2.11 If the number of accidents occurring on a highway each day
is a Poisson random variable with parameter λ = 3, what is the probability that no
accidents occur today?

Solution:

P {X = 0} = e−3 ≈ 0.05 �

Example 2.12 Consider an experiment that consists of counting the number
of α-particles given off in a one-second interval by one gram of radioactive ma-
terial. If we know from past experience that, on the average, 3.2 such α-particles
are given off, what is a good approximation to the probability that no more than
two α-particles will appear?

Solution: If we think of the gram of radioactive material as consisting of a
large number n of atoms each of which has probability 3.2/n of disintegrating
and sending off an α-particle during the second considered, then we see that, to
a very close approximation, the number of α-particles given off will be a Pois-
son random variable with parameter λ = 3.2. Hence the desired probability is

P {X � 2} = e−3.2 + 3.2e−3.2 + (3.2)2

2
e−3.2 ≈ 0.382 �
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2.3. Continuous Random Variables

In this section, we shall concern ourselves with random variables whose set of
possible values is uncountable. Let X be such a random variable. We say that X is
a continuous random variable if there exists a nonnegative function f (x), defined
for all real x ∈ (−∞,∞), having the property that for any set B of real numbers

P {X ∈ B} =
∫

B

f (x) dx (2.6)

The function f (x) is called the probability density function of the random vari-
able X.

In words, Equation (2.6) states that the probability that X will be in B may
be obtained by integrating the probability density function over the set B . Since
X must assume some value, f (x) must satisfy

1 = P {X ∈ (−∞,∞)} =
∫ ∞

−∞
f (x) dx

All probability statements about X can be answered in terms of f (x). For in-
stance, letting B = [a, b], we obtain from Equation (2.6) that

P {a � X � b} =
∫ b

a

f (x) dx (2.7)

If we let a = b in the preceding, then

P {X = a} =
∫ a

a

f (x) dx = 0

In words, this equation states that the probability that a continuous random vari-
able will assume any particular value is zero.

The relationship between the cumulative distribution F(·) and the probability
density f (·) is expressed by

F(a) = P {X ∈ (−∞, a]} =
∫ a

−∞
f (x)dx

Differentiating both sides of the preceding yields

d

da
F(a) = f (a)

That is, the density is the derivative of the cumulative distribution function.
A somewhat more intuitive interpretation of the density function may be obtained
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from Equation (2.7) as follows:

P
{
a − ε

2
� X � a + ε

2

}
=
∫ a+ε/2

a−ε/2
f (x) dx ≈ εf (a)

when ε is small. In other words, the probability that X will be contained in an
interval of length ε around the point a is approximately εf (a). From this, we see
that f (a) is a measure of how likely it is that the random variable will be near a.

There are several important continuous random variables that appear frequently
in probability theory. The remainder of this section is devoted to a study of certain
of these random variables.

2.3.1. The Uniform Random Variable

A random variable is said to be uniformly distributed over the interval (0,1) if its
probability density function is given by

f (x) =
{

1, 0 < x < 1
0, otherwise

Note that the preceding is a density function since f (x) � 0 and

∫ ∞

−∞
f (x) dx =

∫ 1

0
dx = 1

Since f (x) > 0 only when x ∈ (0,1), it follows that X must assume a value in
(0,1). Also, since f (x) is constant for x ∈ (0,1), X is just as likely to be “near”
any value in (0, 1) as any other value. To check this, note that, for any 0 < a <

b < 1,

P {a � X � b} =
∫ b

a

f (x) dx = b − a

In other words, the probability that X is in any particular subinterval of (0,1)

equals the length of that subinterval.
In general, we say that X is a uniform random variable on the interval (α,β) if

its probability density function is given by

f (x) =
⎧
⎨

⎩

1

β − α
, if α < x < β

0, otherwise
(2.8)

Example 2.13 Calculate the cumulative distribution function of a random
variable uniformly distributed over (α,β).
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Solution: Since F(a) = ∫ a

−∞ f (x) dx, we obtain from Equation (2.8) that

F(a) =

⎧
⎪⎪⎨

⎪⎪⎩

0, a � α

a − α

β − α
, α < a < β

1, a � β �

Example 2.14 If X is uniformly distributed over (0,10), calculate the prob-
ability that (a) X < 3, (b) X > 7, (c) 1 < X < 6.

Solution:

P {X < 3} =
∫ 3

0 dx

10
= 3

10
,

P {X > 7} =
∫ 10

7 dx

10
= 3

10
,

P {1 < X < 6} =
∫ 6

1 dx

10
= 1

2
�

2.3.2. Exponential Random Variables

A continuous random variable whose probability density function is given, for
some λ > 0, by

f (x) =
{
λe−λx, if x � 0
0, if x < 0

is said to be an exponential random variable with parameter λ. These random
variables will be extensively studied in Chapter 5, so we will content ourselves
here with just calculating the cumulative distribution function F :

F(a) =
∫ a

0
λe−λx = 1 − e−λa, a � 0

Note that F(∞) = ∫∞
0 λe−λxdx = 1, as, of course, it must.
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2.3.3. Gamma Random Variables

A continuous random variable whose density is given by

f (x) =
⎧
⎨

⎩

λe−λx(λx)α−1

�(α)
, if x � 0

0, if x < 0

for some λ > 0, α > 0 is said to be a gamma random variable with parameters
α,λ. The quantity �(α) is called the gamma function and is defined by

�(α) =
∫ ∞

0
e−xxα−1 dx

It is easy to show by induction that for integral α, say, α = n,

�(n) = (n − 1)!

2.3.4. Normal Random Variables

We say that X is a normal random variable (or simply that X is normally distrib-
uted) with parameters μ and σ 2 if the density of X is given by

f (x) = 1√
2π σ

e−(x−μ)2/2σ 2
, −∞ < x < ∞

This density function is a bell-shaped curve that is symmetric around μ (see Fig-
ure 2.2).

An important fact about normal random variables is that if X is normally dis-
tributed with parameters μ and σ 2 then Y = αX + β is normally distributed with
parameters αμ+β and α2σ 2. To prove this, suppose first that α > 0 and note that

Figure 2.2. Normal density function.
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FY (·)∗ the cumulative distribution function of the random variable Y is given by

FY (a) = P {Y � a}
= P {αX + β � a}

= P

{

X � a − β

α

}

= FX

(
a − β

α

)

=
∫ (a−β)/α

−∞
1√

2π σ
e−(x−μ)2/2σ 2

dx

=
∫ a

−∞
1√

2π ασ
exp

{−(v − (αμ + β))2

2α2σ 2

}

dv (2.9)

where the last equality is obtained by the change in variables v = αx + β . How-
ever, since FY (a) = ∫ a

−∞ fY (v) dv, it follows from Equation (2.9) that the proba-
bility density function fY (·) is given by

fY (v) = 1√
2πασ

exp

{−(v − (αμ + β))2

2(ασ)2

}

, − ∞ < v < ∞

Hence, Y is normally distributed with parameters αμ + β and (ασ)2. A similar
result is also true when α < 0.

One implication of the preceding result is that if X is normally distributed with
parameters μ and σ 2 then Y = (X−μ)/σ is normally distributed with parameters
0 and 1. Such a random variable Y is said to have the standard or unit normal
distribution.

2.4. Expectation of a Random Variable

2.4.1. The Discrete Case

If X is a discrete random variable having a probability mass function p(x), then
the expected value of X is defined by

E[X] =
∑

x:p(x)>0

xp(x)

∗When there is more than one random variable under consideration, we shall denote the cumulative
distribution function of a random variable Z by Fz(·). Similarly, we shall denote the density of Z

by fz(·).
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In other words, the expected value of X is a weighted average of the possible
values that X can take on, each value being weighted by the probability that X

assumes that value. For example, if the probability mass function of X is given by

p(1) = 1
2 = p(2)

then

E[X] = 1( 1
2 ) + 2( 1

2 ) = 3
2

is just an ordinary average of the two possible values 1 and 2 that X can assume.
On the other hand, if

p(1) = 1
3 , p(2) = 2

3

then

E[X] = 1( 1
3 ) + 2( 2

3 ) = 5
3

is a weighted average of the two possible values 1 and 2 where the value 2 is given
twice as much weight as the value 1 since p(2) = 2p(1).

Example 2.15 Find E[X] where X is the outcome when we roll a fair die.

Solution: Since p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 1
6 , we obtain

E[X] = 1( 1
6 ) + 2( 1

6 ) + 3( 1
6 ) + 4( 1

6 ) + 5( 1
6 ) + 6( 1

6 ) = 7
2 �

Example 2.16 (Expectation of a Bernoulli Random Variable) Calculate E[X]
when X is a Bernoulli random variable with parameter p.

Solution: Since p(0) = 1 − p, p(1) = p, we have

E[X] = 0(1 − p) + 1(p) = p

Thus, the expected number of successes in a single trial is just the probability
that the trial will be a success. �

Example 2.17 (Expectation of a Binomial Random Variable) Calculate E[X]
when X is binomially distributed with parameters n and p.



40 2 Random Variables

Solution:

E[X] =
n∑

i=0

ip(i)

=
n∑

i=0

i

(
n

i

)

pi(1 − p)n−i

=
n∑

i=1

in!
(n − i)! i!p

i(1 − p)n−i

=
n∑

i=1

n!
(n − i)!(i − 1)!p

i(1 − p)n−i

= np

n∑

i=1

(n − 1)!
(n − i)!(i − 1)!p

i−1(1 − p)n−i

= np

n−1∑

k=0

(
n − 1

k

)

pk(1 − p)n−1−k

= np[p + (1 − p)]n−1

= np

where the second from the last equality follows by letting k = i − 1. Thus, the
expected number of successes in n independent trials is n multiplied by the
probability that a trial results in a success. �

Example 2.18 (Expectation of a Geometric Random Variable) Calculate the
expectation of a geometric random variable having parameter p.

Solution: By Equation (2.4), we have

E[X] =
∞∑

n=1

np(1 − p)n−1

= p

∞∑

n=1

nqn−1

where q = 1 − p,

E[X] = p

∞∑

n=1

d

dq
(qn)

= p
d

dq

( ∞∑

n=1

qn

)
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= p
d

dq

(
q

1 − q

)

= p

(1 − q)2

= 1

p

In words, the expected number of independent trials we need to perform until
we attain our first success equals the reciprocal of the probability that any one
trial results in a success. �

Example 2.19 (Expectation of a Poisson Random Variable) Calculate E[X]
if X is a Poisson random variable with parameter λ.

Solution: From Equation (2.5), we have

E[X] =
∞∑

i=0

ie−λλi

i!

=
∞∑

i=1

e−λλi

(i − 1)!

= λe−λ

∞∑

i=1

λi−1

(i − 1)!

= λe−λ

∞∑

k=0

λk

k!
= λe−λeλ

= λ

where we have used the identity
∑∞

k=0 λk/k! = eλ. �

2.4.2. The Continuous Case

We may also define the expected value of a continuous random variable. This is
done as follows. If X is a continuous random variable having a probability density
function f (x), then the expected value of X is defined by

E[X] =
∫ ∞

−∞
xf (x)dx
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Example 2.20 (Expectation of a Uniform Random Variable) Calculate the
expectation of a random variable uniformly distributed over (α,β).

Solution: From Equation (2.8) we have

E[X] =
∫ β

α

x

β − α
dx

= β2 − α2

2(β − α)

= β + α

2

In other words, the expected value of a random variable uniformly distributed
over the interval (α,β) is just the midpoint of the interval. �

Example 2.21 (Expectation of an Exponential Random Variable) Let X be
exponentially distributed with parameter λ. Calculate E[X].

Solution:

E[X] =
∫ ∞

0
xλe−λx dx

Integrating by parts yields

E[X] = −xe−λx
∣
∣∞
0 +

∫ ∞

0
e−λx dx

= 0 − e−λx

λ

∣
∣
∣
∣

∞

0

= 1

λ
�

Example 2.22 (Expectation of a Normal Random Variable) Calculate E[X]
when X is normally distributed with parameters μ and σ 2.

Solution:

E[X] = 1√
2πσ

∫ ∞

−∞
xe−(x−μ)2/2σ 2

dx

Writing x as (x − μ) + μ yields

E[X] = 1√
2πσ

∫ ∞

−∞
(x − μ)e−(x−μ)2/2σ 2

dx + μ
1√

2πσ

∫ ∞

−∞
e−(x−μ)2/2σ 2

dx
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Letting y = x − μ leads to

E[X] = 1√
2πσ

∫ ∞

−∞
ye−y2/2σ 2

dy + μ

∫ ∞

−∞
f (x)dx

where f (x) is the normal density. By symmetry, the first integral must be 0,
and so

E[X] = μ

∫ ∞

−∞
f (x)dx = μ �

2.4.3. Expectation of a Function of a Random Variable

Suppose now that we are given a random variable X and its probability distri-
bution (that is, its probability mass function in the discrete case or its probability
density function in the continuous case). Suppose also that we are interested in
calculating, not the expected value of X, but the expected value of some function
of X, say, g(X). How do we go about doing this? One way is as follows. Since
g(X) is itself a random variable, it must have a probability distribution, which
should be computable from a knowledge of the distribution of X. Once we have
obtained the distribution of g(X), we can then compute E[g(X)] by the definition
of the expectation.

Example 2.23 Suppose X has the following probability mass function:

p(0) = 0.2, p(1) = 0.5, p(2) = 0.3

Calculate E[X2].
Solution: Letting Y = X2, we have that Y is a random variable that can take
on one of the values 02,12,22 with respective probabilities

pY (0) = P {Y = 02} = 0.2,

pY (1) = P {Y = 12} = 0.5,

pY (4) = P {Y = 22} = 0.3

Hence,

E[X2] = E[Y ] = 0(0.2) + 1(0.5) + 4(0.3) = 1.7

Note that

1.7 = E[X2] �= (E[X])2 = 1.21 �
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Example 2.24 Let X be uniformly distributed over (0,1). Calculate E[X3].
Solution: Letting Y = X3, we calculate the distribution of Y as follows.
For 0 � a � 1,

FY (a) = P {Y � a}
= P {X3 � a}
= P {X � a1/3}
= a1/3

where the last equality follows since X is uniformly distributed over (0,1).
By differentiating FY (a), we obtain the density of Y , namely,

fY (a) = 1
3a−2/3, 0 � a � 1

Hence,

E[X3] = E[Y ] =
∫ ∞

−∞
afY (a) da

=
∫ 1

0
a 1

3a−2/3 da

= 1
3

∫ 1

0
a1/3 da

= 1
3

3
4a4/3

∣
∣1
0

= 1
4 �

While the foregoing procedure will, in theory, always enable us to compute
the expectation of any function of X from a knowledge of the distribution of
X, there is, fortunately, an easier way to do this. The following proposition
shows how we can calculate the expectation of g(X) without first determining
its distribution.

Proposition 2.1 (a) If X is a discrete random variable with probability mass
function p(x), then for any real-valued function g,

E[g(X)] =
∑

x:p(x)>0

g(x)p(x)



2.4. Expectation of a Random Variable 45

(b) If X is a continuous random variable with probability density function
f (x), then for any real-valued function g,

E[g(X)] =
∫ ∞

−∞
g(x)f (x) dx �

Example 2.25 Applying the proposition to Example 2.23 yields

E[X2] = 02(0.2) + (12)(0.5) + (22)(0.3) = 1.7

which, of course, checks with the result derived in Example 2.23. �

Example 2.26 Applying the proposition to Example 2.24 yields

E[X3] =
∫ 1

0
x3 dx (since f (x) = 1, 0 < x < 1)

= 1
4 �

A simple corollary of Proposition 2.1 is the following.

Corollary 2.2 If a and b are constants, then

E[aX + b] = aE[X] + b

Proof In the discrete case,

E[aX + b] =
∑

x:p(x)>0

(ax + b)p(x)

= a
∑

x:p(x)>0

xp(x)+b
∑

x:p(x)>0

p(x)

= aE[X] + b

In the continuous case,

E[aX + b] =
∫ ∞

−∞
(ax + b)f (x) dx

= a

∫ ∞

−∞
xf (x)dx +b

∫ ∞

−∞
f (x)dx

= aE[X] + b �
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The expected value of a random variable X,E[X], is also referred to as the mean
or the first moment of X. The quantity E[Xn], n � 1, is called the nth moment
of X. By Proposition 2.1, we note that

E[Xn] =

⎧
⎪⎪⎨

⎪⎪⎩

∑

x:p(x)>0

xnp(x), if X is discrete

∫ ∞

−∞
xnf (x) dx, if X is continuous

Another quantity of interest is the variance of a random variable X, denoted by
Var(X), which is defined by

Var(X) = E
[
(X − E[X])2]

Thus, the variance of X measures the expected square of the deviation of X from
its expected value.

Example 2.27 (Variance of the Normal Random Variable) Let X be normally
distributed with parameters μ and σ 2. Find Var(X).

Solution: Recalling (see Example 2.22) that E[X] = μ, we have that

Var(X) = E[(X − μ)2]
= 1√

2πσ

∫ ∞

−∞
(x − μ)2e−(x−μ)2/2σ 2

dx

Substituting y = (x − μ)/σ yields

Var(X) = σ 2

√
2π

∫ ∞

−∞
y2e−y2/2 dy

Integrating by parts (u = y, dv = ye−y2/2dy) gives

Var(X) = σ 2

√
2π

(

−ye−y2/2
∣
∣
∣
∞
−∞ +

∫ ∞

−∞
e−y2/2 dy

)

= σ 2

√
2π

∫ ∞

−∞
e−y2/2 dy

= σ 2

Another derivation of Var(X) will be given in Example 2.42. �
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Suppose that X is continuous with density f, and let E[X] = μ. Then,

Var(X) = E[(X − μ)2]
= E[X2 − 2μX + μ2]

=
∫ ∞

−∞
(x2 − 2μx + μ2)f (x) dx

=
∫ ∞

−∞
x2f (x) dx − 2μ

∫ ∞

−∞
xf (x)dx + μ2

∫ ∞

−∞
f (x)dx

= E[X2] − 2μμ + μ2

= E[X2] − μ2

A similar proof holds in the discrete case, and so we obtain the useful identity

Var(X) = E[X2] − (E[X])2

Example 2.28 Calculate Var(X) when X represents the outcome when a fair
die is rolled.

Solution: As previously noted in Example 2.15, E[X] = 7
2 . Also,

E[X2] = 1
(

1
6

)
+ 22

(
1
6

)
+ 32

(
1
6

)
+ 42

(
1
6

)
+ 52

(
1
6

)
+ 62

(
1
6

)
=
(

1
6

)
(91)

Hence,

Var(X) = 91
6 − ( 7

2

)2 = 35
12 �

2.5. Jointly Distributed Random Variables

2.5.1. Joint Distribution Functions

Thus far, we have concerned ourselves with the probability distribution of a single
random variable. However, we are often interested in probability statements con-
cerning two or more random variables. To deal with such probabilities, we define,
for any two random variables X and Y , the joint cumulative probability distribu-
tion function of X and Y by

F(a, b) = P {X � a,Y � b}, −∞ < a,b < ∞
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The distribution of X can be obtained from the joint distribution of X and Y as
follows:

FX(a) = P {X � a}
= P {X � a, Y < ∞}
= F(a,∞)

Similarly, the cumulative distribution function of Y is given by

FY (b) = P {Y � b} = F(∞, b)

In the case where X and Y are both discrete random variables, it is convenient to
define the joint probability mass function of X and Y by

p(x, y) = P {X = x, Y = y}
The probability mass function of X may be obtained from p(x, y) by

pX(x) =
∑

y:p(x,y)>0

p(x, y)

Similarly,

pY (y) =
∑

x:p(x,y)>0

p(x, y)

We say that X and Y are jointly continuous if there exists a function f (x, y),
defined for all real x and y, having the property that for all sets A and B of real
numbers

P {X ∈A,Y ∈B} =
∫

B

∫

A

f (x, y) dx dy

The function f (x, y) is called the joint probability density function of X and Y .
The probability density of X can be obtained from a knowledge of f (x, y) by the
following reasoning:

P {X ∈A} = P {X ∈A, Y ∈ (−∞,∞)}
=
∫ ∞

−∞

∫

A

f (x, y) dx dy

=
∫

A

fX(x)dx



2.5. Jointly Distributed Random Variables 49

where

fX(x) =
∫ ∞

−∞
f (x, y) dy

is thus the probability density function of X. Similarly, the probability density
function of Y is given by

fY (y) =
∫ ∞

−∞
f (x, y) dx

A variation of Proposition 2.1 states that if X and Y are random variables and
g is a function of two variables, then

E[g(X,Y )] =
∑

y

∑

x

g(x, y)p(x, y) in the discrete case

=
∫ ∞

−∞

∫ ∞

−∞
g(x, y)f (x, y) dx dy in the continuous case

For example, if g(X,Y ) = X + Y , then, in the continuous case,

E[X + Y ] =
∫ ∞

−∞

∫ ∞

−∞
(x + y)f (x, y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
xf (x, y) dx dy +

∫ ∞

−∞

∫ ∞

−∞
yf (x, y) dx dy

= E[X] + E[Y ]
where the first integral is evaluated by using the variation of Proposition 2.1 with
g(x, y) = x, and the second with g(x, y) = y.

The same result holds in the discrete case and, combined with the corollary in
Section 2.4.3, yields that for any constants a, b

E[aX + bY ] = aE[X] + bE[Y ] (2.10)

Joint probability distributions may also be defined for n random variables. The
details are exactly the same as when n = 2 and are left as an exercise. The cor-
responding result to Equation (2.10) states that if X1,X2, . . . ,Xn are n random
variables, then for any n constants a1, a2, . . . , an,

E[a1X1 + a2X2 + · · · + anXn] = a1E[X1] + a2E[X2] + · · · + anE[Xn] (2.11)

Example 2.29 Calculate the expected sum obtained when three fair dice are
rolled.



50 2 Random Variables

Solution: Let X denote the sum obtained. Then X = X1 + X2 + X3 where
Xi represents the value of the ith die. Thus,

E[X] = E[X1] + E[X2] + E[X3] = 3
( 7

2

)= 21
2 �

Example 2.30 As another example of the usefulness of Equation (2.11), let
us use it to obtain the expectation of a binomial random variable having parame-
ters n and p. Recalling that such a random variable X represents the number of
successes in n trials when each trial has probability p of being a success, we have
that

X = X1 + X2 + · · · + Xn

where

Xi =
{

1, if the ith trial is a success
0, if the ith trial is a failure

Hence, Xi is a Bernoulli random variable having expectation E[Xi] = 1(p) +
0(1 − p) = p. Thus,

E[X] = E[X1] + E[X2] + · · · + E[Xn] = np

This derivation should be compared with the one presented in Example 2.17. �

Example 2.31 At a party N men throw their hats into the center of a room.
The hats are mixed up and each man randomly selects one. Find the expected
number of men who select their own hats.

Solution: Letting X denote the number of men that select their own hats,
we can best compute E[X] by noting that

X = X1 + X2 + · · · + XN

where

Xi =
{

1, if the ith man selects his own hat
0, otherwise

Now, because the ith man is equally likely to select any of the N hats, it follows
that

P {Xi = 1} = P {ith man selects his own hat} = 1

N

and so

E[Xi] = 1P {Xi = 1} + 0P {Xi = 0} = 1

N
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Hence, from Equation (2.11) we obtain that

E[X] = E[X1] + · · · + E[XN ] =
(

1

N

)

N = 1

Hence, no matter how many people are at the party, on the average exactly one
of the men will select his own hat. �

Example 2.32 Suppose there are 25 different types of coupons and suppose
that each time one obtains a coupon, it is equally likely to be any one of the
25 types. Compute the expected number of different types that are contained in a
set of 10 coupons.

Solution: Let X denote the number of different types in the set of 10
coupons. We compute E[X] by using the representation

X = X1 + · · · + X25

where

Xi =
{

1, if at least one type i coupon is in the set of 10
0, otherwise

Now,

E[Xi] = P {Xi = 1}
= P {at least one type i coupon is in the set of 10}
= 1 − P {no type i coupons are in the set of 10}
= 1 −

(
24
25

)10

when the last equality follows since each of the 10 coupons will (independently)
not be a type i with probability 24

25 . Hence,

E[X] = E[X1] + · · · + E[X25] = 25
[
1 − ( 24

25

)10
]

�

2.5.2. Independent Random Variables

The random variables X and Y are said to be independent if, for all a, b,

P {X � a, Y � b} = P {X � a}P {Y � b} (2.12)

In other words, X and Y are independent if, for all a and b, the events Ea =
{X �a} and Fb = {Y � b} are independent.
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In terms of the joint distribution function F of X and Y , we have that X and Y

are independent if

F(a, b) = FX(a)FY (b) for all a, b

When X and Y are discrete, the condition of independence reduces to

p(x, y) = pX(x)pY (y) (2.13)

while if X and Y are jointly continuous, independence reduces to

f (x, y) = fX(x)fY (y) (2.14)

To prove this statement, consider first the discrete version, and suppose that the
joint probability mass function p(x, y) satisfies Equation (2.13). Then

P {X � a, Y � b} =
∑

y�b

∑

x�a

p(x, y)

=
∑

y�b

∑

x�a

pX(x)pY (y)

=
∑

y�b

pY (y)
∑

x�a

pX(x)

= P {Y � b}P {X � a}
and so X and Y are independent. That Equation (2.14) implies independence in
the continuous case is proven in the same manner and is left as an exercise.

An important result concerning independence is the following.

Proposition 2.3 If X and Y are independent, then for any functions h and g

E[g(X)h(Y )] = E[g(X)]E[h(Y )]
Proof Suppose that X and Y are jointly continuous. Then

E[g(X)h(Y )] =
∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)f (x, y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)fX(x)fY (y) dx dy

=
∫ ∞

−∞
h(y)fY (y) dy

∫ ∞

−∞
g(x)fX(x)dx

= E[h(Y )]E[g(X)]
The proof in the discrete case is similar. �
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2.5.3. Covariance and Variance of Sums of Random Variables

The covariance of any two random variables X and Y , denoted by Cov(X,Y ), is
defined by

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]
= E[XY − YE[X] − XE[Y ] + E[X]E[Y ]]
= E[XY ] − E[Y ]E[X] − E[X]E[Y ] + E[X]E[Y ]
= E[XY ] − E[X]E[Y ]

Note that if X and Y are independent, then by Proposition 2.3 it follows that
Cov(X,Y ) = 0.

Let us consider now the special case where X and Y are indicator variables for
whether or not the events A and B occur. That is, for events A and B , define

X =
{

1, if A occurs
0, otherwise,

Y =
{

1, if B occurs
0, otherwise

Then,

Cov(X,Y ) = E[XY ] − E[X]E[Y ]
and, because XY will equal 1 or 0 depending on whether or not both X and Y

equal 1, we see that

Cov(X,Y ) = P {X = 1, Y = 1} − P {X = 1}P {Y = 1}

From this we see that

Cov(X,Y ) > 0 ⇔ P {X = 1, Y = 1} > P {X = 1}P {Y = 1}
⇔ P {X = 1, Y = 1}

P {X = 1} > P {Y = 1}
⇔ P {Y = 1|X = 1} > P {Y = 1}

That is, the covariance of X and Y is positive if the outcome X = 1 makes it more
likely that Y = 1 (which, as is easily seen by symmetry, also implies the reverse).

In general it can be shown that a positive value of Cov(X,Y ) is an indication
that Y tends to increase as X does, whereas a negative value indicates that Y tends
to decrease as X increases.

The following are important properties of covariance.
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Properties of Covariance

For any random variables X,Y,Z and constant c,

1. Cov(X,X) = Var(X),
2. Cov(X,Y ) = Cov(Y,X),
3. Cov(cX,Y ) = c Cov(X,Y ),
4. Cov(X,Y + Z) = Cov(X,Y ) + Cov(X,Z).

Whereas the first three properties are immediate, the final one is easily proven as
follows:

Cov(X,Y + Z) = E[X(Y + Z)] − E[X]E[Y + Z]
= E[XY ] − E[X]E[Y ] + E[XZ] − E[X]E[Z]
= Cov(X,Y ) + Cov(X,Z)

The fourth property listed easily generalizes to give the following result:

Cov

⎛

⎝
n∑

i=1

Xi,

m∑

j=1

Yj

⎞

⎠=
n∑

i=1

m∑

j=1

Cov(Xi, Yj ) (2.15)

A useful expression for the variance of the sum of random variables can be
obtained from Equation (2.15) as follows:

Var

(
n∑

i=1

Xi

)

= Cov

⎛

⎝
n∑

i=1

Xi,

n∑

j=1

Xj

⎞

⎠

=
n∑

i=1

n∑

j=1

Cov(Xi,Xj )

=
n∑

i=1

Cov(Xi,Xi) +
n∑

i=1

∑

j �=i

Cov(Xi,Xj )

=
n∑

i=1

Var(Xi) + 2
n∑

i=1

∑

j< i

Cov(Xi,Xj ) (2.16)

If Xi, i = 1, . . . , n are independent random variables, then Equation (2.16) re-
duces to

Var

(
n∑

i=1

Xi

)

=
n∑

i=1

Var(Xi)
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Definition 2.1 If X1, . . . ,Xn are independent and identically distributed,
then the random variable X̄ =∑n

i=1 Xi/n is called the sample mean.

The following proposition shows that the covariance between the sample mean
and a deviation from that sample mean is zero. It will be needed in Section 2.6.1.

Proposition 2.4 Suppose that X1, . . . ,Xn are independent and identically
distributed with expected value μ and variance σ 2. Then,

(a) E[X̄] = μ.
(b) Var(X̄) = σ 2/n.
(c) Cov(X̄,Xi − X̄) = 0, i = 1, . . . , n.

Proof Parts (a) and (b) are easily established as follows:

E[X̄] = 1

n

m∑

i=1

E[Xi] = μ,

Var(X̄) =
(

1

n

)2

Var

(
n∑

i=1

Xi

)

=
(

1

n

)2 n∑

i=1

Var(Xi) = σ 2

n

To establish part (c) we reason as follows:

Cov(X̄,Xi − X̄) = Cov(X̄,Xi) − Cov(X̄, X̄)

= 1

n
Cov

(

Xi +
∑

j �=i

Xj ,Xi

)

− Var(X̄)

= 1

n
Cov(Xi,Xi) + 1

n
Cov

(∑

j �=i

Xj ,Xi

)

− σ 2

n

= σ 2

n
− σ 2

n
= 0

where the final equality used the fact that Xi and
∑

j �=i Xj are independent and
thus have covariance 0. �

Equation (2.16) is often useful when computing variances.

Example 2.33 (Variance of a Binomial Random Variable) Compute the vari-
ance of a binomial random variable X with parameters n and p.
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Solution: Since such a random variable represents the number of successes
in n independent trials when each trial has a common probability p of being a
success, we may write

X = X1 + · · · + Xn

where the Xi are independent Bernoulli random variables such that

Xi =
{

1, if the ith trial is a success
0, otherwise

Hence, from Equation (2.16) we obtain

Var(X) = Var(X1) + · · · + Var(Xn)

But

Var(Xi) = E[X2
i ] − (E[Xi])2

= E[Xi] − (E[Xi])2 since X2
i = Xi

= p − p2

and thus

Var(X) = np(1 − p) �

Example 2.34 (Sampling from a Finite Population: The Hypergeometric)
Consider a population of N individuals, some of whom are in favor of a cer-
tain proposition. In particular suppose that Np of them are in favor and N − Np

are opposed, where p is assumed to be unknown. We are interested in estimating
p, the fraction of the population that is for the proposition, by randomly choosing
and then determining the positions of n members of the population.

In such situations as described in the preceding, it is common to use the fraction
of the sampled population that is in favor of the proposition as an estimator of p.
Hence, if we let

Xi =
{

1, if the ith person chosen is in favor
0, otherwise

then the usual estimator of p is
∑n

i=1 Xi/n. Let us now compute its mean and
variance. Now

E

[
n∑

i=1

Xi

]

=
n∑

1

E[Xi]
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= np

where the final equality follows since the ith person chosen is equally likely to be
any of the N individuals in the population and so has probability Np/N of being
in favor.

Var

(
n∑

1

Xi

)

=
n∑

1

Var(Xi) + 2
∑∑

i<j

Cov(Xi,Xj )

Now, since Xi is a Bernoulli random variable with mean p, it follows that

Var(Xi) = p(1 − p)

Also, for i �= j ,

Cov(Xi,Xj ) = E[XiXj ] − E[Xi]E[Xj ]
= P {Xi = 1,Xj = 1} − p2

= P {Xi = 1}P {Xj = 1 | Xi = 1} − p2

= Np

N

(Np − 1)

N − 1
− p2

where the last equality follows since if the ith person to be chosen is in favor,
then the j th person chosen is equally likely to be any of the other N − 1 of which
Np − 1 are in favor. Thus, we see that

Var

(
n∑

1

Xi

)

= np(1 − p) + 2

(
n

2

)[
p(Np − 1)

N − 1
− p2

]

= np(1 − p) − n(n − 1)p(1 − p)

N − 1

and so the mean and variance of our estimator are given by

E

[
n∑

1

Xi

n

]

= p,

Var

[
n∑

1

Xi

n

]

= p(1 − p)

n
− (n − 1)p(1 − p)

n(N − 1)

Some remarks are in order: As the mean of the estimator is the unknown value p,
we would like its variance to be as small as possible (why is this?), and we see by
the preceding that, as a function of the population size N , the variance increases
as N increases. The limiting value, as N → ∞, of the variance is p(1 − p)/n,
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which is not surprising since for N large each of the Xi will be (approximately)
independent random variables, and thus

∑n
1 Xi will have an (approximately) bi-

nomial distribution with parameters n and p.
The random variable

∑n
1 Xi can be thought of as representing the number of

white balls obtained when n balls are randomly selected from a population con-
sisting of Np white and N − Np black balls. (Identify a person who favors the
proposition with a white ball and one against with a black ball.) Such a random
variable is called hypergeometric and has a probability mass function given by

P

{
n∑

1

Xi = k

}

=

(
Np

k

)(
N − Np

n − k

)

(
N

n

) �

It is often important to be able to calculate the distribution of X + Y from the
distributions of X and Y when X and Y are independent. Suppose first that X and
Y are continuous, X having probability density f and Y having probability den-
sity g. Then, letting FX+Y (a) be the cumulative distribution function of X + Y ,
we have

FX+Y (a) = P {X + Y � a}
=
∫∫

x+y�a

f (x)g(y) dx dy

=
∫ ∞

−∞

∫ a−y

−∞
f (x)g(y) dx dy

=
∫ ∞

−∞

(∫ a−y

−∞
f (x)dx

)

g(y)dy

=
∫ ∞

−∞
FX(a − y)g(y) dy (2.17)

The cumulative distribution function FX+Y is called the convolution of the distri-
butions FX and FY (the cumulative distribution functions of X and Y , respec-
tively).

By differentiating Equation (2.17), we obtain that the probability density func-
tion fX+Y (a) of X + Y is given by

fX+Y (a) = d

da

∫ ∞

−∞
FX(a − y)g(y) dy

=
∫ ∞

−∞
d

da
(FX(a − y))g(y) dy

=
∫ ∞

−∞
f (a − y)g(y) dy (2.18)
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Example 2.35 (Sum of Two Independent Uniform Random Variables) If X

and Y are independent random variables both uniformly distributed on (0, 1), then
calculate the probability density of X + Y .

Solution: From Equation (2.18), since

f (a) = g(a) =
{

1, 0 < a < 1
0, otherwise

we obtain

fX+Y (a) =
∫ 1

0
f (a − y)dy

For 0 � a � 1, this yields

fX+Y (a) =
∫ a

0
dy = a

For 1 < a < 2, we get

fX+Y (a) =
∫ 1

a−1
dy = 2 − a

Hence,

fX+Y (a) =
⎧
⎨

⎩

a, 0 � a � 1
2 − a, 1 < a < 2
0, otherwise �

Rather than deriving a general expression for the distribution of X + Y in the
discrete case, we shall consider an example.

Example 2.36 (Sums of Independent Poisson Random Variables) Let X and
Y be independent Poisson random variables with respective means λ1 and λ2.
Calculate the distribution of X + Y .

Solution: Since the event {X + Y = n} may be written as the union of the
disjoint events {X = k,Y = n − k}, 0 � k � n, we have

P {X + Y = n} =
n∑

k=0

P {X = k, Y = n − k}

=
n∑

k=0

P {X = k}P {Y = n − k}
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=
n∑

k=0

e−λ1
λk

1

k! e
−λ2

λn−k
2

(n − k)!

= e−(λ1+λ2)

n∑

k=0

λk
1λ

n−k
2

k!(n − k)!

= e−(λ1+λ2)

n!
n∑

k=0

n!
k!(n − k)!λ

k
1λ

n−k
2

= e−(λ1+λ2)

n! (λ1 + λ2)
n

In words, X1 + X2 has a Poisson distribution with mean λ1 + λ2. �
The concept of independence may, of course, be defined for more than two

random variables. In general, the n random variables X1,X2, . . . ,Xn are said
to be independent if, for all values a1, a2, . . . , an,

P {X1 � a1,X2 � a2, . . . ,Xn � an} = P {X1 � a1}P {X2 � a2} · · ·P {Xn � an}
Example 2.37 Let X1, . . . ,Xn be independent and identically distributed
continuous random variables with probability distribution F and density func-
tion F ′ = f . If we let X(i) denote the ith smallest of these random variables, then
X(1), . . . ,X(n) are called the order statistics. To obtain the distribution of X(i),
note that X(i) will be less than or equal to x if and only if at least i of the n

random variables X1, . . . ,Xn are less than or equal to x. Hence,

P {X(i) � x} =
n∑

k=i

(
n

k

)

(F (x))k(1 − F(x))n−k

Differentiation yields that the density function of X(i) is as follows:

fX(i)
(x) = f (x)

n∑

k=i

(
n

k

)

k(F (x))k−1(1 − F(x))n−k

− f (x)

n∑

k=i

(
n

k

)

(n − k)(F (x))k(1 − F(x))n−k−1

= f (x)

n∑

k=i

n!
(n − k)!(k − 1)! (F (x))k−1(1 − F(x))n−k

− f (x)

n−1∑

k=i

n!
(n − k − 1)!k! (F (x))k(1 − F(x))n−k−1
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= f (x)

n∑

k=i

n!
(n − k)!(k − 1)! (F (x))k−1(1 − F(x))n−k

− f (x)

n∑

j=i+1

n!
(n − j)!(j − 1)! (F (x))j−1(1 − F(x))n−j

= n!
(n − i)!(i − 1)!f (x)(F (x))i−1(1 − F(x))n−i

The preceding density is quite intuitive, since in order for X(i) to equal x, i − 1 of
the n values X1, . . . ,Xn must be less than x; n− i of them must be greater than x;
and one must be equal to x. Now, the probability density that every member of a
specified set of i−1 of the Xj is less than x, every member of another specified set
of n − i is greater than x, and the remaining value is equal to x is (F (x))i−1(1 −
F(x))n−if (x). Therefore, since there are n!/[(i − 1)!(n − i)!] different partitions
of the n random variables into the three groups, we obtain the preceding density
function. �

2.5.4. Joint Probability Distribution of Functions of Random
Variables

Let X1 and X2 be jointly continuous random variables with joint probability den-
sity function f (x1, x2). It is sometimes necessary to obtain the joint distribution
of the random variables Y1 and Y2 which arise as functions of X1 and X2. Specif-
ically, suppose that Y1 = g1(X1,X2) and Y2 = g2(X1,X2) for some functions g1

and g2.
Assume that the functions g1 and g2 satisfy the following conditions:

1. The equations y1 = g1(x1, x2) and y2 = g2(x1, x2) can be uniquely solved
for x1 and x2 in terms of y1 and y2 with solutions given by, say, x1 =
h1(y1, y2), x2 = h2(y1, y2).

2. The functions g1 and g2 have continuous partial derivatives at all points
(x1, x2) and are such that the following 2 × 2 determinant

J (x1, x2) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

∂g1

∂x1

∂g1

∂x2

∂g2

∂x1

∂g2

∂x2

∣
∣
∣
∣
∣
∣
∣
∣
∣

≡ ∂g1

∂x1

∂g2

∂x2
− ∂g1

∂x2

∂g2

∂x1
�= 0

at all points (x1, x2).
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Under these two conditions it can be shown that the random variables Y1 and Y2

are jointly continuous with joint density function given by

fY1,Y2(y1, y2) = fX1,X2(x1, x2)|J (x1, x2)|−1 (2.19)

where x1 = h1(y1, y2), x2 = h2(y1, y2).

A proof of Equation (2.19) would proceed along the following lines:

P {Y1 � y1, Y2 � y2} =
∫∫

(x1,x2):
g1(x1,x2)�y1
g2(x1,x2)�y2

fX1,X2(x1, x2) dx1 dx2 (2.20)

The joint density function can now be obtained by differentiating Equation (2.20)
with respect to y1 and y2. That the result of this differentiation will be equal to
the right-hand side of Equation (2.19) is an exercise in advanced calculus whose
proof will not be presented in the present text.

Example 2.38 If X and Y are independent gamma random variables with
parameters (α,λ) and (β,λ), respectively, compute the joint density of U = X+Y

and V = X/(X + Y).

Solution: The joint density of X and Y is given by

fX,Y (x, y) = λe−λx(λx)α−1

�(α)

λe−λy(λy)β−1

�(β)

= λα+β

�(α)�(β)
e−λ(x+y)xα−1yβ−1

Now, if g1(x, y) = x + y, g2(x, y) = x/(x + y), then

∂g1

∂x
= ∂g1

∂y
= 1,

∂g2

∂x
= y

(x + y)2
,

∂g2

∂y
= − x

(x + y)2

and so

J (x, y) =
∣
∣
∣
∣
∣
∣

1 1
y

(x + y)2

−x

(x + y)2

∣
∣
∣
∣
∣
∣
= − 1

x + y
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Finally, because the equations u = x +y, v = x/(x +y) have as their solutions
x = uv, y = u(1 − v), we see that

fU,V (u, v) = fX,Y [uv, u(1 − v)]u

= λe−λu(λu)α+β−1

�(α + β)

vα−1(1 − v)β−1�(α + β)

�(α)�(β)

Hence X + Y and X/(X + Y) are independent, with X + Y having a gamma
distribution with parameters (α +β,λ) and X/(X+Y) having density function

fV (v) = �(α + β)

�(α)�(β)
vα−1(1 − v)β−1, 0 < v < 1

This is called the beta density with parameters (α,β).
This result is quite interesting. For suppose there are n + m jobs to be per-

formed, with each (independently) taking an exponential amount of time with
rate λ for performance, and suppose that we have two workers to perform these
jobs. Worker I will do jobs 1,2, . . . , n, and worker II will do the remaining m

jobs. If we let X and Y denote the total working times of workers I and II,
respectively, then upon using the preceding result it follows that X and Y will
be independent gamma random variables having parameters (n,λ) and (m,λ),
respectively. Then the preceding result yields that independently of the working
time needed to complete all n+m jobs (that is, of X+Y ), the proportion of this
work that will be performed by worker I has a beta distribution with parameters
(n,m). �

When the joint density function of the n random variables X1,X2, . . . ,Xn is
given and we want to compute the joint density function of Y1, Y2, . . . , Yn, where

Y1 = g1(X1, . . . ,Xn), Y2 = g2(X1, . . . ,Xn), . . . ,

Yn = gn(X1, . . . ,Xn)

the approach is the same. Namely, we assume that the functions gi have continu-
ous partial derivatives and that the Jacobian determinant J (x1, . . . , xn) �= 0 at all
points (x1, . . . , xn), where

J (x1, . . . , xn) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂g1

∂x1

∂g1

∂x2
· · · ∂g1

∂xn

∂g2

∂x1

∂g2

∂x2
· · · ∂g2

∂xn

∂gn

∂x1

∂gn

∂x2
· · · ∂gn

∂xn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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Furthermore, we suppose that the equations y1 =g1(x1, . . . , xn), y2 =
g2(x1, . . . , xn), . . . , yn =gn(x1, . . . , xn) have a unique solution, say, x1 =
h1(y1, . . . , yn), . . . , xn =hn(y1, . . . , yn). Under these assumptions the joint den-
sity function of the random variables Yi is given by

fY1,...,Yn(y1, . . . , yn) = fX1,...,Xn(x1, . . . , xn) |J (x1, . . . , xn)|−1

where xi = hi(y1, . . . , yn), i = 1,2, . . . , n.

2.6. Moment Generating Functions

The moment generating function φ(t) of the random variable X is defined for all
values t by

φ(t) = E[etX]

=

⎧
⎪⎪⎨

⎪⎪⎩

∑

x

etxp(x), if X is discrete

∫ ∞

−∞
etxf (x) dx, if X is continuous

We call φ(t) the moment generating function because all of the moments of X

can be obtained by successively differentiating φ(t). For example,

φ′(t) = d

dt
E[etX]

= E

[
d

dt
(etX)

]

= E[XetX]
Hence,

φ′(0) = E[X]
Similarly,

φ′′(t) = d

dt
φ′(t)

= d

dt
E[XetX]

= E

[
d

dt
(XetX)

]

= E[X2etX]
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and so

φ′′(0) = E[X2]
In general, the nth derivative of φ(t) evaluated at t = 0 equals E[Xn], that is,

φn(0) = E[Xn], n � 1

We now compute φ(t) for some common distributions.

Example 2.39 (The Binomial Distribution with Parameters n and p)

φ(t) = E[etX]

=
n∑

k=0

etk

(
n

k

)

pk(1 − p)n−k

=
n∑

k=0

(
n

k

)

(pet )k(1 − p)n−k

= (pet + 1 − p)n

Hence,

φ′(t) = n(pet + 1 − p)n−1pet

and so

E[X] = φ′(0) = np

which checks with the result obtained in Example 2.17. Differentiating a second
time yields

φ′′(t) = n(n − 1)(pet + 1 − p)n−2(pet )2 + n(pet + 1 − p)n−1pet

and so

E[X2] = φ′′(0) = n(n − 1)p2 + np

Thus, the variance of X is given

Var(X) = E[X2] − (E[X])2

= n(n − 1)p2 + np − n2p2

= np(1 − p) �



66 2 Random Variables

Example 2.40 (The Poisson Distribution with Mean λ)

φ(t) = E[etX]

=
∞∑

n=0

etne−λλn

n!

= e−λ

∞∑

n=0

(λet )n

n!

= e−λeλet

= exp{λ(et − 1)}

Differentiation yields

φ′(t) = λet exp{λ(et − 1)},
φ′′(t) = (λet )2 exp{λ(et − 1)} + λet exp{λ(et − 1)}

and so

E[X] = φ′(0) = λ,

E[X2] = φ′′(0) = λ2 + λ,

Var(X) = E[X2] − (E[X])2

= λ

Thus, both the mean and the variance of the Poisson equal λ. �

Example 2.41 (The Exponential Distribution with Parameter λ)

φ(t) = E[etX]
=
∫ ∞

0
etxλe−λxdx

= λ

∫ ∞

0
e−(λ−t)xdx

= λ

λ − t
for t < λ
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We note by the preceding derivation that, for the exponential distribution, φ(t) is
only defined for values of t less than λ. Differentiation of φ(t) yields

φ′(t) = λ

(λ − t)2
, φ′′(t) = 2λ

(λ − t)3

Hence,

E[X] = φ′(0) = 1

λ
, E[X2] = φ′′(0) = 2

λ2

The variance of X is thus given by

Var(X) = E[X2] − (E[X])2 = 1

λ2
�

Example 2.42 (The Normal Distribution with Parameters μ and σ 2)
The moment generating function of a standard normal random variable Z is

obtained as follows.

E[etZ] = 1√
2π

∫ ∞

−∞
etxe−x2/2 dx

= 1√
2π

∫ ∞

−∞
e−(x2−2tx)/2 dx

= et2/2 1√
2π

∫ ∞

−∞
e−(x−t)2/2 dx

= et2/2

If Z is a standard normal, then X = σZ + μ is normal with parameters μ and σ 2;
therefore,

φ(t) = E[etX] = E[et(σZ+μ)] = etμE[etσZ] = exp

{
σ 2t2

2
+ μt

}

By differentiating we obtain

φ′(t) = (μ + tσ 2) exp

{
σ 2t2

2
+ μt

}

,

φ′′(t) = (μ + tσ 2)2 exp

{
σ 2t2

2
+ μt

}

+ σ 2 exp

{
σ 2t2

2
+ μt

}
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and so

E[X] = φ′(0) = μ,

E[X2] = φ′′(0) = μ2 + σ 2

implying that

Var(X) = E[X2] − E([X])2

= σ 2 �

Tables 2.1 and 2.2 give the moment generating function for some common
distributions.

An important property of moment generating functions is that the moment gen-
erating function of the sum of independent random variables is just the product
of the individual moment generating functions. To see this, suppose that X and
Y are independent and have moment generating functions φX(t) and φY (t), re-
spectively. Then φX+Y (t), the moment generating function of X + Y , is given
by

φX+Y (t) = E[et(X+Y)]
= E[etXetY ]
= E[etX]E[etY ]
= φX(t)φY (t)

where the next to the last equality follows from Proposition 2.3 since X and Y are
independent.

Table 2.1

Discrete Probability Moment
probability mass generating
distribution function, p(x) function, φ(t) Mean Variance

Binomial with
parameters n,p
0 � p � 1

(n
x

)
px(1 − p)n−x ,

x = 0,1, . . . , n

(pet + (1 − p))n np np(1 − p)

Poisson with
parameter
λ > 0

e−λ λx

x! ,

x = 0,1,2, . . .

exp{λ(et − 1)} λ λ

Geometric with
parameter
0 � p � 1

p(1 − p)x−1,

x = 1, 2, . . .

pet

1 − (1 − p)et

1

p

1 − p

p2
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Table 2.2

Continuous Moment
probability Probability density generating
distribution function, f (x) function, φ(t) Mean Variance

Uniform
over (a, b)

f (x) =
⎧
⎨

⎩

1

b − a
, a < x < b

0, otherwise

etb − eta

t (b − a)

a + b

2

(b − a)2

12

Exponential with
parameter λ > 0

f (x) =
{
λe−λx, x > 0
0, x < 0

λ

λ − t

1

λ

1

λ2

Gamma with
parameters
(n,λ) λ > 0

f (x) =
⎧
⎨

⎩

λe−λx(λx)n−1

(n − 1)! , x � 0

0, x < 0

(
λ

λ − t

)n
n

λ

n

λ2

Normal with
parameters
(μ,σ 2)

f (x) = 1√
2πσ

× exp{−(x − μ)2/2σ 2},
−∞ < x < ∞

exp

{

μt + σ 2t2

2

}

μ σ 2

Another important result is that the moment generating function uniquely deter-
mines the distribution. That is, there exists a one-to-one correspondence between
the moment generating function and the distribution function of a random vari-
able.

Example 2.43 Suppose the moment generating function of a random variable
X is given by φ(t) = e3(et−1). What is P {X = 0}?

Solution: We see from Table 2.1 that φ(t) = e3(et−1) is the moment gener-
ating function of a Poisson random variable with mean 3. Hence, by the one-
to-one correspondence between moment generating functions and distribution
functions, it follows that X must be a Poisson random variable with mean 3.
Thus, P {X = 0} = e−3. �

Example 2.44 (Sums of Independent Binomial Random Variables) If X and
Y are independent binomial random variables with parameters (n,p) and (m,p),
respectively, then what is the distribution of X + Y ?

Solution: The moment generating function of X + Y is given by

φX+Y (t) = φX(t)φY (t) = (pet + 1 − p)n(pet + 1 − p)m

= (pet + 1 − p)m+n
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But (pet + (1 − p))m+n is just the moment generating function of a binomial
random variable having parameters m + n and p. Thus, this must be the distri-
bution of X + Y . �

Example 2.45 (Sums of Independent Poisson Random Variables) Calculate
the distribution of X+Y when X and Y are independent Poisson random variables
with means λ1 and λ2, respectively.

Solution:

φX+Y (t) = φX(t)φY (t)

= eλ1(e
t−1)eλ2(e

t−1)

= e(λ1+λ2)(e
t−1)

Hence, X + Y is Poisson distributed with mean λ1 + λ2, verifying the result
given in Example 2.36. �

Example 2.46 (Sums of Independent Normal Random Variables) Show that
if X and Y are independent normal random variables with parameters (μ1, σ

2
1 )

and (μ2, σ
2
2 ), respectively, then X +Y is normal with mean μ1 +μ2 and variance

σ 2
1 + σ 2

2 .

Solution:

φX+Y (t) = φX(t)φY (t)

= exp

{
σ 2

1 t2

2
+ μ1t

}

exp

{
σ 2

2 t2

2
+ μ2t

}

= exp

{
(σ 2

1 + σ 2
2 )t2

2
+ (μ1 + μ2)t

}

which is the moment generating function of a normal random variable with
mean μ1 + μ2 and variance σ 2

1 + σ 2
2 . Hence, the result follows since the mo-

ment generating function uniquely determines the distribution. �

Example 2.47 (The Poisson Paradigm) We showed in Section 2.2.4 that the
number of successes that occur in n independent trails, each of which results in
a success with probability p is, when n is large and p small, approximately a
Poisson random variable with parameter λ = np. This result, however, can be
substantially strengthened. First it is not necessary that the trials have the same
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success probability, only that all the success probabilities are small. To see that
this is the case, suppose that the trials are independent, with trial i resulting in
a success with probability pi , where all the pi , i = 1, . . . , n are small. Letting
Xi equal 1 if trial i is a success, and 0 otherwise, it follows that the number of
successes, call it X, can be expressed as

X =
n∑

i=1

Xi

Using that Xi is a Bernoulli (or binary) random variable, its moment generating
function is

E[etXi ] = pie
t + 1 − pi = 1 + pi(e

t − 1)

Now, using the result that, for |x| small,

ex ≈ 1 + x

it follows, because pi(e
t − 1) is small when pi is small, that

E[etXi ] = 1 + pi(e
t − 1) ≈ exp{pi(e

t − 1)}
Because the moment generating function of a sum of independent random vari-
ables is the product of their moment generating functions, the preceding implies
that

E[etX] ≈
n∏

i=1

exp{pi(e
t − 1)} = exp

{∑

i

pi(e
t − 1)

}

But the right side of the preceding is the moment generating function of a Poisson
random variable with mean

∑
i pi , thus arguing that this is approximately the

distribution of X.
Not only is it not necessary for the trials to have the same success probability

for the number of successes to approximately have a Poisson distribution, they
need not even be independent, provided that their dependence is weak. For in-
stance, recall the matching problem (Example 2.31) where n people randomly
select hats from a set consisting of one hat from each person. By regarding the
random selections of hats as constituting n trials, where we say that trial i is a
success if person i chooses his or her own hat, it follows that, with Ai being the
event that trial i is a success,

P(Ai) = 1

n
and P(Ai |Aj) = 1

n − 1
, j �= i

Hence, whereas the trials are not independent, their dependence appears, for large
n, to be weak. Because of this weak dependence, and the small trial success prob-
abilities, it would seem that the number of matches should approximately have a
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Poisson distribution with mean 1 when n is large, and this is shown to be the case
in Example 3.23.

The statement that “the number of successes in n trials that are either indepen-
dent or at most weakly dependent is, when the trial success probabilities are all
small, approximately a Poisson random variable” is known as the Poisson para-
digm. �

Remark For a nonnegative random variable X, it is often convenient to define
its Laplace transform g(t), t � 0, by

g(t) = φ(−t) = E[e−tX]
That is, the Laplace transform evaluated at t is just the moment generating func-
tion evaluated at −t . The advantage of dealing with the Laplace transform, rather
than the moment generating function, when the random variable is nonnegative is
that if X � 0 and t � 0, then

0 � e−tX � 1

That is, the Laplace transform is always between 0 and 1. As in the case of mo-
ment generating functions, it remains true that nonnegative random variables that
have the same Laplace transform must also have the same distribution. �

It is also possible to define the joint moment generating function of two or
more random variables. This is done as follows. For any n random variables
X1, . . . ,Xn, the joint moment generating function, φ(t1, . . . , tn), is defined for
all real values of t1, . . . , tn by

φ(t1, . . . , tn) = E[e(t1X1 +···+ tnXn)]
It can be shown that φ(t1, . . . , tn) uniquely determines the joint distribution of
X1, . . . ,Xn.

Example 2.48 (The Multivariate Normal Distribution) Let Z1, . . . ,Zn be a
set of n independent standard normal random variables. If, for some constants
aij ,1 � i � m,1 � j � n, and μi,1 � i � m,

X1 = a11Z1 + · · · + a1nZn + μ1,

X2 = a21Z1 + · · · + a2nZn + μ2,
...

Xi = ai1Z1 + · · · + ainZn + μi,
...

Xm = am1Z1 + · · · + amnZn + μm
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then the random variables X1, . . . ,Xm are said to have a multivariate normal dis-
tribution.

It follows from the fact that the sum of independent normal random variables
is itself a normal random variable that each Xi is a normal random variable with
mean and variance given by

E[Xi] = μi,

Var(Xi) =
n∑

j=1

a2
ij

Let us now determine

φ(t1, . . . , tm) = E[exp{t1X1 + · · · + tmXm}]
the joint moment generating function of X1, . . . ,Xm. The first thing to note is that
since

∑m
i=1tiXi is itself a linear combination of the independent normal random

variables Z1, . . . ,Zn, it is also normally distributed. Its mean and variance are
respectively

E

[
m∑

i=1

tiXi

]

=
m∑

i=1

tiμi

and

Var

(
m∑

i=1

tiXi

)

= Cov

⎛

⎝
m∑

i=1

tiXi,

m∑

j=1

tjXj

⎞

⎠

=
m∑

i=1

m∑

j=1

ti tj Cov(Xi,Xj )

Now, if Y is a normal random variable with mean μ and variance σ 2, then

E[eY ] = φY (t)|t=1 = eμ+σ 2/2

Thus, we see that

φ(t1, . . . , tm) = exp

⎧
⎨

⎩

m∑

i=1

tiμi + 1

2

m∑

i=1

m∑

j=1

ti tj Cov(Xi,Xj )

⎫
⎬

⎭

which shows that the joint distribution of X1, . . . ,Xm is completely determined
from a knowledge of the values of E[Xi] and Cov(Xi,Xj ), i, j = 1, . . . ,m. �
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2.6.1. The Joint Distribution of the Sample Mean and Sample
Variance from a Normal Population

Let X1, . . . ,Xn be independent and identically distributed random variables, each
with mean μ and variance σ 2. The random variable S2 defined by

S2 =
n∑

i=1

(Xi − X̄)2

n − 1

is called the sample variance of these data. To compute E[S2] we use the identity

n∑

i=1

(Xi − X̄)2 =
n∑

i=1

(Xi − μ)2 − n(X̄ − μ)2 (2.21)

which is proven as follows:

n∑

i=1

(Xi − X̄) =
n∑

i=1

(Xi − μ + μ − X̄)2

=
n∑

i=1

(Xi − μ)2 + n(μ − X̄)2 + 2(μ − X̄)

n∑

i=1

(Xi − μ)

=
n∑

i=1

(Xi − μ)2 + n(μ − X̄)2 + 2(μ − X̄)(nX̄ − nμ)

=
n∑

i=1

(Xi − μ)2 + n(μ − X̄)2 − 2n(μ − X̄)2

and Identity (2.21) follows.
Using Identity (2.21) gives

E[(n − 1)S2] =
n∑

i=1

E[(Xi − μ)2] − nE[(X̄ − μ)2]

= nσ 2 − n Var(X̄)

= (n − 1)σ 2 from Proposition 2.4(b)

Thus, we obtain from the preceding that

E[S2] = σ 2

We will now determine the joint distribution of the sample mean X̄ =∑n
i=1 Xi/n and the sample variance S2 when the Xi have a normal distribution.

To begin we need the concept of a chi-squared random variable.
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Definition 2.2 If Z1, . . . ,Zn are independent standard normal random vari-
ables, then the random variable

∑n
i=1 Z2

i is said to be a chi-squared random vari-
able with n degrees of freedom.

We shall now compute the moment generating function of
∑n

i=1 Z2
i . To begin,

note that

E[exp{tZ2
i }] = 1√

2π

∫ ∞

−∞
etx2

e−x2/2 dx

= 1√
2π

∫ ∞

−∞
e−x2/2σ 2

dx where σ 2 = (1 − 2t)−1

= σ

= (1 − 2t)−1/2

Hence,

E

[

exp

{

t

n∑

i=1

Z2
i

}]

=
n∏

i=1

E[exp{tZ2
i }] = (1 − 2t)−n/2

Now, let X1, . . . ,Xn be independent normal random variables, each with mean
μ and variance σ 2, and let X̄ = ∑n

i=1 Xi/n and S2 denote their sample mean
and sample variance. Since the sum of independent normal random variables is
also a normal random variable, it follows that X̄ is a normal random variable with
expected value μ and variance σ 2/n. In addition, from Proposition 2.4,

Cov(X̄,Xi − X̄) = 0, i = 1, . . . , n (2.22)

Also, since X̄,X1 − X̄,X2 − X̄, . . . ,Xn − X̄ are all linear combinations of the in-
dependent standard normal random variables (Xi − μ)/σ, i = 1, . . . , n, it follows
that the random variables X̄,X1 −X̄,X2 −X̄, . . . ,Xn−X̄ have a joint distribution
that is multivariate normal. However, if we let Y be a normal random variable with
mean μ and variance σ 2/n that is independent of X1, . . . ,Xn, then the random
variables Y,X1 − X̄,X2 − X̄, . . . ,Xn − X̄ also have a multivariate normal distrib-
ution, and by Equation (2.22), they have the same expected values and covariances
as the random variables X̄,Xi − X̄, i = 1, . . . , n. Thus, since a multivariate nor-
mal distribution is completely determined by its expected values and covariances,
we can conclude that the random vectors Y,X1 − X̄,X2 − X̄, . . . ,Xn − X̄ and
X̄,X1 − X̄,X2 − X̄, . . . ,Xn − X̄ have the same joint distribution; thus showing
that X̄ is independent of the sequence of deviations Xi − X̄, i = 1, . . . , n.
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Since X̄ is independent of the sequence of deviations Xi − X̄, i = 1, . . . , n, it
follows that it is also independent of the sample variance

S2 ≡
n∑

i=1

(Xi − X̄)2

n − 1

To determine the distribution of S2, use Identity (2.21) to obtain

(n − 1)S2 =
n∑

i=1

(Xi − μ)2 − n(X̄ − μ)2

Dividing both sides of this equation by σ 2 yields

(n − 1)S2

σ 2
+
(

X̄ − μ

σ/
√

n

)2

=
n∑

i=1

(Xi − μ)2

σ 2
(2.23)

Now,
∑n

i=1(Xi − μ)2/σ 2 is the sum of the squares of n independent standard
normal random variables, and so is a chi-squared random variable with n de-
grees of freedom; it thus has moment generating function (1 − 2t)−n/2. Also
[(X̄ − μ)/(σ/

√
n)]2 is the square of a standard normal random variable and so is

a chi-squared random variable with one degree of freedom; and thus has moment
generating function (1 − 2t)−1/2. In addition, we have previously seen that the
two random variables on the left side of Equation (2.23) are independent. There-
fore, because the moment generating function of the sum of independent random
variables is equal to the product of their individual moment generating functions,
we obtain that

E[et(n−1)S2/σ 2](1 − 2t)−1/2 = (1 − 2t)−n/2

or

E[et(n−1)S2/σ 2] = (1 − 2t)−(n−1)/2

But because (1 − 2t)−(n−1)/2 is the moment generating function of a chi-squared
random variable with n − 1 degrees of freedom, we can conclude, since the mo-
ment generating function uniquely determines the distribution of the random vari-
able, that this is the distribution of (n − 1)S2/σ 2.

Summing up, we have shown the following.

Proposition 2.5 If X1, . . . ,Xn are independent and identically distributed
normal random variables with mean μ and variance σ 2, then the sample mean X̄

and the sample variance S2 are independent. X̄ is a normal random variable with
mean μ and variance σ 2/n; (n − 1)S2/σ 2 is a chi-squared random variable with
n − 1 degrees of freedom.
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2.7. Limit Theorems

We start this section by proving a result known as Markov’s inequality.

Proposition 2.6 (Markov’s Inequality) If X is a random variable that takes
only nonnegative values, then for any value a > 0

P {X � a} � E[X]
a

Proof We give a proof for the case where X is continuous with density f :

E[X] =
∫ ∞

0
xf (x)dx

=
∫ a

0
xf (x)dx +

∫ ∞

a

xf (x) dx

�
∫ ∞

a

xf (x) dx

�
∫ ∞

a

af (x) dx

= a

∫ ∞

a

f (x) dx

= aP {X � a}

and the result is proven. �
As a corollary, we obtain the following.

Proposition 2.7 (Chebyshev’s Inequality) If X is a random variable with
mean μ and variance σ 2, then, for any value k > 0,

P {|X − μ| � k} � σ 2

k2

Proof Since (X−μ)2 is a nonnegative random variable, we can apply Markov’s
inequality (with a = k2) to obtain

P {(X − μ)2 � k2} � E[(X − μ)2]
k2
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But since (X −μ)2 � k2 if and only if |X −μ| � k, the preceding is equivalent to

P {|X − μ| � k} � E[(X − μ)2]
k2

= σ 2

k2

and the proof is complete. �
The importance of Markov’s and Chebyshev’s inequalities is that they enable

us to derive bounds on probabilities when only the mean, or both the mean and the
variance, of the probability distribution are known. Of course, if the actual distri-
bution were known, then the desired probabilities could be exactly computed, and
we would not need to resort to bounds.

Example 2.49 Suppose we know that the number of items produced in a
factory during a week is a random variable with mean 500.

(a) What can be said about the probability that this week’s production will be
at least 1000?

(b) If the variance of a week’s production is known to equal 100, then what can
be said about the probability that this week’s production will be between
400 and 600?

Solution: Let X be the number of items that will be produced in a week.

(a) By Markov’s inequality,

P {X � 1000} � E[X]
1000

= 500

1000
= 1

2

(b) By Chebyshev’s inequality,

P {|X − 500| � 100} � σ 2

(100)2
= 1

100

Hence,

P {|X − 500| < 100} � 1 − 1

100
= 99

100
and so the probability that this week’s production will be between 400
and 600 is at least 0.99. �

The following theorem, known as the strong law of large numbers, is probably
the most well-known result in probability theory. It states that the average of a
sequence of independent random variables having the same distribution will, with
probability 1, converge to the mean of that distribution.
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Theorem 2.1 (Strong Law of Large Numbers) Let X1,X2, . . . be a se-
quence of independent random variables having a common distribution, and let
E[Xi] = μ. Then, with probability 1,

X1 + X2 + · · · + Xn

n
→ μ as n → ∞

As an example of the preceding, suppose that a sequence of independent trials
is performed. Let E be a fixed event and denote by P(E) the probability that E

occurs on any particular trial. Letting

Xi =
{

1, if E occurs on the ith trial
0, if E does not occur on the ith trial

we have by the strong law of large numbers that, with probability 1,

X1 + · · · + Xn

n
→ E[X] = P(E) (2.24)

Since X1 +· · ·+Xn represents the number of times that the event E occurs in the
first n trials, we may interpret Equation (2.24) as stating that, with probability 1,
the limiting proportion of time that the event E occurs is just P(E).

Running neck and neck with the strong law of large numbers for the honor of
being probability theory’s number one result is the central limit theorem. Besides
its theoretical interest and importance, this theorem provides a simple method for
computing approximate probabilities for sums of independent random variables.
It also explains the remarkable fact that the empirical frequencies of so many
natural “populations” exhibit a bell-shaped (that is, normal) curve.

Theorem 2.2 (Central Limit Theorem) Let X1,X2, . . . be a sequence of in-
dependent, identically distributed random variables, each with mean μ and vari-
ance σ 2. Then the distribution of

X1 + X2 + · · · + Xn − nμ

σ
√

n

tends to the standard normal as n → ∞. That is,

P

{
X1 + X2 + · · · + Xn − nμ

σ
√

n
� a

}

→ 1√
2π

∫ a

−∞
e−x2/2 dx

as n → ∞.

Note that like the other results of this section, this theorem holds for any distri-
bution of the Xi ’s; herein lies its power.
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If X is binomially distributed with parameters n and p, then X has the same
distribution as the sum of n independent Bernoulli random variables, each with
parameter p. (Recall that the Bernoulli random variable is just a binomial random
variable whose parameter n equals 1.) Hence, the distribution of

X − E[X]√
Var(X)

= X − np√
np(1 − p)

approaches the standard normal distribution as n approaches ∞. The nor-
mal approximation will, in general, be quite good for values of n satisfying
np(1 − p) � 10.

Example 2.50 (Normal Approximation to the Binomial) Let X be the num-
ber of times that a fair coin, flipped 40 times, lands heads. Find the probability that
X = 20. Use the normal approximation and then compare it to the exact solution.

Solution: Since the binomial is a discrete random variable, and the normal
a continuous random variable, it leads to a better approximation to write the
desired probability as

P {X = 20} = P {19.5 < X < 20.5}

= P

{
19.5 − 20√

10
<

X − 20√
10

<
20.5 − 20√

10

}

= P

{

−0.16 <
X − 20√

10
< 0.16

}

≈ �(0.16) − �(−0.16)

where �(x), the probability that the standard normal is less than x is given by

�(x) = 1√
2π

∫ x

−∞
e−y2/2 dy

By the symmetry of the standard normal distribution

�(−0.16) = P {N(0, 1) > 0.16} = 1 − �(0.16)

where N(0, 1) is a standard normal random variable. Hence, the desired prob-
ability is approximated by

P {X = 20} ≈ 2�(0.16) − 1

Using Table 2.3, we obtain that

P {X = 20} ≈ 0.1272
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Table 2.3 Area �(x) under the Standard Normal Curve to the Left of x

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5597 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8557 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

The exact result is

P {X = 20} =
(

40

20

)(
1

2

)40

which can be shown to equal 0.1268. �
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Example 2.51 Let Xi, i = 1,2, . . . ,10 be independent random variables,
each being uniformly distributed over (0, 1). Estimate P {∑10

1 Xi > 7}.
Solution: Since E[Xi] = 1

2 , Var(Xi) = 1
12 we have by the central limit the-

orem that

P

{
10∑

1

Xi > 7

}

= P

⎧
⎪⎪⎨

⎪⎪⎩

∑10
1 Xi − 5

√

10
(

1
12

) >
7 − 5

√

10
(

1
12

)

⎫
⎪⎪⎬

⎪⎪⎭

≈ 1 − �(2.2)

= 0.0139 �

Example 2.52 The lifetime of a special type of battery is a random variable
with mean 40 hours and standard deviation 20 hours. A battery is used until it
fails, at which point it is replaced by a new one. Assuming a stockpile of 25 such
batteries, the lifetimes of which are independent, approximate the probability that
over 1100 hours of use can be obtained.

Solution: If we let Xi denote the lifetime of the ith battery to be put in
use, then we desire p = P {X1 + · · · + X25 > 1100}, which is approximated as
follows:

p = P

{
X1 + · · · + X25 − 1000

20
√

25
>

1100 − 1000

20
√

25

}

≈ P {N(0,1) > 1}
= 1 − �(1)

≈ 0.1587 �

We now present a heuristic proof of the Central Limit theorem. Suppose first
that the Xi have mean 0 and variance 1, and let E[etX] denote their common
moment generating function. Then, the moment generating function of X1 +···+Xn√

n

is

E

[

exp

{

t

(
X1 + · · · + Xn√

n

)}]

= E
[
etX1/

√
netX2/

√
n · · · etXn/

√
n
]

= (
E
[
etX/

√
n
])n by independence

Now, for n large, we obtain from the Taylor series expansion of ey that

etX/
√

n ≈ 1 + tX√
n

+ t2X2

2n



2.8. Stochastic Processes 83

Taking expectations shows that when n is large

E
[
etX/

√
n
] ≈ 1 + tE[X]√

n
+ t2E[X2]

2n

= 1 + t2

2n
because E[X] = 0, E[X2] = 1

Therefore, we obtain that when n is large

E

[

exp

{

t

(
X1 + · · · + Xn√

n

)}]

≈
(

1 + t2

2n

)n

When n goes to ∞ the approximation can be shown to become exact and we have
that

lim
n→∞E

[

exp

{

t

(
X1 + · · · + Xn√

n

)}]

= et2/2

Thus, the moment generating function of X1+···+Xn√
n

converges to the moment
generating function of a (standard) normal random variable with mean 0 and vari-
ance 1. Using this, it can be proven that the distribution function of the random
variable X1+···+Xn√

n
converges to the standard normal distribution function �.

When the Xi have mean μ and variance σ 2, the random variables Xi−μ
σ

have
mean 0 and variance 1. Thus, the preceding shows that

P

{
X1 − μ + X2 − μ + · · · + Xn − μ

σ
√

n
� a

}

→ �(a)

which proves the central limit theorem.

2.8. Stochastic Processes

A stochastic process {X(t), t ∈ T } is a collection of random variables. That is,
for each t ∈ T ,X(t) is a random variable. The index t is often interpreted as time
and, as a result, we refer to X(t) as the state of the process at time t . For example,
X(t) might equal the total number of customers that have entered a supermarket
by time t ; or the number of customers in the supermarket at time t ; or the total
amount of sales that have been recorded in the market by time t ; etc.

The set T is called the index set of the process. When T is a countable set
the stochastic process is said to be a discrete-time process. If T is an interval of
the real line, the stochastic process is said to be a continuous-time process. For
instance, {Xn,n = 0,1, . . .} is a discrete-time stochastic process indexed by the



84 2 Random Variables

nonnegative integers; while {X(t), t � 0} is a continuous-time stochastic process
indexed by the nonnegative real numbers.

The state space of a stochastic process is defined as the set of all possible values
that the random variables X(t) can assume.

Thus, a stochastic process is a family of random variables that describes the
evolution through time of some (physical) process. We shall see much of stochas-
tic processes in the following chapters of this text.

Example 2.53 Consider a particle that moves along a set of m + 1 nodes,
labeled 0,1, . . . ,m, that are arranged around a circle (see Figure 2.3). At each
step the particle is equally likely to move one position in either the clockwise or
counterclockwise direction. That is, if Xn is the position of the particle after its
nth step then

P {Xn+1 = i + 1|Xn = i} = P {Xn+1 = i − 1|Xn = i} = 1
2

where i + 1 ≡ 0 when i = m, and i − 1 ≡ m when i = 0. Suppose now that the
particle starts at 0 and continues to move around according to the preceding rules
until all the nodes 1,2, . . . ,m have been visited. What is the probability that node
i, i = 1, . . . ,m, is the last one visited?

Solution: Surprisingly enough, the probability that node i is the last node
visited can be determined without any computations. To do so, consider the
first time that the particle is at one of the two neighbors of node i, that is, the
first time that the particle is at one of the nodes i − 1 or i + 1 (with m+ 1 ≡ 0).
Suppose it is at node i −1 (the argument in the alternative situation is identical).
Since neither node i nor i + 1 has yet been visited, it follows that i will be the
last node visited if and only if i + 1 is visited before i. This is so because in

Figure 2.3. Particle moving around a circle.
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order to visit i + 1 before i the particle will have to visit all the nodes on the
counterclockwise path from i − 1 to i + 1 before it visits i. But the probability
that a particle at node i − 1 will visit i + 1 before i is just the probability that a
particle will progress m−1 steps in a specified direction before progressing one
step in the other direction. That is, it is equal to the probability that a gambler
who starts with one unit, and wins one when a fair coin turns up heads and loses
one when it turns up tails, will have his fortune go up by m − 1 before he goes
broke. Hence, because the preceding implies that the probability that node i is
the last node visited is the same for all i, and because these probabilities must
sum to 1, we obtain

P {i is the last node visited} = 1/m, i = 1, . . . ,m �

Remark The argument used in Example 2.53 also shows that a gambler who is
equally likely to either win or lose one unit on each gamble will be down n before
being up 1 with probability 1/(n + 1); or equivalently

P {gambler is up 1 before being down n} = n

n + 1

Suppose now we want the probability that the gambler is up 2 before being
down n. Upon conditioning on whether he reaches up 1 before down n, we obtain
that

P {gambler is up 2 before being down n}
= P {up 2 before down n|up 1 before down n} n

n + 1

= P {up 1 before down n + 1} n

n + 1

= n + 1

n + 2

n

n + 1
= n

n + 2

Repeating this argument yields that

P {gambler is up k before being down n} = n

n + k

Exercises

1. An urn contains five red, three orange, and two blue balls. Two balls are
randomly selected. What is the sample space of this experiment? Let X represent
the number of orange balls selected. What are the possible values of X? Calculate
P {X = 0}.
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2. Let X represent the difference between the number of heads and the number
of tails obtained when a coin is tossed n times. What are the possible values of X?

3. In Exercise 2, if the coin is assumed fair, then, for n = 2, what are the prob-
abilities associated with the values that X can take on?

*4. Suppose a die is rolled twice. What are the possible values that the following
random variables can take on?

(i) The maximum value to appear in the two rolls.
(ii) The minimum value to appear in the two rolls.

(iii) The sum of the two rolls.
(iv) The value of the first roll minus the value of the second roll.

5. If the die in Exercise 4 is assumed fair, calculate the probabilities associated
with the random variables in (i)–(iv).

6. Suppose five fair coins are tossed. Let E be the event that all coins land
heads. Define the random variable IE

IE =
{

1, if E occurs
0, if Ec occurs

For what outcomes in the original sample space does IE equal 1? What is
P {IE = 1}?
7. Suppose a coin having probability 0.7 of coming up heads is tossed three
times. Let X denote the number of heads that appear in the three tosses. Determine
the probability mass function of X.

8. Suppose the distribution function of X is given by

F(b) =
⎧
⎨

⎩

0, b < 0
1
2 , 0 � b < 1

1, 1 � b < ∞
What is the probability mass function of X?

9. If the distribution function of F is given by

F(b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, b < 0
1
2 , 0 � b < 1
3
5 , 1 � b < 2
4
5 , 2 � b < 3
9
10 , 3 � b < 3.5

1, b � 3.5

calculate the probability mass function of X.
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10. Suppose three fair dice are rolled. What is the probability at most one six
appears?

*11. A ball is drawn from an urn containing three white and three black balls.
After the ball is drawn, it is then replaced and another ball is drawn. This goes on
indefinitely. What is the probability that of the first four balls drawn, exactly two
are white?

12. On a multiple-choice exam with three possible answers for each of the five
questions, what is the probability that a student would get four or more correct
answers just by guessing?

13. An individual claims to have extrasensory perception (ESP). As a test, a fair
coin is flipped ten times, and he is asked to predict in advance the outcome. Our
individual gets seven out of ten correct. What is the probability he would have
done at least this well if he had no ESP? (Explain why the relevant probability is
P {X � 7} and not P {X = 7}.)
14. Suppose X has a binomial distribution with parameters 6 and 1

2 . Show that
X = 3 is the most likely outcome.

15. Let X be binomially distributed with parameters n and p. Show that as k

goes from 0 to n, P(X = k) increases monotonically, then decreases monotoni-
cally reaching its largest value

(a) in the case that (n + 1)p is an integer, when k equals either (n + 1)p − 1
or (n + 1)p,
(b) in the case that (n + 1)p is not an integer, when k satisfies (n + 1)p − 1 <

k < (n + 1)p.

Hint: Consider P {X = k}/P {X = k − 1} and see for what values of k it is
greater or less than 1.

*16. An airline knows that 5 percent of the people making reservations on a
certain flight will not show up. Consequently, their policy is to sell 52 tickets for
a flight that can hold only 50 passengers. What is the probability that there will be
a seat available for every passenger who shows up?

17. Suppose that an experiment can result in one of r possible outcomes, the ith
outcome having probability pi , i = 1, . . . , r ,

∑r
i=1 pi = 1. If n of these experi-

ments are performed, and if the outcome of any one of the n does not affect the
outcome of the other n − 1 experiments, then show that the probability that the
first outcome appears x1 times, the second x2 times, and the r th xr times is

n!
x1!x2! . . . xr ! p

x1
1 p

x2
2 · · · pxr

r when x1 + x2 + · · · + xr = n

This is known as the multinomial distribution.
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18. Show that when r = 2 the multinomial reduces to the binomial.

19. In Exercise 17, let Xi denote the number of times the ith outcome appears,
i = 1, . . . , r . What is the probability mass function of X1 + X2 + . . . + Xk?

20. A television store owner figures that 50 percent of the customers entering
his store will purchase an ordinary television set, 20 percent will purchase a color
television set, and 30 percent will just be browsing. If five customers enter his
store on a certain day, what is the probability that two customers purchase color
sets, one customer purchases an ordinary set, and two customers purchase noth-
ing?

21. In Exercise 20, what is the probability that our store owner sells three or
more televisions on that day?

22. If a fair coin is successively flipped, find the probability that a head first
appears on the fifth trial.

*23. A coin having probability p of coming up heads is successively flipped
until the r th head appears. Argue that X, the number of flips required, will be n,
n � r , with probability

P {X = n} =
(

n − 1

r − 1

)

pr(1 − p)n−r , n � r

This is known as the negative binomial distribution.

Hint: How many successes must there be in the first n − 1 trials?

24. The probability mass function of X is given by

p(k) =
(

r + k − 1

r − 1

)

pr(1 − p)k, k = 0,1, . . .

Give a possible interpretation of the random variable X.

Hint: See Exercise 23.

In Exercises 25 and 26, suppose that two teams are playing a series of games,
each of which is independently won by team A with probability p and by team B

with probability 1 − p. The winner of the series is the first team to win i games.

25. If i = 4, find the probability that a total of 7 games are played. Also show
that this probability is maximized when p = 1/2.

26. Find the expected number of games that are played when

(a) i = 2;
(b) i = 3.

In both cases, show that this number is maximized when p = 1/2.
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*27. A fair coin is independently flipped n times, k times by A and n − k times
by B . Show that the probability that A and B flip the same number of heads is
equal to the probability that there are a total of k heads.

28. Suppose that we want to generate a random variable X that is equally likely
to be either 0 or 1, and that all we have at our disposal is a biased coin that,
when flipped, lands on heads with some (unknown) probability p. Consider the
following procedure:

1. Flip the coin, and let 01, either heads or tails, be the result.

2. Flip the coin again, and let 02 be the result.

3. If 01 and 02 are the same, return to step 1.

4. If 02 is heads, set X = 0, otherwise set X = 1.

(a) Show that the random variable X generated by this procedure is equally
likely to be either 0 or 1.
(b) Could we use a simpler procedure that continues to flip the coin until the
last two flips are different, and then sets X = 0 if the final flip is a head, and
sets X = 1 if it is a tail?

29. Consider n independent flips of a coin having probability p of landing heads.
Say a changeover occurs whenever an outcome differs from the one preceding
it. For instance, if the results of the flips are H H T H T H H T , then there
are a total of five changeovers. If p = 1/2, what is the probability there are k

changeovers?

30. Let X be a Poisson random variable with parameter λ. Show that P {X = i}
increases monotonically and then decreases monotonically as i increases, reach-
ing its maximum when i is the largest integer not exceeding λ.

Hint: Consider P {X = i}/P {X = i − 1}.
31. Compare the Poisson approximation with the correct binomial probability
for the following cases:

(i) P {X = 2} when n = 8, p = 0.1.
(ii) P {X = 9} when n = 10, p = 0.95.

(iii) P {X = 0} when n = 10, p = 0.1.
(iv) P {X = 4} when n = 9, p = 0.2.

32. If you buy a lottery ticket in 50 lotteries, in each of which your chance of
winning a prize is 1

100 , what is the (approximate) probability that you will win a
prize (a) at least once, (b) exactly once, (c) at least twice?
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33. Let X be a random variable with probability density

f (x) =
{
c(1 − x2), −1 < x < 1
0, otherwise

(a) What is the value of c?
(b) What is the cumulative distribution function of X?

34. Let the probability density of X be given by

f (x) =
{
c(4x − 2x2), 0 < x < 2
0, otherwise

(a) What is the value of c?

(b) P
{

1
2 < X < 3

2

}
= ?

35. The density of X is given by

f (x) =
{

10/x2, for x > 10
0, for x � 10

What is the distribution of X? Find P {X > 20}.
36. A point is uniformly distributed within the disk of radius 1. That is, its den-
sity is

f (x, y) = C, 0 � x2 + y2 � 1

Find the probability that its distance from the origin is less than x, 0 � x � 1.

37. Let X1, X2, . . . ,Xn be independent random variables, each having a uni-
form distribution over (0,1). Let M = maximum (X1, X2, . . . ,Xn). Show that the
distribution function of M, FM(·), is given by

FM(x) = xn, 0 � x � 1

What is the probability density function of M?

*38. If the density function of X equals

f (x) =
{
ce−2x, 0 < x < ∞
0, x < 0

find c. What is P {X > 2}?
39. The random variable X has the following probability mass function

p(1) = 1
2 , p(2) = 1

3 , p(24) = 1
6

Calculate E[X].
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40. Suppose that two teams are playing a series of games, each of which is
independently won by team A with probability p and by team B with probability
1 − p. The winner of the series is the first team to win four games. Find the
expected number of games that are played, and evaluate this quantity when p =
1/2.

41. Consider the case of arbitrary p in Exercise 29. Compute the expected num-
ber of changeovers.

42. Suppose that each coupon obtained is, independent of what has been previ-
ously obtained, equally likely to be any of m different types. Find the expected
number of coupons one needs to obtain in order to have at least one of each type.

Hint: Let X be the number needed. It is useful to represent X by

X =
m∑

i=1

Xi

where each Xi is a geometric random variable.

43. An urn contains n + m balls, of which n are red and m are black. They
are withdrawn from the urn, one at a time and without replacement. Let X be the
number of red balls removed before the first black ball is chosen. We are interested
in determining E[X]. To obtain this quantity, number the red balls from 1 to n.
Now define the random variables Xi, i = 1, . . . , n, by

Xi =
{

1, if red ball i is taken before any black ball is chosen
0, otherwise

(a) Express X in terms of the Xi .
(b) Find E[X].

44. In Exercise 43, let Y denote the number of red balls chosen after the first but
before the second black ball has been chosen.

(a) Express Y as the sum of n random variables, each of which is equal to
either 0 or 1.
(b) Find E[Y ].
(c) Compare E[Y ] to E[X] obtained in Exercise 43.
(d) Can you explain the result obtained in part (c)?

45. A total of r keys are to be put, one at a time, in k boxes, with each key
independently being put in box i with probability pi,

∑k
i=1 pi = 1. Each time a

key is put in a nonempty box, we say that a collision occurs. Find the expected
number of collisions.
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46. If X is a nonnegative integer valued random variable, show that

E[X] =
∞∑

n=1

P {X � n} =
∞∑

n=0

P {X > n}

Hint: Define the sequence of random variables In, n � 1, by

In =
{

1, if n � X

0, if n > X

Now express X in terms of the In.

*47. Consider three trials, each of which is either a success or not. Let X denote
the number of successes. Suppose that E[X] = 1.8.

(a) What is the largest possible value of P {X = 3}?
(b) What is the smallest possible value of P {X = 3}?

In both cases, construct a probability scenario that results in P {X = 3} having the
desired value.

48. If X is uniformly distributed over (0,1), calculate E[X2].
*49. Prove that E[X2] � (E[X])2. When do we have equality?

50. Let c be a constant. Show that

(i) Var(cX) = c2Var(X);

(ii) Var(c + X) = Var(X).

51. A coin, having probability p of landing heads, is flipped until head appears
for the r th time. Let N denote the number of flips required. Calculate E[N ].

Hint: There is an easy way of doing this. It involves writing N as the sum of
r geometric random variables.

52. (a) Calculate E[X] for the maximum random variable of Exercise 37.
(b) Calculate E[X] for X as in Exercise 33.
(c) Calculate E[X] for X as in Exercise 34.

53. If X is uniform over (0, 1), calculate E[Xn] and Var(Xn).

54. Let X and Y each take on either the value 1 or −1. Let

p(1, 1) = P {X = 1, Y = 1},
p(1, −1) = P {X = 1, Y = −1},
p(−1, 1) = P {X = −1, Y = 1},

p(−1, −1) = P {X = −1, Y = −1}
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Suppose that E[X] = E[Y ] = 0. Show that

(a) p(1, 1) = p(−1, −1);
(b) p(1, −1) = p(−1, 1).

Let p = 2p(1, 1). Find

(c) Var(X);
(d) Var(Y );
(e) Cov(X,Y ).

55. Let X be a positive random variable having density function f (x). If
f (x) � c for all x, show that, for a > 0,

P {X > a} � 1 − ac

56. There are n types of coupons. Each newly obtained coupon is, indepen-
dently, type i with probability pi , i = 1, . . . , n. Find the expected number and the
variance of the number of distinct types obtained in a collection of k coupons.

57. Suppose that X and Y are independent binomial random variables with pa-
rameters (n,p) and (m,p). Argue probabilistically (no computations necessary)
that X + Y is binomial with parameters (n + m,p).

58. An urn contains 2n balls, of which r are red. The balls are randomly re-
moved in n successive pairs. Let X denote the number of pairs in which both
balls are red.

(a) Find E[X].
(b) Find Var(X).

59. Let X1,X2,X3, and X4 be independent continuous random variables with
a common distribution function F and let

p = P {X1 < X2 > X3 < X4}

(a) Argue that the value of p is the same for all continuous distribution func-
tions F .
(b) Find p by integrating the joint density function over the appropriate region.
(c) Find p by using the fact that all 4! possible orderings of X1, . . . ,X4 are
equally likely.

60. Calculate the moment generating function of the uniform distribution
on (0,1). Obtain E[X] and Var[X] by differentiating.

61. Suppose that X takes on each of the values 1, 2, 3 with probability 1
3 . What

is the moment generating function? Derive E[X], E[X2], and E[X3] by differ-
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entiating the moment generating function and then compare the obtained result
with a direct derivation of these moments.

62. In deciding upon the appropriate premium to charge, insurance companies
sometimes use the exponential principle, defined as follows. With X as the ran-
dom amount that it will have to pay in claims, the premium charged by the insur-
ance company is

P = 1

a
ln
(
E[eaX])

where a is some specified positive constant. Find P when X is an exponential
random variable with parameter λ, and a = αλ, where 0 < α < 1.

63. Calculate the moment generating function of a geometric random variable.

*64. Show that the sum of independent identically distributed exponential ran-
dom variables has a gamma distribution.

65. Consider Example 2.48. Find Cov(Xi, Xj ) in terms of the ars .

66. Use Chebyshev’s inequality to prove the weak law of large numbers.
Namely, if X1, X2, . . . are independent and identically distributed with mean μ

and variance σ 2 then, for any ε > 0,

P

{∣
∣
∣
∣
X1 + X2 + · · · + Xn

n
− μ

∣
∣
∣
∣> ε

}

→ 0 as n → ∞

67. Suppose that X is a random variable with mean 10 and variance 15. What
can we say about P {5 < X < 15}?
68. Let X1, X2, . . . ,X10 be independent Poisson random variables with mean 1.

(i) Use the Markov inequality to get a bound on P {X1 + · · · + X10 � 15}.
(ii) Use the central limit theorem to approximate P {X1 + · · · + X10 � 15}.

69. If X is normally distributed with mean 1 and variance 4, use the tables to
find P {2 < X < 3}.
*70. Show that

lim
n→∞ e−n

n∑

k=0

nk

k! = 1

2

Hint: Let Xn be Poisson with mean n. Use the central limit theorem to show
that P {Xn � n} → 1

2 .

71. Let X denote the number of white balls selected when k balls are chosen at
random from an urn containing n white and m black balls.
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(i) Compute P {X = i}.
(ii) Let, for i = 1, 2, . . . , k; j = 1, 2, . . . , n,

Xi =
{

1, if the ith ball selected is white
0, otherwise

Yj =
{

1, if white ball j is selected
0, otherwise

Compute E[X] in two ways by expressing X first as a function of the Xis and
then of the Yj s.

*72. Show that Var(X) = 1 when X is the number of men who select their own
hats in Example 2.31.

73. For the multinomial distribution (Exercise 17), let Ni denote the number of
times outcome i occurs. Find

(i) E[Ni];
(ii) Var(Ni);

(iii) Cov(Ni, Nj );
(iv) Compute the expected number of outcomes that do not occur.

74. Let X1, X2, . . . be a sequence of independent identically distributed contin-
uous random variables. We say that a record occurs at time n if Xn > max(X1, . . . ,

Xn−1). That is, Xn is a record if it is larger than each of X1, . . . ,Xn−1. Show

(i) P {a record occurs at time n} = 1/n;
(ii) E[number of records by time n] =∑n

i=1 1/i;
(iii) Var(number of records by time n) =∑n

i=1(i − 1)/i2;
(iv) Let N = min{n: n > 1 and a record occurs at time n}. Show E[N ] = ∞.

Hint: For (ii) and (iii) represent the number of records as the sum of indicator
(that is, Bernoulli) random variables.

75. Let a1 < a2 < · · · < an denote a set of n numbers, and consider any per-
mutation of these numbers. We say that there is an inversion of ai and aj in the
permutation if i < j and aj precedes ai . For instance the permutation 4, 2, 1, 5,
3 has 5 inversions—(4, 2), (4, 1), (4, 3), (2, 1), (5, 3). Consider now a random
permutation of a1, a2, . . . , an—in the sense that each of the n! permutations is
equally likely to be chosen—and let N denote the number of inversions in this
permutation. Also, let

Ni = number of k : k < i, ai precedes ak in the permutation

and note that N =∑n
i=1 Ni .
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(i) Show that N1, . . . ,Nn are independent random variables.
(ii) What is the distribution of Ni?

(iii) Compute E[N ] and Var(N ).

76. Let X and Y be independent random variables with means μx and μy and
variances σ 2

x and σ 2
y . Show that

Var(XY) = σ 2
x σ 2

y + μ2
yσ

2
x + μ2

xσ
2
y

77. Let X and Y be independent normal random variables, each having parame-
ters μ and σ 2. Show that X + Y is independent of X − Y.

Hint: Find their joint moment generating function.

78. Let φ(t1, . . . , tn) denote the joint moment generating function of X1, . . . ,Xn.

(a) Explain how the moment generating function of Xi, φXi
(ti), can be ob-

tained from φ(t1, . . . , tn).
(b) Show that X1, . . . ,Xn are independent if and only if

φ(t1, . . . , tn) = φx1(t1) · · ·φXn(tn)
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Conditional Probability
and Conditional
Expectation

3
3.1. Introduction

One of the most useful concepts in probability theory is that of conditional prob-
ability and conditional expectation. The reason is twofold. First, in practice, we
are often interested in calculating probabilities and expectations when some par-
tial information is available; hence, the desired probabilities and expectations are
conditional ones. Secondly, in calculating a desired probability or expectation it is
often extremely useful to first “condition” on some appropriate random variable.

3.2. The Discrete Case

Recall that for any two events E and F , the conditional probability of E given F

is defined, as long as P(F) > 0, by

P(E|F) = P(EF)

P (F )

Hence, if X and Y are discrete random variables, then it is natural to define the
conditional probability mass function of X given that Y = y, by

pX|Y (x|y) = P {X = x|Y = y}

= P {X = x,Y = y}
P {Y = y}

= p(x, y)

pY (y)

97
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for all values of y such that P {Y = y} > 0. Similarly, the conditional probabil-
ity distribution function of X given that Y = y is defined, for all y such that
P {Y = y} > 0, by

FX|Y (x|y) = P {X � x|Y = y}
=
∑

a�x

pX|Y (a|y)

Finally, the conditional expectation of X given that Y = y is defined by

E[X|Y = y] =
∑

x

xP {X = x|Y = y}

=
∑

x

xpX|Y (x|y)

In other words, the definitions are exactly as before with the exception that
everything is now conditional on the event that Y = y. If X is independent of Y ,
then the conditional mass function, distribution, and expectation are the same as
the unconditional ones. This follows, since if X is independent of Y , then

pX|Y (x|y) = P {X = x|Y = y}
= P {X = x}

Example 3.1 Suppose that p(x, y), the joint probability mass function of X

and Y , is given by

p(1,1) = 0.5, p(1,2) = 0.1, p(2,1) = 0.1, p(2,2) = 0.3

Calculate the conditional probability mass function of X given that Y = 1.

Solution: We first note that

pY (1) =
∑

x

p(x,1) = p(1,1) + p(2,1) = 0.6

Hence,

pX|Y (1|1) = P {X = 1|Y = 1}

= P {X = 1, Y = 1}
P {Y = 1}

= p(1,1)

pY (1)

= 5

6
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Similarly,

pX|Y (2|1) = p(2,1)

pY (1)
= 1

6
�

Example 3.2 If X1 and X2 are independent binomial random variables with
respective parameters (n1,p) and (n2,p), calculate the conditional probability
mass function of X1 given that X1 + X2 = m.

Solution: With q = 1 − p,

P {X1 = k|X1 + X2 = m} = P {X1 = k,X1 + X2 = m}
P {X1 + X2 = m}

= P {X1 = k,X2 = m − k}
P {X1 + X2 = m}

= P {X1 = k}P {X2 = m − k}
P {X1 + X2 = m}

=

(
n1

k

)

pkqn1−k

(
n2

m − k

)

pm−kqn2−m+k

(
n1 + n2

m

)

pmqn1+n2−m

where we have used that X1 + X2 is a binomial random variable with parame-
ters (n1 + n2,p) (see Example 2.44). Thus, the conditional probability mass
function of X1, given that X1 + X2 = m, is

P {X1 = k|X1 + X2 = m} =

(
n1

k

)(
n2

m − k

)

(
n1 + n2

m

) (3.1)

The distribution given by Equation (3.1), first seen in Example 2.34, is known
as the hypergeometric distribution. It is the distribution of the number of blue
balls that are chosen when a sample of m balls is randomly chosen from an
urn that contains n1 blue and n2 red balls. ( To intuitively see why the condi-
tional distribution is hypergeometric, consider n1 + n2 independent trials that
each result in a success with probability p; let X1 represent the number of suc-
cesses in the first n1 trials and let X2 represent the number of successes in the
final n2 trials. Because all trials have the same probability of being a success,
each of the

(
n1+n2

m

)
subsets of m trials is equally likely to be the success trials;

thus, the number of the m success trials that are among the first n1 trials is a
hypergeometric random variable.) �
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Example 3.3 If X and Y are independent Poisson random variables with re-
spective means λ1 and λ2, calculate the conditional expected value of X given
that X + Y = n.

Solution: Let us first calculate the conditional probability mass function of
X given that X + Y = n. We obtain

P {X = k|X + Y = n} = P {X = k,X + Y = n}
P {X + Y = n}

= P {X = k,Y = n − k}
P {X + Y = n}

= P {X = k}P {Y = n − k}
P {X + Y = n}

where the last equality follows from the assumed independence of X and Y .
Recalling (see Example 2.36) that X + Y has a Poisson distribution with mean
λ1 + λ2, the preceding equation equals

P {X = k|X + Y = n} = e−λ1λk
1

k!
e−λ2λn−k

2

(n − k)!
[
e−(λ1+λ2)(λ1 + λ2)

n

n!
]−1

= n!
(n − k)!k!

λk
1λ

n−k
2

(λ1 + λ2)n

=
(

n

k

)(
λ1

λ1 + λ2

)k (
λ2

λ1 + λ2

)n−k

In other words, the conditional distribution of X given that X + Y = n, is the
binomial distribution with parameters n and λ1/(λ1 + λ2). Hence,

E{X|X + Y = n} = n
λ1

λ1 + λ2
�

Example 3.4 Consider an experiment which results in one of three possible
outcomes with outcome i occurring with probability pi, i = 1,2,3,

∑3
i=1 pi = 1.

Suppose that n independent replications of this experiment are performed and let
Xi, i = 1,2,3, denote the number of times outcome i appears. Determine the
conditional expectation of X1 given that X2 = m.
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Solution: For k � n − m,

P {X1 = k|X2 = m} = P {X1 = k,X2 = m}
P {X2 = m}

Now if X1 = k and X2 = m, then it follows that X3 = n − k − m.
However,

P {X1 = k, X2 = m, X3 = n − k − m}

= n!
k!m!(n − k − m)!p

k
1p

m
2 p

(n−k−m)
3 (3.2)

This follows since any particular sequence of the n experiments having out-
come 1 appearing k times, outcome 2 m times, and outcome 3 (n −
k − m) times has probability pk

1pm
2 p

(n−k−m)
3 of occurring. Since there are

n!/[k!m!(n − k − m)!] such sequences, Equation (3.2) follows.
Therefore, we have

P {X1 = k|X2 = m} =
n!

k!m!(n − k − m)! pk
1p

m
2 p

(n−k−m)
3

n!
m!(n − m)! pm

2 (1 − p2)
n−m

where we have used the fact that X2 has a binomial distribution with parameters
n and p2. Hence,

P {X1 = k|X2 = m} = (n − m)!
k!(n − m − k)!

(
p1

1 − p2

)k (
p3

1 − p2

)n−m−k

or equivalently, writing p3 = 1 − p1 − p2,

P {X1 = k|X2 = m} =
(

n − m

k

)(
p1

1 − p2

)k (

1 − p1

1 − p2

)n−m−k

In other words, the conditional distribution of X1, given that X2 = m, is bino-
mial with parameters n − m and p1/(1 − p2). Consequently,

E[X1|X2 = m] = (n − m)
p1

1 − p2
�

Remarks (i) The desired conditional probability in Example 3.4 could also
have been computed in the following manner. Consider the n − m experiments
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that did not result in outcome 2. For each of these experiments, the probability
that outcome 1 was obtained is given by

P {outcome 1|not outcome 2} = P {outcome 1,not outcome 2}
P {not outcome 2}

= p1

1 − p2

It therefore follows that, given X2 = m, the number of times outcome 1 occurs is
binomially distributed with parameters n − m and p1/(1 − p2).

(ii) Conditional expectations possess all of the properties of ordinary expecta-
tions. For instance, such identities as

E

[
n∑

i=1

Xi |Y = y

]

=
n∑

i=1

E[Xi |Y = y]

remain valid.

Example 3.5 There are n components. On a rainy day, component i will func-
tion with probability pi ; on a nonrainy day, component i will function with prob-
ability qi , for i = 1, . . . , n. It will rain tomorrow with probability α. Calculate the
conditional expected number of components that function tomorrow, given that it
rains.

Solution: Let

Xi =
{

1, if component i functions tomorrow
0, otherwise

Then, with Y defined to equal 1 if it rains tomorrow, and 0 otherwise, the de-
sired conditional expectation is obtained as follows.

E

[
n∑

t=1

Xi |Y = 1

]

=
n∑

i=1

E[Xi |Y = 1]

=
n∑

i=1

pi �

3.3. The Continuous Case

If X and Y have a joint probability density function f (x, y), then the conditional
probability density function of X, given that Y = y, is defined for all values of y
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such that fY (y) > 0, by

fX|Y (x|y) = f (x, y)

fY (y)

To motivate this definition, multiply the left side by dx and the right side by
(dx dy)/dy to get

fX|Y (x|y)dx = f (x, y) dx dy

fY (y) dy

≈ P {x � X � x + dx, y � Y � y + dy}
P {y � Y � y + dy}

= P {x � X � x + dx|y � Y � y + dy}
In other words, for small values dx and dy, fX|Y (x|y)dx is approximately the
conditional probability that X is between x and x + dx given that Y is between y

and y + dy.
The conditional expectation of X, given that Y = y, is defined for all values of

y such that fY (y) > 0, by

E[X|Y = y] =
∫ ∞

−∞
xfX|Y (x|y) dx

Example 3.6 Suppose the joint density of X and Y is given by

f (x, y) =
{

6xy(2 − x − y), 0 < x < 1,0 < y < 1

0, otherwise

Compute the conditional expectation of X given that Y = y, where 0 < y < 1.

Solution: We first compute the conditional density

fX|Y (x|y) = f (x, y)

fY (y)

= 6xy(2 − x − y)
∫ 1

0 6xy(2 − x − y)dx

= 6xy(2 − x − y)

y(4 − 3y)

= 6x(2 − x − y)

4 − 3y
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Hence,

E[X|Y = y] =
∫ 1

0

6x2(2 − x − y)dx

4 − 3y

= (2 − y)2 − 6
4

4 − 3y

= 5 − 4y

8 − 6y
�

Example 3.7 Suppose the joint density of X and Y is given by

f (x, y) =
{

4y(x − y)e−(x+y), 0 < x < ∞,0 � y � x

0, otherwise

Compute E[X|Y = y].
Solution: The conditional density of X, given that Y = y, is given by

fX|Y (x|y) = f (x, y)

fY (y)

= 4y(x − y)e−(x+y)

∫∞
y

4y(x − y)e−(x+y) dx
, x > y

= (x − y)e−x

∫∞
y

(x − y)e−x dx

= (x − y)e−x

∫∞
0 we−(y+w) dw

, x > y (by letting w = x − y)

= (x − y)e−(x−y), x > y

where the final equality used that
∫∞

0 we−wdw is the expected value of an
exponential random variable with mean 1. Therefore, with W being exponential
with mean 1,

E[X|Y = y] =
∫ ∞

y

x(x − y)e−(x−y) dx
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=
∫ ∞

0
(w + y)we−w dw

= E[W 2] + yE[W ]
= 2 + y �

Example 3.8 The joint density of X and Y is given by

f (x, y) =
{

1
2ye−xy, 0 < x < ∞,0 < y < 2

0, otherwise

What is E[eX/2|Y = 1]?
Solution: The conditional density of X, given that Y = 1, is given by

fX|Y (x|1) = f (x,1)

fY (1)

=
1
2e−x

∫∞
0

1
2e−x dx

= e−x

Hence, by Proposition 2.1,

E[eX/2|Y = 1] =
∫ ∞

0
ex/2fX|Y (x|1) dx

=
∫ ∞

0
ex/2e−x dx

= 2 �

3.4. Computing Expectations by Conditioning

Let us denote by E[X|Y ] that function of the random variable Y whose value at
Y = y is E[X|Y = y]. Note that E[X|Y ] is itself a random variable. An extremely
important property of conditional expectation is that for all random variables X
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and Y

E[X] = E
[
E[X|Y ]] (3.3)

If Y is a discrete random variable, then Equation (3.3) states that

E[X] =
∑

y

E[X|Y = y]P {Y = y} (3.3a)

while if Y is continuous with density fY (y), then Equation (3.3) says that

E[X] =
∫ ∞

−∞
E[X|Y = y]fY (y) dy (3.3b)

We now give a proof of Equation (3.3) in the case where X and Y are both discrete
random variables.

Proof of Equation (3.3) When X and Y Are Discrete We must show
that

E[X] =
∑

y

E[X|Y = y]P {Y = y} (3.4)

Now, the right side of the preceding can be written
∑

y

E[X|Y = y]P {Y = y} =
∑

y

∑

x

xP {X = x|Y = y}P {Y = y}

=
∑

y

∑

x

x
P {X = x,Y = y}

P {Y = y} P {Y = y}

=
∑

y

∑

x

xP {X = x,Y = y}

=
∑

x

x
∑

y

P {X = x,Y = y}

=
∑

x

xP {X = x}

= E[X]
and the result is obtained. �

One way to understand Equation (3.4) is to interpret it as follows. It states that
to calculate E[X] we may take a weighted average of the conditional expected
value of X given that Y = y, each of the terms E[X|Y = y] being weighted by
the probability of the event on which it is conditioned.

The following examples will indicate the usefulness of Equation (3.3).
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Example 3.9 Sam will read either one chapter of his probability book or one
chapter of his history book. If the number of misprints in a chapter of his probabil-
ity book is Poisson distributed with mean 2 and if the number of misprints in his
history chapter is Poisson distributed with mean 5, then assuming Sam is equally
likely to choose either book, what is the expected number of misprints that Sam
will come across?

Solution: Letting X denote the number of misprints and letting

Y =
{

1, if Sam chooses his history book
2, if Sam chooses his probability book

then

E[X] = E[X|Y = 1]P {Y = 1} + E[X|Y = 2]P {Y = 2}
= 5

( 1
2

)+ 2
( 1

2

)

= 7
2 �

Example 3.10 (The Expectation of the Sum of a Random Number of Random
Variables) Suppose that the expected number of accidents per week at an industrial
plant is four. Suppose also that the numbers of workers injured in each accident
are independent random variables with a common mean of 2. Assume also that
the number of workers injured in each accident is independent of the number of
accidents that occur. What is the expected number of injuries during a week?

Solution: Letting N denote the number of accidents and Xi the number
injured in the ith accident, i = 1,2, . . . , then the total number of injuries can
be expressed as

∑N
i=1Xi . Now

E

[
N∑

1

Xi

]

= E

[

E

[
N∑

1

Xi |N
]]

But

E

[
N∑

1

Xi |N = n

]

= E

[
n∑

1

Xi |N = n

]

= E

[
n∑

1

Xi

]

by the independence of Xi and N

= nE[X]
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which yields that

E

[
N∑

i=1

Xi |N
]

= NE[X]

and thus

E

[
N∑

i=1

Xi

]

= E
[
NE[X]]= E[N ]E[X]

Therefore, in our example, the expected number of injuries during a week
equals 4 × 2 = 8. �

The random variable
∑N

i=1 Xi, equal to the sum of a random number N of
independent and identically distributed random variables that are also independent
of N , is called a compound random variable. As just shown in Example 3.10, the
expected value of a compound random variable is E[X]E[N ]. Its variance will
be derived in Example 3.17.

Example 3.11 (The Mean of a Geometric Distribution) A coin, having prob-
ability p of coming up heads, is to be successively flipped until the first head
appears. What is the expected number of flips required?

Solution: Let N be the number of flips required, and let

Y =
{

1, if the first flip results in a head
0, if the first flip results in a tail

Now

E[N ] = E[N |Y = 1]P {Y = 1} + E[N |Y = 0]P {Y = 0}
= pE[N |Y = 1] + (1 − p)E[N |Y = 0] (3.5)

However,

E[N |Y = 1] = 1, E[N |Y = 0] = 1 + E[N ] (3.6)

To see why Equation (3.6) is true, consider E[N |Y = 1]. Since Y = 1, we know
that the first flip resulted in heads and so, clearly, the expected number of flips
required is 1. On the other hand if Y = 0, then the first flip resulted in tails.
However, since the successive flips are assumed independent, it follows that,
after the first tail, the expected additional number of flips until the first head is
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just E[N ]. Hence E[N |Y = 0] = 1 + E[N ]. Substituting Equation (3.6) into
Equation (3.5) yields

E[N ] = p + (1 − p)(1 + E[N ])
or

E[N ] = 1/p �

Because the random variable N is a geometric random variable with proba-
bility mass function p(n) = p(1 − p)n−1, its expectation could easily have been
computed from E[N ] =∑∞

1 np(n) without recourse to conditional expectation.
However, if you attempt to obtain the solution to our next example without using
conditional expectation, you will quickly learn what a useful technique “condi-
tioning” can be.

Example 3.12 A miner is trapped in a mine containing three doors. The first
door leads to a tunnel that takes him to safety after two hours of travel. The second
door leads to a tunnel that returns him to the mine after three hours of travel. The
third door leads to a tunnel that returns him to his mine after five hours. Assuming
that the miner is at all times equally likely to choose any one of the doors, what is
the expected length of time until the miner reaches safety?

Solution: Let X denote the time until the miner reaches safety, and let Y

denote the door he initially chooses. Now

E[X] = E[X|Y = 1]P {Y = 1} + E[X|Y = 2]P {Y = 2}
+ E[X|Y = 3]P {Y = 3}

= 1
3

(
E[X|Y = 1] + E[X|Y = 2] + E[X|Y = 3])

However,

E[X|Y = 1] = 2,

E[X|Y = 2] = 3 + E[X],
E[X|Y = 3] = 5 + E[X], (3.7)

To understand why this is correct consider, for instance, E[X|Y = 2], and rea-
son as follows. If the miner chooses the second door, then he spends three hours
in the tunnel and then returns to the mine. But once he returns to the mine the
problem is as before, and hence his expected additional time until safety is just
E[X]. Hence E[X|Y = 2] = 3 + E[X]. The argument behind the other equali-
ties in Equation (3.7) is similar. Hence

E[X] = 1
3

(
2 + 3 + E[X] + 5 + E[X]) or E[X] = 10 �
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Example 3.13 (The Matching Rounds Problem) Suppose in Example 2.31
that those choosing their own hats depart, while the others (those without a match)
put their selected hats in the center of the room, mix them up, and then reselect.
Also, suppose that this process continues until each individual has his own hat.

(a) Find E[Rn] where Rn is the number of rounds that are necessary when n

individuals are initially present.
(b) Find E[Sn] where Sn is the total number of selections made by the n indi-
viduals, n � 2.
(c) Find the expected number of false selections made by one of the n people,
n � 2.

Solution: (a) It follows from the results of Example 2.31 that no matter how
many people remain there will, on average, be one match per round. Hence,
one might suggest that E[Rn] = n. This turns out to be true, and an induction
proof will now be given. Because it is obvious that E[R1] = 1, assume that
E[Rk] = k for k = 1, . . . , n − 1. To compute E[Rn], start by conditioning on
Xn, the number of matches that occur in the first round. This gives

E[Rn] =
n∑

i=0

E[Rn|Xn = i]P {Xn = i}

Now, given a total of i matches in the initial round, the number of rounds
needed will equal 1 plus the number of rounds that are required when n − i

persons are to be matched with their hats. Therefore,

E[Rn] =
n∑

i=0

(1 + E[Rn−i])P {Xn = i}

= 1 + E[Rn]P {Xn = 0} +
n∑

i=1

E[Rn−i]P {Xn = i}

= 1 + E[Rn]P {Xn = 0} +
n∑

i=1

(n − i)P {Xn = i}

by the induction hypothesis

= 1 + E[Rn]P {Xn = 0} + n(1 − P {Xn = 0}) − E[Xn]
= E[Rn]P {Xn = 0} + n(1 − P {Xn = 0})

where the final equality used the result, established in Example 2.31, that
E[Xn] = 1. Since the preceding equation implies that E[Rn] = n, the result
is proven.



3.4. Computing Expectations by Conditioning 111

(b) For n � 2, conditioning on Xn, the number of matches in round 1, gives

E[Sn] =
n∑

i=0

E[Sn|Xn = i]P {Xn = i}

=
n∑

i=0

(n + E[Sn−i])P {Xn = i}

= n +
n∑

i=0

E[Sn−i]P {Xn = i}

where E[S0] = 0. To solve the preceding equation, rewrite it as

E[Sn] = n + E[Sn−Xn]

Now, if there were exactly one match in each round, then it would take a total
of 1 + 2 + · · · + n = n(n + 1)/2 selections. Thus, let us try a solution of the
form E[Sn] = an+bn2. For the preceding equation to be satisfied by a solution
of this type, for n � 2, we need

an + bn2 = n + E[a(n − Xn) + b(n − Xn)
2]

or, equivalently,

an + bn2 = n + a(n − E[Xn]) + b(n2 − 2nE[Xn] + E[X2
n])

Now, using the results of Example 2.31 and Exercise 72 of Chapter 2 that
E[Xn]=Var(Xn) = 1, the preceding will be satisfied if

an + bn2 = n + an − a + bn2 − 2nb + 2b

and this will be valid provided that b = 1/2, a = 1. That is,

E[Sn] = n + n2/2

satisfies the recursive equation for E[Sn].
The formal proof that E[Sn] = n + n2/2, n � 2, is obtained by induction

on n. It is true when n = 2 (since, in this case, the number of selections is twice
the number of rounds and the number of rounds is a geometric random variable
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with parameter p = 1/2). Now, the recursion gives that

E[Sn] = n + E[Sn]P {Xn = 0} +
n∑

i=1

E[Sn−i]P {Xn = i}

Hence, upon assuming that E[S0] = E[S1] = 0, E[Sk] = k + k2/2, for k =
2, . . . , n − 1 and using that P {Xn = n − 1} = 0, we see that

E[Sn] = n + E[Sn]P {Xn = 0} +
n∑

i=1

[n − i + (n − i)2/2]P {Xn = i}

= n + E[Sn]P {Xn = 0} + (n + n2/2)(1 − P {Xn = 0})
− (n + 1)E[Xn] + E[X2

n]/2

Substituting the identities E[Xn] = 1, E[X2
n] = 2 in the preceding shows that

E[Sn] = n + n2/2

and the induction proof is complete.
(c) If we let Cj denote the number of hats chosen by person j, j = 1, . . . , n

then

n∑

j=1

Cj = Sn

Taking expectations, and using the fact that each Cj has the same mean, yields
the result

E[Cj ] = E[Sn]/n = 1 + n/2

Hence, the expected number of false selections by person j is

E[Cj − 1] = n/2. �

Example 3.14 Independent trials, each of which is a success with probability
p, are performed until there are k consecutive successes. What is the mean number
of necessary trials?

Solution: Let Nk denote the number of necessary trials to obtain k consecu-
tive successes, and let Mk denote its mean. We will obtain a recursive equation
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for Mk by conditioning on Nk−1, the number of trials needed for k − 1 consec-
utive successes. This yields

Mk = E[Nk] = E
[
E[Nk|Nk−1]

]

Now,

E[Nk|Nk−1] = Nk−1 + 1 + (1 − p)E[Nk]
where the preceding follows since if it takes Nk−1 trials to obtain k − 1
consecutive successes, then either the next trial is a success and we have our
k in a row or it is a failure and we must begin anew. Taking expectations of
both sides of the preceding yields

Mk = Mk−1 + 1 + (1 − p)Mk

or

Mk = 1

p
+ Mk−1

p

Since N1, the time of the first success, is geometric with parameter p,
we see that

M1 = 1

p

and, recursively

M2 = 1

p
+ 1

p2
,

M3 = 1

p
+ 1

p2
+ 1

p3

and, in general,

Mk = 1

p
+ 1

p2
+ · · · + 1

pk
�

Example 3.15 (Analyzing the Quick-Sort Algorithm) Suppose we are given
a set of n distinct values—x1, . . . , xn—and we desire to put these values in in-
creasing order or, as it is commonly called, to sort them. An efficient procedure
for accomplishing this is the quick-sort algorithm which is defined recursively as
follows: When n = 2 the algorithm compares the two values and puts them in
the appropriate order. When n > 2 it starts by choosing at random one of the n

values—say, xi—and then compares each of the other n − 1 values with xi , not-
ing which are smaller and which are larger than xi . Letting Si denote the set of
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elements smaller than xi , and S̄i the set of elements greater than xi , the algorithm
now sorts the set Si and the set S̄i . The final ordering, therefore, consists of the
ordered set of the elements in Si , then xi , and then the ordered set of the elements
in S̄i . For instance, suppose that the set of elements is 10, 5, 8, 2, 1, 4, 7. We start
by choosing one of these values at random (that is, each of the 7 values has proba-
bility of 1

7 of being chosen). Suppose, for instance, that the value 4 is chosen. We
then compare 4 with each of the other six values to obtain

{2,1}, 4, {10,5,8,7}

We now sort the set {2, 1} to obtain

1,2,4, {10,5,8,7}

Next we choose a value at random from {10,5,8,7}—say 7 is chosen—and com-
pare each of the other three values with 7 to obtain

1,2,4,5,7, {10,8}

Finally, we sort {10,8} to end up with

1,2,4,5,7,8,10

One measure of the effectiveness of this algorithm is the expected number of com-
parisons that it makes. Let us denote by Mn the expected number of comparisons
needed by the quick-sort algorithm to sort a set of n distinct values. To obtain a
recursion for Mn we condition on the rank of the initial value selected to obtain:

Mn =
n∑

j=1

E[number of comparisons|value selected is jth smallest]1

n

Now if the initial value selected is the j th smallest, then the set of values smaller
than it is of size j − 1, and the set of values greater than it is of size n− j . Hence,
as n − 1 comparisons with the initial value chosen must be made, we see that

Mn =
n∑

j=1

(n − 1 + Mj−1 + Mn−j )
1

n

= n − 1 + 2

n

n−1∑

k=1

Mk (since M0 = 0)
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or, equivalently,

nMn = n(n − 1) + 2
n−1∑

k=1

Mk

To solve the preceding, note that upon replacing n by n + 1 we obtain

(n + 1)Mn+1 = (n + 1)n + 2
n∑

k=1

Mk

Hence, upon subtraction,

(n + 1)Mn+1 − nMn = 2n + 2Mn

or

(n + 1)Mn+1 = (n + 2)Mn + 2n

Therefore,

Mn+1

n + 2
= 2n

(n + 1)(n + 2)
+ Mn

n + 1

Iterating this gives

Mn+1

n + 2
= 2n

(n + 1)(n + 2)
+ 2(n − 1)

n(n + 1)
+ Mn−1

n

= · · ·

= 2
n−1∑

k=0

n − k

(n + 1 − k)(n + 2 − k)
since M1 = 0

Hence,

Mn+1 = 2(n + 2)

n−1∑

k=0

n − k

(n + 1 − k)(n + 2 − k)

= 2(n + 2)

n∑

i=1

i

(i + 1)(i + 2)
, n � 1
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Using the identity i/(i +1)(i +2) = 2/(i +2)−1/(i +1), we can approximate
Mn+1 for large n as follows:

Mn+1 = 2(n + 2)

[
n∑

i=1

2

i + 2
−

n∑

i=1

1

i + 1

]

∼ 2(n + 2)

[∫ n+2

3

2

x
dx −

∫ n+1

2

1

x
dx

]

= 2(n + 2)[2 log(n + 2) − log(n + 1) + log 2 − 2 log 3]

= 2(n + 2)

[

log(n + 2) + log
n + 2

n + 1
+ log 2 − 2 log 3

]

∼ 2(n + 2) log(n + 2) �

Although we usually employ the conditional expectation identity to more easily
enable us to compute an unconditional expectation, in our next example we show
how it can sometimes be used to obtain the conditional expectation.

Example 3.16 In the match problem of Example 2.31 involving n, n > 1,

individuals, find the conditional expected number of matches given that the first
person did not have a match.

Solution: Let X denote the number of matches, and let X1 equal 1 if the
first person has a match and let it equal 0 otherwise. Then,

E[X] = E[X|X1 = 0]P {X1 = 0} + E[X|X1 = 1]P {X1 = 1}
= E[X|X1 = 0] n − 1

n
+ E[X|X1 = 1] 1

n

But, from Example 2.31

E[X] = 1

Moreover, given that the first person has a match, the expected number of
matches is equal to 1 plus the expected number of matches when n − 1 people
select among their own n − 1 hats, showing that

E[X|X1 = 1] = 2
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Therefore, we obtain the result

E[X|X1 = 0] = n − 2

n − 1
�

3.4.1. Computing Variances by Conditioning

Conditional expectations can also be used to compute the variance of a random
variable. Specifically, we can use that

Var(X) = E[X2] − (E[X])2

and then use conditioning to obtain both E[X] and E[X2]. We illustrate this tech-
nique by determining the variance of a geometric random variable.

Example 3.17 (Variance of the Geometric Random Variable) Independent
trials, each resulting in a success with probability p, are performed in sequence.
Let N be the trial number of the first success. Find Var(N).

Solution: Let Y = 1 if the first trial results in a success, and Y = 0 other-
wise.

Var(N) = E(N2) − (E[N ])2

To calculate E[N2] and E[N ] we condition on Y . For instance,

E[N2] = E
[
E[N2|Y ]]

However,

E[N2|Y = 1] = 1,

E[N2|Y = 0] = E[(1 + N)2]

These two equations are true since if the first trial results in a success, then
clearly N = 1 and so N2 = 1. On the other hand, if the first trial results in
a failure, then the total number of trials necessary for the first success will
equal one (the first trial that results in failure) plus the necessary number of
additional trials. Since this latter quantity has the same distribution as N , we
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get that E[N2|Y = 0] = E[(1 + N)2]. Hence, we see that

E[N2] = E[N2|Y = 1]P {Y = 1} + E[N2|Y = 0]P {Y = 0}
= p + E[(1 + N)2](1 − p)

= 1 + (1 − p)E[2N + N2]

Since, as was shown in Example 3.11, E[N ] = 1/p, this yields

E[N2] = 1 + 2(1 − p)

p
+ (1 − p)E[N2]

or

E[N2] = 2 − p

p2

Therefore,

Var(N) = E[N2] − (E[N ])2

= 2 − p

p2
−
(

1

p

)2

= 1 − p

p2
�

Another way to use conditioning to obtain the variance of a random variable
is to apply the conditional variance formula. The conditional variance of X

given that Y = y is defined by

Var(X|Y = y) = E
[
(X − E[X|Y = y])2|Y = y

]

That is, the conditional variance is defined in exactly the same manner as the
ordinary variance with the exception that all probabilities are determined con-
ditional on the event that Y = y. Expanding the right side of the preceding and
taking expectation term by term yield that

Var(X|Y = y) = E[X2|Y = y] − (E[X|Y = y])2

Letting Var(X|Y) denote that function of Y whose value when Y = y is
Var(X|Y = y), we have the following result.
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Proposition 3.1 The Conditional Variance Formula

Var(X) = E
[
Var(X|Y)

]+ Var
(
E[X|Y ]) (3.8)

Proof

E
[
Var(X|Y)

]= E
[
E[X2|Y ] − (E[X|Y ])2]

= E
[
E[X2|Y ]]− E

[
(E[X|Y ])2]

= E[X2] − E
[
(E[X|Y ])2]

and

Var(E[X|Y ]) = E
[
(E[X|Y ])2]− (

E
[
E[X|Y ]])2

= E
[
(E[X|Y ])2]− (E[X])2

Therefore,

E
[
Var(X|Y)

]+ Var
(
E[X|Y ])= E[X2] − (E[X])2

which completes the proof. �

Example 3.18 (The Variance of a Compound Random Variable) Let X1,

X2, . . . be independent and identically distributed random variables with distri-
bution F having mean μ and variance σ 2, and assume that they are independent
of the nonnegative integer valued random variable N. As noted in Example 3.10,

where its expected value was determined, the random variable S = ∑N
i=1 Xi is

called a compound random variable. Find its variance.

Solution: Whereas we could obtain E[S2] by conditioning on N , let us
instead use the conditional variance formula. Now,

Var(S|N = n) = Var

(
N∑

i=1

Xi |N = n

)

= Var

(
n∑

i=1

Xi |N = n

)

= Var

(
n∑

i=1

Xi

)

= nσ 2
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By the same reasoning,

E[S|N = n] = nμ

Therefore,

Var(S|N) = Nσ 2, E[S|N ] = Nμ

and the conditional variance formula gives that

Var(S) = E[Nσ 2] + Var(Nμ) = σ 2E[N ] + μ2Var(N)

If N is a Poisson random variable, then S = ∑N
i=1 Xi is called a compound

Poisson random variable. Because the variance of a Poisson random variable
is equal to its mean, it follows that for a compound Poisson random variable
having E[N ] = λ

Var(S) = λσ 2 + λμ2 = λE[X2]
where X has the distribution F . �

3.5. Computing Probabilities by Conditioning

Not only can we obtain expectations by first conditioning on an appropriate ran-
dom variable, but we may also use this approach to compute probabilities. To see
this, let E denote an arbitrary event and define the indicator random variable X

by

X =
{

1, if E occurs

0, if E does not occur

It follows from the definition of X that

E[X] = P(E),

E[X|Y = y] = P(E|Y = y), for any random variable Y

Therefore, from Equations (3.3a) and (3.3b) we obtain

P(E) =
∑

y

P (E|Y = y)P (Y = y), if Y is discrete

=
∫ ∞

−∞
P(E|Y = y)fY (y) dy, if Y is continuous
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Example 3.19 Suppose that X and Y are independent continuous random
variables having densities fX and fY , respectively. Compute P {X < Y }.

Solution: Conditioning on the value of Y yields

P {X < Y } =
∫ ∞

−∞
P {X < Y |Y = y}fY (y) dy

=
∫ ∞

−∞
P {X < y|Y = y}fY (y) dy

=
∫ ∞

−∞
P {X < y}fY (y) dy

=
∫ ∞

−∞
FX(y)fY (y) dy

where

FX(y) =
∫ y

−∞
fX(x) dx �

Example 3.20 An insurance company supposes that the number of accidents
that each of its policyholders will have in a year is Poisson distributed, with the
mean of the Poisson depending on the policyholder. If the Poisson mean of a
randomly chosen policyholder has a gamma distribution with density function

g(λ) = λe−λ, λ � 0

what is the probability that a randomly chosen policyholder has exactly n acci-
dents next year?

Solution: Let X denote the number of accidents that a randomly chosen
policyholder has next year. Letting Y be the Poisson mean number of accidents
for this policyholder, then conditioning on Y yields

P {X = n} =
∫ ∞

0
P {X = n|Y = λ}g(λ)dλ

=
∫ ∞

0
e−λ λn

n! λe−λ dλ

= 1

n!
∫ ∞

0
λn+1e−2λ dλ
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However, because

h(λ) = 2e−2λ(2λ)n+1

(n + 1)! , λ > 0

is the density function of a gamma (n + 2,2) random variable, its integral is 1.
Therefore,

1 =
∫ ∞

0

2e−2λ(2λ)n+1

(n + 1)! dλ = 2n+2

(n + 1)!
∫ ∞

0
λn+1e−2λ dλ

showing that

P {X = n} = n + 1

2n+2
�

Example 3.21 Suppose that the number of people who visit a yoga studio
each day is a Poisson random variable with mean λ. Suppose further that each
person who visits is, independently, female with probability p or male with prob-
ability 1 − p. Find the joint probability that exactly n women and m men visit the
academy today.

Solution: Let N1 denote the number of women, and N2 the number of men,
who visit the academy today. Also, let N = N1 + N2 be the total number of
people who visit. Conditioning on N gives

P {N1 = n, N2 = m} =
∞∑

i=0

P {N1 = n, N2 = m|N = i}P {N = i}

Because P {N1 = n, N2 = m|N = i} = 0 when i �= n + m, the preceding equa-
tion yields that

P {N1 = n, N2 = m} = P {N1 = n, N2 = m|N = n + m}e−λ λn+m

(n + m)!

Given that n + m people visit it follows, because each of these n + m is in-
dependently a woman with probability p, that the conditional probability that
n of them are women (and m are men) is just the binomial probability of n
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successes in n + m trials. Therefore,

P {N1 = n, N2 = m} =
(

n + m

n

)

pn(1 − p)me−λ λn+m

(n + m)!

= (n + m)!
n!m! pn(1 − p)me−λpe−λ(1−p) λnλm

(n + m)!
= e−λp (λp)n

n! e−λ(1−p) (λ(1 − p))m

m!
Because the preceding joint probability mass function factors into two products,
one of which depends only on n and the other only on m, it follows that N1 and
N2 are independent. Moreover, because

P {N1 = n} =
∞∑

m=0

P {N1 = n, N2 = m}

= e−λp (λp)n

n!
∞∑

m=0

e−λ(1−p) (λ(1 − p))m

m! = e−λp (λp)n

n!

and, similarly,

P {N2 = m} = e−λ(1−p) (λ(1 − p))m

m!
we can conclude that N1 and N2 are independent Poisson random variables
with respective means λp and λ(1−p). Therefore, this example establishes the
important result that when each of a Poisson number of events is independently
classified either as being type 1 with probability p or type 2 with probability
1 − p, then the numbers of type 1 and type 2 events are independent Poisson
random variables. �

Example 3.22 Let X1, . . . ,Xn be independent Bernoulli random variables,
with Xi having parameter pi, i = 1, . . . , n. That is, P {Xi = 1} = pi, P {Xi =
0} = qi = 1 − pi. Suppose we want to compute the probability mass function of
their sum, X1 + · · · + Xn. To do so, we will recursively obtain the probability
mass function of X1 + · · · + Xk , first for k = 1, then k = 2, and on up to k = n.

To begin, let

Pk(j) = P {X1 + · · · + Xk = j}
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and note that

Pk(k) =
k∏

i=1

pi, Pk(0) =
k∏

i=1

qi

For 0 < j < k, conditioning on Xk yields the recursion

Pk(j) = P {X1 + · · · + Xk = j |Xk = 1}pk + P {X1 + · · · + Xk = j |Xk = 0}qk

= P {X1 + · · · + Xk−1 = j − 1|Xk = 1}pk

+ P {X1 + · · · + Xk−1 = j |Xk = 0}qk

= P {X1 + · · · + Xk−1 = j − 1}pk + P {X1 + · · · + Xk−1 = j}qk

= pk Pk−1(j − 1) + qk Pk−1(j)

Starting with P1(1) = p1, P1(0) = q1, the preceding equations can be recursively
solved to obtain the functions P2(j), P3(j), up to Pn(j). �

Example 3.23 (The Best Prize Problem) Suppose that we are to be presented
with n distinct prizes in sequence. After being presented with a prize we must
immediately decide whether to accept it or reject it and consider the next prize.
The only information we are given when deciding whether to accept a prize is
the relative rank of that prize compared to ones already seen. That is, for instance,
when the fifth prize is presented we learn how it compares with the first four prizes
already seen. Suppose that once a prize is rejected it is lost, and that our objective
is to maximize the probability of obtaining the best prize. Assuming that all n!
orderings of the prizes are equally likely, how well can we do?

Solution: Rather surprisingly, we can do quite well. To see this, fix a value
k,0 � k < n, and consider the strategy that rejects the first k prizes and then
accepts the first one that is better than all of those first k. Let Pk (best) denote
the probability that the best prize is selected when this strategy is employed.
To compute this probability, condition on X, the position of the best prize. This
gives

Pk(best) =
n∑

i=1

Pk(best|X = i)P (X = i)

= 1

n

n∑

i=1

Pk(best|X = i)

Now, if the overall best prize is among the first k, then no prize is ever selected
under the strategy considered. On the other hand, if the best prize is in posi-
tion i, where i > k, then the best prize will be selected if the best of the first
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k prizes is also the best of the first i − 1 prizes (for then none of the prizes in
positions k + 1, k + 2, . . . , i − 1 would be selected). Hence, we see that

Pk(best|X = i) = 0, if i � k

Pk(best|X = i) = P {best of first i − 1 is among the first k}
= k/(i − 1), if i > k

From the preceding, we obtain that

Pk(best) = k

n

n∑

i=k+1

1

i − 1

≈ k

n

∫ n−1

k

1

x
dx

= k

n
log

(
n − 1

k

)

≈ k

n
log

(n

k

)

Now, if we consider the function

g(x) = x

n
log

(n

x

)

then

g′(x) = 1

n
log

(n

x

)
− 1

n

and so

g′(x) = 0 ⇒ log(n/x) = 1 ⇒ x = n/e

Thus, since Pk(best) ≈ g(k), we see that the best strategy of the type considered
is to let the first n/e prizes go by and then accept the first one to appear that
is better than all of those. In addition, since g(n/e) = 1/e, the probability that
this strategy selects the best prize is approximately 1/e ≈ 0.36788.
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Remark Most students are quite surprised by the size of the probability of ob-
taining the best prize, thinking that this probability would be close to 0 when n is
large. However, even without going through the calculations, a little thought re-
veals that the probability of obtaining the best prize can be made to be reasonably
large. Consider the strategy of letting half of the prizes go by, and then selecting
the first one to appear that is better than all of those. The probability that a prize is
actually selected is the probability that the overall best is among the second half
and this is 1/2. In addition, given that a prize is selected, at the time of selection
that prize would have been the best of more than n/2 prizes to have appeared, and
would thus have probability of at least 1/2 of being the overall best. Hence, the
strategy of letting the first half of all prizes go by and then accepting the first one
that is better than all of those prizes results in a probability greater than 1/4 of
obtaining the best prize. �

Example 3.24 At a party n men take off their hats. The hats are then mixed up
and each man randomly selects one. We say that a match occurs if a man selects
his own hat. What is the probability of no matches? What is the probability of
exactly k matches?

Solution: Let E denote the event that no matches occur, and to make explicit
the dependence on n, write Pn = P(E). We start by conditioning on whether
or not the first man selects his own hat—call these events M and Mc. Then

Pn = P(E) = P(E|M)P(M) + P(E|Mc)P (Mc)

Clearly, P(E|M) = 0, and so

Pn = P(E|Mc)
n − 1

n
(3.9)

Now, P(E|Mc) is the probability of no matches when n − 1 men select from
a set of n − 1 hats that does not contain the hat of one of these men. This can
happen in either of two mutually exclusive ways. Either there are no matches
and the extra man does not select the extra hat (this being the hat of the man
that chose first), or there are no matches and the extra man does select the extra
hat. The probability of the first of these events is just Pn−1, which is seen by
regarding the extra hat as “belonging” to the extra man. Because the second
event has probability [1/(n − 1)]Pn−2, we have

P(E|Mc) = Pn−1 + 1

n − 1
Pn−2

and thus, from Equation (3.9),

Pn = n − 1

n
Pn−1 + 1

n
Pn−2
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or, equivalently,

Pn − Pn−1 = −1

n
(Pn−1 − Pn−2) (3.10)

However, because Pn is the probability of no matches when n men select among
their own hats, we have

P1 = 0, P2 = 1
2

and so, from Equation (3.10),

P3 − P2 = − (P2 − P1)

3
= − 1

3! or P3 = 1

2! − 1

3! ,

P4 − P3 = − (P3 − P2)

4
= 1

4! or P4 = 1

2! − 1

3! + 1

4!
and, in general, we see that

Pn = 1

2! − 1

3! + 1

4! − · · · + (−1)n

n!
To obtain the probability of exactly k matches, we consider any fixed group

of k men. The probability that they, and only they, select their own hats is

1

n

1

n − 1
· · · 1

n − (k − 1)
Pn−k = (n − k)!

n! Pn−k

where Pn−k is the conditional probability that the other n−k men, selecting
among their own hats, have no matches. Because there are

(
n
k

)
choices of a set

of k men, the desired probability of exactly k matches is

Pn−k

k! =
1

2! − 1

3! + · · · + (−1)n−k

(n − k)!
k!

which, for n large, is approximately equal to e−1/k!.
Remark The recursive equation, Equation (3.10), could also have been ob-
tained by using the concept of a cycle, where we say that the sequence of distinct
individuals i1, i2, . . . , ik constitutes a cycle if i1 chooses i2’s hat, i2 chooses i3’s
hat, . . . , ik−1 chooses ik’s hat, and ik chooses i1’s hat. Note that every individual
is part of a cycle, and that a cycle of size k = 1 occurs when someone chooses his
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or her own hat. With E being, as before, the event that no matches occur, it fol-
lows upon conditioning on the size of the cycle containing a specified person, say
person 1, that

Pn = P(E) =
n∑

k=1

P(E|C = k)P (C = k) (3.11)

where C is the size of the cycle that contains person 1. Now call person 1 the first
person, and note that C = k if the first person does not choose 1’s hat; the person
whose hat was chosen by the first person—call this person the second person—
does not choose 1’s hat; the person whose hat was chosen by the second person—
call this person the third person—does not choose 1’s hat; . . . , the person whose
hat was chosen by the (k − 1)st person does choose 1’s hat. Consequently,

P(C = k) = n − 1

n

n − 2

n − 1
· · · n − k + 1

n − k + 2

1

n − k + 1
= 1

n
(3.12)

That is, the size of the cycle that contains a specified person is equally likely to be
any of the values 1,2, . . . , n. Moreover, since C = 1 means that 1 chooses his or
her own hat, it follows that

P(E|C = 1) = 0 (3.13)

On the other hand, if C = k, then the set of hats chosen by the k individuals in this
cycle is exactly the set of hats of these individuals. Hence, conditional on C = k,
the problem reduces to determining the probability of no matches when n − k

people randomly choose among their own n − k hats. Therefore, for k > 1

P(E|C = k) = Pn−k

Substituting (3.12), (3.13), and (3.14) back into Equation (3.11) gives

Pn = 1

n

n∑

k=2

Pn−k (3.14)

which is easily shown to be equivalent to Equation (3.10). �

Example 3.25 (The Ballot Problem) In an election, candidate A receives n

votes, and candidate B receives m votes where n > m. Assuming that all orderings
are equally likely, show that the probability that A is always ahead in the count of
votes is (n − m)/(n + m).
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Solution: Let Pn,m denote the desired probability. By conditioning on which
candidate receives the last vote counted we have

Pn,m = P {A always ahead|A receives last vote} n

n + m

+ P {A always ahead|B receives last vote} m

n + m

Now given that A receives the last vote, we can see that the probability that A

is always ahead is the same as if A had received a total of n − 1 and B a total
of m votes. Because a similar result is true when we are given that B receives
the last vote, we see from the preceding that

Pn,m = n

n + m
Pn−1,m + m

m + n
Pn,m−1 (3.15)

We can now prove that Pn,m = (n − m)/(n + m) by induction on n + m. As it
is true when n + m = 1, that is, P1,0 = 1, assume it whenever n + m = k. Then
when n + m = k + 1, we have by Equation (3.15) and the induction hypothesis
that

Pn,m = n

n + m

n − 1 − m

n − 1 + m
+ m

m + n

n − m + 1

n + m − 1

= n − m

n + m

and the result is proven. �
The ballot problem has some interesting applications. For example, consider

successive flips of a coin that always land on “heads” with probability p, and let
us determine the probability distribution of the first time, after beginning, that the
total number of heads is equal to the total number of tails. The probability that
the first time this occurs is at time 2n can be obtained by first conditioning on the
total number of heads in the first 2n trials. This yields

P{first time equal = 2n}

= P {first time equal = 2n|n heads in first 2n}
(

2n

n

)

pn(1 − p)n

Now given a total of n heads in the first 2n flips we can see that all possible
orderings of the n heads and n tails are equally likely, and thus the preceding
conditional probability is equivalent to the probability that in an election, in which
each candidate receives n votes, one of the candidates is always ahead in the
counting until the last vote (which ties them). But by conditioning on whomever
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receives the last vote, we see that this is just the probability in the ballot problem
when m = n − 1. Hence

P {first time equal = 2n} = Pn,n−1

(
2n

n

)

pn(1 − p)n

=

(
2n

n

)

pn(1 − p)n

2n − 1

Suppose now that we wanted to determine the probability that the first time
there are i more heads than tails occurs after the (2n + i)th flip. Now, in order for
this to be the case, the following two events must occur:

(a) The first 2n + i tosses result in n + i heads and n tails; and
(b) The order in which the n+ i heads and n tails occur is such that the number
of heads is never i more than the number of tails until after the final flip.

Now, it is easy to see that event (b) will occur if and only if the order of appearance
of the n + i heads and n tails is such that starting from the final flip and working
backwards heads is always in the lead. For instance, if there are 4 heads and 2
tails (n = 2, i = 2), then the outcome _ _ _ _T H would not suffice because there
would have been 2 more heads than tails sometime before the sixth flip (since the
first 4 flips resulted in 2 more heads than tails).

Now, the probability of the event specified in (a) is just the binomial probability
of getting n + i heads and n tails in 2n + i flips of the coin.

We must now determine the conditional probability of the event specified in
(b) given that there are n + i heads and n tails in the first 2n + i flips. To do so,
note first that given that there are a total of n + i heads and n tails in the first
2n + i flips, all possible orderings of these flips are equally likely. As a result,
the conditional probability of (b) given (a) is just the probability that a random
ordering of n + i heads and n tails will, when counted in reverse order, always
have more heads than tails. Since all reverse orderings are also equally likely, it
follows from the ballot problem that this conditional probability is i/(2n + i).

That is, we have shown that

P {a} =
(

2n + i

n

)

pn+i (1 − p)n,

P {b|a} = i

2n + i

and so

P {first time heads leads by i is after flip 2n + i} =
(

2n + i

n

)

pn+i (1 − p)n
i

2n + i
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Example 3.26 Let U1,U2, . . . be a sequence of independent uniform (0,1)

random variables, and let

N = min{n � 2: Un > Un−1}
and

M = min{n � 1: U1 + · · · + Un > 1}
That is, N is the index of the first uniform random variable that is larger than
its immediate predecessor, and M is the number of uniform random variables
we need sum to exceed 1. Surprisingly, N and M have the same probability dis-
tribution, and their common mean is e!

Solution: It is easy to find the distribution of N . Since all n! possible order-
ings of U1, . . . ,Un are equally likely, we have

P {N > n} = P {U1 > U2 > · · · > Un} = 1/n!
To show that P {M > n} = 1/n!, we will use mathematical induction. However,
to give ourselves a stronger result to use as the induction hypothesis, we will
prove the stronger result that for 0 < x � 1,P {M(x) > n} = xn/n!, n � 1,
where

M(x) = min{n � 1: U1 + · · · + Un > x}
is the minimum number of uniforms that need be summed to exceed x. To prove
that P {M(x) > n} = xn/n!, note first that it is true for n = 1 since

P {M(x) > 1} = P {U1 � x} = x

So assume that for all 0 < x � 1, P {M(x) > n} = xn/n!. To determine
P {M(x) > n + 1}, condition on U1 to obtain:

P {M(x) > n + 1} =
∫ 1

0
P {M(x) > n + 1|U1 = y} dy

=
∫ x

0
P {M(x) > n + 1|U1 = y} dy

=
∫ x

0
P {M(x − y) > n} dy

=
∫ x

0

(x − y)n

n! dy by the induction hypothesis
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=
∫ x

0

un

n! du

= xn+1

(n + 1)!
where the third equality of the preceding follows from the fact that given U1 =
y, M(x) is distributed as 1 plus the number of uniforms that need be summed
to exceed x − y. Thus, the induction is complete and we have shown that for
0 < x � 1, n � 1,

P {M(x) > n} = xn/n!
Letting x = 1 shows that N and M have the same distribution. Finally, we have
that

E[M] = E[N ] =
∞∑

n=0

P {N >n} =
∞∑

n=0

1/n! = e �

Example 3.27 Let X1,X2, . . . be independent continuous random variables
with a common distribution function F and density f = F ′, and suppose that they
are to be observed one at a time in sequence. Let

N = min{n � 2: Xn = second largest of X1, . . . ,Xn}
and let

M = min{n � 2: Xn = second smallest of X1, . . . ,Xn}
Which random variable—XN , the first random variable which when observed
is the second largest of those that have been seen, or XM , the first one that on
observation is the second smallest to have been seen—tends to be larger?

Solution: To calculate the probability density function of XN , it is natural
to condition on the value of N ; so let us start by determining its probability
mass function. Now, if we let

Ai = {Xi �= second largest of X1, . . . ,Xi}, i � 2

then, for n � 2,

P {N = n} = P
(
A2A3 · · ·An−1A

c
n

)

Since the Xi are independent and identically distributed it follows that, for
any m�1, knowing the rank ordering of the variables X1, . . . ,Xm yields no
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information about the set of m values {X1, . . . ,Xm}. That is, for instance,
knowing that X1 < X2 gives us no information about the values of min(X1,X2)
or max(X1,X2). It follows from this that the events Ai, i � 2 are independent.
Also, since Xi is equally likely to be the largest, or the second largest, . . . , or
the ith largest of X1, . . . ,Xi it follows that P {Ai} = (i − 1)/i, i � 2. There-
fore, we see that

P {N = n} = 1

2

2

3

3

4
· · · n − 2

n − 1

1

n
= 1

n(n − 1)

Hence, conditioning on N yields that the probability density function of XN is
as follows:

fXN
(x) =

∞∑

n=2

1

n(n − 1)
fXN |N(x|n)

Now, since the ordering of the variables X1, . . . ,Xn is independent of the set
of values {X1, . . . ,Xn}, it follows that the event {N =n} is independent of
{X1, . . . ,Xn}. From this, it follows that the conditional distribution of XN given
that N =n is equal to the distribution of the second largest from a set of n ran-
dom variables having distribution F . Thus, using the results of Example 2.37
concerning the density function of such a random variable, we obtain that

fXN
(x) =

∞∑

n=2

1

n(n − 1)

n!
(n − 2)!1! (F (x))n−2f (x)(1 − F(x))

= f (x)(1 − F(x))

∞∑

i=0

(F (x))i

= f (x)

Thus, rather surprisingly, XN has the same distribution as X1, namely, F . Also,
if we now let Wi = −Xi, i � 1, then WM will be the value of the first Wi , which
on observation is the second largest of all those that have been seen. Hence, by
the preceding, it follows that WM has the same distribution as W1. That is,
−XM has the same distribution as −X1, and so XM also has distribution F !
In other words, whether we stop at the first random variable that is the second
largest of all those presently observed, or we stop at the first one that is the
second smallest of all those presently observed, we will end up with a random
variable having distribution F .

Whereas the preceding result is quite surprising, it is a special case of a
general result known as Ignatov’s theorem, which yields even more surprises.
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For instance, for k � 1, let

Nk = min{n � k: Xn = kth largest of X1, . . . ,Xn}
Therefore, N2 is what we previously called N , and XNk

is the first random
variable that upon observation is the kth largest of all those observed up to this
point. It can then be shown by a similar argument as used in the preceding that
XNk

has distribution function F for all k (see Exercise 82 at the end of this
chapter). In addition, it can be shown that the random variables XNk

, k � 1
are independent. (A statement and proof of Ignatov’s theorem in the case of
discrete random variables are given in Section 3.6.6.) �

The use of conditioning can also result in a more computationally efficient so-
lution than a direct calculation. This is illustrated by our next example.

Example 3.28 Consider n independent trials in which each trial results in one
of the outcomes 1, . . . , k with respective probabilities p1, . . . , pk ,

∑k
i=1 pi = 1.

Suppose further that n > k, and that we are interested in determining the proba-
bility that each outcome occurs at least once. If we let Ai denote the event that
outcome i does not occur in any of the n trials, then the desired probability is
1 − P(

⋃k
i=1 Ai), and it can be obtained by using the inclusion–exclusion theo-

rem as follows:

P

(
k⋃

i=1

Ai

)

=
k∑

i=1

P(Ai) −
∑

i

∑

j>i

P (AiAj )

+
∑

i

∑

j>i

∑

k>j

P (AiAjAk) − · · · + (−1)k+1P(A1 · · ·Ak)

where

P(Ai) = (1 − pi)
n

P (AiAj ) = (1 − pi − pj )
n, i < j

P (AiAjAk) = (1 − pi − pj − pk)
n, i < j < k

The difficulty with the preceding solution is that its computation requires the cal-
culation of 2k − 1 terms, each of which is a quantity raised to the power n. The
preceding solution is thus computationally inefficient when k is large. Let us now
see how to make use of conditioning to obtain an efficient solution.

To begin, note that if we start by conditioning on Nk (the number of times that
outcome k occurs) then when Nk > 0 the resulting conditional probability will
equal the probability that all of the outcomes 1, . . . , k − 1 occur at least once
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when n − Nk trials are performed, and each results in outcome i with probability
pi/

∑k−1
j=1pj , i = 1, . . . , k − 1. We could then use a similar conditioning step on

these terms.
To follow through on the preceding idea, let Am,r , for m � n, r � k, denote the

event that each of the outcomes 1, . . . , r occurs at least once when m independent
trials are performed, where each trial results in one of the outcomes 1, . . . , r with
respective probabilities p1/Pr, . . . ,pr/Pr , where Pr =∑r

j=1pj . Let P(m, r) =
P(Am,r ) and note that P(n, k) is the desired probability. To obtain an expression
for P(m, r), condition on the number of times that outcome r occurs. This gives

P(m, r) =
m∑

j=0

P {Am,r |r occurs j times}
(

m

j

)(
pr

Pr

)j (

1 − pr

Pr

)m−j

=
m−r+1∑

j=1

P(m − j, r − 1)

(
m

j

)(
pr

Pr

)j (

1 − pr

Pr

)m−j

Starting with

P(m,1) = 1, if m � 1
P(m,1) = 0, if m = 0

we can use the preceding recursion to obtain the quantities P(m,2), m =
2, . . . , n − (k − 2), and then the quantities P(m,3), m = 3, . . . , n − (k − 3), and
so on, up to P(m,k − 1), m = k − 1, . . . , n − 1. At this point we can then use
the recursion to compute P(n, k). It is not difficult to check that the amount of
computation needed is a polynomial function of k, which will be much smaller
than 2k when k is large. �

As noted previously, conditional expectations given that Y = y are exactly the
same as ordinary expectations except that all probabilities are computed condi-
tional on the event that Y = y. As such, conditional expectations satisfy all the
properties of ordinary expectations. For instance, the analog of

E[X] =

⎧
⎪⎪⎨

⎪⎪⎩

∑

w

E[X|W = w]P {W = w}, if W is discrete

∫

w

E[X|W = w]fW(w)dw, if W is continuous

is that

E[X|Y = y]

=

⎧
⎪⎪⎨

⎪⎪⎩

∑

w

E[X|W = w,Y = y]P {W = w|Y = y}, if W is discrete

∫

w

E[X|W = w,Y = y]fW |Y (w|y)dw, if W is continuous
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If E[X|Y,W ] is defined to be that function of Y and W that, when Y = y and
W = w, is equal to E[X|Y = y,W = w], then the preceding can be written as

E[X|Y ] = E
[
E[X|Y,W ]∣∣Y ]

Example 3.29 An automobile insurance company classifies each of its pol-
icyholders as being of one of the types i = 1, . . . , k. It supposes that the num-
bers of accidents that a type i policyholder has in successive years are indepen-
dent Poisson random variables with mean λi, i = 1, . . . , k. The probability that
a newly insured policyholder is type i is pi,

∑k
i=1 pi = 1. Given that a policy-

holder had n accidents in her first year, what is the expected number that she has
in her second year? What is the conditional probability that she has m accidents
in her second year?

Solution: Let Ni denote the number of accidents the policyholder has in
year i, i = 1,2. To obtain E[N2|N1 = n], condition on her risk type T .

E[N2|N1 = n] =
k∑

j=1

E[N2|T = j,N1 = n]P {T = j |N1 = n}

=
k∑

j=1

E[N2|T = j ]P {T = j |N1 = n}

=
k∑

j=1

λjP {T = j |N1 = n}

=
∑k

j=1 e−λj λn+1
j pj

∑k
j=1 e−λj λn

jpj

where the final equality used that

P {T = j |N1 = n} = P {T = j,N1 = n}
P {N1 = n}

= P {N1 = n|T = j}P {T = j}
∑k

j=1 P {N1 = n|T = j}P {T = j}

= pje
−λj λn

j /n!
∑k

j=1 pje
−λj λn

j /n!
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The conditional probability that the policyholder has m accidents in year 2
given that she had n in year 1 can also be obtained by conditioning on her type.

P {N2 = m|N1 = n} =
k∑

j=1

P {N2 = m|T = j,N1 = n}P {T = j |N1 = n}

=
k∑

j=1

e−λj
λm

j

m! P {T = j |N1 = n}

=
∑k

j=1 e−2λj λm+n
j pj

m!∑k
j=1 e−λj λn

jpj

Another way to calculate P {N2 = m|N1 = n} is first to write

P {N2 = m|N1 = n} = P {N2 = m,N1 = n}
P {N1 = n}

and then determine both the numerator and denominator by conditioning on T .
This yields

P {N2 = m|N1 = n} =
∑k

j=1 P {N2 = m,N1 = n|T = j}pj
∑k

j=1 P {N1 = n|T = j}pj

=
∑k

j=1 e−λj
λm

j

m! e−λj
λn

j

n! pj

∑k
j=1 e−λj

λn
j

n! pj

=
∑k

j=1 e−2λj λm+n
j pj

m!∑k
j=1 e−λj λn

jpj

�

3.6. Some Applications

3.6.1. A List Model

Consider n elements—e1, e2, . . . , en—that are initially arranged in some ordered
list. At each unit of time a request is made for one of these elements—ei being
requested, independently of the past, with probability Pi . After being requested
the element is then moved to the front of the list. That is, for instance, if the
present ordering is e1, e2, e3, e4 and if e3 is requested, then the next ordering is
e3, e1, e2, e4.
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We are interested in determining the expected position of the element requested
after this process has been in operation for a long time. However, before comput-
ing this expectation, let us note two possible applications of this model. In the
first we have a stack of reference books. At each unit of time a book is randomly
selected and is then returned to the top of the stack. In the second application we
have a computer receiving requests for elements stored in its memory. The request
probabilities for the elements may not be known, so to reduce the average time it
takes the computer to locate the element requested (which is proportional to the
position of the requested element if the computer locates the element by starting
at the beginning and then going down the list), the computer is programmed to
replace the requested element at the beginning of the list.

To compute the expected position of the element requested, we start by condi-
tioning on which element is selected. This yields

E [position of element requested ]

=
n∑

i=1

E [position|ei is selected ]Pi

=
n∑

i=1

E [position of ei |ei is selected ]Pi

=
n∑

i=1

E [position of ei ]Pi (3.16)

where the final equality used that the position of ei and the event that ei is selected
are independent because, regardless of its position, ei is selected with probabil-
ity Pi .

Now

position of ei = 1 +
∑

j �=i

Ij

where

Ij =
{

1, if ej precedes ei

0, otherwise

and so,

E [position of ei ] = 1 +
∑

j �=i

E [Ij ]

= 1 +
∑

j �=i

P {ej precedes ei} (3.17)
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To compute P {ej precedes ei}, note that ej will precede ei if the most recent
request for either of them was for ej . But given that a request is for either ei or
ej , the probability that it is for ej is

P {ej |ei or ej } = Pj

Pi + Pj

and, thus,

P {ej precedes ei} = Pj

Pi + Pj

Hence from Equations (3.16) and (3.17) we see that

E{position of element requested} = 1 +
n∑

i=1

Pi

∑

j �=i

Pj

Pi + Pj

This list model will be further analyzed in Section 4.8, where we will assume a
different reordering rule—namely, that the element requested is moved one closer
to the front of the list as opposed to being moved to the front of the list as assumed
here. We will show there that the average position of the requested element is less
under the one-closer rule than it is under the front-of-the-line rule.

3.6.2. A Random Graph

A graph consists of a set V of elements called nodes and a set A of pairs of
elements of V called arcs. A graph can be represented graphically by drawing
circles for nodes and drawing lines between nodes i and j whenever (i, j) is an
arc. For instance if V = {1,2,3,4} and A = {(1,2), (1,4), (2,3), (1,2), (3,3)},
then we can represent this graph as shown in Figure 3.1. Note that the arcs have
no direction (a graph in which the arcs are ordered pairs of nodes is called a
directed graph); and that in the figure there are multiple arcs connecting nodes 1
and 2, and a self-arc (called a self-loop) from node 3 to itself.

Figure 3.1. A graph.
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Figure 3.2. A disconnected graph.

Figure 3.3.

We say that there exists a path from node i to node j , i �= j , if there exists a
sequence of nodes i, i1, . . . , ik, j such that (i, i1), (i1, i2), . . . , (ik, j) are all arcs.
If there is a path between each of the

(
n
2

)
distinct pair of nodes we say that the

graph is connected. The graph in Figure 3.1 is connected but the graph in Fig-
ure 3.2 is not. Consider now the following graph where V = {1,2, . . . , n} and
A = {(i,X(i)), i = 1, . . . , n} where the X(i) are independent random variables
such that

P {X(i) = j} = 1

n
, j = 1,2, . . . , n

In other words from each node i we select at random one of the n nodes (including
possibly the node i itself) and then join node i and the selected node with an arc.
Such a graph is commonly referred to as a random graph.

We are interested in determining the probability that the random graph so ob-
tained is connected. As a prelude, starting at some node—say, node 1—let us
follow the sequence of nodes, 1, X(1), X2(1), . . . , where Xn(1) = X(Xn−1(1));
and define N to equal the first k such that Xk(1) is not a new node. In other words,

N = 1st k such that Xk(1) ∈ {1,X(1), . . . ,Xk−1(1)}

We can represent this as shown in Figure 3.3 where the arc from XN−1(1) goes
back to a node previously visited.

To obtain the probability that the graph is connected we first condition on N to
obtain

P {graph is connected} =
n∑

k=1

P {connected|N = k}P {N = k} (3.18)
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Now given that N = k, the k nodes 1,X(1), . . . ,Xk−1(1) are connected to each
other, and there are no other arcs emanating out of these nodes. In other words,
if we regard these k nodes as being one supernode, the situation is the same as
if we had one supernode and n − k ordinary nodes with arcs emanating from
the ordinary nodes—each arc going into the supernode with probability k/n. The
solution in this situation is obtained from Lemma 3.2 by taking r = n − k.

Lemma 3.1 Given a random graph consisting of nodes 0,1, . . . , r and r

arcs—namely, (i, Yi), i = 1, . . . , r , where

Yi =

⎧
⎪⎪⎨

⎪⎪⎩

j with probability
1

r + k
, j = 1, . . . , r

0 with probability
k

r + k

then

P {graph is connected} = k

r + k

[In other words, for the preceding graph there are r + 1 nodes—r ordinary
nodes and one supernode. Out of each ordinary node an arc is chosen. The arc
goes to the supernode with probability k/(r + k) and to each of the ordinary ones
with probability 1/(r + k). There is no arc emanating out of the supernode.]

Proof The proof is by induction on r . As it is true when r = 1 for any k, assume
it true for all values less than r . Now in the case under consideration, let us first
condition on the number of arcs (j, Yj ) for which Yj = 0. This yields

P {connected}

=
r∑

i=0

P {connected|i of the Yj = 0}
(

r

i

)(
k

r + k

)i (
r

r + k

)r−i

(3.19)

Now given that exactly i of the arcs are into the supernode (see Figure 3.4), the
situation for the remaining r − i arcs which do not go into the supernode is the
same as if we had r − i ordinary nodes and one supernode with an arc going
out of each of the ordinary nodes—into the supernode with probability i/r and
into each ordinary node with probability 1/r . But by the induction hypothesis the
probability that this would lead to a connected graph is i/r .

Hence,

P {connected|i of the Yj = 0} = i

r
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Figure 3.4. The situation given that i of the r arcs are into the supernode.

and from Equation (3.19)

P {connected} =
r∑

i=0

i

r

(
r

i

)(
k

r + k

)i (
r

r + k

)r−i

= 1

r
E

[

binomial

(

r,
k

r + k

)]

= k

r + k

which completes the proof of the lemma. �

Hence as the situation given N =k is exactly as described by Lemma 3.2 when
r = n − k, we see that, for the original graph,

P {graph is connected|N = k} = k

n

and, from Equation (3.18),

P {graph is connected} = E(N)

n
(3.20)

To compute E(N) we use the identity

E(N) =
∞∑

i=1

P {N � i}

which can be proved by defining indicator variables Ii , i � 1, by

Ii =
{

1, if i � N

0, if i > N
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Hence,

N =
∞∑

i=1

Ii

and so

E(N) = E

[ ∞∑

i=1

Ii

]

=
∞∑

i=1

E[Ii]

=
∞∑

i=1

P {N � i} (3.21)

Now the event {N � i} occurs if the nodes 1,X(1), . . . ,Xi−1(1) are all distinct.
Hence,

P {N � i} = (n − 1)

n

(n − 2)

n
· · · (n − i + 1)

n

= (n − 1)!
(n − i)!ni−1

and so, from Equations (3.20) and (3.21),

P {graph is connected} = (n − 1)!
n∑

i=1

1

(n − i)!ni

= (n − 1)!
nn

n−1∑

j=0

nj

j ! (by j = n − i) (3.22)

We can also use Equation (3.22) to obtain a simple approximate expression for
the probability that the graph is connected when n is large. To do so, we first note
that if X is a Poisson random variable with mean n, then

P {X < n} = e−n

n−1∑

j=0

nj

j !

Since a Poisson random variable with mean n can be regarded as being the sum
of n independent Poisson random variables each with mean 1, it follows from the
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central limit theorem that for n large such a random variable has approximately
a normal distribution and as such has probability 1

2 of being less than its mean.
That is, for n large

P {X < n} ≈ 1
2

and so for n large,

n−1∑

j=0

nj

j ! ≈ en

2

Hence from Equation (3.22), for n large,

P {graph is connected} ≈ en(n − 1)!
2nn

By employing an approximation due to Stirling which states that for n large

n! ≈ nn+1/2e−n
√

2π

We see that, for n large,

P {graph is connected} ≈
√

π

2(n − 1)
e

(
n − 1

n

)n

and as

lim
n→∞

(
n − 1

n

)n

= lim
n→∞

(

1 − 1

n

)n

= e−1

We see that, for n large,

P {graph is connected} ≈
√

π

2(n − 1)

Now a graph is said to consist of r connected components if its nodes can be
partitioned into r subsets so that each of the subsets is connected and there are
no arcs between nodes in different subsets. For instance, the graph in Figure 3.5
consists of three connected components—namely, {1, 2, 3}, {4, 5}, and {6}. Let
C denote the number of connected components of our random graph and let

Pn(i) = P {C = i}



3.6. Some Applications 145

Figure 3.5. A graph having three connected components.

where we use the notation Pn(i) to make explicit the dependence on n, the number
of nodes. Since a connected graph is by definition a graph consisting of exactly
one component, from Equation (3.22) we have

Pn(1) = P {C = 1}

= (n − 1)!
nn

n−1∑

j=0

nj

j ! (3.23)

To obtain Pn(2), the probability of exactly two components, let us first fix at-
tention on some particular node—say, node 1. In order that a given set of k − 1
other nodes—say, nodes 2, . . . , k—will along with node 1 constitute one con-
nected component, and the remaining n − k a second connected component, we
must have

(i) X(i) ∈ {1,2, . . . , k}, for all i = 1, . . . , k.
(ii) X(i) ∈ {k + 1, . . . , n}, for all i = k + 1, . . . , n.

(iii) The nodes 1,2, . . . , k form a connected subgraph.
(iv) The nodes k + 1, . . . , n form a connected subgraph.

The probability of the preceding occurring is clearly

(
k

n

)k (
n − k

n

)n−k

Pk(1)Pn−k(1)

and because there are
(
n−1
k−1

)
ways of choosing a set of k − 1 nodes from the nodes

2 through n, we have

Pn(2) =
n−1∑

k=1

(
n − 1

k − 1

)(
k

n

)k (
n − k

n

)n−k

Pk(1)Pn−k(1)
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Figure 3.6. A cycle.

and so Pn(2) can be computed from Equation (3.23). In general, the recursive
formula for Pn(i) is given by

Pn(i) =
n−i+1∑

k=1

(
n − 1

k − 1

)(
k

n

)k (
n − k

n

)n−k

Pk(1)Pn−k(i − 1)

To compute E[C], the expected number of connected components, first note
that every connected component of our random graph must contain exactly one
cycle [a cycle is a set of arcs of the form (i, i1), (i1, i2), . . . , (ik−1 , ik), (ik, i) for
distinct nodes i, i1, . . . , ik]. For example, Figure 3.6 depicts a cycle.

The fact that every connected component of our random graph must contain
exactly one cycle is most easily proved by noting that if the connected component
consists of r nodes, then it must also have r arcs and, hence, must contain exactly
one cycle (why?). Thus, we see that

E[C] = E[number of cycles]

= E

[∑

S

I (S)

]

=
∑

S

E[I (S)]

where the sum is over all subsets S ⊂ {1,2, . . . , n} and

I (S) =
{

1, if the nodes in S are all the nodes of a cycle

0, otherwise

Now, if S consists of k nodes, say 1, . . . , k, then

E[I (S)] = P {1,X(1), . . . ,Xk−1(1) are all distinct and contained in

1, . . . , k and Xk(1) = 1}

= k − 1

n

k − 2

n
· · · 1

n

1

n
= (k − 1)!

nk
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Hence, because there are
(
n
k

)
subsets of size k we see that

E[C] =
n∑

k=1

(
n

k

)
(k − 1)!

nk

3.6.3. Uniform Priors, Polya’s Urn Model, and
Bose–Einstein Statistics

Suppose that n independent trials, each of which is a success with probability p,
are performed. If we let X denote the total number of successes, then X is a
binomial random variable such that

P {X = k|p} =
(

n

k

)

pk(1 − p)n−k, k = 0,1, . . . , n

However, let us now suppose that whereas the trials all have the same success
probability p, its value is not predetermined but is chosen according to a uniform
distribution on (0, 1). (For instance, a coin may be chosen at random from a huge
bin of coins representing a uniform spread over all possible values of p, the coin’s
probability of coming up heads. The chosen coin is then flipped n times.) In this
case, by conditioning on the actual value of p, we have that

P {X = k} =
∫ 1

0
P {X = k|p}f (p)dp

=
∫ 1

0

(
n

k

)

pk(1 − p)n−k dp

Now, it can be shown that

∫ 1

0
pk(1 − p)n−k dp = k!(n − k)!

(n + 1)! (3.24)

and thus

P {X = k} =
(

n

k

)
k!(n − k)!
(n + 1)!

= 1

n + 1
, k = 0,1, . . . , n (3.25)

In other words, each of the n + 1 possible values of X is equally likely.
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As an alternate way of describing the preceding experiment, let us compute the
conditional probability that the (r + 1)st trial will result in a success given a total
of k successes (and r − k failures) in the first r trials.

P {(r + 1)st trial is a success|k successes in first r}

= P {(r + 1)st is a success, k successes in first r trials}
P {k successes in first r trials}

=
∫ 1

0 P {(r + 1)st is a success, k in first r|p} dp

1/(r + 1)

= (r + 1)

∫ 1

0

(
r

k

)

pk+1(1 − p)r−k dp

= (r + 1)

(
r

k

)
(k + 1)!(r − k)!

(r + 2)! by Equation (3.24)

= k + 1

r + 2
(3.26)

That is, if the first r trials result in k successes, then the next trial will be a success
with probability (k + 1)/(r + 2).

It follows from Equation (3.26) that an alternative description of the stochastic
process of the successive outcomes of the trials can be described as follows: There
is an urn which initially contains one white and one black ball. At each stage a ball
is randomly drawn and is then replaced along with another ball of the same color.
Thus, for instance, if of the first r balls drawn, k were white, then the urn at the
time of the (r + 1)th draw would consist of k + 1 white and r − k + 1 black, and
thus the next ball would be white with probability (k + 1)/(r + 2). If we identify
the drawing of a white ball with a successful trial, then we see that this yields an
alternate description of the original model. This latter urn model is called Polya’s
urn model.

Remarks (i) In the special case when k = r , Equation (3.26) is sometimes
called Laplace’s rule of succession, after the French mathematician Pierre de
Laplace. In Laplace’s era, this “rule” provoked much controversy, for people at-
tempted to employ it in diverse situations where its validity was questionable. For
instance, it was used to justify such propositions as “If you have dined twice at a
restaurant and both meals were good, then the next meal also will be good with
probability 3

4 ,” and “Since the sun has risen the past 1,826,213 days, so will it rise
tomorrow with probability 1,826,214/1,826,215.” The trouble with such claims
resides in the fact that it is not at all clear the situation they are describing can
be modeled as consisting of independent trials having a common probability of
success which is itself uniformly chosen.
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(ii) In the original description of the experiment, we referred to the successive
trials as being independent, and in fact they are independent when the success
probability is known. However, when p is regarded as a random variable, the
successive outcomes are no longer independent because knowing whether an out-
come is a success or not gives us some information about p, which in turn yields
information about the other outcomes.

The preceding can be generalized to situations in which each trial has more
than two possible outcomes. Suppose that n independent trials, each resulting in
one of m possible outcomes 1, . . . ,m, with respective probabilities p1, . . . , pm

are performed. If we let Xi denote the number of type i outcomes that result in
the n trials, i = 1, . . . ,m, then the vector X1, . . . ,Xm will have the multinomial
distribution given by

P {X1 = x1,X2 = x2, . . . ,Xm = xm|p} = n!
x1! · · ·xm! p

x1
1 p

x2
2 · · ·pxm

m

where x1, . . . , xm is any vector of nonnegative integers that sum to n. Now let us
suppose that the vector p = (p1, . . . , pm) is not specified, but instead is chosen by
a “uniform” distribution. Such a distribution would be of the form

f (p1, . . . , pm) =
{
c, 0 � pi � 1, i = 1, . . . ,m,

∑m
1 pi = 1

0, otherwise

The preceding multivariate distribution is a special case of what is known as the
Dirichlet distribution, and it is not difficult to show, using the fact that the distri-
bution must integrate to 1, that c = (m − 1)!.

The unconditional distribution of the vector X is given by

P {X1 =x1, . . . ,Xm =xm}=
∫∫

· · ·
∫

P {X1 = x1, . . . ,Xm = xm|p1, . . . , pm}

× f (p1, . . . , pm) dp1 · · ·dpm = (m − 1)!n!
x1! · · ·xm!

∫∫

· · ·
∫

0�pi�1
∑m

1 pi=1

p
x1
1 · · ·pxm

m dp1 · · ·dpm

Now it can be shown that

∫∫

· · ·
∫

0�pi�1
∑m

1 pi=1

p
x1
1 · · ·pxm

m dp1 · · ·dpm = x1! · · ·xm!
(∑m

1 xi + m − 1
)! (3.27)
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and thus, using the fact that
∑m

1 xi = n, we see that

P {X1 = x1, . . . ,Xm = xm} = n!(m − 1)!
(n + m − 1)!

=
(

n + m − 1

m − 1

)−1

(3.28)

Hence, all of the
(
n+m−1

m−1

)
possible outcomes [there are

(
n+m−1

m−1

)
possible non-

negative integer valued solutions of x1 +· · ·+xm = n] of the vector (X1, . . . ,Xm)

are equally likely. The probability distribution given by Equation (3.28) is some-
times called the Bose–Einstein distribution.

To obtain an alternative description of the foregoing, let us compute the condi-
tional probability that the (n + 1)st outcome is of type j if the first n trials have
resulted in xi type i outcomes, i = 1, . . . ,m,

∑m
1 xi = n. This is given by

P {(n + 1)st is j |xi type i in first n, i = 1, . . . ,m}

= P {(n + 1)st is j, xi type i in first n, i = 1, . . . ,m}
P {xi type i in first n, i = 1, . . . ,m}

=
n!(m − 1)!
x1! · · ·xm!

∫∫

· · ·
∫

p
x1
1 · · ·pxj +1

j · · ·pxm
m dp1 · · ·dpm

(
n+m−1

m−1

)−1

where the numerator is obtained by conditioning on the p vector and the denom-
inator is obtained by using Equation (3.28). By Equation (3.27), we have that

P {(n + 1)st is j |xi type i in first n, i = 1, . . . ,m}

=
(xj + 1)n!(m − 1)!

(n + m)!
(m − 1)!n!

(n + m − 1)!
= xj + 1

n + m
(3.29)

Using Equation (3.29), we can now present an urn model description of the
stochastic process of successive outcomes. Namely, consider an urn that initially
contains one of each of m types of balls. Balls are then randomly drawn and are
replaced along with another of the same type. Hence, if in the first n drawings
there have been a total of xj type j balls drawn, then the urn immediately before
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the (n+1)st draw will contain xj +1 type j balls out of a total of m+n, and so the
probability of a type j on the (n + 1)st draw will be given by Equation (3.29).

Remark Consider a situation where n particles are to be distributed at random
among m possible regions; and suppose that the regions appear, at least before the
experiment, to have the same physical characteristics. It would thus seem that the
most likely distribution for the number of particles that fall into each of the regions
is the multinomial distribution with pi ≡ 1/m. (This, of course, would correspond
to each particle, independent of the others, being equally likely to fall in any of
the m regions.) Physicists studying how particles distribute themselves observed
the behavior of such particles as photons and atoms containing an even number
of elementary particles. However, when they studied the resulting data, they were
amazed to discover that the observed frequencies did not follow the multinomial
distribution but rather seemed to follow the Bose–Einstein distribution. They were
amazed because they could not imagine a physical model for the distribution of
particles which would result in all possible outcomes being equally likely. (For
instance, if 10 particles are to distribute themselves between two regions, it hardly
seems reasonable that it is just as likely that both regions will contain 5 particles
as it is that all 10 will fall in region 1 or that all 10 will fall in region 2.)

However, from the results of this section we now have a better understanding
of the cause of the physicists’ dilemma. In fact, two possible hypotheses present
themselves. First, it may be that the data gathered by the physicists were actually
obtained under a variety of different situations, each having its own characteristic
p vector which gave rise to a uniform spread over all possible p vectors. A second
possibility (suggested by the urn model interpretation) is that the particles select
their regions sequentially and a given particle’s probability of falling in a region is
roughly proportional to the fraction of the landed particles that are in that region.
(In other words, the particles presently in a region provide an “attractive” force on
elements that have not yet landed.)

3.6.4. Mean Time for Patterns

Let X = (X1,X2, . . .) be a sequence of independent and identically distributed
discrete random variables such that

pi = P {Xj = i}
For a given subsequence, or pattern, i1, . . . , in let T = T (i1, . . . , in) denote the
number of random variables that we need to observe until the pattern appears.
For instance, if the subsequence of interest is 3,5,1 and the sequence is X =
(5,3,1,3,5,3,5,1,6,2, . . .) then T = 8. We want to determine E[T ].

To begin, let us consider whether the pattern has an overlap, where we say that
the pattern i1, i2, . . . , in has an overlap if for some k,1 � k < n, the sequence of
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its final k elements is the same as that of its first k elements. That is, it has an
overlap if for some 1 � k < n,

(in−k+1, . . . , in) = (i1, . . . , ik), k < n

For instance, the pattern 3,5,1 has no overlaps, whereas the pattern 3,3,3 does.

Case 1: The pattern has no overlaps.
In this case we will argue that T will equal j + n if and only if the pattern does
not occur within the first j values, and the next n values are i1, . . . , in. That is,

T = j + n ⇔ {T > j, (Xj+1, . . . ,Xj+n) = (i1, . . . , in)} (3.30)

To verify (3.30), note first that T = j + n clearly implies both that T > j and that
(Xj+1, . . . ,Xj+n) = (i1, . . . , in). On the other hand, suppose that

T > j and (Xj+1, . . . ,Xj+n) = (i1, . . . , in) (3.31)

Let k < n. Because (i1, . . . , ik) �= (in−k+1, . . . , in), it follows that T �= j + k. But
(3.31) implies that T � j + n, so we can conclude that T = j + n. Thus we have
verified (3.30).

Using (3.30), we see that

P {T = j + n} = P {T > j, (Xj+1, . . . ,Xj+n) = (i1, . . . , in)}
However, whether T > j is determined by the values X1, . . . ,Xj , and is thus
independent of Xj+1, . . . ,Xj+n. Consequently,

P {T = j + n} = P {T > j}P {(Xj+1, . . . ,Xj+n) = (i1, . . . , in)}
= P {T > j}p

where

p = pi1pi2 · · ·pin

Summing both sides of the preceding over all j yields

1 =
∞∑

j=0

P {T = j + n} = p

∞∑

j=0

P {T > j} = pE[T ]

or

E[T ] = 1

p

Case 2: The pattern has overlaps.
For patterns having overlaps there is a simple trick that will enable us to obtain
E[T ] by making use of the result for nonoverlapping patterns. To make the analy-
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sis more transparent, consider a specific pattern, say P = (3,5,1,3,5). Let x be
a value that does not appear in the pattern, and let Tx denote the time until the
pattern Px = (3,5,1,3,5, x) appears. That is, Tx is the time of occurrence of the
new pattern that puts x at the end of the original pattern. Because x did not appear
in the original pattern it follows that the new pattern has no overlaps; thus,

E[Tx] = 1

pxp

where p =∏n
j=1 pij = p2

3p
2
5p1. Because the new pattern can occur only after the

original one, write

Tx = T + A

where T is the time at which the pattern P = (3,5,1,3,5) occurs, and A is the
additional time after the occurrence of the pattern P until Px occurs. Also, let
E[Tx |i1, . . . ir ] denote the expected additional time after time r until the pattern
Px appears given that the first r data values are i1, . . . , ir . Conditioning on X, the
next data value after the occurrence of the pattern (3,5,1,3,5), gives that

E[A|X = i] =

⎧
⎪⎪⎨

⎪⎪⎩

1 + E[Tx |3,5,1], if i = 1
1 + E[Tx |3], if i = 3
1, if i = x

1 + E[Tx], if i �= 1,3, x

Therefore,

E[Tx] = E[T ] + E[A]
= E[T ] + 1 + E[Tx |3,5,1]p1 + E[Tx |3]p3 + E[Tx](1 − p1 − p3 − px)

(3.32)

But

E[Tx] = E[T (3,5,1)] + E[Tx |3,5,1]
giving that

E[Tx |3,5,1] = E[Tx] − E[T (3,5,1)]
Similarly,

E[Tx |3] = E[Tx] − E[T (3)]
Substituting back into Equation (3.32) gives

pxE[Tx] = E[T ] + 1 − p1E[T (3,5,1)] − p3E[T (3)]
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But, by the result in the nonoverlapping case,

E[T (3,5,1)] = 1

p3p5p1
, E[T (3)] = 1

p3

yielding the result

E[T ] = pxE[Tx] + 1

p3p5
= 1

p
+ 1

p3p5

For another illustration of the technique, let us reconsider Example 3.14, which
is concerned with finding the expected time until n consecutive successes oc-
cur in independent Bernoulli trials. That is, we want E[T ], when the pattern
is P = (1,1, . . . ,1). Then, with x �= 1 we consider the nonoverlapping pattern
Px = (1, . . . ,1, x), and let Tx be its occurrence time. With A and X as previously
defined, we have that

E[A|X = i] =
⎧
⎨

⎩

1 + E[A], if i = 1
1, if i = x

1 + E[Tx], if i �= 1, x

Therefore,

E[A] = 1 + E[A]p1 + E[Tx](1 − p1 − px)

or

E[A] = 1

1 − p1
+ E[Tx]1 − p1 − px

1 − p1

Consequently,

E[T ] = E[Tx] − E[A]

= pxE[Tx] − 1

1 − p1

= (1/p1)
n − 1

1 − p1

where the final equality used that E[Tx] = 1
pn

1 px
.

The mean occurrence time of any overlapping pattern P = (i1, . . . , in) can be
obtained by the preceding method. Namely, let Tx be the time until the nonover-
lapping pattern Px = (i1, . . . , in, x) occurs; then use the identity

E[Tx] = E[T ] + E[A]
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to relate E[T ] and E[Tx] = 1
p px

; then condition on the next data value after P
occurs to obtain an expression for E[A] in terms of quantities of the form

E[Tx |i1, . . . , ir ] = E[Tx] − E[T (i1, . . . , ir )]

If (i1, . . . , ir ) is nonoverlapping, use the nonoverlapping result to obtain
E[T (i1, . . . , ir )]; otherwise, repeat the process on the subpattern (i1, . . . , ir ).

Remark We can utilize the preceding technique even when the pattern
i1, . . . , in includes all the distinct data values. For instance, in coin tossing the pat-
tern of interest might be h, t, h. Even in such cases, we should let x be a data value
that is not in the pattern and use the preceding technique (even though px = 0).
Because px will appear only in the final answer in the expression pxE[Tx] = px

pxp
,

by interpreting this fraction as 1/p we obtain the correct answer. (A rigorous ap-
proach, yielding the same result, would be to reduce one of the positive pi by ε,
take px = ε, solve for E[T ], and then let ε go to 0.) �

3.6.5. The k-Record Values of Discrete Random Variables

Let X1,X2, . . . be independent and identically distributed random variables
whose set of possible values is the positive integers, and let P {X = j}, j � 1,
denote their common probability mass function. Suppose that these random vari-
ables are observed in sequence, and say that Xn is a k-record value if

Xi � Xn for exactly k of the values i, i = 1, . . . , n

That is, the nth value in the sequence is a k-record value if exactly k of the first n

values (including Xn) are at least as large as it. Let Rk denote the ordered set of
k-record values.

It is a rather surprising result that not only do the sequences of k-record values
have the same probability distributions for all k, these sequences are also inde-
pendent of each other. This result is known as Ignatov’s theorem.

Ignatov’s Theorem Rk, k � 1, are independent and identically distributed
random vectors.

Proof Define a series of subsequences of the data sequence X1,X2, . . . by let-
ting the ith subsequence consist of all data values that are at least as large as
i, i � 1. For instance, if the data sequence is

2,5,1,6,9,8,3,4,1,5,7,8,2,1,3,4,2,5,6,1, . . .
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then the subsequences are as follows:

� 1 : 2,5,1,6,9,8,3,4,1,5,7,8,2,1,3,4,2,5,6,1, . . .

� 2 : 2,5,6,9,8,3,4,5,7,8,2,3,4,2,5,6, . . .

� 3 : 5,6,9,8,3,4,5,7,8,3,4,5,6, . . .

and so on.
Let Xi

j be the j th element of subsequence i. That is, Xi
j is the j th data value

that is at least as large as i. An important observation is that i is a k-record value
if and only if Xi

k = i. That is, i will be a k-record value if and only if the kth
value to be at least as large as i is equal to i. (For instance, for the preceding data,
since the fifth value to be at least as large as 3 is equal to 3 it follows that 3 is a
five-record value.) Now, it is not difficult to see that, independent of which values
in the first subsequence are equal to 1, the values in the second subsequence are
independent and identically distributed according to the mass function

P {value in second subsequence = j} = P {X = j |X � 2}, j � 2

Similarly, independent of which values in the first subsequence are equal to 1 and
which values in the second subsequence are equal to 2, the values in the third
subsequence are independent and identically distributed according to the mass
function

P {value in third subsequence = j} = P {X = j |X � 3}, j � 3

and so on. It therefore follows that the events {Xi
j = i}, i � 1, j � 1, are inde-

pendent and

P {i is a k-record value} = P {Xi
k = i} = P {X = i|X � i}

It now follows from the independence of the events {Xi
k = i}, i � 1, and the

fact that P {i is a k-record value} does not depend on k, that Rk has the same
distribution for all k � 1. In addition, it follows from the independence of the
events {Xi

k = 1}, that the random vectors Rk, k � 1, are also independent. �

Suppose now that the Xi, i � 1 are independent finite-valued random variables
with probability mass function

pi = P {X = i}, i = 1, . . . ,m

and let

T = min{n : Xi � Xn for exactly k of the values i, i = 1, . . . , n}
denote the first k-record index. We will now determine its mean.



3.6. Some Applications 157

Proposition 3.3 Let λi = pi/
∑m

j=i pj , i = 1, . . . ,m. Then

E[T ] = k + (k − 1)

m−1∑

i=1

λi

Proof To begin, suppose that the observed random variables X1 X2, . . . take
on one of the values i, i + 1, . . . ,m with respective probabilities

P {X = j} = pj

pi + · · · + pm

, j = i, . . . ,m

Let Ti denote the first k-record index when the observed data have the preceding
mass function, and note that since the each data value is at least i it follows that
the k-record value will equal i, and Ti will equal k, if Xk = i. As a result,

E[Ti |Xk = i] = k

On the other hand, if Xk > i then the k-record value will exceed i, and so all data
values equal to i can be disregarded when searching for the k-record value. In
addition, since each data value greater than i will have probability mass function

P {X = j |X > i} = pj

pi+1 + · · · + pm

, j = i + 1, . . . ,m

it follows that the total number of data values greater than i that need be observed
until a k-record value appears has the same distribution as Ti+1. Hence,

E[Ti |Xk > i] = E[Ti+1 + Ni |Xk > i]
where Ti+1 is the total number of variables greater than i that we need observe
to obtain a k-record, and Ni is the number of values equal to i that are observed
in that time. Now, given that Xk > i and that Ti+1 = n (n � k) it follows that the
time to observe Ti+1 values greater than i has the same distribution as the number
of trials to obtain n successes given that trial k is a success and that each trial is
independently a success with probability 1 − pi/

∑
j�i pj = 1 − λi . Thus, since

the number of trials needed to obtain a success is a geometric random variable
with mean 1/(1 − λi), we see that

E[Ti |Ti+1,Xk > i] = 1 + Ti+1 − 1

1 − λi

= Ti+1 − λi

1 − λi

Taking expectations gives that

E[Ti |Xk > i] = E

[
Ti+1 − λi

1 − λi

∣
∣
∣Xk > i

]

= E[Ti+1] − λi

1 − λi
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Thus, upon conditioning on whether Xk = i, we obtain

E[Ti] = E[Ti |Xk = i]λi + E[Ti |Xk > i](1 − λi)

= (k − 1)λi + E[Ti+1]
Starting with E[Tm] = k, the preceding gives that

E[Tm−1] = (k − 1)λm−1 + k

E[Tm−2] = (k − 1)λm−2 + (k − 1)λm−1 + k

= (k − 1)

m−1∑

j=m−2

λj + k

E[Tm−3] = (k − 1)λm−3 + (k − 1)

m−1∑

j=m−2

λj + k

= (k − 1)

m−1∑

j=m−3

λj + k

In general,

E[Ti] = (k − 1)

m−1∑

j=i

λj + k

and the result follows since T = T1. �

3.7. An Identity for Compound Random Variables

Let X1,X2, . . . be a sequence of independent and identically distributed random
variables, and let Sn =∑n

i=1 Xi be the sum of the first n of them, n � 0, where
S0 = 0. Recall that if N is a nonnegative integer valued random variable that is
independent of the sequence X1,X2, . . . then

SN =
N∑

i=1

Xi

is said to be a compound random variable, with the distribution of N called the
compounding distribution. In this subsection we will first derive an identity in-
volving such random variables. We will then specialize to where the Xi are pos-
itive integer valued random variables, prove a corollary of the identity, and then
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use this corollary to develop a recursive formula for the probability mass function
of SN, for a variety of common compounding distributions.

To begin, let M be a random variable that is independent of the sequence
X1,X2, . . . , and which is such that

P {M = n} = nP {N = n}
E[N ] , n = 1,2, . . .

Proposition 3.4 The Compound Random Variable Identity
For any function h

E[SNh(SN)] = E[N ]E[X1h(SM)]
Proof

E[SNh(SN)] = E[
N∑

i=1

Xih(SN)]

=
∞∑

n=0

E[
N∑

i=1

Xih(SN)|N = n]P {N = n}

(by conditioning on N)

=
∞∑

n=0

E[
n∑

i=1

Xih(Sn)|N = n]P {N = n}

=
∞∑

n=0

E[
n∑

i=1

Xih(Sn)]P {N = n}

(by independence of N and X1, . . . ,Xn)

=
∞∑

n=0

n∑

i=1

E[Xih(Sn)]P {N = n}

Now, because X1, . . . ,Xn are independent and identically distributed, and
h(Sn) = h(X1 + · · · + Xn) is a symmetric function of X1, . . . ,Xn, it follows that
the distribution of Xih(Sn) is the same for all i = 1, . . . , n. Therefore, continuing
the preceding string of equalities yields

E[SNh(SN)] =
∞∑

n=0

nE[X1h(Sn)]P {N = n}

= E[N ]
∞∑

n=0

E[X1h(Sn)]P {M = n} (definition of M)
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= E[N ]
∞∑

n=0

E[X1h(Sn)|M = n]P {M = n}

(independence of M and X1, . . . ,Xn)

= E[N ]
∞∑

n=0

E[X1h(SM)|M = n]P {M = n}

= E[N ]E[X1h(SM)]

which proves the proposition. �

Suppose now that the Xi are positive integer valued random variables, and let

αj = P {X1 = j}, j > 0

The successive values of P {SN = k} can often be obtained from the following
corollary to Proposition 3.4.

Corollary 3.5

P {SN = 0} = P {N = 0}

P {SN = k} = 1

k
E[N ]

k∑

j=1

jαjP {SM−1 = k − j}, k > 0

Proof For k fixed, let

h(x) =
{

1, if x = k

0, if x �= k

and note that SNh(SN) is either equal to k if SN = k or is equal to 0 otherwise.
Therefore,

E[SNh(SN)] = kP {SN = k}
and the compound identity yields

kP {SN = k} = E[N ]E[X1h(SM)]

= E[N ]
∞∑

j=1

E[X1h(SM))|X1 = j ]αj
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= E[N ]
∞∑

j=1

jE[h(SM)|X1 = j ]αj

= E[N ]
∞∑

j=1

jP {SM = k|X1 = j}αj (3.33)

Now,

P {SM = k|X1 = j} = P

{
M∑

i=1

Xi = k

∣
∣
∣X1 = j

}

= P

{

j +
M∑

i=2

Xi = k

∣
∣
∣X1 = j

}

= P

{

j +
M∑

i=2

Xi = k

}

= P

{

j +
M−1∑

i=1

Xi = k

}

= P {SM−1 = k − j}

The next to last equality followed because X2, . . . ,XM and X1, . . . ,XM−1 have
the same joint distribution; namely that of M − 1 independent random variables
that all have the distribution of X1, where M − 1 is independent of these random
variables. Thus the proof follows from Equation (3.33). �

When the distributions of M − 1 and N are related, the preceding corollary
can be a useful recursion for computing the probability mass function of SN , as is
illustrated in the following subsections.

3.7.1. Poisson Compounding Distribution

If N is the Poisson distribution with mean λ, then

P {M − 1 = n} = P {M = n + 1}

= (n + 1)P {N = n + 1}
E[N ]
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= 1

λ
(n + 1)e−λ λn+1

(n + 1)!

= e−λ λn

n!
Consequently, M − 1 is also Poisson with mean λ. Thus, with

Pn = P {SN = n}

the recursion given by Corollary 3.5 can be written

P0 = e−λ

Pk = λ

k

k∑

j=1

j αj Pk−j , k > 0

Remark When the Xi are identically 1, the preceding recursion reduces to the
well-known identity for a Poisson random variable having mean λ:

P {N = 0} = e−λ

P {N = n} = λ

n
P {N = n − 1}, n � 1

Example 3.30 Let S be a compound Poisson random variable with λ = 4 and

P {Xi = i} = 1/4, i = 1,2,3,4

Let us use the recursion given by Corollary 3.5 to determine P {S = 5}. It gives

P0 = e−λ = e−4

P1 = λα1P0 = e−4

P2 = λ

2
(α1P1 + 2α2P0) = 3

2
e−4

P3 = λ

3
(α1P2 + 2α2P1 + 3α3P0) = 13

6
e−4

P4 = λ

4
(α1P3 + 2α2P2 + 3α3P1 + 4α4P0) = 73

24
e−4

P5 = λ

5
(α1P4 + 2α2P3 + 3α3P2 + 4α4P1 + 5α5P0) = 501

120
e−4 �
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3.7.2. Binomial Compounding Distribution

Suppose that N is a binomial random variable with parameters r and p. Then,

P {M − 1 = n} = (n + 1)P {N = n + 1}
E[N ]

= n + 1

rp

(
r

n + 1

)

pn+1(1 − p)r−n−1

= n + 1

rp

r!
(r − 1 − n)!(n + 1)! pn+1(1 − p)r−1−n

= (r − 1)!
(r − 1 − n)!n! pn(1 − p)r−1−n

Thus, M − 1 is a binomial random variable with parameters r − 1, p.

Fixing p, let N(r) be a binomial random variable with parameters r and p, and
let

Pr(k) = P {SN(r) = k}
Then, Corollary 3.5 yields that

Pr(0) = (1 − p)r

Pr(k) = rp

k

k∑

j=1

j αj Pr−1(k − j), k > 0

For instance, letting k equal 1, then 2, and then 3 gives

Pr(1) = rp α1(1 − p)r−1

Pr(2) = rp

2
[α1Pr−1(1) + 2α2Pr−1(0)]

= rp

2

[
(r − 1)pα2

1(1 − p)r−2 + 2α2(1 − p)r−1]

Pr(3) = rp

3

[
α1Pr−1(2) + 2α2Pr−1(1) + 3α3Pr−1(0)

]

= α1rp

3

(r − 1)p

2

[
(r − 2)pα2

1(1 − p)r−3 + 2α2(1 − p)r−2]

+ 2α2rp

3
(r − 1)p α1(1 − p)r−2 + α3rp(1 − p)r−1
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3.7.3. A Compounding Distribution Related to the Negative
Binomial

Suppose, for a fixed value of p, 0 < p < 1, the compounding random variable N

has a probability mass function

P {N = n} =
(

n + r − 1

r − 1

)

pr(1 − p)n, n = 0,1, . . .

Such a random variable can be thought of as being the number of failures that
occur before a total of r successes have been amassed when each trial is inde-
pendently a success with probability p. (There will be n such failures if the r th
success occurs on trial n + r . Consequently, N + r is a negative binomial random
variable with parameters r and p.) Using that the mean of the negative binomial
random variable N + r is E[N + r] = r/p, we see that E[N ] = r

1−p
p

.

Regard p as fixed, and call N an NB(r) random variable. The random variable
M − 1 has probability mass function

P {M − 1 = n} = (n + 1)P {N = n + 1}
E[N ]

= (n + 1)p

r(1 − p)

(
n + r

r − 1

)

pr(1 − p)n+1

= (n + r)!
r!n! pr+1(1 − p)n

=
(

n + r

r

)

pr+1(1 − p)n

In other words, M − 1 is an NB(r + 1) random variable.
Letting, for an NB(r) random variable N ,

Pr(k) = P {SN = k}
Corollary 3.5 yields that

Pr(0) = pr

Pr(k) = r(1 − p)

kp

k∑

j=1

j αj Pr+1(k − j), k > 0

Thus,

Pr(1) = r(1 − p)

p
α1Pr+1(0)

= rpr(1 − p)α1,
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Pr(2) = r(1 − p)

2p

[
α1Pr+1(1) + 2α2Pr+1(0)

]

= r(1 − p)

2p

[
α2

1(r + 1)pr+1(1 − p) + 2α2p
r+1]

Pr(3) = r(1 − p)

3p

[
α1Pr+1(2) + 2α2Pr+1(1) + 3α3Pr+1(0)

]

and so on.

Exercises

1. If X and Y are both discrete, show that
∑

x pX|Y (x|y) = 1 for all y such that
pY (y) > 0.

*2. Let X1 and X2 be independent geometric random variables having the same
parameter p. Guess the value of

P {X1 = i|X1 + X2 = n}

Hint: Suppose a coin having probability p of coming up heads is continually
flipped. If the second head occurs on flip number n, what is the conditional
probability that the first head was on flip number i, i = 1, . . . , n − 1?

Verify your guess analytically.

3. The joint probability mass function of X and Y , p(x, y), is given by

p(1,1) = 1
9 , p(2,1) = 1

3 , p(3,1) = 1
9 ,

p(1,2) = 1
9 , p(2,2) = 0, p(3,2) = 1

18 ,

p(1,3) = 0, p(2,3) = 1
6 , p(3,3) = 1

9

Compute E[X|Y = i] for i = 1,2,3.

4. In Exercise 3, are the random variables X and Y independent?

5. An urn contains three white, six red, and five black balls. Six of these balls are
randomly selected from the urn. Let X and Y denote respectively the number of
white and black balls selected. Compute the conditional probability mass function
of X given that Y = 3. Also compute E[X|Y = 1].
*6. Repeat Exercise 5 but under the assumption that when a ball is selected its
color is noted, and it is then replaced in the urn before the next selection is made.
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7. Suppose p(x, y, z), the joint probability mass function of the random vari-
ables X, Y , and Z, is given by

p(1,1,1) = 1
8 , p(2,1,1) = 1

4 ,

p(1,1,2) = 1
8 , p(2,1,2) = 3

16 ,

p(1,2,1) = 1
16 , p(2,2,1) = 0,

p(1,2,2) = 0, p(2,2,2) = 1
4

What is E[X|Y = 2]? What is E[X|Y = 2,Z = 1]?
8. An unbiased die is successively rolled. Let X and Y denote, respec-
tively, the number of rolls necessary to obtain a six and a five. Find (a) E[X],
(b) E[X|Y = 1], (c) E[X|Y = 5].
9. Show in the discrete case that if X and Y are independent, then

E[X|Y = y] = E[X] for all y

10. Suppose X and Y are independent continuous random variables. Show that

E[X|Y = y] = E[X] for all y

11. The joint density of X and Y is

f (x, y) = (y2 − x2)

8
e−y, 0 < y < ∞, −y � x � y

Show that E[X|Y = y] = 0.

12. The joint density of X and Y is given by

f (x, y) = e−x/ye−y

y
, 0 < x < ∞, 0 < y < ∞

Show E[X|Y = y] = y.

*13. Let X be exponential with mean 1/λ; that is,

fX(x) = λe−λx, 0 < x < ∞
Find E[X|X > 1].
14. Let X be uniform over (0, 1). Find E[X|X < 1

2 ].
15. The joint density of X and Y is given by

f (x, y) = e−y

y
, 0 < x < y, 0 < y < ∞

Compute E[X2|Y = y].
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16. The random variables X and Y are said to have a bivariate normal distribu-
tion if their joint density function is given by

f (x, y) = 1

2πσxσy

√
1 − ρ2

exp

⎧
⎨

⎩
− 1

2(1 − ρ2)

×
[(

x − μx

σx

)2

− 2ρ(x − μx)(y − μy)

σxσy

+
(

y − μy

σy

)2
]}

for −∞ < x < ∞, −∞ < y < ∞, where σx, σy, μx, μy , and ρ are constants
such that −1 < ρ < 1, σx > 0, σy > 0, −∞ < μx < ∞, −∞ < μy < ∞.

(a) Show that X is normally distributed with mean μx and variance σ 2
x , and

Y is normally distributed with mean μy and variance σ 2
y .

(b) Show that the conditional density of X given that Y = y is normal with
mean μx + (ρσx/σy)(y − μy) and variance σ 2

x (1 − ρ2).

The quantity ρ is called the correlation between X and Y . It can be shown
that

ρ = E[(X − μx)(Y − μy)]
σxσy

= Cov(X,Y )

σxσy

17. Let Y be a gamma random variable with parameters (s,α). That is, its den-
sity is

fY (y) = Ce−αyys−1, y > 0

where C is a constant that does not depend on y. Suppose also that the conditional
distribution of X given that Y = y is Poisson with mean y. That is,

P {X = i|Y = y} = e−yyi/i!, i � 0

Show that the conditional distribution of Y given that X = i is the gamma distri-
bution with parameters (s + i, α + 1).

18. Let X1, . . . ,Xn be independent random variables having a common distri-
bution function that is specified up to an unknown parameter θ . Let T = T (X)

be a function of the data X = (X1, . . . ,Xn). If the conditional distribution of
X1, . . . ,Xn given T (X) does not depend on θ then T (X) is said to be a sufficient
statistic for θ . In the following cases, show that T (X) = ∑n

i=1Xi is a sufficient
statistic for θ .
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(a) The Xi are normal with mean θ and variance 1.
(b) The density of Xi is f (x) = θe−θx, x > 0.
(c) The mass function of Xi is p(x) = θx(1 − θ)1−x , x = 0,1, 0 < θ < 1.
(d) The Xi are Poisson random variables with mean θ .

*19. Prove that if X and Y are jointly continuous, then

E[X] =
∫ ∞

−∞
E[X|Y = y]fY (y) dy

20. An individual whose level of exposure to a certain pathogen is x will con-
tract the disease caused by this pathogen with probability P(x). If the exposure
level of a randomly chosen member of the population has probability density func-
tion f , determine the conditional probability density of the exposure level of that
member given that he or she

(a) has the disease.
(b) does not have the disease.
(c) Show that when P(x) increases in x, then the ratio of the density of part (a)
to that of part (b) also increases in x.

21. Consider Example 3.12 which refers to a miner trapped in a mine. Let N

denote the total number of doors selected before the miner reaches safety. Also,
let Ti denote the travel time corresponding to the ith choice, i � 1. Again let X

denote the time when the miner reaches safety.

(a) Give an identity that relates X to N and the Ti .
(b) What is E[N ]?
(c) What is E[TN ]?
(d) What is E[∑N

i=1 Ti |N = n]?
(e) Using the preceding, what is E[X]?

22. Suppose that independent trials, each of which is equally likely to have any
of m possible outcomes, are performed until the same outcome occurs k consec-
utive times. If N denotes the number of trials, show that

E[N ] = mk − 1

m − 1

Some people believe that the successive digits in the expansion of π = 3.14159 . . .

are “uniformly” distributed. That is, they believe that these digits have all the
appearance of being independent choices from a distribution that is equally likely
to be any of the digits from 0 through 9. Possible evidence against this hypothesis
is the fact that starting with the 24,658,601st digit there is a run of nine successive
7s. Is this information consistent with the hypothesis of a uniform distribution?

To answer this, we note from the preceding that if the uniform hypothesis
were correct, then the expected number of digits until a run of nine of the same
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value occurs is

(109 − 1)/9 = 111,111,111

Thus, the actual value of approximately 25 million is roughly 22 percent of the
theoretical mean. However, it can be shown that under the uniformity assump-
tion the standard deviation of N will be approximately equal to the mean. As a
result, the observed value is approximately 0.78 standard deviations less than its
theoretical mean and is thus quite consistent with the uniformity assumption.

*23. A coin having probability p of coming up heads is successively flipped
until two of the most recent three flips are heads. Let N denote the number of
flips. (Note that if the first two flips are heads, then N = 2.) Find E[N ].
24. A coin, having probability p of landing heads, is continually flipped until at
least one head and one tail have been flipped.

(a) Find the expected number of flips needed.
(b) Find the expected number of flips that land on heads.
(c) Find the expected number of flips that land on tails.
(d) Repeat part (a) in the case where flipping is continued until a total of at
least two heads and one tail have been flipped.

25. A gambler wins each game with probability p. In each of the following
cases, determine the expected total number of wins.

(a) The gambler will play n games; if he wins X of these games, then he will
play an additional X games before stopping.
(b) The gambler will play until he wins; if it takes him Y games to get this win,
then he will play an additional Y games.

26. You have two opponents with whom you alternate play. Whenever you play
A, you win with probability pA; whenever you play B , you win with probability
pB , where pB > pA. If your objective is to minimize the number of games you
need to play to win two in a row, should you start with A or with B?

Hint: Let E[Ni] denote the mean number of games needed if you initially
play i. Derive an expression for E[NA] that involves E[NB ]; write down the
equivalent expression for E[NB ] and then subtract.

27. A coin that comes up heads with probability p is continually flipped until the
pattern T, T, H appears. (That is, you stop flipping when the most recent flip lands
heads, and the two immediately preceding it lands tails.) Let X denote the num-
ber of flips made, and find E[X].
28. Polya’s urn model supposes that an urn initially contains r red and b blue
balls. At each stage a ball is randomly selected from the urn and is then returned
along with m other balls of the same color. Let Xk be the number of red balls
drawn in the first k selections.
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(a) Find E[X1].
(b) Find E[X2].
(c) Find E[X3].
(d) Conjecture the value of E[Xk], and then verify your conjecture by a con-
ditioning argument.
(e) Give an intuitive proof for your conjecture.

Hint: Number the initial r red and b blue balls, so the urn contains one type
i red ball, for each i = 1, . . . , r ; as well as one type j blue ball, for each j =
1, . . . , b. Now suppose that whenever a red ball is chosen it is returned along
with m others of the same type, and similarly whenever a blue ball is chosen
it is returned along with m others of the same type. Now, use a symmetry
argument to determine the probability that any given selection is red.

29. Two players take turns shooting at a target, with each shot by player i hitting
the target with probability pi, i = 1,2. Shooting ends when two consecutive shots
hit the target. Let μi denote the mean number of shots taken when player i shoots
first, i = 1,2.

(a) Find μ1 and μ2.
(b) Let hi denote the mean number of times that the target is hit when player i

shoots first, i = 1,2. Find h1 and h2.

30. Let Xi, i � 0 be independent and identically distributed random variables
with probability mass function

p(j) = P {Xi = j}, j = 1, . . . ,m,

m∑

j=1

P(j) = 1

Find E[N ], where N = min{n > 0 : Xn = X0}.
31. Each element in a sequence of binary data is either 1 with probability p

or 0 with probability 1 − p. A maximal subsequence of consecutive values hav-
ing identical outcomes is called a run. For instance, if the outcome sequence is
1,1,0,1,1,1,0, the first run is of length 2, the second is of length 1, and the third
is of length 3.

(a) Find the expected length of the first run.
(b) Find the expected length of the second run.

32. Independent trials, each resulting in success with probability p, are per-
formed.

(a) Find the expected number of trials needed for there to have been both at
least n successes and at least m failures.
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Hint: Is it useful to know the result of the first n + m trials?

(b) Find the expected number of trials needed for there to have been either at
least n successes and at least m failures.

Hint: Make use of the result from part (a).

33. If Ri denotes the random amount that is earned in period i, then
∑∞

i=1 βi−1Ri,

where 0 < β < 1 is a specified constant, is called the total discounted reward with
discount factor β. Let T be a geometric random variable with parameter 1 − β

that is independent of the Ri . Show that the expected total discounted reward is
equal to the expected total (undiscounted) reward earned by time T . That is, show
that

E

[ ∞∑

i=1

βi−1Ri

]

= E

[
T∑

i=1

Ri

]

34. A set of n dice is thrown. All those that land on six are put aside, and the
others are again thrown. This is repeated until all the dice have landed on six. Let
N denote the number of throws needed. (For instance, suppose that n = 3 and that
on the initial throw exactly two of the dice land on six. Then the other die will be
thrown, and if it lands on six, then N = 2.) Let mn = E[N ].

(a) Derive a recursive formula for mn and use it to calculate mi , i = 2,3,4 and
to show that m5 ≈ 13.024.

(b) Let Xi denote the number of dice rolled on the ith throw. Find E[∑N
i=1 Xi].

35. Consider n multinomial trials, where each trial independently results in out-
come i with probability pi,

∑k
i=1 pi = 1. With Xi equal to the number of trials

that result in outcome i, find E[X1|X2 > 0].
36. Let p0 = P {X = 0} and suppose that 0 < p0 < 1. Let μ = E[X] and σ 2 =
Var(X). Find (a) E[X|X �= 0] and (b) Var(X|X �= 0).

37. A manuscript is sent to a typing firm consisting of typists A, B , and C. If it
is typed by A, then the number of errors made is a Poisson random variable with
mean 2.6; if typed by B , then the number of errors is a Poisson random variable
with mean 3; and if typed by C, then it is a Poisson random variable with mean
3.4. Let X denote the number of errors in the typed manuscript. Assume that each
typist is equally likely to do the work.

(a) Find E[X].
(b) Find Var(X).

38. Let U be a uniform (0, 1) random variable. Suppose that n trials are to be
performed and that conditional on U = u these trials will be independent with a
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common success probability u. Compute the mean and variance of the number of
successes that occur in these trials.

39. A deck of n cards, numbered 1 through n, is randomly shuffled so that all n!
possible permutations are equally likely. The cards are then turned over one at a
time until card number 1 appears. These upturned cards constitute the first cycle.
We now determine (by looking at the upturned cards) the lowest numbered card
that has not yet appeared, and we continue to turn the cards face up until that card
appears. This new set of cards represents the second cycle. We again determine
the lowest numbered of the remaining cards and turn the cards until it appears,
and so on until all cards have been turned over. Let mn denote the mean number
of cycles.

(a) Derive a recursive formula for mn in terms of mk, k = 1, . . . , n − 1.
(b) Starting with m0 = 0, use the recursion to find m1,m2,m3, and m4.
(c) Conjecture a general formula for mn.
(d) Prove your formula by induction on n. That is, show it is valid for n = 1,
then assume it is true for any of the values 1, . . . , n − 1 and show that this
implies it is true for n.
(e) Let Xi equal 1 if one of the cycles ends with card i, and let it equal 0
otherwise, i=1, . . . , n. Express the number of cycles in terms of these Xi .
(f) Use the representation in part (e) to determine mn.
(g) Are the random variables X1, . . . ,Xn independent? Explain.
(h) Find the variance of the number of cycles.

40. A prisoner is trapped in a cell containing three doors. The first door leads to
a tunnel that returns him to his cell after two days of travel. The second leads to a
tunnel that returns him to his cell after three days of travel. The third door leads
immediately to freedom.

(a) Assuming that the prisoner will always select doors 1, 2, and 3 with prob-
abilities 0.5, 0.3, 0.2, what is the expected number of days until he reaches
freedom?
(b) Assuming that the prisoner is always equally likely to choose among those
doors that he has not used, what is the expected number of days until he reaches
freedom? (In this version, for instance, if the prisoner initially tries door 1, then
when he returns to the cell, he will now select only from doors 2 and 3.)
(c) For parts (a) and (b) find the variance of the number of days until the pris-
oner reaches freedom.

41. A rat is trapped in a maze. Initially it has to choose one of two directions. If
it goes to the right, then it will wander around in the maze for three minutes and
will then return to its initial position. If it goes to the left, then with probability 1

3
it will depart the maze after two minutes of traveling, and with probability 2

3 it
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will return to its initial position after five minutes of traveling. Assuming that the
rat is at all times equally likely to go to the left or the right, what is the expected
number of minutes that it will be trapped in the maze?

42. A total of 11 people, including you, are invited to a party. The times at which
people arrive at the party are independent uniform (0,1) random variables.

(a) Find the expected number of people who arrive before you.
(b) Find the variance of the number of people who arrive before you.

43. The number of claims received at an insurance company during a week is a
random variable with mean μ1 and variance σ 2

1 . The amount paid in each claim is
a random variable with mean μ2 and variance σ 2

2 . Find the mean and variance of
the amount of money paid by the insurance company each week. What indepen-
dence assumptions are you making? Are these assumptions reasonable?

44. The number of customers entering a store on a given day is Poisson distrib-
uted with mean λ = 10. The amount of money spent by a customer is uniformly
distributed over (0,100). Find the mean and variance of the amount of money that
the store takes in on a given day.

45. An individual traveling on the real line is trying to reach the origin. However,
the larger the desired step, the greater is the variance in the result of that step.
Specifically, whenever the person is at location x, he next moves to a location
having mean 0 and variance βx2. Let Xn denote the position of the individual
after having taken n steps. Supposing that X0 = x0, find

(a) E[Xn];
(b) Var(Xn).

46. (a) Show that

Cov(X,Y ) = Cov(X,E[Y |X])

(b) Suppose, that, for constants a and b,

E[Y |X] = a + bX

Show that

b = Cov(X,Y )/Var(X)

*47. If E[Y |X] = 1, show that

Var(X Y) � Var(X)
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48. Give another proof of the result of Example 3.17 by computing the moment
generating function of

∑N
i=1Xi and then differentiating to obtain its moments.

Hint: Let

φ(t) = E

[

exp

(

t

N∑

i=1

Xi

)]

= E

[

E

[

exp

(

t

N∑

i=1

Xi

)∣
∣
∣
∣
∣
N

]]

Now,

E

[

exp

(

t

N∑

i=1

Xi

)∣
∣
∣
∣
∣
N = n

]

= E

[

exp

(

t

n∑

i=1

Xi

)]

= (φX(t))n

since N is independent of the Xs where φX(t) = E[etX] is the moment generating
function for the Xs. Therefore,

φ(t) = E
[
(φX(t))N

]

Differentiation yields

φ′(t) = E
[
N(φX(t))N−1φ′

X(t)
]
,

φ′′(t) = E
[
N(N − 1)(φX(t))N−2(φ′

X(t))2 + N(φX(t))N−1φ′′
X(t)

]

Evaluate at t = 0 to get the desired result.

49. A and B play a series of games with A winning each game with probabil-
ity p. The overall winner is the first player to have won two more games than the
other.

(a) Find the probability that A is the overall winner.
(b) Find the expected number of games played.

50. There are three coins in a barrel. These coins, when flipped, will come up
heads with respective probabilities 0.3, 0.5, 0.7. A coin is randomly selected from
among these three and is then flipped ten times. Let N be the number of heads
obtained on the ten flips. Find

(a) P {N = 0}.
(b) P {N = n}, n = 0,1, . . . ,10.
(c) Does N have a binomial distribution?
(d) If you win $1 each time a head appears and you lose $1 each time a tail
appears, is this a fair game? Explain.
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51. Do Exercise 50 under the assumption that each time a coin is flipped, it is
then put back in the barrel and another coin is randomly selected. Does N have a
binomial distribution now?

52. Suppose that X and Y are independent random variables with probability
density functions fX and fY . Determine a one-dimensional integral expression
for P {X + Y < x}.
*53. Suppose X is a Poisson random variable with mean λ. The parameter λ is
itself a random variable whose distribution is exponential with mean 1. Show that
P {X = n} = ( 1

2 )n+1.

54. A coin is randomly selected from a group of ten coins, the nth coin having
a probability n/10 of coming up heads. The coin is then repeatedly flipped until
a head appears. Let N denote the number of flips necessary. What is the proba-
bility distribution of N? Is N a geometric random variable? When would N be a
geometric random variable; that is, what would have to be done differently?

55. Suppose in Exercise 42 that, aside from yourself, the number of other peo-
ple who are invited is a Poisson random variable with mean 10.

(a) Find the expected number of people who arrive before you.
(b) Find the probability that you are the nth person to arrive.

56. Data indicate that the number of traffic accidents in Berkeley on a rainy day
is a Poisson random variable with mean 9, whereas on a dry day it is a Pois-
son random variable with mean 3. Let X denote the number of traffic accidents
tomorrow. If it will rain tomorrow with probability 0.6, find

(a) E[X];
(b) P {X = 0};
(c) Var(X).

57. The number of storms in the upcoming rainy season is Poisson distributed
but with a parameter value that is uniformly distributed over (0,5). That is, �

is uniformly distributed over (0,5), and given that � = λ, the number of storms
is Poisson with mean λ. Find the probability there are at least three storms this
season.

58. A collection of n coins is flipped. The outcomes are independent, and the
ith coin comes up heads with probability αi, i = 1, . . . , n. Suppose that for some
value of j, 1 � j � n,αj = 1

2 . Find the probability that the total number of heads
to appear on the n coins is an even number.

59. Let A and B be mutually exclusive events of an experiment. If independent
replications of the experiment are continually performed, what is the probability
that A occurs before B?

*60. Two players alternate flipping a coin that comes up heads with probabil-
ity p. The first one to obtain a head is declared the winner. We are interested in
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the probability that the first player to flip is the winner. Before determining this
probability, which we will call f (p), answer the following questions.

(a) Do you think that f (p) is a monotone function of p? If so, is it increasing
or decreasing?
(b) What do you think is the value of limp→1 f (p)?
(c) What do you think is the value of limp→0 f (p)?
(d) Find f (p).

61. Suppose in Exercise 29 that the shooting ends when the target has been hit
twice. Let mi denote the mean number of shots needed for the first hit when player
i shoots first, i = 1,2. Also, let Pi , i = 1,2, denote the probability that the first
hit is by player 1, when player i shoots first.

(a) Find m1 and m2.
(b) Find P1 and P2.

For the remainder of the problem, assume that player 1 shoots first.

(c) Find the probability that the final hit was by 1.
(d) Find the probability that both hits were by 1.
(e) Find the probability that both hits were by 2.
(f) Find the mean number of shots taken.

62. A,B , and C are evenly matched tennis players. Initially A and B play a set,
and the winner then plays C. This continues, with the winner always playing the
waiting player, until one of the players has won two sets in a row. That player is
then declared the overall winner. Find the probability that A is the overall winner.

63. Suppose there are n types of coupons, and that the type of each new coupon
obtained is independent of past selections and is equally likely to be any of the
n types. Suppose one continues collecting until a complete set of at least one of
each type is obtained.

(a) Find the probability that there is exactly one type i coupon in the final
collection.

Hint: Condition on T , the number of types that are collected before the
first type i appears.

(b) Find the expected number of types that appear exactly once in the final
collection.

64. A and B roll a pair of dice in turn, with A rolling first. A’s objective is to
obtain a sum of 6, and B’s is to obtain a sum of 7. The game ends when either
player reaches his or her objective, and that player is declared the winner.

(a) Find the probability that A is the winner.
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(b) Find the expected number of rolls of the dice.
(c) Find the variance of the number of rolls of the dice.

65. The number of red balls in an urn that contains n balls is a random variable
that is equally likely to be any of the values 0,1, . . . , n. That is,

P {i red, n − i non-red} = 1

n + 1
, i = 0, . . . , n

The n balls are then randomly removed one at a time. Let Yk denote the number
of red balls in the first k selections, k = 1, . . . , n.

(a) Find P {Yn = j}, j = 0, . . . , n.
(b) Find P {Yn−1 = j}, j = 0, . . . , n.
(c) What do you think is the value of P {Yk = j}, j = 0, . . . , n?
(d) Verify your answer to part (c) by a backwards induction argument. That is,
check that your answer is correct when k = n, and then show that whenever it
is true for k it is also true for k − 1, k = 1, . . . , n.

66. The opponents of soccer team A are of two types: either they are a
class 1 or a class 2 team. The number of goals team A scores against a
class i opponent is a Poisson random variable with mean λi , where λ1 = 2,
λ2 = 3. This weekend the team has two games against teams they are not very
familiar with. Assuming that the first team they play is a class 1 team with proba-
bility 0.6 and the second is, independently of the class of the first team, a class 1
team with probability 0.3, determine

(a) the expected number of goals team A will score this weekend.
(b) the probability that team A will score a total of five goals.

*67. A coin having probability p of coming up heads is continually flipped. Let
Pj (n) denote the probability that a run of j successive heads occurs within the
first n flips.

(a) Argue that

Pj (n) = Pj (n − 1) + pj (1 − p)[1 − Pj (n − j − 1)]
(b) By conditioning on the first non-head to appear, derive another equation
relating Pj (n) to the quantities Pj (n − k), k = 1, . . . , j .

68. In a knockout tennis tournament of 2n contestants, the players are paired and
play a match. The losers depart, the remaining 2n−1 players are paired, and they
play a match. This continues for n rounds, after which a single player remains
unbeaten and is declared the winner. Suppose that the contestants are numbered
1 through 2n, and that whenever two players contest a match, the lower num-
bered one wins with probability p. Also suppose that the pairings of the remain-
ing players are always done at random so that all possible pairings for that round
are equally likely.
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(a) What is the probability that player 1 wins the tournament?
(b) What is the probability that player 2 wins the tournament?

Hint: Imagine that the random pairings are done in advance of the tourna-
ment. That is, the first-round pairings are randomly determined; the 2n−1 first-
round pairs are then themselves randomly paired, with the winners of each pair
to play in round 2; these 2n−2 groupings (of four players each) are then ran-
domly paired, with the winners of each grouping to play in round 3, and so on.
Say that players i and j are scheduled to meet in round k if, provided they both
win their first k − 1 matches, they will meet in round k. Now condition on the
round in which players 1 and 2 are scheduled to meet.

69. In the match problem, say that (i, j), i < j , is a pair if i chooses j ’s hat and
j chooses i’s hat.

(a) Find the expected number of pairs.
(b) Let Qn denote the probability that there are no pairs, and derive a recursive
formula for Qn in terms of Qj, j < n.

Hint: Use the cycle concept.

(c) Use the recursion of part (b) to find Q8.

70. Let N denote the number of cycles that result in the match problem.

(a) Let Mn = E[N ], and derive an equation for Mn in terms of M1, . . . ,Mn−1.
(b) Let Cj denote the size of the cycle that contains person j . Argue that

N =
n∑

j=1

1/Cj

and use the preceding to determine E[N ].
(c) Find the probability that persons 1,2, . . . , k are all in the same cycle.
(d) Find the probability that 1,2, . . . , k is a cycle.

71. Use the equation following (3.14) to obtain Equation (3.10).

Hint: First multiply both sides of Equation (3.14) by n, then write a new
equation by replacing n with n − 1, and then subtract the former from the
latter.

72. In Example 3.25 show that the conditional distribution of N given that U1 =
y is the same as the conditional distribution of M given that U1 = 1 − y. Also,
show that

E[N |U1 = y] = E[M|U1 = 1 − y] = 1 + ey
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Figure 3.7.

*73. Suppose that we continually roll a die until the sum of all throws exceeds
100. What is the most likely value of this total when you stop?

74. There are five components. The components act independently, with com-
ponent i working with probability pi, i = 1,2,3,4,5. These components form a
system as shown in Figure 3.7.

The system is said to work if a signal originating at the left end of the dia-
gram can reach the right end, where it can pass through a component only if that
component is working. (For instance, if components 1 and 4 both work, then the
system also works.) What is the probability that the system works?

75. This problem will present another proof of the ballot problem of Exam-
ple 3.24.

(a) Argue that

Pn,m = 1 − P {A and B are tied at some point}
(b) Explain why

P {A receives first vote and they are eventually tied}
= P {B receives first vote and they are eventually tied}

Hint: Any outcome in which they are eventually tied with A receiving the
first vote corresponds to an outcome in which they are eventually tied with B

receiving the first vote. Explain this correspondence.

(c) Argue that P {eventually tied} = 2m/(n + m), and conclude that Pn,m =
(n − m)/(n + m).

76. Consider a gambler who on each bet either wins 1 with probability 18/38
or loses 1 with probability 20/38. (These are the probabilities if the bet is that a
roulette wheel will land on a specified color.) The gambler will quit either when
he or she is winning a total of 5 or after 100 plays. What is the probability he or
she plays exactly 15 times?
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77. Show that

(a) E[XY |Y = y] = yE[X|Y = y]
(b) E[g(X,Y )|Y = y] = E[g(X,y)|Y = y]
(c) E[XY ] = E[YE[X|Y ]]

78. In the ballot problem (Example 3.24), compute P {A is never behind}.
79. An urn contains n white and m black balls which are removed one
at a time. If n > m, show that the probability that there are always more
white than black balls in the urn (until, of course, the urn is empty) equals
(n − m)/(n + m). Explain why this probability is equal to the probability that
the set of withdrawn balls always contains more white than black balls. [This
latter probability is (n − m)/(n + m) by the ballot problem.]

80. A coin that comes up heads with probability p is flipped n consecutive times.
What is the probability that starting with the first flip there are always more heads
than tails that have appeared?

81. Let Xi, i �1, be independent uniform (0,1) random variables, and de-
fine N by

N = min{n: Xn < Xn−1}
where X0 = x. Let f (x) = E[N ].

(a) Derive an integral equation for f (x) by conditioning on X1.
(b) Differentiate both sides of the equation derived in part (a).
(c) Solve the resulting equation obtained in part (b).
(d) For a second approach to determining f (x) argue that

P {N � k} = (1 − x)k−1

(k − 1)!
(e) Use part (d) to obtain f (x).

82. Let X1,X2, . . . be independent continuous random variables with a common
distribution function F and density f = F ′, and for k � 1 let

Nk = min{n � k: Xn = kth largest of X1, . . . ,Xn}

(a) Show that P {Nk = n} = k−1
n(n−1)

, n � k.
(b) Argue that

fXNk
(x) = f (x)(F̄ (x))k−1

∞∑

i=0

(
i + k − 2

i

)

(F (x))i
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(c) Prove the following identity:

a1−k =
∞∑

i=0

(
i + k − 2

i

)

(1 − a)i, 0 < a < 1, k � 2

Hint: Use induction. First prove it when k = 2, and then assume it for k. To
prove it for k + 1, use the fact that

∞∑

i=1

(
i + k − 1

i

)

(1 − a)i =
∞∑

i=1

(
i + k − 2

i

)

(1 − a)i

+
∞∑

i=1

(
i + k − 2

i − 1

)

(1 − a)i

where the preceding used the combinatorial identity
(

m

i

)

=
(

m − 1

i

)

+
(

m − 1

i − 1

)

Now, use the induction hypothesis to evaluate the first term on the right side of
the preceding equation.

(d) Conclude that XNk
has distribution F .

83. An urn contains n balls, with ball i having weight wi, i = 1, . . . , n. The
balls are withdrawn from the urn one at a time according to the following scheme:
When S is the set of balls that remains, ball i, i ∈ S, is the next ball withdrawn with
probability wi/

∑
j∈S wj . Find the expected number of balls that are withdrawn

before ball i, i = 1, . . . , n.

84. In the list example of Section 3.6.1 suppose that the initial ordering at time
t = 0 is determined completely at random; that is, initially all n! permutations are
equally likely. Following the front-of-the-line rule, compute the expected position
of the element requested at time t .

Hint: To compute P {ej precedes ei at time t} condition on whether or not
either ei or ej has ever been requested prior to t .

85. In the list problem, when the Pi are known, show that the best ordering
(best in the sense of minimizing the expected position of the element requested)
is to place the elements in decreasing order of their probabilities. That is, if
P1 > P2 > · · · > Pn, show that 1,2, . . . , n is the best ordering.

86. Consider the random graph of Section 3.6.2 when n = 5. Compute the prob-
ability distribution of the number of components and verify your solution by using
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it to compute E[C]and then comparing your solution with

E[C] =
5∑

k=1

(
5

k

)
(k − 1)!

5k

87. (a) From the results of Section 3.6.3 we can conclude that there are(
n+m−1
m−1

)
nonnegative integer valued solutions of the equation x1 +· · ·+xm = n.

Prove this directly.
(b) How many positive integer valued solutions of x1 +· · ·+xm = n are there?

Hint: Let yi = xi − 1.

(c) For the Bose–Einstein distribution, compute the probability that exactly k

of the Xi are equal to 0.

88. In Section 3.6.3, we saw that if U is a random variable that is uniform on
(0,1) and if, conditional on U = p,X is binomial with parameters n and p, then

P {X = i} = 1

n + 1
, i = 0,1, . . . , n

For another way of showing this result, let U,X1,X2, . . . ,Xn be independent
uniform (0, 1) random variables. Define X by

X = #i: Xi < U

That is, if the n + 1 variables are ordered from smallest to largest, then U would
be in position X + 1.

(a) What is P {X = i}?
(b) Explain how this proves the result of Exercise 88.

89. Let I1, . . . , In be independent random variables, each of which is equally
likely to be either 0 or 1. A well-known nonparametric statistical test (called the
signed rank test) is concerned with determining Pn(k) defined by

Pn(k) = P

⎧
⎨

⎩

n∑

j=1

jIj � k

⎫
⎬

⎭

Justify the following formula:

Pn(k) = 1
2Pn−1(k) + 1

2Pn−1(k − n)

90. The number of accidents in each period is a Poisson random variable with
mean 5. With Xn,n � 1, equal to the number of accidents in period n, find E[N ]
when
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(a) N = min(n: Xn−2 = 2,Xn−1 = 1,Xn = 0);
(b) N = min(n: Xn−3 = 2,Xn−2 = 1,Xn−1 = 0,Xn = 2).

91. Find the expected number of flips of a coin, which comes up heads with
probability p, that are necessary to obtain the pattern h, t, h,h, t, h, t, h.

92. The number of coins that Josh spots when walking to work is a Poisson
random variable with mean 6. Each coin is equally likely to be a penny, a nickel,
a dime, or a quarter. Josh ignores the pennies but picks up the other coins.

(a) Find the expected amount of money that Josh picks up on his way to work.
(b) Find the variance of the amount of money that Josh picks up on his way to
work.
(c) Find the probability that Josh picks up exactly 25 cents on his way to work.

*93. Consider a sequence of independent trials, each of which is equally likely
to result in any of the outcomes 0,1, . . . ,m. Say that a round begins with the first
trial, and that a new round begins each time outcome 0 occurs. Let N denote the
number of trials that it takes until all of the outcomes 1, . . . ,m − 1 have occurred
in the same round. Also, let Tj denote the number of trials that it takes until j

distinct outcomes have occurred, and let Ij denote the j th distinct outcome to
occur. (Therefore, outcome Ij first occurs at trial Tj .)

(a) Argue that the random vectors (I1, . . . , Im) and (T1, . . . , Tm) are indepen-
dent.
(b) Define X by letting X = j if outcome 0 is the j th distinct outcome
to occur. (Thus, IX = 0.) Derive an equation for E[N ] in terms of E[Tj ],
j = 1, . . . ,m − 1 by conditioning on X.
(c) Determine E[Tj ], j = 1, . . . ,m − 1.

Hint: See Exercise 42 of Chapter 2.

(d) Find E[N ].
94. Let N be a hypergeometric random variable having the distribution of the
number of white balls in a random sample of size r from a set of w white and b

blue balls. That is,

P {N = n} =
(
w
n

)(
b

r−n

)

(
w+b

r

)

where we use the convention that
(
m
j

)= 0 if either j < 0 or j > m. Now, consider

a compound random variable SN = ∑N
i=1 Xi , where the Xi are positive integer

valued random variables with αj = P {Xi = j}.
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(a) With M as defined as in Section 3.7, find the distribution of M − 1.
(b) Suppressing its dependence on b, let Pw,r (k) = P {SN = k}, and derive a
recursion equation for Pw,r (k).

(c) Use the recursion of (b) to find Pw,r (2).



Markov Chains

4
4.1. Introduction

In this chapter, we consider a stochastic process {Xn,n = 0,1,2, . . .} that takes
on a finite or countable number of possible values. Unless otherwise mentioned,
this set of possible values of the process will be denoted by the set of nonnegative
integers {0,1,2, . . .}. If Xn = i, then the process is said to be in state i at time n.
We suppose that whenever the process is in state i, there is a fixed probability Pij

that it will next be in state j . That is, we suppose that

P {Xn+1 = j |Xn = i,Xn−1 = in−1, . . . ,X1 = i1,X0 = i0} = Pij (4.1)

for all states i0, i1, . . . , in−1, i, j and all n � 0. Such a stochastic process is known
as a Markov chain. Equation (4.1) may be interpreted as stating that, for a Markov
chain, the conditional distribution of any future state Xn+1 given the past states
X0,X1, . . . ,Xn−1 and the present state Xn, is independent of the past states and
depends only on the present state.

The value Pij represents the probability that the process will, when in state i,
next make a transition into state j . Since probabilities are nonnegative and since
the process must make a transition into some state, we have that

Pij � 0, i, j � 0;
∞∑

j=0

Pij = 1, i = 0,1, . . .

Let P denote the matrix of one-step transition probabilities Pij , so that

P =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

P00 P01 P02 · · ·
P10 P11 P12 · · ·
...

...
...

Pi0 Pi1 Pi2 · · ·
...

...
...

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

185
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Example 4.1 (Forecasting the Weather) Suppose that the chance of rain to-
morrow depends on previous weather conditions only through whether or not it
is raining today and not on past weather conditions. Suppose also that if it rains
today, then it will rain tomorrow with probability α; and if it does not rain today,
then it will rain tomorrow with probability β .

If we say that the process is in state 0 when it rains and state 1 when it does not
rain, then the preceding is a two-state Markov chain whose transition probabilities
are given by

P =
∥
∥
∥
∥
α 1 − α

β 1 − β

∥
∥
∥
∥ �

Example 4.2 (A Communications System) Consider a communications sys-
tem which transmits the digits 0 and 1. Each digit transmitted must pass through
several stages, at each of which there is a probability p that the digit entered will
be unchanged when it leaves. Letting Xn denote the digit entering the nth stage,
then {Xn,n = 0,1, . . .} is a two-state Markov chain having a transition probability
matrix

P =
∥
∥
∥
∥

p 1 − p

1 − p p

∥
∥
∥
∥ �

Example 4.3 On any given day Gary is either cheerful (C), so-so (S), or glum
(G). If he is cheerful today, then he will be C, S, or G tomorrow with respective
probabilities 0.5, 0.4, 0.1. If he is feeling so-so today, then he will be C, S, or
G tomorrow with probabilities 0.3, 0.4, 0.3. If he is glum today, then he will be
C, S, or G tomorrow with probabilities 0.2, 0.3, 0.5.

Letting Xn denote Gary’s mood on the nth day, then {Xn,n � 0} is a three-state
Markov chain (state 0 = C, state 1 = S, state 2 = G) with transition probability
matrix

P =
∥
∥
∥
∥
∥
∥

0.5 0.4 0.1
0.3 0.4 0.3
0.2 0.3 0.5

∥
∥
∥
∥
∥
∥

�

Example 4.4 (Transforming a Process into a Markov Chain) Suppose that
whether or not it rains today depends on previous weather conditions through
the last two days. Specifically, suppose that if it has rained for the past two days,
then it will rain tomorrow with probability 0.7; if it rained today but not yesterday,
then it will rain tomorrow with probability 0.5; if it rained yesterday but not today,
then it will rain tomorrow with probability 0.4; if it has not rained in the past two
days, then it will rain tomorrow with probability 0.2.
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If we let the state at time n depend only on whether or not it is raining at
time n, then the preceding model is not a Markov chain (why not?). However, we
can transform this model into a Markov chain by saying that the state at any time
is determined by the weather conditions during both that day and the previous
day. In other words, we can say that the process is in

state 0 if it rained both today and yesterday,
state 1 if it rained today but not yesterday,
state 2 if it rained yesterday but not today,
state 3 if it did not rain either yesterday or today.

The preceding would then represent a four-state Markov chain having a transition
probability matrix

P =

∥
∥
∥
∥
∥
∥
∥
∥

0.7 0 0.3 0
0.5 0 0.5 0
0 0.4 0 0.6
0 0.2 0 0.8

∥
∥
∥
∥
∥
∥
∥
∥

You should carefully check the matrix P, and make sure you understand how it
was obtained. �

Example 4.5 (A Random Walk Model) A Markov chain whose state space is
given by the integers i = 0,±1,±2, . . . is said to be a random walk if, for some
number 0 < p < 1,

Pi,i+1 = p = 1 − Pi,i−1, i = 0,±1, . . .

The preceding Markov chain is called a random walk for we may think of it as
being a model for an individual walking on a straight line who at each point of
time either takes one step to the right with probability p or one step to the left
with probability 1 − p. �

Example 4.6 (A Gambling Model) Consider a gambler who, at each play of
the game, either wins $1 with probability p or loses $1 with probability 1 − p. If
we suppose that our gambler quits playing either when he goes broke or he attains
a fortune of $N , then the gambler’s fortune is a Markov chain having transition
probabilities

Pi,i+1 = p = 1 − Pi,i−1, i = 1,2, . . . ,N − 1,

P00 = PNN = 1

States 0 and N are called absorbing states since once entered they are never left.
Note that the preceding is a finite state random walk with absorbing barriers (states
0 and N ). �
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Example 4.7 In most of Europe and Asia annual automobile insurance premi-
ums are determined by use of a Bonus Malus (Latin for Good-Bad) system. Each
policyholder is given a positive integer valued state and the annual premium is a
function of this state (along, of course, with the type of car being insured and the
level of insurance). A policyholder’s state changes from year to year in response to
the number of claims made by that policyholder. Because lower numbered states
correspond to lower annual premiums, a policyholder’s state will usually decrease
if he or she had no claims in the preceding year, and will generally increase if he
or she had at least one claim. (Thus, no claims is good and typically results in a de-
creased premium, while claims are bad and typically result in a higher premium.)

For a given Bonus Malus system, let si(k) denote the next state of a policy-
holder who was in state i in the previous year and who made a total of k claims
in that year. If we suppose that the number of yearly claims made by a particular
policyholder is a Poisson random variable with parameter λ, then the successive
states of this policyholder will constitute a Markov chain with transition proba-
bilities

Pi,j =
∑

k:si (k)=j

e−λ λk

k! , j � 0

Whereas there are usually many states (20 or so is not atypical), the following
table specifies a hypothetical Bonus Malus system having four states.

Next state if

State Annual Premium 0 claims 1 claim 2 claims � 3 claims

1 200 1 2 3 4
2 250 1 3 4 4
3 400 2 4 4 4
4 600 3 4 4 4

Thus, for instance, the table indicates that s2(0) = 1; s2(1) = 3; s2(k) = 4, k � 2.
Consider a policyholder whose annual number of claims is a Poisson random
variable with parameter λ. If ak is the probability that such a policyholder makes
k claims in a year, then

ak = e−λ λk

k! , k � 0
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For the Bonus Malus system specified in the preceding table, the transition prob-
ability matrix of the successive states of this policyholder is

P =

∥
∥
∥
∥
∥
∥
∥
∥

a0 a1 a2 1 − a0 − a1 − a2
a0 0 a1 1 − a0 − a1
0 a0 0 1 − a0
0 0 a0 1 − a0

∥
∥
∥
∥
∥
∥
∥
∥

�

4.2. Chapman–Kolmogorov Equations

We have already defined the one-step transition probabilities Pij . We now define
the n-step transition probabilities P n

ij to be the probability that a process in state i

will be in state j after n additional transitions. That is,

P n
ij = P {Xn+k = j |Xk = i}, n � 0, i, j � 0

Of course P 1
ij = Pij . The Chapman–Kolmogorov equations provide a method for

computing these n-step transition probabilities. These equations are

P n+m
ij =

∞∑

k=0

P n
ikP

m
kj for all n,m � 0, all i, j (4.2)

and are most easily understood by noting that P n
ikP

m
kj represents the probability

that starting in i the process will go to state j in n + m transitions through a
path which takes it into state k at the nth transition. Hence, summing over all
intermediate states k yields the probability that the process will be in state j after
n + m transitions. Formally, we have

P n+m
ij = P {Xn+m = j |X0 = i}

=
∞∑

k=0

P {Xn+m = j,Xn = k|X0 = i}

=
∞∑

k=0

P {Xn+m = j |Xn = k,X0 = i}P {Xn = k|X0 = i}

=
∞∑

k=0

P m
kj P n

ik
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If we let P(n) denote the matrix of n-step transition probabilities P n
ij , then Equa-

tion (4.2) asserts that

P(n+m) = P(n) · P(m)

where the dot represents matrix multiplication.∗ Hence, in particular,

P(2) = P(1+1) = P · P = P2

and by induction

P(n) = P(n−1+1) = Pn−1 · P = Pn

That is, the n-step transition matrix may be obtained by multiplying the matrix P
by itself n times.

Example 4.8 Consider Example 4.1 in which the weather is considered as a
two-state Markov chain. If α = 0.7 and β = 0.4, then calculate the probability
that it will rain four days from today given that it is raining today.

Solution: The one-step transition probability matrix is given by

P =
∥
∥
∥
∥

0.7 0.3
0.4 0.6

∥
∥
∥
∥

Hence,

P(2) = P2 =
∥
∥
∥
∥

0.7 0.3
0.4 0.6

∥
∥
∥
∥ ·
∥
∥
∥
∥

0.7 0.3
0.4 0.6

∥
∥
∥
∥

=
∥
∥
∥
∥

0.61 0.39
0.52 0.48

∥
∥
∥
∥ ,

P(4) = (P2)2 =
∥
∥
∥
∥

0.61 0.39
0.52 0.48

∥
∥
∥
∥ ·
∥
∥
∥
∥

0.61 0.39
0.52 0.48

∥
∥
∥
∥

=
∥
∥
∥
∥

0.5749 0.4251
0.5668 0.4332

∥
∥
∥
∥

and the desired probability P 4
00 equals 0.5749. �

∗If A is an N × M matrix whose element in the ith row and j th column is aij and B is an M × K

matrix whose element in the ith row and j th column is bij , then A · B is defined to be the N × K

matrix whose element in the ith row and j th column is
∑M

k=1 aikbkj .
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Example 4.9 Consider Example 4.4. Given that it rained on Monday and
Tuesday, what is the probability that it will rain on Thursday?

Solution: The two-step transition matrix is given by

P(2) = P2 =

∥
∥
∥
∥
∥
∥
∥
∥

0.7 0 0.3 0
0.5 0 0.5 0
0 0.4 0 0.6
0 0.2 0 0.8

∥
∥
∥
∥
∥
∥
∥
∥

·

∥
∥
∥
∥
∥
∥
∥
∥

0.7 0 0.3 0
0.5 0 0.5 0
0 0.4 0 0.6
0 0.2 0 0.8

∥
∥
∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
∥
∥

0.49 0.12 0.21 0.18
0.35 0.20 0.15 0.30
0.20 0.12 0.20 0.48
0.10 0.16 0.10 0.64

∥
∥
∥
∥
∥
∥
∥
∥

Since rain on Thursday is equivalent to the process being in either state 0 or
state 1 on Thursday, the desired probability is given by P 2

00 + P 2
01 = 0.49 +

0.12 = 0.61. �
So far, all of the probabilities we have considered are conditional probabilities.

For instance, P n
ij is the probability that the state at time n is j given that the

initial state at time 0 is i. If the unconditional distribution of the state at time n

is desired, it is necessary to specify the probability distribution of the initial state.
Let us denote this by

αi ≡ P {X0 = i}, i � 0

( ∞∑

i=0

αi = 1

)

All unconditional probabilities may be computed by conditioning on the initial
state. That is,

P {Xn = j} =
∞∑

i=0

P {Xn = j |X0 = i}P {X0 = i}

=
∞∑

i=0

P n
ijαi

For instance, if α0 = 0.4, α1 = 0.6, in Example 4.8, then the (unconditional)
probability that it will rain four days after we begin keeping weather records is

P {X4 = 0} = 0.4P 4
00 + 0.6P 4

10

= (0.4)(0.5749) + (0.6)(0.5668)

= 0.5700
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Suppose now that you want to determine the probability that a Markov chain
enters any of a specified set of states A by time n. One way to accomplish this is
to reset the transition probabilities out of states in A to

P {Xm+1 = j |Xm = i} =
{

1, if i ∈ A , j = i

0, if i ∈ A , j �= i

That is, transform all states in A into absorbing states which once entered can
never be left. Because the original and transformed Markov chain follows iden-
tical probabilities until a state in A is entered, it follows that the probability the
original Markov chain enters a state in A by time n is equal to the probability
that the transformed Markov chain is in one of the states of A at time n.

Example 4.10 A pensioner receives 2 (thousand dollars) at the beginning of
each month. The amount of money he needs to spend during a month is inde-
pendent of the amount he has and is equal to i with probability Pi, i = 1,2,3,4,∑4

i=1 Pi = 1. If the pensioner has more than 3 at the end of a month, he gives the
amount greater than 3 to his son. If, after receiving his payment at the beginning
of a month, the pensioner has a capital of 5, what is the probability that his capital
is ever 1 or less at any time within the following four months?

Solution: To find the desired probability, we consider a Markov chain with
the state equal to the amount the pensioner has at the end of a month. Because
we are interested in whether this amount ever falls as low as 1, we will let
1 mean that the pensioner’s end-of-month fortune has ever been less than or
equal to 1. Because the pensioner will give any end-of-month amount greater
than 3 to his son, we need only consider the Markov chain with states 1,2,3
and transition probability matrix Q = [Qi,j ] given by

∥
∥
∥
∥
∥
∥

1 0 0
P3 + P4 P2 P1

P4 P3 P1 + P2

∥
∥
∥
∥
∥
∥

To understand the preceding, consider Q2,1, the probability that a month that
ends with the pensioner having the amount 2 will be followed by a month that
ends with the pensioner having less than or equal to 1. Because the pensioner
will begin the new month with the amount 2 + 2 = 4, his ending capital will be
less than or equal to 1 if his expenses are either 3 or 4. Thus, Q2,1 = P3 + P4.

The other transition probabilities are similarly explained.
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Suppose now that Pi = 1/4, i = 1,2,3,4. The transition probability ma-
trix is

∥
∥
∥
∥
∥
∥

1 0 0
1/2 1/4 1/4
1/4 1/4 1/2

∥
∥
∥
∥
∥
∥

Squaring this matrix and then squaring the result gives the matrix
∥
∥
∥
∥
∥
∥
∥
∥

1 0 0
222
256

13
256

21
256

201
256

21
256

34
256

∥
∥
∥
∥
∥
∥
∥
∥

Because the pensioner’s initial end of month capital was 3, the desired answer
is Q4

3,1 = 201/256. �
Let {Xn,n � 0} be a Markov chain with transition probabilities Pi,j . If we let

Qi,j denote the transition probabilities that transform all states in A into absorb-
ing states, then

Qi,j =
⎧
⎨

⎩

1, if i ∈ A , j = i

0, if i ∈ A , j �= i

Pi,j , otherwise

For i, j /∈ A , the n stage transition probability Qn
i,j represents the probability

that the original chain, starting in state i, will be in state j at time n without ever
having entered any of the states in A . For instance, in Example 4.10, starting
with 5 at the beginning of January, the probability that the pensioner’s capital is 4
at the beginning of May without ever having been less than or equal to 1 in that
time is Q4

3,2 = 21/256.
We can also compute the conditional probability of Xn given that the chain

starts in state i and has not entered any state in A by time n, as follows. For
i, j /∈ A ,

P {Xn = j |X0 = i,Xk /∈ A , k = 1, . . . , n}

= P {Xn = j,Xk /∈ A , k = 1, . . . , n|X0 = i}
P {Xk /∈ A , k = 1, . . . , n|X0 = i} = Qn

i,j
∑

r /∈A Qn
i,r

4.3. Classification of States

State j is said to be accessible from state i if P n
ij > 0 for some n � 0. Note that

this implies that state j is accessible from state i if and only if, starting in i,
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it is possible that the process will ever enter state j . This is true since if j is not
accessible from i, then

P {ever enterj |start in i} = P

{ ∞⋃

n=0

{Xn = j}
∣
∣
∣X0 = i

}

�
∞∑

n=0

P {Xn = j |X0 = i}

=
∞∑

n=0

P n
ij

= 0

Two states i and j that are accessible to each other are said to communicate, and
we write i ↔ j .

Note that any state communicates with itself since, by definition,

P 0
ii = P {X0 = i|X0 = i} = 1

The relation of communication satisfies the following three properties:

(i) State i communicates with state i, all i � 0.
(ii) If state i communicates with state j , then state j communicates with

state i.
(iii) If state i communicates with state j , and state j communicates with state

k, then state i communicates with state k.

Properties (i) and (ii) follow immediately from the definition of communication.
To prove (iii) suppose that i communicates with j , and j communicates with k.
Thus, there exist integers n and m such that P n

ij > 0, P m
jk > 0. Now by the

Chapman–Kolmogorov equations, we have that

P n+m
ik =

∞∑

r=0

P n
irP

m
rk � P n

ijP
m
jk > 0

Hence, state k is accessible from state i. Similarly, we can show that state i is
accessible from state k. Hence, states i and k communicate.

Two states that communicate are said to be in the same class. It is an easy
consequence of (i), (ii), and (iii) that any two classes of states are either identical
or disjoint. In other words, the concept of communication divides the state space
up into a number of separate classes. The Markov chain is said to be irreducible
if there is only one class, that is, if all states communicate with each other.
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Example 4.11 Consider the Markov chain consisting of the three states 0, 1,
2 and having transition probability matrix

P =

∥
∥
∥
∥
∥
∥
∥

1
2

1
2 0

1
2

1
4

1
4

0 1
3

2
3

∥
∥
∥
∥
∥
∥
∥

It is easy to verify that this Markov chain is irreducible. For example, it is possible
to go from state 0 to state 2 since

0 → 1 → 2

That is, one way of getting from state 0 to state 2 is to go from state 0 to state 1
(with probability 1

2 ) and then go from state 1 to state 2 (with probability 1
4 ). �

Example 4.12 Consider a Markov chain consisting of the four states 0, 1, 2, 3
and having transition probability matrix

P =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1
2

1
2 0 0

1
2

1
2 0 0

1
4

1
4

1
4

1
4

0 0 0 1

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

The classes of this Markov chain are {0, 1}, {2}, and {3}. Note that while state
0 (or 1) is accessible from state 2, the reverse is not true. Since state 3 is an
absorbing state, that is, P33 = 1, no other state is accessible from it. �

For any state i we let fi denote the probability that, starting in state i, the
process will ever reenter state i. State i is said to be recurrent if fi = 1 and tran-
sient if fi < 1.

Suppose that the process starts in state i and i is recurrent. Hence, with prob-
ability 1, the process will eventually reenter state i. However, by the definition
of a Markov chain, it follows that the process will be starting over again when it
reenters state i and, therefore, state i will eventually be visited again. Continual
repetition of this argument leads to the conclusion that if state i is recurrent then,
starting in state i, the process will reenter state i again and again and again—in
fact, infinitely often.

On the other hand, suppose that state i is transient. Hence, each time the process
enters state i there will be a positive probability, namely, 1 − fi , that it will never
again enter that state. Therefore, starting in state i, the probability that the process
will be in state i for exactly n time periods equals f n−1

i (1 − fi), n � 1. In other
words, if state i is transient then, starting in state i, the number of time periods
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that the process will be in state i has a geometric distribution with finite mean
1/(1 − fi).

From the preceding two paragraphs, it follows that state i is recurrent if and
only if, starting in state i, the expected number of time periods that the process is
in state i is infinite. But, letting

In =
{

1, if Xn = i

0, if Xn �= i

we have that
∑∞

n=0 In represents the number of periods that the process is in
state i. Also,

E

[ ∞∑

n=0

In|X0 = i

]

=
∞∑

n=0

E[In|X0 = i]

=
∞∑

n=0

P {Xn = i|X0 = i}

=
∞∑

n=0

P n
ii

We have thus proven the following.

Proposition 4.1 State i is

recurrent if
∞∑

n=1

P n
ii = ∞,

transient if
∞∑

n=1

P n
ii < ∞

The argument leading to the preceding proposition is doubly important be-
cause it also shows that a transient state will only be visited a finite number of
times (hence the name transient). This leads to the conclusion that in a finite-state
Markov chain not all states can be transient. To see this, suppose the states are
0,1, . . . ,M and suppose that they are all transient. Then after a finite amount of
time (say, after time T0) state 0 will never be visited, and after a time (say, T1) state
1 will never be visited, and after a time (say, T2) state 2 will never be visited, and
so on. Thus, after a finite time T = max{T0, T1, . . . , TM} no states will be visited.
But as the process must be in some state after time T we arrive at a contradiction,
which shows that at least one of the states must be recurrent.

Another use of Proposition 4.1 is that it enables us to show that recurrence is a
class property.
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Corollary 4.2 If state i is recurrent, and state i communicates with state j ,
then state j is recurrent.

Proof To prove this we first note that, since state i communicates with state j ,
there exist integers k and m such that P k

ij > 0, P m
ji > 0. Now, for any integer n

P m+n+k
jj � P m

ji P
n
iiP

k
ij

This follows since the left side of the preceding is the probability of going from
j to j in m+n+k steps, while the right side is the probability of going from j to j

in m + n + k steps via a path that goes from j to i in m steps, then from i to i in
an additional n steps, then from i to j in an additional k steps.

From the preceding we obtain, by summing over n, that

∞∑

n=1

P m+n+k
jj � P m

ji P
k
ij

∞∑

n=1

P n
ii = ∞

since P m
ji P

k
ij > 0 and

∑∞
n=1 P n

ii is infinite since state i is recurrent. Thus, by
Proposition 4.1 it follows that state j is also recurrent. �

Remarks (i) Corollary 4.2 also implies that transience is a class property. For
if state i is transient and communicates with state j , then state j must also be
transient. For if j were recurrent then, by Corollary 4.2, i would also be recurrent
and hence could not be transient.

(ii) Corollary 4.2 along with our previous result that not all states in a finite
Markov chain can be transient leads to the conclusion that all states of a finite
irreducible Markov chain are recurrent.

Example 4.13 Let the Markov chain consisting of the states 0,1,2,3 have
the transition probability matrix

P =

∥
∥
∥
∥
∥
∥
∥
∥

0 0 1
2

1
2

1 0 0 0
0 1 0 0
0 1 0 0

∥
∥
∥
∥
∥
∥
∥
∥

Determine which states are transient and which are recurrent.

Solution: It is a simple matter to check that all states communicate and,
hence, since this is a finite chain, all states must be recurrent. �
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Example 4.14 Consider the Markov chain having states 0, 1, 2, 3, 4 and

P =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1
2

1
2 0 0 0

1
2

1
2 0 0 0

0 0 1
2

1
2 0

0 0 1
2

1
2 0

1
4

1
4 0 0 1

2

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

Determine the recurrent state.

Solution: This chain consists of the three classes {0,1}, {2,3}, and {4}. The
first two classes are recurrent and the third transient. �

Example 4.15 (A Random Walk) Consider a Markov chain whose state
space consists of the integers i = 0,±1,±2, . . . , and have transition probabili-
ties given by

Pi,i+1 = p = 1 − Pi,i−1, i = 0,±1,±2, . . .

where 0 < p < 1. In other words, on each transition the process either moves one
step to the right (with probability p) or one step to the left (with probability 1−p).
One colorful interpretation of this process is that it represents the wanderings of
a drunken man as he walks along a straight line. Another is that it represents the
winnings of a gambler who on each play of the game either wins or loses one
dollar.

Since all states clearly communicate, it follows from Corollary 4.2 that they
are either all transient or all recurrent. So let us consider state 0 and attempt to
determine if

∑∞
n=1 P n

00 is finite or infinite.
Since it is impossible to be even (using the gambling model interpretation) after

an odd number of plays we must, of course, have that

P 2n−1
00 = 0, n = 1,2, . . .

On the other hand, we would be even after 2n trials if and only if we won n

of these and lost n of these. Because each play of the game results in a win with
probability p and a loss with probability 1 − p, the desired probability is thus the
binomial probability

P 2n
00 =

(
2n

n

)

pn(1 − p)n = (2n)!
n!n! (p(1 − p))n, n = 1,2,3, . . .

By using an approximation, due to Stirling, which asserts that

n! ∼ nn+1/2e−n
√

2π (4.3)
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where we say that an ∼ bn when limn→∞ an/bn = 1, we obtain

P 2n
00 ∼ (4p(1 − p))n√

πn

Now it is easy to verify, for positive an, bn, that if an ∼ bn, then
∑

n an < ∞ if
and only if

∑
n bn < ∞. Hence,

∑∞
n=1 P n

00 will converge if and only if

∞∑

n=1

(4p(1 − p))n√
πn

does. However, 4p(1 − p) � 1 with equality holding if and only if p = 1
2 . Hence,

∑∞
n=1P

n
00 = ∞ if and only if p = 1

2 . Thus, the chain is recurrent when p = 1
2 and

transient if p �= 1
2 .

When p = 1
2 , the preceding process is called a symmetric random walk. We

could also look at symmetric random walks in more than one dimension. For
instance, in the two-dimensional symmetric random walk the process would, at
each transition, either take one step to the left, right, up, or down, each having
probability 1

4 . That is, the state is the pair of integers (i, j ) and the transition
probabilities are given by

P(i,j),(i+1,j) = P(i,j),(i−1,j) = P(i,j),(i,j+1) = P(i,j),(i,j−1) = 1
4

By using the same method as in the one-dimensional case, we now show that this
Markov chain is also recurrent.

Since the preceding chain is irreducible, it follows that all states will be recur-
rent if state 0 = (0,0) is recurrent. So consider P 2n

00 . Now after 2n steps, the chain
will be back in its original location if for some i,0 � i � n, the 2n steps consist of
i steps to the left, i to the right, n − i up, and n − i down. Since each step will be
either of these four types with probability 1

4 , it follows that the desired probability
is a multinomial probability. That is,

P 2n
00 =

n∑

i=0

(2n)!
i!i!(n − i)!(n − i)!

(
1

4

)2n

=
n∑

i=0

(2n)!
n!n!

n!
(n − i)!i!

n!
(n − i)!i!

(
1

4

)2n

=
(

1

4

)2n(2n

n

) n∑

i=0

(
n

i

)(
n

n − i

)

=
(

1

4

)2n(2n

n

)(
2n

n

)

(4.4)
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where the last equality uses the combinatorial identity

(
2n

n

)

=
n∑

i=0

(
n

i

)(
n

n − i

)

which follows upon noting that both sides represent the number of subgroups of
size n one can select from a set of n white and n black objects. Now,

(
2n

n

)

= (2n)!
n!n!

∼ (2n)2n+1/2e−2n
√

2π

n2n+1e−2n(2π)
by Stirling’s approximation

= 4n

√
πn

Hence, from Equation (4.4) we see that

P 2n
00 ∼ 1

πn

which shows that
∑

nP
2n
00 = ∞, and thus all states are recurrent.

Interestingly enough, whereas the symmetric random walks in one and two
dimensions are both recurrent, all higher-dimensional symmetric random walks
turn out to be transient. (For instance, the three-dimensional symmetric random
walk is at each transition equally likely to move in any of six ways—either to the
left, right, up, down, in, or out.) �

Remarks For the one-dimensional random walk of Example 4.15 here is a
direct argument for establishing recurrence in the symmetric case, and for deter-
mining the probability that it ever returns to state 0 in the nonsymmetric case.
Let

β = P {ever return to 0}
To determine β , start by conditioning on the initial transition to obtain

β = P {ever return to 0|X1 = 1}p + P {ever return to 0|X1 = −1}(1 − p) (4.5)

Now, let α denote the probability that the Markov chain will ever return to state 0
given that it is currently in state 1. Because the Markov chain will always increase
by 1 with probability p or decrease by 1 with probability 1 −p no matter what its
current state, note that α is also the probability that the Markov chain currently in
state i will ever enter state i − 1, for any i. To obtain an equation for α, condition
on the next transition to obtain
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α = P {every return|X1 = 1,X2 = 0}(1 − p) + P {ever return|X1 = 1,X2 = 2}p
= 1 − p + P {ever return|X1 = 1,X2 = 2}p
= 1 − p + pα2

where the final equation follows by noting that in order for the chain to ever go
from state 2 to state 0 it must first go to state 1—and the probability of that ever
happening is α—and if it does eventually go to state 1 then it must still go to state
0—and the conditional probability of that ever happening is also α. Therefore,

α = 1 − p + pα2

The two roots of this equation are α = 1 and α = (1 −p)/p. Consequently, in the
case of the symmetric random walk where p = 1/2 we can conclude that α = 1.
By symmetry, the probability that the symmetric random walk will ever enter
state 0 given that it is currently in state −1 is also 1, proving that the symmetric
random walk is recurrent.

Suppose now that p > 1/2. In this case, it can be shown (see Exercise 17 at
the end of this chapter) that P {ever return to|X1 = −1} = 1. Consequently, Equa-
tion (4.5) reduces to

β = αp + 1 − p

Because the random walk is transient in this case we know that β < 1, showing
that α �= 1. Therefore, α = (1 − p)/p, yielding that

β = 2(1 − p), p > 1/2

Similarly, when p < 1/2 we can show that β = 2p. Thus, in general

P {ever return to 0} = 2 min(p,1 − p) �

Example 4.16 (On the Ultimate Instability of the Aloha Protocol) Consider
a communications facility in which the numbers of messages arriving during each
of the time periods n = 1,2, . . . are independent and identically distributed ran-
dom variables. Let ai = P {i arrivals}, and suppose that a0 +a1 < 1. Each arriving
message will transmit at the end of the period in which it arrives. If exactly one
message is transmitted, then the transmission is successful and the message leaves
the system. However, if at any time two or more messages simultaneously trans-
mit, then a collision is deemed to occur and these messages remain in the system.
Once a message is involved in a collision it will, independently of all else, trans-
mit at the end of each additional period with probability p—the so-called Aloha
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protocol (because it was first instituted at the University of Hawaii). We will show
that such a system is asymptotically unstable in the sense that the number of suc-
cessful transmissions will, with probability 1, be finite.

To begin let Xn denote the number of messages in the facility at the beginning
of the nth period, and note that {Xn,n � 0} is a Markov chain. Now for k � 0
define the indicator variables Ik by

Ik =
⎧
⎨

⎩

1, if the first time that the chain departs state k it
directly goes to state k − 1

0, otherwise

and let it be 0 if the system is never in state k, k � 0. (For instance, if the successive
states are 0,1,3,4, . . . , then I3 = 0 since when the chain first departs state 3 it
goes to state 4; whereas, if they are 0,3,3,2, . . . , then I3 = 1 since this time it
goes to state 2.) Now,

E

[ ∞∑

k=0

Ik

]

=
∞∑

k=0

E[Ik]

=
∞∑

k=0

P {Ik = 1}

�
∞∑

k=0

P {Ik = 1|k is ever visited} (4.6)

Now, P {Ik = 1|k is ever visited} is the probability that when state k is departed
the next state is k − 1. That is, it is the conditional probability that a transition
from k is to k − 1 given that it is not back into k, and so

P {Ik = 1|k is ever visited} = Pk,k−1

1 − Pkk

Because

Pk,k−1 = a0kp(1 − p)k−1,

Pk,k = a0[1 − kp(1 − p)k−1] + a1(1 − p)k

which is seen by noting that if there are k messages present on the beginning of
a day, then (a) there will be k − 1 at the beginning of the next day if there are no
new messages that day and exactly one of the k messages transmits; and (b) there
will be k at the beginning of the next day if either
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(i) there are no new messages and it is not the case that exactly one of the
existing k messages transmits, or

(ii) there is exactly one new message (which automatically transmits) and none
of the other k messages transmits.

Substitution of the preceding into Equation (4.6) yields

E

[ ∞∑

k=0

Ik

]

�
∞∑

k=0

a0kp(1 − p)k−1

1 − a0[1 − kp(1 − p)k−1] − a1(1 − p)k

< ∞
where the convergence follows by noting that when k is large the denominator of
the expression in the preceding sum converges to 1 − a0 and so the convergence
or divergence of the sum is determined by whether or not the sum of the terms in
the numerator converge and

∑∞
k=0 k(1 − p)k−1 < ∞.

Hence, E[∑∞
k=0 Ik] < ∞, which implies that

∑∞
k=0 Ik < ∞ with probability 1

(for if there was a positive probability that
∑∞

k=0 Ik could be ∞, then its mean
would be ∞). Hence, with probability 1, there will be only a finite number of
states that are initially departed via a successful transmission; or equivalently,
there will be some finite integer N such that whenever there are N or more mes-
sages in the system, there will never again be a successful transmission. From this
(and the fact that such higher states will eventually be reached—why?) it follows
that, with probability 1, there will only be a finite number of successful transmis-
sions. �

Remarks For a (slightly less than rigorous) probabilistic proof of Stirling’s
approximation, let X1X2, . . . be independent Poisson random variables each hav-
ing mean 1. Let Sn = ∑n

i=1 Xi , and note that both the mean and variance of
Sn are equal to n. Now,

P {Sn = n} = P {n − 1 < Sn � n}
= P {−1/

√
n < (Sn − n)/

√
n � 0}

≈
∫ 0

−1/
√

n

(2π)−1/2e−x2/2 dx
when n is large, by the
central limit theorem

≈ (2π)−1/2(1/
√

n)

= (2πn)−1/2

But Sn is Poisson with mean n, and so

P {Sn = n} = e−nnn

n!
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Hence, for n large

e−nnn

n! ≈ (2πn)−1/2

or, equivalently

n! ≈ nn+1/2e−n
√

2π

which is Stirling’s approximation.

4.4. Limiting Probabilities

In Example 4.8, we calculated P(4) for a two-state Markov chain; it turned out to
be

P(4) =
∥
∥
∥
∥

0.5749 0.4251
0.5668 0.4332

∥
∥
∥
∥

From this it follows that P(8) = P(4) · P(4) is given (to three significant places) by

P(8) =
∥
∥
∥
∥

0.572 0.428
0.570 0.430

∥
∥
∥
∥

Note that the matrix P(8) is almost identical to the matrix P(4), and secondly, that
each of the rows of P(8) has almost identical entries. In fact it seems that P n

ij is
converging to some value (as n → ∞) which is the same for all i. In other words,
there seems to exist a limiting probability that the process will be in state j after
a large number of transitions, and this value is independent of the initial state.

To make the preceding heuristics more precise, two additional properties of the
states of a Markov chain need to be considered. State i is said to have period d
if P n

ii = 0 whenever n is not divisible by d , and d is the largest integer with this
property. For instance, starting in i, it may be possible for the process to enter
state i only at the times 2,4,6,8, . . . , in which case state i has period 2. A state
with period 1 is said to be aperiodic. It can be shown that periodicity is a class
property. That is, if state i has period d , and states i and j communicate, then
state j also has period d .

If state i is recurrent, then it is said to be positive recurrent if, starting in i,
the expected time until the process returns to state i is finite. It can be shown
that positive recurrence is a class property. While there exist recurrent states that
are not positive recurrent,∗ it can be shown that in a finite-state Markov chain
all recurrent states are positive recurrent. Positive recurrent, aperiodic states are
called ergodic.

∗Such states are called null recurrent.
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We are now ready for the following important theorem which we state without
proof.

Theorem 4.1 For an irreducible ergodic Markov chain limn→∞ P n
ij exists

and is independent of i. Furthermore, letting

πj = lim
n→∞P n

ij , j � 0

then πj is the unique nonnegative solution of

πj =
∞∑

i=0

πiPij , j � 0,

∞∑

j=0

πj = 1 (4.7)

Remarks (i) Given that πj = limn→∞ P n
ij exists and is independent of the ini-

tial state i, it is not difficult to (heuristically) see that the π ’s must satisfy Equa-
tion (4.7). Let us derive an expression for P {Xn+1 = j} by conditioning on the
state at time n. That is,

P {Xn+1 = j} =
∞∑

i=0

P {Xn+1 = j |Xn = i}P {Xn = i}

=
∞∑

i=0

PijP {Xn = i}

Letting n → ∞, and assuming that we can bring the limit inside the summation,
leads to

πj =
∞∑

i=0

Pijπi

(ii) It can be shown that πj , the limiting probability that the process will be in
state j at time n, also equals the long-run proportion of time that the process will
be in state j .

(iii) If the Markov chain is irreducible, then there will be a solution to

πj =
∑

i

πiPij , j � 0,

∑

j

πj = 1

if and only if the Markov chain is positive recurrent. If a solution exists then it
will be unique, and πj will equal the long run proportion of time that the Markov
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chain is in state j . If the chain is aperiodic, then πj is also the limiting probability
that the chain is in state j .

Example 4.17 Consider Example 4.1, in which we assume that if it rains
today, then it will rain tomorrow with probability α; and if it does not rain today,
then it will rain tomorrow with probability β . If we say that the state is 0 when it
rains and 1 when it does not rain, then by Equation (4.7) the limiting probabilities
π0 and π1 are given by

π0 = απ0 + βπ1,

π1 = (1 − α)π0 + (1 − β)π1,

π0 + π1 = 1

which yields that

π0 = β

1 + β − α
, π1 = 1 − α

1 + β − α

For example if α = 0.7 and β = 0.4, then the limiting probability of rain is π0 =
4
7 = 0.571. �

Example 4.18 Consider Example 4.3 in which the mood of an individual is
considered as a three-state Markov chain having a transition probability matrix

P =
∥
∥
∥
∥
∥
∥

0.5 0.4 0.1
0.3 0.4 0.3
0.2 0.3 0.5

∥
∥
∥
∥
∥
∥

In the long run, what proportion of time is the process in each of the three states?

Solution: The limiting probabilities πi, i = 0,1,2, are obtained by solving
the set of equations in Equation (4.1). In this case these equations are

π0 = 0.5π0 + 0.3π1 + 0.2π2,

π1 = 0.4π0 + 0.4π1 + 0.3π2,

π2 = 0.1π0 + 0.3π1 + 0.5π2,

π0 + π1 + π2 = 1

Solving yields

π0 = 21
62 , π1 = 23

62 , π2 = 18
62 �
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Example 4.19 (A Model of Class Mobility) A problem of interest to soci-
ologists is to determine the proportion of society that has an upper- or lower-class
occupation. One possible mathematical model would be to assume that transitions
between social classes of the successive generations in a family can be regarded
as transitions of a Markov chain. That is, we assume that the occupation of a child
depends only on his or her parent’s occupation. Let us suppose that such a model
is appropriate and that the transition probability matrix is given by

P =
∥
∥
∥
∥
∥
∥

0.45 0.48 0.07
0.05 0.70 0.25
0.01 0.50 0.49

∥
∥
∥
∥
∥
∥

(4.8)

That is, for instance, we suppose that the child of a middle-class worker will attain
an upper-, middle-, or lower-class occupation with respective probabilities 0.05,
0.70, 0.25.

The limiting probabilities πi , thus satisfy

π0 = 0.45π0 + 0.05π1 + 0.01π2,

π1 = 0.48π0 + 0.70π1 + 0.50π2,

π2 = 0.07π0 + 0.25π1 + 0.49π2,

π0 + π1 + π2 = 1

Hence,

π0 = 0.07, π1 = 0.62, π2 = 0.31

In other words, a society in which social mobility between classes can be de-
scribed by a Markov chain with transition probability matrix given by Equation
(4.8) has, in the long run, 7 percent of its people in upper-class jobs, 62 percent of
its people in middle-class jobs, and 31 percent in lower-class jobs. �

Example 4.20 (The Hardy–Weinberg Law and a Markov Chain in Genetics)
Consider a large population of individuals, each of whom possesses a particular
pair of genes, of which each individual gene is classified as being of type A or
type a. Assume that the proportions of individuals whose gene pairs are AA, aa,
or Aa are, respectively, p0, q0, and r0 (p0 + q0 + r0 = 1). When two individuals
mate, each contributes one of his or her genes, chosen at random, to the resultant
offspring. Assuming that the mating occurs at random, in that each individual is
equally likely to mate with any other individual, we are interested in determining
the proportions of individuals in the next generation whose genes are AA, aa, or
Aa. Calling these proportions p, q , and r , they are easily obtained by focusing
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attention on an individual of the next generation and then determining the proba-
bilities for the gene pair of that individual.

To begin, note that randomly choosing a parent and then randomly choos-
ing one of its genes is equivalent to just randomly choosing a gene from the total
gene population. By conditioning on the gene pair of the parent, we see that a
randomly chosen gene will be type A with probability

P {A} = P {A|AA}p0 + P {A|aa}q0 + P {A|Aa}r0

= p0 + r0/2

Similarly, it will be type a with probability

P {a} = q0 + r0/2

Thus, under random mating a randomly chosen member of the next generation
will be type AA with probability p, where

p = P {A}P {A} = (p0 + r0/2)2

Similarly, the randomly chosen member will be type aa with probability

q = P {a}P {a} = (q0 + r0/2)2

and will be type Aa with probability

r = 2P {A}P {a} = 2(p0 + r0/2)(q0 + r0/2)

Since each member of the next generation will independently be of each of the
three gene types with probabilities p, q , r , it follows that the percentages of the
members of the next generation that are of type AA, aa, or Aa are respectively
p, q , and r .

If we now consider the total gene pool of this next generation, then p + r/2,
the fraction of its genes that are A, will be unchanged from the previous genera-
tion. This follows either by arguing that the total gene pool has not changed from
generation to generation or by the following simple algebra:

p + r/2 = (p0 + r0/2)2 + (p0 + r0/2)(q0 + r0/2)

= (p0 + r0/2)[p0 + r0/2 + q0 + r0/2]
= p0 + r0/2 since p0 + r0 + q0 = 1

= P {A} (4.9)

Thus, the fractions of the gene pool that are A and a are the same as in the initial
generation. From this it follows that, under random mating, in all successive gen-
erations after the initial one the percentages of the population having gene pairs
AA, aa, and Aa will remain fixed at the values p, q , and r . This is known as the
Hardy–Weinberg law.
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Suppose now that the gene pair population has stabilized in the percentages p,
q , r , and let us follow the genetic history of a single individual and her descen-
dants. (For simplicity, assume that each individual has exactly one offspring.) So,
for a given individual, let Xn denote the genetic state of her descendant in the nth
generation. The transition probability matrix of this Markov chain, namely,

AA aa Aa

AA

∥
∥
∥
∥
∥

p + r

2
0 q + r

2

∥
∥
∥
∥
∥

aa

∥
∥
∥
∥
∥

0 q + r

2
p + r

2

∥
∥
∥
∥
∥

Aa

∥
∥
∥
∥
∥

p

2
+ r

4

q

2
+ r

4

p

2
+ q

2
+ r

2

∥
∥
∥
∥
∥

is easily verified by conditioning on the state of the randomly chosen mate. It is
quite intuitive (why?) that the limiting probabilities for this Markov chain (which
also equal the fractions of the individual’s descendants that are in each of the
three genetic states) should just be p, q , and r . To verify this we must show that
they satisfy Equation (4.7). Because one of the equations in Equation (4.7) is
redundant, it suffices to show that

p = p

(

p + r

2

)

+ r

(
p

2
+ r

4

)

=
(

p + r

2

)2

,

q = q

(

q + r

2

)

+ r

(
q

2
+ r

4

)

=
(

q + r

2

)2

,

p + q + r = 1

But this follows from Equation (4.9), and thus the result is established. �

Example 4.21 Suppose that a production process changes states in accor-
dance with an irreducible, positive recurrent Markov chain having transition prob-
abilities Pij , i, j = 1, . . . , n, and suppose that certain of the states are considered
acceptable and the remaining unacceptable. Let A denote the acceptable states
and Ac the unacceptable ones. If the production process is said to be “up” when
in an acceptable state and “down” when in an unacceptable state, determine

1. the rate at which the production process goes from up to down (that is, the
rate of breakdowns);

2. the average length of time the process remains down when it goes down;
and

3. the average length of time the process remains up when it goes up.
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Solution: Let πk, k = 1, . . . , n, denote the long-run proportions. Now for
i ∈ A and j ∈ Ac the rate at which the process enters state j from state i is

rate enter j from i = πiPij

and so the rate at which the production process enters state j from an acceptable
state is

rate enter j from A =
∑

i∈A

πiPij

Hence, the rate at which it enters an unacceptable state from an acceptable one
(which is the rate at which breakdowns occur) is

rate breakdowns occur =
∑

j∈Ac

∑

i∈A

πiPij (4.10)

Now let Ū and D̄ denote the average time the process remains up when it
goes up and down when it goes down. Because there is a single breakdown
every Ū + D̄ time units on the average, it follows heuristically that

rate at which breakdowns occur = 1

Ū + D̄

and, so from Equation (4.10),

1

Ū + D̄
=
∑

j∈Ac

∑

i∈A

πiPij (4.11)

To obtain a second equation relating Ū and D̄, consider the percentage of
time the process is up, which, of course, is equal to

∑
i∈A πi . However, since the

process is up on the average Ū out of every Ū + D̄ time units, it follows (again
somewhat heuristically) that the

proportion of up time = Ū

Ū + D̄

and so

Ū

Ū + D̄
=
∑

i∈A

πi (4.12)
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Hence, from Equations (4.11) and (4.12) we obtain

Ū =
∑

i∈A πi
∑

j∈Ac

∑
i∈A πiPij

,

D̄ = 1 −∑
i∈A πi

∑
j∈Ac

∑
i∈A πiPij

=
∑

i∈Ac πi
∑

j∈Ac

∑
i∈A πiPij

For example, suppose the transition probability matrix is

P =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1
4

1
4

1
2 0

0 1
4

1
2

1
4

1
4

1
4

1
4

1
4

1
4

1
4 0 1

2

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

where the acceptable (up) states are 1, 2 and the unacceptable (down) ones are
3, 4. The limiting probabilities satisfy

π1 = π1
1
4 + π3

1
4 + π4

1
4 ,

π2 = π1
1
4 + π2

1
4 + π3

1
4 + π4

1
4 ,

π3 = π1
1
2 + π2

1
2 + π3

1
4 ,

π1 + π2 + π3 + π4 = 1

These solve to yield

π1 = 3
16 , π2 = 1

4 , π3 = 14
48 , π4 = 13

48

and thus

rate of breakdowns = π1(P13 + P14) + π2(P23 + P24)

= 9
32 ,

Ū = 14
9 and D̄ = 2

Hence, on the average, breakdowns occur about 9
32 (or 28 percent) of the time.

They last, on the average, 2 time units, and then there follows a stretch of (on
the average) 14

9 time units when the system is up. �
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Remarks (i) The long run proportions πj , j � 0, are often called stationary
probabilities. The reason being that if the initial state is chosen according to the
probabilities πj , j � 0, then the probability of being in state j at any time n is
also equal to πj . That is, if

P {X0 = j} = πj , j � 0

then

P {Xn = j} = πj for all n, j � 0

The preceding is easily proven by induction, for if we suppose it true for n − 1,
then writing

P {Xn = j} =
∑

i

P {Xn = j |Xn−1 = i}P {Xn−1 = i}

=
∑

i

Pijπi by the induction hypothesis

= πj by Equation (4.7)

(ii) For state j , define mjj to be the expected number of transitions until a
Markov chain, starting in state j , returns to that state. Since, on the average, the
chain will spend 1 unit of time in state j for every mjj units of time, it follows
that

πj = 1

mjj

In words, the proportion of time in state j equals the inverse of the mean time
between visits to j . (The preceding is a special case of a general result, sometimes
called the strong law for renewal processes, which will be presented in Chapter 7.)

Example 4.22 (Mean Pattern Times in Markov Chain Generated Data) Con-
sider an irreducible Markov chain {Xn,n � 0} with transition probabilities Pi,j

and stationary probabilities πj , j � 0. Starting in state r , we are interested in
determining the expected number of transitions until the pattern i1, i2, . . . , ik ap-
pears. That is, with

N(i1, i2, . . . , ik) = min{n � k: Xn−k+1 = i1, . . . ,Xn = ik}
we are interested in

E[N(i1, i2, . . . , ik)|X0 = r]
Note that even if i1 = r , the initial state X0 is not considered part of the pattern
sequence.

Let μ(i, i1) be the mean number of transitions for the chain to enter state i1,

given that the initial state is i, i � 0. The quantities μ(i, i1) can be determined as
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the solution of the following set of equations, obtained by conditioning on the first
transition out of state i:

μ(i, i1) = 1 +
∑

j �=i1

Pi,jμ(j, i1), i � 0

For the Markov chain {Xn,n � 0} associate a corresponding Markov chain, which
we will refer to as the k-chain, whose state at any time is the sequence of the most
recent k states of the original chain. (For instance, if k = 3 and X2 = 4, X3 = 1,
X4 = 1, then the state of the k-chain at time 4 is (4,1,1).) Let π(j1, . . . , jk) be the
stationary probabilities for the k-chain. Because π(j1, . . . , jk) is the proportion
of time that the state of the original Markov chain k units ago was j1 and the
following k − 1 states, in sequence, were j2, . . . , jk, we can conclude that

π(j1, . . . , jk) = πj1Pj1,j2 · · ·Pjk−1,jk

Moreover, because the mean number of transitions between successive visits of
the k-chain to the state i1, i2, . . . , ik is equal to the inverse of the stationary prob-
ability of that state, we have that

E[number of transitions between visits to i1, i2, . . . , ik]

= 1

π(i1, . . . , ik)
(4.13)

Let A(i1, . . . , im) be the additional number of transitions needed until the pat-
tern appears, given that the first m transitions have taken the chain into states
X1 = i1, . . . ,Xm = im.

We will now consider whether the pattern has overlaps, where we say that the
pattern i1, i2, . . . , ik has an overlap of size j, j < k, if the sequence of its final j

elements is the same as that of its first j elements. That is, it has an overlap of
size j if

(ik−j+1, . . . , ik) = (i1, . . . , ij ), j < k

Case 1: The pattern i1, i2, . . . , ik has no overlaps.
Because there is no overlap, Equation (4.13) yields that

E[N(i1, i2, . . . , ik)|X0 = ik] = 1

π(i1, . . . , ik)

Because the time until the pattern occurs is equal to the time until the chain enters
state i1 plus the additional time, we may write

E[N(i1, i2, . . . , ik)|X0 = ik] = μ(ik, i1) + E[A(i1)]
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The preceding two equations imply

E[A(i1)] = 1

π(i1, . . . , ik)
− μ(ik, i1)

Using that

E[N(i1, i2, . . . , ik)|X0 = r] = μ(r, i1) + E[A(i1)]

gives the result

E[N(i1, i2, . . . , ik)|X0 = r] = μ(r, i1) + 1

π(i1, . . . , ik)
− μ(ik, i1)

where

π(i1, . . . , ik) = πi1Pi1,i2 · · ·Pik−1,ik

Case 2: Now suppose that the pattern has overlaps and let its largest overlap be
of size s. In this case the number of transitions between successive visits of the
k-chain to the state i1, i2, . . . , ik is equal to the additional number of transitions
of the original chain until the pattern appears given that it has already made s

transitions with the results X1 = i1, . . . ,Xs = is . Therefore, from Equation (4.13)

E[A(i1, . . . , is)] = 1

π(i1, . . . , ik)

But because

N(i1, i2, . . . , ik) = N(i1, . . . , is) + A(i1, . . . , is)

we have

E[N(i1, i2, . . . , ik)|X0 = r] = E[N(i1, i2, . . . , is)|X0 = r] + 1

π(i1, . . . , ik)

We can now repeat the same procedure on the pattern i1, . . . , is , continuing to do
so until we reach one that has no overlap, and then apply the result from Case 1.



4.4. Limiting Probabilities 215

For instance, suppose the desired pattern is 1,2,3,1,2,3,1,2. Then

E[N(1,2,3,1,2,3,1,2)|X0 = r] = E[N(1,2,3,1,2)|X0 = r]

+ 1

π(1,2,3,1,2,3,1,2)

Because the largest overlap of the pattern (1,2,3,1,2) is of size 2, the same
argument as in the preceding gives

E[N(1,2,3,1,2)|X0 = r] = E[N(1,2)|X0 = r] + 1

π(1,2,3,1,2)

Because the pattern (1,2) has no overlap, we obtain from Case 1 that

E[N(1,2)|X0 = r] = μ(r,1) + 1

π(1,2)
− μ(2,1)

Putting it together yields

E[N(1,2,3,1,2,3,1,2)|X0 = r] = μ(r,1) + 1

π1P1,2
− μ(2,1)

+ 1

π1P
2
1,2P2,3P3,1

+ 1

π1P
3
1,2P

2
2,3P

2
3,1

If the generated data is a sequence of independent and identically distributed ran-
dom variables, with each value equal to j with probability Pj , then the Markov
chain has Pi,j = Pj . In this case, πj = Pj . Also, because the time to go from
state i to state j is a geometric random variable with parameter Pj , we have
μ(i, j) = 1/Pj . Thus, the expected number of data values that need be generated
before the pattern 1,2,3,1,2,3,1,2 appears would be

1

P1
+ 1

P1P2
− 1

P1
+ 1

P 2
1 P 2

2 P3
+ 1

P 3
1 P 3

2 P 2
3

= 1

P1P2
+ 1

P 2
1 P 2

2 P3
+ 1

P 3
1 P 3

2 P 2
3

�

The following result is quite useful.

Proposition 4.3 Let {Xn,n � 1} be an irreducible Markov chain with sta-
tionary probabilities πj , j � 0, and let r be a bounded function on the state space.
Then, with probability 1,

lim
N→∞

∑N
n=1 r(Xn)

N
=

∞∑

j=0

r(j)πj
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Proof If we let aj (N) be the amount of time the Markov chain spends in state
j during time periods 1, . . . ,N , then

N∑

n=1

r(Xn) =
∞∑

j=0

aj (N)r(j)

Since aj (N)/N → πj the result follows from the preceding upon dividing by N

and then letting N → ∞. �

If we suppose that we earn a reward r(j) whenever the chain is in state j , then
Proposition 4.3 states that our average reward per unit time is

∑
j r(j)πj .

Example 4.23 For the four state Bonus Malus automobile insurance system
specified in Example 4.7, find the average annual premium paid by a policyholder
whose yearly number of claims is a Poisson random variable with mean 1/2.

Solution: With ak = e−1/2 (1/2)k

k! , we have

a0 = 0.6065, a1 = 0.3033, a2 = 0.0758

Therefore, the Markov chain of successive states has the following transition
probability matrix.

∥
∥
∥
∥
∥
∥
∥
∥

0.6065 0.3033 0.0758 0.0144
0.6065 0.0000 0.3033 0.0902
0.0000 0.6065 0.0000 0.3935
0.0000 0.0000 0.6065 0.3935

∥
∥
∥
∥
∥
∥
∥
∥

The stationary probabilities are given as the solution of

π1 = 0.6065π1 + 0.6065π2,

π2 = 0.3033π1 + 0.6065π3,

π3 = 0.0758π1 + 0.3033π2 + 0.6065π4,

π1 + π2 + π3 + π4 = 1

Rewriting the first three of these equations gives

π2 = 1 − 0.6065

0.6065
π1,

π3 = π2 − 0.3033π1

0.6065
,

π4 = π3 − 0.0758π1 − 0.3033π2

0.6065
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or

π2 = 0.6488π1,

π3 = 0.5697π1,

π4 = 0.4900π1

Using that
∑4

i=1 πi = 1 gives the solution (rounded to four decimal places)

π1 = 0.3692, π2 = 0.2395, π3 = 0.2103, π4 = 0.1809

Therefore, the average annual premium paid is

200π1 + 250π2 + 400π3 + 600π4 = 326.375 �

4.5. Some Applications

4.5.1. The Gambler’s Ruin Problem

Consider a gambler who at each play of the game has probability p of winning
one unit and probability q = 1 − p of losing one unit. Assuming that successive
plays of the game are independent, what is the probability that, starting with i

units, the gambler’s fortune will reach N before reaching 0?
If we let Xn denote the player’s fortune at time n, then the process {Xn,n =

0,1,2, . . .} is a Markov chain with transition probabilities

P00 = PNN = 1,

Pi,i+1 = p = 1 − Pi,i−1, i = 1, 2, . . . ,N − 1

This Markov chain has three classes, namely, {0}, {1,2, . . . ,N − 1}, and {N}; the
first and third class being recurrent and the second transient. Since each transient
state is visited only finitely often, it follows that, after some finite amount of time,
the gambler will either attain his goal of N or go broke.

Let Pi , i = 0,1, . . . ,N , denote the probability that, starting with i, the gam-
bler’s fortune will eventually reach N . By conditioning on the outcome of the
initial play of the game we obtain

Pi = pPi+1 + qPi−1, i = 1,2, . . . ,N − 1

or equivalently, since p + q = 1,

pPi + qPi = pPi+1 + qPi−1
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or

Pi+1 − Pi = q

p
(Pi − Pi−1), i = 1,2, . . . ,N − 1

Hence, since P0 = 0, we obtain from the preceding line that

P2 − P1 = q

p
(P1 − P0) = q

p
P1,

P3 − P2 = q

p
(P2 − P1) =

(
q

p

)2

P1,

...

Pi − Pi−1 = q

p
(Pi−1 − Pi−2) =

(
q

p

)i−1

P1,

...

PN − PN−1 =
(

q

p

)

(PN−1 − PN−2) =
(

q

p

)N−1

P1

Adding the first i − 1 of these equations yields

Pi − P1 = P1

[(
q

p

)

+
(

q

p

)2

+ · · · +
(

q

p

)i−1
]

or

Pi =

⎧
⎪⎪⎨

⎪⎪⎩

1 − (q/p)i

1 − (q/p)
P1, if

q

p
�= 1

iP1, if
q

p
= 1

Now, using the fact that PN = 1, we obtain that

P1 =

⎧
⎪⎪⎨

⎪⎪⎩

1 − (q/p)

1 − (q/p)N
, if p �= 1

2
1

N
, if p = 1

2
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and hence

Pi =

⎧
⎪⎪⎨

⎪⎪⎩

1 − (q/p)i

1 − (q/p)N
, if p �= 1

2
i

N
, if p = 1

2

(4.14)

Note that, as N → ∞,

Pi →

⎧
⎪⎪⎨

⎪⎪⎩

1 −
(

q

p

)i

, if p >
1

2

0, if p � 1

2

Thus, if p > 1
2 , there is a positive probability that the gambler’s fortune will in-

crease indefinitely; while if p � 1
2 , the gambler will, with probability 1, go broke

against an infinitely rich adversary.

Example 4.24 Suppose Max and Patty decide to flip pennies; the one coming
closest to the wall wins. Patty, being the better player, has a probability 0.6 ofwin-
ning on each flip. (a) If Patty starts with five pennies and Max with ten, what is
the probability that Patty will wipe Max out? (b) What if Patty starts with 10 and
Max with 20?

Solution: (a) The desired probability is obtained from Equation (4.14) by
letting i = 5, N = 15, and p = 0.6. Hence, the desired probability is

1 − ( 2
3

)5

1 − ( 2
3

)15
≈ 0.87

(b) The desired probability is

1 − ( 2
3

)10

1 − ( 2
3

)30
≈ 0.98 �

For an application of the gambler’s ruin problem to drug testing, suppose that
two new drugs have been developed for treating a certain disease. Drug i has a
cure rate Pi , i = 1,2, in the sense that each patient treated with drug i will be
cured with probability Pi . These cure rates, however, are not known, and suppose
we are interested in a method for deciding whether P1 > P2 or P2 > P1. To de-
cide upon one of these alternatives, consider the following test: Pairs of patients
are treated sequentially with one member of the pair receiving drug 1 and the other
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drug 2. The results for each pair are determined, and the testing stops when the
cumulative number of cures using one of the drugs exceeds the cumulative num-
ber of cures when using the other by some fixed predetermined number. More
formally, let

Xj =
{

1, if the patient in the j th pair to receive drug number 1 is cured
0, otherwise

Yj =
{

1, if the patient in the j th pair to receive drug number 2 is cured
0, otherwise

For a predetermined positive integer M the test stops after pair N where N is
the first value of n such that either

X1 + · · · + Xn − (Y1 + · · · + Yn) = M

or

X1 + · · · + Xn − (Y1 + · · · + Yn) = −M

In the former case we then assert that P1 > P2, and in the latter that P2 > P1.
In order to help ascertain whether the preceding is a good test, one thing we

would like to know is the probability of it leading to an incorrect decision. That is,
for given P1 and P2 where P1 > P2, what is the probability that the test will
incorrectly assert that P2 > P1? To determine this probability, note that after each
pair is checked the cumulative difference of cures using drug 1 versus drug 2
will either go up by 1 with probability P1(1 − P2)—since this is the probability
that drug 1 leads to a cure and drug 2 does not—or go down by 1 with probability
(1−P1)P2, or remain the same with probability P1P2 + (1−P1)(1−P2). Hence,
if we only consider those pairs in which the cumulative difference changes, then
the difference will go up 1 with probability

p = P {up 1|up1 or down 1}

= P1(1 − P2)

P1(1 − P2) + (1 − P1)P2

and down 1 with probability

q = 1 − p = P2(1 − P1)

P1(1 − P2) + (1 − P1)P2

Hence, the probability that the test will assert that P2 > P1 is equal to the proba-
bility that a gambler who wins each (one unit) bet with probability p will go down
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M before going up M . But Equation (4.14) with i = M , N = 2M , shows that this
probability is given by

P {test asserts that P2 > P1} = 1 − 1 − (q/p)M

1 − (q/p)2M

= 1

1 + (p/q)M

Thus, for instance, if P1 = 0.6 and P2 = 0.4 then the probability of an incorrect
decision is 0.017 when M = 5 and reduces to 0.0003 when M = 10.

4.5.2. A Model for Algorithmic Efficiency

The following optimization problem is called a linear program:

minimize cx,

subject to Ax = b,

x � 0

where A is an m × n matrix of fixed constants; c = (c1, . . . , cn) and b =
(b1, . . . , bm) are vectors of fixed constants; and x = (x1, . . . , xn) is the n-vector of
nonnegative values that is to be chosen to minimize cx ≡ ∑n

i=1 cixi . Supposing
that n > m, it can be shown that the optimal x can always be chosen to have at
least n − m components equal to 0—that is, it can always be taken to be one of
the so-called extreme points of the feasibility region.

The simplex algorithm solves this linear program by moving from an extreme
point of the feasibility region to a better (in terms of the objective function cx)
extreme point (via the pivot operation) until the optimal is reached. Because there
can be as many as N ≡ (

n
m

)
such extreme points, it would seem that this method

might take many iterations, but, surprisingly to some, this does not appear to be
the case in practice.

To obtain a feel for whether or not the preceding statement is surprising, let
us consider a simple probabilistic (Markov chain) model as to how the algorithm
moves along the extreme points. Specifically, we will suppose that if at any time
the algorithm is at the j th best extreme point then after the next pivot the resulting
extreme point is equally likely to be any of the j − 1 best. Under this assumption,
we show that the time to get from the N th best to the best extreme point has
approximately, for large N , a normal distribution with mean and variance equal
to the logarithm (base e) of N .



222 4 Markov Chains

Consider a Markov chain for which P11 = 1 and

Pij = 1

i − 1
, j = 1, . . . , i − 1, i > 1

and let Ti denote the number of transitions needed to go from state i to state 1.
A recursive formula for E[Ti] can be obtained by conditioning on the initial tran-
sition:

E[Ti] = 1 + 1

i − 1

i−1∑

j=1

E[Tj ]

Starting with E[T1] = 0, we successively see that

E[T2] = 1,

E[T3] = 1 + 1
2 ,

E[T4] = 1 + 1
3 (1 + 1 + 1

2 ) = 1 + 1
2 + 1

3

and it is not difficult to guess and then prove inductively that

E[Ti] =
i−1∑

j=1

1/j

However, to obtain a more complete description of TN , we will use the repre-
sentation

TN =
N−1∑

j=1

Ij

where

Ij =
{

1, if the process ever enters j

0, otherwise

The importance of the preceding representation stems from the following:

Proposition 4.4 I1, . . . , IN−1 are independent and

P {Ij = 1} = 1/j, 1 � j � N − 1

Proof Given Ij+1, . . . , IN , let n = min{i: i > j, Ii = 1} denote the lowest num-
bered state, greater than j , that is entered. Thus we know that the process enters
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state n and the next state entered is one of the states 1,2, . . . , j . Hence, as the
next state from state n is equally likely to be any of the lower number states
1,2, . . . , n − 1 we see that

P {Ij = 1|Ij+1, . . . , IN } = 1/(n − 1)

j/(n − 1)
= 1/j

Hence, P {Ij = 1} = 1/j , and independence follows since the preceding condi-
tional probability does not depend on Ij+1, . . . , IN . �

Corollary 4.5

(i) E[TN ] =∑N−1
j=1 1/j .

(ii) Var(TN) =∑N−1
j=1 (1/j)(1 − 1/j).

(iii) For N large, TN has approximately a normal distribution with mean logN

and variance logN .

Proof Parts (i) and (ii) follow from Proposition 4.4 and the representation
TN =∑N−1

j=1 Ij . Part (iii) follows from the central limit theorem since

∫ N

1

dx

x
<

N−1∑

1

1/j < 1 +
∫ N−1

1

dx

x

or

logN <

N−1∑

1

1/j < 1 + log(N − 1)

and so

logN ≈
N−1∑

j=1

1/j �

Returning to the simplex algorithm, if we assume that n, m, and n − m are all
large, we have by Stirling’s approximation that

N =
(

n

m

)

∼ nn+1/2

(n − m)n−m+1/2mm+1/2
√

2π

and so, letting c = n/m,

logN ∼ (
mc + 1

2

)
log(mc) − (

m(c − 1) + 1
2

)
log(m(c − 1))

− (
m + 1

2

)
logm − 1

2 log(2π)
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or

logN ∼ m

[

c log
c

c − 1
+ log(c − 1)

]

Now, as limx→∞ x log[x/(x − 1)] = 1, it follows that, when c is large,

logN ∼ m[1 + log(c − 1)]

Thus, for instance, if n = 8000, m = 1000, then the number of necessary tran-
sitions is approximately normally distributed with mean and variance equal to
1000(1 + log 7) ≈ 3000. Hence, the number of necessary transitions would be
roughly between

3000 ± 2
√

3000 or roughly 3000 ± 110

95 percent of the time.

4.5.3. Using a Random Walk to Analyze a Probabilistic Algorithm
for the Satisfiability Problem

Consider a Markov chain with states 0,1, . . . , n having

P0,1 = 1, Pi,i+1 = p, Pi,i−1 = q = 1 − p, 1 � i � n

and suppose that we are interested in studying the time that it takes for the chain
to go from state 0 to state n. One approach to obtaining the mean time to reach
state n would be to let mi denote the mean time to go from state i to state
n, i = 0, . . . , n − 1. If we then condition on the initial transition, we obtain the
following set of equations:

m0 = 1 + m1,

mi = E[time to reach n|next state is i + 1]p
+ E[time to reach n|next state is i − 1]q

= (1 + mi+1)p + (1 + mi−1)q

= 1 + pmi+1 + qmi−1, i = 1, . . . , n − 1

Whereas the preceding equations can be solved for mi, i = 0, . . . , n−1, we do not
pursue their solution; we instead make use of the special structure of the Markov
chain to obtain a simpler set of equations. To start, let Ni denote the number of
additional transitions that it takes the chain when it first enters state i until it enters
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state i + 1. By the Markovian property, it follows that these random variables
Ni , i = 0, . . . , n − 1 are independent. Also, we can express N0,n, the number of
transitions that it takes the chain to go from state 0 to state n, as

N0,n =
n−1∑

i=0

Ni (4.15)

Letting μi = E[Ni] we obtain, upon conditioning on the next transition after the
chain enters state i, that for i = 1, . . . , n − 1

μi = 1 + E[number of additional transitions to reach i + 1|chain to i − 1]q
Now, if the chain next enters state i − 1, then in order for it to reach i + 1 it must
first return to state i and must then go from state i + 1. Hence, we have from the
preceding that

μi = 1 + E[N∗
i−1 + N∗

i ]q
where N∗

i−1 and N∗
i are, respectively, the additional number of transitions to re-

turn to state i from i −1 and the number to then go from i to i +1. Now, it follows
from the Markovian property that these random variables have, respectively, the
same distributions as Ni−1 and Ni . In addition, they are independent (although
we will only use this when we compute the variance of N0,n). Hence, we see that

μi = 1 + q(μi−1 + μi)

or

μi = 1

p
+ q

p
μi−1, i = 1, . . . , n − 1

Starting with μ0 = 1, and letting α = q/p, we obtain from the preceding recursion
that

μ1 = 1/p + α,

μ2 = 1/p + α(1/p + α) = 1/p + α/p + α2,

μ3 = 1/p + α(1/p + α/p + α2)

= 1/p + α/p + α2/p + α3

In general, we see that

μi = 1

p

i−1∑

j=0

αj + αi, i = 1, . . . , n − 1 (4.16)
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Using Equation (4.15), we now get

E[N0,n] = 1 + 1

p

n−1∑

i=1

i−1∑

j=0

αj +
n−1∑

i=1

αi

When p = 1
2 , and so α = 1, we see from the preceding that

E[N0,n] = 1 + (n − 1)n + n − 1 = n2

When p �= 1
2 , we obtain that

E[N0,n] = 1 + 1

p(1 − α)

n−1∑

i=1

(1 − αi) + α − αn

1 − α

= 1 + 1 + α

1 − α

[

n − 1 − (α − αn)

1 − α

]

+ α − αn

1 − α

= 1 + 2αn+1 − (n + 1)α2 + n − 1

(1 − α)2

where the second equality used the fact that p = 1/(1+α). Therefore, we see that
when α > 1, or equivalently when p < 1

2 , the expected number of transitions to
reach n is an exponentially increasing function of n. On the other hand, when p =
1
2 ,E[N0,n] = n2, and when p > 1

2 ,E[N0,n] is, for large n, essentially linear in n.
Let us now compute Var(N0,n). To do so, we will again make use of the repre-

sentation given by Equation (4.15). Letting vi = Var(Ni), we start by determining
the vi recursively by using the conditional variance formula. Let Si = 1 if the first
transition out of state i is into state i + 1, and let Si = −1 if the transition is into
state i − 1, i = 1, . . . , n − 1. Then,

given that Si = 1: N1 = 1

given that Si = −1: Ni = 1 + N∗
i−1 + N∗

i

Hence,

E[Ni |Si = 1] = 1,

E[Ni |Si = −1] = 1 + μi−1 + μi
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implying that

Var(E[Ni |Si]) = Var(E[Ni |Si] − 1)

= (μi−1 + μi)
2q − (μi−1 + μi)

2q2

= qp(μi−1 + μi)
2

Also, since N∗
i−1 and N∗

i , the numbers of transitions to return from state i − 1
to i and to then go from state i to state i + 1 are, by the Markovian property,
independent random variables having the same distributions as Ni−1 and Ni , re-
spectively, we see that

Var(Ni |Si = 1) = 0,

Var(Ni |Si = −1) = vi−1 + vi

Hence,

E[Var(Ni |Si)] = q(vi−1 + vi)

From the conditional variance formula, we thus obtain that

vi = pq(μi−1 + μi)
2 + q(vi−1 + vi)

or, equivalently,

vi = q(μi−1 + μi)
2 + αvi−1, i = 1, . . . , n − 1

Starting with v0 = 0, we obtain from the preceding recursion that

v1 = q(μ0 + μ1)
2,

v2 = q(μ1 + μ2)
2 + αq(μ0 + μ1)

2,

v3 = q(μ2 + μ3)
2 + αq(μ1 + μ2)

2 + α2q(μ0 + μ1)
2

In general, we have for i > 0,

vi = q

i∑

j=1

αi−j (μj−1 + μj )
2 (4.17)

Therefore, we see that

Var(N0,n) =
n−1∑

i=0

vi = q

n−1∑

i=1

i∑

j=1

αi−j (μj−1 + μj )
2

where μj is given by Equation (4.16).
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We see from Equations (4.16) and (4.17) that when p � 1
2 , and so α � 1, that μi

and vi , the mean and variance of the number of transitions to go from state i to
i + 1, do not increase too rapidly in i. For instance, when p = 1

2 it follows from
Equations (4.16) and (4.17) that

μi = 2i + 1

and

vi = 1

2

i∑

j=1

(4j)2 = 8
i∑

j=1

j2

Hence, since N0,n is the sum of independent random variables, which are of
roughly similar magnitudes when p � 1

2 , it follows in this case from the cen-
tral limit theorem that N0,n is, for large n, approximately normally distributed. In
particular, when p = 1

2 ,N0,n is approximately normal with mean n2 and variance

Var(N0,n) = 8
n−1∑

i=1

i∑

j=1

j2

= 8
n−1∑

j=1

n−1∑

i=j

j2

= 8
n−1∑

j=1

(n − j)j2

≈ 8
∫ n−1

1
(n − x)x2 dx

≈ 2
3n4

Example 4.25 (The Satisfiability Problem) A Boolean variable x is one that
takes on either of two values: TRUE or FALSE. If xi, i � 1 are Boolean variables,
then a Boolean clause of the form

x1 + x̄2 + x3

is TRUE if x1 is TRUE, or if x2 is FALSE, or if x3 is TRUE. That is, the symbol
“+” means “or” and x̄ is TRUE if x is FALSE and vice versa. A Boolean formula
is a combination of clauses such as

(x1 + x̄2) ∗ (x1 + x3) ∗ (x2 + x̄3) ∗ (x̄1 + x̄2) ∗ (x1 + x2)

In the preceding, the terms between the parentheses represent clauses, and the
formula is TRUE if all the clauses are TRUE, and is FALSE otherwise. For a
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given Boolean formula, the satisfiability problem is either to determine values
for the variables that result in the formula being TRUE, or to determine that the
formula is never true. For instance, one set of values that makes the preceding
formula TRUE is to set x1 = TRUE, x2 = FALSE, and x3 = FALSE.

Consider a formula of the n Boolean variables x1, . . . , xn and suppose that each
clause in this formula refers to exactly two variables. We will now present a prob-
abilistic algorithm that will either find values that satisfy the formula or determine
to a high probability that it is not possible to satisfy it. To begin, start with an arbi-
trary setting of values. Then, at each stage choose a clause whose value is FALSE,
and randomly choose one of the Boolean variables in that clause and change its
value. That is, if the variable has value TRUE then change its value to FALSE,
and vice versa. If this new setting makes the formula TRUE then stop, otherwise
continue in the same fashion. If you have not stopped after n2(1 + 4

√
2
3 ) repeti-

tions, then declare that the formula cannot be satisfied. We will now argue that if
there is a satisfiable assignment then this algorithm will find such an assignment
with a probability very close to 1.

Let us start by assuming that there is a satisfiable assignment of truth values
and let A be such an assignment. At each stage of the algorithm there is a certain
assignment of values. Let Yj denote the number of the n variables whose values at
the j th stage of the algorithm agree with their values in A . For instance, suppose
that n = 3 and A consists of the settings x1 = x2 = x3 = TRUE. If the assignment
of values at the j th step of the algorithm is x1 = TRUE, x2 = x3 = FALSE, then
Yj = 1. Now, at each stage, the algorithm considers a clause that is not satisfied,
thus implying that at least one of the values of the two variables in this clause does
not agree with its value in A . As a result, when we randomly choose one of the
variables in this clause then there is a probability of at least 1

2 that Yj+1 = Yj + 1
and at most 1

2 that Yj+1 = Yj − 1. That is, independent of what has previously
transpired in the algorithm, at each stage the number of settings in agreement with
those in A will either increase or decrease by 1 and the probability of an increase
is at least 1

2 (it is 1 if both variables have values different from their values in A ).
Thus, even though the process Yj , j � 0 is not itself a Markov chain (why not?)
it is intuitively clear that both the expectation and the variance of the number of
stages of the algorithm needed to obtain the values of A will be less than or equal
to the expectation and variance of the number of transitions to go from state 0 to
state n in the Markov chain of Section 4.5.2. Hence, if the algorithm has not yet
terminated because it found a set of satisfiable values different from that of A , it
will do so within an expected time of at most n2 and with a standard deviation of
at most n2√ 2

3 . In addition, since the time for the Markov chain to go from 0 to n

is approximately normal when n is large we can be quite certain that a satisfiable
assignment will be reached by n2 + 4(n2√ 2

3 ) stages, and thus if one has not been
found by this number of stages of the algorithm we can be quite certain that there
is no satisfiable assignment.
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Our analysis also makes it clear why we assumed that there are only two vari-
ables in each clause. For if there were k, k > 2, variables in a clause then as any
clause that is not presently satisfied may have only one incorrect setting, a ran-
domly chosen variable whose value is changed might only increase the number of
values in agreement with A with probability 1/k and so we could only conclude
from our prior Markov chain results that the mean time to obtain the values in
A is an exponential function of n, which is not an efficient algorithm when n is
large. �

4.6. Mean Time Spent in Transient States

Consider now a finite state Markov chain and suppose that the states are numbered
so that T = {1,2, . . . , t} denotes the set of transient states. Let

PT =
⎡

⎢
⎣

P11 P12 · · · P1t

...
...

...
...

Pt1 Pt2 · · · Ptt

⎤

⎥
⎦

and note that since PT specifies only the transition probabilities from transient
states into transient states, some of its row sums are less than 1 (otherwise,
T would be a closed class of states).

For transient states i and j , let sij denote the expected number of time periods
that the Markov chain is in state j , given that it starts in state i. Let δi,j = 1 when
i = j and let it be 0 otherwise. Condition on the initial transition to obtain

sij = δi,j +
∑

k

Pikskj

= δi,j +
t∑

k=1

Pikskj (4.18)

where the final equality follows since it is impossible to go from a recurrent to a
transient state, implying that skj = 0 when k is a recurrent state.

Let S denote the matrix of values sij , i, j = 1, . . . , t . That is,

S =
⎡

⎢
⎣

s11 s12 · · · s1t

...
...

...
...

st1 st2 · · · stt

⎤

⎥
⎦

In matrix notation, Equation (4.18) can be written as

S = I + PT S



4.6. Mean Time Spent in Transient States 231

where I is the identity matrix of size t . Because the preceding equation is equiva-
lent to

(I − PT )S = I

we obtain, upon multiplying both sides by (I − PT )−1,

S = (I − PT )−1

That is, the quantities sij , i ∈ T , j ∈ T , can be obtained by inverting the matrix
I − PT . (The existence of the inverse is easily established.)

Example 4.26 Consider the gambler’s ruin problem with p = 0.4 and N = 7.
Starting with 3 units, determine

(a) the expected amount of time the gambler has 5 units,

(b) the expected amount of time the gambler has 2 units.

Solution: The matrix PT , which specifies Pij , i, j ∈ {1,2,3,4,5,6}, is as
follows:

1 2 3 4 5 6

1 0 0.4 0 0 0 0
2 0.6 0 0.4 0 0 0
3 0 0.6 0 0.4 0 0

PT = 4 0 0 0.6 0 0.4 0
5 0 0 0 0.6 0 0.4
6 0 0 0 0 0.6 0

Inverting I − PT gives

S = (I − PT )−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.6149 1.0248 0.6314 0.3691 0.1943 0.0777
1.5372 2.5619 1.5784 0.9228 0.4857 0.1943
1.4206 2.3677 2.9990 1.7533 0.9228 0.3691
1.2458 2.0763 2.6299 2.9990 1.5784 0.6314
0.9835 1.6391 2.0763 2.3677 2.5619 1.0248
0.5901 0.9835 1.2458 1.4206 1.5372 1.6149

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Hence,

s3,5 = 0.9228, s3,2 = 2.3677 �
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For i ∈ T , j ∈ T , the quantity fij , equal to the probability that the Markov
chain ever makes a transition into state j given that it starts in state i, is easily
determined from PT . To determine the relationship, let us start by deriving an
expression for sij by conditioning on whether state j is ever entered. This yields

sij = E[time in j |start in i, ever transit to j ]fij

+ E[time in j |start in i, never transit to j ](1 − fij )

= (δi,j + sjj )fij + δi,j (1 − fi,j )

= δi,j + fij sjj

since sjj is the expected number of additional time periods spent in state j given
that it is eventually entered from state i. Solving the preceding equation yields

fij = sij − δi,j

sjj

Example 4.27 In Example 4.26, what is the probability that the gambler ever
has a fortune of 1?

Solution: Since s3,1 = 1.4206 and s1,1 = 1.6149, then

f3,1 = s3,1

s1,1
= 0.8797

As a check, note that f3,1 is just the probability that a gambler starting with
3 reaches 1 before 7. That is, it is the probability that the gambler’s fortune will
go down 2 before going up 4; which is the probability that a gambler starting
with 2 will go broke before reaching 6. Therefore,

f3,1 = −1 − (0.6/0.4)2

1 − (0.6/0.4)6
= 0.8797

which checks with our earlier answer. �
Suppose we are interested in the expected time until the Markov chain enters

some sets of states A, which need not be the set of recurrent states. We can reduce
this back to the previous situation by making all states in A absorbing states. That
is, reset the transition probabilities of states in A to satisfy.

Pi,i = 1, i ∈ A

This transforms the states of A into recurrent states, and transforms any state
outside of A from which an eventual transition into A is possible into a transient
state. Thus, our previous approach can be used.



4.7. Branching Processes 233

4.7. Branching Processes

In this section we consider a class of Markov chains, known as branching
processes, which have a wide variety of applications in the biological, sociologi-
cal, and engineering sciences.

Consider a population consisting of individuals able to produce offspring of
the same kind. Suppose that each individual will, by the end of its lifetime,
have produced j new offspring with probability Pj , j � 0, independently of the
numbers produced by other individuals. We suppose that Pj < 1 for all j � 0.
The number of individuals initially present, denoted by X0, is called the size of
the zeroth generation. All offspring of the zeroth generation constitute the first
generation and their number is denoted by X1. In general, let Xn denote the size
of the nth generation. It follows that {Xn,n = 0,1, . . .} is a Markov chain having
as its state space the set of nonnegative integers.

Note that state 0 is a recurrent state, since clearly P00 = 1. Also, if P0 > 0, all
other states are transient. This follows since Pi0 = P i

0 , which implies that starting
with i individuals there is a positive probability of at least P i

0 that no later gener-
ation will ever consist of i individuals. Moreover, since any finite set of transient
states {1,2, . . . , n} will be visited only finitely often, this leads to the important
conclusion that, if P0 > 0, then the population will either die out or its size will
converge to infinity.

Let

μ =
∞∑

j=0

jPj

denote the mean number of offspring of a single individual, and let

σ 2 =
∞∑

j=0

(j − μ)2Pj

be the variance of the number of offspring produced by a single individual.
Let us suppose that X0 = 1, that is, initially there is a single individual present.

We calculate E[Xn] and Var(Xn) by first noting that we may write

Xn =
Xn−1∑

i=1

Zi

where Zi represents the number of offspring of the ith individual of the (n − 1)st
generation. By conditioning on Xn−1, we obtain
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E[Xn] = E[E[Xn|Xn−1]]

= E

[

E

[
Xn−1∑

i=1

Zi |Xn−1

]]

= E[Xn−1μ]
= μE[Xn−1]

where we have used the fact that E[Zi] = μ. Since E[X0] = 1, the preceding
yields

E[X1] = μ,

E[X2] = μE[X1] = μ2,

...

E[Xn] = μE[Xn−1] = μn

Similarly, Var(Xn) may be obtained by using the conditional variance formula

Var(Xn) = E[Var(Xn|Xn−1)] + Var(E[Xn|Xn−1])
Now, given Xn−1,Xn is just the sum of Xn−1 independent random variables each
having the distribution {Pj , j � 0}. Hence,

E[Xn|Xn−1] = Xn−1μ, Var(Xn|Xn−1) = Xn−1σ
2

The conditional variance formula now yields

Var(Xn) = E[Xn−1σ
2] + Var(Xn−1μ)

= σ 2μn−1 + μ2 Var(Xn−1)

= σ 2μn−1 + μ2(σ 2μn−2 + μ2 Var(Xn−2)
)

= σ 2(μn−1 + μn) + μ4 Var(Xn−2)

= σ 2(μn−1 + μn) + μ4(σ 2μn−3 + μ2 Var(Xn−3)
)

= σ 2(μn−1 + μn + μn+1) + μ6 Var(Xn−3)

= · · ·
= σ 2(μn−1 + μn + · · · + μ2n−2) + μ2n Var(X0)

= σ 2(μn−1 + μn + · · · + μ2n−2)
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Therefore,

Var(Xn) =
{

σ 2μn−1
( 1−μn

1−μ

)
, if μ �= 1

nσ 2, if μ = 1
(4.19)

Let π0 denote the probability that the population will eventually die out (under
the assumption that X0 = 1). More formally,

π0 = lim
n→∞P {Xn = 0|X0 = 1}

The problem of determining the value of π0 was first raised in connection with
the extinction of family surnames by Galton in 1889.

We first note that π0 = 1 if μ < 1. This follows since

μn = E[Xn] =
∞∑

j=1

jP {Xn = j}

�
∞∑

j=1

1 · P {Xn = j}

= P {Xn � 1}
Since μn → 0 when μ < 1, it follows that P {Xn � 1} → 0, and hence
P {Xn = 0} → 1.

In fact, it can be shown that π0 = 1 even when μ = 1. When μ > 1, it turns out
that π0 < 1, and an equation determining π0 may be derived by conditioning on
the number of offspring of the initial individual, as follows:

π0 = P {population dies out}

=
∞∑

j=0

P {population dies out|X1 = j}Pj

Now, given that X1 = j , the population will eventually die out if and only if each
of the j families started by the members of the first generation eventually dies
out. Since each family is assumed to act independently, and since the probability
that any particular family dies out is just π0, this yields

P {population dies out|X1 = j} = π
j

0

and thus π0 satisfies

π0 =
∞∑

j=0

π
j

0 Pj (4.20)
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In fact when μ > 1, it can be shown that π0 is the smallest positive number satis-
fying Equation (4.20).

Example 4.28 If P0 = 1
2 , P1 = 1

4 , P2 = 1
4 , then determine π0.

Solution: Since μ = 3
4 � 1, it follows that π0 = 1. �

Example 4.29 If P0 = 1
4 , P1 = 1

4 , P2 = 1
2 , then determine π0.

Solution: π0 satisfies

π0 = 1
4 + 1

4π0 + 1
2π2

0

or

2π2
0 − 3π0 + 1 = 0

The smallest positive solution of this quadratic equation is π0 = 1
2 . �

Example 4.30 In Examples 4.28 and 4.29, what is the probability that the
population will die out if it initially consists of n individuals?

Solution: Since the population will die out if and only if the families of each
of the members of the initial generation die out, the desired probability is πn

0 .
For Example 4.28 this yields πn

0 = 1, and for Example 4.29, πn
0 = ( 1

2 )n. �

4.8. Time Reversible Markov Chains

Consider a stationary ergodic Markov chain (that is, an ergodic Markov chain
that has been in operation for a long time) having transition probabilities Pij and
stationary probabilities πi , and suppose that starting at some time we trace the
sequence of states going backward in time. That is, starting at time n, consider the
sequence of states Xn,Xn−1,Xn−2, . . . . It turns out that this sequence of states is
itself a Markov chain with transition probabilities Qij defined by

Qij = P {Xm = j |Xm+1 = i}

= P {Xm = j,Xm+1 = i}
P {Xm+1 = i}

= P {Xm = j}P {Xm+1 = i|Xm = j}
P {Xm+1 = i}

= πjPji

πi
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To prove that the reversed process is indeed a Markov chain, we must verify that

P {Xm = j |Xm+1 = i,Xm+2,Xm+3, . . .} = P {Xm = j |Xm+1 = i}
To see that this is so, suppose that the present time is m + 1. Now, since
X0,X1,X2, . . . is a Markov chain, it follows that the conditional distribution
of the future Xm+2,Xm+3, . . . given the present state Xm+1 is independent of
the past state Xm. However, independence is a symmetric relationship (that is,
if A is independent of B , then B is independent of A), and so this means that
given Xm+1,Xm is independent of Xm+2,Xm+3, . . . . But this is exactly what we
had to verify.

Thus, the reversed process is also a Markov chain with transition probabilities
given by

Qij = πjPji

πi

If Qij = Pij for all i, j , then the Markov chain is said to be time reversible. The
condition for time reversibility, namely, Qij = Pij , can also be expressed as

πiPij = πjPji for all i, j (4.21)

The condition in Equation (4.21) can be stated that, for all states i and j , the
rate at which the process goes from i to j (namely, πiPij ) is equal to the rate
at which it goes from j to i (namely, πjPji ). It is worth noting that this is an
obvious necessary condition for time reversibility since a transition from i to j

going backward in time is equivalent to a transition from j to i going forward in
time; that is, if Xm = i and Xm−1 = j , then a transition from i to j is observed
if we are looking backward, and one from j to i if we are looking forward in
time. Thus, the rate at which the forward process makes a transition from j to i is
always equal to the rate at which the reverse process makes a transition from i to
j ; if time reversible, this must equal the rate at which the forward process makes
a transition from i to j .

If we can find nonnegative numbers, summing to one, that satisfy Equation
(4.21), then it follows that the Markov chain is time reversible and the numbers
represent the limiting probabilities. This is so since if

xiPij = xjPji for all i, j,
∑

i

xi = 1 (4.22)

then summing over i yields
∑

i

xiPij = xj

∑

i

Pji = xj ,
∑

i

xi = 1

and, because the limiting probabilities πi are the unique solution of the preceding,
it follows that xi = πi for all i.



238 4 Markov Chains

Example 4.31 Consider a random walk with states 0,1, . . . ,M and transition
probabilities

Pi,i+1 = αi = 1 − Pi,i−1, i = 1, . . . ,M − 1,

P0,1 = α0 = 1 − P0,0,

PM,M = αM = 1 − PM,M−1

Without the need for any computations, it is possible to argue that this Markov
chain, which can only make transitions from a state to one of its two nearest
neighbors, is time reversible. This follows by noting that the number of transitions
from i to i + 1 must at all times be within 1 of the number from i + 1 to i. This is
so because between any two transitions from i to i+1 there must be one from i+1
to i (and conversely) since the only way to reenter i from a higher state is via state
i + 1. Hence, it follows that the rate of transitions from i to i + 1 equals the rate
from i + 1 to i, and so the process is time reversible.

We can easily obtain the limiting probabilities by equating for each state i =
0,1, . . . ,M − 1 the rate at which the process goes from i to i + 1 with the rate at
which it goes from i + 1 to i. This yields

π0α0 = π1(1 − α1),

π1α1 = π2(1 − α2),

...

πiαi = πi+1(1 − αi+1), i = 0,1, . . . ,M − 1

Solving in terms of π0 yields

π1 = α0

1 − α1
π0,

π2 = α1

1 − α2
π1 = α1α0

(1 − α2)(1 − α1)
π0

and, in general,

πi = αi−1 · · ·α0

(1 − αi) · · · (1 − α1)
π0, i = 1,2, . . . ,M

Since
∑M

0 πi = 1, we obtain

π0

[

1 +
M∑

j=1

αj−1 · · ·α0

(1 − αj ) · · · (1 − α1)

]

= 1
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or

π0 =
[

1 +
M∑

j=1

αj−1 · · ·α0

(1 − αj ) · · · (1 − α1)

]−1

(4.23)

and

πi = αi−1 · · ·α0

(1 − αi) · · · (1 − α1)
π0, i = 1, . . . ,M (4.24)

For instance, if αi ≡ α, then

π0 =
[

1 +
M∑

j=1

(
α

1 − α

)j
]−1

= 1 − β

1 − βM+1

and, in general,

πi = βi(1 − β)

1 − βM+1
, i = 0,1, . . . ,M

where

β = α

1 − α
�

Another special case of Example 4.31 is the following urn model, proposed
by the physicists P. and T. Ehrenfest to describe the movements of molecules.
Suppose that M molecules are distributed among two urns; and at each time point
one of the molecules is chosen at random, removed from its urn, and placed in the
other one. The number of molecules in urn I is a special case of the Markov chain
of Example 4.31 having

αi = M − i

M
, i = 0,1, . . . ,M
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Hence, using Equations (4.23) and (4.24) the limiting probabilities in this case are

π0 =
[

1 +
M∑

j=1

(M − j + 1) · · · (M − 1)M

j (j − 1) · · ·1

]−1

=
[

M∑

j=0

(
M

j

)]−1

=
(

1

2

)M

where we have used the identity

1 =
(

1

2
+ 1

2

)M

=
M∑

j=0

(
M

j

)(
1

2

)M

Hence, from Equation (4.24)

πi =
(

M

i

)(
1

2

)M

, i = 0,1, . . . ,M

Because the preceding are just the binomial probabilities, it follows that in the
long run, the positions of each of the M balls are independent and each one is
equally likely to be in either urn. This, however, is quite intuitive, for if we focus
on any one ball, it becomes quite clear that its position will be independent of the
positions of the other balls (since no matter where the other M − 1 balls are, the
ball under consideration at each stage will be moved with probability 1/M) and
by symmetry, it is equally likely to be in either urn.

Example 4.32 Consider an arbitrary connected graph (see Section 3.6 for
definitions) having a number wij associated with arc (i, j ) for each arc. One in-
stance of such a graph is given by Figure 4.1. Now consider a particle moving
from node to node in this manner: If at any time the particle resides at node i,
then it will next move to node j with probability Pij where

Pij = wij
∑

j wij

and where wij is 0 if (i, j ) is not an arc. For instance, for the graph of Figure 4.1,
P12 = 3/(3 + 1 + 2) = 1

2 .
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Figure 4.1. A connected graph with arc weights.

The time reversibility equations

πiPij = πjPji

reduce to

πi

wij
∑

j wij

= πj

wji
∑

i wji

or, equivalently, since wij = wji

πi
∑

j wij

= πj
∑

i wji

which is equivalent to

πi
∑

j wij

= c

or

πi = c
∑

j

wij

or, since 1 =∑
i πi

πi =
∑

j wij
∑

i

∑
j wij

Because the πis given by this equation satisfy the time reversibility equations, it
follows that the process is time reversible with these limiting probabilities.

For the graph of Figure 4.1 we have that

π1 = 6
32 , π2 = 3

32 , π3 = 6
32 , π4 = 5

32 , π5 = 12
32 �
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If we try to solve Equation (4.22) for an arbitrary Markov chain with states
0,1, . . . ,M , it will usually turn out that no solution exists. For example, from
Equation (4.22),

xiPij = xjPji,

xkPkj = xjPjk

implying (if PijPjk > 0) that

xi

xk

= PjiPkj

PijPjk

which in general need not equal Pki/Pik . Thus, we see that a necessary condition
for time reversibility is that

PikPkjPji = PijPjkPki for all i, j, k (4.25)

which is equivalent to the statement that, starting in state i, the path i → k → j →
i has the same probability as the reversed path i → j → k → i. To understand
the necessity of this, note that time reversibility implies that the rate at which a
sequence of transitions from i to k to j to i occurs must equal the rate of ones
from i to j to k to i (why?), and so we must have

πiPikPkjPji = πiPijPjkPki

implying Equation (4.25) when πi > 0.
In fact, we can show the following.

Theorem 4.2 An ergodic Markov chain for which Pij = 0 whenever Pji = 0
is time reversible if and only if starting in state i, any path back to i has the same
probability as the reversed path. That is, if

Pi,i1Pi1,i2 · · ·Pik,i = Pi,ikPik,ik−1 · · ·Pi1,i (4.26)

for all states i, i1, . . . , ik .

Proof We have already proven necessity. To prove sufficiency, fix states i and j

and rewrite (4.26) as

Pi,i1Pi1,i2 · · ·Pik,jPji = PijPj,ik · · ·Pi1,i

Summing the preceding over all states i1, . . . , ik yields

P k+1
ij Pji = PijP

k+1
ji

Letting k → ∞ yields

πjPji = Pijπi

which proves the theorem. �
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Example 4.33 Suppose we are given a set of n elements, numbered 1 through
n, which are to be arranged in some ordered list. At each unit of time a request is
made to retrieve one of these elements, element i being requested (independently
of the past) with probability Pi . After being requested, the element then is put back
but not necessarily in the same position. In fact, let us suppose that the element
requested is moved one closer to the front of the list; for instance, if the present
list ordering is 1, 3, 4, 2, 5 and element 2 is requested, then the new ordering
becomes 1, 3, 2, 4, 5. We are interested in the long-run average position of the
element requested.

For any given probability vector P = (P1, . . . ,Pn), the preceding can be mod-
eled as a Markov chain with n! states, with the state at any time being the list
order at that time. We shall show that this Markov chain is time reversible and
then use this to show that the average position of the element requested when
this one-closer rule is in effect is less than when the rule of always moving the
requested element to the front of the line is used. The time reversibility of the
resulting Markov chain when the one-closer reordering rule is in effect easily fol-
lows from Theorem 4.2. For instance, suppose n = 3 and consider the following
path from state (1, 2, 3) to itself:

(1,2,3) → (2,1,3) → (2,3,1) → (3,2,1)

→ (3,1,2) → (1,3,2) → (1,2,3)

The product of the transition probabilities in the forward direction is

P2P3P3P1P1P2 = P 2
1 P 2

2 P 2
3

whereas in the reverse direction, it is

P3P3P2P2P1P1 = P 2
1 P 2

2 P 2
3

Because the general result follows in much the same manner, the Markov chain is
indeed time reversible. [For a formal argument note that if fi denotes the number
of times element i moves forward in the path, then as the path goes from a fixed
state back to itself, it follows that element i will also move backward fi times.
Therefore, since the backward moves of element i are precisely the times that it
moves forward in the reverse path, it follows that the product of the transition
probabilities for both the path and its reversal will equal

∏

i

P
fi+ri
i

where ri is equal to the number of times that element i is in the first position and
the path (or the reverse path) does not change states.]
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For any permutation i1, i2, . . . , in of 1,2, . . . , n, let π(i1, i2, . . . , in) denote the
limiting probability under the one-closer rule. By time reversibility we have

Pij+1π(i1, . . . , ij , ij+1, . . . , in) = Pij π(i1, . . . , ij+1, ij , . . . , in) (4.27)

for all permutations.
Now the average position of the element requested can be expressed (as in

Section 3.6.1) as

Average position =
∑

i

PiE[Position of element i]

=
∑

i

Pi

[

1 +
∑

j �=i

P {element j precedes element i}
]

= 1 +
∑

i

∑

j �=i

PiP {ej precedes ei}

= 1 +
∑

i<j

[PiP {ej precedes ei} + PjP {ei precedes ej }]

= 1 +
∑

i<j

[PiP {ej precedes ei} + Pj (1 − P {ej precedes ei})]

= 1 +
∑∑

i<j

(Pi − Pj )P {ej precedes ei} +
∑∑

i<j

Pj

Hence, to minimize the average position of the element requested, we would want
to make P {ej precedes ei} as large as possible when Pj > Pi and as small as pos-
sible when Pi > Pj . Now under the front-of-the-line rule we showed in Section
3.6.1 that

P {ej precedes ei} = Pj

Pj + Pi

(since under the front-of-the-line rule element j will precede element i if and only
if the last request for either i or j was for j ).

Therefore, to show that the one-closer rule is better than the front-of-the-line
rule, it suffices to show that under the one-closer rule

P {ej precedes ei} >
Pj

Pj + Pi

when Pj > Pi

Now consider any state where element i precedes element j , say,
(. . . , i, i1, . . . , ik, j, . . .). By successive transpositions using Equation (4.27),
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we have

π(. . . , i, i1, . . . , ik, j, . . .) =
(

Pi

Pj

)k+1

π(. . . , j, i1, . . . , ik, i, . . .) (4.28)

For instance,

π(1,2,3) = P2

P3
π(1,3,2) = P2

P3

P1

P3
π(3,1,2)

= P2

P3

P1

P3

P1

P2
π(3,2,1) =

(
P1

P3

)2

π(3,2,1)

Now when Pj > Pi , Equation (4.28) implies that

π(. . . , i, i1, . . . , ik, j, . . .) <
Pi

Pj

π(. . . , j, i1, . . . , ik, i, . . .)

Letting α(i,j) = P {ei precedes ej }, we see by summing over all states for which
i precedes j and by using the preceding that

α(i, j) <
Pi

Pj

α(j, i)

which, since α(i, j) = 1 − α(j, i), yields

α(j, i) >
Pj

Pj + Pi

Hence, the average position of the element requested is indeed smaller under the
one-closer rule than under the front-of-the-line rule. �

The concept of the reversed chain is useful even when the process is not time
reversible. To illustrate this, we start with the following proposition whose proof
is left as an exercise.

Proposition 4.6 Consider an irreducible Markov chain with transition prob-
abilities Pij . If we can find positive numbers πi, i � 0, summing to one, and a
transition probability matrix Q = [Qij ] such that

πiPij = πjQji (4.29)

then the Qij are the transition probabilities of the reversed chain and the πi are
the stationary probabilities both for the original and reversed chain.

The importance of the preceding proposition is that, by thinking backward, we
can sometimes guess at the nature of the reversed chain and then use the set of
equations (4.29) to obtain both the stationary probabilities and the Qij .
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Example 4.34 A single bulb is necessary to light a given room. When the
bulb in use fails, it is replaced by a new one at the beginning of the next day. Let
Xn equal i if the bulb in use at the beginning of day n is in its ith day of use (that
is, if its present age is i). For instance, if a bulb fails on day n−1, then a new bulb
will be put in use at the beginning of day n and so Xn = 1. If we suppose that each
bulb, independently, fails on its ith day of use with probability pi, i � 1, then it is
easy to see that {Xn,n � 1} is a Markov chain whose transition probabilities are
as follows:

Pi,1 = P { bulb, on its ith day of use, fails}
= P {life of bulb = i|life of bulb � i}

= P {L = i}
P {L � i}

where L, a random variable representing the lifetime of a bulb, is such that
P {L = i} = pi . Also,

Pi,i+1 = 1 − Pi,1

Suppose now that this chain has been in operation for a long (in theory, an in-
finite) time and consider the sequence of states going backward in time. Since, in
the forward direction, the state is always increasing by 1 until it reaches the age
at which the item fails, it is easy to see that the reverse chain will always decrease
by 1 until it reaches 1 and then it will jump to a random value representing the
lifetime of the (in real time) previous bulb. Thus, it seems that the reverse chain
should have transition probabilities given by

Qi,i−1 = 1, i > 1

Q1,i = pi, i � 1

To check this, and at the same time determine the stationary probabilities, we
must see if we can find, with the Qi,j as previously given, positive numbers {πi}
such that

πiPi,j = πjQj,i

To begin, let j = 1 and consider the resulting equations:

πiPi,1 = π1Q1,i

This is equivalent to

πi

P {L = i}
P {L � i} = π1P {L = i}
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or

πi = π1P {L � i}
Summing over all i yields

1 =
∞∑

i=1

πi = π1

∞∑

i=1

P {L � i} = π1E[L]

and so, for the preceding Qij to represent the reverse transition probabilities, it is
necessary for the stationary probabilities to be

πi = P {L � i}
E[L] , i � 1

To finish the proof that the reverse transition probabilities and stationary proba-
bilities are as given, all that remains is to show that they satisfy

πiPi,i+1 = πi+1Qi+1,i

which is equivalent to

P {L � i}
E[L]

(

1 − P {L = i}
P {L � i}

)

= P {L � i + 1}
E[L]

and which is true since P {L � i} − P {L = i} = P {L � i + 1}. �

4.9. Markov Chain Monte Carlo Methods

Let X be a discrete random vector whose set of possible values is xj , j � 1. Let
the probability mass function of X be given by P {X = xj }, j � 1, and suppose
that we are interested in calculating

θ = E[h(X)] =
∞∑

j=1

h(xj )P {X = xj }

for some specified function h. In situations where it is computationally difficult
to evaluate the function h(xj ), j � 1, we often turn to simulation to approximate
θ . The usual approach, called Monte Carlo simulation, is to use random numbers
to generate a partial sequence of independent and identically distributed random
vectors X1,X2, . . . ,Xn having the mass function P {X = xj }, j � 1 (see Chap-
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ter 11 for a discussion as to how this can be accomplished). Since the strong law
of large numbers yields

lim
n→∞

n∑

i=1

h(Xi )

n
= θ (4.30)

it follows that we can estimate θ by letting n be large and using the average of the
values of h(Xi ), i = 1, . . . , n as the estimator.

It often, however, turns out that it is difficult to generate a random vector having
the specified probability mass function, particularly if X is a vector of dependent
random variables. In addition, its probability mass function is sometimes given in
the form P {X = xj } = Cbj , j � 1, where the bj are specified, but C must be com-
puted, and in many applications it is not computationally feasible to sum the bj so
as to determine C. Fortunately, however, there is another way of using simulation
to estimate θ in these situations. It works by generating a sequence, not of inde-
pendent random vectors, but of the successive states of a vector-valued Markov
chain X1,X2, . . . whose stationary probabilities are P {X = xj }, j � 1. If this can
be accomplished, then it would follow from Proposition 4.3 that Equation (4.30)
remains valid, implying that we can then use

∑n
i=1 h(Xi )/n as an estimator of θ .

We now show how to generate a Markov chain with arbitrary stationary prob-
abilities that may only be specified up to a multiplicative constant. Let b(j),
j = 1,2, . . . be positive numbers whose sum B = ∑∞

j=1 b(j) is finite. The fol-
lowing, known as the Hastings–Metropolis algorithm, can be used to generate a
time reversible Markov chain whose stationary probabilities are

π(j) = b(j)/B, j = 1,2, . . .

To begin, let Q be any specified irreducible Markov transition probability matrix
on the integers, with q(i, j) representing the row i column j element of Q. Now
define a Markov chain {Xn,n � 0} as follows. When Xn = i, generate a random
variable Y such that P {Y = j} = q(i, j), j = 1,2, . . . . If Y = j , then set Xn+1
equal to j with probability α(i, j), and set it equal to i with probability 1−α(i, j).
Under these conditions, it is easy to see that the sequence of states constitutes a
Markov chain with transition probabilities Pi,j given by

Pi,j = q(i, j)α(i, j), if j �= i

Pi,i = q(i, i) +
∑

k �=i

q(i, k)(1 − α(i, k))

This Markov chain will be time reversible and have stationary probabilities π(j)

if

π(i)Pi,j = π(j)Pj,i for j �= i
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which is equivalent to

π(i)q(i, j)α(i, j) = π(j)q(j, i)α(j, i) (4.31)

But if we take πj = b(j)/B and set

α(i, j) = min

(
π(j)q(j, i)

π(i)q(i, j)
,1

)

(4.32)

then Equation (4.31) is easily seen to be satisfied. For if

α(i, j) = π(j)q(j, i)

π(i)q(i, j)

then α(j, i) = 1 and Equation (4.31) follows, and if α(i,j) = 1 then

α(j, i) = π(i)q(i, j)

π(j)q(j, i)

and again Equation (4.31) holds, thus showing that the Markov chain is time re-
versible with stationary probabilities π(j). Also, since π(j) = b(j)/B , we see
from (4.32) that

α(i, j) = min

(
b(j)q(j, i)

b(i)q(i, j)
,1

)

which shows that the value of B is not needed to define the Markov chain, because
the values b(j) suffice. Also, it is almost always the case that π(j), j � 1 will not
only be stationary probabilities but will also be limiting probabilities. (Indeed, a
sufficient condition is that Pi,i > 0 for some i.)

Example 4.35 Suppose that we want to generate a uniformly distributed ele-
ment in S , the set of all permutations (x1, . . . , xn) of the numbers (1, . . . , n) for
which

∑n
j=1jxj > a for a given constant a. To utilize the Hastings–Metropolis

algorithm we need to define an irreducible Markov transition probability matrix
on the state space S . To accomplish this, we first define a concept of “neighbor-
ing” elements of S , and then construct a graph whose vertex set is S . We start
by putting an arc between each pair of neighboring elements in S , where any two
permutations in S are said to be neighbors if one results from an interchange of
two of the positions of the other. That is, (1, 2, 3, 4) and (1, 2, 4, 3) are neighbors
whereas (1, 2, 3, 4) and (1, 3, 4, 2) are not. Now, define the q transition probabil-
ity function as follows. With N(s) defined as the set of neighbors of s, and |N(s)|
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equal to the number of elements in the set N(s), let

q(s, t) = 1

|N(s)| if t ∈ N(s)

That is, the candidate next state from s is equally likely to be any of its neigh-
bors. Since the desired limiting probabilities of the Markov chain are π(s) = C, it
follows that π(s) = π(t), and so

α(s, t) = min(|N(s)|/|N(t)|,1)

That is, if the present state of the Markov chain is s then one of its neighbors is
randomly chosen, say, t. If t is a state with fewer neighbors than s (in graph theory
language, if the degree of vertex t is less than that of vertex s), then the next state
is t. If not, a uniform (0,1) random number U is generated and the next state is t if
U < |(N(s)|/|N(t)| and is s otherwise. The limiting probabilities of this Markov
chain are π(s) = 1/|S |, where |S | is the (unknown) number of permutations
in S . �

The most widely used version of the Hastings–Metropolis algorithm is the
Gibbs sampler. Let X = (X1, . . . ,Xn) be a discrete random vector with proba-
bility mass function p(x) that is only specified up to a multiplicative constant,
and suppose that we want to generate a random vector whose distribution is that
of X. That is, we want to generate a random vector having mass function

p(x) = Cg(x)

where g(x) is known, but C is not. Utilization of the Gibbs sampler assumes that
for any i and values xj , j �= i, we can generate a random variable X having the
probability mass function

P {X = x} = P {Xi = x|Xj = xj , j �= i}

It operates by using the Hasting–Metropolis algorithm on a Markov chain with
states x = (x1, . . . , xn), and with transition probabilities defined as follows.
Whenever the present state is x, a coordinate that is equally likely to be any of
1, . . . , n is chosen. If coordinate i is chosen, then a random variable X with prob-
ability mass function P {X = x} = P {Xi = x|Xj = xj , j �= i} is generated. If
X = x, then the state y = (x1, . . . xi−1, x, xi+1, . . . , xn), is considered as the can-
didate next state. In other words, with x and y as given, the Gibbs sampler uses
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the Hastings–Metropolis algorithm with

q(x,y) = 1

n
P {Xi = x|Xj = xj , j �= i} = p(y)

nP {Xj = xj , j �= i}
Because we want the limiting mass function to be p, we see from Equation (4.32)
that the vector y is then accepted as the new state with probability

α(x,y) = min

(
p(y)q(y,x)

p(x)q(x,y)
,1

)

= min

(
p(y)p(x)

p(x)p(y)
,1

)

= 1

Hence, when utilizing the Gibbs sampler, the candidate state is always accepted
as the next state of the chain.

Example 4.36 Suppose that we want to generate n uniformly distributed
points in the circle of radius 1 centered at the origin, conditional on the event
that no two points are within a distance d of each other, when the probability of
this conditioning event is small. This can be accomplished by using the Gibbs
sampler as follows. Start with any n points x1, . . . ,xn in the circle that have the
property that no two of them are within d of the other; then generate the value
of I , equally likely to be any of the values 1, . . . , n. Then continually generate a
random point in the circle until you obtain one that is not within d of any of the
other n − 1 points excluding xI . At this point, replace xI by the generated point
and then repeat the operation. After a large number of iterations of this algorithm,
the set of n points will approximately have the desired distribution. �

Example 4.37 Let Xi, i = 1, . . . , n, be independent exponential random vari-
ables with respective rates λi, i = 1, . . . , n. Let S =∑n

i=1 Xi , and suppose that we
want to generate the random vector X = (X1, . . . ,Xn), conditional on the event
that S > c for some large positive constant c. That is, we want to generate the
value of a random vector whose density function is

f (x1, . . . , xn) = 1

P {S > c}
n∏

i=1

λie
−λixi , xi � 0,

n∑

i=1

xi > c

This is easily accomplished by starting with an initial vector x = (x1, . . . , xn)

satisfying xi > 0, i = 1, . . . , n,
∑n

i=1 xi > c. Then generate a random variable I

that is equally likely to be any of 1, . . . , n. Next, generate an exponential random
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variable X with rate λI conditional on the event that X + ∑
j �=I xj > c. This

latter step, which calls for generating the value of an exponential random variable
given that it exceeds c −∑

j �=I xj , is easily accomplished by using the fact that
an exponential conditioned to be greater than a positive constant is distributed
as the constant plus the exponential. Consequently, to obtain X, first generate an
exponential random variable Y with rate λI , and then set

X = Y +
(

c −
∑

j �=I

xj

)+

The value of xI should then be reset as X and a new iteration of the algorithm
begun. �

Remark As can be seen by Examples 4.36 and 4.37, although the theory for
the Gibbs sampler was represented under the assumption that the distribution to
be generated was discrete, it also holds when this distribution is continuous.

4.10. Markov Decision Processes

Consider a process that is observed at discrete time points to be in any one of
M possible states, which we number by 1,2, . . . ,M . After observing the state of
the process, an action must be chosen, and we let A, assumed finite, denote the
set of all possible actions.

If the process is in state i at time n and action a is chosen, then the next state
of the system is determined according to the transition probabilities Pij (a). If we
let Xn denote the state of the process at time n and an the action chosen at time
n, then the preceding is equivalent to stating that

P {Xn+1 = j |X0, a0,X1, a1, . . . ,Xn = i, an = a} = Pij (a)

Thus, the transition probabilities are functions only of the present state and the
subsequent action.

By a policy, we mean a rule for choosing actions. We shall restrict ourselves
to policies which are of the form that the action they prescribe at any time de-
pends only on the state of the process at that time (and not on any informa-
tion concerning prior states and actions). However, we shall allow the policy
to be “randomized” in that its instructions may be to choose actions accord-
ing to a probability distribution. In other words, a policy β is a set of numbers
β = {βi(a), a ∈ A, i = 1, . . . ,M} with the interpretation that if the process is in
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state i, then action a is to be chosen with probability βi(a). Of course, we need
have that

0 � βi(a) � 1, for all i, a

∑

a

βi(a) = 1, for all i

Under any given policy β , the sequence of states {Xn, n = 0,1, . . .} constitutes
a Markov chain with transition probabilities Pij (β) given by

Pij (β) = Pβ{Xn+1 = j |Xn = i}∗

=
∑

a

Pij (a)βi(a)

where the last equality follows by conditioning on the action chosen when in
state i. Let us suppose that for every choice of a policy β , the resultant Markov
chain {Xn, n = 0,1, . . .} is ergodic.

For any policy β , let πia denote the limiting (or steady-state) probability that
the process will be in state i and action a will be chosen if policy β is employed.
That is,

πia = lim
n→∞Pβ{Xn = i, an = a}

The vector π = (πia) must satisfy

(i) πia � 0 for all i, a,
(ii)

∑
i

∑
a πia = 1,

(iii)
∑

a πja =∑
i

∑
a πiaPij (a) for all j (4.33)

Equations (i) and (ii) are obvious, and Equation (iii) which is an analogue of
Equation (4.7) follows as the left-hand side equals the steady-state probability
of being in state j and the right-hand side is the same probability computed by
conditioning on the state and action chosen one stage earlier.

Thus for any policy β , there is a vector π = (πia) which satisfies (i)–(iii) and
with the interpretation that πia is equal to the steady-state probability of being
in state i and choosing action a when policy β is employed. Moreover, it turns
out that the reverse is also true. Namely, for any vector π = (πia) which satisfies
(i)–(iii), there exists a policy β such that if β is used, then the steady-state proba-
bility of being in i and choosing action a equals πia . To verify this last statement,

∗We use the notation Pβ to signify that the probability is conditional on the fact that policy β is
used.
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suppose that π = (πia) is a vector which satisfies (i)–(iii). Then, let the policy
β = (βi(a)) be

βi(a) = P {β chooses a|state is i}
= πia
∑

a πia

Now let Pia denote the limiting probability of being in i and choosing a when
policy β is employed. We need to show that Pia = πia . To do so, first note that
{Pia, i = 1, . . . ,M , a ∈ A} are the limiting probabilities of the two-dimensional
Markov chain {(Xn, an), n � 0}. Hence, by the fundamental Theorem 4.1, they
are the unique solution of

(i′) Pia � 0,
(ii′)

∑
i

∑
a Pia = 1,

(iii′) Pja =∑
i

∑
a′ Pia′Pij (a

′)βj (a)

where (iii′) follows since

P {Xn+1 = j, an+1 = a|Xn = i, an = a′} = Pij (a
′)βj (a)

Since

βj (a) = πja
∑

a πja

we see that (Pia) is the unique solution of

Pia � 0,

∑

i

∑

a

Pia = 1,

Pja =
∑

i

∑

a′
Pia′Pij (a

′)
πja

∑
a πja

Hence, to show that Pia = πia , we need show that

πia � 0,

∑

i

∑

a

πia = 1,

πja =
∑

i

∑

a′
πia′Pij (a

′)
πja

∑
a πja
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The top two equations follow from (i) and (ii) of Equation (4.33), and the third,
which is equivalent to

∑

a

πja =
∑

i

∑

a′
πia′Pij (a

′)

follows from condition (iii) of Equation (4.33).
Thus we have shown that a vector β = (πia) will satisfy (i), (ii), and (iii) of

Equation (4.33) if and only if there exists a policy β such that πia is equal to the
steady-state probability of being in state i and choosing action a when β is used.
In fact, the policy β is defined by β i (a) = πia/

∑
a πia .

The preceding is quite important in the determination of “optimal” policies.
For instance, suppose that a reward R(i, a) is earned whenever action a is chosen
in state i. Since R(Xi, ai) would then represent the reward earned at time i, the
expected average reward per unit time under policy β can be expressed as

expected average reward under β = lim
n→∞Eβ

[∑n
i=1R(Xi, ai)

n

]

Now, if πia denotes the steady-state probability of being in state i and choosing
action a, it follows that the limiting expected reward at time n equals

lim
n→∞E[R(Xn,an)] =

∑

i

∑

a

πiaR(i, a)

which implies that

expected average reward under β =
∑

i

∑

a

πiaR(i, a)

Hence, the problem of determining the policy that maximizes the expected aver-
age reward is

maximize
π=(πia)

∑

i

∑

a

πiaR(i, a)

subject to πia � 0, for all i, a,

∑

i

∑

a

πia = 1,

∑

a

πja =
∑

i

∑

a

πiaPij (a), for all j (4.34)

However, the preceding maximization problem is a special case of what is known
as a linear program and can be solved by a standard linear programming algorithm
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known as the simplex algorithm.∗ If β∗ = (π∗
ia) maximizes the preceding, then the

optimal policy will be given by β∗ where

β∗
i (a) = π∗

ia∑
a π∗

ia

Remarks (i) It can be shown that there is a π∗ maximizing Equation (4.34)
that has the property that for each i, π∗

ia is zero for all but one value of a, which
implies that the optimal policy is nonrandomized. That is, the action it prescribes
when in state i is a deterministic function of i.

(ii) The linear programming formulation also often works when there are re-
strictions placed on the class of allowable policies. For instance, suppose there is
a restriction on the fraction of time the process spends in some state, say, state
1. Specifically, suppose that we are allowed to consider only policies having the
property that their use results in the process being in state 1 less than 100α percent
of time. To determine the optimal policy subject to this requirement, we add to the
linear programming problem the additional constraint

∑

a

π1a � α

since
∑

a π1a represents the proportion of time that the process is in state 1.

4.11. Hidden Markov Chains

Let {Xn, n = 1,2, . . .} be a Markov chain with transition probabilities Pi,j and
initial state probabilities pi = P {X1 = i}, i � 0. Suppose that there is a finite set
S of signals, and that a signal from S is emitted each time the Markov chain
enters a state. Further, suppose that when the Markov chain enters state j then,
independently of previous Markov chain states and signals, the signal emitted is s

with probability p(s|j),
∑

s∈S p(s|j) = 1. That is, if Sn represents the nth signal
emitted, then

P {S1 = s|X1 = j} = p(s|j),

P {Sn = s|X1, S1, . . . ,Xn−1, Sn−1,Xn = j} = p(s|j)

A model of the preceding type in which the sequence of signals S1, S2, . . . is
observed, while the sequence of underlying Markov chain states X1,X2, . . . is
unobserved, is called a hidden Markov chain model.

∗It is called a linear program since the objective function
∑

i

∑
a R(i, a)πia and the constraints are

all linear functions of the πia . For a heuristic analysis of the simplex algorithm, see 4.5.2.
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Example 4.38 Consider a production process that in each period is either
in a good state (state 1) or in a poor state (state 2). If the process is in state 1
during a period then, independent of the past, with probability 0.9 it will be in
state 1 during the next period and with probability 0.1 it will be in state 2. Once in
state 2, it remains in that state forever. Suppose that a single item is produced each
period and that each item produced when the process is in state 1 is of acceptable
quality with probability 0.99, while each item produced when the process is in
state 2 is of acceptable quality with probability 0.96.

If the status, either acceptable or unacceptable, of each successive item is ob-
served, while the process states are unobservable, then the preceding is a hidden
Markov chain model. The signal is the status of the item produced, and has value
either a or u, depending on whether the item is acceptable or unacceptable. The
signal probabilities are

p(u|1) = 0.01, p(a|1) = 0.99,

p(u|2) = 0.04, p(a|2) = 0.96

while the transition probabilities of the underlying Markov chain are

P1,1 = 0.9 = 1 − P1,2, P2,2 = 1 �

Although {Sn,n � 1} is not a Markov chain, it should be noted that, conditional
on the current state Xn, the sequence Sn,Xn+1, Sn+1, . . . of future signals and
states is independent of the sequence X1, S1, . . . ,Xn−1, Sn−1 of past states and
signals.

Let Sn = (S1, . . . , Sn) be the random vector of the first n signals. For a fixed
sequence of signals s1, . . . , sn, let sk = (s1, . . . , sk), k � n. To begin, let us deter-
mine the conditional probability of the Markov chain state at time n given that
Sn = sn. To obtain this probability, let

Fn(j) = P {Sn = sn,Xn = j}

and note that

P {Xn = j |Sn = sn} = P {Sn = sn,Xn = j}
P {Sn = sn}

= Fn(j)
∑

i Fn(i)
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Now,

Fn(j) = P {Sn−1 = sn−1, Sn = sn,Xn = j}
=
∑

i

P {Sn−1 = sn−1,Xn−1 = i,Xn = j, Sn = sn}

=
∑

i

Fn−1(i)P {Xn = j, Sn = sn|Sn−1 = sn−1,Xn−1 = i}

=
∑

i

Fn−1(i)P {Xn = j, Sn = sn|Xn−1 = i}

=
∑

i

Fn−1(i)Pi,jp(sn|j)

= p(sn|j)
∑

i

Fn−1(i)Pi,j (4.35)

where the preceding used that

P {Xn = j, Sn = sn|Xn−1 = i}
= P {Xn = j |Xn−1 = i} × P {Sn = sn|Xn = j,Xn−1 = i}
= Pi,jP {Sn = sn|Xn = j}
= Pi,jp(sn|j)

Starting with

F1(i) = P {X1 = i, S1 = s1} = pip(s1|i)

we can use Equation (4.35) to recursively determine the functions F2(i),

F3(i), . . . , up to Fn(i).

Example 4.39 Suppose in Example 4.38 that P {X1 = 1} = 0.8. Given that
the successive conditions of the first 3 items produced are a,u, a,

(i) what is the probability that the process was in its good state when the third
item was produced;

(ii) what is the probability that X4 is 1;

(iii) what is the probability that the next item produced is acceptable?
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Solution: With s3 = (a,u, a), we have

F1(1) = (0.8)(0.99) = 0.792,

F1(2) = (0.2)(0.96) = 0.192

F2(1) = 0.01[0.792(0.9) + 0.192(0)] = 0.007128,

F2(2) = 0.04[0.792(0.1) + (0.192)(1)] = 0.010848

F3(1) = 0.99[(0.007128)(0.9)] ≈ 0.006351,

F3(2) = 0.96[(0.007128)(0.1) + 0.010848] ≈ 0.011098

Therefore, the answer to part (i) is

P {X3 = 1|s3} ≈ 0.006351

0.006351 + 0.011098
≈ 0.364

To compute P {X4 = 1|s3}, condition on X3 to obtain

P {X4 = 1|s3} = P {X4 = 1|X3 = 1, s3}P {X3 = 1|s3}
+ P {X4 = 1|X3 = 2, s3}P {X3 = 2|s3}

= P {X4 = 1|X3 = 1, s3}(0.364) + P {X4 = 1|X3 = 2, s3}(0.636)

= 0.364P1,1 + 0.636P2,1

= 0.3276

To compute P {S4 = a|s3}, condition on X4

P {S4 = a|s3} = P {S4 = a|X4 = 1, s3}P {X4 = 1|s3}
+ P {S4 = a|X4 = 2, s3}P {X4 = 2|s3}

= P {S4 = a|X4 = 1}(0.3276) + P {S4 = a|X4 = 2}(1 − 0.3276)

= (0.99)(0.3276) + (0.96)(0.6724) = 0.9698 �
To compute P {Sn = sn}, use the identity P {Sn = sn} =∑

i Fn(i) along with the
recursion (4.35). If there are N states of the Markov chain, this requires computing
nN quantities Fn(i), with each computation requiring a summation over N terms.
This can be compared with a computation of P {Sn = sn} based on conditioning
on the first n states of the Markov chain to obtain

P {Sn = sn} =
∑

i1,...,in

P {Sn = sn|X1 = i1, . . . ,Xn = in}P {X1 = i1, . . . ,Xn = in}

=
∑

i1,...,in

p(s1|i1) · · ·p(sn|in)pi1Pi1,i2Pi2,i3 · · ·Pin−1,in
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The use of the preceding identity to compute P {Sn = sn} would thus require a
summation over Nn terms, with each term being a product of 2n values, indicating
that it is not competitive with the previous approach.

The computation of P {Sn = sn} by recursively determining the functions Fk(i)

is known as the forward approach. There also is a backward approach, which is
based on the quantities Bk(i), defined by

Bk(i) = P {Sk+1 = sk+1, . . . , Sn = sn|Xk = i}

A recursive formula for Bk(i) can be obtained by conditioning on Xk+1.

Bk(i) =
∑

j

P {Sk+1 = sk+1, . . . , Sn = sn|Xk = i,Xk+1 = j}P {Xk+1 = j |Xk = i}

=
∑

j

P {Sk+1 = sk+1, . . . , Sn = sn|Xk+1 = j}Pi,j

=
∑

j

P {Sk+1 = sk+1|Xk+1 = j}

× P {Sk+2 = sk+2, . . . , Sn = sn|Sk+1 = sk+1,Xk+1 = j}Pi,j

=
∑

j

p(sk+1|j)P {Sk+2 = sk+2, . . . , Sn = sn|Xk+1 = j}Pi,j

=
∑

j

p(sk+1|j)Bk+1(j)Pi,j (4.36)

Starting with

Bn−1(i) = P {Sn = sn|Xn−1 = i}
=
∑

j

Pi,jp(sn|j)

we would then use Equation (4.36) to determine the function Bn−2(i), then
Bn−3(i), and so on, down to B1(i). This would then yield P {Sn = sn} via

P {Sn = sn} =
∑

i

P {S1 = s1, . . . , Sn = sn|X1 = i}pi

=
∑

i

P {S1 = s1|X1 = i}P {S2 = s2, . . . , Sn = sn|S1 = s1,X1 = i}pi
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=
∑

i

p(s1|i)P {S2 = s2, . . . , Sn = sn|X1 = i}pi

=
∑

i

p(s1|i)B1(i)pi

Another approach to obtaining P {Sn = sn} is to combine both the forward and
backward approaches. Suppose that for some k we have computed both functions
Fk(j) and Bk(j). Because

P {Sn = sn, Xk = j} = P {Sk = sk, Xk = j}
× P {Sk+1 = sk+1, . . . , Sn = sn|Sk = sk, Xk = j}

= P {Sk = sk, Xk = j}P {Sk+1 = sk+1, . . . , Sn = sn|Xk = j}
= Fk(j)Bk(j)

we see that

P {Sn = sn} =
∑

j

Fk(j)Bk(j)

The beauty of using the preceding identity to determine P {Sn = sn} is that we
may simultaneously compute the sequence of forward functions, starting with
F1, as well as the sequence of backward functions, starting at Bn−1. The parallel
computations can then be stopped once we have computed both Fk and Bk for
some k.

4.11.1. Predicting the States

Suppose the first n observed signals are sn = (s1, . . . , sn), and that given this data
we want to predict the first n states of the Markov chain. The best predictor de-
pends on what we are trying to accomplish. If our objective is to maximize the
expected number of states that are correctly predicted, then for each k = 1, . . . , n

we need to compute P {Xk = j |Sn = sn} and then let the value of j that maximizes
this quantity be the predictor of Xk . (That is, we take the mode of the conditional
probability mass function of Xk, given the sequence of signals, as the predictor of
Xk.) To do so, we must first compute this conditional probability mass function,
which is accomplished as follows. For k � n

P {Xk = j |Sn = sn} = P {Sn = sn,Xk = j}
P {Sn = sn}

= Fk(j)Bk(j)
∑

j Fk(j)Bk(j)

Thus, given that Sn = sn, the optimal predictor of Xk is the value of j that maxi-
mizes Fk(j)Bk(j).
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A different variant of the prediction problem arises when we regard the se-
quence of states as a single entity. In this situation, our objective is to choose that
sequence of states whose conditional probability, given the sequence of signals, is
maximal. For instance, in signal processing, while X1, . . . ,Xn might be the actual
message sent, S1, . . . , Sn would be what is received, and so the objective would
be to predict the actual message in its entirety.

Letting Xk = (X1, . . . ,Xk) be the vector of the first k states, the problem
of interest is to find the sequence of states i1, . . . , in that maximizes P {Xn =
(i1, . . . , in)|Sn = sn}. Because

P {Xn = (i1, . . . , in)|Sn = sn} = P {Xn = (i1, . . . , in),Sn = sn}
P {Sn = ss}

this is equivalent to finding the sequence of states i1, . . . , in that maximizes
P {Xn = (i1, . . . , in), Sn = sn}.

To solve the preceding problem let, for k � n,

Vk(j) = max
i1,...,ik−1

P {Xk−1 = (i1, . . . , ik−1),Xk = j,Sk = sk}

To recursively solve for Vk(j), use that

Vk(j) = max
i

max
i1,...,ik−2

P {Xk−2 = (i1, . . . , ik−2),Xk−1 = i,Xk = j,Sk = sk}

= max
i

max
i1,...,ik−2

P {Xk−2 = (i1, . . . , ik−2),Xk−1 = i,Sk−1 = sk−1,

Xk = j, Sk = sk}

= max
i

max
i1,...,ik−2

P {Xk−2 = (i1, . . . , ik−2),Xk−1 = i,Sk−1 = sk−1}

× P {Xk = j, Sk = sk|Xk−2 = (i1, . . . , ik−2),Xk−1 = i,Sk−1 = sk−1}
= max

i
max

i1,...,ik−2
P {Xk−2 = (i1, . . . , ik−2),Xk−1 = i,Sk−1 = sk−1}

× P {Xk = j, Sk = sk|Xk−1 = i}
= max

i
P {Xk = j, Sk = sk|Xk−1 = i}

× max
i1,...,ik−2

P {Xk−2 = (i1, . . . , ik−2),Xk−1 = i,Sk−1 = sk−1}

= max
i

Pi,jp(sk|j)Vk−1(i)

= p(sk|j)max
i

Pi,jVk−1(i) (4.37)
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Starting with

V1(j) = P {X1 = j, S1 = s1} = pjp(s1|j)

we now use the recursive identity (4.37) to determine V2(j) for each j ; then V3(j)

for each j ; and so on, up to Vn(j) for each j .
To obtain the maximizing sequence of states, we work in the reverse direction.

Let jn be the value (or any of the values if there are more than one) of j that
maximizes Vn(j). Thus jn is the final state of a maximizing state sequence. Also,
for k < n, let ik(j) be a value of i that maximizes Pi,jVk(i). Then

max
i1,...,in

P {Xn = (i1, . . . , in),Sn = sn}

= max
j

Vn(j)

= Vn(jn)

= max
i1,...,in−1

P {Xn = (i1, . . . , in−1, jn),Sn = sn}

= p(sn|jn)max
i

Pi,jnVn−1(i)

= p(sn|jn)Pin−1(jn),jnVn−1(in−1(jn))

Thus, in−1(jn) is the next to last state of the maximizing sequence. Continu-
ing in this manner, the second from the last state of the maximizing sequence
is in−2(in−1(jn)), and so on.

The preceding approach to finding the most likely sequence of states given a
prescribed sequence of signals is known as the Viterbi Algorithm.

Exercises

*1. Three white and three black balls are distributed in two urns in such a way
that each contains three balls. We say that the system is in state i, i = 0,1,2,3,
if the first urn contains i white balls. At each step, we draw one ball from each
urn and place the ball drawn from the first urn into the second, and conversely
with the ball from the second urn. Let Xn denote the state of the system after the
nth step. Explain why {Xn,n = 0,1,2, . . .} is a Markov chain and calculate its
transition probability matrix.

2. Suppose that whether or not it rains today depends on previous weather con-
ditions through the last three days. Show how this system may be analyzed by
using a Markov chain. How many states are needed?
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3. In Exercise 2, suppose that if it has rained for the past three days, then it
will rain today with probability 0.8; if it did not rain for any of the past three days,
then it will rain today with probability 0.2; and in any other case the weather today
will, with probability 0.6, be the same as the weather yesterday. Determine P for
this Markov chain.

*4. Consider a process {Xn,n = 0,1, . . .} which takes on the values 0, 1, or 2.
Suppose

P {Xn+1 = j |Xn = i,Xn−1 = in−1, . . . ,X0 = i0}

=
{

P I
ij , when n is even

P II
ij , when n is odd

where
∑2

j=0 P I
ij = ∑2

j=0P
II
ij = 1, i = 0,1,2. Is {Xn,n � 0} a Markov chain?

If not, then show how, by enlarging the state space, we may transform it into a
Markov chain.

5. A Markov chain {Xn,n � 0} with states 0,1,2, has the transition probability
matrix

⎡

⎢
⎣

1
2

1
3

1
6

0 1
3

2
3

1
2 0 1

2

⎤

⎥
⎦

If P {X0 = 0} = P {X0 = 1} = 1
4 , find E[X3].

6. Let the transition probability matrix of a two-state Markov chain be given, as
in Example 4.2, by

P =
∥
∥
∥
∥

p 1 − p

1 − p p

∥
∥
∥
∥

Show by mathematical induction that

P(n) =
∥
∥
∥
∥
∥

1
2 + 1

2 (2p − 1)n 1
2 − 1

2 (2p − 1)n

1
2 − 1

2 (2p − 1)n 1
2 + 1

2 (2p − 1)n

∥
∥
∥
∥
∥

7. In Example 4.4 suppose that it has rained neither yesterday nor the day before
yesterday. What is the probability that it will rain tomorrow?

8. Suppose that coin 1 has probability 0.7 of coming up heads, and coin 2 has
probability 0.6 of coming up heads. If the coin flipped today comes up heads, then
we select coin 1 to flip tomorrow, and if it comes up tails, then we select coin 2 to
flip tomorrow. If the coin initially flipped is equally likely to be coin 1 or coin 2,
then what is the probability that the coin flipped on the third day after the initial
flip is coin 1?
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9. Suppose in Exercise 8 that the coin flipped on Monday comes up heads. What
is the probability that the coin flipped on Friday of the same week also comes up
heads?

10. In Example 4.3, Gary is currently in a cheerful mood. What is the probability
that he is not in a glum mood on any of the following three days?

11. In Example 4.3, Gary was in a glum mood four days ago. Given that he
hasn’t felt cheerful in a week, what is the probability he is feeling glum today?

12. For a Markov chain {Xn,n � 0} with transition probabilities Pi,j , consider
the conditional probability that Xn = m given that the chain started at time 0 in
state i and has not yet entered state r by time n, where r is a specified state not
equal to either i or m. We are interested in whether this conditional probability
is equal to the n stage transition probability of a Markov chain whose state space
does not include state r and whose transition probabilities are

Qi,j = Pi,j

1 − Pi,r

, i, j �= r

Either prove the equality

P {Xn = m|X0 = i,Xk �= r, k = 1, . . . , n} = Qn
i,m

or construct a counterexample.

13. Let P be the transition probability matrix of a Markov chain. Argue that if
for some positive integer r , Pr has all positive entries, then so does Pn, for all
integers n � r .

14. Specify the classes of the following Markov chains, and determine whether
they are transient or recurrent:

P1 =

∥
∥
∥
∥
∥
∥
∥

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

∥
∥
∥
∥
∥
∥
∥

, P2 =

∥
∥
∥
∥
∥
∥
∥
∥
∥

0 0 0 1

0 0 0 1
1
2

1
2 0 0

0 0 1 0

∥
∥
∥
∥
∥
∥
∥
∥
∥

,

P3 =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1
2 0 1

2 0 0
1
4

1
2

1
4 0 0

1
2 0 1

2 0 0

0 0 0 1
2

1
2

0 0 0 1
2

1
2

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

, P4 =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1
4

3
4 0 0 0

1
2

1
2 0 0 0

0 0 1 0 0

0 0 1
3

2
3 0

1 0 0 0 0

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

15. Prove that if the number of states in a Markov chain is M , and if state j can
be reached from state i, then it can be reached in M steps or less.
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*16. Show that if state i is recurrent and state i does not communicate with
state j , then Pij = 0. This implies that once a process enters a recurrent class
of states it can never leave that class. For this reason, a recurrent class is often
referred to as a closed class.

17. For the random walk of Example 4.15 use the strong law of large numbers
to give another proof that the Markov chain is transient when p �= 1

2 .

Hint: Note that the state at time n can be written as
∑n

i=1Yi where the Yis
are independent and P {Yi = 1} = p = 1 − P {Yi = −1}. Argue that if p > 1

2 ,
then, by the strong law of large numbers,

∑n
1Yi → ∞ as n → ∞ and hence

the initial state 0 can be visited only finitely often, and hence must be transient.
A similar argument holds when p < 1

2 .

18. Coin 1 comes up heads with probability 0.6 and coin 2 with probability 0.5.
A coin is continually flipped until it comes up tails, at which time that coin is put
aside and we start flipping the other one.

(a) What proportion of flips use coin 1?
(b) If we start the process with coin 1 what is the probability that coin 2 is used
on the fifth flip?

19. For Example 4.4, calculate the proportion of days that it rains.

20. A transition probability matrix P is said to be doubly stochastic if the sum
over each column equals one; that is,

∑

i

Pij = 1, for all j

If such a chain is irreducible and aperiodic and consists of M + 1 states
0,1, . . . ,M , show that the limiting probabilities are given by

πj = 1

M + 1
, j = 0,1, . . . ,M

*21. A DNA nucleotide has any of 4 values. A standard model for a mutational
change of the nucleotide at a specific location is a Markov chain model that sup-
poses that in going from period to period the nucleotide does not change with
probability 1 − 3α, and if it does change then it is equally likely to change to any
of the other 3 values, for some 0 < α < 1

3 .

(a) Show that P n
1,1 = 1

4 + 3
4 (1 − 4α)n.

(b) What is the long run proportion of time the chain is in each state?

22. Let Yn be the sum of n independent rolls of a fair die. Find

lim
n→∞P {Yn is a multiple of 13}
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Hint: Define an appropriate Markov chain and apply the results of Exer-
cise 20.

23. Trials are performed in sequence. If the last two trials were successes, then
the next trial is a success with probability 0.8; otherwise the next trial is a success
with probability 0.5. In the long run, what proportion of trials are successes?

24. Consider three urns, one colored red, one white, and one blue. The red urn
contains 1 red and 4 blue balls; the white urn contains 3 white balls, 2 red balls,
and 2 blue balls; the blue urn contains 4 white balls, 3 red balls, and 2 blue balls.
At the initial stage, a ball is randomly selected from the red urn and then returned
to that urn. At every subsequent stage, a ball is randomly selected from the urn
whose color is the same as that of the ball previously selected and is then returned
to that urn. In the long run, what proportion of the selected balls are red? What
proportion are white? What proportion are blue?

25. Each morning an individual leaves his house and goes for a run. He is
equally likely to leave either from his front or back door. Upon leaving the house,
he chooses a pair of running shoes (or goes running barefoot if there are no shoes
at the door from which he departed). On his return he is equally likely to enter,
and leave his running shoes, either by the front or back door. If he owns a total of
k pairs of running shoes, what proportion of the time does he run barefooted?

26. Consider the following approach to shuffling a deck of n cards. Starting
with any initial ordering of the cards, one of the numbers 1,2, . . . , n is randomly
chosen in such a manner that each one is equally likely to be selected. If number
i is chosen, then we take the card that is in position i and put it on top of the
deck—that is, we put that card in position 1. We then repeatedly perform the
same operation. Show that, in the limit, the deck is perfectly shuffled in the sense
that the resultant ordering is equally likely to be any of the n! possible orderings.

*27. Determine the limiting probabilities πj for the model presented in Exer-
cise 1. Give an intuitive explanation of your answer.

28. For a series of dependent trials the probability of success on any trial is
(k + 1)/(k + 2) where k is equal to the number of successes on the previous two
trials. Compute limn→∞ P {success on the nth trial}.
29. An organization has N employees where N is a large number. Each em-
ployee has one of three possible job classifications and changes classifications
(independently) according to a Markov chain with transition probabilities

⎡

⎣
0.7 0.2 0.1
0.2 0.6 0.2
0.1 0.4 0.5

⎤

⎦

What percentage of employees are in each classification?
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30. Three out of every four trucks on the road are followed by a car, while only
one out of every five cars is followed by a truck. What fraction of vehicles on the
road are trucks?

31. A certain town never has two sunny days in a row. Each day is classified
as being either sunny, cloudy (but dry), or rainy. If it is sunny one day, then it is
equally likely to be either cloudy or rainy the next day. If it is rainy or cloudy one
day, then there is one chance in two that it will be the same the next day, and if it
changes then it is equally likely to be either of the other two possibilities. In the
long run, what proportion of days are sunny? What proportion are cloudy?

*32. Each of two switches is either on or off during a day. On day n, each switch
will independently be on with probability

[1 + number of on switches during day n − 1]/4

For instance, if both switches are on during day n − 1, then each will indepen-
dently be on during day n with probability 3/4. What fraction of days are both
switches on? What fraction are both off?

33. A professor continually gives exams to her students. She can give three pos-
sible types of exams, and her class is graded as either having done well or badly.
Let pi denote the probability that the class does well on a type i exam, and sup-
pose that p1 = 0.3, p2 = 0.6, and p3 = 0.9. If the class does well on an exam,
then the next exam is equally likely to be any of the three types. If the class does
badly, then the next exam is always type 1. What proportion of exams are type
i, i = 1,2,3?

34. A flea moves around the vertices of a triangle in the following manner:
Whenever it is at vertex i it moves to its clockwise neighbor vertex with prob-
ability pi and to the counterclockwise neighbor with probability qi = 1 − pi ,
i = 1,2,3.

(a) Find the proportion of time that the flea is at each of the vertices.
(b) How often does the flea make a counterclockwise move which is then fol-
lowed by five consecutive clockwise moves?

35. Consider a Markov chain with states 0, 1, 2, 3, 4. Suppose P0,4 = 1; and
suppose that when the chain is in state i, i > 0, the next state is equally likely to
be any of the states 0,1, . . . , i − 1. Find the limiting probabilities of this Markov
chain.

36. The state of a process changes daily according to a two-state Markov chain.
If the process is in state i during one day, then it is in state j the follow-
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ing day with probability Pi,j , where

P0,0 = 0.4, P0,1 = 0.6, P1,0 = 0.2, P1,1 = 0.8

Every day a message is sent. If the state of the Markov chain that day is i then
the message sent is “good” with probability pi and is “bad” with probability qi =
1 − pi , i = 0,1

(a) If the process is in state 0 on Monday, what is the probability that a good
message is sent on Tuesday?
(b) If the process is in state 0 on Monday, what is the probability that a good
message is sent on Friday?
(c) In the long run, what proportion of messages are good?
(d) Let Yn equal 1 if a good message is sent on day n and let it equal 2 other-
wise. Is {Yn,n � 1} a Markov chain? If so, give its transition probability matrix.
If not, briefly explain why not.

37. Show that the stationary probabilities for the Markov chain having transition
probabilities Pi,j are also the stationary probabilities for the Markov chain whose
transition probabilities Qi,j are given by

Qi,j = P k
i,j

for any specified positive integer k.

38. Recall that state i is said to be positive recurrent if mi,i < ∞, where mi,i

is the expected number of transitions until the Markov chain, starting in state i,
makes a transition back into that state. Because πi , the long run proportion of time
the Markov chain, starting in state i, spends in state i, satisfies

πi = 1

mi,i

it follows that state i is positive recurrent if and only if πi > 0. Suppose that state
i is positive recurrent and that state i communicates with state j . Show that state
j is also positive recurrent by arguing that there is an integer n such that

πj � πiP
n
i,j > 0

39. Recall that a recurrent state that is not positive recurrent is called null recur-
rent. Use the result of Exercise 38 to prove that null recurrence is a class property.
That is, if state i is null recurrent and state i communicates with state j, show that
state j is also null recurrent.
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40. It follows from the argument made in Exercise 38 that state i is null recurrent
if it is recurrent and πi = 0. Consider the one-dimensional symmetric random
walk of Example 4.15.

(a) Argue that πi = π0 for all i.
(b) Argue that all states are null recurrent.

*41. Let πi denote the long-run proportion of time a given irreducible Markov
chain is in state i.

(a) Explain why πi is also the proportion of transitions that are into state i as
well as being the proportion of transitions that are from state i.
(b) πiPij represents the proportion of transitions that satisfy what property?
(c)

∑
i πiPij represent the proportion of transitions that satisfy what property?

(d) Using the preceding explain why

πj =
∑

i

πiPij

42. Let A be a set of states, and let Ac be the remaining states.

(a) What is the interpretation of

∑

i∈A

∑

j∈Ac

πiPij ?

(b) What is the interpretation of

∑

i∈Ac

∑

j∈A

πiPij ?

(c) Explain the identity

∑

i∈A

∑

j∈Ac

πiPij =
∑

i∈Ac

∑

j∈A

πiPij

43. Each day, one of n possible elements is requested, the ith one with proba-
bility Pi, i � 1,

∑n
1Pi = 1. These elements are at all times arranged in an ordered

list which is revised as follows: The element selected is moved to the front of the
list with the relative positions of all the other elements remaining unchanged. De-
fine the state at any time to be the list ordering at that time and note that there are
n! possible states.

(a) Argue that the preceding is a Markov chain.
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(b) For any state i1, . . . , in (which is a permutation of 1,2, . . . , n), let
π(i1, . . . , in) denote the limiting probability. In order for the state to be
i1, . . . , in, it is necessary for the last request to be for i1, the last non-i1 re-
quest for i2, the last non-i1 or i2 request for i3, and so on. Hence, it appears
intuitive that

π(i1, . . . , in) = Pi1

Pi2

1 − Pi1

Pi3

1 − Pi1 − Pi2

· · · Pin−1

1 − Pi1 − · · · − Pin−2

Verify when n = 3 that the preceding are indeed the limiting probabilities.

44. Suppose that a population consists of a fixed number, say, m, of genes in any
generation. Each gene is one of two possible genetic types. If any generation has
exactly i (of its m) genes being type 1, then the next generation will have j type 1
(and m − j type 2) genes with probability

(
m

j

)(
i

m

)j(
m − i

m

)m−j

, j = 0,1, . . . ,m

Let Xn denote the number of type 1 genes in the nth generation, and assume
that X0 = i.

(a) Find E[Xn].
(b) What is the probability that eventually all the genes will be type 1?

45. Consider an irreducible finite Markov chain with states 0,1, . . . ,N .

(a) Starting in state i, what is the probability the process will ever visit state j?
Explain!
(b) Let xi = P {visit state N before state 0|start in i}. Compute a set of linear
equations which the xi satisfy, i = 0,1, . . . ,N .
(c) If

∑
j jPij = i for i = 1, . . . ,N −1, show that xi = i/N is a solution to the

equations in part (b)

46. An individual possesses r umbrellas which he employs in going from his
home to office, and vice versa. If he is at home (the office) at the beginning (end)
of a day and it is raining, then he will take an umbrella with him to the office
(home), provided there is one to be taken. If it is not raining, then he never takes
an umbrella. Assume that, independent of the past, it rains at the beginning (end)
of a day with probability p.

(i) Define a Markov chain with r + 1 states which will help us to determine
the proportion of time that our man gets wet. (Note: He gets wet if it is
raining, and all umbrellas are at his other location.)
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(ii) Show that the limiting probabilities are given by

πi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q

r + q
, if i = 0

where q = 1 − p
1

r + q
, if i = 1, . . . , r

(iii) What fraction of time does our man get wet?
(iv) When r = 3, what value of p maximizes the fraction of time he gets wet

*47. Let {Xn,n � 0} denote an ergodic Markov chain with limiting probabilities
πi . Define the process {Yn,n � 1} by Yn = (Xn−1,Xn). That is, Yn keeps track
of the last two states of the original chain. Is {Yn,n � 1} a Markov chain? If so,
determine its transition probabilities and find

lim
n→∞P {Yn = (i, j)}

48. Verify the transition probability matrix given in Example 4.20.

49. Let P (1) and P (2) denote transition probability matrices for ergodic Markov
chains having the same state space. Let π1 and π2 denote the stationary (limiting)
probability vectors for the two chains. Consider a process defined as follows:

(i) X0 = 1. A coin is then flipped and if it comes up heads, then the re-
maining states X1, . . . are obtained from the transition probability matrix
P (1) and if tails from the matrix P (2). Is {Xn,n � 0} a Markov chain? If
p = P {coin comes up heads}, what is limn→∞ P(Xn = i)?

(ii) X0 = 1. At each stage the coin is flipped and if it comes up heads, then
the next state is chosen according to P (1) and if tails comes up, then it is
chosen according to P (2). In this case do the successive states constitute
a Markov chain? If so, determine the transition probabilities. Show by
a counterexample that the limiting probabilities are not the same as in
part (i).

50. In Exercise 8, if today’s flip lands heads, what is the expected number of
additional flips needed until the pattern t, t, h, t, h, t, t occurs?

51. In Example 4.3, Gary is in a cheerful mood today. Find the expected number
of days until he has been glum for three consecutive days.

52. A taxi driver provides service in two zones of a city. Fares picked up in
zone A will have destinations in zone A with probability 0.6 or in zone B with
probability 0.4. Fares picked up in zone B will have destinations in zone A with
probability 0.3 or in zone B with probability 0.7. The driver’s expected profit
for a trip entirely in zone A is 6; for a trip entirely in zone B is 8; and for
a trip that involves both zones is 12. Find the taxi driver’s average profit per
trip.
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53. Find the average premium received per policyholder of the insurance com-
pany of Example 4.23 if λ = 1/4 for one-third of its clients, and λ = 1/2 for
two-thirds of its clients.

54. Consider the Ehrenfest urn model in which M molecules are distributed
between two urns, and at each time point one of the molecules is chosen at random
and is then removed from its urn and placed in the other one. Let Xn denote the
number of molecules in urn 1 after the nth switch and let μn = E[Xn]. Show
that

(i) μn+1 = 1 + (1 − 2/M)μn.
(ii) Use (i) to prove that

μn = M

2
+
(

M − 2

M

)n(

E[X0] − M

2

)

55. Consider a population of individuals each of whom possesses two genes
which can be either type A or type a. Suppose that in outward appearance type
A is dominant and type a is recessive. (That is, an individual will have only
the outward characteristics of the recessive gene if its pair is aa.) Suppose that
the population has stabilized, and the percentages of individuals having respec-
tive gene pairs AA, aa, and Aa are p, q , and r . Call an individual dominant
or recessive depending on the outward characteristics it exhibits. Let S11 denote
the probability that an offspring of two dominant parents will be recessive; and
let S10 denote the probability that the offspring of one dominant and one re-
cessive parent will be recessive. Compute S11 and S10 to show that S11 = S2

10.
(The quantities S10 and S11 are known in the genetics literature as Snyder’s ra-
tios.)

56. Suppose that on each play of the game a gambler either wins 1 with prob-
ability p or loses 1 with probability 1 − p. The gambler continues betting until
she or he is either winning n or losing m. What is the probability that the gambler
quits a winner?

57. A particle moves among n + 1 vertices that are situated on a circle in
the following manner. At each step it moves one step either in the clockwise
direction with probability p or the counterclockwise direction with probability
q = 1 − p. Starting at a specified state, call it state 0, let T be the time of the
first return to state 0. Find the probability that all states have been visited by
time T .

Hint: Condition on the initial transition and then use results from the gam-
bler’s ruin problem.
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58. In the gambler’s ruin problem of Section 4.5.1, suppose the gambler’s for-
tune is presently i, and suppose that we know that the gambler’s fortune will
eventually reach N (before it goes to 0). Given this information, show that the
probability he wins the next gamble is

p[1 − (q/p)i+1]
1 − (q/p)i

, if p �= 1
2

i + 1

2i
, if p = 1

2

Hint: The probability we want is

P {Xn+1 = i + 1|Xn = i, lim
m→∞Xm = N}

= P {Xn+1 = i + 1, limm Xm = N |Xn = i}
P {limm Xm = N |Xn = i}

59. For the gambler’s ruin model of Section 4.5.1, let Mi denote the mean num-
ber of games that must be played until the gambler either goes broke or reaches
a fortune of N , given that he starts with i, i = 0,1, . . . ,N . Show that Mi satis-
fies

M0 = MN = 0; Mi = 1 + pMi+1 + qMi−1, i = 1, . . . ,N − 1

60. Solve the equations given in Exercise 59 to obtain

Mi = i(N − i), if p = 1
2

= i

q − p
− N

q − p

1 − (q/p)i

1 − (q/p)N
, if p �= 1

2

61. Suppose in the gambler’s ruin problem that the probability of winning a
bet depends on the gambler’s present fortune. Specifically, suppose that αi is the
probability that the gambler wins a bet when his or her fortune is i. Given that
the gambler’s initial fortune is i, let P(i) denote the probability that the gambler’s
fortune reaches N before 0.

(a) Derive a formula that relates P(i) to P(i − 1) and P(i + 1).
(b) Using the same approach as in the gambler’s ruin problem, solve the equa-
tion of part (a) for P(i).
(c) Suppose that i balls are initially in urn 1 and N − i are in urn 2, and suppose
that at each stage one of the N balls is randomly chosen, taken from whichever
urn it is in, and placed in the other urn. Find the probability that the first urn
becomes empty before the second.
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*62. In Exercise 21,

(a) what is the expected number of steps the particle takes to return to the
starting position?
(b) what is the probability that all other positions are visited before the particle
returns to its starting state?

63. For the Markov chain with states 1, 2, 3, 4 whose transition probability
matrix P is as specified below find fi3 and si3 for i = 1,2,3.

P =

⎡

⎢
⎢
⎣

0.4 0.2 0.1 0.3
0.1 0.5 0.2 0.2
0.3 0.4 0.2 0.1
0 0 0 1

⎤

⎥
⎥
⎦

64. Consider a branching process having μ < 1. Show that if X0 = 1, then
the expected number of individuals that ever exist in this population is given by
1/(1 − μ). What if X0 = n?

65. In a branching process having X0 = 1 and μ > 1, prove that π0 is the small-
est positive number satisfying Equation (4.16).

Hint: Let π be any solution of π =∑∞
j=0 πjPj . Show by mathematical in-

duction that π � P {Xn = 0} for all n, and let n → ∞. In using the induction
argue that

P {Xn = 0} =
∞∑

j=0

(P {Xn−1 = 0})jPj

66. For a branching process, calculate π0 when

(a) P0 = 1
4 ,P2 = 3

4 .

(b) P0 = 1
4 ,P1 = 1

2 ,P2 = 1
4 .

(c) P0 = 1
6 ,P1 = 1

2 ,P3 = 1
3 .

67. At all times, an urn contains N balls—some white balls and some black
balls. At each stage, a coin having probability p,0 < p < 1, of landing heads
is flipped. If heads appears, then a ball is chosen at random from the urn and is
replaced by a white ball; if tails appears, then a ball is chosen from the urn and is
replaced by a black ball. Let Xn denote the number of white balls in the urn after
the nth stage.

(a) Is {Xn,n � 0} a Markov chain? If so, explain why.
(b) What are its classes? What are their periods? Are they transient or recur-
rent?
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(c) Compute the transition probabilities Pij .
(d) Let N = 2. Find the proportion of time in each state.
(e) Based on your answer in part (d) and your intuition, guess the answer for
the limiting probability in the general case.
(f) Prove your guess in part (e) either by showing that Equation (4.7) is satis-
fied or by using the results of Example 4.31.
(g) If p = 1, what is the expected time until there are only white balls in the
urn if initially there are i white and N − i black?

*68. (a) Show that the limiting probabilities of the reversed Markov chain
are the same as for the forward chain by showing that they satisfy the equa-
tions

πj =
∑

i

πiQij

(b) Give an intuitive explanation for the result of part (a).

69. M balls are initially distributed among m urns. At each stage one of the
balls is selected at random, taken from whichever urn it is in, and then placed,
at random, in one of the other M − 1 urns. Consider the Markov chain whose
state at any time is the vector (n1, . . . , nm) where ni denotes the number of
balls in urn i. Guess at the limiting probabilities for this Markov chain and then
verify your guess and show at the same time that the Markov chain is time re-
versible.

70. A total of m white and m black balls are distributed among two urns, with
each urn containing m balls. At each stage, a ball is randomly selected from each
urn and the two selected balls are interchanged. Let Xn denote the number of
black balls in urn 1 after the nth interchange.

(a) Give the transition probabilities of the Markov chain Xn,n � 0.
(b) Without any computations, what do you think are the limiting probabilities
of this chain?
(c) Find the limiting probabilities and show that the stationary chain is time
reversible.

71. It follows from Theorem 4.2 that for a time reversible Markov chain

PijPjkPki = PikPkjPji, for all i, j, k

It turns out that if the state space is finite and Pij > 0 for all i, j , then the preceding
is also a sufficient condition for time reversibility. [That is, in this case, we need
only check Equation (4.26) for paths from i to i that have only two intermediate
states.] Prove this.
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Hint: Fix i and show that the equations

πjPjk = πkPkj

are satisfied by πj = cPij /Pji , where c is chosen so that
∑

j πj = 1.

72. For a time reversible Markov chain, argue that the rate at which transitions
from i to j to k occur must equal the rate at which transitions from k to j to i

occur.

73. Show that the Markov chain of Exercise 31 is time reversible.

74. A group of n processors is arranged in an ordered list. When a job ar-
rives, the first processor in line attempts it; if it is unsuccessful, then the next
in line tries it; if it too is unsuccessful, then the next in line tries it, and so on.
When the job is successfully processed or after all processors have been un-
successful, the job leaves the system. At this point we are allowed to reorder
the processors, and a new job appears. Suppose that we use the one-closer re-
ordering rule, which moves the processor that was successful one closer to the
front of the line by interchanging its position with the one in front of it. If all
processors were unsuccessful (or if the processor in the first position was suc-
cessful), then the ordering remains the same. Suppose that each time processor i

attempts a job then, independently of anything else, it is successful with probabil-
ity pi .

(a) Define an appropriate Markov chain to analyze this model.
(b) Show that this Markov chain is time reversible.
(c) Find the long-run probabilities.

75. A Markov chain is said to be a tree process if

(i) Pij > 0 whenever Pji > 0,
(ii) for every pair of states i and j , i �= j , there is a unique sequence of distinct

states i = i0, i1, . . . , in−1, in = j such that

Pik,ik+1 > 0, k = 0,1, . . . , n − 1

In other words, a Markov chain is a tree process if for every pair of distinct
states i and j there is a unique way for the process to go from i to j without
reentering a state (and this path is the reverse of the unique path from j to i).
Argue that an ergodic tree process is time reversible.

76. On a chessboard compute the expected number of plays it takes a knight,
starting in one of the four corners of the chessboard, to return to its initial position
if we assume that at each play it is equally likely to choose any of its legal moves.
(No other pieces are on the board.)
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Hint: Make use of Example 4.32.

77. In a Markov decision problem, another criterion often used, different than
the expected average return per unit time, is that of the expected discounted re-
turn. In this criterion we choose a number α,0 < α < 1, and try to choose a policy
so as to maximize E[∑∞

i=0α
iR(Xi, ai)] (that is, rewards at time n are discounted

at rate αn). Suppose that the initial state is chosen according to the probabilities
bi . That is,

P {X0 = i} = bi, i = 1, . . . , n

For a given policy β let yja denote the expected discounted time that the
process is in state j and action a is chosen. That is,

yja = Eβ

[ ∞∑

n=0

αnI{Xn=j,an=a}

]

where for any event A the indicator variable IA is defined by

IA =
{

1, if A occurs

0, otherwise

(a) Show that

∑

a

yja = E

[ ∞∑

n=0

αnI{Xn=j}

]

or, in other words,
∑

a yja is the expected discounted time in state j un-
der β .
(b) Show that

∑

j

∑

a

yja = 1

1 − α
,

∑

a

yja = bj + α
∑

i

∑

a

yiaPij (a)

Hint: For the second equation, use the identity

I{Xn+1=j} =
∑

i

∑

a

I{Xn=i ,an=a}I{Xn+1=j}

Take expectations of the preceding to obtain

E
[
IXn+1=j}

]=
∑

i

∑

a

E
[
I{Xn=i ,an=a}

]
Pij (a)
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(c) Let {yja} be a set of numbers satisfying
∑

j

∑

a

yja = 1

1 − α
,

∑

a

yja = bj + α
∑

i

∑

a

yiaPij (a) (4.38)

Argue that yja can be interpreted as the expected discounted time that the
process is in state j and action a is chosen when the initial state is chosen
according to the probabilities bj and the policy β , given by

βi(a) = yia
∑

a yia

is employed.

Hint: Derive a set of equations for the expected discounted times when
policy β is used and show that they are equivalent to Equation (4.38).

(d) Argue that an optimal policy with respect to the expected discounted return
criterion can be obtained by first solving the linear program

maximize
∑

j

∑

a

yjaR(j, a),

such that
∑

j

∑

a

yja = 1

1 − α
,

∑

a

yja = bj + α
∑

i

∑

a

yiaPij (a),

yja � 0, all j, a;
and then defining the policy β∗ by

β∗
i (a) = y∗

ia∑
a y∗

ia

where the y∗
ja are the solutions of the linear program.

78. For the Markov chain of Exercise 5, suppose that p(s|j) is the proba-
bility that signal s is emitted when the underlying Markov chain state is j ,
j = 0,1,2.

(a) What proportion of emissions are signal s?
(b) What proportion of those times in which signal s is emitted is 0 the
underlying state?

79. In Example 4.39, what is the probability that the first 4 items produced are
all acceptable?
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The Exponential
Distribution and
the Poisson Process

5
5.1. Introduction

In making a mathematical model for a real-world phenomenon it is always nec-
essary to make certain simplifying assumptions so as to render the mathematics
tractable. On the other hand, however, we cannot make too many simplifying
assumptions, for then our conclusions, obtained from the mathematical model,
would not be applicable to the real-world situation. Thus, in short, we must
make enough simplifying assumptions to enable us to handle the mathematics
but not so many that the mathematical model no longer resembles the real-world
phenomenon. One simplifying assumption that is often made is to assume that
certain random variables are exponentially distributed. The reason for this is that
the exponential distribution is both relatively easy to work with and is often a
good approximation to the actual distribution.

The property of the exponential distribution that makes it easy to analyze is
that it does not deteriorate with time. By this we mean that if the lifetime of
an item is exponentially distributed, then an item that has been in use for ten
(or any number of) hours is as good as a new item in regards to the amount of time
remaining until the item fails. This will be formally defined in Section 5.2 where
it will be shown that the exponential is the only distribution which possesses this
property.

In Section 5.3 we shall study counting processes with an emphasis on a kind
of counting process known as the Poisson process. Among other things we shall
discover about this process is its intimate connection with the exponential distri-
bution.

281
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5.2. The Exponential Distribution

5.2.1. Definition

A continuous random variable X is said to have an exponential distribution with
parameter λ, λ > 0, if its probability density function is given by

f (x) =
{
λe−λx, x � 0
0, x < 0

or, equivalently, if its cdf is given by

F(x) =
∫ x

−∞
f (y)dy =

{
1 − e−λx, x � 0
0, x < 0

The mean of the exponential distribution, E[X], is given by

E[X] =
∫ ∞

−∞
xf (x)dx

=
∫ ∞

0
λxe−λx dx

Integrating by parts (u = x, dv = λe−λxdx) yields

E[X] = −xe−λx
∣
∣∞
0 +

∫ ∞

0
e−λx dx = 1

λ

The moment generating function φ(t) of the exponential distribution is given by

φ(t) = E[etX]
=
∫ ∞

0
etxλe−λx dx

= λ

λ − t
for t < λ (5.1)

All the moments of X can now be obtained by differentiating Equation (5.1). For
example,

E[X2] = d2

dt2
φ(t)

∣
∣
∣
∣
t=0

= 2λ

(λ − t)3

∣
∣
∣
∣
t=0

= 2

λ2
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Consequently,

Var(X) = E[X2] − (E[X])2

= 2

λ2
− 1

λ2

= 1

λ2

Example 5.1 (Exponential Random Variables and Expected Discounted Re-
turns) Suppose that you are receiving rewards at randomly changing rates con-
tinuously throughout time. Let R(x) denote the random rate at which you are
receiving rewards at time x. For a value α � 0, called the discount rate, the quan-
tity

R =
∫ ∞

0
e−αxR(x)dx

represents the total discounted reward. (In certain applications, α is a continu-
ously compounded interest rate, and R is the present value of the infinite flow of
rewards.) Whereas

E[R] = E

[∫ ∞

0
e−αxR(x)dx

]

=
∫ ∞

0
e−αxE[R(x)]dx

is the expected total discounted reward, we will show that it is also equal to the
expected total reward earned up to an exponentially distributed random time with
rate α.

Let T be an exponential random variable with rate α, that is independent of all
the random variables R(x). We want to argue that

∫ ∞

0
e−αxE[R(x)]dx = E

[∫ T

0
R(x)dx

]

To show this, define for each x � 0, a random variable I (x) by

I (x) =
{

1, if x � T

0, if x > T

and note that
∫ T

0
R(x)dx =

∫ ∞

0
R(x)I (x) dx
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Thus,

E

[∫ T

0
R(x)dx

]

= E

[∫ ∞

0
R(x)I (x) dx

]

=
∫ ∞

0
E[R(x)I (x)]dx

=
∫ ∞

0
E[R(x)]E[I (x)]dx by independence

=
∫ ∞

0
E[R(x)]P {T � x}dx

=
∫ ∞

0
e−αxE[R(x)]dx

Therefore, the expected total discounted reward is equal to the expected total
(undiscounted) reward earned by a random time that is exponentially distributed
with a rate equal to the discount factor. �

5.2.2. Properties of the Exponential Distribution

A random variable X is said to be without memory, or memoryless, if

P {X > s + t | X > t} = P {X > s} for all s, t � 0 (5.2)

If we think of X as being the lifetime of some instrument, then Equation (5.2)
states that the probability that the instrument lives for at least s+ t hours given that
it has survived t hours is the same as the initial probability that it lives for at least
s hours. In other words, if the instrument is alive at time t , then the distribution of
the remaining amount of time that it survives is the same as the original lifetime
distribution; that is, the instrument does not remember that it has already been in
use for a time t .

The condition in Equation (5.2) is equivalent to

P {X > s + t, X > t}
P {X > t} = P {X > s}

or

P {X > s + t} = P {X > s}P {X > t} (5.3)

Since Equation (5.3) is satisfied when X is exponentially distributed (for
e−λ(s+t) = e−λse−λt ), it follows that exponentially distributed random variables
are memoryless.
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Example 5.2 Suppose that the amount of time one spends in a bank is expo-
nentially distributed with mean ten minutes, that is, λ = 1

10 . What is the probabil-
ity that a customer will spend more than fifteen minutes in the bank? What is the
probability that a customer will spend more than fifteen minutes in the bank given
that she is still in the bank after ten minutes?

Solution: If X represents the amount of time that the customer spends in
the bank, then the first probability is just

P {X > 15} = e−15λ = e−3/2 ≈ 0.220

The second question asks for the probability that a customer who has spent ten
minutes in the bank will have to spend at least five more minutes. However,
since the exponential distribution does not “remember” that the customer has
already spent ten minutes in the bank, this must equal the probability that an
entering customer spends at least five minutes in the bank. That is, the desired
probability is just

P {X > 5} = e−5λ = e−1/2 ≈ 0.604 �

Example 5.3 Consider a post office that is run by two clerks. Suppose that
when Mr. Smith enters the system he discovers that Mr. Jones is being served by
one of the clerks and Mr. Brown by the other. Suppose also that Mr. Smith is told
that his service will begin as soon as either Jones or Brown leaves. If the amount
of time that a clerk spends with a customer is exponentially distributed with mean
1/λ, what is the probability that, of the three customers, Mr. Smith is the last to
leave the post office?

Solution: The answer is obtained by this reasoning: Consider the time at
which Mr. Smith first finds a free clerk. At this point either Mr. Jones or
Mr. Brown would have just left and the other one would still be in service.
However, by the lack of memory of the exponential, it follows that the amount
of time that this other man (either Jones or Brown) would still have to spend
in the post office is exponentially distributed with mean 1/λ. That is, it is the
same as if he were just starting his service at this point. Hence, by symmetry,
the probability that he finishes before Smith must equal 1

2 . �

Example 5.4 The dollar amount of damage involved in an automobile acci-
dent is an exponential random variable with mean 1000. Of this, the insurance
company only pays that amount exceeding (the deductible amount of) 400. Find
the expected value and the standard deviation of the amount the insurance com-
pany pays per accident.
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Solution: If X is the dollar amount of damage resulting from an accident,
then the amount paid by the insurance company is (X − 400)+, (where a+ is
defined to equal a if a > 0 and to equal 0 if a � 0). Whereas we could certainly
determine the expected value and variance of (X − 400)+ from first principles,
it is easier to condition on whether X exceeds 400. So, let

I =
{

1, if X > 400
0, if X � 400

Let Y = (X−400)+ be the amount paid. By the lack of memory property of the
exponential, it follows that if a damage amount exceeds 400, then the amount
by which it exceeds it is exponential with mean 1000. Therefore,

E[Y |I = 1] = 1000

E[Y |I = 0] = 0

Var(Y |I = 1) = (1000)2

Var(Y |I = 0) = 0

which can be conveniently written as

E[Y |I ] = 103I, Var(Y |I ) = 106I

Because I is a Bernoulli random variable that is equal to 1 with probability
e−0.4, we obtain

E[Y ] = E
[
E[Y |I ]]= 103E[I ] = 103e−0.4 ≈ 670.32

and, by the conditional variance formula

Var(Y ) = E
[
Var(Y |I )

]+ Var
(
E[Y |I ])

= 106e−0.4 + 106e−0.4(1 − e−0.4)

where the final equality used that the variance of a Bernoulli random variable
with parameter p is p(1 − p). Consequently,

√
Var(Y ) ≈ 944.09 �
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It turns out that not only is the exponential distribution “memoryless,” but it
is the unique distribution possessing this property. To see this, suppose that X is
memoryless and let F̄ (x) = P {X > x}. Then by Equation (5.3) it follows that

F̄ (s + t) = F̄ (s)F̄ (t)

That is, F̄ (x) satisfies the functional equation

g(s + t) = g(s)g(t)

However, it turns out that the only right continuous solution of this functional
equation is

g(x) = e−λx∗

and since a distribution function is always right continuous we must have

F̄ (x) = e−λx

or

F(x) = P {X � x} = 1 − e−λx

which shows that X is exponentially distributed.

Example 5.5 Suppose that the amount of time that a lightbulb works before
burning itself out is exponentially distributed with mean ten hours. Suppose that
a person enters a room in which a lightbulb is burning. If this person desires to
work for five hours, then what is the probability that she will be able to complete
her work without the bulb burning out? What can be said about this probability
when the distribution is not exponential?

∗This is proven as follows: If g(s + t) = g(s)g(t), then

g

(
2

n

)

= g

(
1

n
+ 1

n

)

= g2
(

1

n

)

and repeating this yields g(m/n) = gm(1/n). Also

g(1) = g

(
1

n
+ 1

n
+ · · · + 1

n

)

= gn

(
1

n

)

or g

(
1

n

)

= (g(1))1/n

Hence g(m/n) = (g(1))m/n , which implies, since g is right continuous, that g(x) = (g(1))x . Since
g(1) = (g( 1

2 ))2 � 0 we obtain g(x) = e−λx , where λ = − log(g(1)).
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Solution: Since the bulb is burning when the person enters the room it fol-
lows, by the memoryless property of the exponential, that its remaining lifetime
is exponential with mean ten. Hence the desired probability is

P {remaining lifetime > 5} = 1 − F(5) = e−5λ = e−1/2

However, if the lifetime distribution F is not exponential, then the relevant
probability is

P {lifetime > t + 5 | lifetime > t} = 1 − F(t + 5)

1 − F(t)

where t is the amount of time that the bulb had been in use prior to the person
entering the room. That is, if the distribution is not exponential then additional
information is needed (namely, t) before the desired probability can be calcu-
lated. In fact, it is for this reason, namely, that the distribution of the remaining
lifetime is independent of the amount of time that the object has already sur-
vived, that the assumption of an exponential distribution is so often made. �

The memoryless property is further illustrated by the failure rate function (also
called the hazard rate function) of the exponential distribution.

Consider a continuous positive random variable X having distribution function
F and density f . The failure (or hazard) rate function r(t) is defined by

r(t) = f (t)

1 − F(t)
(5.4)

To interpret r(t), suppose that an item, having lifetime X, has survived for t hours,
and we desire the probability that it does not survive for an additional time dt .
That is, consider P {X ∈ (t, t + dt)|X > t}. Now

P {X ∈ (t, t + dt)|X > t} = P {X ∈ (t, t + dt),X > t}
P {X > t}

= P {X ∈ (t, t + dt)}
P {X > t}

≈ f (t) dt

1 − F(t)
= r(t) dt

That is, r(t) represents the conditional probability density that a t-year-old item
will fail.

Suppose now that the lifetime distribution is exponential. Then, by the memo-
ryless property, it follows that the distribution of remaining life for a t-year-old



5.2. The Exponential Distribution 289

item is the same as for a new item. Hence r(t) should be constant. This checks
out since

r(t) = f (t)

1 − F(t)

= λe−λt

e−λt
= λ

Thus, the failure rate function for the exponential distribution is constant. The
parameter λ is often referred to as the rate of the distribution. (Note that the rate
is the reciprocal of the mean, and vice versa.)

It turns out that the failure rate function r(t) uniquely determines the distribu-
tion F . To prove this, we note by Equation (5.4) that

r(t) =
d
dt

F (t)

1 − F(t)

Integrating both sides yields

log(1 − F(t)) = −
∫ t

0
r(t) dt + k

or

1 − F(t) = ek exp

{

−
∫ t

0
r(t) dt

}

Letting t = 0 shows that k = 0 and thus

F(t) = 1 − exp

{

−
∫ t

0
r(t) dt

}

The preceding identity can also be used to show that exponential random vari-
ables are the only ones that are memoryless. Because if X is memoryless, then
its failure rate function must be constant. But if r(t) = c, then by the preceding
equation

1 − F(t) = e−ct

showing that the random variable is exponential.

Example 5.6 Let X1, . . . ,Xn be independent exponential random variables
with respective rates λ1, . . . , λn, where λi �= λj when i �= j . Let T be independent
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of these random variables and suppose that

n∑

j=1

Pj = 1 where Pj = P {T = j}

The random variable XT is said to be a hyperexponential random variable. To
see how such a random variable might originate, imagine that a bin contains n

different types of batteries, with a type j battery lasting for an exponential dis-
tributed time with rate λj , j = 1, . . . , n. Suppose further that Pj is the proportion
of batteries in the bin that are type j for each j = 1, . . . , n. If a battery is ran-
domly chosen, in the sense that it is equally likely to be any of the batteries in
the bin, then the lifetime of the battery selected will have the hyperexponential
distribution specified in the preceding.

To obtain the distribution function F of X = XT , condition on T . This yields

1 − F(t) = P {X > t}

=
n∑

i=1

P {X > t |T = i}P {T = i}

=
n∑

i=1

Pie
−λi t

Differentiation of the preceding yields f , the density function of X.

f (t) =
n∑

i=1

λiPie
−λi t

Consequently, the failure rate function of a hyperexponential random variable is

r(t) =
∑n

j=1 Pjλj e
−λj t

∑n
i=1 Pie−λi t

By noting that

P {T = j |X > t} = P {X > t |T = j}P {T = j}
P {X > t}

= Pje
−λj t

∑n
i=1 Pie−λi t

we see that the failure rate function r(t) can also be written as

r(t) =
n∑

j=1

λjP {T = j |X > t}
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If λ1 < λi , for all i > 1, then

P {T = 1|X > t} = P1e
−λ1t

P1e−λ1t +∑n
i=2 Pie−λi t

= P1

P1 +∑n
i=2 Pie−(λi−λ1)t

→ 1 as t → ∞
Similarly, P {T = i|X > t} → 0 when i �= 1, thus showing that

lim
t→∞ r(t) = min

i
λi

That is, as a randomly chosen battery ages its failure rate converges to the failure
rate of the exponential type having the smallest failure rate, which is intuitive since
the longer the battery lasts, the more likely it is a battery type with the smallest
failure rate. �

5.2.3. Further Properties of the Exponential Distribution

Let X1, . . . ,Xn be independent and identically distributed exponential random
variables having mean 1/λ. It follows from the results of Example 2.38 that
X1 + · · · + Xn has a gamma distribution with parameters n and λ. Let us now
give a second verification of this result by using mathematical induction. Because
there is nothing to prove when n = 1, let us start by assuming that X1 +· · ·+Xn−1
has density given by

fX1+···+Xn−1(t) = λe−λt (λt)n−2

(n − 2)!
Hence,

fX1+···+Xn−1+Xn(t) =
∫ ∞

0
fXn(t − s)fX1+···+Xn−1(s) ds

=
∫ t

0
λe−λ(t−s)λe−λs (λs)n−2

(n − 2)! ds

= λe−λt (λt)n−1

(n − 1)!
which proves the result.

Another useful calculation is to determine the probability that one exponential
random variable is smaller than another. That is, suppose that X1 and X2 are
independent exponential random variables with respective means 1/λ1 and 1/λ2;
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what is P {X1 < X2}? This probability is easily calculated by conditioning on X1:

P {X1 < X2} =
∫ ∞

0
P {X1 < X2|X1 = x}λ1e

−λ1x dx

=
∫ ∞

0
P {x < X2}λ1e

−λ1x dx

=
∫ ∞

0
e−λ2xλ1e

−λ1x dx

=
∫ ∞

0
λ1e

−(λ1+λ2)x dx

= λ1

λ1 + λ2
(5.5)

Suppose that X1,X2, . . . ,Xn are independent exponential random variables, with
Xi having rate μi, i = 1, . . . , n. It turns out that the smallest of the Xi is exponen-
tial with a rate equal to the sum of the μi . This is shown as follows:

P {minimum(X1, . . . ,Xn) > x} = P {Xi > x for each i = 1, . . . , n}

=
n∏

i=1

P {Xi > x} (by independence)

=
n∏

i=1

e−μix

= exp

{

−
(

n∑

i=1

μi

)

x

}

(5.6)

Example 5.7 (Analyzing Greedy Algorithms for the Assignment Problem)
A group of n people is to be assigned to a set of n jobs, with one person assigned
to each job. For a given set of n2 values Cij , i, j = 1, . . . , n, a cost Cij is in-
curred when person i is assigned to job j . The classical assignment problem is to
determine the set of assignments that minimizes the sum of the n costs incurred.

Rather than trying to determine the optimal assignment, let us consider two
heuristic algorithms for solving this problem. The first heuristic is as follows. As-
sign person 1 to the job that results in the least cost. That is, person 1 is assigned
to job j1 where C(1, j1) = minimumj C(1, j). Now eliminate that job from con-
sideration and assign person 2 to the job that results in the least cost. That is,
person 2 is assigned to job j2 where C(2, j2) = minimumj �=j1C(2, j). This pro-
cedure is then continued until all n persons are assigned. Since this procedure al-
ways selects the best job for the person under consideration, we will call it Greedy
Algorithm A.
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The second algorithm, which we call Greedy Algorithm B, is a more “global”
version of the first greedy algorithm. It considers all n2 cost values and chooses
the pair i1, j1 for which C(i, j) is minimal. It then assigns person i1 to job j1. It
then eliminates all cost values involving either person i1 or job j1 [so that (n−1)2

values remain] and continues in the same fashion. That is, at each stage it chooses
the person and job that have the smallest cost among all the unassigned people
and jobs.

Under the assumption that the Cij constitute a set of n2 independent exponen-
tial random variables each having mean 1, which of the two algorithms results in
a smaller expected total cost?

Solution: Suppose first that Greedy Algorithm A is employed. Let Ci de-
note the cost associated with person i, i = 1, . . . , n. Now C1 is the minimum
of n independent exponentials each having rate 1; so by Equation (5.6) it will
be exponential with rate n. Similarly, C2 is the minimum of n − 1 independent
exponentials with rate 1, and so is exponential with rate n − 1. Indeed, by the
same reasoning Ci will be exponential with rate n − i + 1, i = 1, . . . , n. Thus,
the expected total cost under Greedy Algorithm A is

EA[total cost] = E[C1 + · · · + Cn]

=
n∑

i=1

1/i

Let us now analyze Greedy Algorithm B. Let Ci be the cost of the ith person-
job pair assigned by this algorithm. Since C1 is the minimum of all the n2 val-
ues Cij , it follows from Equation (5.6) that C1 is exponential with rate n2. Now,
it follows from the lack of memory property of the exponential that the amounts
by which the other Cij exceed C1 will be independent exponentials with rates 1.
As a result, C2 is equal to C1 plus the minimum of (n − 1)2 independent expo-
nentials with rate 1. Similarly, C3 is equal to C2 plus the minimum of (n − 2)2

independent exponentials with rate 1, and so on. Therefore, we see that

E[C1] = 1/n2,

E[C2] = E[C1] + 1/(n − 1)2,

E[C3] = E[C2] + 1/(n − 2)2,

...

E[Cj ] = E[Cj−1] + 1/(n − j + 1)2,

...

E[Cn] = E[Cn−1] + 1
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Therefore,

E[C1] = 1/n2,

E[C2] = 1/n2 + 1/(n − 1)2,

E[C3] = 1/n2 + 1/(n − 1)2 + 1/(n − 2)2,

...

E[Cn] = 1/n2 + 1/(n − 1)2 + 1/(n − 2)2 + · · · + 1

Adding up all the E[Ci] yields that

EB [total cost] = n/n2 + (n − 1)/(n − 1)2 + (n − 2)/(n − 2)2 + · · · + 1

=
n∑

i=1

1

i

The expected cost is thus the same for both greedy algorithms. �
Let X1, . . . ,Xn be independent exponential random variables, with respective

rates λ1, . . . , λn. A useful result, generalizing Equation (5.5), is that Xi is the
smallest of these with probability λi/

∑
j λj . This is shown as follows:

P
{
Xi = min

j
Xj

}
= P

{
Xi < min

j �=i
Xj

}

= λi
∑n

j=1 λj

where the final equality uses Equation (5.5) along with the fact that minj �=iXj is
exponential with rate

∑
j �=i λj .

Another important fact is that mini Xi and the rank ordering of the Xi are
independent. To see why this is true, consider the conditional probability that
Xi1 < Xi2 < · · · < Xin given that the minimal value is greater than t . Because
mini Xi > t means that all the Xi are greater than t , it follows from the lack of
memory property of exponential random variables that their remaining lives be-
yond t remain independent exponential random variables with their original rates.
Consequently,

P
{
Xi1 < · · · < Xin

∣
∣min

i
Xi > t

}
= P

{
Xi1 − t < · · · < Xin − t

∣
∣min

i
Xi > t

}

= P {Xi1 < · · · < Xin}
which proves the result.
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Example 5.8 Suppose you arrive at a post office having two clerks at a mo-
ment when both are busy but there is no one else waiting in line. You will enter
service when either clerk becomes free. If service times for clerk i are exponential
with rate λi, i = 1,2, find E[T ], where T is the amount of time that you spend in
the post office.

Solution: Let Ri denote the remaining service time of the customer with
clerk i, i = 1,2, and note, by the lack of memory property of exponentials, that
R1 and R2 are independent exponential random variables with respective rates
λ1 and λ2. Conditioning on which of R1 or R2 is the smallest yields

E[T ] = E[T |R1 < R2]P {R1 < R2} + E[T |R2 � R1]P {R2 � R1}
= E[T |R1 < R2] λ1

λ1 + λ2
+ E[T |R2 � R1] λ2

λ1 + λ2

Now, with S denoting your service time

E[T |R1 < R2] = E[R1 + S|R1 < R2]
= E[R1|R1 < R2] + E[S|R1 < R2]
= E[R1|R1 < R2] + 1

λ1

= 1

λ1 + λ2
+ 1

λ1

The final equation used that conditional on R1 < R2 the random variable R1 is
the minimum of R1 and R2 and is thus exponential with rate λ1 + λ2; and also
that conditional on R1 < R2 you are served by server 1.

As we can show in a similar fashion that

E[T |R2 � R1] = 1

λ1 + λ2
+ 1

λ2

we obtain the result

E[T ] = 3

λ1 + λ2



296 5 The Exponential Distribution and the Poisson Process

Another way to obtain E[T ] is to write T as a sum, take expectations, and
then condition where needed. This approach yields

E[T ] = E[min(R1,R2) + S]
= E[min(R1,R2)] + E[S]
= 1

λ1 + λ2
+ E[S]

To compute E[S], we condition on which of R1 and R2 is smallest.

E[S] = E[S|R1 < R2] λ1

λ1 + λ2
+ E[S|R2 � R1] λ2

λ1 + λ2

= 2

λ1 + λ2
�

Example 5.9 There are n cells in the body, of which cells 1, . . . , k are target
cells. Associated with each cell is a weight, with wi being the weight associated
with cell i, i = 1, . . . , n. The cells are destroyed one at a time in a random order
which is such that if S is the current set of surviving cells then, independent of
the order in which the cells not in S have been destroyed, the next cell killed is i,
i ∈ S, with probability wi/

∑
j∈S wj . In other words, the probability that a given

surviving cell is the next one to be killed is the weight of that cell divided by
the sum of the weights of all still surviving cells. Let A denote the total number
of cells that are still alive at the moment when all the cells 1,2, . . . , k have been
killed, and find E[A].

Solution: Although it would be quite difficult to solve this problem by a
direct combinatorial argument, a nice solution can be obtained by relating the
order in which cells are killed to a ranking of independent exponential ran-
dom variables. To do so, let X1, . . . ,Xn be independent exponential random
variables, with Xi having rate wi , i = 1, . . . , n. Note that Xi will be the small-
est of these exponentials with probability wi/

∑
j wj ; further, given that Xi is

the smallest, Xr will be the next smallest with probability wr/
∑

j �=i wj ; fur-
ther, given that Xi and Xr are, respectively, the first and second smallest, Xs ,
s �= i, r , will be the third smallest with probability ws/

∑
j �=i,r wj ; and so on.

Consequently, if we let Ij be the index of the j th smallest of X1, . . . ,Xn—so
that XI1 < XI2 < · · · < XIn —then the order in which the cells are destroyed
has the same distribution as I1, . . . , In. So, let us suppose that the order in which
the cells are killed is determined by the ordering of X1, . . . ,Xn. (Equivalently,
we can suppose that all cells will eventually be killed, with cell i being killed
at time Xi , i = 1, . . . , n.)
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If we let Aj equal 1 if cell j is still alive at the moment when all the cells
1, . . . , k have been killed, and let it equal 0 otherwise, then

A =
n∑

j=k+1

Aj

Because cell j will be alive at the moment when all the cells 1, . . . , k have been
killed if Xj is larger than all the values X1, . . . ,Xk , we see that for j > k

E[Aj ] = P {Aj = 1}
= P {Xj > max

i=1,...,k
Xi}

=
∫ ∞

0
P
{
Xj > max

i=1,...,k
Xi |Xj = x

}
wje

−wj x dx

=
∫ ∞

0
P {Xi < x for all i = 1, . . . , k}wje

−wj x dx

=
∫ ∞

0

k∏

i=1

(1 − e−wix)wj e
−wj x dx

=
∫ 1

0

k∏

i=1

(1 − ywi/wj ) dy

where the final equality follows from the substitution y = e−wj x . Thus, we
obtain the result

E[A] =
n∑

j=k+1

∫ 1

0

k∏

i=1

(1 − ywi/wj ) dy =
∫ 1

0

n∑

j=k+1

k∏

i=1

(1 − ywi/wj ) dy �

Example 5.10 Suppose that customers are in line to receive service that is
provided sequentially by a server; whenever a service is completed, the next per-
son in line enters the service facility. However, each waiting customer will only
wait an exponentially distributed time with rate θ ; if its service has not yet begun
by this time then it will immediately depart the system. These exponential times,
one for each waiting customer, are independent. In addition, the service times are
independent exponential random variables with rate μ. Suppose that someone is
presently being served and consider the person who is nth in line.

(a) Find Pn, the probability that this customer is eventually served.
(b) Find Wn, the conditional expected amount of time this person spends wait-
ing in line given that she is eventually served.
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Solution: Consider the n + 1 random variables consisting of the remaining
service time of the person in service along with the n additional exponential
departure times with rate θ of the first n in line.

(a) Given that the smallest of these n + 1 independent exponentials is the
departure time of the nth person in line, the conditional probability that this
person will be served is 0; on the other hand, given that this person’s depar-
ture time is not the smallest, the conditional probability that this person will
be served is the same as if it were initially in position n − 1. Since the prob-
ability that a given departure time is the smallest of the n + 1 exponentials is
θ/(nθ + μ), we obtain that

Pn = (n − 1)θ + μ

nθ + μ
Pn−1

Using the preceding with n − 1 replacing n gives

Pn = (n − 1)θ + μ

nθ + μ

(n − 2)θ + μ

(n − 1)θ + μ
Pn−2 = (n − 2)θ + μ

nθ + μ
Pn−2

Continuing in this fashion yields the result

Pn = θ + μ

nθ + μ
P1 = μ

nθ + μ

(b) To determine an expression for Wn, we use the fact that the minimum of
independent exponentials is, independent of their rank ordering, exponential
with a rate equal to the sum of the rates. Since the time until the nth person in
line enters service is the minimum of these n + 1 random variables plus the
additional time thereafter, we see, upon using the lack of memory property
of exponential random variables, that

Wn = 1

nθ + μ
+ Wn−1

Repeating the preceding argument with successively smaller values of n

yields the solution:

Wn =
n∑

i=1

1

iθ + μ
�

5.2.4. Convolutions of Exponential Random Variables

Let Xi, i = 1, . . . , n, be independent exponential random variables with respec-
tive rates λi, i = 1, . . . , n, and suppose that λi �= λj for i �= j . The random vari-
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able
∑n

i=1 Xi is said to be a hypoexponential random variable. To compute its
probability density function, let us start with the case n = 2. Now,

fX1+X2(t) =
∫ t

0
fX1(s)fX2(t − s) ds

=
∫ t

0
λ1e

−λ1sλ2e
−λ2(t−s) ds

= λ1λ2e
−λ2t

∫ t

0
e−(λ1−λ2)s ds

= λ1

λ1 − λ2
λ2e

−λ2t (1 − e−(λ1−λ2)t )

= λ1

λ1 − λ2
λ2e

−λ2t + λ2

λ2 − λ1
λ1e

−λ1t

Using the preceding, a similar computation yields, when n = 3,

fX1+X2+X3(t) =
3∑

i=1

λie
−λi t

(∏

j �=i

λj

λj − λi

)

which suggests the general result:

fX1+···+Xn(t) =
n∑

i=1

Ci,nλie
−λi t

where

Ci,n =
∏

j �=i

λj

λj − λi

We will now prove the preceding formula by induction on n. Since we have al-
ready established it for n = 2, assume it for n and consider n + 1 arbitrary in-
dependent exponentials Xi with distinct rates λi , i = 1, . . . , n + 1. If necessary,
renumber X1 and Xn+1 so that λn+1 < λ1. Now,

fX1+···+Xn+1(t) =
∫ t

0
fX1+···+Xn(s)λn+1e

−λn+1(t−s) ds

=
n∑

i=1

Ci,n

∫ t

0
λie

−λisλn+1e
−λn+1(t−s) ds
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=
n∑

i=1

Ci,n

(
λi

λi − λn+1
λn+1e

−λn+1t + λn+1

λn+1 − λi

λie
−λi t

)

= Kn+1λn+1e
−λn+1t +

n∑

i=1

Ci,n+1λie
−λi t (5.7)

where Kn+1 =∑n
i=1 Ci,nλi/(λi − λn+1) is a constant that does not depend on t .

But, we also have that

fX1+···+Xn+1(t) =
∫ t

0
fX2+···+Xn+1(s)λ1e

−λ1(t−s) ds

which implies, by the same argument that resulted in Equation (5.7), that for a
constant K1

fX1+···+Xn+1(t) = K1λ1e
−λ1t +

n+1∑

i=2

Ci,n+1λie
−λi t

Equating these two expressions for fX1+···+Xn+1(t) yields

Kn+1λn+1e
−λn+1t + C1,n+1λ1e

−λ1t = K1λ1e
−λ1t + Cn+1,n+1λn+1e

−λn+1t

Multiplying both sides of the preceding equation by eλn+1t and then letting t → ∞
yields [since e−(λ1−λn+1)t → 0 as t → ∞]

Kn+1 = Cn+1,n+1

and this, using Equation (5.7), completes the induction proof. Thus, we have
shown that if S =∑n

i=1 Xi , then

fs(t) =
n∑

i=1

Ci,nλie
−λi t (5.8)

where

Ci,n =
∏

j �=i

λj

λj − λi

Integrating both sides of the expression for fS from t to ∞ yields that the tail
distribution function of S is given by

P {S > t} =
n∑

i=1

Ci,ne
−λi t (5.9)
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Hence, we obtain from Equations (5.8) and (5.9) that rS(t), the failure rate func-
tion of S, is as follows:

rS(t) =
∑n

i=1 Ci,nλie
−λi t

∑n
i=1 Ci,ne−λi t

If we let λj = min(λ1, . . . , λn), then it follows, upon multiplying the numerator
and denominator of rS(t) by eλj t , that

lim
t→∞ rS(t) = λj

From the preceding, we can conclude that the remaining lifetime of a hypoexpo-
nentially distributed item that has survived to age t is, for t large, approximately
that of an exponentially distributed random variable with a rate equal to the mini-
mum of the rates of the random variables whose sums make up the hypoexponen-
tial.

Remark Although

1 =
∫ ∞

0
fS(t) dt =

n∑

i=1

Ci,n =
n∑

i=1

∏

j �=i

λj

λj − λi

it should not be thought that the Ci,n, i = 1, . . . , n are probabilities, because some
of them will be negative. Thus, while the form of the hypoexponential density
is similar to that of the hyperexponential density (see Example 5.6) these two
random variables are very different.

Example 5.11 Let X1, . . . ,Xm be independent exponential random variables
with respective rates λ1, . . . , λm, where λi �= λj when i �= j . Let N be inde-
pendent of these random variables and suppose that

∑m
n=1 Pn = 1, where Pn =

P {N = n}. The random variable

Y =
N∑

j=1

Xj

is said to be a Coxian random variable. Conditioning on N gives its density func-
tion:

fY (t) =
m∑

n=1

fY (t |N = n)Pn

=
m∑

n=1

fX1+···+Xn(t |N = n)Pn
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=
m∑

n=1

fX1+···+Xn(t)Pn

=
m∑

n=1

Pn

n∑

i=1

Ci,nλie
−λi t

Let

r(n) = P {N = n|N � n}
If we interpret N as a lifetime measured in discrete time periods, then r(n) de-
notes the probability that an item will die in its nth period of use given that it has
survived up to that time. Thus, r(n) is the discrete time analog of the failure rate
function r(t), and is correspondingly referred to as the discrete time failure (or
hazard) rate function.

Coxian random variables often arise in the following manner. Suppose that an
item must go through m stages of treatment to be cured. However, suppose that
after each stage there is a probability that the item will quit the program. If we
suppose that the amounts of time that it takes the item to pass through the succes-
sive stages are independent exponential random variables, and that the probability
that an item that has just completed stage n quits the program is (independent of
how long it took to go through the n stages) equal to r(n), then the total time that
an item spends in the program is a Coxian random variable. �

5.3. The Poisson Process

5.3.1. Counting Processes

A stochastic process {N(t), t � 0} is said to be a counting process if N(t) repre-
sents the total number of “events” that occur by time t . Some examples of count-
ing processes are the following:

(a) If we let N(t) equal the number of persons who enter a particular store at
or prior to time t , then {N(t), t � 0} is a counting process in which an event
corresponds to a person entering the store. Note that if we had let N(t) equal
the number of persons in the store at time t , then {N(t), t � 0} would not be a
counting process (why not?).
(b) If we say that an event occurs whenever a child is born, then {N(t), t � 0}
is a counting process when N(t) equals the total number of people who were
born by time t . [Does N(t) include persons who have died by time t? Explain
why it must.]
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(c) If N(t) equals the number of goals that a given soccer player scores by
time t , then {N(t), t � 0} is a counting process. An event of this process will
occur whenever the soccer player scores a goal.

From its definition we see that for a counting process N(t) must satisfy:

(i) N(t) � 0.
(ii) N(t) is integer valued.

(iii) If s < t , then N(s) � N(t).
(iv) For s < t, N(t) − N(s) equals the number of events that occur in the

interval (s, t].
A counting process is said to possess independent increments if the numbers

of events that occur in disjoint time intervals are independent. For example, this
means that the number of events that occur by time 10 [that is, N(10)] must be
independent of the number of events that occur between times 10 and 15 [that is,
N(15) − N(10)].

The assumption of independent increments might be reasonable for exam-
ple (a), but it probably would be unreasonable for example (b). The reason for
this is that if in example (b) N(t) is very large, then it is probable that there are
many people alive at time t ; this would lead us to believe that the number of new
births between time t and time t + s would also tend to be large [that is, it does not
seem reasonable that N(t) is independent of N(t +s)−N(t), and so {N(t), t � 0}
would not have independent increments in example (b)]. The assumption of inde-
pendent increments in example (c) would be justified if we believed that the soccer
player’s chances of scoring a goal today do not depend on “how he’s been going.”
It would not be justified if we believed in “hot streaks” or “slumps.”

A counting process is said to possess stationary increments if the distribution
of the number of events that occur in any interval of time depends only on the
length of the time interval. In other words, the process has stationary increments
if the number of events in the interval (s, s + t) has the same distribution for all s.

The assumption of stationary increments would only be reasonable in exam-
ple (a) if there were no times of day at which people were more likely to enter
the store. Thus, for instance, if there was a rush hour (say, between 12 P.M. and
1 P.M.) each day, then the stationarity assumption would not be justified. If we be-
lieved that the earth’s population is basically constant (a belief not held at present
by most scientists), then the assumption of stationary increments might be rea-
sonable in example (b). Stationary increments do not seem to be a reasonable
assumption in example (c) since, for one thing, most people would agree that the
soccer player would probably score more goals while in the age bracket 25–30
than he would while in the age bracket 35–40. It may, however, be reasonable
over a smaller time horizon, such as one year.
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5.3.2. Definition of the Poisson Process

One of the most important counting processes is the Poisson process which is
defined as follows:

Definition 5.1 The counting process {N(t), t � 0} is said to be a Poisson
process having rate λ, λ > 0, if

(i) N(0) = 0.
(ii) The process has independent increments.

(iii) The number of events in any interval of length t is Poisson distributed with
mean λt . That is, for all s, t � 0

P {N(t + s) − N(s) = n} = e−λt (λt)n

n! , n = 0,1, . . .

Note that it follows from condition (iii) that a Poisson process has stationary
increments and also that

E[N(t)] = λt

which explains why λ is called the rate of the process.
To determine if an arbitrary counting process is actually a Poisson process,

we must show that conditions (i), (ii), and (iii) are satisfied. Condition (i), which
simply states that the counting of events begins at time t = 0, and condition (ii)
can usually be directly verified from our knowledge of the process. However, it
is not at all clear how we would determine that condition (iii) is satisfied, and for
this reason an equivalent definition of a Poisson process would be useful.

As a prelude to giving a second definition of a Poisson process we shall define
the concept of a function f (·) being o(h).

Definition 5.2
The function f (·) is said to be o(h) if

lim
h→0

f (h)

h
= 0

Example 5.12

(i) The function f (x) = x2 is o(h) since

lim
h→0

f (h)

h
= lim

h→0

h2

h
= lim

h→0
h = 0
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(ii) The function f (x) = x is not o(h) since

lim
h→0

f (h)

h
= lim

h→0

h

h
= lim

h→0
1 = 1 �= 0

(iii) If f (·) is o(h) and g(·) is o(h), then so is f (·) + g(·). This follows since

lim
h→0

f (h) + g(h)

h
= lim

h→0

f (h)

h
+ lim

h→0

g(h)

h
= 0 + 0 = 0

(iv) If f (·) is o(h), then so is g(·) = cf (·). This follows since

lim
h→0

cf (h)

h
= c lim

f (h)

h
= c · 0 = 0

(v) From (iii) and (iv) it follows that any finite linear combination of functions,
each of which is o(h), is o(h). �

In order for the function f (·) to be o(h) it is necessary that f (h)/h go to zero
as h goes to zero. But if h goes to zero, the only way for f (h)/h to go to zero is
for f (h) to go to zero faster than h does. That is, for h small, f (h) must be small
compared with h.

We are now in a position to give an alternate definition of a Poisson process.

Definition 5.3 The counting process {N(t), t � 0} is said to be a Poisson
process having rate λ,λ > 0, if

(i) N(0) = 0.
(ii) The process has stationary and independent increments.

(iii) P {N(h) = 1} = λh + o(h).
(iv) P {N(h) � 2} = o(h).

Theorem 5.1 Definitions 5.1 and 5.3 are equivalent.

Proof We show that Definition 5.3 implies Definition 5.1, and leave it to you
to prove the reverse. To start, fix u � 0 and let

g(t) = E[exp{−uN(t)}]

We derive a differential equation for g(t) as follows:

g(t + h) = E[exp{−uN(t + h)}]
= E[exp{−uN(t)} exp{−u(N(t + h) − N(t))}]
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= E[exp{−uN(t)}]E[exp{−u(N(t + h) − N(t))}]
by independent increments

= g(t) E[exp{−uN(h)}] by stationary increments (5.10)

Now, assumptions (iii) and (iv) imply that

P {N(h) = 0} = 1 − λh + o(h)

Hence, conditioning on whether N(h) = 0 or N(h) = 1 or N(h) � 2 yields

E[exp{−uN(h)}] = 1 − λh + o(h) + e−u(λh + o(h)) + o(h)

= 1 − λh + e−uλh + o(h) (5.11)

Therefore, from Equations (5.10) and (5.11) we obtain that

g(t + h) = g(t)(1 − λh + e−uλh) + o(h)

implying that

g(t + h) − g(t)

h
= g(t)λ(e−u − 1) + o(h)

h

Letting h → 0 gives

g′(t) = g(t)λ(e−u − 1)

or, equivalently,

g′(t)
g(t)

= λ(e−u − 1)

Integrating, and using g(0) = 1, shows that

log(g(t)) = λt(e−u − 1)

or

g(t) = exp{λt(e−u − 1)}
That is, the Laplace transform of N(t) evaluated at u is eλt(e−u−1). Since that is
also the Laplace transform of a Poisson random variable with mean λt , the result
follows from the fact that the distribution of a nonnegative random variable is
uniquely determined by its Laplace transform. �
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Figure 5.1.

Remarks (i) The result that N(t) has a Poisson distribution is a consequence
of the Poisson approximation to the binomial distribution (see Section 2.2.4). To
see this, subdivide the interval [0, t] into k equal parts where k is very large
(Figure 5.1). Now it can be shown using axiom (iv) of Definition 5.3 that as k

increases to ∞ the probability of having two or more events in any of the k subin-
tervals goes to 0. Hence, N(t) will (with a probability going to 1) just equal the
number of subintervals in which an event occurs. However, by stationary and inde-
pendent increments this number will have a binomial distribution with parameters
k and p = λt/k + o(t/k). Hence, by the Poisson approximation to the binomial
we see by letting k approach ∞ that N(t) will have a Poisson distribution with
mean equal to

lim
k→∞ k

[

λ
t

k
+ o

(
t

k

)]

= λt + lim
k→∞

to(t/k)

t/k

= λt

by using the definition of o(h) and the fact that t/k → 0 as k → ∞.
(ii) The explicit assumption that the process has stationary increments can be

eliminated from Definition 5.3 provided that we change assumptions (iii) and (iv)
to require that for any t the probability of one event in the interval (t, t + h) is
λh + o(h) and the probability of two or more events in that interval is o(h). That
is, assumptions (ii), (iii), and (iv) of Definition 5.3 can be replaced by

(iii) The process has independent increments.
(iv) P {N(t + h) − N(t) = 1} = λh + o(h).
(v) P {N(t + h) − N(t) � 2} = o(h).

5.3.3. Interarrival and Waiting Time Distributions

Consider a Poisson process, and let us denote the time of the first event by T1.
Further, for n > 1, let Tn denote the elapsed time between the (n − 1)st and the
nth event. The sequence {Tn,n = 1,2, . . .} is called the sequence of interarrival
times. For instance, if T1 = 5 and T2 = 10, then the first event of the Poisson
process would have occurred at time 5 and the second at time 15.

We shall now determine the distribution of the Tn. To do so, we first note that
the event {T1 > t} takes place if and only if no events of the Poisson process occur
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in the interval [0, t] and thus,

P {T1 > t} = P {N(t) = 0} = e−λt

Hence, T1 has an exponential distribution with mean 1/λ. Now,

P {T2 > t} = E[P {T2 > t |T1}]
However,

P {T2 > t | T1 = s} = P {0 events in (s, s + t] | T1 = s}
= P {0 events in (s, s + t]}
= e−λt (5.12)

where the last two equations followed from independent and stationary incre-
ments. Therefore, from Equation (5.12) we conclude that T2 is also an exponential
random variable with mean 1/λ and, furthermore, that T2 is independent of T1.
Repeating the same argument yields the following.

Proposition 5.1 Tn,n = 1,2, . . . , are independent identically distributed ex-
ponential random variables having mean 1/λ.

Remark The proposition should not surprise us. The assumption of stationary
and independent increments is basically equivalent to asserting that, at any point
in time, the process probabilistically restarts itself. That is, the process from any
point on is independent of all that has previously occurred (by independent incre-
ments), and also has the same distribution as the original process (by stationary
increments). In other words, the process has no memory, and hence exponential
interarrival times are to be expected.

Another quantity of interest is Sn, the arrival time of the nth event, also called
the waiting time until the nth event. It is easily seen that

Sn =
n∑

i=1

Ti, n � 1

and hence from Proposition 5.1 and the results of Section 2.2 it follows that Sn

has a gamma distribution with parameters n and λ. That is, the probability density
of Sn is given by

fSn(t) = λe−λt (λt)n−1

(n − 1)! , t � 0 (5.13)

Equation (5.13) may also be derived by noting that the nth event will occur prior
to or at time t if and only if the number of events occurring by time t is at least n.
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That is,

N(t) � n ⇔ Sn � t

Hence,

FSn(t) = P {Sn � t} = P {N(t) � n} =
∞∑

j=n

e−λt (λt)j

j !

which, upon differentiation, yields

fSn(t) = −
∞∑

j=n

λe−λt (λt)j

j ! +
∞∑

j=n

λe−λt (λt)j−1

(j − 1)!

= λe−λt (λt)n−1

(n − 1)! +
∞∑

j=n+1

λe−λt (λt)j−1

(j − 1)! −
∞∑

j=n

λe−λt (λt)j

j !

= λe−λt (λt)n−1

(n − 1)!

Example 5.13 Suppose that people immigrate into a territory at a Poisson
rate λ = 1 per day.

(a) What is the expected time until the tenth immigrant arrives?
(b) What is the probability that the elapsed time between the tenth and the
eleventh arrival exceeds two days?

Solution:
(a) E[S10] = 10/λ = 10 days.
(b) P {T11 > 2} = e−2λ = e−2 ≈ 0.133. �

Proposition 5.1 also gives us another way of defining a Poisson process.
Suppose we start with a sequence {Tn,n � 1} of independent identically distrib-
uted exponential random variables each having mean 1/λ. Now let us define a
counting process by saying that the nth event of this process occurs at time

Sn ≡ T1 + T2 + · · · + Tn

The resultant counting process {N(t), t � 0}∗ will be Poisson with rate λ.

∗A formal definition of N(t) is given by N(t) ≡ max{n: Sn � t} where S0 ≡ 0.
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Remark Another way of obtaining the density function of Sn is to note that
because Sn is the time of the nth event,

P {t < Sn < t + h} = P {N(t) = n − 1, one event in (t, t + h)} + o(h)

= P {N(t) = n − 1}P {one event in (t, t + h)} + o(h)

= e−λt (λt)n−1

(n − 1)! [λh + o(h)] + o(h)

= λe−λt (λt)n−1

(n − 1)!h + o(h)

where the first equality uses the fact that the probability of 2 or more events in
(t, t + h) is o(h). If we now divide both sides of the preceding equation by h and
then let h → 0, we obtain

fSn(t) = λe−λt (λt)n−1

(n − 1)!

5.3.4. Further Properties of Poisson Processes

Consider a Poisson process {N(t), t � 0} having rate λ, and suppose that each
time an event occurs it is classified as either a type I or a type II event. Suppose
further that each event is classified as a type I event with probability p or a type II
event with probability 1 − p, independently of all other events. For example, sup-
pose that customers arrive at a store in accordance with a Poisson process having
rate λ; and suppose that each arrival is male with probability 1

2 and female with
probability 1

2 . Then a type I event would correspond to a male arrival and a type II
event to a female arrival.

Let N1(t) and N2(t) denote respectively the number of type I and type II events
occurring in [0, t]. Note that N(t) = N1(t) + N2(t).

Proposition 5.2 {N1(t), t � 0} and {N2(t), t � 0} are both Poisson processes
having respective rates λp and λ(1 − p). Furthermore, the two processes are in-
dependent.

Proof It is easy to verify that {N1(t), t � 0} is a Poisson process with rate λp

by verifying that it satisfies Definition 5.3.

• N1(0) = 0 follows from the fact that N(0) = 0.

• It is easy to see that {N1(t), t � 0} inherits the stationary and independent
increment properties of the process {N(t), t � 0}. This is true because the
distribution of the number of type I events in an interval can be obtained
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by conditioning on the number of events in that interval, and the distribu-
tion of this latter quantity depends only on the length of the interval and is
independent of what has occurred in any nonoverlapping interval.

• P {N1(h) = 1} = P {N1(h) = 1 | N(h) = 1}P {N(h) = 1}
+ P {N1(h) = 1 | N(h) � 2}P {N(h) � 2}

= p(λh + o(h)) + o(h)

= λph + o(h)

• P {N1(h) � 2} � P {N(h) � 2} = o(h)

Thus we see that {N1(t), t � 0} is a Poisson process with rate λp and, by a similar
argument, that {N2(t), t � 0} is a Poisson process with rate λ(1 −p). Because the
probability of a type I event in the interval from t to t + h is independent of all
that occurs in intervals that do not overlap (t, t + h), it is independent of knowl-
edge of when type II events occur, showing that the two Poisson processes are
independent. (For another way of proving independence, see Example 3.20.) �

Example 5.14 If immigrants to area A arrive at a Poisson rate of ten per
week, and if each immigrant is of English descent with probability 1

12 , then what
is the probability that no people of English descent will emigrate to area A during
the month of February?

Solution: By the previous proposition it follows that the number of English-
men emigrating to area A during the month of February is Poisson distributed
with mean 4 ·10 · 1

12 = 10
3 . Hence the desired probability is e−10/3. �

Example 5.15 Suppose nonnegative offers to buy an item that you want to
sell arrive according to a Poisson process with rate λ. Assume that each offer is
the value of a continuous random variable having density function f (x). Once the
offer is presented to you, you must either accept it or reject it and wait for the next
offer. We suppose that you incur costs at a rate c per unit time until the item is sold,
and that your objective is to maximize your expected total return, where the total
return is equal to the amount received minus the total cost incurred. Suppose you
employ the policy of accepting the first offer that is greater than some specified
value y. (Such a type of policy, which we call a y-policy, can be shown to be
optimal.) What is the best value of y?

Solution: Let us compute the expected total return when you use the y-
policy, and then choose the value of y that maximizes this quantity. Let X de-
note the value of a random offer, and let F̄ (x) = P {X > x} = ∫∞

x
f (u)du be its

tail distribution function. Because each offer will be greater than y with prob-
ability F̄ (y), it follows that such offers occur according to a Poisson process
with rate λF̄ (y). Hence, the time until an offer is accepted is an exponential
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random variable with rate λF̄ (y). Letting R(y) denote the total return from the
policy that accepts the first offer that is greater than y, we have

E[R(y)] = E[accepted offer] − cE[time to accept]
= E[X|X > y] − c

λF̄ (y)

=
∫ ∞

0
xfX|X>y(x) dx − c

λF̄ (y)

=
∫ ∞

y

x
f (x)

F̄ (y)
dx − c

λF̄ (y)

=
∫∞
y

xf (x) dx − c/λ

F̄ (y)

Differentiation yields that

d

dy
E[R(y)] = 0 ⇔ −F̄ (y)yf (y) +

(∫ ∞

y

xf (x) dx − c

λ

)

f (y) = 0

Therefore, the optimal value of y satisfies

yF̄ (y) =
∫ ∞

y

xf (x) dx − c

λ

or

y

∫ ∞

y

f (x) dx =
∫ ∞

y

xf (x) dx − c

λ

or ∫ ∞

y

(x − y)f (x) dx = c

λ
(5.14)

We now argue that the left-hand side of the preceding is a nonincreasing func-
tion of y. To do so, note that, with a+ defined to equal a if a > 0 or to equal 0
otherwise, we have

∫ ∞

y

(x − y)f (x) dx = E[(X − y)+]

Because (X − y)+ is a nonincreasing function of y, so is its expectation, thus
showing that the left hand side of Equation (5.14) is a nonincreasing func-
tion of y. Consequently, if E[X] < c/λ—in which case there is no solution of
Equation (5.14)—then it is optimal to accept any offer; otherwise, the optimal
value y is the unique solution of Equation (5.14). �

It follows from Proposition 5.2 that if each of a Poisson number of individuals
is independently classified into one of two possible groups with respective prob-
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abilities p and 1 − p, then the number of individuals in each of the two groups
will be independent Poisson random variables. Because this result easily gener-
alizes to the case where the classification is into any one of r possible groups,
we have the following application to a model of employees moving about in an
organization.

Example 5.16 Consider a system in which individuals at any time are
classified as being in one of r possible states, and assume that an individual
changes states in accordance with a Markov chain having transition probabilities
Pij , i, j = 1, . . . , r . That is, if an individual is in state i during a time period
then, independently of its previous states, it will be in state j during the next time
period with probability Pij . The individuals are assumed to move through the sys-
tem independently of each other. Suppose that the numbers of people initially in
states 1,2, . . . , r are independent Poisson random variables with respective means
λ1, λ2, . . . , λr . We are interested in determining the joint distribution of the num-
bers of individuals in states 1,2, . . . , r at some time n.

Solution: For fixed i, let Nj(i), j = 1, . . . , r denote the number of those
individuals, initially in state i, that are in state j at time n. Now each of the
(Poisson distributed) number of people initially in state i will, independently of
each other, be in state j at time n with probability P n

ij , where P n
ij is the n-stage

transition probability for the Markov chain having transition probabilities Pij .
Hence, the Nj(i), j = 1, . . . , r will be independent Poisson random variables
with respective means λiP

n
ij , j = 1, . . . , r . Because the sum of independent

Poisson random variables is itself a Poisson random variable, it follows that
the number of individuals in state j at time n—namely

∑r
i=1 Nj(i)—will be

independent Poisson random variables with respective means
∑

i λiP
n
ij , for j =

1, . . . , r . �

Example 5.17 (The Coupon Collecting Problem) There are m different types
of coupons. Each time a person collects a coupon it is, independently of ones
previously obtained, a type j coupon with probability pj ,

∑m
j=1 pj = 1. Let N

denote the number of coupons one needs to collect in order to have a complete
collection of at least one of each type. Find E[N ].

Solution: If we let Nj denote the number one must collect to obtain a type
j coupon, then we can express N as

N = max
1�j�m

Nj

However, even though each Nj is geometric with parameter pj , the foregoing
representation of N is not that useful, because the random variables Nj are not
independent.
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We can, however, transform the problem into one of determining the ex-
pected value of the maximum of independent random variables. To do so,
suppose that coupons are collected at times chosen according to a Poisson
process with rate λ = 1. Say that an event of this Poisson process is of type j ,
1 � j � m, if the coupon obtained at that time is a type j coupon. If we now let
Nj(t) denote the number of type j coupons collected by time t , then it follows
from Proposition 5.2 that {Nj(t), t � 0}, j = 1, . . . ,m are independent Poisson
processes with respective rates λpj = pj . Let Xj denote the time of the first
event of the j th process, and let

X = max
1�j�m

Xj

denote the time at which a complete collection is amassed. Since the Xj are
independent exponential random variables with respective rates pj , it follows
that

P {X < t} = P {maxXj < t}
= P {Xj < t, for j = 1, . . . ,m}

=
m∏

j=1

(1 − e−pj t )

Therefore,

E[X] =
∫ ∞

0
P {X > t} dt

=
∫ ∞

0

{

1 −
m∏

j=1

(1 − e−pj t )

}

dt (5.15)

It remains to relate E[X], the expected time until one has a complete set,
to E[N ], the expected number of coupons it takes. This can be done by let-
ting Ti denote the ith interarrival time of the Poisson process that counts the
number of coupons obtained. Then it is easy to see that

X =
N∑

i=1

Ti

Since the Ti are independent exponentials with rate 1, and N is independent of
the Ti , we see that

E[X|N ] = NE[Ti] = N
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Therefore,

E[X] = E[N ]
and so E[N ] is as given in Equation (5.15).

Let us now compute the expected number of types that appear only once in
the complete collection. Letting Ii equal 1 if there is only a single type i coupon
in the final set, and letting it equal 0 otherwise, we thus want

E

[
m∑

i=1

Ii

]

=
m∑

i=1

E[Ii]

=
m∑

i=1

P {Ii = 1}

Now there will be a single type i coupon in the final set if a coupon of each
type has appeared before the second coupon of type i is obtained. Thus, letting
Si denote the time at which the second type i coupon is obtained, we have

P {Ii = 1} = P {Xj < Si, for all j �= i}
Using that Si has a gamma distribution with parameters (2,pi), this yields

P {Ii = 1} =
∫ ∞

0
P {Xj < Si for all j �= i|Si = x}pie

−pixpix dx

=
∫ ∞

0
P {Xj < x, for all j �= i}p2

i x e−pix dx

=
∫ ∞

0

∏

j �=i

(1 − e−pj x)p2
i xe−pix dx

Therefore, we have the result

E

[
m∑

i=1

Ii

]

=
∫ ∞

0

m∑

i=1

∏

j �=i

(1 − e−pj x)p2
i xe−pix dx

=
∫ ∞

0
x

m∏

j=1

(1 − e−pj x)

m∑

i=1

p2
i

e−pix

1 − e−pix
dx �

The next probability calculation related to Poisson processes that we shall de-
termine is the probability that n events occur in one Poisson process before m

events have occurred in a second and independent Poisson process. More for-
mally let {N1(t), t � 0} and {N2(t), t � 0} be two independent Poisson processes
having respective rates λ1 and λ2. Also, let S1

n denote the time of the nth event of
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the first process, and S2
m the time of the mth event of the second process. We seek

P
{
S1

n < S2
m

}

Before attempting to calculate this for general n and m, let us consider the
special case n = m = 1. Since S1

1 , the time of the first event of the N1(t) process,
and S2

1 , the time of the first event of the N2(t) process, are both exponentially
distributed random variables (by Proposition 5.1) with respective means 1/λ1 and
1/λ2, it follows from Section 5.2.3 that

P
{
S1

1 < S2
1

}= λ1

λ1 + λ2
(5.16)

Let us now consider the probability that two events occur in the N1(t) process
before a single event has occurred in the N2(t) process. That is, P {S1

2 < S2
1}. To

calculate this we reason as follows: In order for the N1(t) process to have two
events before a single event occurs in the N2(t) process, it is first necessary for
the initial event that occurs to be an event of the N1(t) process [and this occurs, by
Equation (5.16), with probability λ1/(λ1 +λ2)]. Now given that the initial event is
from the N1(t) process, the next thing that must occur for S1

2 to be less than S2
1 is

for the second event also to be an event of the N1(t) process. However, when the
first event occurs both processes start all over again (by the memoryless property
of Poisson processes) and hence this conditional probability is also λ1/(λ1 + λ2);
thus, the desired probability is given by

P
{
S1

2 < S2
1

}=
(

λ1

λ1 + λ2

)2

In fact this reasoning shows that each event that occurs is going to be an event of
the N1(t) process with probability λ1/(λ1 + λ2) or an event of the N2(t) process
with probability λ2/(λ1 + λ2), independent of all that has previously occurred.
In other words, the probability that the N1(t) process reaches n before the N2(t)

process reaches m is just the probability that n heads will appear before m tails if
one flips a coin having probability p = λ1/(λ1 + λ2) of a head appearing. But by
noting that this event will occur if and only if the first n + m − 1 tosses result in n

or more heads, we see that our desired probability is given by

P
{
S1

n < S2
m

}=
n+m−1∑

k=n

(
n + m − 1

k

)(
λ1

λ1 + λ2

)k(
λ2

λ1 + λ2

)n+m−1−k

5.3.5. Conditional Distribution of the Arrival Times

Suppose we are told that exactly one event of a Poisson process has taken place
by time t , and we are asked to determine the distribution of the time at which
the event occurred. Now, since a Poisson process possesses stationary and inde-
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pendent increments it seems reasonable that each interval in [0, t] of equal length
should have the same probability of containing the event. In other words, the time
of the event should be uniformly distributed over [0, t]. This is easily checked
since, for s � t ,

P {T1 < s|N(t) = 1} = P {T1 < s,N(t) = 1}
P {N(t) = 1}

= P {1 event in [0, s),0 events in [s, t]}
P {N(t) = 1}

= P {1 event in [0, s)}P {0 events in [s, t]}
P {N(t) = 1}

= λse−λse−λ(t−s)

λte−λt

= s

t

This result may be generalized, but before doing so we need to introduce the
concept of order statistics.

Let Y1, Y2, . . . , Yn be n random variables. We say that Y(1), Y(2), . . . , Y(n) are
the order statistics corresponding to Y1, Y2, . . . , Yn if Y(k) is the kth smallest value
among Y1, . . . , Yn, k = 1,2, . . . , n. For instance if n = 3 and Y1 = 4, Y2 = 5,
Y3 = 1 then Y(1) = 1, Y(2) = 4, Y(3) = 5. If the Yi , i = 1, . . . , n, are independent
identically distributed continuous random variables with probability density f ,
then the joint density of the order statistics Y(1), Y(2), . . . , Y(n) is given by

f (y1, y2, . . . , yn) = n!
n∏

i=1

f (yi), y1 < y2 < · · · < yn

The preceding follows since

(i) (Y(1), Y(2), . . . , Y(n)) will equal (y1, y2, . . . , yn) if (Y1, Y2, . . . , Yn) is equal
to any of the n! permutations of (y1, y2, . . . , yn);

and

(ii) the probability density that (Y1, Y2, . . . , Yn) is equal to yi1, . . . , yin is∏n
j=1 f (yij ) =∏n

j=1 f (yj ) when i1, . . . , in is a permutation of 1,2, . . . , n.

If the Yi, i = 1, . . . , n, are uniformly distributed over (0, t), then we ob-
tain from the preceding that the joint density function of the order statistics
Y(1), Y(2), . . . , Y(n) is

f (y1, y2, . . . , yn) = n!
tn

, 0 < y1 < y2 < · · · < yn < t

We are now ready for the following useful theorem.
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Theorem 5.2 Given that N(t) = n, the n arrival times S1, . . . , Sn have the
same distribution as the order statistics corresponding to n independent random
variables uniformly distributed on the interval (0, t).

Proof To obtain the conditional density of S1, . . . , Sn given that N(t) = n

note that for 0 < S1 < · · · < Sn < t the event that S1 = s1, S2 = s2, . . . ,

Sn = sn, N(t) = n is equivalent to the event that the first n + 1 interarrival times
satisfy T1 = s1, T2 = s2 − s1, . . . , Tn = sn − sn−1, Tn+1 > t − sn. Hence, using
Proposition 5.1, we have that the conditional joint density of S1, . . . , Sn given that
N(t) = n is as follows:

f (s1, . . . , sn | n) = f (s1, . . . , sn, n)

P {N(t) = n}

= λe−λs1λe−λ(s2−s1) · · ·λe−λ(sn−sn−1)e−λ(t−sn)

e−λt (λt)n/n!
= n!

tn
, 0 < s1 < · · · < sn < t

which proves the result. �

Remark The preceding result is usually paraphrased as stating that, under the
condition that n events have occurred in (0, t), the times S1, . . . , Sn at which
events occur, considered as unordered random variables, are distributed indepen-
dently and uniformly in the interval (0, t).

Application of Theorem 5.2 (Sampling a Poisson Process) In
Proposition 5.2 we showed that if each event of a Poisson process is indepen-
dently classified as a type I event with probability p and as a type II event with
probability 1 − p then the counting processes of type I and type II events are
independent Poisson processes with respective rates λp and λ(1 − p). Suppose
now, however, that there are k possible types of events and that the probability
that an event is classified as a type i event, i = 1, . . . , k, depends on the time the
event occurs. Specifically, suppose that if an event occurs at time y then it will
be classified as a type i event, independently of anything that has previously oc-
curred, with probability Pi(y), i = 1, . . . , k where

∑k
i=1 Pi(y) = 1. Upon using

Theorem 5.2 we can prove the following useful proposition.

Proposition 5.3 If Ni(t), i =1, . . . , k, represents the number of type i events
occurring by time t then Ni(t), i = 1, . . . , k, are independent Poisson random
variables having means

E[Ni(t)] = λ

∫ t

0
Pi(s) ds

Before proving this proposition, let us first illustrate its use.
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Example 5.18 (An Infinite Server Queue) Suppose that customers arrive at a
service station in accordance with a Poisson process with rate λ. Upon arrival the
customer is immediately served by one of an infinite number of possible servers,
and the service times are assumed to be independent with a common distribu-
tion G. What is the distribution of X(t), the number of customers that have com-
pleted service by time t? What is the distribution of Y(t), the number of customers
that are being served at time t?

To answer the preceding questions let us agree to call an entering customer a
type I customer if he completes his service by time t and a type II customer if he
does not complete his service by time t . Now, if the customer enters at time s,
s � t , then he will be a type I customer if his service time is less than t − s.
Since the service time distribution is G, the probability of this will be G(t − s).
Similarly, a customer entering at time s, s � t , will be a type II customer with
probability Ḡ(t − s) = 1 − G(t − s). Hence, from Proposition 5.3 we obtain that
the distribution of X(t), the number of customers that have completed service by
time t , is Poisson distributed with mean

E[X(t)] = λ

∫ t

0
G(t − s) ds = λ

∫ t

0
G(y)dy (5.17)

Similarly, the distribution of Y(t), the number of customers being served at time t

is Poisson with mean

E[Y(t)] = λ

∫ t

0
Ḡ(t − s) ds = λ

∫ t

0
Ḡ(y) dy (5.18)

Furthermore, X(t) and Y(t) are independent.
Suppose now that we are interested in computing the joint distribution of Y(t)

and Y(t + s)—that is, the joint distribution of the number in the system at time t

and at time t + s. To accomplish this, say that an arrival is

type 1: if he arrives before time t and completes service between t and t + s,
type 2: if he arrives before t and completes service after t + s,
type 3: if he arrives between t and t + s and completes service after t + s,
type 4: otherwise.

Hence an arrival at time y will be type i with probability Pi(y) given by

P1(y) =
{

G(t + s − y) − G(t − y), if y < t

0, otherwise

P2(y) =
{

Ḡ(t + s − y), if y < t

0, otherwise
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P3(y) =
{

Ḡ(t + s − y), if t < y < t + s

0, otherwise

P4(y) = 1 − P1(y) − P2(y) − P3(y)

Hence, if Ni = Ni(s + t), i = 1,2,3, denotes the number of type i events that
occur, then from Proposition 5.3, Ni , i = 1,2,3, are independent Poisson random
variables with respective means

E[Ni] = λ

∫ t+s

0
Pi(y) dy, i = 1,2,3

Because

Y(t) = N1 + N2,

Y (t + s) = N2 + N3

it is now an easy matter to compute the joint distribution of Y(t) and Y(t + s).
For instance,

Cov[Y(t), Y (t + s)]
= Cov(N1 + N2,N2 + N3)

= Cov(N2,N2) by independence of N1,N2,N3

= Var(N2)

= λ

∫ t

0
Ḡ(t + s − y) dy = λ

∫ t

0
Ḡ(u + s) du

where the last equality follows since the variance of a Poisson random variable
equals its mean, and from the substitution u = t − y. Also, the joint distribution
of Y(t) and Y(t + s) is as follows:

P {Y(t) = i, Y (t + s) = j} = P {N1 + N2 = i,N2 + N3 = j}

=
min(i,j)∑

l=0

P {N2 = l,N1 = i − l,N3 = j − l}

=
min(i,j)∑

l=0

P {N2 = l}P {N1 = i − l}P {N3 = j − l} �

Example 5.19 (Minimizing the Number of Encounters) Suppose that cars
enter a one-way highway in accordance with a Poisson process with rate λ. The
cars enter at point a and depart at point b (see Figure 5.2). Each car travels at a
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Figure 5.2. Cars enter at point a and depart at b.

constant speed that is randomly determined, independently from car to car, from
the distribution G. When a faster car encounters a slower one, it passes it with
no time being lost. If your car enters the highway at time s and you are able to
choose your speed, what speed minimizes the expected number of encounters you
will have with other cars, where we say that an encounter occurs each time your
car either passes or is passed by another car?

Solution: We will show that for large s the speed that minimizes the ex-
pected number of encounters is the median of the speed distribution G. To see
this, suppose that the speed x is chosen. Let d = b − a denote the length of the
road. Upon choosing the speed x, it follows that your car will enter the road at
time s and will depart at time s + t0, where t0 = d/x is the travel time.

Now, the other cars enter the road according to a Poisson process with rate λ.
Each of them chooses a speed X according to the distribution G, and this results
in a travel time T = d/X. Let F denote the distribution of travel time T . That is,

F(t) = P {T � t} = P {d/X � t} = P {X � d/t} = Ḡ(d/t)

Let us say that an event occurs at time t if a car enters the highway at time t .
Also, say that the event is a type 1 event if it results in an encounter with your
car. Now, your car will enter the road at time s and will exit at time s + t0.
Hence, a car will encounter your car if it enters before s and exits after s + t0
(in which case your car will pass it on the road) or if it enters after s but exits
before s + t0 (in which case it will pass your car). As a result, a car that enters
the road at time t will encounter your car if its travel time T is such that

t + T > s + t0, if t < s

t + T < s + t0, if s < t < s + t0

From the preceding, we see that an event at time t will, independently of other
events, be a type 1 event with probability p(t) given by

p(t) =
⎧
⎨

⎩

P {t + T > s + t0} = F̄ (s + t0 − t), if t < s

P {t + T < s + t0} = F(s + t0 − t), if s < t < s + t0
0, if t > s + t0



322 5 The Exponential Distribution and the Poisson Process

Since events (that is, cars entering the road) are occurring according to a Pois-
son process it follows, upon applying Proposition 5.3, that the total number of
type 1 events that ever occurs is Poisson with mean

λ

∫ ∞

0
p(t) dt = λ

∫ s

0
F̄ (s + t0 − t) dt + λ

∫ s+t0

s

F (s + t0 − t) dt

= λ

∫ s+t0

t0

F̄ (y) dy + λ

∫ t0

0
F(y)dy

To choose the value of t0 that minimizes the preceding quantity, we differenti-
ate. This gives

d

dt0

{

λ

∫ ∞

0
p(t) dt

}

= λ{F̄ (s + t0) − F̄ (t0) + F(t0)}

Setting this equal to 0, and using that F̄ (s + t0) ≈ 0 when s is large, we see that
the optimal travel time t0 is such that

F(t0) − F̄ (t0) = 0

or

F(t0) − [1 − F(t0)] = 0

or

F(t0) = 1
2

That is, the optimal travel time is the median of the travel time distribution.
Since the speed X is equal to the distance d divided by the travel time T ,
it follows that the optimal speed x0 = d/t0 is such that

F(d/x0) = 1
2

Since

F(d/x0) = Ḡ(x0)

we see that Ḡ(x0) = 1
2 , and so the optimal speed is the median of the distribu-

tion of speeds.
Summing up, we have shown that for any speed x the number of encoun-

ters with other cars will be a Poisson random variable, and the mean of this
Poisson will be smallest when the speed x is taken to be the median of the
distribution G. �

Example 5.20 (Tracking the Number of HIV Infections) There is a relatively
long incubation period from the time when an individual becomes infected with
the HIV virus, which causes AIDS, until the symptoms of the disease appear.
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As a result, it is difficult for public health officials to be certain of the number
of members of the population that are infected at any given time. We will now
present a first approximation model for this phenomenon, which can be used to
obtain a rough estimate of the number of infected individuals.

Let us suppose that individuals contract the HIV virus in accordance with a
Poisson process whose rate λ is unknown. Suppose that the time from when an
individual becomes infected until symptoms of the disease appear is a random
variable having a known distribution G. Suppose also that the incubation times of
different infected individuals are independent.

Let N1(t) denote the number of individuals who have shown symptoms of the
disease by time t . Also, let N2(t) denote the number who are HIV positive but
have not yet shown any symptoms by time t . Now, since an individual who con-
tracts the virus at time s will have symptoms by time t with probability G(t − s)

and will not with probability Ḡ(t − s), it follows from Proposition 5.3 that N1(t)

and N2(t) are independent Poisson random variables with respective means

E[N1(t)] = λ

∫ t

0
G(t − s) ds = λ

∫ t

0
G(y)dy

and

E[N2(t)] = λ

∫ t

0
Ḡ(t − s) ds = λ

∫ t

0
Ḡ(y) dy

Now, if we knew λ, then we could use it to estimate N2(t), the number of in-
dividuals infected but without any outward symptoms at time t , by its mean
value E[N2(t)]. However, since λ is unknown, we must first estimate it. Now,
we will presumably know the value of N1(t), and so we can use its known value
as an estimate of its mean E[N1(t)]. That is, if the number of individuals who
have exhibited symptoms by time t is n1, then we can estimate that

n1 ≈ E[N1(t)] = λ

∫ t

0
G(y)dy

Therefore, we can estimate λ by the quantity λ̂ given by

λ̂ = n1

/∫ t

0
G(y)dy

Using this estimate of λ, we can estimate the number of infected but symptomless
individuals at time t by

estimate of N2(t) = λ̂

∫ t

0
Ḡ(y) dy

= n1
∫ t

0 Ḡ(y) dy
∫ t

0 G(y)dy
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For example, suppose that G is exponential with mean μ. Then Ḡ(y) = e−y/μ,
and a simple integration gives that

estimate of N2(t) = n1μ(1 − e−t/μ)

t − μ(1 − e−t/μ)

If we suppose that t = 16 years, μ = 10 years, and n1 = 220 thousand, then the
estimate of the number of infected but symptomless individuals at time 16 is

estimate = 2,200(1 − e−1.6)

16 − 10(1 − e−1.6)
= 218.96

That is, if we suppose that the foregoing model is approximately correct (and we
should be aware that the assumption of a constant infection rate λ that is unchang-
ing over time is almost certainly a weak point of the model), then if the incubation
period is exponential with mean 10 years and if the total number of individuals
who have exhibited AIDS symptoms during the first 16 years of the epidemic is
220 thousand, then we can expect that approximately 219 thousand individuals
are HIV positive though symptomless at time 16. �

Proof of Proposition 5.3 Let us compute the joint probability
P {Ni(t) = ni , i = 1, . . . , k}. To do so note first that in order for there to have
been ni type i events for i = 1, . . . , k there must have been a total of

∑k
i=1 ni

events. Hence, conditioning on N(t) yields

P {N1(t) = n1, . . . ,Nk(t) = nk}

= P

{

N1(t) = n1, . . . ,Nk(t) = nk

∣
∣
∣ N(t) =

k∑

i=1

ni

}

× P

{

N(t) =
k∑

i=1

ni

}

Now consider an arbitrary event that occurred in the interval [0, t]. If it had oc-
curred at time s, then the probability that it would be a type i event would be Pi(s).
Hence, since by Theorem 5.2 this event will have occurred at some time uniformly
distributed on (0, t), it follows that the probability that this event will be a type i



5.3. The Poisson Process 325

event is

Pi = 1

t

∫ t

0
Pi(s) ds

independently of the other events. Hence,

P

{

Ni(t) = ni, i = 1, . . . , k

∣
∣
∣ N(t) =

k∑

i=1

ni

}

will just equal the multinomial probability of ni type i outcomes for i = 1, . . . , k

when each of
∑k

i=1 ni independent trials results in outcome i with probability
Pi, i = 1, . . . , k. That is,

P

{

N1(t) = n1, . . . ,Nk(t) = nk

∣
∣
∣ N(t) =

k∑

i=1

ni

}

= (
∑k

i=1 ni)!
n1! · · ·nk! P

n1
1 · · ·P nk

k

Consequently,

P {N1(t) = n1, . . . ,Nk(t) = nk}

= (
∑

i ni)!
n1! · · ·nk!P

n1
1 · · ·P nk

k e−λt (λt)
∑

i ni

(
∑

i ni)!

=
k∏

i=1

e−λtPi (λtPi)
ni /ni !

and the proof is complete �

We now present some additional examples of the usefulness of Theorem 5.2.

Example 5.21 Insurance claims are made at times distributed according to a
Poisson process with rate λ; the successive claim amounts are independent ran-
dom variables having distribution G with mean μ, and are independent of the
claim arrival times. Let Si and Ci denote, respectively, the time and the amount
of the ith claim. The total discounted cost of all claims made up to time t , call it
D(t), is defined by

D(t) =
N(t)∑

i=1

e−αSi Ci
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where α is the discount rate and N(t) is the number of claims made by time t . To
determine the expected value of D(t), we condition on N(t) to obtain

E[D(t)] =
∞∑

n=0

E[D(t)|N(t) = n]e−λt (λt)n

n!

Now, conditional on N(t) = n, the claim arrival times S1, . . . , Sn are distributed
as the ordered values U(1), . . . ,U(n) of n independent uniform (0, t) random vari-
ables U1, . . . ,Un. Therefore,

E[D(t)|N(t) = n] = E

[
n∑

i=1

Cie
−αU(i)

]

=
n∑

i=1

E[Cie
−αU(i)]

=
n∑

i=1

E[Ci]E[e−αU(i)]

where the final equality used the independence of the claim amounts and their
arrival times. Because E[Ci] = μ, continuing the preceding gives

E[D(t)|N(t) = n] = μ

n∑

i=1

E[e−αU(i)]

= μE

[
n∑

i=1

e−αU(i)

]

= μE

[
n∑

i=1

e−αUi

]

The last equality follows because U(1), . . . ,U(n) are the values U1, . . . ,Un in
increasing order, and so

∑n
i=1 e−αU(i) = ∑n

i=1 e−αUi . Continuing the string of
equalities yields

E[D(t)|N(t) = n] = nμE[e−αU ]

= n
μ

t

∫ t

0
e−αx dx

= n
μ

αt
(1 − e−αt )



5.3. The Poisson Process 327

Therefore,

E[D(t)|N(t)] = N(t)
μ

αt
(1 − e−αt )

Taking expectations yields the result

E[D(t)] = λμ

α
(1 − e−αt ) �

Example 5.22 (An Optimization Example) Suppose that items arrive at a
processing plant in accordance with a Poisson process with rate λ. At a fixed
time T , all items are dispatched from the system. The problem is to choose an
intermediate time, t ∈ (0, T ), at which all items in the system are dispatched, so
as to minimize the total expected wait of all items.

If we dispatch at time t, 0 < t < T , then the expected total wait of all items
will be

λt2

2
+ λ(T − t)2

2

To see why this is true, we reason as follows: The expected number of arrivals in
(0, t) is λt , and each arrival is uniformly distributed on (0, t), and hence has ex-
pected wait t/2. Thus, the expected total wait of items arriving in (0, t) is λt2/2.
Similar reasoning holds for arrivals in (t, T ), and the preceding follows. To mini-
mize this quantity, we differentiate with respect to t to obtain

d

dt

[

λ
t2

2
+ λ

(T − t)2

2

]

= λt − λ(T − t)

and equating to 0 shows that the dispatch time that minimizes the expected total
wait is t = T/2. �

We end this section with a result, quite similar in spirit to Theorem 5.2, which
states that given Sn, the time of the nth event, then the first n − 1 event times
are distributed as the ordered values of a set of n − 1 random variables uniformly
distributed on (0, Sn).

Proposition 5.4 Given that Sn = t , the set S1, . . . , Sn−1 has the distribution
of a set of n − 1 independent uniform (0, t) random variables.

Proof We can prove the preceding in the same manner as we did Theorem 5.2,
or we can argue more loosely as follows:

S1, . . . , Sn−1 | Sn = t ∼ S1, . . . , Sn−1 | Sn = t, N(t−) = n − 1

∼ S1, . . . , Sn−1 | N(t−) = n − 1

where ∼ means “has the same distribution as” and t− is infinitesimally smaller
than t . The result now follows from Theorem 5.2. �
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5.3.6. Estimating Software Reliability

When a new computer software package is developed, a testing procedure is of-
ten put into effect to eliminate the faults, or bugs, in the package. One common
procedure is to try the package on a set of well-known problems to see if any
errors result. This goes on for some fixed time, with all resulting errors being
noted. Then the testing stops and the package is carefully checked to determine
the specific bugs that were responsible for the observed errors. The package is
then altered to remove these bugs. Because we cannot be certain that all the bugs
in the package have been eliminated, however, a problem of great importance is
the estimation of the error rate of the revised software package.

To model the preceding, let us suppose that initially the package contains an
unknown number, m, of bugs, which we will refer to as bug 1, bug 2, . . . , bug m.
Suppose also that bug i will cause errors to occur in accordance with a Poisson
process having an unknown rate λi, i = 1, . . . ,m. Then, for instance, the number
of errors due to bug i that occurs in any s units of operating time is Poisson
distributed with mean λis. Also suppose that these Poisson processes caused by
bugs i, i = 1, . . . ,m are independent. In addition, suppose that the package is to
be run for t time units with all resulting errors being noted. At the end of this
time a careful check of the package is made to determine the specific bugs that
caused the errors (that is, a debugging, takes place). These bugs are removed, and
the problem is then to determine the error rate for the revised package.

If we let

ψi(t) =
{

1, if bug i has not caused an error by t

0, otherwise

then the quantity we wish to estimate is

�(t) =
∑

i

λiψi(t)

the error rate of the final package. To start, note that

E[�(t)] =
∑

i

λiE[ψi(t)]

=
∑

i

λie
−λi t (5.19)

Now each of the bugs that is discovered would have been responsible for a certain
number of errors. Let us denote by Mj(t) the number of bugs that were responsi-
ble for j errors, j � 1. That is, M1(t) is the number of bugs that caused exactly
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one error, M2(t) is the number that caused two errors, and so on, with
∑

j jMj (t)

equaling the total number of errors that resulted. To compute E[M1(t)], let us
define the indicator variables, Ii(t), i � 1, by

Ii(t) =
{

1, bug i causes exactly 1 error
0, otherwise

Then,

M1(t) =
∑

i

Ii(t)

and so

E[M1(t)] =
∑

i

E[Ii(t)] =
∑

i

λi te
−λi t (5.20)

Thus, from (5.19) and (5.20) we obtain the intriguing result that

E

[

�(t) − M1(t)

t

]

= 0 (5.21)

Thus suggests the possible use of M1(t)/t as an estimate of �(t). To determine
whether or not M1(t)/t constitutes a “good” estimate of �(t) we shall look at
how far apart these two quantities tend to be. That is, we will compute

E

[(

�(t) − M1(t)

t

)2
]

= Var

(

�(t) − M1(t)

t

)

from (5.21)

= Var(�(t)) − 2

t
Cov(�(t),M1(t)) + 1

t2
Var(M1(t))

Now,

Var(�(t)) =
∑

i

λ2
i Var(ψi(t)) =

∑

i

λ2
i e

−λi t (1 − e−λi t ),

Var(M1(t)) =
∑

i

Var(Ii(t)) =
∑

i

λi te
−λi t (1 − λite

−λi t ),

Cov(�(t),M1(t)) = Cov

(
∑

i

λiψi(t),
∑

j

Ij (t)

)

=
∑

i

∑

j

Cov(λiψi(t), Ij (t))
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=
∑

i

λiCov(ψi(t), Ii(t))

= −
∑

i

λie
−λi tλi te

−λi t

where the last two equalities follow since ψi(t) and Ij (t) are independent when
i �= j because they refer to different Poisson processes and ψi(t)Ii(t) = 0. Hence
we obtain that

E

[(

�(t) − M1(t)

t

)2
]

=
∑

i

λ2
i e

−λi t + 1

t

∑

i

λie
−λi t

= E[M1(t) + 2M2(t)]
t2

where the last equality follows from (5.20) and the identity (which we leave as an
exercise)

E[M2(t)] = 1

2

∑

i

(λi t)
2e−λi t (5.22)

Thus, we can estimate the average square of the difference between �(t) and
M1(t)/t by the observed value of M1(t) + 2M2(t) divided by t2.

Example 5.23 Suppose that in 100 units of operating time 20 bugs are dis-
covered of which two resulted in exactly one, and three resulted in exactly two,
errors. Then we would estimate that �(100) is something akin to the value of
a random variable whose mean is equal to 1/50 and whose variance is equal to
8/10,000. �

5.4. Generalizations of the Poisson Process

5.4.1. Nonhomogeneous Poisson Process

In this section we consider two generalizations of the Poisson process. The first
of these is the nonhomogeneous, also called the nonstationary, Poisson process,
which is obtained by allowing the arrival rate at time t to be a function of t .

Definition 5.4 The counting process {N(t), t �0} is said to be a nonhomo-
geneous Poisson process with intensity function λ(t), t � 0, if

(i) N(0) = 0.
(ii) {N(t), t � 0} has independent increments.

(iii) P {N(t + h) − N(t) � 2} = o(h).
(iv) P {N(t + h) − N(t) = 1} = λ(t)h + o(h).
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Time sampling an ordinary Poisson process generates a nonhomogeneous Poisson
process. That is, let {N(t), t � 0} be a Poisson process with rate λ, and suppose
that an event occurring at time t is, independently of what has occurred prior
to t , counted with probability p(t). With Nc(t) denoting the number of counted
events by time t , the counting process {Nc(t), t � 0} is a nonhomogeneous Pois-
son process with intensity function λ(t) = λp(t). This is verified by noting that
{Nc(t), t � 0} satisfies the nonhomogeneous Poisson process axioms.

1. Nc(0) = 0.

2. The number of counted events in (s, s + t) depends solely on the number
of events of the Poisson process in (s, s + t), which is independent of what
has occurred prior to time s. Consequently, the number of counted events
in (s, s + t) is independent of the process of counted events prior to s, thus
establishing the independent increment property.

3. Let Nc(t, t +h) = Nc(t +h)−Nc(t), with a similar definition of N(t, t +h).

P {Nc(t, t + h) � 2} � P {N(t, t + h) � 2} = o(h)

4. To compute P {Nc(t, t + h) = 1}, condition on N(t, t + h).

P {Nc(t, t + h) = 1}
= P {Nc(t, t + h) = 1|N(t, t + h) = 1}P {N(t, t + h) = 1}

+ P {Nc(t, t + h) = 1|N(t, t + h) � 2}P {N(t, t + h) � 2}
= P {Nc(t, t + h) = 1|N(t, t + h) = 1}λh + o(h)

= p(t)λh + o(h)

Not only does time sampling a Poisson process result in a nonhomogeneous
Poisson process, but it also works the other way: every nonhomogeneous Pois-
son process with a bounded intensity function can be thought of as being a time
sampling of a Poisson process. To show this, we start by showing that the su-
perposition of two independent nonhomogeneous Poisson processes remains a
nonhomogeneous Poisson process.

Proposition 5.4 Let {N(t), t � 0}, and {M(t), t � 0}, be independent non-
homogeneous Poisson processes, with respective intensity functions λ(t) and
μ(t), and let N∗(t) = N(t) + M(t). Then, the following are true.

(a) {N∗(t), t � 0} is a nonhomogeneous Poisson process with intensity func-
tion λ(t) + μ(t).
(b) Given that an event of the {N∗(t)} process occurs at time t then, indepen-
dent of what occurred prior to t , the event at t was from the {N(t)} process with
probability λ(t)

λ(t)+μ(t)
.
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Proof To verify that {N∗(t), t � 0}, is a nonhomogeneous Poisson process with
intensity function λ(t) + μ(t), we will argue that it satisfies the nonhomogeneous
Poisson process axioms.

1. N∗(0) = N(0) + M(0) = 0.
2. To verify independent increments, let I1, . . . , In be nonoverlapping in-

tervals. Let N(I) and M(I) denote, respectively, the number of events
from the {N(t)} process and from the {M(t)} process that are in the
interval I . Because each counting process has independent increments,
and the two processes are independent of each other, it follows that
N(I1), . . . ,N(In),M(I1), . . . ,M(In) are all independent, and thus so are
N(I1) + M(I1), . . . ,N(In) + M(In), which shows that {N∗(t), t � 0} also
possesses independent increments.

3. In order for there to be exactly one event of the N∗ process between t and
t + h, either there must be one event of the N process and 0 events of the
M process or the reverse. The first of these mutually exclusive possibilities
occurs with probability

P {N(t, t + h) = 1,M(t, t + h) = 0}
= P {N(t, t + h) = 1}P {M(t, t + h) = 0}
= (λ(t)h + o(h)) (1 − μ(t)h + o(h))

= λ(t)h + o(h)

Similarly, the second possibility occurs with probability

P {N(t, t + h) = 0,M(t, t + h) = 1} = μ(t)h + o(h)

yielding that

P {N∗(t + h) − N∗(t) = 1} = (λ(t) + μ(t))h + o(h)

4. In order for there to be at least two events of the N∗ process between t

and t + h, one of the following three possibilities must occur: there is at
least two events of the N process between t and t + h; there is at least
two events of the M process between t and t + h; or both processes have
exactly one event between t and t + h. Each of the first two of these possi-
bilities occurs with probability o(h), while the third occurs with probability
(λ(t)h + o(h))(μ(t)h + o(h)) = o(h). Thus,

P {N∗(t + h) − N∗(t) � 2} � o(h)

Thus, part (a) is proven.
To prove (b), note first that it follows from independent increments that which

process caused the event at time t is independent of what occurred prior to t . To
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find the conditional probability that the event at time t is from the N process, we
use that

P {N(t, t + h) = 1|N∗(t, t + h) = 1} = P {N(t, t + h) = 1,M(t, t + h) = 0}
P {N∗(t, t + h) = 1}

= λ(t)h + o(h)

(λ(t) + μ(t))h + o(h)

= λ(t) + o(h)
h

λ(t) + μ(t) + o(h)
h

Letting h → 0 in the preceding proves (b). �

Now, suppose that {N(t), t � 0} is a nonhomogeneous Poisson process with a
bounded intensity function λ(t), and suppose that λ is such that λ(t) � λ, for all
t � 0. Letting {M(t), t � 0} be a nonhomogeneous Poisson process with intensity
function μ(t) = λ − λ(t), t � 0, that is independent of {N(t), t � 0}, it follows
from Proposition 5.4 that {N(t), t � 0} can be regarded as being the process of
time sampled events of the Poisson process {N(t) + M(t), t � 0}, where an event
of the Poisson process that occurs at time t is counted with probability p(t) =
λ(t)/λ.

With this interpretation of a nonhomogeneous Poisson process as being a time-
sampled Poisson process, the number of events of the nonhomogeneous Poisson
process by time t , namely, N(t), is equal to the number of counted events of the
Poisson process by time t . Consequently, from Proposition 5.3 it follows that N(t)

is a Poisson random variable with mean

E[N(t)] = λ

∫ t

0

λ(y)

λ
dy =

∫ t

0
λ(y)dy

Moreover, by regarding the nonhomogeneous Poisson process as starting at
time s, the preceding yields that N(t + s)−N(t), the number of events in its first t

time units, is a Poisson random variable with mean
∫ t

0 λ(s+y)dy = ∫ s+t

s
λ(y) dy.

The function m(t) defined by

m(t) =
∫ t

0
λ(y)dy

is called the mean value function of the nonhomogeneous Poisson process.

Remark That N(s + t)−N(s) has a Poisson distribution with mean∫ s+t

s
λ(y) dy is a consequence of the Poisson limit of the sum of independent
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Bernoulli random variables (see Example 2.47). To see why, subdivide the in-
terval [s, s + t] into n subintervals of length t

n
, where subinterval i goes from

s + (i − 1) t
n

to s + i t
n

, i = 1, . . . , n. Let Ni = N(s + i t
n
) − N(s + (i − 1) t

n
) be

the number of events that occur in subinterval i, and note that

P {� 2 events in some subinterval} = P

(
n⋃

i=1

{Ni � 2}
)

�
n∑

i=1

P {Ni � 2}

= no(t/n) by Axiom (iii)

Because

lim
n→∞no(t/n) = lim

n→∞ t
o(t/n)

t/n
= 0

it follows that, as n increases to ∞, the probability of having two or more events
in any of the n subintervals goes to 0. Consequently, with a probability going to 1,
N(t) will equal the number of subintervals in which an event occurs. Because the
probability of an event in subinterval i is λ(s + i t

n
) t
n

+ o( t
n
), it follows, because

the number of events in different subintervals are independent, that when n is
large the number of subintervals that contain an event is approximately a Poisson
random variable with mean

n∑

i=1

λ

(

s + i
t

n

)
t

n
+ no(t/n)

But,

lim
n→∞

n∑

i=1

λ

(

s + i
t

n

)
t

n
+ no(t/n) =

∫ s+t

s

λ(y) dy

and the result follows. �

The importance of the nonhomogeneous Poisson process resides in the fact that
we no longer require the condition of stationary increments. Thus we now allow
for the possibility that events may be more likely to occur at certain times than
during other times.

Example 5.24 Siegbert runs a hot dog stand that opens at 8 A.M. From 8
until 11 A.M. customers seem to arrive, on the average, at a steadily increasing
rate that starts with an initial rate of 5 customers per hour at 8 A.M. and reaches
a maximum of 20 customers per hour at 11 A.M. From 11 A.M. until 1 P.M. the
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(average) rate seems to remain constant at 20 customers per hour. However, the
(average) arrival rate then drops steadily from 1 P.M. until closing time at 5 P.M.
at which time it has the value of 12 customers per hour. If we assume that the
numbers of customers arriving at Siegbert’s stand during disjoint time periods are
independent, then what is a good probability model for the preceding? What is the
probability that no customers arrive between 8:30 A.M. and 9:30 A.M. on Monday
morning? What is the expected number of arrivals in this period?

Solution: A good model for the preceding would be to assume that ar-
rivals constitute a nonhomogeneous Poisson process with intensity function
λ(t) given by

λ(t) =
⎧
⎨

⎩

5 + 5t, 0 � t � 3
20, 3 � t � 5
20 − 2(t − 5), 5 � t � 9

and

λ(t) = λ(t − 9) for t > 9

Note that N(t) represents the number of arrivals during the first t hours that the
store is open. That is, we do not count the hours between 5 P.M. and 8 A.M.
If for some reasons we wanted N(t) to represent the number of arrivals during
the first t hours regardless of whether the store was open or not, then, assuming
that the process begins at midnight we would let

λ(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, 0 � t � 8
5 + 5(t − 8), 8 � t � 11
20, 11 � t � 13
20 − 2(t − 13), 13 � t � 17
0, 17 < t � 24

and

λ(t) = λ(t − 24) for t > 24

As the number of arrivals between 8:30 A.M. and 9:30 A.M. will be Poisson
with mean m( 3

2 ) − m( 1
2 ) in the first representation [and m( 19

2 ) − m( 17
2 ) in the

second representation], we have that the probability that this number is zero is

exp

{

−
∫ 3/2

1/2
(5 + 5t) dt

}

= e−10

and the mean number of arrivals is
∫ 3/2

1/2
(5 + 5t) dt = 10 �
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Suppose that events occur according to a Poisson process with rate λ, and
suppose that, independent of what has previously occurred, an event at time
s is a type 1 event with probability P1(s) or a type 2 event with probability
P2(s) = 1 − P1(s). If Ni(t), t � 0, denotes the number of type i events by time t ,
then it easily follows from Definition 5.4 that {N1(t), t � 0} and {N2(t), t � 0} are
independent nonhomogeneous Poisson processes with respective intensity func-
tions λi(t) = λPi(t), i = 1,2. (The proof mimics that of Proposition 5.2.) This re-
sult gives us another way of understanding (or of proving) the time sampling Pois-
son process result of Proposition 5.3 which states that N1(t) and N2(t) are inde-
pendent Poisson random variables with means E[Ni(t)] = λ

∫ t

0 Pi(s) ds, i = 1,2.

Example 5.25 (The Output Process of an Infinite Server Poisson Queue) It
turns out that the output process of the M/G/∞ queue—that is, of the infinite
server queue having Poisson arrivals and general service distribution G—is a non-
homogeneous Poisson process having intensity function λ(t) = λG(t). To verify
this claim, let us first argue that the departure process has independent increments.
Towards this end, consider nonoverlapping intervals O1, . . . ,Ok ; now say that an
arrival is type i, i = 1, . . . , k, if that arrival departs in the interval Oi . By Propo-
sition 5.3, it follows that the numbers of departures in these intervals are inde-
pendent, thus establishing independent increments. Now, suppose that an arrival
is “counted” if that arrival departs between t and t + h. Because an arrival at time
s, s < t + h, will be counted with probability G(t − s + h) − G(t − s), it fol-
lows from Proposition 5.3 that the number of departures in (t, t + h) is a Poisson
random variable with mean

λ

∫ t+h

0
[G(t − s + h) − G(t − s)]ds = λ

∫ t+h

0
[G′(t − s + h)h + o(h)]ds

= λh

∫ t+h

0
G′(y) dy + o(h)

= λG(t)h + o(h)

Therefore,

P {1 departure in (t, t + h)} = λG(t)h e−λG(t)h + o(h) = λG(t)h + o(h)

and

P {� 2 departures in (t, t + h)} = o(h)

which completes the verification. �
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If we let Sn denote the time of the nth event of the nonhomogeneous Poisson
process, then we can obtain its density as follows:

P {t < Sn < t + h} = P {N(t) = n − 1, one event in (t, t + h)} + o(h)

= P {N(t) = n − 1}P {one event in (t, t + h)}+o(h)

= e−m(t) [m(t)]n−1

(n − 1)! [λ(t)h + o(h)]+o(h)

= λ(t)e−m(t) [m(t)]n−1

(n − 1)! h+o(h)

which implies that

fSn(t) = λ(t)e−m(t) [m(t)]n−1

(n − 1)!
where

m(t) =
∫ t

0
λ(s) ds

5.4.2. Compound Poisson Process

A stochastic process {X(t), t � 0} is said to be a compound Poisson process if it
can be represented as

X(t) =
N(t)∑

i=1

Yi, t � 0 (5.23)

where {N(t), t � 0} is a Poisson process, and {Yi, i � 1} is a family of inde-
pendent and identically distributed random variables that is also independent of
{N(t), t � 0}. As noted in Chapter 3, the random variable X(t) is said to be a
compound Poisson random variable.

Examples of Compound Poisson Processes

(i) If Yi ≡ 1, then X(t) = N(t), and so we have the usual Poisson process.
(ii) Suppose that buses arrive at a sporting event in accordance with a Pois-
son process, and suppose that the numbers of fans in each bus are assumed to
be independent and identically distributed. Then {X(t), t � 0} is a compound
Poisson process where X(t) denotes the number of fans who have arrived by t .
In Equation (5.23) Yi represents the number of fans in the ith bus.
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(iii) Suppose customers leave a supermarket in accordance with a Poisson
process. If Yi , the amount spent by the ith customer, i = 1,2, . . . , are inde-
pendent and identically distributed, then {X(t), t � 0} is a compound Poisson
process when X(t) denotes the total amount of money spent by time t . �
Because X(t) is a compound Poisson random variable with Poisson parameter

λt , we have from Examples 3.10 and 3.17 that

E[X(t)] = λtE[Y1] (5.24)

and

Var(X(t)) = λtE
[
Y 2

1

]
(5.25)

Example 5.26 Suppose that families migrate to an area at a Poisson rate
λ = 2 per week. If the number of people in each family is independent and takes
on the values 1, 2, 3, 4 with respective probabilities 1

6 , 1
3 , 1

3 , 1
6 , then what is the

expected value and variance of the number of individuals migrating to this area
during a fixed five-week period?

Solution: Letting Yi denote the number of people in the ith family, we have
that

E[Yi] = 1 · 1
6 + 2 · 1

3 + 3 · 1
3 + 4 · 1

6 = 5
2 ,

E
[
Y 2

i

] = 12 · 1
6 + 22 · 1

3 + 32 · 1
3 + 42 · 1

6 = 43
6

Hence, letting X(5) denote the number of immigrants during a five-week pe-
riod, we obtain from Equations (5.24) and (5.25) that

E[X(5)] = 2 · 5 · 5
2 = 25

and

Var[X(5)] = 2 · 5 · 43
6 = 215

3 �

Example 5.27 (Busy Periods in Single-Server Poisson Arrival Queues)
Consider a single-server service station in which customers arrive according to a
Poisson process having rate λ. An arriving customer is immediately served if the
server is free; if not, the customer waits in line (that is, he or she joins the queue).
The successive service times are independent with a common distribution.

Such a system will alternate between idle periods when there are no customers
in the system, so the server is idle, and busy periods when there are customers in
the system, so the server is busy. A busy period will begin when an arrival finds
the system empty, and because of the memoryless property of the Poisson arrivals
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it follows that the distribution of the length of a busy period will be the same for
each such period. Let B denote the length of a busy period. We will compute its
mean and variance.

To begin, let S denote the service time of the first customer in the busy period
and let N(S) denote the number of arrivals during that time. Now, if N(S) = 0
then the busy period will end when the initial customer completes his service, and
so B will equal S in this case. Now, suppose that one customer arrives during
the service time of the initial customer. Then, at time S there will be a single
customer in the system who is just about to enter service. Because the arrival
stream from time S on will still be a Poisson process with rate λ, it thus follows
that the additional time from S until the system becomes empty will have the same
distribution as a busy period. That is, if N(S) = 1 then

B = S + B1

where B1 is independent of S and has the same distribution as B .
Now, consider the general case where N(S) = n, so there will be n customers

waiting when the server finishes his initial service. To determine the distribu-
tion of remaining time in the busy period note that the order in which customers
are served will not affect the remaining time. Hence, let us suppose that the n ar-
rivals, call them C1, . . . ,Cn, during the initial service period are served as follows.
Customer C1 is served first, but C2 is not served until the only customers in the
system are C2, . . . ,Cn. For instance, any customers arriving during C1’s service
time will be served before C2. Similarly, C3 is not served until the system is free
of all customers but C3, . . . ,Cn, and so on. A little thought reveals that the times
between the beginnings of service of customers Ci and Ci+1, i = 1, . . . , n − 1,
and the time from the beginning of service of Cn until there are no customers
in the system, are independent random variables, each distributed as a busy pe-
riod.

It follows from the preceding that if we let B1,B2, . . . be a sequence of in-
dependent random variables, each distributed as a busy period, then we can ex-
press B as

B = S +
N(S)∑

i=1

Bi

Hence,

E[B|S] = S + E

⎡

⎣
N(S)∑

i=1

Bi |S
⎤

⎦
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and

Var(B|S) = Var

⎛

⎝
N(S)∑

i=1

Bi |S
⎞

⎠

However, given S,
∑N(S)

i=1 Bi is a compound Poisson random variable, and thus
from Equations (5.24) and (5.25) we obtain

E[B|S] = S + λSE[B] = (1 + λE[B])S
Var(B|S) = λSE[B2]

Hence,

E[B] = E[E[B|S]] = (1 + λE[B])E[S]
implying, provided that λE[S] < 1, that

E[B] = E[S]
1 − λE[S]

Also, by the conditional variance formula

Var(B) = Var(E[B|S]) + E[Var(B|S)]
= (1 + λE[B])2Var(S) + λE[S]E[B2]
= (1 + λE[B])2Var(S) + λE[S](Var(B) + E2[B])

yielding

Var(B) = Var(S)(1 + λE[B])2 + λE[S]E2[B]
1 − λE[S]

Using E[B] = E[S]/(1 − λE[S]), we obtain

Var(B) = Var(S) + λE3[S]
(1 − λE[S])3

�

There is a very nice representation of the compound Poisson process when the
set of possible values of the Yi is finite or countably infinite. So let us suppose
that there are numbers αj , j � 1, such that

P {Y1 = αj } = pj ,
∑

j

pj = 1

Now, a compound Poisson process arises when events occur according to a
Poisson process and each event results in a random amount Y being added to
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the cumulative sum. Let us say that the event is a type j event whenever it results
in adding the amount αj , j � 1. That is, the ith event of the Poisson process is
a type j event if Yi = αj . If we let Nj(t) denote the number of type j events
by time t , then it follows from Proposition 5.2 that the random variables Nj(t),
j � 1, are independent Poisson random variables with respective means

E[Nj(t)] = λpj t

Since, for each j , the amount αj is added to the cumulative sum a total of Nj(t)

times by time t , it follows that the cumulative sum at time t can be expressed as

X(t) =
∑

j

αjNj (t) (5.26)

As a check of Equation (5.26), let us use it to compute the mean and variance
of X(t). This yields

E[X(t)] = E

[∑

j

αjNj (t)

]

=
∑

j

αjE[Nj(t)]

=
∑

j

αjλpj t

= λt E[Y1]
Also,

Var[X(t)] = Var

[∑

j

αjNj (t)

]

=
∑

j

α2
j Var[Nj(t)] by the independence of the Nj(t), j � 1

=
∑

j

α2
j λpj t

= λtE[Y 2
1 ]

where the next to last equality follows since the variance of the Poisson random
variable Nj(t) is equal to its mean.

Thus, we see that the representation (5.26) results in the same expressions for
the mean and variance of X(t) as were previously derived.
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One of the uses of the representation (5.26) is that it enables us to conclude that
as t grows large, the distribution of X(t) converges to the normal distribution. To
see why, note first that it follows by the central limit theorem that the distribution
of a Poisson random variable converges to a normal distribution as its mean in-
creases. (Why is this?) Therefore, each of the random variables Nj(t) converges
to a normal random variable as t increases. Because they are independent, and be-
cause the sum of independent normal random variables is also normal, it follows
that X(t) also approaches a normal distribution as t increases.

Example 5.28 In Example 5.24, find the approximate probability that at least
240 people migrate to the area within the next 50 weeks.

Solution: Since λ = 2,E[Yi] = 5/2,E[Y 2
i ] = 43/6, we see that

E[X(50)] = 250, Var[X(50)] = 4300/6

Now, the desired probability is

P {X(50) � 240} = P {X(50) � 239.5}

= P

{
X(50) − 250√

4300/6
� 239.5 − 250√

4300/6

}

= 1 − φ(−0.3922)

= φ(0.3922)

= 0.6525

where Table 2.3 was used to determine φ(0.3922), the probability that a stan-
dard normal is less than 0.3922. �

Another useful result is that if {X(t), t � 0} and {Y(t), t � 0} are independent
compound Poisson processes with respective Poisson parameters and distributions
λ1,F1 and λ2,F2, then {X(t) + Y(t), t � 0} is also a compound Poisson process.
This is true because in this combined process events will occur according to a
Poisson process with rate λ1 + λ2, and each event independently will be from the
first compound Poisson process with probability λ1/(λ1 + λ2). Consequently, the
combined process will be a compound Poisson process with Poisson parameter
λ1 + λ2, and with distribution function F given by

F(x) = λ1

λ1 + λ2
F1(x) + λ2

λ1 + λ2
F2(x)
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5.4.3. Conditional or Mixed Poisson Processes

Let {N(t), t � 0} be a counting process whose probabilities are defined as follows.
There is a positive random variable L such that, conditional on L = λ, the count-
ing process is a Poisson process with rate λ. Such a counting process is called a
conditional or a mixed Poisson process.

Suppose that L is continuous with density function g. Because

P {N(t + s) − N(s) = n} =
∫ ∞

0
P {N(t + s) − N(s) = n | L = λ}g(λ)dλ

=
∫ ∞

0
e−λt (λt)n

n! g(λ)dλ (5.27)

we see that a conditional Poisson process has stationary increments. However,
because knowing how many events occur in an interval gives information about
the possible value of L, which affects the distribution of the number of events in
any other interval, it follows that a conditional Poisson process does not generally
have independent increments. Consequently, a conditional Poisson process is not
generally a Poisson process.

Example 5.29 If g is the gamma density with parameters m and θ ,

g(λ) = θe−θλ (θλ)m−1

(m − 1)! , λ > 0

then

P {N(t) = n} =
∫ ∞

0
e−λt (λt)n

n! θe−θλ (θλ)m−1

(m − 1)! dλ

= tnθm

n!(m − 1)!
∫ ∞

0
e−(t+θ)λλn+m−1 dλ

Multiplying and dividing by (n+m−1)!
(t+θ)n+m gives

P {N(t) = n} = tnθm(n + m − 1)!
n!(m − 1)!(t + θ)n+m

∫ ∞

0
(t + θ)e−(t+θ)λ ((t + θ)λ)n+m−1

(n + m − 1)! dλ

Because (t + θ)e−(t+θ)λ((t + θ)λ)n+m−1/(n + m − 1)! is the density function of
a gamma (n + m, t + θ) random variable, its integral is 1, giving the result

P {N(t) = n} =
(

n + m − 1

n

)(
θ

t + θ

)m(
t

t + θ

)n

Therefore, the number of events in an interval of length t has the same distribution
of the number of failures that occur before a total of m successes are amassed,
when each trial is a success with probability θ

t+θ
. �
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To compute the mean and variance of N(t), condition on L. Because, condi-
tional on L, N(t) is Poisson with mean Lt , we obtain

E[N(t)|L] = Lt

Var(N(t)|L) = Lt

where the final equality used that the variance of a Poisson random variable is
equal to its mean. Consequently, the conditional variance formula yields

Var(N(t)) = E[Lt] + Var(Lt)

= tE[L] + t2Var(L)

We can compute the conditional distribution function of L, given that N(t) = n,
as follows.

P {L � x|N(t) = n} = P {L � x, N(t) = n}
P {N(t) = n}

=
∫∞

0 P {L � x,N(t) = n|L = λ}g(λ)dλ

P {N(t) = n}

=
∫ x

0 P {N(t) = n|L = λ}g(λ)dλ

P {N(t) = n}

=
∫ x

0 e−λt (λt)ng(λ)dλ
∫∞

0 e−λt (λt)ng(λ)dλ

where the final equality used Equation (5.27). In other words, the conditional
density function of L given that N(t) = n is

fL|N(t)(λ | n) = e−λtλn g(λ)
∫∞

0 e−λtλn g(λ)dλ
, λ � 0 (5.28)

Example 5.30 An insurance company feels that each of its policyholders has
a rating value and that a policyholder having rating value λ will make claims at
times distributed according to a Poisson process with rate λ, when time is mea-
sured in years. The firm also believes that rating values vary from policyholder to
policyholder, with the probability distribution of the value of a new policyholder
being uniformly distributed over (0,1). Given that a policyholder has made n

claims in his or her first t years, what is the conditional distribution of the time
until the policyholder’s next claim?
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Solution: If T is the time until the next claim, then we want to compute
P {T >x | N(t) = n}. Conditioning on the policyholder’s rating value gives,
upon using Equation (5.28),

P {T > x | N(t) = n} =
∫ ∞

0
P {T > x | L = λ, N(t) = n}fL|N(t)(λ | n)dλ

=
∫ 1

0 e−λxe−λtλn dλ
∫ 1

0 e−λtλn dλ
�

There is a nice formula for the probability that more than n events occur in an
interval of length t . In deriving it we will use the identity

∞∑

j=n+1

e−λt (λt)j

j ! =
∫ t

0
λe−λx (λx)n

n! dx (5.29)

which follows by noting that it equates the probability that the number of events
by time t of a Poisson process with rate λ is greater than n with the probability
that the time of the (n + 1)st event of this process (which has a gamma (n + 1, λ)

distribution) is less than t . Interchanging λ and t in Equation (5.29) yields the
equivalent identity

∞∑

j=n+1

e−λt (λt)j

j ! =
∫ λ

0
te−tx (tx)n

n! dx (5.30)

Using Equation (5.27) we now have

P {N(t) > n} =
∞∑

j=n+1

∫ ∞

0
e−λt (λt)j

j ! g(λ)dλ

=
∫ ∞

0

∞∑

j=n+1

e−λt (λt)j

j ! g(λ)dλ (by interchanging)

=
∫ ∞

0

∫ λ

0
te−tx (tx)n

n! dxg(λ)dλ (using (5.30))

=
∫ ∞

0

∫ ∞

x

g(λ)dλte−tx (tx)n

n! dx (by interchanging)

=
∫ ∞

0
Ḡ(x)te−tx (tx)n

n! dx
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Exercises

1. The time T required to repair a machine is an exponentially distributed ran-
dom variable with mean 1

2 (hours).

(a) What is the probability that a repair time exceeds 1
2 hour?

(b) What is the probability that a repair takes at least 12 1
2 hours given that its

duration exceeds 12 hours?

2. Suppose that you arrive at a single-teller bank to find five other customers in
the bank, one being served and the other four waiting in line. You join the end of
the line. If the service times are all exponential with rate μ, what is the expected
amount of time you will spend in the bank?

3. Let X be an exponential random variable. Without any computations, tell
which one of the following is correct. Explain your answer.

(a) E[X2|X > 1] = E[(X + 1)2];
(b) E[X2|X > 1] = E[X2] + 1;
(c) E[X2|X > 1] = (1 + E[X])2.

4. Consider a post office with two clerks. Three people, A, B, and C, enter
simultaneously. A and B go directly to the clerks, and C waits until either A or B
leaves before he begins service. What is the probability that A is still in the post
office after the other two have left when

(a) the service time for each clerk is exactly (nonrandom) ten minutes?
(b) the service times are i with probability 1

3 , i = 1, 2, 3?
(c) the service times are exponential with mean 1/μ?

5. The lifetime of a radio is exponentially distributed with a mean of ten years.
If Jones buys a ten-year-old radio, what is the probability that it will be working
after an additional ten years?

6. In Example 5.3 if server i serves at an exponential rate λi , i = 1,2, show that

P {Smith is not last} =
(

λ1

λ1 + λ2

)2

+
(

λ2

λ1 + λ2

)2

*7. If X1 and X2 are independent nonnegative continuous random variables,
show that

P {X1 < X2|min(X1,X2) = t} = r1(t)

r1(t) + r2(t)

where ri(t) is the failure rate function of Xi .

8. Let Xi, i = 1, . . . , n be independent continuous random variables, with Xi

having failure rate function ri(t). Let T be independent of this sequence, and
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suppose that
∑n

i=1 P {T = i} = 1. Show that the failure rate function r(t) of XT

is given by

r(t) =
n∑

i=1

ri(t)P {T = i|X > t}

9. Machine 1 is currently working. Machine 2 will be put in use at a time t from
now. If the lifetime of machine i is exponential with rate λi , i = 1,2, what is the
probability that machine 1 is the first machine to fail?

*10. Let X and Y be independent exponential random variables with respective
rates λ and μ. Let M = min(X,Y ). Find

(a) E[MX|M = X],
(b) E[MX|M = Y ],
(c) Cov(X,M).

11. Let X, Y1, . . . , Yn be independent exponential random variables; X having
rate λ, and Yi having rate μ. Let Aj be the event that the j th smallest of these
n + 1 random variables is one of the Yi . Find p = P {X > maxi Yi}, by using the
identity

p = P(A1 · · ·An) = P(A1)P (A2|A1) · · ·P(An|A1 · · ·An−1)

Verify your answer when n = 2 by conditioning on X to obtain p.

12. If Xi , i = 1,2,3, are independent exponential random variables with rates
λi , i = 1,2,3, find

(a) P {X1 < X2 < X3},
(b) P {X1 < X2|max(X1, X2, X3) = X3},
(c) E[maxXi |X1 < X2 < X3],
(d) E[maxXi].

13. Find, in Example 5.8, the expected time until the nth person on line leaves
the line (either by entering service or departing without service).

14. Let X be an exponential random variable with rate λ.

(a) Use the definition of conditional expectation to determine E[X|X < c].
(b) Now determine E[X|X < c] by using the following identity:

E[X] = E[X|X < c]P {X < c} + E[X|X > c]P {X > c}
15. One hundred items are simultaneously put on a life test. Suppose the life-
times of the individual items are independent exponential random variables with
mean 200 hours. The test will end when there have been a total of 5 failures. If T

is the time at which the test ends, find E[T ] and Var(T ).

16. Suppose in Example 5.3 that the time it takes server i to serve customers
is exponentially distributed with mean 1/λi , i = 1,2. What is the expected time
until all three customers have left the post office?
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17. A set of n cities is to be connected via communication links. The cost to
construct a link between cities i and j is Cij , i �= j . Enough links should be con-
structed so that for each pair of cities there is a path of links that connects them.
As a result, only n − 1 links need be constructed. A minimal cost algorithm for
solving this problem (known as the minimal spanning tree problem) first con-
structs the cheapest of all the

(
n
2

)
links. Then, at each additional stage it chooses

the cheapest link that connects a city without any links to one with links. That is,
if the first link is between cities 1 and 2, then the second link will either be be-
tween 1 and one of the links 3, . . . , n or between 2 and one of the links 3, . . . , n.
Suppose that all of the

(
n
2

)
costs Cij are independent exponential random variables

with mean 1. Find the expected cost of the preceding algorithm if

(a) n = 3,
(b) n = 4.

*18. Let X1 and X2 be independent exponential random variables, each having
rate μ. Let

X(1) = minimum(X1,X2) and X(2) = maximum(X1,X2)

Find

(a) E[X(1)],
(b) Var[X(1)],
(c) E[X(2)],
(d) Var[X(2)].

19. Repeat Exercise 18, but this time suppose that the Xi are independent expo-
nentials with respective rates μi , i = 1,2.

20. Consider a two-server system in which a customer is served first by server 1,
then by server 2, and then departs. The service times at server i are exponential
random variables with rates μi , i = 1,2. When you arrive, you find server 1 free
and two customers at server 2—customer A in service and customer B waiting in
line.

(a) Find PA, the probability that A is still in service when you move over to
server 2.
(b) Find PB , the probability that B is still in the system when you move over
to server 2.
(c) Find E[T ], where T is the time that you spend in the system.

Hint: Write

T = S1 + S2 + WA + WB

where Si is your service time at server i, WA is the amount of time you wait
in queue while A is being served, and WB is the amount of time you wait in
queue while B is being served.
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21. In a certain system, a customer must first be served by server 1 and then
by server 2. The service times at server i are exponential with rate μi , i = 1,2.
An arrival finding server 1 busy waits in line for that server. Upon completion of
service at server 1, a customer either enters service with server 2 if that server
is free or else remains with server 1 (blocking any other customer from entering
service) until server 2 is free. Customers depart the system after being served by
server 2. Suppose that when you arrive there is one customer in the system and
that customer is being served by server 1. What is the expected total time you
spend in the system?

22. Suppose in Exercise 21 you arrive to find two others in the system, one being
served by server 1 and one by server 2. What is the expected time you spend in the
system? Recall that if server 1 finishes before server 2, then server 1’s customer
will remain with him (thus blocking your entrance) until server 2 becomes free.

*23. A flashlight needs two batteries to be operational. Consider such a flash-
light along with a set of n functional batteries—battery 1, battery 2, . . . , battery n.
Initially, battery 1 and 2 are installed. Whenever a battery fails, it is immediately
replaced by the lowest numbered functional battery that has not yet been put in
use. Suppose that the lifetimes of the different batteries are independent exponen-
tial random variables each having rate μ. At a random time, call it T , a battery will
fail and our stockpile will be empty. At that moment exactly one of the batteries—
which we call battery X—will not yet have failed.

(a) What is P {X = n}?
(b) What is P {X = 1}?
(c) What is P {X = i}?
(d) Find E[T ].
(e) What is the distribution of T ?

24. There are 2 servers available to process n jobs. Initially, each server begins
work on a job. Whenever a server completes work on a job, that job leaves the
system and the server begins processing a new job (provided there are still jobs
waiting to be processed). Let T denote the time until all jobs have been processed.
If the time that it takes server i to process a job is exponentially distributed with
rate μi, i = 1,2, find E[T ] and Var(T ).

25. Customers can be served by any of three servers, where the service times of
server i are exponentially distributed with rate μi, i = 1,2,3. Whenever a server
becomes free, the customer who has been waiting the longest begins service with
that server.

(a) If you arrive to find all three servers busy and no one waiting, find the
expected time until you depart the system.
(b) If you arrive to find all three servers busy and one person waiting, find the
expected time until you depart the system.
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26. Each entering customer must be served first by server 1, then by server 2,
and finally by server 3. The amount of time it takes to be served by server i is
an exponential random variable with rate μi, i = 1,2,3. Suppose you enter the
system when it contains a single customer who is being served by server 3.

(a) Find the probability that server 3 will still be busy when you move over to
server 2.
(b) Find the probability that server 3 will still be busy when you move over to
server 3.
(c) Find the expected amount of time that you spend in the system. (Whenever
you encounter a busy server, you must wait for the service in progress to end
before you can enter service.)
(d) Suppose that you enter the system when it contains a single customer who
is being served by server 2. Find the expected amount of time that you spend in
the system.

27. Show, in Example 5.7, that the distributions of the total cost are the same for
the two algorithms.

28. Consider n components with independent lifetimes which are such that
component i functions for an exponential time with rate λi . Suppose that all com-
ponents are initially in use and remain so until they fail.

(a) Find the probability that component 1 is the second component to fail.
(b) Find the expected time of the second failure.

Hint: Do not make use of part (a).

29. Let X and Y be independent exponential random variables with respective
rates λ and μ, where λ > μ. Let c > 0.

(a) Show that the conditional density function of X, given that X + Y = c, is

fX|X+Y (x|c) = (λ − μ)e−(λ−μ)x

1 − e−(λ−μ)c
, 0 < x < c

(b) Use part (a) to find E[X|X + Y = c].
(c) Find E[Y |X + Y = c].

30. The lifetimes of A’s dog and cat are independent exponential random vari-
ables with respective rates λd and λc . One of them has just died. Find the expected
additional lifetime of the other pet.

31. A doctor has scheduled two appointments, one at 1 P.M. and the other at
1:30 P.M. The amounts of time that appointments last are independent exponential
random variables with mean 30 minutes. Assuming that both patients are on time,
find the expected amount of time that the 1:30 appointment spends at the doctor’s
office.
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32. There are three jobs and a single worker who works first on job 1, then on
job 2, and finally on job 3. The amounts of time that he spends on each job are
independent exponential random variables with mean 1. Let Ci be the time at
which job i is completed, i = 1, 2, 3, and let X =∑3

i=1 Ci be the sum of these
completion times. Find (a) E[X], (b) Var(X).

33. Let X and Y be independent exponential random variables with respective
rates λ and μ.

(a) Argue that, conditional on X > Y , the random variables min(X,Y ) and
X − Y are independent.
(b) Use part (a) to conclude that for any positive constant c

E[min(X,Y )|X > Y + c] = E[min(X,Y )|X > Y ]
= E[min(X,Y )] = 1

λ + μ

(c) Give a verbal explanation of why min(X,Y ) and X − Y are (uncondition-
ally) independent.

34. Two individuals, A and B , both require kidney transplants. If she does not
receive a new kidney, then A will die after an exponential time with rate μA, and
B after an exponential time with rate μB . New kidneys arrive in accordance with
a Poisson process having rate λ. It has been decided that the first kidney will go
to A (or to B if B is alive and A is not at that time) and the next one to B (if still
living).

(a) What is the probability that A obtains a new kidney?
(b) What is the probability that B obtains a new kidney?

35. Show that Definition 5.1 of a Poisson process implies Definition 5.3.

36. Let S(t) denote the price of a security at time t . A popular model for the
process {S(t), t � 0} supposes that the price remains unchanged until a “shock”
occurs, at which time the price is multiplied by a random factor. If we let N(t)

denote the number of shocks by time t , and let Xi denote the ith multiplicative
factor, then this model supposes that

S(t) = S(0)

N(t)∏

i=1

Xi

where
∏N(t)

i=1 Xi is equal to 1 when N(t) = 0. Suppose that the Xi are independent
exponential random variables with rate μ; that {N(t), t � 0} is a Poisson process
with rate λ; that {N(t), t � 0} is independent of the Xi ; and that S(0) = s.

(a) Find E[S(t)].
(b) Find E[S2(t)].
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37. Cars cross a certain point in the highway in accordance with a Pois-
son process with rate λ = 3 per minute. If Reb blindly runs across the high-
way, then what is the probability that she will be uninjured if the amount of
time that it takes her to cross the road is s seconds? (Assume that if she is
on the highway when a car passes by, then she will be injured.) Do it for
s = 2,5,10,20.

38. Let {Mi(t), t � 0}, i = 1,2 be independent Poisson processes with respec-
tive rates λi , i = 1,2, and set

N1(t) = M1(t) + M2(t), N2(t) = M2(t) + M3(t)

The stochastic process {(N1(t),N2(t)), t � 0} is called a bivariate Poisson
process.

(a) Find P {N1(t) = n,N2(t) = m}.
(b) Find Cov

(
N1(t),N2(t)

)
.

39. A certain scientific theory supposes that mistakes in cell division oc-
cur according to a Poisson process with rate 2.5 per year, and that an in-
dividual dies when 196 such mistakes have occurred. Assuming this theory,
find

(a) the mean lifetime of an individual,
(b) the variance of the lifetime of an individual.

Also approximate

(c) the probability that an individual dies before age 67.2,
(d) the probability that an individual reaches age 90,
(e) the probability that an individual reaches age 100.

*40. Show that if {Ni(t), t � 0} are independent Poisson processes with rate
λi , i = 1,2, then {N(t), t � 0} is a Poisson process with rate λ1 + λ2 where
N(t) = N1(t) + N2(t).

41. In Exercise 40 what is the probability that the first event of the combined
process is from the N1 process?

42. Let {N(t), t � 0} be a Poisson process with rate λ. Let Sn denote the time
of the nth event. Find

(a) E[S4],
(b) E[S4|N(1) = 2],
(c) E[N(4) − N(2)|N(1) = 3].

43. Customers arrive at a two-server service station according to a Poisson
process with rate λ. Whenever a new customer arrives, any customer that is in
the system immediately departs. A new arrival enters service first with server 1
and then with server 2. If the service times at the servers are independent expo-
nentials with respective rates μ1 and μ2, what proportion of entering customers
completes their service with server 2?
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44. Cars pass a certain street location according to a Poisson process with rate λ.
A woman who wants to cross the street at that location waits until she can see that
no cars will come by in the next T time units.

(a) Find the probability that her waiting time is 0.
(b) Find her expected waiting time.

Hint: Condition on the time of the first car.

45. Let {N(t), t � 0} be a Poisson process with rate λ, that is indepen-
dent of the nonnegative random variable T with mean μ and variance σ 2.
Find

(a) Cov(T , N(T )),
(b) Var(N(T )).

46. Let {N(t), t � 0} be a Poisson process with rate λ, that is independent of the
sequence X1, X2, . . . of independent and identically distributed random variables
with mean μ and variance σ 2. Find

Cov

⎛

⎝N(t),

N(t)∑

i=1

Xi

⎞

⎠

47. Consider a two-server parallel queuing system where customers arrive ac-
cording to a Poisson process with rate λ, and where the service times are ex-
ponential with rate μ. Moreover, suppose that arrivals finding both servers busy
immediately depart without receiving any service (such a customer is said to be
lost), whereas those finding at least one free server immediately enter service and
then depart when their service is completed.

(a) If both servers are presently busy, find the expected time until the next
customer enters the system.
(b) Starting empty, find the expected time until both servers are busy.
(c) Find the expected time between two successive lost customers.

48. Consider an n-server parallel queuing system where customers arrive ac-
cording to a Poisson process with rate λ, where the service times are exponential
random variables with rate μ, and where any arrival finding all servers busy im-
mediately departs without receiving any service. If an arrival finds all servers
busy, find

(a) the expected number of busy servers found by the next arrival,
(b) the probability that the next arrival finds all servers free,
(c) the probability that the next arrival finds exactly i of the servers free.
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49. Events occur according to a Poisson process with rate λ. Each time an
event occurs, we must decide whether or not to stop, with our objective be-
ing to stop at the last event to occur prior to some specified time T , where
T > 1/λ. That is, if an event occurs at time t , 0 � t � T , and we decide to
stop, then we win if there are no additional events by time T , and we lose oth-
erwise. If we do not stop when an event occurs and no additional events occur
by time T , then we lose. Also, if no events occur by time T , then we lose. Con-
sider the strategy that stops at the first event to occur after some fixed time s,
0 � s � T .

(a) Using this strategy, what is the probability of winning?
(b) What value of s maximizes the probability of winning?
(c) Show that one’s probability of winning when using the preceding strategy
with the value of s specified in part (b) is 1/e.

50. The number of hours between successive train arrivals at the station is uni-
formly distributed on (0, 1). Passengers arrive according to a Poisson process with
rate 7 per hour. Suppose a train has just left the station. Let X denote the number
of people who get on the next train. Find

(a) E[X],
(b) Var(X).

51. If an individual has never had a previous automobile accident, then the
probability he or she has an accident in the next h time units is βh + o(h); on
the other hand, if he or she has ever had a previous accident, then the proba-
bility is αh + o(h). Find the expected number of accidents an individual has by
time t .

52. Teams 1 and 2 are playing a match. The teams score points according to
independent Poisson processes with respective rates λ1 and λ2. If the match ends
when one of the teams has scored k more points than the other, find the probability
that team 1 wins.

Hint: Relate this to the gambler’s ruin problem.

53. The water level of a certain reservoir is depleted at a constant rate of 1000
units daily. The reservoir is refilled by randomly occurring rainfalls. Rainfalls
occur according to a Poisson process with rate 0.2 per day. The amount of water
added to the reservoir by a rainfall is 5000 units with probability 0.8 or 8000
units with probability 0.2. The present water level is just slightly below 5000
units.

(a) What is the probability the reservoir will be empty after five days?
(b) What is the probability the reservoir will be empty sometime within the
next ten days?
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54. A viral linear DNA molecule of length, say, 1 is often known to con-
tain a certain “marked position,” with the exact location of this mark being
unknown. One approach to locating the marked position is to cut the mole-
cule by agents that break it at points chosen according to a Poisson process
with rate λ. It is then possible to determine the fragment that contains the
marked position. For instance, letting m denote the location on the line of
the marked position, then if L1 denotes the last Poisson event time before m

(or 0 if there are no Poisson events in [0,m]), and R1 denotes the first
Poisson event time after m (or 1 if there are no Poisson events in [m,1]),
then it would be learned that the marked position lies between L1 and R1.
Find

(a) P {L1 = 0},
(b) P {L1 < x}, 0 < x < m,
(c) P {R1 = 1},
(d) P {R1 > x}, m < x < 1.

By repeating the preceding process on identical copies of the DNA molecule, we
are able to zero in on the location of the marked position. If the cutting proce-
dure is utilized on n identical copies of the molecule, yielding the data Li,Ri ,
i = 1, . . . , n, then it follows that the marked position lies between L and R, where

L = max
i

Li, R = min
i

Ri

(e) Find E[R − L], and in doing so, show that E[R − L] ∼ 2
nλ

.

55. Consider a single server queuing system where customers arrive accord-
ing to a Poisson process with rate λ, service times are exponential with rate μ,
and customers are served in the order of their arrival. Suppose that a customer
arrives and finds n − 1 others in the system. Let X denote the number in the
system at the moment that customer departs. Find the probability mass function
of X.

Hint: Relate this to a negative binomial random variable.

56. An event independently occurs on each day with probability p. Let N(n)

denote the total number of events that occur on the first n days, and let Tr denote
the day on which the r th event occurs.

(a) What is the distribution of N(n)?
(b) What is the distribution of T1?
(c) What is the distribution of Tr?
(d) Given that N(n) = r , show that the set of r days on which events occurred
has the same distribution as a random selection (without replacement) of r of
the values 1,2, . . . , n.
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*57. Events occur according to a Poisson process with rate λ = 2 per hour.

(a) What is the probability that no event occurs between 8 P.M. and 9 P.M.?
(b) Starting at noon, what is the expected time at which the fourth event oc-
curs?
(c) What is the probability that two or more events occur between 6 P.M. and
8 P.M.?

58. Consider the coupon collecting problem where there are m distinct types
of coupons, and each new coupon collected is type j with probability pj ,∑m

j=1 pj = 1. Suppose you stop collecting when you have a complete set of
at least one of each type. Show that

P {i is the last type collected} = E

[∏

j �=i

(1 − Uλj /λi )

]

where U is a uniform (0,1) random variable.

59. There are two types of claims that are made to an insurance company. Let
Ni(t) denote the number of type i claims made by time t , and suppose that
{N1(t), t � 0} and {N2(t), t � 0} are independent Poisson processes with rates
λ1 = 10 and λ2 = 1. The amounts of successive type 1 claims are indepen-
dent exponential random variables with mean $1000 whereas the amounts from
type 2 claims are independent exponential random variables with mean $5000.
A claim for $4000 has just been received; what is the probability it is a type 1
claim?

*60. Customers arrive at a bank at a Poisson rate λ. Suppose two customers
arrived during the first hour. What is the probability that

(a) both arrived during the first 20 minutes?
(b) at least one arrived during the first 20 minutes?

61. A system has a random number of flaws that we will suppose is Poisson
distributed with mean c. Each of these flaws will, independently, cause the sys-
tem to fail at a random time having distribution G. When a system failure
occurs, suppose that the flaw causing the failure is immediately located and
fixed.

(a) What is the distribution of the number of failures by time t?
(b) What is the distribution of the number of flaws that remain in the system at
time t?
(c) Are the random variables in parts (a) and (b) dependent or independent?

62. Suppose that the number of typographical errors in a new text is Poisson dis-
tributed with mean λ. Two proofreaders independently read the text. Suppose that
each error is independently found by proofreader i with probability pi , i = 1,2.
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Let X1 denote the number of errors that are found by proofreader 1 but not by
proofreader 2. Let X2 denote the number of errors that are found by proofreader
2 but not by proofreader 1. Let X3 denote the number of errors that are found by
both proofreaders. Finally, let X4 denote the number of errors found by neither
proofreader.

(a) Describe the joint probability distribution of X1,X2,X3,X4.
(b) Show that

E[X1]
E[X3] = 1 − p2

p2
and

E[X2]
E[X3] = 1 − p1

p1

Suppose now that λ, p1, and p2 are all unknown.

(c) By using Xi as an estimator of E[Xi], i = 1,2,3, present estimators of p1,
p2, and λ.
(d) Give an estimator of X4, the number of errors not found by either proof-
reader.

63. Consider an infinite server queuing system in which customers arrive in ac-
cordance with a Poisson process and where the service distribution is exponential
with rate μ. Let X(t) denote the number of customers in the system at time t . Find

(a) E[X(t + s)|X(s) = n];
(b) Var[X(t + s)|X(s) = n];

Hint: Divide the customers in the system at time t + s into two groups,
one consisting of “old” customers and the other of “new” customers.

(c) Consider an infinite server queuing system in which customers arrive ac-
cording to a Poisson process with rate λ, and where the service times are all
exponential random variables with rate μ. If there is currently a single cus-
tomer in the system, find the probability that the system becomes empty when
that customer departs.

*64. Suppose that people arrive at a bus stop in accordance with a Poisson
process with rate λ. The bus departs at time t . Let X denote the total amount
of waiting time of all those who get on the bus at time t . We want to determine
Var(X). Let N(t) denote the number of arrivals by time t .

(a) What is E[X|N(t)]?
(b) Argue that Var[X|N(t)] = N(t)t2/12.
(c) What is Var(X)?

65. An average of 500 people pass the California bar exam each year.
A California lawyer practices law, on average, for 30 years. Assuming these
numbers remain steady, how many lawyers would you expect California to have
in 2050?
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66. Policyholders of a certain insurance company have accidents at times dis-
tributed according to a Poisson process with rate λ. The amount of time from
when the accident occurs until a claim is made has distribution G.

(a) Find the probability there are exactly n incurred but as yet unreported
claims at time t .
(b) Suppose that each claim amount has distribution F , and that the claim
amount is independent of the time that it takes to report the claim. Find the
expected value of the sum of all incurred but as yet unreported claims at time t .

67. Satellites are launched into space at times distributed according to a Poisson
process with rate λ. Each satellite independently spends a random time (having
distribution G) in space before falling to the ground. Find the probability that
none of the satellites in the air at time t was launched before time s, where s < t .
68. Suppose that electrical shocks having random amplitudes occur at times dis-
tributed according to a Poisson process {N(t), t � 0} with rate λ. Suppose that the
amplitudes of the successive shocks are independent both of other amplitudes and
of the arrival times of shocks, and also that the amplitudes have distribution F

with mean μ. Suppose also that the amplitude of a shock decreases with time at
an exponential rate α, meaning that an initial amplitude A will have value Ae−αx

after an additional time x has elapsed. Let A(t) denote the sum of all amplitudes
at time t . That is,

A(t) =
N(t)∑

i=1

Aie
−α(t−Si)

where Ai and Si are the initial amplitude and the arrival time of shock i.
(a) Find E[A(t)] by conditioning on N(t).
(b) Without any computations, explain why A(t) has the same distribution as
does D(t) of Example 5.21.

69. For Example 5.21, let M(t) = E[D(t)]
(a) Argue that

M(t + h) = M(t) + e−αtM(h)

(b) Argue that

M(t + h) = M(h) + e−αhM(t)

(c) Argue that

M(h) = λhμ + o(h)

(d) Use parts (a) and (c) to derive and then solve a differential equation
for M(t).
(e) Use parts (b) and (c) to derive and then solve a differential equation
for M(t).
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70. For the infinite server queue with Poisson arrivals and general service dis-
tribution G, find the probability that

(a) the first customer to arrive is also the first to depart.
Let S(t) equal the sum of the remaining service times of all customers in

the system at time t .
(b) Argue that S(t) is a compound Poisson random variable.
(c) Find E[S(t)].
(d) Find Var(S(t)).

71. Let Sn denote the time of the nth event of the Poisson process {N(t), t � 0}
having rate λ. Show, for an arbitrary function g, that the random variable
∑N(t)

i=1 g(Si) has the same distribution as the compound Poisson random vari-

able
∑N(t)

i=1 g(Ui), where U1,U2, . . . is a sequence of independent and identically
distributed uniform (0, t) random variables that is independent of N , a Poisson
random variable with mean λt . Consequently, conclude that

E

⎡

⎣
N(t)∑

i=1

g(Si)

⎤

⎦= λ

∫ t

0
g(x)dx Var

⎛

⎝
N(t)∑

i=1

g(Si)

⎞

⎠= λ

∫ t

0
g2(x) dx

72. A cable car starts off with n riders. The times between successive stops of
the car are independent exponential random variables with rate λ. At each stop
one rider gets off. This takes no time, and no additional riders get on. After a rider
gets off the car, he or she walks home. Independently of all else, the walk takes
an exponential time with rate μ.

(a) What is the distribution of the time at which the last rider departs the car?
(b) Suppose the last rider departs the car at time t . What is the probability that
all the other riders are home at that time?

73. Shocks occur according to a Poisson process with rate λ, and each shock
independently causes a certain system to fail with probability p. Let T denote the
time at which the system fails and let N denote the number of shocks that it takes.

(a) Find the conditional distribution of T given that N = n.
(b) Calculate the conditional distribution of N , given that T = t , and notice
that it is distributed as 1 plus a Poisson random variable with mean λ(1 − p)t .
(c) Explain how the result in part (b) could have been obtained without any
calculations.

74. The number of missing items in a certain location, call it X, is a Poisson
random variable with mean λ. When searching the location, each item will inde-
pendently be found after an exponentially distributed time with rate μ. A reward
of R is received for each item found, and a searching cost of C per unit of search
time is incurred. Suppose that you search for a fixed time t and then stop.
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(a) Find your total expected return.
(b) Find the value of t that maximizes the total expected return.
(c) The policy of searching for a fixed time is a static policy. Would a dynamic
policy, which allows the decision as to whether to stop at each time t , depend
on the number already found by t be beneficial?

Hint: How does the distribution of the number of items not yet found by
time t depend on the number already found by that time?

75. Suppose that the times between successive arrivals of customers at a single-
server station are independent random variables having a common distribution F .
Suppose that when a customer arrives, he or she either immediately enters ser-
vice if the server is free or else joins the end of the waiting line if the server is
busy with another customer. When the server completes work on a customer, that
customer leaves the system and the next waiting customer, if there are any, enters
service. Let Xn denote the number of customers in the system immediately be-
fore the nth arrival, and let Yn denote the number of customers that remain in the
system when the nth customer departs. The successive service times of customers
are independent random variables (which are also independent of the interarrival
times) having a common distribution G.

(a) If F is the exponential distribution with rate λ, which, if any, of the pro-
cesses {Xn}, {Yn} is a Markov chain?
(b) If G is the exponential distribution with rate μ, which, if any, of the
processes {Xn}, {Yn} is a Markov chain?
(c) Give the transition probabilities of any Markov chains in parts (a) and (b).

76. For the model of Example 5.27, find the mean and variance of the number
of customers served in a busy period.

77. Events occur according to a nonhomogeneous Poisson process whose mean
value function is given by

m(t) = t2 + 2t, t � 0

What is the probability that n events occur between times t = 4 and t = 5?

78. A store opens at 8 A.M. From 8 until 10 customers arrive at a Poisson rate
of four an hour. Between 10 and 12 they arrive at a Poisson rate of eight an hour.
From 12 to 2 the arrival rate increases steadily from eight per hour at 12 to ten
per hour at 2; and from 2 to 5 the arrival rate drops steadily from ten per hour at
2 to four per hour at 5. Determine the probability distribution of the number of
customers that enter the store on a given day.

*79. Consider a nonhomogeneous Poisson process whose intensity function λ(t)

is bounded and continuous. Show that such a process is equivalent to a process of
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counted events from a (homogeneous) Poisson process having rate λ, where an
event at time t is counted (independent of the past) with probability λ(t)/λ; and
where λ is chosen so that λ(s) < λ for all s.

80. Let T1, T2, . . . denote the interarrival times of events of a nonhomogeneous
Poisson process having intensity function λ(t).

(a) Are the Ti independent?
(b) Are the Ti identically distributed?
(c) Find the distribution of T1.

81. (a) Let {N(t), t � 0} be a nonhomogeneous Poisson process with mean
value function m(t). Given N(t) = n, show that the unordered set of arrival
times has the same distribution as n independent and identically distributed
random variables having distribution function

F(x) =
⎧
⎨

⎩

m(x)

m(t)
, x � t

1, x � t

(b) Suppose that workmen incur accidents in accordance with a nonhomoge-
neous Poisson process with mean value function m(t). Suppose further that
each injured man is out of work for a random amount of time having distribu-
tion F . Let X(t) be the number of workers who are out of work at time t . By
using part (a), find E[X(t)].

82. Let X1,X2, . . . be independent positive continuous random variables with
a common density function f , and suppose this sequence is independent of N , a
Poisson random variable with mean λ. Define

N(t) = number of i � N : Xi � t

Show that {N(t), t � 0} is a nonhomogeneous Poisson process with intensity
function λ(t) = λf (t).

83. Suppose that {N0(t), t � 0} is a Poisson process with rate λ = 1. Let λ(t)

denote a nonnegative function of t , and let

m(t) =
∫ t

0
λ(s) ds

Define N(t) by

N(t) = N0(m(t))

Argue that {N(t), t � 0} is a nonhomogeneous Poisson process with intensity
function λ(t), t � 0.
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Hint: Make use of the identity

m(t + h) − m(t) = m′(t)h + o(h)

*84. Let X1,X2, . . . be independent and identically distributed nonnegative con-
tinuous random variables having density function f (x). We say that a record oc-
curs at time n if Xn is larger than each of the previous values X1, . . . ,Xn−1.
(A record automatically occurs at time 1.) If a record occurs at time n, then Xn

is called a record value. In other words, a record occurs whenever a new high
is reached, and that new high is called the record value. Let N(t) denote the
number of record values that are less than or equal to t . Characterize the process
{N(t), t � 0} when

(a) f is an arbitrary continuous density function.
(b) f (x) = λe−λx .

Hint: Finish the following sentence: There will be a record whose value is
between t and t + dt if the first Xi that is greater than t lies between . . .

85. An insurance company pays out claims on its life insurance policies in ac-
cordance with a Poisson process having rate λ = 5 per week. If the amount of
money paid on each policy is exponentially distributed with mean $2000, what is
the mean and variance of the amount of money paid by the insurance company in
a four-week span?

86. In good years, storms occur according to a Poisson process with rate 3 per
unit time, while in other years they occur according to a Poisson process with
rate 5 per unit time. Suppose next year will be a good year with probability 0.3.
Let N(t) denote the number of storms during the first t time units of next year.

(a) Find P {N(t) = n}.
(b) Is {N(t)} a Poisson process?
(c) Does {N(t)} have stationary increments? Why or why not?
(d) Does it have independent increments? Why or why not?
(e) If next year starts off with three storms by time t = 1, what is the condi-
tional probability it is a good year?

87. Determine

Cov[X(t),X(t + s)]
when {X(t), t � 0} is a compound Poisson process.

88. Customers arrive at the automatic teller machine in accordance with a
Poisson process with rate 12 per hour. The amount of money withdrawn on
each transaction is a random variable with mean $30 and standard deviation $50.
(A negative withdrawal means that money was deposited.) The machine is in use
for 15 hours daily. Approximate the probability that the total daily withdrawal is
less than $6000.
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89. Some components of a two-component system fail after receiving a shock.
Shocks of three types arrive independently and in accordance with Poisson
processes. Shocks of the first type arrive at a Poisson rate λ1 and cause the first
component to fail. Those of the second type arrive at a Poisson rate λ2 and cause
the second component to fail. The third type of shock arrives at a Poisson rate λ3
and causes both components to fail. Let X1 and X2 denote the survival times for
the two components. Show that the joint distribution of X1 and X2 is given by

P {X1 > s,X1 > t} = exp{−λ1s − λ2t − λ3 max(s, t)}
This distribution is known as the bivariate exponential distribution.

90. In Exercise 89 show that X1 and X2 both have exponential distributions.
*91. Let X1,X2, . . . ,Xn be independent and identically distributed exponential
random variables. Show that the probability that the largest of them is greater than
the sum of the others is n/2n−1. That is, if

M = max
j

Xj

then show

P

{

M >

n∑

i=1

Xi − M

}

= n

2n−1

Hint: What is P {X1 >
∑n

i=2 Xi}?
92. Prove Equation (5.22).
93. Prove that

(a) max(X1,X2) = X1 + X2 − min(X1,X2) and, in general,

(b) max(X1, . . . ,Xn) =
n∑

1

Xi −
∑∑

i<j

min(Xi,Xj )

+
∑∑∑

i<j<k

min(Xi,Xj ,Xk) + · · ·

+ (−1)n−1 min(Xi,Xj , . . . ,Xn)

Show by defining appropriate random variables Xi , i = 1, . . . , n, and by taking
expectations in part (b) how to obtain the well-known formula

P

(
n⋃

1

Ai

)

=
∑

i

P (Ai) −
∑∑

i<j

P (AiAj ) + · · · + (−1)n−1 P(A1 · · ·An)

(c) Consider n independent Poisson processes—the ith having rate λi . Derive
an expression for the expected time until an event has occurred in all n

processes.
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94. A two-dimensional Poisson process is a process of randomly occurring
events in the plane such that

(i) for any region of area A the number of events in that region has a Poisson
distribution with mean λA, and

(ii) the number of events in nonoverlapping regions are independent.

For such a process, consider an arbitrary point in the plane and let X denote its
distance from its nearest event (where distance is measured in the usual Euclidean
manner). Show that

(a) P {X > t} = e−λπt2
,

(b) E[X] = 1
2
√

λ
.

95. Let {N(t), t � 0} be a conditional Poisson process with a random rate L.

(a) Derive an expression for E[L|N(t) = n].
(b) Find, for s > t , E[N(s)|N(t) = n].
(c) Find, for s < t , E[N(s)|N(t) = n].

96. For the conditional Poisson process, let m1 = E[L], m2 = E[L2]. In terms
of m1 and m2, find Cov(N(s),N(t)) for s � t .
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Continuous-Time
Markov Chains

6
6.1. Introduction

In this chapter we consider a class of probability models that has a wide variety of
applications in the real world. The members of this class are the continuous-time
analogs of the Markov chains of Chapter 4 and as such are characterized by the
Markovian property that, given the present state, the future is independent of the
past.

One example of a continuous-time Markov chain has already been met. This
is the Poisson process of Chapter 5. For if we let the total number of arrivals by
time t [that is, N(t)] be the state of the process at time t , then the Poisson process
is a continuous-time Markov chain having states 0,1,2, . . . that always proceeds
from state n to state n + 1, where n � 0. Such a process is known as a pure birth
process since when a transition occurs the state of the system is always increased
by one. More generally, an exponential model which can go (in one transition)
only from state n to either state n − 1 or state n + 1 is called a birth and death
model. For such a model, transitions from state n to state n + 1 are designated
as births, and those from n to n − 1 as deaths. Birth and death models have wide
applicability in the study of biological systems and in the study of waiting line
systems in which the state represents the number of customers in the system.
These models will be studied extensively in this chapter.

In Section 6.2 we define continuous-time Markov chains and then relate them to
the discrete-time Markov chains of Chapter 4. In Section 6.3 we consider birth and
death processes and in Section 6.4 we derive two sets of differential equations—
the forward and backward equations—that describe the probability laws for the
system. The material in Section 6.5 is concerned with determining the limiting
(or long-run) probabilities connected with a continuous-time Markov chain. In
Section 6.6 we consider the topic of time reversibility. We show that all birth and
death processes are time reversible, and then illustrate the importance of this ob-
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servation to queueing systems. In the final section we show how to “uniformize”
Markov chains, a technique useful for numerical computations.

6.2. Continuous-Time Markov Chains

Suppose we have a continuous-time stochastic process {X(t), t �0} taking on
values in the set of nonnegative integers. In analogy with the definition of
a discrete-time Markov chain, given in Chapter 4, we say that the process
{X(t), t � 0} is a continuous-time Markov chain if for all s, t � 0 and nonnega-
tive integers i, j, x(u), 0 � u < s

P {X(t + s) = j |X(s) = i, X(u) = x(u), 0 � u < s}
= P {X(t + s) = j |X(s) = i}

In other words, a continuous-time Markov chain is a stochastic process having the
Markovian property that the conditional distribution of the future X(t + s) given
the present X(s) and the past X(u), 0 � u < s, depends only on the present and
is independent of the past. If, in addition,

P {X(t + s) = j |X(s) = i}
is independent of s, then the continuous-time Markov chain is said to have sta-
tionary or homogeneous transition probabilities.

All Markov chains considered in this text will be assumed to have stationary
transition probabilities.

Suppose that a continuous-time Markov chain enters state i at some time, say,
time 0, and suppose that the process does not leave state i (that is, a transition does
not occur) during the next ten minutes. What is the probability that the process will
not leave state i during the following five minutes? Now since the process is in
state i at time 10 it follows, by the Markovian property, that the probability that it
remains in that state during the interval [10, 15] is just the (unconditional) prob-
ability that it stays in state i for at least five minutes. That is, if we let Ti denote
the amount of time that the process stays in state i before making a transition into
a different state, then

P {Ti > 15|Ti > 10} = P {Ti > 5}
or, in general, by the same reasoning,

P {Ti > s + t |Ti > s} = P {Ti > t}
for all s, t � 0. Hence, the random variable Ti is memoryless and must thus (see
Section 5.2.2) be exponentially distributed.



6.2. Continuous-Time Markov Chains 367

In fact, the preceding gives us another way of defining a continuous-time
Markov chain. Namely, it is a stochastic process having the properties that each
time it enters state i

(i) the amount of time it spends in that state before making a transition into a
different state is exponentially distributed with mean, say, 1/vi , and

(ii) when the process leaves state i, it next enters state j with some probability,
say, Pij . Of course, the Pij must satisfy

Pii = 0, all i
∑

j

Pij = 1, all i

In other words, a continuous-time Markov chain is a stochastic process that moves
from state to state in accordance with a (discrete-time) Markov chain, but is such
that the amount of time it spends in each state, before proceeding to the next state,
is exponentially distributed. In addition, the amount of time the process spends in
state i, and the next state visited, must be independent random variables. For if
the next state visited were dependent on Ti , then information as to how long the
process has already been in state i would be relevant to the prediction of the next
state—and this contradicts the Markovian assumption.

Example 6.1 (A Shoeshine Shop) Consider a shoeshine establishment con-
sisting of two chairs—chair 1 and chair 2. A customer upon arrival goes initially
to chair 1 where his shoes are cleaned and polish is applied. After this is done
the customer moves on to chair 2 where the polish is buffed. The service times
at the two chairs are assumed to be independent random variables that are ex-
ponentially distributed with respective rates μ1 and μ2. Suppose that potential
customers arrive in accordance with a Poisson process having rate λ, and that a
potential customer will enter the system only if both chairs are empty.

The preceding model can be analyzed as a continuous-time Markov chain, but
first we must decide upon an appropriate state space. Since a potential customer
will enter the system only if there are no other customers present, it follows that
there will always either be 0 or 1 customers in the system. However, if there is
1 customer in the system, then we would also need to know which chair he was
presently in. Hence, an appropriate state space might consist of the three states 0,
1, and 2 where the states have the following interpretation:

State Interpretation
0 system is empty
1 a customer is in chair 1
2 a customer is in chair 2
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We leave it as an exercise for you to verify that

v0 = λ, v1 = μ1, v2 = μ2,

P01 = P12 = P20 = 1 �

6.3. Birth and Death Processes

Consider a system whose state at any time is represented by the number of people
in the system at that time. Suppose that whenever there are n people in the system,
then (i) new arrivals enter the system at an exponential rate λn, and (ii) people
leave the system at an exponential rate μn. That is, whenever there are n persons
in the system, then the time until the next arrival is exponentially distributed with
mean 1/λn and is independent of the time until the next departure which is itself
exponentially distributed with mean 1/μn. Such a system is called a birth and
death process. The parameters {λn}∞n=0 and {μn}∞n=1 are called, respectively, the
arrival (or birth) and departure (or death) rates.

Thus, a birth and death process is a continuous-time Markov chain with states
{0,1, . . .} for which transitions from state n may go only to either state n − 1
or state n + 1. The relationships between the birth and death rates and the state
transition rates and probabilities are

v0 = λ0,

vi = λi + μi, i > 0

P0 1 = 1,

Pi,i+1 = λi

λi + μi

, i > 0

Pi,i−1 = μi

λi + μi

, i > 0

The preceding follows, because if there are i in the system, then the next state will
be i + 1 if a birth occurs before a death, and the probability that an exponential
random variable with rate λi will occur earlier than an (independent) exponential
with rate μi is λi/(λi + μi). Moreover, the time until either a birth or a death
occurs is exponentially distributed with rate λi + μi (and so, vi = λi + μi ).

Example 6.2 (The Poisson Process) Consider a birth and death process for
which

μn = 0, for all n � 0

λn = λ, for all n � 0

This is a process in which departures never occur, and the time between successive
arrivals is exponential with mean 1/λ. Hence, this is just the Poisson process. �
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A birth and death process for which μn = 0 for all n is called a pure birth
process. Another pure birth process is given by the next example.

Example 6.3 (A Birth Process with Linear Birth Rate) Consider a population
whose members can give birth to new members but cannot die. If each member
acts independently of the others and takes an exponentially distributed amount of
time, with mean 1/λ, to give birth, then if X(t) is the population size at time t ,
then {X(t), t � 0} is a pure birth process with λn = nλ, n � 0. This follows since
if the population consists of n persons and each gives birth at an exponential
rate λ, then the total rate at which births occur is nλ. This pure birth process is
known as a Yule process after G. Yule, who used it in his mathematical theory of
evolution. �

Example 6.4 (A Linear Growth Model with Immigration) A model in which

μn = nμ, n � 1

λn = nλ + θ, n � 0

is called a linear growth process with immigration. Such processes occur naturally
in the study of biological reproduction and population growth. Each individual in
the population is assumed to give birth at an exponential rate λ; in addition, there
is an exponential rate of increase θ of the population due to an external source
such as immigration. Hence, the total birth rate where there are n persons in the
system is nλ + θ . Deaths are assumed to occur at an exponential rate μ for each
member of the population, so μn = nμ.

Let X(t) denote the population size at time t . Suppose that X(0) = i and let

M(t) = E[X(t)]

We will determine M(t) by deriving and then solving a differential equation that
it satisfies.

We start by deriving an equation for M(t + h) by conditioning on X(t). This
yields

M(t + h) = E[X(t + h)]
= E[E[X(t + h)|X(t)]]

Now, given the size of the population at time t then, ignoring events whose prob-
ability is o(h), the population at time t + h will either increase in size by 1 if a
birth or an immigration occurs in (t, t + h), or decrease by 1 if a death occurs in
this interval, or remain the same if neither of these two possibilities occurs. That
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is, given X(t),

X(t + h) =
⎧
⎨

⎩

X(t) + 1, with probability [θ + X(t)λ]h + o(h)

X(t) − 1, with probability X(t)μh + o(h)

X(t), with probability 1 − [θ + X(t)λ + X(t)μ]h + o(h)

Therefore,

E[X(t + h)|X(t)] = X(t) + [θ + X(t)λ − X(t)μ]h + o(h)

Taking expectations yields

M(t + h) = M(t) + (λ − μ)M(t)h + θh + o(h)

or, equivalently,

M(t + h) − M(t)

h
= (λ − μ)M(t) + θ + o(h)

h

Taking the limit as h → 0 yields the differential equation

M ′(t) = (λ − μ)M(t) + θ (6.1)

If we now define the function h(t) by

h(t) = (λ − μ)M(t) + θ

then

h′(t) = (λ − μ)M ′(t)

Therefore, the differential equation (6.1) can be rewritten as

h′(t)
λ − μ

= h(t)

or

h′(t)
h(t)

= λ − μ

Integration yields

log[h(t)] = (λ − μ)t + c

or
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h(t) = Ke(λ−μ)t

Putting this back in terms of M(t) gives

θ + (λ − μ)M(t) = Ke(λ−μ)t

To determine the value of the constant K , we use the fact that M(0) = i and
evaluate the preceding at t = 0. This gives

θ + (λ − μ)i = K

Substituting this back in the preceding equation for M(t) yields the following
solution for M(t):

M(t) = θ

λ − μ
[e(λ−μ)t − 1] + ie(λ−μ)t

Note that we have implicitly assumed that λ �= μ. If λ = μ, then the differential
equation (6.1) reduces to

M ′(t) = θ (6.2)

Integrating (6.2) and using that M(0) = i gives the solution

M(t) = θt + i �

Example 6.5 (The Queueing System M/M/1) Suppose that customers arrive
at a single-server service station in accordance with a Poisson process having
rate λ. That is, the times between successive arrivals are independent exponential
random variables having mean 1/λ. Upon arrival, each customer goes directly into
service if the server is free; if not, then the customer joins the queue (that is, he
waits in line). When the server finishes serving a customer, the customer leaves the
system and the next customer in line, if there are any waiting, enters the service.
The successive service times are assumed to be independent exponential random
variables having mean 1/μ.

The preceding is known as the M/M/1 queueing system. The first M refers to
the fact that the interarrival process is Markovian (since it is a Poisson process)
and the second to the fact that the service distribution is exponential (and, hence,
Markovian). The 1 refers to the fact that there is a single server.

If we let X(t) denote the number in the system at time t then {X(t), t � 0} is
a birth and death process with

μn = μ, n � 1

λn = λ, n � 0 �
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Example 6.6 (A Multiserver Exponential Queueing System) Consider an ex-
ponential queueing system in which there are s servers available, each serving
at rate μ. An entering customer first waits in line and then goes to the first free
server. This is a birth and death process with parameters

μn =
{
nμ, 1 � n � s

sμ, n > s

λn = λ, n � 0

To see why this is true, reason as follows: If there are n customers in the sys-
tem, where n � s, then n servers will be busy. Since each of these servers works
at rate μ, the total departure rate will be nμ. On the other hand, if there are n

customers in the system, where n > s, then all s of the servers will be busy, and
thus the total departure rate will be sμ. This is known as an M/M/s queueing
model. �

Consider now a general birth and death process with birth rates {λn} and death
rates {μn}, where μ0 = 0, and let Ti denote the time, starting from state i, it takes
for the process to enter state i + 1, i � 0. We will recursively compute E[Ti],
i � 0, by starting with i = 0. Since T0 is exponential with rate λ0, we have that

E[T0] = 1

λ0

For i > 0, we condition whether the first transition takes the process into state
i − 1 or i + 1. That is, let

Ii =
{

1, if the first transition from i is to i + 1

0, if the first transition from i is to i − 1

and note that

E[Ti |Ii = 1] = 1

λi + μi

,

E[Ti |Ii = 0] = 1

λi + μi

+ E[Ti−1] + E[Ti]
(6.3)

This follows since, independent of whether the first transition is from a birth or
death, the time until it occurs is exponential with rate λi + μi ; now if this first
transition is a birth, then the population size is at i + 1, so no additional time
is needed; whereas if it is death, then the population size becomes i − 1 and the
additional time needed to reach i +1 is equal to the time it takes to return to state i

(and this has mean E[Ti−1]) plus the additional time it then takes to reach i + 1
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(and this has mean E[Ti]). Hence, since the probability that the first transition is
a birth is λi/(λi + μi), we see that

E[Ti] = 1

λi + μi

+ μi

λi + μi

(E[Ti−1] + E[Ti])
or, equivalently,

E[Ti] = 1

λi

+ μi

λi

E[Ti−1], i � 1

Starting with E[T0] = 1/λ0, the preceding yields an efficient method to succes-
sively compute E[T1], E[T2], and so on.

Suppose now that we wanted to determine the expected time to go from state i

to state j where i < j . This can be accomplished using the preceding by noting
that this quantity will equal E[Ti] + E[Ti+1] + · · · + E[Tj−1].
Example 6.7 For the birth and death process having parameters λi ≡ λ,
μi ≡ μ,

E[Ti] = 1

λ
+ μ

λ
E[Ti−1]

= 1

λ
(1 + μE[Ti−1])

Starting with E[T0] = 1/λ, we see that

E[T1] = 1

λ

(

1 + μ

λ

)

,

E[T2] = 1

λ

[

1 + μ

λ
+
(

μ

λ

)2 ]

and, in general,

E[Ti] = 1

λ

[

1 + μ

λ
+
(

μ

λ

)2

+ · · · +
(

μ

λ

)i]

= 1 − (μ/λ)i+1

λ − μ
, i � 0

The expected time to reach state j , starting at state k, k < j , is

E[time to go from k to j ] =
j−1∑

i=k

E[Ti]

= j − k

λ − μ
− (μ/λ)k+1

λ − μ

[1 − (μ/λ)j−k]
1 − μ/λ
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The foregoing assumes that λ �= μ. If λ = μ, then

E[Ti] = i + 1

λ
,

E[time to go from k to j ] = j (j + 1) − k(k + 1)

2λ
�

We can also compute the variance of the time to go from 0 to i + 1 by uti-
lizing the conditional variance formula. First note that Equation (6.3) can be
written as

E[Ti |Ii] = 1

λi + μi

+ (1 − Ii)(E[Ti−1] + E[Ti])

Thus

Var(E[Ti |Ii]) = (E[Ti−1] + E[Ti])2 Var(Ii)

= (E[Ti−1] + E[Ti])2 μiλi

(μi + λi)2
(6.4)

where Var(Ii) is as shown since Ii is a Bernoulli random variable with parameter
p = λi/(λi + μi). Also, note that if we let Xi denote the time until the transition
from i occurs, then

Var(Ti |Ii = 1) = Var(Xi |Ii = 1)

= Var(Xi)

= 1

(λi + μi)2
(6.5)

where the preceding uses the fact that the time until transition is independent of
the next state visited. Also,

Var(Ti |Ii = 0) = Var(Xi + time to get back to i + time to then reach i + 1)

= Var(Xi) + Var(Ti−1) + Var(Ti) (6.6)

where the foregoing uses the fact that the three random variables are independent.
We can rewrite Equations (6.5) and (6.6) as

Var(Ti |Ii) = Var(Xi) + (1 − Ii)[Var(Ti−1) + Var(Ti)]
so

E[Var(Ti |Ii)] = 1

(μi + λi)2
+ μi

μi + λi

[Var(Ti−1) + Var(Ti)] (6.7)
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Hence, using the conditional variance formula, which states that Var(Ti) is the
sum of Equations (6.7) and (6.4), we obtain

Var(Ti) = 1

(μi + λi)2
+ μi

μi + λi

[Var(Ti−1) + Var(Ti)]

+ μiλi

(μi + λi)2
(E[Ti−1] + E[Ti])2

or, equivalently,

Var(Ti) = 1

λi(λi + μi)
+ μi

λi

Var(Ti−1) + μi

μi + λi

(E[Ti−1] + E[Ti])2

Starting with Var(T0) = 1/λ2
0 and using the former recursion to obtain the expec-

tations, we can recursively compute Var(Ti). In addition, if we want the variance
of the time to reach state j , starting from state k, k < j , then this can be expressed
as the time to go from k to k +1 plus the additional time to go from k +1 to k +2,
and so on. Since, by the Markovian property, these successive random variables
are independent, it follows that

Var(time to go from k to j ) =
j−1∑

i=k

Var(Ti)

6.4. The Transition Probability Function Pij(t)

Let

Pij (t) = P {X(t + s) = j |X(s) = i}

denote the probability that a process presently in state i will be in state j a
time t later. These quantities are often called the transition probabilities of the
continuous-time Markov chain.

We can explicitly determine Pij (t) in the case of a pure birth process having
distinct birth rates. For such a process, let Xk denote the time the process spends
in state k before making a transition into state k + 1, k � 1. Suppose that the
process is presently in state i, and let j > i. Then, as Xi is the time it spends in
state i before moving to state i + 1, and Xi+1 is the time it then spends in state
i + 1 before moving to state i + 2, and so on, it follows that

∑j−1
k=i Xk is the time
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it takes until the process enters state j . Now, if the process has not yet entered
state j by time t , then its state at time t is smaller than j , and vice versa. That is,

X(t) < j ⇔ Xi + · · · + Xj−1 > t

Therefore, for i < j , we have for a pure birth process that

P {X(t) < j |X(0) = i} = P

{
j−1∑

k=i

Xk > t

}

However, since Xi, . . . ,Xj−1 are independent exponential random variables with
respective rates λi, . . . , λj−1, we obtain from the preceding and Equation (5.9),
which gives the tail distribution function of

∑j−1
k=i Xk , that

P {X(t) < j |X(0) = i} =
j−1∑

k=i

e−λkt

j−1∏

r �=k, r=i

λr

λr − λk

Replacing j by j + 1 in the preceding gives that

P {X(t) < j + 1|X(0) = i} =
j∑

k=i

e−λkt

j∏

r �=k, r=i

λr

λr − λk

Since

P {X(t) = j |X(0) = i} = P {X(t) < j + 1|X(0) = i} − P {X(t) < j |X(0) = i}

and since Pii(t) = P {Xi > t} = e−λi t , we have shown the following.

Proposition 6.1 For a pure birth process having λi �= λj when i �= j

Pij (t) =
j∑

k=i

e−λkt

j∏

r �=k, r=i

λr

λr − λk

−
j−1∑

k=i

e−λkt

j−1∏

r �=k, r=i

λr

λr − λk

, i < j

Pii(t) = e−λi t
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Example 6.8 Consider the Yule process, which is a pure birth process in
which each individual in the population independently gives birth at rate λ, and
so λn = nλ, n � 1. Letting i = 1, we obtain from Proposition 6.1

P1j (t) =
j∑

k=1

e−kλt

j∏

r �=k, r=1

r

r − k
−

j−1∑

k=1

e−kλt

j−1∏

r �=k, r=1

r

r − k

= e−jλt

j−1∏

r=1

r

r − j
+

j−1∑

k=1

e−kλt

(
j∏

r �=k, r=1

r

r − k
−

j−1∏

r �=k, r=1

r

r − k

)

= e−jλt (−1)j−1 +
j−1∑

k=1

e−kλt

(
j

j − k
− 1

) j−1∏

r �=k, r=1

r

r − k

Now,

k

j − k

j−1∏

r �=k, r=1

r

r − k
= (j − 1)!

(1 − k)(2 − k) · · · (k − 1 − k)(j − k)!

= (−1)k−1
(

j − 1

k − 1

)

so

P1j (t) =
j∑

k=1

(
j − 1

k − 1

)

e−kλt (−1)k−1

= e−λt

j−1∑

i=0

(
j − 1

i

)

e−iλt (−1)i

= e−λt (1 − e−λt )j−1

Thus, starting with a single individual, the population size at time t has a geo-
metric distribution with mean eλt . If the population starts with i individuals, then
we can regard each of these individuals as starting her own independent Yule
process, and so the population at time t will be the sum of i independent and
identically distributed geometric random variables with parameter e−λt . But this
means that the conditional distribution of X(t), given that X(0) = i, is the same
as the distribution of the number of times that a coin that lands heads on each
flip with probability e−λt must be flipped to amass a total of i heads. Hence, the
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population size at time t has a negative binomial distribution with parameters i

and e−λt , so

Pij (t) =
(

j − 1

i − 1

)

e−iλt (1 − e−λt )j−i , j � i � 1

[We could, of course, have used Proposition 6.1 to immediately obtain an equation
for Pij (t), rather than just using it for P1j (t), but the algebra that would have then
been needed to show the equivalence of the resulting expression to the preceding
result is somewhat involved.] �

We shall now derive a set of differential equations that the transition probabil-
ities Pij (t) satisfy in a general continuous-time Markov chain. However, first we
need a definition and a pair of lemmas.

For any pair of states i and j , let

qij = viPij

Since vi is the rate at which the process makes a transition when in state i and Pij

is the probability that this transition is into state j , it follows that qij is the rate,
when in state i, at which the process makes a transition into state j . The quantities
qij are called the instantaneous transition rates. Since

vi =
∑

j

viPij =
∑

j

qij

and

Pij = qij

vi

= qij
∑

j qij

it follows that specifying the instantaneous transition rates determines the pa-
rameters of the continuous-time Markov chain.

Lemma 6.2

(a) limh→0
1 − Pii(h)

h
= vi

(b) limh→0
Pij (h)

h
= qij when i �= j

Proof We first note that since the amount of time until a transition occurs is
exponentially distributed it follows that the probability of two or more transitions
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in a time h is o(h). Thus, 1 − Pii(h), the probability that a process in state i at
time 0 will not be in state i at time h, equals the probability that a transition occurs
within time h plus something small compared to h. Therefore,

1 − Pii(h) = vih + o(h)

and part (a) is proven. To prove part (b), we note that Pij (h), the probability that
the process goes from state i to state j in a time h, equals the probability that
a transition occurs in this time multiplied by the probability that the transition is
into state j , plus something small compared to h. That is,

Pij (h) = hviPij + o(h)

and part (b) is proven. �

Lemma 6.3 For all s � 0, t � 0,

Pij (t + s) =
∞∑

k=0

Pik(t)Pkj (s) (6.8)

Proof In order for the process to go from state i to state j in time t + s, it must
be somewhere at time t and thus

Pij (t + s) = P {X(t + s) = j |X(0) = i}

=
∞∑

k=0

P {X(t + s) = j,X(t) = k|X(0) = i}

=
∞∑

k=0

P {X(t + s) = j |X(t) = k,X(0) = i} · P {X(t) = k|X(0) = i}

=
∞∑

k=0

P {X(t + s) = j |X(t) = k} · P {X(t) = k|X(0) = i}

=
∞∑

k=0

Pkj (s)Pik(t)

and the proof is completed. �
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The set of equations (6.8) is known as the Chapman–Kolmogorov equations.
From Lemma 6.3, we obtain

Pij (h + t) − Pij (t) =
∞∑

k=0

Pik(h)Pkj (t) − Pij (t)

=
∑

k �=i

Pik(h)Pkj (t) − [1 − Pii(h)]Pij (t)

and thus

lim
h→0

Pij (t + h) − Pij (t)

h
= lim

h→0

{∑

k �=i

Pik(h)

h
Pkj (t) −

[
1 − Pii(h)

h

]

Pij (t)

}

Now assuming that we can interchange the limit and the summation in the pre-
ceding and applying Lemma 6.2, we obtain

P ′
ij (t) =

∑

k �=i

qikPkj (t) − viPij (t)

It turns out that this interchange can indeed be justified and, hence, we have the
following theorem.

Theorem 6.1 (Kolmogorov’s Backward Equations) For all states i, j , and
times t � 0,

P ′
ij (t) =

∑

k �=i

qikPkj (t) − viPij (t)

Example 6.9 The backward equations for the pure birth process become

P ′
ij (t) = λiPi+1,j (t) − λiPij (t) �

Example 6.10 The backward equations for the birth and death process be-
come

P ′
0j (t) = λ0P1j (t) − λ0P0j (t),

P ′
ij (t) = (λi + μi)

[
λi

λi + μi

Pi+1,j (t) + μi

λi + μi

Pi−1,j (t)

]

− (λi + μi)Pij (t)

or equivalently

P ′
0j (t) = λ0[P1j (t) − P0j (t)],

P ′
ij (t) = λiPi+1,j (t) + μiPi−1,j (t) − (λi + μi)Pij (t), i > 0 �

(6.9)



6.4. The Transition Probability Function Pij(t) 381

Example 6.11 (A Continuous-Time Markov Chain Consisting of Two States)
Consider a machine that works for an exponential amount of time having mean
1/λ before breaking down; and suppose that it takes an exponential amount of
time having mean 1/μ to repair the machine. If the machine is in working condi-
tion at time 0, then what is the probability that it will be working at time t = 10?

To answer this question, we note that the process is a birth and death process
(with state 0 meaning that the machine is working and state 1 that it is being
repaired) having parameters

λ0 = λ, μ1 = μ,

λi = 0, i �= 0, μi = 0, i �= 1

We shall derive the desired probability, namely, P00(10) by solving the set of
differential equations given in Example 6.10. From Equation (6.9), we obtain

P ′
00(t) = λ[P10(t) − P00(t)], (6.10)

P ′
10(t) = μP00(t) − μP10(t) (6.11)

Multiplying Equation (6.10) by μ and Equation (6.11) by λ and then adding the
two equations yields

μP ′
00(t) + λP ′

10(t) = 0

By integrating, we obtain

μP00(t) + λP10(t) = c

However, since P00(0) = 1 and P10(0) = 0, we obtain c = μ and hence

μP00(t) + λP10(t) = μ (6.12)

or equivalently

λP10(t) = μ[1 − P00(t)]
By substituting this result in Equation (6.10), we obtain

P ′
00(t) = μ[1 − P00(t)] − λP00(t)

= μ − (μ + λ)P00(t)

Letting

h(t) = P00(t) − μ

μ + λ
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we have

h′(t) = μ − (μ + λ)

[

h(t) + μ

μ + λ

]

= −(μ + λ)h(t)

or

h′(t)
h(t)

= −(μ + λ)

By integrating both sides, we obtain

logh(t) = −(μ + λ)t + c

or

h(t) = Ke−(μ+λ)t

and thus

P00(t) = Ke−(μ+λ)t + μ

μ + λ

which finally yields, by setting t = 0 and using the fact that P00(0) = 1,

P00(t) = λ

μ + λ
e−(μ+λ)t + μ

μ + λ

From Equation (6.12), this also implies that

P10(t) = μ

μ + λ
− μ

μ + λ
e−(μ+λ)t

Hence, our desired probability P00(10) equals

P00(10) = λ

μ + λ
e−10(μ+λ) + μ

μ + λ
�

Another set of differential equations, different from the backward equations,
may also be derived. This set of equations, known as Kolmogorov’s forward
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equations is derived as follows. From the Chapman–Kolmogorov equations
(Lemma 6.3), we have

Pij (t + h) − Pij (t) =
∞∑

k=0

Pik(t)Pkj (h) − Pij (t)

=
∑

k �=j

Pik(t)Pkj (h) − [1 − Pjj (h)]Pij (t)

and thus

lim
h→0

Pij (t + h) − Pij (t)

h
= lim

h→0

{∑

k �=j

Pik(t)
Pkj (h)

h
−
[

1 − Pjj (h)

h

]

Pij (t)

}

and, assuming that we can interchange limit with summation, we obtain from
Lemma 6.2

P ′
ij (t) =

∑

k �=j

qkjPik(t) − vjPij (t)

Unfortunately, we cannot always justify the interchange of limit and summation
and thus the preceding is not always valid. However, they do hold in most models,
including all birth and death processes and all finite state models. We thus have
the following.

Theorem 6.2 (Kolmogorov’s Forward Equations) Under suitable regularity
conditions,

P ′
ij (t) =

∑

k �=j

qkjPik(t) − vjPij (t) (6.13)

We shall now solve the forward equations for the pure birth process. For this
process, Equation (6.13) reduces to

P ′
ij (t) = λj−1Pi,j−1(t) − λjPij (t)

However, by noting that Pij (t) = 0 whenever j < i (since no deaths can occur),
we can rewrite the preceding equation to obtain

P ′
ii (t) = −λiPii(t),

P ′
ij (t) = λj−1Pi,j−1(t) − λjPij (t), j � i + 1

(6.14)
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Proposition 6.4 For a pure birth process,

Pii(t) = e−λi t , i � 0

Pij (t) = λj−1e
−λj t

∫ t

0
eλj sPi,j−1(s) ds, j � i + 1

Proof The fact that Pii(t) = e−λi t follows from Equation (6.14) by integrating
and using the fact that Pii(0) = 1. To prove the corresponding result for Pij (t),
we note by Equation (6.14) that

eλj t
[
P ′

ij (t) + λjPij (t)
]= eλj tλj−1Pi,j−1(t)

or

d

dt

[
eλj tPij (t)

]= λj−1e
λj tPi,j−1(t)

Hence, since Pij (0) = 0, we obtain the desired results. �

Example 6.12 (Forward Equations for Birth and Death Process) The forward
equations (Equation 6.13) for the general birth and death process become

P ′
i0(t) =

∑

k �=0

qk0Pik(t) − λ0Pi0(t)

= μ1Pi1(t) − λ0Pi0(t) (6.15)

P ′
ij (t) =

∑

k �=j

qkjPik(t) − (λj + μj )Pij (t)

= λj−1Pi,j−1(t) + μj+1Pi,j+1(t) − (λj + μj )Pij (t) � (6.16)

6.5. Limiting Probabilities

In analogy with a basic result in discrete-time Markov chains, the probability that
a continuous-time Markov chain will be in state j at time t often converges to
a limiting value which is independent of the initial state. That is, if we call this
value Pj , then

Pj ≡ lim
t→∞Pij (t)

where we are assuming that the limit exists and is independent of the initial state i.
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To derive a set of equations for the Pj , consider first the set of forward equations

P ′
ij (t) =

∑

k �=j

qkjPik(t) − vjPij (t) (6.17)

Now, if we let t approach ∞, then assuming that we can interchange limit and
summation, we obtain

lim
t→∞P ′

ij (t) = lim
t→∞

[∑

k �=j

qkjPik(t) − vjPij (t)

]

=
∑

k �=j

qkjPk − vjPj

However, as Pij (t) is a bounded function (being a probability it is always between
0 and 1), it follows that if P ′

ij (t) converges, then it must converge to 0 (why is
this?). Hence, we must have that

0 =
∑

k �=j

qkjPk − vjPj

or

vjPj =
∑

k �=j

qkjPk, all states j (6.18)

The preceding set of equations, along with this equation

∑

j

Pj = 1 (6.19)

can be used to solve for the limiting probabilities.

Remarks (i) We have assumed that the limiting probabilities Pj exist. A suf-
ficient condition for this is that

(a) all states of the Markov chain communicate in the sense that starting in
state i there is a positive probability of ever being in state j , for all i, j and
(b) the Markov chain is positive recurrent in the sense that, starting in any state,
the mean time to return to that state is finite

If conditions (a) and (b) hold, then the limiting probabilities will exist and sat-
isfy Equations (6.18) and (6.19). In addition, Pj also will have the interpretation
of being the long-run proportion of time that the process is in state j .

(ii) Equations (6.18) and (6.19) have a nice interpretation: In any interval (0, t)

the number of transitions into state j must equal to within 1 the number of tran-
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sitions out of state j (why?). Hence, in the long run, the rate at which transitions
into state j occur must equal the rate at which transitions out of state j occur. Now
when the process is in state j , it leaves at rate vj , and, as Pj is the proportion of
time it is in state j , it thus follows that

vjPj = rate at which the process leaves state j

Similarly, when the process is in state k, it enters j at a rate qkj . Hence, as Pk is
the proportion of time in state k, we see that the rate at which transitions from k

to j occur is just qkjPk ; thus

∑

k �=j

qkjPk = rate at which the process enters state j

So, Equation (6.18) is just a statement of the equality of the rates at which the
process enters and leaves state j . Because it balances (that is, equates) these rates,
the equations (6.18) are sometimes referred to as “balance equations.”

(iii) When the limiting probabilities Pj exist, we say that the chain is ergodic.
The Pj are sometimes called stationary probabilities since it can be shown that
(as in the discrete-time case) if the initial state is chosen according to the distri-
bution {Pj }, then the probability of being in state j at time t is Pj , for all t .

Let us now determine the limiting probabilities for a birth and death process.
From Equation (6.18) or equivalently, by equating the rate at which the process
leaves a state with the rate at which it enters that state, we obtain

State Rate at which leave = rate at which enter

0

1

2

n,n � 1

λ0P0 =μ1P1

(λ1 + μ1)P1 =μ2P2 + λ0P0

(λ2 + μ2)P2 =μ3P3 + λ1P1

(λn + μn)Pn =μn+1Pn+1 + λn−1Pn−1

By adding to each equation the equation preceding it, we obtain

λ0P0 = μ1P1,

λ1P1 = μ2P2,

λ2P2 = μ3P3,

...

λnPn = μn+1Pn+1, n � 0
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Solving in terms of P0 yields

P1 = λ0

μ1
P0,

P2 = λ1

μ2
P1 = λ1λ0

μ2μ1
P0,

P3 = λ2

μ3
P2 = λ2λ1λ0

μ3μ2μ1
P0,

...

Pn = λn−1

μn

Pn−1 = λn−1λn−2 · · ·λ1λ0

μnμn−1 · · ·μ2μ1
P0

And by using the fact that
∑∞

n=0 Pn = 1, we obtain

1 = P0 + P0

∞∑

n=1

λn−1 · · ·λ1λ0

μn · · ·μ2μ1

or

P0 = 1

1 +
∞∑

n=1

λ0λ1 · · ·λn−1

μ1μ2 · · ·μn

and so

Pn = λ0λ1 · · ·λn−1

μ1μ2 · · ·μn

(

1 +
∞∑

n=1

λ0λ1 · · ·λn−1

μ1μ2 · · ·μn

) , n � 1 (6.20)

The foregoing equations also show us what condition is necessary for these limit-
ing probabilities to exist. Namely, it is necessary that

∞∑

n=1

λ0λ1 · · ·λn−1

μ1μ2 · · ·μn

< ∞ (6.21)

This condition also may be shown to be sufficient.
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In the multiserver exponential queueing system (Example 6.6), Condition
(6.21) reduces to

∞∑

n=s+1

λn

(sμ)n
< ∞

which is equivalent to λ/sμ < 1.
For the linear growth model with immigration (Example 6.4), Condition (6.21)

reduces to

∞∑

n=1

θ(θ + λ) · · · (θ + (n − 1)λ)

n!μn
< ∞

Using the ratio test, the preceding will converge when

lim
n→∞

θ(θ + λ) · · · (θ + nλ)

(n + 1)!μn+1

n!μn

θ(θ + λ) · · · (θ + (n − 1)λ)
= lim

n→∞
θ + nλ

(n + 1)μ

= λ

μ
< 1

That is, the condition is satisfied when λ < μ. When λ � μ it is easy to show that
Condition (6.21) is not satisfied.

Example 6.13 (A Machine Repair Model) Consider a job shop that consists
of M machines and one serviceman. Suppose that the amount of time each ma-
chine runs before breaking down is exponentially distributed with mean 1/λ, and
suppose that the amount of time that it takes for the serviceman to fix a machine is
exponentially distributed with mean 1/μ. We shall attempt to answer these ques-
tions: (a) What is the average number of machines not in use? (b) What proportion
of time is each machine in use?

Solution: If we say that the system is in state n whenever n machines are
not in use, then the preceding is a birth and death process having parameters

μn = μ n � 1

λn =
{
(M − n)λ, n � M

0, n > M

This is so in the sense that a failing machine is regarded as an arrival and a
fixed machine as a departure. If any machines are broken down, then since the
serviceman’s rate is μ,μn = μ. On the other hand, if n machines are not in
use, then since the M − n machines in use each fail at a rate λ, it follows that
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λn = (M − n)λ. From Equation (6.20) we have that Pn, the probability that n

machines will not be in use, is given by

P0 = 1

1 +∑M
n=1 [Mλ(M − 1)λ · · · (M − n + 1)λ/μn]

= 1

1 +∑M
n=1 (λ/μ)nM!/(M − n)! ,

Pn = (λ/μ)nM!/(M − n)!
1 +∑M

n=1 (λ/μ)nM!/(M − n)! , n = 0,1, . . . ,M

Hence, the average number of machines not in use is given by

M∑

n=0

nPn =
∑M

n=0 n(λ/μ)nM!/(M − n)!
1 +∑M

n=1 (λ/μ)nM!/(M − n)! (6.22)

To obtain the long-run proportion of time that a given machine is working we
will compute the equivalent limiting probability of its working. To do so, we
condition on the number of machines that are not working to obtain

P {machine is working} =
M∑

n=0

P {machine is working|n not working}Pn

=
M∑

n=0

M − n

M
Pn

(since if n are not working,
then M − n are working!)

= 1 −
M∑

0

nPn

M

where
∑M

0 nPn is given by Equation (6.22). �

Example 6.14 (The M/M/1 Queue) In the M/M/1 queue λn = λ, μn = μ

and thus, from Equation (6.20),

Pn = (λ/μ)n

1 +∑∞
n=1(λ/μ)n

= (λ/μ)n(1 − λ/μ), n � 0

provided that λ/μ < 1. It is intuitive that λ must be less than μ for limiting
probabilities to exist. Customers arrive at rate λ and are served at rate μ, and



390 6 Continuous-Time Markov Chains

thus if λ > μ, then they arrive at a faster rate than they can be served and the
queue size will go to infinity. The case λ = μ behaves much like the symmet-
ric random walk of Section 4.3, which is null recurrent and thus has no limiting
probabilities. �

Example 6.15 Let us reconsider the shoeshine shop of Example 6.1, and
determine the proportion of time the process is in each of the states 0, 1, 2.
Because this is not a birth and death process (since the process can go directly
from state 2 to state 0), we start with the balance equations for the limiting prob-
abilities.

State Rate that the process leaves = rate that the process enters

0

1

2

λP0 =μ2P2

μ1P1 =λP0

μ2P2 =μ1P1

Solving in terms of P0 yields

P2 = λ

μ2
P0, P1 = λ

μ1
P0

which implies, since P0 + P1 + P2 = 1, that

P0

[

1 + λ

μ2
+ λ

μ1

]

= 1

or

P0 = μ1μ2

μ1μ2 + λ(μ1 + μ2)

and

P1 = λμ2

μ1μ2 + λ(μ1 + μ2)
,

P2 = λμ1

μ1μ2 + λ(μ1 + μ2)
�

Example 6.16 Consider a set of n components along with a single repairman.
Suppose that component i functions for an exponentially distributed time with rate
λi and then fails. The time it then takes to repair component i is exponential with
rate μi, i = 1, . . . , n. Suppose that when there is more than one failed component
the repairman always works on the most recent failure. For instance, if there are at
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present two failed components—say, components 1 and 2 of which 1 has failed
most recently—then the repairman will be working on component 1. However, if
component 3 should fail before 1’s repair is completed, then the repairman would
stop working on component 1 and switch to component 3 (that is, a newly failed
component preempts service).

To analyze the preceding as a continuous-time Markov chain, the state must
represent the set of failed components in the order of failure. That is, the state will
be i1, i2, . . . , ik if i1, i2, . . . , ik are the k failed components (all the other n − k

being functional) with i1 having been the most recent failure (and is thus presently
being repaired), i2 the second most recent, and so on. Because there are k! possible
orderings for a fixed set of k failed components and

(
n
k

)
choices of that set, it

follows that there are

n∑

k=0

(
n

k

)

k! =
n∑

k=0

n!
(n − k)! = n!

n∑

i=0

1

i!

possible states.
The balance equations for the limiting probabilities are as follows:

(

μi1 +
∑

i �=ij
j=1,...,k

λi

)

P(i1, . . . , ik) =
∑

i �=ij
j=1,...,k

P (i, i1, . . . , ik)μi +P(i2, . . . , ik)λi1,

n∑

i=1

λiP (φ) =
n∑

i=1

P(i)μi (6.23)

where φ is the state when all components are working. The preceding equations
follow because state i1, . . . , ik can be left either by a failure of any of the additional
components or by a repair completion of component i1. Also that state can be
entered either by a repair completion of component i when the state is i, i1, . . . , ik
or by a failure of component i1 when the state is i2, . . . , ik .

However, if we take

P(i1, . . . , ik) = λi1λi2 · · ·λik

μi1μi2 · · ·μik

P (φ) (6.24)

then it is easily seen that Equations (6.23) are satisfied. Hence, by uniqueness
these must be the limiting probabilities with P(φ) determined to make their sum
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equal 1. That is,

P(φ) =
[

1 +
∑

i1,...,ik

λi1 · · ·λik

μi1 · · ·μik

]−1

As an illustration, suppose n = 2 and so there are five states φ, 1, 2, 12, 21. Then
from the preceding we would have

P(φ) =
[

1 + λ1

μ1
+ λ2

μ2
+ 2λ1λ2

μ1μ2

]−1

,

P (1) = λ1

μ1
P(φ),

P (2) = λ2

μ2
P(φ),

P (1,2) = P(2,1) = λ1λ2

μ1μ2
P(φ)

It is interesting to note, using Equation (6.24), that given the set of failed
components, each of the possible orderings of these components is equally
likely. �

6.6. Time Reversibility

Consider a continuous-time Markov chain that is ergodic and let us consider the
limiting probabilities Pi from a different point of view than previously. If we con-
sider the sequence of states visited, ignoring the amount of time spent in each state
during a visit, then this sequence constitutes a discrete-time Markov chain with
transition probabilities Pij . Let us assume that this discrete-time Markov chain,
called the embedded chain, is ergodic and denote by πi its limiting probabilities.
That is, the πi are the unique solution of

πi =
∑

j

πjPji, all i

∑

i

πi = 1

Now since πi represents the proportion of transitions that take the process into
state i, and because 1/vi is the mean time spent in state i during a visit, it seems
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intuitive that Pi , the proportion of time in state i, should be a weighted average of
the πi where πi is weighted proportionately to 1/vi . That is, it is intuitive that

Pi = πi/vi
∑

j πj /vj

(6.25)

To check the preceding, recall that the limiting probabilities Pi must satisfy

viPi =
∑

j �=i

Pj qji, all i

or equivalently, since Pii = 0

viPi =
∑

j

Pj vjPji, all i

Hence, for the Pis to be given by Equation (6.25), the following would be neces-
sary:

πi =
∑

j

πjPji, all i

But this, of course, follows since it is in fact the defining equation for the πis.
Suppose now that the continuous-time Markov chain has been in operation for

a long time, and suppose that starting at some (large) time T we trace the process
going backward in time. To determine the probability structure of this reversed
process, we first note that given we are in state i at some time—say, t—the prob-
ability that we have been in this state for an amount of time greater than s is just
e−vi s . This is so, since

P {process is in state i throughout [t − s, t]|X(t) = i}
= P {process is in state i throughout [t − s, t]}

P {X(t) = i}
= P {X(t − s) = i}e−vi s

P {X(t) = i}
= e−vi s

since for t large P {X(t − s) = i} = P {X(t) = i} = Pi .
In other words, going backward in time, the amount of time the process spends

in state i is also exponentially distributed with rate vi . In addition, as was shown
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in Section 4.8, the sequence of states visited by the reversed process constitutes a
discrete-time Markov chain with transition probabilities Qij given by

Qij = πjPji

πi

Hence, we see from the preceding that the reversed process is a continuous-time
Markov chain with the same transition rates as the forward-time process and with
one-stage transition probabilities Qij . Therefore, the continuous-time Markov
chain will be time reversible, in the sense that the process reversed in time has
the same probabilistic structure as the original process, if the embedded chain is
time reversible. That is, if

πiPij = πjPji, for all i, j

Now using the fact that Pi = (πi/vi)/(
∑

j πj /vj ), we see that the preceding con-
dition is equivalent to

Piqij = Pjqji, for all i, j (6.26)

Since Pi is the proportion of time in state i and qij is the rate when in state i that
the process goes to j , the condition of time reversibility is that the rate at which
the process goes directly from state i to state j is equal to the rate at which it goes
directly from j to i. It should be noted that this is exactly the same condition needed
for an ergodic discrete-time Markov chain to be time reversible (see Section 4.8).

An application of the preceding condition for time reversibility yields the fol-
lowing proposition concerning birth and death processes.

Proposition 6.5 An ergodic birth and death process is time reversible.

Proof We must show that the rate at which a birth and death process goes from
state i to state i + 1 is equal to the rate at which it goes from i + 1 to i. Now in
any length of time t the number of transitions from i to i + 1 must equal to within
1 the number from i + 1 to i (since between each transition from i to i + 1 the
process must return to i, and this can only occur through i + 1, and vice versa).
Hence, as the number of such transitions goes to infinity as t → ∞, it follows that
the rate of transitions from i to i + 1 equals the rate from i + 1 to i. �

Proposition 6.5 can be used to prove the important result that the output process
of an M/M/s queue is a Poisson process. We state this as a corollary.

Corollary 6.6 Consider an M/M/s queue in which customers arrive in ac-
cordance with a Poisson process having rate λ and are served by any one of
s servers—each having an exponentially distributed service time with rate μ.
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Figure 6.1. The number in the system.

If λ < sμ, then the output process of customers departing is, after the process
has been in operation for a long time, a Poisson process with rate λ.

Proof Let X(t) denote the number of customers in the system at time t . Since
the M/M/s process is a birth and death process, it follows from Proposition 6.5
that {X(t), t � 0} is time reversible. Now going forward in time, the time points at
which X(t) increases by 1 constitute a Poisson process since these are just the ar-
rival times of customers. Hence, by time reversibility the time points at which
X(t) increases by 1 when we go backward in time also constitute a Poisson
process. But these latter points are exactly the points of time when customers
depart. (See Figure 6.1.) Hence, the departure times constitute a Poisson process
with rate λ. �

Example 6.17 Consider a first come first serve M/M/1 queue, with arrival
rate λ and service rate μ, where λ < μ, that is in steady state. Given that cus-
tomer C spends a total of t time units in the system, what is the conditional distri-
bution of the number of others that were present when C arrived?

Solution: Suppose that C arrived at time s and departed at time s + t . Be-
cause the system is first come first served, the number that were in the system
when C arrived is equal to the number of departures of other customers that oc-
cur after time s and before time s + t , which is equal to the number of arrivals
in the reversed process in that interval of time. Now, in the reversed process
C would have arrived at time s + t and departed at time s. Because the reversed
process is also an M/M/1 queueing system, the number of arrivals during that
interval of length t is Poisson distributed with mean λt . (For a more direct
argument for this result, see Section 8.3.1.) �

We have shown that a process is time reversible if and only if

Piqij = Pjqji for all i �= j
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Analogous to the result for discrete-time Markov chains, if we can find a proba-
bility vector P that satisfies the preceding then the Markov chain is time reversible
and the Pis are the long-run probabilities. That is, we have the following proposi-
tion.

Proposition 6.7 If for some set {Pi}
∑

i

Pi = 1, Pi � 0

and

Piqij = Pjqji for all i �= j (6.27)

then the continuous-time Markov chain is time reversible and Pi represents the
limiting probability of being in state i.

Proof For fixed i we obtain upon summing Equation (6.27) over all j : j �= i

∑

j �=i

Piqij =
∑

j �=i

Pj qji

or, since
∑

j �=i qij = vi ,

viPi =
∑

j �=i

Pj qji

Hence, the Pis satisfy the balance equations and thus represent the limiting prob-
abilities. Because Equation (6.27) holds, the chain is time reversible. �

Example 6.18 Consider a set of n machines and a single repair facility to
service them. Suppose that when machine i, i = 1, . . . , n, goes down it requires
an exponentially distributed amount of work with rate μi to get it back up. The
repair facility divides its efforts equally among all down components in the sense
that whenever there are k down machines 1 � k � n each receives work at a rate
of 1/k per unit time. Finally, suppose that each time machine i goes back up it
remains up for an exponentially distributed time with rate λi .

The preceding can be analyzed as a continuous-time Markov chain having 2n

states where the state at any time corresponds to the set of machines that are down
at that time. Thus, for instance, the state will be (i1, i2, . . . , ik) when machines
i1, . . . , ik are down and all the others are up. The instantaneous transition rates are
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as follows:

q(i1,...,ik−1),(i1,...,ik) = λik ,

q(i1,...,ik),(i1,...,ik−1) = μik/k

where i1, . . . , ik are all distinct. This follows since the failure rate of machine ik
is always λik and the repair rate of machine ik when there are k failed machines
is μik/k.

Hence the time reversible equations (6.27) are

P(i1, . . . , ik)μik /k = P(i1, . . . , ik−1)λik

or

P(i1, . . . , ik) = kλik

μik

P (i1, . . . , ik−1)

= kλik

μik

(k − 1)λik−1

μik−1

P(i1, . . . , ik−2) upon iterating

=
...

= k!
k∏

j=1

(λij /μij )P (φ)

where φ is the state in which all components are working. Because

P(φ) +
∑

P(i1, . . . , ik) = 1

we see that

P(φ) =
[

1 +
∑

i1,...,ik

k!
k∏

j=1

(λij /μij )

]−1

(6.28)

where the preceding sum is over all the 2n − 1 nonempty subsets {i1, . . . , ik} of
{1,2, . . . , n}. Hence as the time reversible equations are satisfied for this choice
of probability vector it follows from Proposition 6.7 that the chain is time re-
versible and

P(i1, . . . , ik) = k!
k∏

j=1

(λij /μij )P (φ)

with P(φ) being given by (6.28).
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For instance, suppose there are two machines. Then, from the preceding we
would have

P(φ) = 1

1 + λ1/μ1 + λ2/μ2 + 2λ1λ2/μ1μ2
,

P (1) = λ1/μ1

1 + λ1/μ1 + λ2/μ2 + 2λ1λ2/μ1μ2
,

P (2) = λ2/μ2

1 + λ1/μ1 + λ2/μ2 + 2λ1λ2/μ1μ2
,

P (1,2) = 2λ1λ2

μ1μ2[1 + λ1/μ1 + λ2/μ2 + 2λ1λ2/μ1μ2] �

Consider a continuous-time Markov chain whose state space is S. We say that
the Markov chain is truncated to the set A ⊂ S if qij is changed to 0 for all i ∈ A,
j /∈ A. That is, transitions out of the class A are no longer allowed, whereas ones
in A continue at the same rates as before. A useful result is that if the chain is time
reversible, then so is the truncated one.

Proposition 6.8 A time reversible chain with limiting probabilities Pj ,
j ∈ S, that is truncated to the set A ⊂ S and remains irreducible is also time
reversible and has limiting probabilities P A

j given by

P A
j = Pj

∑
i∈A Pi

, j ∈ A

Proof By Proposition 6.7 we need to show that, with P A
j as given,

P A
i qij = P A

j qji for i ∈ A, j ∈ A

or, equivalently,

Piqij = Pjqji for i ∈ A, j ∈ A

But this follows since the original chain is, by assumption, time reversible. �

Example 6.19 Consider an M/M/1 queue in which arrivals finding N in the
system do not enter. This finite capacity system can be regarded as a truncation
of the M/M/1 queue to the set of states A = {0,1, . . . ,N}. Since the number in
the system in the M/M/1 queue is time reversible and has limiting probabilities
Pj = (λ/μ)j (1 − λ/μ) it follows from Proposition 6.6 that the finite capacity
model is also time reversible and has limiting probabilities given by

Pj = (λ/μ)j

∑N
i=0(λ/μ)i

, j = 0,1, . . . ,N �
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Another useful result is given by the following proposition, whose proof is left
as an exercise.

Proposition 6.9 If {Xi(t), t �0} are, for i = 1, . . . , n, independent time re-
versible continuous-time Markov chains, then the vector process {(Xi(t), . . . ,

Xn(t)), t � 0} is also a time reversible continuous-time Markov chain.

Example 6.20 Consider an n-component system where component i, i =
1, . . . , n, functions for an exponential time with rate λi and then fails; upon failure,
repair begins on component i, with the repair taking an exponentially distributed
time with rate μi . Once repaired, a component is as good as new. The components
act independently except that when there is only one working component the sys-
tem is temporarily shut down until a repair has been completed; it then starts up
again with two working components.

(a) What proportion of time is the system shut down?
(b) What is the (limiting) averaging number of components that are being re-
paired?

Solution: Consider first the system without the restriction that it is shut
down when a single component is working. Letting Xi(t), i = 1, . . . , n, equal
1 if component i is working at time t and 0 if it is failed, then {Xi(t), t � 0},
i = 1, . . . , n, are independent birth and death processes. Because a birth and
death process is time reversible, it follows from Proposition 6.9 that the process
{(X1(t), . . . ,Xn(t)), t � 0} is also time reversible. Now, with

Pi(j) = lim
t→∞P {Xi(t) = j}, j = 0,1

we have

Pi(1) = μi

μi + λi

, Pi(0) = λi

μi + λi

Also, with

P(j1, . . . , jn) = lim
t→∞P {Xi(t) = ji, i = 1, . . . , n}

it follows, by independence, that

P(j1, . . . , jn) =
n∏

i=1

Pi(ji), ji = 0,1, i = 1, . . . , n

Now, note that shutting down the system when only one component is work-
ing is equivalent to truncating the preceding unconstrained system to the set
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consisting of all states except the one having all components down. Therefore,
with PT denoting a probability for the truncated system, we have from Propo-
sition 6.8 that

PT (j1, . . . , jn) = P(j1, . . . , jn)

1 − C
,

n∑

i=1

ji > 0

where

C = P(0, . . . ,0) =
n∏

j=1

λj/(μj + λj )

Hence, letting (0,1i ) = (0, . . . ,0,1,0, . . . ,0) be the n vector of zeroes and
ones whose single 1 is in the ith place, we have

PT (system is shut down) =
n∑

i=1

PT (0,1i )

= 1

1 − C

n∑

i=1

(
μi

μi + λi

)∏

j �=i

(
λj

μj + λj

)

= C
∑n

i=1 μi/λi

1 − C

Let R denote the number of components being repaired. Then with Ii equal to 1
if component i is being repaired and 0 otherwise, we have for the unconstrained
(nontruncated) system that

E[R] = E

[
n∑

i=1

Ii

]

=
n∑

i=1

Pi(0) =
n∑

i=1

λi/(μi + λi)

But, in addition,

E[R] = E[R|all components are in repair]C
+ E[R|not all components are in repair](1 − C)

= nC + ET [R](1 − C)

implying that

ET [R] =
∑n

i=1 λi/(μi + λi) − nC

1 − C
�



6.7. Uniformization 401

6.7. Uniformization

Consider a continuous-time Markov chain in which the mean time spent in a state
is the same for all states. That is, suppose that vi = v, for all states i. In this
case since the amount of time spent in each state during a visit is exponentially
distributed with rate v, it follows that if we let N(t) denote the number of state
transitions by time t , then {N(t), t � 0} will be a Poisson process with rate v.

To compute the transition probabilities Pij (t), we can condition on N(t):

Pij (t) = P {X(t) = j |X(0) = i}

=
∞∑

n=0

P {X(t) = j |X(0) = i, N(t) = n}P {N(t) = n|X(0) = i}

=
∞∑

n=0

P {X(t) = j |X(0) = i, N(t) = n}e−vt (vt)n

n!
Now the fact that there have been n transitions by time t tells us something about
the amount of time spent in each of the first n states visited, but since the distri-
bution of time spent in each state is the same for all states, it follows that knowing
that N(t) = n gives us no information about which states were visited. Hence,

P {X(t) = j |X(0) = i, N(t) = n} = P n
ij

where P n
ij is just the n-stage transition probability associated with the discrete-

time Markov chain with transition probabilities Pij ; and so when vi ≡ v

Pij (t) =
∞∑

n=0

P n
ij e

−vt (vt)n

n! (6.29)

Equation (6.29) is often useful from a computational point of view since it enables
us to approximate Pij (t) by taking a partial sum and then computing (by matrix
multiplication of the transition probability matrix) the relevant n stage probabili-
ties P n

ij .
Whereas the applicability of Equation (6.29) would appear to be quite limited

since it supposes that vi ≡ v, it turns out that most Markov chains can be put in
that form by the trick of allowing fictitious transitions from a state to itself. To see
how this works, consider any Markov chain for which the vi are bounded, and let
v be any number such that

vi � v, for all i (6.30)

Now when in state i, the process actually leaves at rate vi ; but this is equivalent to
supposing that transitions occur at rate v, but only the fraction vi/v of transitions
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are real ones (and thus real transitions occur at rate vi ) and the remaining fraction
1−vi/v are fictitious transitions which leave the process in state i. In other words,
any Markov chain satisfying condition (6.30) can be thought of as being a process
that spends an exponential amount of time with rate v in state i and then makes a
transition to j with probability P ∗

ij , where

P ∗
ij =

⎧
⎪⎨

⎪⎩

1 − vi

v
, j = i

vi

v
Pij , j �= i

(6.31)

Hence, from Equation (6.29) we have that the transition probabilities can be com-
puted by

Pij (t) =
∞∑

n=0

P ∗n
ij e−vt (vt)n

n!

where P ∗
ij are the n-stage transition probabilities corresponding to Equation

(6.31). This technique of uniformizing the rate in which a transition occurs from
each state by introducing transitions from a state to itself is known as uniformiza-
tion.

Example 6.21 Let us reconsider Example 6.11, which models the workings
of a machine—either on or off—as a two-state continuous-time Markov chain
with

P01 = P10 = 1,

v0 = λ, v1 = μ

Letting v = λ + μ, the uniformized version of the preceding is to consider it a
continuous-time Markov chain with

P00 = μ

λ + μ
= 1 − P01,

P10 = μ

λ + μ
= 1 − P11,

vi = λ + μ, i = 1,2

As P00 = P10, it follows that the probability of a transition into state 0 is equal
to μ/(λ + μ) no matter what the present state. Because a similar result is true for
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state 1, it follows that the n-stage transition probabilities are given by

P n
i0 = μ

λ + μ
, n � 1, i = 0,1

P n
i1 = λ

λ + μ
, n � 1, i = 0,1

Hence,

P00(t) =
∞∑

n=0

P n
00e

−(λ+μ)t [(λ + μ)t]n
n!

= e−(λ+μ)t +
∞∑

n=1

(
μ

λ + μ

)

e−(λ+μ)t [(λ + μ)t]n
n!

= e−(λ+μ)t + [1 − e−(λ+μ)t ] μ

λ + μ

= μ

λ + μ
+ λ

λ + μ
e−(λ+μ)t

Similarly,

P11(t) =
∞∑

n=0

P n
11e

−(λ+μ)t [(λ + μ)t]n
n!

= e−(λ+μ)t + [1 − e−(λ+μ)t ] λ

λ + μ

= λ

λ + μ
+ μ

λ + μ
e−(λ+μ)t

The remaining probabilities are

P01(t) = 1 − P00(t) = λ

λ + μ
[1 − e−(λ+μ)t ],

P10(t) = 1 − P11(t) = μ

λ + μ
[1 − e−(λ+μ)t ] �

Example 6.22 Consider the two-state chain of Example 6.20 and suppose
that the initial state is state 0. Let O(t) denote the total amount of time that the
process is in state 0 during the interval (0, t). The random variable O(t) is often
called the occupation time. We will now compute its mean.
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If we let

I (s) =
{

1, if X(s) = 0
0, if X(s) = 1

then we can represent the occupation time by

O(t) =
∫ t

0
I (s) ds

Taking expectations and using the fact that we can take the expectation inside the
integral sign (since an integral is basically a sum), we obtain

E[O(t)] =
∫ t

0
E[I (s)] ds

=
∫ t

0
P {X(s) = 0} ds

=
∫ t

0
P00(s) ds

= μ

λ + μ
t + λ

(λ + μ)2
{1 − e−(λ+μ)t }

where the final equality follows by integrating

P00(s) = μ

λ + μ
+ λ

λ + μ
e−(λ+μ)s

(For another derivation of E[O(t)], see Exercise 38.) �

6.8. Computing the Transition Probabilities

For any pair of states i and j , let

rij =
{
qij , if i �= j

−vi, if i = j

Using this notation, we can rewrite the Kolmogorov backward equations

P ′
ij (t) =

∑

k �=i

qikPkj (t) − viPij (t)
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and the forward equations

P ′
ij (t) =

∑

k �=j

qkjPik(t) − vjPij (t)

as follows:

P ′
ij (t) =

∑

k

rikPkj (t) (backward)

P ′
ij (t) =

∑

k

rkjPik(t) (forward)

This representation is especially revealing when we introduce matrix notation.
Define the matrices R, and P(t), P′(t) by letting the element in row i, column j

of these matrices be, respectively, rij , Pij (t), and P ′
ij (t). Since the backward equa-

tions say that the element in row i, column j of the matrix P′(t) can be obtained
by multiplying the ith row of the matrix R by the j th column of the matrix P(t),
it is equivalent to the matrix equation

P′(t) = RP(t) (6.32)

Similarly, the forward equations can be written as

P′(t) = P(t)R (6.33)

Now, just as the solution of the scalar differential equation

f ′(t) = cf (t)

[or, equivalent, f ′(t) = f (t)c] is

f (t) = f (0)ect

it can be shown that the solution of the matrix differential Equations (6.32) and
(6.33) is given by

P(t) = P(0)eRt

Since P(0) = I (the identity matrix), this yields that

P(t) = eRt (6.34)

where the matrix eRt is defined by

eRt =
∞∑

n=0

Rn tn

n! (6.35)

with Rn being the (matrix) multiplication of R by itself n times.
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The direct use of Equation (6.35) to compute P(t) turns out to be very ineffi-
cient for two reasons. First, since the matrix R contains both positive and negative
elements (remember the off-diagonal elements are the qij while the ith diagonal
element is −vi ), there is the problem of computer round-off error when we com-
pute the powers of R. Second, we often have to compute many of the terms in the
infinite sum (6.35) to arrive at a good approximation. However, there are certain
indirect ways that we can utilize the relation (6.34) to efficiently approximate the
matrix P(t). We now present two of these methods.

Approximation Method 1 Rather than using (6.35) to compute eRt , we
can use the matrix equivalent of the identity

ex = lim
n→∞

(

1 + x

n

)n

which states that

eRt = lim
n→∞

(

I + R
t

n

)n

Thus, if we let n be a power of 2, say, n = 2k , then we can approximate P(t) by
raising the matrix M = I + Rt/n to the nth power, which can be accomplished
by k matrix multiplications (by first multiplying M by itself to obtain M2 and
then multiplying that by itself to obtain M4 and so on). In addition, since only
the diagonal elements of R are negative (and the diagonal elements of the identity
matrix I are equal to 1) by choosing n large enough, we can guarantee that the
matrix I + Rt/n has all nonnegative elements.

Approximation Method 2 A second approach to approximating eRt uses
the identity

e−Rt = lim
n→∞

(

I − R
t

n

)n

≈
(

I − R
t

n

)n

for n large

and thus

P(t) = eRt ≈
(

I − R
t

n

)−n

=
[(

I − R
t

n

)−1
]n

Hence, if we again choose n to be a large power of 2, say, n = 2k , we can ap-
proximate P(t) by first computing the inverse of the matrix I − Rt/n and then
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raising that matrix to the nth power (by utilizing k matrix multiplications). It can
be shown that the matrix (I − Rt/n)−1 will have only nonnegative elements.

Remark Both of the preceding computational approaches for approximating
P(t) have probabilistic interpretations (see Exercises 41 and 42).

Exercises

1. A population of organisms consists of both male and female members. In a
small colony any particular male is likely to mate with any particular female in
any time interval of length h, with probability λh + o(h). Each mating immedi-
ately produces one offspring, equally likely to be male or female. Let N1(t) and
N2(t) denote the number of males and females in the population at t . Derive the
parameters of the continuous-time Markov chain {N1(t),N2(t)}, i.e., the vi , Pij

of Section 6.2.

*2. Suppose that a one-celled organism can be in one of two states—either A

or B . An individual in state A will change to state B at an exponential rate α; an
individual in state B divides into two new individuals of type A at an exponential
rate β . Define an appropriate continuous-time Markov chain for a population of
such organisms and determine the appropriate parameters for this model.

3. Consider two machines that are maintained by a single repairman. Machine i

functions for an exponential time with rate μi before breaking down, i = 1,2. The
repair times (for either machine) are exponential with rate μ. Can we analyze this
as a birth and death process? If so, what are the parameters? If not, how can we
analyze it?

*4. Potential customers arrive at a single-server station in accordance with a
Poisson process with rate λ. However, if the arrival finds n customers already
in the station, then he will enter the system with probability αn. Assuming an
exponential service rate μ, set this up as a birth and death process and determine
the birth and death rates.

5. There are N individuals in a population, some of whom have a certain in-
fection that spreads as follows. Contacts between two members of this population
occur in accordance with a Poisson process having rate λ. When a contact occurs,
it is equally likely to involve any of the

(
N
2

)
pairs of individuals in the population.

If a contact involves an infected and a noninfected individual, then with probabil-
ity p the noninfected individual becomes infected. Once infected, an individual
remains infected throughout. Let X(t) denote the number of infected members of
the population at time t .
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(a) Is {X(t), t � 0} a continuous-time Markov chain?
(b) Specify its type.
(c) Starting with a single infected individual, what is the expected time until
all members are infected?

6. Consider a birth and death process with birth rates λi = (i + 1)λ, i � 0, and
death rates μi = iμ, i � 0.

(a) Determine the expected time to go from state 0 to state 4.
(b) Determine the expected time to go from state 2 to state 5.
(c) Determine the variances in parts (a) and (b).

*7. Individuals join a club in accordance with a Poisson process with rate λ.
Each new member must pass through k consecutive stages to become a full
member of the club. The time it takes to pass through each stage is exponen-
tially distributed with rate μ. Let Ni(t) denote the number of club members
at time t who have passed through exactly i stages, i = 1, . . . , k − 1. Also, let
N(t) = (N1(t),N2(t), . . . ,Nk−1(t)).

(a) Is {N(t), t � 0} a continuous-time Markov chain?
(b) If so, give the infinitesimal transition rates. That is, for any state n =
(n1, . . . , nk−1) give the possible next states along with their infinitesimal rates.

8. Consider two machines, both of which have an exponential lifetime with
mean 1/λ. There is a single repairman that can service machines at an ex-
ponential rate μ. Set up the Kolmogorov backward equations; you need not
solve them.

9. The birth and death process with parameters λn = 0 and μn = μ,n > 0 is
called a pure death process. Find Pij (t).

10. Consider two machines. Machine i operates for an exponential time with
rate λi and then fails; its repair time is exponential with rate μi, i = 1,2. The
machines act independently of each other. Define a four-state continuous-time
Markov chain which jointly describes the condition of the two machines. Use the
assumed independence to compute the transition probabilities for this chain and
then verify that these transition probabilities satisfy the forward and backward
equations.

*11. Consider a Yule process starting with a single individual—that is, suppose
X(0) = 1. Let Ti denote the time it takes the process to go from a population of
size i to one of size i + 1.

(a) Argue that Ti, i = 1, . . . , j , are independent exponentials with respective
rates iλ.
(b) Let X1, . . . ,Xj denote independent exponential random variables each
having rate λ, and interpret Xi as the lifetime of component i. Argue that
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max(X1, . . . ,Xj ) can be expressed as

max(X1, . . . ,Xj ) = ε1 + ε2 + · · · + εj

where ε1, ε2, . . . , εj are independent exponentials with respective rates jλ,
(j − 1)λ, . . . , λ.

Hint: Interpret εi as the time between the i − 1 and the ith failure.

(c) Using (a) and (b) argue that

P {T1 + · · · + Tj � t} = (1 − e−λt )j

(d) Use (c) to obtain that

P1j (t) = (1 − e−λt )j−1 − (1 − e−λt )j = e−λt (1 − e−λt )j−1

and hence, given X(0) = 1, X(t) has a geometric distribution with parameter
p = e−λt .
(e) Now conclude that

Pij (t) =
(

j − 1

i − 1

)

e−λti(1 − e−λt )j−i

12. Each individual in a biological population is assumed to give birth at an
exponential rate λ, and to die at an exponential rate μ. In addition, there is an
exponential rate of increase θ due to immigration. However, immigration is not
allowed when the population size is N or larger.

(a) Set this up as a birth and death model.
(b) If N = 3, 1 = θ = λ, μ = 2, determine the proportion of time that immi-
gration is restricted.

13. A small barbershop, operated by a single barber, has room for at most two
customers. Potential customers arrive at a Poisson rate of three per hour, and the
successive service times are independent exponential random variables with mean
1
4 hour. What is

(a) the average number of customers in the shop?
(b) the proportion of potential customers that enter the shop?
(c) If the barber could work twice as fast, how much more business would
he do?

14. Potential customers arrive at a full-service, one-pump gas station at a Pois-
son rate of 20 cars per hour. However, customers will only enter the station for gas
if there are no more than two cars (including the one currently being attended to)
at the pump. Suppose the amount of time required to service a car is exponentially
distributed with a mean of five minutes.
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(a) What fraction of the attendant’s time will be spent servicing cars?
(b) What fraction of potential customers are lost?

15. A service center consists of two servers, each working at an exponential rate
of two services per hour. If customers arrive at a Poisson rate of three per hour,
then, assuming a system capacity of at most three customers,

(a) what fraction of potential customers enter the system?
(b) what would the value of part (a) be if there was only a single server, and
his rate was twice as fast (that is, μ = 4)?

*16. The following problem arises in molecular biology. The surface of a bac-
terium consists of several sites at which foreign molecules—some acceptable and
some not—become attached. We consider a particular site and assume that mole-
cules arrive at the site according to a Poisson process with parameter λ. Among
these molecules a proportion α is acceptable. Unacceptable molecules stay at the
site for a length of time which is exponentially distributed with parameter μ1,
whereas an acceptable molecule remains at the site for an exponential time with
rate μ2. An arriving molecule will become attached only if the site is free of other
molecules. What percentage of time is the site occupied with an acceptable (un-
acceptable) molecule?

17. Each time a machine is repaired it remains up for an exponentially distrib-
uted time with rate λ. It then fails, and its failure is either of two types. If it is
a type 1 failure, then the time to repair the machine is exponential with rate μ1;
if it is a type 2 failure, then the repair time is exponential with rate μ2. Each fail-
ure is, independently of the time it took the machine to fail, a type 1 failure with
probability p and a type 2 failure with probability 1 −p. What proportion of time
is the machine down due to a type 1 failure? What proportion of time is it down
due to a type 2 failure? What proportion of time is it up?

18. After being repaired, a machine functions for an exponential time with rate
λ and then fails. Upon failure, a repair process begins. The repair process proceeds
sequentially through k distinct phases. First a phase 1 repair must be performed,
then a phase 2, and so on. The times to complete these phases are independent,
with phase i taking an exponential time with rate μi , i = 1, . . . , k.

(a) What proportion of time is the machine undergoing a phase i repair?
(b) What proportion of time is the machine working?

*19. A single repairperson looks after both machines 1 and 2. Each time it is re-
paired, machine i stays up for an exponential time with rate λi , i = 1, 2. When ma-
chine i fails, it requires an exponentially distributed amount of work with rate μi

to complete its repair. The repairperson will always service machine 1 when it is
down. For instance, if machine 1 fails while 2 is being repaired, then the repair-
person will immediately stop work on machine 2 and start on 1. What proportion
of time is machine 2 down?
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20. There are two machines, one of which is used as a spare. A working ma-
chine will function for an exponential time with rate λ and will then fail. Upon
failure, it is immediately replaced by the other machine if that one is in working
order, and it goes to the repair facility. The repair facility consists of a single per-
son who takes an exponential time with rate μ to repair a failed machine. At the
repair facility, the newly failed machine enters service if the repairperson is free.
If the repairperson is busy, it waits until the other machine is fixed; at that time,
the newly repaired machine is put in service and repair begins on the other one.
Starting with both machines in working condition, find

(a) the expected value and
(b) the variance

of the time until both are in the repair facility.

(c) In the long run, what proportion of time is there a working machine?

21. Suppose that when both machines are down in Exercise 20 a second re-
pairperson is called in to work on the newly failed one. Suppose all repair times
remain exponential with rate μ. Now find the proportion of time at least one ma-
chine is working, and compare your answer with the one obtained in Exercise 20.

22. Customers arrive at a single-server queue in accordance with a Poisson
process having rate λ. However, an arrival that finds n customers already in
the system will only join the system with probability 1/(n + 1). That is, with
probability n/(n + 1) such an arrival will not join the system. Show that the
limiting distribution of the number of customers in the system is Poisson with
mean λ/μ.

23. A job shop consists of three machines and two repairmen. The amount of
time a machine works before breaking down is exponentially distributed with
mean 10. If the amount of time it takes a single repairman to fix a machine is
exponentially distributed with mean 8, then

(a) what is the average number of machines not in use?
(b) what proportion of time are both repairmen busy?

*24. Consider a taxi station where taxis and customers arrive in accordance with
Poisson processes with respective rates of one and two per minute. A taxi will wait
no matter how many other taxis are present. However, an arriving customer that
does not find a taxi waiting leaves. Find

(a) the average number of taxis waiting, and
(b) the proportion of arriving customers that get taxis.

25. Customers arrive at a service station, manned by a single server who serves
at an exponential rate μ1, at a Poisson rate λ. After completion of service the
customer then joins a second system where the server serves at an exponential
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rate μ2. Such a system is called a tandem or sequential queueing system. Assum-
ing that λ < μi , i = 1, 2, determine the limiting probabilities.

Hint: Try a solution of the form Pn,m = Cαnβm, and determine C, α, β .

26. Consider an ergodic M/M/s queue in steady state (that is, after a long time)
and argue that the number presently in the system is independent of the sequence
of past departure times. That is, for instance, knowing that there have been depar-
tures 2, 3, 5, and 10 time units ago does not affect the distribution of the number
presently in the system.

27. In the M/M/s queue if you allow the service rate to depend on the number
in the system (but in such a way so that it is ergodic), what can you say about the
output process? What can you say when the service rate μ remains unchanged but
λ > sμ?

*28. If {X(t)} and {Y(t)} are independent continuous-time Markov chains, both
of which are time reversible, show that the process {X(t), Y (t)} is also a time
reversible Markov chain.

29. Consider a set of n machines and a single repair facility to service these
machines. Suppose that when machine i, i = 1, . . . , n, fails it requires an expo-
nentially distributed amount of work with rate μi to repair it. The repair facility
divides its efforts equally among all failed machines in the sense that whenever
there are k failed machines each one receives work at a rate of 1/k per unit time.
If there are a total of r working machines, including machine i, then i fails at an
instantaneous rate λi/r .

(a) Define an appropriate state space so as to be able to analyze the preceding
system as a continuous-time Markov chain.
(b) Give the instantaneous transition rates (that is, give the qij ).
(c) Write the time reversibility equations.
(d) Find the limiting probabilities and show that the process is time reversible.

30. Consider a graph with nodes 1,2, . . . , n and the
(
n
2

)
arcs (i, j), i �= j ,

i, j,= 1, . . . , n. (See Section 3.6.2 for appropriate definitions.) Suppose that a
particle moves along this graph as follows: Events occur along the arcs (i, j) ac-
cording to independent Poisson processes with rates λij . An event along arc (i, j)

causes that arc to become excited. If the particle is at node i at the moment that
(i, j) becomes excited, it instantaneously moves to node j , i, j = 1, . . . , n. Let Pj

denote the proportion of time that the particle is at node j . Show that

Pj = 1

n

Hint: Use time reversibility.
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31. A total of N customers move about among r servers in the following man-
ner. When a customer is served by server i, he then goes over to server j , j �= i,
with probability 1/(r −1). If the server he goes to is free, then the customer enters
service; otherwise he joins the queue. The service times are all independent, with
the service times at server i being exponential with rate μ, i = 1, . . . , r . Let the
state at any time be the vector (n1, . . . , nr ), where ni is the number of customers
presently at server i, i = 1, . . . , r,

∑
ini = N .

(a) Argue that if X(t) is the state at time t , then {X(t), t � 0}, is a continuous-
time Markov chain.
(b) Give the infinitesimal rates of this chain.
(c) Show that this chain is time reversible, and find the limiting probabilities.

32. Customers arrive at a two-server station in accordance with a Poisson
process having rate λ. Upon arriving, they join a single queue. Whenever a server
completes a service, the person first in line enters service. The service times of
server i are exponential with rate μi, i = 1,2, where μ1 + μ2 > λ. An arrival
finding both servers free is equally likely to go to either one. Define an appropri-
ate continuous-time Markov chain for this model, show it is time reversible, and
find the limiting probabilities.

*33. Consider two M/M/1 queues with respective parameters λi,μi , i = 1,2.
Suppose they share a common waiting room that can hold at most three customers.
That is, whenever an arrival finds her server busy and three customers in the wait-
ing room, she goes away. Find the limiting probability that there will be n queue
1 customers and m queue 2 customers in the system.

Hint: Use the results of Exercise 28 together with the concept of truncation.

34. Four workers share an office that contains four telephones. At any time, each
worker is either “working” or “on the phone.” Each “working” period of worker
i lasts for an exponentially distributed time with rate λi , and each “on the phone”
period lasts for an exponentially distributed time with rate μi , i = 1, 2, 3, 4.

(a) What proportion of time are all workers “working”?

Let Xi(t) equal 1 if worker i is working at time t , and let it be 0 otherwise.
Let X(t) = (X1(t),X2(t),X3(t),X4(t)).

(b) Argue that {X(t), t � 0} is a continuous-time Markov chain and give its
infinitesimal rates.
(c) Is {X(t)} time reversible? Why or why not?

Suppose now that one of the phones has broken down. Suppose that a worker who
is about to use a phone but finds them all being used begins a new “working”
period.

(d) What proportion of time are all workers “working”?
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35. Consider a time reversible continuous-time Markov chain having infinitesi-
mal transition rates qij and limiting probabilities {Pi}. Let A denote a set of states
for this chain, and consider a new continuous-time Markov chain with transition
rates q∗

ij given by

q∗
ij =

{
cqij , if i ∈ A, j /∈ A

qij , otherwise

where c is an arbitrary positive number. Show that this chain remains time re-
versible, and find its limiting probabilities.

36. Consider a system of n components such that the working times of com-
ponent i, i = 1, . . . , n, are exponentially distributed with rate λi . When failed,
however, the repair rate of component i depends on how many other components
are down. Specifically, suppose that the instantaneous repair rate of component
i, i = 1, . . . , n, when there are a total of k failed components, is αkμi .

(a) Explain how we can analyze the preceding as a continuous-time Markov
chain. Define the states and give the parameters of the chain.
(b) Show that, in steady state, the chain is time reversible and compute the
limiting probabilities.

37. For the continuous-time Markov chain of Exercise 3 present a uniformized
version.

38. In Example 6.20, we computed m(t) = E[O(t)], the expected occupation
time in state 0 by time t for the two-state continuous-time Markov chain starting
in state 0. Another way of obtaining this quantity is by deriving a differential
equation for it.

(a) Show that

m(t + h) = m(t) + P00(t)h + o(h)

(b) Show that

m′(t) = μ

λ + μ
+ λ

λ + μ
e−(λ+μ)t

(c) Solve for m(t).

39. Let O(t) be the occupation time for state 0 in the two-state continuous-time
Markov chain. Find E[O(t)|X(0) = 1].
40. Consider the two-state continuous-time Markov chain. Starting in state 0,
find Cov[X(s),X(t)].
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41. Let Y denote an exponential random variable with rate λ that is independent
of the continuous-time Markov chain {X(t)} and let

P̄ij = P {X(Y) = j |X(0) = i}

(a) Show that

P̄ij = 1

vi + λ

∑

k

qikP̄kj + λ

vi + λ
δij

where δij is 1 when i = j and 0 when i �= j .
(b) Show that the solution of the preceding set of equations is given by

P̄ = (I − R/λ)−1

where P̄ is the matrix of elements P̄ij , I is the identity matrix, and R the matrix
specified in Section 6.8.
(c) Suppose now that Y1, . . . , Yn are independent exponentials with rate λ that
are independent of {X(t)}. Show that

P {X(Y1 + · · · + Yn) = j |X(0) = i}
is equal to the element in row i, column j of the matrix P̄n.
(d) Explain the relationship of the preceding to Approximation 2 of Sec-
tion 6.8.

*42. (a) Show that Approximation 1 of Section 6.8 is equivalent to uniformiz-
ing the continuous-time Markov chain with a value v such that vt = n and then
approximating Pij (t) by P ∗n

ij .
(b) Explain why the preceding should make a good approximation.

Hint: What is the standard deviation of a Poisson random variable with
mean n?
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Renewal Theory and
Its Applications

7
7.1. Introduction

We have seen that a Poisson process is a counting process for which the times be-
tween successive events are independent and identically distributed exponential
random variables. One possible generalization is to consider a counting process
for which the times between successive events are independent and identically
distributed with an arbitrary distribution. Such a counting process is called a re-
newal process.

Let {N(t), t � 0} be a counting process and let Xn denote the time between
the (n − 1)st and the nth event of this process, n � 1.

Definition 7.1 If the sequence of nonnegative random variables {X1X2, . . .}
is independent and identically distributed, then the counting process {N(t), t � 0}
is said to be a renewal process.

Thus, a renewal process is a counting process such that the time until the first
event occurs has some distribution F , the time between the first and second event
has, independently of the time of the first event, the same distribution F , and
so on. When an event occurs, we say that a renewal has taken place.

For an example of a renewal process, suppose that we have an infinite supply of
lightbulbs whose lifetimes are independent and identically distributed. Suppose
also that we use a single lightbulb at a time, and when it fails we immediately
replace it with a new one. Under these conditions, {N(t), t � 0} is a renewal
process when N(t) represents the number of lightbulbs that have failed by time t .

For a renewal process having interarrival times X1, X2, . . . , let

S0 = 0, Sn =
n∑

i=1

Xi, n � 1

417
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Figure 7.1. Renewal and interarrival times.

That is, S1 = X1 is the time of the first renewal; S2 = X1 + X2 is the time until
the first renewal plus the time between the first and second renewal, that is, S2 is
the time of the second renewal. In general, Sn denotes the time of the nth renewal
(see Figure 7.1).

We shall let F denote the interarrival distribution and to avoid trivialities, we
assume that F(0) = P {Xn = 0} < 1. Furthermore, we let

μ = E[Xn], n � 1

be the mean time between successive renewals. It follows from the nonnegativity
of Xn and the fact that Xn is not identically 0 that μ > 0.

The first question we shall attempt to answer is whether an infinite number of
renewals can occur in a finite amount of time. That is, can N(t) be infinite for
some (finite) value of t? To show that this cannot occur, we first note that, as Sn

is the time of the nth renewal, N(t) may be written as

N(t) = max{n : Sn � t} (7.1)

To understand why Equation (7.1) is valid, suppose, for instance, that S4 � t but
S5 > t . Hence, the fourth renewal had occurred by time t but the fifth renewal oc-
curred after time t ; or in other words, N(t), the number of renewals that occurred
by time t , must equal 4. Now by the strong law of large numbers it follows that,
with probability 1,

Sn

n
→ μ as n → ∞

But since μ > 0 this means that Sn must be going to infinity as n goes to infinity.
Thus, Sn can be less than or equal to t for at most a finite number of values of n,
and hence by Equation (7.1), N(t) must be finite.

However, though N(t) < ∞ for each t , it is true that, with probability 1,

N(∞) ≡ lim
t→∞N(t) = ∞

This follows since the only way in which N(∞), the total number of re-
newals that occur, can be finite is for one of the interarrival times to be infinite.
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Therefore,

P {N(∞) < ∞} = P {Xn = ∞ for some n}
= P

{ ∞⋃

n=1

{Xn = ∞}
}

�
∞∑

n=1

P {Xn = ∞}
= 0

7.2. Distribution of N(t)

The distribution of N(t) can be obtained, at least in theory, by first noting the
important relationship that the number of renewals by time t is greater than or
equal to n if and only if the nth renewal occurs before or at time t. That is,

N(t) � n ⇔ Sn � t (7.2)

From Equation (7.2) we obtain

P {N(t) = n} = P {N(t) � n} − P {N(t) � n + 1}
= P {Sn � t} − P {Sn+1 � t} (7.3)

Now since the random variables Xi , i � 1, are independent and have a common
distribution F , it follows that Sn =∑n

i=1 Xi is distributed as Fn, the n-fold con-
volution of F with itself (Section 2.5). Therefore, from Equation (7.3) we obtain

P {N(t) = n} = Fn(t) − Fn+1(t)

Example 7.1 Suppose that P {Xn = i} = p(1−p)i−1, i � 1. That is, suppose
that the interarrival distribution is geometric. Now S1 = X1 may be interpreted as
the number of trials necessary to get a single success when each trial is indepen-
dent and has a probability p of being a success. Similarly, Sn may be interpreted
as the number of trials necessary to attain n successes, and hence has the negative
binomial distribution

P {Sn = k} =
⎧
⎨

⎩

(
k − 1

n − 1

)

pn(1 − p)k−n, k � n

0, k < n
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Thus, from Equation (7.3) we have that

P {N(t) = n} =
[t]∑

k=n

(
k − 1

n − 1

)

pn(1 − p)k−n

−
[t]∑

k=n+1

(
k − 1

n

)

pn+1(1 − p)k−n−1

Equivalently, since an event independently occurs with probability p at each of
the times 1, 2, . . .

P {N(t) = n} =
([t]

n

)

pn(1 − p)[t]−n �

By using Equation (7.2) we can calculate m(t), the mean value of N(t), as

m(t) = E[N(t)]

=
∞∑

n=1

P {N(t) � n}

=
∞∑

n=1

P {Sn � t}

=
∞∑

n=1

Fn(t)

where we have used the fact that if X is nonnegative and integer valued, then

E[X] =
∞∑

k=1

kP {X = k} =
∞∑

k=1

k∑

n=1

P {X = k}

=
∞∑

n=1

∞∑

k=n

P {X = k} =
∞∑

n=1

P {X � n}

The function m(t) is known as the mean-value or the renewal function.
It can be shown that the mean-value function m(t) uniquely determines the

renewal process. Specifically, there is a one-to-one correspondence between the
interarrival distributions F and the mean-value functions m(t).
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Example 7.2 Suppose we have a renewal process whose mean-value function
is given by

m(t) = 2t, t � 0

What is the distribution of the number of renewals occurring by time 10?

Solution: Since m(t) = 2t is the mean-value function of a Poisson process
with rate 2, it follows, by the one-to-one correspondence of interarrival dis-
tributions F and mean-value functions m(t), that F must be exponential with
mean 1

2 . Thus, the renewal process is a Poisson process with rate 2 and hence

P {N(10) = n} = e−20 (20)n

n! , n � 0 �

Another interesting result that we state without proof is that

m(t) < ∞ for all t < ∞

Remarks (i) Since m(t) uniquely determines the interarrival distribution, it
follows that the Poisson process is the only renewal process having a linear mean-
value function.

(ii) Some readers might think that the finiteness of m(t) should follow directly
from the fact that, with probability 1, N(t) is finite. However, such reasoning is
not valid; consider the following: Let Y be a random variable having the following
probability distribution

Y = 2n with probability
( 1

2

)n
, n � 1

Now,

P {Y < ∞} =
∞∑

n=1

P {Y = 2n} =
∞∑

n=1

( 1
2

)n = 1

But

E[Y ] =
∞∑

n=1

2nP {Y = 2n} =
∞∑

n=1

2n
( 1

2

)n = ∞

Hence, even when Y is finite, it can still be true that E[Y ] = ∞.
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An integral equation satisfied by the renewal function can be obtained by condi-
tioning on the time of the first renewal. Assuming that the interarrival distribution
F is continuous with density function f this yields

m(t) = E[N(t)] =
∫ ∞

0
E[N(t)|X1 = x]f (x)dx (7.4)

Now suppose that the first renewal occurs at a time x that is less than t . Then, using
the fact that a renewal process probabilistically starts over when a renewal occurs,
it follows that the number of renewals by time t would have the same distribution
as 1 plus the number of renewals in the first t − x time units. Therefore,

E[N(t)|X1 = x] = 1 + E[N(t − x)] if x < t

Since, clearly

E[N(t)|X1 = x] = 0 when x > t

we obtain from Equation (7.4) that

m(t) =
∫ t

0
[1 + m(t − x)]f (x)dx

= F(t) +
∫ t

0
m(t − x)f (x) dx (7.5)

Equation (7.5) is called the renewal equation and can sometimes be solved to
obtain the renewal function.

Example 7.3 One instance in which the renewal equation can be solved is
when the interarrival distribution is uniform—say, uniform on (0, 1). We will
now present a solution in this case when t � 1. For such values of t , the renewal
function becomes

m(t) = t +
∫ t

0
m(t − x)dx

= t +
∫ t

0
m(y)dy by the substitution y = t − x

Differentiating the preceding equation yields

m′(t) = 1 + m(t)

Letting h(t) = 1 + m(t), we obtain

h′(t) = h(t)
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or

logh(t) = t + C

or

h(t) = Ket

or

m(t) = Ket − 1

Since m(0) = 0, we see that K = 1, and so we obtain

m(t) = et − 1, 0 � t � 1 �

7.3. Limit Theorems and Their Applications

We have shown previously that, with probability 1, N(t) goes to infinity as t goes
to infinity. However, it would be nice to know the rate at which N(t) goes to
infinity. That is, we would like to be able to say something about limt→∞ N(t)/t .

As a prelude to determining the rate at which N(t) grows, let us first consider
the random variable SN(t). In words, just what does this random variable repre-
sent? Proceeding inductively suppose, for instance, that N(t)= 3. Then SN(t)= S3
represents the time of the third event. Since there are only three events that have
occurred by time t , S3 also represents the time of the last event prior to (or at)
time t . This is, in fact, what SN(t) represents—namely, the time of the last re-
newal prior to or at time t . Similar reasoning leads to the conclusion that SN(t)+1
represents the time of the first renewal after time t (see Figure 7.2). We now are
ready to prove the following.

Proposition 7.1 With probability 1,

N(t)

t
→ 1

μ
as t → ∞

Figure 7.2.
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Proof Since SN(t) is the time of the last renewal prior to or at time t , and
SN(t)+1 is the time of the first renewal after time t , we have

SN(t) � t < SN(t)+1

or

SN(t)

N(t)
� t

N(t)
<

SN(t)+1

N(t)
(7.6)

However, since SN(t)/N(t) =∑N(t)
i=1 Xi/N(t) is the average of N(t) independent

and identically distributed random variables, it follows by the strong law of large
numbers that SN(t)/N(t) → μ as N(t) → ∞. But since N(t) → ∞ when t → ∞,
we obtain

SN(t)

N(t)
→ μ as t → ∞

Furthermore, writing

SN(t)+1

N(t)
=
(

SN(t)+1

N(t) + 1

)(
N(t) + 1

N(t)

)

we have that SN(t)+1/(N(t) + 1) → μ by the same reasoning as before and

N(t) + 1

N(t)
→ 1 as t → ∞

Hence,

SN(t)+1

N(t)
→ μ as t → ∞

The result now follows by Equation (7.6) since t/N(t) is between two random
variables, each of which converges to μ as t → ∞. �

Remarks (i) The preceding propositions are true even when μ, the mean time
between renewals, is infinite. In this case, we interpret 1/μ to be 0.

(ii) The number 1/μ is called the rate of the renewal process.
(iii) Because the average time between renewals is μ, it is quite intuitive that

the average rate at which renewals occur is 1 per every μ time units. �

Proposition 7.1 says that the average renewal rate up to time t will, with prob-
ability 1, converge to 1/μ as t → ∞. What about the expected average renewal
rate? Is it true that m(t)/t also converges to 1/μ? This result, known as the ele-
mentary renewal theorem, will be stated without proof.
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Elementary Renewal Theorem

m(t)

t
→ 1

μ
as t → ∞

As before, 1/μ is interpreted as 0 when μ = ∞.

Remark At first glance it might seem that the elementary renewal theorem
should be a simple consequence of Proposition 7.1. That is, since the average
renewal rate will, with probability 1, converge to 1/μ, should this not imply that
the expected average renewal rate also converges to 1/μ? We must, however, be
careful; consider the next example.

Example 7.4 Let U be a random variable which is uniformly distributed on
(0, 1); and define the random variables Yn, n � 1, by

Yn =
{

0, if U > 1/n

n, if U � 1/n

Now, since, with probability 1, U will be greater than 0, it follows that Yn will
equal 0 for all sufficiently large n. That is, Yn will equal 0 for all n large enough
so that 1/n < U . Hence, with probability 1,

Yn → 0 as n → ∞
However,

E[Yn] = nP

{

U � 1

n

}

= n
1

n
= 1

Therefore, even though the sequence of random variables Yn converges to 0, the
expected values of the Yn are all identically 1. �

Example 7.5 Beverly has a radio that works on a single battery. As soon as
the battery in use fails, Beverly immediately replaces it with a new battery. If the
lifetime of a battery (in hours) is distributed uniformly over the interval (30, 60),
then at what rate does Beverly have to change batteries?

Solution: If we let N(t) denote the number of batteries that have failed
by time t , we have by Proposition 7.1 that the rate at which Beverly replaces
batteries is given by

lim
t→∞

N(t)

t
= 1

μ
= 1

45

That is, in the long run, Beverly will have to replace one battery every 45
hours. �
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Example 7.6 Suppose in Example 7.5 that Beverly does not keep any surplus
batteries on hand, and so each time a failure occurs she must go and buy a new
battery. If the amount of time it takes for her to get a new battery is uniformly
distributed over (0,1), then what is the average rate that Beverly changes batteries?

Solution: In this case the mean time between renewals is given by

μ = EU1 + EU2

where U1 is uniform over (30, 60) and U2 is uniform over (0, 1). Hence,

μ = 45 + 1
2 = 45 1

2

and so in the long run, Beverly will be putting in a new battery at the rate of 2
91 .

That is, she will put in two new batteries every 91 hours. �

Example 7.7 Suppose that potential customers arrive at a single-server bank
in accordance with a Poisson process having rate λ. However, suppose that the
potential customer will enter the bank only if the server is free when he arrives.
That is, if there is already a customer in the bank, then our arriver, rather than
entering the bank, will go home. If we assume that the amount of time spent in
the bank by an entering customer is a random variable having distribution G, then

(a) what is the rate at which customers enter the bank?
(b) what proportion of potential customers actually enter the bank?

Solution: In answering these questions, let us suppose that at time 0 a cus-
tomer has just entered the bank. (That is, we define the process to start when
the first customer enters the bank.) If we let μG denote the mean service time,
then, by the memoryless property of the Poisson process, it follows that the
mean time between entering customers is

μ = μG + 1

λ

Hence, the rate at which customers enter the bank will be given by

1

μ
= λ

1 + λμG

On the other hand, since potential customers will be arriving at a rate λ, it
follows that the proportion of them entering the bank will be given by

λ/(1 + λμG)

λ
= 1

1 + λμG

In particular if λ = 2 (in hours) and μG = 2, then only one customer out of five
will actually enter the system. �
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A somewhat unusual application of Proposition 7.1 is provided by our next
example.

Example 7.8 A sequence of independent trials, each of which results in out-
come number i with probability Pi , i = 1, . . . , n,

∑n
i Pi = 1, is observed until

the same outcome occurs k times in a row; this outcome then is declared to be the
winner of the game. For instance, if k = 2 and the sequence of outcomes is 1, 2,
4, 3, 5, 2, 1, 3, 3, then we stop after nine trials and declare outcome number 3 the
winner. What is the probability that i wins, i = 1, . . . , n, and what is the expected
number of trials?

Solution: We begin by computing the expected number of coin tosses, call it
E[T ], until a run of k successive heads occurs when the tosses are independent
and each lands on heads with probability p. By conditioning on the time of the
first nonhead, we obtain

E[T ] =
k∑

j=1

(1 − p)pj−1(j + E[T ]) + kpk

Solving this for E[T ] yields

E[T ] = k + (1 − p)

pk

k∑

j=1

jpj−1

Upon simplifying, we obtain

E[T ] = 1 + p + · · · + pk−1

pk

= 1 − pk

pk(1 − p)
(7.7)

Now, let us return to our example, and let us suppose that as soon as the
winner of a game has been determined we immediately begin playing another
game. For each i let us determine the rate at which outcome i wins. Now, every
time i wins, everything starts over again and thus wins by i constitute renewals.
Hence, from Proposition 7.1, the

rate at which i wins = 1

E[Ni]
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where Ni denotes the number of trials played between successive wins of out-
come i. Hence, from Equation (7.7) we see that

rate at which i wins = P k
i (1 − Pi)

1 − P k
i

(7.8)

Hence, the long-run proportion of games that are won by number i is given by

proportion of games i wins = rate at which i wins
∑n

j=1 rate at which j wins

= P k
i (1 − Pi)/(1 − P k

i )
∑n

j=1(P
k
j (1 − Pj )/(1 − P k

j ))

However, it follows from the strong law of large numbers that the long-run pro-
portion of games that i wins will, with probability 1, be equal to the probability
that i wins any given game. Hence,

P {i wins} = P k
i (1 − Pi)/(1 − P k

i )
∑n

j=1(P
k
j (1 − Pj )/(1 − P k

j ))

To compute the expected time of a game, we first note that the

rate at which games end =
n∑

i=1

rate at which i wins

=
n∑

i=1

P k
i (1 − Pi)

1 − P k
i

[from Equation (7.8)]

Now, as everything starts over when a game ends, it follows by Proposition 7.1
that the rate at which games end is equal to the reciprocal of the mean time of
a game. Hence,

E[time of a game} = 1

rate at which games end

= 1
∑n

i=1(P
k
i (1 − Pi)/(1 − P k

i ))
�

A key element in the proof of the elementary renewal theorem, which is also
of independent interest, is the establishment of a relationship between m(t),
the mean number of renewals by time t , and E[SN(t)+1], the expected time of
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the first renewal after t . Letting

g(t) = E[SN(t)+1]
we will derive an integral equation, similar to the renewal equation, for g(t) by
conditioning on the time of the first renewal. This yields

g(t) =
∫ ∞

0
E[SN(t)+1|X1 = x]f (x) dx

where we have supposed that the interarrival times are continuous with density f .
Now if the first renewal occurs at time x and x > t , then clearly the time of the
first renewal after t is x. On the other hand, if the first renewal occurs at a time
x < t , then by regarding x as the new origin, it follows that the expected time,
from this origin, of the first renewal occurring after a time t − x from this origin
is g(t − x). That is, we see that

E[SN(t)+1|X1 = x] =
{
g(t − x) + x, if x < t

x, if x > t

Substituting this into the preceding equation gives

g(t) =
∫ t

0
(g(t − x) + x)f (x) dx +

∫ ∞

t

xf (x) dx

=
∫ t

0
g(t − x)f (x) dx +

∫ ∞

0
xf (x)dx

or

g(t) = μ +
∫ t

0
g(t − x)f (x) dx

which is quite similar to the renewal equation

m(t) = F(t) +
∫ t

0
m(t − x)f (x) ds

Indeed, if we let

g1(t) = g(t)

μ
− 1

we see that

g1(t) + 1 = 1 +
∫ t

0
[g1(t − x) + 1]f (x)dx
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or

g1(t) = F(t) +
∫ t

0
g1(t − x)f (x) dx

That is, g1(t) = E[SN(t)+1]/μ − 1 satisfies the renewal equation and thus, by
uniqueness, must be equal to m(t). We have thus proven the following.

Proposition 7.2

E[SN(t)+1] = μ[m(t) + 1]
A second derivation of Proposition 7.2 is given in Exercises 13 and 14. To see
how Proposition 7.2 can be used to establish the elementary renewal theorem, let
Y(t) denote the time from t until the next renewal. Y(t) is called the excess, or
residual life, at t . As the first renewal after t will occur at time t + Y(t), we see
that

SN(t)+1 = t + Y(t)

Taking expectations and utilizing Proposition 7.2 yields

μ[m(t) + 1] = t + E[Y(t)] (7.9)

which implies that

m(t)

t
= 1

μ
− 1

t
+ E[Y(t)]

tμ

The elementary renewal theorem can now be proven by showing that

lim
t→∞

E[Y(t)]
t

= 0

(see Exercise 14).
The relation (7.9) shows that if we can determine E[Y(t)], the mean excess at t ,

then we can compute m(t) and vice versa.

Example 7.9 Consider the renewal process whose interarrival distribution is
the convolution of two exponentials; that is,

F = F1 ∗ F2, where Fi(t) = 1 − e−μi t , i = 1, 2

We will determine the renewal function by first determining E[Y(t)]. To obtain
the mean excess at t , imagine that each renewal corresponds to a new machine
being put in use, and suppose that each machine has two components—initially
component 1 is employed and this lasts an exponential time with rate μ1, and then
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component 2, which functions for an exponential time with rate μ2, is employed.
When component 2 fails, a new machine is put in use (that is, a renewal occurs).
Now consider the process {X(t), t � 0} where X(t) is i if a type i component is
in use at time t . It is easy to see that {X(t), t � 0} is a two-state continuous-time
Markov chain, and so, using the results of Example 6.11, its transition probabili-
ties are

P11(t) = μ1

μ1 + μ2
e−(μ1+μ2)t + μ2

μ1 + μ2

To compute the expected remaining life of the machine in use at time t , we condi-
tion on whether it is using its first or second component: for if it is still using its
first component, then its remaining life is 1/μ1 + 1/μ2, whereas if it is already
using its second component, then its remaining life is 1/μ2. Hence, letting p(t)

denote the probability that the machine in use at time t is using its first component,
we have that

E[Y(t)] =
(

1

μ1
+ 1

μ2

)

p(t) + 1 − p(t)

μ2

= 1

μ2
+ p(t)

μ1

But, since at time 0 the first machine is utilizing its first component, it follows
that p(t) = P11(t), and so, upon using the preceding expression of P11(t),
we obtain

E[Y(t)] = 1

μ2
+ 1

μ1 + μ2
e−(μ1+μ2)t + μ2

μ1(μ1 + μ2)
(7.10)

Now it follows from Equation (7.9) that

m(t) + 1 = t

u
+ E[Y(t)]

μ
(7.11)

where μ, the mean interarrival time, is given in this case by

μ = 1

μ1
+ 1

μ2
= μ1 + μ2

μ1μ2

Substituting Equation (7.10) and the preceding equation into (7.11) yields, after
simplifying,

m(t) = μ1μ2

μ1 + μ2
t − μ1μ2

(μ1 + μ2)2
[1 − e−(μ1+μ2)t ] �
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Remark Using the relationship of Equation (7.11) and results from the two-
state continuous-time Markov chain, the renewal function can also be obtained in
the same manner as in Example 7.9 for the interarrival distributions

F(t) = pF1(t) + (1 − p)F2(t)

and

F(t) = pF1(t) + (1 − p)(F1 ∗ F2)(t)

when Fi(t) = 1 − e−μit , t > 0, i = 1, 2.

An important limit theorem is the central limit theorem for renewal processes.
This states that, for large t , N(t) is approximately normally distributed with mean
t/μ and variance tσ 2/μ3, where μ and σ 2 are, respectively, the mean and vari-
ance of the interarrival distribution. That is, we have the following theorem which
we state without proof.

Central Limit Theorem for Renewal Processes

lim
t→∞P

{
N(t) − t/μ
√

tσ 2/μ3
< x

}

= 1√
2π

∫ x

−∞
e−x2/2 dx

In addition, as might be expected from the central limit theorem for renewal
processes, it can be shown that Var(N(t))/t converges to σ 2/μ3. That is, it can
be shown that

lim
t→∞

Var(N(t))

t
= σ 2/μ3 (7.12)

Example 7.10 Two machines continually process an unending number of
jobs. The time that it takes to process a job on machine 1 is a gamma random
variable with parameters n = 4, λ = 2, whereas the time that it takes to process
a job on machine 2 is uniformly distributed between 0 and 4. Approximate the
probability that together the two machines can process at least 90 jobs by time
t = 100.

Solution: If we let Ni(t) denote the number of jobs that machine i can
process by time t , then {N1(t), t � 0} and {N2(t), t � 0} are independent
renewal processes. The interarrival distribution of the first renewal process is
gamma with parameters n = 4, λ = 2, and thus has mean 2 and variance 1.
Correspondingly, the interarrival distribution of the second renewal process is
uniform between 0 and 4, and thus has mean 2 and variance 16/12.
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Therefore, N1(100) is approximately normal with mean 50 and variance
100/8; and N2(100) is approximately normal with mean 50 and variance 100/6.
Hence, N1(100) + N2(100) is approximately normal with mean 100 and vari-
ance 175/6. Thus, with � denoting the standard normal distribution function,
we have

P {N1(100)+N2(100)>89.5} = P

{
N1(100)+N2(100)−100√

175/6
>

89.5−100√
175/6

}

≈ 1 − �

( −10.5√
175/6

)

≈ �

(
10.5√
175/6

)

≈ �(1.944)

≈ 0.9741 �

7.4. Renewal Reward Processes

A large number of probability models are special cases of the following model.
Consider a renewal process {N(t), t � 0} having interarrival times Xn, n � 1,
and suppose that each time a renewal occurs we receive a reward. We denote by
Rn, the reward earned at the time of the nth renewal. We shall assume that the
Rn, n � 1, are independent and identically distributed. However, we do allow for
the possibility that Rn may (and usually will) depend on Xn, the length of the nth
renewal interval. If we let

R(t) =
N(t)∑

n=1

Rn

then R(t) represents the total reward earned by time t . Let

E[R] = E[Rn], E[X] = E[Xn]

Proposition 7.3 If E[R] < ∞ and E[X] < ∞, then

(a) with probability 1, lim
t→∞

R(t)

t
= E[R]

E[X]
(b) lim

t→∞
E[R(t)]

t
= E[R]

E[X]
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Proof We give the proof for (a) only. To prove this, write

R(t)

t
=
∑N(t)

n=1 Rn

t
=
(∑N(t)

n=1 Rn

N(t)

)(
N(t)

t

)

By the strong law of large numbers we obtain

∑N(t)
n=1 Rn

N(t)
→ E[R] as t → ∞

and by Proposition 7.1

N(t)

t
→ 1

E[X] as t → ∞

The result thus follows. �

Remark (i) If we say that a cycle is completed every time a renewal occurs,
then Proposition 7.3 states that the long-run average reward per unit time is equal
to the expected reward earned during a cycle divided by the expected length of a
cycle.

(ii) Although we have supposed that the reward is earned at the time of a re-
newal, the result remains valid when the reward is earned gradually throughout
the renewal cycle.

Example 7.11 In Example 7.7 if we suppose that the amounts that the suc-
cessive customers deposit in the bank are independent random variables having
a common distribution H , then the rate at which deposits accumulate—that is,
limt→∞ (total deposits by the time t)/t—is given by

E[deposits during a cycle]
E[time of cycle] = μH

μG + 1/λ

where μG + 1/λ is the mean time of a cycle, and μH is the mean of the
distribution H . �

Example 7.12 (A Car Buying Model) The lifetime of a car is a continuous
random variable having a distribution H and probability density h. Mr. Brown
has a policy that he buys a new car as soon as his old one either breaks down or
reaches the age of T years. Suppose that a new car costs C1 dollars and also that an
additional cost of C2 dollars is incurred whenever Mr. Brown’s car breaks down.
Under the assumption that a used car has no resale value, what is Mr. Brown’s
long-run average cost?
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If we say that a cycle is complete every time Mr. Brown gets a new car, then
it follows from Proposition 7.3 (with costs replacing rewards) that his long-run
average cost equals

E[cost incurred during a cycle]
E[length of a cycle]

Now letting X be the lifetime of Mr. Brown’s car during an arbitrary cycle, then
the cost incurred during that cycle will be given by

C1, if X > T

C1 + C2, if X � T

so the expected cost incurred over a cycle is

C1P {X > T } + (C1 + C2)P {X � T } = C1 + C2H(T )

Also, the length of the cycle is

X, if X � T

T , if X > T

and so the expected length of a cycle is

∫ T

0
xh(x)dx +

∫ ∞

T

T h(x)dx =
∫ T

0
xh(x)dx + T [1 − H(T )]

Therefore, Mr. Brown’s long-run average cost will be

C1 + C2H(T )
∫ T

0 xh(x)dx + T [1 − H(T )]
(7.13)

Now, suppose that the lifetime of a car (in years) is uniformly distributed
over (0, 10), and suppose that C1 is 3 (thousand) dollars and C2 is 1

2 (thousand)
dollars. What value of T minimizes Mr. Brown’s long-run average cost?
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If Mr. Brown uses the value T ,T � 10, then from Equation (7.13) his long-run
average cost equals

3 + 1
2 (T /10)

∫ T

0 (x/10) dx + T (1 − T/10)
= 3 + T/20

T 2/20 + (10T − T 2)/10

= 60 + T

20T − T 2

We can now minimize this by using the calculus. Toward this end, let

g(T ) = 60 + T

20T − T 2

then

g′(T ) = (20T − T 2) − (60 + T )(20 − 2T )

(20T − T 2)2

Equating to 0 yields

20T − T 2 = (60 + T )(20 − 2T )

or, equivalently,

T 2 + 120T − 1200 = 0

which yields the solutions

T ≈ 9.25and T ≈ −129.25

Since T � 10, it follows that the optimal policy for Mr. Brown would be to pur-
chase a new car whenever his old car reaches the age of 9.25 years. �

Example 7.13 (Dispatching a Train) Suppose that customers arrive at a train
depot in accordance with a renewal process having a mean interarrival time μ.
Whenever there are N customers waiting in the depot, a train leaves. If the depot
incurs a cost at the rate of nc dollars per unit time whenever there are n customers
waiting, what is the average cost incurred by the depot?

If we say that a cycle is completed whenever a train leaves, then the preceding
is a renewal reward process. The expected length of a cycle is the expected time
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required for N customers to arrive and, since the mean interarrival time is μ, this
equals

E[length of cycle] = Nμ

If we let Tn denote the time between the nth and (n + 1)st arrival in a cycle, then
the expected cost of a cycle may be expressed as

E[cost of a cycle] = E[c T1 + 2c T2 + · · · + (N − 1) c TN−1]
which, since E[Tn] = μ, equals

cμ
N

2
(N − 1)

Hence, the average cost incurred by the depot is

cμN(N − 1)

2Nμ
= c(N − 1)

2

Suppose now that each time a train leaves, the depot incurs a cost of six units.
What value of N minimizes the depot’s long-run average cost when c = 2, μ = 1?

In this case, we have that the average cost per unit time when the depot uses N is

6 + cμN(N − 1)/2

Nμ
= N − 1 + 6

N

By treating this as a continuous function of N and using the calculus, we obtain
that the minimal value of N is

N = √
6 ≈ 2.45

Hence, the optimal integral value of N is either 2 which yields a value 4, or 3
which also yields the value 4. Hence, either N = 2 or N = 3 minimizes the depot’s
average cost. �

Example 7.14 Suppose that customers arrive at a single-server system in
accordance with a Poisson process with rate λ. Upon arriving a customer must
pass through a door that leads to the server. However, each time someone passes
through, the door becomes locked for the next t units of time. An arrival finding
a locked door is lost, and a cost c is incurred by the system. An arrival finding
the door unlocked passes through to the server. If the server is free, the customer
enters service; if the server is busy, the customer departs without service and a
cost K is incurred. If the service time of a customer is exponential with rate μ,
find the average cost per unit time incurred by the system.
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Solution: The preceding can be considered to be a renewal reward process,
with a new cycle beginning each time a customer arrives to find the door un-
locked. This is so because whether or not the arrival finds the server free, the
door will become locked for the next t time units and the server will be busy
for a time X that is exponentially distributed with rate μ. (If the server is free,
X is the service time of the entering customer; if the server is busy, X is the
remaining service time of the customer in service.) Since the next cycle will
begin at the first arrival epoch after a time t has passed, it follows that

E[time of a cycle] = t + 1/λ

Let C1 denote the cost incurred during a cycle due to arrivals finding the door
locked. Then, since each arrival in the first t time units of a cycle will result in
a cost c, we have

E[C1] = λtc

Also, let C2 denote the cost incurred during a cycle due to an arrival finding
the door unlocked but the server busy. Then because a cost K is incurred if the
server is still busy a time t after the cycle began and, in addition, the next arrival
after that time occurs before the service completion, we see that

E[C2] = Ke−μt λ

λ + μ

Consequently,

average cost per unit time = λtc + λKe−μt/(λ + μ)

t + 1/λ
�

Example 7.15 Consider a manufacturing process that sequentially produces
items, each of which is either defective or acceptable. The following type of sam-
pling scheme is often employed in an attempt to detect and eliminate most of the
defective items. Initially, each item is inspected and this continues until there are
k consecutive items that are acceptable. At this point 100% inspection ends and
each successive item is independently inspected with probability α. This partial
inspection continues until a defective item is encountered, at which time 100%
inspection is reinstituted, and the process begins anew. If each item is, indepen-
dently, defective with probability q ,

(a) what proportion of items are inspected?
(b) if defective items are removed when detected, what proportion of the re-
maining items are defective?
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Remark Before starting our analysis, note that the preceding inspection
scheme was devised for situations in which the probability of producing a defec-
tive item changed over time. It was hoped that 100% inspection would correlate
with times at which the defect probability was large and partial inspection when
it was small. However, it is still important to see how such a scheme would work
in the extreme case where the defect probability remains constant throughout.

Solution: We begin our analysis by noting that we can treat the preceding as
a renewal reward process with a new cycle starting each time 100% inspection
is instituted. We then have

proportion of items inspected = E[number inspected in a cycle]
E[number produced in a cycle]

Let Nk denote the number of items inspected until there are k consecutive ac-
ceptable items. Once partial inspection begins—that is, after Nk items have
been produced—since each inspected item will be defective with probability q ,
it follows that the expected number that will have to be inspected to find a
defective item is 1/q . Hence,

E[number inspected in a cycle] = E[Nk] + 1

q

In addition, since at partial inspection each item produced will, independently,
be inspected and found to be defective with probability αq , it follows that the
number of items produced until one is inspected and found to be defective is
1/αq , and so

E[number produced in a cycle] = E[Nk] + 1

αq

Also, as E[Nk] is the expected number of trials needed to obtain k accept-
able items in a row when each item is acceptable with probability p =1 − q ,
it follows from Example 3.14 that

E[Nk] = 1

p
+ 1

p2
+ · · · + 1

pk
= (1/p)k − 1

q

Hence we obtain

PI ≡ proportion of items that are inspected = (1/p)k

(1/p)k − 1 + 1/α

To answer (b), note first that since each item produced is defective with proba-
bility q it follows that the proportion of items that are both inspected and found
to be defective is qPI. Hence, for N large, out of the first N items produced
there will be (approximately) NqPI that are discovered to be defective and
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thus removed. As the first N items will contain (approximately) Nq defective
items, it follows that there will be Nq − NqPI defective items not discovered.
Hence,

proportion of the nonremoved items that are defective ≈ Nq(1 − PI)

N(1 − qPI)

As the approximation becomes exact as N → ∞, we see that

proportion of the nonremoved items that are defective = q(1 − PI)

(1 − qPI)
�

Example 7.16 (The Average Age of a Renewal Process) Consider a re-
newal process having interarrival distribution F and define A(t) to be the time
at t since the last renewal. If renewals represent old items failing and being re-
placed by new ones, then A(t) represents the age of the item in use at time t .
Since SN(t) represents the time of the last event prior to or at time t , we have
that

A(t) = t − SN(t)

We are interested in the average value of the age—that is, in

lim
s→∞

∫ s

0 A(t) dt

s

To determine this quantity, we use renewal reward theory in the following way:
Let us assume that at any time we are being paid money at a rate equal to the
age of the renewal process at that time. That is, at time t , we are being paid at
rate A(t), and so

∫ s

0 A(t) dt represents our total earnings by time s. As everything
starts over again when a renewal occurs, it follows that

∫ s

0 A(t) dt

s
→ E[reward during a renewal cycle]

E[time of a renewal cycle]
Now since the age of the renewal process a time t into a renewal cycle is just t ,
we have

reward during a renewal cycle =
∫ X

0
t dt

= X2

2



7.4. Renewal Reward Processes 441

where X is the time of the renewal cycle. Hence, we have that

average value of age ≡ lim
s→∞

∫ s

0 A(t) dt

s

= E[X2]
2E[X] (7.14)

where X is an interarrival time having distribution function F . �

Example 7.17 (The Average Excess of a Renewal Process) Another quantity
associated with a renewal process is Y(t), the excess or residual time at time t .
Y(t) is defined to equal the time from t until the next renewal and, as such, rep-
resents the remaining (or residual) life of the item in use at time t . The average
value of the excess, namely,

lim
s→∞

∫ s

0 Y(t) dt

s

also can be easily obtained by renewal reward theory. To do so, suppose that
we are paid at time t at a rate equal to Y(t). Then our average reward per unit
time will, by renewal reward theory, be given by

average value of excess ≡ lim
s→∞

∫ s

0 Y(t) dt

s

= E[reward during a cycle]
E[length of a cycle]

Now, letting X denote the length of a renewal cycle, we have that

reward during a cycle =
∫ X

0
(X − t) dt

= X2

2

and thus the average value of the excess is

average value of excess = E[X2]
2E[X]

which was the same result obtained for the average value of the age of renewal
process. �
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7.5. Regenerative Processes

Consider a stochastic process {X(t), t � 0} with state space 0, 1, 2, . . . , having
the property that there exist time points at which the process (probabilistically)
restarts itself. That is, suppose that with probability one, there exists a time T1,
such that the continuation of the process beyond T1 is a probabilistic replica of the
whole process starting at 0. Note that this property implies the existence of further
times T2, T3, . . . , having the same property as T1. Such a stochastic process is
known as a regenerative process.

From the preceding, it follows that T1, T2, . . . , constitute the arrival times of a
renewal process, and we shall say that a cycle is completed every time a renewal
occurs.

Examples (1) A renewal process is regenerative, and T1 represents the time
of the first renewal.

(2) A recurrent Markov chain is regenerative, and T1 represents the time of the
first transition into the initial state.

We are interested in determining the long-run proportion of time that a regener-
ative process spends in state j . To obtain this quantity, let us imagine that we
earn a reward at a rate 1 per unit time when the process is in state j and at
rate 0 otherwise. That is, if I (s) represents the rate at which we earn at time s,
then

I (s) =
{

1, if X(s) = j

0, if X(s) �= j

and

total reward earned by t =
∫ t

0
I (s) ds

As the preceding is clearly a renewal reward process that starts over again at the
cycle time T1, we see from Proposition 7.3 that

average reward per unit time = E[reward by time T1]
E[T1]

However, the average reward per unit is just equal to the proportion of time that
the process is in state j . That is, we have the following.

Proposition 7.4 For a regenerative process, the long-run

proportion of time in state j = E[amount of time in j during a cycle]
E[time of a cycle]
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Remark If the cycle time T1 is a continuous random variable, then it can be
shown by using an advanced theorem called the “key renewal theorem” that the
preceding is equal also to the limiting probability that the system is in state j at
time t . That is, if T1 is continuous, then

lim
t→∞P {X(t) = j} = E[amount of time in j during a cycle]

E[time of a cycle]
Example 7.18 Consider a positive recurrent continuous time Markov chain
that is initially in state i. By the Markovian property, each time the process reen-
ters state i it starts over again. Thus returns to state i are renewals and constitute
the beginnings of new cycles. By Proposition 7.4, it follows that the long-run

proportion of time in state j = E[amount of time in j during an i – i cycle]
μii

where μii represents the mean time to return to state i. If we take j to equal i,
then we obtain

proportion of time in state i = 1/vi

μii

�

Example 7.19 (A Queueing System with Renewal Arrivals) Consider a wait-
ing time system in which customers arrive in accordance with an arbitrary renewal
process and are served one at time by a single server having an arbitrary service
distribution. If we suppose that at time 0 the initial customer has just arrived,
then {X(t), t � 0} is a regenerative process, where X(t) denotes the number of
customers in the system at time t . The process regenerates each time a customer
arrives and finds the server free. �

Example 7.20 Although a system needs only a single machine to function,
it maintains an additional machine as a backup. A machine in use functions for a
random time with density function f and then fails. If a machine fails while the
other one is in working condition, then the latter is put in use and, simultaneously,
repair begins on the one that just failed. If a machine fails while the other machine
is in repair, then the newly failed machine waits until the repair is completed; at
that time the repaired machine is put in use and, simultaneously, repair begins on
the recently failed one. All repair times have density function g. Find P0, P1, P2,
where Pi is the long-run proportion of time that exactly i of the machines are in
working condition.

Solution: Let us say that the system is in state i whenever i machines are in
working condition i = 0,1,2. It is then easy to see that every time the system
enters state 1 it probabilistically starts over. That is, the system restarts every
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time that a machine is put in use while, simultaneously, repair begins on the
other one. Say that a cycle begins each time the system enters state 1. If we
let X denote the working time of the machine put in use at the beginning of a
cycle, and let R be the repair time of the other machine, then the length of the
cycle, call it Tc, can be expressed as

Tc = max(X,R)

The preceding follows when X � R, because, in this case, the machine in use
fails before the other one has been repaired, and so a new cycle begins when
that repair is completed. Similarly, it follows when R < X, because then the
repair occurs first, and so a new cycle begins when the machine in use fails.
Also, let Ti , i =0,1,2, be the amount of time that the system is in state i dur-
ing a cycle. Then, because the amount of time during a cycle that neither ma-
chine is working is R −X provided that this quantity is positive or 0 otherwise,
we have

T0 = (R − X)+

Similarly, because the amount of time during the cycle that a single machine is
working is min(X,R), we have

T1 = min(X,R)

Finally, because the amount of time during the cycle that both machines are
working is X − R if this quantity is positive or 0 otherwise, we have

T2 = (X − R)+

Hence, we obtain that

P0 = E[(R − X)+]
E[max(X,R)]

P1 = E[min(X,R)]
E[max(X,R)]

P2 = E[(X − R)+]
E[max(X,R)]

That P0 + P1 + P2 = 1 follows from the easily checked identity

max(x, r) = min(x, r) + (x − r)+ + (r − x)+



7.5. Regenerative Processes 445

The preceding expectations can be computed as follows:

E[max(X,R)] =
∫ ∞

0

∫ ∞

0
max(x, r)f (x)g(r) dx dr

=
∫ ∞

0

∫ r

0
rf (x)g(r) dx dr +

∫ ∞

0

∫ ∞

r

xf (x)g(r) dx dr

E[(R − X)+] =
∫ ∞

0

∫ ∞

0
(r − x)+f (x)g(r) dx dr

=
∫ ∞

0

∫ r

0
(r − x)f (x)g(r) dx dr

E[min(X,R)] =
∫ ∞

0

∫ ∞

0
min(x, r) f (x)g(r) dx dr

=
∫ ∞

0

∫ r

0
xf (x)g(r) dx dr +

∫ ∞

0

∫ ∞

r

rf (x)g(r) dx dr

E[(X − R)+] =
∫ ∞

0

∫ ∞

0
(x − r) f (x)g(r) dr dx �

7.5.1. Alternating Renewal Processes

Another example of a regenerative process is provided by what is known as an
alternating renewal process, which considers a system that can be in one of two
states: on or off. Initially it is on, and it remains on for a time Z1; it then goes off
and remains off for a time Y1. It then goes on for a time Z2; then off for a time
Y2; then on, and so on.

We suppose that the random vectors (Zn, Yn), n � 1 are independent and iden-
tically distributed. That is, both the sequence of random variables {Zn} and the
sequence {Yn} are independent and identically distributed; but we allow Zn and
Yn to be dependent. In other words, each time the process goes on, everything
starts over again, but when it then goes off, we allow the length of the off time to
depend on the previous on time.

Let E[Z] = E[Zn] and E[Y ] = E[Yn] denote, respectively, the mean lengths
of an on and off period.

We are concerned with Pon, the long-run proportion of time that the system is
on. If we let

Xn = Yn + Zn, n � 1
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then at time X1 the process starts over again. That is, the process starts over again
after a complete cycle consisting of an on and an off interval. In other words, a
renewal occurs whenever a cycle is completed. Therefore, we obtain from Propo-
sition 7.4 that

Pon = E[Z]
E[Y ] + E[Z]

= E[on]
E[on] + E[off] (7.15)

Also, if we let Poff denote the long-run proportion of time that the system is off,
then

Poff = 1 − Pon

= E[off]
E[on] + E[off] (7.16)

Example 7.21 (A Production Process) One example of an alternating renewal
process is a production process (or a machine) which works for a time Z1, then
breaks down and has to be repaired (which takes a time Y1), then works for a time
Z2, then is down for a time Y2, and so on. If we suppose that the process is as good
as new after each repair, then this constitutes an alternating renewal process. It is
worthwhile to note that in this example it makes sense to suppose that the repair
time will depend on the amount of time the process had been working before
breaking down. �

Example 7.22 The rate a certain insurance company charges its policy-
holders alternates between r1 and r0. A new policyholder is initially charged at
a rate of r1 per unit time. When a policyholder paying at rate r1 has made no
claims for the most recent s time units, then the rate charged becomes r0 per unit
time. The rate charged remains at r0 until a claim is made, at which time it reverts
to r1. Suppose that a given policyholder lives forever and makes claims at times
chosen according to a Poisson process with rate λ, and find

(a) Pi , the proportion of time that the policyholder pays at rate ri , i = 0, 1;
(b) the long-run average amount paid per unit time.

Solution: If we say that the system is “on” when the policyholder pays
at rate r1 and “off” when she pays at rate r0, then this on–off system is an
alternating renewal process with a new cycle starting each time a claim is made.
If X is the time between successive claims, then the on time in the cycle is the
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smaller of s and X. (Note that if X < s, then the off time in the cycle is 0.)
Since X is exponential with rate λ, the preceding yields that

E[on time in cycle] = E[min(X, s)]

=
∫ s

0
xλe−λx dx + se−λs

= 1

λ
(1 − e−λs)

Since E[X] = 1/λ, we see that

P1 = E[on time in cycle]
E[X] = 1 − e−λs

and

P0 = 1 − P1 = e−λs

The long-run average amount paid per unit time is

r0P0 + r1P1 = r1 − (r1 − r0)e
−λs �

Example 7.23 (The Age of a Renewal Process) Suppose we are interested in
determining the proportion of time that the age of a renewal process is less than
some constant c. To do so, let a cycle correspond to a renewal, and say that the
system is “on” at time t if the age at t is less than or equal to c, and say it is “off”
if the age at t is greater than c. In other words, the system is “on” the first c time
units of a renewal interval, and “off” the remaining time. Hence, letting X denote
a renewal interval, we have, from Equation (7.15),

proportion of time age is less than c = E[min(X, c)]
E[X]

=
∫∞

0 P {min(X, c) > x}dx

E[X]

=
∫ c

0 P {X > x}dx

E[X]

=
∫ c

0 (1 − F(x)) dx

E[X] (7.17)

where F is the distribution function of X and where we have used the identity that
for a nonnegative random variable Y

E[Y ] =
∫ ∞

0
P {Y > x}dx �
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Example 7.24 (The Excess of a Renewal Process) Let us now consider the
long-run proportion of time that the excess of a renewal process is less than c. To
determine this quantity, let a cycle correspond to a renewal interval and say that
the system is on whenever the excess of the renewal process is greater than or
equal to c and that it is off otherwise. In other words, whenever a renewal occurs
the process goes on and stays on until the last c time units of the renewal interval
when it goes off. Clearly this is an alternating renewal process, and so we obtain
from Equation (7.16) that

long-run proportion of time the excess is less than c = E[off time in cycle]

E[cycle time]

If X is the length of a renewal interval, then since the system is off the last
c time units of this interval, it follows that the off time in the cycle will equal
min(X, c). Thus,

long-run proportion of time the excess is less than c = E[min(X, c)]
E[X]

=
∫ c

0 (1 − F(x)) dx

E[X]
where the final equality follows from Equation (7.17). Thus, we see from the result
of Example 7.23 that the long-run proportion of time that the excess is less than c

and the long-run proportion of time that the age is less than c are equal. One way
to understand this equivalence is to consider a renewal process that has been in
operation for a long time and then observe it going backwards in time. In doing
so, we observe a counting process where the times between successive events are
independent random variables having distribution F . That is, when we observe
a renewal process going backwards in time we again observe a renewal process
having the same probability structure as the original. Since the excess (age) at any
time for the backwards process corresponds to the age (excess) at that time for the
original renewal process (see Figure 7.3), it follows that all long-run properties of
the age and the excess must be equal. �

Figure 7.3. Arrowheads indicate direction of time.
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Example 7.25 (The Busy Period of the M/G/∞ Queue) The infinite server
queueing system in which customers arrive according to a Poisson process with
rate λ, and have a general service distribution G, was analyzed in Section 5.3,

where it was shown that the number of customers in the system at time t is Poisson
distributed with mean λ

∫ t

0 Ḡ(t)dt . If we say that the system is busy when there
is at least one customer in the system and is idle when the system is empty, find
E[B], the expected length of a busy period.

Solution: If we say that the system is on when there is at least one customer
in the system, and off when the system is empty, then we have an alternating
renewal process. Because

∫∞
0 Ḡ(t)dt = E[S], where E[S] is the mean of the

service distribution G, it follows from the result of Section 5.3 that

lim
t→∞P {system off at t} = e−λE[S]

Consequently, from alternating renewal process theory we obtain

e−λE[S] = E[off time in cycle]
E[cycle time]

But when the system goes off, it remains off only up to the time of the next
arrival, giving that

E[off time in cycle] = 1/λ

Because

E[on time in cycle] = E[B]
we obtain that

e−λE[S] = 1/λ

1/λ + E[B]
or

E[B] = 1

λ
(eλE[S] − 1) �

If μ is the mean interarrival time, then the distribution function Fe , defined by

Fe(x) =
∫ x

0

1 − F(y)

μ
dy

is called the equilibrium distribution of F . From the preceding, it follows that
Fe(x) represents the long-run proportion of time that the age, and the excess, of
the renewal process is less than or equal to x.
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Example 7.26 (An Inventory Example) Suppose that customers arrive at a
specified store in accordance with a renewal process having interarrival distribu-
tion F. Suppose that the store stocks a single type of item and that each arriving
customer desires a random amount of this commodity, with the amounts desired
by the different customers being independent random variables having the com-
mon distribution G. The store uses the following (s, S) ordering policy: If its
inventory level falls below s then it orders enough to bring its inventory up to S.
That is, if the inventory after serving a customer is x, then the amount ordered is

S − x, if x < s

0, if x � s

The order is assumed to be instantaneously filled.
For a fixed value y, s � y � S, suppose that we are interested in determining

the long-run proportion of time that the inventory on hand is at least as large as y.
To determine this quantity, let us say that the system is “on” whenever the inven-
tory level is at least y and is “off” otherwise. With these definitions, the system
will go on each time that a customer’s demand causes the store to place an or-
der that results in its inventory level returning to S. Since whenever this occurs
a customer must have just arrived it follows that the times until succeeding cus-
tomers arrive will constitute a renewal process with interarrival distribution F ;
that is, the process will start over each time the system goes back on. Thus, the
on and off periods so defined constitute an alternating renewal process, and from
Equation (7.15) we have that

long-run proportion of time inventory � y = E[on time in a cycle]

E[cycle time]
(7.18)

Now, if we let D1, D2, . . . denote the successive customer demands, and let

Nx = min(n : D1 + · · · + Dn > S − x) (7.19)

then it is the Ny customer in the cycle that causes the inventory level to fall below
y, and it is the Ns customer that ends the cycle. As a result, if we let Xi, i � 1,
denote the interarrival times of customers, then

on time in a cycle =
Ny∑

i=1

Xi (7.20)

cycle time =
Ns∑

i=1

Xi (7.21)
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Assuming that the interarrival times are independent of the successive demands,
we have that

E

[ Ny∑

i=1

Xi

]

= E

[

E

[
Ny∑

i=1

Xi |Ny

]]

= E[NyE[X]]
= E[X]E[Ny]

Similarly,

E

[
Ns∑

i=1

Xi

]

= E[X]E[Ns]

Therefore, from Equations (7.18), (7.20), and (7.21) we see that

long-run proportion of time inventory � y = E[Ny]
E[Ns] (7.22)

However, as the Di , i � 1, are independent and identically distributed nonnegative
random variables with distribution G, it follows from Equation (7.19) that Nx has
the same distribution as the index of the first event to occur after time S − x of a
renewal process having interarrival distribution G. That is, Nx − 1 would be the
number of renewals by time S − x of this process. Hence, we see that

E[Ny] = m(S − y) + 1,

E[Ns] = m(S − s) + 1

where

m(t) =
∞∑

n=1

Gn(t)

From Equation (7.22), we arrive at

long-run proportion of time inventory � y = m(S − y) + 1

m(S − s) + 1
, s � y � S

For instance, if the customer demands are exponentially distributed with mean
1/μ, then

long-run proportion of time inventory � y = μ(S − y) + 1

μ(S − s) + 1
, s � y � S �
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7.6. Semi-Markov Processes

Consider a process that can be in state 1 or state 2 or state 3. It is initially in state 1
where it remains for a random amount of time having mean μ1, then it goes to
state 2 where it remains for a random amount of time having mean μ2, then it
goes to state 3 where it remains for a mean time μ3, then back to state 1, and so
on. What proportion of time is the process in state i, i = 1, 2, 3?

If we say that a cycle is completed each time the process returns to state 1, and
if we let the reward be the amount of time we spend in state i during that cycle,
then the preceding is a renewal reward process. Hence, from Proposition 7.3 we
obtain that Pi , the proportion of time that the process is in state i, is given by

Pi = μi

μ1 + μ2 + μ3
, i = 1, 2, 3

Similarly, if we had a process which could be in any of N states 1, 2, . . . , N and
which moved from state 1 → 2 → 3 → ·· · → N −1 → N → 1, then the long-run
proportion of time that the process spends in state i is

Pi = μi

μ1 + μ2 + · · · + μN

, i = 1, 2, . . . , N

where μi is the expected amount of time the process spends in state i during each
visit.

Let us now generalize the preceding to the following situation. Suppose that a
process can be in any one of N states 1, 2, . . . , N , and that each time it enters
state i it remains there for a random amount of time having mean μi and then
makes a transition into state j with probability Pij . Such a process is called a
semi-Markov process. Note that if the amount of time that the process spends
in each state before making a transition is identically 1, then the semi-Markov
process is just a Markov chain.

Let us calculate Pi for a semi-Markov process. To do so, we first consider πi the
proportion of transitions that take the process into state i. Now if we let Xn denote
the state of the process after the nth transition, then {Xn,n � 0} is a Markov chain
with transition probabilities Pij , i, j = 1, 2, . . . , N . Hence, πi will just be the
limiting (or stationary) probabilities for this Markov chain (Section 4.4). That is,
πi will be the unique nonnegative solution∗ of

∗We shall assume that there exists a solution of Equation (7.23). That is, we assume that all of the
states in the Markov chain communicate.
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N∑

i=1

πi = 1,

πi =
N∑

j=1

πjPji, i = 1,2, . . . ,N (7.23)

Now since the process spends an expected time μi in state i whenever it visits
that state, it seems intuitive that Pi should be a weighted average of the πi where
πi is weighted proportionately to μi . That is,

Pi = πiμi
∑N

j=1 πjμj

, i = 1, 2, . . . , N (7.24)

where the πi are given as the solution to Equation (7.23).

Example 7.27 Consider a machine that can be in one of three states: good
condition, fair condition, or broken down. Suppose that a machine in good con-
dition will remain this way for a mean time μ1 and then will go to either the fair
condition or the broken condition with respective probabilities 3

4 and 1
4 . A ma-

chine in fair condition will remain that way for a mean time μ2 and then will
break down. A broken machine will be repaired, which takes a mean time μ3, and
when repaired will be in good condition with probability 2

3 and fair condition with
probability 1

3 . What proportion of time is the machine in each state?

Solution: Letting the states be 1, 2, 3, we have by Equation (7.23) that the
πi satisfy

π1 + π2 + π3 = 1,

π1 = 2
3π3,

π2 = 3
4π1 + 1

3π3,

π3 = 1
4π1 + π2

The solution is

π1 = 4
15 , π2 = 1

3 , π3 = 2
5
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Hence, from Equation (7.24) we obtain that Pi , the proportion of time the ma-
chine is in state i, is given by

P1 = 4μ1

4μ1 + 5μ2 + 6μ3
,

P2 = 5μ2

4μ1 + 5μ2 + 6μ3
,

P3 = 6μ3

4μ1 + 5μ2 + 6μ3

For instance, if μ1 = 5, μ2 = 2, μ3 = 1, then the machine will be in good
condition 5

9 of the time, in fair condition 5
18 of the time, in broken condition 1

6
of the time. �

Remark When the distributions of the amount of time spent in each state dur-
ing a visit are continuous, then Pi also represents the limiting (as t → ∞) proba-
bility that the process will be in state i at time t .

Example 7.28 Consider a renewal process in which the interarrival distribu-
tion is discrete and is such that

P {X = i} = pi, i � 1

where X represents an interarrival random variable. Let L(t) denote the length
of the renewal interval that contains the point t [that is, if N(t) is the number of
renewals by time t and Xn the nth interarrival time, then L(t) = XN(t)+1]. If we
think of each renewal as corresponding to the failure of a lightbulb (which is then
replaced at the beginning of the next period by a new bulb), then L(t) will equal
i if the bulb in use at time t dies in its ith period of use.

It is easy to see that L(t) is a semi-Markov process. To determine the proportion
of time that L(t) = j , note that each time a transition occurs—that is, each time a
renewal occurs—the next state will be j with probability pj . That is, the transition
probabilities of the embedded Markov chain are Pij = pj . Hence, the limiting
probabilities of this embedded chain are given by

πj = pj

and, since the mean time the semi-Markov process spends in state j before a
transition occurs is j , it follows that the long-run proportion of time the state
is j is

Pj = jpj
∑

i ipi

�
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7.7. The Inspection Paradox

Suppose that a piece of equipment, say, a battery, is installed and serves until it
breaks down. Upon failure it is instantly replaced by a like battery, and this process
continues without interruption. Letting N(t) denote the number of batteries that
have failed by time t , we have that {N(t), t � 0} is a renewal process.

Suppose further that the distribution F of the lifetime of a battery is not known
and is to be estimated by the following sampling inspection scheme. We fix some
time t and observe the total lifetime of the battery that is in use at time t . Since F

is the distribution of the lifetime for all batteries, it seems reasonable that it should
be the distribution for this battery. However, this is the inspection paradox for it
turns out that the battery in use at time t tends to have a larger lifetime than an
ordinary battery.

To understand the preceding so-called paradox, we reason as follows. In re-
newal theoretic terms what we are interested in is the length of the renewal inter-
val containing the point t . That is, we are interested in XN(t)+1 = SN(t)+1 − SN(t)

(see Figure 7.2). To calculate the distribution of XN(t)+1 we condition on the time
of the last renewal prior to (or at) time t . That is,

P {XN(t)+1 > x} = E[P {XN(t)+1 > x|SN(t) = t − s}]

where we recall (Figure 7.2) that SN(t) is the time of the last renewal prior to
(or at) t . Since there are no renewals between t − s and t , it follows that XN(t)+1
must be larger than x if s > x. That is,

P {XN(t)+1 > x|SN(t) = t − s} = 1 if s > x (7.25)

On the other hand, suppose that s � x. As before, we know that a renewal occurred
at time t − s and no additional renewals occurred between t − s and t , and we ask
for the probability that no renewals occur for an additional time x − s. That is, we
are asking for the probability that an interarrival time will be greater than x given
that it is greater than s. Therefore, for s � x,

P {XN(t)+1 > x|SN(t) = t − s}
= P {interarrival time > x|interarrival time > s}
= P {interarrival time > x}/P {interarrival time > s}
= 1 − F(x)

1 − F(s)

� 1 − F(x) (7.26)
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Figure 7.4.

Hence, from Equations (7.25) and (7.26) we see that, for all s,

P {XN(t)+1 > x|SN(t) = t − s} � 1 − F(x)

Taking expectations on both sides yields that

P {XN(t)+1 > x} � 1 − F(x) (7.27)

However, 1 − F(x) is the probability that an ordinary renewal interval is larger
than x, that is, 1 − F(x) = P {Xn > x}, and thus Equation (7.27) is a statement of
the inspection paradox that the length of the renewal interval containing the point
t tends to be larger than an ordinary renewal interval.

Remark To obtain an intuitive feel for the so-called inspection paradox, reason
as follows. We think of the whole line being covered by renewal intervals, one of
which covers the point t . Is it not more likely that a larger interval, as opposed to
a shorter interval, covers the point t?

We can explicitly calculate the distribution of XN(t)+1 when the renewal
process is a Poisson process. [Note that, in the general case, we did not need
to calculate explicitly P {XN(t)+1 > x} to show that it was at least as large as
1 − F(x).] To do so we write

XN(t)+1 = A(t) + Y(t)

where A(t) denotes the time from t since the last renewal, and Y(t) denotes the
time from t until the next renewal (see Figure 7.4). A(t) is the age of the process
at time t (in our example it would be the age at time t of the battery in use at
time t), and Y(t) is the excess life of the process at time t (it is the additional
time from t until the battery fails). Of course, it is true that A(t) = t − SN(t), and
Y(t) = SN(t)+1 − t .

To calculate the distribution of XN(t)+1 we first note the important fact that,
for a Poisson process, A(t) and Y(t) are independent. This follows since by the
memoryless property of the Poisson process, the time from t until the next renewal
will be exponentially distributed and will be independent of all that has previously
occurred [including, in particular, A(t)]. In fact, this shows that if {N(t), t � 0}
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is a Poisson process with rate λ, then

P {Y(t) � x} = 1 − e−λx (7.28)

The distribution of A(t) may be obtained as follows

P {A(t) > x} =
{

P {0 renewals in [t − x, t]}, if x � t

0, if x > t

=
{

e−λx, if x � t

0, if x > t

or, equivalently,

P {A(t) � x} =
{

1 − e−λx, x � t

1, x > t
(7.29)

Hence, by the independence of Y(t) and A(t) the distribution of XN(t)+1 is just
the convolution of the exponential distribution equation (7.28) and the distribution
of equation (7.29). It is interesting to note that for t large, A(t) approximately has
an exponential distribution. Thus, for t large, XN(t)+1 has the distribution of the
convolution of two identically distributed exponential random variables, which
by Section 5.2.3, is the gamma distribution with parameters (2, λ). In particular,
for t large, the expected length of the renewal interval containing the point t is
approximately twice the expected length of an ordinary renewal interval.

Using the results obtained in Examples 7.16 and 7.17 concerning the average
values of the age and of the excess, it follows from the identity

XN(t)+1 = A(t) + Y(t)

that the average length of the renewal interval containing a specified point is

lim
s→∞

∫ s

0 XN(t)+1 dt

s
= E[X2]

E[X]

where X has the interarrival distribution. Because, except for when X is a con-
stant, E[X2] > (E[X])2, this average value is, as expected from the inspection
paradox, greater than the expected value of an ordinary renewal interval.
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We can use an alternating renewal process argument to determine the long-run
proportion of time that XN(t)+1 is greater than c. To do so, let a cycle correspond
to a renewal interval, and say that the system is on at time t if the renewal interval
containing t is of length greater than c (that is, if XN(t)+1 > c), and say that the
system is off at time t otherwise. In other words, the system is always on during a
cycle if the cycle time exceeds c or is always off during the cycle if the cycle time
is less than c. Thus, if X is the cycle time, we have

on time in cycle =
{

X, if X > c

0, if X � c

Therefore, we obtain from alternating renewal process theory that

long-run proportion of timeXN(t)+1 > c = E[on time in cycle]
E[cycle time]

=
∫∞
c

xf (x) dx

μ

where f is the density function of an interarrival.

7.8. Computing the Renewal Function

The difficulty with attempting to use the identity

m(t) =
∞∑

n=1

Fn(t)

to compute the renewal function is that the determination of Fn(t) =
P {X1 + · · · + Xn � t} requires the computation of an n-dimensional integral.
Following, we present an effective algorithm which requires as inputs only one-
dimensional integrals.

Let Y be an exponential random variable having rate λ, and suppose that Y

is independent of the renewal process {N(t), t � 0}. We start by determining
E[N(Y)], the expected number of renewals by the random time Y . To do so,
we first condition on X1, the time of the first renewal. This yields

E[N(Y)] =
∫ ∞

0
E[N(Y)|X1 = x]f (x)dx (7.30)

where f is the interarrival density. To determine E[N(Y)|X1 =x], we now con-
dition on whether or not Y exceeds x. Now, if Y < x, then as the first renewal
occurs at time x, it follows that the number of renewals by time Y is equal to 0.
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On the other hand, if we are given that x < Y , then the number of renewals by
time Y will equal 1 (the one at x) plus the number of additional renewals between
x and Y . But by the memoryless property of exponential random variables, it fol-
lows that, given that Y > x, the amount by which it exceeds x is also exponential
with rate λ, and so given that Y > x the number of renewals between x and Y will
have the same distribution as N(Y). Hence,

E[N(Y)|X1 = x, Y < x] = 0,

E[N(Y)|X1 = x, Y > x] = 1 + E[N(Y)]
and so,

E[N(Y)|X1 = x] = E[N(Y)|X1 = x, Y < x]P {Y < x|X1 = x}
+ E[N(Y)|X1 = x, Y > x]P {Y > x|X1 = x}

= E[N(Y)|X1 = x, Y > x]P {Y > x}
since Y and X1 are independent

= (1 + E[N(Y)])e−λx

Substituting this into Equation (7.30) gives

E[N(Y)] = (1 + E[N(Y)])
∫ ∞

0
e−λxf (x) dx

or

E[N(Y)] = E[e−λX]
1 − E[e−λX] (7.31)

where X has the renewal interarrival distribution.
If we let λ = 1/t , then Equation (7.31) presents an expression for the expected

number of renewals (not by time t , but) by a random exponentially distributed
time with mean t . However, as such a random variable need not be close to its
mean (its variance is t2), Equation (7.31) need not be particularly close to m(t).
To obtain an accurate approximation suppose that Y1, Y2, . . . , Yn are independent
exponentials with rate λ and suppose they are also independent of the renewal
process. Let, for r = 1, . . . , n,

mr = E[N(Y1 + · · · + Yr)]
To compute an expression for mr , we again start by conditioning on X1, the time
of the first renewal.

mr =
∫ ∞

0
E[N(Y1 + · · · + Yr)|X1 = x]f (x) dx (7.32)
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To determine the foregoing conditional expectation, we now condition on the
number of partial sums

∑j

i=1 Yi, j = 1, . . . , r, that are less than x. Now, if all
r partial sums are less than x—that is, if

∑r
i=1 Yi < x—then clearly the num-

ber of renewals by time
∑r

i=1 Yi is 0. On the other hand, given that k, k <r , of
these partial sums are less than x, it follows from the lack of memory property of
the exponential that the number of renewals by time

∑r
i=1 Yi will have the same

distribution as 1 plus N(Yk+1 + · · · + Yr). Hence,

E

[

N(Y1 + · · · + Yr)

∣
∣
∣X1 = x, k of the sums

j∑

i=1

Yi are less than x

]

=
{

0, if k = r

1 + mr−k, if k < r
(7.33)

To determine the distribution of the number of the partial sums that are less than
x, note that the successive values of these partial sums

∑j

i=1 Yi, j = 1, . . . , r ,
have the same distribution as the first r event times of a Poisson process with
rate λ (since each successive partial sum is the previous sum plus an independent
exponential with rate λ). Hence, it follows that, for k < r ,

P

{

k of the partial sums
j∑

i=1

Yi are less than x

∣
∣
∣X1 = x

}

= e−λx(λx)k

k! (7.34)

Upon substitution of Equations (7.33) and (7.34) into Equation (7.32), we obtain

mr =
∫ ∞

0

r−1∑

k=0

(1 + mr−k)
e−λx(λx)k

k! f (x) dx

or, equivalently,

mr =
∑r−1

k=1(1 + mr−k)E[Xke−λX](λk/k!) + E[e−λX]
1 − E[e−λX] (7.35)

If we set λ = n/t , then starting with m1 given by Equation (7.31), we can use
Equation (7.35) to recursively compute m2, . . . ,mn. The approximation of m(t) =
E[N(t)] is given by mn = E[N(Y1 + · · · + Yn)]. Since Y1 + · · · + Yn is the sum
of n independent exponential random variables each with mean t/n, it follows
that it is (gamma) distributed with mean t and variance nt2/n2 = t2/n. Hence, by
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Table 7.1 Approximating m(t)

Fi Exact Approximation

i t m(t) n = 1 n = 3 n = 10 n = 25 n = 50

1 1 0.2838 0.3333 0.3040 0.2903 0.2865 0.2852
1 2 0.7546 0.8000 0.7697 0.7586 0.7561 0.7553
1 5 2.250 2.273 2.253 2.250 2.250 2.250
1 10 4.75 4.762 4.751 4.750 4.750 4.750

2 0.1 0.1733 0.1681 0.1687 0.1689 0.1690 —
2 0.3 0.5111 0.4964 0.4997 0.5010 0.5014 —
2 0.5 0.8404 0.8182 0.8245 0.8273 0.8281 0.8283
2 1 1.6400 1.6087 1.6205 1.6261 1.6277 1.6283
2 3 4.7389 4.7143 4.7294 4.7350 4.7363 4.7367
2 10 15.5089 15.5000 15.5081 15.5089 15.5089 15.5089

3 0.1 0.2819 0.2692 0.2772 0.2804 0.2813 —
3 0.3 0.7638 0.7105 0.7421 0.7567 0.7609 —
3 1 2.0890 2.0000 2.0556 2.0789 2.0850 2.0870
3 3 5.4444 5.4000 5.4375 5.4437 5.4442 5.4443

choosing n large,
∑n

i=1 Yi will be a random variable having most of its probability
concentrated about t , and so E[N(

∑n
i=1 Yi)] should be quite close to E[N(t)].

[Indeed, if m(t) is continuous at t , it can be shown that these approximations
converge to m(t) as n goes to infinity.]

Example 7.29 Table 7.1 compares the approximation with the exact value
for the distributions Fi with densities fi, i = 1, 2, 3, which are given by

f1(x) = xe−x,

1 − F2(x) = 0.3e−x + 0.7e−2x,

1 − F3(x) = 0.5e−x + 0.5e−5x �

7.9. Applications to Patterns

A counting process with independent interarrival times X1,X2, . . . is said to be
a delayed or general renewal process if X1 has a different distribution from
the identically distributed random variables X2, X3, . . . . That is, a delayed re-
newal process is a renewal process in which the first interarrival time has a dif-
ferent distribution than the others. Delayed renewal processes often arise in
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practice and it is important to note that all of the limiting theorems about
N(t), the number of events by time t , remain valid. For instance, it remains
true that

E[N(t)]
t

→ 1

μ
and

Var(N(t))

t
→ σ 2/μ3 as t → ∞

where μ and σ 2 are the expected value and variance of the interarrivals Xi , i > 1.

7.9.1. Patterns of Discrete Random Variables

Let X1,X2, . . . be independent with P {Xi = j} = p(j), j � 0, and let T de-
note the first time the pattern x1, . . . , xr occurs. If we say that a renewal occurs
at time n, n � r , if (Xn−r+1, . . . ,Xn) = (x1, . . . , xr ), then N(n), n � 1, is a de-
layed renewal process, where N(n) denotes the number of renewals by time n.
It follows that

E[N(n)]
n

→ 1

μ
as n → ∞ (7.36)

Var(N(n))

n
→ σ 2

μ3
as n → ∞ (7.37)

where μ and σ are, respectively, the mean and standard deviation of the time be-
tween successive renewals. Whereas, in Section 3.6.4, we showed how to compute
the expected value of T , we will now show how to use renewal theory results to
compute both its mean and its variance.

To begin, let I (i) equal 1 if there is a renewal at time i and let it be 0 otherwise,
i � r . Also, let p =∏r

i=1 p(xi). Since,

P {I (i) = 1} = P {Xi−r+1 = i1, . . . ,Xi = ir } = p

it follows that I (i), i � r , are Bernoulli random variables with parameter p. Now,

N(n) =
n∑

i=r

I (i)

so

E[N(n)] =
n∑

i=r

E[I (i)] = (n − r + 1)p

Dividing by n and then letting n → ∞ give, from Equation (7.36),

μ = 1/p (7.38)
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That is, the mean time between successive occurrences of the pattern is equal to
1/p. Also,

Var(N(n))

n
= 1

n

n∑

i=r

Var(I (i)) + 2

n

n−1∑

i=r

∑

n�j>i

Cov(I (i), I (j))

= n − r + 1

n
p(1 − p) + 2

n

n−1∑

i=r

∑

i<j�min(i+r−1, n)

Cov(I (i), I (j))

where the final equality used the fact that I (i) and I (j) are independent, and thus
have zero covariance, when |i − j | � r . Letting n → ∞, and using the fact that
Cov(I (i), I (j)) depends on i and j only through |j − i|, gives

Var(N(n))

n
→ p(1 − p) + 2

r−1∑

j=1

Cov(I (r), I (r + j))

Therefore, using Equations (7.37) and (7.38), we see that

σ 2 = p−2(1 − p) + 2p−3
r−1∑

j=1

Cov(I (r), I (r + j)) (7.39)

Let us now consider the amount of “overlap” in the pattern. The overlap, equal
to the number of values at the end of one pattern that can be used as the beginning
part of the next pattern, is said to be of size k, k > 0, if

k = max{j < r : (ir−j+1, . . . , ir ) = (i1, . . . , ij )}

and is of size 0 if for all k = 1, . . . , r − 1, (ir−k+1, . . . , ir ) �= (i1, . . . , ik). Thus,
for instance, the pattern 0, 0, 1, 1 has overlap 0, whereas 0, 0, 1, 0, 0 has overlap 2.
We consider two cases.

Case 1: The Pattern Has Overlap 0

In this case, N(n), n � 1, is an ordinary renewal process and T is distributed as
an interarrival time with mean μ and variance σ 2. Hence, we have the following
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from Equation (7.38):

E[T ] = μ = 1

p
(7.40)

Also, since two patterns cannot occur within a distance less than r of each other,
it follows that I (r)I (r + j) = 0 when 1 � j � r − 1. Hence,

Cov(I (r), I (r + j)) = −E[I (r)]E[I (r + j)] = −p2, if 1 � j � r − 1

Hence, from Equation (7.39), we obtain

Var(T ) = σ 2 = p−2(1 − p) − 2p−3(r − 1)p2 = p−2 − (2r − 1)p−1 (7.41)

Remark In cases of “rare” patterns, if the pattern hasn’t yet occurred by some
time n, then it would seem that we would have no reason to believe that the re-
maining time would be much less than if we were just beginning from scratch.
That is, it would seem that the distribution is approximately memoryless and
would thus be approximately exponentially distributed. Thus, since the variance
of an exponential is equal to its mean squared, we would expect when μ is large
that Var(T ) ≈ E2[T ], and this is borne out by the preceding, which states that
Var(T ) = E2[T ] − (2r − 1)E[T ].
Example 7.30 Suppose we are interested in the number of times that a fair
coin needs to be flipped before the pattern h,h, t, h, t occurs. For this pattern,
r = 5, p = 1

32 , and the overlap is 0. Hence, from Equations (7.40) and (7.41)

E[T ] = 32, Var(T ) = 322 − 9 × 32 = 736,

and

Var(T )/E2[T ] = 0.71875

On the other hand, if p(i) = i/10, i = 1, 2, 3, 4 and the pattern is 1, 2, 1, 4, 1, 3, 2
then r = 7, p = 3/625,000, and the overlap is 0. Thus, again from Equations
(7.40) and (7.41), we see that in this case

E[T ] = 208,333.33, Var(T ) = 4.34 × 1010,

Var(T )/E2[T ] = 0.99994 �
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Case 2: The Overlap Is of Size k

In this case,

T = Ti1,...,ik + T ∗

where Ti1,...,ik is the time until the pattern i1, . . . , ik appears and T ∗, distributed as
an interarrival time of the renewal process, is the additional time that it takes, start-
ing with i1, . . . , ik , to obtain the pattern i1, . . . , ir . Because these random variables
are independent, we have

E[T ] = E[Ti1,...,ik ] + E[T ∗] (7.42)

Var(T ) = Var(Ti1,...,ik ) + Var(T ∗) (7.43)

Now, from Equation (7.38)

E[T ∗] = μ = p−1 (7.44)

Also, since no two renewals can occur within a distance r − k − 1 of each other,
it follows that I (r)I (r + j) = 0 if 1 � j � r − k − 1. Therefore, from Equa-
tion (7.39), we see that

Var(T ∗) = σ 2 = p−2(1 − p) + 2p−3

(
r−1∑

j=r−k

E[I (r)I (r + j)] − (r − 1)p2

)

= p−2 − (2r − 1)p−1 + 2p−3
r−1∑

j=r−k

E[I (r)I (r + j)] (7.45)

The quantities E[I (r)I (r + j)] in Equation (7.45) can be calculated by consid-
ering the particular pattern. To complete the calculation of the first two moments
of T , we then compute the mean and variance of Ti1,...,ik by repeating the same
method.

Example 7.31 Suppose that we want to determine the number of flips of a
fair coin until the pattern h,h, t, h,h occurs. For this pattern, r = 5, p = 1

32 , and
the overlap parameter is k = 2. Because

E[I (5)I (8)] = P {h,h, t, h,h, t, h,h} = 1
256

E[I (5)I (9)] = P {h,h, t, h,h,h, t, h,h} = 1
512

we see from Equations (7.44) and (7.45) that

E[T ∗] = 32

Var(T ∗) = (32)2 − 9(32) + 2(32)3( 1
256 + 1

512

)= 1120
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Hence, from Equations (7.42) and (7.43) we obtain

E[T ] = E[Th,h] + 32, Var(T ) = Var(Th,h) + 1120

Now, consider the pattern h,h. It has r = 2, p = 1
4 , and overlap parameter 1.

Since, for this pattern, E[I (2)I (3)] = 1
8 , we obtain, as in the preceding, that

E[Th,h] = E[Th] + 4,

Var(Th,h) = Var(Th) + 16 − 3(4) + 2
( 64

8

)= Var(Th) + 20

Finally, for the pattern h, which has r = 1,p = 1
2 , we see from Equations (7.40)

and (7.41) that

E[Th] = 2, Var(Th) = 2

Putting it all together gives

E[T ] = 38, Var(T ) = 1142, Var(T )/E2[T ] = 0.79086 �

Example 7.32 Suppose that P {Xn = i} = pi , and consider the pattern
0, 1, 2, 0, 1, 3, 0, 1. Then p = p3

0p
3
1p2p3, r = 8, and the overlap parameter is

k = 2. Since

E[I (8)I (14)] = p5
0p

5
1p

2
2p

2
3

E[I (8)I (15)] = 0

we see from Equations (7.42) and (7.44) that

E[T ] = E[T0,1] + p−1

and from Equations (7.43) and (7.45) that

Var(T ) = Var(T0,1) + p−2 − 15p−1 + 2p−1(p0p1)
−1

Now, the r and p values of the pattern 0, 1 are r(0,1) = 2, p(0,1) = p0p1, and
this pattern has overlap 0. Hence, from Equations (7.40) and (7.41),

E[T0,1] = (p0p1)
−1, Var(T0,1) = (p0p1)

−2 − 3(p0p1)
−1

For instance, if pi = 0.2, i = 0,1,2,3 then

E[T ] = 25 + 58 = 390,650

Var(T ) = 625 − 75 + 516 + 35 × 58 = 1.526 × 1011

Var(T )/E2[T ] = 0.99996 �
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Remark It can be shown that T is a type of discrete random variable called
new better than used (NBU), which loosely means that if the pattern has not yet
occurred by some time n then the additional time until it occurs tends to be less
than the time it would take the pattern to occur if one started all over at that point.
Such a random variable is known to satisfy (see Proposition 9.6.1 of Ref. [4])

Var(T ) � E2[T ] − E[T ] � E2[T ] �

Now, suppose that there are s patterns, A(1), . . . ,A(s) and that we are inter-
ested in the mean time until one of these patterns occurs, as well as the probability
mass function of the one that occurs first. Let us assume, without any loss of gen-
erality, that none of the patterns is contained in any of the others. [That is, we rule
out such trivial cases as A(1) = h, h and A(2) = h,h, t .] To determine the quanti-
ties of interest, let T (i) denote the time until pattern A(i) occurs, i = 1, . . . , s, and
let T (i, j) denote the additional time, starting with the occurrence of pattern A(i),
until pattern A(j) occurs, i �= j . Start by computing the expected values of these
random variables. We have already shown how to compute E[T (i)], i = 1, . . . , s.
To compute E[T (i, j)], use the same approach, taking into account any “over-
lap” between the latter part of A(i) and the beginning part of A(j). For instance,
suppose A(1) = 0,0,1,2,0,3, and A(2) = 2,0,3,2,0. Then

T (2) = T2,0,3 + T (1,2)

where T2,0,3 is the time to obtain the pattern 2, 0, 3. Hence,

E[T (1,2)] = E[T (2)] − E[T2,0,3]
= (

p2
2p

2
0p3

)−1 + (p0p2)
−1 − (p2p0p3)

−1

So, suppose now that all of the quantities E[T (i)] and E[T (i, j)] have been com-
puted. Let

M = min
i

T (i)

and let

P(i) = P {M = T (i)}, i = 1, . . . , s

That is, P(i) is the probability that pattern A(i) is the first pattern to occur. Now,
for each j we will derive an equation that E[T (j)] satisfies as follows:

E[T (j)] = E[M] + E[T (j) − M]
= E[M] +

∑

i:i �=j

E[T (i, j)]P(i), j = 1, . . . , s (7.46)
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where the final equality is obtained by conditioning on which pattern occurs first.
But the Equations (7.46) along with the equation

s∑

i=1

P(i) = 1

constitute a set of s +1 equations in the s +1 unknowns E[M], P(i), i = 1, . . . , s.
Solving them yields the desired quantities.

Example 7.33 Suppose that we continually flip a fair coin. With A(1) =
h, t, t, h,h and A(2) = h,h, t, h, t , we have

E[T (1)] = 32 + E[Th] = 34

E[T (2)] = 32

E[T (1,2)] = E[T (2)] − E[Th,h] = 32 − (4 + E[Th]) = 26

E[T (2,1)] = E[T (1)] − E[Th,t ] = 34 − 4 = 30

Hence, we need solve the equations

34 = E[M] + 30P(2)

32 = E[M] + 26P(1)

1 = P(1) + P(2)

These equations are easily solved, and yield the values

P(1) = P(2) = 1
2 , E[M] = 19

Note that although the mean time for pattern A(2) is less than that for A(1), each
has the same chance of occurring first. �

Equations (7.46) are easy to solve when there are no overlaps in any of the
patterns. In this case, for all i �= j

E[T (i, j)] = E[T (j)]
so Equations (7.46) reduce to

E[T (j)] = E[M] + (1 − P(j))E[T (j)]
or

P(j) = E[M]/E[T (j)]
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Summing the preceding over all j yields

E[M] = 1
∑s

j=1 1/E[T (j)] (7.47)

P(j) = 1/E[T (j)]
∑s

j=1 1/E[T (j)] (7.48)

In our next example we use the preceding to reanalyze the model of Example 7.8.

Example 7.34 Suppose that each play of a game is, independently of the
outcomes of previous plays, won by player i with probability pi , i = 1, . . . , s.
Suppose further that there are specified numbers n(1), . . . , n(s) such that the first
player i to win n(i) consecutive plays is declared the winner of the match. Find
the expected number of plays until there is a winner, and also the probability that
the winner is i, i = 1, . . . , s.

Solution: Letting A(i), for i = 1, . . . , s, denote the pattern of ni consecutive
values of i, this problem asks for P(i), the probability that pattern A(i) occurs
first, and for E[M]. Because

E[T (i)] = (1/pi)
n(i) + (1/pi)

n(i)−1 + · · · + 1/pi = 1 − p
n(i)
i

p
n(i)
i (1 − pi)

we obtain, from Equations (7.47) and (7.48), that

E[M] = 1
∑s

j=1

[
p

n(j)
j (1 − pj )/

(
1 − p

n(j)
j

)]

P(i) = p
n(i)
i (1 − pi)/

(
1 − p

n(i)
i

)

∑s
j=1

[
p

n(j)
j (1 − pj )/

(
1 − p

n(j)
j

)] �

7.9.2. The Expected Time to a Maximal Run of Distinct Values

Let Xi , i � 1, be independent and identically distributed random variables that are
equally likely to take on any of the values 1,2, . . . ,m. Suppose that these random
variables are observed sequentially, and let T denote the first time that a run of m

consecutive values includes all the values 1, . . . ,m. That is,

T = min{n : Xn−m+1, . . . ,Xn are all distinct}
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To compute E[T ], define a renewal process by letting the first renewal occur at
time T . At this point start over and, without using any of the data values up to T ,
let the next renewal occur the next time a run of m consecutive values are all
distinct, and so on. For instance, if m = 3 and the data are

1,3,3,2,1,2,3,2,1,3, . . . , (7.49)

then there are two renewals by time 10, with the renewals occurring at times
5 and 9. We call the sequence of m distinct values that constitutes a renewal a
renewal run.

Let us now transform the renewal process into a delayed renewal reward
process by supposing that a reward of 1 is earned at time n, n � m, if the val-
ues Xn−m+1, . . . , Xn are all distinct. That is, a reward is earned each time the
previous m data values are all distinct. For instance, if m = 3 and the data values
are as in (7.49) then unit rewards are earned at times 5, 7, 9, and 10. If we let Ri

denote the reward earned at time i, then by Proposition 7.3,

lim
n

E
[∑n

i=1 Ri

]

n
= E[R]

E[T ] (7.50)

where R is the reward earned between renewal epochs. Now, with Ai equal to the
set of the first i data values of a renewal run, and Bi to the set of the first i values
following this renewal run, we have the following:

E[R] = 1 +
m−1∑

i=1

E[reward earned a time i after a renewal]

= 1 +
m−1∑

i=1

P {Ai = Bi}

= 1 +
m−1∑

i=1

i!
mi

=
m−1∑

i=0

i!
mi

(7.51)

Hence, since for i � m

E[Ri] = P {Xi−m+1, . . . ,Xi are all distinct} = m!
mm
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it follows from Equation (7.50) that

m!
mm

= E[R]
E[T ]

Thus from Equation (7.51) we obtain

E[T ] = mm

m!
m−1∑

i=0

i!/mi

The preceding delayed renewal reward process approach also gives us another
way of computing the expected time until a specified pattern appears. We illustrate
by the following example.

Example 7.35 Compute E[T ], the expected time until the pattern h, h, h, t ,
h, h, h appears, when a coin that comes up heads with probability p and tails with
probability q = 1 − p is continually flipped.

Solution: Define a renewal process by letting the first renewal occur when
the pattern first appears, and then start over. Also, say that a reward of 1 is
earned whenever the pattern appears. If R is the reward earned between renewal
epochs, we have

E[R] = 1 +
6∑

i=1

E[reward earned i units after a renewal]

= 1 + 0 + 0 + 0 + p3q + p3qp + p3qp2

Hence, since the expected reward earned at time i is E[Ri] = p6q , we obtain
the following from the renewal reward theorem:

1 + qp3 + qp4 + qp5

E[T ] = qp6

or

E[T ] = q−1p−6 + p−3 + p−2 + p−1 �

7.9.3. Increasing Runs of Continuous Random Variables

Let X1,X2, . . . be a sequence of independent and identically distributed contin-
uous random variables, and let T denote the first time that there is a string of r
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consecutive increasing values. That is,

T = min{n � r : Xn−r+1 < Xn−r+2 < · · · < Xn}
To compute E[T ], define a renewal process as follows. Let the first renewal occur
at T . Then, using only the data values after T , say that the next renewal occurs
when there is again a string of r consecutive increasing values, and continue in
this fashion. For instance, if r = 3 and the first 15 data values are

12,20,22,28,43,18,24,33,60,4,16,8,12,15,18

then 3 renewals would have occurred by time 15, namely, at times 3, 8, and 14.
If we let N(n) denote the number of renewals by time n, then by the elementary
renewal theorem

E[N(n)]
n

→ 1

E[T ]
To compute E[N(n)], define a stochastic process whose state at time k, call it
Sk , is equal to the number of consecutive increasing values at time k. That is,
for 1 � j � k

Sk = j if Xk−j > Xk−j+1 < · · · < Xk−1 < Xk

where X0 = ∞. Note that a renewal will occur at time k if and only if Sk = ir for
some i � 1. For instance, if r = 3 and

X5 > X6 < X7 < X8 < X9 < X10 < X11

then

S6 = 1, S7 = 2, S8 = 3, S9 = 4, S10 = 5, S11 = 6

and renewals occur at times 8 and 11. Now, for k > j

P {Sk = j} = P {Xk−j > Xk−j+1 < · · · < Xk−1 < Xk}
= P {Xk−j+1 < · · · < Xk−1 < Xk}

− P {Xk−j < Xk−j+1 < · · · < Xk−1 < Xk}

= 1

j ! − 1

(j + 1)!
= j

(j + 1)!
where the next to last equality follows since all possible orderings of the random
variables are equally likely.
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From the preceding, we see that

lim
k→∞P {a renewal occurs at time k}= lim

k→∞

∞∑

i=1

P {Sk = ir} =
∞∑

i=1

ir

(ir + 1)!

However,

E[N(n)] =
n∑

k=1

P {a renewal occurs at time k}

Because we can show that for any numbers ak, k � 1, for which limk→∞ ak exists

lim
n→∞

∑n
k=1 ak

n
= lim

k→∞ak

we obtain from the preceding, upon using the elementary renewal theorem,

E[T ] = 1
∑∞

i=1 ir/(ir + 1)!

7.10. The Insurance Ruin Problem

Suppose that claims are made to an insurance firm according to a Poisson process
with rate λ, and that the successive claim amounts Y1, Y2, . . . are independent
random variables having a common distribution function F with density f (x).
Suppose also that the claim amounts are independent of the claim arrival times.
Thus, if we let M(t) be the number of claims made by time t , then

∑M(t)
i=1 Yi is

the total amount paid out in claims by time t . Supposing that the firm starts with
an initial capital x and receives income at a constant rate c per unit time, we are
interested in the probability that the firm’s net capital ever becomes negative; that
is, we are interested in

R(x) = P

{
M(t)∑

i=1

Yi > x + ct for some t � 0

}

If the firm’s capital ever becomes negative, we say that the firm is ruined; thus
R(x) is the probability of ruin given that the firm begins with an initial capital x.

Let μ = E[Yi] be the mean claim amount, and let ρ = λμ/c. Because claims
occur at rate λ, the long run rate at which money is paid out is λμ. (A formal
argument uses renewal reward processes. A new cycle begins when a claim oc-
curs; the cost for the cycle is the claim amount, and so the long run average cost
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is μ, the expected cost incurred in a cycle, divided by 1/λ, the mean cycle time.)
Because the rate at which money is received is c, it is clear that R(x) = 1 when
ρ > 1. As R(x) can be shown to also equal 1 when ρ = 1 (think of the recurrence
of the symmetric random walk), we will suppose that ρ < 1.

To determine R(x), we start by deriving a differential equation. To begin, con-
sider what can happen in the first h time units, where h is small. With probability
1 − λh + o(h) there will be no claims and the firm’s capital at time h will be
x + ch; with probability λh + o(h) there will be exactly one claim and the firm’s
capital at time h will be x + ch − Y1; with probability o(h) there will be two
or more claims. Therefore, conditioning on what happens during the first h time
units yields that

R(x) = (1 − λh)R(x + ch) + λhE[R(x + ch − Y1)] + o(h)

Equivalently,

R(x + ch) − R(x) = λhR(x + ch) − λhE[R(x + ch − Y1)] + o(h)

Dividing through by ch gives

R(x + ch) − R(x)

ch
= λ

c
R(x + ch) − λ

c
E[R(x + ch − Y1)] + 1

c

o(h)

h

Letting h go to 0 yields the differential equation

R′(x) = λ

c
R(x) − λ

c
E[R(x − Y1)]

Because R(u) = 1 when u < 0, the preceding can be written as

R′(x) = λ

c
R(x) − λ

c

∫ x

0
R(x − y)f (y) dy − λ

c

∫ ∞

x

f (y) dy

or, equivalently,

R′(x) = λ

c
R(x) − λ

c

∫ x

0
R(x − y)f (y) dy − λ

c
F̄ (x) (7.52)

where F̄ (x) = 1 − F(x).

We will now use the preceding equation to show that R(x) also satisfies the
equation

R(x) = R(0) + λ

c

∫ x

0
R(x − y)F̄ (y) dy − λ

c

∫ x

0
F̄ (y) dy, x � 0 (7.53)

To verify Equation (7.53), we will show that differentiating both sides of it results
in Equation (7.52). [It can be shown that both (7.52) and (7.53) have unique so-
lutions.] To do so, we will need the following lemma, whose proof is given at the
end of this section.
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Lemma 7.5 For a function k, and a differentiable function t

d

dx

∫ x

0
t (x − y)k(y) dy = t (0)k(x) +

∫ x

0
t ′(x − y)k(y) dy

Differentiating both sides of Equation (7.53) gives, upon using the preceding
lemma,

R′(x) = λ

c

[

R(0)F̄ (x) +
∫ x

0
R′(x − y)F̄ (y) dy − F̄ (x)

]

(7.54)

Differentiation by parts [u = F̄ (y), dv = R′(x − y)dy] shows that

∫ x

0
R′(x − y)F̄ (y) dy = −F̄ (y)R(x − y)|x0 −

∫ x

0
R(x − y)f (y) dy

= −F̄ (x)R(0) + R(x) −
∫ x

0
R(x − y)f (y) dy

Substituting this result back in Equation (7.54) gives Equation (7.52). Thus, we
have established Equation (7.53).

To obtain a more usable expression for R(x), consider a renewal process whose
interarrival times X1,X2, . . . are distributed according to the equilibrium distri-
bution of F . That is, the density function of the Xi is

fe(x) = F ′
e(x) = F̄ (x)

μ

Let N(t) denote the number of renewals by time t , and let us derive an expres-
sion for

q(x) = E
[
ρN(x)+1]

Conditioning on X1 gives that

q(x) =
∫ ∞

0
E
[
ρN(x)+1|X1 = y

] F̄ (y)

μ
dy

Because, given that X1 = y, the number of renewals by time x is distributed as
1 + N(x − y) when y � x, or is identically 0 when y > x, we see that

E[ρN(x)+1|X1 = y] =
{
ρ E

[
ρN(x−y)+1

]
, if y � x

ρ, if y > x
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Therefore, q(x) satisfies

q(x) =
∫ x

0
ρq(x − y)

F̄ (y)

μ
dy + ρ

∫ ∞

x

F̄ (y)

μ
dy

= λ

c

∫ x

0
q(x − y) F̄ (y) dy + λ

c

[∫ ∞

0
F̄ (y) dy −

∫ x

0
F̄ (y) dy

]

= λ

c

∫ x

0
q(x − y) F̄ (y) dy + ρ − λ

c

∫ x

0
F̄ (y) dy

Because q(0) = ρ, this is exactly the same equation that is satisfied by R(x),
namely Equation (7.53). Therefore, because the solution to (7.53) is unique, we
obtain the following.

Proposition 7.6

R(x) = q(x) = E
[
ρN(x)+1]

Example 7.36 Suppose that the firm does not start with any initial cap-
ital. Then, because N(0) = 0, we see that the firm’s probability of ruin is
R(0) = ρ. �

Example 7.37 If the claim distribution F is exponential with mean μ, then
so is Fe. Hence, N(x) is Poisson with mean x/μ, giving the result

R(x) = E
[
ρN(x)+1] =

∞∑

n=0

ρn+1e−x/μ(x/μ)n/n!

= ρ e−x/μ
∞∑

n=0

(ρ x/μ)n/n!

= ρe−x(1−ρ)/μ �

To obtain some intuition about the ruin probability, let T be independent of the
interarrival times Xi of the renewal process having interarrival distribution Fe ,
and let T have probability mass function

P {T = n} = ρn(1 − ρ), n = 0,1, . . .

Now consider P {∑T
i=1 Xi > x}, the probability that the sum of the first T of the

Xi exceeds x. Because N(x) + 1 is the first renewal that occurs after time x, we
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have

N(x) + 1 = min

{

n :
n∑

i=1

Xi > x

}

Therefore, conditioning on the number of renewals by time x gives that

P

{
T∑

i=1

Xi > x

}

=
∞∑

j=0

P

{
T∑

i=1

Xi > x

∣
∣
∣N(x) = j

}

P {N(x) = j}

=
∞∑

j=0

P {T � j + 1|N(x) = j}P {N(x) = j}

=
∞∑

j=0

P {T � j + 1}P {N(x) = j}

=
∞∑

j=0

ρj+1P {N(x) = j}

= E
[
ρN(x)+1]

Consequently, P {∑T
i=1 Xi > x} is equal to the ruin probability. Now, as noted in

Example 7.36, the ruin probability of a firm starting with 0 initial capital is ρ.
Suppose that the firm starts with an initial capital x, and suppose for the mo-
ment that it is allowed to remain in business even if its capital becomes negative.
Because the probability that the firm’s capital ever falls below its initial starting
amount x is the same as the probability that its capital ever becomes negative
when it starts with 0, this probability is also ρ. Thus if we say that a low occurs
whenever the firm’s capital becomes lower than it has ever previously been, then
the probability that a low ever occurs is ρ. Now, if a low does occur, then the
probability that there will be another low is the probability that the firm’s capital
will ever fall below its previous low, and clearly this is also ρ. Therefore, each
new low is the final one with probability 1 − ρ. Consequently, the total number
of lows that ever occur has the same distribution as T . In addition, if we let Wi

be the amount by which the ith low is less than the low preceding it, it is easy
to see that W1,W2, . . . are independent and identically distributed, and are also
independent of the number of lows. Because the minimal value over all time of
the firm’s capital (when it is allowed to remain in business even when its capital
becomes negative) is x −∑T

i=1 Wi , it follows that the ruin probability of a firm
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that starts with an initial capital x is

R(x) = P

{
T∑

i=1

Wi > x

}

Because

R(x) = E
[
ρN(x)+1]= P

{
T∑

i=1

Xi > x

}

we can identify Wi with Xi . That is, we can conclude that each new low is lower
than its predecessor by a random amount whose distribution is the equilibrium
distribution of a claim amount.

Let us now give the proof of Lemma 7.5.

Proof of Lemma 7.5 Let G(x) = ∫ x

0 t (x − y)k(y) dy. Then

G(x + h) − G(x) = G(x + h) −
∫ x

0
t (x + h − y)k(y) dy

+
∫ x

0
t (x + h − y)k(y) dy − G(x)

=
∫ x+h

x

t (x + h − y)k(y) dy

+
∫ x

0
[t (x + h − y) − t (x − y)]k(y) dy

Dividing through by h gives

G(x + h) − G(x)

h
= 1

h

∫ x+h

x

t (x + h − y)k(y) dy

+
∫ x

0

t (x + h − y) − t (x − y)

h
k(y) dy

Letting h → 0 gives the result:

G′(x) = t (0) k(x) +
∫ x

0
t ′(x − y) k(y) dy �
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Exercises

1. Is it true that

(a) N(t) < n if and only if Sn > t?
(b) N(t) � n if and only if Sn � t?
(c) N(t) > n if and only if Sn < t?

2. Suppose that the interarrival distribution for a renewal process is Poisson
distributed with mean μ. That is, suppose

P {Xn = k} = e−μ μk

k! , k = 0, 1, . . .

(a) Find the distribution of Sn.
(b) Calculate P {N(t) = n}.

*3. If the mean-value function of the renewal process {N(t), t � 0} is given by
m(t) = t/2, t � 0, what is P {N(5) = 0}?
4. Let {N1(t), t � 0} and {N2(t), t � 0} be independent renewal processes. Let
N(t) = N1(t) + N2(t).

(a) Are the interarrival times of {N(t), t � 0} independent?
(b) Are they identically distributed?
(c) Is {N(t), t � 0} a renewal process?

5. Let U1, U2, . . . be independent uniform (0, 1) random variables, and define
N by

N = min{n : U1 + U2 + · · · + Un > 1}
What is E[N ]?
*6. Consider a renewal process {N(t), t � 0} having a gamma (r, λ) interarrival
distribution. That is, the interarrival density is

f (x) = λe−λx(λx)r−1

(r − 1)! , x > 0

(a) Show that

P {N(t) � n} =
∞∑

i=nr

e−λt (λt)i

i!
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(b) Show that

m(t) =
∞∑

i=r

[
i

r

]
e−λt (λt)i

i!

where [i/r] is the largest integer less than or equal to i/r .

Hint: Use the relationship between the gamma (r, λ) distribution and the sum
of r independent exponentials with rate λ, to define N(t) in terms of a Poisson
process with rate λ.

7. Mr. Smith works on a temporary basis. The mean length of each job he gets
is three months. If the amount of time he spends between jobs is exponentially
distributed with mean 2, then at what rate does Mr. Smith get new jobs?

*8. A machine in use is replaced by a new machine either when it fails or when it
reaches the age of T years. If the lifetimes of successive machines are independent
with a common distribution F having density f , show that

(a) the long-run rate at which machines are replaced equals

[∫ T

0
xf (x)dx + T (1 − F(T ))

]−1

(b) the long-run rate at which machines in use fail equals

F(T )
∫ T

0 xf (x)dx + T [1 − F(T )]

9. A worker sequentially works on jobs. Each time a job is completed, a new
one is begun. Each job, independently, takes a random amount of time having dis-
tribution F to complete. However, independently of this, shocks occur according
to a Poisson process with rate λ. Whenever a shock occurs, the worker discontin-
ues working on the present job and starts a new one. In the long run, at what rate
are jobs completed?

10. Consider a renewal process with mean interarrival time μ. Suppose that each
event of this process is independently “counted” with probability p. Let NC(t)

denote the number of counted events by time t, t > 0.

(a) Is NC(t), t � 0 a renewal process?
(b) What is limt→∞ NC(t)/t?
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11. A renewal process for which the time until the initial renewal has a different
distribution than the remaining interarrival times is called a delayed (or a general)
renewal process. Prove that Proposition 7.1 remains valid for a delayed renewal
process. (In general, it can be shown that all of the limit theorems for a renewal
process remain valid for a delayed renewal process provided that the time until
the first renewal has a finite mean.)

12. Events occur according to a Poisson process with rate λ. Any event that oc-
curs within a time d of the event that immediately preceded it is called a d-event.
For instance, if d = 1 and events occur at times 2,2.8,4,6,6.6, . . . , then the
events at times 2.8 and 6.6 would be d-events.

(a) At what rate do d-events occur?
(b) What proportion of all events are d-events?

13. Let X1, X2, . . . be a sequence of independent random variables. The non-
negative integer valued random variable N is said to be a stopping time for the
sequence if the event {N = n} is independent of Xn+1,Xn+2, . . . . The idea being
that the Xi are observed one at a time—first X1, then X2, and so on—and N rep-
resents the number observed when we stop. Hence, the event {N = n} corresponds
to stopping after having observed X1, . . . , Xn and thus must be independent of the
values of random variables yet to come, namely, Xn+1,Xn+2, . . . .

(a) Let X1,X2, . . . be independent with

P {Xi = 1} = p = 1 − P {Xi = 0}, i � 1

Define

N1 = min{n : X1 + · · · + Xn = 5}

N2 =
{

3, if X1 = 0
5, if X1 = 1

N3 =
{

3, if X4 = 0
2, if X4 = 1

Which of the Ni are stopping times for the sequence X1, . . .? An important
result, known as Wald’s equation states that if X1,X2, . . . are independent and
identically distributed and have a finite mean E(X), and if N is a stopping time
for this sequence having a finite mean, then

E

[
N∑

i=1

Xi

]

= E[N ]E[X]

To prove Wald’s equation, let us define the indicator variables Ii, i � 1 by

Ii =
{

1, if i � N

0, if i > N
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(b) Show that

N∑

i=1

Xi =
∞∑

i=1

XiIi

From part (b) we see that

E

[
N∑

i=1

Xi

]

= E

[ ∞∑

i=1

XiIi

]

=
∞∑

i=1

E[XiIi]

where the last equality assumes that the expectation can be brought inside the
summation (as indeed can be rigorously proven in this case).

(c) Argue that Xi and Ii are independent.

Hint: Ii equals 0 or 1 depending on whether or not we have yet stopped after
observing which random variables?

(d) From part (c) we have

E

[
N∑

i=1

Xi

]

=
∞∑

i=1

E[X]E[Ii]

Complete the proof of Wald’s equation.

(e) What does Wald’s equation tell us about the stopping times in part (a)?

14. Wald’s equation can be used as the basis of a proof of the elementary renewal
theorem. Let X1,X2, . . . denote the interarrival times of a renewal process and let
N(t) be the number of renewals by time t .

(a) Show that whereas N(t) is not a stopping time, N(t) + 1 is.

Hint: Note that

N(t) = n ⇔ X1 + · · · + Xn � t and X1 + · · · + Xn+1 > t

(b) Argue that

E

[
N(t)+1∑

i=1

Xi

]

= μ[m(t) + 1]
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(c) Suppose that the Xi are bounded random variables. That is, suppose there
is a constant M such that P {Xi < M} = 1. Argue that

t <

N(t)+1∑

i=1

Xi < t + M

(d) Use the previous parts to prove the elementary renewal theorem when the
interarrival times are bounded.

15. Consider a miner trapped in a room that contains three doors. Door 1 leads
him to freedom after two days of travel; door 2 returns him to his room after
a four-day journey; and door 3 returns him to his room after a six-day journey.
Suppose at all times he is equally likely to choose any of the three doors, and let
T denote the time it takes the miner to become free.

(a) Define a sequence of independent and identically distributed random vari-
ables X1,X2 . . . and a stopping time N such that

T =
N∑

i=1

Xi

Note: You may have to imagine that the miner continues to randomly choose
doors even after he reaches safety.

(b) Use Wald’s equation to find E[T ].
(c) Compute E[∑N

i=1 Xi |N = n] and note that it is not equal to E[∑n
i=1 Xi].

(d) Use part (c) for a second derivation of E[T ].
16. A deck of 52 playing cards is shuffled and the cards are then turned face
up one at a time. Let Xi equal 1 if the ith card turned over is an ace, and let it
be 0 otherwise, i = 1, . . . ,52. Also, let N denote the number of cards that need
be turned over until all four aces appear. That is, the final ace appears on the N th
card to be turned over. Is the equation

E

[
N∑

i=1

Xi

]

= E[N ]E[Xi]

valid? If not, why is Wald’s equation not applicable?

17. In Example 7.7, suppose that potential customers arrive in accordance with
a renewal process having interarrival distribution F . Would the number of events
by time t constitute a (possibly delayed) renewal process if an event corresponds
to a customer
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(a) entering the bank?
(b) leaving the bank?

What if F were exponential?

*18. Compute the renewal function when the interarrival distribution F is
such that

1 − F(t) = pe−μ1t + (1 − p)e−μ2t

19. For the renewal process whose interarrival times are uniformly distributed
over (0, 1), determine the expected time from t = 1 until the next renewal.

20. For a renewal reward process consider

Wn = R1 + R2 + · · · + Rn

X1 + X2 + · · · + Xn

where Wn represents the average reward earned during the first n cycles. Show
that Wn → E[R]/E[X] as n → ∞.

21. Consider a single-server bank for which customers arrive in accordance
with a Poisson process with rate λ. If a customer will enter the bank only if the
server is free when he arrives, and if the service time of a customer has the distri-
bution G, then what proportion of time is the server busy?

*22. The lifetime of a car has a distribution H and probability density h.
Ms. Jones buys a new car as soon as her old car either breaks down or reaches
the age of T years. A new car costs C1 dollars and an additional cost of C2 dollars
is incurred whenever a car breaks down. Assuming that a T -year-old car in work-
ing order has an expected resale value R(T ), what is Ms. Jones’ long-run average
cost?

23. If H is the uniform distribution over (2, 8) and if C1 = 4, C2 = 1, and
R(T ) = 4 − (T /2), then what value of T minimizes Ms. Jones’ long-run aver-
age cost in Exercise 22?

24. Wald’s equation can also be proved by using renewal reward processes. Let
N be a stopping time for the sequence of independent and identically distributed
random variables Xi , i � 1.

(a) Let N1 = N . Argue that the sequence of random variables XN1+1,

XN1+2, . . . is independent of X1, . . . ,XN and has the same distribution as the
original sequence Xi, i � 1.
Now treat XN1+1,XN1+2, . . . as a new sequence, and define a stopping time N2
for this sequence that is defined exactly as is N1 is on the original sequence.
(For instance, if N1 = min{n: Xn > 0}, then N2 = min{n: XN1+n > 0}.) Simi-
larly, define a stopping time N3 on the sequence XN1+N2+1,XN1+N2+2, . . . that
is identically defined on this sequence as is N1 on the original sequence, and so
on.
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(b) Is the reward process in which Xi is the reward earned during period i a
renewal reward process? If so, what is the length of the successive cycles?
(c) Derive an expression for the average reward per unit time.
(d) Use the strong law of large numbers to derive a second expression for the
average reward per unit time.
(e) Conclude Wald’s equation.

25. Suppose in Example 7.13 that the arrival process is a Poisson process and
suppose that the policy employed is to dispatch the train every t time units.

(a) Determine the average cost per unit time.
(b) Show that the minimal average cost per unit time for such a policy is ap-
proximately c/2 plus the average cost per unit time for the best policy of the
type considered in that example.

26. Consider a train station to which customers arrive in accordance with a Pois-
son process having rate λ. A train is summoned whenever there are N customers
waiting in the station, but it takes K units of time for the train to arrive at the
station. When it arrives, it picks up all waiting customers. Assuming that the train
station incurs a cost at a rate of nc per unit time whenever there are n customers
present, find the long-run average cost.

27. A machine consists of two independent components, the ith of which func-
tions for an exponential time with rate λi . The machine functions as long as at
least one of these components function. (That is, it fails when both components
have failed.) When a machine fails, a new machine having both its components
working is put into use. A cost K is incurred whenever a machine failure occurs;
operating costs at rate ci per unit time are incurred whenever the machine in use
has i working components, i = 1,2. Find the long run average cost per unit time.

28. In Example 7.15, what proportion of the defective items produced is discov-
ered?

29. Consider a single-server queueing system in which customers arrive in ac-
cordance with a renewal process. Each customer brings in a random amount of
work, chosen independently according to the distribution G. The server serves
one customer at a time. However, the server processes work at rate i per unit time
whenever there are i customers in the system. For instance, if a customer with
workload 8 enters service when there are three other customers waiting in line,
then if no one else arrives that customer will spend 2 units of time in service. If
another customer arrives after 1 unit of time, then our customer will spend a total
of 1.8 units of time in service provided no one else arrives.

Let Wi denote the amount of time customer i spends in the system. Also,
define E[W ] by

E[W ] = lim
n→∞(W1 + · · · + Wn)/n

and so E[W ] is the average amount of time a customer spends in the system.
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Let N denote the number of customers that arrive in a busy period.

(a) Argue that

E[W ] = E[W1 + · · · + WN ]/E[N ]
Let Li denote the amount of work customer i brings into the system; and so the
Li, i � 1, are independent random variables having distribution G.
(b) Argue that at any time t , the sum of the times spent in the system by all
arrivals prior to t is equal to the total amount of work processed by time t .

Hint: Consider the rate at which the server processes work.

(c) Argue that

N∑

i=1

Wi =
N∑

i=1

Li

(d) Use Wald’s equation (see Exercise 13) to conclude that

E[W ] = μ

where μ is the mean of the distribution G. That is, the average time that cus-
tomers spend in the system is equal to the average work they bring to the sys-
tem.

*30. For a renewal process, let A(t) be the age at time t . Prove that if μ < ∞,
then with probability 1

A(t)

t
→ 0 as t → ∞

31. If A(t) and Y(t) are, respectively, the age and the excess at time t of a
renewal process having an interarrival distribution F , calculate

P {Y(t) > x|A(t) = s}

32. Determine the long-run proportion of time that XN(t)+1 < c.

33. In Example 7.14, find the long run proportion of time that the server is busy.

34. An M/G/∞ queueing system is cleaned at the fixed times T , 2T , 3T , . . . .
All customers in service when a cleaning begins are forced to leave early and a
cost C1 is incurred for each customer. Suppose that a cleaning takes time T/4,
and that all customers who arrive while the system is being cleaned are lost, and
a cost C2 is incurred for each one.
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(a) Find the long run average cost per unit time.
(b) Find the long run proportion of time the system is being cleaned.

*35. Satellites are launched according to a Poisson process with rate λ. Each
satellite will, independently, orbit the earth for a random time having distribu-
tion F . Let X(t) denote the number of satellites orbiting at time t .

(a) Determine P {X(t) = k}.
Hint: Relate this to the M/G/∞ queue.

(b) If at least one satellite is orbiting, then messages can be transmitted and we
say that the system is functional. If the first satellite is orbited at time t = 0,
determine the expected time that the system remains functional.

Hint: Make use of part (a) when k = 0.

36. Each of n skiers continually, and independently, climbs up and then skis
down a particular slope. The time it takes skier i to climb up has distribution
Fi , and it is independent of her time to ski down, which has distribution Hi ,
i = 1, . . . , n. Let N(t) denote the total number of times members of this group
have skied down the slope by time t . Also, let U(t) denote the number of skiers
climbing up the hill at time t .

(a) What is limt→∞ N(t)/t?
(b) Find limt→∞ E[U(t)].
(c) If all Fi are exponential with rate λ and all Gi are exponential with rate μ,
what is P {U(t) = k}?

37. There are three machines, all of which are needed for a system to work.
Machine i functions for an exponential time with rate λi before it fails, i = 1,2,3.
When a machine fails, the system is shut down and repair begins on the failed
machine. The time to fix machine 1 is exponential with rate 5; the time to fix
machine 2 is uniform on (0, 4); and the time to fix machine 3 is a gamma random
variable with parameters n = 3 and λ = 2. Once a failed machine is repaired, it is
as good as new and all machines are restarted.

(a) What proportion of time is the system working?
(b) What proportion of time is machine 1 being repaired?
(c) What proportion of time is machine 2 in a state of suspended animation
(that is, neither working nor being repaired)?

38. A truck driver regularly drives round trips from A to B and then back to A.
Each time he drives from A to B, he drives at a fixed speed that (in miles per hour)
is uniformly distributed between 40 and 60; each time he drives from B to A, he
drives at a fixed speed that is equally likely to be either 40 or 60.
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(a) In the long run, what proportion of his driving time is spent going to B?
(b) In the long run, for what proportion of his driving time is he driving at a
speed of 40 miles per hour?

39. A system consists of two independent machines that each functions for an
exponential time with rate λ. There is a single repairperson. If the repairperson
is idle when a machine fails, then repair immediately begins on that machine;
if the repairperson is busy when a machine fails, then that machine must wait
until the other machine has been repaired. All repair times are independent with
distribution function G and, once repaired, a machine is as good as new. What
proportion of time is the repairperson idle?

40. Three marksmen take turns shooting at a target. Marksman 1 shoots until
he misses, then marksman 2 begins shooting until he misses, then marksman 3
until he misses, and then back to marksman 1, and so on. Each time marksman i

fires he hits the target, independently of the past, with probability Pi , i = 1,2,3.
Determine the proportion of time, in the long run, that each marksman shoots.

41. Each time a certain machine breaks down it is replaced by a new one of the
same type. In the long run, what percentage of time is the machine in use less than
one year old if the life distribution of a machine is

(a) uniformly distributed over (0, 2)?
(b) exponentially distributed with mean 1?

*42. For an interarrival distribution F having mean μ, we defined the equilib-
rium distribution of F , denoted Fe, by

Fe(x) = 1

μ

∫ x

0
[1 − F(y)]dy

(a) Show that if F is an exponential distribution, then F = Fe .
(b) If for some constant c,

F(x) =
{

0, x < c

1, x � c

show that Fe is the uniform distribution on (0, c). That is, if interarrival times
are identically equal to c, then the equilibrium distribution is the uniform dis-
tribution on the interval (0, c).
(c) The city of Berkeley, California, allows for two hours parking at all non-
metered locations within one mile of the University of California. Parking of-
ficials regularly tour around, passing the same point every two hours. When an
official encounters a car he or she marks it with chalk. If the same car is there
on the official’s return two hours later, then a parking ticket is written. If you
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park your car in Berkeley and return after three hours, what is the probability
you will have received a ticket?

43. Consider a renewal process having interarrival distribution F such that

F̄ (x) = 1
2e−x + 1

2e−x/2, x > 0

That is, interarrivals are equally likely to be exponential with mean 1 or exponen-
tial with mean 2.

(a) Without any calculations, guess the equilibrium distribution Fe .
(b) Verify your guess in part (a).

44. An airport shuttle bus picks up all passengers waiting at a bus stop and
drops them off at the airport terminal; it then returns to the stop and repeats the
process. The times between returns to the stop are independent random variables
with distribution F , mean μ, and variance σ 2. Passengers arrive at the bus stop in
accordance with a Poisson process with rate λ. Suppose the bus has just left the
stop, and let X denote the number of passengers it picks up when it returns.

(a) Find E[X].
(b) Find Var(X).
(c) At what rate does the shuttle bus arrive at the terminal without any passen-
gers?

Suppose that each passenger that has to wait at the bus stop more than c time
units writes an angry letter to the shuttle bus manager.

(d) What proportion of passengers write angry letters?
(e) How does your answer in part (d) relate to Fe(x)?

45. Consider a system that can be in either state 1 or 2 or 3. Each time the system
enters state i it remains there for a random amount of time having mean μi and
then makes a transition into state j with probability Pij . Suppose

P12 = 1, P21 = P23 = 1
2 , P31 = 1

(a) What proportion of transitions takes the system into state 1?
(b) If μ1 = 1, μ2 = 2, μ3 = 3, then what proportion of time does the system
spend in each state?

46. Consider a semi-Markov process in which the amount of time that the
process spends in each state before making a transition into a different state is
exponentially distributed. What kind of process is this?

47. In a semi-Markov process, let tij denote the conditional expected time that
the process spends in state i given that the next state is j .
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(a) Present an equation relating μi to the tij .
(b) Show that the proportion of time the process is in i and will next enter j is
equal to PiPij tij /μi .

Hint: Say that a cycle begins each time state i is entered. Imagine that you
receive a reward at a rate of 1 per unit time whenever the process is in i and
heading for j . What is the average reward per unit time?

48. A taxi alternates between three different locations. Whenever it reaches lo-
cation i, it stops and spends a random time having mean ti before obtaining an-
other passenger, i = 1,2,3. A passenger entering the cab at location i will want
to go to location j with probability Pij . The time to travel from i to j is a random
variable with mean mij . Suppose that t1 = 1, t2 = 2, t3 = 4, P12 = 1, P23 = 1,
P31 = 2

3 = 1 − P32, m12 = 10, m23 = 20, m31 = 15, m32 = 25. Define an appro-
priate semi-Markov process and determine

(a) the proportion of time the taxi is waiting at location i, and
(b) the proportion of time the taxi is on the road from i to j , i, j = 1,2,3.

*49. Consider a renewal process having the gamma (n,λ) interarrival distribu-
tion, and let Y(t) denote the time from t until the next renewal. Use the theory of
semi-Markov processes to show that

lim
t→∞P {Y(t) < x} = 1

n

n∑

i=1

Gi,λ(x)

where Gi,λ(x) is the gamma (i, λ) distribution function.

50. To prove Equation (7.24), define the following notation:

X
j
i ≡ time spent in state i on the j th visit to this state;

Ni(m) ≡ number of visits to state i in the first m transitions

In terms of this notation, write expressions for

(a) the amount of time during the first m transitions that the process is in state i;
(b) the proportion of time during the first m transitions that the process is in
state i.

Argue that, with probability 1,

(c)
Ni(m)∑

j=1

X
j
i

Ni(m)
→ μi as m → ∞

(d) Ni(m)/m → πi as m → ∞.
(e) Combine parts (a), (b), (c), and (d) to prove Equation (7.24).
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51. In 1984 the country of Morocco in an attempt to determine the average
amount of time that tourists spend in that country on a visit tried two different
sampling procedures. In one, they questioned randomly chosen tourists as they
were leaving the country; in the other, they questioned randomly chosen guests
at hotels. (Each tourist stayed at a hotel.) The average visiting time of the 3000
tourists chosen from hotels was 17.8, whereas the average visiting time of the
12,321 tourists questioned at departure was 9.0. Can you explain this discrep-
ancy? Does it necessarily imply a mistake?

52. Let Xi , i = 1,2, . . . , be the interarrival times of the renewal process {N(t)},
and let Y , independent of the Xi , be exponential with rate λ.

(a) Use the lack of memory property of the exponential to argue that

P {X1 + · · · + Xn < Y } = (P {X < Y })n

(b) Use part (a) to show that

E[N(Y)] = E[e−λX]
1 − E[e−λX]

where X has the interarrival distribution.

53. Write a program to approximate m(t) for the interarrival distribution F ∗G,
where F is exponential with mean 1 and G is exponential with mean 3.

54. Let Xi, i � 1, be independent random variables with pj = P {X = j}, j �
1. If pj = j/10, j = 1,2,3,4, find the expected time and the variance of the
number of variables that need be observed until the pattern 1, 2, 3, 1, 2 occurs.

55. A coin that comes up heads with probability 0.6 is continually flipped. Find
the expected number of flips until either the sequence thht or the sequence t t t

occurs, and find the probability that t t t occurs first.

56. Random digits, each of which is equally likely to be any of the digits 0
through 9, are observed in sequence.

(a) Find the expected time until a run of 10 distinct values occurs.
(b) Find the expected time until a run of 5 distinct values occurs.

57. Let h(x) = P {∑T
i=1 Xi > x} where X1,X2, . . . are independent random

variables having distribution function Fe and T is independent of the Xi and has
probability mass function P {T = n} = ρn(1 − ρ), n � 0. Show that h(x) satisfies
Equation (7.53).

Hint: Start by conditioning on whether T = 0 or T > 0.
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Queueing
Theory

8
8.1. Introduction

In this chapter we will study a class of models in which customers arrive in some
random manner at a service facility. Upon arrival they are made to wait in queue
until it is their turn to be served. Once served they are generally assumed to leave
the system. For such models we will be interested in determining, among other
things, such quantities as the average number of customers in the system (or in the
queue) and the average time a customer spends in the system (or spends waiting
in the queue).

In Section 8.2 we derive a series of basic queueing identities which are of great
use in analyzing queueing models. We also introduce three different sets of limit-
ing probabilities which correspond to what an arrival sees, what a departure sees,
and what an outside observer would see.

In Section 8.3 we deal with queueing systems in which all of the defining proba-
bility distributions are assumed to be exponential. For instance, the simplest such
model is to assume that customers arrive in accordance with a Poisson process
(and thus the interarrival times are exponentially distributed) and are served one
at a time by a single server who takes an exponentially distributed length of time
for each service. These exponential queueing models are special examples of
continuous-time Markov chains and so can be analyzed as in Chapter 6. How-
ever, at the cost of a (very) slight amount of repetition we shall not assume that
you are familiar with the material of Chapter 6, but rather we shall redevelop any
needed material. Specifically we shall derive anew (by a heuristic argument) the
formula for the limiting probabilities.

In Section 8.4 we consider models in which customers move randomly among
a network of servers. The model of Section 8.4.1 is an open system in which
customers are allowed to enter and depart the system, whereas the one studied

493
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in Section 8.4.2 is closed in the sense that the set of customers in the system is
constant over time.

In Section 8.5 we study the model M/G/1, which while assuming Poisson
arrivals, allows the service distribution to be arbitrary. To analyze this model we
first introduce in Section 8.5.1 the concept of work, and then use this concept in
Section 8.5.2 to help analyze this system. In Section 8.5.3 we derive the average
amount of time that a server remains busy between idle periods.

In Section 8.6 we consider some variations of the model M/G/1. In particular
in Section 8.6.1 we suppose that bus loads of customers arrive according to a
Poisson process and that each bus contains a random number of customers. In
Section 8.6.2 we suppose that there are two different classes of customers—with
type 1 customers receiving service priority over type 2.

In Section 8.6.3 we present an M/G/1 optimization example. We suppose
that the server goes on break whenever she becomes idle, and then deter-
mine, under certain cost assumptions, the optimal time for her to return to ser-
vice.

In Section 8.7 we consider a model with exponential service times but where the
interarrival times between customers is allowed to have an arbitrary distribution.
We analyze this model by use of an appropriately defined Markov chain. We also
derive the mean length of a busy period and of an idle period for this model.

In Section 8.8 we consider a single server system whose arrival process results
from return visits of a finite number of possible sources. Assuming a general
service distribution, we show how a Markov chain can be used to analyze this
system.

In the final section of the chapter we talk about multiserver systems. We start
with loss systems, in which arrivals finding all servers busy, are assumed to de-
part and as such are lost to the system. This leads to the famous result known as
Erlang’s loss formula, which presents a simple formula for the number of busy
servers in such a model when the arrival process in Poisson and the service dis-
tribution is general. We then discuss multiserver systems in which queues are
allowed. However, except in the case where exponential service times are as-
sumed, there are very few explicit formulas for these models. We end by pre-
senting an approximation for the average time a customer waits in queue in a
k-server model which assumes Poisson arrivals but allows for a general service
distribution.

8.2. Preliminaries

In this section we will derive certain identities which are valid in the great majority
of queueing models.
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8.2.1. Cost Equations

Some fundamental quantities of interest for queueing models are

L, the average number of customers in the system;
LQ, the average number of customers waiting in queue;
W , the average amount of time a customer spends in the system;
WQ, the average amount of time a customer spends waiting in queue.

A large number of interesting and useful relationships between the preceding
and other quantities of interest can be obtained by making use of the following
idea: Imagine that entering customers are forced to pay money (according to some
rule) to the system. We would then have the following basic cost identity:

average rate at which the system earns

= λa × average amount an entering customer pays (8.1)

where λa is defined to be average arrival rate of entering customers. That is, if
N(t) denotes the number of customer arrivals by time t , then

λa = lim
t→∞

N(t)

t

We now present a heuristic proof of Equation (8.1).

Heuristic Proof of Equation (8.1) Let T be a fixed large number. In two
different ways, we will compute the average amount of money the system has
earned by time T . On one hand, this quantity approximately can be obtained by
multiplying the average rate at which the system earns by the length of time T .
On the other hand, we can approximately compute it by multiplying the average
amount paid by an entering customer by the average number of customers enter-
ing by time T (and this latter factor is approximately λaT ). Hence, both sides
of Equation (8.1) when multiplied by T are approximately equal to the average
amount earned by T . The result then follows by letting T → ∞.∗

By choosing appropriate cost rules, many useful formulas can be obtained
as special cases of Equation (8.1). For instance, by supposing that each customer
pays $1 per unit time while in the system, Equation (8.1) yields the so-called

∗This can be made into a rigorous proof provided we assume that the queueing process is regen-
erative in the sense of Section 7.5. Most models, including all the ones in this chapter, satisfy this
condition.
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Little’s formula,

L = λaW (8.2)

This follows since, under this cost rule, the rate at which the system earns is just
the number in the system, and the amount a customer pays is just equal to its time
in the system.

Similarly if we suppose that each customer pays $1 per unit time while in
queue, then Equation (8.1) yields

LQ = λaWQ (8.3)

By supposing the cost rule that each customer pays $1 per unit time while in
service we obtain from Equation (8.1) that the

average number of customers in service = λaE[S] (8.4)

where E[S] is defined as the average amount of time a customer spends in service.
It should be emphasized that Equations (8.1) through (8.4) are valid for almost

all queueing models regardless of the arrival process, the number of servers, or
queue discipline. �

8.2.2. Steady-State Probabilities

Let X(t) denote the number of customers in the system at time t and define
Pn,n � 0, by

Pn = lim
t→∞P {X(t) = n}

where we assume the preceding limit exists. In other words, Pn is the limiting
or long-run probability that there will be exactly n customers in the system. It is
sometimes referred to as the steady-state probability of exactly n customers in the
system. It also usually turns out that Pn equals the (long-run) proportion of time
that the system contains exactly n customers. For example, if P0 = 0.3, then in
the long run, the system will be empty of customers for 30 percent of the time.
Similarly, P1 = 0.2 would imply that for 20 percent of the time the system would
contain exactly one customer.∗

∗A sufficient condition for the validity of the dual interpretation of Pn is that the queueing process
be regenerative.
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Two other sets of limiting probabilities are {an,n � 0} and {dn,n � 0}, where

an = proportion of customers that find n

in the system when they arrive, and

dn = proportion of customers leaving behind n

in the system when they depart

That is, Pn is the proportion of time during which there are n in the system; an is
the proportion of arrivals that find n; and dn is the proportion of departures that
leave behind n. That these quantities need not always be equal is illustrated by the
following example.

Example 8.1 Consider a queueing model in which all customers have service
times equal to 1, and where the times between successive customers are always
greater than 1 [for instance, the interarrival times could be uniformly distributed
over (1, 2)]. Hence, as every arrival finds the system empty and every departure
leaves it empty, we have

a0 = d0 = 1

However,

P0 �= 1

as the system is not always empty of customers. �

It was, however, no accident that an equaled dn in the previous example. That
arrivals and departures always see the same number of customers is always true
as is shown in the next proposition.

Proposition 8.1 In any system in which customers arrive and depart one at
a time

the rate at which arrivals find n = the rate at which departures leave n

and

an = dn

Proof An arrival will see n in the system whenever the number in the system
goes from n to n + 1; similarly, a departure will leave behind n whenever the
number in the system goes from n + 1 to n. Now in any interval of time T the
number of transitions from n to n + 1 must equal to within 1 the number from
n + 1 to n. [Between any two transitions from n to n + 1, there must be one from
n + 1 to n, and conversely.] Hence, the rate of transitions from n to n + 1 equals
the rate from n + 1 to n; or, equivalently, the rate at which arrivals find n equals
the rate at which departures leave n. Now an, the proportion of arrivals finding n,
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can be expressed as

an = the rate at which arrivals find n

overall arrival rate

Similarly,

dn = the rate at which departures leave n

overall departure rate

Thus, if the overall arrival rate is equal to the overall departure rate, then the
preceding shows that an = dn. On the other hand, if the overall arrival rate exceeds
the overall departure rate, then the queue size will go to infinity, implying that
an = dn = 0. �

Hence, on the average, arrivals and departures always see the same number of
customers. However, as Example 8.1 illustrates, they do not, in general, see the
time averages. One important exception where they do is in the case of Poisson
arrivals.

Proposition 8.2 Poisson arrivals always see time averages. In particular, for
Poisson arrivals,

Pn = an

To understand why Poisson arrivals always see time averages, consider an ar-
bitrary Poisson arrival. If we knew that it arrived at time t , then the conditional
distribution of what it sees upon arrival is the same as the unconditional distribu-
tion of the system state at time t . For knowing that an arrival occurs at time t gives
us no information about what occurred prior to t . (Since the Poisson process has
independent increments, knowing that an event occurred at time t does not affect
the distribution of what occurred prior to t .) Hence, an arrival would just see the
system according to the limiting probabilities.

Contrast the foregoing with the situation of Example 8.1 where knowing that
an arrival occurred at time t tells us a great deal about the past; in particular it
tells us that there have been no arrivals in (t − 1, t). Thus, in this case, we cannot
conclude that the distribution of what an arrival at time t observes is the same as
the distribution of the system state at time t .

For a second argument as to why Poisson arrivals see time averages, note that
the total time the system is in state n by time T is (roughly) PnT . Hence, as
Poisson arrivals always arrive at rate λ no matter what the system state, it follows
that the number of arrivals in [0, T ] that find the system in state n is (roughly)
λPnT . In the long run, therefore, the rate at which arrivals find the system in state
n is λPn and, as λ is the overall arrival rate, it follows that λPn/λ = Pn is the
proportion of arrivals that find the system in state n.

The result that Poisson arrivals see time averages is called the PASTA principle.



8.3. Exponential Models 499

8.3. Exponential Models

8.3.1. A Single-Server Exponential Queueing System

Suppose that customers arrive at a single-server service station in accordance with
a Poisson process having rate λ. That is, the time between successive arrivals are
independent exponential random variables having mean 1/λ. Each customer, upon
arrival, goes directly into service if the server is free and, if not, the customer joins
the queue. When the server finishes serving a customer, the customer leaves the
system, and the next customer in line, if there is any, enters service. The successive
service times are assumed to be independent exponential random variables having
mean 1/μ.

The preceding is called the M/M/1 queue. The two Ms refer to the fact that
both the interarrival and the service distributions are exponential (and thus memo-
ryless, or Markovian), and the 1 to the fact that there is a single server. To analyze
it, we shall begin by determining the limiting probabilities Pn, for n = 0,1, . . . .
To do so, think along the following lines. Suppose that we have an infinite num-
ber of rooms numbered 0,1,2, . . . , and suppose that we instruct an individual to
enter room n whenever there are n customers in the system. That is, he would be
in room 2 whenever there are two customers in the system; and if another were
to arrive, then he would leave room 2 and enter room 3. Similarly, if a service
would take place he would leave room 2 and enter room 1 (as there would now be
only one customer in the system).

Now suppose that in the long run our individual is seen to have entered room 1
at the rate of ten times an hour. Then at what rate must he have left room 1?
Clearly, at this same rate of ten times an hour. For the total number of times that
he enters room 1 must be equal to (or one greater than) the total number of times
he leaves room 1. This sort of argument thus yields the general principle which
will enable us to determine the state probabilities. Namely, for each n � 0, the rate
at which the process enters state n equals the rate at which it leaves state n. Let us
now determine these rates. Consider first state 0. When in state 0 the process can
leave only by an arrival as clearly there cannot be a departure when the system
is empty. Since the arrival rate is λ and the proportion of time that the process is
in state 0 is P0, it follows that the rate at which the process leaves state 0 is λP0.
On the other hand, state 0 can only be reached from state 1 via a departure. That
is, if there is a single customer in the system and he completes service, then the
system becomes empty. Since the service rate is μ and the proportion of time that
the system has exactly one customer is P1, it follows that the rate at which the
process enters state 0 is μP1.

Hence, from our rate-equality principle we get our first equation,

λP0 = μP1
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Now consider state 1. The process can leave this state either by an arrival (which
occurs at rate λ) or a departure (which occurs at rate μ). Hence, when in state 1,
the process will leave this state at a rate of λ+μ.∗ Since the proportion of time the
process is in state 1 is P1, the rate at which the process leaves state 1 is (λ+μ)P1.
On the other hand, state 1 can be entered either from state 0 via an arrival or
from state 2 via a departure. Hence, the rate at which the process enters state 1
is λP0 + μP2. Because the reasoning for other states is similar, we obtain the
following set of equations:

State Rate at which the process leaves = rate at which it enters

0 λP0 = μP1
n,n � 1 (λ + μ)Pn = λPn−1 + μPn+1 (8.5)

The set of Equations (8.5) which balances the rate at which the process enters each
state with the rate at which it leaves that state is known as balance equations.

In order to solve Equations (8.5), we rewrite them to obtain

P1 = λ

μ
P0,

Pn+1 = λ

μ
Pn +

(

Pn − λ

μ
Pn−1

)

, n � 1

Solving in terms of P0 yields

P0 = P0,

P1 = λ

μ
P0,

P2 = λ

μ
P1 +

(

P1 − λ

μ
P0

)

= λ

μ
P1 =

(
λ

μ

)2

P0,

P3 = λ

μ
P2 +

(

P2 − λ

μ
P1

)

= λ

μ
P2 =

(
λ

μ

)3

P0,

P4 = λ

μ
P3 +

(

P3 − λ

μ
P2

)

= λ

μ
P3 =

(
λ

μ

)4

P0,

Pn+1 = λ

μ
Pn +

(

Pn − λ

μ
Pn−1

)

= λ

μ
Pn =

(
λ

μ

)n+1

P0

∗If one event occurs at a rate λ and another occurs at rate μ, then the total rate at which either event
occurs is λ+μ. Suppose one man earns $2 per hour and another earns $3 per hour; then together they
clearly earn $5 per hour.
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To determine P0 we use the fact that the Pn must sum to 1, and thus

1 =
∞∑

n=0

Pn =
∞∑

n=0

(
λ

μ

)n

P0 = P0

1 − λ/μ

or

P0 = 1 − λ

μ
,

Pn =
(

λ

μ

)n(

1 − λ

μ

)

, n � 1 (8.6)

Notice that for the preceding equations to make sense, it is necessary for λ/μ to
be less than 1. For otherwise

∑∞
n=0(λ/μ)n would be infinite and all the Pn would

be 0. Hence, we shall assume that λ/μ < 1. Note that it is quite intuitive that
there would be no limiting probabilities if λ > μ. For suppose that λ > μ. Since
customers arrive at a Poisson rate λ, it follows that the expected total number of
arrivals by time t is λt . On the other hand, what is the expected number of cus-
tomers served by time t? If there were always customers present, then the number
of customers served would be a Poisson process having rate μ since the time be-
tween successive services would be independent exponentials having mean 1/μ.
Hence, the expected number of customers served by time t is no greater than μt ;
and, therefore, the expected number in the system at time t is at least

λt − μt = (λ − μ)t

Now if λ > μ, then the preceding number goes to infinity as t becomes large. That
is, λ/μ > 1, the queue size increases without limit and there will be no limiting
probabilities. Note also that the condition λ/μ < 1 is equivalent to the condition
that the mean service time be less than the mean time between successive arrivals.
This is the general condition that must be satisfied for limited probabilities to exist
in most single-server queueing systems.

Remarks (i) In solving the balance equations for the M/M/1 queue, we ob-
tained as an intermediate step the set of equations

λPn = μPn+1, n � 0

These equations could have been directly argued from the general queueing result
(shown in Proposition 8.1) that the rate at which arrivals find n in the system—
namely λPn—is equal to the rate at which departures leave behind n—namely,
μPn+1.
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(ii) We can also prove that Pn = (λ/μ)n(1 − λ/μ) by using a queueing cost
identity. Suppose that, for a fixed n > 0, whenever there are at least n customers
in the system the nth oldest customer (with age measured from when the customer
arrived) pays 1 per unit time. Letting X be the steady state number of customers
in the system, because the system earns 1 per unit time whenever X is at least n,
it follows that

average rate at which the system earns = P {X � n}
Also, because a customer who finds fewer than n−1 in the system when it arrives
will pay 0, while an arrival who finds at least n − 1 in the system will pay 1 per
unit time for an exponentially distributed time with rate μ

average amount a customer pays = 1

μ
P {X � n − 1}

Therefore, the queueing cost identity yields that

P {X � n} = (λ/μ)P {X � n − 1}, n > 0

Iterating this gives

P {X � n} = (λ/μ)P {X � n − 1}
= (λ/μ)2P {X � n − 2}
= · · ·
= (λ/μ)nP {X � 0}
= (λ/μ)n

Therefore,

P {X = n} = P {X � n} − P {X � n + 1} = (λ/μ)n(1 − λ/μ) �
Now let us attempt to express the quantities L,LQ,W , and WQ in terms of

the limiting probabilities Pn. Since Pn is the long-run probability that the system
contains exactly n customers, the average number of customers in the system
clearly is given by

L =
∞∑

n=0

nPn

=
∞∑

n=0

n

(
λ

μ

)n(

1 − λ

μ

)

= λ

μ − λ
(8.7)
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where the last equation followed upon application of the algebraic identity

∞∑

n=0

nxn = x

(1 − x)2

The quantities W,WQ, and LQ now can be obtained with the help of Equa-
tions (8.2) and (8.3). That is, since λa = λ, we have from Equation (8.7) that

W = L

λ

= 1

μ − λ
,

WQ = W − E[S]

= W − 1

μ

= λ

μ(μ − λ)
,

LQ = λWQ

= λ2

μ(μ − λ)
(8.8)

Example 8.2 Suppose that customers arrive at a Poisson rate of one per every
12 minutes, and that the service time is exponential at a rate of one service per
8 minutes. What are L and W ?

Solution: Since λ = 1
12 , μ = 1

8 , we have

L = 2, W = 24

Hence, the average number of customers in the system is two, and the average
time a customer spends in the system is 24 minutes.

Now suppose that the arrival rate increases 20 percent to λ = 1
10 . What is the

corresponding change in L and W ? Again using Equations (8.7), we get

L = 4, W = 40

Hence, an increase of 20 percent in the arrival rate doubled the average number
of customers in the system.
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To understand this better, write Equations (8.7) as

L = λ/μ

1 − λ/μ
,

W = 1/μ

1 − λ/μ

From these equations we can see that when λ/μ is near 1, a slight increase in
λ/μ will lead to a large increase in L and W . �

A Technical Remark We have used the fact that if one event occurs at an
exponential rate λ, and another independent event at an exponential rate μ, then
together they occur at an exponential rate λ + μ. To check this formally, let T1 be
the time at which the first event occurs, and T2 the time at which the second event
occurs. Then

P {T1 � t} = 1 − e−λt ,

P {T2 � t} = 1 − e−μt

Now if we are interested in the time until either T1 or T2 occurs, then we are
interested in T = min(T1, T2). Now

P {T � t} = 1 − P {T > t}
= 1 − P {min(T1, T2) > t}

However, min(T1, T2) > t if and only if both T1 and T2 are greater than t ; hence,

P {T � t} = 1 − P {T1 > t,T2 > t}
= 1 − P {T1 > t}P {T2 > t}
= 1 − e−λt e−μt

= 1 − e−(λ+μ)t

Thus, T has an exponential distribution with rate λ + μ, and we are justified in
adding the rates. �

Given that an M/M/1 steady-state customer—that is, a customer who arrives
after the system has been in operation a long time—spends a total of t time units
in the system, let us determine the conditional distribution of N , the number of
others that were present when that customer arrived. That is, letting W ∗ be the
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amount of time a customer spends in the system, we will find P {N = n|W ∗ = t}.
Now,

P {N = n|W ∗ = t} = fN,W ∗(n, t)

f ∗
W(t)

= P {N = n}fW ∗|N(t |n)

f ∗
W(t)

where fW ∗|N(t |n) is the conditional density of W ∗ given that N = n, and fW ∗(t)
is the unconditional density of W ∗. Now, given that N = n, the time that the
customer spends in the system is distributed as the sum of n + 1 independent
exponential random variables with a common rate μ, implying that the conditional
distribution of W ∗ given that N = n is the gamma distribution with parameters
n + 1 and μ. Therefore, with C = 1/fW ∗(t)

P {N = n|W ∗ = t} = CP {N = n}μe−μt (μt)n

n!
= C(λ/μ)n(1 − λ/μ)μe−μt (μt)n

n! (by PASTA)

= K
(λt)n

n!
where K = C(1 − λ/μ)μe−μt does not depend on n. Summing over n yields

1 =
∞∑

n=0

P {N = n|T = t} = K

∞∑

n=0

(λt)n

n! = Keλt

Thus, K = e−λt , showing that

P {N = n|W ∗ = t} = e−λt (λt)n

n!
Therefore, the conditional distribution of the number seen by an arrival who
spends a total of t time units in the system is the Poisson distribution with mean λt .

In addition, as a by-product of our analysis, we have that

fW ∗(t) = 1/C

= 1

K
(1 − λ/μ)μe−μt

= (μ − λ)e−(μ−λ)t
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In other words, W ∗, the amount of time a customer spends in the system, is an
exponential random variable with rate μ − λ. (As a check, we note that E[W ∗] =
1/(μ − λ) which checks with Equation (8.8) since W = E[W ∗].)
Remark Another argument as to why W ∗ is exponential with rate μ − λ is as
follows. If we let N denote the number of customers in the system as seen by
an arrival, then this arrival will spend N + 1 service times in the system before
departing. Now,

P {N + 1 = j} = P {N = j − 1} = (λ/μ)j−1(1 − λ/μ), j � 1

In words, the number of services that have to be completed before the arrival
departs is a geometric random variable with parameter 1 − λ/μ. Therefore, after
each service completion our customer will be the one departing with probability
1 − λ/μ. Thus, no matter how long the customer has already spent in the system,
the probability he will depart in the next h time units is μh+o(h), the probability
that a service ends in that time, multiplied by 1 − λ/μ. That is, the customer will
depart in the next h time units with probability (μ − λ)h + o(h), which says that
the hazard rate function of W ∗ is the constant μ−λ. But only the exponential has
a constant hazard rate, and so we can conclude that W ∗ is exponential with rate
μ − λ.

Our next example illustrates the inspection paradox.

Example 8.3 For an M/M/1 queue in steady state, what is the probability
that the next arrival finds n in the system?

Solution: Although it might initially seem, by the PASTA principle, that this
probability should just be (λ/μ)n(1 − λ/μ), we must be careful. Because if t

is the current time, then the time from t until the next arrival is exponentially
distributed with rate λ, and is independent of the time from t since the last
arrival, which (in the limit, as t goes to infinity) is also exponential with rate λ.
Thus, although the times between successive arrivals of a Poisson process are
exponential with rate λ, the time between the previous arrival before t and the
first arrival after t is distributed as the sum of two independent exponentials.
(This is an illustration of the inspection paradox, which results because the
length of an interarrival interval that contains a specified time tends to be longer
than an ordinary interarrival interval—see Section 7.7.)

Let Na denote the number found by the next arrival, and let X be the number
currently in the system. Conditioning on X yields
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P {Na = n} =
∞∑

k=0

P {Na = n|X = k}P {X = k}

=
∞∑

k=0

P {Na = n|X = k}(λ/μ)k(1 − λ/μ)

=
∞∑

k=n

P {Na = n|X = k}(λ/μ)k(1 − λ/μ)

=
∞∑

i=0

P {Na = n|X = n + i}(λ/μ)n+i (1 − λ/μ)

Now, for n > 0, given there are currently n + i in the system, the next arrival
will find n if we have i services before an arrival and then an arrival before
the next service completion. By the lack of memory property of exponential
interarrival random variables, this gives

P {Na = n|X = n + i} =
(

μ

λ + μ

)i
λ

λ + μ
, n > 0

Consequently, for n > 0,

P {Na = n} =
∞∑

i=0

(
μ

λ + μ

)i
λ

λ + μ

(
λ

μ

)n+i

(1 − λ/μ)

= (λ/μ)n(1 − λ/μ)
λ

λ + μ

∞∑

i=0

(
λ

λ + μ

)i

= (λ/μ)n+1(1 − λ/μ)

On the other hand, the probability that the next arrival will find the system
empty, when there are currently i in the system, is the probability that there
are i services before the next arrival. Therefore, P {Na = 0|X = i} = (

μ
λ+μ

)i ,
giving that
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P {Na = 0} =
∞∑

i=0

(
μ

λ + μ

)i(
λ

μ

)i

(1 − λ/μ)

= (1 − λ/μ)

∞∑

i=0

(
λ

λ + μ

)i

= (1 + λ/μ)(1 − λ/μ)

As a check, note that

∞∑

n=0

P {Na = n} = (1 − λ/μ)

[

1 + λ/μ +
∞∑

n=1

(λ/μ)n+1

]

= (1 − λ/μ)

∞∑

i=0

(λ/μ)i

= 1

Note that P {Na = 0} is larger than P0 = 1 − λ/μ, showing that the next
arrival is more likely to find an empty system than is an average arrival, and
thus illustrating the inspection paradox that when the next customer arrives the
elapsed time since the previous arrival is distributed as the sum of two indepen-
dent exponentials with rate λ. Also, we might expect because of the inspection
paradox that E[Na] is less than L, the average number of customers seen by an
arrival. That this is indeed the case is seen from

E[Na] =
∞∑

n=1

n(λ/μ)n+1(1 − λ/μ) = λ

μ
L < L �

8.3.2. A Single-Server Exponential Queueing System
Having Finite Capacity

In the previous model, we assumed that there was no limit on the number of
customers that could be in the system at the same time. However, in reality there
is always a finite system capacity N , in the sense that there can be no more than N

customers in the system at any time. By this, we mean that if an arriving customer
finds that there are already N customers present, then he does not enter the system.

As before, we let Pn, 0 � n � N , denote the limiting probability that there are
n customers in the system. The rate-equality principle yields the following set of
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balance equations:

State Rate at which the process leaves = rate at which it enters

0 λP0 = μP1
1 � n � N − 1 (λ + μ)Pn = λPn−1 + μPn+1

N μPN = λPN−1

The argument for state 0 is exactly as before. Namely, when in state 0, the
process will leave only via an arrival (which occurs at rate λ) and hence the rate
at which the process leaves state 0 is λP0. On the other hand, the process can
enter state 0 only from state 1 via a departure; hence, the rate at which the process
enters state 0 is μP1. The equation for states n, where 1 � n < N , is the same as
before. The equation for state N is different because now state N can only be left
via a departure since an arriving customer will not enter the system when it is in
state N ; also, state N can now only be entered from state N − 1 (as there is no
longer a state N + 1) via an arrival.

We could now either solve the balance equations exactly as we did for the
infinite capacity model, or we could save a few lines by directly using the result
that the rate at which departures leave behind n − 1 is equal to the rate at which
arrivals find n − 1. Invoking this result yields that

μPn = λPn−1, n = 1, . . . ,N (8.9)

giving that

Pn = λ

μ
Pn−1 =

(
λ

μ

)2

Pn−2 = · · · =
(

λ

μ

)n

P0, n = 1, . . . ,N (8.10)

By using the fact that
∑N

n=0 Pn = 1 we obtain

1 = P0

N∑

n=0

(
λ

μ

)n

= P0

[
1 − (λ/μ)N+1

1 − λ/μ

]

or

P0 = (1 − λ/μ)

1 − (λ/μ)N+1
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and hence from Equation (8.10) we obtain

Pn = (λ/μ)n(1 − λ/μ)

1 − (λ/μ)N+1
, n = 0,1, . . . ,N (8.11)

Note that in this case, there is no need to impose the condition that λ/μ < 1. The
queue size is, by definition, bounded so there is no possibility of its increasing
indefinitely.

As before, L may be expressed in terms of Pn to yield

L =
N∑

n=0

nPn

= (1 − λ/μ)

1 − (λ/μ)N+1

N∑

n=0

n

(
λ

μ

)n

which after some algebra yields

L = λ[1 + N(λ/μ)N+1 − (N + 1)(λ/μ)N ]
(μ − λ)(1 − (λ/μ)N+1)

(8.12)

In deriving W , the expected amount of time a customer spends in the system,
we must be a little careful about what we mean by a customer. Specifically, are
we including those “customers” who arrive to find the system full and thus do not
spend any time in the system? Or, do we just want the expected time spent in the
system by a customer who actually entered the system? The two questions lead,
of course, to different answers. In the first case, we have λa = λ; whereas in the
second case, since the fraction of arrivals that actually enter the system is 1 −PN ,
it follows that λa = λ(1 − PN). Once it is clear what we mean by a customer,
W can be obtained from

W = L

λa

Example 8.4 Suppose that it costs cμ dollars per hour to provide service at
a rate μ. Suppose also that we incur a gross profit of A dollars for each customer
served. If the system has a capacity N , what service rate μ maximizes our total
profit?

Solution: To solve this, suppose that we use rate μ. Let us determine the
amount of money coming in per hour and subtract from this the amount going
out each hour. This will give us our profit per hour, and we can choose μ so as
to maximize this.
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Now, potential customers arrive at a rate λ. However, a certain proportion
of them do not join the system—namely, those who arrive when there are N

customers already in the system. Hence, since PN is the proportion of time
that the system is full, it follows that entering customers arrive at a rate of
λ(1 − PN). Since each customer pays $A, it follows that money comes in at
an hourly rate of λ(1 − PN)A and since it goes out at an hourly rate of cμ, it
follows that our total profit per hour is given by

profit per hour = λ(1 − PN)A − cμ

= λA

[

1 − (λ/μ)N(1 − λ/μ)

1 − (λ/μ)N+1

]

− cμ

= λA[1 − (λ/μ)N ]
1 − (λ/μ)N+1

− cμ

For instance if N = 2, λ = 1,A = 10, c = 1, then

profit per hour = 10[1 − (1/μ)2]
1 − (1/μ)3

− μ

= 10(μ3 − μ)

μ3 − 1
− μ

in order to maximize profit we differentiate to obtain

d

dμ
[profit per hour] = 10

(2μ3 − 3μ2 + 1)

(μ3 − 1)2
− 1

The value of μ that maximizes our profit now can be obtained by equating to
zero and solving numerically. �

In the previous two models, it has been quite easy to define the state of the
system. Namely, it was defined as the number of people in the system. Now
we shall consider some examples where a more detailed state space is neces-
sary.

8.3.3. A Shoeshine Shop

Consider a shoeshine shop consisting of two chairs. Suppose that an entering cus-
tomer first will go to chair 1. When his work is completed in chair 1, he will go
either to chair 2 if that chair is empty or else wait in chair 1 until chair 2 becomes
empty. Suppose that a potential customer will enter this shop as long as chair 1
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is empty. (Thus, for instance, a potential customer might enter even if there is a
customer in chair 2.)

If we suppose that potential customers arrive in accordance with a Poisson
process at rate λ, and that the service times for the two chairs are independent
and have respective exponential rates of μ1 and μ2, then

(a) what proportion of potential customers enters the system?
(b) what is the mean number of customers in the system?
(c) what is the average amount of time that an entering customer spends in the
system?

To begin we must first decide upon an appropriate state space. It is clear that
the state of the system must include more information than merely the number of
customers in the system. For instance, it would not be enough to specify that there
is one customer in the system as we would also have to know which chair he was
in. Further, if we only know that there are two customers in the system, then we
would not know if the man in chair 1 is still being served or if he is just waiting
for the person in chair 2 to finish. To account for these points, the following state
space, consisting of the five states, (0,0), (1,0), (0,1), (1,1), and (b,1), will be
used. The states have the following interpretation:

State Interpretation

(0,0) There are no customers in the system.
(1,0) There is one customer in the system, and he is in chair 1.
(0,1) There is one customer in the system, and he is in chair 2.
(1,1) There are two customers in the system, and both are

presently being served.
(b,1) There are two customers in the system, but the customer

in the first chair has completed his work in that chair and
is waiting for the second chair to become free.

It should be noted that when the system is in state (b,1), the person in chair 1,
though not being served, is nevertheless “blocking” potential arrivals from enter-
ing the system.

As a prelude to writing down the balance equations, it is usually worthwhile
to make a transition diagram. This is done by first drawing a circle for each state
and then drawing an arrow labeled by the rate at which the process goes from
one state to another. The transition diagram for this model is shown in Figure 8.1.
The explanation for the diagram is as follows: The arrow from state (0,0) to state
(1,0) which is labeled λ means that when the process is in state (0,0), that is,
when the system is empty, then it goes to state (1,0) at a rate λ, that is via an
arrival. The arrow from (0,1) to (1,1) is similarly explained.
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Figure 8.1. A transition diagram.

When the process is in state (1,0), it will go to state (0,1) when the customer
in chair 1 is finished and this occurs at a rate μ1; hence the arrow from (1,0) to
(0,1) labeled μ1. The arrow from (1,1) to (b,1) is similarly explained.

When in state (b,1) the process will go to state (0,1) when the customer in
chair 2 completes his service (which occurs at rate μ2); hence the arrow from
(b,1) to (0,1) labeled μ2. Also when in state (1,1) the process will go to state
(1,0) when the man in chair 2 finishes and hence the arrow from (1,1) to (1,0)

labeled μ2. Finally, if the process is in state (0,1), then it will go to state (0,0)

when the man in chair 2 completes his service, hence the arrow from (0,1) to
(0,0) labeled μ2.

Because there are no other possible transitions, this completes the transition
diagram.

To write the balance equations we equate the sum of the arrows (multiplied by
the probability of the states where they originate) coming into a state with the sum
of the arrows (multiplied by the probability of the state) going out of that state.
This gives

State Rate that the process leaves = rate that it enters

(0,0) λP00 = μ2P01
(1,0) μ1P10 = λP00 + μ2P11
(0,1) (λ + μ2)P01 = μ1P10 + μ2Pb1
(1,1) (μ1 + μ2)P11 = λP01
(b,1) μ2Pb1 = μ1P11

These along with the equation

P00 + P10 + P01 + P11 + Pb1 = 1

may be solved to determine the limiting probabilities. Though it is easy to solve
the preceding equations, the resulting solutions are quite involved and hence will
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not be explicitly presented. However, it is easy to answer our questions in terms of
these limiting probabilities. First, since a potential customer will enter the system
when the state is either (0, 0) or (0, 1), it follows that the proportion of customers
entering the system is P00 + P01. Secondly, since there is one customer in the
system whenever the state is (0 1) or (1, 0) and two customers in the system
whenever the state is (1, 1) or (b,1), it follows that L, the average number in the
system, is given by

L = P01 + P10 + 2(P11 + Pb1)

To derive the average amount of time that an entering customer spends in the
system, we use the relationship W = L/λa . Since a potential customer will enter
the system when in state (0,0) or (0,1), it follows that λa = λ(P00 + P01) and
hence

W = P01 + P10 + 2(P11 + Pb1)

λ(P00 + P01)

Example 8.5 (a) If λ = 1, μ1 = 1, μ2 = 2, then calculate the preceding
quantities of interest.

(b) If λ = 1, μ1 = 2, μ2 = 1, then calculate the preceding.

Solution: (a) Solving the balance equations yields

P00 = 12
37 , P10 = 16

37 , P11 = 2
37 , P01 = 6

37 , Pb1 = 1
37

Hence,

L = 28
37 , W = 28

18

(b) Solving the balance equations yields

P00 = 3
11 , P10 = 2

11 , P11 = 1
11 , Pb1 = 2

11 , P01 = 3
11

Hence,

L = 1, W = 11
6 �

8.3.4. A Queueing System with Bulk Service

In this model, we consider a single-server exponential queueing system in which
the server is able to serve two customers at the same time. Whenever the server
completes a service, she then serves the next two customers at the same time.
However, if there is only one customer in line, then she serves that customer by
herself. We shall assume that her service time is exponential at rate μ whether
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she is serving one or two customers. As usual, we suppose that customers arrive
at an exponential rate λ. One example of such a system might be an elevator or a
cable car which can take at most two passengers at any time.

It would seem that the state of the system would have to tell us not only how
many customers there are in the system, but also whether one or two are presently
being served. However, it turns out that we can more easily solve the problem
not by concentrating on the number of customers in the system, but rather on the
number in queue. So let us define the state as the number of customers waiting in
queue, with two states when there is no one in queue. That is, let us have as a state
space 0′,0,1,2, . . . , with the interpretation

State Interpretation

0′ No one in service
0 Server busy; no one waiting

n,n > 0 n customers waiting

The transition diagram is shown in Figure 8.2 and the balance equations are

State Rate at which the process leaves = rate at which it enters

0′ λP0′ = μP0
0 (λ + μ)P0 = λP0′ + μP1 + μP2

n,n � 1 (λ + μ)Pn = λPn−1 + μPn+2

Now the set of equations

(λ + μ)Pn = λPn−1 + μPn+2, n = 1,2, . . . (8.13)

has a solution of the form

Pn = αnP0

To see this, substitute the preceding in Equation (8.13) to obtain

(λ + μ)αnP0 = λαn−1P0 + μαn+2P0

or

(λ + μ)α = λ + μα3

Figure 8.2.
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Solving this for α yields the three roots:

α = 1, α = −1 − √
1 + 4λ/μ

2
, and α = −1 + √

1 + 4λ/μ

2

As the first two are clearly not possible, it follows that

α =
√

1 + 4λ/μ − 1

2

Hence,

Pn = αnP0,

P0′ = μ

λ
P0

where the bottom equation follows from the first balance equation. (We can ignore
the second balance equation as one of these equations is always redundant.) To
obtain P0, we use

P0 + P0′ +
∞∑

n=1

Pn = 1

or

P0

[

1 + μ

λ
+

∞∑

n=1

αn

]

= 1

or

P0

[
1

1 − α
+ μ

λ

]

= 1

or

P0 = λ(1 − α)

λ + μ(1 − α)

and thus

Pn = αnλ(1 − α)

λ + μ(1 − α)
, n � 0

P0′ = μ(1 − α)

λ + μ(1 − α)
(8.14)

where

α =
√

1 + 4λ/μ − 1

2
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Note that for the preceding to be valid we need α < 1, or equivalently λ/μ < 2,
which is intuitive since the maximum service rate is 2μ, which must be larger
than the arrival rate λ to avoid overloading the system.

All the relevant quantities of interest now can be determined. For instance, to
determine the proportion of customers that are served alone, we first note that the
rate at which customers are served alone is λP0′ + μP1, since when the system is
empty a customer will be served alone upon the next arrival and when there is one
customer in queue he will be served alone upon a departure. As the rate at which
customers are served is λ, it follows that

proportion of customers that are served alone = λP0′ + μP1

λ

= P0′ + μ

λ
P1

Also,

LQ =
∞∑

n=1

nPn

= λ(1 − α)

λ + μ(1 − α)

∞∑

n=1

nαn from Equation (8.14)

= λα

(1 − α)[λ + μ(1 − α)] by algebraic identity
∞∑

1

nαn = α

(1 − α)2

and

WQ = LQ

λ
,

W = WQ + 1

μ
,

L = λW

8.4. Network of Queues

8.4.1. Open Systems

Consider a two-server system in which customers arrive at a Poisson rate λ at
server 1. After being served by server 1 they then join the queue in front of
server 2. We suppose there is infinite waiting space at both servers. Each server
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Figure 8.3. A tandem queue.

serves one customer at a time with server i taking an exponential time with rate
μi for a service, i = 1,2. Such a system is called a tandem or sequential system
(see Figure 8.3).

To analyze this system we need to keep track of the number of customers at
server 1 and the number at server 2. So let us define the state by the pair (n,m)—
meaning that there are n customers at server 1 and m at server 2. The balance
equations are

State Rate that the process leaves = rate that it enters

0,0 λP0,0 = μ2P0,1
n,0;n > 0 (λ + μ1)Pn,0 = μ2Pn,1 + λPn−1,0
0,m;m > 0 (λ + μ2)P0,m = μ2P0,m+1 + μ1P1,m−1
n,m;nm > 0 (λ + μ1 + μ2)Pn,m = μ2Pn,m+1 + μ1Pn+1,m−1

+λPn−1,m (8.15)

Rather than directly attempting to solve these (along with the equation
∑

n,mPn,m

= 1) we shall guess at a solution and then verify that it indeed satisfies the pre-
ceding. We first note that the situation at server 1 is just as in an M/M/1 model.
Similarly, as it was shown in Section 6.6 that the departure process of an M/M/1
queue is a Poisson process with rate λ, it follows that what server 2 faces is also
an M/M/1 queue. Hence, the probability that there are n customers at server 1 is

P {n at server 1} =
(

λ

μ1

)n(

1 − λ

μ1

)

and, similarly,

P {m at server 2} =
(

λ

μ2

)m(

1 − λ

μ2

)

Now if the numbers of customers at servers 1 and 2 were independent random
variables, then it would follow that

Pn,m =
(

λ

μ1

)n(

1 − λ

μ1

)(
λ

μ2

)m(

1 − λ

μ2

)

(8.16)
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To verify that Pn,m is indeed equal to the preceding (and thus that the number
of customers at server 1 is independent of the number at server 2), all we need
do is verify that the preceding satisfies the set of Equations (8.15)—this suffices
since we know that the Pn,m are the unique solution of Equations (8.15). Now, for
instance, if we consider the first equation of (8.15), we need to show that

λ

(

1 − λ

μ1

)(

1 − λ

μ2

)

= μ2

(

1 − λ

μ1

)(
λ

μ2

)(

1 − λ

μ2

)

which is easily verified. We leave it as an exercise to show that the Pn,m, as given
by Equation (8.16), satisfy all of the Equations (8.15), and are thus the limiting
probabilities.

From the preceding we see that L, the average number of customers in the
system, is given by

L =
∑

n,m

(n + m)Pn,m

=
∑

n

n

(
λ

μ1

)n(

1 − λ

μ1

)

+
∑

m

m

(
λ

μ2

)m(

1 − λ

μ2

)

= λ

μ1 − λ
+ λ

μ2 − λ

and from this we see that the average time a customer spends in the system is

W = L

λ
= 1

μ1 − λ
+ 1

μ2 − λ

Remarks (i) The result (Equations (8.15)) could have been obtained as a direct
consequence of the time reversibility of an M/M/1 (see Section 6.6). For not only
does time reversibility imply that the output from server 1 is a Poisson process,
but it also implies (Exercise 26 of Chapter 6) that the number of customers at
server 1 is independent of the past departure times from server 1. As these past
departure times constitute the arrival process to server 2, the independence of the
numbers of customers in the two systems follows.

(ii) Since a Poisson arrival sees time averages, it follows that in a tandem queue
the numbers of customers an arrival (to server 1) sees at the two servers are inde-
pendent random variables. However, it should be noted that this does not imply
that the waiting times of a given customer at the two servers are independent. For
a counter example suppose that λ is very small with respect to μ1 = μ2; and thus
almost all customers have zero wait in queue at both servers. However, given that
the wait in queue of a customer at server 1 is positive, his wait in queue at server 2
also will be positive with probability at least as large as 1

2 (why?). Hence, the wait-
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ing times in queue are not independent. Remarkably enough, however, it turns out
that the total times (that is, service time plus wait in queue) that an arrival spends
at the two servers are indeed independent random variables.

The preceding result can be substantially generalized. To do so, consider
a system of k servers. Customers arrive from outside the system to server i,
i = 1, . . . , k, in accordance with independent Poisson processes at rate ri ; they
then join the queue at i until their turn at service comes. Once a customer is served
by server i, he then joins the queue in front of server j , j = 1, . . . , k, with proba-
bility Pij . Hence,

∑k
j=1 Pij � 1, and 1−∑k

j=1 Pij represents the probability that
a customer departs the system after being served by server i.

If we let λj denote the total arrival rate of customers to server j , then the λj

can be obtained as the solution of

λj = rj +
k∑

i=1

λiPij , i = 1, . . . , k (8.17)

Equation (8.17) follows since rj is the arrival rate of customers to j coming from
outside the system and, as λi is the rate at which customers depart server i (rate in
must equal rate out), λiPij is the arrival rate to j of those coming from server i.

It turns out that the number of customers at each of the servers is independent
and of the form

P {n customers at server j} =
(

λj

μj

)n(

1 − λj

μj

)

, n � 1

where μj is the exponential service rate at server j and the λj are the solution
to Equation (8.17). Of course, it is necessary that λj/μj < 1 for all j . To prove
this, we first note that it is equivalent to asserting that the limiting probabilities
P(n1, n2, . . . , nk) = P {nj at server j , j = 1, . . . , k} are given by

P(n1, n2, . . . , nk) =
k∏

j=1

(
λj

μj

)nj
(

1 − λj

μj

)

(8.18)

which can be verified by showing that it satisfies the balance equations for this
model.

The average number of customers in the system is

L =
k∑

j=1

average number at server j

=
k∑

j=1

λj

μj − λj
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The average time a customer spends in the system can be obtained from L = λW

with λ =∑k
j=1 rj . (Why not λ =∑k

j=1 λj ?) This yields

W =
∑k

j=1 λj/(μj − λj )
∑k

j=1 rj

Remark The result embodied in Equation (8.18) is rather remarkable in that it
says that the distribution of the number of customers at server i is the same as in
an M/M/1 system with rates λi and μi . What is remarkable is that in the network
model the arrival process at node i need not be a Poisson process. For if there is
a possibility that a customer may visit a server more than once (a situation called
feedback), then the arrival process will not be Poisson. An easy example illus-
trating this is to suppose that there is a single server whose service rate is very
large with respect to the arrival rate from outside. Suppose also that with proba-
bility p = 0.9 a customer upon completion of service is fed back into the system.
Hence, at an arrival time epoch there is a large probability of another arrival in a
short time (namely, the feedback arrival); whereas at an arbitrary time point there
will be only a very slight chance of an arrival occurring shortly (since λ is so very
small). Hence, the arrival process does not possess independent increments and
so cannot be Poisson.

Thus, we see that when feedback is allowed the steady-state probabilities of
the number of customers at any given station have the same distribution as in an
M/M/1 model even though the model is not M/M/1. (Presumably such quan-
tities as the joint distribution of the number at the station at two different time
points will not be the same as for an M/M/1.)

Example 8.6 Consider a system of two servers where customers from outside
the system arrive at server 1 at a Poisson rate 4 and at server 2 at a Poisson rate 5.
The service rates of 1 and 2 are respectively 8 and 10. A customer upon comple-
tion of service at server 1 is equally likely to go to server 2 or to leave the system
(i.e., P11 = 0, P12 = 1

2 ); whereas a departure from server 2 will go 25 percent of
the time to server 1 and will depart the system otherwise (i.e., P21 = 1

4 , P22 = 0).
Determine the limiting probabilities, L, and W .

Solution: The total arrival rates to servers 1 and 2—call them λ1 and λ2—
can be obtained from Equation (8.17). That is, we have

λ1 = 4 + 1
4λ2,

λ2 = 5 + 1
2λ1

implying that

λ1 = 6, λ2 = 8
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Hence,

P {n at server 1, m at server 2} =
(

3
4

)n
1
4

(
4
5

)m
1
5

= 1
20

(
3
4

)n (
4
5

)m

and

L = 6

8 − 6
+ 8

10 − 8
= 7,

W = L

9
= 7

9
�

8.4.2. Closed Systems

The queueing systems described in Section 8.4.1 are called open systems since
customers are able to enter and depart the system. A system in which new cus-
tomers never enter and existing ones never depart is called a closed system.

Let us suppose that we have m customers moving among a system of k servers,
where the service times at server i are exponential with rate μi , i = 1, . . . , k.
When a customer completes service at server i, she then joins the queue in
front of server j, j = 1, . . . , k, with probability Pij , where we now suppose that
∑k

j=1Pij = 1 for all i = 1, . . . , k. That is, P = [Pij ] is a Markov transition prob-
ability matrix, which we shall assume is irreducible. Let π = (π1, . . . , πk) denote
the stationary probabilities for this Markov chain; that is, π is the unique positive
solution of

πj =
k∑

i=1

πiPij ,

k∑

j=1

πj = 1 (8.19)

If we denote the average arrival rate (or equivalently the average service com-
pletion rate) at server j by λm(j), j = 1, . . . , k then, analogous to Equation (8.17),
the λm(j) satisfy

λm(j) =
k∑

i=1

λm(i)Pij
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Hence, from (8.19) we can conclude that

λm(j) = λmπj , j = 1,2, . . . , k (8.20)

where

λm =
k∑

j=1

λm(j) (8.21)

From Equation (8.21), we see that λm is the average service completion rate of
the entire system, that is, it is the system throughput rate.*

If we let Pm(n1, n2, . . . , nk) denote the limiting probabilities

Pm(n1, n2, . . . , nk) = P {nj customers at server j, j = 1, . . . , k}
then, by verifying that they satisfy the balance equation, it can be shown that

Pm(n1, n2, . . . , nk) =
{
Km

∏k
j=1(λm(j)/μj )

nj , if
∑k

j=1 nj = m

0, otherwise

But from Equation (8.20) we thus obtain that

Pm(n1, n2, . . . , nk) =
{
Cm

∏k
j=1(πj /μj )

nj , if
∑k

j=1 nj = m

0, otherwise
(8.22)

where

Cm =

⎡

⎢
⎢
⎣

∑

n1,...,nk :∑
nj =m

k∏

j=1

(πj /μj )
nj

⎤

⎥
⎥
⎦

−1

(8.23)

Equation (8.22) is not as useful as we might suppose, for in order to utilize
it we must determine the normalizing constant Cm given by Equation (8.23)
which requires summing the products �k

j=1(πj /μj )
nj over all the feasible vec-

tors (n1, . . . , nk): ∑k
j=1 nj = m. Hence, since there are

(
m+k−1

m

)
vectors this is

only computationally feasible for relatively small values of m and k.
We will now present an approach that will enable us to determine recursively

many of the quantities of interest in this model without first computing the nor-
malizing constants. To begin, consider a customer who has just left server i and
is headed to server j , and let us determine the probability of the system as seen

*We are just using the notation λm(j) and λm to indicate the dependence on the number of customers
in the closed system. This will be used in recursive relations we will develop.
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by this customer. In particular, let us determine the probability that this customer
observes, at that moment, nl customers at server l, l = 1, . . . , k,

∑k
l=1 nl = m−1.

This is done as follows:

P {customer observes nl at server l, l = 1, . . . , k | customer goes from i to j}

= P {state is (n1, . . . , ni + 1, . . . , nj , . . . , nk), customer goes from i toj}
P {customer goes from i toj}

= Pm(n1, . . . , ni + 1, . . . , nj , . . . , nk)μiPij
∑

n:∑nj =m−1 Pm(n1, . . . , ni + 1, . . . , nk)μiPij

= (πi/μi)
∏k

j=1(πj /μj )
nj

K
from (8.22)

= C

k∏

j=1

(πj /μj )
nj

where C does not depend on n1, . . . , nk . But because the preceding is a probability
density on the set of vectors (n1, . . . , nk),

∑k
j=1 nj = m−1, it follows from (8.22)

that it must equal Pm−1(n1, . . . , nk). Hence,

P {customer observes nl at server l, l = 1, . . . , k | customer goes from i to j}

= Pm−1(n1, . . . , nk),

k∑

i=1

ni = m − 1 (8.24)

As (8.24) is true for all i, we thus have proven the following proposition, known
as the arrival theorem.

Proposition 8.3 (The Arrival Theorem) In the closed network system with
m customers, the system as seen by arrivals to server j is distributed as the station-
ary distribution in the same network system when there are only m−1 customers.

Denote by Lm(j) and Wm(j) the average number of customers and the average
time a customer spends at server j when there are m customers in the network.
Upon conditioning on the number of customers found at server j by an arrival to
that server, it follows that

Wm(j) = 1 + Em[number at server j as seen by an arrival]
μj

= 1 + Lm−1(j)

μj

(8.25)
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where the last equality follows from the arrival theorem. Now when there are
m − 1 customers in the system, then, from Equation (8.20), λm−1(j), the average
arrival rate to server j , satisfies

λm−1(j) = λm−1πj

Now, applying the basic cost identity Equation (8.1) with the cost rule being that
each customer in the network system of m − 1 customers pays one per unit time
while at server j , we obtain

Lm−1(j) = λm−1πjWm−1(j) (8.26)

Using Equation (8.25), this yields

Wm(j) = 1 + λm−1πjWm−1(j)

μj

(8.27)

Also using the fact that
∑k

j=1 Lm−1(j) = m − 1 (why?) we obtain, from Equa-
tion (8.26):

m − 1 = λm−1

k∑

j=1

πjWm−1(j)

or

λm−1 = m − 1
∑k

i=1 πiWm−1(i)
(8.28)

Hence, from Equation (8.27), we obtain the recursion

Wm(j) = 1

μj

+ (m − 1)πjWm−1(j)

μj

∑k
i=1 πiWm−1(i)

(8.29)

Starting with the stationary probabilities πj , j = 1, . . . , k, and W1(j) = 1/μj

we can now use Equation (8.29) to determine recursively W2(j),W3(j), . . . ,

Wm(j). We can then determine the throughput rate λm by using Equation (8.28),
and this will determine Lm(j) by Equation (8.26). This recursive approach is
called mean value analysis.

Example 8.7 Consider a k-server network in which the customers move in a
cyclic permutation. That is,

Pi,i+1 = 1, i = 1,2 . . . , k − 1, Pk,1 = 1

Let us determine the average number of customers at server j when there are two
customers in the system. Now, for this network

πi = 1/k, i = 1, . . . , k
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and as

W1(j) = 1

μj

we obtain from Equation (8.29) that

W2(j) = 1

μj

+ (1/k)(1/μj )

μj

∑k
i=1(1/k)(1/μi)

= 1

μj

+ 1

μ2
j

∑k
i=1 1/μi

Hence, from Equation (8.28),

λ2 = 2
k∑

l=1

1

k
W2(l)

= 2k

k∑

l=1

(
1

μl

+ 1

μ2
l

∑k
i=1 1/μi

)

and finally, using Equation (8.26),

L2(j) = λ2
1

k
W2(j) =

2

(
1

μj

+ 1

μ2
j

∑k
i=1 1/μi

)

k∑

l=1

(
1

μl

+ 1

μ2
l

∑k
i=1 1/μi

) �

Another approach to learning about the stationary probabilities specified by
Equation (8.22), which finesses the computational difficulties of computing the
constant Cm, is to use the Gibbs sampler of Section 4.9 to generate a Markov
chain having these stationary probabilities. To begin, note that since there are
always a total of m customers in the system, Equation (8.22) may equivalently be
written as a joint mass function of the numbers of customers at each of the servers
1, . . . , k − 1, as follows:

Pm(n1, . . . , nk−1) = Cm(πk/μk)
m−∑nj

k−1∏

j=1

(πj /μj )
nj

= K

k−1∏

j=1

(aj )
nj ,

k−1∑

j=1

nj � m
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where aj = (πjμk)/(πkμj ), j = 1, . . . , k − 1. Now, if N = (N1, . . . ,Nk−1)

has the preceding joint mass function then,

P {Ni = n|N1 = n1, . . . ,Ni−1 = ni−1,Ni+1 = ni+1, . . . ,Nk−1 = nk−1}

= Pm(n1, . . . , ni−1, n,ni+1, . . . , nk−1)
∑

rPm(n1, . . . , ni−1, r, ni+1, . . . , nk−1)

= Can
i , n � m −

∑

j �=i

nj

It follows from the preceding that we may use the Gibbs sampler to gener-
ate the values of a Markov chain whose limiting probability mass function is
Pm(n1, . . . , nk−1) as follows:

1. Let (n1, . . . , nk−1) be arbitrary nonnegative integers satisfying
∑k−1

j=1 nj �
m.

2. Generate a random variable I that is equally likely to be any of 1, . . . , k − 1.
3. If I = i, set s = m −∑

j �=i nj , and generate the value of a random variable
X having probability mass function

P {X = n} = Can
i , n = 0, . . . , s

4. Let nI = X and go to step 2.

The successive values of the state vector (n1, . . . , nk−1,m −∑k−1
j=1 nj ) constitute

the sequence of states of a Markov chain with the limiting distribution Pm. All
quantities of interest can be estimated from this sequence. For instance, the aver-
age of the values of the j th coordinate of these vectors will converge to the mean
number of individuals at station j , the proportion of vectors whose j th coordi-
nate is less than r will converge to the limiting probability that the number of
individuals at station j is less than r , and so on.

Other quantities of interest can also be obtained from the simulation. For in-
stance, suppose we want to estimate Wj , the average amount of time a customer
spends at server j on each visit. Then, as noted in the preceding, Lj , the average
number of customers at server j , can be estimated. To estimate Wj , we use the
identity

Lj = λjWj

where λj is the rate at which customers arrive at server j . Setting λj equal to the
service completion rate at server j shows that

λj = P {j is busy}μj

Using the Gibbs sampler simulation to estimate P {j is busy} then leads to an
estimator of Wj .
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8.5. The System M/G/1

8.5.1. Preliminaries: Work and Another Cost Identity

For an arbitrary queueing system, let us define the work in the system at any time
t to be the sum of the remaining service times of all customers in the system at
time t . For instance, suppose there are three customers in the system—the one in
service having been there for three of his required five units of service time, and
both people in queue having service times of six units. Then the work at that time
is 2 + 6 + 6 = 14. Let V denote the (time) average work in the system.

Now recall the fundamental cost equation (8.1), which states that the

average rate at which the system earns

= λa × average amount a customer pays

and consider the following cost rule: Each customer pays at a rate of y/unit time
when his remaining service time is y, whether he is in queue or in service. Thus,
the rate at which the system earns is just the work in the system; so the basic
identity yields that

V = λaE[amount paid by a customer]
Now, let S and W ∗

Q denote respectively the service time and the time a given
customer spends waiting in queue. Then, since the customer pays at a constant
rate of S per unit time while he waits in queue and at a rate of S −x after spending
an amount of time x in service, we have

E[amount paid by a customer] = E

[

SW ∗
Q +

∫ S

0
(S − x)dx

]

and thus

V = λaE[SW ∗
Q] + λaE[S2]

2
(8.30)

It should be noted that the preceding is a basic queueing identity [like Equations
(8.2)–(8.4)] and as such is valid in almost all models. In addition, if a customer’s
service time is independent of his wait in queue (as is usually, but not always the
case),* then we have from Equation (8.30) that

V = λaE[S]WQ + λaE[S2]
2

(8.31)

*For an example where it is not true, see Section 8.6.2.
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8.5.2. Application of Work to M/G/1

The M/G/1 model assumes (i) Poisson arrivals at rate λ; (ii) a general service
distribution; and (iii) a single server. In addition, we will suppose that customers
are served in the order of their arrival.

Now, for an arbitrary customer in an M/G/1 system.

Customer’s wait in queue = work in the system when he arrives (8.32)

this follows since there is only a single server (think about it!). Taking expecta-
tions of both sides of Equation (8.32) yields

WQ = average work as seen by an arrival

But, due to Poisson arrivals, the average work as seen by an arrival will equal V ,
the time average work in the system. Hence, for the model M/G/1,

WQ = V

The preceding in conjunction with the identity

V = λE[S]WQ + λE[S2]
2

yields the so-called Pollaczek–Khintchine formula,

WQ = λE[S2]
2(1 − λE[S]) (8.33)

where E[S] and E[S2] are the first two moments of the service distribution.
The quantities L, LQ, and W can be obtained from Equation (8.33) as

LQ = λWQ = λ2E[S2]
2(1 − λE[S]) ,

W = WQ + E[S] = λE[S2]
2(1 − λE[S]) + E[S], (8.34)

L = λW = λ2E[S2]
2(1 − λE[S]) + λE[S]

Remarks (i) For the preceding quantities to be finite, we need λE[S] < 1. This
condition is intuitive since we know from renewal theory that if the server was
always busy, then the departure rate would be 1/E[S] (see Section 7.3), which
must be larger than the arrival rate λ to keep things finite.

(ii) Since E[S2] = Var(S) + (E[S])2, we see from Equations (8.33) and (8.34)
that, for fixed mean service time, L, LQ, W , and WQ all increase as the variance
of the service distribution increases.

(iii) Another approach to obtain WQ is presented in Exercise 38.
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8.5.3. Busy Periods

The system alternates between idle periods (when there are no customers in the
system, and so the server is idle) and busy periods (when there is at least one
customer in the system, and so the server is busy).

Let us denote by In and Bn, respectively, the lengths of the nth idle and the
nth busy period, n � 1. Hence, in the first

∑n
j=1(Ij + Bj ) time units the server

will be idle for a time
∑n

j=1 Ij , and so the proportion of time that the server will
be idle, which of course is just P0, can be expressed as

P0 = proportion of idle time

= lim
n→∞

I1 + · · · + In

I1 + · · · + In + B1 + · · · + Bn

Now it is easy to see that the I1, I2, . . . are independent and identically distributed
as are the B1,B2, . . . . Hence, by dividing the numerator and the denominator of
the right side of the preceding by n, and then applying the strong law of large
numbers, we obtain

P0 = lim
n→∞

(I1 + · · · + In)/n

(I1 + · · · + In)/n + (B1 + · · · + Bn)/n

= E[I ]
E[I ] + E[B] (8.35)

where I and B represent idle and busy time random variables.
Now I represents the time from when a customer departs and leaves the system

empty until the next arrival. Hence, from Poisson arrivals, it follows that I is
exponential with rate λ, and so

E[I ] = 1

λ
(8.36)

To compute P0, we note from Equation (8.4) (obtained from the fundamental cost
equation by supposing that a customer pays at a rate of one per unit time while in
service) that

average number of busy servers = λE[S]
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However, as the left-hand side of the preceding equals 1 − P0 (why?), we have

P0 = 1 − λE[S] (8.37)

and, from Equations (8.35)–(8.37),

1 − λE[S] = 1/λ

1/λ + E[B]
or

E[B] = E[S]
1 − λE[S]

Another quantity of interest is C, the number of customers served in a busy
period. The mean of C can be computed by noting that, on the average, for every
E[C] arrivals exactly one will find the system empty (namely, the first customer
in the busy period). Hence,

a0 = 1

E[C]
and, as a0 = P0 = 1 − λE[S] because of Poisson arrivals, we see that

E[C] = 1

1 − λE[S]

8.6. Variations on the M/G/1

8.6.1. The M/G/1 with Random-Sized Batch Arrivals

Suppose that, as in the M/G/1, arrivals occur in accordance with a Poisson
process having rate λ. But now suppose that each arrival consists not of a sin-
gle customer but of a random number of customers. As before there is a single
server whose service times have distribution G.

Let us denote by αj , j � 1, the probability that an arbitrary batch consists of
j customers; and let N denote a random variable representing the size of a batch
and so P {N = j} = αj . Since λa = λE(N), the basic formula for work [Equa-
tion (8.31)] becomes

V = λE[N ]
[

E(S)WQ + E(S2)

2

]

(8.38)

To obtain a second equation relating V to WQ, consider an average customer.
We have that
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his wait in queue = work in system when he arrives

+ his waiting time due to those in his batch

Taking expectations and using the fact that Poisson arrivals see time averages
yields

WQ = V + E[waiting time due to those in his batch]
= V + E[WB ] (8.39)

Now, E(WB) can be computed by conditioning on the number in the batch, but
we must be careful because the probability that our average customer comes from
a batch of size j is not αj . For αj is the proportion of batches that are of size j ,
and if we pick a customer at random, it is more likely that he comes from a larger
rather than a smaller batch. (For instance, suppose α1 = α100 = 1

2 , then half the
batches are of size 1 but 100/101 of the customers will come from a batch of
size 100!)

To determine the probability that our average customer came from a batch of
size j we reason as follows: Let M be a large number. Then of the first M batches
approximately Mαj will be of size j , j � 1, and thus there would have been
approximately jMαj customers that arrived in a batch of size j . Hence, the pro-
portion of arrivals in the first M batches that were from batches of size j is ap-
proximately jMαj/

∑
j jMαj . This proportion becomes exact as M → ∞, and

so we see that

proportion of customers from batches of size j = jαj
∑

j jαj

= jαj

E[N ]
We are now ready to compute E(WB), the expected wait in queue due to others
in the batch:

E[WB ] =
∑

j

E[WB | batch of size j ] jαj

E[N ] (8.40)

Now if there are j customers in his batch, then our customer would have to wait
for i − 1 of them to be served if he was ith in line among his batch members. As
he is equally likely to be either 1st, 2nd, . . . , or j th in line we see that

E[WB | batch is of size j ] =
j∑

i=1

(i − 1)E(S)
1

j

= j − 1

2
E[S]
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Substituting this in Equation (8.40) yields

E[WB ] = E[S]
2E[N ]

∑

j

(j − 1)jαj

= E[S](E[N2] − E[N ])
2E[N ]

and from Equations (8.38) and (8.39) we obtain

WQ = E[S](E[N2] − E[N ])/2E[N ] + λE[N ]E[S2]/2

1 − λE[N ]E[S]
Remarks (i) Note that the condition for WQ to be finite is that

λE(N) <
1

E[S]
which again says that the arrival rate must be less than the service rate (when the
server is busy).

(ii) For fixed value of E[N ], WQ is increasing in Var[N ], again indicating that
“single-server queues do not like variation.”

(iii) The other quantities L, LQ, and W can be obtained by using

W = WQ + E[S],
L = λaW = λE[N ]W,

LQ = λE[N ]WQ

8.6.2. Priority Queues

Priority queueing systems are ones in which customers are classified into types
and then given service priority according to their type. Consider the situation
where there are two types of customers, which arrive according to independent
Poisson processes with respective rates λ1 and λ2, and have service distributions
G1 and G2. We suppose that type 1 customers are given service priority, in that
service will never begin on a type 2 customer if a type 1 is waiting. However, if
a type 2 is being served and a type 1 arrives, we assume that the service of the
type 2 is continued until completion. That is, there is no preemption once service
has begun.

Let Wi
Q denote the average wait in queue of a type i customer, i = 1, 2. Our

objective is to compute the Wi
Q.

First, note that the total work in the system at any time would be exactly the
same no matter what priority rule was employed (as long as the server is always
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busy whenever there are customers in the system). This is so since the work will
always decrease at a rate of one per unit time when the server is busy (no matter
who is in service) and will always jump by the service time of an arrival. Hence,
the work in the system is exactly as it would be if there was no priority rule but
rather a first-come, first-served (called FIFO) ordering. However, under FIFO the
preceding model is just M/G/1 with

λ = λ1 + λ2,

G(x) = λ1

λ
G1(x) + λ2

λ
G2(x) (8.41)

which follows since the combination of two independent Poisson processes is
itself a Poisson process whose rate is the sum of the rates of the component
processes. The service distribution G can be obtained by conditioning on which
priority class the arrival is from—as is done in Equation (8.41).

Hence, from the results of Section 8.5, it follows that V , the average work in
the priority queueing system, is given by

V = λE[S2]
2(1 − λE[S])

= λ((λ1/λ)E[S2
1 ] + (λ2/λ)E[S2

2 ])
2[1 − λ((λ1/λ)E[S1] + (λ2/λ)E[S2])]

= λ1E[S2
1 ] + λ2E[S2

2 ]
2(1 − λ1E[S1] − λ2E[S2]) (8.42)

where Si has distribution Gi , i = 1, 2.
Continuing in our quest for Wi

Q let us note that S and W ∗
Q, the service and wait

in queue of an arbitrary customer, are not independent in the priority model since
knowledge about S gives us information as to the type of customer which in turn
gives us information about W ∗

Q. To get around this we will compute separately
the average amount of type 1 and type 2 work in the system. Denoting V i as the
average amount of type i work we have, exactly as in Section 8.5.1,

V i = λiE[Si]Wi
Q + λiE[S2

i ]
2

, i = 1,2 (8.43)

If we define

V i
Q ≡ λiE[Si]Wi

Q,

V i
S ≡ λiE[S2

i ]
2
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then we may interpret V i
Q as the average amount of type i work in queue, and

V i
S as the average amount of type i work in service (why?).
Now we are ready to compute W 1

Q. To do so, consider an arbitrary type 1 arrival.
Then

his delay = amount of type 1 work in the system when he arrives

+ amounts of type 2 work in service when he arrives

Taking expectations and using the fact that Poisson arrivals see time average yields

W 1
Q = V 1 + V 2

S

= λ1E[S1]W 1
Q + λ1E[S2

1 ]
2

+ λ2E[S2
2 ]

2
(8.44)

or

W 1
Q = λ1E[S2

1 ] + λ2E[S2
2 ]

2(1 − λ1E[S1]) (8.45)

To obtain W 2
Q we first note that since V = V 1 + V 2, we have from Equa-

tions (8.42) and (8.43) that

λ1E[S2
1 ] + λ2E[S2

2 ]
2(1 − λ1E[S1] − λ2E[S2]) = λ1E[S1]W 1

Q + λ2E[S2]W 2
Q

+ λ1E[S2
1 ]

2
+ λ2E[S2

2 ]
2

= W 1
Q + λ2E[S2]W 2

Q [from Equation (8.44)]
Now, using Equation (8.45), we obtain

λ2E[S2]W 2
Q = λ1E[S2

1 ] + λ2E[S2
2 ]

2

[
1

1 − λ1E[S1] − λ2E[S2] − 1

1 − λ1E[S1]
]

or

W 2
Q = λ1E[S2

1 ] + λ2E[S2
2 ]

2(1 − λ1E[S1] − λ2E[S2])(1 − λ1E[S1]) (8.46)

Remarks (i) Note that from Equation (8.45), the condition for W 1
Q to be fi-

nite is that λ1E[S1] < 1, which is independent of the type 2 parameters. (Is this
intuitive?) For W 2

Q to be finite, we need, from Equation (8.46), that

λ1E[S1] + λ2E[S2] < 1



536 8 Queueing Theory

Since the arrival rate of all customers is λ = λ1 +λ2, and the average service time
of a customer is (λ1/λ)E[S1] + (λ2/λ)E[S2], the preceding condition is just that
the average arrival rate be less than the average service rate.

(ii) If there are n types of customers, we can solve for V j , j = 1, . . . , n, in a
similar fashion. First, note that the total amount of work in the system of cus-
tomers of types 1, . . . , j is independent of the internal priority rule concerning
types 1, . . . , j and only depends on the fact that each of them is given priority
over any customers of types j + 1, . . . , n. (Why is this? Reason it out!) Hence,
V 1 + · · · + V j is the same as it would be if types 1, . . . , j were considered as a
single type I priority class and types j + 1, . . . , n as a single type II priority class.
Now, from Equations (8.43) and (8.45),

V I = λIE[S2
I ] + λIλIIE[SI]E[S2

II]
2(1 − λIE[SI])

where

λI = λ1 + · · · + λj ,

λII = λj+1 + · · · + λn,

E[SI] =
j∑

i=1

λi

λI
E[Si],

E[S2
I ] =

j∑

i=1

λi

λI
E[S2

i ],

E[S2
II] =

n∑

i=j+1

λi

λII
E[S2

i ]

Hence, as V I = V 1 + · · · + V j , we have an expression for V 1 + · · · + V j , for
each j = 1, . . . , n, which then can be solved for the individual V 1,V 2, . . . , V n.
We now can obtain Wi

Q from Equation (8.43). The result of all this (which we
leave for an exercise) is that

Wi
Q = λ1E[S2

1 ] + · · · + λnE[S2
n]

2
∏i

j=i−1(1 − λ1E[S1] − · · · − λjE[Sj ])
, i = 1, . . . , n (8.47)

8.6.3. An M/G/1 Optimization Example

Consider a single-server system where customers arrive according to a Poisson
process with rate λ, and where the service times are independent and have dis-
tribution function G. Let ρ = λE[S], where S represents a service time random
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variable, and suppose that ρ < 1. Suppose that the server departs whenever a busy
period ends and does not return until there are n customers waiting. At that time
the server returns and continues serving until the system is once again empty. If
the system facility incurs costs at a rate of c per unit time per customer in the
system, as well as a cost K each time the server returns, what value of n,n � 1,
minimizes the long-run average cost per unit time incurred by the facility, and
what is this minimal cost?

To answer the preceding, let us first determine A(n), the average cost per unit
time for the policy that returns the server whenever there are n customers waiting.
To do so, say that a new cycle begins each time the server returns. As it is easy
to see that everything probabilistically starts over when a cycle begins, it follows
from the theory of renewal reward processes that if C(n) is the cost incurred in a
cycle and T (n) is the time of a cycle, then

A(n) = E[C(n)]
E[T (n)]

To determine E[C(n)] and E[T (n)], consider the time interval of length, say, Ti ,
starting from the first time during a cycle that there are a total of i customers in the
system until the first time afterward that there are only i − 1. Therefore,

∑n
i=1 Ti

is the amount of time that the server is busy during a cycle. Adding the additional
mean idle time until n customers are in the system gives that

E[T (n)] =
n∑

i=1

E[Ti] + n/λ

Now, consider the system at the moment when a service is about to begin and there
are i − 1 customers waiting in queue. Since service times do not depend on the
order in which customers are served, suppose that the order of service is last come
first served, implying that service does not begin on the i − 1 presently in queue
until these i − 1 are the only ones in the system. Thus, we see that the time that
it takes to go from i customers in the system to i − 1 has the same distribution as
the time it takes the M/G/1 system to go from a single customer (just beginning
service) to empty; that is, its distribution is that of B , the length of an M/G/1
busy period. (Essentially the same argument was made in Example 5.25.) Hence,

E[Ti] = E[B] = E[S]
1 − ρ

implying that

E[T (n)] = nE[S]
1 − λE[S] + n

λ
= n

λ(1 − ρ)
(8.48)

To determine E[C(n)], let Ci denote the cost incurred during the interval of
length Ti that starts with i − 1 in queue and a service just beginning and ends
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when the i − 1 in queue are the only customers in the system. Thus, K +∑n
i=1 Ci

represents the total cost incurred during the busy part of the cycle. In addition,
during the idle part of the cycle there will be i customers in the system for an
exponential time with rate λ, i = 1, . . . , n − 1, resulting in an expected cost of
c(1 + · · · + n − 1)/λ. Consequently,

E[C(n)] = K +
n∑

i=1

E[Ci] + n(n − 1)c

2λ
(8.49)

To find E[Ci], consider the moment when the interval of length Ti begins, and
let Wi be the sum of the initial service time plus the sum of the times spent in the
system by all the customers that arrive (and are served) until the moment when
the interval ends and there are only i − 1 customers in the system. Then,

Ci = (i − 1)cTi + cWi

where the first term refers to the cost incurred due to the i − 1 customers in queue
during the interval of length Ti . As it is easy to see that Wi has the same distribu-
tion as Wb, the sum of the times spent in the system by all arrivals in an M/G/1
busy period, we obtain that

E[Ci] = (i − 1)c
E[S]
1 − ρ

+ cE[Wb] (8.50)

Using Equation (8.49), this yields

E[C(n)] = K + n(n − 1)cE[S]
2(1 − ρ)

+ ncE[Wb] + n(n − 1)c

2λ

= K + ncE[Wb] + n(n − 1)c

2λ

(
ρ

1 − ρ
+ 1

)

= K + ncE[Wb] + n(n − 1)c

2λ(1 − ρ)

Utilizing the preceding in conjunction with Equation (8.48) shows that

A(n) = Kλ(1 − ρ)

n
+ λc(1 − ρ)E[Wb] + c(n − 1)

2
(8.51)

To determine E[Wb], we use the result that the average amount of time spent
in the system by a customer in the M/G/1 system is

W = WQ + E[S] = λE[S2]
2(1 − ρ)

+ E[S]

However, if we imagine that on day j, j � 1, we earn an amount equal to the total
time spent in the system by the j th arrival at the M/G/1 system, then it follows
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from renewal reward processes (since everything probabilistically restarts at the
end of a busy period) that

W = E[Wb]
E[N ]

where N is the number of customers served in an M/G/1 busy period. Since
E[N ] = 1/(1 − ρ) we see that

(1 − ρ)E[Wb] = W = λE[S2]
2(1 − ρ)

+ E[S]

Therefore, using Equation (8.51), we obtain

A(n) = Kλ(1 − ρ)

n
+ cλ2E[S2]

2(1 − ρ)
+ cρ + c(n − 1)

2

To determine the optimal value of n, treat n as a continuous variable and differ-
entiate the preceding to obtain

A′(n) = −Kλ(1 − ρ)

n2
+ c

2

Setting this equal to 0 and solving yields that the optimal value of n is

n∗ =
√

2Kλ(1 − ρ)

c

and the minimal average cost per unit time is

A(n∗) =√
2λK(1 − ρ)c + cλ2E[S2]

2(1 − ρ)
+ cρ − c

2

It is interesting to see how close we can come to the minimal average cost
when we use a simpler policy of the following form: Whenever the server finds
the system empty of customers she departs and then returns after a fixed time t has
elapsed. Let us say that a new cycle begins each time the server departs. Both the
expected costs incurred during the idle and the busy parts of a cycle are obtained
by conditioning on N(t), the number of arrivals in the time t that the server is
gone. With C̄(t) being the cost incurred during a cycle, we obtain

E[C̄(t) | N(t)] = K +
N(t)∑

i=1

E[Ci] + cN(t)
t

2

= K + N(t)(N(t) − 1)cE[S]
2(1 − ρ)

+ N(t)cE[Wb] + cN(t)
t

2
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The final term of the first equality is the conditional expected cost during the idle
time in the cycle and is obtained by using that, given the number of arrivals in
the time t , the arrival times are independent and uniformly distributed on (0, t);
the second equality used Equation (8.50). Since N(t) is Poisson with mean λt , it
follows that E[N(t)(N(t) − 1)] = E[N2(t)] − E[N(t)] = λ2t2. Thus, taking the
expected value of the preceding gives

E[C̄(t)] = K + λ2t2cE[S]
2(1 − ρ)

+ λtcE[Wb] + cλt2

2

= K + cλt2

2(1 − ρ)
+ λtcE[Wb]

Similarly, if T̄ (t) is the time of a cycle, then

E[T̄ (t)] = E[E[T̄ (t)|N(t)]]
= E[t + N(t)E[B]]
= t + ρt

1 − ρ

= t

1 − ρ

Hence, the average cost per unit time, call it Ā(t), is

Ā(t) = E[C̄(t)]
E[T̄ (t)]

= K(1 − ρ)

t
+ cλt

2
+ cλ(1 − ρ)E[Wb]

Thus, from Equation (8.51), we see that

Ā(n/λ) − A(n) = c/2

which shows that allowing the return decision to depend on the number presently
in the system can reduce the average cost only by the amount c/2. �

8.6.4. The M/G/1 Queue with Server Breakdown

Consider a single server queue in which customers arrive according to a Poisson
process with rate λ, and where the amount of service time required by each cus-
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tomer has distribution G. Suppose, however, that when working the server breaks
down at an exponential rate α. That is, the probability a working server will be
able to work for an additional time t without breaking down is e−αt . When the
server breaks down, it immediately goes to the repair facility. The repair time is a
random variable with distribution H . Suppose that the customer in service when a
breakdown occurs has its service continue, when the sever returns, from the point
it was at when the breakdown occurred. (Therefore, the total amount of time a
customer is actually receiving service from a working server has distribution G.)

By letting a customer’s “service time” include the time that the customer is
waiting for the server to come back from being repaired, the preceding is an
M/G/1 queue. If we let T denote the amount of time from when a customer
first enters service until it departs the system, then T is a service time random
variable of this M/G/1 queue. The average amount of time a customer spends
waiting in queue before its service first commences is, thus,

WQ = λE[T 2]
2(1 − λE[T ])

To compute E[T ] and E[T 2], let S, having distribution G, be the service require-
ment of the customer; let N denote the number of times that the server breaks
down while the customer is in service; let R1,R2, . . . be the amounts of time the
server spends in the repair facility on its successive visits. Then,

T =
N∑

i=1

Ri + S

Conditioning on S yields

E[T |S = s] = E

[
N∑

i=1

Ri

∣
∣
∣S = s

]

+ s,

Var(T |S = s) = Var

(
N∑

i=1

Ri

∣
∣
∣S = s

)

Now, a working server always breaks down at an exponential rate α. Therefore,
given that a customer requires s units of service time, it follows that the number
of server breakdowns while that customer is being served is a Poisson random
variable with mean αs. Consequently, conditional on S = s, the random variable



542 8 Queueing Theory

∑N
i=1 Ri is a compound Poisson random variable with Poisson mean αs. Using

the results from Examples 3.10 and 3.17, we thus obtain

E

[
N∑

i=1

Ri

∣
∣
∣S = s

]

= αsE[R], Var

(
N∑

i=1

Ri

∣
∣
∣S = s

)

= αsE[R2]

where R has the repair distribution H . Therefore,

E[T |S] = αSE[R] + S = S(1 + αE[R]),
Var(T |S) = αSE[R2]

Thus,

E[T ] = E[E[T |S]] = E[S](1 + αE[R])
and, by the conditional variance formula,

Var(T ) = E[Var(T |S)] + Var(E[T |S])
= αE[S]E[R2] + (1 + αE[R])2 Var(S)

Therefore,

E[T 2] = Var(T ) + (E[T ])2

= αE[S]E[R2] + (1 + αE[R])2E[S2]
Consequently, assuming that λE[T ] = λE[S](1 + αE[R]) < 1, we obtain

WQ = λαE[S]E[R2] + λ(1 + αE[R])2E[S2]
2(1 − λE[S](1 + αE[R]))

From the preceding, we can now obtain

LQ = λWQ,

W = WQ + E[T ],
L = λW

Some other quantities we might be interested in are

(i) Pw , the proportion of time the server is working;

(ii) Pr , the proportion of time the server is being repaired;

(iii) PI , the proportion of time the server is idle.
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These quantities can all be obtained by using the queueing cost identity. For in-
stance, if we suppose that customers pay 1 per unit time while actually being
served, than

average rate at which system earns = Pw,

average amount a customer pays = E[S]
Therefore, the identity yields that

Pw = λE[S]
To determine Pr , suppose a customer whose service is interrupted pays 1 per unit
time while the server is being repaired. Then,

average rate at which system earns = Pr,

average amount a customer pays = E

[
N∑

i=1

Ri

]

= αE[S]E[R]

yielding that

Pr = λαE[S]E[R]
Of course, PI can be obtained from

PI = 1 − Pw − Pr

Remark The quantities Pw and Pr could also have been obtained by first not-
ing that 1 − P0 = λE[T ] is the proportion of time the server is either working or
in repair. Thus,

Pw = λE[T ] E[S]
E[T ] = λE[S],

Pr = λE[T ]E[T ] − E[S]
E[T ] = λE[S]αE[R] �

8.7. The Model G/M/1

The model G/M/1 assumes that the times between successive arrivals have an
arbitrary distribution G. The service times are exponentially distributed with rate
μ and there is a single server.

The immediate difficulty in analyzing this model stems from the fact that
the number of customers in the system is not informative enough to serve as a
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state space. For in summarizing what has occurred up to the present we would
need to know not only the number in the system, but also the amount of time that
has elapsed since the last arrival (since G is not memoryless). (Why need we not
be concerned with the amount of time the person being served has already spent
in service?) To get around this problem we shall only look at the system when a
customer arrives; and so let us define Xn,n � 1, by

Xn ≡ the number in the system as seen by the nth arrival

It is easy to see that the process {Xn,n � 1} is a Markov chain. To compute the
transition probabilities Pij for this Markov chain let us first note that, as long as
there are customers to be served, the number of services in any length of time t

is a Poisson random variable with mean μt . This is true since the time between
successive services is exponential and, as we know, this implies that the number
of services thus constitutes a Poisson process. Hence,

Pi,i+1−j =
∫ ∞

0
e−μt (μt)j

j ! dG(t), j = 0,1, . . . , i

which follows since if an arrival finds i in the system, then the next arrival will
find i + 1 minus the number served, and the probability that j will be served is
easily seen to equal the right side of the preceding (by conditioning on the time
between the successive arrivals).

The formula for Pi0 is a little different (it is the probability that at least i + 1
Poisson events occur in a random length of time having distribution G) and can
be obtained from

Pi0 = 1 −
i∑

j=0

Pi,i+1−j

The limiting probabilities πk, k = 0,1, . . . , can be obtained as the unique solu-
tion of

πk =
∑

i

πiPik, k � 0,

∑

i

πk = 1

which, in this case, reduce to

πk =
∞∑

i=k−1

πi

∫ ∞

0
e−μt (μt)i+1−k

(i + 1 − k)! dG(t), k � 1,

∞∑

0

πk = 1

(8.52)
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(We have not included the equation π0 = ∑
πiPi0 since one of the equations is

always redundant.)
To solve the preceding, let us try a solution of the form πk = cβk . Substitution

into Equation (8.52) leads to

cβk = c

∞∑

i=k−1

βi

∫ ∞

0
e−μt (μt)i+1−k

(i + 1 − k)! dG(t)

= c

∫ ∞

0
e−μtβk−1

∞∑

i=k−1

(βμt)i+1−k

(i + 1 − k)! dG(t) (8.53)

However,

∞∑

i=k−1

(βμt)i+1−k

(i + 1 − k)! =
∞∑

j=0

(βμt)j

j !

= eβμt

and thus Equation (8.53) reduces to

βk = βk−1
∫ ∞

0
e−μt(1−β) dG(t)

or

β =
∫ ∞

0
e−μt(1−β) dG(t) (8.54)

The constant c can be obtained from
∑

k πk = 1, which implies that

c

∞∑

0

βk = 1

or

c = 1 − β

As (πk) is the unique solution to Equation (8.52), and πk = (1 − β)βk satisfies,
it follows that

πk = (1 − β)βk, k = 0,1, . . .

where β is the solution of Equation (8.54). [It can be shown that if the mean
of G is greater than the mean service time 1/μ, then there is a unique value of β
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satisfying Equation (8.54) which is between 0 and 1.] The exact value of β usually
can only be obtained by numerical methods.

As πk is the limiting probability that an arrival sees k customers, it is just the
ak as defined in Section 8.2. Hence,

αk = (1 − β)βk, k � 0 (8.55)

We can obtain W by conditioning on the number in the system when a customer
arrives. This yields

W =
∑

k

E[time in system | arrival sees k](1 − β)βk

=
∑

k

k + 1

μ
(1 − β)βk (Since if an arrival sees k then he spends

k + 1 service periods in the system)

= 1

μ(1 − β)

(

by using
∞∑

0

kxk = x

(1 − x)2

)

and

WQ = W − 1

μ
= β

μ(1 − β)
,

L = λW = λ

μ(1 − β)
, (8.56)

LQ = λWQ = λβ

μ(1 − β)

where λ is the reciprocal of the mean interarrival time. That is,

1

λ
=
∫ ∞

0
x dG(x)

In fact, in exactly the same manner as shown for the M/M/1 in Section 8.3.1
and Exercise 4 we can show that

W ∗ is exponential with rate μ(1 − β),

W ∗
Q =

{
0 with probability 1 − β

exponential with rate μ(1 − β) with probability β

where W ∗ and W ∗
Q are the amounts of time that a customer spends in system and

queue, respectively (their means are W and WQ).
Whereas ak = (1 − β)βk is the probability that an arrival sees k in the system,

it is not equal to the proportion of time during which there are k in the system
(since the arrival process is not Poisson). To obtain the Pk we first note that the
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rate at which the number in the system changes from k − 1 to k must equal the
rate at which it changes from k to k − 1 (why?). Now the rate at which it changes
from k−1 to k is equal to the arrival rate λ multiplied by the proportion of arrivals
finding k − 1 in the system. That is,

rate number in system goes from k − 1 to k = λak−1

Similarly, the rate at which the number in the system changes from k to k − 1 is
equal to the proportion of time during which there are k in the system multiplied
by the (constant) service rate. That is,

rate number in system goes from k to k − 1 = Pkμ

Equating these rates yields

Pk = λ

μ
ak−1, k � 1

and so, from Equation (8.55),

Pk = λ

μ
(1 − β)βk−1, k � 1

and, as P0 = 1 −∑∞
k=1 Pk, we obtain

P0 = 1 − λ

μ

Remarks In the foregoing analysis we guessed at a solution of the stationary
probabilities of the Markov chain of the form πk = cβk , then verified such a so-
lution by substituting in the stationary Equation (8.52). However, it could have
been argued directly that the stationary probabilities of the Markov chain are of
this form. To do so, define βi to be the expected number of times that state i + 1
is visited in the Markov chain between two successive visits to state i, i � 0. Now
it is not difficult to see (and we will let you argue it out for yourself) that

β0 = β1 = β2 = · · · = β

Now it can be shown by using renewal reward processes that

πi+1 = E[number of visits to state i + 1 in an i–i cycle]
E[number of transitions in an i–i cycle]

= βi

1/πi
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and so,

πi+1 = βiπi = βπi, i � 0

implying, since
∑∞

0 πi = 1, that

πi = βi(1 − β), i � 0

8.7.1. The G/M/1 Busy and Idle Periods

Suppose that an arrival has just found the system empty—and so initiates a busy
period—and let N denote the number of customers served in that busy period.
Since the N th arrival (after the initiator of the busy period) will also find the
system empty, it follows that N is the number of transitions for the Markov chain
(of Section 8.7) to go from state 0 to state 0. Hence, 1/E[N ] is the proportion
of transitions that take the Markov chain into state 0; or equivalently, it is the
proportion of arrivals that find the system empty. Therefore,

E[N ] = 1

a0
= 1

1 − β

Also, as the next busy period begins after the N th interarrival, it follows that the
cycle time (that is, the sum of a busy and idle period) is equal to the time until
the N th interarrival. In other words, the sum of a busy and idle period can be
expressed as the sum of N interarrival times. Thus, if Ti is the ith interarrival
time after the busy period begins, then

E[Busy] + E[Idle] = E

[
N∑

i=1

Ti

]

= E[N ]E[T ] (by Wald’s equation)

= 1

λ(1 − β)
(8.57)

For a second relation between E[Busy] and E[Idle], we can use the same argu-
ment as in Section 8.5.3 to conclude that

1 − P0 = E[Busy]
E[Idle] + E[Busy]

and since P0 = 1 − λ/μ, we obtain, upon combining this with (8.57), that

E[Busy] = 1

μ(1 − β)
,

E[Idle] = μ − λ

λμ(1 − β)
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8.8. A Finite Source Model

Consider a system of m machines, whose working times are independent expo-
nential random variables with rate λ. Upon failure, a machine instantly goes to
a repair facility that consists of a single repairperson. If the repairperson is free,
repair begins on the machine; otherwise, the machine joins the queue of failed
machines. When a machine is repaired it becomes a working machine, and repair
begins on a new machine from the queue of failed machines (provided the queue is
nonempty). The successive repair times are independent random variables having
density function g, with mean

μR =
∫ ∞

0
xg(x) dx

To analyze this system, so as to determine such quantities as the average number
of machines that are down and the average time that a machine is down, we will
exploit the exponentially distributed working times to obtain a Markov chain.
Specifically, let Xn denote the number of failed machines immediately after the
nth repair occurs, n � 1. Now, if Xn = i > 0, then the situation when the nth
repair has just occurred is that repair is about to begin on a machine, there are i −1
other machines waiting for repair, and there are m − i working machines, each of
which will (independently) continue to work for an exponential time with rate λ.
Similarly, if Xn = 0, then all m machines are working and will (independently)
continue to do so for exponentially distributed times with rate λ. Consequently,
any information about earlier states of the system will not affect the probability
distribution of the number of down machines at the moment of the next repair
completion; hence, {Xn,n � 1} is a Markov chain. To determine its transition
probabilities Pi,j , suppose first that i > 0. Conditioning on R, the length of the
next repair time, and making use of the independence of the m − i remaining
working times, yields that for j � m − i

Pi,i−1+j = P {j failures during R}

=
∫ ∞

0
P {j failures during R | R = r}g(r) dr

=
∫ ∞

0

(
m − i

j

)

(1 − e−λr )j (e−λr )m−i−j g(r) dr

If i = 0, then, because the next repair will not begin until one of the machines
fails,

P0,j = P1,j , j � m − 1
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Let πj , j = 0, . . . ,m−1, denote the stationary probabilities of this Markov chain.
That is, they are the unique solution of

πj =
∑

i

πiPi,j ,

m−1∑

j=0

πj = 1

Therefore, after explicitly determining the transition probabilities and solving the
preceding equations, we would know the value of π0, the proportion of repair
completions that leaves all machines working. Let us say that the system is “on”
when all machines are working and “off” otherwise. (Thus, the system is on when
the repairperson is idle and off when he is busy.) As all machines are working
when the system goes back on, it follows from the lack of memory property of the
exponential that the system probabilistically starts over when it goes on. Hence,
this on–off system is an alternating renewal process. Suppose that the system has
just become on, thus starting a new cycle, and let Ri, i � 1, be the time of the
ith repair from that moment. Also, let N denote the number of repairs in the off
(busy) time of the cycle. Then, it follows that B , the length of the off period, can
be expressed as

B =
N∑

i=1

Ri

Although N is not independent of the sequence R1,R2, . . . , it is easy to check
that it is a stopping time for this sequence, and thus by Wald’s equation (see
Exercise 13 of Chapter 7) we have that

E[B] = E[N ]E[R] = E[N ]μR

Also, since an on time will last until one of the machines fails, and since the
minimum of independent exponential random variables is exponential with a rate
equal to the sum of their rates, it follows that E[I ], the mean on (idle) time in a
cycle, is given by

E[I ] = 1/(mλ)

Hence, PB , the proportion of time that the repairperson is busy, satisfies

PB = E[N ]μR

E[N ]μR + 1/(mλ)
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However, since, on average, one out of every E[N ] repair completions will leave
all machines working, it follows that

π0 = 1

E[N ]
Consequently,

PB = μR

μR + π0/(mλ)
(8.58)

Now focus attention on one of the machines, call it machine number 1, and let
P1,R denote the proportion of time that machine 1 is being repaired. Since the
proportion of time that the repairperson is busy is PB , and since all machines fail
at the same rate and have the same repair distribution, it follows that

P1,R = PB

m
= μR

mμR + π0/λ
(8.59)

However, machine 1 alternates between time periods when it is working, when it
is waiting in queue, and when it is in repair. Let Wi,Qi, Si denote, respectively,
the ith working time, the ith queueing time, and the ith repair time of machine
1, i � 1. Then, the proportion of time that machine 1 is being repaired during its
first n working–queue–repair cycles is:

proportion of time in the first n cycles that machine 1 is being repaired

=
∑n

i=1 Si
∑n

i=1 Wi +∑n
i=1 Qi +∑n

i=1 Si

=
∑n

i=1 Si/n
∑n

i=1 Wi/n +∑n
i=1 Qi/n +∑n

i=1 Si/n

Letting n → ∞ and using the strong law of large numbers to conclude that the
averages of the Wi and of the Si converge, respectively, to 1/λ and μR , yields
that

P1,R = μR

1/λ + Q̄ + μR

where Q̄ is the average amount of time that machine 1 spends in queue when it
fails. Using Equation (8.59), the preceding gives that

μR

mμR + π0/λ
= μR

1/λ + Q̄ + μR

or, equivalently, that

Q̄ = (m − 1)μR − (1 − π0)/λ

Moreover, since all machines are probabilistically equivalent it follows that Q̄ is
equal to WQ, the average amount of time that a failed machine spends in queue.



552 8 Queueing Theory

To determine the average number of machines in queue, we will make use of the
basic queueing identity

LQ = λaWQ = λaQ̄

where λa is the average rate at which machines fail. To determine λa , again fo-
cus attention on machine 1 and suppose that we earn one per unit time whenever
machine 1 is being repaired. It then follows from the basic cost identity of Equa-
tion (8.1) that

P1,R = r1μR

where r1 is the average rate at which machine 1 fails. Thus, from Equation (8.59),
we obtain that

r1 = 1

mμR + π0/λ

Because all m machines fail at the same rate, the preceding implies that

λa = mr1 = m

mμR + π0/λ

which gives that the average number of machines in queue is

LQ = m(m − 1)μR − m(1 − π0)/λ

mμR + π0/λ

Since the average number of machines being repaired is PB , the preceding, along
with Equation (8.58), shows that the average number of down machines is

L = LQ + PB = m2μR − m(1 − π0)/λ

mμR + π0/λ

8.9. Multiserver Queues

By and large, systems that have more than one server are much more difficult
to analyze than those with a single server. In Section 8.9.1 we start first with a
Poisson arrival system in which no queue is allowed, and then consider in Sec-
tion 8.9.2 the infinite capacity M/M/k system. For both of these models we are
able to present the limiting probabilities. In Section 8.9.3 we consider the model
G/M/k. The analysis here is similar to that of the G/M/1 (Section 8.7) except
that in place of a single quantity β given as the solution of an integral equation,
we have k such quantities. We end in Section 8.9.4 with the model M/G/k for
which unfortunately our previous technique (used in M/G/1) no longer enables
us to derive WQ, and we content ourselves with an approximation.
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8.9.1. Erlang’s Loss System

A loss system is a queueing system in which arrivals that find all servers busy
do not enter but rather are lost to the system. The simplest such system is the
M/M/k loss system in which customers arrive according to a Poisson process
having rate λ, enter the system if at least one of the k servers is free, and then spend
an exponential amount of time with rate μ being served. The balance equations
for this system are

State Rate leave = rate enter

0 λP0 = μP1
1 (λ + μ)P1 = 2μP2 + λP0
2 (λ + 2μ)P2 = 3μP3 + λP1

i,0 < i < k (λ + iμ)Pi = (i + 1)μPi+1 + λPi−1
k kμPk = λPk−1

Rewriting gives

λP0 = μP1,

λP1 = 2μP2,

λP2 = 3μP3,

...

λPk−1 = kμPk

or

P1 = λ

μ
P0,

P2 = λ

2μ
P1 = (λ/μ)2

2
P0,

P3 = λ

3μ
P2 = (λ/μ)3

3! P0,

...

Pk = λ

kμ
Pk−1 = (λ/μ)k

k! P0

and using
∑k

0 Pi = 1, we obtain

Pi = (λ/μ)i/i!
∑k

j=0(λ/μ)j /j ! , i = 0,1, . . . , k
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Since E[S] = 1/μ, where E[S] is the mean service time, the preceding can be
written as

Pi = (λE[S])i/i!
∑k

j=0(λE[S])j /j ! , i = 0,1, . . . , k (8.60)

Consider now the same system except that the service distribution is general—
that is, consider the M/G/k with no queue allowed. This model is sometimes
called the Erlang loss system. It can be shown (though the proof is advanced)
that Equation (8.60) (which is called Erlang’s loss formula) remains valid for this
more general system.

8.9.2. The M/M/k Queue

The M/M/k infinite capacity queue can be analyzed by the balance equation
technique. We leave it for you to verify that

Pi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ/μ)i

i!
k−1∑

i=0

(λ/μ)i

i! + (λ/μ)k

k!
kμ

kμ − λ

, i � k

(λ/kμ)ikk

k! P0, i > k

We see from the preceding that we need to impose the condition λ < kμ.

8.9.3. The G/M/k Queue

In this model we again suppose that there are k servers, each of whom serves
at an exponential rate μ. However, we now allow the time between successive
arrivals to have an arbitrary distribution G. To ensure that a steady-state (or limit-
ing) distribution exists, we assume the condition 1/μG < kμ where μG is the
mean of G.*

The analysis for this model is similar to that presented in Section 8.7 for the
case k = 1. Namely, to avoid having to keep track of the time since the last arrival,
we look at the system only at arrival epochs. Once again, if we define Xn as the
number in the system at the moment of the nth arrival, then {Xn,n � 0} is a
Markov chain.

*It follows from the renewal theory (Proposition 7.1) that customers arrive at rate 1/μG , and as
the maximum service rate is kμ, we clearly need that 1/μG < kμ for limiting probabilities to exist.
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To derive the transition probabilities of the Markov chain, it helps to first note
the relationship

Xn+1 = Xn + 1 − Yn, n � 0

where Yn denotes the number of departures during the interarrival time between
the nth and (n+1)st arrival. The transition probabilities Pij can now be calculated
as follows:

Case 1: j > i + 1.
In this case it easily follows that Pij = 0.

Case 2: j � i + 1 � k.
In this case if an arrival finds i in the system, then as i < k the new arrival will

also immediately enter service. Hence, the next arrival will find j if of the i + 1
services exactly i +1−j are completed during the interarrival time. Conditioning
on the length of this interarrival time yields

Pij = P {i + 1 − j of i + 1 services are completed in an interarrival time}

=
∫ ∞

0
P {i + 1 − j of i + 1 are completed|interarrival time is t}dG(t)

=
∫ ∞

0

(
i + 1

j

)

(i − e−μt )i+1−j (e−μt )j dG(t)

where the last equality follows since the number of service completions in a time
t will have a binomial distribution.

Case 3: i + 1 � j � k.
To evaluate Pij in this case we first note that when all servers are busy, the

departure process is a Poisson process with rate kμ (why?). Hence, again condi-
tioning on the interarrival time we have

Pij = P {i + 1 − j departures}

=
∫ ∞

0
P {i + 1 − j departures in time t}dG(t)

=
∫ ∞

0
e−kμt (kμt)i+1−j

(i + 1 − j)! dG(t)

Case 4: i + 1 � k > j .
In this case since when all servers are busy the departure process is a Poisson

process, it follows that the length of time until there will only be k in the system
will have a gamma distribution with parameters i + 1 − k, kμ (the time until
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i +1−k events of a Poisson process with rate kμ occur is gamma distributed with
parameters i + 1 − k, kμ). Conditioning first on the interarrival time and then on
the time until there are only k in the system (call this latter random variable Tk)
yields

Pij =
∫ ∞

0
P {i + 1 − j departures in time t} dG(t)

=
∫ ∞

0

∫ t

0
P {i + 1 − j departures in t | Tk = s}kμe−kμs (kμs)i−k

(i − k)! ds dG(t)

=
∫ ∞

0

∫ t

0

(
k

j

)
(
1 − e−μ(t−s)

)k−j (
e−μ(t−s)

)j
kμe−kμs (kμs)i−k

(i − k)! ds dG(t)

where the last equality follows since of the k people in service at time s the
number whose service will end by time t is binomial with parameters k and
1 − e−μ(t−s).

We now can verify either by a direct substitution into the equations πj =∑
i πiPij , or by the same argument as presented in the remark at the end of Sec-

tion 8.7, that the limiting probabilities of this Markov chain are of the form

πk−1+j = cβj , j = 0,1, . . . .

Substitution into any of the equations πj =∑
i πiPij when j > k yields that β is

given as the solution of

β =
∫ ∞

0
e−kμt(1−β) dG(t)

The values π0, π1, . . . , πk−2, can be obtained by recursively solving the first k−1
of the steady-state equations, and c can then be computed by using

∑∞
0 πi = 1.

If we let W ∗
Q denote the amount of time that a customer spends in queue, then

in exactly the same manner as in G/M/1 we can show that

W ∗
Q =

⎧
⎪⎨

⎪⎩

0, with probability
∑k−1

0 πi = 1 − cβ
1−β

Exp(kμ(1 − β)), with probability
∑∞

k πi = cβ
1−β

where Exp(kμ(1 − β)) is an exponential random variable with rate kμ(1 − β).

8.9.4. The M/G/k Queue

In this section we consider the M/G/k system in which customers arrive at a
Poisson rate λ and are served by any of k servers, each of whom has the service
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distribution G. If we attempt to mimic the analysis presented in Section 8.5 for
the M/G/1 system, then we would start with the basic identity

V = λE[S]WQ + λE[S2]/2 (8.61)

and then attempt to derive a second equation relating V and WQ.
Now if we consider an arbitrary arrival, then we have the following identity:

work in system when customer arrives

= k × time customer spends in queue + R (8.62)

where R is the sum of the remaining service times of all other customers in service
at the moment when our arrival enters service.

The foregoing follows because while the arrival is waiting in queue, work is
being processed at a rate k per unit time (since all servers are busy). Thus, an
amount of work k × time in queue is processed while he waits in queue. Now, all
of this work was present when he arrived and in addition the remaining work on
those still being served when he enters service was also present when he arrived—
so we obtain Equation (8.62). For an illustration, suppose that there are three
servers all of whom are busy when the customer arrives. Suppose, in addition,
that there are no other customers in the system and also that the remaining service
times of the three people in service are 3, 6, and 7. Hence, the work seen by the
arrival is 3 + 6 + 7 = 16. Now the arrival will spend 3 time units in queue, and at
the moment he enters service, the remaining times of the other two customers are
6 − 3 = 3 and 7 − 3 = 4. Hence, R = 3 + 4 = 7 and as a check of Equation (8.62)
we see that 16 = 3 × 3 + 7.

Taking expectations of Equation (8.62) and using the fact that Poisson arrivals
see time averages, we obtain

V = kWQ + E[R]
which, along with Equation (8.61), would enable us to solve for WQ if we could
compute E[R]. However there is no known method for computing E[R] and in
fact, there is no known exact formula for WQ. The following approximation for
WQ was obtained in Reference 6 by using the foregoing approach and then ap-
proximating E[R]:

WQ ≈ λkE[S2](E[S])k−1

2(k − 1)!(k − λE[S])2

[
k−1∑

n=0

(λE[S])n
n! + (λE[S])k

(k − 1)!(k − λE[S])

]

(8.63)

The preceding approximation has been shown to be quite close to the WQ when
the service distribution is gamma. It is also exact when G is exponential.
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Exercises

1. For the M/M/1 queue, compute

(a) the expected number of arrivals during a service period and
(b) the probability that no customers arrive during a service period.

Hint: “Condition.”

*2. Machines in a factory break down at an exponential rate of six per hour.
There is a single repairman who fixes machines at an exponential rate of eight
per hour. The cost incurred in lost production when machines are out of service
is $10 per hour per machine. What is the average cost rate incurred due to failed
machines?

3. The manager of a market can hire either Mary or Alice. Mary, who gives
service at an exponential rate of 20 customers per hour, can be hired at a rate of
$3 per hour. Alice, who gives service at an exponential rate of 30 customers per
hour, can be hired at a rate of $C per hour. The manager estimates that, on the
average, each customer’s time is worth $1 per hour and should be accounted for
in the model. If customers arrive at a Poisson rate of 10 per hour, then

(a) what is the average cost per hour if Mary is hired? if Alice is hired?
(b) find C if the average cost per hour is the same for Mary and Alice.

4. Suppose that a customer of the M/M/1 system spends the amount of time
x > 0 waiting in queue before entering service.

(a) Show that, conditional on the preceding, the number of other customers that
were in the system when the customer arrived is distributed as 1 + P , where P

is a Poisson random variable with mean λ.
(b) Let W ∗

Q denote the amount of time that an M/M/1 customer spends in
queue. As a byproduct of your analysis in part (a), show that

P {W ∗
Q � x} =

{
1 − λ

μ
if x = 0

1 − λ
μ

+ λ
μ
(1 − e−(μ−λ)x) if x > 0

5. It follows from Exercise 4 that if, in the M/M/1 model, W ∗
Q is the amount

of time that a customer spends waiting in queue, then

W ∗
Q =

{
0, with probability 1 − λ/μ

Exp(μ − λ), with probability λ/μ

where Exp(μ − λ) is an exponential random variable with rate μ − λ. Using this,
find Var(W ∗

Q).
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6. Two customers move about among three servers. Upon completion of service
at server i, the customer leaves that server and enters service at whichever of the
other two servers is free. (Therefore, there are always two busy servers.) If the
service times at server i are exponential with rate μi, i = 1,2,3, what proportion
of time is server i idle?

*7. Show that W is smaller in an M/M/1 model having arrivals at rate λ and
service at rate 2μ than it is in a two-server M/M/2 model with arrivals at rate
λ and with each server at rate μ. Can you give an intuitive explanation for this
result? Would it also be true for WQ?

8. A group of n customers moves around among two servers. Upon completion
of service, the served customer then joins the queue (or enters service if the server
is free) at the other server. All service times are exponential with rate μ. Find the
proportion of time that there are j customers at server 1, j = 0, . . . , n.

9. A facility produces items according to a Poisson process with rate λ. How-
ever, it has shelf space for only k items and so it shuts down production whenever
k items are present. Customers arrive at the facility according to a Poisson process
with rate μ. Each customer wants one item and will immediately depart either
with the item or empty handed if there is no item available.

(a) Find the proportion of customers that go away empty handed.
(b) Find the average time that an item is on the shelf.
(c) Find the average number of items on the shelf.

Suppose now that when a customer does not find any available items it joins
the “customers’ queue” as long as there are no more than n − 1 other customers
waiting at that time. If there are n waiting customers then the new arrival departs
without an item.

(d) Set up the balance equations.
(e) In terms of the solution of the balance equations, what is the average num-
ber of customers in the system?

10. A group of m customers frequents a single-server station in the following
manner. When a customer arrives, he or she either enters service if the server is
free or joins the queue otherwise. Upon completing service the customer departs
the system, but then returns after an exponential time with rate θ . All service times
are exponentially distributed with rate μ.

(a) Define states and set up the balance equations.

In terms of the solution of the balance equations, find

(b) the average rate at which customers enter the station.
(c) the average time that a customer spends in the station per visit.
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11. Consider a single-server queue with Poisson arrivals and exponential service
times having the following variation: Whenever a service is completed a departure
occurs only with probability α. With probability 1 − α the customer, instead of
leaving, joins the end of the queue. Note that a customer may be serviced more
than once.

(a) Set up the balance equations and solve for the steady-state probabilities,
stating conditions for it to exist.
(b) Find the expected waiting time of a customer from the time he arrives until
he enters service for the first time.
(c) What is the probability that a customer enters service exactly n times, n =
1,2, . . .?
(d) What is the expected amount of time that a customer spends in service
(which does not include the time he spends waiting in line)?

Hint: Use part (c).

(e) What is the distribution of the total length of time a customer spends being
served?

Hint: Is it memoryless?

12. Exponential queueing systems in which the state is the number of customers
in the system are known as birth and death queueing systems. For such a system,
let λn denote the rate at which a new customer joins the system when it is in state
n, and let μn denote the rate at which there is a departure from the system when
in state n.

(a) Give the quantities λn and μn for the M/M/1 queue with finite capacity N .
(b) Write down the balance equations.
(c) Show how the balance equations can be reduced to the set of equations

λnPn = μn+1Pn+1, n � 0

(d) Give a direct argument for the preceding equations.
(e) Solve the preceding equations, and in doing so, give the condition that is
needed for there to be a solution.
(f) What is the average arrival rate λa?
(g) What is the average amount of time that a customer spends in the system?

*13. A supermarket has two exponential checkout counters, each operating at
rate μ. Arrivals are Poisson at rate λ. The counters operate in the following way:

(i) One queue feeds both counters.
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(ii) One counter is operated by a permanent checker and the other by a stock
clerk who instantaneously begins checking whenever there are two or
more customers in the system. The clerk returns to stocking whenever he
completes a service, and there are fewer than two customers in the system.

(a) Let Pn = proportion of time there are n in the system. Set up equations for
Pn and solve.
(b) At what rate does the number in the system go from 0 to 1? from 2 to 1?
(c) What proportion of time is the stock clerk checking?

Hint: Be a little careful when there is one in the system.

14. Customers arrive at a single-service facility at a Poisson rate of 40 per hour.
When two or fewer customers are present, a single attendant operates the facility,
and the service time for each customer is exponentially distributed with a mean
value of two minutes. However, when there are three or more customers at the fa-
cility, the attendant is joined by an assistant and, working together, they reduce the
mean service time to one minute. Assuming a system capacity of four customers,

(a) what proportion of time are both servers free?
(b) each man is to receive a salary proportional to the amount of time he is ac-
tually at work servicing customers, the rate being the same for both. If together
they earn $100 per day, how should this money be split?

15. Consider a sequential-service system consisting of two servers, A and B .
Arriving customers will enter this system only if server A is free. If a customer
does enter, then he is immediately served by server A. When his service by A is
completed, he then goes to B if B is free, or if B is busy, he leaves the system.
Upon completion of service at server B , the customer departs. Assuming that
the (Poisson) arrival rate is two customers an hour, and that A and B serve at
respective (exponential) rates of four and two customers an hour,

(a) what proportion of customers enter the system?
(b) what proportion of entering customers receive service from B?
(c) what is the average number of customers in the system?
(d) what is the average amount of time that an entering customer spends in the
system?

16. Customers arrive at a two-server system according to a Poisson process hav-
ing rate λ = 5. An arrival finding server 1 free will begin service with that server.
An arrival finding server 1 busy and server 2 free will enter service with server 2.
An arrival finding both servers busy goes away. Once a customer is served by ei-
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ther server, he departs the system. The service times at server i are exponential
with rates μi , where μ1 = 4, μ2 = 2.

(a) What is the average time an entering customer spends in the system?
(b) What proportion of time is server 2 busy?

17. Customers arrive at a two-server station in accordance with a Poisson
process with a rate of two per hour. Arrivals finding server 1 free begin service
with that server. Arrivals finding server 1 busy and server 2 free begin service with
server 2. Arrivals finding both servers busy are lost. When a customer is served
by server 1, she then either enters service with server 2 if 2 is free or departs the
system if 2 is busy. A customer completing service at server 2 departs the system.
The service times at server 1 and server 2 are exponential random variables with
respective rates of four and six per hour.

(a) What fraction of customers do not enter the system?
(b) What is the average amount of time that an entering customer spends in the
system?
(c) What fraction of entering customers receives service from server 1?

18. Customers arrive at a two-server system at a Poisson rate λ. An arrival find-
ing the system empty is equally likely to enter service with either server. An arrival
finding one customer in the system will enter service with the idle server. An ar-
rival finding two others in the system will wait in line for the first free server. An
arrival finding three in the system will not enter. All service times are exponen-
tial with rate μ, and once a customer is served (by either server), he departs the
system.

(a) Define the states.
(b) Find the long-run probabilities.
(c) Suppose a customer arrives and finds two others in the system. What is the
expected times he spends in the system?
(d) What proportion of customers enter the system?
(e) What is the average time an entering customer spends in the system?

19. The economy alternates between good and bad periods. During good times
customers arrive at a certain single-server queueing system in accordance with
a Poisson process with rate λ1, and during bad times they arrive in accordance
with a Poisson process with rate λ2. A good time period lasts for an exponentially
distributed time with rate α1, and a bad time period lasts for an exponential time
with rate α2. An arriving customer will only enter the queueing system if the
server is free; an arrival finding the server busy goes away. All service times are
exponential with rate μ.

(a) Define states so as to be able to analyze this system.
(b) Give a set of linear equations whose solution will yield the long run pro-
portion of time the system is in each state.
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In terms of the solutions of the equations in part (b),

(c) what proportion of time is the system empty?
(d) what is the average rate at which customers enter the system?

20. There are two types of customers. Type 1 and 2 customers arrive in accor-
dance with independent Poisson processes with respective rate λ1 and λ2. There
are two servers. A type 1 arrival will enter service with server 1 if that server is
free; if server 1 is busy and server 2 is free, then the type 1 arrival will enter service
with server 2. If both servers are busy, then the type 1 arrival will go away. A type
2 customer can only be served by server 2; if server 2 is free when a type 2 cus-
tomer arrives, then the customer enters service with that server. If server 2 is busy
when a type 2 arrives, then that customer goes away. Once a customer is served
by either server, he departs the system. Service times at server i are exponential
with rate μi, i = 1,2.

Suppose we want to find the average number of customers in the system.

(a) Define states.
(b) Give the balance equations. Do not attempt to solve them.

In terms of the long-run probabilities, what is

(c) the average number of customers in the system?
(d) the average time a customer spends in the system?

*21. Suppose in Exercise 20 we want to find out the proportion of time there is
a type 1 customer with server 2. In terms of the long-run probabilities given in
Exercise 20, what is

(a) the rate at which a type 1 customer enters service with server 2?
(b) the rate at which a type 2 customer enters service with server 2?
(c) the fraction of server 2’s customers that are type 1?
(d) the proportion of time that a type 1 customer is with server 2?

22. Customers arrive at a single-server station in accordance with a Poisson
process with rate λ. All arrivals that find the server free immediately enter ser-
vice. All service times are exponentially distributed with rate μ. An arrival that
finds the server busy will leave the system and roam around “in orbit” for an ex-
ponential time with rate θ at which time it will then return. If the server is busy
when an orbiting customer returns, then that customer returns to orbit for another
exponential time with rate θ before returning again. An arrival that finds the server
busy and N other customers in orbit will depart and not return. That is, N is the
maximum number of customers in orbit.

(a) Define states.
(b) Give the balance equations.

In terms of the solution of the balance equations, find

(c) the proportion of all customers that are eventually served.
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(d) the average time that a served customer spends waiting in orbit.

23. Consider the M/M/1 system in which customers arrive at rate λ and the
server serves at rate μ. However, suppose that in any interval of length h in which
the server is busy there is a probability αh + o(h) that the server will experience
a breakdown, which causes the system to shut down. All customers that are in the
system depart, and no additional arrivals are allowed to enter until the breakdown
is fixed. The time to fix a breakdown is exponentially distributed with rate β .

(a) Define appropriate states.
(b) Give the balance equations.

In terms of the long-run probabilities,

(c) what is the average amount of time that an entering customer spends in the
system?
(d) what proportion of entering customers complete their service?
(e) what proportion of customers arrive during a breakdown?

*24. Reconsider Exercise 23, but this time suppose that a customer that is in the
system when a breakdown occurs remains there while the server is being fixed.
In addition, suppose that new arrivals during a breakdown period are allowed to
enter the system. What is the average time a customer spends in the system?

25. Poisson (λ) arrivals join a queue in front of two parallel servers A and B ,
having exponential service rates μA and μB (see Figure 8.4). When the system
is empty, arrivals go into server A with probability α and into B with probability
1 − α. Otherwise, the head of the queue takes the first free server.

(a) Define states and set up the balance equations. Do not solve.
(b) In terms of the probabilities in part (a), what is the average number in the
system? Average number of servers idle?
(c) In terms of the probabilities in part (a), what is the probability that an arbi-
trary arrival will get serviced in A?

26. In a queue with unlimited waiting space, arrivals are Poisson (parameter λ)
and service times are exponentially distributed (parameter μ). However, the server
waits until K people are present before beginning service on the first customer;
thereafter, he services one at a time until all K units, and all subsequent arrivals,
are serviced. The server is then “idle” until K new arrivals have occurred.

(a) Define an appropriate state space, draw the transition diagram, and set up
the balance equations.

Figure 8.4.
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(b) In terms of the limiting probabilities, what is the average time a customer
spends in queue?
(c) What conditions on λ and μ are necessary?

27. Consider a single-server exponential system in which ordinary customers
arrive at a rate λ and have service rate μ. In addition, there is a special customer
who has a service rate μ1. Whenever this special customer arrives, she goes di-
rectly into service (if anyone else is in service, then this person is bumped back
into queue). When the special customer is not being serviced, she spends an ex-
ponential amount of time (with mean 1/θ ) out of the system.

(a) What is the average arrival rate of the special customer?
(b) Define an appropriate state space and set up balance equations.
(c) Find the probability that an ordinary customer is bumped n times.

*28. Let D denote the time between successive departures in a stationary
M/M/1 queue with λ < μ. Show, by conditioning on whether or not a depar-
ture has left the system empty, that D is exponential with rate λ.

Hint: By conditioning on whether or not the departure has left the system
empty we see that

D =
{

Exponential(μ), with probability λ/μ

Exponential(λ) ∗ Exponential(μ), with probability 1 − λ/μ

where Exponential(λ) ∗ Exponential(μ) represents the sum of two indepen-
dent exponential random variables having rates μ and λ. Now use moment-
generating functions to show that D has the required distribution.

Note that the preceding does not prove that the departure process is Poisson. To
prove this we need show not only that the interdeparture times are all exponential
with rate λ, but also that they are independent.

29. Potential customers arrive to a single server hair salon according to a Pois-
son process with rate λ. A potential customer who finds the server free enters the
system; a potential customer who finds the server busy goes away. Each potential
customer is type i with probability pi , where p1 +p2 +p3 = 1. Type 1 customers
have their hair washed by the server; type 2 customers have their hair cut by the
server; and type 3 customers have their hair first washed and then cut by the server.
The time that it takes the server to wash hair is exponentially distributed with rate
μ1, and the time that it takes the server to cut hair is exponentially distributed with
rate μ2.

(a) Explain how this system can be analyzed with four states.
(b) Give the equations whose solution yields the proportion of time the system
is in each state.
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In terms of the solution of the equations of (b), find

(c) the proportion of time the server is cutting hair;
(d) the average arrival rate of entering customers.

30. For the tandem queue model verify that

Pn,m = (λ/μ1)
n(1 − λ/μ1)(λ/μ2)

m(1 − λ/μ2)

satisfies the balance equation (8.15).

31. Consider a network of three stations. Customers arrive at stations 1,2,3 in
accordance with Poisson processes having respective rates, 5,10,15. The service
times at the three stations are exponential with respective rates 10,50,100. A cus-
tomer completing service at station 1 is equally likely to (i) go to station 2, (ii) go
to station 3, or (iii) leave the system. A customer departing service at station 2
always goes to station 3. A departure from service at station 3 is equally likely to
either go to station 2 or leave the system.

(a) What is the average number of customers in the system (consisting of all
three stations)?
(b) What is the average time a customer spends in the system?

32. Consider a closed queueing network consisting of two customers moving
among two servers, and suppose that after each service completion the customer
is equally likely to go to either server—that is, P1,2 = P2,1 = 1

2 . Let μi denote the
exponential service rate at server i, i = 1,2.

(a) Determine the average number of customers at each server.
(b) Determine the service completion rate for each server.

33. Explain how a Markov chain Monte Carlo simulation using the Gibbs sam-
pler can be utilized to estimate

(a) the distribution of the amount of time spent at server j on a visit.

Hint: Use the arrival theorem.

(b) the proportion of time a customer is with server j (i.e., either in server j ’s
queue or in service with j ).

34. For open queueing networks

(a) state and prove the equivalent of the arrival theorem;
(b) derive an expression for the average amount of time a customer spends
waiting in queues.

35. Customers arrive at a single-server station in accordance with a Poisson
process having rate λ. Each customer has a value. The successive values of cus-
tomers are independent and come from a uniform distribution on (0,1). The ser-
vice time of a customer having value x is a random variable with mean 3 + 4x

and variance 5.
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(a) What is the average time a customer spends in the system?
(b) What is the average time a customer having value x spends in the system?

*36. Compare the M/G/1 system for first-come, first-served queue discipline
with one of last-come, first-served (for instance, in which units for service are
taken from the top of a stack). Would you think that the queue size, waiting
time, and busy-period distribution differ? What about their means? What if the
queue discipline was always to choose at random among those waiting? Intu-
itively which discipline would result in the smallest variance in the waiting time
distribution?

37. In an M/G/1 queue,

(a) what proportion of departures leave behind 0 work?
(b) what is the average work in the system as seen by a departure?

38. For the M/G/1 queue, let Xn denote the number in the system left behind
by the nth departure.

(a) If

Xn+1 =
{
Xn − 1 + Yn, if Xn � 1
Yn, if Xn = 0

what does Yn represent?
(b) Rewrite the preceding as

Xn+1 = Xn − 1 + Yn + δn (8.64)

where

δn =
{

1, if Xn = 0
0, if Xn � 1

Take expectations and let n → ∞ in Equation (8.64) to obtain

E[δ∞] = 1 − λE[S]

(c) Square both sides of Equation (8.64), take expectations, and then let n →
∞ to obtain

E[X∞] = λ2E[S2]
2(1 − λE[S]) + λE[S]

(d) Argue that E[X∞], the average number as seen by a departure, is equal
to L.
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*39. Consider an M/G/1 system in which the first customer in a busy period
has the service distribution G1 and all others have distribution G2. Let C denote
the number of customers in a busy period, and let S denote the service time of a
customer chosen at random.

Argue that

(a) a0 = P0 = 1 − λE[S].
(b) E[S] = a0E[S1] + (1 − a0)E[S2] where Si has distribution Gi .
(c) Use (a) and (b) to show that E[B], the expected length of a busy period, is
given by

E[B] = E[S1]
1 − λE[S2]

(d) Find E[C].
40. Consider a M/G/1 system with λE[S] < 1.

(a) Suppose that service is about to begin at a moment when there are n cus-
tomers in the system.

(i) Argue that the additional time until there are only n − 1 customers in
the system has the same distribution as a busy period.

(ii) What is the expected additional time until the system is empty?

(b) Suppose that the work in the system at some moment is A. We are inter-
ested in the expected additional time until the system is empty—call it E[T ].
Let N denote the number of arrivals during the first A units of time.

(i) Compute E[T |N ].
(ii) Compute E[T ].

41. Carloads of customers arrive at a single-server station in accordance with a
Poisson process with rate 4 per hour. The service times are exponentially distrib-
uted with rate 20 per hour. If each carload contains either 1,2, or 3 customers with
respective probabilities 1

4 , 1
2 , 1

4 compute the average customer delay in queue.

42. In the two-class priority queueing model of Section 8.6.2, what is WQ?
Show that WQ is less than it would be under FIFO if E[S1] < E[S2] and greater
than under FIFO if E[S1] > E[S2].
43. In a two-class priority queueing model suppose that a cost of Ci per unit
time is incurred for each type i customer that waits in queue, i = 1,2. Show that
type 1 customers should be given priority over type 2 (as opposed to the reverse)
if

E[S1]
C1

<
E[S2]
C2
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44. Consider the priority queueing model of Section 8.6.2 but now suppose
that if a type 2 customer is being served when a type 1 arrives then the type 2
customer is bumped out of service. This is called the preemptive case. Suppose
that when a bumped type 2 customer goes back in service his service begins at the
point where it left off when he was bumped.

(a) Argue that the work in the system at any time is the same as in the non-
preemptive case.
(b) Derive W 1

Q.

Hint: How do type 2 customers affect type 1s?

(c) Why is it not true that

V 2
Q = λ2E[S2]W 2

Q

(d) Argue that the work seen by a type 2 arrival is the same as in the non-
preemptive case, and so

W 2
Q = W 2

Q(nonpreemptive) + E[extra time]
where the extra time is due to the fact that he may be bumped.
(e) Let N denote the number of times a type 2 customer is bumped. Why is

E[extra time|N ] = NE[S1]
1 − λ1E[S1]

Hint: When a type 2 is bumped, relate the time until he gets back in service
to a “busy period.”

(f) Let S2 denote the service time of a type 2. What is E[N |S2]?
(g) Combine the preceding to obtain

W 2
Q = W 2

Q(nonpreemptive) + λ1E[S1]E[S2]
1 − λ1E[S1]

*45. Calculate explicitly (not in terms of limiting probabilities) the average
time a customer spends in the system in Exercise 24.

46. In the G/M/1 model if G is exponential with rate λ show that β = λ/μ.

47. Verify Erlang’s loss formula, Equation (8.60), when k = 1.

48. Verify the formula given for the Pi of the M/M/k.

49. In the Erlang loss system suppose the Poisson arrival rate is λ = 2, and
suppose there are three servers, each of whom has a service distribution that is
uniformly distributed over (0,2). What proportion of potential customers is lost?
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50. In the M/M/k system,

(a) what is the probability that a customer will have to wait in queue?
(b) determine L and W .

51. Verify the formula for the distribution of W ∗
Q given for the G/M/k model.

*52. Consider a system where the interarrival times have an arbitrary distribu-
tion F , and there is a single server whose service distribution is G. Let Dn denote
the amount of time the nth customer spends waiting in queue. Interpret Sn,Tn

so that

Dn+1 =
{
Dn + Sn − Tn, if Dn + Sn − Tn � 0
0, if Dn + Sn − Tn < 0

53. Consider a model in which the interarrival times have an arbitrary distribu-
tion F , and there are k servers each having service distribution G. What condition
on F and G do you think would be necessary for there to exist limiting probabil-
ities?
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Reliability Theory

9
9.1. Introduction

Reliability theory is concerned with determining the probability that a system,
possibly consisting of many components, will function. We shall suppose that
whether or not the system functions is determined solely from a knowledge of
which components are functioning. For instance, a series system will function
if and only if all of its components are functioning, while a parallel system will
function if and only if at least one of its components is functioning. In Section 9.2,
we explore the possible ways in which the functioning of the system may depend
upon the functioning of its components. In Section 9.3, we suppose that each com-
ponent will function with some known probability (independently of each other)
and show how to obtain the probability that the system will function. As this
probability often is difficult to explicitly compute, we also present useful upper
and lower bounds in Section 9.4. In Section 9.5 we look at a system dynamically
over time by supposing that each component initially functions and does so for a
random length of time at which it fails. We then discuss the relationship between
the distribution of the amount of time that a system functions and the distributions
of the component lifetimes. In particular, it turns out that if the amount of time
that a component functions has an increasing failure rate on the average (IFRA)
distribution, then so does the distribution of system lifetime. In Section 9.6 we
consider the problem of obtaining the mean lifetime of a system. In the final sec-
tion we analyze the system when failed components are subjected to repair.

9.2. Structure Functions

Consider a system consisting of n components, and suppose that each component
is either functioning or has failed. To indicate whether or not the ith component

571
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is functioning, we define the indicator variable xi by

xi =
{

1, if the ith component is functioning
0, if the ith component has failed

The vector x = (x1, . . . , xn) is called the state vector. It indicates which of the
components are functioning and which have failed.

We further suppose that whether or not the system as a whole is functioning is
completely determined by the state vector x. Specifically, it is supposed that there
exists a function φ(x) such that

φ(x) =
{

1, if the system is functioning when the state vector is x
0, if the system has failed when the state vector is x

The function φ(x) is called the structure function of the system.

Example 9.1 (The Series Structure) A series system functions if and only if
all of its components are functioning. Hence, its structure function is given by

φ(x) = min(x1, . . . , xn) =
n∏

i=1

xi

We shall find it useful to represent the structure of a system in terms of a diagram.
The relevant diagram for the series structure is shown in Figure 9.1. The idea
is that if a signal is initiated at the left end of the diagram then in order for it
to successfully reach the right end, it must pass through all of the components;
hence, they must all be functioning. �

Figure 9.1. A series system.

Example 9.2 (The Parallel Structure) A parallel system functions if and only
if at least one of its components is functioning. Hence its structure function is
given by

φ(x) = max(x1, . . . , xn)

A parallel structure may be pictorially illustrated by Figure 9.2. This follows since
a signal at the left end can successfully reach the right end as long as at least one
component is functioning. �
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Figure 9.2. A parallel system.

Example 9.3 (The k-out-of-n Structure) The series and parallel systems are
both special cases of a k-out-of-n system. Such a system functions if and only if
at least k of the n components are functioning. As

∑n
i=1 xi equals the number of

functioning components, the structure function of a k-out-of-n system is given by

φ(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if
n∑

i=1

xi � k

0, if
n∑

i=1

xi < k

Series and parallel systems are respectively n-out-of-n and 1-out-of-n systems.
The two-out-of-three system may be diagrammed as shown in Figure 9.3. �

Figure 9.3. A 2-out-of-3 system.

Example 9.4 (A Four-Component Structure) Consider a system consisting of
four components, and suppose that the system functions if and only if components
1 and 2 both function and at least one of components 3 and 4 function. Its structure
function is given by

φ(x) = x1x2 max(x3, x4)
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Pictorially, the system is as shown in Figure 9.4. A useful identity, easily checked,
is that for binary variables,∗ xi, i = 1, . . . , n,

max(x1, . . . , xn) = 1 −
n∏

i=1

(1 − xi)

Figure 9.4.

When n = 2, this yields

max(x1, x2) = 1 − (1 − x1)(1 − x2) = x1 + x2 − x1x2

Hence, the structure function in the example may be written as

φ(x) = x1x2(x3 + x4 − x3x4) �

It is natural to assume that replacing a failed component by a functioning one
will never lead to a deterioration of the system. In other words, it is natural to
assume that the structure function φ(x) is an increasing function of x, that is, if
xi � yi, i = 1, . . . , n, then φ(x) � φ(y). Such an assumption shall be made in this
chapter and the system will be called monotone.

9.2.1. Minimal Path and Minimal Cut Sets

In this section we show how any system can be represented both as a series
arrangement of parallel structures and as a parallel arrangement of series struc-
tures. As a preliminary, we need the following concepts.

A state vector x is called a path vector if φ(x) = 1. If, in addition, φ(y) = 0
for all y < x, then x is said to be a minimal path vector.∗∗ If x is a minimal path
vector, then the set A = {i : xi = 1} is called a minimal path set. In other words,
a minimal path set is a minimal set of components whose functioning ensures the
functioning of the system.

∗A binary variable is one that assumes either the value 0 or 1.
∗∗We say that y < x if yi � xi , i = 1, . . . , n, with yi < xi for some i.
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Example 9.5 Consider a five-component system whose structure is illustrated
by Figure 9.5. Its structure function equals

φ(x) = max(x1, x2)max(x3x4, x5)

= (x1 + x2 − x1x2)(x3x4 + x5 − x3x4x5)

There are four minimal path sets, namely, {1,3,4}, {2,3,4}, {1,5}, {2,5}. �

Figure 9.5.

Example 9.6 In a k-out-of-n system, there are
(
n
k

)
minimal path sets, namely,

all of the sets consisting of exactly k components. �
Let A1, . . . ,As denote the minimal path sets of a given system. We define

αj (x), the indicator function of the j th minimal path set, by

αj (x) =
{

1, if all the components of Ai are functioning

0, otherwise

=
∏

i∈Aj

xi

By definition, it follows that the system will function if all the components of at
least one minimal path set are functioning; that is, if αj (x) = 1 for some j . On the
other hand, if the system functions, then the set of functioning components must
include a minimal path set. Therefore, a system will function if and only if all the
components of at least one minimal path set are functioning. Hence,

φ(x) =
{

1, if αj (x) = 1 for some j

0, if αj (x) = 0 for all j

or equivalently

φ(x) = max
j

αj (x)

= max
j

∏

i∈Aj

xi (9.1)
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Since αj (x) is a series structure function of the components of the j th minimal
path set, Equation (9.1) expresses an arbitrary system as a parallel arrangement of
series systems.

Example 9.7 Consider the system of Example 9.5. Because its minimal path
sets are A1 = {1,3,4}, A2 = {2,3,4}, A3 = {1,5}, and A4 = {2,5}, we have by
Equation (9.1) that

φ(x) = max{x1x3x4, x2x3x4, x1x5, x2x5}
= 1 − (1 − x1x3x4)(1 − x2x3x4)(1 − x1x5)(1 − x2x5)

Figure 9.6.

You should verify that this equals the value of φ(x) given in Example 9.5. (Make
use of the fact that, since xi equals 0 or 1, x2

i = xi .) This representation may be
pictured as shown in Figure 9.6. �

Figure 9.7. The bridge system.

Example 9.8 The system whose structure is as pictured in Figure 9.7 is called
the bridge system. Its minimal path sets are {1, 4}, {1, 3, 5}, {2, 5}, and {2, 3, 4}.
Hence, by Equation (9.1), its structure function may be expressed as

φ(x) = max{x1x4, x1x3x5, x2x5, x2x3x4}
= 1 − (1 − x1x4)(1 − x1x3x5)(1 − x2x5)(1 − x2x3x4)

This representation φ(x) is diagrammed as shown in Figure 9.8. �
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Figure 9.8.

A state vector x is called a cut vector if φ(x) = 0. If, in addition, φ(y) = 1 for all
y > x, then x is said to be a minimal cut vector. If x is a minimal cut vector, then
the set C = {i : xi = 0} is called a minimal cut set. In other words, a minimal cut
set is a minimal set of components whose failure ensures the failure of the system.

Let C1, . . . ,Ck denote the minimal cut sets of a given system. We define βj (x),
the indicator function of the j th minimal cut set, by

βj (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if at least one component of the j th minimal
cut set is functioning

0, if all of the components of the j th minimal
cut set are not functioning

= max
i∈Cj

xi

Since a system is not functioning if and only if all the components of at least one
minimal cut set are not functioning, it follows that

φ(x) =
k∏

j=1

βj (x) =
k∏

j=1

max
i∈Cj

xi (9.2)

Since βj (x) is a parallel structure function of the components of the j th mini-
mal cut set, Equation (9.2) represents an arbitrary system as a series arrangement
of parallel systems.

Example 9.9 The minimal cut sets of the bridge structure shown in Figure 9.9
are {1, 2}, {1, 3, 5}, {2, 3, 4}, and {4, 5}. Hence, from Equation (9.2), we may
express φ(x) by

φ(x) = max(x1, x2)max(x1, x3, x5)max(x2, x3, x4)max(x4, x5)

= [1 − (1 − x1)(1 − x2)][1 − (1 − x1)(1 − x3)(1 − x5)]
× [1 − (1 − x2)(1 − x3)(1 − x4)][1 − (1 − x4)(1 − x5)]

This representation of φ(x) is pictorially expressed as Figure 9.10. �



578 9 Reliability Theory

Figure 9.9.

Figure 9.10. Minimal cut representation of the bridge system.

9.3. Reliability of Systems of Independent
Components

In this section, we suppose that Xi , the state of the ith component, is a random
variable such that

P {Xi = 1} = pi = 1 − P {Xi = 0}

The value pi , which equals the probability that the ith component is functioning,
is called the reliability of the ith component. If we define r by

r = P {φ(X) = 1}, where X = (X1, . . . ,Xn)

then r is called the reliability of the system. When the components, that is, the ran-
dom variables Xi, i = 1, . . . , n, are independent, we may express r as a function
of the component reliabilities. That is,

r = r(p), where p = (p1, . . . , pn)

The function r(p) is called the reliability function. We shall assume throughout
the remainder of this chapter that the components are independent.
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Example 9.10 (The Series System) The reliability function of the series sys-
tem of n independent components is given by

r(p) = P {φ(X) = 1}
= P {Xi = 1 for all i = 1, . . . , n}

=
n∏

i=1

pi �

Example 9.11 (The Parallel System) The reliability function of the parallel
system of n independent components is given by

r(p) = P {φ(X) = 1}
= P {Xi = 1 for some i = 1, . . . , n}
= 1 − P {Xi = 0 for all i = 1, . . . , n}

= 1 −
n∏

i=1

(1 − pi) �

Example 9.12 (The k-out-of-n System with Equal Probabilities) Consider a
k-out-of-n system. If pi = p for all i = 1, . . . , n, then the reliability function is
given by

r(p, . . . ,p) = P {φ(X) = 1}

= P

{
n∑

i=1

Xi � k

}

=
n∑

i=k

(
n

i

)

pi(1 − p)n−i �

Example 9.13 (The Two-out-of-Three System) The reliability function of a
two-out-of-three system is given by

r(p) = P {φ(X) = 1}
= P {X = (1,1,1)} + P {X = (1,1,0)}

+ P {X = (1,0,1)} + P {X = (0,1,1)}
= p1p2p3 + p1p2(1 − p3) + p1(1 − p2)p3 + (1 − p1)p2p3

= p1p2 + p1p3 + p2p3 − 2p1p2p3 �



580 9 Reliability Theory

Example 9.14 (The Three-out-of-Four System) The reliability function of a
three-out-of-four system is given by

r(p) = P {X = (1,1,1,1)} + P {X = (1,1,1,0)} + P {X = (1,1,0,1)}
+ P {X = (1,0,1,1)} + P {X = (0,1,1,1)}

= p1p2p3p4 + p1p2p3(1 − p4) + p1p2(1 − p3)p4

+ p1(1 − p2)p3p4 + (1 − p1)p2p3p4

= p1p2p3 + p1p2p4 + p1p3p4 + p2p3p4 − 3p1p2p3p4 �

Example 9.15 (A Five-Component System) Consider a five-component sys-
tem that functions if and only if component 1, component 2, and at least one of
the remaining components function. Its reliability function is given by

r(p) = P {X1 = 1,X2 = 1,max(X3,X4,X5) = 1}
= P {X1 = 1}P {X2 = 1}P {max(X3,X4,X5) = 1}
= p1p2[1 − (1 − p3)(1 − p4)(1 − p5)] �

Since φ(X) is a 0–1 (that is, a Bernoulli) random variable, we may also com-
pute r(p) by taking its expectation. That is,

r(p) = P {φ(X) = 1}
= E[φ(X)]

Example 9.16 (A Four-Component System) A four-component system that
functions when both components 1, 4, and at least one of the other components
function has its structure function given by

φ(x) = x1x4 max(x2, x3)

Hence,

r(p) = E[φ(X)]
= E[X1X4(1 − (1 − X2)(1 − X3))]
= p1p4[1 − (1 − p2)(1 − p3)] �

An important and intuitive property of the reliability function r(p) is given by
the following proposition.

Proposition 9.1 If r(p) is the reliability function of a system of independent
components, then r(p) is an increasing function of p.
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Proof By conditioning on Xi and using the independence of the components,
we obtain

r(p) = E[φ(X)]
= piE[φ(X) | Xi = 1] + (1 − pi)E[φ(X) | Xi = 0]
= piE[φ(1i ,X)] + (1 − pi)E[φ(0i ,X)]

where

(1i ,X) = (X1, . . . ,Xi−1,1,Xi+1, . . . ,Xn),

(0i ,X) = (X1, . . . ,Xi−1,0,Xi+1, . . . ,Xn)

Thus,

r(p) = piE[φ(1i ,X) − φ(0i ,X)] + E[φ(0i ,X)]
However, since φ is an increasing function, it follows that

E[φ(1i ,X) − φ(0i ,X)] � 0

and so the preceding is increasing in pi for all i. Hence the result is proven. �

Let us now consider the following situation: A system consisting of n different
components is to be built from a stockpile containing exactly two of each type of
component. How should we use the stockpile so as to maximize our probability
of attaining a functioning system? In particular, should we build two separate
systems, in which case the probability of attaining a functioning one would be

P {at least one of the two systems function}
= 1 − P {neither of the systems function}
= 1 − [(1 − r(p))(1 − r(p′))]

where pi(p
′
i ) is the probability that the first (second) number i component func-

tions; or should we build a single system whose ith component functions if at least
one of the number i components functions? In this latter case, the probability that
the system will function equals

r[1 − (1 − p)(1 − p′)]
since 1 − (1 − pi)(1 − p′

i ) equals the probability that the ith component in the
single system will function.∗ We now show that replication at the component level
is more effective than replication at the system level.

∗Notation: If x = (x1, . . . , xn), y = (y1, . . . , yn), then xy = (x1y1, . . . , xnyn). Also, max(x,y) =
(max(x1, y1), . . . ,max(xn, yn)) and min(x,y) = (min(x1, y1), . . . ,min(xn, yn)).
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Theorem 9.1 For any reliability function r and vectors p,p′,

r[1 − (1 − p)(1 − p′)] � 1 − [1 − r(p)][1 − r(p′)]

Proof Let X1, . . . ,Xn,X
′
1, . . . ,X

′
n be mutually independent 0–1 random vari-

ables with

pi = P {Xi = 1}, p′
i = P {X′

i = 1}
Since P {max(Xi,X

′
i ) = 1} = 1 − (1 − pi)(1 − p′

i ), it follows that

r[1 − (1 − p)(1 − p′)] = E(φ[max(X,X′)])

However, by the monotonicity of φ, we have that φ[max(X,X′)] is greater than or
equal to both φ(X) and (X′) and hence is at least as large as max[φ(X),φ(X′)].
Hence, from the preceding we have that

r[1 − (1 − p)(1 − p′)] � E[max(φ(X),φ(X′))]
= P {max[φ(X),φ(X′)] = 1}
= 1 − P {φ(X) = 0, φ(X′) = 0}
= 1 − [1 − r(p)][1 − r(p′)]

where the first equality follows from the fact that max[φ(X),φ(X′)] is a 0–1 ran-
dom variable and hence its expectation equals the probability that it equals 1. �

As an illustration of the preceding theorem, suppose that we want to build a
series system of two different types of components from a stockpile consisting
of two of each of the kinds of components. Suppose that the reliability of each
component is 1

2 . If we use the stockpile to build two separate systems, then the
probability of attaining a working system is

1 − ( 3
4

)2 = 7
16

while if we build a single system, replicating components, then the probability of
attaining a working system is

( 3
4

)2 = 9
16

Hence, replicating components leads to a higher reliability than replicating sys-
tems (as, of course, it must by Theorem 9.1).
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9.4. Bounds on the Reliability Function

Consider the bridge system of Example 9.8, which is represented by Figure 9.11.
Using the minimal path representation, we have that

φ(x) = 1 − (1 − x1x4)(1 − x1x3x5)(1 − x2x5)(1 − x2x3x4)

Hence,

r(p) = 1 − E[(1 − X1X4)(1 − X1X3X5)(1 − X2X5)(1 − X2X3X4)]

Figure 9.11.

However, since the minimal path sets overlap (that is, they have components in
common), the random variables (1 −X1X4), (1 −X1X3X5), (1 −X2X5), and
(1−X2X3X4) are not independent, and thus the expected value of their product is
not equal to the product of their expected values. Therefore, in order to compute
r(p), we must first multiply the four random variables and then take the expected
value. Doing so, using that X2

i = Xi , we obtain

r(p) = E[X1X4 + X2X5 + X1X3X5 + X2X3X4 − X1X2X3X4

− X1X2X3X5 − X1X2X4X5 − X1X3X4X5 − X2X3X4X5

+ 2X1X2X3X4X5]
= p1p4 + p2p5 + p1p3p5 + p2p3p4 − p1p2p3p4 − p1p2p3p5

− p1p2p4p5 − p1p3p4p5 − p2p3p4p5 + 2p1p2p3p4p5

As can be seen by the preceding example, it is often quite tedious to evaluate
r(p), and thus it would be useful if we had a simple way of obtaining bounds. We
now consider two methods for this.
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9.4.1. Method of Inclusion and Exclusion

The following is a well-known formula for the probability of the union of the
events E1,E2, . . . ,En:

P

(
n⋃

i=1

Ei

)

=
n∑

i=1

P(Ei) −
∑∑

i < j

P (EiEj ) +
∑∑∑

i < j < k

P (EiEjEk)

− · · · + (−1)n+1P(E1E2 · · ·En) (9.3)

A result, not as well known, is the following set of inequalities:

P

(
n⋃

1

Ei

)

�
n∑

i=1

P(Ei),

P

(
n⋃

1

Ei

)

�
∑

i

P (Ei) −
∑

i<j

P (EiEj ),

P

(
n⋃

1

Ei

)

�
∑

i

P (Ei) −
∑∑

i < j

P (EiEj ) +
∑∑∑

i < j < k

P (EiEjEk),

� · · ·
� · · · (9.4)

where the inequality always changes direction as we add an additional term of the
expansion of P(

⋃n
i=1Ei).

The equality (9.3) is usually proven by induction on the number of events.
However, let us now present another approach that will not only prove Equation
(9.3) but also establish the inequalities (9.4).

To begin, define the indicator variables Ij , j = 1, . . . , n, by

Ij =
{

1, if Ej occurs
0, otherwise

Letting

N =
n∑

j=1

Ij

then N denotes the number of the Ej ,1 � j � n, that occur. Also, let

I =
{

1, if N > 0
0, if N = 0
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Then, as

1 − I = (1 − 1)N

we obtain, upon application of the binomial theorem, that

1 − I =
N∑

i=0

(
N

i

)

(−1)i

or

I = N −
(

N

2

)

+
(

N

3

)

− · · · ±
(

N

N

)

(9.5)

We now make use of the following combinatorial identity (which is easily estab-
lished by induction on i):

(
n

i

)

−
(

n

i + 1

)

+ · · · ±
(

n

n

)

=
(

n − 1

i − 1

)

� 0, i � n

The preceding thus implies that

(
N

i

)

−
(

N

i + 1

)

+ · · · ±
(

N

N

)

� 0 (9.6)

From Equations (9.5) and (9.6) we obtain

I � N, by letting i = 2 in (9.6)

I � N −
(

N

2

)

, by letting i = 3 in (9.6)

I � N −
(

N

2

)

+
(

N

3

)

,

...

(9.7)

and so on. Now, since N � n and
(
m
i

)= 0 whenever i > m, we can rewrite Equa-
tion (9.5) as

I =
n∑

i=1

(
N

i

)

(−1)i+1 (9.8)
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The equality (9.3) and inequalities (9.4) now follow upon taking expectations of
(9.7) and (9.8). This is the case since

E[I ] = P {N > 0} = P {at least one of the Ej occurs} = P

(
n⋃

1

Ej

)

,

E[N ] = E

[
n∑

j=1

Ij

]

=
n∑

j=1

P(Ej )

Also,

E

[(
N

2

)]

= E[number of pairs of the Ej that occur]

= E

[∑∑

i < j

IiIj

]

=
∑∑

i < j

P (EiEj )

and, in general

E

[(
N

i

)]

= E[number of sets of size i that occur]

= E

[ ∑∑

j1< j2<···< ji

Ij1Ij2 · · · Iji

]

=
∑∑

j1 < j2<···<ji

P (Ej1Ej2 · · ·Eji
)

The bounds expressed in Equation (9.4) are commonly called the inclusion–
exclusion bounds. To apply them in order to obtain bounds on the reliability func-
tion, let A1A2, . . . ,As denote the minimal path sets of a given structure φ, and
define the events E1,E2, . . . ,Es by

Ei = {all components in Ai function}
Now, since the system functions if and only if at least one of the events Ei occur,
we have

r(p) = P

(
s⋃

1

Ei

)
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Applying (9.4) yields the desired bounds on r(p). The terms in the summation are
computed thusly:

P(Ei) =
∏

l∈Ai

pl,

P (EiEj ) =
∏

l∈Ai∪Aj

pl,

P (EiEjEk) =
∏

l∈Ai∪Aj ∪Ak

pl

and so forth for intersections of more than three of the events. (The preceding
follows since, for instance, in order for the event EiEj to occur, all of the compo-
nents in Ai and all of them in Aj must function; or, in other words, all components
in Ai ∪ Aj must function.)

When the pis are small the probabilities of the intersection of many of the
events Ei should be quite small and the convergence should be relatively rapid.

Example 9.17 Consider the bridge structure with identical component
probabilities. That is, take pi to equal p for all i. Letting A1 = {1,4},A2 =
{1,3,5},A3 = {2,5}, and A4 = {2,3,4} denote the minimal path sets, we have
that

P(E1) = P(E3) = p2,

P (E2) = P(E4) = p3

Also, because exactly five of the six = (4
2

)
unions of Ai and Aj contain four

components (the exception being A2 ∪ A4 which contains all five components),
we have

P(E1E2) = P(E1E3) = P(E1E4) = P(E2E3) = P(E3E4) = p4,

P (E2E4) = p5

Hence, the first two inclusion–exclusion bounds yield

2(p2 + p3) − 5p4 − p5 � r(p) � 2(p2 + p3)

where r(p) = r(p,p,p,p,p). For instance, when p = 0.2, we have

0.08768 � r(0.2) � 0.09600

and, when p = 0.01,

0.02149 � r(0.1) � 0.02200 �
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Just as we can define events in terms of the minimal path sets whose union is the
event that the system functions, so can we define events in terms of the minimal
cut sets whose union is the event that the system fails. Let C1,C2, . . . ,Cr denote
the minimal cut sets and define the events F1, . . . ,Fr by

Fi = {all components in Ci are failed}
Now, because the system is failed if and only if all of the components of at least
one minimal cut set are failed, we have that

1 − r(p) = P

(
r⋃

1

Fi

)

,

1 − r(p) �
∑

i

P (Fi),

1 − r(p) �
∑

i

P (Fi) −
∑∑

i < j

P (FiFj ),

1 − r(p) �
∑

i

P (Fi) −
∑∑

i < j

P (FiFj ) +
∑∑∑

i < j < k

P (FiFjFk),

and so on. As

P(Fi) =
∏

l∈Ci

(1 − pl),

P (FiFj ) =
∏

l∈Ci∪Cj

(1 − pl),

P (FiFjFk) =
∏

l∈Ci∪Cj ∪Ck

(1 − pl)

the convergence should be relatively rapid when the pis are large.

Example 9.18 (A Random Graph) Let us recall from Section 3.6.2 that a
graph consists of a set N of nodes and a set A of pairs of nodes, called arcs. For
any two nodes i and j we say that the sequence of arcs (i, i1)(i1, i2), . . . , (ik, j)

constitutes an i–j path. If there is an i–j path between all the
(
n
2

)
pairs of nodes

i and j , i �= j , then the graph is said to be connected. If we think of the nodes of
a graph as representing geographical locations and the arcs as representing direct
communication links between the nodes, then the graph will be connected if any
two nodes can communicate with each other—if not directly, then at least through
the use of intermediary nodes.
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A graph can always be subdivided into nonoverlapping connected subgraphs
called components. For instance, the graph in Figure 9.12 with nodes N =
{1,2,3,4,5,6} and arcs A = {(1,2), (1,3), (2,3), (4,5)} consists of three com-
ponents (a graph consisting of a single node is considered to be connected).

Figure 9.12.

Consider now the random graph having nodes 1,2, . . . , n which is such that
there is an arc from node i to node j with probability Pij . Assume in addition
that the occurrences of these arcs constitute independent events. That is, assume
that the

(
n
2

)
random variables Xij , i �= j , are independent where

Xij =
{

1, if (i, j) is an arc
0, otherwise

We are interested in the probability that this graph will be connected.
We can think of the preceding as being a reliability system of

(
n
2

)
components—

each component corresponding to a potential arc. The component is said to work
if the corresponding arc is indeed an arc of the network, and the system is said
to work if the corresponding graph is connected. As the addition of an arc to
a connected graph cannot disconnect the graph, it follows that the structure so
defined is monotone.

Let us start by determining the minimal path and minimal cut sets. It is easy
to see that a graph will not be connected if and only if the sets of arcs can be
partitioned into two nonempty subsets X and Xc in such a way that there is no arc
connecting a node from X with one from Xc. For instance, if there are six nodes
and if there are no arcs connecting any of the nodes 1, 2, 3, 4 with either 5 or 6,
then clearly the graph will not be connected. Thus, we see that any partition of the
nodes into two nonempty subsets X and Xc corresponds to the minimal cut set
defined by

{(i, j) : i ∈ X,j ∈ Xc}
As there are 2n−1 − 1 such partitions (there are 2n − 2 ways of choosing a non-
empty proper subset X and, as the partition X,Xc is the same as Xc,X, we must
divide by 2) there are therefore this number of minimal cut sets.
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To determine the minimal path sets, we must characterize a minimal set of arcs
which results in a connected graph. Now the graph in Figure 9.13 is connected
but it would remain connected if any one of the arcs from the cycle shown in
Figure 9.14 were removed. In fact it is not difficult to see that the minimal path
sets are exactly those sets of arcs which result in a graph being connected but
not having any cycles (a cycle being a path from a node to itself). Such sets of
arcs are called spanning trees (Figure 9.15). It is easily verified that any spanning
tree contains exactly n − 1 arcs, and it is a famous result in graph theory (due to
Cayley) that there are exactly nn−2 of these minimal path sets.

Figure 9.13. Figure 9.14.

Figure 9.15. Two spanning trees (minimal path sets) when n = 4.

Because of the large number of minimal path and minimal cut sets (nn−2 and
2n−1 − 1, respectively), it is difficult to obtain any useful bounds without making
further restrictions. So, let us assume that all the Pij equal the common value p.
That is, we suppose that each of the possible arcs exists, independently, with the
same probability p. We shall start by deriving a recursive formula for the proba-
bility that the graph is connected, which is computationally useful when n is not
too large, and then we shall present an asymptotic formula for this probability
when n is large.

Let us denote by Pn the probability that the random graph having n nodes is
connected. To derive a recursive formula for Pn we first concentrate attention on
a single node—say, node 1—and try to determine the probability that node 1 will
be part of a component of size k in the resultant graph. Now for given set of k − 1
other nodes these nodes along with node 1 will form a component if

(i) there are no arcs connecting any of these k nodes with any of the remaining
n − k nodes;

(ii) the random graph, restricted to these k nodes [and
(
k
2

)
potential arcs—each

independently appearing with probability p] is connected.
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The probability that (i) and (ii) both occur is

qk(n−k)Pk

where q = 1 − p. As there are
(
n−1
k−1

)
ways of choosing k − 1 other nodes (to form

along with node 1 a component of size k) we see that

P {node 1 is part of a component of size k}
=
(

n − 1

k − 1

)

qk(n−k)Pk, k = 1,2, . . . , n

Now since the sum of the foregoing probabilities as k ranges from 1 through n

clearly must equal 1, and as the graph is connected if and only if node 1 is part of
a component of size n, we see that

Pn = 1 −
n−1∑

k=1

(
n − 1

k − 1

)

qk(n−k)Pk, n = 2,3, . . . (9.9)

Starting with P1 = 1,P2 = p, Equation (9.9) can be used to determine Pn recur-
sively when n is not too large. It is particularly suited for numerical computation.

To determine an asymptotic formula for Pn when n is large, first note from
Equation (9.9) that since Pk � 1, we have

1 − Pn �
n−1∑

k=1

(
n − 1

k − 1

)

qk(n−k)

As it can be shown that for q < 1 and n sufficiently large

n−1∑

k=1

(
n − 1

k − 1

)

qk(n−k) � (n + 1)qn−1

we have that for n large

1 − Pn � (n + 1)qn−1 (9.10)

To obtain a bound in the other direction, we concentrate our attention on a partic-
ular type of minimal cut set—namely, those that separate one node from all others
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in the graph. Specifically, define the minimal cut set Ci as

Ci = {(i, j) : j �= i}
and define Fi to be the event that all arcs in Ci are not working (and thus, node i

is isolated from the other nodes). Now,

1 − Pn = P(graph is not connected) � P

(⋃

i

Fi

)

since, if any of the events Fi occur, then the graph will be disconnected. By the
inclusion–exclusion bounds, we have that

P

(⋃

i

Fi

)

�
∑

i

P (Fi) −
∑∑

i<j

P (FiFj )

As P(Fi) and P(FiFj ) are just the respective probabilities that a given set of n−1
arcs and that a given set of 2n − 3 arcs are not in the graph (why?), it follows that

P(Fi) = qn−1,

P (FiFj ) = q2n−3, i �= j

and so

1 − Pn � nqn−1 −
(

n

2

)

q2n−3

Combining this with Equation (9.10) yields that for n sufficiently large

nqn−1 −
(

n

2

)

q2n−3 � 1 − Pn � (n + 1)qn−1

and as
(

n

2

)
q2n−3

nqn−1
→ 0

as n → ∞, we see that, for large n,

1 − Pn ≈ nqn−1

Thus, for instance, when n = 20 and p = 1
2 , the probability that the random graph

will be connected is approximately given by

P20 ≈ 1 − 20
( 1

2

)19 = 0.99998 �
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9.4.2. Second Method for Obtaining Bounds on r(p)

Our second approach to obtaining bounds on r(p) is based on expressing the
desired probability as the probability of the intersection of events. To do so, let
A1,A2, . . . ,As denote the minimal path sets as before, and define the events,
Di, i = 1, . . . by

Di = {at least one component in Ai has failed}
Now since the system will have failed if and only if at least one component in
each of the minimal path sets has failed we have that

1 − r(p) = P(D1D2 · · ·Ds)

= P(D1)P (D2 | D1) · · ·P(Ds | D1D2 · · ·Ds−1) (9.11)

Now it is quite intuitive that the information that at least one component of A1 is
down can only increase the probability that at least one component of A2 is down
(or else leave the probability unchanged if A1 and A2 do not overlap). Hence,
intuitively

P(D2 | D1) � P(D2)

To prove this inequality, we write

P(D2) = P(D2 | D1)P (D1) + P(D2 | Dc
1)(1 − P(D1)) (9.12)

and note that

P(D2 | Dc
1) = P {at least one failed in A2 | all functioning in A1}

= 1 −
∏

j∈A2
j �∈A1

pj

� 1 −
∏

j∈A2

pj

= P(D2)

Hence, from Equation (9.12) we see that

P(D2) � P(D2 | D1)P (D1) + P(D2)(1 − P(D1))

or

P(D2 | D1) � P(D2)
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By the same reasoning, it also follows that

P(Di | D1 · · ·Di−1) � P(Di)

and so from Equation (9.11) we have

1 − r(p) �
∏

i

P (Di)

or, equivalently,

r(p) � 1 −
∏

i

(

1 −
∏

j∈Ai

pj

)

To obtain a bound in the other direction, let C1, . . . ,Cr denote the minimal cut
sets and define the events U1, . . . ,Ur by

Ui = {at least one component in Ci is functioning}

Then, since the system will function if and only if all of the events Ui occur, we
have

r(p) = P(U1U2 · · ·Ur)

= P(U1)P (U2 | U1) · · ·P(Ur | U1 · · · Ur−1)

�
∏

i

P (Ui)

where the last inequality is established in exactly the same manner as for the Di .
Hence,

r(p) �
∏

i

[

1 −
∏

j∈Ci

(1 − pj )

]

and we thus have the following bounds for the reliability function

∏

i

[

1 −
∏

j∈Ci

(1 − pj )

]

� r(p) � 1 −
∏

i

(

1 −
∏

j∈Ai

pj

)

(9.13)

It is to be expected that the upper bound should be close to the actual r(p) if there
is not too much overlap in the minimal path sets, and the lower bound to be close
if there is not too much overlap in the minimal cut sets.



9.5. System Life as a Function of Component Lives 595

Example 9.19 For the three-out-of-four system the minimal path sets are
A1 = {1,2,3}, A2 = {1,2,4}, A3 = {1,3,4}, and A4 = {2,3,4}; and the mini-
mal cut sets are C1 = {1,2}, C2 = {1,3}, C3 = {1,4}, C4 = {2,3}, C5 = {2,4},
and C6 = {3,4}. Hence, by Equation (9.13) we have

(1 − q1q2)(1 − q1q3)(1 − q1q4)(1 − q2q3)(1 − q2q4)(1 − q3q4)

� r(p) � 1 − (1 − p1p2p3)(1 − p1p2p4)(1 − p1p3p4)(1 − p2p3p4)

where qi ≡ 1 − pi . For instance, if pi = 1
2 for all i, then the preceding yields that

0.18 � r
( 1

2 , . . . , 1
2

)
� 0.59

The exact value for this structure is easily computed to be

r
( 1

2 , . . . , 1
2

)= 5
16 = 0.31 �

9.5. System Life as a Function of Component Lives

For a random variable having distribution function G, we define Ḡ(a) ≡ 1−G(a)

to be the probability that the random variable is greater than a.
Consider a system in which the ith component functions for a random length

of time having distribution Fi and then fails. Once failed it remains in that
state forever. Assuming that the individual component lifetimes are independent,
how can we express the distribution of system lifetime as a function of the sys-
tem reliability function r(p) and the individual component lifetime distributions
Fi, i = 1, . . . , n?

To answer this we first note that the system will function for a length of time t

or greater if and only if it is still functioning at time t . That is, letting F denote
the distribution of system lifetime, we have

F̄ (t) = P {system life > t}
= P {system is functioning at time t}

But, by the definition of r(p) we have that

P {system is functioning at time t} = r(P1(t), . . . ,Pn(t))

where

Pi(t) = P {component i is functioning at t}
= P {lifetime of i > t}
= F̄i(t)
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Hence we see that

F̄ (t) = r(F̄1(t), . . . , F̄n(t)) (9.14)

Example 9.20 In a series system, r(p) =∏n
1 pi and so from Equation (9.14)

F̄ (t) =
n∏

1

F̄i(t)

which is, of course, quite obvious since for a series system the system life is equal
to the minimum of the component lives and so will be greater than t if and only if
all component lives are greater than t . �

Example 9.21 In a parallel system r(p) = 1 −∏n
1(1 − pi) and so

F̄ (t) = 1 −
n∏

1

Fi(t)

The preceding is also easily derived by noting that, in the case of a parallel system,
the system life is equal to the maximum of the component lives. �

For a continuous distribution G, we define λ(t), the failure rate function of
G, by

λ(t) = g(t)

Ḡ(t)

where g(t) = d/dtG(t). In Section 5.2.2, it is shown that if G is the distribution of
the lifetime of an item, then λ(t) represents the probability intensity that a t-year-
old item will fail. We say that G is an increasing failure rate (IFR) distribution if
λ(t) is an increasing function of t . Similarly, we say that G is a decreasing failure
rate (DFR) distribution if λ(t) is a decreasing function of t .

Example 9.22 (The Weibull Distribution) A random variable is said to have
the Weibull distribution if its distribution is given, for some λ > 0, α > 0, by

G(t) = 1 − e−(λt)α , t � 0

The failure rate function for a Weibull distribution equals

λ(t) = e−(λt)αα(λt)α−1λ

e−(λt)α
= αλ(λt)α−1

Thus, the Weibull distribution is IFR when α � 1, and DFR when 0 < α � 1;
when α = 1,G(t) = 1 − e−λt , the exponential distribution, which is both IFR and
DFR. �
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Example 9.23 (The Gamma Distribution) A random variable is said to have
a gamma distribution if its density is given, for some λ > 0, α > 0, by

g(t) = λe−λt (λt)α−1

�(α)
for t � 0

where

�(α) ≡
∫ ∞

0
e−t tα−1 dt

For the gamma distribution,

1

λ(t)
= Ḡ(t)

g(t)
=
∫∞
t

λe−λx(λx)α−1dx

λe−λt (λt)α−1

=
∫ ∞

t

e−λ(x−t)

(
x

t

)α−1

dx

With the change of variables u = x − t , we obtain

1

λ(t)
=
∫ ∞

0
e−λu

(

1 + u

t

)α−1

du

Hence, G is IFR when α � 1 and is DFR when 0 < α � 1. �

Suppose that the lifetime distribution of each component in a monotone system
is IFR. Does this imply that the system lifetime is also IFR? To answer this, let
us at first suppose that each component has the same lifetime distribution, which
we denote by G. That is, Fi(t) = G(t), i = 1, . . . , n. To determine whether the
system lifetime is IFR, we must compute λF (t), the failure rate function of F .
Now, by definition,

λF (t) = (d/dt)F (t)

F̄ (t)

= (d/dt)[1 − r(Ḡ(t))]
r(Ḡ(t))

where

r(Ḡ(t)) ≡ r(Ḡ(t), . . . , Ḡ(t))
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Hence,

λF (t) = r ′(Ḡ(t))

r(Ḡ(t))
G′(t)

= Ḡ(t)r ′(Ḡ(t))

r(Ḡ(t))

G′(t)
Ḡ(t)

= λG(t)
pr ′(p)

r(p)

∣
∣
∣
∣
p=Ḡ(t)

(9.15)

Since Ḡ(t) is a decreasing function of t , it follows from Equation (9.15) that
if each component of a coherent system has the same IFR lifetime distribution,
then the distribution of system lifetime will be IFR if pr ′(p)/r(p) is a decreasing
function of p.

Example 9.24 (The k-out-of-n System with Identical Components) Consider
the k-out-of-n system which will function if and only if k or more components
function. When each component has the same probability p of functioning, the
number of functioning components will have a binomial distribution with pa-
rameters n and p. Hence,

r(p) =
n∑

i=k

(
n

i

)

pi(1 − p)n−i

which, by continual integration by parts, can be shown to be equal to

r(p) = n!
(k − 1)!(n − k)!

∫ p

0
xk−1(1 − x)n−kdx

Upon differentiation, we obtain

r ′(p) = n!
(k − 1)!(n − k)!p

k−1(1 − p)n−k

Therefore,

pr ′(p)

r(p)
=
[

r(p)

pr ′(p)

]−1

=
[

1

p

∫ p

0

(
x

p

)k−1( 1 − x

1 − p

)n−k

dx

]−1
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Letting y = x/p, yields

pr ′(p)

r(p)
=
[∫ 1

0
yk−1

(
1 − yp

1 − p

)n−k

dy

]−1

Since (1 − yp)/(1 − p) is increasing in p, it follows that pr ′(p)/r(p) is decreas-
ing in p. Thus, if a k-out-of-n system is composed of independent, like compo-
nents having an increasing failure rate, the system itself has an increasing failure
rate. �

It turns out, however, that for a k-out-of-n system, in which the independent
components have different IFR lifetime distributions, the system lifetime need not
be IFR. Consider the following example of a two-out-of-two (that is, a parallel)
system.

Example 9.25 (A Parallel System That Is Not IFR) The life distribution of
a parallel system of two independent components, the ith component having an
exponential distribution with mean 1/i, i = 1,2, is given by

F̄ (t) = 1 − (1 − e−t )(1 − e−2t )

= e−2t + e−t − e−3t

Therefore,

λ(t) = f (t)

F̄ (t)

= 2e−2t + e−t − 3e−3t

e−2t + e−t − e−3t

It easily follows upon differentiation, that the sign of λ′(t) is determined by e−5t −
e−3t + 3e−4t , which is positive for small values and negative for large values of t .
Therefore, λ(t) is initially strictly increasing, and then strictly decreasing. Hence,
F is not IFR. �

Remark The result of the preceding example is quite surprising at first glance.
To obtain a better feel for it we need the concept of a mixture of distribution
functions. The distribution function G is said to be a mixture of the distributions
G1 and G2 if for some p,0 < p < 1,

G(x) = pG1(x) + (1 − p)G2(x) (9.16)

Mixtures occur when we sample from a population made up of two distinct
groups. For example, suppose we have a stockpile of items of which the fraction p
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are type 1 and the fraction 1 − p are type 2. Suppose that the lifetime distribution
of type 1 items is G1 and of type 2 items is G2. If we choose an item at random
from the stockpile, then its life distribution is as given by Equation (9.16).

Consider now a mixture of two exponential distributions having rates λ1 and
λ2 where λ1 < λ2. We are interested in determining whether or not this mixture
distribution is IFR. To do so, we note that if the item selected has survived up to
time t , then its distribution of remaining life is still a mixture of the two exponen-
tial distributions. This is so since its remaining life will still be exponential with
rate λ1 if it is type 1 or with rate λ2 if it is a type 2 item. However, the proba-
bility that it is a type 1 item is no longer the (prior) probability p but is now a
conditional probability given that it has survived to time t . In fact, its probability
of being a type 1 is

P {type 1 | life > t} = P {type 1, life > t}
P {life > t}

= pe−λ1t

pe−λ1t + (1 − p)e−λ2t

As the preceding is increasing in t , it follows that the larger t is, the more likely
it is that the item in use is a type 1 (the better one, since λ1 < λ2). Hence, the
older the item is, the less likely it is to fail, and thus the mixture of exponentials
far from being IFR is, in fact, DFR.

Now, let us return to the parallel system of two exponential components having
respective rates λ1 and λ2. The lifetime of such a system can be expressed as the
sum of two independent random variables, namely,

system life = Exp(λ1 + λ2) +

⎧
⎪⎪⎨

⎪⎪⎩

Exp(λ1) with probability
λ2

λ1 + λ2

Exp(λ2) with probability
λ1

λ1 + λ2

The first random variable whose distribution is exponential with rate λ1 + λ2 rep-
resents the time until one of the components fails, and the second, which is a
mixture of exponentials, is the additional time until the other component fails.
(Why are these two random variables independent?)

Now, given that the system has survived a time t , it is very unlikely when t is
large that both components are still functioning, but instead it is far more likely
that one of the components has failed. Hence, for large t , the distribution of re-
maining life is basically a mixture of two exponentials—and so as t becomes even
larger its failure rate should decrease (as indeed occurs). �
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Recall that the failure rate function of a distribution F(t) having density f (t) =
F ′(t) is defined by

λ(t) = f (t)

1 − F(t)

By integrating both sides, we obtain

∫ t

0
λ(s) ds =

∫ t

0

f (s)

1 − F(s)
ds

= − log F̄ (t)

Hence,

F̄ (t) = e−�(t) (9.17)

where

�(t) =
∫ t

0
λ(s) ds

The function �(t) is called the hazard function of the distribution F .

Definition 9.1 A distribution F is said to have increasing failure on the av-
erage (IFRA) if

�(t)

t
=
∫ t

0 λ(s) ds

t
(9.18)

increases in t for t � 0.

In other words, Equation (9.18) states that the average failure rate up to time t

increases as t increases. It is not difficult to show that if F is IFR, then F is IFRA;
but the reverse need not be true.

Note that F is IFRA if �(s)/s � �(t)/t whenever 0 � s � t , which is equiva-
lent to

�(αt)

αt
� �(t)

t
for 0 � α � 1, all t � 0
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But by equation (9.17) we see that �(t) = − log F̄ (t), and so the preceding is
equivalent to

− log F̄ (αt) � −α log F̄ (t)

or equivalently

log F̄ (αt) � log F̄ α(t)

which, since log x is a monotone function of x, shows that F is IFRA if and only if

F̄ (αt) � F̄ α(t) for 0 � α � 1, all t � 0 (9.19)

For a vector p = (p1, . . . , pn) we define pα = (pα
1 , . . . , pα

n ). We shall need the
following proposition.

Proposition 9.2 Any reliability function r(p) satisfies

r(pα) � [r(p)]α, 0 � α � 1

Proof We prove this by induction on n, the number of components in the sys-
tem. If n = 1, then either r(p) ≡ 0, r(p) ≡ 1, or r(p) ≡ p. Hence, the proposition
follows in this case.

So assume that Proposition 9.2 is valid for all monotone systems of n− 1 com-
ponents and consider a system of n components having structure function φ. By
conditioning upon whether or not the nth component is functioning, we obtain

r(pα) = pα
n r(1n,pα) + (1 − pα

n )r(0n,pα) (9.20)

Now consider a system of components 1 through n − 1 having a structure
function φ1(x) = φ(1n,x). The reliability function for this system is given by
r1(p) = r(1n,p); hence, from the induction assumption (valid for all monotone
systems of n − 1 components), we have

r(1n,pα) � [r(1n,p)]α

Similarly, by considering the system of components 1 through n− 1 and structure
function φ0(x) = φ(0n,x), we obtain

r(0n,pα) � [r(0n,p)]α

Thus, from Equation (9.20), we obtain

r(pα) � pα
n [r(1n,p)]α + (1 − pα

n )[r(0n,p)]α
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which, by using the lemma to follow [with λ = pn, x = r(1n,p), y = r(0n,p)],
implies that

r(pα) � [pnr(1n,p) + (1 − pn)r(0n,p)]α
= [r(p)]α

which proves the result. �

Lemma 9.1 If 0 � α � 1,0 � λ � 1, then

h(y) = λαxα + (1 − λα)yα − (λx + (1 − λ)y)α � 0

for all 0 � y � x.

Proof The proof is left as an exercise. �

We are now ready to prove the following important theorem.

Theorem 9.2 For a monotone system of independent components, if each
component has an IFRA lifetime distribution, then the distribution of system life-
time is itself IFRA.

Proof The distribution of system lifetime F is given by

F̄ (αt) = r(F̄1(αt), . . . , F̄n(αt))

Hence, since r is a monotone function, and since each of the component distribu-
tions F̄i is IFRA, we obtain from Equation (9.19)

F̄ (αt) � r(F̄ α
1 (t), . . . , F̄ α

n (t))

� [r(F̄1(t), . . . , F̄n(t))]α
= F̄ α(t)

which by Equation (9.19) proves the theorem. The last inequality followed, of
course, from Proposition 9.2. �
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9.6. Expected System Lifetime

In this section, we show how the mean lifetime of a system can be determined, at
least in theory, from a knowledge of the reliability function r(p) and the compo-
nent lifetime distributions Fi, i = 1, . . . , n.

Since the system’s lifetime will be t or larger if and only if the system is still
functioning at time t , we have that

P {system life > t} = r
(
F̄(t)

)

where F̄(t) = (F̄1(t), . . . , F̄n(t)). Hence, by a well-known formula that states that
for any nonnegative random variable X,

E[X] =
∫ ∞

0
P {X > x}dx,

we see that∗

E[system life] =
∫ ∞

0
r
(
F̄(t)

)
dt (9.21)

Example 9.26 (A Series System of Uniformly Distributed Components)
Consider a series system of three independent components each of which func-
tions for an amount of time (in hours) uniformly distributed over (0,10). Hence,
r(p) = p1p2p3 and

Fi(t) =
{
t/10, 0 � t � 10
1, t > 10

i = 1,2,3

Therefore,

r
(
F̄(t)

)=

⎧
⎪⎨

⎪⎩

(
10 − t

10

)3

, 0 � t � 10

0, t > 10

∗That E[X] = ∫∞
0 P {X > x}dx can be shown as follows when X has density f :

∫ ∞
0

P {X > x}dx =
∫ ∞

0

∫ ∞
x

f (y)dy dx =
∫ ∞

0

∫ y

0
f (y)dx dy =

∫ ∞
0

yf (y)dy = E[X]
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and so from Equation (9.21) we obtain

E[system life] =
∫ 10

0

(
10 − t

10

)3

dt

= 10
∫ 1

0
y3 dy

= 5
2 �

Example 9.27 (A Two-out-of-Three System) Consider a two-out-of-three
system of independent components, in which each component’s lifetime is (in
months) uniformly distributed over (0,1). As was shown in Example 9.13, the
reliability of such a system is given by

r(p) = p1p2 + p1p3 + p2p3 − 2p1p2p3

Since

Fi(t) =
{
t, 0 � t � 1
1, t > 1

we see from Equation (9.21) that

E[system life] =
∫ 1

0
[3(1 − t)2 − 2(1 − t)3]dt

=
∫ 1

0
(3y2 − 2y3) dy

= 1 − 1
2

= 1
2 �

Example 9.28 (A Four-Component System) Consider the four-component
system that functions when components 1 and 2 and at least one of components 3
and 4 functions. Its structure function is given by

φ(x) = x1x2(x3 + x4 − x3x4)

and thus its reliability function equals

r(p) = p1p2(p3 + p4 − p3p4)
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Let us compute the mean system lifetime when the ith component is uniformly
distributed over (0, i), i = 1,2,3,4. Now,

F̄1(t) =
{

1 − t, 0 � t � 1
0, t > 1

F̄2(t) =
{

1 − t/2, 0 � t � 2
0, t > 2

F̄3(t) =
{

1 − t/3, 0 � t � 3
0, t > 3

F̄4(t) =
{

1 − t/4, 0 � t � 4
0, t > 4

Hence,

r
(
F̄(t)

)=
⎧
⎨

⎩

(1 − t)

(
2 − t

2

)[
3 − t

3
+ 4 − t

4
− (3 − t)(4 − t)

12

]

, 0 � t � 1

0, t > 1

Therefore,

E[system life] = 1

24

∫ 1

0
(1 − t)(2 − t)(12 − t2) dt

= 593

(24)(60)

≈ 0.41 �

We end this section by obtaining the mean lifetime of a k-out-of-n system of
independent identically distributed exponential components. If θ is the mean life-
time of each component, then

F̄i(t) = e−t/θ

Hence, since for a k-out-of-n system,

r(p,p, . . . ,p) =
n∑

i=k

(
n

i

)

pi(1 − p)n−i

we obtain from Equation (9.21)

E[system life] =
∫ ∞

0

n∑

i=k

(
n

i

)

(e−t/θ )i(1 − e−t/θ )n−idt
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Making the substitution

y = e−t/θ , dy = −1

θ
e−t/θ dt = −y

θ
dt

yields

E[system life] = θ

n∑

i=k

(
n

i

)∫ 1

0
yi−1(1 − y)n−idy

Now, it is not difficult to show that∗

∫ 1

0
yn(1 − y)mdy = m!n!

(m + n + 1)! (9.22)

Thus, the foregoing equals

E[system life] = θ

n∑

i=k

n!
(n − i)!i!

(i − 1)!(n − i)!
n!

= θ

n∑

i=k

1

i
(9.23)

Remark Equation (9.23) could have been proven directly by making use of
special properties of the exponential distribution. First note that the lifetime of a
k-out-of-n system can be written as T1 + · · · + Tn−k+1, where Ti represents the
time between the (i − 1)st and ith failure. This is true since T1 + · · · + Tn−k+1

equals the time at which the (n − k + 1)st component fails, which is also the first
time that the number of functioning components is less than k. Now, when all
n components are functioning, the rate at which failures occur is n/θ . That is,
T1 is exponentially distributed with mean θ/n. Similarly, since Ti represents the
time until the next failure when there are n − (i − 1) functioning components,

∗Let

C(n,m) =
∫ 1

0
yn(1 − y)mdy

Integration by parts yields that C(n,m) = [m/(n + 1)]C(n + 1,m − 1). Starting with C(n,0) = 1/

(n + 1), Equation (9.22) follows by mathematical induction.
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it follows that Ti is exponentially distributed with mean θ/(n− i + 1). Hence, the
mean system lifetime equals

E[T1 + · · · + Tn−k+1] = θ

[
1

n
+ · · · + 1

k

]

Note also that it follows, from the lack of memory of the exponential, that the
Ti, i = 1, . . . , n − k + 1, are independent random variables.

9.6.1. An Upper Bound on the Expected Life of a Parallel System

Consider a parallel system of n components, whose lifetimes are not necessarily
independent. The system lifetime can be expressed as

system life = max
i

Xi

where Xi is the lifetime of component i, i = 1, . . . , n. We can bound the expected
system lifetime by making use of the following inequality. Namely, for any con-
stant c

max
i

Xi � c +
n∑

i=1

(Xi − c)+ (9.24)

where x+, the positive part of x, is equal to x if x > 0 and is equal to 0 if x � 0.
The validity of inequality (9.24) is immediate since if maxXi < c then the left
side is equal to maxXi and the right side is equal to c. On the other hand, if
X(n) = maxXi > c then the right side is at least as large as c + (X(n) − c) = X(n).
It follows from inequality (9.24), upon taking expectations, that

E
[
max

i
Xi

]
� c +

n∑

i=1

E[(Xi − c)+] (9.25)

Now, (Xi − c)+ is a nonnegative random variable and so

E[(Xi − c)+] =
∫ ∞

0
P {(Xi − c)+ > x}dx

=
∫ ∞

0
P {Xi − c > x}dx

=
∫ ∞

c

P {Xi > y}dy
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Thus, we obtain

E
[
max

i
Xi

]
� c +

n∑

i=1

∫ ∞

c

P {Xi > y}dy (9.26)

Because the preceding is true for all c, it follows that we obtain the best bound
by letting c equal the value that minimizes the right side of the preceding. To
determine that value, differentiate the right side of the preceding and set the result
equal to 0, to obtain:

1 −
n∑

i=1

P {Xi > c} = 0

That is, the minimizing value of c is that value c∗ for which

n∑

i=1

P {Xi > c∗} = 1

Since
∑n

i=1 P {Xi > c} is a decreasing function of c, the value of c∗ can be easily
approximated and then utilized in inequality (9.26). Also, it is interesting to note
that c∗ is such that the expected number of the Xi that exceed c∗ is equal to 1
(see Exercise 32). That the optimal value of c has this property is interesting and
somewhat intuitive in as much as inequality 9.24 is an equality when exactly one
of the Xi exceeds c.

Example 9.29 Suppose the lifetime of component i is exponentially distrib-
uted with rate λi, i = 1, . . . , n. Then the minimizing value of c is such that

1 =
n∑

i=1

P {Xi > c∗} =
n∑

i=1

e−λic
∗

and the resulting bound of the mean system life is

E
[
max

i
Xi

]
� c∗ +

n∑

i=1

E[(Xi − c∗)+]

= c∗ +
n∑

i=1

(
E[(Xi − c∗)+ | Xi > c∗]P {Xi > c∗]

+ E[(Xi − c∗)+ | Xi � c∗]P {Xi � c∗])

= c∗ +
n∑

i=1

1

λi

e−λic
∗
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In the special case where all the rates are equal, say, λi = λ, i = 1, . . . , n, then

1 = ne−λc∗
or c∗ = 1

λ
log(n)

and the bound is

E
[
max

i
Xi

]
� 1

λ
(log(n) + 1)

That is, if X1, . . . ,Xn are identically distributed exponential random variables
with rate λ, then the preceding gives a bound on the expected value of their max-
imum. In the special case where these random variables are also independent, the
following exact expression, given by Equation (9.25), is not much less than the
preceding upper bound:

E
[
max

i
Xi

]
= 1

λ

n∑

i=1

1/i ≈ 1

λ

∫ n

1

1

x
dx ≈ 1

λ
log(n) �

9.7. Systems with Repair

Consider an n component system having reliability function r(p). Suppose that
component i functions for an exponentially distributed time with rate λi and then
fails; once failed it takes an exponential time with rate μi to be repaired, i =
1, . . . , n. All components act independently.

Let us suppose that all components are initially working, and let

A(t) = P {system is working at t}

A(t) is called the availability at time t . Since the components act independently,
A(t) can be expressed in terms of the reliability function as follows:

A(t) = r(A1(t), . . . ,An(t)) (9.27)

where

Ai(t) = P {component i is functioning at t}
Now the state of component i—either on or off—changes in accordance with a
two-state continuous time Markov chain. Hence, from the results of Example 6.12
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we have

Ai(t) = P00(t) = μi

μi + λi

+ λi

μi + λi

e−(λi+μi)t

Thus, we obtain

A(t) = r

(
μ

μ + λ
+ λ

μ + λ
e−(λ+μ)t

)

If we let t approach ∞, then we obtain the limiting availability—call it A—which
is given by

A = lim
t→∞A(t) = r

(
μ

λ + μ

)

Remarks (i) If the on and off distribution for component i are arbitrary con-
tinuous distributions with respective means 1/λi and 1/μi, i = 1, . . . , n, then it
follows from the theory of alternating renewal processes (see Section 7.5.1) that

Ai(t) → 1/λi

1/λi + 1/μi

= μi

μi + λi

and thus using the continuity of the reliability function, it follows from (9.27) that
the limiting availability is

A = lim
t→∞A(t) = r

(
μ

μ + λ

)

Hence, A depends only on the on and off distributions through their means.
(ii) It can be shown (using the theory of regenerative processes as presented in

Section 7.5) that A will also equal the long-run proportion of time that the system
will be functioning.

Example 9.30 For a series system, r(p) =∏n
i=1 pi and so

A(t) =
n∏

i=1

[
μi

μi + λi

+ λi

μi + λi

e−(λi+μi)t

]

and

A =
n∏

i=1

μi

μi + λi

�
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Example 9.31 For a parallel system, r(p) = 1 −∏n
i=1 (1 − pi) and thus

A(t) = 1 −
n∏

i=1

[
λi

μi + λi

(1 − e−(λi+μi)t )

]

and

A(t) = 1 −
n∏

i=1

λi

μi + λi

�

The preceding system will alternate between periods when it is up and periods
when it is down. Let us denote by Ui and Di, i � 1, the lengths of the ith up and
down period respectively. For instance in a two-out-of-three system, U1 will be
the time until two components are down; D1, the additional time until two are up;
U2 the additional time until two are down, and so on. Let

Ū = lim
n→∞

U1 + · · · + Un

n
,

D̄ = lim
n→∞

D1 + · · · + Dn

n

denote the average length of an up and down period respectively.∗
To determine Ū and D̄, note first that in the first n up–down cycles—that is,

in time
∑n

i=1(Ui + Di)—the system will be up for a time
∑n

i=1 Ui . Hence, the
proportion of time the system will be up in the first n up–down cycles is

U1 + · · · + Un

U1 + · · · + Un + D1 + · · · + Dn

=
∑n

i=1 Ui/n
∑n

i=1 Ui/n +∑n
i=1 Di/n

As n → ∞, this must converge to A, the long-run proportion of time the system
is up. Hence,

Ū

Ū + D̄
= A = r

(
μ

λ + μ

)

(9.28)

However, to solve for Ū and D̄ we need a second equation. To obtain one
consider the rate at which the system fails. As there will be n failures in time

∗It can be shown using the theory of regenerative processes that, with probability 1, the preceding
limits will exist and will be constants.
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∑n
i=1(Ui + Di), it follows that the rate at which the system fails is

rate at which system fails = lim
n→∞

n
∑n

i U1 +∑n
1 D1

= lim
n→∞

n
∑n

1 Ui/n +∑n
1 Di/n

= 1

Ū + D̄
(9.29)

That is, the foregoing yields the intuitive result that, on average, there is one failure
every Ū + D̄ time units. To utilize this, let us determine the rate at which a failure
of component i causes the system to go from up to down. Now, the system will
go from up to down when component i fails if the states of the other components
x1, . . . , xi−1, xi−1, . . . , xn are such that φ(1i ,x) = 1, φ(0i ,x) = 0. That is the
states of the other components must be such that

φ(1i ,x) − φ(0i ,x) = 1 (9.30)

Since component i will, on average, have one failure every 1/λi +1/μi time units,
it follows that the rate at which component i fails is equal to (1/λi + 1/μi)

−1 =
λiμi/(λi + μi). In addition, the states of the other components will be such that
(9.30) holds with probability

P {φ(1i ,X(∞)) − φ(0i ,X(∞)) = 1}
= E[φ(1i ,X(∞)) − φ(0i ,X(∞))] since φ(1i ,X(∞)) − φ(0i ,X(∞))

is a Bernoulli random variable

= r

(

1i ,
μ

λ + μ

)

− r

(

0i ,
μ

λ + μ

)

Hence, putting the preceding together we see that

rate at which component
i causes the system to fail

= λiμi

λi + μi

[

r

(

1i ,
μ

λ + μ

)

− r

(

0i ,
μ

λ + μ

)]

Summing this over all components i thus gives

rate at which system fails =
∑

i

λiμi

λi + μi

[

r

(

1i ,
μ

λ + μ

)

− r

(

0i ,
μ

λ + μ

)]

Finally, equating the preceding with (9.29) yields

1

Ū + D̄
=
∑

i

λiμi

λi + μi

[

r

(

1i ,
μ

λ + μ

)

− r

(

0i ,
μ

λ + μ

)]

(9.31)
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Solving (9.28) and (9.31), we obtain

Ū =
r

(
μ

λ + μ

)

n∑

i=1

λiμi

λi + μi

[

r

(

1i ,
μ

λ + μ

)

− r

(

0i ,
μ

λ + μ

)] , (9.32)

D̄ =

[

1 − r

(
μ

λ + μ

)]

Ū

r

(
μ

λ + μ

) (9.33)

Also, (9.31) yields the rate at which the system fails.

Remark In establishing the formulas for Ū and D̄, we did not make use of
the assumption of exponential on and off times and in fact, our derivation is valid
and Equations (9.32) and (9.33) hold whenever Ū and D̄ are well defined (a suf-
ficient condition is that all on and off distributions are continuous). The quantities
λi,μi, i = 1, . . . , n, will represent, respectively, the reciprocals of the mean life-
times and mean repair times.

Example 9.32 For a series system,

Ū =
∏

i

μi

μi + λi

∑
i

λiμi

λi + μi

∏
j �=i

μj

μj + λj

= 1
∑

i λi

,

D̄ =
1 −∏

i

μi

μi + λi
∏

i

μi

μi + λi

× 1
∑

i λi

whereas for a parallel system,

Ū =
1 −∏

i

λi

μi + λi

∑
i

λiμi

λi + μi

∏
j �=i

λj

μj + λj

=
1 −∏

i

λi

μi + λi

∏
j

λj

μj + λj

× 1
∑

i μi

,

D̄ =
∏

i

λi

μi + λi

1 −∏
i

λi

μi + λi

Ū = 1
∑

i μi



9.7. Systems with Repair 615

The preceding formulas hold for arbitrary continuous up and down distributions
with 1/λi and 1/μi denoting respectively the mean up and down times of compo-
nent i, i = 1, . . . , n. �

9.7.1. A Series Model with Suspended Animation

Consider a series consisting of n components, and suppose that whenever a com-
ponent (and thus the system) goes down, repair begins on that component and
each of the other components enters a state of suspended animation. That is, af-
ter the down component is repaired, the other components resume operation in
exactly the same condition as when the failure occurred. If two or more com-
ponents go down simultaneously, one of them is arbitrarily chosen as being the
failed component and repair on that component begins; the others that went down
at the same time are considered to be in a state of suspended animation, and they
will instantaneously go down when the repair is completed. We suppose that (not
counting any time in suspended animation) the distribution of time that compo-
nent i functions is Fi with mean ui , whereas its repair distribution is Gi with
mean di, i = 1, . . . , n.

To determine the long-run proportion of time this system is working, we reason
as follows. To begin, consider the time, call it T , at which the system has been
up for a time t . Now, when the system is up, the failure times of component i

constitute a renewal process with mean interarrival time ui . Therefore, it follows
that

number of failures of i in time T ≈ t

ui

As the average repair time of i is di , the preceding implies that

total repair time of i in time T ≈ tdi

ui

Therefore, in the period of time in which the system has been up for a time t , the
total system downtime has approximately been

t

n∑

i=1

di/ui

Hence, the proportion of time that the system has been up is approximately

t

t + t
∑n

i=1 di/ui
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Because this approximation should become exact as we let t become larger, it
follows that

proportion of time the system is up = 1

1 +∑
i di/ui

(9.34)

which also shows that

proportion of time the system is down = 1 − proportion of time the system is up

=
∑

i di/ui

1 +∑
i di/ui

Moreover, in the time interval from 0 to T , the proportion of the repair time that
has been devoted to component i is approximately

tdi/ui
∑

i tdi/ui

Thus, in the long run,

proportion of down time that is due to component i = di/ui
∑

i di/ui

Multiplying the preceding by the proportion of time the system is down gives

proportion of time component i is being repaired = di/ui

1 +∑
i di/ui

Also, since component j will be in suspended animation whenever any of the
other components is in repair, we see that

proportion of time component j is in suspended animation =
∑

i �=j di/ui

1 +∑
i di/ui

Another quantity of interest is the long-run rate at which the system fails. Since
component i fails at rate 1/ui when the system is up, and does not fail when the
system is down, it follows that

rate at which i fails = proportion of time system is up

ui

= 1/ui

1 +∑
i di/ui
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Since the system fails when any of its components fail, the preceding yields that

rate at which the system fails =
∑

i 1/ui

1 +∑
idi/ui

(9.35)

If we partition the time axis into periods when the system is up and those when
it is down, we can determine the average length of an up period by noting that if
U(t) is the total amount of time that the system is up in the interval [0, t], and if
N(t) is the number of failures by time t , then

average length of an up period = lim
t→∞

U(t)

N(t)

= lim
t→∞

U(t)/t

N(t)/t

= 1
∑

i 1/ui

where the final equality used Equations (9.34) and (9.35). Also, in a similar man-
ner it can be shown that

average length of a down period =
∑

i di/ui
∑

i 1/ui

(9.36)

Exercises

1. Prove that, for any structure function, φ,

φ(x) = xiφ(1i ,x) + (1 − xi)φ(0i ,x)

where

(1i ,x) = (x1, . . . , xi−1,1, xi+1, . . . , xn),

(0i ,x) = (x1, . . . , xi−1,0, xi+1, . . . , xn)

2. Show that

(a) if φ(0,0, . . . ,0) = 0 and φ(1,1, . . . ,1) = 1, then

minxi � φ(x) � maxxi



618 9 Reliability Theory

(b) φ(max(x,y)) � max(φ(x),φ(y))

(c) φ(min(x,y)) � min(φ(x),φ(y))

3. For any structure function, we define the dual structure φD by

φD(x) = 1 − φ(1 − x)

(a) Show that the dual of a parallel (series) system is a series (parallel) system.
(b) Show that the dual of a dual structure is the original structure.
(c) What is the dual of a k-out-of-n structure?
(d) Show that a minimal path (cut) set of the dual system is a minimal cut
(path) set of the original structure.

*4. Write the structure function corresponding to the following:

(a)

Figure 9.16.

(b)

Figure 9.17.

(c)

Figure 9.18.
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5. Find the minimal path and minimal cut sets for:

(a)

Figure 9.19.

(b)

Figure 9.20.

*6. The minimal path sets are {1, 2, 4}, {1, 3, 5}, and {5, 6}. Give the minimal
cut sets.

7. The minimal cut sets are {1, 2, 3}, {2, 3, 4}, and {3, 5}. What are the minimal
path sets?

8. Give the minimal path sets and the minimal cut sets for the structure given
by Figure 9.21.

9. Component i is said to be relevant to the system if for some state vector x,

φ(1i ,x) = 1, φ(0i ,x) = 0

Otherwise, it is said to be irrelevant.
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Figure 9.21.

(a) Explain in words what it means for a component to be irrelevant.
(b) Let A1, . . . ,As be the minimal path sets of a system, and let S denote the
set of components. Show that S = ⋃s

i=1 Ai if and only if all components are
relevant.
(c) Let C1, . . . ,Ck denote the minimal cut sets. Show that S =⋃k

i=1 Ci if and
only if all components are relevant.

10. Let ti denote the time of failure of the ith component; let τφ(t) denote the
time to failure of the system φ as a function of the vector t = (t1, . . . , tn). Show
that

max
1�j�s

min
i∈Aj

ti = τφ(t) = min
1�j�k

max
i∈Cj

ti

where C1, . . . ,Ck are the minimal cut sets, and A1, . . . ,As the minimal path sets.

11. Give the reliability function of the structure of Exercise 8.

*12. Give the minimal path sets and the reliability function for the structure in
Figure 9.22.

Figure 9.22.
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13. Let r(p) be the reliability function. Show that

r(p) = pir(1i ,p) + (1 − pi)r(0i ,p)

14. Compute the reliability function of the bridge system (see Figure 9.11) by
conditioning upon whether or not component 3 is working.

15. Compute upper and lower bounds of the reliability function (using Method 2)
for the systems given in Exercise 4, and compare them with the exact values when
pi ≡ 1

2 .

16. Compute the upper and lower bounds of r(p) using both methods for the

(a) two-out-of-three system and
(b) two-out-of-four system.
(c) Compare these bounds with the exact reliability when

(i) pi ≡ 0.5
(ii) pi ≡ 0.8

(iii) pi ≡ 0.2

*17. Let N be a nonnegative, integer-valued random variable. Show that

P {N > 0} � (E[N ])2

E[N2]
and explain how this inequality can be used to derive additional bounds on a
reliability function.

Hint:
E[N2] = E[N2 | N > 0]P {N > 0} (Why?)

� (E[N | N > 0])2P {N > 0} (Why?)

Now multiply both sides by P {N > 0}.
18. Consider a structure in which the minimal path sets are {1, 2, 3} and
{3, 4, 5}.

(a) What are the minimal cut sets?
(b) If the component lifetimes are independent uniform (0,1) random vari-
ables, determine the probability that the system life will be less than 1

2 .

19. Let X1,X2, . . . ,Xn denote independent and identically distributed random
variables and define the order statistics X(1), . . . ,X(n) by

X(i) ≡ ith smallest of X1, . . . ,Xn

Show that if the distribution of Xj is IFR, then so is the distribution of X(i).

Hint: Relate this to one of the examples of this chapter.
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20. Let F be a continuous distribution function. For some positive α, define the
distribution function G by

Ḡ(t) = (F̄ (t))α

Find the relationship between λG(t) and λF (t), the respective failure rate func-
tions of G and F .

21. Consider the following four structures:

(i) (ii)

Figure 9.23. Figure 9.24.

(iii) (iv)

Figure 9.25. Figure 9.26.

Let F1, F2, and F3 be the corresponding component failure distributions;
each of which is assumed to be IFR (increasing failure rate). Let F be the system
failure distribution. All components are independent.

(a) For which structures is F necessarily IFR if F1 = F2 = F3? Give reasons.
(b) For which structures is F necessarily IFR if F2 = F3? Give reasons.
(c) For which structures is F necessarily IFR if F1 �= F2 �= F3? Give reasons.

*22. Let X denote the lifetime of an item. Suppose the item has reached the age
of t . Let Xt denote its remaining life and define

F̄t (a) = P {Xt > a}

In words, F̄t (a) is the probability that a t-year old item survives an additional
time a. Show that
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(a) F̄t (a) = F̄ (t + a)/F̄ (t) where F is the distribution function of X.
(b) Another definition of IFR is to say that F is IFR if F̄t (a) decreases in t ,
for all a. Show that this definition is equivalent to the one given in the text when
F has a density.

23. Show that if each (independent) component of a series system has an IFR
distribution, then the system lifetime is itself IFR by

(a) showing that

λF (t) =
∑

i

λi(t)

where λF (t) is the failure rate function of the system; and λi(t) the failure rate
function of the lifetime of component i.
(b) using the definition of IFR given in Exercise 22.

24. Show that if F is IFR, then it is also IFRA, and show by counterexample
that the reverse is not true.

*25. We say that ζ is a p-percentile of the distribution F if F(ζ ) = p. Show that
if ζ is a p-percentile of the IFRA distribution F , then

F̄ (x) � e−θx, x � ζ

F̄ (x) � e−θx, x � ζ

where

θ = − log(1 − p)

ζ

26. Prove Lemma 9.3.

Hint: Let x = y + δ. Note that f (t) = tα is a concave function when 0 �
α � 1, and use the fact that for a concave function f (t +h)−f (t) is decreasing
in t .

27. Let r(p) = r(p,p, . . . ,p). Show that if r(p0) = p0, then

r(p) � p for p � p0
r(p) � p for p � p0

Hint: Use Proposition 9.2.

28. Find the mean lifetime of a series system of two components when the com-
ponent lifetimes are respectively uniform on (0,1) and uniform on (0,2). Repeat
for a parallel system.
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29. Show that the mean lifetime of a parallel system of two components is

1

μ1 + μ2
+ μ1

(μ1 + μ2)μ2
+ μ2

(μ1 + μ2)μ1

when the first component is exponentially distributed with mean 1/μ1 and the
second is exponential with mean 1/μ2.

*30. Compute the expected system lifetime of a three-out-of-four system when
the first two component lifetimes are uniform on (0,1) and the second two are
uniform on (0,2).

31. Show that the variance of the lifetime of a k-out-of-n system of components,
each of whose lifetimes is exponential with mean θ , is given by

θ2
n∑

i=k

1

i2

32. In Section 9.6.1 show that the expected number of Xi that exceed c∗ is equal
to 1.

33. Let Xi be an exponential random variable with mean 8 + 2i, for i = 1,2,3.
Use the results of Section 9.6.1 to obtain an upper bound on E[maxXi], and then
compare this with the exact result when the Xi are independent.

34. For the model of Section 9.7, compute for a k-out-of-n structure (i) the av-
erage up time, (ii) the average down time, and (iii) the system failure rate.

35. Prove the combinatorial identity
(

n − 1

i − 1

)

=
(

n

i

)

−
(

n

i + 1

)

+ · · · ±
(

n

n

)

, i � n

(a) by induction on i

(b) by a backwards induction argument on i—that is, prove it first for i = n,
then assume it for i = k and show that this implies that it is true for i = k − 1.

36. Verify Equation (9.36).
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Brownian Motion and
Stationary Processes

10
10.1. Brownian Motion

Let us start by considering the symmetric random walk, which in each time unit
is equally likely to take a unit step either to the left or to the right. That is, it is
a Markov chain with Pi,i+1 = 1

2 = Pi,i−1, i = 0,±1, . . . . Now suppose that we
speed up this process by taking smaller and smaller steps in smaller and smaller
time intervals. If we now go to the limit in the right manner what we obtain is
Brownian motion.

More precisely, suppose that each �t time unit we take a step of size �x either
to the left or the right with equal probabilities. If we let X(t) denote the position
at time t then

X(t) = �x(X1 + · · · + X[t/�t]) (10.1)

where

Xi =
{+1, if the ith step of length �x is to the right

−1, if it is to the left

and [t/�t] is the largest integer less than or equal to t/�t , and where the Xi are
assumed independent with

P {Xi = 1} = P {Xi = −1} = 1
2

As E[Xi] = 0, Var(Xi) = E[X2
i ] = 1, we see from Equation (10.1) that

E[X(t)] = 0,

Var(X(t)) = (�x)2
[

t

�t

]

(10.2)

We shall now let �x and �t go to 0. However, we must do it in a way such that
the resulting limiting process is nontrivial (for instance, if we let �x = �t and

625



626 10 Brownian Motion and Stationary Processes

let �t → 0, then from the preceding we see that E[X(t)] and Var(X(t)) would
both converge to 0 and thus X(t) would equal 0 with probability 1). If we let
�x = σ

√
�t for some positive constant σ then from Equation (10.2) we see that

as �t → 0

E[X(t)] = 0,

Var(X(t)) → σ 2t

We now list some intuitive properties of this limiting process obtained by taking
�x = σ

√
�t and then letting �t → 0. From Equation (10.1) and the central limit

theorem the following seems reasonable:

(i) X(t) is normal with mean 0 and variance σ 2t . In addition, because the
changes of value of the random walk in nonoverlapping time intervals are
independent, we have

(ii) {X(t), t � 0} has independent increments, in that for all t1 < t2 < · · · < tn

X(tn) − X(tn−1),X(tn−1) − X(tn−2), . . . ,X(t2) − X(t1),X(t1)

are independent. Finally, because the distribution of the change in position
of the random walk over any time interval depends only on the length of
that interval, it would appear that

(iii) {X(t), t � 0} has stationary increments, in that the distribution of
X(t + s) − X(t) does not depend on t . We are now ready for the fol-
lowing formal definition.

Definition 10.1 A stochastic process {X(t), t � 0} is said to be a Brownian
motion process if

(i) X(0) = 0;

(ii) {X(t), t � 0} has stationary and independent increments;

(iii) for every t > 0, X(t) is normally distributed with mean 0 and variance σ 2t .

The Brownian motion process, sometimes called the Wiener process, is one of
the most useful stochastic processes in applied probability theory. It originated in
physics as a description of Brownian motion. This phenomenon, named after the
English botanist Robert Brown who discovered it, is the motion exhibited by a
small particle which is totally immersed in a liquid or gas. Since then, the process
has been used beneficially in such areas as statistical testing of goodness of fit,
analyzing the price levels on the stock market, and quantum mechanics.

The first explanation of the phenomenon of Brownian motion was given by Ein-
stein in 1905. He showed that Brownian motion could be explained by assuming
that the immersed particle was continually being subjected to bombardment by
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the molecules of the surrounding medium. However, the preceding concise defi-
nition of this stochastic process underlying Brownian motion was given by Wiener
in a series of papers originating in 1918.

When σ = 1, the process is called standard Brownian motion. Because any
Brownian motion can be converted to the standard process by letting B(t) =
X(t)/σ we shall, unless otherwise stated, suppose throughout this chapter that
σ = 1.

The interpretation of Brownian motion as the limit of the random walks [Equa-
tion (10.1)] suggests that X(t) should be a continuous function of t . This turns
out to be the case, and it may be proven that, with probability 1, X(t) is indeed a
continuous function of t . This fact is quite deep, and no proof shall be attempted.

As X(t) is normal with mean 0 and variance t , its density function is given by

ft (x) = 1√
2πt

e−x2/2t

To obtain the joint density function of X(t1),X(t2), . . . ,X(tn) for t1 < · · · < tn,
note first that the set of equalities

X(t1) = x1,

X(t2) = x2,

...

X(tn) = xn

is equivalent to

X(t1) = x1,

X(t2) − X(t1) = x2 − x1,

...

X(tn) − X(tn−1) = xn − xn−1

However, by the independent increment assumption it follows that X(t1),
X(t2) − X(t1), . . . ,X(tn) − X(tn−1), are independent and, by the stationary in-
crement assumption, that X(tk) − X(tk−1) is normal with mean 0 and vari-
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ance tk − tk−1. Hence, the joint density of X(t1), . . . ,X(tn) is given by

f (x1, x2, . . . , xn) = ft1(x1)ft2−t1(x2 − x1) · · ·ftn−tn−1(xn − xn−1)

=
exp

{

−1

2

[
x2

1

t1
+ (x2 − x1)

2

t2 − t1
+ · · · + (xn − xn−1)

2

tn − tn−1

]}

(2π)n/2[t1(t2 − t1) · · · (tn − tn−1)]1/2
(10.3)

From this equation, we can compute in principle any desired probabilities. For
instance, suppose we require the conditional distribution of X(s) given that
X(t) = B where s < t . The conditional density is

fs|t (x|B) = fs(x)ft−s(B − x)

ft (B)

= K1 exp{−x2/2s − (B − x)2/2(t − s)}

= K2 exp

{

−x2
(

1

2s
+ 1

2(t − s)

)

+ Bx

t − s

}

= K2 exp

{

− t

2s(t − s)

(

x2 − 2
sB

t
x

)}

= K3 exp

{

− (x − Bs/t)2

2s(t − s)/t

}

where K1, K2, and K3 do not depend on x. Hence, we see from the preceding
that the conditional distribution of X(s) given that X(t) = B is, for s < t , normal
with mean and variance given by

E[X(s)|X(t) = B] = s

t
B,

Var[X(s)|X(t) = B] = s

t
(t − s)

(10.4)

Example 10.1 In a bicycle race between two competitors, let Y(t) denote the
amount of time (in seconds) by which the racer that started in the inside position
is ahead when 100t percent of the race has been completed, and suppose that
{Y(t), 0 � t � 1} can be effectively modeled as a Brownian motion process with
variance parameter σ 2.

(a) If the inside racer is leading by σ seconds at the midpoint of the race, what
is the probability that she is the winner?
(b) If the inside racer wins the race by a margin of σ seconds, what is the
probability that she was ahead at the midpoint?
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Solution:
(a) P {Y(1) > 0|Y(1/2) = σ }

= P {Y(1) − Y(1/2) > −σ |Y(1/2) = σ }
= P {Y(1) − Y(1/2) > −σ } by independent increments

= P {Y(1/2) > −σ } by stationary increments

= P

{
Y(1/2)

σ/
√

2
> −√

2

}

= �(
√

2)

≈ 0.9213

where �(x) = P {N(0,1) � x} is the standard normal distribution function.
(b) Because we must compute P {Y(1/2) > 0|Y(1) = σ }, let us first deter-
mine the conditional distribution of Y(s) given that Y(t) = C, when s < t .
Now, since {X(t), t � 0} is standard Brownian motion when X(t) = Y(t)/σ ,
we obtain from Equation (10.4) that the conditional distribution of X(s),
given that X(t) = C/σ , is normal with mean sC/tσ and variance s(t − s)/t .
Hence, the conditional distribution of Y(s) = σX(s) given that Y(t) = C is
normal with mean sC/t and variance σ 2s(t − s)/t . Hence,

P {Y(1/2) > 0|Y(1) = σ } = P {N(σ/2, σ 2/4) > 0}
= �(1)

≈ 0.8413 �

10.2. Hitting Times, Maximum Variable, and the
Gambler’s Ruin Problem

Let Ta denote the first time the Brownian motion process hits a. When a > 0 we
will compute P {Ta � t} by considering P {X(t) � a} and conditioning on whether
or not Ta � t . This gives

P {X(t) � a} = P {X(t) � a|Ta � t}P {Ta � t}
+P {X(t) � a|Ta > t}P {Ta > t} (10.5)

Now if Ta � t , then the process hits a at some point in [0, t] and, by symmetry, it
is just as likely to be above a or below a at time t . That is

P {X(t) � a|Ta � t} = 1
2
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As the second right-hand term of Equation (10.5) is clearly equal to 0 (since,
by continuity, the process value cannot be greater than a without having yet hit
a), we see that

P {Ta � t} = 2P {X(t) � a}
= 2√

2πt

∫ ∞

a

e−x2/2t dx

= 2√
2π

∫ ∞

a/
√

t

e−y2/2 dy, a > 0 (10.6)

For a < 0, the distribution of Ta is, by symmetry, the same as that of T−a .
Hence, from Equation (10.6) we obtain

P {Ta � t} = 2√
2π

∫ ∞

|a|/√t

e−y2/2 dy (10.7)

Another random variable of interest is the maximum value the process attains
in [0, t]. Its distribution is obtained as follows: For a > 0

P
{

max
0�s�t

X(s) � a
}

= P {Ta � t} by continuity

= 2P {X(t) � a} from (10.6)

= 2√
2π

∫ ∞

a/
√

t

e−y2/2 dy

Let us now consider the probability that Brownian motion hits A before −B

where A > 0, B > 0. To compute this we shall make use of the interpretation
of Brownian motion as being a limit of the symmetric random walk. To start let
us recall from the results of the gambler’s ruin problem (see Section 4.5.1) that
the probability that the symmetric random walk goes up A before going down
B when each step is equally likely to be either up or down a distance �x is [by
Equation (4.14) with N = (A+B)/�x, i = B/�x] equal to B�x/(A+B)�x =
B/(A + B).

Hence, upon letting �x → 0, we see that

P {up A before down B} = B

A + B
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10.3. Variations on Brownian Motion

10.3.1. Brownian Motion with Drift

We say that {X(t), t � 0} is a Brownian motion process with drift coefficient μ

and variance parameter σ 2 if

(i) X(0) = 0;

(ii) {X(t), t � 0} has stationary and independent increments;

(iii) X(t) is normally distributed with mean μt and variance tσ 2.

An equivalent definition is to let {B(t), t � 0} be standard Brownian motion
and then define

X(t) = σB(t) + μt

10.3.2. Geometric Brownian Motion

If {Y(t), t � 0} is a Brownian motion process with drift coefficient μ and variance
parameter σ 2, then the process {X(t), t � 0} defined by

X(t) = eY(t)

is called geometric Brownian motion.
For a geometric Brownian motion process {X(t)}, let us compute the expected

value of the process at time t given the history of the process up to time s. That
is, for s < t , consider E[X(t)|X(u), 0 � u � s]. Now,

E[X(t)|X(u), 0 � u � s] = E
[
eY(t)|Y(u), 0 � u � s

]

= E
[
eY(s)+Y(t)−Y(s)|Y(u), 0 � u � s

]

= eY(s)E
[
eY(t)−Y(s)|Y(u), 0 � u � s

]

= X(s)E
[
eY(t)−Y(s)

]

where the next to last equality follows from the fact that Y(s) is given, and the
last equality from the independent increment property of Brownian motion. Now,
the moment generating function of a normal random variable W is given by

E[eaW ] = eaE[W ]+a2 Var(W)/2
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Hence, since Y(t) − Y(s) is normal with mean μ(t − s) and variance (t − s)σ 2,
it follows by setting a = 1 that

E
[
eY(t)−Y(s)

]= eμ(t−s)+(t−s)σ 2/2

Thus, we obtain

E[X(t)|X(u), 0 � u � s] = X(s)e(t−s)(μ+σ 2/2) (10.8)

Geometric Brownian motion is useful in the modeling of stock prices over time
when you feel that the percentage changes are independent and identically distrib-
uted. For instance, suppose that Xn is the price of some stock at time n. Then, it
might be reasonable to suppose that Xn/Xn−1, n � 1, are independent and iden-
tically distributed. Let

Yn = Xn/Xn−1

and so

Xn = YnXn−1

Iterating this equality gives

Xn = YnYn−1Xn−2

= YnYn−1Yn−2Xn−3

...

= YnYn−1 · · ·Y1X0

Thus,

log(Xn) =
n∑

i=1

log(Yi) + log(X0)

Since log(Yi), i � 1 are independent and identically distributed, {log(Xn)} will,
when suitably normalized, approximately be Brownian motion with a drift, and
so {Xn} will be approximately geometric Brownian motion.

10.4. Pricing Stock Options

10.4.1. An Example in Options Pricing

In situations in which money is to be received or paid out in differing time periods,
we must take into account the time value of money. That is, to be given the amount
v a time t in the future is not worth as much as being given v immediately. The
reason for this is that if we were immediately given v, then it could be loaned out
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Figure 10.1.

with interest and so be worth more than v at time t . To take this into account, we
will suppose that the time 0 value, also called the present value, of the amount v

to be earned at time t is ve−αt . The quantity α is often called the discount factor.
In economic terms, the assumption of the discount function e−αt is equivalent to
the assumption that we can earn interest at a continuously compounded rate of
100α percent per unit time.

We will now consider a simple model for pricing an option to purchase a stock
at a future time at a fixed price.

Suppose the present price of a stock is $100 per unit share, and suppose we
know that after one time period it will be, in present value dollars, either $200 or
$50 (see Figure 10.1). It should be noted that the prices at time 1 are the present
value (or time 0) prices. That is, if the discount factor is α, then the actual possible
prices at time 1 are either 200eα or 50eα . To keep the notation simple, we will
suppose that all prices given are time 0 prices.

Suppose that for any y, at a cost of cy, you can purchase at time 0 the option
to buy y shares of the stock at time 1 at a (time 0) cost of $150 per share. Thus,
for instance, if you do purchase this option and the stock rises to $200, then you
would exercise the option at time 1 and realize a gain of $200 − 150 = $50 for
each of the y option units purchased. On the other hand, if the price at time 1 was
$50, then the option would be worthless at time 1. In addition, at a cost of 100x

you can purchase x units of the stock at time 0, and this will be worth either 200x

or 50x at time 1.
We will suppose that both x or y can be either positive or negative (or zero).

That is, you can either buy or sell both the stock and the option. For instance, if
x were negative then you would be selling −x shares of the stock, yielding you a
return of −100x, and you would then be responsible for buying −x shares of the
stock at time 1 at a cost of either $200 or $50 per share.

We are interested in determining the appropriate value of c, the unit cost of an
option. Specifically, we will show that unless c = 50/3 there will be a combination
of purchases that will always result in a positive gain.

To show this, suppose that at time 0 we

buy x units of stock, and

buy y units of options
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where x and y (which can be either positive or negative) are to be determined.
The value of our holding at time 1 depends on the price of the stock at that time;
and it is given by the following

value =
{

200x + 50y, if price is 200

50x, if price is 50

The preceding formula follows by noting that if the price is 200 then the x units
of the stock are worth 200x, and the y units of the option to buy the stock at a unit
price of 150 are worth (200 − 150)y. On the other hand, if the stock price is 50,
then the x units are worth 50x and the y units of the option are worthless. Now,
suppose we choose y to be such that the preceding value is the same no matter
what the price at time 1. That is, we choose y so that

200x + 50y = 50x

or

y = −3x

(Note that y has the opposite sign of x, and so if x is positive and as a result x

units of the stock are purchased at time 0, then 3x units of stock options are also
sold at that time. Similarly, if x is negative, then −x units of stock are sold and
−3x units of stock options are purchased at time 0.)

Thus, with y = −3x, the value of our holding at time 1 is

value = 50x

Since the original cost of purchasing x units of the stock and −3x units of op-
tions is

original cost = 100x − 3xc,

we see that our gain on the transaction is

gain = 50x − (100x − 3xc) = x(3c − 50)

Thus, if 3c = 50, then the gain is 0; on the other hand if 3c �= 50, we can guarantee
a positive gain (no matter what the price of the stock at time 1) by letting x be
positive when 3c > 50 and letting it be negative when 3c < 50.

For instance, if the unit cost per option is c = 20, then purchasing 1 unit of the
stock (x = 1) and simultaneously selling 3 units of the option (y = −3) initially
costs us 100−60 = 40. However, the value of this holding at time 1 is 50 whether
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the stock goes up to 200 or down to 50. Thus, a guaranteed profit of 10 is attained.
Similarly, if the unit cost per option is c = 15, then selling 1 unit of the stock
(x = −1) and buying 3 units of the option (y = 3) leads to an initial gain of
100 − 45 = 55. On the other hand, the value of this holding at time 1 is −50.
Thus, a guaranteed profit of 5 is attained.

A sure win betting scheme is called an arbitrage. Thus, as we have just seen,
the only option cost c that does not result in an arbitrage is c = 50/3.

10.4.2. The Arbitrage Theorem

Consider an experiment whose set of possible outcomes is S = {1,2, . . . ,m}. Sup-
pose that n wagers are available. If the amount x is bet on wager i, then the return
xri(j) is earned if the outcome of the experiment is j . In other words, ri(·) is the
return function for a unit bet on wager i. The amount bet on a wager is allowed to
be either positive or negative or zero.

A betting scheme is a vector x = (x1, . . . , xn) with the interpretation that x1

is bet on wager 1, x2 on wager 2, . . . , and xn on wager n. If the outcome of the
experiment is j , then the return from the betting scheme x is

return from x =
n∑

i=1

xiri(j)

The following theorem states that either there exists a probability vector p =
(p1, . . . , pm) on the set of possible outcomes of the experiment under which each
of the wagers has expected return 0, or else there is a betting scheme that guaran-
tees a positive win.

Theorem 10.1 (The Arbitrage Theorem) Exactly one of the following is true:
Either

(i) there exists a probability vector p = (p1, . . . , pm) for which

m∑

j=1

pj ri(j) = 0, for all i = 1, . . . , n

or

(ii) there exists a betting scheme x = (x1, . . . , xn) for which

n∑

i=1

xiri(j) > 0, for all j = 1, . . . ,m



636 10 Brownian Motion and Stationary Processes

In other words, if X is the outcome of the experiment, then the arbitrage theo-
rem states that either there is a probability vector p for X such that

Ep[ri(X)] = 0, for all i = 1, . . . , n

or else there is a betting scheme that leads to a sure win.

Remark This theorem is a consequence of the (linear algebra) theorem of the
separating hyperplane, which is often used as a mechanism to prove the duality
theorem of linear programming.

The theory of linear programming can be used to determine a betting strategy
that guarantees the greatest return. Suppose that the absolute value of the amount
bet on each wager must be less than or equal to 1. To determine the vector x that
yields the greatest guaranteed win—call this win v—we need to choose x and v

so as to maximize v, subject to the constraints

n∑

i=1

xiri(j) � v, for j = 1, . . . ,m

−1 � xi � 1, i = 1, . . . , n

This optimization problem is a linear program and can be solved by standard
techniques (such as by using the simplex algorithm). The arbitrage theorem yields
that the optimal v will be positive unless there is a probability vector p for which∑m

j=1 pj ri(j) = 0 for all i = 1, . . . , n.

Example 10.2 In some situations, the only types of wagers allowed are to
choose one of the outcomes i, i = 1, . . . ,m, and bet that i is the outcome of the
experiment. The return from such a bet is often quoted in terms of “odds.” If the
odds for outcome i are oi (often written as “oi to 1”) then a 1 unit bet will return
oi if the outcome of the experiment is i and will return −1 otherwise. That is,

ri(j) =
{

oi, if j = i

−1 otherwise

Suppose the odds o1, . . . , om are posted. In order for there not to be a sure win
there must be a probability vector p = (p1, . . . , pm) such that

0 ≡ Ep[ri(X)] = oipi − (1 − pi)

That is, we must have

pi = 1

1 + oi
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Since the pi must sum to 1, this means that the condition for there not to be an
arbitrage is that

m∑

i=1

(1 + oi)
−1 = 1

Thus, if the posted odds are such that
∑

i (1 + oi)
−1 �= 1, then a sure win is pos-

sible. For instance, suppose there are three possible outcomes and the odds are as
follows:

Outcome Odds
1 1
2 2
3 3

That is, the odds for outcome 1 are 1 − 1, the odds for outcome 2 are 2 − 1, and
that for outcome 3 are 3 − 1. Since

1
2 + 1

3 + 1
4 > 1

a sure win is possible. One possibility is to bet −1 on outcome 1 (and so you
either win 1 if the outcome is not 1 and lose 1 if the outcome is 1) and bet −0.7
on outcome 2, and −0.5 on outcome 3. If the experiment results in outcome 1,
then we win −1 + 0.7 + 0.5 = 0.2; if it results in outcome 2, then we win 1 −
1.4+0.5 = 0.1; if it results in outcome 3, then we win 1+0.7−1.5 = 0.2. Hence,
in all cases we win a positive amount. �

Remark If
∑

i (1 + oi)
−1 �= 1, then the betting scheme

xi = (1 + oi)
−1

1 −∑
i (1 + oi)−1

, i = 1, . . . , n

will always yield a gain of exactly 1.

Example 10.3 Let us reconsider the option pricing example of the previous
section, where the initial price of a stock is 100 and the present value of the price
at time 1 is either 200 or 50. At a cost of c per share we can purchase at time 0
the option to buy the stock at time 1 at a present value price of 150 per share. The
problem is to set the value of c so that no sure win is possible.

In the context of this section, the outcome of the experiment is the value of
the stock at time 1. Thus, there are two possible outcomes. There are also two
different wagers: to buy (or sell) the stock, and to buy (or sell) the option. By
the arbitrage theorem, there will be no sure win if there is a probability vector
(p,1 − p) that makes the expected return under both wagers equal to 0.
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Now, the return from purchasing 1 unit of the stock is

return =
{

200 − 100 = 100, if the price is 200 at time 1

50 − 100 = −50, if the price is 50 at time 1

Hence, if p is the probability that the price is 200 at time 1, then

E[return] = 100p − 50(1 − p)

Setting this equal to 0 yields that

p = 1
3

That is, the only probability vector (p,1 − p) for which wager 1 yields an ex-
pected return 0 is the vector ( 1

3 , 2
3 ).

Now, the return from purchasing one share of the option is

return =
{

50 − c, if price is 200

−c, if price is 50

Hence, the expected return when p = 1
3 is

E[return] = (50 − c) 1
3 − c 2

3

= 50
3 − c

Thus, it follows from the arbitrage theorem that the only value of c for which there
will not be a sure win is c = 50

3 , which verifies the result of section 10.4.1. �

10.4.3. The Black-Scholes Option Pricing Formula

Suppose the present price of a stock is X(0) = x0, and let X(t) denote its price
at time t . Suppose we are interested in the stock over the time interval 0 to T .
Assume that the discount factor is α (equivalently, the interest rate is 100α percent
compounded continuously), and so the present value of the stock price at time t

is e−αtX(t).
We can regard the evolution of the price of the stock over time as our experi-

ment, and thus the outcome of the experiment is the value of the function X(t),
0 � t � T . The types of wagers available are that for any s < t we can observe
the process for a time s and then buy (or sell) shares of the stock at price X(s)

and then sell (or buy) these shares at time t for the price X(t). In addition, we
will suppose that we may purchase any of N different options at time 0. Option i,
costing ci per share, gives us the option of purchasing shares of the stock at time
ti for the fixed price of Ki per share, i = 1, . . . ,N .

Suppose we want to determine values of the ci for which there is no betting
strategy that leads to a sure win. Assuming that the arbitrage theorem can be gen-
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eralized (to handle the preceding situation, where the outcome of the experiment
is a function), it follows that there will be no sure win if and only if there ex-
ists a probability measure over the set of outcomes under which all of the wagers
have expected return 0. Let P be a probability measure on the set of outcomes.
Consider first the wager of observing the stock for a time s and then purchas-
ing (or selling) one share with the intention of selling (or purchasing) it at time
t,0 � s < t � T . The present value of the amount paid for the stock is e−αsX(s),
whereas the present value of the amount received is e−αtX(t). Hence, in order for
the expected return of this wager to be 0 when P is the probability measure on
X(t),0 � t � T , we must have that

EP[e−αtX(t)|X(u),0 � u � s] = e−αsX(s) (10.9)

Consider now the wager of purchasing an option. Suppose the option gives us the
right to buy one share of the stock at time t for a price K . At time t , the worth of
this option will be as follows:

worth of option at time t =
{

X(t) − K, if X(t) � K

0, if X(t) < K

That is, the time t worth of the option is (X(t)−K)+. Hence, the present value of
the worth of the option is e−αt (X(t)−K)+. If c is the (time 0) cost of the option,
we see that, in order for purchasing the option to have expected (present value)
return 0, we must have that

EP[e−αt (X(t) − K)+] = c (10.10)

By the arbitrage theorem, if we can find a probability measure P on the set of
outcomes that satisfies Equation (10.9), then if c, the cost of an option to purchase
one share at time t at the fixed price K , is as given in Equation (10.10), then no
arbitrage is possible. On the other hand, if for given prices ci, i = 1, . . . ,N , there
is no probability measure P that satisfies both (10.9) and the equality

ci = EP[e−αti (X(ti) − Ki)
+], i = 1, . . . ,N

then a sure win is possible.
We will now present a probability measure P on the outcome X(t), 0 � t � T ,

that satisfies Equation (10.9).
Suppose that

X(t) = x0e
Y(t)

where {Y(t), t � 0} is a Brownian motion process with drift coefficient μ and
variance parameter σ 2. That is, {X(t), t � 0} is a geometric Brownian motion
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process (see Section 10.3.2). From Equation (10.8) we have that, for s < t ,

E[X(t)|X(u),0 � u � s] = X(s)e(t−s)(μ+σ 2/2)

Hence, if we choose μ and σ 2 so that

μ + σ 2/2 = α

then Equation (10.9) will be satisfied. That is, by letting P be the probability
measure governing the stochastic process {x0e

Y(t),0 � t � T }, where {Y(t)} is
Brownian motion with drift parameter μ and variance parameter σ 2, and where
μ + σ 2/2 = α, Equation (10.9) is satisfied.

It follows from the preceding that if we price an option to purchase a share of
the stock at time t for a fixed price K by

c = EP[e−αt (X(t) − K)+]
then no arbitrage is possible. Since X(t) = x0e

Y(t), where Y(t) is normal with
mean μt and variance tσ 2, we see that

ceαt =
∫ ∞

−∞
(x0e

y − K)+ 1√
2πtσ 2

e−(y−μt)2/2tσ 2
dy

=
∫ ∞

log(K/x0)

(x0e
y − K)

1√
2πtσ 2

e−(y−μt)2/2tσ 2
dy

Making the change of variable w = (y − μt)/(σ t1/2) yields

ceαt = x0e
μt 1√

2π

∫ ∞

a

eσw
√

t e−w2/2 dw − K
1√
2π

∫ ∞

a

e−w2/2 dw (10.11)

where

a = log(K/x0) − μt

σ
√

t

Now,

1√
2π

∫ ∞

a

eσw
√

t e−w2/2 dw = etσ 2/2 1√
2π

∫ ∞

a

e−(w−σ
√

t)2/2 dw

= etσ 2/2P
{
N(σ

√
t,1) � a

}

= etσ 2/2P
{
N(0,1) � a − σ

√
t
}

= etσ 2/2P
{
N(0,1) � −(a − σ

√
t
)}

= etσ 2/2φ
(
σ
√

t − a
)
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where N(m,v) is a normal random variable with mean m and variance v, and φ

is the standard normal distribution function.
Thus, we see from Equation (10.11) that

ceαt = x0e
μt+σ 2t/2φ

(
σ
√

t − a
)− Kφ(−a)

Using that

μ + σ 2/2 = α

and letting b = −a, we can write this as follows:

c = x0φ
(
σ
√

t + b
)− Ke−αtφ(b) (10.12)

where

b = αt − σ 2t/2 − log(K/x0)

σ
√

t

The option price formula given by Equation (10.12) depends on the initial price
of the stock x0, the option exercise time t , the option exercise price K , the dis-
count (or interest rate) factor α, and the value σ 2. Note that for any value of σ 2,
if the options are priced according to the formula of Equation (10.12) then no
arbitrage is possible. However, as many people believe that the price of a stock
actually follows a geometric Brownian motion—that is, X(t) = x0e

Y(t) where
Y(t) is Brownian motion with parameters μ and σ 2—it has been suggested that it
is natural to price the option according to the formula (10.12) with the parameter
σ 2 taken equal to the estimated value (see the remark that follows) of the variance
parameter under the assumption of a geometric Brownian motion model. When
this is done, the formula (10.12) is known as the Black–Scholes option cost valu-
ation. It is interesting that this valuation does not depend on the value of the drift
parameter μ but only on the variance parameter σ 2.

If the option itself can be traded, then the formula of Equation (10.12) can be
used to set its price in such a way so that no arbitrage is possible. If at time s

the price of the stock is X(s) = xs , then the price of a (t,K) option—that is, an
option to purchase one unit of the stock at time t for a price K—should be set by
replacing t by t − s and x0 by xs in Equation (10.12).

Remark If we observe a Brownian motion process with variance parameter σ 2

over any time interval, then we could theoretically obtain an arbitrarily precise
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estimate of σ 2. For suppose we observe such a process {Y(s)} for a time t .
Then, for fixed h, let N = [t/h] and set

W1 = Y(h) − Y(0),

W2 = Y(2h) − Y(h),

...

WN = Y(Nh) − Y(Nh − h)

Then random variables W1, . . . ,WN are independent and identically distributed
normal random variables having variance hσ 2. We now use the fact (see Section
3.6.4) that (N − 1)S2/(σ 2h) has a chi-squared distribution with N − 1 degrees of
freedom, where S2 is the sample variance defined by

S2 =
N∑

i=1

(Wi − W̄ )2/(N − 1)

Since the expected value and variance of a chi-squared with k degrees of freedom
are equal to k and 2k, respectively, we see that

E[(N − 1)S2/(σ 2h)] = N − 1

and

Var[(N − 1)S2/(σ 2h)] = 2(N − 1)

From this, we see that

E[S2/h] = σ 2

and

Var[S2/h] = 2σ 4/(N − 1)

Hence, as we let h become smaller (and so N = [t/h] becomes larger) the vari-
ance of the unbiased estimator of σ 2 becomes arbitrarily small. �

Equation (10.12) is not the only way in which options can be priced so that no
arbitrage is possible. Let {X(t),0 � t � T } be any stochastic process satisfying,
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for s < t ,

E[e−αtX(t)|X(u), 0 � u � s] = e−αsX(s) (10.13)

[that is, Equation (10.9) is satisfied]. By setting c, the cost of an option to purchase
one share of the stock at time t for price K , equal to

c = E[e−αt (X(t) − K)+] (10.14)

it follows that no arbitrage is possible.
Another type of stochastic process, aside from geometric Brownian motion,

that satisfies Equation (10.13) is obtained as follows. Let Y1, Y2, . . . be a sequence
of independent random variables having a common mean μ, and suppose that
this process is independent of {N(t), t � 0}, which is a Poisson process with
rate λ. Let

X(t) = x0

N(t)∏

i=1

Yi

Using the identity

X(t) = x0

N(s)∏

i=1

Yi

N(t)∏

j=N(s)+1

Yj

and the independent increment assumption of the Poisson process, we see that,
for s < t ,

E[X(t)|X(u), 0 � u � s] = X(s) E

[
N(t)∏

j=N(s)+1

Yj

]

Conditioning on the number of events between s and t yields

E

[
N(t)∏

j=N(s)+1

Yj

]

=
∞∑

n=0

μne−λ(t−s)[λ(t − s)]n/n!

= e−λ(t−s)(1−μ)

Hence,

E[X(t)|X(u), 0 � u � s] = X(s)e−λ(t−s)(1−μ)

Thus, if we choose λ and μ to satisfy

λ(1 − μ) = −α



644 10 Brownian Motion and Stationary Processes

then Equation (10.13) is satisfied. Therefore, if for any value of λ we let the Yi

have any distributions with a common mean equal to μ = 1 + α/λ and then price
the options according to Equation (10.14), then no arbitrage is possible.

Remark If {X(t), t � 0} satisfies Equation (10.13), then the process
{e−αtX(t), t � 0} is called a Martingale. Thus, any pricing of options for which
the expected gain on the option is equal to 0 when {e−αtX(t)} follows the proba-
bility law of some Martingale will result in no arbitrage possibilities.

That is, if we choose any Martingale process {Z(t)} and let the cost of a (t,K)

option be

c = E[e−αt (eαtZ(t) − K)+]
= E[(Z(t) − Ke−αt )+]

then there is no sure win.
In addition, while we did not consider the type of wager where a stock that is

purchased at time s is sold not at a fixed time t but rather at some random time
that depends on the movement of the stock, it can be shown using results about
Martingales that the expected return of such wagers is also equal to 0.

Remark A variation of the arbitrage theorem was first noted by de Finetti in
1937. A more general version of de Finetti’s result, of which the arbitrage theorem
is a special case, is given in Reference 3.

10.5. White Noise

Let {X(t), t � 0} denote a standard Brownian motion process and let f be a func-
tion having a continuous derivative in the region [a, b]. The stochastic integral
∫ b

a
f (t) dX(t) is defined as follows:

∫ b

a

f (t) dX(t) ≡ lim
n→∞

n∑

i=1
max(ti−ti−1)→0

f (ti−1)[X(ti) − X(ti−1)] (10.15)

where a = t0 < t1 < · · · < tn = b is a partition of the region [a, b]. Using the
identity (the integration by parts formula applied to sums)

n∑

i=1

f (ti−1)[X(ti) − X(ti−1)]

= f (b)X(b) − f (a)X(a) −
n∑

i=1

X(ti)[f (ti) − f (ti−1)]
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we see that

∫ b

a

f (t) dX(t) = f (b)X(b) − f (a)X(a) −
∫ b

a

X(t) df (t) (10.16)

Equation (10.16) is usually taken as the definition of
∫ b

a
f (t) dX(t).

By using the right side of Equation (10.16) we obtain, upon assuming the inter-
changeability of expectation and limit, that

E

[∫ b

a

f (t) dX(t)

]

= 0

Also,

Var

(
n∑

i=1

f (ti−1)[X(ti) − X(ti−1)]
)

=
n∑

i=1

f 2(ti−1)Var[X(ti) − X(ti−1)]

=
n∑

i=1

f 2(ti−1)(ti − ti−1)

where the top equality follows from the independent increments of Brownian mo-
tion. Hence, we obtain from Equation (10.15) upon taking limits of the preceding
that

Var

[∫ b

a

f (t) dX(t)

]

=
∫ b

a

f 2(t) dt

Remark The preceding gives operational meaning to the family of quantities
{dX(t), 0 � t < ∞} by viewing it as an operator that carries functions f into
the values

∫ b

a
f (t) dX(t). This is called a white noise transformation, or more

loosely {dX(t), 0 � t < ∞} is called white noise since it can be imagined that a
time varying function f travels through a white noise medium to yield the output
(at time b)

∫ b

a
f (t) dX(t).

Example 10.4 Consider a particle of unit mass that is suspended in a liquid
and suppose that, due to the liquid, there is a viscous force that retards the velocity
of the particle at a rate proportional to its present velocity. In addition, let us
suppose that the velocity instantaneously changes according to a constant multiple
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of white noise. That is, if V (t) denotes the particle’s velocity at t , suppose that

V ′(t) = −βV (t) + αX′(t)

where {X(t), t � 0} is standard Brownian motion. This can be written as follows:

eβt [V ′(t) + βV (t)] = αeβtX′(t)

or

d

dt
[eβtV (t)] = αeβtX′(t)

Hence, upon integration, we obtain

eβtV (t) = V (0) + α

∫ t

0
eβsX′(s) ds

or

V (t) = V (0)e−βt + α

∫ t

0
e−β(t−s) dX(s)

Hence, from Equation (10.16),

V (t) = V (0)e−βt + α

[

X(t) −
∫ t

0
X(s)βe−β(t−s) ds

]

�

10.6. Gaussian Processes

We start with the following definition.

Definition 10.2 A stochastic process X(t), t � 0 is called a Gaussian, or a
normal, process if X(t1), . . . ,X(tn) has a multivariate normal distribution for all
t1, . . . , tn.

If {X(t), t � 0} is a Brownian motion process, then because each of X(t1),

X(t2), . . . ,X(tn) can be expressed as a linear combination of the independent nor-
mal random variables X(t1), X(t2)−X(t1), X(t3)−X(t2), . . . ,X(tn)−X(tn−1)

it follows that Brownian motion is a Gaussian process.
Because a multivariate normal distribution is completely determined by the

marginal mean values and the covariance values (see Section 2.6) it follows that
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standard Brownian motion could also be defined as a Gaussian process having
E[X(t)] = 0 and, for s � t ,

Cov(X(s),X(t)) = Cov(X(s),X(s) + X(t) − X(s))

= Cov(X(s),X(s)) + Cov(X(s),X(t) − X(s))

= Cov(X(s),X(s)) by independent increments

= s since Var(X(s)) = s (10.17)

Let {X(t), t � 0} be a standard Brownian motion process and consider the
process values between 0 and 1 conditional on X(1) = 0. That is, consider the
conditional stochastic process {X(t), 0 � t � 1|X(1) = 0}. Since the conditional
distribution of X(t1), . . . ,X(tn) is multivariate normal it follows that this condi-
tional process, known as the Brownian bridge (as it is tied down both at 0 and
at 1), is a Gaussian process. Let us compute its covariance function. As, from
Equation (10.4),

E[X(s)|X(1) = 0] = 0, for s < 1

we have that, for s < t < 1,

Cov[(X(s),X(t))|X(1) = 0]
= E[X(s)X(t)|X(1) = 0]
= E[E[X(s)X(t)|X(t),X(1) = 0]|X(1) = 0]
= E[X(t)E[X(s)|X(t)]|X(1) = 0]

= E

[

X(t)
s

t
X(t)|X(1) = 0

]

by (10.4)

= s

t
E[X2(t)|X(1) = 0]

= s

t
t (1 − t) by (10.4)

= s(1 − t)

Thus, the Brownian bridge can be defined as a Gaussian process with mean value 0
and covariance function s(1 − t), s � t . This leads to an alternative approach to
obtaining such a process.

Proposition 10.1 If {X(t), t � 0} is standard Brownian motion, then
{Z(t), 0 � t � 1} is a Brownian bridge process when Z(t) = X(t) − tX(1).
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Proof As it is immediate that {Z(t), t � 0} is a Gaussian process, all we need
verify is that E[Z(t)] = 0 and Cov(Z(s),Z(t)) = s(1 − t), when s � t . The for-
mer is immediate and the latter follows from

Cov(Z(s),Z(t)) = Cov(X(s) − sX(1),X(t) − tX(1))

= Cov(X(s),X(t)) − t Cov(X(s),X(1))

− s Cov(X(1),X(t)) + st Cov(X(1),X(1))

= s − st − st + st

= s(1 − t)

and the proof is complete. �

If {X(t), t � 0} is Brownian motion, then the process {Z(t), t � 0} defined by

Z(t) =
∫ t

0
X(s)ds (10.18)

is called integrated Brownian motion. As an illustration of how such a process may
arise in practice, suppose we are interested in modeling the price of a commodity
throughout time. Letting Z(t) denote the price at t then, rather than assuming
that {Z(t)} is Brownian motion (or that log Z(t) is Brownian motion), we might
want to assume that the rate of change of Z(t) follows a Brownian motion. For
instance, we might suppose that the rate of change of the commodity’s price is the
current inflation rate which is imagined to vary as Brownian motion. Hence,

d

dt
Z(t) = X(t),

Z(t) = Z(0) +
∫ t

0
X(s)ds

It follows from the fact that Brownian motion is a Gaussian process that
{Z(t), t � 0} is also Gaussian. To prove this, first recall that W1, . . . ,Wn is said
to have a multivariate normal distribution if they can be represented as

Wi =
m∑

j=1

aijUj , i = 1, . . . , n

where Uj , j = 1, . . . ,m are independent normal random variables. From this it
follows that any set of partial sums of W1, . . . ,Wn are also jointly normal. The
fact that Z(t1), . . . ,Z(tn) is multivariate normal can now be shown by writing the
integral in Equation (10.18) as a limit of approximating sums.
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As {Z(t), t � 0} is Gaussian it follows that its distribution is characterized by
its mean value and covariance function. We now compute these when {X(t), t �
0} is standard Brownian motion.

E[Z(t)] = E

[∫ t

0
X(s)ds

]

=
∫ t

0
E[X(s)]ds

= 0

For s � t ,

Cov[Z(s),Z(t)] = E[Z(s)Z(t)]

= E

[∫ t

0
X(y)dy

∫ s

0
X(u)du

]

= E

[∫ s

0

∫ t

0
X(y)X(u)dy du

]

=
∫ s

0

∫ t

0
E[X(y)X(u)]dy du

=
∫ s

0

∫ t

0
min(y,u) dy du by (10.17)

=
∫ s

0

(∫ u

0
y dy +

∫ t

u

udy

)

du = s2
(

t

2
− s

6

)

�

10.7. Stationary and Weakly Stationary Processes

A stochastic process {X(t), t � 0} is said to be a stationary process if for all
n, s, t, . . . , tn the random vectors X(t1), . . . ,X(tn) and X(t1 + s), . . . ,X(tn + s)

have the same joint distribution. In other words, a process is stationary if, in choos-
ing any fixed point s as the origin, the ensuing process has the same probability
law. Two examples of stationary processes are:

(i) An ergodic continuous-time Markov chain {X(t), t � 0} when

P {X(0) = j} = Pj , j � 0

where {Pj , j � 0} are the limiting probabilities.
(ii) {X(t), t � 0} when X(t) = N(t + L) − N(t), t � 0, where L > 0 is a
fixed constant and {N(t), t � 0} is a Poisson process having rate λ.
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The first one of these processes is stationary for it is a Markov chain whose initial
state is chosen according to the limiting probabilities, and it can thus be regarded
as an ergodic Markov chain that we start observing at time ∞. Hence the contin-
uation of this process at time s after observation begins is just the continuation of
the chain starting at time ∞ + s, which clearly has the same probability for all s.
That the second example—where X(t) represents the number of events of a Pois-
son process that occur between t and t + L—is stationary follows the stationary
and independent increment assumption of the Poisson process which implies that
the continuation of a Poisson process at any time s remains a Poisson process.

Example 10.5 (The Random Telegraph Signal Process) Let {N(t), t � 0} de-
note a Poisson process, and let X0 be independent of this process and be such that
P {X0 = 1} = P {X0 = −1} = 1

2 . Defining X(t) = X0(−1)N(t) then {X(t), t � 0}
is called random telegraph signal process. To see that it is stationary, note first that
starting at any time t , no matter what the value of N(t), as X0 is equally likely to
be either plus or minus 1, it follows that X(t) is equally likely to be either plus or
minus 1. Hence, because the continuation of a Poisson process beyond any time
remains a Poisson process, it follows that {X(t), t � 0} is a stationary process.

Let us compute the mean and covariance function of the random telegraph sig-
nal

E[X(t)] = E
[
X0(−1)N(t)

]

= E
[
X0]E[(−1)N(t)

]
by independence

= 0 since E[X0] = 0,

Cov[X(t),X(t + s)] = E[X(t)X(t + s)]
= E

[
X2

0(−1)N(t)+N(t+s)
]

= E[(−1)2N(t)(−1)N(t+s)−N(t)]
= E[(−1)N(t+s)−N(t)]
= E[(−1)N(s)]

=
∞∑

i=0

(−1)ie−λs (λs)i

i!
= e−2λs (10.19)

For an application of the random telegraph signal consider a particle moving
at a constant unit velocity along a straight line and suppose that collisions in-
volving this particle occur at a Poisson rate λ. Also suppose that each time the
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particle suffers a collision it reverses direction. Therefore, if X0 represents the
initial velocity of the particle, then its velocity at time t—call it X(t)—is given
by X(t) = X0(−1)N(t), where N(t) denotes the number of collisions involving
the particle by time t . Hence, if X0 is equally likely to be plus or minus 1, and
is independent of {N(t), t � 0}, then {X(t), t � 0} is a random telegraph signal
process. If we now let

D(t) =
∫ t

0
X(s)ds

then D(t) represents the displacement of the particle at time t from its position at
time 0. The mean and variance of D(t) are obtained as follows:

E[D(t)] =
∫ t

0
E[X(s)]ds = 0,

Var[D(t)] = E[D2(t)]

= E

[∫ t

0
X(y)dy

∫ t

0
X(u)du

]

=
∫ t

0

∫ t

0
E[X(y)X(u)]dy du

= 2
∫∫

0<y<u<t

E[X(y)X(u)]dy du

= 2
∫ t

0

∫ u

0
e−2λ(u−y) dy du by (10.19)

= 1

λ

(

t − 1

2λ
+ 1

2λ
e−2λt

)

�

The condition for a process to be stationary is rather stringent and so we define
the process {X(t), t � 0} to be a second-order stationary or a weakly stationary
process if E[X(t)] = c and Cov[X(t),X(t + s)] does not depend on t . That is, a
process is second-order stationary if the first two moments of X(t) are the same
for all t and the covariance between X(s) and X(t) depends only on |t − s|. For
a second-order stationary process, let

R(s) = Cov[X(t),X(t + s)]
As the finite dimensional distributions of a Gaussian process (being multivariate
normal) are determined by their means and covariance, it follows that a second-
order stationary Gaussian process is stationary.
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Example 10.6 (The Ornstein–Uhlenbeck Process) Let {X(t), t � 0} be a
standard Brownian motion process, and define, for α > 0,

V (t) = e−αt/2X(eαt )

The process {V (t), t � 0} is called the Ornstein–Uhlenbeck process. It has been
proposed as a model for describing the velocity of a particle immersed in a liquid
or gas, and as such is useful in statistical mechanics. Let us compute its mean and
covariance function

E[V (t)] = 0,

Cov[V (t),V (t + s)] = e−αt/2e−α(t+s)/2 Cov[X(eαt ),X(eα(t+s))]
= e−αt e−αs/2eαt by Equation (10.17)

= e−αs/2

Hence, {V (t), t � 0} is weakly stationary and as it is clearly a Gaussian process
(since Brownian motion is Gaussian) we can conclude that it is stationary. It is
interesting to note that (with α = 4λ) it has the same mean and covariance function
as the random telegraph signal process, thus illustrating that two quite different
processes can have the same second-order properties. (Of course, if two Gaussian
processes have the same mean and covariance functions then they are identically
distributed.) �

As the following examples show, there are many types of second-order station-
ary processes that are not stationary.

Example 10.7 (An Autoregressive Process) Let Z0,Z1,Z2, . . . be uncorre-
lated random variables with E[Zn] = 0, n � 0 and

Var(Zn) =
{

σ 2/(1 − λ2), n = 0

σ 2, n � 1

where λ2 < 1. Define

X0 = Z0,

Xn = λXn−1 + Zn, n � 1
(10.20)

The process {Xn, n � 0} is called a first-order autoregressive process. It says that
the state at time n (that is, Xn) is a constant multiple of the state at time n−1 plus
a random error term Zn.
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Iterating Equation (10.20) yields

Xn = λ(λXn−2 + Zn−1) + Zn

= λ2Xn−2 + λZn−1 + Zn

...

=
n∑

i=0

λn−iZi

and so

Cov(Xn,Xn+m) = Cov

(
n∑

i=0

λn−iZi,

n+m∑

i=0

λn+m−iZi

)

=
n∑

i=0

λn−iλn+m−i Cov(Zi,Zi)

= σ 2λ2n+m

(
1

1 − λ2
+

n∑

i=1

λ−2i

)

= σ 2λm

1 − λ2

where the preceding uses the fact that Zi and Zj are uncorrelated when i �= j .
As E[Xn] = 0, we see that {Xn, n � 0} is weakly stationary (the definition for
a discrete time process is the obvious analog of that given for continuous time
processes). �

Example 10.8 If, in the random telegraph signal process, we drop the re-
quirement that P {X0 = 1} = P {X0 = −1} = 1

2 and only require that E[X0] = 0,
then the process {X(t), t � 0} need no longer be stationary. (It will remain sta-
tionary if X0 has a symmetric distribution in the sense that −X0 has the same
distribution as X0.) However, the process will be weakly stationary since

E[X(t)] = E[X0]E
[
(−1)N(t)

]= 0,

Cov[X(t),X(t + s)] = E[X(t)X(t + s)]
= E

[
X2

0

]
E
[
(−1)N(t)+N(t+s)

]

= E
[
X2

0

]
e−2λs from (10.19) �
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Example 10.9 Let W0,W1,W2, . . . be uncorrelated with E[Wn] = μ and
Var(Wn) = σ 2, n � 0, and for some positive integer k define

Xn = Wn + Wn−1 + · · · + Wn−k

k + 1
, n � k

The process {Xn,n � k}, which at each time keeps track of the arithmetic average
of the most recent k + 1 values of the W s, is called a moving average process.
Using the fact that the Wn,n � 0 are uncorrelated, we see that

Cov(Xn,Xn+m) =
⎧
⎨

⎩

(k + 1 − m)σ 2

(k + 1)2
, if 0 � m � k

0, if m > k

Hence, {Xn, n � k} is a second-order stationary process. �

Let {Xn, n � 1} be a second-order stationary process with E[Xn] = μ. An
important question is when, if ever, does X̄n ≡ ∑n

i=1 Xi/n converge to μ? The
following proposition, which we state without proof, shows that E[(X̄n −μ)2] →
0 if and only if

∑n
i=1 R(i)/n → 0. That is, the expected square of the difference

between X̄n and μ will converge to 0 if and only if the limiting average value of
R(i) converges to 0.

Proposition 10.2 Let {Xn,n � 1} be a second-order stationary process
having mean μ and covariance function R(i) = Cov(Xn,Xn+i ), and let X̄n ≡∑n

i=1 Xi/n. Then limn→∞ E[(X̄n − μ)2] = 0 and only if limn→∞
∑n

i=1 R(i)/

n = 0.

10.8. Harmonic Analysis of Weakly
Stationary Processes

Suppose that the stochastic processes {X(t), −∞ < t < ∞} and {Y(t), −∞ <

t < ∞} are related as follows:

Y(t) =
∫ ∞

−∞
X(t − s)h(s) ds (10.21)

We can imagine that a signal, whose value at time t is X(t), is passed through a
physical system that distorts its value so that Y(t), the received value at t , is given
by Equation (10.21). The processes {X(t)} and {Y(t)} are called, respectively,
the input and output processes. The function h is called the impulse response
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function. If h(s) = 0 whenever s < 0, then h is also called a weighting function
since Equation (10.21) expresses the output at t as a weighted integral of all the
inputs prior to t with h(s) representing the weight given the input s time units
ago.

The relationship expressed by Equation (10.21) is a special case of a time in-
variant linear filter. It is called a filter because we can imagine that the input
process {X(t)} is passed through a medium and then filtered to yield the output
process {Y(t)}. It is a linear filter because if the input processes {Xi(t)}, i = 1,2,
result in the output processes {Yi(t)}—that is, if Yi(t) = ∫∞

0 Xi(t − s)h(s) ds—
then the output process corresponding to the input process {aX1(t) + bX2(t)} is
just {aY1(t) + bY2(t)}. It is called time invariant since lagging the input process
by a time τ—that is, considering the new input process X̄(t) = X(t + τ)—results
in a lag of τ in the output process since

∫ ∞

0
X̄(t − s)h(s) ds =

∫ ∞

0
X(t + τ − s)h(s) ds = Y(t + τ)

Let us now suppose that the input process {X(t), −∞ < t < ∞} is weakly
stationary with E[X(t)] = 0 and covariance function

RX(s) = Cov[X(t),X(t + s)].
Let us compute the mean value and covariance function of the output pro-
cess {Y(t)}.

Assuming that we can interchange the expectation and integration operations
(a sufficient condition being that

∫ |h(s)| < ∞∗ and, for some M < ∞, E|X(t)| <
M for all t) we obtain

E[Y(t)] =
∫

E[X(t − s)]h(s) ds = 0

Similarly,

Cov[Y(t1), Y (t2)] = Cov

[∫

X(t1 − s1)h(s1) ds1,

∫

X(t2 − s2)h(s2) ds2

]

=
∫∫

Cov[X(t1 − s1),X(t2 − s2)]h(s1)h(s2) ds1 ds2

=
∫∫

RX(t2 − s2 − t1 + s1)h(s1)h(s2) ds1 ds2 (10.22)

Hence, Cov[Y(t1), Y (t2)] depends on t1, t2 only through t2 − t1; thus, showing
that {Y(t)} is also weakly stationary.

∗The range of all integrals in this section is from −∞ to +∞.
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The preceding expression for RY (t2 − t1) = Cov[Y(t1), Y (t2)] is, however,
more compactly and usefully expressed in terms of Fourier transforms of RX and
RY . Let, for i = √−1,

R̃X(w) =
∫

e−iwsRX(s) ds

and

R̃Y (w) =
∫

e−iwsRY (s) ds

denote the Fourier transforms, respectively, of RX and RY . The function R̃X(w)

is also called the power spectral density of the process {X(t)}. Also, let

h̃(w) =
∫

e−iwsh(s) ds

denote the Fourier transform of the function h. Then, from Equation (10.22),

R̃Y (w) =
∫∫∫

eiwsRX(s − s2 + s1)h(s1)h(s2) ds1 ds2 ds

=
∫∫∫

eiw(s−s2+s1)RX(s − s2 + s1) dse−iws2h(s2) ds2e
iws1h(s1) ds1

= R̃X(w)̃h(w)̃h(−w) (10.23)

Now, using the representation

eix = cosx + i sinx,

e−ix = cos(−x) + i sin(−x) = cosx − i sinx

we obtain

h̃(w)̃h(−w) =
[∫

h(s) cos(ws)ds − i

∫

h(s) sin(ws)ds

]

×
[∫

h(s) cos(ws)ds + i

∫

h(s) sin(ws)ds

]

=
[∫

h(s) cos(ws)ds

]2

+
[∫

h(s) sin(ws)ds

]2

=
∣
∣
∣
∣

∫

h(s)e−iws ds

∣
∣
∣
∣

2

= |̃h(w)|2
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Hence, from Equation (10.23) we obtain

R̃Y (w) = R̃X(w)|̃h(w)|2

In words, the Fourier transform of the covariance function of the output process
is equal to the square of the amplitude of the Fourier transform of the impulse
function multiplied by the Fourier transform of the covariance function of the
input process.

Exercises

In the following exercises {B(t), t � 0} is a standard Brownian motion process
and Ta denotes the time it takes this process to hit a.

*1. What is the distribution of B(s) + B(t), s � t?

2. Compute the conditional distribution of B(s) given that B(t1) = A, B(t2) =
B , where 0 < t1 < s < t2.

*3. Compute E[B(t1)B(t2)B(t3)] for t1 < t2 < t3.

4. Show that

P {Ta < ∞} = 1,

E[Ta] = ∞, a �= 0

*5. What is P {T1 < T−1 < T2}?
6. Suppose you own one share of a stock whose price changes according to
a standard Brownian motion process. Suppose that you purchased the stock at
a price b + c, c > 0, and the present price is b. You have decided to sell the
stock either when it reaches the price b + c or when an additional time t goes
by (whichever occurs first). What is the probability that you do not recover your
purchase price?

7. Compute an expression for

P
{

max
t1�s�t2

B(s) > x
}

8. Consider the random walk which in each �t time unit either goes up or
down the amount

√
�t with respective probabilities p and 1 − p where p =

1
2 (1 + μ

√
�t).

(a) Argue that as �t → 0 the resulting limiting process is a Brownian motion
process with drift rate μ.
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(b) Using part (a) and the results of the gambler’s ruin problem (Section 4.5.1),
compute the probability that a Brownian motion process with drift rate μ goes
up A before going down B , A > 0, B > 0.

9. Let {X(t), t � 0} be a Brownian motion with drift coefficient μ and variance
parameter σ 2. What is the joint density function of X(s) and X(t), s < t?

*10. Let {X(t), t � 0} be a Brownian motion with drift coefficient μ and
variance parameter σ 2. What is the conditional distribution of X(t) given that
X(s) = c when

(a) s < t?
(b) t < s?

11. Consider a process whose value changes every h time units; its new value
being its old value multiplied either by the factor eσ

√
h with probability p =

1
2 (1 + μ

σ

√
h), or by the factor e−σ

√
h with probability 1 − p. As h goes to zero,

show that this process converges to geometric Brownian motion with drift coeffi-
cient μ and variance parameter σ 2.

12. A stock is presently selling at a price of $50 per share. After one time period,
its selling price will (in present value dollars) be either $150 or $25. An option to
purchase y units of the stock at time 1 can be purchased at cost cy.

(a) What should c be in order for there to be no sure win?
(b) If c = 4, explain how you could guarantee a sure win.
(c) If c = 10, explain how you could guarantee a sure win.
(d) Use the arbitrage theorem to verify your answer to part (a).

13. Verify the statement made in the remark following Example 10.2.

14. The present price of a stock is 100. The price at time 1 will be either 50,
100, or 200. An option to purchase y shares of the stock at time 1 for the (present
value) price ky costs cy.

(a) If k = 120, show that an arbitrage opportunity occurs if and only if
c > 80/3.
(b) If k = 80, show that there is not an arbitrage opportunity if and only if
20 � c � 40.

15. The current price of a stock is 100. Suppose that the logarithm of the price
of the stock changes according to a Brownian motion with drift coefficient μ = 2
and variance parameter σ 2 = 1. Give the Black-Scholes cost of an option to buy
the stock at time 10 for a cost of

(a) 100 per unit.
(b) 120 per unit.
(c) 80 per unit.
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Assume that the continuously compounded interest rate is 5 percent.
A stochastic process {Y(t), t � 0} is said to be a Martingale process if, for

s < t ,

E[Y(t)|Y(u), 0 � u � s] = Y(s)

16. If {Y(t), t � 0} is a Martingale, show that

E[Y(t)] = E[Y(0)]

17. Show that standard Brownian motion is a Martingale.

18. Show that {Y(t), t � 0} is a Martingale when

Y(t) = B2(t) − t

What is E[Y(t)]?
Hint: First compute E[Y(t)|B(u), 0 � u � s].

*19. Show that {Y(t), t � 0} is a Martingale when

Y(t) = exp{cB(t) − c2t/2}

where c is an arbitrary constant. What is E[Y(t)]?
An important property of a Martingale is that if you continually observe the

process and then stop at some time T , then, subject to some technical conditions
(which will hold in the problems to be considered),

E[Y(T )] = E[Y(0)]

The time T usually depends on the values of the process and is known as a stop-
ping time for the Martingale. This result, that the expected value of the stopped
Martingale is equal to its fixed time expectation, is known as the Martingale stop-
ping theorem.

*20. Let

T = Min{t : B(t) = 2 − 4t}

That is, T is the first time that standard Brownian motion hits the line 2 − 4t . Use
the Martingale stopping theorem to find E[T ].
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21. Let {X(t), t � 0} be Brownian motion with drift coefficient μ and variance
parameter σ 2. That is,

X(t) = σB(t) + μt

Let μ > 0, and for a positive constant x let

T = Min{t : X(t) = x}

= Min

{

t : B(t) = x − μt

σ

}

That is, T is the first time the process {X(t), t � 0} hits x. Use the Martingale
stopping theorem to show that

E[T ] = x/μ

22. Let X(t) = σB(t) + μt , and for given positive constants A and B , let p

denote the probability that {X(t), t � 0} hits A before it hits −B .

(a) Define the stopping time T to be the first time the process hits either A or
−B . Use this stopping time and the Martingale defined in Exercise 19 to show
that

E[exp{c(X(T ) − μT )/σ − c2T/2}] = 1

(b) Let c = −2μ/σ , and show that

E[exp{−2μX(T )/σ }] = 1

(c) Use part (b) and the definition of T to find p.

Hint: What are the possible values of exp{−2μX(T )/σ 2}?
23. Let X(t) = σB(t) + μt , and define T to be the first time the process
{X(t), t � 0} hits either A or −B , where A and B are given positive numbers.
Use the Martingale stopping theorem and part (c) of Exercise 22 to find E[T ].
*24. Let {X(t), t � 0} be Brownian motion with drift coefficient μ and variance
parameter σ 2. Suppose that μ > 0. Let x > 0 and define the stopping time T (as in
Exercise 21) by

T = Min{t : X(t) = x}
Use the Martingale defined in Exercise 18, along with the result of Exercise 21,
to show that

Var(T ) = xσ 2/μ3
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25. Compute the mean and variance of

(a)
∫ 1

0 t dB(t).

(b)
∫ 1

0 t2 dB(t).

26. Let Y(t) = tB(1/t), t > 0 and Y(0) = 0.

(a) What is the distribution of Y(t)?
(b) Compare Cov(Y (s), Y (t)).
(c) Argue that {Y(t), t � 0} is a standard Brownian motion process.

*27. Let Y(t) = B(a2t)/a for a > 0. Argue that {Y(t)} is a standard Brownian
motion process.

28. For s < t , argue that B(s) − s
t
B(t) and B(t) are independent.

29. Let {Z(t), t � 0} denote a Brownian bridge process. Show that if

Y(t) = (t + 1)Z(t/(t + 1))

then {Y(t), t � 0} is a standard Brownian motion process.

30. Let X(t) = N(t + 1) − N(t) where {N(t), t � 0} is a Poisson process with
rate λ. Compute

Cov[X(t),X(t + s)]
*31. Let {N(t), t � 0} denote a Poisson process with rate λ and define Y(t) to
be the time from t until the next Poisson event.

(a) Argue that {Y(t), t � 0} is a stationary process.
(b) Compute Cov[Y(t), Y (t + s)].

32. Let {X(t),−∞ < t < ∞} be a weakly stationary process having covariance
function RX(s) = Cov[X(t),X(t + s)].

(a) Show that

Var(X(t + s) − X(t)) = 2RX(0) − 2RX(t)

(b) If Y(t) = X(t + 1) − X(t) show that {Y(t), −∞ < t < ∞} is also weakly
stationary having a covariance function RY (s) = Cov[Y(t), Y (t + s)] that sat-
isfies

RY (s) = 2RX(s) − RX(s − 1) − RX(s + 1)

33. Let Y1 and Y2 be independent unit normal random variables and for some
constant w set

X(t) = Y1 coswt + Y2 sinwt, −∞ < t < ∞
(a) Show that {X(t)} is a weakly stationary process.
(b) Argue that {X(t)} is a stationary process.
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34. Let {X(t), −∞ < t < ∞} be weakly stationary with covariance function
R(s) = Cov(X(t),X(t + s)) and let R̃(w) denote the power spectral density of
the process.

(i) Show that R̃(w) = R̃(−w). It can be shown that

R(s) = 1

2π

∫ ∞

−∞
R̃(w)eiws dw

(ii) Use the preceding to show that

∫ ∞

−∞
R̃(w)dw = 2πE[X2(t)]
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Simulation

11
11.1. Introduction

Let X = (X1, . . . ,Xn) denote a random vector having a given density function
f (x1, . . . , xn) and suppose we are interested in computing

E[g(X)] =
∫∫

· · ·
∫

g(x1, . . . , xn)f (x1, . . . , xn) dx1 dx2 · · ·dxn

for some n-dimensional function g. For instance, g could represent the total delay
in queue of the first [n/2] customers when the X values represent the first [n/2]
interarrival and service times.∗ In many situations, it is not analytically possible
either to compute the preceding multiple integral exactly or even to numerically
approximate it within a given accuracy. One possibility that remains is to approx-
imate E[g(X)] by means of simulation.

To approximate E[g(X)], start by generating a random vector X(1) = (X
(1)
1 , . . . ,

X
(1)
n ) having the joint density f (x1, . . . , xn) and then compute Y (1) = g(X(1)).

Now generate a second random vector (independent of the first) X(2) and compute
Y (2) = g(X(2)). Keep on doing this until r , a fixed number, of independent and
identically distributed random variables Y (i) = g(X(i)), i = 1, . . . , r have been
generated. Now by the strong law of large numbers, we know that

lim
r→∞

Y (1) + · · · + Y (r)

r
= E[Y (i)] = E[g(X)]

and so we can use the average of the generated Y s as an estimate of E[g(X)]. This
approach to estimating E[g(X)] is called the Monte Carlo simulation approach.

Clearly there remains the problem of how to generate, or simulate, random
vectors having a specified joint distribution. The first step in doing this is to be

∗We are using the notation [a] to represent the largest integer less than or equal to a.
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able to generate random variables from a uniform distribution on (0,1). One way
to do this would be to take 10 identical slips of paper, numbered 0,1, . . . ,9, place
them in a hat and then successively select n slips, with replacement, from the hat.
The sequence of digits obtained (with a decimal point in front) can be regarded
as the value of a uniform (0,1) random variable rounded off to the nearest ( 1

10 )n.
For instance, if the sequence of digits selected is 3, 8, 7, 2, 1, then the value of the
uniform (0,1) random variable is 0.38721 (to the nearest 0.00001). Tables of the
values of uniform (0,1) random variables, known as random number tables, have
been extensively published [for instance, see The RAND Corporation, A Million
Random Digits with 100,000 Normal Deviates (New York: The Free Press, 1955)].
Table 11.1 is such a table.

However, this is not the way in which digital computers simulate uniform (0,1)

random variables. In practice, they use pseudo random numbers instead of truly
random ones. Most random number generators start with an initial value X0,
called the seed, and then recursively compute values by specifying positive in-
tegers a, c, and m, and then letting

Xn+1 = (aXn + c) modulo m, n � 0

where the preceding means that aXn + c is divided by m and the remainder is
taken as the value of Xn+1. Thus each Xn is either 0,1, . . . ,m−1 and the quantity
Xn/m is taken as an approximation to a uniform (0,1) random variable. It can be
shown that subject to suitable choices for a, c,m, the preceding gives rise to a
sequence of numbers that looks as if it were generated from independent uniform
(0,1) random variables.

As our starting point in the simulation of random variables from an arbitrary
distribution, we shall suppose that we can simulate from the uniform (0,1) distri-
bution, and we shall use the term “random numbers” to mean independent random
variables from this distribution. In Sections 11.2 and 11.3 we present both gen-
eral and special techniques for simulating continuous random variables; and in
Section 11.4 we do the same for discrete random variables. In Section 11.5 we
discuss the simulation both of jointly distributed random variables and stochas-
tic processes. Particular attention is given to the simulation of nonhomogeneous
Poisson processes, and in fact three different approaches for this are discussed.
Simulation of two-dimensional Poisson processes is discussed in Section 11.5.2.
In Section 11.6 we discuss various methods for increasing the precision of the
simulation estimates by reducing their variance; and in Section 11.7 we consider
the problem of choosing the number of simulation runs needed to attain a desired
level of precision. Before beginning this program, however, let us consider two
applications of simulation to combinatorial problems.

Example 11.1 (Generating a Random Permutation) Suppose we are inter-
ested in generating a permutation of the numbers 1,2, . . . , n that is such that all
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Table 11.1 A Random Number Table

04839 96423 24878 82651 66566 14778 76797 14780 13300 87074
68086 26432 46901 20848 89768 81536 86645 12659 92259 57102
39064 66432 84673 40027 32832 61362 98947 96067 64760 64584
25669 26422 44407 44048 37937 63904 45766 66134 75470 66520
64117 94305 26766 25940 39972 22209 71500 64568 91402 42416
87917 77341 42206 35126 74087 99547 81817 42607 43808 76655
62797 56170 86324 88072 76222 36086 84637 93161 76038 65855
95876 55293 18988 27354 26575 08625 40801 59920 29841 80150
29888 88604 67917 48708 18912 82271 65424 69774 33611 54262
73577 12908 30883 18317 28290 35797 05998 41688 34952 37888
27958 30134 04024 86385 29880 99730 55536 84855 29080 09250
90999 49127 20044 59931 06115 20542 18059 02008 73708 83517
18845 49618 02304 51038 20655 58727 28168 15475 56942 53389
94824 78171 84610 82834 09922 25417 44137 48413 25555 21246
35605 81263 39667 47358 56873 56307 61607 49518 89356 20103
33362 64270 01638 92477 66969 98420 04880 45585 46565 04102
88720 82765 34476 17032 87589 40836 32427 70002 70663 88863
39475 46473 23219 53416 94970 25832 69975 94884 19661 72828
06990 67245 68350 82948 11398 42878 80287 88267 47363 46634
40980 07391 58745 25774 22987 80059 39911 96189 41151 14222
83974 29992 65381 38857 50490 83765 55657 14361 31720 57375
33339 31926 14883 24413 59744 92351 97473 89286 35931 04110
31662 25388 61642 34072 81249 35648 56891 69352 48373 45578
93526 70765 10592 04542 76463 54328 02349 17247 28865 14777
20492 38391 91132 21999 59516 81652 27195 48223 46751 22923
04153 53381 79401 21438 83035 92350 36693 31238 59649 91754
05520 91962 04739 13092 97662 24822 94730 06496 35090 04822
47498 87637 99016 71060 88824 71013 18735 20286 23153 72924
23167 49323 45021 33132 12544 41035 80780 45393 44812 12515
23792 14422 15059 45799 22716 19792 09983 74353 68668 30429
85900 98275 32388 52390 16815 69298 82732 38480 73817 32523
42559 78985 05300 22164 24369 54224 35083 19687 11062 91491
14349 82674 66523 44133 00697 35552 35970 19124 63318 29686
17403 53363 44167 64486 64758 75366 76554 31601 12614 33072
23632 27889 47914 02584 37680 20801 72152 39339 34806 08930

n! possible orderings are equally likely. The following algorithm will accomplish
this by first choosing one of the numbers 1, . . . , n at random and then putting that
number in position n; it then chooses at random one of the remaining n − 1 num-
bers and puts that number in position n − 1; it then chooses at random one of the
remaining n− 2 numbers and puts it in position n− 2, and so on (where choosing
a number at random means that each of the remaining numbers is equally likely
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to be chosen). However, so that we do not have to consider exactly which of the
numbers remain to be positioned, it is convenient and efficient to keep the num-
bers in an ordered list and then randomly choose the position of the number rather
than the number itself. That is, starting with any initial ordering p1,p2, . . . , pn,
we pick one of the positions 1, . . . , n at random and then interchange the number
in that position with the one in position n. Now we randomly choose one of the
positions 1, . . . , n − 1 and interchange the number in this position with the one in
position n − 1, and so on.

To implement the preceding, we need to be able to generate a random variable
that is equally likely to take on any of the values 1,2, . . . , k. To accomplish this,
let U denote a random number—that is, U is uniformly distributed over (0,1)—
and note that kU is uniform on (0, k) and so

P {i − 1 < kU < i} = 1

k
, i = 1, . . . , k

Hence, if the random variable I = (kU) + 1 will be such that

P {I = i} = P {(kU) = i − 1} = P {i − 1 < kU < i} = 1

k

The preceding algorithm for generating a random permutation can now be written
as follows:

Step 1: Let p1,p2, . . . , pn be any permutation of 1,2, . . . , n (for instance,
we can choose pj = j, j = 1, . . . , n).

Step 2: Set k = n.
Step 3: Generate a random number U and let I = (kU) + 1.
Step 4: Interchange the values of pI and pk .
Step 5: Let k = k − 1 and if k > 1 go to Step 3.
Step 6: p1, . . . , pn is the desired random permutation.

For instance, suppose n = 4 and the initial permutation is 1, 2, 3, 4. If the first
value of I (which is equally likely to be either 1, 2, 3, 4) is I = 3, then the new
permutation is 1, 2, 4, 3. If the next value of I is I = 2 then the new permutation
is 1, 4, 2, 3. If the final value of I is I = 2, then the final permutation is 1, 4, 2, 3,
and this is the value of the random permutation.

One very important property of the preceding algorithm is that it can also be
used to generate a random subset, say of size r , of the integers 1, . . . , n. Namely,
just follow the algorithm until the positions n,n − 1, . . . , n − r + 1 are filled. The
elements in these positions constitute the random subset. �

Example 11.2 (Estimating the Number of Distinct Entries in a Large List)
Consider a list of n entries where n is very large, and suppose we are interested
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in estimating d , the number of distinct elements in the list. If we let mi denotethe
number of times that the element in position i appears on the list, then we can
express d by

d =
n∑

i=1

1

mi

To estimate d , suppose that we generate a random value X equally likely to be
either 1,2, . . . , n (that is, we take X = [nU ] + 1) and then let m(X) denote the
number of times the element in position X appears on the list. Then

E

[
1

m(X)

]

=
n∑

i=1

1

mi

1

n
= d

n

Hence, if we generate k such random variables X1, . . . ,Xk we can estimate d by

d ≈ n
∑k

i=1 1/m(Xi)

k

Suppose now that each item in the list has a value attached to it—v(i) being the
value of the ith element. The sum of the values of the distinct items—call it v—
can be expressed as

v =
n∑

i=1

v(i)

m(i)

Now if X = [nU ] + 1, where U is a random number, then

E

[
v(X)

m(X)

]

=
n∑

i=1

v(i)

m(i)

1

n
= v

n

Hence, we can estimate v by generating X1, . . . ,Xk and then estimating v by

v ≈ n

k

k∑

i=1

v(Xi)

m(Xi)

For an important application of the preceding, let Ai = {ai,1, . . . , ai,ni
}, i =

1, . . . , s denote events, and suppose we are interested in estimating P(
⋃s

i=1 Ai).
Since

P

(
s⋃

i=1

Ai

)

=
∑

a∈∪Ai

P (a) =
s∑

i=1

ni∑

j=1

P(ai,j )

m(ai,j )

where m(ai,j ) is the number of events to which the point ai,j belongs, the preced-
ing method can be used to estimate P(

⋃s
1 Ai).
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Note that the preceding procedure for estimating v can be effected without
prior knowledge of the set of values {v1, . . . , vn}. That is, it suffices that we can
determine the value of an element in a specific place and the number of times that
element appears on the list. When the set of values is a priori known, there is a
more efficient approach available as will be shown in Example 11.11. �

11.2. General Techniques for Simulating
Continuous Random Variables

In this section we present three methods for simulating continuous random vari-
ables.

11.2.1. The Inverse Transformation Method

A general method for simulating a random variable having a continuous distribu-
tion—called the inverse transformation method—is based on the following propo-
sition.

Proposition 11.1 Let U be a uniform (0,1) random variable. For any con-
tinuous distribution function F if we define the random variable X by

X = F−1(U)

then the random variable X has distribution function F . [F−1(u) is defined to
equal that value x for which F(x) = u.]

Proof

FX(a) = P {X � a}
= P {F−1(U) � a} (11.1)

Now, since F(x) is a monotone function, it follows that F−1(U) � a if and only
if U � F(a). Hence, from Equation (11.1), we see that

FX(a) = P {U � F(a)}
= F(a) �

Hence we can simulate a random variable X from the continuous distribu-
tion F , when F−1 is computable, by simulating a random number U and then
setting X = F−1(U).
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Example 11.3 (Simulating an Exponential Random Variable) If F(x) = 1 −
e−x , then F−1(u) is that value of x such that

1 − e−x = u

or

x = − log(1 − u)

Hence, if U is a uniform (0,1) variable, then

F−1(U) = − log(1 − U)

is exponentially distributed with mean 1. Since 1−U is also uniformly distributed
on (0, 1) it follows that − log U is exponential with mean 1. Since cX is expo-
nential with mean c when X is exponential with mean 1, it follows that −c logU

is exponential with mean c. �

11.2.2. The Rejection Method

Suppose that we have a method for simulating a random variable having density
function g(x). We can use this as the basis for simulating from the continuous
distribution having density f (x) by simulating Y from g and then accepting this
simulated value with a probability proportional to f (Y )/g(Y ).

Specifically let c be a constant such that

f (y)

g(y)
� c for all y

We then have the following technique for simulating a random variable having
density f .

Rejection Method

Step 1: Simulate Y having density g and simulate a random number U .
Step 2: If U � f (Y )/cg(Y ) set X = Y . Otherwise return to Step 1.

Proposition 11.2 The random variable X generated by the rejection method
has density function f .



670 11 Simulation

Proof Let X be the value obtained, and let N denote the number of necessary
iterations. Then

P {X � x} = P {YN � x}
= P {Y � x|U � f (Y )/cg(Y )}

= P {Y � x,U � f (Y )/cg(Y )}
K

=
∫

P {Y � x,U � f (Y )/cg(Y )|Y = y}g(y)dy

K

=
∫ x

−∞(f (y)/cg(y))g(y) dy

K

=
∫ x

−∞ f (y)dy

Kc

where K = P {U � f (Y )/cg(Y )}. Letting x → ∞ shows that K = 1/c and the
proof is complete. �

Remarks (i) The preceding method was originally presented by Von Neumann
in the special case where g was positive only in some finite interval (a, b), and Y

was chosen to be uniform over (a, b) [that is, Y = a + (b − a)U ].
(ii) Note that the way in which we “accept the value Y with probability

f (Y )/cg(Y )” is by generating a uniform (0,1) random variable U and then ac-
cepting Y if U � f (Y )/cg(Y ).

(iii) Since each iteration of the method will, independently, result in an accepted
value with probability P {U � f (Y )/cg(Y )} = 1/c it follows that the number of
iterations is geometric with mean c.

(iv) Actually, it is not necessary to generate a new uniform random number
when deciding whether or not to accept, since at a cost of some additional com-
putation, a single random number, suitably modified at each iteration, can be used
throughout. To see how, note that the actual value of U is not used—only whether
or not U < f (Y )/cg(Y ). Hence, if Y is rejected—that is, if U > f (Y )/cg(Y )—
we can use the fact that, given Y ,

U − f (Y )/cg(Y )

1 − f (Y )/cg(Y )
= cUg(Y ) − f (Y )

cg(Y ) − f (Y )

is uniform on (0,1). Hence, this may be used as a uniform random number in
the next iteration. As this saves the generation of a random number at the cost of
the preceding computation, whether it is a net savings depends greatly upon the
method being used to generate random numbers.
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Example 11.4 Let us use the rejection method to generate a random variable
having density function

f (x) = 20x(1 − x)3, 0 < x < 1

Since this random variable (which is beta with parameters 2, 4) is concentrated in
the interval (0,1), let us consider the rejection method with

g(x) = 1, 0 < x < 1

To determine the constant c such that f (x)/g(x) � c, we use calculus to deter-
mine the maximum value of

f (x)

g(x)
= 20x(1 − x)3

Differentiation of this quantity yields

d

dx

[
f (x)

g(x)

]

= 20[(1 − x)3 − 3x(1 − x)2]

Setting this equal to 0 shows that the maximal value is attained when x = 1
4 , and

thus

f (x)

g(x)
� 20

(
1

4

)(
3

4

)3

= 135

64
≡ c

Hence,

f (x)

cg(x)
= 256

27
x(1 − x)3

and thus the rejection procedure is as follows:

Step 1: Generate random numbers U1 and U2.
Step 2: If U2 � 256

27 U1(1 − U1)
3, stop and set X = U1. Otherwise return to

step 1.

The average number of times that step 1 will be performed is c = 135
64 . �

Example 11.5 (Simulating a Normal Random Variable) To simulate a stan-
dard normal random variable Z (that is, one with mean 0 and variance 1) note first
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that the absolute value of Z has density function

f (x) = 2√
2π

e−x2/2, 0 < x < ∞ (11.2)

We will start by simulating from the preceding density by using the rejection
method with

g(x) = e−x, 0 < x < ∞
Now, note that

f (x)

g(x)
=√

2e/π exp{−(x − 1)2/2} �
√

2e/π

Hence, using the rejection method we can simulate from Equation (11.2) as fol-
lows:

(a) Generate independent random variables Y and U , Y being exponential with
rate 1 and U being uniform on (0,1).
(b) If U � exp{−(Y − 1)2/2}, or equivalently, if

− log U � (Y − 1)2/2

set X = Y . Otherwise return to step (a).
Once we have simulated a random variable X having density function (11.2) we
can then generate a standard normal random variable Z by letting Z be equally
likely to be either X or −X.

To improve upon the foregoing, note first that from Example 11.3 it follows
that − log U will also be exponential with rate 1. Hence, steps (a) and (b) are
equivalent to the following:

(a′) Generate independent exponentials with rate 1, Y1, and Y2.
(b′) Set X = Y1 if Y2 � (Y1 − 1)2/2. Otherwise return to (a′).

Now suppose that we accept step (b′). It then follows by the lack of memory
property of the exponential that the amount by which Y2 exceeds (Y1 − 1)2/2 will
also be exponential with rate 1.

Hence, summing up, we have the following algorithm which generates an ex-
ponential with rate 1 and an independent standard normal random variable.

Step 1: Generate Y1, an exponential random variable with rate 1.
Step 2: Generate Y2, an exponential with rate 1.
Step 3: If Y2 − (Y1 − 1)2/2 > 0, set Y = Y2 − (Y1 − 1)2/2 and go to step 4.

Otherwise go to step 1.
Step 4: Generate a random number U and set

Z =
{

Y1, if U � 1
2

−Y1, if U > 1
2
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The random variables Z and Y generated by the preceding are independent with
Z being normal with mean 0 and variance 1 and Y being exponential with rate 1.
(If we want the normal random variable to have mean μ and variance σ 2, just take
μ + σZ.) �

Remarks (i) Since c = √
2e/π ≈ 1.32, the preceding requires a geometric dis-

tributed number of iterations of step 2 with mean 1.32.
(ii) The final random number of step 4 need not be separately simulated but

rather can be obtained from the first digit of any random number used earlier.
That is, suppose we generate a random number to simulate an exponential; then
we can strip off the initial digit of this random number and just use the remain-
ing digits (with the decimal point moved one step to the right) as the random
number. If this initial digit is 0, 1, 2, 3, or 4 (or 0 if the computer is generating
binary digits), then we take the sign of Z to be positive and take it to be negative
otherwise.

(iii) If we are generating a sequence of standard normal random variables,
then we can use the exponential obtained in step 4 as the initial exponential
needed in step 1 for the next normal to be generated. Hence, on the average, we
can simulate a unit normal by generating 1.64 exponentials and computing 1.32
squares.

11.2.3. The Hazard Rate Method

Let F be a continuous distribution function with F̄ (0) = 1. Recall that λ(t), the
hazard rate function of F , is defined by

λ(t) = f (t)

F̄ (t)
, t � 0

[where f (t) = F ′(t) is the density function]. Recall also that λ(t) represents the
instantaneous probability intensity that an item having life distribution F will fail
at time t given it has survived to that time.

Suppose now that we are given a bounded function λ(t), such that
∫∞

0 λ(t) dt =
∞, and we desire to simulate a random variable S having λ(t) as its hazard rate
function.

To do so let λ be such that

λ(t) � λ for all t � 0

To simulate from λ(t), t � 0, we will
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(a) simulate a Poisson process having rate λ. We will then only “accept” or
“count” certain of these Poisson events. Specifically we will
(b) count an event that occurs at time t , independently of all else, with proba-
bility λ(t)/λ.

We now have the following proposition.

Proposition 11.3 The time of the first counted event—call it S—is a random
variable whose distribution has hazard rate function λ(t), t � 0.

Proof

P {t < S < t + dt |S > t}
= P {first counted event in (t, t + dt)|no counted events prior to t}
= P {Poisson event in (t, t + dt), it is counted|no counted events prior to t}
= P {Poisson event in (t, t + dt), it is counted}

= [λ dt + o(dt)]λ(t)

λ
= λ(t) dt + o(dt)

which completes the proof. Note that the next to last equality follows from the
independent increment property of Poisson processes. �

Because the interarrival times of a Poisson process having rate λ are exponen-
tial with rate λ, it thus follows from Example 11.3 and the previous proposition
that the following algorithm will generate a random variable having hazard rate
function λ(t), t � 0.

Hazard Rate Method for Generating S: λs(t) = λ(t)

Let λ be such that λ(t) � λ for all t � 0. Generate pairs of random variables
Ui,Xi, i � 1, with Xi being exponential with rate λ and Ui being uniform (0,1),
stopping at

N = min

{

n: Un � λ

(
n∑

i=1

Xi

)
/

λ

}

Set

S =
N∑

i=1

Xi �

To compute E[N ] we need the result, known as Wald’s equation, which states
that if X1,X2, . . . are independent and identically distributed random variables
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that are observed in sequence up to some random time N then

E

[
N∑

i=1

Xi

]

= E[N ]E[X]

More precisely let X1,X2, . . . denote a sequence of independent random variables
and consider the following definition.

Definition 11.1 An integer-valued random variable N is said to be a
stopping time for the sequence X1,X2, . . . if the event {N = n} is independent
of Xn+1,Xn+2, . . . for all n = 1,2, . . . .

Intuitively, we observe the Xns in sequential order and N denotes the number
observed before stopping. If N = n, then we have stopped after observing
X1, . . . ,Xn and before observing Xn+1,Xn+2, . . . for all n = 1,2, . . . .

Example 11.6 Let Xn,n = 1,2, . . . , be independent and such that

P {Xn = 0} = P {Xn = 1} = 1
2 , n = 1,2, . . .

If we let

N = min{n: X1 + · · · + Xn = 10}
then N is a stopping time. We may regard N as being the stopping time of an
experiment that successively flips a fair coin and then stops when the number of
heads reaches 10. �

Proposition 11.4 (Wald’s Equation) If X1,X2, . . . are independent and
identically distributed random variables having finite expectations, and if N is
a stopping time for X1,X2, . . . such that E[N ] < ∞, then

E

[
N∑

1

Xn

]

= E[N ]E[X]

Proof Letting

In =
{

1, if N � n

0, if N < n

we have that

N∑

n=1

Xn =
∞∑

n=1

XnIn
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Hence,

E

[
N∑

n=1

Xn

]

= E

[ ∞∑

n=1

XnIn

]

=
∞∑

n=1

E[XnIn] (11.3)

However, In = 1 if and only if we have not stopped after successively observing
X1, . . . ,Xn−1. Therefore, In is determined by X1, . . . ,Xn−1 and is thus indepen-
dent of Xn. From Equation (11.3) we thus obtain

E

[
N∑

n=1

Xn

]

=
∞∑

n=1

E[Xn]E[In]

= E[X]
∞∑

n=1

E[In]

= E[X]E
[ ∞∑

n=1

In

]

= E[X]E[N ] �

Returning to the hazard rate method, we have that

S =
N∑

i=1

Xi

As N = min{n: Un � λ(
∑n

1 Xi)/λ} it follows that the event that N = n is inde-
pendent of Xn+1,Xn+2, . . . . Hence, by Wald’s equation,

E[S] = E[N ]E[Xi]

= E[N ]
λ

or

E[N ] = λE[S]

where E[S] is the mean of the desired random variable.
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11.3. Special Techniques for Simulating Continuous
Random Variables

Special techniques have been devised to simulate from most of the common con-
tinuous distributions. We now present certain of these.

11.3.1. The Normal Distribution

Let X and Y denote independent standard normal random variables and thus have
the joint density function

f (x, y) = 1

2π
e−(x2+y2)/2, −∞ < x < ∞,−∞ < y < ∞

Consider now the polar coordinates of the point (X,Y ). As shown in Figure 11.1,

R2 = X2 + Y 2,

� = tan−1 Y/X

To obtain the joint density of R2 and �, consider the transformation

d = x2 + y2, θ = tan−1 y/x

Figure 11.1.
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The Jacobian of this transformation is

J =

∣
∣
∣
∣
∣
∣
∣
∣

∂d

∂x

∂d

∂y

∂θ

∂x

∂θ

∂y

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

2x 2y

1

1 + y2/x2

(−y

x2

)
1

1 + y2/x2

(
1

x

)

∣
∣
∣
∣
∣
∣
∣

= 2

∣
∣
∣
∣
∣
∣
∣

x y

− y

x2 + y2

x

x2 + y2

∣
∣
∣
∣
∣
∣
∣

= 2

Hence, from Section 2.5.3 the joint density of R2 and � is given by

fR2,�(d, θ) = 1

2π
e−d/2 1

2

= 1

2
e−d/2 1

2π
, 0 < d < ∞,0 < θ < 2π

Thus, we can conclude that R2 and � are independent with R2 having an expo-
nential distribution with rate 1

2 and � being uniform on (0,2π).
Let us now go in reverse from the polar to the rectangular coordinates. From

the preceding if we start with W , an exponential random variable with rate 1
2

(W plays the role of R2) and with V , independent of W and uniformly distributed
over (0,2π) (V plays the role of �) then X = √

W cosV,Y = √
W sinV will be

independent standard normals. Hence using the results of Example 11.3 we see
that if U1 and U2 are independent uniform (0,1) random numbers, then

X = (−2 log U1)
1/2 cos(2πU2),

Y = (−2 log U1)
1/2 sin(2πU2)

(11.4)

are independent standard normal random variables.

Remark The fact that X2 + Y 2 has an exponential distribution with rate 1
2 is

quite interesting for, by the definition of the chi-square distribution, X2 +Y 2 has a
chi-squared distribution with 2 degrees of freedom. Hence, these two distributions
are identical.

The preceding approach to generating standard normal random variables is
called the Box–Muller approach. Its efficiency suffers somewhat from its need
to compute the preceding sine and cosine values. There is, however, a way to get
around this potentially time-consuming difficulty. To begin, note that if U is uni-
form on (0,1), then 2U is uniform on (0,2), and so 2U −1 is uniform on (−1,1).
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Figure 11.2.

Thus, if we generate random numbers U1 and U2 and set

V1 = 2U1 − 1,

V2 = 2U2 − 1

then (V1,V2) is uniformly distributed in the square of area 4 centered at (0, 0) (see
Figure 11.2).

Suppose now that we continually generate such pairs (V1,V2) until we obtain
one that is contained in the circle of radius 1 centered at (0,0)—that is, until
(V1,V2) is such that V 2

1 + V 2
2 � 1. It now follows that such a pair (V1,V2) is

uniformly distributed in the circle. If we let R̄, �̄ denote the polar coordinates of
this pair, then it is easy to verify that R̄ and �̄ are independent, with R̄2 being
uniformly distributed on (0,1), and �̄ uniformly distributed on (0,2π).

Since

sin �̄ = V2/R̄ = V2
√

V 2
1 + V 2

2

,

cos �̄ = V1/R̄ = V1
√

V 2
1 + V 2

2

it follows from Equation (11.4) that we can generate independent standard nor-
mals X and Y by generating another random number U and setting

X = (−2 log U)1/2V1/R̄,

Y = (−2 log U)1/2V2/R̄
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In fact, since (conditional on V 2
1 + V 2

2 � 1) R̄2 is uniform on (0,1) and is inde-
pendent of �̄, we can use it instead of generating a new random number U ; thus
showing that

X = (−2 log R̄2)1/2V1/R̄ =
√−2 logS

S
V1,

Y = (−2 log R̄2)1/2V2/R̄ =
√−2 logS

S
V2

are independent standard normals, where

S = R̄2 = V 2
1 + V 2

2

Summing up, we thus have the following approach to generating a pair of inde-
pendent standard normals:

Step 1: Generate random numbers U1 and U2.
Step 2: Set V1 = 2U1 − 1, V2 = 2U2 − 1, S = V 2

1 + V 2
2 .

Step 3: If S > 1, return to step 1.
Step 4: Return the independent unit normals

X =
√−2 logS

S
V1, Y =

√−2 logS

S
V2

The preceding is called the polar method. Since the probability that a random
point in the square will fall within the circle is equal to π/4 (the area of the circle
divided by the area of the square), it follows that, on average, the polar method will
require 4/π = 1.273 iterations of step 1. Hence, it will, on average, require 2.546
random numbers, 1 logarithm, 1 square root, 1 division, and 4.546 multiplications
to generate 2 independent standard normals.

11.3.2. The Gamma Distribution

To simulate from a gamma distribution with parameters (n,λ), where n is an in-
teger, we use the fact that the sum of n independent exponential random variables
each having rate λ has this distribution. Hence, if U1, . . . ,Un are independent
uniform (0,1) random variables,

X = 1

λ

n∑

i=1

log Ui = −1

λ
log

(
n∏

i=1

Ui

)

has the desired distribution.
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When n is large, there are other techniques available that do not require so many
random numbers. One possibility is to use the rejection procedure with g(x) being
taken as the density of an exponential random variable with mean n/λ (as this is
the mean of the gamma). It can be shown that for large n the average number
of iterations needed by the rejection algorithm is e[(n − 1)/2π]1/2. In addition,
if we wanted to generate a series of gammas, then, just as in Example 11.4, we
can arrange things so that upon acceptance we obtain not only a gamma random
variable but also, for free, an exponential random variable that can then be used
in obtaining the next gamma (see Exercise 8).

11.3.3. The Chi-Squared Distribution

The chi-squared distribution with n degrees of freedom is the distribution of
χ2

n = Z2
1 + · · · + Z2

n where Zi, i = 1, . . . , n are independent standard normals.
Using the fact noted in the remark at the end of Section 3.1 we see that Z2

1 + Z2
2

has an exponential distribution with rate 1
2 . Hence, when n is even—say n = 2k—

χ2
2k has a gamma distribution with parameters (k, 1

2 ). Hence, −2 log(
∏k

i=1 Ui)

has a chi-squared distribution with 2k degrees of freedom. We can simulate a chi-
squared random variable with 2k + 1 degrees of freedom by first simulating a
standard normal random variable Z and then adding Z2 to the preceding. That is,

χ2
2k+1 = Z2 − 2 log

(
k∏

i=1

Ui

)

where Z,U1, . . . ,Un are independent with Z being a standard normal and the
others being uniform (0,1) random variables.

11.3.4. The Beta (n, m) Distribution

The random variable X is said to have a beta distribution with parameters n,m if
its density is given by

f (x) = (n + m − 1)!
(n − 1)!(m − 1)!x

n−1(1 − x)m−1, 0 < x < 1

One approach to simulating from the preceding distribution is to let U1, . . . ,

Un+m−1 be independent uniform (0,1) random variables and consider the nth
smallest value of this set—call it U(n). Now U(n) will equal x if, of the n + m − 1
variables,

(i) n − 1 are smaller than x,
(ii) one equals x,

(iii) m − 1 are greater than x.
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Hence, if the n+m−1 uniform random variables are partitioned into three subsets
of sizes n − 1, 1, and m − 1 the probability (density) that each of the variables
in the first set is less than x, the variable in the second set equals x, and all the
variables in the third set are greater than x is given by

(P {U < x})n−1fu(x)(P {U > x})m−1 = xn−1(1 − x)m−1

Hence, as there are (n + m − 1)!/(n − 1)!(m − 1)! possible partitions, it follows
that U(n) is beta with parameters (n,m).

Thus, one way to simulate from the beta distribution is to find the nth smallest
of a set of n + m − 1 random numbers. However, when n and m are large, this
procedure is not particularly efficient.

For another approach consider a Poisson process with rate 1, and recall that
given Sn+m, the time of the (n + m)th event, the set of the first n + m − 1
event times is distributed independently and uniformly on (0, Sn+m). Hence, given
Sn+m, the nth smallest of the first n + m − 1 event times—that is Sn—is distrib-
uted as the nth smallest of a set of n+m−1 uniform (0, Sn+m) random variables.
But from the preceding we can thus conclude that Sn/Sn+m has a beta distribution
with parameters (n,m). Therefore, if U1, . . . ,Un+m are random numbers,

− log
∏n

i=1 Ui

− log
∏m+n

i=1 Ui

is beta with parameters (n,m)

By writing the preceding as

− log
∏n

i=1 Ui

− log
∏n

1 Ui − log
∏n+m

n+1 Ui

we see that it has the same distribution as X/(X + Y) where X and Y are inde-
pendent gamma random variables with respective parameters (n,1) and (m,1).
Hence, when n and m are large, we can efficiently simulate a beta by first simu-
lating two gamma random variables.

11.3.5. The Exponential Distribution—The Von Neumann Algorithm

As we have seen, an exponential random variable with rate 1 can be simulated
by computing the negative of the logarithm of a random number. Most computer
programs for computing a logarithm, however, involve a power series expansion,
and so it might be useful to have at hand a second method that is computationally
easier. We now present such a method due to Von Neumann.
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To begin let U1,U2, . . . be independent uniform (0,1) random variables and
define N,N � 2, by

N = min{n: U1 � U2 � · · · � Un−1 < Un}
That is, N is the first random number that is greater than its predecessor. Let us
now compute the joint distribution of N and U1:

P {N > n,U1 � y} =
∫ 1

0
P {N > n,U1 � y|U1 = x}dx

=
∫ y

0
P {N > n|U1 = x}dx

Now, given that U1 = x,N will be greater than n if x � U2 � · · · � Un or, equiv-
alently, if

(a) Ui � x, i = 2, . . . , n

and

(b) U2 � · · · � Un

Now, (a) has probability xn−1 of occurring and given (a), since all of the (n − 1)!
possible rankings of U2, . . . ,Un are equally likely, (b) has probability 1/(n − 1)!
of occurring. Hence,

P {N > n|U1 = x} = xn−1

(n − 1)!
and so

P {N > n,U1 � y} =
∫ y

0

xn−1

(n − 1)! dx = yn

n!
which yields that

P {N = n,U1 � y} = P {N > n − 1,U1 � y} − P {N > n,U1 � y}

= yn−1

(n − 1)! − yn

n!
Upon summing over all the even integers, we see that

P {N is even, U1 � y} = y − y2

2! + y3

3! − y4

4! − · · ·
= 1 − e−y (11.5)

We are now ready for the following algorithm for generating an exponential
random variable with rate 1.
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Step 1: Generate uniform random numbers U1,U2, . . . stopping at N =
min{n: U1 � · · · � Un−1 < Un}.

Step 2: If N is even accept that run, and go to step 3. If N is odd reject the
run, and return to step 1.

Step 3: Set X equal to the number of failed runs plus the first random number
in the successful run.

To show that X is exponential with rate 1, first note that the probability of a
successful run is, from Equation (11.5) with y = 1,

P {N is even} = 1 − e−1

Now, in order for X to exceed x, the first [x] runs must all be unsuccessful and
the next run must either be unsuccessful or be successful but have U1 > x − [x]
(where [x] is the largest integer not exceeding x). As

P {N even, U1 > y} = P {N even} − P {N even, U1 � y}
= 1 − e−1 − (1 − e−y) = e−y − e−1

we see that

P {X > x} = e−[x][e−1 + e−(x−[x]) − e−1] = e−x

which yields the result.
Let T denote the number of trials needed to generate a successful run. As each

trial is a success with probability 1−e−1 it follows that T is geometric with means
1/(1 − e−1). If we let Ni denote the number of uniform random variables used on
the ith run, i � 1, then T (being the first run i for which Ni is even) is a stopping
time for this sequence. Hence, by Wald’s equation, the mean number of uniform
random variables needed by this algorithm is given by

E

[
T∑

i=1

Ni

]

= E[N ]E[T ]

Now,

E[N ] =
∞∑

n=0

P {N > n}

= 1 +
∞∑

n=1

P {U1 � · · · � Un}

= 1 +
∞∑

n=1

1/n! = e
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and so

E

[
T∑

i=1

Ni

]

= e

1 − e−1
≈ 4.3

Hence, this algorithm, which computationally speaking is quite easy to perform,
requires on the average about 4.3 random numbers to execute.

11.4. Simulating from Discrete Distributions

All of the general methods for simulating from continuous distributions have
analogs in the discrete case. For instance, if we want to simulate a random variable
X having probability mass function

P {X = xj } = Pj , j = 1,2, . . . ,
∑

j

Pj = 1

We can use the following discrete time analog of the inverse transform technique.

To simulate X for which P {X = xj } = Pj

let U be uniformly distributed over (0,1), and set

X =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1, if U < P1
x2, if P1 < U < P1 + P2
...

xj , if
j−1∑

1

Pi < U <

j∑

i

Pi

...

As,

P {X = xj } = P

{
j−1∑

1

Pi < U <

j∑

1

Pi

}

= Pj

we see that X has the desired distribution.

Example 11.7 (The Geometric Distribution) Suppose we want to simulate X

such that

P {X = i} = p(1 − p)i−1, i � 1
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As

j−1∑

i=1

P {X = i} = 1 − P {X > j − 1} = 1 − (1 − p)j−1

we can simulate such a random variable by generating a random number U and
then setting X equal to that value j for which

1 − (1 − p)j−1 < U < 1 − (1 − p)j

or, equivalently, for which

(1 − p)j < 1 − U < (1 − p)j−1

As 1 − U has the same distribution as U , we can thus define X by

X = min{j : (1 − p)j < U} = min

{

j : j >
log U

log(1 − p)

}

= 1 +
[

log U

log(1 − p)

]

�

As in the continuous case, special simulation techniques have been developed for
the more common discrete distributions. We now present certain of these.

Example 11.8 (Simulating a Binomial Random Variable) A binomial (n,p)

random variable can be most easily simulated by recalling that it can be expressed
as the sum of n independent Bernoulli random variables. That is, if U1, . . . ,Un

are independent uniform (0,1) variables, then letting

Xi =
{

1, if Ui < p

0, otherwise

it follows that X ≡ ∑n
i=1 Xi is a binomial random variable with parameters n

and p.
One difficulty with this procedure is that it requires the generation of n random

numbers. To show how to reduce the number of random numbers needed, note
first that this procedure does not use the actual value of a random number U but
only whether or not it exceeds p. Using this and the result that the conditional
distribution of U given that U < p is uniform on (0,p) and the conditional dis-
tribution of U given that U > p is uniform on (p,1), we now show how we can
simulate a binomial (n,p) random variable using only a single random number:
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Step 1: Let α = 1/p,β = 1/(1 − p).
Step 2: Set k = 0.
Step 3: Generate a uniform random number U .
Step 4: If k = n stop. Otherwise reset k to equal k + 1.
Step 5: If U � p set Xk = 1 and reset U to equal αU . If U > p set Xk = 0

and reset U to equal β(U − p). Return to step 4.

This procedure generates X1, . . . ,Xn and X =∑n
i=1 Xi is the desired random

variable. It works by noting whether Uk � p or Uk > p; in the former case it
takes Uk+1 to equal Uk/p, and in the latter case it takes Uk+1 to equal (Uk − p)/

(1 − p).† �

Example 11.9 (Simulating a Poisson Random Variable) To simulate a Pois-
son random variable with mean λ, generate independent uniform (0,1) random
variables U1,U2, . . . stopping at

N + 1 = min

{

n:
n∏

i=1

Ui < e−λ

}

The random variable N has the desired distribution, which can be seen by noting
that

N = max

{

n :
n∑

i=1

− logUi < λ

}

But − log Ui is exponential with rate 1, and so if we interpret − log Ui, i � 1,
as the interarrival times of a Poisson process having rate 1, we see that N = N(λ)

would equal the number of events by time λ. Hence N is Poisson with mean λ.
When λ is large we can reduce the amount of computation in the preceding

simulation of N(λ), the number of events by time λ of a Poisson process having
rate 1, by first choosing an integer m and simulating Sm, the time of the mth event
of the Poisson process and then simulating N(λ) according to the conditional
distribution of N(λ) given Sm. Now the conditional distribution of N(λ) given
Sm is as follows:

N(λ)|Sm = s ∼ m + Poisson(λ − s), if s < λ

N(λ)|Sm = s ∼ Binomial

(

m − 1,
λ

s

)

, if s > λ

where ∼ means “has the distribution of.” This follows since if the mth event oc-
curs at time s, where s < λ, then the number of events by time λ is m plus the

†Because of computer round-off errors, a single random number should not be continuously used
when n is large.
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number of events in (s, λ). On the other hand given that Sm = s the set of times
at which the first m − 1 events occur has the same distribution as a set of m − 1
uniform (0, s) random variables (see Section 5.3.5). Hence, when λ < s, the num-
ber of these which occur by time λ is binomial with parameters m − 1 and λ/s.
Hence, we can simulate N(λ) by first simulating Sm and then simulate either
P(λ − Sm), a Poisson random variable with mean λ − Sm when Sm < λ, or sim-
ulate Bin(m − 1, λ/Sm), a binomial random variable with parameters m − 1, and
λ/Sm, when Sm > λ; and then setting

N(λ) =
{
m + P(λ − Sm), if Sm < λ

Bin(m − 1, λ/Sm), if Sm > λ

In the preceding it has been found computationally effective to let m be approx-
imately 7

8λ. Of course, Sm is simulated by simulating from a gamma (m,λ) dis-
tribution via an approach that is computationally fast when m is large (see Sec-
tion 11.3.3). �

There are also rejection and hazard rate methods for discrete distributions but
we leave their development as exercises. However, there is a technique available
for simulating finite discrete random variables—called the alias method—which,
though requiring some setup time, is very fast to implement.

11.4.1. The Alias Method

In what follows, the quantities P, P(k), Q(k), k � n − 1 will represent probability
mass functions on the integers 1,2, . . . , n—that is, they will be n-vectors of non-
negative numbers summing to 1. In addition, the vector P(k) will have at most k

nonzero components, and each of the Q(k) will have at most two nonzero com-
ponents. We show that any probability mass function P can be represented as
an equally weighted mixture of n − 1 probability mass functions Q (each hav-
ing at most two nonzero components). That is, we show that for suitably defined
Q(1), . . . ,Q(n−1),P can be expressed as

P = 1

n − 1

n−1∑

k=1

Q(k) (11.6)

As a prelude to presenting the method for obtaining this representation, we will
need the following simple lemma whose proof is left as an exercise.

Lemma 11.1 Let P = {Pi, i = 1, . . . , n} denote a probability mass function,
then

(a) there exists an i, 1 � i � n, such that Pi < 1/(n − 1), and
(b) for this i, there exists a j , j �= i, such that Pi + Pj � 1/(n − 1).
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Before presenting the general technique for obtaining the representation of
Equation (11.6), let us illustrate it by an example.

Example 11.10 Consider the three-point distribution P with P1 = 7
16 ,

P2 = 1
2 , P3 = 1

16 . We start by choosing i and j such that they satisfy the con-
ditions of Lemma 11.5. As P3 < 1

2 and P3 + P2 > 1
2 , we can work with i = 3 and

j = 2. We will now define a 2-point mass function Q(1) putting all of its weight
on 3 and 2 and such that P will be expressible as an equally weighted mixture
between Q(1) and a second 2-point mass function Q(2). Secondly, all of the mass
of point 3 will be contained in Q(1). As we will have

Pj = 1
2

(
Q

(1)
j + Q

(2)
j

)
, j = 1,2,3 (11.7)

and, by the preceding, Q
(2)
3 is supposed to equal 0, we must therefore take

Q
(1)
3 = 2P3 = 1

8 , Q
(1)
2 = 1 − Q

(1)
3 = 7

8 , Q
(1)
1 = 0

To satisfy Equation (11.7), we must then set

Q
(2)
3 = 0, Q

(2)
2 = 2P2 − 7

8 = 1
8 , Q

(2)
1 = 2P1 = 7

8

Hence, we have the desired representation in this case. Suppose now that the orig-
inal distribution was the following 4-point mass function:

P1 = 7
16 , P2 = 1

4 , P3 = 1
8 , P4 = 3

16

Now, P3 < 1
3 and P3 + P1 > 1

3 . Hence our initial 2-point mass function—Q(1)—
will concentrate on points 3 and 1 (giving no weights to 2 and 4). As the final
representation will give weight 1

3 to Q(1) and in addition the other Q(j), j = 2,3,
will not give any mass to the value 3, we must have that

1
3Q

(1)
3 = P3 = 1

8

Hence,

Q
(1)
3 = 3

8 , Q
(1)
1 = 1 − 3

8 = 5
8

Also, we can write

P = 1
3 Q(1) + 2

3 P(3)
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where P(3), to satisfy the preceding, must be the vector

P(3)
1 = 3

2

(
P1 − 1

3Q
(1)
1

)= 1
3

1
2 ,

P(3)
2 = 3

2P2 = 3
8 ,

P(3)
3 = 0,

P(3)
4 = 3

2P4 = 9
32

Note that P(3) gives no mass to the value 3. We can now express the mass function
P(3) as an equally weighted mixture of 2-point mass functions Q(2) and Q(3), and
we will end up with

P = 1
3 Q(1) + 2

3

( 1
2 Q(2) + 1

2 Q(3)
)

= 1
3

(
Q(1) + Q(2) + Q(3)

)

(We leave it as an exercise for you to fill in the details.) �

The preceding example outlines the following general procedure for writing
the n-point mass function P in the form of Equation (11.6) where each of the Q(i)

are mass functions giving all their mass to at most 2 points. To start, we choose i

and j satisfying the conditions of Lemma 11.5. We now define the mass function
Q(1) concentrating on the points i and j and which will contain all of the mass
for point i by noting that, in the representation of Equation (11.6), Q

(k)
i = 0 for

k = 2, . . . , n − 1, implying that

Q
(1)
i = (n − 1)Pi, and so Q

(1)
j = 1 − (n − 1)Pi

Writing

P = 1

n − 1
Q(1) + n − 2

n − 1
P(n−1) (11.8)

where P(n−1) represents the remaining mass, we see that

P
(n−1)
i = 0,

P
(n−1)
j = n − 1

n − 2

(

Pj − 1

n − 1
Q

(1)
j

)

= n − 1

n − 2

(

Pi + Pj − 1

n − 1

)

,

P
(n−1)
k = n − 1

n − 2
Pk, k �= i or j

That the foregoing is indeed a probability mass function is easily checked—for
instance, the nonnegativity of P

(n−1)
j follows from the fact that j was chosen so

that Pi + Pj � 1/(n − 1).
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We may now repeat the foregoing procedure on the (n − 1)-point probability
mass function P(n−1) to obtain

P(n−1) = 1

n − 2
Q(2) + n − 3

n − 2
P(n−2)

and thus from Equation (11.8) we have

P = 1

n − 1
Q(1) + 1

n − 1
Q(2) + n − 3

n − 1
P(n−2)

We now repeat the procedure on P(n−2) and so on until we finally obtain

P = 1

n − 1

(
Q(1) + · · · + Q(n−1)

)

In this way we are able to represent P as an equally weighted mixture of n − 1
2-point mass functions. We can now easily simulate from P by first generating a
random integer N equally likely to be either 1,2, . . . , n − 1. If the resulting value
N is such that Q(N) puts positive weight only on the points iN and jN , then we
can set X equal to iN if a second random number is less than Q

(N)
iN

and equal to
jN otherwise. The random variable X will have probability mass function P. That
is, we have the following procedure for simulating from P.

Step 1: Generate U1 and set N = 1 + [(n − 1)U1].
Step 2: Generate U2 and set

X =
{

iN , if U2 < Q
(N)
iN

jN , otherwise

Remarks (i) The preceding is called the alias method because by a renumber-
ing of the Qs we can always arrange things so that for each k,Q

(k)
k > 0. (That is,

we can arrange things so that the kth 2-point mass function gives positive weight
to the value k.) Hence, the procedure calls for simulating N , equally likely to be
1,2, . . . , n−1, and then if N = k it either accepts k as the value of X, or it accepts
for the value of X the “alias” of k (namely, the other value that Q(k) gives positive
weight).

(ii) Actually, it is not necessary to generate a new random number in step 2.
Because N − 1 is the integer part of (n − 1)U1, it follows that the remainder
(n − 1)U1 − (N − 1) is independent of U1 and is uniformly distributed in (0,1).
Hence, rather than generating a new random number U2 in step 2, we can use
(n − 1)U1 − (N − 1) = (n − 1)U1 − [(n − 1)U1].
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Example 11.11 Let us return to the problem of Example 11.1 which consid-
ers a list of n, not necessarily distinct, items. Each item has a value—v(i) being
the value of the item in position i—and we are interested in estimating

v =
n∑

i=1

v(i)/m(i)

where m(i) is the number of times the item in position i appears on the list. In
words, v is the sum of the values of the (distinct) items on the list.

To estimate v, note that if X is a random variable such that

P {X = i} = v(i)
/ n∑

1

v(j), i = 1, . . . , n

then

E[1/m(X)] =
∑

i v(i)/m(i)
∑

j v(j)
= v

/ n∑

j=1

v(j)

Hence, we can estimate v by using the alias (or any other) method to generate
independent random variables X1, . . . ,Xk having the same distribution as X and
then estimating v by

v ≈ 1

k

n∑

j=1

v(j)

k∑

i=1

1/m(Xi) �

11.5. Stochastic Processes

We can easily simulate a stochastic process by simulating a sequence of random
variables. For instance, to simulate the first t time units of a renewal process
having interarrival distribution F we can simulate independent random variables
X1,X2, . . . having distribution F , stopping at

N = min{n: X1 + · · · + Xn > t}
The Xi, i � 1, represent the interarrival times of the renewal process and so the
preceding simulation yields N −1 events by time t—the events occurring at times
X1,X1 + X2, . . . ,X1 + · · · + XN−1.

Actually there is another approach for simulating a Poisson process that is quite
efficient. Suppose we want to simulate the first t time units of a Poisson process
having rate λ. To do so, we can first simulate N(t), the number of events by t ,
and then use the result that given the value of N(t), the set of N(t) event times is
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distributed as a set of n independent uniform (0, t) random variables. Hence, we
start by simulating N(t), a Poisson random variable with mean λt (by one of the
methods given in Example 11.9). Then, if N(t) = n, generate a new set of n ran-
dom numbers—call them U1, . . . ,Un—and {tU1, . . . , tUn} will represent the set
of N(t) event times. If we could stop here this would be much more efficient than
simulating the exponentially distributed interarrival times. However, we usually
desire the event times in increasing order—for instance, for s < t ,

N(s) = number of Ui : tUi � s

and so to compute the function N(s), s � t , it is best to first order the values
Ui, i = 1, . . . , n before multiplying by t . However, in doing so you should not
use an all-purpose sorting algorithm, such as quick sort (see Example 3.14), but
rather one that takes into account that the elements to be sorted come from a
uniform (0,1) population. Such a sorting algorithm, of n uniform (0,1) variables,
is as follows: Rather than a single list to be sorted of length n we will consider
n ordered, or linked, lists of random size. The value U will be put in list i if
its value is between (i − 1)/n and i/n—that is, U is put in list [nU ] + 1. The
individual lists are then ordered, and the total linkage of all the lists is the desired
ordering. As almost all of the n lists will be of relatively small size [for instance,
if n = 1000 the mean number of lists of size greater than 4 is (using the Poisson
approximation to the binomial) approximately equal to 1000(1 − 65

24e−1) � 4] the
sorting of individual lists will be quite quick, and so the running time of such an
algorithm will be proportional to n (rather than to n logn as in the best all-purpose
sorting algorithms).

An extremely important counting process for modeling purposes is the non-
homogeneous Poisson process, which relaxes the Poisson process assumption of
stationary increments. Thus it allows for the possibility that the arrival rate need
not be constant but can vary with time. However, there are few analytical studies
that assume a nonhomogeneous Poisson arrival process for the simple reason that
such models are not usually mathematically tractable. (For example, there is no
known expression for the average customer delay in the single-server exponential
service distribution queueing model which assumes a nonhomogeneous arrival
process.)‡ Clearly such models are strong candidates for simulation studies.

11.5.1. Simulating a Nonhomogeneous Poisson Process

We now present three methods for simulating a nonhomogeneous Poisson process
having intensity function λ(t), 0 � t < ∞.

‡One queueing model that assumes a nonhomogeneous Poisson arrival process and is mathemati-
cally tractable is the infinite server model.



694 11 Simulation

Method 1. Sampling a Poisson Process

To simulate the first T time units of a nonhomogeneous Poisson process with
intensity function λ(t), let λ be such that

λ(t) � λ for all t � T

Now as shown in Chapter 5, such a nonhomogeneous Poisson process can be
generated by a random selection of the event times of a Poisson process having
rate λ. That is, if an event of a Poisson process with rate λ that occurs at time t is
counted (independently of what has transpired previously) with probability λ(t)/λ

then the process of counted events is a nonhomogeneous Poisson process with
intensity function λ(t),0 � t � T . Hence, by simulating a Poisson process and
then randomly counting its events, we can generate the desired nonhomogeneous
Poisson process. We thus have the following procedure:

Generate independent random variables X1,U1,X2,U2, . . . where the Xi are
exponential with rate λ and the Ui are random numbers, stopping at

N = min

{

n:
n∑

i=1

Xi > T

}

Now let, for j = 1, . . . ,N − 1,

Ij =
⎧
⎨

⎩

1, if Uj � λ
(∑j

i=1 Xi

)/
λ

0, otherwise

and set

J = {j : Ij = 1}
Thus, the counting process having events at the set of times {∑j

i=1 Xi : j ∈ J }
constitutes the desired process.

The foregoing procedure, referred to as the thinning algorithm (because it
“thins” the homogeneous Poisson points) will clearly be most efficient, in the
sense of having the fewest number of rejected event times, when λ(t) is near λ

throughout the interval. Thus, an obvious improvement is to break up the inter-
val into subintervals and then use the procedure over each subinterval. That is,
determine appropriate values k, 0 < t1 < t2 < · · · < tk < T , λ1, . . . , λk+1, such
that

λ(s) � λi when ti−1 � s < ti, i = 1, . . . , k + 1 (where t0 = 0, tk+1 = T )

(11.9)
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Now simulate the nonhomogeneous Poisson process over the interval (ti−1, ti) by
generating exponential random variables with rate λi and accepting the generated
event occurring at time s, s ∈ (ti−1, ti), with probability λ(s)/λi . Because of the
memoryless property of the exponential and the fact that the rate of an exponential
can be changed upon multiplication by a constant, it follows that there is no loss
of efficiency in going from one subinterval to the next. In other words, if we are
at t ∈ [ti−1, ti) and generate X, an exponential with rate λi , which is such that
t + X > ti then we can use λi[X − (ti − t)]/λi+1 as the next exponential with
rate λi+1. Thus, we have the following algorithm for generating the first t time
units of a nonhomogeneous Poisson process with intensity function λ(s) when
the relations (11.9) are satisfied. In the algorithm, t will represent the present time
and I the present interval (that is, I = i when ti−1 � t < ti ).

Step 1: t = 0, I = 1.
Step 2: Generate an exponential random variable X having rate λI .
Step 3: If t + X < tI , reset t = t + X, generate a random number U , and

accept the event time t if U � λ(t)/λI . Return to step 2.
Step 4: (Step reached if t + X � tI ). Stop if I = k + 1. Otherwise, reset

X = (X − tI + t)λI /λI+1. Also reset t = tI and I = I + 1, and go to
step 3.

Suppose now that over some subinterval (ti−1, ti) it follows that λi > 0 where

λi ≡ infimum {λ(s): ti−1 � s < ti}

In such a situation, we should not use the thinning algorithm directly but rather
should first simulate a Poisson process with rate λi over the desired interval
and then simulate a nonhomogeneous Poisson process with the intensity func-
tion λ(s) = λ(s) − λi when s ∈ (ti−1, ti). (The final exponential generated for
the Poisson process, which carries one beyond the desired boundary, need not be
wasted but can be suitably transformed so as to be reusable.) The superposition
(or, merging) of the two processes yields the desired process over the interval. The
reason for doing it this way is that it saves the need to generate uniform random
variables for a Poisson distributed number, with mean λi(ti − ti−1) of the event
times. For instance, consider the case where

λ(s) = 10 + s, 0 < s < 1

Using the thinning method with λ = 11 would generate an expected number of
11 events each of which would require a random number to determine whether
or not to accept it. On the other hand, to generate a Poisson process with rate 10
and then merge it with a generated nonhomogeneous Poisson process with rate
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Figure 11.3.

λ(s) = s, 0 < s < 1, would yield an equally distributed number of event times but
with the expected number needing to be checked to determine acceptance being
equal to 1.

Another way to make the simulation of nonhomogeneous Poisson processes
more efficient is to make use of superpositions. For instance, consider the process
where

λ(t) =
⎧
⎨

⎩

exp{t2}, 0 < t < 1.5
exp{2.25}, 1.5 < t < 2.5
exp{(4 − t)2}, 2.5 < t < 4

A plot of this intensity function is given in Figure 11.3. One way of simulating this
process up to time 4 is to first generate a Poisson process with rate 1 over this in-
terval; then generate a Poisson process with rate e−1 over this interval and accept
all events in (1, 3) and only accept an event at time t which is not contained in (1,
3) with probability [λ(t) − 1]/(e − 1); then generate a Poisson process with rate
e2.25 − e over the interval (1, 3), accepting all event times between 1.5 and 2.5 and
any event time t outside this interval with probability [λ(t) − e]/(e2.25 − e). The
superposition of these processes is the desired nonhomogeneous Poisson process.
In other words, what we have done is to break up λ(t) into the following nonneg-
ative parts:

λ(t) = λ1(t) + λ2(t) + λ3(t), 0 < t < 4
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where

λ1(t) ≡ 1,

λ2(t) =
⎧
⎨

⎩

λ(t) − 1, 0 < t < 1
e − 1, 1 < t < 3
λ(t) − 1, 3 < t < 4

λ3(t) =

⎧
⎪⎪⎨

⎪⎪⎩

λ(t) − e, 1 < t < 1.5
e2.25 − e, 1.5 < t < 2.5
λ(t) − e, 2.5 < t < 3
0, 3 < t < 4

and where the thinning algorithm (with a single interval in each case) was used to
simulate the constituent nonhomogeneous processes.

Method 2. Conditional Distribution of the Arrival Times

Recall the result for a Poisson process having rate λ that given the number of
events by time T the set of event times are independent and identically distrib-
uted uniform (0, T ) random variables. Now suppose that each of these events is
independently counted with a probability that is equal to λ(t)/λ when the event
occurred at time t . Hence, given the number of counted events, it follows that the
set of times of these counted events are independent with a common distribution
given by F(s), where

F(s) = P {time � s|counted}

= P {time � s, counted}
P {counted}

=
∫ T

0 P {time � s, counted|time = x} dx/T

P {counted}

=
∫ s

0 λ(x) dx
∫ T

0 λ(x) dx

The preceding (somewhat heuristic) argument thus shows that given n events of
a nonhomogeneous Poisson process by time T the n event times are independent
with a common density function

f (s) = λ(s)

m(T )
, 0 < s < T, m(T ) =

∫ T

0
λ(s) ds (11.10)

Since N(T ), the number of events by time T , is Poisson distributed with mean
m(T ), we can simulate the nonhomogeneous Poisson process by first simulating
N(T ) and then simulating N(T ) random variables from the density (11.10).
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Example 11.12 If λ(s) = cs, then we can simulate the first T time units of
the nonhomogeneous Poisson process by first simulating N(T ), a Poisson random
variable having mean m(T ) = ∫ T

0 cs ds = CT 2/2, and then simulating N(T ) ran-
dom variables having distribution

F(s) = s2

T 2
, 0 < s < T

Random variables having the preceding distribution either can be simulated by
use of the inverse transform method (since F−1(U) = T

√
U ) or by noting that F

is the distribution function of max(T U1, T U2) when U1 and U2 are independent
random numbers. �

If the distribution function specified by Equation (11.10) is not easily invertible,
we can always simulate from (11.10) by using the rejection method where we
either accept or reject simulated values of uniform (0, T ) random variables. That
is, let h(s) = 1/T ,0 < s < T . Then

f (s)

h(s)
= T λ(s)

m(T )
� λT

m(T )
≡ C

where λ is a bound on λ(s), 0 � s � T . Hence, the rejection method is to generate
random numbers U1 and U2 then accept T U1 if

U2 � f (T U1)

Ch(T U1)

or, equivalently, if

U2 � λ(T U1)

λ

Method 3. Simulating the Event Times

The third method we shall present for simulating a nonhomogeneous Pois-
son process having intensity function λ(t), t � 0 is probably the most basic
approach—namely, to simulate the successive event times. So let X1,X2, . . . de-
note the event times of such a process. As these random variables are dependent
we will use the conditional distribution approach to simulation. Hence, we need
the conditional distribution of Xi given X1, . . . ,Xi−1.



11.5. Stochastic Processes 699

To start, note that if an event occurs at time x then, independent of what
has occurred prior to x, the time until the next event has the distribution Fx

given by

F̄x(t) = P {0 events in (x, x + t)|event at x}
= P {0 events in (x, x + t)} by independent increments

= exp

{

−
∫ t

0
λ(x + y)dy

}

Differentiation yields that the density corresponding to Fx is

fx(t) = λ(x + t) exp

{

−
∫ t

0
λ(x + y)dy

}

implying that the hazard rate function of Fx is

rx(t) = fx(t)

F̄x(t)
= λ(x + t)

We can now simulate the event times X1,X2, . . . by simulating X1 from F0;
then if the simulated value of X1 is x1, simulate X2 by adding x1 to a value gener-
ated from Fx1 , and if this sum is x2 simulate X3 by adding x2 to a value generated
from Fx2 , and so on. The method used to simulate from these distributions should
depend, of course, on the form of these distributions. However, it is interesting to
note that if we let λ be such that λ(t) � λ and use the hazard rate method to sim-
ulate, then we end up with the approach of Method 1 (we leave the verification of
this fact as an exercise). Sometimes, however, the distributions Fx can be easily
inverted and so the inverse transform method can be applied.

Example 11.13 Suppose that λ(x) = 1/(x + a), x � 0. Then

∫ t

0
λ(x + y)dy = log

(
x + a + t

x + a

)

Hence,

Fx(t) = 1 − x + a

x + a + t
= t

x + a + t

and so

F−1
x (u) = (x + a)

u

1 − u
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We can, therefore, simulate the successive event times X1,X2, . . . by generating
U1,U2, . . . and then setting

X1 = aU1

1 − U1
,

X2 = (X1 + a)
U2

1 − U2
+ X1

and, in general,

Xj = (Xj−1 + a)
Uj

1 − Uj

+ Xj−1, j � 2 �

11.5.2. Simulating a Two-Dimensional Poisson Process

A point process consisting of randomly occurring points in the plane is said to be
a two-dimensional Poisson process having rate λ if

(a) the number of points in any given region of area A is Poisson
distributed with mean λA; and
(b) the numbers of points in disjoint regions are independent.

For a given fixed point O in the plane, we now show how to simulate events
occurring according to a two-dimensional Poisson process with rate λ in a circular
region of radius r centered about O. Let Ri, i � 1, denote the distance between
O and its ith nearest Poisson point, and let C(a) denote the circle of radius a

centered at O. Then

P
{
πR2

1 > b
}= P

{

R1 >

√
b

π

}

= P
{

no points in C
(√

b/π
)}= e−λb

Also, with C(a2) − C(a1) denoting the region between C(a2) and C(a1):

P
{
πR2

2 − πR2
1 > b

∣
∣R1 = r

}

= P
{
R2 >

√

(b + πr2)/π
∣
∣R1 = r

}

= P
{

no points in C
(√

(b + πr2)/π
)

− C(r)
∣
∣R1 = r

}

= P
{

no points in C
(√

(b + πr2)/π
)

− C(r)
}

by (b)

= e−λb

In fact, the same argument can be repeated to obtain the following.
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Proposition 11.5 With R0 = 0,

πR2
i − πR2

i−1, i � 1,

are independent exponentials with rate λ.

In other words, the amount of area that needs to be traversed to encompass a
Poisson point is exponential with rate λ. Since, by symmetry, the respective an-
gles of the Poisson points are independent and uniformly distributed over (0,2π),
we thus have the following algorithm for simulating the Poisson process over a
circular region of radius r about O:

Step 1: Generate independent exponentials with rate 1, X1,X2, . . . , stop-
ping at

N = min

{

n: X1 + · · · + Xn

λπ
> r2

}

Step 2: If N = 1, stop. There are no points in C(r). Otherwise, for i =
1, . . . ,N − 1, set

Ri =√
(X1 + · · · + Xi)/λπ

Step 3: Generate independent uniform (0,1) random variables
U1, . . . ,UN−1.

Step 4: Return the N − 1 Poisson points in C(r) whose polar coordinates are

(Ri,2πUi), i = 1, . . . ,N − 1

The preceding algorithm requires, on average, 1 + λπr2 exponentials and an
equal number of uniform random numbers. Another approach to simulating points
in C(r) is to first simulate N , the number of such points, and then use the fact
that, given N , the points are uniformly distributed in C(r). This latter procedure
requires the simulation of N , a Poisson random variable with mean λπr2; we must
then simulate N uniform points on C(r), by simulating R from the distribution
FR(a) = a2/r2 (see Exercise 25) and θ from uniform (0,2π) and must then sort
these N uniform values in increasing order of R. The main advantage of the first
procedure is that it eliminates the need to sort.

The preceding algorithm can be thought of as the fanning out of a circle cen-
tered at O with a radius that expands continuously from 0 to r . The successive
radii at which Poisson points are encountered is simulated by noting that the addi-
tional area necessary to encompass a Poisson point is always, independent of the
past, exponential with rate λ. This technique can be used to simulate the process
over noncircular regions. For instance, consider a nonnegative function g(x), and
suppose we are interested in simulating the Poisson process in the region between
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Figure 11.4.

the x-axis and g with x going from 0 to T (see Figure 11.4). To do so we can
start at the left-hand end and fan vertically to the right by considering the succes-
sive areas

∫ a

0 g(x)dx. Now if X1 < X2 < · · · denote the successive projections of
the Poisson points on the x-axis, then analogous to Proposition 11.6, it will fol-
low that (with X0 = 0) λ

∫ Xi

Xi−1
g(x)dx, i � 1, will be independent exponentials

with rate 1. Hence, we should simulate ε1, ε2, . . . , independent exponentials with
rate 1, stopping at

N = min

{

n: ε1 + · · · + εn > λ

∫ T

0
g(x)dx

}

and determine X1, . . . ,XN−1 by

λ

∫ X1

0
g(x)dx = ε1,

λ

∫ X2

X1

g(x)dx = ε2,

...

λ

∫ XN−1

XN−2

g(x)dx = εN−1

If we now simulate U1, . . . ,UN−1—independent uniform (0,1) random numbers
—then as the projection on the y-axis of the Poisson point whose x-coordinate is
Xi , is uniform on (0, g(Xi)), it follows that the simulated Poisson points in the
interval are (Xi,Uig(Xi)), i = 1, . . . ,N − 1.

Of course, the preceding technique is most useful when g is regular enough so
that the foregoing equations can be solved for the Xi . For instance, if g(x) = y
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(and so the region of interest is a rectangle), then

Xi = ε1 + · · · + εi

λy
, i = 1, . . . ,N − 1

and the Poisson points are

(Xi, yUi), i = 1, . . . ,N − 1

11.6. Variance Reduction Techniques

Let X1, . . . ,Xn have a given joint distribution, and suppose we are interested in
computing

θ ≡ E[g(X1, . . . ,Xn)]
where g is some specified function. It is often the case that it is not possible to
analytically compute the preceding, and when such is the case we can attempt
to use simulation to estimate θ . This is done as follows: Generate X

(1)
1 , . . . ,X

(1)
n

having the same joint distribution as X1, . . . ,Xn and set

Y1 = g
(
X

(1)
1 , . . . ,X(1)

n

)

Now, simulate a second set of random variables (independent of the first set)
X

(2)
1 , . . . ,X

(2)
n having the distribution of X1, . . . ,Xn and set

Y2 = g
(
X

(2)
1 , . . . ,X(2)

n

)

Continue this until you have generated k (some predetermined number) sets,
and so have also computed Y1, Y2, . . . , Yk . Now, Y1, . . . , Yk are independent and
identically distributed random variables each having the same distribution of
g(X1, . . . ,Xn). Thus, if we let Ȳ denote the average of these k random variables—
that is,

Ȳ =
k∑

i=1

Yi/k

then

E[Ȳ ] = θ,

E
[
(Ȳ − θ)2]= Var(Ȳ )
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Hence, we can use Ȳ as an estimate of θ . As the expected square of the difference
between Ȳ and θ is equal to the variance of Ȳ , we would like this quantity to be
as small as possible. [In the preceding situation, Var(Ȳ ) = Var(Yi)/k, which is
usually not known in advance but must be estimated from the generated values
Y1, . . . , Yn.] We now present three general techniques for reducing the variance of
our estimator.

11.6.1. Use of Antithetic Variables

In the preceding situation, suppose that we have generated Y1 and Y2, identically
distributed random variables having mean θ . Now,

Var

(
Y1 + Y2

2

)

= 1

4
[Var(Y1) + Var(Y2) + 2 Cov(Y1, Y2)]

= Var(Y1)

2
+ Cov(Y1, Y2)

2

Hence, it would be advantageous (in the sense that the variance would be reduced)
if Y1 and Y2 rather than being independent were negatively correlated. To see
how we could arrange this, let us suppose that the random variables X1, . . . ,Xn

are independent and, in addition, that each is simulated via the inverse transform
technique. That is, Xi is simulated from F−1

i (Ui) where Ui is a random number
and Fi is the distribution of Xi . Hence, Y1 can be expressed as

Y1 = g
(
F−1

1 (U1), . . . ,F
−1
n (Un)

)

Now, since 1 − U is also uniform over (0,1) whenever U is a random number
(and is negatively correlated with U ) it follows that Y2 defined by

Y2 = g
(
F−1

1 (1 − U1), . . . ,F
−1
n (1 − Un)

)

will have the same distribution as Y1. Hence, if Y1 and Y2 were negatively corre-
lated, then generating Y2 by this means would lead to a smaller variance than if it
were generated by a new set of random numbers. (In addition, there is a computa-
tional savings since rather than having to generate n additional random numbers,
we need only subtract each of the previous n from 1.) The following theorem
will be the key to showing that this technique—known as the use of antithetic
variables—will lead to a reduction in variance whenever g is a monotone function.

Theorem 11.1 If X1, . . . ,Xn are independent, then, for any increasing func-
tions f and g of n variables,

E[f (X)g(X)] � E[f (X)]E[g(X)] (11.11)

where X = (X1, . . . ,Xn).
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Proof The proof is by induction on n. To prove it when n = 1, let f and g be
increasing functions of a single variable. Then, for any x and y,

(f (x) − f (y))(g(x) − g(y)) � 0

since if x � y (x � y) then both factors are nonnegative (nonpositive). Hence, for
any random variables X and Y ,

(f (X) − f (Y ))(g(X) − g(Y )) � 0

implying that

E[(f (X) − f (Y ))(g(X) − g(Y ))] � 0

or, equivalently,

E[f (X)g(X)] + E[f (Y )g(Y )] � E[f (X)g(Y )] + E[f (Y )g(X)]
If we suppose that X and Y are independent and identically distributed then, as in
this case,

E[f (X)g(X)] = E[f (Y )g(Y )],
E[f (X)g(Y )] = E[f (Y )g(X)] = E[f (X)]E[g(X)]

we obtain the result when n = 1.
So assume that (11.11) holds for n − 1 variables, and now suppose that

X1, . . . ,Xn are independent and f and g are increasing functions. Then

E[f (X)g(X)|Xn = xn]
= E[f (X1, . . . ,Xn−1, xn)g(X1, . . . ,Xn−1, xn)|Xn = x]
= E[f (X1, . . . ,Xn−1, xn)g(X1, . . . ,Xn−1, xn)] by independence

� E[f (X1, . . . ,Xn−1, xn)]E[g(X1, . . . ,Xn−1, xn)]
by the induction hypothesis

= E[f (X)|Xn = xn]E[g(X)|Xn = xn]
Hence,

E[f (X)g(X)|Xn] � E[f (X)|Xn]E[g(X)|Xn]
and, upon taking expectations of both sides,

E[f (X)g(X)] � E
[
E[f (X)|Xn]E[g(X)|Xn]

]

� E[f (X)]E[g(X)]
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The last inequality follows because E[f (X)|Xn] and E[g(X)|Xn] are both in-
creasing functions of Xn, and so, by the result for n = 1,

E
[
E[f (X)|Xn]E[g(X)|Xn]

]
� E

[
E[f (X)|Xn]

]
E
[
E[g(X)|Xn]

]

= E[f (X)]E[g(X)] �

Corollary 11.7 If U1, . . . ,Un are independent, and k is either an increasing
or decreasing function, then

Cov
(
k(U1, . . . ,Un), k(1 − U1, . . . ,1 − Un)

)
� 0

Proof Suppose k is increasing. As −k(1 − U1, . . . ,1 − Un) is increasing in
U1, . . . ,Un, then, from Theorem 11.1,

Cov
(
k(U1, . . . ,Un),−k(1 − U1, . . . ,1 − Un)

)
� 0

When k is decreasing just replace k by its negative. �

Since F−1
i (Ui) is increasing in Ui (as Fi , being a distribution function, is in-

creasing) it follows that g(F−1
1 (U1), . . . ,F

−1
n (Un)) is a monotone function of

U1, . . . ,Un whenever g is monotone. Hence, if g is monotone the antithetic vari-
able approach of twice using each set of random numbers U1, . . . ,Un by first com-
puting g(F−1

1 (U1), . . . ,F
−1
n (Un)) and then g(F−1

1 (1 − U1), . . . ,F
−1
n (1 − Un))

will reduce the variance of the estimate of E[g(X1, . . . ,Xn)]. That is, rather than
generating k sets of n random numbers, we should generate k/2 sets and use each
set twice.

Example 11.14 (Simulating the Reliability Function) Consider a system of
n components in which component i, independently of other components, works
with probability pi , i = 1, . . . , n. Letting

Xi =
{

1, if component i works
0, otherwise

suppose there is a monotone structure function φ such that

φ(X1, . . . ,Xn) =
{

1, if the system works under X1, . . . ,Xn

0, otherwise

We are interested in using simulation to estimate

r(p1, . . . , pn) ≡ E[φ(X1, . . . ,Xn)] = P {φ(X1, . . . ,Xn) = 1}
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Now, we can simulate the Xi by generating uniform random numbers U1, . . . ,Un

and then setting

Xi =
{

1, if Ui < pi

0, otherwise

Hence, we see that

φ(X1, . . . ,Xn) = k(U1, . . . ,Un)

where k is a decreasing function of U1, . . . ,Un. Hence,

Cov(k(U), k(1 − U)) � 0

and so the antithetic variable approach of using U1, . . . ,Un to generate both
k(U1, . . . ,Un) and k(1 − U1, . . . ,1 − Un) results in a smaller variance than if
an independent set of random numbers was used to generate the second k. �

Example 11.15 (Simulating a Queueing System) Consider a given queueing
system, and let Di denote the delay in queue of the ith arriving customer, and
suppose we are interested in simulating the system so as to estimate

θ = E[D1 + · · · + Dn]
Let X1, . . . ,Xn denote the first n interarrival times and S1, . . . , Sn the first n ser-
vice times of this system, and suppose these random variables are all indepen-
dent. Now in most systems D1 + · · · + Dn will be a function of X1, . . . ,Xn,
S1, . . . , Sn—say,

D1 + · · · + Dn = g(X1, . . . ,Xn,S1, . . . , Sn)

Also g will usually be increasing in Si and decreasing in Xi, i = 1, . . . , n.
If we use the inverse transform method to simulate Xi,Si, i = 1, . . . , n—say,
Xi = F−1

i (1 − Ui), Si = G−1
i (Ūi) where U1, . . . ,Un, Ū1, . . . , Ūn, are indepen-

dent uniform random numbers—then we may write

D1 + · · · + Dn = k(U1, . . . ,Un, Ū1, . . . , Ūn)

where k is increasing in its variates. Hence, the antithetic variable approach will
reduce the variance of the estimator of θ . [Thus, we would generate Ui, Ūi, i =
1, . . . , n and set Xi = F−1

i (1 − Ui) and Yi = G−1
i (Ūi) for the first run, and

Xi = F−1
i (Ui) and Yi = G−1

i (1 − Ūi) for the second.] As all the Ui and Ūi are
independent, however, this is equivalent to setting Xi = F−1

i (Ui), Yi = G−1
i (Ūi)

in the first run and using 1 − Ui for Ui and 1 − Ūi for Ūi in the second. �
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11.6.2. Variance Reduction by Conditioning

Let us start by recalling (see Proposition 3.1) the conditional variance formula

Var(Y ) = E[Var(Y |Z)] + Var(E[Y |Z]) (11.12)

Now suppose we are interested in estimating E[g(X1, . . . ,Xn)] by simulating
X = (X1, . . . ,Xn) and then computing Y = g(X1, . . . ,Xn). Now, if for some ran-
dom variable Z we can compute E[Y |Z] then, as Var(Y |Z) � 0, it follows from
the conditional variance formula that

Var(E[Y |Z]) � Var(Y )

implying, since E[E[Y |Z]] = E[Y ], that E[Y |Z] is a better estimator of E[Y ]
than is Y .

In many situations, there are a variety of Zi that can be conditioned on to obtain
an improved estimator. Each of these estimators E[Y |Zi] will have mean E[Y ]
and smaller variance than does the raw estimator Y . We now show that for any
choice of weights λi, λi � 0,

∑
i λi = 1,

∑
i λiE[Y |Zi] is also an improvement

over Y .

Proposition 11.8 For any λi � 0,
∑∞

i=1 λi = 1,

(a) E[∑i λiE[Y |Zi]] = E[Y ],
(b) Var(

∑
i λiE[Y |Zi]) � Var(Y ).

Proof The proof of (a) is immediate. To prove (b), let N denote an integer
valued random variable independent of all the other random variables under con-
sideration and such that

P {N = i} = λi, i � 1

Applying the conditional variance formula twice yields

Var(Y ) � Var(E[Y |N,ZN ])
� Var

(
E[E[Y |N,ZN ]|Z1, . . .]

)

= Var
∑

i

λiE[Y |Zi] �

Example 11.16 Consider a queueing system having Poisson arrivals and
suppose that any customer arriving when there are already N others in the system
is lost. Suppose that we are interested in using simulation to estimate the expected
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number of lost customers by time t . The raw simulation approach would be to
simulate the system up to time t and determine L, the number of lost customers
for that run. A better estimate, however, can be obtained by conditioning on the
total time in [0, t] that the system is at capacity. Indeed, if we let T denote the
time in [0, t] that there are N in the system, then

E[L|T ] = λT

where λ is the Poisson arrival rate. Hence, a better estimate for E[L] than the
average value of L over all simulation runs can be obtained by multiplying the
average value of T per simulation run by λ. If the arrival process were a nonho-
mogeneous Poisson process, then we could improve over the raw estimator L by
keeping track of those time periods for which the system is at capacity. If we let
I1, . . . , IC denote the time intervals in [0, t] in which there are N in the system,
then

E[L|I1, . . . , IC] =
C∑

i=1

∫

Ii

λ(s) ds

where λ(s) is the intensity function of the nonhomogeneous Poisson arrival
process. The use of the right side of the preceding would thus lead to a better
estimate of E[L] than the raw estimator L. �

Example 11.17 Suppose that we wanted to estimate the expected sum of the
times in the system of the first n customers in a queueing system. That is, if Wi

is the time that the ith customer spends in the system, then we are interested in
estimating

θ = E

[
n∑

i=1

Wi

]

Let Yi denote the “state of the system” at the moment at which the ith cus-
tomer arrives. It can be shown§ that for a wide class of models the estimator∑n

i=1 E[Wi |Yi] has (the same mean and) a smaller variance than the estimator∑n
i=1 Wi . (It should be noted that whereas it is immediate that E[Wi |Yi] has

smaller variance than Wi , because of the covariance terms involved it is not im-
mediately apparent that

∑n
i=1 E[Wi |Yi] has smaller variance than

∑n
i=1 Wi .) For

§S. M. Ross, “Simulating Average Delay—Variance Reduction by Conditioning,” Probability in the
Engineering and Informational Sciences 2(3), (1988), pp. 309–312.
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instance, in the model G/M/1

E[Wi |Yi] = (Ni + 1)/μ

where Ni is the number in the system encountered by the ith arrival and 1/μ is
the mean service time; the result implies that

∑n
i=1(Ni +1)/μ is a better estimate

of the expected total time in the system of the first n customers than is the raw
estimator

∑n
i=1 Wi . �

Example 11.18 (Estimating the Renewal Function by Simulation) Consider
a queueing model in which customers arrive daily in accordance with a renewal
process having interarrival distribution F . However, suppose that at some fixed
time T , for instance 5 P.M., no additional arrivals are permitted and those cus-
tomers that are still in the system are serviced. At the start of the next, and each
succeeding, day customers again begin to arrive in accordance with the renewal
process. Suppose we are interested in determining the average time that a cus-
tomer spends in the system. Upon using the theory of renewal reward processes
(with a cycle starting every T time units), it can be shown that

average time that a customer spends in the system

= E[sum of the times in the system of arrivals in (0, T )]
m(T )

where m(T ) is the expected number of renewals in (0, T ).
If we were to use simulation to estimate the preceding quantity, a run would

consist of simulating a single day, and as part of a simulation run, we would
observe the quantity N(T ), the number of arrivals by time T . Since E[N(T )] =
m(T ), the natural simulation estimator of m(T ) would be the average (over all
simulated days) value of N(T ) obtained. However, Var(N(T )) is, for large T ,
proportional to T (its asymptotic form being T σ 2/μ3, where σ 2 is the variance
and μ the mean of the interarrival distribution F ), and so, for large T , the variance
of our estimator would be large. A considerable improvement can be obtained by
using the analytic formula (see Section 7.3)

m(T ) = T

μ
− 1 + E[Y(T )]

μ
(11.13)

where Y(T ) denotes the time from T until the next renewal—that is, it is the
excess life at T . Since the variance of Y(T ) does not grow with T (indeed, it
converges to a finite value provided the moments of F are finite), it follows that
for T large, we would do much better by using the simulation to estimate E[Y(T )]
and then use Equation (11.13) to estimate m(T ).
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Figure 11.5. A(T ) = x.

However, by employing conditioning, we can improve further on our estimate
of m(T ). To do so, let A(T ) denote the age of the renewal process at time T —that
is, it is the time at T since the last renewal. Then, rather than using the value of
Y(T ), we can reduce the variance by considering E[Y(T )|A(T )]. Now knowing
that the age at T is equal to x is equivalent to knowing that there was a renewal at
time T − x and the next interarrival time X is greater than x. Since the excess at
T will equal X − x (see Figure 11.5), it follows that

E[Y(T )|A(T ) = x] = E[X − x|X > x]

=
∫ ∞

0

P {X − x > t}
P {X > x} dt

=
∫ ∞

0

[1 − F(t + x)]
1 − F(x)

dt

which can be numerically evaluated if necessary.
As an illustration of the preceding note that if the renewal process is a Poisson

process with rate λ, then the raw simulation estimator N(T ) will have variance
λT ; since Y(T ) will be exponential with rate λ, the estimator based on (11.13)
will have variance λ2 Var{Y(T )} = 1. On the other hand, since Y(T ) will be inde-
pendent of A(T ) (and E[Y(T )|A(T )] = 1/λ), it follows that the variance of the
improved estimator E[Y(T )|A(T )] is 0. That is, conditioning on the age at time
T yields, in this case, the exact answer. �

Example 11.19 Consider the M/G/1 queueing system where customers ar-
rive in accordance with a Poisson process with rate λ to a single server having
service distribution G with mean E[S]. Suppose that, for a specified time t0, the
server will take a break at the first time t � t0 at which the system is empty. That
is, if X(t) is the number of customers in the system at time t , then the server will
take a break at time

T = min{t � t0: X(t) = 0}
To efficiently use simulation to estimate E[T ], generate the system to time t0; let
R denote the remaining service time of the customer in service at time t0, and
let XQ equal the number of customers waiting in queue at time t0. (Note that R

is equal to 0 if X(t0) = 0, and XQ = (X(t0) − 1)+.) Now, with N equal to the
number of customers that arrive in the remaining service time R, it follows that
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if N = n and XQ = nQ, then the additional amount of time from t0 + R until the
server can take a break is equal to the amount of time that it takes until the system,
starting with n + nQ customers, becomes empty. Because this is equal to the sum
of n + nQ busy periods, it follows from Section 8.5.3 that

E[T |R,N,XQ] = t0 + R + (N + XQ)
E[S]

1 − λE[S]
Consequently,

E[T |R,XQ] = E
[
E[T |R,N,XQ]|R,XQ

]

= t0 + R + (E[N |R,XQ] + XQ)
E[S]

1 − λE[S]
= t0 + R + (λR + XQ)

E[S]
1 − λE[S]

Thus, rather than using the generated value of T as the estimator from a sim-
ulation run, it is better to stop the simulation at time t0 and use the estimator
t0 + (λR + XQ) E[S]

1−λE[S] . �

11.6.3. Control Variates

Again suppose we want to use simulation to estimate E[g(X)] where X =
(X1, . . . ,Xn). But now suppose that for some function f the expected value of
f (X) is known—say, E[f (X)] = μ. Then for any constant a we can also use

W = g(X) + a(f (X) − μ)

as an estimator of E[g(X)]. Now,

Var(W) = Var(g(X)) + a2 Var(f (X)) + 2a Cov(g(X), f (X))

Simple calculus shows that the preceding is minimized when

a = −Cov(f (X), g(X))

Var(f (X))

and, for this value of a,

Var(W) = Var(g(X)) − [Cov(f (X), g(X))]2

Var(f (X))

Because Var(f (X)) and Cov(f (X), g(X)) are usually unknown, the simulated
data should be used to estimate these quantities.
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Dividing the preceding equation by Var(g(X)) shows that

Var(W)

Var(g(X))
= 1 − Corr2(f (X), g(X))

where Corr(X,Y ) is the correlation between X and Y . Consequently, the use of a
control variate will greatly reduce the variance of the simulation estimator when-
ever f (X) and g(X) are strongly correlated.

Example 11.20 Consider a continuous time Markov chain which, upon en-
tering state i, spends an exponential time with rate vi in that state before making
a transition into some other state, with the transition being into state j with prob-
ability Pi,j , i � 0, j �= i. Suppose that costs are incurred at rate C(i) � 0 per unit
time whenever the chain is in state i, i � 0. With X(t) equal to the state at time t ,
and α being a constant such that 0 < α < 1, the quantity

W =
∫ ∞

0
e−αtC(X(t)) dt

represents the total discounted cost. For a given initial state, suppose we want
to use simulation to estimate E[W ]. Whereas at first it might seem that we can-
not obtain an unbiased estimator without simulating the continuous time Markov
chain for an infinite amount of time (which is clearly impossible), we can make
use of the results of Example 5.1 which gives the equivalent expression for E[W ]:

E[W ] = E

[∫ T

0
C(X(t)) dt

]

where T is an exponential random variable with rate α that is independent of the
continuous time Markov chain. Therefore, we can first generate the value of T ,
then generate the states of the continuous time Markov chain up to time T , to
obtain the unbiased estimator

∫ T

0 C(X(t)) dt . Because all the costs rates are non-
negative this estimator is strongly positively correlated with T , which will thus
make an effective control variate. �

Example 11.21 (A Queueing System) Let Dn+1 denote the delay in queue
of the n + 1 customer in a queueing system in which the interarrival times are
independent and identically distributed (i.i.d.) with distribution F having mean
μF and are independent of the service times which are i.i.d. with distribution G

having mean μG. If Xi is the interarrival time between arrival i and i + 1, and if
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Si is the service time of customer i, i � 1, we may write

Dn+1 = g(X1, . . . ,Xn,S1, . . . , Sn)

To take into account the possibility that the simulated variables Xi,Si may by
chance be quite different from what might be expected we can let

f (X1, . . . ,Xn,S1, . . . , Sn) =
n∑

i=1

(Si − Xi)

As E[f (X,S)] = n(μG − μF ) we could use

g(X,S) + a[f (X,S) − n(μG − μF )]
as an estimator of E[Dn+1]. Since Dn+1 and f are both increasing functions of
Si,−Xi, i = 1, . . . , n it follows from Theorem 11.1 that f (X,S) and Dn+1 are
positively correlated, and so the simulated estimate of a should turn out to be
negative.

If we wanted to estimate the expected sum of the delays in queue of the first
N(T ) arrivals, then we could use

∑N(T )
i=1 Si as our control variable. Indeed as the

arrival process is usually assumed independent of the service times, it follows that

E

[
N(T )∑

i=1

Si

]

= E[S]E[N(T )]

where E[N(T )] can either be computed by the method suggested in Section 7.8 or
it can be estimated from the simulation as in Example 11.18. This control variable
could also be used if the arrival process were a nonhomogeneous Poisson with rate
λ(t); in this case,

E[N(T )] =
∫ T

0
λ(t) dt �

11.6.4. Importance Sampling

Let X = (X1, . . . ,Xn) denote a vector of random variables having a joint density
function (or joint mass function in the discrete case) f (x) = f (x1, . . . , xn), and
suppose that we are interested in estimating

θ = E[h(X)] =
∫

h(x)f (x) dx

where the preceding is an n-dimensional integral. (If the Xi are discrete, then
interpret the integral as an n-fold summation.)
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Suppose that a direct simulation of the random vector X, so as to compute val-
ues of h(X), is inefficient, possibly because (a) it is difficult to simulate a random
vector having density function f (x), or (b) the variance of h(X) is large, or (c) a
combination of (a) and (b).

Another way in which we can use simulation to estimate θ is to note that if g(x)

is another probability density such that f (x) = 0 whenever g(x) = 0, then we can
express θ as

θ =
∫

h(x)f (x)

g(x)
g(x) dx

= Eg

[
h(X)f (X)

g(X)

]

(11.14)

where we have written Eg to emphasize that the random vector X has joint den-
sity g(x).

It follows from Equation (11.14) that θ can be estimated by successively gen-
erating values of a random vector X having density function g(x) and then using
as the estimator the average of the values of h(X)f (X)/g(X). If a density func-
tion g(x) can be chosen so that the random variable h(X)f (X)/g(X) has a small
variance then this approach—referred to as importance sampling—can result in
an efficient estimator of θ .

Let us now try to obtain a feel for why importance sampling can be useful. To
begin, note that f (X) and g(X) represent the respective likelihoods of obtaining
the vector X when X is a random vector with respective densities f and g. Hence,
if X is distributed according to g, then it will usually be the case that f (X) will
be small in relation to g(X) and thus when X is simulated according to g the
likelihood ratio f (X)/g(X) will usually be small in comparison to 1. However, it
is easy to check that its mean is 1:

Eg

[
f (X)

g(X)

]

=
∫

f (x)

g(x)
g(x) dx =

∫

f (x) dx = 1

Thus we see that even though f (X)/g(X) is usually smaller than 1, its mean is
equal to 1; thus implying that it is occasionally large and so will tend to have a
large variance. So how can h(X)f (X)/g(X) have a small variance? The answer is
that we can sometimes arrange to choose a density g such that those values of x for
which f (x)/g(x) is large are precisely the values for which h(x) is exceedingly
small, and thus the ratio h(X)f (X)/g(X) is always small. Since this will require
that h(x) sometimes be small, importance sampling seems to work best when
estimating a small probability; for in this case the function h(x) is equal to 1
when x lies in some set and is equal to 0 otherwise.
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We will now consider how to select an appropriate density g. We will find that
the so-called tilted densities are useful. Let M(t) = Ef [etX] = ∫

etxf (x) dx be
the moment generating function corresponding to a one-dimensional density f .

Definition 11.2 A density function

ft (x) = etxf (x)

M(t)

is called a tilted density of f , −∞ < t < ∞.

A random variable with density ft tends to be larger than one with density f when
t > 0 and tends to be smaller when t < 0.

In certain cases the tilted distributions ft have the same parametric form as
does f .

Example 11.22 If f is the exponential density with rate λ then

ft (x) = Cetxλe−λx = λCe−(λ−t)x

where C = 1/M(t) does not depend on x. Therefore, for t � λ,ft is an exponen-
tial density with rate λ − t .

If f is a Bernoulli probability mass function with parameter p, then

f (x) = px(1 − p)1−x, x = 0,1

Hence, M(t) = Ef [etX] = pet + 1 − p and so

ft (x) = 1

M(t)
(pet )x(1 − p)1−x

=
(

pet

pet + 1 − p

)x( 1 − p

pet + 1 − p

)1−x

That is, ft is the probability mass function of a Bernoulli random variable with
parameter

pt = pet

pet + 1 − p

We leave it as an exercise to show that if f is a normal density with parameters μ

and σ 2 then ft is a normal density mean μ + σ 2t and variance σ 2. �
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In certain situations the quantity of interest is the sum of the independent ran-
dom variables X1, . . . ,Xn. In this case the joint density f is the product of one-
dimensional densities. That is,

f (x1, . . . , xn) = f1(x1) · · ·fn(xn)

where fi is the density function of Xi. In this situation it is often useful to generate
the Xi according to their tilted densities, with a common choice of t employed.

Example 11.23 Let X1, . . . ,Xn be independent random variables having re-
spective probability density (or mass) functions fi, for i = 1, . . . , n. Suppose we
are interested in approximating the probability that their sum is at least as large as
a, where a is much larger than the mean of the sum. That is, we are interested in

θ = P {S � a}
where S = ∑n

i=1 Xi, and where a >
∑n

i=1 E[Xi]. Letting I {S � a} equal 1 if
S � a and letting it be 0 otherwise, we have that

θ = Ef[I {S � a}]
where f = (f1, . . . , fn). Suppose now that we simulate Xi according to the tilted
mass function fi,t , i = 1, . . . , n, with the value of t, t > 0 left to be determined.
The importance sampling estimator of θ would then be

θ̂ = I {S � a}
∏ fi(Xi)

fi,t (Xi)

Now,

fi(Xi)

fi,t (Xi)
= Mi(t)e

−tXi

and so

θ̂ = I {S � a}M(t)e−tS

where M(t) =∏
Mi(t) is the moment generating function of S. Since t > 0 and

I {S � a} is equal to 0 when S < a, it follows that

I {S � a}e−tS � e−ta

and so

θ̂ � M(t)e−ta
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To make the bound on the estimator as small as possible we thus choose t, t > 0, to
minimize M(t)e−ta . In doing so, we will obtain an estimator whose value on each
iteration is between 0 and mintM(t)e−ta . It can be shown that the minimizing t ,
call it t∗, is such that

Et∗ [S] = Et∗

[
n∑

i=1

Xi

]

= a

where, in the preceding, we mean that the expected value is to be taken under the
assumption that the distribution of Xi is fi,t∗ for i = 1, . . . , n.

For instance, suppose that X1, . . . ,Xn are independent Bernoulli random vari-
ables having respective parameters pi , for i = 1, . . . , n. Then, if we generate the
Xi according to their tilted mass functions pi,t , i = 1, . . . , n then the importance
sampling estimator of θ = P {S � a} is

θ̂ = I {S � a}e−tS
n∏

i=1

(
pie

t + 1 − pi

)

Since pi,t is the mass function of a Bernoulli random variable with parameter
pie

t/(pie
t + 1 − pi) it follows that

Et

[
n∑

i=1

Xi

]

=
n∑

i=1

pie
t

piet + 1 − pi

The value of t that makes the preceding equal to a can be numerically approxi-
mated and then utilized in the simulation.

As an illustration, suppose that n = 20, pi = 0.4, and a = 16. Then

Et [S] = 20
0.4et

0.4et + 0.6

Setting this equal to 16 yields, after a little algebra,

et∗ = 6

Thus, if we generate the Bernoullis using the parameter

0.4et∗

0.4et∗ + 0.6
= 0.8

then because

M(t∗) = (0.4et∗ + 0.6)20 and e−t∗S = (1/6)S
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we see that the importance sampling estimator is

θ̂ = I {S � 16}(1/6)S320

It follows from the preceding that

θ̂ � (1/6)16320 = 81/216 = 0.001236

That is, on each iteration the value of the estimator is between 0 and 0.001236.
Since, in this case, θ is the probability that a binomial random variable with
parameters 20, 0.4 is at least 16, it can be explicitly computed with the result
θ = 0.000317. Hence, the raw simulation estimator I , which on each iteration
takes the value 0 if the sum of the Bernoullis with parameter 0.4 is less than 16
and takes the value 1 otherwise, will have variance

Var(I ) = θ(1 − θ) = 3.169 × 10−4

On the other hand, it follows from the fact that 0 � θ̂ � 0.001236 that (see Exer-
cise 33)

Var(θ̂) � 2.9131 × 10−7 �

Example 11.24 Consider a single-server queue in which the times between
successive customer arrivals have density function f and the service times have
density g. Let Dn denote the amount of time that the nth arrival spends wait-
ing in queue and suppose we are interested in estimating α = P {Dn � a} when
a is much larger than E[Dn]. Rather than generating the successive interarrival
and service times according to f and g, respectively, they should be generated
according to the densities f−t and gt , where t is a positive number to be deter-
mined. Note that using these distributions as opposed to f and g will result in
smaller interarrival times (since −t < 0) and larger service times. Hence, there
will be a greater chance that Dn > a than if we had simulated using the densities
f and g. The importance sampling estimator of α would then be

α̂ = I {Dn > a}et(Sn−Yn)[Mf (−t)Mg(t)]n

where Sn is the sum of the first n interarrival times, Yn is the sum of the first
n service times, and Mf and Mg are the moment generating functions of the
densities f and g, respectively. The value of t used should be determined by
experimenting with a variety of different choices. �
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11.7. Determining the Number of Runs

Suppose that we are going to use simulation to generate r independent and identi-
cally distributed random variables Y (1), . . . , Y (r) having mean μ and variance σ 2.
We are then going to use

Ȳr = Y (1) + · · · + Y (r)

r

as an estimate of μ. The precision of this estimate can be measured by its variance

Var(Ȳr ) = E[(Ȳr − μ)2]
= σ 2/r

Hence we would want to choose r , the number of necessary runs, large enough so
that σ 2/r is acceptably small. However, the difficulty is that σ 2 is not known in
advance. To get around this, you should initially simulate k runs (where k � 30)
and then use the simulated values Y (1), . . . , Y (k) to estimate σ 2 by the sample
variance

k∑

i=1

(
Y (i) − Ȳk

)2
/(k − 1)

Based on this estimate of σ 2 the value of r that attains the desired level of preci-
sion can now be determined and an additional r − k runs can be generated.

11.8. Coupling from the Past

Consider an irreducible Markov chain with states 1, . . . ,m and transition proba-
bilities Pi,j and suppose we want to generate the value of a random variable whose
distribution is that of the stationary distribution of this Markov chain. Whereas we
could approximately generate such a random variable by arbitrarily choosing an
initial state, simulating the resulting Markov chain for a large fixed number of
time periods, and then choosing the final state as the value of the random vari-
able, we will now present a procedure that generates a random variable whose
distribution is exactly that of the stationary distribution.

If, in theory, we generated the Markov chain starting at time −∞ in any ar-
bitrary state, then the state at time 0 would have the stationary distribution. So
imagine that we do this, and suppose that a different person is to generate the
next state at each of these times. Thus, if X(−n), the state at time −n, is i, then
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person −n would generate a random variable that is equal to j with probability
Pi,j , j = 1, . . . ,m, and the value generated would be the state at time −(n − 1).

Now suppose that person −1 wants to do his random variable generation early.
Because he does not know what the state at time −1 will be, he generates a se-
quence of random variables N−1(i), i = 1, . . . ,m, where N−1(i), the next state
if X(−1) = i, is equal to j with probability Pi,j , j = 1, . . . ,m. If it results that
X(−1) = i, then person −1 would report that the state at time 0 is

S−1(i) = N−1(i), i = 1, . . . ,m

(That is, S−1(i) is the simulated state at time 0 when the simulated state at time
−1 is i.)

Now suppose that person −2, hearing that person −1 is doing his simula-
tion early, decides to do the same thing. She generates a sequence of random
variables N−2(i), i = 1, . . . ,m, where N−2(i) is equal to j with probability
Pi,j , j = 1, . . . ,m. Consequently, if it is reported to her that X(−2) = i, then
she will report that X(−1) = N−2(i). Combining this with the early generation of
person −1 shows that if X(−2) = i, then the simulated state at time 0 is

S−2(i) = S−1(N−2(i)), i = 1, . . . ,m

Continuing in the preceding manner, suppose that person −3 generates a se-
quence of random variables N−3(i), i = 1, . . . ,m, where N−3(i) is to be the gen-
erated value of the next state when X(−3) = i. Consequently, if X(−3) = i then
the simulated state at time 0 would be

S−3(i) = S−2(N−3(i)), i = 1, . . . ,m

Now suppose we continue the preceding, and so obtain the simulated
functions

S−1(i), S−2(i), S−3(i), . . . , i = 1, . . . ,m

Going backward in time in this manner, we will at some time, say −r , have a
simulated function S−r (i) that is a constant function. That is, for some state j ,
S−r (i) will equal j for all states i = 1, . . . ,m. But this means that no matter what
the simulated values from time −∞ to −r , we can be certain that the simulated
value at time 0 is j . Consequently, j can be taken as the value of a generated
random variable whose distribution is exactly that of the stationary distribution of
the Markov chain.
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Example 11.25 Consider a Markov chain with states 1, 2, 3 and suppose that
simulation yielded the values

N−1(i) =
⎧
⎨

⎩

3, if i = 1
2, if i = 2
2, if i = 3

and

N−2(i) =
⎧
⎨

⎩

1, if i = 1
3, if i = 2
1, if i = 3

Then

S−2(i) =
⎧
⎨

⎩

3, if i = 1
2, if i = 2
3, if i = 3

If

N−3(i) =
⎧
⎨

⎩

3, if i = 1
1, if i = 2
1, if i = 3

then

S−3(i) =
⎧
⎨

⎩

3, if i = 1
3, if i = 2
3, if i = 3

Therefore, no matter what the state is at time −3, the state at time 0 will be 3. �

Remark The procedure developed in this section for generating a random vari-
able whose distribution is the stationary distribution of the Markov chain is called
coupling from the past.
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Exercises

*1. Suppose it is relatively easy to simulate from the distributions Fi , i =
1,2, . . . , n. If n is small, how can we simulate from

F(x) =
n∑

i=1

PiFi(x), Pi � 0,
∑

i

Pi = 1?

Give a method for simulating from

F(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − e−2x + 2x

3
, 0 < x < 1

3 − e−2x

3
, 1 < x < ∞

2. Give a method for simulating a negative binomial random variable.

*3. Give a method for simulating a hypergeometric random variable.

4. Suppose we want to simulate a point located at random in a circle of radius
r centered at the origin. That is, we want to simulate X,Y having joint density

f (x, y) = 1

πr2
, x2 + y2 � r2

(a) Let R = √
X2 + Y 2, θ = tan−1 Y/X denote the polar coordinates. Compute

the joint density of R, θ and use this to give a simulation method. Another
method for simulating X,Y is as follows:

Step 1: Generate independent random numbers U1,U2 and set Z1 = 2rU1 −
r , Z2 = 2rU2 − r . Then Z1,Z2 is uniform in the square whose sides
are of length 2r and which enclose the circle of radius r (see Fig-
ure 11.6).

Step 2: If (Z1,Z2) lies in the circle of radius r—that is, if Z2
1 +Z2

2 � r2—set
(X,Y ) = (Z1,Z2). Otherwise return to step 1.

(b) Prove that this method works, and compute the distribution of the number
of random numbers it requires.

5. Suppose it is relatively easy to simulate from Fi for each i = 1, . . . , n. How
can we simulate from

(a) F(x) =∏n
i=1 Fi(x)?

(b) F(x) = 1 −∏n
i=1(1 − Fi(x))?
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Figure 11.6.

(c) Give two methods for simulating from the distribution F(x) = xn,
0 < x < 1.

*6. In Example 11.4 we simulated the absolute value of a standard normal by us-
ing the Von Neumann rejection procedure on exponential random variables with
rate 1. This raises the question of whether we could obtain a more efficient algo-
rithm by using a different exponential density—that is, we could use the density
g(x) = λe−λx . Show that the mean number of iterations needed in the rejection
scheme is minimized when λ = 1.

7. Give an algorithm for simulating a random variable having density function

f (x) = 30(x2 − 2x3 + x4), 0 < x < 1

8. Consider the technique of simulating a gamma (n,λ) random variable by
using the rejection method with g being an exponential density with rate λ/n.

(a) Show that the average number of iterations of the algorithm needed to gen-
erate a gamma is nne1−n/(n − 1)!.
(b) Use Stirling’s approximation to show that for large n the answer to part (a)
is approximately equal to e[(n − 1)/(2π)]1/2.
(c) Show that the procedure is equivalent to the following:

Step 1: Generate Y1 and Y2, independent exponentials with rate 1.
Step 2: If Y1 < (n − 1)[Y2 − log(Y2) − 1], return to step 1.
Step 3: Set X = nY2/λ.

(d) Explain how to obtain an independent exponential along with a gamma
from the preceding algorithm.

9. Set up the alias method for simulating from a binomial random variable with
parameters n = 6, p = 0.4.
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10. Explain how we can number the Q(k) in the alias method so that k is one of
the two points that Q(k) gives weight.

Hint: Rather than name the initial Q, Q(1) what else could we call it?

11. Complete the details of Example 11.10.

12. Let X1, . . . ,Xk be independent with

P {Xi = j} = 1

n
, j = 1, . . . , n, i = 1, . . . , k

If D is the number of distinct values among X1, . . . ,Xk show that

E[D] = n

[

1 −
(

n − 1

n

)k
]

≈ k − k2

2n
when

k2

n
is small

13. The Discrete Rejection Method: Suppose we want to simulate X having
probability mass function P {X = i} = Pi, i = 1, . . . , n and suppose we can easily
simulate from the probability mass function Qi,

∑
iQi = 1, Qi � 0. Let C be

such that Pi � CQi, i = 1, . . . , n. Show that the following algorithm generates
the desired random variable:

Step 1: Generate Y having mass function Q and U an independent random
number.

Step 2: If U � PY /CQY , set X = Y . Otherwise return to step 1.

14. The Discrete Hazard Rate Method: Let X denote a nonnegative integer val-
ued random variable. The function λ(n) = P {X = n | X � n}, n � 0, is called the
discrete hazard rate function.

(a) Show that P {X = n} = λ(n)
∏n−1

i=0 (1 − λ(i)).
(b) Show that we can simulate X by generating random numbers U1,U2, . . .

stopping at

X = min{n: Un � λ(n)}

(c) Apply this method to simulating a geometric random variable. Explain,
intuitively, why it works.
(d) Suppose that λ(n) � p < 1 for all n. Consider the following algorithm for
simulating X and explain why it works: Simulate Xi,Ui , i � 1 where Xi is
geometric with mean 1/p and Ui is a random number. Set Sk = X1 + · · · + Xk
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and let

X = min{Sk: Uk � λ(Sk)/p}
15. Suppose you have just simulated a normal random variable X with mean μ

and variance σ 2. Give an easy way to generate a second normal variable with the
same mean and variance that is negatively correlated with X.

*16. Suppose n balls having weights w1,w2, . . . ,wn are in an urn. These
balls are sequentially removed in the following manner: At each selection, a given
ball in the urn is chosen with a probability equal to its weight divided by the sum
of the weights of the other balls that are still in the urn. Let I1, I2, . . . , In denote
the order in which the balls are removed—thus I1, . . . , In is a random permutation
with weights.

(a) Give a method for simulating I1, . . . , In.

(b) Let Xi be independent exponentials with rates wi, i = 1, . . . , n. Explain
how Xi can be utilized to simulate I1, . . . , In.

17. Order Statistics: Let X1, . . . ,Xn be i.i.d. from a continuous distribution F ,
and let X(i) denote the ith smallest of X1, . . . ,Xn, i = 1, . . . , n. Suppose we
want to simulate X(1) < X(2) < · · · < X(n). One approach is to simulate n val-
ues from F , and then order these values. However, this ordering, or sorting, can
be time consuming when n is large.

(a) Suppose that λ(t), the hazard rate function of F , is bounded. Show how the
hazard rate method can be applied to generate the n variables in such a manner
that no sorting is necessary.

Suppose now that F−1 is easily computed.

(b) Argue that X(1), . . . ,X(n) can be generated by simulating U(1) < U(2) <

· · · < U(n)—the ordered values of n independent random numbers—and then
setting X(i) = F−1(U(i)). Explain why this means that X(i) can be generated
from F−1(βi) where βi is beta with parameters i, n + i + 1.
(c) Argue that U(1), . . . ,U(n) can be generated, without any need for sorting,
by simulating i.i.d. exponentials Y1, . . . , Yn+1 and then setting

U(i) = Y1 + · · · + Yi

Y1 + · · · + Yn+1
, i = 1, . . . , n

Hint: Given the time of the (n+ 1)st event of a Poisson process, what can be
said about the set of times of the first n events?

(d) Show that if U(n) = y then U(1), . . . ,U(n−1) has the same joint distribution
as the order statistics of a set of n − 1 uniform (0, y) random variables.
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(e) Use part (d) to show that U(1), . . . ,U(n) can be generated as follows:

Step 1: Generate random numbers U1, . . . ,Un.
Step 2: Set

U(n) = U
1/n

1 , U(n−1) = U(n)(U2)
1/(n−1),

U(j−1) = U(j)(Un−j+2)
1/(j−1), j = 2, . . . , n − 1

18. Let X1, . . . ,Xn be independent exponential random variables each having
rate 1. Set

W1 = X1/n,

Wi = Wi−1 + Xi

n − i + 1
, i = 2, . . . , n

Explain why W1, . . . ,Wn has the same joint distribution as the order statistics of
a sample of n exponentials each having rate 1.

19. Suppose we want to simulate a large number n of independent exponen-
tials with rate 1—call them X1,X2, . . . ,Xn. If we were to employ the inverse
transform technique we would require one logarithmic computation for each ex-
ponential generated. One way to avoid this is to first simulate Sn, a gamma
random variable with parameters (n,1) (say, by the method of Section 11.3.3).
Now interpret Sn as the time of the nth event of a Poisson process with rate
1 and use the result that given Sn the set of the first n − 1 event times is
distributed as the set of n − 1 independent uniform (0, Sn) random variables.
Based on this, explain why the following algorithm simulates n independent
exponentials:

Step 1: Generate Sn, a gamma random variable with parameters (n,1).
Step 2: Generate n − 1 random numbers U1,U2, . . . ,Un−1.
Step 3: Order the Ui , i = 1, . . . , n − 1 to obtain U(1) < U(2) < · · · < U(n−1).
Step 4: Let U(0) = 0,U(n) = 1, and set Xi = Sn(U(i) − U(i−1)),

i = 1, . . . , n.

When the ordering (step 3) is performed according to the algorithm described in
Section 11.5, the preceding is an efficient method for simulating n exponentials
when all n are simultaneously required. If memory space is limited, however, and
the exponentials can be employed sequentially, discarding each exponential from
memory once it has been used, then the preceding may not be appropriate.

20. Consider the following procedure for randomly choosing a subset of size k

from the numbers 1,2, . . . , n: Fix p and generate the first n time units of a renewal
process whose interarrival distribution is geometric with mean 1/p—that is,



728 11 Simulation

P {interarrival time = k} = p(1 − p)k−1, k = 1,2, . . . . Suppose events occur at
times i1 < i2 < · · · < im � n. If m = k, stop; i1, . . . , im is the desired set.
If m > k, then randomly choose (by some method) a subset of size k from
i1, . . . , im and then stop. If m < k, take i1, . . . , im as part of the subset of size
k and then select (by some method) a random subset of size k − m from the set
{1,2, . . . , n} − (i1, . . . , im}. Explain why this algorithm works. As E[N(n)] = np

a reasonable choice of p is to take p ≈ k/n. (This approach is due to Dieter.)

21. Consider the following algorithm for generating a random permutation of
the elements 1,2, . . . , n. In this algorithm, P(i) can be interpreted as the element
in position i

Step 1: Set k = 1.
Step 2: Set P(1) = 1.
Step 3: If k = n, stop. Otherwise, let k = k + 1.
Step 4: Generate a random number U , and let

P(k) = P([kU ] + 1),

P ([kU ] + 1) = k.

Go to step 3

(a) Explain in words what the algorithm is doing.
(b) Show that at iteration k—that is, when the value of P(k) is initially set—
that P(1),P (2), . . . ,P (k) is a random permutation of 1,2, . . . , k.

Hint: Use induction and argue that

Pk{i1, i2, . . . , ij−1, k, ij , . . . , ik−2, i}

= Pk−1{i1, i2, . . . , ij−1, i, ij , . . . , ik−2}1

k

= 1

k! by the induction hypothesis

The preceding algorithm can be used even if n is not initially known.

22. Verify that if we use the hazard rate approach to simulate the event times
of a nonhomogeneous Poisson process whose intensity function λ(t) is such that
λ(t) � λ, then we end up with the approach given in method 1 of Section 11.5.

*23. For a nonhomogeneous Poisson process with intensity function λ(t),
t � 0, where

∫∞
0 λ(t) dt = ∞, let X1,X2, . . . denote the sequence of times at

which events occur.
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(a) Show that
∫ X1

0 λ(t) dt is exponential with rate 1.

(b) Show that
∫ Xi

Xi−1
λ(t) dt, i � 1, are independent exponentials with rate 1,

where X0 = 0.

In words, independent of the past, the additional amount of hazard that must be
experienced until an event occurs is exponential with rate 1.

24. Give an efficient method for simulating a nonhomogeneous Poisson process
with intensity function

λ(t) = b + 1

t + a
, t � 0

25. Let (X,Y ) be uniformly distributed in a circle of radius r about the origin.
That is, their joint density is given by

f (x, y) = 1

πr2
, 0 � x2 + y2 � r2

Let R = √
X2 + Y 2 and θ = arc tanY/X denote their polar coordinates. Show that

R and θ are independent with θ being uniform on (0,2π) and P {R < a} = a2/r2,
0 < a < r .

26. Let R denote a region in the two-dimensional plane. Show that for a two-
dimensional Poisson process, given that there are n points located in R, the
points are independently and uniformly distributed in R—that is, their density
is f (x, y) = c, (x, y) ∈ R where c is the inverse of the area of R.

27. Let X1, . . . ,Xn be independent random variables with E[Xi] = θ , Var(Xi) =
σ 2

i i = 1, . . . , n, and consider estimates of θ of the form
∑n

i=1 λiXi where∑n
i=1 λi = 1. Show that Var(

∑n
i=1 λiXi) is minimized when

λi = (1/σ 2
i )
/
(

n∑

j=1

1/σ 2
j

)

, i = 1, . . . , n.

Possible Hint: If you cannot do this for general n, try it first when n = 2.

The following two problems are concerned with the estimation of
∫ 1

0 g(x)dx =
E[g(U)] where U is uniform (0,1).

28. The Hit–Miss Method: Suppose g is bounded in [0,1]—for instance, sup-
pose 0 � g(x) � b for x ∈ [0,1]. Let U1, U2 be independent random numbers and
set X = U1, Y = bU2—so the point (X,Y ) is uniformly distributed in a rectangle
of length 1 and height b. Now set

I =
{

1, if Y < g(X)

0, otherwise

That is accept (X,Y ) if it falls in the shaded area of Figure 11.7.
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Figure 11.7.

(a) Show that E[bI ] = ∫ 1
0 g(x)dx.

(b) Show that Var(bI) � Var(g(U)), and so hit–miss has larger variance than
simply computing g of a random number.

29. Stratified Sampling: Let U1, . . . ,Un be independent random numbers
and set Ūi = (Ui + i − 1)/n, i = 1, . . . , n. Hence, Ūi , i � 1, is uniform on
((i − 1)/n, i/n).

∑n
i=1 g(Ūi)/n is called the stratified sampling estimator of

∫ 1
0 g(x)dx.

(a) Show that E[∑n
i=1 g(Ūi)/n] = ∫ 1

0 g(x)dx.
(b) Show that Var[∑n

i=1 g(Ūi)/n] � Var[∑n
i=1 g(Ui)/n].

Hint: Let U be uniform (0,1) and define N by N = i if (i − 1)/n <

U < i/n, i = 1, . . . , n. Now use the conditional variance formula to ob-
tain

Var(g(U)) = E[Var(g(U)|N)] + Var(E[g(U)|N ])
� E[Var(g(U)|N)]

=
n∑

i=1

Var(g(U)|N = i)

n
=

n∑

i=1

Var[g(Ūi)]
n

30. If f is the density function of a normal random variable with mean μ and
variance σ 2, show that the tilted density ft is the density of a normal random
variable with mean μ + σ 2t and variance σ 2.

31. Consider a queueing system in which each service time, independent of the
past, has mean μ. Let Wn and Dn denote, respectively, the amounts of time cus-
tomer n spends in the system and in queue. Hence, Dn = Wn − Sn where Sn is
the service time of customer n. Therefore,

E[Dn] = E[Wn] − μ
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If we use simulation to estimate E[Dn], should we

(a) use the simulated data to determine Dn, which is then used as an estimate
of E[Dn]; or
(b) use the simulated data to determine Wn and then use this quantity minus μ

as an estimate of E[Dn]?
Repeat if we want to estimate E[Wn].
*32. Show that if X and Y have the same distribution then

Var((X + Y)/2) � Var(X)

Hence, conclude that the use of antithetic variables can never increase variance
(though it need not be as efficient as generating an independent set of random
numbers).

33. If 0 � X � a, show that

(a) E[X2] � aE[X],
(b) Var(X) � E[X](a − E[X]),
(c) Var(X) � a2/4.

34. Suppose in Example 11.19 that no new customers are allowed in the system
after time t0. Give an efficient simulation estimator of the expected additional
time after t0 until the system becomes empty.
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Appendix

Solutions to Starred
Exercises

Chapter 1

2. S = {(r, g), (r, b), (g, r), (g, b), (b, r), (b, g)} where, for instance, (r, g)

means that the first marble drawn was red and the second one green. The proba-
bility of each one of these outcomes is 1

6 .

5. 3
4 . If he wins, he only wins $1; if he loses, he loses $3.

9. F = E ∪ FEc, implying since E and FEc are disjoint that P(F) = P(E) +
P(FEc).

17. P {end} = 1 − P {continue}
= 1 − [Prob(H,H,H) + Prob(T ,T ,T )]

Fair coin: P {end} = 1 −
[

1

2
· 1

2
· 1

2
+ 1

2
· 1

2
· 1

2

]

= 3

4

Biased coin: P {end} = 1 −
[

1

4
· 1

4
· 1

4
+ 3

4
· 3

4
· 3

4

]

= 9

16

733
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19. E = event at least 1 six

P(E) = number of ways to get E

number of sample points
= 11

36

D = event two faces are different

P(D) = 1 − P(two faces the same) = 1 − 6

36
= 5

6

P(E\D) = P(ED)

P (D)
= 10/36

5/6
= 1

3

25. (a) P {pair} = P {second card is same denomination as first}

= 3

51

(b) P {pair | different suits} = P {pair, different suits}
P {different suits}

= P {pair}
P {different suits}

= 3/51

39/51
= 1

13

27. P(E1) = 1

P(E1|E2) = 39

51

since 12 cards are in the ace of spades pile and 39 are not.

P(E3|E1E2) = 26

50

since 24 cards are in the piles of the two aces and 26 are in the other two piles.

P(E4|E1E2E3) = 13

49

So

P {each pile has an ace} =
(

39

51

)(
26

50

)(
13

49

)
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30. (a) P {George | exactly 1 hit} = P {George, not Bill}
P {exactly 1}

= P {G, not B}
P {G, not B} + P {B, not G}

= (0.4)(0.3)

(0.4)(0.3) + (0.7)(0.6)

= 2

9

(b) P {G | hit} = P {G, hit}
P {hit}

= P {G}
P {hit} = 0.4

1 − (0.3)(0.6)
= 20

41

32. Let Ei = event person i selects own hat.

P (no one selects hat )

= 1 − P(E1 ∪ E2 ∪ · · · ∪ En)

= 1 −
[∑

ii

P (Ei1) −
∑

i1<i2

P(Ei1Ei2) + · · · + (−1)n+1P(E1E2 · · ·En)

]

= 1 −
∑

i1

P(Ei1) −
∑

i1<i2

P(Ei1Ei2) −
∑

i1<i2<i3

P(Ei1Ei2Ei3) + · · ·

+ (−1)nP (E1E2 · · ·En)

Let k ∈ {1,2, . . . , n}. P (Ei1Ei2Eik ) = number of ways k specific men can select
own hats ÷ total number of ways hats can be arranged = (n − k)!/n!. Number of
terms in summation

∑
i1<i2<···<ik

= number of ways to choose k variables out of
n variables = (

n
k

)= n!/k!(n − k)!. Thus,

∑

i1<···<ik

P (Ei1Ei2 · · ·Eik ) =
∑

i1<···<ik

(n − k)!
n!

=
(

n

k

)
(n − k)!

n! = 1

k!

∴ P(no one selects own hat) = 1 − 1

1! + 1

2! − 1

3! + · · · + (−1)n
1

n!
= 1

2! − 1

3! + · · · + (−1)n
1

n!
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40. (a) F = event fair coin flipped; U = event two-headed coin flipped.

P(F |H) = P(H |F)P (F )

P (H |F)P (F ) + P(H |U)P (U)

=
1
2 · 1

2
1
2 · 1

2 + 1 · 1
2

=
1
4
3
4

= 1

3

(b) P(F |HH) = P(HH |F)P (F )

P (HH |F)P (F ) + P(HH |U)P (U)

=
1
4 · 1

2
1
4 · 1

2 + 1 · 1
2

=
1
8
5
8

= 1

5

(c) P(F |HHT ) = P(HHT |F)P (F )

P (HHT |F)P (F ) + P(HHT |U)P (U)

= P(HHT |F)P (F )

P (HHT |F)P (F ) + 0
= 1

since the fair coin is the only one that can show tails.

45. Let Bi = event ith ball is black; Ri = event ith ball is red.

P(B1|R2) = P(R2|B1)P (B1)

P (R2|B1)P (B1) + P(R2|R1)P (R1)

=
r

b + r + c
· b

b + r
r

b + r + c
· b

b + r
+ r + c

b + r + c
· r

b + r

= rb

rb + (r + c)r

= b

b + r + c

48. Let C be the event that the randomly chosen family owns a car, and let H

be the event that the randomly chosen family owns a house.

P(CHc) = P(C) − P(CH) = 0.6 − 0.2 = 0.4

and

P(CcH) = P(H) − P(CH) = 0.3 − 0.2 = 0.1

giving the result

P(CHc) + P(CcH) = 0.5
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Chapter 2

4. (i) 1,2,3,4,5,6.

(ii) 1,2,3,4,5,6.

(iii) 2,3, . . . ,11,12.

(iv) −5,4, . . . ,4,5.

11.
(

4

2

)(
1

2

)2(1

2

)2

= 3

8
.

16. 1 − (0.95)52 − 52(0.95)51(0.05).

23. In order for X to equal n, the first n − 1 flips must have r − 1 heads,
and then the nth flip must land heads. By independence the desired probability
is thus

(
n − 1

r − 1

)

pr−1(1 − p)n−r × p

27. P {same number of heads} =
∑

i

P {A = i, B = i}

=
∑

i

(
k

i

)(
1

2

)k (
n − k

i

)(
1

2

)n−k

=
∑

i

(
k

i

)(
n − k

i

)(
1

2

)n

=
∑

i

(
k

k − i

)(
n − k

i

)(
1

2

)n

=
(

n

k

)(
1

2

)n

Another argument is as follows:

P {# heads of A = # heads of B}
= P {# tails of A = # heads of B} since coin is fair

= P {k − # heads of A = # heads of B}
= P {k = total # heads}

38. c = 2, P {X > 2} =
∫ ∞

2
2e−2x dx = e−4
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47. Let Xi be 1 if trial i is a success and 0 otherwise.

(a) The largest value is 0.6. If X1 = X2 = X3, then

1.8 = E[X] = 3E[X1] = 3P {X1 = 1}

and so P {X = 3} = P {X1 = 1} = 0.6. That this is the largest value is seen
by Markov’s inequality which yields that

P {X � 3} � E[X]/3 = 0.6

(b) The smallest value is 0. To construct a probability scenario for which
P {X = 3} = 0, let U be a uniform random variable on (0,1), and define

X1 =
{

1, if U � 0.6

0, otherwise

X2 =
{

1, if U � 0.4

0, otherwise

X3 =
{

1, if either U � 0.3 or U � 0.7

0, otherwise

it is easy to see that

P {X1 = X2 = X3 = 1} = 0

49. E[X2] − (E[X])2 = Var(X) = E[(X − E[X])2] � 0. Equality when
Var(X) = 0, that is, when X is constant.

64. See Section 5.2.3 of Chapter 5. Another way is to use moment generating
functions. The moment generating function of the sum of n independent expo-
nentials with rate λ is equal to the product of their moment generating functions.
That is, it is [λ/(λ − t)]n. But this is precisely the moment generating function of
a gamma with parameters n and λ.

70. Let Xi be Poisson with mean 1. Then

P

{
n∑

1

Xi � n

}

= e−n

n∑

k=0

nk

k!

But for n large
∑n

1 Xi − n has approximately a normal distribution with mean 0,
and so the result follows.
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72. For the matching problem, letting X = X1 + · · · + XN , where

Xi =
{

1, if ith man selects his own hat

0, otherwise

we obtain

Var(X) =
N∑

i=1

Var(Xi) + 2
∑∑

i<j

Cov(Xi,Xj )

Since P {Xi = 1} = 1/N , we see

Var(Xi) = 1

N

(

1 − 1

N

)

= N − 1

N2

Also

Cov(Xi,Xj ) = E[XiXj ] − E[Xi]E[Xj ]
Now,

XiXj =
{

1, if the ith and j th men both select their own hats

0, otherwise

and thus

E[XiXj ] = P {Xi = 1, Xj = 1}
= P {Xi = 1}P {Xj = 1|Xi = 1}

= 1

N

1

N − 1

Hence,

Cov(Xi,Xj ) = 1

N(N − 1)
−
(

1

N

)2

= 1

N2(N − 1)

and

Var(X) = N − 1

N
+ 2

(
N

2

)
1

N2(N − 1)

= N − 1

N
+ 1

N

= 1
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Chapter 3

2. Intuitively it would seem that the first head would be equally likely to occur
on any of trials 1, . . . , n − 1. That is, it is intuitive that

P {X1 = i |X1 + X2 = n} = 1

n − 1
, i = 1, . . . , n − 1

Formally,

P {X1 = i |X1 + X2 = n} = P {X1 = i,X1 + X2 = n}
P {X1 + X2 = n}

= P {X1 = i,X2 = n − i}
P {X1 + X2 = n}

= p(1 − p)i−1p(1 − p)n−i−1

(
n−1

1

)
p(1 − p)n−2p

= 1

n − 1

In the preceding, the next to last equality uses the independence of X1 and X2 to
evaluate the numerator and the fact that X1 + X2 has a negative binomial distrib-
ution to evaluate the denominator.

6. pX|Y (1 |3) = P {X = 1, Y = 3}
P {Y = 3}

= P {1 white, 3 black, 2 red}
P {3 black}

=
6!

1!3!2!
(

3

14

)1( 5

14

)3( 6

14

)2

6!
3!3!

(
5

14

)3( 9

14

)3

= 4

9

pX|Y (0 |3) = 8

27

pX|Y (2 |3) = 2

9
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pX|Y (3 |3) = 1

27

E[X |Y = 1] = 5

3

13. The conditional density of X given that X > 1 is

fX|X>1(X) = f (x)

P {X > 1} = λ exp−λx

e−λ
when x > 1

E[X |X > 1] = eλ

∫ ∞

1
xλ e−λx dx = 1 + 1/λ

by integration by parts. This latter result also follows immediately by the lack of
memory property of the exponential.

19.
∫

E[X |Y = y]fY (y) dy =
∫∫

xfX|Y (x |y)dxfY (y) dy

=
∫∫

x
f (x, y)

fY (y)
dxfY (y) dy

=
∫

x

∫

f (x, y) dy dx

=
∫

xfX(x)dx

= E[X]
23. Let X denote the first time a head appears. Let us obtain an equation for
E[N |X] by conditioning on the next two flips after X. This gives

E[N |X] = E[N |X,h,h]p2 + E[N |X,h, t]pq + E[N |X, t,h]pq

+ E[N |X, t, t]q2

where q = 1 − p. Now

E[N |X,h,h] = X + 1, E[N |X,h, t] = X + 1
E[N |X, t,h] = X + 2, E[N |X, t, t] = X + 2 + E[N ]

Substituting back gives

E[N |X] = (X + 1)(p2 + pq) + (X + 2) pq + (X + 2 + E[N ]) q2

Taking expectations, and using the fact that X is geometric with mean 1/p, we
obtain

E[N ] = 1 + p + q + 2pq + q2/p + 2q2 + q2E[N ]
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Solving for E[N ] yields

E[N ] = 2 + 2q + q2/p

1 − q2

47. E[X2Y 2|X] = X2E[Y 2|X]
� X2(E[Y |X])2 = X2

The inequality follows since for any random variable U , E[U2] � (E[U ])2 and
this remains true when conditioning on some other random variable X. Taking
expectations of the preceding shows that

E[(XY)2] � E[X2]
As

E[XY ] = E[E[XY |X]] = E[XE[Y |X]] = E[X]
the results follow.

53. P {X = n} =
∫ ∞

0
P {X = n|λ}e−λ dλ

=
∫ ∞

0

e−λλn

n! e−λ dλ

=
∫ ∞

0
e−2λλn dλ

n!

=
∫ ∞

0
e−t tn

dt

n!
(

1

2

)n+1

The results follow since
∫∞

0 e−t tn dt = �(n + 1) = n!
60. (a) Intuitive that f (p) is increasing in p, since the larger p is the greater

is the advantage of going first.
(b) 1.
(c) 1

2 since the advantage of going first becomes nil.
(d) Condition on the outcome of the first flip:

f (p) = P {I wins |h}p + P {I wins | t}(1 − p)

= p + [1 − f (p)](1 − p)

Therefore,

f (p) = 1

2 − p

67. Part (a) is proven by noting that a run of j successive heads can occur within
the first n flips in two mutually exclusive ways. Either there is a run of j succes-
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sive heads within the first n − 1 flips; or there is no run of j successive heads
within the first n− j − 1 flips, flip n− j is not a head, and flips n− j + 1 through
n are all heads.

Let A be the event that a run of j successive heads occurs within the first
n, (n � j), flips. Conditioning on X, the trial number of the first non-head, gives
the following

Pj (n) =
∑

k

P (A |X = k)pk−1(1 − p)

=
j∑

k=1

P(A |X = k)pk−1(1 − p) +
∞∑

k=j+1

P(A |X = k)pk−1(1 − p)

=
j∑

i=1

Pj (n − k)pk−1(1 − p) +
∞∑

k=j+1

pk−1(1 − p)

=
j∑

i=1

Pj (n − k)pk−1(1 − p) + pj

73. Condition on the value of the sum prior to going over 100. In all cases the
most likely value is 101. (For instance, if this sum is 98 then the final sum is
equally likely to be either 101, 102, 103, or 104. If the sum prior to going over is
95, then the final sum is 101 with certainty.)

93. (a) By symmetry, for any value of (T1, . . . , Tm), the random vector
(I1, . . . , Im) is equally likely to be any of the m! permutations.

(b) E[N ] =
m∑

i=1

E[N |X = i]P {X = i}

= 1

m

m∑

i=1

E[N |X = i]

= 1

m

(
m−1∑

i=1

(
E[Ti] + E[N ])+ E[Tm−1]

)

where the final equality used the independence of X and Ti. Therefore,

E[N ] = E[Tm−1] +
m−1∑

i=1

E[Ti]
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(c) E[Ti] =
i∑

j=1

m

m + 1 − j

(d) E[N ] =
m−1∑

j=1

m

m + 1 − j
+

m−1∑

i=1

i∑

j=1

m

m + 1 − j

=
m−1∑

j=1

m

m + 1 − j
+

m−1∑

j=1

m−1∑

i=j

m

m + 1 − j

=
m−1∑

j=1

m

m + 1 − j
+

m−1∑

j=1

m(m − j)

m + 1 − j

=
m−1∑

j=1

(
m

m + 1 − j
+ m(m − j)

m + 1 − j

)

= m(m − 1)

Chapter 4

1. P01 = 1, P10 = 1
9 , P21 = 4

9 , P32 = 1

P11 = 4
9 , P22 = 4

9

P12 = 4
9 , P23 = 1

9

4. Let the state space be S = {0,1,2, 0̄, 1̄, 2̄}, where state i(ī) signifies that the
present value is i, and the present day is even (odd).

16. If Pij were (strictly) positive, then P n
ji would be 0 for all n (otherwise, i and

j would communicate). But then the process, starting in i, has a positive proba-
bility of at least Pij of never returning to i. This contradicts the recurrence of i.
Hence Pij = 0.

21. The transition probabilities are

Pi,j =
{

1 − 3α, if j = i

α, if j �= i
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By symmetry,

P n
ij = 1

3
(1 − P n

ii), j �= i

So, let us prove by induction that

P n
i,j =

⎧
⎨

⎩

1
4 + 3

4 (1 − 4α)n if j = i

1
4 − 1

4 (1 − 4α)n if j �= i

As the preceding is true for n = 1, assume it for n. To complete the induction
proof, we need to show that

P n+1
i,j =

⎧
⎨

⎩

1
4 + 3

4 (1 − 4α)n+1 if j = i

1
4 − 1

4 (1 − 4α)n+1 if j �= i

Now,

P n+1
i,i = P n

i,iPi,i +
∑

j �=i

P n
i,jPj,i

=
(

1

4
+ 3

4
(1 − 4α)n

)

(1 − 3α) + 3

(
1

4
− 1

4
(1 − 4α)n

)

α

= 1

4
+ 3

4
(1 − 4α)n(1 − 3α − α)

= 1

4
+ 3

4
(1 − 4α)n+1

By symmetry, for j �= i

P n+1
ij = 1

3
(1 − P n+1

ii ) = 1

4
− 1

4
(1 − 4α)n+1

and the induction is complete.
By letting n → ∞ in the preceding, or by using that the transition probability

matrix is doubly stochastic, or by just using a symmetry argument, we obtain that
πi = 1/4, i = 1,2,3,4.
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27. The limiting probabilities are obtained from

π0 = 1
9π1,

π1 = π0 + 4
9π1 + 4

9π2,

π2 = 4
9π1 + 4

9π2 + π3,

π0 + π1 + π2 + π3 = 1

and the solution is π0 = π3 = 1
20 , π1 = π2 = 9

20 .

32. With the state being the number of on switches this is a three-state Markov
chain. The equations for the long-run proportions are

π0 = 1
16π0 + 1

4π1 + 9
16π2,

π1 = 3
8π0 + 1

2π1 + 3
8π2,

π0 + π1 + π2 = 1

This gives the solution
π0 = 2

7 , π1 = 3
7 , π2 = 2

7

41. (a) The number of transitions into state i by time n, the number of tran-
sitions originating from state i by time n, and the number of time periods
the chain is in state i by time n, all differ by at most 1. Thus, their long-run
proportions must be equal.
(b) πiPij is the long-run proportion of transitions that go from state i to
state j .
(c)

∑
i πiPij is the long-run proportion of transitions that are into state j .

(d) Since πj is also the long-run proportion of transitions that are into
state j , it follows that πj =∑

i πiPij .

47. {Yn,n � 1} is a Markov chain with states (i, j ).

P(i,j),(k,l) =
{

0, if j �= k

Pjl, if j = k

where Pjl is the transition probability for {Xn}.
lim

n→∞P {Yn = (i, j)} = lim
n

P {Xn = i,Xn+1 = j}
= lim

n
[P {Xn = i}Pij ]

= πiPij
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62. (a) Since πi = 1
5 is equal to the inverse of the expected number of tran-

sitions to return to state i, it follows that the expected number of steps to
return to the original position is 5.
(b) Condition on the first transition. Suppose it is to the right. In this case
the probability is just the probability that a gambler who always bets 1
and wins each bet with probability p will, when starting with 1, reach
4 before going broke. By the gambler’s ruin problem this probability is
equal to

1 − q/p

1 − (q/p)4

Similarly, if the first move is to the left then the problem is again the same
gambler’s ruin problem but with p and q reversed. The desired probability
is thus

p − q

1 − (q/p)4
+ q − p

1 − (p/q)4

68. (a)
∑

i πiQij =∑
i πjPji = πj

∑
i Pji = πj

(b) Whether perusing the sequence of states in the forward direction of
time or in the reverse direction, the proportion of time the state is i will
be the same.

Chapter 5

7. P {X1 < X2 | min(X1,X2) = t}

= P {X1 < X2,min(X1,X2) = t}
P {min(X1,X2) = t}

= P {X1 = t,X2 > t}
P {X1 = t,X2 > t} + P {X2 = t,X1 > t}

= f1(t)[1 − F2(t)]
f1(t)[1 − F2(t)] + f2(t)[1 − F1(t)]

Dividing through by [1−F1(t)][1−F2(t)] yields the result. (Of course, fi and Fi

are the density and distribution function of Xi , i = 1,2.) To make the preceding
derivation rigorous, we should replace “= t” by ∈ (t, t + ε) throughout and then
let ε → 0.
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10. (a) E[MX|M = X] = E[M2|M = X]
= E[M2]

= 2

(λ + μ)2

(b) By the memoryless property of exponentials, given that M = Y , X is
distributed as M + X′ where X′ is an exponential with rate λ that is inde-
pendent of M . Therefore,

E[MX|M = Y ] = E[M(M + X′)]
= E[M2] + E[M]E[X′]

= 2

(λ + μ)2
+ 1

λ(λ + μ)

(c) E[MX] = E[MX|M = X] λ

λ + μ
+ E[MX|M = Y ] μ

λ + μ

= 2λ + μ

λ(λ + μ)2

Therefore,

Cov(X,M) = λ

λ(λ + μ)2

18. (a) 1/(2μ).

(b) 1/(4μ2), since the variance of an exponential is its mean squared.
(c) and (d). By the lack of memory property of the exponential it follows
that A, the amount by which X(2) exceeds X(1), is exponentially distributed
with rate μ and is independent of X(1). Therefore,

E[X(2)] = E[X(1) + A] = 1

2μ
+ 1

μ

Var(X(2)) = Var(X(1) + A) = 1

4μ2
+ 1

μ2
= 5

4μ2

23. (a) 1
2 .

(b) ( 1
2 )n−1. Whenever battery 1 is in use and a failure occurs the probability

is 1
2 that it is not battery 1 that has failed.

(c) ( 1
2 )n−i+1, i > 1.
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(d) T is the sum of n − 1 independent exponentials with rate 2μ (since
each time a failure occurs the time until the next failure is exponential with
rate 2μ).
(e) Gamma with parameters n − 1 and 2μ.

36. E[S(t)|N(t) = n] = sE

[
N(t)∏

i=1

Xi |N(t) = n

]

= sE

[
n∏

i=1

Xi |N(t) = n

]

= sE

[
n∏

i=1

Xi

]

= s(E[X])n
= s(1/μ)n

Thus,

E[S(t)] = s
∑

n

(1/μ)ne−λt (λt)n/n!

= se−λt
∑

n

(λt/μ)n/n!

= se−λt+λt/μ

By same reasoning

E[S2(t)|N(t) = n] = s2(E[X2])n = s2(2/μ2)n

and

E[S2(t)] = s2e−λt+2λt/μ2

40. The easiest way is to use Definition 3.1. It is easy to see that {N(t), t � 0}
will also possess stationary and independent increments. Since the sum of two
independent Poisson random variables is also Poisson, it follows that N(t) is a
Poisson random variable with mean (λ1 + λ2)t .

57. (a) e−2.
(b) 2 P.M.

(c) 1 − 5e−4.
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60. (a) 1
9 .

(b) 5
9 .

64. (a) Since, given N(t), each arrival is uniformly distributed on (0, t) it fol-
lows that

E[X|N(t)] = N(t)

∫ t

0
(t − s)

ds

t
= N(t)

t

2

(b) Let U1,U2, . . . be independent uniform (0, t) random variables. Then

Var(X|N(t) = n) = Var

[
n∑

i=1

(t − Ui)

]

= n Var(Ui) = n
t2

12

(c) By parts (a) and (b) and the conditional variance formula,

Var(X) = Var

(
N(t)t

2

)

+ E

[
N(t)t2

12

]

= λtt2

4
+ λtt2

·12
= λt3

3

79. Consider a Poisson process with rate λ in which an event at time t is counted
with probability λ(t)/λ independently of the past. Clearly such a process will have
independent increments. In addition,

P {2 or more counted events in (t, t + h)}
� P {2 or more events in (t, t + h)}
= o(h)

and

P {1 counted event in (t, t + h)}
= P {1 counted |1 event}P(1 event)

+ P {1 counted | � 2 events}P {� 2}

=
∫ t+h

t

λ(s)

λ

ds

h
(λh + o(h)) + o(h)

= λ(t)

λ
λh + o(h)

= λ(t)h + o(h)
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84. There is a record whose value is between t and t + dt if the first X larger
than t lies between t and t + dt . From this we see that, independent of all record
values less than t , there will be one between t and t + dt with probability λ(t) dt

where λ(t) is the failure rate function given by

λ(t) = f (t)

1 − F(t)

Since the counting process of record values has, by the preceding, independent
increments we can conclude (since there cannot be multiple record values because
the Xi are continuous) that it is a nonhomogeneous Poisson process with intensity
function λ(t). When f is the exponential density, λ(t) = λ and so the counting
process of record values becomes an ordinary Poisson process with rate λ.

91. To begin, note that

P

{

X1 >

n∑

2

Xi

}

= P {X1 > X2}P {X1 − X2 > X3|X1 > X2}

× P {X1 − X2 − X3 > X4|X1 > X2 + X3} · · ·
× P {X1 − X2 · · · − Xn−1 > Xn|X1 > X2 + · · · + Xn−1}

=
(

1

2

)n−1

by lack of memory

Hence,

P

{

M >

n∑

i=1

Xi − M

}

=
n∑

i=1

P

{

Xi >
∑

j �=i

Xj

}

= n

2n−1

Chapter 6

2. Let NA(t) be the member of organisms in state A and let NB(t) be the
number of organisms in state B . Then {NA(t),NB(t)} is a continuous-Markov
chain with

ν{n,m} = αn + βm

P{n,m},{n−1,m+1} = αn

αn + βm

P{n,m},{n+2,m−1} = βm

αn + βm



752 Appendix Solutions to Starred Exercises

4. Let N(t) denote the number of customers in the station at time t . Then {N(t)}
is a birth and death process with

λn = λαn, μn = μ

7. (a) Yes!

(b) For n = (n1, . . . , ni, ni+1, . . . , nk−1) let

Si(n) = (n1, . . . , ni − 1, ni+1 + 1, . . . , nk−1), i = 1, . . . , k − 2

Sk−1(n) = (n1, . . . , ni, ni+1, . . . , nk−1 − 1),

S0(n) = (n1 + 1, . . . , ni, ni+1, . . . , nk−1).

Then

qn,Si (n) = niμ, i = 1, . . . , k − 1

qn,S0(n) = λ

11. (b) Follows from the hint about using the lack of memory property and the
fact that εi , the minimum of j − (i − 1) independent exponentials with rate
λ, is exponential with rate (j − i − 1)λ.
(c) From parts (a) and (b)

P {T1 + · · · + Tj � t} = P
{

max
1� i � j

Xi � t
}

= (1 − e−λt )j

(d) With all probabilities conditional on X(0) = 1

P1j (t) = P {X(t) = j}
= P {X(t) � j} − P {X(t) � j + 1}
= P {T1 + · · · + Tj � t} − P {T1 + · · · + Tj+1 � t}

(e) The sum of i independent geometrics, each having parameter p = e−λt ,
is a negative binomial with parameters i,p. The result follows since starting
with an initial population of i is equivalent to having i independent Yule
processes, each starting with a single individual.

16. Let the state be
2: an acceptable molecule is attached
0: no molecule attached
1: an unacceptable molecule is attached.
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Then this is a birth and death process with balance equations

μ1P1 = λ(1 − α)P0

μ2P2 = λαP0

Since
∑2

0 Pi = 1, we get

P2 =
[

1 + μ2

λα
+ 1 − α

α

μ2

μ1

]−1

= λαμ1

λαμ1 + μ1μ2 + λ(1 − α)μ2

where P2 is the percentage of time the site is occupied by an acceptable molecule.
The percentage of time the site is occupied by an unacceptable molecule is

P1 = 1 − α

α

μ2

μ1
P1 = λ(1 − α)μ2

λαμ1 + μ1μ2 + λ(1 − α)μ2

19. There are four states. Let state 0 mean that no machines are down, state
1 that machine 1 is down and 2 is up, state 2 that machine 1 is up and 2
is down, and 3 that both machines are down. The balance equations are as
follows:

(λ1 + λ2)P0 = μ1P1 + μ2P2

(μ1 + λ2)P1 = λ1P0

(λ1 + μ2)P2 = λ2P0 + μ1P3

μ1P3 = λ2P1 + λ1P2

P0 + P1 + P2 + P3 = 1

The equations are easily solved and the proportion of time machine 2 is down is
P2 + P3.

24. We will let the state be the number of taxis waiting. Then, we get a birth and
death process with λn = 1,μn = 2. This is an M/M/1. Therefore:

(a) Average number of taxis waiting = 1

μ − λ
= 1

2 − 1
= 1.

(b) The proportion of arriving customers that gets taxis is the proportion
of arriving customers that find at least one taxi waiting. The rate of ar-
rival of such customers is 2(1 − P0). The proportion of such arrivals is
therefore

2(1 − P0)

2
= 1 − P0 = 1 −

(

1 − λ

μ

)

= λ

μ
= 1

2
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28. Let P x
ij , v

x
i denote the parameters of the X(t) and P

y
ij , v

y
i of the Y(t)

process; and let the limiting probabilities be P x
i ,P

y
i , respectively. By indepen-

dence we have that for the Markov chain {X(t), Y (t)} its parameters are

v(i,l) = vx
i + v

y
l

P(i,l)(j,l) = vx
i

vx
i + v

y
l

P x
ij

P(i,l)(i,k) = v
y
l

vx
i + v

y
l

P
y
lk

and

lim
t→∞P {(X(t), Y (t)) = (i, j)} = P x

i P
y
j

Hence, we need to show that

P x
i P

y
l vx

i P x
ij = P x

j P
y
l vx

j P x
ji

[That is, rate from (i, l) to (j, l) equals the rate from (j, l) to (i, l).] But this
follows from the fact that the rate from i to j in X(t) equals the rate from j to i;
that is,

P x
i vx

i P x
ij = P x

j vx
j P x

ji

The analysis is similar in looking at pairs (i, l) and (i, k).

33. Suppose first that the waiting room is of infinite size. Let Xi(t) denote
the number of customers at server i, i = 1,2. Then since each of the M/M/1
processes {X1(t)} is time reversible, it follows from Exercise 28 that the vec-
tor process {(X1(t), (X(t)), t � 0} is a time reversible Markov chain. Now the
process of interest is just the truncation of this vector process to the set of states A

where

A = {(0,m): m � 4} ∪ {(n,0): n � 4} ∪ {(n,m): nm > 0, n + m � 5}
Hence, the probability that there are n with server 1 and m with server 2 is

Pn,m = k

(
λ1

μ1

)n(

1 − λ1

μ1

)(
λ2

μ2

)m(

1 − λ2

μ2

)

= C

(
λ1

μ1

)n(
λ2

μ2

)m

, (n,m) ∈ A

The constant C is determined from
∑

Pn,m = 1

where the sum is over all (n,m) in A.
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42. (a) The matrix P∗ can be written as

P∗ = I + R/v

and so P ∗n
ij can be obtained by taking the i, j element of (I+R/v)n, which

gives the result when v = n/t .
(b) Uniformization shows that Pij (t) = E[P ∗N

ij ], where N is independent
of the Markov chain with transition probabilities P ∗

ij and is Poisson dis-
tributed with mean vt . Since a Poisson random variable with mean vt has
standard deviation (vt)1/2, it follows that for large values of vt it should be
near vt . (For instance, a Poisson random variable with mean 106 has stan-
dard deviation 103 and thus will, with high probability, be within 3000 of
106.) Hence, since for fixed i and j , P ∗m

ij should not vary much for values
of m about vt where vt is large, it follows that, for large vt ,

E[P ∗N
ij ] ≈ P ∗n

ij where n = vt

Chapter 7

3. By the one-to-one correspondence of m(t) and F , it follows that {N(t), t � 0}
is a Poisson process with rate 1

2 . Hence,

P {N(5) = 0} = e−5/2

6. (a) Consider a Poisson process having rate λ and say that an event of the
renewal process occurs whenever one of the events numbered r,2r,3r, . . .

of the Poisson process occurs. Then

P {N(t) � n} = P {nr or more Poisson events by t}

=
∞∑

i=nr

e−λt (λt)i/i!

(b) E[N(t)] =
∞∑

n=1

P {N(t) � n} =
∞∑

n=1

∞∑

i=nr

e−λt (λt)i/i!

=
∞∑

i=r

[i/r]∑

n=1

e−λt (λt)i/i! =
∞∑

i=r

[i/r]e−λt (λt)i/i!
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8. (a) The number of replaced machines by time t constitutes a renewal
process. The time between replacements equals T , if lifetime of new ma-
chine is � T ;x, if lifetime of new machine is x, x < T . Hence,

E[time between replacements] =
∫ T

0
xf (x)dx + T [1 − F(T )]

and the result follows by Proposition 3.1.
(b) The number of machines that have failed in use by time t constitutes
a renewal process. The mean time between in-use failures, E[F ], can be
calculated by conditioning on the lifetime of the initial machine as E[F ] =
E[E[F | lifetime of initial machine]]. Now

E[F | lifetime of machine is x] =
{
x, if x � T

T + E[F ], if x > T

Hence,

E[F ] =
T∫

0

xf (x)dx + (T + E[F ])[1 − F(T )]

or

E[F ] =
∫ T

0 xf (x)dx + T [1 − F(T )]
F(T )

and the result follows from Proposition 3.1.

18. We can imagine that a renewal corresponds to a machine failure, and each
time a new machine is put in use its life distribution will be exponential with rate
μ1 with probability p, and exponential with rate μ2 otherwise. Hence, if our state
is the index of the exponential life distribution of the machine presently in use,
then this is a two-state continuous-time Markov chain with intensity rates

q1,2 = μ1(1 − p), q2,1 = μ2p

Hence,

P11(t) = μ1(1 − p)

μ1(1 − p) + μ2p
exp{−[μ1(1 − p) + μ2p]t}

+ μ2p

μ1(1 − p) + μ2p

with similar expressions for the other transition probabilities [P12(t) = 1 − P11(t),

and P22(t) is the same with μ2p and μ1(1 − p) switching places]. Condition-
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ing on the initial machine now gives

E[Y(t)] = pE[Y(t)|X(0) = 1] + (1 − p)E[Y(t)|X(0) = 2]

= p

[
P11(t)

μ1
+ P12(t)

μ2

]

+ (1 − p)

[
P21(t)

μ1
+ P22(t)

μ2

]

Finally, we can obtain m(t) from

μ[m(t) + 1] = t + E[Y(t)]
where

μ = p/μ1 + (1 − p)/μ2

is the mean interarrival time.

22. Cost of a cycle = C1 + C2I − R(T )(1 − I )

I =
{

1, if X < T

0, if X � T
where X = life of car

Hence,

E[cost of a cycle] = C1 + C2H(T ) − R(T )[1 − H(T )]
Also,

E[time of cycle] =
∫

E[time |X = x]h(x)dx

=
∫ T

0
xh(x)dx + T [1 − H(T )]

Thus the average cost per unit time is given by

C1 + C2H(T ) − R(T )[1 − H(T )]
∫ T

0 xh(x)dx + T [1 − H(T )]

30.
A(t)

t
= t − SN(t)

t

= 1 − SN(t)

t

= 1 − SN(t)

N(t)

N(t)

t

The result follows since SN(t)/N(t) → μ (by the strong law of large numbers)
and N(t)/t → 1/μ.
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35. (a) We can view this as an M/G/∞ system where a satellite launching
corresponds to an arrival and F is the service distribution. Hence,

P {X(t) = k} = e−λ(t)[λ(t)]k/k!

where λ(t) = λ
∫ t

0 (1 − F(s)) ds.
(b) By viewing the system as an alternating renewal process that is on when
there is at least one satellite orbiting, we obtain

limP {X(t) = 0} = 1/λ

1/λ + E[T ]
where T , the on time in a cycle, is the quantity of interest. From part (a)

limP {X(t) = 0} = e−λμ

where μ = ∫∞
0 (1 − F(s)) ds is the mean time that a satellite orbits. Hence,

e−λμ = 1/λ

1/λ + E[T ]
so

E[T ] = 1 − e−λμ

λe−λμ

42. (a) Fe(x) = 1

μ

∫ x

0
e−y/μ dy = 1 − e−x/μ.

(b) Fe(x) = 1

c

∫ x

0
dy = x

c
, 0 � x � c.

(c) You will receive a ticket if, starting when you park, an official appears
within one hour. From Example 7.23 the time until the official appears has
the distribution Fe which, by part (a), is the uniform distribution on (0,2).
Thus, the probability is equal to 1

2 .

49. Think of each interarrival time as consisting of n independent phases—each
of which is exponentially distributed with rate λ—and consider the semi-Markov
process whose state at any time is the phase of the present interarrival time. Hence,
this semi-Markov process goes from state 1 to 2 to 3 . . . to n to 1, and so on. Also
the time spent in each state has the same distribution. Thus, clearly the limiting
probability of this semi-Markov chain is Pi = 1/n, i = 1, . . . , n. To compute
limP {Y(t) < x}, we condition on the phase at time t and note that if it is n− i +1,
which will be the case with probability 1/n, then the time until a renewal occurs
will be sum of i exponential phases, which will thus have a gamma distribution
with parameters i and λ.
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Chapter 8

2. This problem can be modeled by an M/M/1 queue in which λ = 6, μ = 8.
The average cost rate will be

$10 per hour per machine × average number of broken machines

The average number of broken machines is just L, which can be computed from
Equation (3.2):

L = λ

μ − λ

= 6

2
= 3

Hence, the average cost rate = $30/hour.

7. To compute W for the M/M/2, set up balance equations as follows:

λP0 = μP1 (each server has rate μ)

(λ + μ)P1 = λP0 + 2μP2

(λ + 2μ)Pn = λPn−1 + 2μPn+1, n � 2

These have solutions Pn = ρn/2n−1P0 where ρ = λ/μ. The boundary condition∑∞
n=0 Pn = 1 implies

P0 = 1 − ρ/2

1 + ρ/2
= (2 − ρ)

(2 + ρ)

Now we have Pn, so we can compute L, and hence W from L = λW :

L =
∞∑

n=0

nPn = ρP0

∞∑

n=0

n
(ρ

2

)n−1

= 2P0

∞∑

n=0

n
(ρ

2

)n

= 2
(2 − ρ)

(2 + ρ)

(ρ/2)

(1 − ρ/2)2
[See derivation of Eq. (3.2).]

= 4ρ

(2 + ρ)(2 − ρ)

= 4μλ

(2μ + λ)(2μ − λ)
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From L = λW we have

W = W(M/M/2) = 4μ

(2μ + λ)(2μ − λ)

The M/M/1 queue with service rate 2μ has

W(M/M/1) = 1

2μ − λ

from Equation (3.3). We assume that in the M/M/1 queue, 2μ > λ so that the
queue is stable. But then 4μ > 2μ + λ, or 4μ/(2μ + λ) > 1, which implies
W(M/M/2) > W(M/M/1). The intuitive explanation is that if one finds the
queue empty in the M/M/2 case, it would do no good to have two servers.
One would be better off with one faster server. Now let W 1

Q = WQ(M/M/1) and

W 2
Q = WQ(M/M/2). Then,

W 1
Q = W(M/M/1) − 1/2μ

W 2
Q = W(M/M/2) − 1/μ

So,

W 1
Q = λ

2μ(2μ − λ)
(3.3)

and

W 2
Q = λ2

μ(2μ − λ)(2μ + λ)

Then,

W 1
Q > W 2

Q ⇔ 1

2
>

λ

(2μ + λ)

λ < 2μ

Since we assume λ < 2μ for stability in the M/M/1 case, W 2
Q < W 1

Q whenever
this comparison is possible, that is, whenever λ < 2μ.

13. (a) λP0 = μP1

(λ + μ)P1 = λP0 + 2μP2

(λ + 2μ)Pn = λPn−1 + 2μPn+1, n � 2

These are the same balance equations as for the M/M/2 queue and have
solution

P0 =
(

2μ − λ

2μ + λ

)

, Pn = λn

2n−1μn
P0
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(b) The system goes from 0 to 1 at rate

λP0 = λ(2μ − λ)

(2μ + λ)

The system goes from 2 to 1 at rate

2μP2 = λ2

μ

(2μ − λ)

(2μ + λ)

(c) Introduce a new state cl to indicate that the stock clerk is checking by
himself. The balance equation for Pcl is

(λ + μ)Pcl = μP2

Hence

Pcl = μ

λ + μ
P2 = λ2

2μ(λ + μ)

(2μ − λ)

(2μ + λ)

Finally, the proportion of time the stock clerk is checking is

Pcl +
∞∑

n=2

Pn = Pcl + 2λ2

μ(2μ − λ)

21. (a) λ1P10.

(b) λ2(P0 + P10).

(c) λ1P10/[λ1P10 + λ2(P0 + P10)].
(d) This is equal to the fraction of server 2’s customers that are type 1
multiplied by the proportion of time server 2 is busy. (This is true since the
amount of time server 2 spends with a customer does not depend on which
type of customer it is.) By (c) the answer is thus

(P01 + P11)λ1P10

λ1P10 + λ2(P0 + P10)

24. The states are now n,n � 0, and n′, n � 1 where the state is n when there
are n in the system and no breakdown, and it is n′ when there are n in the system
and a breakdown is in progress. The balance equations are

λP0 = μP1

(λ + μ + α)Pn = λPn−1 + μPn+1 + βPn′ , n � 1

(β + λ)P1′ = αP1
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(β + λ)Pn′ = αPn + λP(n−1)′ , n � 2

∞∑

n=0

Pn +
∞∑

n=1

Pn′ = 1

In terms of the solution to the preceding,

L =
∞∑

n=1

n(Pn + Pn′)

and so

W = L

λa

= L

λ

28. If a customer leaves the system busy, the time until the next departure is the
time of a service. If a customer leaves the system empty, the time until the next
departure is the time until an arrival plus the time of a service.

Using moment generating functions we get

E{esD} = λ

μ
E{esD | system left busy}

+
(

1 − λ

μ

)

E{esD | system left empty}

=
(

λ

μ

)(
μ

μ − s

)

+
(

1 − λ

μ

)

E{es(X+Y)}

where X has the distribution of interarrival times, Y has the distribution of service
times, and X and Y are independent. Then

E[es(X+Y)] = E[esXesY ]
= E[esX]E[esY ] by independence

=
(

λ

λ − s

)(
μ

μ − s

)

So,

E{esD} =
(

λ

μ

)(
μ

μ − s

)

+
(

1 − λ

μ

)(
λ

λ − s

)(
μ

μ − s

)

= λ

(λ − s)

By the uniqueness of generating functions, it follows that D has an exponential
distribution with parameter λ.
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36. The distributions of the queue size and busy period are the same for all three
disciplines; that of the waiting time is different. However, the means are identical.
This can be seen by using W = L/λ, since L is the same for all. The smallest
variance in the waiting time occurs under first-come, first-served and the largest
under last-come, first-served.

39. (a) a0 = P0 due to Poisson arrivals. Assuming that each customer pays 1
per unit time while in service the cost identity of Equation (2.1) states that

average number in service = λE[S]
or

1 − P0 = λE[S]
(b) Since a0 is the proportion of arrivals that have service distribution
G1 and 1 − a0 the proportion having service distribution G2, the result
follows.
(c) We have

P0 = E[I ]
E[I ] + E[B]

and E[I ] = 1/λ and thus,

E[B] = 1 − P0

λP0

= E[S]
1 − λE[S]

Now from parts (a) and (b) we have

E[S] = (1 − λE[S])E[S1] + λE[S]E[S2]
or

E[S] = E[S1]
1 + λE[S1] + λE[S2]

Substituting into E[B] = E[S]/(1 − λE[S]) now yields the result.
(d) a0 = 1/E[C], implying that

E[C] = E[S1] + 1/λ − E[S2]
1/λ − E[S2]
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45. By regarding any breakdowns that occur during a service as being part of
that service, we see that this is an M/G/1 model. We need to calculate the first two
moments of a service time. Now the time of a service is the time T until something
happens (either a service completion or a breakdown) plus any additional time A.
Thus,

E[S] = E[T + A]
= E[T ] + E[A]

To compute E[A], we condition upon whether the happening is a service or a
breakdown. This gives

E[A] = E[A | service] μ

μ + α
+ E[A |breakdown] α

μ + α

= E[A |breakdown] α

μ + α

=
(

1

β
+ E[S]

)
α

μ + α

Since E[T ] = 1/(α + μ) we obtain that

E[S] = 1

α + μ
+
(

1

β
+ E[S]

)
α

μ + α

or

E[S] = 1

μ
+ α

μβ

We also need E[S2], which is obtained as follows.

E[S2] = E[(T + A)2]
= E[T 2] + 2E[AT ] + E[A2]
= E[T 2] + 2E[A]E[T ] + E[A2]

The independence of A and T follows because the time of the first happening is
independent of whether the happening was a service or a breakdown. Now,

E[A2] = E[A2 |breakdown] α

μ + α



Chapter 8 765

= α

μ + α
E[(downtime + S∗)2]

= α

μ + α

{
E[down2] + 2E[down]E[S] + E[S2]}

= α

μ + α

{
2

β2
+ 2

β

[
1

μ
+ α

μβ

]

+ E[S2]
}

Hence,

E[S2] = 2

(μ + β)2
+ 2

[
α

β(μ + α)
+ α

μ + α

(
1

μ
+ α

μβ

)]

+ α

μ + α

{
2

β2
+ 2

β

[
1

μ
+ α

μβ

]

+ E[S2]
}

Now solve for E[S2]. The desired answer is

WQ = λE[S2]
2(1 − λE[S])

In the preceding, S∗ is the additional service needed after the breakdown is over
and S∗ has the same distribution as S. The preceding also uses the fact that the
expected square of an exponential is twice the square of its mean.

Another way of calculating the moments of S is to use the representation

S =
N∑

i=1

(Ti + Bi) + TN+1

where N is the number of breakdowns while a customer is in service, Ti is the
time starting when service commences for the ith time until a happening occurs,
and Bi is the length of the ith breakdown. We now use the fact that, given N , all
of the random variables in the representation are independent exponentials with
the Ti having rate μ + α and the Bi having rate β . This yields

E[S|N ] = N + 1

μ + α
+ N

β

Var(S|N) = N + 1

(μ + α)2
+ N

β2

Therefore, since 1 + N is geometric with mean (μ + α)/μ [and variance
α(α + μ)/μ2] we obtain

E[S] = 1

μ
+ α

μβ
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and, using the conditional variance formula,

Var(S) =
[

1

μ + α
+ 1

β

]2
α(α + μ)

μ2
+ 1

μ(μ + α)
+ α

μβ2

52. Sn is the service time of the nth customer; Tn is the time between the arrival
of the nth and (n + 1)st customer.

Chapter 9

4. (a) φ(x) = x1 max(x2, x3, x4)x5.
(b) φ(x) = x1 max(x2x4, x3x5)x6.
(c) φ(x) = max(x1, x2x3)x4.

6. A minimal cut set has to contain at least one component of each minimal path
set. There are six minimal cut sets: {1,5}, {1,6}, {2,5}, {2,3,6}, {3,4,6}, {4,5}.
12. The minimal path sets are {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4}, {3, 5}. With
qi = 1 − pi , the reliability function is

r(p) = P {either of 1,2, or 3 works}P {either of 4 or 5 works}
= (1 − q1q2q3)(1 − q4q5)

17. E[N2] = E[N2|N > 0]P {N > 0}
� (E[N |N > 0])2P {N > 0}, since E[X2] � (E[X])2

Thus,

E[N2]P {N > 0} � (E[N |N > 0]P [N > 0])2

= (E[N ])2

Let N denote the number of minimal path sets having all of its components func-
tioning. Then r(p) = P {N > 0}. Similarly, if we define N as the number of min-
imal cut sets having all of its components failed, then 1 − r(p) = P {N > 0}. In
both cases we can compute expressions for E[N ] and E[N2] by writing N as the
sum of indicator (i.e., Bernoulli) random variables. Then we can use the inequality
to derive bounds on r(p).

22. (a) F̄t (a) = P {X > t + a |X > t}

= P [X > t + a}
P {X > t} = F̄ (t + a)

F̄ (t)
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(b) Suppose λ(t) is increasing. Recall that

F̄ (t) = e− ∫ t
0 λ(s) ds

Hence,

F̄ (t + a)

F̄ (t)
= exp

{

−
∫ t+a

t

λ(s) ds

}

which decreases in t since λ(t) is increasing. To go the other way, suppose
F̄ (t + a)/F̄ (t) decreases in t . Now when a is small

F̄ (t + a)

F̄ (t)
≈ e−aλ(t)

Hence, e−aλ(t) must decrease in t and thus λ(t) increases.

25. For x � ξ ,

1 − p = F̄ (ξ) = F̄ (x(ξ/x)) � [F̄ (x)]ξ/x

since IFRA. Hence, F̄ (x) � (1 − p)x/ξ = e−θx .
For x � ξ ,

F̄ (x) = F̄ (ξ(x/ξ)) � [F̄ (ξ)]x/ξ

since IFRA. Hence, F̄ (x) � (1 − p)x/ξ = e−θx .

30. r(p) = p1p2p3 + p1p2p4 + p1p3p4 + p2p3p4 − 3p1p2p3p4

r(1 − F (t)) =

⎧
⎪⎨

⎪⎩

2(1 − t)2(1 − t/2) + 2(1 − t)(1 − t/2)2

−3(1 − t)2(1 − t/2)2, 0 � t � 1

0, 1 � t � 2

E[lifetime] =
∫ 1

0

[
2(1 − t)2(1 − t/2) + 2(1 − t)(1 − t/2)2

− 3(1 − t)2(1 − t/2)2]dt

= 31

60
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Chapter 10

1. B(s) + B(t) = 2B(s) + B(t) − B(s). Now 2B(s) is normal with mean 0 and
variance 4s and B(t) − B(s) is normal with mean 0 and variance t − s. Because
B(s) and B(t) − B(s) are independent, it follows that B(s) + B(t) is normal with
mean 0 and variance 4s + t − s = 3s + t .

3. E[B(t1)B(t2)B(t3)] = E[E[B(t1)B(t2)B(t3)|B(t1), B(t2)]]
= E[B(t1)B(t2)E[B(t3) |B(t1),B(t2)]]
= E[B(t1)B(t2)B(t2)]
= E[E[B(t1)B

2(t2) |B(t1)]]
= E[B(t1)E[B2(t2) |B(t1)]]
= E[B(t1){(t2 − t1) + B2(t1)}] (∗)

= E[B3(t1)] + (t2 − t1)E[B(t1)]
= 0

where the equality (∗) follows since given B(t1),B(t2) is normal with mean B(t1)

and variance t2 − t1. Also, E[B3(t)] = 0 since B(t) is normal with mean 0.

5. P {T1 < T−1 < T2} = P {hit 1 before −1 before 2}

= P {hit 1 before −1}
× P {hit −1 before 2 |hit 1 before −1}

= 1
2P {down 2 before up 1}

= 1

2

1

3
= 1

6

The next to last equality follows by looking at the Brownian motion when it first
hits 1.

10. (a) Writing X(t) = X(s)+X(t)−X(s) and using independent increments,
we see that given X(s) = c, X(t) is distributed as c + X(t) − X(s). By
stationary increments this has the same distribution as c + X(t − s), and is
thus normal with mean c + μ(t − s) and variance (t − s)σ 2.
(b) Use the representation X(t) = σB(t) + μt , where {B(t)} is standard
Brownian motion. Using Equation (1.4), but reversing s and t , we see that
the conditional distribution of B(t) given that B(s) = (c−μs)/σ is normal
with mean t (c − μs)/(σ s) and variance t (s − t)/s. Thus, the conditional
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distribution of X(t) given that X(s) = c, s > t , is normal with mean

σ

[
t (c − μs)

σs

]

+ μt = (c − μs)t

s
+ μt

and variance

σ 2t (s − t)

s

19. Since knowing the value of Y(t) is equivalent to knowing B(t), we have

E[Y(t) |Y(u), 0 � u � s] = e−c2t/2E[ecB(t) |B(u),0 � u � s]
= e−c2t/2E[ecB(t) |B(s)]

Now, given B(s), the conditional distribution of B(t) is normal with mean B(s)

and variance t − s. Using the formula for the moment generating function of a
normal random variable we see that

e−c2t/2E[ecB(t)|B(s)] = e−c2t/2ecB(s)+(t−s)c2/2

= e−c2s/2ecB(s)

= Y(s)

Thus {Y(t)} is a Martingale.

E[Y(t)] = E[Y(0)] = 1

20. By the Martingale stopping theorem

E[B(T )] = E[B(0)] = 0

However, B(T ) = 2 − 4T and so 2 − 4E[T ] = 0, or E[T ] = 1
2 .

24. It follows from the Martingale stopping theorem and the result of Exer-
cise 18 that

E[B2(T ) − T ] = 0

where T is the stopping time given in this problem and

B(t) = X(t) − μt

σ
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Therefore,

E

[
(X(T ) − μT )2

σ 2
− T

]

= 0

However, X(T ) = x and so the preceding gives that

E[(x − μT )2] = σ 2E[T ]
But, from Exercise 21, E[T ] = x/μ and so the preceding is equivalent to

Var(μT ) = σ 2 x

μ
or Var(T ) = σ 2 x

μ3

27. E[X(a2t)/a] = (1/a)E[X(a2t)] = 0. For s < t ,

Cov
(
Y(s), Y (t)

)= 1

a2
Cov

(
X(a2s),X(a2t)

)

= 1

a2
a2s = s

Because {Y(t)} is clearly Gaussian, the result follows.

30. (a) Starting at any time t the continuation of the Poisson process remains
a Poisson process with rate λ.

(b) E[Y(t)Y (t + s)] =
∫ ∞

0
E[Y(t)Y (t + s)|Y(t) = y]λe−λy dy

=
∫ s

0
yE[Y(t + s)|Y(t) = y]λe−λy dy

+
∫ ∞

s

y(y − s)λe−λy dy

=
∫ s

0
y

1

λ
λe−λy dy +

∫ ∞

s

y(y − s)λe−λy dy

where the preceding used that

E[Y(t)Y (t + s)|Y(t) = y] =
{

yE(Y (t + s)) = y

λ
, if y < s

y(y − s), if y > s

Hence,

Cov(Y (t), Y (t + s)) =
∫ s

0
ye−λy dy +

∫ ∞

s

y(y − s)λe−λy dy − 1

λ2
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Chapter 11

1. (a) Let U be a random number. If
∑i−1

j=1 Pj < U �
∑i

j=1 Pj then simulate

from Fi . (In the preceding
∑i−1

j=1 Pj ≡ 0 when i = 1.)
(b) Note that

F(x) = 1

3
F1(x) + 2

3
F2(x)

where

F1(x) = 1 − e2x, 0 < x < ∞

F2(x) =
{

x, 0 < x < 1

1, 1 < x

Hence, using part (a), let U1, U2, U3 be random numbers and set

X =
⎧
⎨

⎩

− logU2

2
, if U1 < 1

3

U3, if U1 > 1
3

The preceding uses the fact that − logU2/2 is exponential with rate 2.

3. If a random sample of size n is chosen from a set of N + M items of which
N are acceptable, then X, the number of acceptable items in the sample, is such
that

P {X = k} =
(

N

k

)(
M

n − k

)/(
N + M

k

)

To simulate X, note that if

Ij =
{

1, if the j th selection is acceptable

0, otherwise

then

P {Ij = 1|I1, . . . , Ij−1} = N −∑j−1
1 Ii

N + M − (j − 1)

Hence, we can simulate I1, . . . , In by generating random numbers U1, . . . ,Un and
then setting

Ij =

⎧
⎪⎨

⎪⎩

1, if Uj <
N −∑j−1

1 Ii

N + M − (j − 1)

0, otherwise

and X =∑n
j=1 Ij has the desired distribution.
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Another way is to let

Xj =
{

1, the j th acceptable item is in the sample

0, otherwise

and then simulate X1, . . . ,XN by generating random numbers U1, . . . ,UN and
then setting

Xj =

⎧
⎪⎨

⎪⎩

1, if Uj <
n −∑j−1

i=1 Xi

N + M − (j − 1)

0, otherwise

and X =∑N
j=1 Xj then has the desired distribution.

The former method is preferable when n � N and the latter when N � n.

6. Let

c(λ) = max
x

{
f (x)

λe−λx

}

= 2

λ
√

2π
max

x

[

exp

{−x2

2
+ λx

}]

= 2

λ
√

2π
exp

{
λ2

2

}

Hence,

d

dλ
c(λ) =√

2/π exp

{
λ2

2

}[

1 − 1

λ2

]

Hence (d/dλ)c(λ) = 0 when λ = 1 and it is easy to check that this yields the
minimal value of c(λ).

16. (a) They can be simulated in the same sequential fashion in which they
are defined. That is, first generate the value of a random variable I1
such that

P {I1 = i} = wi
∑n

j=1 wj

, i = 1, . . . , n

Then, if I1 = k, generate the value of I2 where

P {I2 = i} = wi
∑

j �=k wj

, i �= k

and so on. However, the approach given in part (b) is more efficient.
(b) Let Ij denote the index of the j th smallest Xi .
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23. Let m(t) = ∫ t

0 λ(s) ds, and let m−1(t) be the inverse function. That is,
m(m−1(t)) = t .

(a) P {m(X1) > x} = P {X1 > m−1(x)}
= P {N(m−1(x)) = 0}
= e−m(m−1(x))

= e−x

(b) P {m(Xi) − m(Xi−1) > x|m(X1), . . . ,m(Xi−1) − m(Xi−2)}
= P {m(Xi) − m(Xi−1) > x|X1, . . . ,Xi−1}
= P {m(Xi) − m(Xi−1) > x|Xi−1}
= P {m(Xi) − m(Xi−1) > x|m(Xi−1)}

Now,

P {m(Xi) − m(Xi−1) > x|Xi−1 = y}

= P

{∫ Xi

y

λ(t)dt > x|Xi−1 = y

}

= P {Xi > c|Xi−1 = y} where
∫ c

y

λ(t) dt = x

= P {N(c) − N(y) = 0 |Xi−1 = y}
= P {N(c) − N(y) = 0}

= exp

{

−
∫ c

y

λ(t) dt

}

= e−x

32. Var[(X + Y)/2] = 1
4 [Var(X) + Var(Y ) + 2Cov(X,Y )]

= Var(X) + Cov(X,Y )

2

Now it is always true that

Cov(V ,W)√
Var(V )Var(W)

� 1

and so when X and Y have the same distribution Cov(X,Y ) � Var(X).
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Index

Absorbing state of a Markov chain, 187
Accessibility of states in a Markov chain,

193–194
Age of the renewal process, 447
Algorithms, analyzing probabilistic, 224–230
Alias method in simulation, 688–692
Aloha protocol, 201–204
Alternating renewal process, 445–446
Aperiodic state of a Markov chain, 204
Arbitrage defined, 635
Arbitrage theorem, 635–638

Balance equations, 386, 500
Ballot problem, 128–130, 175
Bayes’ formula, 12–15
Bernoulli random variables, 28–29, 39, 50,

56–57, 286, 716
independent, 123–124

Best prize problem, 124–126
Beta distribution, 681–682
Beta random variable, 63

relation to gamma, 62–64
simulation of, 671, 681–682

Binomial random variables, 29–31, 39, 50
simulating, 686
sums of independent, 69–70
variance of, 55–56

Binomials, negative, 164–165
Birth and death model, 365
Birth and death processes, 368–375, 384

ergodic, 394
Bivariate exponential distribution, 363
Bivariate normal distribution, 167
Black–Scholes option pricing formula, 638–

644
Bonferroni’s inequality, 16

Bonus Malus
automobile insurance system, 216–217
system, 188–189

Boole’s inequality, 16
Bose–Einstein statistics, 147–151
Box–Muller approach, 678
Branching processes, 233–236
Bridge

Brownian, 647
structure, 587
system defined, 576

Brown, Robert, 626
Brownian bridge, 647
Brownian motion

integrated, 648
standard, 627
variations on, 631–632

Brownian motion and stationary processes,
625–662

Gaussian processes, 646–649
harmonic analysis of weakly stationary

processes, 654–657
hitting times and gambler’s ruin problem,

629–630
maximum variable and gambler’s ruin

problem, 629–630
pricing stock options, 632–644
stationary and weakly stationary processes,

649–654
variations on Brownian motion, 631–632
white noise, 644–646

Busy period, 338, 530–531

Cayley’s theorem, 590
Central limit theorem, 79, 82
Central limit theorem for renewal processes,

432–433

775
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Chapman–Kolmogorov equations, 189–193,
380

Chebyshev’s inequality, 77–78
Chi-squared distribution, 681
Chi-squared random variable with degree of

freedom, 75
Class of Markov chain, 193
Closed class of a Markov chain, 266
Communications with Markov chain, 194
Complement of event, 3
Compound Poisson process, 337–342
Compound Poisson random variable, 120
Compound random variables

defined, 108
identities, 159
variances of, 119–120

Compound random variables, identity for,
158–165

binomial compounding distribution, 163
compounding distribution related to nega-

tive binomials, 164–165
Poisson compounding distribution, 161–

162
Conditional expectation, 98, 102–103, 105–

106
Conditional expectation, conditional proba-

bility and, 97–184
computing expectations by conditioning,

105–120
computing probabilities by conditioning,

120–137
continuous case, 102–105
discrete case, 97–102
identity for compound random variables,

158–165
miscellaneous applications, 137–158

Conditional or mixed Poisson processes,
343–345

Conditional probability, 7–10, 136–137
Conditional probability and conditional

expectation
computing expectations by conditioning,

105–120
computing probabilities by conditioning,

120–137
continuous case, 102–105
discrete case, 97–102
identity for compound random variables,

158–165
miscellaneous applications, 137–158

Conditional probability density function, 102
Conditional variance, 118
Conditional variance formula, 119
Conditioning, computing probabilities by,

120–137

Connected graph defined, 145
Convolution, 58
Correlation, 167
Counting processes, 302–303
Coupling from past, 720–722
Coupon collecting problem, 313–316
Covariance, properties of, 54
Covariance and variance of sums of random

variables, 53–61
Coxian random variable defined, 301
Craps, 16
Cumulative distribution function (cdf), 26, 28
Cut vector defined, 577

Decreasing failure rate (DFR), 596–597,
599–600

Delayed renewal process, 461–462, 481
Dependent events, 10
Dirichlet distributions defined, 149
Discrete distributions simulating from, 685–

692
Distributions, simulating from discrete, 685–

692
Doubly stochastic, 266

e, 131–132
Ehrenfest, P. and T., 239
Ehrenfest urn model, 239, 273
Einstein, A., 626
Elementary renewal theorem, 424–425
Ergodic birth and death process, 394
Ergodic define, 204
Ergodic Markov chain, 242
Erlang’s loss system, 553–554
Event, 2
Excess life of renewal process, 441, 448
Expectation, conditional, 97–184, 103
Expectation of sum of random number of ran-

dom variables, 107
Expectations, computing by conditioning,

105–120
computing variances by conditioning,

117–120
Expected system lifetime, 604–610
Expected time to maximal run of distinct

values, 469–471
Expected value, 38–39, 41, 92

of Bernoulli random variables, 39
of binomial random variables, 39–40, 50
of compound random variables, 107–108
of continuous random variables, 41
of discrete random variables, 38
of exponential random variables, 42, 282
of functions of random variables, 43–45,

49
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of geometric random variables, 40–41,
108–109

of hypergeometric random variables, 56–
58

of normal random variables, 42–43
of Poisson random variables, 41
of the sum of a random number of random

variables. See of compound random
variables

of sums of random variables, 49–51
tables of, 68–69
of time until k consecutive successes, 112–

113
of total discounted reward, 171, 283–284
of uniform random variables, 42

Exponential dissipation, properties of, 284–
291

Exponential distribution, 282–302, 682–685
further properties of, 291–298

Exponential distribution and Poisson process
convolutions of exponential random

variables, 298–302
definition, 282–283
exponential distribution, 282–302
further properties of exponential

distribution, 291–298
properties of exponential distribution, 284–

291
Exponential models, 499–517

queueing system with bulk service, 514–
517

shoeshine shop, 511–514
single-server exponential queueing system,

499–511
Exponential queueing system, single-server,

499–511
Exponential random variables, 36, 42

convolutions of, 298–302
mixtures of, 599–600
rate of, 289–291
simulating, 669
Von Neumann algorithm, 682–685

Failure rate. See Decreasing failure rate; In-
creasing failure rate

Failure rate function, 288, 302, 346
discrete time, 301

Gamblers ruin problem, 217–221
application to drug testing, 219–220
hitting times and, 629–630
maximum variable and, 629–630

Gamma distribution, 597, 680–681
Gamma random variables, 37

independent, 62

Gaussian processes, 646–649
General renewal process. See Delayed re-

newal process
Geometric Brownian motion, 631–632, 658
Geometric distribution, mean of, 108–109
Geometric random variable, 31–32, 40–41

variance of, 117–119
Gibbs sampler, 250–251
Graph and components, 589
Graphs, random, 139–147, 588
Greedy algorithms, analyzing, 292–294

Hardy–Weinberg law, 207–209
Hastings–Metropolis algorithm, 248–250
Hazard function defined, 601
Hazard rate function, 288, 302
Hazard rate method, 673–676

discrete, 725–726
Hit-miss method, 729–730
Hyperexponential random variable, 290
Hypergeometric defined, 56, 58
Hypergeometric distribution defined, 99
Hypoexponential random variable, 299

Idle period, 338, 530
IFR, pillow system that is not, 599
IFR lifetime distribution, 598
Ignatov’s theorem, 133–134, 155
Impulse response function, 654–655
Inclusion and exclusion, method of, 584–592
Inclusion–exclusion bounds, 586
Inclusion–exclusion theorem, 134–136
Increasing failure rate (IFR), 596
Increasing failure rate on the average (IFRA),

571, 601
Independent events, 10–12
Independent events, pairwise, 11
Independent increments, 303
Independent random variables, 51–52, 314

sum of, 68
Indicator random variable for event, 25
Inspection paradox, 455–458
Instantaneous transmission rates defined, 378
Insurance, 121–122, 136–137, 325–327,

344–345, 446–447
Insurance ruin problem, 473–478
Interarrival time, sequence of, 307
Intersection of event, 3
Inventory example, 450–451
Inverse transformation method, 668–669

discrete analog, 685
Inversions, 95
Irreducible Markov chain, 194
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Jacobian determinant, 63
Joint cumulative probability distribution

function, 47
Joint moment generating function, 96
Joint probability

computing, 324–325
density function, 48
distribution of functions of random

variables, 61–64
mass function, 48
of sample mean and sample variance from

normal population, 74–76
Jointly continuous random variables, 48
Jointly distributed random variables, 47–64

Kolmogorov’s backward equation, 380
Kolmogorov’s forward equation, 382–383
k-out-of-n structure, 573
k-out-of-n system, 575, 606–607

with equal probability, 579
with identical components, 598

k-record index, 156
k-record values of discrete random variables,

155–158

L = λaW , 496
L = λaWQ , 496
Laplace transform, 72, 306
Limiting probabilities, 384–392
Linear growth model with immigration, 369–

371
Linear program defined, 255
List model, 137–139
Little o notation, 304
Little’s formula, 496
Long run proportion of time, 205

Markov chain generated data, mean pattern
times in, 212–215

Markov chain in genetics, 207–209
Markov chains, 185–280

branching processes, 233–236
Chapman–Kolmogorov equations, 189–

193
classification of states, 193–204
continuous-time, 366–368, 381
ergodic, 242
hidden Markov chains, 256–263
independent time reversible continuous-

time, 399
irreducible, 245
limiting probabilities, 204–217
Markov decision processes, 252–256
mean time spent in transient states, 230–

232

miscellaneous applications, 217–230
Monte Carlo methods, 247–252
time reversible, 236–247
time reversible Markov chains, 236–247

Markov chains, continuous-time, 365–415
birth and death processes, 368–375
computing transition probabilities, 404–

407
limiting probabilities, 384–392
time reversibility, 392–400
transition probability function, 375–384
uniformization, 401–404

Markov chains, hidden, 256–263
protecting states, 261–263

Markov decision processes, 252–256
Markov processes. See Semi-Markov

processes
Markovian property, 225, 227
Markov’s inequality, 77–78
Martingale process, 644, 659
Match problem, 126–128
Matching rounds problem, 110–112
Mean

of geometric distribution, 108–109
joint distribution of sample, 74–76
pattern times in Markov chain generated

data, 212–215
Poisson distribution with, 66
Poisson random variable width, 336
sample, 55
value function, 333

Mean time
for patterns, 151–155
spent in transient states, 230–232

Mean value analysis of queing networks, 504
Memoryless random variable, 284, 366
Minimal cut set, 577
Minimal path and minimal cut sets, 574–578
Minimal path set, 574
Minimal path vector common, 574
Mixed Poisson processes, conditional or,

343–345
Mixture of distributions, 493
Moment, 46
Moment generating function determines

distribution, 69
Moment generating functions, 64, 68

of binomial random variables, 65
of compound random variables, 174
of exponential random variables, 66–67,

282
of normal random variables, 67–68
of Poisson random variables, 66
of the sum of independent random vari-

ables, 68
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tables of, 68–69
Monte Carlo methods, Markov chain, 247–

252
Monte Carlo simulation approach defined,

663
Monte Carlo’s simulation, 247
Moving average process, 654
Multinomial distribution, 87
Multivariate normal distribution, 72–73
Mutually exclusive events, 3

Negative binomial distribution defined, 88
Negative binomials, compounding distribu-

tion related to, 164–165
New better than used, 467
Nonhomogeneous Poisson process

conditional distribution of event times, 361
mean value function of, 333
simulating, 693–703, 708–709

Normal random variables, 37–38, 42–43, 96
as approximations of the binomial, 80–81
simulation of, 671–673, 677–680

Null event, 3
Null recurrent state of a Markov chain, 270

Occupation time, 404, 414
Odds, 636–637
Options, 632–635, 637–638
Order statistics, 60–61

simulation of, 726–727
Ornstein-Uhlenbeck process, 652

Pairwise independent events, 11
Parallel structure, 572–573
Parallel system, 571, 579, 596, 612–615

expected life of, 608–610
that is not IFR, 599

Path vector, 574
Patterns

of discrete random variables, 462–469
mean time for, 151–155

Patterns, applications to, 461–473
expected time to maximal run of distinct

values, 469–471
increasing runs of continuous random

variables, 471–473
patterns of discrete random variables, 462–

469
Period of a state of a Markov chain, 204
Poisson arrival queues, single-server, 338–

342
Poisson compounding distribution, 161–162
Poisson distribution, 60
Poisson distribution with mean, 66
Poisson paradigm, 70–72

Poisson process, 302–330
compound, 337–342
conditional distribution of arrival times,

316–327
counting processes, 302–303
definition of, 304–307
estimating software reliability, 328–330
interarrival and waiting time distributions,

307–310
miscellaneous properties of Poisson

processes, 310–316
nonhomogeneous, 330–337
sampling, 694–697
sampling of, 318
simulating two-dimensional, 700–703
sums of, 352

Poisson process, exponential distribution and,
281–364

convolutions of exponential random
variables, 298–302

definition, 282–283
exponential distribution, 282–302
further properties of exponential

distribution, 291–298
properties of exponential distribution, 284–

291
Poisson process, generalization of, 330–345

compound Poisson process, 337–342
conditional or mixed Poisson processes,

343–345
Poisson process having rate, 304
Poisson processes

conditional or mixed, 343–345
miscellaneous properties of, 310–316

Poisson queue, output process of infinite
server, 336–337

Poisson random variables, 32–33, 100, 306,
320

approximation to the binomial, 32–33,
307, 333–334

expectation of, 41
maximum probability, 89
with mean, 336
random sampling, 122–123
simulating, 687–688
sums of independent, 70

Polar method defined, 680
Pollaczek–Khintchine formula, 529
Polya’s urn model, 147–151, 169–170
Positive recurrent state of a Markov chain,

204
Power spectral density, 656
Probabilistic algorithm, 229
Probabilistically process, 308
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Probabilities
computing, 120–137
computing joint, 324–325
conditional, 7–10, 97–184, 136–137
defined on events, 4–6
identical component, 587
limiting, 204–217, 384–392
of matches, 126–128
stationary, 212
steady-state, 496–498
transition, 404–407
of union of events, 6

Probability density function, 34, 45
conditional, 102
joint, 48

Probability distribution function, joint
cumulative, 47

Probability function, transition, 375–384
Probability mass function, 27

joint, 48
Probability theory, introduction to, 1–21

Bayes’ formula, 12–15
conditional probabilities, 7–10
independent events, 10–12
probabilities defined on events, 4–6
sample space and events, 1–4

Pure birth process, 365

Queueing system, 371
with bulk service, 514–517
G/M /k, 554–555
multiserver exponential, 372–375
with renewal arrivals, 443
simulating, 707
single-server exponential, 508–511
with finite capacity, 508–510
waiting times, 504

Queueing theory, 493–570
cost equations, 495–496
departure process, 394–395
exponential models, 499–517
finite source model, 549–552
M /G/k, 556–557
model G/M /1, 543–548
multiserver queues, 552–557
network of queues, 517–527

analysis of the Gibbs sampler, 526–527
the arrival theorem, 524–525
mean value analysis, 525

preliminaries, 494–498
steady-state probabilities, 496–498
system M /G/1, 528–531

optimization problem, 536–540
tandem quenes, 395
transition diagram, 512–513

variations on M /G/1, 531–543
work in quenes, 528

Queues
infinite server, 319–320
multiserver, 552–557
output process, 336–337
single-server Poisson arrival, 338–342

Queues, network of, 517–527
closed systems, 522–527
open systems, 517–522

Quick sort algorithm, 113–116

Random graph, 139–147, 588
Random numbers, 664
Random permutations, generating, 664–666
Random subset, 726–727
Random telegraph signal process, 653
Random variable, expectation

continuous case, 41–43
discrete case, 38–41
expectation of function of random variable,

43–47
Random variable identity, compound, 159
Random variable with mean, Poisson, 336
Random variables, 23–96

Bernoulli, 28–29, 39, 50, 56–57, 286, 716
binomial, 29–31, 39, 50
chi-squared, 75
compound, 108
continuous, 26, 34–38, 45, 471–473
convolutions of exponential, 298–302
covariance and variance of sums of, 53–61
Coxian, 301
discrete, 26, 155–158, 462–469
discrete random variables, 27–33
expectation of, 38–47
expectation of sum of random number of,

107–108
expectations of functions of, 43–47
exponential, 36, 42
gamma, 37
geometric, 31–32, 40–41
hyperexponential random, 290
hypoexponential, 299
independent, 51–52, 314
independent Bernoulli, 123–124
independent gamma, 62
joint density function of, 63
joint probability distribution of functions

of, 61–64
jointly distributed, 47–64
jointly distributed random variables, 47–64
limit theorems, 77–83
moment generating functions, 64–76
normal, 37–38, 42–43
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Poisson, 32–33, 306, 320
simulating binomial, 686
simulating normal, 671–673
simulating Poisson, 687–688
stochastic processes, 83–85
sum of independent, 68
sum of two independent uniform, 59
sums of independent binomial, 69–70
sums of independent normal, 70
sums of independent Poisson, 59, 70
uniform, 35–36, 42
variance of binomial, 55–56
variance of compound, 119–120
variance of geometric, 117–119

Random variables, identity for compound,
158–165

binomial compounding distribution, 163
compounding distribution related to nega-

tive binomials, 164–165
Poisson compounding distribution, 161–

162
Random variables, simulating continuous,

668–676, 677–685
chi-squared distribution, 681
data distribution, 681–682
exponential distribution, 682–685
gamma distribution, 680–681
hazard rate method, 673–676
inverse transformation method, 668–669
normal distribution, 677–680
rejection method, 669–673
Von Neumann algorithm, 682–685

Random walk, 224–230
symmetric, 199

Rate of distribution defined, 289
Rate of renewal process, 424
Rates, instantaneous transition, 378
Records, 95
Recurrent states, positive, 204
Recurring states, 195, 197
Regenerative processes, 442–451

alternating renewal processes, 445–451
Rejection method, 669–673

discrete, 725
Reliability, estimating software, 328–330
Reliability function, 602
Reliability function, bounds on, 583–595

method of inclusion and exclusion, 584–
592

second method for obtaining bounds, 593–
595

Reliability theory
bounds on reliability function, 583–595
expected system lifetime, 604–610

reliability of systems of independent
components, 578–582

structure functions, 571–578
system life as function of component lives,

595–603
Renewal, cycle and, 434
Renewal arrivals, queueing system with, 443
Renewal function

computing, 458–461
estimating, 710–711

Renewal processes
age of, 447
alternating, 445–451
average age of, 440
average excess of, 441
central limit theorem for, 432–433
defined, 417
excess of, 448
and interarrival distribution, 454

Renewal reward processes, 433–441
Renewal theory and its applications, 417–492
Reversible chain, time, 398

Sample mean defined, 55
Sample space, 1
Sample variance, 74
Satisfiability problem, 228–230
Second-order stationary process, 651
Semi-Markov processes, 452–454
Series system, 571, 579, 596, 611, 614

of uniformly distributed components, 604–
605

Shuffling, 267
Signed rank test, 182
Simulation, 663–731

coupling from past, 720–722
determining number of runs, 720
simulating continuous random variables,

668–676, 677–685
simulating from discrete distributions,

685–692
stochastic processes, 692–703
variance reduction techniques, 703–719

Six, 281–364
Snyder’s ratio of genetics, 273
Software reliability, estimating, 328–330
Spanning trees, 590
Standard Brownian motion, 627
Standard normal distribution function, 80
Stationary and weakly stationary processes,

649–654
Stationary increments, 303
Stationary probabilities, 212
Stationary processes

harmonic analysis of weakly, 654–657
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second-order, 651
stationary and weakly, 649–654
weakly, 651

Stationary processes, Brownian motion and,
625–662

Stationary transition probabilities, 366
Stimulation, 663–731
Stirling’s approximation, 144, 203, 223
Stochastic processes, 83–85, 626, 646, 692–

703
simulating nonhomogenous Poisson

process, 693–700
simulating two-dimensional Poisson

process, 700–703
state space of, 84

Stopping time, 481, 675
Stratified sampling, 730
Strong law of large numbers, 78–79
Strong law for renewal processes, 423–424
Structure functions, 571–578
Suspended animation, series model with,

615–617
Symmetric random walk, 199

relation to Brownian motion, 625–626

Taylor series expansion, 82
Thinning algorithm in simulation, 694
Throughput rate, 523
Tilted density, 716
Time reversibility, 392–400
Time reversible chain, 398
Time reversible continuous-time Markov

chains, independent, 399
Time reversible equations, 241
Time reversible Markov chains, 236–247
Times, conditional distribution of arrival,

316–327
Transient states, 195

mean time spent in, 230–232
Transition probabilities, computing, 404–407
Transition probability function, 375–384
Transition probability matrix, 197
Transition rates, instantaneous, 378
Tree process, 277
Truncated chain, 398
Two-dimensional Poisson process,

simulating, 700–703
Two state continuous time Markov chain,

381–383

Uniform priors, 147–151
Uniform random variables, 35–36, 42, 59
Uniformization, 401–404
Union of event, 3
Union of events, probability of, 6
Unit normal distribution. See Standard nor-

mal distribution

Variance reduction by conditioning, 708–712
Variance reduction techniques, 703–719

control variates, 712–714
importance sampling, 714–719
using antithetic variables, 704–707
variance reduction by conditioning, 708–

712
Variances

of binomial random variables, 55–56
of compound random variables, 119–120
computing, 117–120
of exponential random variables, 282–284
of geometric random variables, 117–118
of hypergeometric random variables, 56–

58
joint distribution of sample, 74–76
of normal random variables, 46
of the number of renewals, 461
of Poisson random variables, 66
sample, 74
of sums of random variables, 53–61
tables of, 68–69

Viterbi algorithm defined, 263
Von Neumann algorithm, 682–685

Waiting time, 308
Waiting time distributions, interarrival and,

307–310
Wald’s equation, 482–485, 548, 675

defined, 481
Weak dependence, 71
Weak law of large numbers, 94
Weakly stationary process, 651
Weakly stationary processes

harmonic analysis of, 654–657
stationary and, 649–654

Weibull distribution, 596
White noise, 644–646
Wiener, N., 626–627
Wiener process, 626
Work in queue, 528

Yule process, 377, 408–409
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